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Abstract 

 

Introduction:  

The purpose of this thesis is to study atherosclerotic risk and thrombotic risk through 

application of numerical simulation to cardiovascular geometry and morphology.  

This has been applied to two specific situations, the angle of take-off of the left main 

coronary artery and the morphology of the left atrial appendage. 

A. The distribution of atherosclerotic plaque and the plaque rupture rate in isolated 

left main coronary disease is different to that seen in left main disease with 

multi-vessel disease, suggesting local biomechanical forces play an important 

part in governing plaque formation and rupture.  The varying vertical left main 

coronary artery take-off angulation may impact on the wall shear stress.   

B. Different left atrial appendage morphologies seem to have different risk of 

thromboembolism, in patients with atrial fibrillation and low CHADS2 VASC score.  

From this observation, it can be hypothesized that left atrial morphology subtype 

with a more complex structure can lead to higher volume of blood stagnation. 

 

Aim:  

A. To investigate the effects of vertical take-off angulation of the left main coronary 

artery from aorta and varying stenosis severities on wall shear stress in the left 

main coronary artery.   

B. To investigate the impact of different left atrial appendage morphologies on slow 

vortical flow estimated by flow dynamics. 

 

Methods:  
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A. Artificially created and patient-specific computed tomography-derived 3-

dimensional digital models of the left main coronary artery with varying vertical 

take-off angulation and artery stenoses were generated. These were exported 

for numerical simulation to calculate the wall shear stress values and mapping in 

each model set.  

B. Patient-specific computed tomography-derived 3-dimensional digital model sets 

of different left atrial appendage morphologies were exported for numerical 

simulation to calculate the volume and distribution of slow vortical flow. Left 

atrial appendage emptying was assessed. 

 

Results:  

A. The study of left main take off demonstrated that the preferred development 

site of atherosclerotic plaques in pathological studies corresponds to regions of 

low wall shear stress.  Both peak wall shear stress and mean wall shear stress 

increased with more vertical take-off, and this relationship was accentuated by 

increasing stenosis severity.  The more vertically angled LMCA take-off from 

aorta in the presence of significant stenosis severity was also associated with a 

larger area of low wall shear stress. These findings may explain the higher 

atherosclerotic plaque rupture rate and higher percentage of proximally located 

plaque seen in isolated left main coronary artery disease 

B. For complex geometry, the Cauliflower left atrial appendage subtype contained 

the greatest volume of slow vortical flow at low shear rate across a range of 

different left atrial appendage emptying velocities.  This rheological mechanistic 

observation correlates well with the clinical observation that the highest rate of 

clinical thromboembolism is seen with the Cauliflower subtype in patients with 

low CHADS2 VASC score atrial fibrillation.  However, in the presence of severely 

depressed left atrial appendage function differences between left atrial 

appendage morphology subtypes diminish. 
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Conclusion: 

A. LMCA angulation may be an additional important factor to be considered in the 

clinical evaluation of the pathogenesis and progression of LMCA atheromatous 

disease.   

B. Stasis of blood, assessed in this study by the volume of slow vortical flow, is 

shown to depend on left atrial appendage morphology, and also depends on left 

atrial appendage function/emptying velocity.  Under conditions when function 

is mildly to moderately reduced, then it is likely that morphology is an important 

variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

List of Abbreviations 

3 

3D: 3-Dimension 

3D-QCA: 3-Dimension Quantitative Coronary Analysis 

A 

AF: Atrial fibrillation 

C 

CA: Coronary Angiography 

CFD: Computational Flow Dynamic 

CT: Computed Tomography 

CTCA: Computed Tomography Coronary Angiography 

CTFFR: Fraction Flow Reserve calculated from Computed Tomography 

D 

DICOM: Digital Imaging and Communications in Medicine 

E 

EF: Ejection Fraction 

F 

FFR: Fraction Flow Reserve 

H 

HR: Hazard Ratio 

I 

IGES: Initial Graphics Exchange Specification 



14 

 

IVUS: Intravascular Ultrasound 

L 

LA: Left Atrium 

LAA: Left Atrial Appendage 

LAA PEV: Left Atrial Appendage Peak Emptying Velocity 

LAA EF: Left Atrial Appendage Ejection Fraction 

LAD: Left Anterior Descending 

LCX: Left Circumflex 

LMCA: Left Main Coronary Artery 

LMCAD: Left Main Coronary Artery Disease 

M 

MDCT: Multi-Detector Computed Tomography 

MLD: Minimal Luminal Diameter 

MLA: Minimal Luminal Area 

MSCT-CA: Multi-Slice Computed Tomography-Coronary Angiography 

MRI: Magnetic Resonance Image 

mWSS: Mean Wall Shear Stress 

O 

OR: Odd Ratio 

P 

PEV: Peak Emptying Velocity 

pWSS: Peak Wall Shear Stress 



15 

 

Q 

QCA: Quantitative Coronary Analysis 

R 

RCA: Right Coronary Artery 

ROC: Receiver Operating Characteristic 

RR: Relative Risk  

S 

SEC: Spontaneous Echo Contrast 

SV: Stroke Volume 

W 

WSS: Wall Shear Stress 

 

 

 

 

 

 

 

 

 

 

 



16 

 

Chapter 1: Introduction: Numerical Simulation In Cardiovascular Medicine 

 

1.1 Introduction 

 

While numerical simulation has facilitated the design of aeroplanes [1], automobiles 

[2] and sportswear [3] since 1990s, the application of numerical simulation in 

medicine is limited. With advances in computation technology, numerical simulation 

has recently been applied increasingly in cardiovascular simulation.  Examples 

include the mapping and measurement of wall shear stress and its correlation with 

atherosclerotic plaque formation in coronary arteries [4-7], surgical planning and the 

prediction of rupture risk of abdominal aortic aneurysms[8] and the non-invasive 

estimation of fractional flow reserve (CTFFR) across a coronary arterial stenosis using 

computed tomography (CT) derived images [9, 10].  In the future this technology 

may guide patient-specific management and surgical planning. 

 

1.2 Computational Fluid Dynamics (CFD) 

 

A common method of numerical simulation used in the cardiovascular system is 

computational fluid dynamics (CFD) which allows simulation of the rheological 

properties of fluids within complex biological geometries and allows biomechanical 

forces to be calculated.  The main principle of the numerical simulation of CFD is 

the analysis of the fluid domain as afinite number of small calculating units with the 

whole domain termed a “meshed file”.  The mesh files with numerous calculating 

units incorporate the physical laws of conservation of mass, energy and momentum, 

and are then used to calculate the biomechanical vectors and rheological behaviour 

of the fluid flow in a given biological geometry in a set condition.   
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CFD simulation allows non-invasive calculation of biomechanical vectors and 

rheological behaviour within complex 3-dimensional geometries derived from true 

biological models. The sophisticated mapping and measurement of wall shear stress 

(WSS) and its correlation with the later development of atherosclerotic plaque and 

rupture in the coronary artery is a classic example of the potential power of CFD 

simulation [11-19].  In contrast to non-invasive CFD simulation, direct measurement 

of wall shear stress in the coronary artery in vivo provides relatively limited simple 

mapping of WSS which may be confounded by equipment interference and 

complicated by peri-procedural risk [20]. The recent development of CTFFR shows the 

future potential of CFD simulation to favorably change clinical practice.  This allows 

the non-invasive calculation of the FFR across a stenotic lesion in the coronary artery 

using the coronary artery luminal structure obtained from computed tomography 

without passing a pressure wire in to the coronary artery [21, 22].    

The second advantage of the CFD simulation is that it allows the calculation of forces 

relevant to complicated geometries derived from biological structures which are not 

possible by direct measurement.  For example, the risk of rupture of a saccular 

abdominal aortic aneurysm with a complex geometry cannot predicted accurately by 

the simple pressure derived from the simple Laplace formula.  In contrast, accurate 

tensile stress can be calculated using CFD in such complex structure and provides a 

better rupture risk prediction [8].   

In this thesis, the aim is to apply CFD numerical simulation in the cardiovascular 

system to elucidate the potential fluid dynamic mechanisms in two specific 

situations - the left main coronary artery and the left atrial appendage. 

 

1.3 Left Main Coronary Artery Disease (LMCAD) 

 

In the first project, the aim is to look at the biomechanical forces such as wall shear 

stress in the proximal segment of the left main coronary artery (LMCA) and how they 

relate to LMCA anatomy and angulation of take-off from the aortic root.  Wall shear 
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stress has been extensively studied in coronary arteries, including the LMCA but with 

little clinical validation of the models used.  

To achieve the goal, we first performed a detailed literature review, which identified 

that the isolated LMCA disease had a different distribution of plaque [23, 24] and 

higher incidence of plaque rupture [24] compared to LMCA disease with multi-vessel 

involvement [23, 25, 26].  These differences raise the possibility that local 

haemodynamic factors play an important role.  Among haemodynamic factors, high 

take-off angulation LMCA from the aorta with highly (vertically) placed anomalous 

LMCA ostium may be considered to be malignant [27], adversely affecting local fluid 

dynamics. 

Firstly, a LMCA morphological and anatomical survey using CT coronary angiography 

in order to choose physiologically relevant models was performed.  Two patient-

specific CT-derived models with two extreme LMCA vertical take-off angulations 

were chosen for further modelling.  CFD simulation on LMCA was performed both 

with aorta attached to LMCA and detached for comparison of the results, as 

simulation in aortic detached LMCA results in signification reduction of simulation 

time.  CFD simulation was then introduced to LMCA models with varying vertical 

take-off angle from aorta, in both artificial models and authentic patient-derived 

models and evaluated its impact on WSS along the LMCA.   

 

1.4 Left Atrial Appendage Morphology (LAA Morphology) 

 

In the second project, the aim is to investigate the rheological properties of different 

left atrial appendage (LAA) morphologies.  Recent studies had shown four different 

LAA morphology subtypes are associated with different risk of stroke in patients with 

atrial fibrillation and with low clinical risk scores (low CHADS VASC score)[28-31].  

These LAA morphology subtypes have been named as the “Chickenwing”, 

“Windsock”, “Cactus” and the complex “Cauliflower” morphology. To date, there is 

no mechanism explaining the clinical association between stroke risk and LAA 
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morphology.  There is however older literature describing increased risk of stroke in 

patients with severe spontaneous echo contrast (SEC) in the left atrium [32-34]. 

A literature review on left atrial appendage morphology and current clinical, 

haemodynamic and echocardiographic parameters that predict the risk of stroke in 

patient in atrial fibrillation was performed.  From the literature review, it appeared 

that both the LAA geometry and contractile function play important roles in 

determining the degree of shear rate and the amount of the spontaneous echo 

contrast (SEC, a marker of slow blood flow) in the LAA.  It is speculated that the LAA 

morphologies with complex geometry increased the amount of slow vortical flow at 

low shear rate (which represents SEC seen in echocardiogram studies).   Therefore, 

in the second study, CFD simulation will be applied to different LAA morphology 

subtypes while fixing the LAA function.  The amount of slow vortical flow at low 

shear rate was then calculated for different LAA morphologies and comparison made 

regarding the propensity to slow vortical flow across the four different LAA 

morphology subtypes. 
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Chapter 2: Literature Review Left Main Coronary Artery Anatomy and 

Atherosclerosis 

 

2.1 LMCA Anatomy 

 

The left main coronary artery (LMCA) stems from the left aortic sinus, below the 

sinotubular junction. It branches into the left anterior descending (LAD) and left 

circumflex arteries (LCX) and supplies at least 75% of coronary blood flow to the left 

ventricle [1].  The clinical significance of LMCA disease (LMCAD) and its poor clinical 

prognosis have attracted extensive anatomical and angiographic analysis since the 

1960s.  Assessment of left main stenosis severity by fractional flow reserve (FFR) is 

an area of contemporary interest and is not straight forward because of the complex 

effects of downstream stenoses [2, 3]. Understanding the LMCA and its normal 

variation will be vital for successful deployment of these technologies. 

 

2.1.1 The Normal LMCA and Its Morphological and Dimensional Parameters 

 

2.1.1.1 Length of LMCA 

 

The length of LMCA is determined by measuring the centreline distance originating 

from the ostium to the bifurcation of the LMCA.  Early studies of the length of the 

LMCA were dominated by post-mortem autopsy and angiographic assessments.  

The average length in most cohorts ranges from 8 to 13.5 mm [4] with a wide range 

(from 1 to 26 mm).  The LMCA was documented to reach 44mm in length in one 

angiographic case report [5].  A large retrospective analysis of the LMCA by 64 

multi-slice computed tomography coronary angiography (MSCT-CA) showed that 

4.7% of LMCAs were shorter than 5 mm [6], while the average length in other 64 

slice MSCT-CA studies ranged from 9.9 to 11.2 mm [7-9].   
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Three interesting associations have been made in association with shorter LMCA 

arteries.  Firstly, a high incidence (up to 85%) of short LMCA (<10mm) was seen in 

patients with bicuspid aortic valves [10].  Shorter length LMCA was associated with 

left dominance of the coronary vasculature in one study [11], although other 

investigations did not come to the same conclusion [4, 9, 12, 13].  Thirdly, a shorter 

LMCA stem was associated with left bundle branch block [14], and was explained as 

being due to increasing atherosclerosis in these subjects [15].   However, a more 

recent MSCT-CT cohort was not supportive of this conclusion [16].  An intravascular 

ultrasound (IVUS) study demonstrated significant difference in spatial location of 

atherosclerotic plaque in shorter LMCAs (<10mm) in comparison to longer LMCAs 

[17].  In this study, shorter LMCA segments (<10mm) tended to have ostial 

atherosclerotic plaque more than distal plaque, but did not comment on any 

difference in the degree of atherosclerosis according to LMCA length.  Longer 

LMCAs have been associated with trifurcation of the distal segment rather than the 

usual bifurcation [18]. 

 

2.1.1.2 Shape and Size of LMCA Luminal Cross-sectional Area 

 

MSCT-CA and IVUS, being 3-dimensional modalities, allow accurate assessment of 

both luminal diameter and luminal area, while angiography, being a series of 2-

dimensional images, only allows measurement of LMCA diameter in each field of 

view with a derived luminal area.  Majority of earlier studies using angiography, 

anatomical dissection and IVUS methods to analyse the cross-sectional area of the 

normal LMCA considered it be circular in shape [19-22], while only a small number 

described elliptic shapes [23].  Recent MSCT-CA studies reveal more typically 

elliptical than circular contour for the LMCA cross-section [4, 7], and highlight the 

importance of accurate rendering of three-dimensional configurations of the 

coronary artery in vivo, without 2-D (angiography) or fixation (post-mortem) artefact 
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The minimal luminal area (MLA) is an important parameter referred to IVUS 

literature as guiding the decision to revascularise patients with stenosis of the LMCA. 

A large IVUS cohort of normal LMCAs measured the mean MLA to be 16.25 mm2 [24]. 

Cross-sectional areas of LMCA had been measured at proximal, mid and distal 

segments to provide detailed analysis, though some studies only assessed the ostium 

and bifurcation.  The luminal area of proximal, mid and distal segments of the 

LMCA in one MSCT-CA study were 20.1mm2, 14.2 mm2and 15 mm2 in men and 15.7 

mm2, 10.7 mm2and 11 mm2 in women respectively [7].  The luminal area of LMCA is 

also affected by LMCA length, with smaller MLA in longer LMCAs.  These 

differences in normal LMCA are under-appreciated in clinical literature, which 

commonly refers to single measurements of the LMCA in deciding clinical 

management, regardless of the LMCA segment, the length of the LMCA or the 

gender of the patient. 

 

2.1.1.3 Luminal Diameter of LMCA 

 

Earlier studies commonly considered the LMCA as having a uniform luminal diameter 

and cross-sectional area along its entire length.  As result, only one diameter was 

measured per LMCA segment in those cohorts.  Representative results yielded 

mean LMCA diameters of 4.8-5.2mm [21] and 4.9mm [4]. 

 

As indicated earlier, more precise analysis of LMCA diameter should divide the LMCA 

into proximal, mid and distal segments and separately analyse results according to 

gender as these both affect the diameter of LMCA.  One angiographic study of 

normal LMCA found a mean diameter of 4.5mm in all three segments in males and 

4.0mm, 3.9mm and 3.8mm respectively in proximal, mid and distal segments in 

females [22].  Another MSCT-CA study reported mean diameters in long/short axes 

across proximal, mid and distal LMCA segments in males of 5.3mm/3.4mm, 

4.3mm/3.9mm, 4.5mm/4mm and in females of4.8mm/4mm, 3.6mm/3.4mm, 

4mm/3.3mm respectively [7].  The smaller diameters in women may be explained 
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by the difference in body surface area.  Three-dimensional quantitative coronary 

artery (3D-QCA) analysis using stereoscopic reconstruction of angiographically 

normal LMCAs from two views of biplane coronary angiograms measured 

3.96mm±0.8mm (range 2mm–6.9mm), 4.04mm ± 0.8mm (range 1.83mm–6.74mm), 

and 3.75mm ±0.74mm (range1.97mm–6.45mm) for the proximal, mid and distal 

MLD of the angiographically normal LMCA [25]. 

 

Interestingly, the normal LMCA diameter can be predicted by the diameter of its 

branching arteries [26].  For example, in bifurcating LMCA, the mean ratio of the 

diameter of the left main to the sum of the diameters of its two immediate branches 

was 0.65 +/- 0.04.  An increase in the LMCA diameter had been observed in 

presence of atherosclerosis [9].  This likely due to outward remodelling of LMCA in 

response to plaque deposition, the so-called Glagov effect, rather than being the 

pre-morbid calibre of the artery [27].  

 

2.1.1.4 The LMCA Ostium 

 

The aortic sinus, which is also known as the sinus of Valsalva, is the initial dilated 

section of aortic root that houses the aortic valve cusps.   Circumferentially, most 

coronary ostia arise from the point of maximum curvature of the aortic sinuses.  

Most LMCA ostia arise from the mid-third of the left posterior aortic sinus with some 

either positioned more anteriorly or posteriorly [7, 28].  Vertically, the LMCA 

ostium has been described as being located above the level of free edge of aortic 

cusp, on or immediate below the supra-valvular ridge [28].  The transition of the 

LMCA ostium to the LMCA coronary artery adopts a funnel shape in the three-

dimensional configuration [7, 29]. 

 

2.1.1.5 Incidence of Bifurcation andthe Degree of Bifurcation 
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Most frequently, the LMCA terminates as a bifurcation, with less frequent 

termination as a trifurcation [4, 9, 25].  Ethnicity and gender may play a role as 

there are more trifurcations reported (60%) in non-Caucasian female cohorts [30]. 

The LMCA gives rise to the LAD and LCX arteries and the bifurcation angle between 

these arteries scan vary significantly. The LMCA bifurcation angle is defined as the 

angle measurement between the LAD and LCX arteries. 

 

Anatomical studies have shown that the bifurcation angle is approximately 

86.7±28.8° (range=40-165°) [4].  Most MSCT-CA studies have measured the 

bifurcation angle at the end-diastolic phase of the cardiac cycle, but also allow 

assessment of the angle in the end-systolic phase.  Earlier16-slice MSCT-CA studies 

demonstrated a mean angle of 80°±27° (range 34° to 180°) [31].   Recent 64-slice 

MSCT-CA studies reported end-diastolic mean bifurcation angles of 69.3°± 33.3° 

(range=14°-200°) [9], 72° ±22°[32],84°±27° (range= 23°-173°) [18] and 

87.8°±22.3°(range= 68.8°-101.4°) [33].  3D-QCA of the LMCA bifurcation of normal 

LMCAs derived using two views from a biplane coronary angiogram correlated well 

with both histological and MSCT-CA data, with average end-diastolic angles of 

95.6°±23.6°[34]and 75°±25°[25].   

 

There appear to be a number of clinical associations and ramifications of varying 

LMCA bifurcation angles.  Firstly, a wider LMCA bifurcation angle is correlated with 

higher incidence of atherosclerotic lesions in LMCA [25, 33, 35].   There is no clear 

cut-off value at which this occurs, but one reference refers to bifurcation angles 

greater than 88.5° being associated with a higher incidence of atherosclerotic 

lesions.  Secondly, increasing age seems to be associated with increased bifurcation 

angle [25].  On the other hand, there is a reduction of bifurcation angle after 

percutaneous intervention to the LMCA, but the change in angle does not appear to 

translate into any clinical outcome at long term follow up [34].  Lastly, and 

importantly, bifurcation angles change throughout the cardiac cycle, reducing in 

systole [18, 34], though the significance of cyclical variations is unclear. 
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2.1.1.6 Spatial Relationship of the LMCA to its Ostium, the Aortic Wall andthe 

Central Axis of the Aorta 

 

Few studies have assessed the spatial relationship of the LMCA to its ostium and to 

the aortic wall. In one anatomical study 56.8% of LMCAs were anterior to the ostium 

and 74.7% were caudal to the ostium on the vertical plane [4].   

 

One angiographic study used a semi-geographical coordinate system in Euclidean 

space to describe the vector length of LMCA (the shortest distance from centre of 

ostium to centre point of proximal, mid and bifurcation regions of the LMCA), the 

vertical (positive if downward) and the horizontal angle (positive if toward left hand 

side) relative to the LMCA ostium [19].  The mean results for (vector 

length(r)/vertical angle(Φ)/horizontal angle(θ) as illustrated in Figure 2.1) for 

proximal, mid and distal segment of LMCA were 3mm/83°/7°, 7mm/80°/4° and 

11mm/79°/0°respectively [22].  A recent CT study defined the take-off angles of the 

LMCA to the adjacent aortic wall in both axial and sagittal planes [7].  In the axial 

plane the LMCA comes off at 44.4±10° for posteriorly situated ostia, and 106±15° for 

mid or anteriorly situated ostia respectively.   In the vertical plane, the mean take-

off LMCA angle to aortic wall caudally is 54.9±20° (angle between caudal perspective 

of LMCA wall to aortic wall) and cranially 98.1±16° (angle between cranial 

perspective of LMCA wall to aortic wall).  Both vector description and take-off 

angulation of LMCA provide additional anatomical and possible biomechanical 

parameters in proximal and mid segments of LMCA.  
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Figure 2.1: Vector Length (r), Vertical Angulation (Φ) and Horizontal Angulation (θ) 

from LMCA Ostium of Septal Vessel (S1).  LMCA Can be Measured Using the Same 

Method 

 

2.1.2 Embryological Development of Proximal Coronary Artery Segments 

 

The embryological development of the coronary artery circulation involves three 

distinctive processes, including vasculogenesis, angiogenesis and arteriogenesis [36, 

37].  In the early embryonic stages, the coronary circulation does not exist and 

blood flows through the cardiac lumen to supply cardiac tissue through simple 

diffusion.  As the wall of cardiac tissues thickens, hypoxia drives the formation of a 

dedicated coronary vasculature [38].  The initial step is the formation of a vascular 

plexus from blood islands over the epicardial surface via a process known 

asvasculogenesis [39, 40].  These blood islands contain aggregates of mesenchymal 

precursor cells and haematopoietic stem cells which proliferate to form a vascular 

plexus.  Angiogenesis follows via the generation of capillaries sprouting from the 

newly formed vascular network and their maturing into stable vessels [38, 41].  

Both vasculogenesis and angiogenesis are driven by the hypoxic gradient, triggered 

by lack of oxygenation as result of simple diffusion.  Connections of the proximal 

parts of the coronary arteries to the aorta occur at a later stage in embryonic 

development.  Before the 1980s, it always had been controversial as to whether 
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coronary arteries bud and branch from the aortic sinus of Valsalva to connect the 

epicardial coronary artery [42] or resulted as an in-growth of coronary vessels into 

aorta.  The observation that coronary vessels were always evident in the wall of the 

aortic sinus before coronary orifice formation favoured the model of in-growth of 

coronary vessels into the aorta [43].  It is currently accepted that the proximal 

artery develops from the complex capillary network formed by vasculogenesis and 

angiogenesis and then invades into the aorta in a controlled fashion.  Multiple 

endothelial strands from the peri-truncal ring of vascular structures penetrate the 

aorta at the left and right aortic sinuses of Valsalva.  These strands then fuse 

together with only one channel remaining patent to become the definitive coronary 

artery in each aortic sinus [44].  Apoptosis is then triggered, leading to formation of 

the coronary arterial orifice at the site of the emerging coronary arteries [44, 45]. 

Arteriogenesis is then activated by exposure to high aortic pressure once patent 

connections are established between the aorta and the coronary vessels, leading to 

arterialisation of these vessels via extensive tissue re-organization and remodelling.  

This in-growth theory of primitive vessels to form the LMCA provides a plausible 

explanation of anatomical variations and congenital anomalies of LMCA [46].  

Anatomical variations such as the LMCA length and course, its varying attachment 

angle to the aorta and the position of attachment at different sites within the sinus 

of Valsalva can be explained by this process.  It is thought that other geometrical 

features such as the diameter and bifurcation angle of LMCA may well be 

determined by the vascular plexuses formed as a result of angiogenesis.  

 

2.1.3 LMCA Anomaly 

 

The commonest anomaly is the absence of the LMCA, with the left anterior 

descending and left circumflex arteries arising separately from the coronary sinus.  

A single coronary artery origin is observed when both left and right coronary arteries 

arise from one origin or when one single coronary artery supplies the whole heart.  

These variations are considered clinically benign.  In addition, rare congenital LMCA 
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atresia can occur when the LMCA ends blindly with no LMCA ostium.  Congenital 

LMCA atresia results in blood flow which is centripetal (retrograde flow from smaller 

to larger calibre vessels which may resemble both LAD and LCX) rather than 

centrifugal (anterograde flow from larger proximal vessels to the smaller distal 

vessels) [47].  Myocardial ischaemia can occur under these conditions. 

Other anomalies of the LMCA origin range from minor degrees of displacement of 

the LMCA origin on the aortic sinus to highly anomalous origin from the pulmonary 

artery.  Minor variations in aortic origin include vertical and/or horizontal 

displacement of the LMCA origin.  More highly positioned LMCA origins vertically 

above the aortic coronary sinus result in so-called “high take-off” LMCA with sharp 

angulation and are uncommon.  There is conflicting opinion as to whether this type 

of minor variation carries malignant [48, 49] or benign clinical outcome [50].  A 

horizontally displaced LMCA origin can include origin from the right aortic coronary 

sinus.  This anomaly can be associated with a slit-like hypoplastic ostium of the 

LMCA and/or a course of the left coronary artery between the aorta and pulmonary 

artery – both of which may be linked with sudden cardiac death [51].   Anomalous 

origin of the LMCA from the pulmonary artery is associated with myocardial 

ischaemia, infarction or ventricular arrhythmia.  It was first described as Bland-

Garland-White syndrome [52] in 1933.  Its incidence is approximately 0.26% and 

most infants with the syndrome do not survive into adulthood if not surgically 

corrected.  Corrective surgery in adulthood can prevent ventricular 

tachyarrhythmia and sudden cardiac death [53]. 

 

2.2 Definition of LMCA Disease and Prognosis 

 

With the advent of coronary angiography, the poor long term prognosis of LMCA 

disease was recognised [54] and different revascularization strategies have since 

been developed to improve its clinical outcome.  LMCA disease should be 

considered if there is more than 50% diameter stenosis.  Overall, the incidence of 

LMCA disease in a recent CT series was 2.8% [55].  The risk of progression and 
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clinical outcome are strongly associated with the initial severity of stenosis at time of 

diagnosis.  Early literature demonstrated that if the LMCA stenosis was between 

50-70% the survival rate was 91% at 1year and 66% at 3years, whereas if >70%, then 

survival was 72% at 1 year and 41% at 3 years [54]. 

Intermediate severity stenosis of the LMCA refers to approximately 50% stenosis on 

coronary angiography and this can present a management dilemma.  Functionally 

significant (based on ischemia or reduced fractional flow reserve) intermediate 

severity LMCA disease has higher mortality over the short and intermediate term, 

and therefore requires constant monitoring and possible early intervention [56].   

 

2.2.1 Atherosclerosis  

 

Atherosclerosis is the commonest aetiology for LMCA disease.  It develops and 

accelerates as results of multiple clinical risk factors including hypertension, diabetes 

mellitus, genetic pre-disposition, cigarette smoking and dyslipidemia.  The 

contribution of specific local haemodynamic factors has been suggested but is 

relatively poorly studied. 

LMCA disease is commonly associated with diffuse coronary artery and other 

vascular disease, as systemic effects from cardiovascular risk factors likely play a 

dominant role in leading to the diffuse deposition of atherosclerotic plaque.  One 

study showed that 40% of patients with LMCA disease had carotid stenosis whereas 

only 5.3% of those with single vessel disease had carotid stenosis [57].  Similarly, 

the LMCA is almost always involved when there is multi-vessel disease [58, 59]. 

Isolated LMCA disease is uncommon and accounts for around 1% of all LMCA disease 

[60].  The specific pattern of distribution and location of LMCA plaque suggests 

local haemodynamic factors also play a role.  

 

2.2.2 Spatial Distribution and Location of LMCA Atherosclerotic Plaque  
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The spatial distribution of atheromatous plaque was studied in the 1970’s using 

histopathological studies of necropsy subjects which allowed detailed mapping on 

the spatial distribution of atherosclerosis in the LMCA.   These studies suggested 

early plaque development tends to locate in the ostial and distal segments involving 

the bifurcation [61] (Figure 2.2).  In addition, atherosclerotic lesions in the proximal 

segment of the LMCA tend to arise from 10 to 12 o’clock section of left main ostium, 

if viewed as a clock face and from inside of the aorta.  Atheroma is usually located 

between 10-2o’clock in the RCA [62] (Figure2.3).  Approximately 65% of LMCA 

atherosclerotic plaque resides in the distal segment of LMCA, involving the 

bifurcation, while the ostial segment accounts for 23%, and the trunk of the LMCA is 

least involved [63, 64].  This is particularly the case with longer LMCA (>10mm), the 

presence of multi-vessel disease and diabetes mellitus [60].  On the other hand, 

isolated ostial or trunk disease of the LMCA is well recognised [64, 65].  Shorter 

LMCA segments (<10 mm) tend to have ostial atherosclerotic plaque more than 

distal [17].  Female gender carries a greater risk of ostial LMCA lesions than male 

gender [66].   
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Figure 2.2: Distribution and Location of Early Intimal Thickening (Precursor to 

Atherosclerosis) in LMCA [61]. Intimal Thickening Tends to Occur in the 

Ostial/Proximal and Distal LMCA Segments. 
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Figure 2.3: Location of the Atherosclerotic Plaque Around the Left and Right Coronary 

Ostia [62]. 

 

2.2.3 Sites of LMCA Plaque Rupture  

 

Plaque rupture in the LMCA plaque occurs less frequently when compared to the 

proximal segment of the three main coronary arteries.  It has been suggested that 

“thin-cap atheroma” with necrotic-rich core plaques which are at high risk for 

rupture are commonly seen in the proximal segment of the main coronary arteries 

but are uncommon in the LMCA [67, 68].  LMCA plaques have less necrotic core and 

resemble the plaque composition found in the more distal segments of left coronary 

artery.  Interestingly, lesions in the distal LMCA plaque have higher necrotic core 

content compared to proximal LMCA plaque [69]. This is supported by the one 

retrospective IVUS study that showed that all LMCA plaque ruptures occurred in the 

distal half of the LMCA [70].  However, a recent IVUS study with 55 consecutive 

cases involving only isolated intermediate LMCA stenosis showed 77% of LMCA 

plaque ruptures occurred in either proximal segments or the shaft of the LMCA [65]. 
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2.2.4 Potential Influence by Local Haemodynamics - Wall Shear Stress 

 

The pivotal biomechanical force that contributes to atherosclerotic plaque formation 

or rupture is wall shear stress (WSS).  In the presence of pulsatile blood flow in the 

coronary artery, blood flow exerts a biomechanical stress to the luminal side of 

arterial wall.  The tangential stress exerted by flowing blood, termed the wall shear 

stress, is perpendicular to the tensile pressure resulting from the difference of 

systolic and diastolic pressure difference.  

Perturbation of coronary arterial WSS has been implicated in the development and 

progression of atheromatous plaques, as well as the pathogenesis of plaque rupture 

and thrombosis.  Previous studies have shown that regions of relatively low shear 

stress within the arterial tree have higher propensity towards atheroma formation 

[71] due to endothelial remodelling [72] and intimal hyperplasia [73, 74].  High WSS 

on the other hand, has been shown in vitro to contribute to platelet activation and 

endothelial erosion [75, 76], and may lead to plaque rupture.   

In LMCA, most WSS studies emphasize the distal segment, involving the bifurcation 

and the flow divider.  Fewer studies have specifically analysed the WSS location and 

distribution in the proximal segment of LMCA, while no-specific attention has been 

given to address the how WSS and its distribution been affected by the geometrical 

factors such as variation in take-off angle of the LMCA from aorta [77-79].   

 

2.3 Comment: Isolated LMCA Disease as a Distinct Entity 

 

The LMCA is interesting in its anatomical and morphological features with varying 

congenital anomalies, perplexing embryological development and adverse 

prognostic clinical manifestation when significantly diseased.  Through LMCA 

literature review, there are two apparently unrelated observations which may share 
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certain common associations.  Firstly, isolated LMCA disease tends to have plaque 

deposition in the proximal LMCA segment [64, 65] and these plaques have a higher 

rate of plaque rupture [65] when compare to more usual LMCA disease with multi-

vessel involvement [63, 64, 70].  The particular location of the more proximally 

located plaque at between 10-12 o’clock and higher plaque rupture rate suggests 

local haemodynamic factors likely play an important role in isolated LMCA disease. 

Secondly the sharp take-off angulation of LMCA from aorta is expected to alter local 

fluid dynamics and may be a potential source of variation in clinical outcome.  The 

LMCA with high vertically placed anomalous LMCA ostium (vertically sharp take-off 

LMCA from aorta) may therefore not be a harmless anomaly [49] as previously 

thought.  Since the LMCA take-off angulation can affect the local fluid dynamics this 

raises the question as to whether take-off angulation determines preferential 

proximal plaque location and higher plaque rupture.  The aim of the studies on 

LMCA fluid dynamics in this thesis were to investigate the effects of LMCA angulation 

on wall shear stress under basal conditions and under conditions of coronary 

stenosis.  The hypothesis is that LMCA with higher take off will have lower shear 

stress in the area of preferential plaque formation- the area of 10-12 o’clock- and 

that in the presence of coronary stenosis, LMCA with higher take off will increase 

wall shear stress and increase the risk of plaque rupture.  
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Chapter 3: Anatomical and Morphological Survey of the Left Main Coronary Artery 

by Computed Tomography Coronary Angiography 

 

3.1 Introduction 

 

Recent years, there have been substantial improvements in the spatial and temporal 

resolution of the multi-detector computed tomography (MDCT) coronary 

angiography and the viewing software.  Multiple studies have used this modality to 

research the LMCA but almost all the MDCT studies have performed measurements 

only during the diastolic phase as image acquisition during diastolic phase provides 

better imaging quality of coronary artery [3].  Analysis of the LMCA morphological 

and anatomical change in both systolic and diastolic phases of the cardiac cycle is 

required to evaluate if LMCA parameters change with the cycle and assist in 

determining the need for complex numerical simulation in both systolic and diastolic 

phases.    

 

A descriptive survey of the LMCA in consecutive adults was conducted using 

computed tomography (CT) coronary angiography; with the aim to describe the 

anatomical and morphological features of LMCA in systolic and diastolic phases of 

cardiac cycle.  This provides important parameters that inform modelling studies 

undertaken in subsequent chapter 4. 

 

3.2 Method 

 

100 consecutive dual-source MDCT coronary angiography studies from 2008 to 2009 

performed in the Radiology department of Concord Repatriation General Hospital 

were analysed retrospectively.  Images were acquired using a dual source 64-slice 
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Siemens Definition MDCT scanner (Siemens Medical Solutions, Forchheim, Germany).  

Retrospective ECG-gated scanning was used with patients routinely pre-medicated 

with 600µg of nitroglycerin.  Beta-blockers were only given when pre-scan heart 

rates exceeded 90 beats per minute.  Axial images were reconstructed at 0.75mm 

slice thickness and 0.3mm increment to deliver a final spatial resolution of 0.33mm x 

0.33mm x 0.75mm for reconstruction of 3D models.  Measurements of the LMCA 

were obtained using a Siemens workstation (Siemens Medical Solutions, Forchheim, 

Germany).  The morphological and anatomical measurement were performed at 

(70% phase) and systolic (20% phase) phases of the cardiac cycle. 

 

3.2.1 LMCA Morphology, Anatomical Features And Their Definition 

 

3.2.1.1 LMCA Centreline 

 

Both LMCA “centreline length” and “vector length” were both measured. The LMCA 

centreline length was defined as the LMCA centreline distance between the midpoint 

of the LMCA ostium and the LMCA bifurcation point.  The vector length was defined 

as the shortest distance between the midpoint of the ostium and bifurcation point. 

Tortuosity index of the LMCA has also derived from centreline length and vector 

length ratio, adapting the simple arc to chord length ratio of the blood vessel [4]. 
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Figure 3.1 A. LMCA Centreline Length and LMCA Vector Length. B. Division of LMCA 

Segments into Proximal, Mid and Distal Segment. 

 

3.2.1.2 LMCA Luminal Diameter and Cross-sectional Area 

 

The LMCA was subdivided into proximal, mid and distal segments with each segment 

approximating one-third of the entire LMCA centreline length.  The luminal 

diameters in both short and long axes (same diameter if circular cross-section) and 

cross-sectional areas in individual segments were measured using the in-built tool set 

of the imaging viewer.  The LMCA at each individual segment was planed carefully to 

ensure true cross-sectional values were measured for all parameters. 

 

3.2.1.3 LMCA Angulation 

 

The LMCA angulations were measured with reference to LMCA ostium.  The LMCA 

vector take-off angulation is defined as the vertical (sagittal plane) and horizontal 
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(axial plane) angles between the vector and the ostial axis (an axis perpendicular to 

the tangential plane of LMCA ostium and passing through LMCA center, Fig 3.2).  

The LMCA bifurcation angulation was also measured.   

 

 

Figure 3.2 A. LMCA Vector Vertical Take-off Angulation. B. LMCA Vector Horizontal 

Take-off Angulation 

 

3.2.1.4 LMCA Atherosclerotic Plaque Location 

 

The presence and location either calcified, soft plaque or mixed atherosclerotic 

plaque along the proximal, mid and distal segment of LMCA was also surveyed. 

 

3.3 Statistical analysis 

 

Data are expressed as mean ± range. Paired and unpaired t-tests were used to 

determine the difference in LMCA parameters in both systolic and diastolic phase of 

the cardiac cycle and other analysis after confirming that data were parametric in 



49 

 

their distribution.  Statistical analyses were performed using GraphPad Prism 5.0 

(GraphPad Software Inc. La Jolla, California).   

 

3.4 Result 

 

100 consecutive dual-source MDCT coronary angiography studies from 2008 to 2009 

were analysed retrospectively in the local radiology department.  4 studies were 

excluded due to inadequate imaging quality in systolic phase for analysis.  The 

mean age for the cohort is 59 years (range from 19years to 88 years) with 54% been 

male gender.  The result is summarized in Table 3.1. 
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3.4.1 LMCA Centreline 

 

In the whole cohort, LMCA centreline length was marginally longer in diastole than in 

systole (1.61cm in diastolic phase, 1.5cm in systolic, p=0.35}.  The LMCA vector 

length also demonstrated a variation with the cardiac cycle, but this represented only 

0.3mm difference.  In women, the mean LMCA centreline length is 1.55cm (range 

0.58cm-3.5cm) which is slightly but not significantly (p=0.31) shorter than in men who 

measured 1.66cm (range 0.51cm-3.3cm). 

 

3.4.2 LMCA Angulation 

 

In the diastolic phase, the mean vertical LMCA vector take-off angulations were 59° 

(range from 8°-114°) in the sagittal plane and 37°(range from 0°-122°) in the axial or 

horizontal plane. There was no significance difference in take-off angulations 

between the systolic and diastolic phases.   

 

3.4.3 LMCA Luminal Diameter and Cross-sectional Area 

 

In the diastolic phase, the mean luminal long axis diameter in the proximal, mid and 

segments of the LMCA were 5.5mm (range from 3mm-8.6mm), 4.9mm (range from 

3.3mm-8.6mm) and 5.1mm (range from 3.3mm-8.3mm) respectively.  The short 

axis luminal diameters were 4.6mm (range from 2.9mm-7mm), 4.3mm (range from 

2.9mm-6.6mm) and 4.4mm (range from 2.5mm-6.7mm).  Overall, the LMCA tends 

to adopt more of elliptical cross-sectional area.  In the systolic phase, there were 

significant reductions in the luminal diameter in the short axis but not in long axis 

diameter.  
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The mean proximal, mid and distal LMCA cross-sectional areas in diastole were 

22mm2 (range from 6 mm2-54 mm2), 19 mm2 (range from 9 mm2-36 mm2), and 20 

mm2 (range from 8 mm2-44 mm2).  There is a statistically significant reduction in 

the cross-sectional area in the mid and distal LMCA segment in the systolic phase 

relative to the diastolic phase.  Women had a significantly smaller cross-sectional 

area in the proximal (female 18.9 mm2 (6-31 mm2) vs male 24 mm2 (11-54 mm2) 

p<0.01) and distal (female 17 mm2 (8-28 mm2) vs male 22 mm2 (8-44 mm2) p<0.01) 

segment of the LMCA in comparison to men. 

 

3.4.4 LMCA atherosclerotic Plaque Location 

 

In this cohort, 45% of all LMCA segments had either obstructive or non-obstructive 

atherosclerotic plaque.  Approximately 28% of proximal LMCA segments, 29% of 

mid segments and 41% of the distal segments had disease.  There were no 

ulcerated plaques or plaque ruptures identified.  

 

3.5 Discussion 

 

This study has identified several important features of LMCA anatomy.  These 

include that the LMCA angulation of take-off from the aorta is highly variable, the 

LMCA is more typically an ellipse than a circle in its cross-sectional diameter, and 

that there is a significant difference in LMCA diameter comparing proximal to distal 

segments and comparing men and women.  

 

There was a wide range of the LMCA vector take-off angulation, dependent partially 

on the vertical and horizontal variation in location of LMCA origin. The diverse LMCA 

angulation can be expected to affect WSS in the most proximal LMCA segments, and 
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therefore also affect the risk of developing atherosclerotic plaque in the LMCA.  The 

absence of the angle variation during the cardiac cycle suggests a relative fixed 

anatomical position of the LMCA, despite dragging forces arising from the 

contracting myocardium and the effects of pulsatile blood flow.  This survey did not 

encounter anomalously high-positioned LMCA origin with extreme sharp vertical 

angulation as described in previous literature [12, 13].   

 

Furthermore, there was a statistically significant difference (P<0.02) in the long and 

short axis diameter across all LMCA segments suggesting elliptical cross-sectional 

morphology as opposed to circular configuration. This elliptical shaped cross-section 

has been described in MDCT literature [6, 8, 14].  In addition, comparison of 

diastolic and systolic phases identifies a more pronounced reduction in short axis 

luminal diameter than in long axis diameter implying systole renders the LMCA more 

elliptical in cross section.  However, such reduction is only in the order to 0.2-

0.3mm in value, and may not have clinical significance.  Interestingly, despite subtle 

differences in short axis luminal diameter, there is no significant overall reduction in 

cross-sectional area between the two phases of the cardiac cycle.  The significant 

difference in cross-sectional area between genders has been previously observed [8].   

 

This survey results had also shown that the LMCA centreline is slightly longer in 

length than was reported in previous studies while no gender difference in length is 

found.  Overall, the LMCA was not very tortuous with the averaged tortuosity index 

of the LMCA around 1.15 in the diastolic phase. 

 

Finally, while there was not plaque rupture detected, the atherosclerotic plaque 

distribution in this cohort is more consistent with pattern seen in LMCD with multi-

vessel disease with more plaque in the distal LMCA.    
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3.6 Limitation 

 

There are several limitations to the retrospective descriptive LMCA survey.  Firstly 

there are no detailed clinical demographic factors to be included in analysis.  The 

severity of the LMCA atherosclerosis was not accurately quantified and therefore 

cannot comment on whether stenotic LMCA atherosclerotic plaque affects LMCA 

angulation and cross-sectional morphological conformation. 

 

3.7 Conclusion 

 

There are small variations in the both anatomical and morphological features of the 

LMCA in the diastolic and systolic phases of the cardiac cycle with some LMCA 

parameter changes reaching statistical significance.  The values reported in this 

analysis for angulation will allow accurate modelling of the effect of LMCA 

angulation on WSS in later studies in this thesis.  
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Chapter 4:  Computational Fluid Analysis of the Left Main Coronary Artery: The 

Effects of Angulation and Stenosis Severity on Wall Shear Stress  

 

4.1 Introduction 

 

Disease of the left main coronary artery (LMCA) is associated with poor prognosis 

and significant morbidity [1-4].   Isolated LMCA atherosclerotic plaque tends to 

deposit in the proximal LMCA segment [5, 6] and these plaques also have a greater 

risk of rupture [6] compared to the atherosclerosis seen in more distal LMCA disease 

with multi-vessel involvement [5, 7, 8].  This raises the possibility that local 

biomechanical forces such as wall shear stress play a role in determining the site of 

this plaque deposition and its risk of rupture.  The LMCA originates from the aorta 

at varying take-off angles [9], and a vertically displaced LMCA ostium may have 

adverse clinical sequelae [10].  It is very likely that the angle of origin of the LMCA 

alters local biomechanical forces.  The aim is to investigate the effects of LMCA 

angulation and stenosis severity on wall shear stress using computational fluid 

dynamics. 

 

Perturbation of coronary arterial wall shear stress (WSS) has been implicated in the 

development and progression of atheromatous plaques, as well as the pathogenesis 

of plaque rupture and thrombosis.  Previous studies have shown that regions of 

relatively low shear stress within the arterial tree have higher propensity towards 

atheroma formation [11] due to endothelial remodelling [12] and intimal hyperplasia 

[13, 14].  High WSS on the other hand, has been shown in vitro to contribute to 

platelet activation and endothelial erosion [15].   

 

Several studies have used computational fluid dynamics to estimate physiological 

parameters within the LMCA [16-19].  However, most recent studies have not 
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incorporated the aorta and left main artery origin into models used for simulation 

[16, 20-22], most likely because of the increased calculation time that would be 

required to incorporate the more complex simulation.  It is unknown whether 

incorporation of the aorta into models for computational fluid dynamic (CFD) 

simulations affects shear stress calculations significantly, and how this interacts with 

WSS in the presence of varying LMCA stenosis.  While CFD coronary artery studies 

omitting the aorta do provide detailed mapping and values of wall shear stress [23], 

they are unable to integrate the effect of LMCA vertical take-off angulations' impact 

on the WSS.  One study which used computer generated models showed no 

difference in calculated physiological parameters (velocity and pressure profile) 

resulting from varying take-off angles of left main re-implantation onto aortic grafts 

[18].  However, it is unknown whether a varying take-off angulation of native LMCA 

affects WSS and the potential compounding effects of angulation and left main 

coronary stenosis on local fluid dynamics has not been investigated.   

 

The aim of this study is to investigate the effect of incorporation of the aorta into 

CFD models and the effect of varying left main take-off angulation in the presence of 

varying stenosis severity on WSS.  To achieve this, computer-generated models was 

developed; that allowed inclusion or exclusion of the aorta, and allowed variable 

LMCA angulation and stenosis severity.  The results were then verified using 

patient-specific models obtained from computed tomography (CT) scans of patients. 

 

4.2 Methods  

 

4.2.1 Computer Generated Three Dimensional (3D) Models of the Aorta and LMCA 

 

Model sets were created using computer-aided design software (SolidWorks 2008 

SP0, SolidWorks Inc. Concord, M.A.).  Aortic and left main artery dimensions were 
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chosen to replicate physiological measurement from previous CT coronary 

angiogram literatures [9, 24].  Smooth filleting of the sharp edges was performed 

using previous described methods [17, 25, 26] to better represent real anatomy and 

minimize artifactual elevation of WSS.  The body of the aortic model was widened 

in the mid-portion to resemble the sinus of Valsalva [18].  To investigate the effect 

of incorporating the aorta into the models, models without and with aorta were 

created.  Varying degrees of proximal stenosis (50 %, 70 %, 75 %, 80 %, 85 % and 90 

% area stenosis) were then introduced into these models.  To investigate the effect 

of left main vertical take-off angulation, artificial models generated included the 

aorta with attached left main at varying vertical take-off angles: 0, 30, 45, 60 

degrees.  Varying degrees of stenosis were then introduced to the LMCA ostium. 

 

4.2.2 CT Coronary Angiography 

 

CT images of 2 patients (patient A and B) with widely differing LMCA angulation were 

chosen from a pool of CT coronary angiography scans performed at our institution to 

generate “CT-derived models” of the aorta and LMCA.  Images were obtained using 

a dual source 64-slice Siemens Definition multi-detector CT (MDCT) scanner 

(Siemens Medical Solutions, Forchheim, Germany).  Retrospective ECG-gated 

scanning was used. Patients were routinely pre-medicated with 600µg of sublingual 

nitroglycerin.  Beta-blockers were only given when pre-scan heart rates exceeded 

90 beats per minute.  Axial images were reconstructed at 0.75mm slice thickness 

and 0.3mm increment to deliver a final spatial resolution of 0.33mm x 0.33mm x 

0.75mm for reconstruction of 3D models.  Measurements of the LMCA were 

obtained using a Siemens workstation (Siemens Medical Solutions, Forchheim, 

Germany).  The vertical take-off angle was measured as the sagittal angle between 

the LMCA (line between the midpoint of the ostium and centreline of the LMCA 

proximal segment) and the plane perpendicular to aortic axis. 
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4.2.3 3D Model of the Aorta and LMCA Reconstructed From CT images (CT-derived 

Models)  

 

3D geometrical models of the coronary tree (CT-derived models) were extracted 

from CT image sets, using DICOM-viewing software Osirix (LaTour Hospital, Geneva, 

Switzerland) in the diastolic phase.  3D models were generated, refined and 

exported in IGES format using Geomagic 9.0 (Geomagic U.S., Research Triangle Park, 

N.C.).  Varying degrees of stenosis severity were then introduced into these models 

and their effect on WSS estimated. 

 

4.2.4 Computational Fluid Dynamic Analysis 

 

For CFD analysis, all the above finalised geometrical models were converted into 

standard neutral format recognized by ANSYS 11.0 (ANSYS Inc, Canonsburg, P.A.).  

All model sets had minimum mesh elements (combined tetrahedron and prisms 

counts) of at least one million and the wall boundaries were inflated at 0.1mm for 

finer mesh to achieve good level of simulation accuracy as previously described [27].   

 

As the aim of the study was to investigate the effect of differing geometry on shear 

stress calculations, the physiological parameters input as boundary conditions were 

kept constant for all models. Mass flow was set at 88.33g/s in the aortic inlet, 

85.68g/s in aortic outlet, and 2.65g/s in left main outlet to achieve a mass flow of 

2.65g/s within the LMCA, a value which is consistent with previous studies [18, 20, 

28].  For studies without the aorta, the same mass flow of 2.65g/s was used in the 

LMCA.   
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Constant laminar flow and Newtonian fluid properties were adopted as in previous 

studies [29, 30].  The wall was assumed to be rigid with no deformation, non-slip 

and with zero velocity.  These assumptions have been widely used in previous 

studies [31].  Blood density was assumed to be 1060kg/m3, blood viscosity was 

assumed to be 0.0035Pas and reference temperature was set at 37°C.  Fluid-solid 

interaction simulation and unsteady flow throughout different cardiac cycles was not 

used in simulation as the LMCA anatomical and morphological survey only showed 

small variations in the both anatomical and morphological features of the LMCA in 

the diastolic and systolic phases of the cardiac cycle.  This drastically reduced the 

simulation process time.   

 

4.2.5 Statistical Analysis  

 

Two-way ANOVA analyses were used to determine the interactive effect of 

incorporation of the aorta and stenosis severity on WSS, and varying angulation and 

stenosis severity on WSS.  Statistical analyses were performed using GraphPad 

Prism 5.0 (GraphPad Software Inc. La Jolla, California).   

 

4.3 Result  

 

4.3.1 Effect on Peak and Mean WSS in LMCA Segment of Aortic Attachment  

 

Figure 1A and 1B represent artificial models with LMCA and stenosis without 

inclusion of aorta.  The artificial model representing the aorta and LMCA 

attachment with 0 degree (orthogonal) LMCA take-off angulation is shown in Figure 

1C.  Varying degrees of stenosis were then introduced to the model (representative 

Figure 1D shown).  
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Figure 1: Computer Generated Models Representing the Proximal Ascending Aorta 

and Left Main Coronary Artery without angulation. (A) Model without aorta and 

without stenosis; (B) Model without aorta and with 90% area ostial stenosis of LMCA; 

(C) Model with aorta but without coronary stenosis, showing dimensions and fillet 

sized used; (D) Model with aorta and with 90% area ostial stenosis of LMCA.   

 

Models that incorporated the aorta had lower peak wall shear stress (pWSS) for 

orthogonal model (p= 0.005) (Figure 2A).  This difference was further accentuated 

in the presence of increasing left main proximal stenosis severity.  However, mean 

wall shear stress (mWSS) was not affected by exclusion or inclusion of aorta (Figure 

2B).  
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Figure 2: Effect of the Incorporation of Aorta and Coronary Ostial Stenosis on Wall 

Shear Stress in Computer Generated Models. (A) Peak wall shear stress (pWSS) 

versus percentage area stenosis for orthogonal model without and with the aorta.  

* p=0.005 for difference between the group without aorta and with the group 

incorporating the aorta.   † p<0.0001 for within group effect of increasing stenosis 

severity.  (B) Mean wall shear stress (mWSS) versus percentage area stenosis 

without and with the aorta.  * p=0.34 for difference between the group without 

aorta and with the group incorporating the aorta.   † p<0.0001 for within group 

effect of increasing stenosis severity. 

 

There was a clear difference in the distribution of WSS between models that 

incorporated the aorta and the ones that did not.   LMCA segment simulations 

alone demonstrate a pWSS zone including the whole of the entry site 

circumferentially (Figure 3A & B).   Inclusion of the aorta results in a pWSS zone 

which resides only in superior zone of LMCA ostium in the non-stenosed model 

(Figure 3C). The pattern of pWSS dissipation down the LMCA also changes from a 

symmetrical pattern to an asymmetrical pattern (Figure 3A & 3C).  Increasing 

proximal stenosis severity did not have an additional effect than that already 

described for change in WSS distribution (Figure 3B & 3D). The colour map shows 

that pWSS is highest on inferior surface of LMCA ostium in model with ostial stenosis 

(Figure 3D).  
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Figure 3: Comparison of Wall Shear Stress (WSS) Distribution between Models 

without the Aorta and with the Aorta. (A) LMCA model without the aorta, without 

LMCA stenosis; (B) Stenosed LMCA model without the aorta; (C) LMCA model 

incorporating the aorta, without LMCA stenosis; (D) Stenosed LMCA model with the 

aorta.  Arrows indicating region of high wall shear stress. 

 

4.3.2 The Effect of Varying LMCA Angulation and Stenosis Severity on WSS in 

Artificial Models 

 

Models with different vertical LMCA take-off angles: 0, 30, 45, 60 degrees (all with 

aortic attachment) were also created (Figure 4A-D) based on the range of angles 

seen in the survey of the LMCA by CTCA (Chapter 3).  Varying degrees of proximal 

stenosis severity (50%, 70%, 75%, 80%, 85% and 90% area stenosis) were then 

introduced into these models (Figure 4E-H).   
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Figure 4: Computer Generated Models Representing the Proximal Ascending Aorta 

and Left Main Coronary Artery with Varying Degrees of Angulation.  (A) Baseline 

model with 0 degree angulation showing dimensions and fillet size used. (B) Model 

with 30 degree angulation. (C) Model with 45 degree angulation. (D) Model with 60 

degree angulation. (E-H) Corresponding figures with 90% area stenosis introduced. 

 

Increasing LMCA angulation resulted in higher pWSS (p=0.005) and mWSS (p<0.001), 

and this difference was accentuated by increasing stenosis severity (Figure 5 A-B).  
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By two-way ANOVA, increasing stenosis severity also significantly increased pWSS 

(p<0.0001) and mWSS (p<0.0001). 

 

Figure 5: Effect of Varying Left Main Coronary Artery (LMCA) Angulation and 

Stenosis Severity on Wall Shear Stress in Computer Generated Models.  (A) Peak 

wall shear stress (pWSS) versus % area stenosis in the presence of varying LMCA 

angulation showing significant increase in pWSS with increasing angulation and 

stenosis.  * p=0.005 for difference between the groups of different angulation.   † 

p<0.0001 for within group effect of increasing stenosis severity on pWSS.  (B) Mean 

wall shear stress (mWSS) versus % area stenosis in the presence of varying LMCA 

angulation showing increased mWSS with increasing angulation and stenosis.  * 

p<0.0001 for difference between the groups of different angulation.  † p<0.0001 for 

within group effect of increasing stenosis severity on mWSS  

 

WSS distribution was altered by angulation, a zone of low WSS developed in the 

superior aspect of the LMCA ostium, and became larger as the degree of LMCA 

angulation increases in the models without stenosis (Figure 6A-D).  This change was 

also evident in the models with stenosis (Figure 6E-H).  The zone of low WSS 

however, became smaller with increasing stenosis severity.  Peak WSS was also 

lower in the angulated models incorporating the aorta compared to models without 

the aorta.   
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Figure 6: Wall Shear Stress (WSS) Distribution in the Presence of Varying Degrees of 

Left Main Coronary Artery (LMCA) Angulation. (A-D) Models with increasing 

degrees of LMCA angulation without stenosis. (E-H) Corresponding models with 90% 

area stenosis. Arrows point to regions of low WSS. 

 

4.3.3 The Effect of Varying LMCA Angulation and Stenosis Severity on WSS in Patient-

Specific CT-Derived Models 
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To investigate the effect of varying angulation in patient-specific models, the MDCT 

coronary angiogram images of patient A and B are shown in Figures 7A-7B.  

Resultant 3D model sets of the patient A and B are shown (Figure 7C-D). The changes 

in WSS distribution in the CT-derived models between patient A and patient B were 

similar to that of the computer generated models (Figure 7E-F).  Patient B who had 

the more acute angulation (both vertical, coronal and therefore resultant vector 

take-off angulation) had a more prominent region of low WSS on the superior 

surface of the LMCA.  Quantitatively, pWSS stress was higher in subject B (p=0.009) 

(Fig. 8) at all levels of stenosis. 
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Figure 7: Representative CT Coronary Angiogram Images with Corresponding 3D 

Reconstruction of the Proximal Aorta and Coronary Arteries and Wall Shear Stress 

Mapping (WSS) Map. Sagittal CT Images of patient left main coronary artery (LMCA) 

for (A) Patient A who had 25o LMCA angulation and (B) Patient B who had 58o LMCA 

angulation.  (C-D) Corresponding 3D reconstructed model images of patients.  (E-

F) Corresponding WSS maps. 

 

 

Figure 8: The Effect of Varying Left Main Coronary Artery (LMCA) Angulation and 

Stenosis Severity on Wall Shear Stress (WSS) in Authentic Patient-Derived Models. 

Peak wall shear stress (pWSS) versus % area stenosis showing significantly higher 

pWSS in model of patient B compare to model of patient A in the presence of 

increasing stenosis severity.   * p=0.009 for difference between A and B.   † 

p<0.0001 for effect in the presence of increasing stenosis severity within group A 

and B. 
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4.4 Discussion 

 

4.4.1 Importance of Incorporation of the Aorta into CFD Models to Calculate LMCA 

WSS 

 

Most studies that have used CFD to calculate WSS in the LMCA have not 

incorporated the aorta in their models [16, 20-22].  These results show that 

incorporating the aorta yielded lower pWSS levels and a different distribution of 

WSS.  These differences are likely due to the fact that absence of the aorta causes 

an inaccurate depiction of flow at the LMCA entry site, causing an artificial increase 

in WSS values [32].  The preferred development site of atherosclerotic plaques in 

pathological studies [33] [34] corresponds to regions of low WSS in the models that 

incorporate the aorta (Figure 6A-D and 7E-F).  The accurate understanding of WSS 

clearly mandates the incorporation of the aorta. 

 

4.4.2 The Effect of Varying Vertical LMCA Angulation on WSS 

 

Both pWSS and mWSS increased with increasing LMCA vertical take-off angulation, 

and this relationship was accentuated by increasing stenosis severity.  One study 

that investigated this issue showed no functional difference between angulated and 

non-angulated LMCAs [18].  However, this comparison was performed in the 

absence of stenosis, and used velocity profile and pressure as their dependent 

variables.  As these results show, the difference between angulated and non-

angulated models was apparent in the extent of area of low WSS, not only the 

numerical value of the WSS, and was further altered in the presence of increased 

stenosis severity (Figure 7).  The more vertically angled LMCA take-off from aorta in 

the presence of significant stenosis severity is associated with higher pWSS. Since 

pWSS leads to endothelial erosion, this suggests that the LMCA vertical take-off 
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angulation can provide a plausible insight of the higher atherosclerotic plaque 

rupture rate seen in the isolated LMCA disease.   

 

In addition, the relationship is complex with heterogeneous distribution of WSS at 

the left main ostium and proximal LMCA segment.  With increasing angulation, 

there was also an increase in the area of low WSS on the superior aspect of the 

LMCA ostium and proximal LMCA segment.  This low WSS site is known to be prone 

to atheroma formation in previous histopathological studies [33] [34].  This 

suggests that more acutely take-off angled LMCA may have a tendency towards 

atheroma formation in the superior aspect of left man ostium and proximal 

segment.  This could potentially explain the finding of that the isolated LMCA 

disease had a higher percentage of proximally located atherosclerotic plaque 

deposition [5, 6].  Furthermore, these results also show that this low WSS zone 

decreases with increasing stenosis, suggesting a complex interaction between WSS, 

atheroma formation and progression.  Further anatomical or CT study is required to 

validate the possibility that LMCA angulation independently portends a worse 

prognosis. 

 

4.5 Limitation 

 

There are several limitations in this study.  Firstly, the simulation have only adopted 

constant laminar flow.  Secondly, Newtonian fluid properties was assumed.  As 

the aim of this study was to investigate the effect of geometry on WSS calculations, 

these assumptions are used for the simulations.  With these assumptions, the shear 

stress value and mapping obtained from these simulations for normal LMCA are 

consistent with that previously reported in the literature and correlates well with 

histopathological studies.  Lastly, the horizontal take-off angulation of LMCA was 

not simulated in the study and may require further investigation in future study.   
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4.6 Conclusion 

 

The aorta should be incorporated into future models used for WSS calculation by 

CFD simulation when interrogate the WSS in the LMCA.  Both peak and mean WSS 

increases with increasing amount of LMCA origin angulation, and this is accentuated 

by increasing stenosis severity.  In addition, an area of low wall shear stress 

develops superiorly in the LMCA with increasing angulation.  These results suggest 

that LMCA angulation may be an additional important factor to be considered in the 

clinical evaluation of the pathogenesis and progression of LMCA atheromatous 

disease.   
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Chapter 5: Left Atrial Appendage Morphology and Rheological Properties 

 

5.1 Introduction 

 

Cardioembolic cerebral embolism has a high impact on functional status and 

mortality rate, both in short and long term in patients with atrial fibrillation. Atrial 

fibrillation accounts for approximately 14-33% of all strokes [1-5] while the left atrial 

appendage (LAA) is responsible for more than 90% of cardioembolic 

thromboembolism in atrial fibrillation [6].  Therefore, the LAA has been considered 

as one of the most lethal and disabling attachments in the human body [7, 8].   

 

The importance of the LAA appendage only gained attention in the early 1980s, with 

research undertaken in LAA anatomy and function in an attempt to individualize the 

risk of systemic thromboembolism. In the last decade, simple clinical scoring systems 

such as the CHADS2 or CHADS2VASC score have been validated in numerous 

populations and have largely replaced echocardiographic evaluation in routine 

clinical practice for predicting the risk of systemic thromboembolism.  In this 

setting, new predictors will need to demonstrate their independent and incremental 

predictive value beyond that of established clinical scoring systems before being 

considered as clinically useful [9, 10].  Recent evidence suggests certain LAA 

morphological subtypes increase the risk of cerebral thromboembolism and are 

independent of the existing clinical scoring systems [11-14].  This area of research is 

important as it represents the first development in the role of local left atrial factors 

in determining stroke risk in many years. How local, anatomical factors relate to 

alterations in left atrial rheological parameters is not well understood. 

 

This review will re-visit the basic mechanisms for thrombus formation in the LAA 

with emphasis on LAA echocardiographic and morphological predictors for 
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thromboembolism.  It will attempt to link these two features using rheological/fluid 

mechanical properties and also discuss their roles in systemic conditions described in 

clinical predictive scores such as the CHADS2 VASC score. 

 

5.2 Pathogenesis of LAA thrombus Formation in Atrial Fibrillation 

 

The key mediators of thrombosis formation were classically described by alterations 

in Virchow’s triad [15]:1) vascular structure (endothelial injury or dysfunction); 2) 

blood flow (stasis); 3) haemostasis (hypercoagulability).  These are considered in 

relation to LAA thrombus formation below. 

 

5.2.1 Abnormal structural change (Endothelial injury and dysfunction) 

 

Structural change has been demonstrated in the LAA in atrial fibrillation at both the 

macroscopic and microscopic levels.  At the macroscopic level, chronic exposure to 

atrial fibrillation is associated with increased LAA volumes and LAA outlet diameter 

compared to patients in sinus rhythm [13, 55][16-20].  Negative remodeling of the 

LAA is observed after restoration of normal sinus rhythm [21, 22].  At the 

microscopic level, there are severe endocardial changes in cohorts with atrial 

fibrillation, with oedema, fibrinous transformation, small areas of endothelial 

denudation and thrombus formation [23].  These endothelial changes are thought 

to increase the tendency to thrombus formation.   

 

5.2.2 Abnormal blood flow(stasis, rheological properties) 

 

That stagnation of blood flow predisposes to thrombus formation was initially 

described by Virchow.  Recently, in vitro studies have demonstrated the 

importance of two rheological properties in thrombus formation, shear rate and 
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blood flow velocity.  Low shear rate promotes the tendency for blood to initiate 

thrombus formation while low blood flow velocity promotes thrombus growth [24-

26].  Altered rheological properties appear highly likely in the different LAA 

morphologies and are the focus of this thesis. 

 

5.2.3 Haemostasis (Hypercoagulability) 

 

Early work in atrial fibrillation has demonstrated that slow swirling flow (seen as 

spontaneous echo contrast in echocardiogram studies) in the left atrium (LA) or LAA 

is independently associated with higher haematocrit and fibrinogen level [27].  

Atrial fibrillation or atrial flutter with depressed LAA function are more 

prothrombotic than atrial flutter with preserved LAA function.  In atrial fibrillation 

and atrial flutter there is increased fibrinogen turnover (higher D-dimer level) and 

platelet activation (increased level of beta-thromboglobulin) in patients with 

impaired LAA function [28-30].  In atrial fibrillation, endothelial 

activation/dysfunction, altered fibrinolysis and increased platelet activation are all 

likely to contribute the hypercoagulable state [31, 32]. Plasma biomarkers such as 

vWF and D-dimer have shown some promise as capable of refining risk stratification 

[33-35].  In addition, any other systemic condition that leads to a prothrombotic 

state may provide a lower threshold for initiation of coagulation for any given degree 

of blood flow stagnation [36]. 

 

5.3 Rheological Assessment of the Left Atrial Appendage 

 

5.3.1 Qualitative Assessment of the Left Atrial Appendage  

 

Two important qualitative rheological parameters used in evaluating the LAA are 

spontaneous echo contrast (SEC) and presence of LAA thrombus, both of which are 
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known to carry a high risk of systemic thromboembolism (Relative Risk (RR) of 3.7 for 

LAA SEC and 2.5 for LAA thrombus) [37].  The mechanism of increased risk 

associated with LAA thrombus is self-evident as LAA thrombus can embolise to cause 

stroke.  Interestingly one study did not show any independent predictive value of 

LAA thrombus in multivariate analysis [38].  SEC (sometimes referred to as 

“smoke”) has been described as "a swirling pattern of increased blood echogenicity 

caused by ultrasonic backscatter from red blood cell aggregates”.  These aggregates 

form due to non-covalent binding between red cells and plasma proteins under 

conditions of low flow and low shear[39-42] and do not resolve with antiplatelet or 

anticoagulation treatment [43, 44]. 

 

SEC can be defined as "vortical blood flow with slow flow velocity and low shear 

rate".  In one echocardiography study, within the LAA, the highest average velocity 

for a region with severe LAA SEC was only 3.6cm/s compared to 7.5cm/s in a region 

with mild LAA SEC [45].  In addition, the overall shear rate was also lower in 

patients with severe LAA SEC compared to those with mild SEC.  The overall 

descriptive grading of the severity of SEC is arbitrary and has no universal consensus.  

Mild to severe, mild to dense, or grade 0 to 4 are three different grading systems 

describing the severity of SEC, with grades 3 to 4 approximately correlating with 

severe or dense LAA SEC [46].  Severe SEC is known to be associated with a high risk 

of systemic thromboembolism, up to 22% annual rate in one small prospective 

study, with a higher predictive risk of cerebral/systemic thromboembolism even in 

comparison to LAA thrombus [37, 47, 48].  In addition, SEC has been shown to be 

more severe in the LAA than the left atrium (LA), and this observation can therefore 

plausibly explain the high incidence of LAA thrombus [49].  Overall, severe SEC has 

been observed as the most predictive qualitative rheological LAA parameter for 

thromboembolism. 

 

5.3.2 Quantitative Assessment of the Left Atrial Appendage 
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5.3.2.1 LAA Functional (Emptying Function) Assessment 

 

Depressed LAA emptying function is observed in all subtypes of atrial fibrillation [50-

52] and may be predictive of paroxysmal atrial fibrillation in acute stroke [53].  

Multiple studies have shown depressed LAA emptying function is associated with 

LAA SEC, LAA thrombus and an overall increased risk of thromboembolism in 

patients with atrial fibrillation[37, 46, 51, 52, 54-56] and in patients with normal 

sinus rhythm [52, 54, 57-59].  Currently, there are three different 

echocardiographic parameters that quantify the LAA emptying function: LAA ejection 

fraction, LAA wall contracting velocity and LAA peak emptying velocity. 

 

5.3.2.2 LAA Ejection Fraction 

 

Earlier methods used simple LAA areas or LAA area biplane methods [50-52] to 

measure LAA ejection fraction, while recent advances in echocardiography 

techniques using direct measurement of the LAA emptying function with 3-D 

echocardiography or speckle tracking allows LAA ejection fraction to be determined 

more accurately [60-63].  One study found that a LAA ejection fraction<21% 

increased the risk of LAA thrombus formation and possibly the risk of systemic 

thromboembolism independent of CHADS2 VASC score.  From this study, the ROC 

area of the curve of LAA ejection fraction was superior to the LAA emptying velocity 

as risk predictor for LAA thrombus [61]. 

 

5.3.2.3 LAA Wall Contracting Velocity 

 

LAA function can be assessed by measuring the LAA wall velocity during the cardiac 

cycle, using tissue Doppler in both transeosphageal [64, 65] and transthoracic 
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echocardiography.  The LAA wall contracting and relaxing velocity reflect the LAA 

contractile (emptying) and filling functions respectively [66].  Independent LAA wall 

velocity studies have shown LAA wall contracting velocity <10cm/s is associated with 

increased risk of LAA SEC, LAA thrombus and systemic thromboembolism (HR of 3.46 

when the LAA wall contracting velocity is <8.7cm/s) [38, 64-69]. 

 

5.3.2.4 LAA Peak Emptying Velocity 

 

LAA peak empting velocity is the commonest quantitative measurement that reflects 

the interaction of the LAA emptying function with the outlet size of the LAA, rather 

than just the LAA mechanical emptying function.  It can be defined as the peak 

velocity generated by the LAA contraction stroke volumes as it leaves the LAA outlet, 

measured during transeosphageal echocardiography [52].  Most echocardiography 

data has emphasized LAA peak emptying velocity since it is the one of the first 

parameters described to be associated with LA/LAA SEC [46].  LAA peak emptying 

velocity has also been associated with different LAA SEC severity and risk of future 

thromboembolic events in patients with atrial fibrillation (relative risk of 1.7 if LAA 

peak velocity <20cm/s) [37].  LAA peak emptying velocity >40cm/s is rarely 

associated with SEC, while if below <20cm/s it is almost invariably associated with 

severe LAA SEC [46].   

 

5.3.2.5 Role of LAA Shear Rate 

 

While shear rate has not been used to predict cerebral thromboembolism, low shear 

rate had been associated with the presence of LA SEC and LAA SEC [46].  The shear 

rate is defined as the rate of the change of velocity in the given region [70]. For LAA 

shear rate, it can be expressed as a simple formula

LAA shear rate=
2 X LAA peak emptying velocity (LAA PEV)

LAA outlet diameter / 2
. LAA shear rate 
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therefore is dependent on the both the LAA peak emptying function (LAA PEV) and 

LAA outlet diameter [71]. 

 

5.4 Left Atrial Appendage Morphology 

 

The LAA is the remnant of the left atrium after third weeks of gestation and was 

subjected to detailed anatomical study in the 1990s [19, 72, 73].  The anatomical 

study and cast created for the LAA lumen identified a complex morphological nature 

with multiple “lobes” and “twigs” [19].  This complex structure was not initially 

thought to link with an increased risk of thromboembolism, but these studies did 

recommend careful echocardiographic interrogation to exclude LAA thrombus or SEC 

[72].  Earlier studies did find a positive association between larger LAA volumes and 

wider LAA outlet neck size and the high risk of systemic thromboembolism [17, 20].  

Recently, certain LAA morphologies have been associated with a higher risk of 

systemic thromboembolism in patients with atrial fibrillation. 

 

5.4.1 LAA Neck Size 

 

The LAA outlet or neck size is on average 1-1.2cm in diameter in patients in normal 

sinus rhythm [72]. Studies have demonstrated an inconsistent relationship with the 

risk of stroke.  One study did show increased LAA outlet short and long axial 

diameters in atrial fibrillation [18] were associated with an increased risk of prior 

stroke (OR 3.59).  Another large study reported that the extent of LAA 

trabeculations and smaller (not larger) LAA orifice diameter were predictive of prior 

cerebral thromboembolism whereas LAA morphologies (such as cactus and chicken 

wing) were not independently predictive [13].  It is plausible that LAA neck size 

does affect the risk of thromboembolism, given that shear rate and the LAA 

emptying are both dependent on the LAA outlet dimension in an inverse 
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relationship.  However the relationship may be complex and depend on various 

interacting rheological parameters. 

 

5.4.2 LAA Volume 

 

The normal LAA volume varies according to the method of measurement and the 

phase of the cardiac cycle in which the LAA volume was measured.  Intra-operative 

observation, anatomical casts, CTCA and cardiac MRI generate different “normal” 

values, as result of different measurement methods, although the different 

approaches are generally mutually supportive in their qualitative conclusions.  

Using anatomical casts, one large study found that the mean LAA luminal volume on 

average ranged from 0.7 cm3 to 19.2 cm3, with mean LAA volume of 4.3cm3 in 

patients in sinus rhythm and 7cm3 in patients with AF.  CTCA studies have reported 

shown the mean LAA volume of 6.2±1.9 cm3 and 7±4 cm3 in patients in sinus rhythm 

[16][74], whereas in patients with cryptogenic stroke LAA volume was much larger at 

11.1±3.8 cm3 [16]. 

 

MRI studies tend to show large mean LAA volumes, this is likely due to the signal 

averaging during different phases of the cardiac cycle and inferior spatial resolution 

when compared to CT.  Cardiac MRI supports the earlier studies associating large 

LAA with stroke risk, one study showing that the mean LAA volume was 28.8+/-

13.5cm3 in stroke subjects and 21.7+/-8.27cm3 in the non-stroke group [13].  In this 

cohort, the stroke group also had a higher CHADS2 score.  Another cardiac MRI 

study showed patients with stroke had a mean LAA volume of 22.9+/-9.6cm3, 

compared with patients without stroke who had mean LAA volumes of 14.5+/-

7.1cm3, even when both groups had similar CHADS2 scores[18]. 

 

5.4.3 LAA Morphology 
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Despite the variable and complex morphology of LAA, it was not until 2011 that one 

CT study first suggested an association of the LAA morphological characteristics with 

risk of systemic thromboembolism [74] and provided a simple LAA morphological 

classification.  A subsequent pilot CT study classifying LAA morphology into chicken-

wing and non-chicken-wing subtypes (cactus, windsock and cauliflower) 

demonstrated a high risk of thromboembolic stroke risk with the non-chicken-wing 

group, with an annual rate of 4.6%, independent of the CHADS2-VASC score [11].  It 

also demonstrated that the cauliflower morphology had the highest risk of cerebral 

thromboembolism.  Since then, three CT LAA morphology studies have all 

demonstrate that cauliflower morphology does confer an increased risk of cerebral 

embolism [12-14].  The windsock LAA morphology ranks as second highest risk [12].  

Although one study dismissed the LAA morphological classification system and 

indicated that severe trabeculation is responsible for the increased risk of 

thromboembolism, the cauliflower LAA morphology also has the most severe 

trabeculation making the distinction difficult.  Classifying the LAA morphology into 

4 categories carries high inter-observer and intra-observer variability [13].  

Interestingly, in these studies it also been noted that the cauliflower subtypes have 

lower mean LAA volumes in comparison to the other subtypes despite being 

associated with a higher risk of stroke; a finding not consistent with previous 

observational studies relating larger LAA volume to risk.  This raises uncertainty 

regarding the robustness of the association between LAA morphology and stroke 

risk. 

 

5.5 Linking the LAA Morphology to LAA Echocardiographic Rheological Features 

 

Spontaneous echo contrast or SEC can be considered as a precursor for thrombus 

formation.  It is the result of slow swirling blood flow with slow vortical velocity and 

low shear rate, the two most important precursors for blood clot initiation and 

growth.  Allowing for similar blood haemostatic parameters, the vortex or 
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stagnation region also has been associated with thrombus formation [75].  Based 

on fluid dynamics literature, LAA SEC results from the interaction between the LAA 

morphology and LAA emptying function, with rheological parameters determining 

the degree of slow swirling velocity and slow shear rate in a given LAA geometry.  

 

5.5.1 LAA Shear Rate and LAA Morphology 

 

LAA shear rate determines the rate of change of vortical or swirling velocity and is 

calculated by equation (Equation 2) derived from Poiseuilles’ law [71].  Lower rate 

of changing of vortical velocity increased the chance of SEC formation and is pre-set 

by a given LAA morphological characteristics, the LAA volume and LAA outlet radius; 

when the LAA emptying function is fixed.  This is demonstrated by the following 

equations. 

 

Equation 1 [76]: In laminar flow with heart rate of 60 beats per minutes, 

2 X Stroke Volume (SV) 2SV
LAA peak emptying velocity= =

LAA outlet area LAA outlet area  

This equation is derived from that  

Blood Flow Stroke Volume (SV)
LAA mean emptying velocity =

LAA outlet area LAA outlet area  

Note if in the setting of laminar flow, r=R=radius and L= length, then analytically the 

LAA peak emptying velocity can be obtained [76]: 

L
L

0

V2 LAA peak emptying velocity
LAA mean emptying velocity = V (r)2 =

LAA outlet area 2 2

R

rdr   

Note if in the setting of fully developed turbulent flow, then T=turbulent flow and m 

is the exponent and dependent on the degree of turbulence [76].  
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max
max

0

V (LAA peak emptying velocity)2
LAA mean emptying velocity = V (r)2

LAA outlet area (m+1) X (m+2)

R
T

T rdr 
 

As m=1/7 in the setting of fully developed turbulence, then 

(m+1)X(m+2)=(8/7)X(15/7) = 120/49=2.45, another constant.
 

Equation 2[71]: 

2 X LAA peak emptying velocity(LAAPEV) 2 LAAPEV
LAA shear rate= =

LAA outlet diameter / 2 LAA outlet radius

 

Equation 3[77]:

 

 

Stroke volume LAA end-diastolic volume - LAA end-systolic volume
LAA ejection fraction=

LAA volume LAA end-diastolic volume

 

Therefore,

Stroke volume (SV)=LAA ejection fraction (LAA EF) X LAA volume, SV=LAA EF X LAA volume  

Substituting equation 1 into equation 2, we obtain equation 4. 

Equation 4: 

 

2SV
2 X

4SVLAA outlet areaLAA shear rate= =
LAA outlet radius LAA area X LAA outlet radius

 

Substituting equation 3 into 4, then obtains equation 5 

Equation 5: 

 
4(LAA EF X LAA volume)

LAA shear rate=
LAA area X LAA outlet radius

 

Given a fixed LAA emptying function, then LAA EF is fixed. 

Then, 

 LAA volume
LAA shear rate (proportional  to)

LAA outlet area X LAA outlet radius
  

Since the LAA outlet area is proportional to the square of the LAA outlet radius (2πr2) 

then, 
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2 3

 LAA volume  LAA volume
LAA shear rate (proportional  to)

2 LAA outlet radius  X LAA outlet radius LAA outlet radius
   

Thus, for a given LAA emptying function, the LAA shear rate is related to LAA volume 

and LAA outlet radius of a given LAA morphology.  It is directly proportional to the 

LAA volume and inversely proportion to the LAA outlet radius3.  This implies the 

larger the LAA outlet radius/area, or the smaller the LAA volume, the lower the LAA 

shear rate and hence increased chance of SEC formation. 

 

However, this does not explain why larger LAA volumes have been associated with a 

higher incidence of thromboembolism.  An increase in LAA volume could be 

confounded by a coexisting increase in the LAA outlet radius/area. This may partially 

but inadequately explain this finding [18]. 

 

On the other hand, the LAA shear rate for a fixed LAA morphology is directly 

proportional to the LAA emptying function. The lower the LAA function, the lower 

the shear rate:

4 X LAA EF X LAA volume
LAA shear rate= LAA EF, for a given LAA morphology

LAA outlet area X LAA outlet radius
  

 

5.5.2 Slow Vortical Velocity in the Left Atrial Appendage 

Using the analogy of abnormal vortex formation observed in severe dilated 

cardiomyopathy in echocardiography and CMRI, the abnormal vortex is dependent 

on the interaction between the geometrical structure of the left ventricle and left 

ventricular function [78-80].  Therefore similar factors are likely to govern the 

development of slow vortical velocity in the LAA: the LAA emptying function and the 

geometry of the LAA structure.   
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Detailed analysis of the slow vortical flow pattern within the LAA is limited by the 

spatial and temporal resolution of current imaging techniques in comparison to the 

analyses available for the mapping of vortical flow in the much larger left ventricles.  

However, the maximum slow vortical velocity in severe LAA SEC has been measured 

as 3.6cm/s within the LAA [45].  In fluid mechanics, a complex structure should give 

rise to flow turbulence, therefore generating more abnormal or slow vortical flow, 

when compared to a structure with simpler geometry [78].  To date this has not 

been shown to be the case in different LAA morphologies. 

 

5.5.3 Summary 

 

In summary, for a fixed LAA morphology (fixed LAA volume, LAA outlet and 

complexity of the LAA geometry), the LAA emptying function plays a predominant 

role in determining both the LAA shear rate and velocity of LAA vortical flow.  On 

the other hand, at a fixed LAA emptying function, the LAA volume and LAA outlet are 

associated with shear rate while the magnitude of the slow vortical flow velocity may 

be dependent on the complexity of the LAA geometry.    

 

5.6 Prediction of Stroke Using the CHADS2/CHADS2VASC Scores 

 

The CHADS2 and CHADS2 VASC scores are derived from the prevalence of the stroke 

risk associated with specified clinical morbidities or risk factors [9, 10].  CHADS2 

VASC is composed of scores assigned to congestive heart failure (left ventricular 

failure), hypertension, age, diabetes, stroke, gender and vascular disease.  While 

CHADS2 is more specific it does not include some high risk cohorts, whereas CHADS2 

VASC is highly sensitive but not as specific. 
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CHADS2 and CHADS2 VASC scores can be considered as aggregates of systemic 

factors that either interact with pre-existing abnormalities of LAA emptying to 

promote thrombus formation in the LAA, or as factors that directly modulate the 

LAA emptying function and LAA remodeling process.  These morbidities described 

in the CHADS2 VASC score can contribute to depressed LAA emptying and possibly 

the remodeling of the LAA structure, and associate with severe LAA SEC or LAA 

thrombus [81].   

 

5.6.1 Cerebral thromboembolism 

 

Having prior stroke or cerebral thromboembolism from cardioembolic source is clear 

evidence of embolic risk and is given an appropriate weighting with a risk score of II 

in the atrial fibrillation clinical scoring system.  In the setting of atrial fibrillation, 

previous stroke implies previous LAA thrombus formation with embolization, and 

carries an overall annual risk of recurrent cerebral thromboembolism of up to 17% if 

left untreated.  In the setting of acute stroke with sinus rhythm, depressed LAA 

function is potentially predictive for the presence of paroxysmal atrial fibrillation 

[53]. 

 

5.6.2 Age 

 

Age is considered a high independent risk for all subtype of the stroke and weighting 

a score of 1-2 (depending on the age).  Even in sinus rhythm there is a reduction of 

LAA peak emptying velocity with aging (4cm/sec per decade) [82-84].  This implies 

that there is a reduction of the baseline LAA emptying function with age.  In 

contrast the LAA outlet dimension remains fairly constant after age 20 in normal 

sinus rhythm.  Neither left ventricular size, systolic dysfunction, nor LA or LAA size 

seem to affect the change in LAA function with aging.   
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Diastolic dysfunction which is observed with ageing does seem to affect LAA function 

directly and indirectly.  One study measuring LAA wall velocity suggested there is an 

impairment of the LAA relaxation rather than LAA contraction [66] with ageing. In 

addition, it was proposed that LV diastolic dysfunction [82] and resultant increased 

filling pressures may mediate the ageing-related depression of LAA function and 

higher incidence or severity of LAA SEC/thrombus [81, 85].  In LV diastolic 

dysfunction, there is an increase in both left atrial active emptying volumes (as the 

result of the increase left ventricular stiffness) and left atrial active function. The LAA 

adapts to this resulting in LAA dilatation and increased in active LAA emptying in the 

setting of LA pressure and volume overload.  However, once the limited capacity of 

the LAA reservoir is exceeded, there is a reduction of LAA function [86] of the 

enlarged LAA.  This reduced baseline LAA peak emptying velocity is worsened by 

further reduction of LAA emptying as result of atrial fibrillation [54], leading to more 

severe LAA SEC, thrombus formation and clinical systemic thromboembolism. 

 

5.6.3 Hypertension 

 

Hypertension leads to left ventricular hypertrophy and is an important cause of left 

ventricular diastolic dysfunction.  Hypertension has been associated reduced LAA 

function in patients in sinus rhythm [87], independent of left ventricular systolic 

dysfunction.  It likely share similar mechanism to that of the ageing process.  

Whereas ageing is an un-modifiable risk factor, control of hypertension is achievable 

and can improve LAA emptying function [88].  Similar to the ageing process, when 

hypertension leads to left ventricular diastolic dysfunction it also increases afterload 

for the left atrium.  The subsequent increased left atrial reservoir function leads to 

an increase in both LA volume and the LA contractile function.  These in turn 

increase the afterload for the LAA and once exceeding the LAA adaptive capacity 

lead to reduction of LAA function. 
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5.6.4 Diabetes Mellitus 

 

Diabetes mellitus carries annual rate risk of thromboembolism of roughly 2%, similar 

to the thromboembolism risk of being in age group of 65~74 year-olds [10].  There 

are few if any studies directly investigating how diabetes mellitus affects LAA 

function.  Diabetes can lead to diabetic cardiomyopathy, an entity characterized by 

the presence of left ventricular diastolic dysfunction [89].  This can therefore be 

expected to share similar pathophysiology to both hypertension and aging in its 

effects on the left ventricle and subsequent impairment of LAA function.  In 

contrast to hypertension, there is no reversible component to the left ventricular 

diastolic dysfunction seen with ageing or diabetic cardiomyopathy.  In addition, 

given the systemic effects of diabetes on microvascular function and protein 

modification by glycation and glycoxidation the possibility of direct pathological 

effects of diabetes on LAA function should be considered.  

 

5.6.5 Congestive Cardiac Failure/Left Ventricular Failure 

 

Sinus rhythm is rarely associated with LAA thrombus unless there is presence of 

structure heart disease, such as left ventricular dysfunction with cardiac failure [90]. 

In dilated cardiomyopathy, there is a high prevalence of LAA thrombus, despite the 

preservation of sinus rhythm [91].  Multiple studies to date have shown that dilated 

cardiomyopathy is associated with depressed LAA function and therefore leads to 

LAA echocardiographic abnormalities [92-95].  Although the mechanism of LAA 

dysfunction is not clear, dilatation of the LAA may follow the dysfunction and dilation 

of the left ventricle [96].  Associated LV diastolic dysfunction may also contribute as 

indicated earlier. 
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5.6.6 Gender 

 

Female gender is consistently associated with an increased risk of systemic 

thromboembolism and echocardiographic findings of higher incidence of LAA SEC in 

female gender also support a mechanistic association [97, 98].  The mechanism for 

this observation had been thought to be multifactorial and complex [97].  However, 

it may be explained by women having a lower baseline LAA emptying function than 

men even in sinus rhythm [84].  

 

5.6.7 Vascular Disease 

 

Vascular disease includes atherosclerosis of the carotid arteries, aortic arch, 

peripheral vascular vessel and coronary artery disease.  Atheroma of the carotid 

and aortic arch can lead to embolic cerebral thromboembolism which is non-cardiac 

in origin.  Coronary artery disease such as myocardial infarction can be associated 

with arrhythmias, including atrial fibrillation, while symptomatic coronary artery 

disease has been associated with a substantial increase in the risk of intra-cardiac 

thrombus and cerebral thromboembolism [99].  Ischemia and infarction can both 

increase LV end diastolic filling pressures, either related to systolic or diastolic 

dysfunction, and it is possible that LAA and LA booster function are perturbed 

secondary to this.  Depressed LAA function after post-myocardial infarction has 

been observed as increasing the risk of LAA thrombus and SEC, even in the setting of 

sinus rhythm [69, 100]. 

 

5.6.8 Summary 
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Previous cerebral thromboembolism carries the highest risk for recurrent stroke in 

atrial fibrillation cohort.  Age, hypertension and diabetes are all associated with 

higher annual risk of stroke in patients with atrial fibrillation and may share similar 

mechanisms as result of LV diastolic dysfunction.  Left ventricular systolic 

dysfunction may share part of the mechanism of LV diastolic dysfunction with 

contributions from either volume or pressure overload.  The correlation of 

coronary artery disease with systemic thromboembolism from the left atrial 

appendage is not particularly robust, with a relatively low annual risk except in the 

group with high ischaemic burden and post myocardial infarction.  Lastly, women 

have reduced biological LAA emptying function, predisposing them for 

thromboembolism in comparing to male gender.   

 

Overall, the CHADS2 VASC score describes the disease process that dynamically and 

actively affecting the LAA morphology and LAA function through similar mechanisms. 

Echocardiographic LAA abnormalities, despite being the gold standard in predicting 

the risk of thromboembolism by detecting slow flow and spontaneous echo contrast, 

only provides a snapshot analysis and short term stroke risk assessment unless 

repeated transeosphageal echocardiography can be performed (which would be 

highly unusual).  A table of all predictors for thromboembolism in atrial fibrillation 

had been summarized as below. 
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Table 5.1 Prediction of thromboembolism in patients with atrial fibrillation 

Type of predictor for cerebral thromboembolism Annual event rate (%) 

(RR/OR/HR) 

10 year annual event 

rate (%)(RR/OR/HR) 

Remark 

Baseline stroke risk 

for zero on scoring. 

CHADS2 1.67 (HR 1.0) 1.24(HR 1.0)  

CHADS2 VASC 0.78 (HR 1.0) 0.66 (HR 1.0)  

Clinical Score (Clinical Predictors) 

Previous 

thromboembolism 

CHADS2 15.46 (HR 9.31) 7.74 (HR 6.05)  

CHADS2 VASC 16.07 (HR 20.44) 6.98 (HR 10.44)  

Age CHADS2 (Age ≥75) 5.97 (HR 3.52) 4.64 (HR 3.59)  

CHADS2 VASC Age 65~74 2.88 (HR 3.68) 2.09 (HR 3.12)  

Age ≥75 4.75 (HR 5.96) 4.27 (HR 6.21)  

Diabetes mellitus  CHADS2 3.0 (HR 1.79) 2.42 (HR 1.93)  

CHADS2 VASC 3.47 (HR 4.46) 2.02 (HR 3.03)  

Congestive cardiac 

failure 

CHADS2 2.8 (HR 1.67) 2.31 (HR 1.84)  

CHADS2 VASC 1.9 (HR 1.92) 1.78 (HR 2.69)  

Hypertension CHADS2 2.42 (HR 1.45) 1.94 (HR 1.56)  

CHADS2 VASC 2.14 (HR 2.76) 1.49 (HR 2.26)  

Gender CHADS2 NA NA  

CHADS2 VASC 1.24 (HR 1.6) 0.82 (HR 1.24)  

Vascular disease CHADS2 NA NA  

CHADS2 VASC 0.75 (HR 0.97) 1.47 (HR 2.22)  
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Echocardiographic LAA abnormalities Any LAA 

abnormalities[101] 

7.8%   

Qualitative LAA thrombus[37] 12.9%-17.9%(RR 2.5-2.7)   

 Dense LAA SEC[37, 47, 48] 14.4%-22 %(RR 2.7-3.7) OR 2.4  

Quantitative  LAA 

emptying 

function 

LAA emptying velocity <20cm/s 

[37, 57, 102, 103] 

2.6-9.9%(RR 1.7-1.8, OR 4.1)  

LAA wall contracting velocity HR 3.46 if LAA wall contracting velocity<8.7cm/s  

LAA ejection fraction 

(Higher LAAEF, lower risk) [60, 

61] 

OR 0.57-0.63 for LAA 

thrombus if LAA EF >21% 

 Risk for LAA 

thrombus 

Shear rate[45] Lower value is associated with higher risk of LAA SEC 

LAA geometry (LAA morphological predictors) 

LAA neck dimension Larger LAA neck/outlet axial dimension[13, 

18] 

OR 3.56 for LAA axial dimension product (long axis X short axis).  

OR 0.33 with smaller LAA diameters 

LAA volumes Larger LAA volume [16-20] OR 7.11 if LAA >34cm3.   

LAA morphology Chickenwing[11] 0.7% (OR 1.0)   

Non 

Chickenwing

[11] 

Cactus 4.6% (OR 4)   

Windsock 4.6% (OR 4.8)   

Cauliflower (Extensive 

trabeculation)[11, 13, 14] 

4.6% (OR 3.36~8.02, OR 

3.1 for trabeculation) 
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5.7 Conclusion 

 

To conclude, using current available literature, both clinical, morphological and 

echocardiographic stroke risk predictors can be explained using rheological/fluid 

dynamic properties.  Although from fluid dynamic theory different LAA 

morphologies may plausibly give rise to different stroke risk the mechanism by which 

this might occur has not been established.  In addition, the discrepancy in current 

literature on the association between both small and or large LAA volumes with risk 

of thromboembolism remains unexplained 
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Chapter 6: Impact of Different Left Atrial Appendage Morphology on Slow Vortical 

Flow Estimated by Flow Dynamics 

 

6.1 Introduction 

 

Early studies in LAA studies had been mainly undertaken using anatomical casts [1-3] 

whereas more recent studies have used cardiac computed tomography to provide 

detailed morphology of the LAA in vivo.  As described in Chapter 5, many studies 

have shown that LAA morphology can affect the risk of cerebral thromboembolism, 

independent of clinical stroke risk predictors such as the CHADS2 VASC score[4-7]. 

 

LAA morphology was firstly categorised into Chickenwing, Cactus, Windsock and 

Cauliflower subtypes, with the Cauliflower subtype having the highest risk for 

cerebral thromboembolism.  The initial LAA morphological paper [4]described the 

Chickenwing LAA morphology as having only a 0.7% annual risk of stroke, whereas 

the non-Chickenwing LAA morphologies (Cactus, Windsock and Cauliflower 

subtypes) had only a 4.7% annual risk of stroke (independent of clinical risk score).  

This was later confirmed on another small cohort; that revealed cauliflower LAA 

morphology has higher risk of systemic thromboembolism [7].  Lastly, a recent 

study had shown complex LAA morphology is associated with LAA thrombus 

formation, independent of clinical risk factors [8].  In all of these studies, the 

increase risk of stroke has been attributed to slow flow arising from the more 

complex LAA morphologies. To the best of our knowledge there has been no direct 

demonstration in vitro that flow is altered in different LAA morphologies. 

 

6.1.1: LAA Morphology Classification 
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The classification system initially described by the first paper in 2012 as the 

Chickenwing, Cactus, Windsock and Cauliflower subtypes was adapted while 

acknowledging these are arbitrary classification systems. 

1. Chickenwing LAA morphology: The Chicken Wing LAA morphology presents an 

obvious bend in the proximal or middle part of the dominant lobe, or folding back of 

the LAA anatomy on itself at some distance from the perceived LAA ostium. This type 

of LAA may have secondary lobes or twigs. 

2. Cactus LAA morphology: The Cactus LAA morphology presents a dominant central 

lobe with secondary lobes extending from the central lobe in both superior and 

inferior directions. 

3. Windsock LAA morphology: The Windsock LAA morphology presents one 

dominant lobe of sufficient length as the primary structure. Variations of this LAA 

type arise with the location and number of secondary or even tertiary lobes arising 

from the dominant lobe. 

4. Cauliflower LAA morphology: The Cauliflower LAA morphology presents limited 

overall length with more complex internal characteristics. Variations of this LAA type 

have a more irregular shape of the LAA ostium (oval vs. round) and a variable 

number of lobes with lack of a dominant lobe. 

 

6.1.2: Computed Fluid with Rheological Property Resemble Severe SEC 

 

Previous echocardiographic studies investigated the rheological property of SEC in 

left atrial appendage.  Echocardiographically, a swirling pattern of blood flow is an 

intrinsic nature of SEC [9, 10].  In addition, a recent study compared the rheological 

property differences of severe and mild SEC grading.  It was found the average 

maximal velocity in the presence of severe SEC is only ≤3.6cm/s with a low shear rate 

of ≤ 45s-1, while average maximal velocity in the presence of mild SEC was ~7.5cm/s 

with a shear rate 83s-1[11].  Therefore, it is reasonably to define the stagnated 
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computed fluid in a LAA morphology with rheological properties resemble what had 

been seen in the presence of severe SEC as the region of fluid involved in the vortex 

(to represent swirling), with low spontaneous velocity of ≤3.6cm/s and low shear 

rate of ≤ 45s-1.  

 

This study will seek to investigate whether blood stagnation could be affected by LAA 

morphology.  This will be achieved by quantifying the amount of slow vortical flow, 

which was thought to be analogous to quantifying the region of relative blood 

stagnation or spontaneous echo contrast.  To achieve the aim, computational fluid 

dynamics (CFD) with numerical simulation in LAA digital models with varying 

morphological subtypes were used.  The results will then be compared 

(qualitatively and quantitatively) across different LAA morphologies and related to 

LAA emptying function.  To date there has only been one CFD simulation of an 

artificial left atrial appendage [12] and the studies included in this chapter are wholly 

original.  

 

6.2 Method 

 

6.2.1 LAA Morphology 

 

Total of 12 LAA CT data sets were studied, including three examples of each type of 

LAA morphology.  The classification of LAA morphology was verified by two 

independent operators.  None of the LAA examples selected had a filling defect 

identified on the CT. CT images were acquired using multi-detector computed 

tomography (MDCT) (Toshiba Aquilion One) during the atrial systolic phase and were 

all in normal sinus rhythm. The LAA is acquired in the atrial systolic phase as it will 

match the time for maximum velocity and pressure prescribed in the inlet and outlet 

boundary condition in LAA models.  During image acquisition, the patient was pre-
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medicated with metoprolol to achieve a heart rate less than 60/min.  In addition 

600mcg of sublingual glycerin trinitrate was also administered 2-minutes pre-

scanning as standard protocol.   

 

6.2.2 Numerical Simulation 

 

6.2.2.1 IGES (Initial Graphics Exchange Specification) and Mesh File 

 

A 3D digital model of patient-specific CT-derived geometry were extracted from the 

12 CT DICOM datasets. It is refined and then converted into IGES format prior to 

export into ANSYS CFD software for preparation for numerical simulation.  During 

refinement of these digital models, the orifice of the LAA was artificially separated 

into inlet and outlet in order to allow CFD simulation as shown in Figure 1A.  In 

addition, the orifice was elongated by 5mm (Figure 1B) to compensate for the length 

lost from digital modelling, while the inlet was further elongate by 2cm to allow for 

fully development of laminar/turbulent flow as shown Figure1C [13].  These IGES 

digital files were then transformed to mesh files for numerical simulation, with the 

minimal tetrahedron volume meshing dimension of 0.2mm and maximum dimension 

of 0.4mm.   
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Figure 1: Chickenwing Digital Model 

A: Default IGES Chickenwing Model.  B: Artificial Separation of Left Atrial 

Appendage Orifice into Inlet (Green Colour) and Outlet (grey colour).C: Elongation of 

Orifice by 5mm to Compensate for the Neck Length Lost from Digital Modelling.  D: 

Elongation of Inlet by 2cm to Allow Full Development of Laminar/Turbulent Flow. 

 

6.2.2.2 CFD Simulation 

 

Steady flow CFD simulation with no fluid-solid interaction was performed within a 

turbulence flow model (K-Omega) to allow the calculation of the vortical flow zone. 

The LAA wall was fixed and non-slip based on the assumption that LAA CFD 

simulation was at the peak of the atrial systolic phase.  The inlet boundary 

condition was set as 20mmHg as measured in a prior publication using a pressure 

wire [14].  The outlet boundary is prescribed with a range of lower LAA emptying 
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velocities (therefore different LAA emptying function) which will relate to the degree 

of spontaneous echo contrast, ranging from10cm/s, 20cm/s, 30cm/s to 40cm/s[9, 

11].  It is observed that SEC generally starts to form with LAA emptying velocities 

around 40cm/sec. The average maximum velocity within regions of severe SEC is 

≤3.6cm/s and shear rate of ≤45s-1 while regions of mild SEC have a maximum velocity 

of ≤7.5cm/s [11].  These published velocities and shear rates corresponding to 

areas of severe SEC were used to identify areas of slow vortical flow below. 

 

Newtonian flow was assumed with blood density of 6.045Kg/m3 and temperature of 

37 degree Celsius while the haematocrit was fixed at 40% by fixing the viscosity at 

0.0035 Pascal/s.  Previous in vitro studies had shown slow velocity within the vortex 

increases thrombogenic risk when the velocity is <1mm/s, red blood cells start to 

aggregate (rouleax) and contribute to thrombus growth while low shear rate initiate 

thrombus formation[15-17].  After completion of each LAA CFD simulation the total 

volume (ml) within the slow vortical flow zone with a velocity ≤3.6cm/s and shear 

rate of ≤ 46s-1) was calculated and was also expressed as percentage of the total LAA 

volume.  These slow vortical flow volumes are considered to be analogous to LAA 

SEC observed on echocardiography.  The values then were analyzed and compared 

across different LAA morphology classification subtypes as well as across different 

LAA emptying velocities.  Qualitatively, the location of the slow vortical flow region 

was also evaluated. 

 

6.2.6.3 Statistical Analysis 

 

T-test analyses were used to determine the difference of the mean slow vortical flow 

volume and percentage (slow vortical volume/LAA volume) that resemble severe SEC 

across different LAA morphology subgroups and also in various combined groups.  

Statistical analyses were performed using GraphPad Prism 5.0 (GraphPad Software 

Inc. La Jolla, California).   
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6.3 Result 

 

6.3.1 Quantitative Assessment 

 

6.3.1.1 Chickenwing Versus Cactus Versus Windsock Versus Cauliflower 

 

Overall, 48 LAA morphology CFD numerical simulations were performed with 4 

different LAA emptying velocities prescribed for each individual LAA morphology.  

Figure 2 A-D shows individual models of different LAA morphological subtypes.   
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Figure 2: Individual Left Atrial Appendage Studies for CFD Analysis, Classified by 

Morphological Subtypes. A: Chickenwing; B: Cactus; C: Windsock; D: Cauliflower 

Subtypes. 

 

The individual values of each presumed LAA blood stagnation region (analogous to 

severe LAA SEC) or the absolute LAA slow vortical flow volume and its percentage to 

LAA body volume were calculated and listed in Table 1.  Comparing the LAA slow 

vortical flow volumes between different LAA morphology, the most obvious 

observation is the statistically significant higher volume of slow vortical flow in the 

Cauliflower LAA subtype in comparison to the other LAA morphological subtypes 

across different LAA emptying velocities under conditions where the LAA emptying 

velocity is>20cm/s as shown in Figure 3A.  Once the LAA emptying function is 

depressed to a critical level below 20cm/s, the slow vortical flow volumes are fairly 

similar across different LAA morphological subtypes.  There is a statistically 
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significant graded increase in slow vortical flow volume (and % LAA volume) across 

different LAA morphologies.  The smallest, slow vortical flow volume was found in 

the Chickenwing, progressively increasing in Cactus, Windsock and Cauliflower 

subtypes. 
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Table 1: Different Left Atrial Appendage (LAA) Morphology (Vol=Volume of Slow Vortical Flow (cm3), %=Volume/LAA Volume) 

Chickenwing Cactus Windsock Cauliflower 

 1 2 3 1 2 3 1 2 3 1 2 3 

LAA 

Volume 

(cm3) 

14.53 12.46 11.24 13.53 20.19 8.73 11.6 7.56 5.83 7.80 10.7 10.82 

LAA 

Emptying 

Velocity 

Vol % Vol 

 

% 

 

Vol 

 

% 

 

Vol 

 

% 

 

Vol 

 

% 

 

Vol 

 

% 

 

Vol 

 

% 

 

Vol 

 

% 

 

Vol 

 

% 

 

Vol 

 

% 

 

Vol 

 

% 

 

Vol 

 

% 

 

40 cm/s 0.12  1 

 

0.12 1 0.33 4 0.2 2 0.7 5 0.21 3 0.26 3 0.49 8 0.38 9 1.4 24 1.45 19 1.08 13 

30 cm/s 0.17  1 

 

0.27 3 0.54 7 0.22 2 0.7 5 0.6 9 0.96 12 0.72 13 0.3 15 2.23 38 1.76 23 1.24 15 

20 cm/s 1.50 13 1.81 20 1.52 19 1.9 21 2.72 18 1.21 18 2.1 27 1.74 30 1.18 28 2.23 38 2.38 31 2.94 37 

10 cm/s 2.18 19 2.61 29 2.17 27 2.7 29 3.62 25 2.02 31 2.56 37 2.38 41 1.5 36 2.8 48 2.72 35 3.06 38 

Table 1: The Individual Values of the Absolute Left Atrial Appendage Slow Vortical Flow Volume and its Percentage to the Left  

Atrial Appendage Body Volume of Different Morphological Models. 
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Figure 3: Comparison of Value of Slow Vortical Flow Volume Across Different 

Morphological Subtypes. A: Cauliflower Morphology has Statistically Significantly 

Higher Volume of Slow Vortical Flow.  Windsock Morphology Also Has Higher 

Volume in comparison to Cactus and Chickenwing Morphology.  These differences 

Disappeared When the Left Atrial Appendage Contractile function was Depressed to ≤ 
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10cm/s. B: Similar Trends in Comparing the Percentage of Slow Vortical Flow Volume 

to Left Atrial Appendage Volume, with Cauliflower Morphology demonstrating the 

greatest volume assessed as percentage.   

 

6.3.1.2 Chickenwing, Cactus and Windsock Versus Cauliflower 

 

The initial analysis already shown Cauliflower has the greatest absolute volume of 

slow flow- stagnating blood flow-of the four LAA subtypes.  Further group analysis 

dividing the four groups into Cauliflower and non-Cauliflower subtypes further 

strengthens the conclusion that the Cauliflower morphology has statistically 

significantly greater volumes of slow flow(Figure 4A) and greater percentage of LAA 

volume showing slow vortical flow, except when the LAA emptying velocity reached 

10cm/s (Figure 4B).  
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Figure 4: Group Comparison of Value of Slow Vortical Flow Volume of Non-

Cauliflower Versus Cauliflower subtypes. A: Cauliflower Morphology has Statistically 

Significantly Higher Volume of Slow Vortical Flow. B: Cauliflower Morphology Has the 

Higher Percentage of Slow Vortical Flow to Left Atrial Appendage Volume. 
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6.3.1.3 Chickenwing and Cactus Versus Windsock and Cauliflower 

 

Because the Chickenwing, Cactus groups have been considered the least stroke-

prone, the data after combining Chickenwing and Cactus, and combining Windsock 

with Cauliflower subtypes was also analyzed.  The results showed that the 

Windsock and Cauliflower subtypes had overall statistically significant higher 

percentage of slow vortical flow in proportion to the LAA volumes, across different 

LAA emptying function (Figure 5A).  The absolute volume of slow vortical flow 

region also is higher in the Windsock/Cauliflower groups, but only when the LAA 

emptying velocity is equal or greater than 30cm/s (Figure 5B).   
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Figure 5: Grouped Comparison of Slow Vortical Flow Volumes of 

Chickenwing/Cactus Combined Versus Windsock/Cauliflower Combined. A: LAA 

volumes (ml) with slow vortical flow B: % of LAA volume with slow vertical flow. Each 

panel refers to results with varying outflow velocity. 
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6.3.1.4 Chickenwing Versus Cactus, Windsock and Cauliflower 

 

One early study described the Chickenwing subtype as having a lower stroke risk 

compared to other subtypes, whereas three later studies did not show this trend [5-

7].  Comparison of Chickenwing to the combined Non-Chickenwing groups did not 

show any statistically significant difference in absolute volume of slow vortical flow 

and its percentage to the LAA volumes between the groups (Figure 6A and 6B) 

although the non-Chickenwing group did trend towards greater volumes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



125 

 

 

Figure 6: Group Comparison of Value of Slow Vortical Flow Volume of Chickenwing 

Versus Non-Chickenwing Subtypes. A & B: Chickenwing Morphology Has no 

Statistically Significantly Lower Volume of Slow Vortical Flow or Percentage of Slow 

Vortical Flow to Left Atrial Appendage Volume. 
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6.3.2 Qualitative Assessment 

 

One of each LAA morphological subtype simulation results are shown in Figure 7A to 

profile the vortical flow pattern of each morphology subtypes across different 

magnitude of shear rates with LAA emptying velocity of 40cm/s.  Figure 7B provides 

a closer look in both Chickenwing and Cauliflower LAA vortical flow pattern. 

 

The legend of Figure 7A & B is that any LAA vortical flow velocity above 7.5cm/s is 

coded in RED colour, while any other colour represents regions of lower velocity and 

possible SEC formation.  From the graph, it is evident that there is a larger volume 

of slow vortical flow in the LAA neck of Cauliflower subtype when compared to other 

LAA morphological subtypes at the maximum shear rate for the given LAA 

morphology and LAA emptying function.  At lower magnitudes of shear rate, 

complicated LAA morphologies with an irregular surface contour tend to have larger 

visually identifiable slow vortical flow regions in particular evident in the Cauliflower 

and Windsock subtypes. 
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Figure 7A: One of Each LAA Morphological Subtype Simulation Results are Shown 

with View to Profile the Vortical Flow Pattern of each Morphology Subtypes Across 

Different Magnitude of Shear Rates with LAA Emptying Velocity of 40cm/s.  Figure 

7B: Provides a Closer Look in both Chickenwing and Cauliflower LAA Vortical Flow 

Pattern. The legend of Figure 7A&B is that any LAA vortical flow velocity above 

7.5cm/s is coded in RED colour, while any other colour represents regions of lower 

velocity and possible SEC formation.  

 

6.4 Discussion 

 

These CFD numerical simulations have shown that the Cauliflower LAA morphology 

has the highest volume of stagnant flow, and this is significantly greater than that 

seen in non-Cauliflower subtypes.  This is consistent with the findings across four 

major LAA morphology studies, in which the Cauliflower LAA subtype confers the 

highest risk of cerebral thromboembolism, independent of clinical risk score[5-7].  

These results lend support for the hypothesis that the mechanism by which LAA 

morphology modifies risk of stroke is via increasing the volume of stagnant or slow 

blood flow.  

 

There is inherent difficulty in classifying LAA morphology into 4 categories and this 

carries high inter-observer and intra-observer variability [6]. Other structural 

characteristics such as the numbers of lobes of LAA may also be important [8].  

Overall, it seems likely that LAA complexity and trabeculation will promote stagnant 

blood flow and that this explains why Cauliflower and Windsock subtypes have 

increase slow flow and increased risk of embolism. 

 

From Chapter 5, it is known that LAA shear rate is dependent on LAA morphology in 

term of neck radius, LAA volume and LAA emptying function, but not to the 

complexity of LAA geometry.  On the other hand, as these simulation results have 
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shown, slow vortical flow velocity is likely related to the interaction of complex LAA 

geometry and LAA function.  Since both LAA emptying function and blood 

haemostatic factors were fixed for the purposes of the CFD modelling, the difference 

in volume of slow vortical flow can only explained by the different complexity of LAA 

geometry.  To the best of our knowledge, this is the first time a geometry-

dependent stagnation-flow relationship has been demonstrated in LAA. 

 

The utility of LAA morphology in predicting risk is unclear. This study gives insight as 

to why this may be the case, while also providing a mechanism for pathobiology.  

Stasis of blood circulation, assessed in this study by the volume of slow vortical flow, 

is shown to depend on LAA morphology, but also depends on LAA function and 

emptying velocity.  In addition, other variables, such LAA size, appear to vary in 

their prevalence across the LAA morphologies- with small LAA being more common 

in the more complex cauliflower structure.  There is a clear interaction between 

emptying velocity and LAA morphology in determining slow flow volume- Figure 6.  

Where LAA function is very depressed and emptying is very slow, morphology is no 

longer an important variable and under these conditions, knowledge of LAA 

morphology is unlikely to improve clinical prediction of embolic risk.  Under 

conditions when velocity is more moderately reduced, then it is likely that 

morphology will be an important variable. 

 

6.5 Limitation 

 

There are several limitations to this study.  Firstly, the classification of LAA 

morphology is variable and error in classification remains possible.  Secondly, only 

one phase of steady state CFD simulation was assumed with no fluid-solid 

interaction to simulate LAA wall deformation.  LAA wall deformation can be 

incorporated to allow better simulation of LAA emptying function, and along with 

unsteady flow can may allow even more accurate depiction of the slow vortical flow 
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mapping and value estimate.  Thirdly, the orifice of the LAA was separated to allow 

CFD simulation, and in this respect may not resemble true LAA haemodynamics.   

 

Despite these limitations, this study had overcome a major difficulty in classifying the 

different subtypes of LAA morphology and provided quantitative comparison of 

these morphologies.  Once validated with echocardiographic rheological 

haemodynamics, CFD assessment of slow flow volumes in the LAA may serve as a 

better predictor for risk for thromboembolism. 

 

6.6 Conclusion 

 

Using CFD numerical simulation on different LAA morphologies, the results have 

shown that the complexity of LAA geometry governs the quantity and location of 

stagnant flow at a given LAA emptying function and provides mechanistic insight into 

the clinical association of LAA thrombus or cerebral thromboembolism with complex 

LAA geometry. 
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Chapter 7: Conclusion 

 

7.1 Conclusion 

 

Through numerical simulation on different biological structural geometries, these 

projects have examined how biomechanical and rheological mechanisms may be 

linked to two clinical scenarios in cardiovascular medicine.   

 

7.2 Left Main Coronary Artery Disease 

 

Firstly, from the review of LMCA literature, it is discovered that isolated LMCA 

disease has the propensity to develop atherosclerotic plaque in the very proximal 

LMCA, as opposed to the distal LMCA segment location seen in disease of the LMCA 

associated with multi-vessel disease.  In addition, the incidence of plaque rupture is 

higher in isolated LMCA disease.  This suggests that in relation to localized LMCA 

disease, local biomechanical forces such as WSS may play an important role.  In 

relation to the proximal LMCA, one clinical variant is the LMCA with a highly vertical 

displaced anomalous ostium (sharp vertical take-off angulation from aorta). This had 

been be considered malignant, but systematic investigation of the rheological effects 

of this variant had not been undertaken.  

The study therefore investigated the impact of the varying vertical take-off 

angulation of LMCA from aorta on biomechanical forces in the proximal segment of 

LMCA.  Firstly, a systematic survey of the LMCA using CT coronary angiography to 

clarify realistic ranges of angulation was undertaken.  Using this information, CFD 

simulation was applied to the LMCA with varying vertical LMCA take-off anglulation 

from the aorta.  It is found the more acute the LMCA take-off angle from the aorta 

the larger the low WSS zone in LMCA ostium/proximal segment and higher peak WSS 

proximally; especially in the presence of significant coronary stenosis.  This 

potentially provides a mechanism for very proximalatherosclerotic plaque in the 
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LMCA segment with angulated LMCA and higher incidence of plaque rupture in 

isolated LMCA disease.  In addition, from these LMCA sub-studies, it is found that 

movement of LMCA does not have to be considered in numerical simulation as there 

is minimal movement and only minor variation in LMCA morphology between 

systolic and diastolic phase.  This drastically reduces the numerical simulation time 

and makes application of CFD very feasible.  On the other hand, the preliminary 

evaluation also showed that the accurate understanding of WSS quantity and 

mapping demands incorporation of the aorta in all modelling of the LMCA. 

 

7.3 Left Atrial Appendage Morphology 

 

In the second project, review of LAA morphology literature revealed that different 

LAA morphological subtypes are associated with different risks of thromboembolism. 

Both LAA geometry and the LAA contractile function played important roles in 

determining the degree of shear and the amount of the spontaneous echo contrast 

(SEC) in the LAA.  Echocardiographic studies had shown poor LAA contractile 

function leads to low shear rate and dense spontaneous echo contrast-SEC, a marker 

of sluggish blood flow- in the LAA. 

The application of a novel CFD simulation across the four different LAA morphology 

subsets has demonstrated that the Cauliflower LAA subtype contained the greatest 

volume of slow vortical flow at low shear rate across different LAA emptying 

velocities (LAA function).   This rheological mechanistic observation correlates well 

with the clinical observation with highest rate of clinical thromboembolism 

associates with the Cauliflower subtype in the setting of low CHADS VASC score atrial 

fibrillation.  In addition, this simulation model can serve as a potential clinical tool 

in quantifying the absolute quantity of slow vortical flow at low shear rate for a given 

complex LAA geometry at a given LAA function.  We anticipate that in future 

studies this CFD approach will lead to the resolution of discrepancies in the LAA 

morphological classification of complex geometries for individual patients and 

provide quantitative prediction ofrisk of thromboembolism for any given geometry.  
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7.4 Summary 

 

In summary, numerical simulation has provided mechanistic insight into two areas of 

cardiovascular medicine.  It is anticipated that this approach will provide a potential 

clinical tool for more accurate clinical risk assessment. 

 

 

 

 

 


