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SPECTRAL STUDY
OF HOLOMORPHIC FUNCTIONS

WITH BOUNDED GROWTH

par Ivan CNOP

1. Introduction.

We prove a spectral property for some algebras of holo-
morphic functions of several complex variables with rather
general growth conditions. It was obtained in the author's
Ph. D. thesis [3] and announced in [2]. The algebras involved
arise in the holomorphic functional calculus (symbolic
calculus) for 6-algebras (complete algebras) constructed
by L. Waelbroeck [14], and have also been studied in [12],
[13]. L. Waelbroeck has remarked that properties of the
algebra of holomorphic functions with bounded growth can be
obtained if the weight function is « spectral » for the identity
mapping, and he has given necessary conditions in order that
this be verified [14, p. 124]. Here we prove that the necessary
conditions are also sufficient. The proof uses the existence
theorems with L2 estimates for the & operator, obtained
by L. Hormander [11]. By applying the holomorphic func-
tional calculus, we also obtain a characterisation of the spec-
trum of arbitrary elements. Applications to algebras of
holomorphic functions are given, or referred to in the last
paragraph. We start by recalling basic facts from the spectral
theory and holomorphic functional calculus, following [14],
but we only consider the case of commutative algebras.
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2. Complete bounded structures and spectral theory.

A set S> of subsets of a set E is called a bounded structure
on E, when % contains singletons, and all subsets of finite
unions of its elements, which are then called bounded sets.
When E is a vector space, an absolutely convex subset B
is completant if the semi-norm induced by B on the vector
subspace EB spanned by B in E, turns EB into a Banach
space. A 6-space is a vector space equipped with a bounded
structure which is compatible with the vector space operations,
and such that each bounded set is contained in a completant
bounded set. A fc-space E is in a natural way a filtrating union
of the Banach spaces EB (B bounded completant), a subset
of E being bounded if and only if it is contained and bounded
in one of the Banach spaces EB. A fc-subspace F of the
6-space E is a vector subspace equipped with the bounded
structure of a 6-space, such that all bounded sets in F are
bounded in E (a set which is bounded in E and contained
in F need not be bounded in F). More about fc-spaces, and
in particular their relation to topological structures, can be
found in [1] and [17].

A 6-algebra A is a 6-space equipped with a bounded
multiplication: B.B' is bounded whenever B and B'
are. A fe-subalgebra of a fc-algebra A is a fc-subspace of A
which is also a fe-algebra; a fc-ideal a in a commutative
6-algebra A is a 6-subspace of A which is an ideal and such
that the product of a bounded set in a and a bounded set in
A is bounded in a. All fc-algebras encountered here will be
commutative and have a unit: we are going to consider only
6-algebras of holomorphic functions with bounded growth,
which occur in the holomorphic functional calculus for 6-alge-
bras with unit.

The growth condition is given by weight functions 8,
which will always be lower semi-continuous bounded nonne-
gative functions of the space C" of n complex variables.
Special such 8 are the functions

8,(s) = (1 + M2)-^
W=mm \W,d(s, [D)j,
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where s == ($1, . . ., <?„) is the variable in C", |s[ its Euclidian
norm and d[sy ^ D) the Euclidian distance to the complement
of the set D in C". When E is a &-space, S(8, E) is the
6-space of all E-valued functions u on fi, the open set where
8 does not vanish, for which there exists a positive integer N
such that {u^S^)^ e £1} is bounded in E; a subset B
of S(8, E) is bounded if for some N, {u{s) ̂ ^[s e D, u e B}
is bounded in E. If E is a fc-algebra, S(8, E) also is. In
particular, S(8) == S(8, C) is a fc-algebra. We say that 8
and 8' are equivalent if a positive real number e and a posi-
tive integer N can be found such that 8 ^ 28^, 8' ^ 58^
Equivalent weight functions give the same algebras.

0(8) is the subset of holomorphic elements of 6(8). It
is a fe-subalgebra with the induced structure. If 8 is Lipschitz,
equivalent to a function decreasing more rapidly than 80
at infinity and equivalent to a function whose logarithm is
plurisuperharmonic, these algebras coincide with the algebras
Ap (p == — log 8) considered in [12] and [13] (see [6, p. 16]
or [10]).

All polynomials, and in particular the coordinate functions
Zi belong to 0(8) if and only if 8 is equivalent to a function
which is smaller than 80. If this is the case, we can find, for
all p, 1 ^ p < oo, nonnegative constants N' and K such
that for all measurable functions f in 13(8) :

H/^l, ^ KOTL

if the right hand side makes sense, and the nonnegative cons-
tants N' and K only depend on the constants in the equiva-
lence, p and the dimension n (Apply Holder's inequality).
When 8 is a Lipschitz function, this means satisfying a
Lipschitz condition of order 1 with constant 1, we can
find a constant Mp such that for all f in 0(8) :

ll̂ -L ^ MJOT,,

if the right hand side makes sense. This is a standard applica-
tion of the Cauchy integral formula on suitably chosen polydiscs
and an application of the Holder inequality. The same argu-
ment proves that a complex derivation D*, k === (/Ci, . . . , / ( •„)
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is a bounded mapping from 0(8) into itself (see for
instance [3]).

Given k elements a^, . . ., a^ in a commutative 6-algebra
A with unit 1, and a fc-ideal a in A, we say that a nonne-
gative function 8 on Ck is spectral for Oi, . . . , a ^ in A
modulo a, or belongs to the spectrum A(ai, . . . , 0 ^ $ A|a)
if we have a decomposition

k

1 == 8(5)UoQ?) + S (^ — îOO + ^(s)
1

where s == (s^ ..., ^) is the variable m C^, the
Uo, Ui, . . . , u ^ are A-valued functions on C^ belonging to
©(80, A), and y is an a-valued function on Ck belonging to
t5(8o, a). This notion of spectrum generalises in some sense the
joint spectrum of elements in a commutative Banach algebra
with unit, and has been studied in [14], [15] and [16]. We
recall that the spectrum is an ideal in the lattice of nonnegative
functions, which possesses a base consisting of Lipschitz func-
tions and which does not contain the function identically zero.
This last result generalises in some sense the result which
says that the joint spectrum of some elements in a commuta-
tive Banach algebra with unit is never empty. The holomorphic
functional calculus states that if 8 is a nonnegative bounded
Lipschitz function on C^ which decreases more rapidly than 80
at infinity, and which belongs to A(a^, . . .,a/,; A|a), then we
can find a bounded homomorphism of algebras sending 0(8)
into A, defined modulo a, sending 1 onto 1 and the Ith

coordinate projection onto a^
The problem consists in finding spectral functions. We will

solve this in the case of the algebras 0(8), for suitable 8.

3. Spectrum of the coordinate projections.

In this section, we prove the following

THEOREM 1 — Let 8/ be a bounded nonnegative Lipschitz
function on C". Let 8 be a Lipschitz function on C", which
is equivalent to a function which is smaller than 80, with
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n == {8 > 0} pseudoconvex, and such that we can find a
function 8" on C" with the properties:

(i) — log 8^ is plurisubharmonic on 0,'y
(ii) 8 majors some function equivalent with 8";
(iii) 8" majors some function equivalent with 8'.

Then 8 belongs to A (z i , . . . , ^ ; 0(8')).

Proof. — In the proof, we use the notations of [12]. When 8
is any nonnegative function on C", and ( and r are nonne-
gative integers, 14(8) is the set of all systems h == {Ai},
antisymmetric in the indices I, where for each I, index
set of length ( containing numbers ij in {0, . . . , M } , Ai
is a differential form of order (0, r) on Q, with C°° coeffi-
cients, and such that for some positive integer N :

^ W^ < 00,

where |Ai|2 is the sum of squares of the absolute values of the
coefficients of Ai. Next, & is the unbounded operator
1^(8) -> L^_i(8) defined on those h in 14(8) such that
{b/ii} belongs to L^_i(8) (here, the derivative is taken in the
distribution sense). Of course bb == 0. Scalar multiplication
by (8(^), ^i — 53, . . . ,^ — 5j:

(P^)i-Ai,o8(^)+ S ^(^~s,)
i

defines a map P,: L^^) —> L^(8), depending on
the parameter s == (^i, . . ., s^) in C". For all s we
put P,(L°(8)) = {0}. Antisymmetry implies P, P, == 0, and
since for constant s the functions 8(^), ^ — ^ are analytic :
P^=^P,

With these notations, we have to find a system
u == (uo, . . ., uj of TZ + 1 functions of 2/z complex vari-
ables (^, z) = (s-^y . . ., s^ ^i, . . ., ^) in C" X ^', such that
for all fixed s in C71:

P^(^)=l
0 U(5, Z) = 0

on Q, and with the estimate : there exist positive integers N
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and M such that:

kMI (Ws'^ < M
on C" X ^/. For fixed s in C", it is easy to find a system
of functions eh{s) = {oh^s), . . ., ^{s)) in L^(8), such that
P, oh(s, z) = 1 :

LEMMA — If g(s) 15 a system in L^(8) wAic/i satisfies

P^)=^)-0,

we can /ind a system h(s) m L^+^S) and in the domain of S,
such that P^h(s) == g(s).

Such a system is given by

^,.,...,^)=(-l)'g,,...,,(<)8(^)lP,|-2

+ ̂  (- l)'-^,,.,...,.^^,...,,^ -^,)|P,|-2

n

where |PJ2 = S2{s) + S 1^ ~~ ^l2- Thls solution is in general
i

not unique, and by a double induction on the integers t and
r, we are going to improve the oh{s) obtained in the lemma
such that it becomes analytic and satisfies the required esti-
mate.

Increasing induction. — For fixed s in C", we first cons-
truct by induction on k some systems of differential forms
kh{s) in L^S), which satisfy P^/iQ?) ==Jb^h(s) : suppose
we already have o ^ - - - ? / c - i ^ ; s^ce ^ k-ih(s) == 0 and

P^.-i^)=^P^-i^)==^l-0 if / c = = l ;
== ̂  k-^s) = 0 if k ^ 1,

we can apply the lemma to obtain ,,h{s) in L^^S) with
&^/i(5) in L^(8). This construction gives coefficients of the
monomials in ^(s} which are a constant multiple of

lPJ-2po(o^(^)go(o^(^)pl(o^(^))71 . . . {MS))?WS))^

= \P,\-W{s){z, - S,}P^ - s^ . . . (^ - s^{^ - î n,

where the p,, q, and y are nonnegative integers satisfying:

Po + qo + Pi + • • • + pn + ?n === T ^ 2/c + 2.
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Indeed, we already know this is the case for oA(^); we
suppose it is true for ^h{s). The derivation o gives two
kinds of coefficients : ^ times the same coefficient with q.
replaced by q^ - 1 (or 0.|PJ~2T if ^ == Q), or - 1 times
the same coefficient with pj replaced by p i + 1 and y
by T + 1. Application of the lemma multiplies these expres-
sions by ± 8(5)|PJ~2 or ±^ (^ - ̂ )1PJ~2. So y increases
at most by 2, while po remains constant or increases. Since 8
is Lipschitz, we can estimate the obtained coefficients : when
\z - s\ < y S(z) then y 8(z) < S(s) ^ 3 8(js) and

|(A)(^)[ < 8-l(5) ^ 28-i(z),

|o^(5, z)| ^ |z - s^-^s) ^ 28^(2) for 1 < i < n;
j[

when |z — $| ^ — 8(z), then
^

|o/io(s,z)| ^ 8(s)(2|z - s|8(s))-i < 28-i(z),

|o/ii(s, z)| < |z — s\-1 < 28-^) for 1 ^ i < n;
finally :

|PJ-2 < 2(|z - s| + 8(5))-2 < 28-2(z).
So the absolute value of each coefficient in Ji is dominated

by
(1) C.(8(Z))-(A>+T) ^ ^.S-(4fc+4)^^

This estimate does not depend on s.

Decreasing induction. — Next we remark that 14(8) c: L;^),
with bounded identity mapping. In these spaces the following
lemma (Lemma 4 in [12], obtained from theorem 2.2 1' in
[11]) is valid:

LEMMA. — Let Q. be a pseudoconvex open set in C" and
let 8" be a nonnegative function on Q with — log 8" pluri-
subharmonic. For every (p, q) form g, q ^ 1, with locally
square integrable coefficients on Q, satisfying bg = 0 and

/jgl^dX < oo,

where d>. is the Lebesgue measure on C11, one can find a
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(p, q — 1) from f satisfying ^f=g and

Jj/rrs^x ^/jgps^x.
We construct, by this lemma and by decreasing induction

on fc, 1 ̂  k ^ n, systems of differential forms ^A'(5) in
L^r) satisfying

^- '̂(5) = ,A(5) - P^'(5)

where nh\s) = 0 by definition of L^S^). This construc-
tion is possible since for fixed s and for all /c, 1 ̂  k ^ n:

b(^(5) - P, ,/i'(5)) = 6 ,A(5) ~ P, ^h{s) - PA ^/i(^) = 0,

and the lemma applies. Moreover, we obtain the following
estimate : for each /c, and each index family I:

(2) L-î s îi, < IK,/̂ ) - P îW^h
if N is such that the right hand side is finite.

Finally we put

u(s) = 0^(5) - P, oh'{s).

This system u satisfies:

8 u(s) = 0,
P,u(s)=P,o/^)==l.

We now have to estimate u. Since 5 is equivalent to a
function which is smaller than &o, we can replace the L°°
estimate (i) on ^h{s) by an L2 estimate, and since 8
majors some function equivalent with 8^, there exist positive
integers No and Mo such that for each k and each index
family I:

LW^oh < Mo.
Since 8A and 8 are smaller than 80 up to equivalence, there
exist positive integers N1 and Mi such that

8^)80(5)^-51 ^ Mi and 8^)80(5)8(5) < Mi,

and for each k and each index set I:

y^z^-^P^h'^z^ < MiS^S^-*)-^) S \,h^(s, z)\;
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if N is such that the L2 norm of the right hand
side is bounded, we have the same inequality for the L2

norms. Using (2) and by decreasing induction on k one
finally obtains : there exist positive integers N' and M'
such that for all i, 0 < i ^ n:

\\u^ z)S^\z)Sy{s)\\, ^ M'

and the same holds with 8" replaced by 8', which is Lipschitz,
and therefore we can find positive integers N" and M"
such that for all i, 0 ^ i ^ n:

(3) II^^S'^S^L ^ M"

which is the required estimate.
This ends the proof of theorem 1.

Remark 1. — The constants arising in the proof and in the
final estimate a,re universal, i.e. they only depend on the
dimension n and the constants occuring in the equivalence
(and on the Lipschitz constants, but we put those equal to
one), but do not depend on the systems obtained in the induc-
tion.

Remark 2. — In fact, we have obtained that for all i,
1 ^ i ̂  k : u, belongs to S(8o, A'), Where A' is the fc-subal-
gebra of 0(8') generated by the set B' of functions f such
that \f\^" ^ 1 (where N" is chosen as in formula (3))
and 8 therefore belongs to A(^i, . . . ,^; A'). The holo-
morphic functional calculus defines a morphism

0(8') -> A',

which can only be the identity since it sends 1 onto 1 and
the Zi onto the ^:

0(8') c: A'.

In particular, when 8 is equivalent to 8', we obtain:

PROPOSITION 2. — Let 8 and 8' be as in theorem 1, 8
and 8' equivalent. Any set which contains the set {f\ \f\S^ ^ 1}
with N sufficiently large^ generates 0(8) as a b-algebra.
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PROPOSITION 3. — Let 8 be a Lipschitz function on G",
which is equivalent to a function which is smaller than 80
and with 0 == {8 > 0} pseudoconvex. Then A(^i, . .., ̂ ;
0(8)) possesses a base consisting of Lipschitz functions ^
with — log ^ plurisubharmonic.

What we really show is that, if — log 8^ is plurisubharmo-
nic, 8 Lipschitz and 8^ ^ 8, then a function 81 exists,
which is Lipschitz, plurisubharmonic, and such that

^
8^ -s. 5^ ^

^ °1 ^ -o--

Proof. — Let first 8^ be any lower semi-continuous func-
tion with 0,^ == {8A > 0} pseudoconvex and with — log 8^
plurisubharmonic on Q'\ The set Qi of the couples (w, z)
in t l^xC such that [w^"1^) < 1, is pseudoconvex; the
restriction 8^ of the distance function 8^ to Q.^ is smaller
or equal than 8^, and — log 8^ is plurisubharmonic.
Moreover

81 {s) ^ inf (8'2(5) + k - ^l2)172-
^ec"

Let now S^ be the smallest function larger than 8, with
— log 8^ plurisubharmonic on t2. We have

8 - ^ 8^ -J-,

81 belongs to A(;Si, . . . ,^; 0(8i)) which is contained in
A(j3i, . . . ,^; 0(8)), and the same goes through with 8
replaced by 8^ for any positive integer N. If 9 belongs
to A(zi, . . . ,^; 0(8)), then [14, p. 124] we can find a
function 8' with — log 8' plurisubharmonic, and a positive
integer N such that

9 ^ 8 ' ^ £8^

and therefore 9 ^ £.(8^ ^ £.(8^1. Thus the functions
^ == £.(8^1 form a basis of the spectrum A(zi, . . ., z^$ 0(8)).

By the preceding construction, theorem 1 is equivalent to
the following apparently weaker theorem :

THEOREM 1' [3]. — Let 8 be a nonnegative Lipschitz func-
tion on C71, with D == {8 > 0} pseudoconvex, — log 8
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plurisubharmonic on i2, and which is equivalent to a function
smaller than 80. Then 8 belongs to A(zi, . . . ,^; 0(8)).

Indeed, let 8 and 8' satisfy the weaker condition in
theorem 1. We may suppose that 8^ ^ 8'. We can then
find a function 81 which is Lipschitz, with — log 81 pluri-

^'
subharmonic and 8^ ^ 81 ^ —. Theorem 1' says that

2i
81 belongs to A(zi, . . . ,^; 0(8i)), which is contai-
ned in A(^i, . . . ,^; 0(8')). Therefore 8 belongs to
A(zi, ...,^; 0(8')).

An argument of L. Waelbroeck [14] combined with this
theorem gives :

PROPOSITION 4. — Let 8 be as in theorem 1', n' ^ n and 8'
on CS"' defined by

8'(^i, ...,^)=8(zi, ...,^,0, ...,0).

Then 0(8') i5 (/i<3 quotient of 0(8) modulo the ideal a gene-
ra(edl in 0(8) by the functions ^4.1, . . . ,Zn.

Proo/'. — By theorem 1', 8 belongs to A(zi, . . ., z^; 0(8)),
and we can recall the argument in [14]. Since 8 is spectral,
there exist functions UQ,U^^ . . ., u^ in ®(8o, 0(8)) satisfying
a relation

n

1 = S{s)uo{s, z) + S ̂  — ^)^(^) ^)-
1

If we put 5^1 = = = . . • = 5^ == 0 in this relation, we
have 8' e A(zi, . . ., ̂ ; 0(8) |a). If we put further
z^ = = . . . = ^ = 0, we see that 8' e A(^i, . . ., ^$ 0(8')).
Let T be the canonical mapping of C"' in

c^xWx ... x{0} c: e71,
and T the map defined by

TF'=F'(T(zi, . . . ,^))

for all F' in 0(8'). By the holomorphic functional calculus
we have a mapping

0(8') -> 0(8) modulo a, F' -> F' [zi, . . ., jsj.
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F'[j3i, . . ., z^] belongs to 0(8) modulo a. A straightforward
computation which uses the invariance of the holomorphic
functional calculus under linear transformation (see also [14])
shows that the image under T of an element of the equi-
valence class F'[^i, . . . , z^] is F', and that the kernel of
T is a.

4. Spectrum of arbitrary elements.

We use the following result [15, Appendix p. 8] : Let A
be a commutative ^-algebra, a^, . . .5 a^ elements of A, and
8 in the spectrum A(ai, . . ., a^'y A). If 8^ belongs to the
spectrum A(/i, . . ., /^; S(8)) of some elements /i, . . . , / * / < •
in 0(8), then 8^ belongs to the spectrum

A(/i [ai, . .., aj, . . ., fh[a^ . . .. a^\; A)

where fi[a^ . . . , a^\ is the image of Oi, . . . , a^ through
the homomorphism 0(8) —> A defined by the holomorphic
functional calculus. This, together with theorem 1 yields:

COROLLARY. — Let 8 and 8' be as in theorem 1 and
A? • • - 9 fk elements of 0(8). Then

A ( A , . . . , A ; S ( 8 ) ) c A(A, . . . ,A;0(S ' ) ) .

This is straightforward since f[z^ . . ., zj = f for all f in
°W-We now suppose that 8 and 8' are equivalent. This gives
us a complete characterisation of the spectrum of some ele-
ments of 0(8) :

PROPOSITION 5. — Let 8 be as in theorem 1'. A bounded
nonnegatwe Lipschitz function 8^ on Ck belongs to the
spectrum of some elements /i, . . ., f^ in 0(8) if and only if
for some positive number e and some positive integer N :

(4) 8,(/i(z), ...,A(z)) > eS^z)

for all z in C71.
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Proof. — 8^ belongs to A(/i, . . ., f^ S(8)) if and only if (4)
is valid. The corollary applies to one direction, while the other
direction is trivial. The characterisation is complete since
A(/i, . . . 5 / f c $ 0(8)) possesses a base consisting of Lipschitz
functions.

In particular, any bounded Lipschitz function which majors
the function

(sup 8 />-1)^) = sup {8(z)|z e C\ f^z) = s,, ..., f,{z) = s,}

belongs to A(A, ...,/,; 0(8)).

5. A « Nullstellensatz » for bounded families in 0(8).

The following theorem generalises the result of J. J. Kelleher
and B. A. Taylor [13] to bounded families (/x)xeA °f functions
f^ in 0(8), A being an arbitrary index set.

THEOREM 6. — Let 8 be a nonnegative Lipschitz function
on C", equivalent with a function smaller than §o and with
a function 8^ with — log 8^ plurisubharmonic. Let
(Ax)? - • - 9 ( / k x ) an(^ {g\) ^e bounded families of 0(8) such
that there exists a positive number s and a positive integer N
such that for all X in A :

|/î )| + • • • +1/^)1 ^ ^(.)|g^)|

for all s in C71. Then it is possible to find a positive integer
m such that for all X in A, g^ belongs to the ideal generated
by Ax? • • • ? fkk m 0(8), the coefficients being bounded uniformly
with respect to X in A.

Proof. — We first prove the following lemma [18], using
the existence of spectral functions in its first part, and the
fact that the zero function does not belong to the spectrum.

LEMMA. — Let A. be a commutative b-algebra with unit,
a a b-ideal and a^ . . . , a ^ , a elements of A. If 8 belongs
to A(ai, . . ., a^; A|a), and if a belongs to the sum of S(8, a)
and the ideal generated by a^ — 5i, . . ., a^ — s^ in 15(8, A)
[the s^ being complex variables)^ then a is nilpotent modulo a
in A.
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Proof of Lemma. — First, if 8 is spectral, then for any
positive integer N, S" also is:

1 == S^uo^) + S (a. - s^{s) + ̂ )

with coefficients u belonging to S(8o, A) and v belongs to
%(8o, a). Multiplying this equation with

a = S (a, - 5,)U(s) + V(^),

where the coefficients U belong to S(8, A) and V belongs
to %(8, a), and rearranging the terms gives coefficients with
polynomial growth, such that a belongs to the sum of t3(8o, a)
and the ideal generated by c^ - s^, .. ., o, - «„ in S(8o, A).
Next, consider the fc-algebra A [a;] of polynomials in one
variable x with coefficients in A, and its 6-ideal
P == »[>] +(1 — ax)K.[x}. Using the last assertion, one
easily obtains the decomposition

1 = S (^ - s,)V[{s)x + V
i

where the coefficients U' belong to %(8o, A [a;]) and V
belongs to S(8o, P). But the zero function is not spectral,
so we must have p = A [x], and there exists a positive integer
m such that a" belongs to a, which completes the proof
of the lemma.

We let A be the 6-algebra 0(8)^ of systems in 0(8),
indexed by A and bounded in 0(8), and a its fc-ideal genera-
ted by the systems (fn), ...,{f^). We know that 8 belongs
to the spectrum of the coordinate functions in 0(8), therefore
8 belongs to the spectrum of the coordinate functions in A
and a fortiori in the bigger algebra 0(8, ® 8,)̂ . defined by
the weight function 8, ® S, on C" X C", which is 8 on
the first n complex variables s, and which is 8 on the
last n complex variables z. We apply the holomorphic
functional calculus modulo the 6-ideal y generated by
Zi — Si, . . ., z,, — ;?„ in 0(8, ® 8,,) ,̂ to obtain:

(/a)(z) - (/A)(^) = (^)M - (?1 e Y for all i, I ^ i ^ k-
(^)(z) - (g )̂ = (g^)[z] - {g^)[s] 6 Y,
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since the homomorphism is defined modulo y The growth
restriction imposed on (g\) is equivalent with: (gx)(5)
belongs to the ideal generated by (^ix)(5)? • • • ? (//cx)(5) i11

^(^A? which is contained in the ideal generated by the same
systems in the bigger algebra ®(8^ A). Combining these
results, one finds out that (gx)^) belongs to the sum of
S(8,, a) and the ideal generated by ^ — s^ . . ., z^ — s^
in ®(8,, A). By the lemma, we can find a positive integer
m such that

(g^) e a.

The coefficients are in A and thus bounded uniformly with
respect to X. By this method of proof, we do not obtain an
estimate on the number m, as in [13].

6. The spectrum "with respect to a closure; approximation.

In this section we do not give complete results, but only
a summary of approximation theorems for algebras 0(8)
which have been obtained using theorem 1 and the holo-
morphic functional calculus. Ferrier defines the « closure »
F of a subspace F in a &-space E as the union of closures
of the subspaces F n EB of the Banach spaces Ea, B
bounded completant set in E, the union being equipped with
its natural bounded structure. Elements of F « approximate »
the elements in E if F = E. __

In particular, one can consider the closure 0(8') of 0(8')
in 0(8), when 8 and 8' are nonnegative bounded Lipschitz
functions on C", such that 8 < 8' < 80 up to equivalence
and Q' == {8' > 0} is pseudoconvex. The spectrum of the
coordinate functions with respect to 0(8') has been charac-
terised in [5] :

THEOREM 7. — Let 8 and 8' be as above. A nonnegative
function 9 on C71 belongs to A(zi, ...,^; 0(8')) if and
only if the restriction of l/<p to D' is smaller than the upper
envelope of a family (TC^), hounded in S(8), of nonnegative
functions in ®(8') with log TT^ plurisubharmonic.

Its proof uses theorem 1 and a fundamental lemma by
Waelbroeck [14, p. 69], [16, p. 314].
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If 9 is a bounded nonnegative Lipschitz function, <p ^ 8'
and v belongs to A(z i , . . . , ^ ; 0(8')), the holomorphic
functional calculus defines a morphism

0(<p)->0(8')

which has to be the identity since it sends 1 onto 1 and the ^
onto the ^ :

0(<p) == Q(87).
In particular:

COROLLARY. — Let 8 and 8' be as above. If 1/8 is the
upper envelope on n' of a family n^ of nonnegative functions
in ®(8') with plurisubharmonic logarithms, then 0(8') == 0(8).

Such approximation results in one dimension were obtained
by J.-P. Ferrier (see [6]). He has generalised these approxima-
tion theorems to several dimensions in [7], [8]. In these papers,
he uses a double induction similar to the one in the proof of
theorem 1 to obtain a uniform decomposition of functions in
certain sets in 0(8') which are bounded in 0(8); this in
turn gives that 8 is spectral with respect to 0(8') and the
holomorphic functional calculus applies. In [8, appendix 1]
he mentions a way to avoid the rather cumbersome induction
by using theorem 1 and the holomorphic functional calculus
modulo the ideal generated by z-^ — s^ . . ., z^ — s^ as we
did in the proof of the « Nullstellensatz ». These computations
can be found in [3]. A more elegant proof, which uses only
theorem 1 and the fundamental lemma of Waelbroeck, is in [9].
In this paper, Ferrier generalises his approximation results
to inductive systems of algebras 0(8); this covers some well-
known classical results on holomorphic approximation. The
lectures [10] form a nice survey of applications of spectral
theory and the holomorphic functional calculus to
algebras 0(8).

BIBLIOGRAPHY

[1] H. BUCHWALTER, Topologies, bornologies et compactologies. Thesis,
Fac. des Sciences, Univ. de Lyon, 1968.

[2] I. CNOP, Un probleme de spectre dans certaines algebres de fonctions
holomorphes a croissance temperee, C.R. Acad. Sci., Paris, A 270,
1970, 1690-1691.



SPECTRAL STUDY OF HOLOMORPHIC FUNCTIONS 309

[3] I. CNOP, A theorem concerning holomorphic functions with bounded
growth, Thesis, Univ. of Brussels, 1971.

[4] I. CNOP, Un « Nullstellensatz » pour les fonctions holomorphes a crois-
sance, Colloque International d'Analyse Fonctionnelle, Bordeaux
(to appear).

[5] I. CNOP and J.-P. FERRIER, Existence de fonctions spectrales et densite
pour les algebres de fonctions holomorphes avec croissance. C.R,
Acad. Sci., Paris, A 273, 1971, 353-355.

[6] J.-P. FERRIER, Seminaire sur les algebres completes, Lecture Notes
in Mathematics, 164, Springer, 1970.

[7] J.-P. FERRIER, Approximation des fonctions holomorphes de plusieurs
variables avec croissance, C.R. Acad. Sci., Paris, A 271,1970, 722-724.

[8] J.-P. FERRIER, Approximation avec croissance des fonctions holo-
morphes de plusieurs variables, Ann. Inst. Fourier, Grenoble, XXII, 1
(1972).

[9] J.-P. FERRIER, Sur la convexite holomorphe et les limites inductives
d'algebres 0(8). C.R. Acad. Sci., Paris, A 272, 1971, 237-239.

[10] J.-P. FERRIER, Application a Panalyse complexe du calcul symbolique
de L. Waelbroeck, Cours Peccot au College de France, 1971.

[11] L. HORMANDER, L2 Estimates and existence theorems for the 8 operator,
Acta Math., 113, 1965, 89-152.

[12] L. HORMANDER, Generators for some rings of analytic functions. Bull.
Amer. Math. Soc., 73, 1967, 943-949.

[13] J. J. KELLEHER and B. A. TAYLOR, Finitely generated ideals in rings
of analytic functions, Math. Ann., 193, 1971, 225-237.

[14] L. WAELBROECK, fitude spectrale des algebres completes. Acad. Roy.
Belgique, Mem. Cl. des Sci., 1960.

[15] L. WAELBROECK, Lectures in spectral theory, Dep. of Math., Yale
Univ., 1963.

[16] L. WAELBROECK, About a spectral theorem, Function algebras (edit.
by F. Birtel), Scott, Foresman and Co, 1965, 310-321.

[17] L. WAELBROECK, Some theorems about bounded structures, J . of Funct.
Anal., 1, 4, 1967, 392-408.

[18] L. WAELBROECK, Un « Nullstellensatz » pour les fonctions holomorphes
a croissance, (1970) (mimeographed).

Manuscrit recu Ie 31 janvier 1972.
Ivan CNOP,

Vrije Umversiteit Brussel,
A. Buyllaan 105,

B 1050 Brussell (Belgique).

18


