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ABSTRACT 

 

Anthropogenic emissions of carbon dioxide are causing the oceans to simultaneously increase in 

temperature and acidification. As the life cycle of many marine invertebrates involves broadcast 

spawning, understanding the sensitivity of gametes, fertilisation and developmental stages is 

essential to determining species vulnerability to ocean change stressors. This thesis uses free 

spawning echinoids as model species to address this issue with an aim to identify effects of 

ocean acidification on the extracellular jelly coat of the egg with a focus on four sea urchin 

species; Centrostephanus rodgersii, Heliocidaris erythrogramma, Heliocidaris tuberculata, 

Echinometra mathaei. As sea urchins provide a tractable system for study of gamete and 

fertilisation responses to stressors, as well as investigation of genetic variation, the genetic basis 

of resistance to climate change stressors is also investigated in polar, tropical and temperate sea 

urchins: Sterechinus neumayeri, Pseudoboletia indiana and Heliocidaris erythrogramma. 

With regard to the gametes and fertilisation of marine invertebrates, most studies have 

focused on the sperm cell and fertilisation traits. Only a handful of studies have investigated 

effects of ocean change stressors on the egg. The effect of ocean acidification on the extracellular 

jelly coat of the egg was determined for four species: Echinometra mathaei, Heliocidaris 

tuberculata, Centrostephanus rodgersii and H. erythrogramma. After 15 minutes, there was a 

significant reduction in jelly coat area for E. mathaei and C. rodgersii of ~50% at pH 7.6 with no 

effect of decreased pH for the other two species. The reduction in jelly coat size at lower pH 

suggests that sperm-egg collision rates and fertilisation success will be negatively affected by 

ocean acidification conditions for some species. This may contribute to the contrasting outcomes 

for the fertilisation trait in ocean acidification experiments. If there are differences in the 

vulnerability of the egg coats of marine species, ocean acidification may act as a strong selective 

force at the gamete stage.   

Many studies report that fertilisation in marine invertebrates is robust to ocean warming 

and acidification scenarios predicted for 2100. For different male-female pairs across the 

different echinoids, the response to ocean stressors was not so straight forward, with some pairs 

greatly affected by stressors while others were unaffected, with some even showing enhanced 

performance. Male-female gamete compatibility is an important determinant in fertilisation 

success for sea urchins with the male-female pair influencing subsequent development as seen 
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for each of the urchins examined in this thesis. It was clear that not all matings were equal and 

this was a potentially important source of genetic variation found. The pairs that remain 

unaffected or perform better in ocean change scenarios would be expected to seed future 

populations. 

As the ocean continues to change in pH and temperature, marine species will need to 

acclimatise or adapt to avoid extinction. If marine populations possess adequate genetic variation 

in tolerance to climate change stressors, species may be able to persist. Breeding designs such as 

the North Carolina II can be used to identify the sources of genetic and environmental variances 

in embryo performance. This quantitative genetic approach was used for the Antarctic sea urchin 

Sterechinus neumayeri to explore how the contribution of sire and dam influenced the 

performance of cleavage stage embryos and blastulae, and how these contributions differed when 

exposed to stress from increased temperature (+3°C) and acidification (-0.3-0.5 pH units). Both 

stressors decreased cleavage success and the percentage of normal blastulae, with a negative 

interactive effect between stressors. The response to these factors differed among the sire-dam 

pairs indicating the influence of parents. The significant dam by temperature interactions 

indicated different performance among maternal half-siblings in response to increased 

temperature. As adaptation depends on additive genetic variance for stress tolerance being 

present in populations and there were no sire by stressor interactions found, S. neumayeri may 

need to rely on phenotypic plasticity to persist through an ocean decreasing in pH and warming, 

at least with respect to early development.  

A quantitative genetic investigation of the effects of near-future ocean conditions on the 

early development success of the tropical sea urchin Pseudoboletia indiana showed that ocean 

acidification conditions (-0.3-0.5 pH units) decreased fertilisation across all dam-sire 

combinations with effects of pH differing among the pairings. Decreased pH reduced the 

percentage of normal gastrulae with negative effects alleviated by increased temperature (+3°C). 

A low genetic correlation indicated that genotypes that performed well at gastrulation in low pH 

did not necessarily perform well at higher temperatures thus different gene sets influence 

performance for the two stressors. Significant sire by environment interactions indicated the 

presence of heritable variation in tolerance of stressors at gastrulation and thus the potential for 

selection of resistant genotypes, which will enhance population persistence P. indiana. This 

species has recently colonised temperate latitudes and southern range edge populations of 
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P.indiana may benefit from future warming with potential for extension of their distribution in 

south east Australia. 

The quantitative genetic approach was also used to investigate the effects of near-future 

acidification and warming across the life cycle of the temperate sea urchin Heliocidaris 

erythrogramma. This fast developing species, with access to the juvenile in 3–5 days, was used 

as a model system to assess the response of different genotypes. Across fertilisation to 

metamorphosis, maternal legacy was important, with dam identity significantly interacting with 

stressors. Mothers enhanced offspring performance likely through the influence of maternal 

environmental history and developmental plasticity. Across the genotypes tested, fertilisation 

was negatively affected by increased temperature, but not pH. Larval development was 

compromised in low pH, but not temperature. By the settled juvenile stage no impact of warming 

or acidification was evident and this was likely due to selective mortality of sensitive individuals. 

Across all environments tested, the juveniles exhibited a similar ability to calcify. The impact of 

warming and acidification on development after fertilisation was influenced by parents, with the 

offspring of some dam-sire pairs more sensitive than others. That the progeny of some sire-dam 

pairs showed high stress tolerance indicates the potential for selection of resistant genotypes, 

adaptive variation to facilitate persistence of H. erythrogramma populations. 

Data from the quantitative genetic experiments across the three species show inherent 

differences in the response of gametes to ocean stressors, as well as differences in gamete 

compatibility which can drive differing responses to ocean change. Across polar, tropical and 

temperate sea urchins, the mechanisms that may facilitate persistence in a changing ocean differ, 

revealing the potential winners and losers. For S. neumayeri, as no genetic variation was present 

in response to ocean change stressors likely due to its stenothermal characteristics, maternal 

effects and sire-dam effects will be essential in buffering development. For P. indiana, the 

species which covers the largest latitudinal distribution and shows the greatest amount of 

heritable genetic variation in responses to stressors, increased temperature will facilitate 

persistence and expansion of populations in NSW. For H. erythrogramma, inherent resilience 

likely due to preadaptation to a habitat which highly fluctuates in temperature and pH will 

facilitate survival. Furthermore maternal effects were significant in this species indicating that 

dams will buffer offspring through phenotypic plasticity. Heliocidaris erythrogramma have a 

significant maternal investment in production of large eggs, preloaded with maternal protective 
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factors and this is likely a source of phenotypic plasticity. Maternal effects are likely to be an 

important mechanism in persisting through a changing ocean for this species. 

This thesis provides a novel contribution to our understanding of the potential for climate 

adaptation in the face of ocean acidification and warming in using the multistressor approach and 

incorporating gametes and dam-sire compatibility traits at fertilisation in quantitative genetic 

selection tests. The results indicate that the impacts of ocean change stressors are different across 

species and so different mechanisms will likely be used to acclimatise and adapt. The species 

investigated will likely have different outcomes in a changing ocean. However, further research 

across complete life cycles as well as multigenerational studies are needed for more accurate 

predictions on how species’ distributions may change as the ocean continues to increase in 

temperature and acidification.  
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CHAPTER ONE: GENERAL INTRODUCTION1 

 

1.1 Climate Change 

Climate change refers to the long-term change in weather patterns and distributions, where the 

statistical properties of the world’s climate system are considered (Hoegh-Guldberg and Bruno, 

2010; Howes et al., 2015). The Earth’s climate fluctuates naturally due to drivers such as the El 

Niño-Southern Oscillation, one of the most powerful sources of yearly climate variability 

(Tudhope et al., 2001). Additionally, anthropogenic influences have caused a significant increase 

in climate fluctuation. Since the industrial revolution, the burning of fossil fuels, agricultural 

practices and deforestation have led to an increase in the emission of carbon dioxide (CO2), 

methane (CH4), nitrous oxide (N2O) and halocarbons, with CO2 being the major greenhouse gas 

(IPCC, 2013). Global CO2 atmospheric concentration has already risen from 280 to 400 parts per 

million (ppm) since pre-industrial times (IPCC, 2013; Howes et al., 2015). 

Anthropogenic-driven climate change is causing increases in atmospheric temperature, 

solar radiation, storminess and precipitation. Furthermore, climate change is also affecting the 

oceans through changes in upwelling, currents, sea levels, sea surface temperature (SST), ocean 

stratification and ocean pH (IPCC, 2013; Howes et al., 2015). These changes will influence the 

abundance, distribution, phenology and physiology of many marine species, in particular marine 

ectotherms that have limited physiological regulative capacity (Poloczanska et al., 2013; 

Przeslawski et al., 2015). Most importantly, as these stressors occur concurrently, their potential 

interactions may have a negative influence on the world’s ecosystems (Hoegh-Guldberg, 1999; 

Howes et al., 2015). 

 

1.2 The Impact of Climate Change on the Oceans 

The emission of CO2 and other greenhouse gases have enhanced the greenhouse effect, whereby 

atmospheric gases trap radiation from the sun and surface of the Earth. This is causing an 

increase in both atmospheric temperature and SST (IPCC, 2013). Since 1960, 90% of the excess 

                                                            
1 The introduction has been submitted for publication as two reviews: 

1. Foo, S.A., Byrne, M. Marine gametes in a changing ocean: Impacts of increased temperature and 
acidification on eggs, sperm and fertilisation. Marine Environmental Research (under review). 

2. Foo, S.A., Byrne, M. Acclimatisation and adaptive capacity of marine species in a changing ocean. 
Advances in Marine Biology 74 (under review). 
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heat in the atmosphere has been absorbed by the ocean and over the past century, SST has risen 

0.4-0.8°C, with warming observed at depths of 6000 feet (Sabine et al., 2004; Roemmich et al., 

2015). Coincidentally, thermal expansion and melting of glaciers due to warming has contributed 

to a rising sea level (IPCC, 2013). The Intergovernmental Panel on Climate Change (IPCC) 

predicts that the surface ocean temperatures will increase by 1.2 to 3.2°C by 2100 (IPCC, 2013; 

Howes et al., 2015; Gattuso et al., 2015).  

The oceans are a sink for atmospheric CO2 and have absorbed around 40% of global 

emissions (Zeebe et al., 2008; IPCC 2013). In seawater, dissolved CO2 forms carbonic acid and 

causes a decrease in carbonate ion concentration and an increase in bicarbonate ion 

concentration. This results in a release of hydrogen ions to maintain equilibrium thus lowering 

pH, a phenomenon known as ‘ocean acidification’. Since the industrial revolution, the mean pH 

of ocean surface water has decreased from pHNIST 8.13 to 8.05, corresponding to an increase of 

26% in hydrogen ion concentration. Continued uptake of CO2 by the oceans will continue to 

reduce ocean pH (Caldeira and Wickett 2003). By 2100, ocean pH is expected to drop by 0.14 to 

0.4 units (Caldeira and Wickett, 2003; IPCC, 2013; Gattuso et al., 2015; Howes et al., 2015). 

For marine ectotherms, with cephalopods being a potential exception (Melzner et al., 

2009), two factors co-vary with CO2-driven decrease in ocean pH: (1) hypercapnia, the increase 

in organism partial pressure of CO2 (pCO2) and (2) the decrease in saturation of calcium 

carbonate (CaCO3). Hypercapnia is coupled to acidosis of cells which can hinder metabolism, 

leading to impaired growth and reproduction (Raven et al., 2005; Fabry et al., 2008; Melzner et 

al., 2009). Carbonate ions combine with the hydrogen ions to form bicarbonate thus decreasing 

the concentration of CaCO3 in seawater. With increasing ocean acidification CaCO3 seawater 

saturation decreases and this will reduce the amount available for marine calcifiers, such as those 

who build shells or skeletons (Guinotte and Fabry, 2008; Kerr, 2010; Howes et al., 2015, Figure 

1.1).  

 

1.2.1 Ocean Change in Eastern Australia 

In eastern Australia, rates of ocean warming are approximately 3-4 times faster than many 

regions. Australian marine invertebrates are facing considerable warming, especially intertidal 

and shallow subtidal species (Ridgeway, 2007; Hobday and Lough, 2011; Poloczanska et al.,  
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Figure 1.1. There is a fine balance between CO2, carbonic acid, bicarbonate and carbonate ions 

in seawater because all of these factors co-vary in the ocean carbonate system. The dissolved 

CO2 reacts with seawater to form carbonic acid, which ionizes and forms bicarbonate and 

carbonate ions. Carbonate ions combine with the hydrogen ions to form bicarbonate, reducing 

the availability of carbonate for marine calcifiers (Encyclopaedia Britannica, 2012). 
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2012; Wu et al., 2012). This warming is associated with climate driven strengthening in the 

poleward flow of the East Australian Current (EAC), which has led to warmer waters penetrating 

further south into the Tasman Sea (CSIRO, 2007; Ridgway, 2007; Wu et al., 2012). Sea surface 

temperature in this region has already increased by 2˚C in the past 100 years and is predicted rise 

in SST of 2 to 4°C and drop in pH by 0.2 to 0.5 units by 2100 (Poloczanska et al., 2007; Hobday 

et al., 2006; Figueira and Booth 2010; Poloczanska et al., 2012; IPCC, 2013). In addition to 

aerial warming and more frequent heat waves, coastal marine invertebrates inhabit high-stress 

environments which are only expected to intensify with climate change (Harley et al., 2006; 

Somero, 2010). 

Due to recent poleward movement of the East Australia Current (EAC), many species 

have shown southward movement of their distribution (Figueira and Booth, 2010; Poloczanska et 

al., 2013). With continued strengthening of the EAC in conjunction with global warming, many 

marine species, especially cold-temperate species, will be highly affected with a major concern 

for the fauna in Tasmania (Hobday et al., 2006; Booth et al., 2007; Ling et al., 2009; Figueira 

and Booth, 2010). The deficiency of substitute land mass between southern Australia and 

Antarctica means that southern temperate species will have no suitable habitat and are likely to 

be lost and thus Antarctic fauna are also of particular concern (Hobday and Lough, 2011). 

Eastern Australia as a climate change hot spot has major implications for Australian marine 

systems (Hobday and Lough, 2011; Poloczanska et al., 2012; Wu et al., 2012; Poloczanska et al., 

2013). 

 

1.3 Impacts of Ocean Change Stressors on the Gametes and Fertilisation of Free Spawning 

Marine Invertebrates 

For many marine invertebrates, the life cycle involves broadcast spawning where a large number 

of eggs and sperm are released and fertilised in the water column. Spawning often takes place 

synchronously within the population, usually triggered by water temperature, photoperiod or 

other environmental factors (Byrne, 2001; Arnone et al., 2015). Marine invertebrates possess a 

characteristic planktonic larval stage with many echinoderms having pelagic, feeding larvae, a 

stage where skeletogenesis may begin (Komatsu and Shosaku, 1993; Young, 2002). The larvae 

can spend anywhere from hours to months in the water column before metamorphosing into a 

juvenile. Thus, larvae represent an important dispersal stage before settlement as a benthic adult 
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(Kurihara, 2008; Figure 1.2). Developmental stages are key to assessment of species 

vulnerability to ocean change stressors as they represent the most sensitive stage of their life 

history (Thorson, 1950; Pechenik, 1987). 

Marine invertebrates will experience simultaneous exposure to ocean change stressors 

likely to have interactive effects. The combined effects of multiple stressors can be greater than 

individual effects hence the need for multistressor studies to represent real life future scenarios 

(Byrne 2012; Przeslawski et al., 2015). A major group of invertebrates likely to be impacted by 

changing ocean conditions include echinoderms, the phylum of focus in this thesis. A meta-

analysis of multistressor studies found echinoderms to be one of the most vulnerable phyla to 

ocean stressors (Kroeker et al., 2013; Przeslawski et al., 2015). Generally, studies have found 

that early developing embryos (fertilisation, blastulae, gastrulae) are more resilient than later 

embryonic stages (larvae) to ocean warming and acidification (Byrne et al., 2009; Ericson et al., 

2012).  

 

1.3.1 Impacts on Spermatozoa  

As the swimming behaviour of sperm is key to fertilisation success, many studies investigate 

effects of ocean change stressors on the behaviour of spermatozoa (Table 1). Increased 

temperature has been shown to stimulate sperm metabolism, facilitate the acrosome reaction and 

increase swimming speed and motility, thereby enhancing fertilisation success (Kupriyanova and 

Havenhand 2005; Byrne, 2011). In more recent studies, increased temperature enhances sperm 

swimming speeds in the sea urchin Psammechinus miliaris but not the percentage of motile (i.e. 

moving) sperm (Caldwell et al., 2011; Table 1). As sperm have a limited activity window that 

decreases with increased temperature, projected increases in SST may decrease the longevity of 

sperm, as shown for spermatozoa from sea urchins exposed to warm conditions (+4-6°C) 

(Christen et al., 1986; Binet and Doyle, 2013; Table 1).  

Incubation of sperm of the sea urchin Heliocidaris tuberculata for several hours at +4 and 

6°C reduced their longevity by > 60% as determined through fertilisation success (Binet and 

Doyle, 2013). The spermatozoa lost their ability to fertilise before their mitochondria stopped 

functioning (Binet and Doyle, 2013). As active mitrochondrion were present in non-viable 

sperm, the mechanisms underlying loss of function was not clear. The sperm of some sea urchin 

species can fertilise eggs several hours after release (Williams and Bentley 2002; Johnson and  
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Figure 1.2. Development of a typical marine invertebrate. Eggs and sperm are released into the 

water column. The fertilised embryos develop through a planktonic larval stage and then 

metamorphose into a juvenile, where settlement occurs. 
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Yund 2004; Lauzon-Guay and Scheibling, 2007). Sperm longevity is an important factor in 

determining fertilisation success and may vary between species.  

Low pH and hypercapnia are known to narcotize sperm (Melzner et al., 2009). In vivo, 

low gonad pH maintains the sperm in a dormant state, inhibiting respiration and motility keeping 

sperm quiescent prior to spawning (Johnson et al., 1983; Ward et al., 1985; Brokaw 1990). 

Release of sperm into seawater results in the uptake of sodium into the cell, triggering a release 

of hydrogen ions. This causes an increase in internal pH, which activates mitochondria and 

sperm motility (Christen et al., 1986; Hamamah and Gatti, 1998). It is long known that sperm 

require an elevation in pH for activation, as shown in studies that use various agents to increase 

pH to activate sperm of asteroids (e.g. Mortensen, 1921; Nakajima et al., 2005; Uthicke et al., 

2013) and echinoids (Christen et al., 1986). 

Most studies focus on the impacts of ocean acidification at near and far future projected 

levels (pH 7.6 to pH 8.1; IPCC 2013) on sperm behaviour (Table 1). Some studies also include 

extreme pH levels (< pH 7.4) (e.g. Lewis et al., 2013; Campbell et al., 2014). The behaviour of 

sperm from a diversity of marine invertebrates has been investigated, including sea urchins 

(Caldwell et al., 2011; Havenhand et al., 2008; Schlegel et al., 2012; Schelgel et al., 2015), sea 

stars (Uthicke et al., 2013), oysters (Havenhand and Schlegel, 2009), corals (Morita et al., 2010; 

Nakamura and Morita, 2012) and polychaetes (Lewis et al., 2013; Schlegel et al., 2014). Across 

these studies, ocean acidification is often reported to cause a decrease in the percentage of motile 

sperm and to decrease sperm swimming speed. However, for species such as the sea urchins 

Hemicentrotus pucherrimus and Strongylocentrotus nudus, there was no impact of this stressor 

on sperm behaviour (Sung et al., 2014). For two other sea urchin species, an increased sperm 

speed in ocean acidification scenarios was reported (Graham et al., 2015; Caldwell et al., 2011; 

Table 1). The metabolism of sperm is driven by mitochondrial respiration (Schlegel et al., 2015). 

Reduction in the mitochondrial membrane potential as reported for the sea urchin 

Centrostephanus rodgersii in response to ocean acidification conditions (-0.3-0.5 pH units) is a 

mechanism suggested to contribute to the reduction in sperm swimming speed reported for 

several urchins (Schlegel et al., 2015; Table 1).  

At very low pH (7.47), the DNA of sperm from the polychaete Arenicola marina was 

damaged, as determined by the comet assay (Campbell et al., 2014). Although this low pH does 
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not reflect a near future ocean scenario, fertilisation in this worm occurs in the burrow. The 

actual pH for fertilisation in nature is not known. 

A recent study highlights the importance of investigating multistressor effects on 

gametes. In a study of the impacts of decreased pH and oxygen (hypoxia) on sperm in the sea 

urchin Paracentrotus lividus, low pH increased sperm velocity while hypoxia deceased sperm 

velocity. Thus in the combined stressor scenario, the antagonistic effects equaled each other and 

sperm swimming speeds did not differ from controls (Graham et al., 2015).  

Several studies show that there are striking differences between the performance of the 

sperm of individual male sea urchins, tunicates and polychaetes, where some males show 

decreased fertilisation success in an acidifying ocean while the performance of others is 

enhanced (Table 1). These differences may be due to gamete quality which can vary with 

collection time and parental physiological history (Crean et al., 2013). Differences in the 

environment of the parent can affect performance of their gametes as shown for the ascidian 

Styela plicata (Crean et al., 2013). For sea urchins, the impacts of stressors on individual males 

show that not all sperm are equal and not all males have similar fertilisation success (Schlegel et 

al., 2012; Foo et al., 2014; Sewell et al., 2014). This is likely to contribute to the contrasting 

results for the sperm swimming speed between semen samples from different males of the sea 

urchin H. erythrogramma in response to decreased pH (Havenhand et al., 2008; Schelgel et al., 

2012). If these differences are heritable, ocean acidification may provide a source of selection 

against the susceptible phenotypes (Hoffmann and Parsons, 1991). 

Sperm motility and swimming speed can be analysed using computer assisted sperm 

analysis (CASA) programs (Figure 1.3) (e.g. Caldwell et al., 2011; Campbell et al., 2014; 

Graham et al., 2015). CASA is a free plugin available for the Image J software (Wilson-Leedy 

and Ingermann, 2007) and provides measurements of many parameters. Sperm curvilinear 

velocity and average path velocity can precisely be identified. This enhances the accuracy of the 

data in comparison to studies which involve observation of sperm under the microscope and 

scoring by eye (e.g. Barros et al., 2013). 
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Figure 1.3.  Sperm movement patterns of the sea star Patiriella regularis provided by the 

computer assisted sperm analysis (CASA) plug in for Image J.  CASA can be used to 

quantify many sperm traits to determine how they change when exposed to stressors. The top 

panel shows sperm in control pH seawater conditions. Note the circular pattern of movement, 

characteristic of echinoderm sperm (Miller, 1985). The bottom panel shows sperm in pH 7.6 

conditions. An increase in the number of immotile sperm (arrows) is evident at decreased pH 

(from Foo, in prep).
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Table 1. Effects of ocean change stressors on the behaviour of marine invertebrate spermatozoa in response to near and far 

future, and extreme pH and temperature levels (IPCC, 2013).  The pH levels are those provided by the study and are all pHNIST. 

pCO2 values are given when provided by the study.  

Species Stressor Trait assessed Result Reference 
Echinodermata 
Paracentrotus lividus  pH (8.08, 

7.93/380, 
750ppm) AND 
hypoxic 
conditions 

Sperm motility  
Sperm velocity 

Sperm swimming speed increased in pH 7.93 
and decreased under hypoxic conditions, 
where the combined treatment resulted in 
swimming speeds similar to the control. For 
sperm motility, there was a combined 
negative effect of stressors on the percentage 
of motile sperm. 

Graham et al., 2015 

Centrostephanus rodgersii  pH (8.1, 7.8, 7.6/ 
435, 950, 
1558ppm) 

Sperm mitochondrial 
membrane potential 
Sperm motility  
Sperm velocity 

Sperm MMP was significantly reduced in pH 
7.8 and further reduced in pH 7.6. Sperm 
motility and speed increased in 7.8, but were 
decreased in 7.6 treatments. Substantial inter-
individual variation in responses of sperm 
characteristics to ocean acidification found in 
this study may increase the possibility for 
selection of resilient phenotypes. 

Schlegel et al., 2015 

Hemicentrotus pulcherrimus 
and Strongylocentrotus 
nudus  

pH (7.99, 7.96, 
7.92, 7.78, 7.69, 
7.59/380, 450, 
550, 750, 1000, 
1500ppm)  

Sperm motility  
Sperm velocity  

Swimming speed and motility were 
unchanged under all pH levels tested. 
 

Sung et al., 2014 

Heliocidaris tuberculata  Temperature (20, 
24, 26˚C) 

Sperm longevity 
Mitochondrial activity 

Decreased sperm longevity in both increased 
temperature levels. Presence of active 
mitochondria even in non-viable sperm. 

Binet and Doyle, 2013 

Psammechinus miliaris  pH (8.06, 7.95, 
7.82, 7.67) AND 
temperature  (14, 
17,  20˚C) 

Sperm velocity 
Sperm motility 

Decreased pH levels of 7.95 and 7.67 
increased swimming speed and motility. 
Increased temperature increased swimming 
speed with no effect on % motile 

Caldwell et al., 2011 

Heliocidaris erythrogramma  pH Sperm velocity Decreased pH caused a decrease in sperm Havenhand et al., 2008 



11 
 

(7.7/1000ppm) Sperm motility swimming speed and % motile 
Heliocidaris erythrogramma  pH (8.1, 7.8, 7.6 

/970, 1600ppm) 
Sperm velocity 
Sperm motility 

No effect of decreased pH on swimming 
speeds. pH levels of 7.8 caused a reduction in 
% motile with a further reduction in % motile 
at pH 7.6. 
 

Schlegel et al., 2012 

Holothuria spp. pH (8.03, 7.77., 
7.69, 7.64, 7.31, 
6.55/400-475, 
775-1005, 930-
1260, 905-1660, 
2115-3585, 
12600-
21100ppm) 

Sperm motility pH levels of 7.69 and below caused a 
decreased in the % motile. 

Morita et al., 2010 

Acanthaster planci  pH (8.1, 7.9, 7.7 
/520, 877, 
1658ppm) 

Sperm velocity 
Sperm motility 

pH levels of 7.9 and 7.7 decreased swimming 
speed and the % motile. 

Uthicke et al., 2013 

Annelida 
Arenicola marina  pH (7.77, 7.47/ 

1400, 3000ppm) 
AND copper 
toxicity 

Sperm motility 
Sperm velocity 

Sperm motility was slightly enhanced in pH 
7.77 and slightly reduced in pH 7.47. Sperm 
velocity was decreased in pH 7.77 and 7.47. 
Copper decreased both motility and velocity. 
Furthermore pH 7.47 and exposure to copper 
induced significant sperm DNA damage.  

Campbell et al., 2014 

Galeolaria caespitosa  pH (8.1, 7.8, 
7.6/427, 971, 
1597ppm) 

Sperm velocity 
Sperm motility 

Sperm motility and sperm 
swimming speeds significantly decreased at 
pH 7.8 with a further decrease at pH 7.6. 
Resilient sperm may increase the possibility 
for selection of resilient phenotypes under 
decreasing pH.  

Schlegel et al., 2014 

Pomatoceros lamarckii  pH (range 
8.1–7.2/302 -
3781ppm) AND 
copper toxicity 

Sperm velocity 
Sperm motility 

% of motile sperm and sperm velocity were 
significantly reduced in the more extreme 
treatments of pH levels < 7.4. 

Lewis et al., 2013 

Cnidaria 
Acropora digitifera pH (8.15,8.05, Sperm motility Sperm motility decreased in pH 8.05 and Nakamura and Morita 
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7.74/300, 400, 
1000 ppm) 
 

 further decreased in pH 7.74. 2012 

Mollusca 
Crassostrea gigas  pH (8.2, 7.87, 

7.48/580, 1386, 
3573) 

Sperm motility Sperm motility was observed to decrease in 
pH 7.87, and to further decrease in pH 7.48. 

Barros et al., 2013 

Mytilus galloprovincialis  pH (8, 7.6/380, 
1000ppm) 

Sperm velocity 
Sperm motility 

Sperm motility and velocity decreased in low 
pH. 
 

Vihtakari et al., 2013 
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1.3.2 Impacts on Eggs  

Few studies investigate the effects of ocean warming and ocean acidification on the egg, often 

the biggest cell produced by marine invertebrates (Table 2). Of those that do, most examine the 

effects of temperature on egg size (e.g. Dugan et al., 1991; Simonini and Prevedelli, 2003; Steer 

et al., 2004; Table 2). For studies on molluscs, annelids and crustaceans, results are species 

specific where animals reared in increased temperature produced either larger (Lacoue-Labarthe 

et al., 2009) or smaller (Simonini and Prevedelli, 2003) eggs or there was no difference in size 

(Dugan et al., 1991; Steer et al., 2004).  

An early study on the heat resistance of the eggs of several echinoderms and molluscs 

determining the heat stress level causing impaired cleavage showed that heat resistance depended 

on the temperature conditions that the female experienced during oogenesis and the temperature 

that the species normally experience (Andronikov, 1975). This study showed that the 

environmental history of the female influenced the thermal stress resistance of the egg. This 

phenomenon appears common in nature where maternal environmental history can influence the 

size of the egg (Moran and McAlister, 2009) and the tolerance of fertilisation and development 

to increased temperature (Byrne et al., 2009; Byrne et al., 2011).  

For studies which investigated effects of temperature on the egg in the context of ocean 

warming, exposure of eggs of the sea urchin Heliocidaris tuberculata for three hours to 

temperatures of 4 and 6°C above ambient did not affect egg viability for fertilisation (Binet and 

Doyle, 2013). 

For studies that consider the effects of decreased pH on eggs, acclimatisation of females 

in low pH treatments for seven weeks had no effect on oocyte size for the sea urchin 

Echinometra mathaei (Uthicke et al., 2013). For the sea urchin Sterechinus neumayeri, after 6 

months raised in low pH and increased temperature treatments, eggs in the control treatment 

were the largest. However after 17 months, the largest eggs produced belonged to the lowest pH 

treatment (Suckling et al., 2015). 

In response to immersion in pH 7.6–7.84 seawater, cuttlefish eggs (Sepia officinalis) 

swell resulting in an increase in egg size (Dorey et al., 2013). It is not known what causes the 

swelling but may indicate damage to eggs. The outcome for the eggs with respect to performance 

is not known.  



14 
 

Another factor which would decrease fertilisation success of the eggs would be changes 

in the efficiency of the block to polyspermy, which has been found to decrease in eggs exposed 

to pH 7.55 for the sea urchin S. franciscanus (Reuter et al., 2011). 

Egg and jelly coat derived compounds are important factors contributing to fertilisation 

success and are best studied in echinoderms, especially sea urchins (Podolsky, 2002). For 

echinoderms, egg-derived compounds have been shown to activate sperm motility and 

chemotaxis towards the egg (Morita et al., 2009). The egg jelly coat surrounding the egg has 

long been known to be sensitive and even removed by low pH water (Podolsky, 2002). The jelly 

coat is an extracellular structure formed during oogenesis that surrounds the eggs of many 

marine invertebrates and consists of several layers of polysaccharide fiber networks embedded in 

a glycoprotein matrix (Kidd, 1978; Suzuki, 1995; Bonnell et al., 1993; Bonnell et al., 1994; 

Farley and Levitan, 2001). The material present in the jelly coat perform a number of functions 

before and during fertilisation. Compounds present in the egg and jelly coat increase sperm 

motility and speed (Kopf et al., 1979, Hansbrough and Garbers, 1981; Suzuki et al., 1995; 

Nishigaki et al., 2004; Inamdar et al., 2007), stimulate specifies-specific recognition of gametes 

and prevent polyspermy (Hagstrom 1959; Vilela-Silva et al., 2002; Sung et al., 2014). The jelly 

coat also protects eggs from shear forces during spawning (Thomas et al., 1999; Bolton et al., 

2000). Thus the egg jelly coat is essential for egg function. 

Egg jelly coat thickness varies among species of sea urchin (Kanatani and Nagahama, 

1983) and its sensitivity to decreased pH also varies. Decreased pH affects the size of the jelly 

coat of echinoderm eggs and this differs between species. As the jelly coat increases target size 

of the egg for sperm, thereby facilitating fertilisation (Farley and Levitan, 2001; Podolsky, 

2002), a reduction in jelly coat size would be expected to cause a decrease in fertilisation 

success. For broadcast spawning invertebrates, both laboratory and field studies show that bigger 

eggs within species have a higher percentage fertilisation, especially under sperm limiting 

conditions (Coma and Lasker 1997; Levitan 1998). In the sea urchin Lytechinus variegatus, the 

jelly coat increases the egg target size by four times increasing the collision frequency with 

sperm by two times, thereby resulting in a significant increase in fertilisation (Farley and 

Levitan, 2001). If there are different responses of the jelly coat to decreased pH across species, 

egg incubation time may be a previously unappreciated source of variance in OA fertilisation 

studies. 
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The internal pH of eggs (pHi) is important for protein synthesis, protein phosphorylation 

and for activation of the cells after fertilisation (Grainger et al., 1979). The intracellular pH of 

sea urchin eggs increases ~ 0.3 pH units after fertilisation, a requirement for initiating embryonic 

development (Johnson et al., 1976; Lopo and Vacquier, 1977). Intracellular pH (pHi) is crucial in 

determining cell cycle progression with alteration in the external HCO3
- environment having 

potential impacts on the Na/H+ exchangers in the egg responsible for controlling pHi. For the sea 

urchin P. lividus, removal of external HCO3 resulted in an alteration in pHi and embryos not 

being able to divide (Ciapa and Philippe, 2013).  

For eggs of Strongylocentrotus droebachiensis, a low seawater pH of 7.63 significantly 

decreased egg intracellular pH although the exact change in pH was not measured (Bogner et al., 

2014). pH levels below 7.6 may be beyond the ability of the egg to compensate their intracellular 

pH and buffering the effects of internal pH changes in ocean acidification scenarios may 

compromise the embryos energy budget (Bogner et al., 2014).  

These studies demonstrate that the egg is susceptible to both increases in temperature and 

decreases in pH, although the degree of the effect is species specific and dependent on the length 

of exposure. Furthermore, significant variation in the response of the extracellular jelly coat to 

decreased pH has been observed. Studies on the effects of stressors on eggs are lacking, with a 

need for multistressor examinations on various egg characteristics. It is evident that the effect of 

ocean change stressors on the egg is an important consideration in climate change studies, one 

with consequent effects on fertilisation. 

 

1.3.3 Impacts on Fertilisation 

Many studies report that fertilisation in marine invertebrates is robust to ocean warming and 

acidification scenarios predicted for 2100 (Table 3). For species such as the sea urchins 

Heliocidaris erythrogramma, Centrostephanus rodgersii and the sea star Patiriella regularis, the 

resilience of fertilisation to decreased pH and increased temperature may be due to 

acclimatisation or adaptation to the shallow water and intertidal environments that they live in, 

which has fluctuations in temperature and pH levels (Byrne, 2012). The tide pools inhabited by 

H. erythrogramma can vary throughout the day from pH 7.54 to 8.91 with annual temperatures 

ranging from 10 to 24˚C (Nguyen et al., 2014). Thus fertilisation in this species may be 

preadapted to near-future ocean change conditions, as also suggested for Paracentrotus lividus 
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and other species (Moulin et al., 2011). On the other hand, fertilisation in the intertidal sand flat 

sand dollar Arachnoides placenta, is negatively impacted by pH levels ≤ 7.8 across a range of 

sperm:egg ratios (Gonzalez-Bernat et al., 2013a). 

Fertilisation in species such as the Antarctic sea urchin Sterechinus neumayeri and sea 

star Odontaster validus, which inhabit very stable environments, is negatively affected by 

extreme pH levels (pH 7.5) or only at extremely low sperm concentrations (Ericson et al., 2010, 

2012; Gonzalez-Bernat et al., 2013b). For these species the lack of sensitivity of fertilisation to 

near future warming and acidification may be due to an inherent resilience of the individual 

gametes.  

As species from variable environments have been shown to be resilient while others are 

susceptible to ocean change stressors and species that inhabit stable environments also have a 

robust response to near future ocean change, there is no clear trend of the influence of the 

stability (or lack of) habitat pH and temperature conditions to fertilisation success.  

Thus the response of fertilisation to increased acidification and temperature are mixed 

and this appears to be influenced by different experimental designs incorporating multiple male 

and female parents (spawner population approach) or individual male-female pairs (Table 3). 

Experimental designs that pool multiple males and females often find that fertilisation is fairly 

robust to increased acidification and warming (Byrne, 2011, 2012). Results with single male-

female crosses often detect sensitivity in some pairs but not others (Table 3; Foo et al., 2012; 

Schlegel and Havenhand 2012; Foo et al., 2014; Sewell et al., 2014).  

 

1.3.3.1 Effects of ocean stressors on individual male-female pairs 

Four studies, all involving sea urchin species, investigate the effects of warming and 

acidification or both stressors on fertilisation using individual male-female pairs (Havenhand et 

al., 2008; Schlegel and Havenhand 2012; Foo et al., 2014; Sewell et al., 2014). In these studies, 

some pairs are greatly affected by stressors while others are unaffected, and some perform better 

(Table 3; Schlegel and Havenhand 2012; Foo et al., 2014; Sewell et al., 2014). The pairs that 

remain unaffected or perform better in ocean change scenarios would be expected to seed future 

populations (Foo et al., 2014). Thus, not all matings are equal, a potentially important source of 

genetic variation. 
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Table 2. Effects of ocean change stressors on marine invertebrate eggs in response to near and far future, and extreme pH and 

temperature levels (IPCC, 2013).  The pH levels are those provided by the study and are all pHNIST. pCO2 values are given when 

provided by the study. 

Species Stressor Trait assessed Result Reference 
Echinodermata 
Sterechinus neumayeri pH (7.99, 7.70, 7.54) 

AND temperature (-0.3, 
1.8°C) 

Egg size After 6 months acclimatisation of 
females in treatments, egg produced in 
the control were larger compared to all 
other treatments however after 17 
months, the largest eggs were produced 
under the lowest pH (7.54) conditions. 

Suckling et al., 2015 

Strongylocentrotus 
droebachiensis  

pH (8.13, 8.05, 7.63, 
7.58, 7.20/192, 397, 
770, 980, 2110) 

Egg intracellular pH pH levels of 7.6 and below caused a 
significant decrease in egg intracellular 
pH 

Bogner et al., 2014 

Heliocidaris tuberculata  Temperature (20, 24, 
26˚C) 

Egg viability Exposure of eggs for 3 hours to 
increased temperature did not impact 
fertilisation success 

Binet and Doyle, 2013 

Echinometra mathaei  pH (7.5–8.1/485–
1770ppm) 

Oocyte size No effect of acclimation of adults for 7 
weeks on oocyte size 

Uthicke et al., 2013 

Strongylocentrotus 
franciscanus 

pH (8.04, 7.81, 
7.55/400, 800, 
1800ppm) 

Block to polyspermy The efficiency of the egg block to 
polyspermy decreased in pH 7.55. 

Reuter et al., 2011 

Strongylocentrotus 
droebachiensis, 
Strongylocentrotus 
intermedius,  
Strongylocentrotus nudus, 
Paracentrotus lividus, 
Arbacia lixula 

Temperature (up until a 
maximum) 

Heat resistance 
through loss of 
cleavage capacity 

Temperature limits for each species: 
S. intermedius - 32˚C 
S. droebachiensis.- 34˚C 
S. nudus - 34˚C  
P. lividus - 36 ˚C 
A. lixula - 38˚C 
 

Andronikov, 1975 

Mollusca 
Sepia officinalis  pH (8.10, 7.84, 

7.60/378, 775, 
1433ppm) AND 

Egg swelling Egg swelling increased in response to 
both pH 7.84 and 7.60, and warming 
which led to an increase in egg surface 

Dorey et al., 2013 
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temperature (16, 19˚C) 
Annelida 
Dinophilus gyrociliatus Temperature (6, 12, 18, 

24, 30˚C) 
Egg size The smallest eggs were 

produced by animals grown at 30˚C 
with the biggest eggs produced by 
animals grown at 12˚C 

Simonini and 
Prevedelli, 2003 

Mollusca 
Sepia officinalis pH (8.1, 7.85, 7.6/400, 

900, 1400ppm) AND 
temperature (16, 19˚C) 

Egg weight Eggs increased in weight when adults 
were raised at pH 7.85 and pH 7.6. 
Increased temperature led to an increase 
in egg weight but there was no 
interactive effect of both pH and 
temperature 

Lacoue-Labarthe et 
al., 2009 

Euprymna tasmanica Temperature (11, 18˚C) Egg size Rearing adults in temperatures 
representative of tidal sandflat 
temperatures in summer (18°C) and 
winter (11°C) did not affect egg size 

Steer et al., 2004 

Collisella radiata, 
Mytilus galloprovincialis, 
Acanthodoris pilosa, 
Onchidoris muricata 

Temperature (up until a 
maximum) 

Heat resistance 
through loss of 
cleavage capacity 

Temperature limits for each species: 
A. pilosa - 32˚C 
C. radiata.- 34˚C 
O. muricata - 34˚C  
M. galloprovincialis - 38˚C 

Andronikov, 1975 

Crustacea 
Emerita analoga Temperature (12 - 21˚C) 

from southern to 
northern range of 
species 

Egg size No correlation between egg size and 
water temperature among northern and 
southern populations 

Dugan et al., 1991 
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The multiple spawner approach may mask individual differences in male-female 

compatibility which are important in determining fertilisation success (Palumbi, 1999). These 

interactions mediate the benefits of polyandry in sea urchins where sperm competition is high. 

For H. erythrogramma, eggs were either exposed separately to the sperm of different males or 

simultaneously with all males and subsequent fertilisation rates were determined. Since the 

fertilisation rate for the most successful male in the single-male experiment was similar to the 

fertilisation rate in the simultaneous fertilisation experiment, most fertilisations could be 

attributed to the most compatible male (Evans and Marshall, 2005). Subsequent development 

was improved and this was attributed to a reduction in incompatible matings. 

In echinoderms, as shown for sea urchins and sea stars, fertilisation is mediated by the 

gamete recognition protein bindin which controls sperm binding to the egg bindin receptor on the 

egg membrane (Vacquier and Moy 1977; Hart, 2013; Popovic et al., 2014; Jagadeeshan et al., 

2015). In urchin species, eggs show strong discrimination in mate choice depending on male 

bindin genotype, mating most successfully with sperm having a similar bindin genotype to the 

egg (Palumbi 1999; Zigler et al., 2008; Evans and Sherman 2013). Male x female interactions 

have been shown to greatly influence fertilisation success (Evans and Marshall, 2005; Foo et al., 

2012; Sewell et al., 2014; Foo et al., 2014). Thus, the response to climate change stressors in 

single paired matings will be influenced by inherent gamete compatibility (Evans and Marshall, 

2005). 

 

1.3.3.2 Effects of ocean stressors on a spawning population as determined with multiple males 

and females 

The majority of experiments which investigate the effects of marine climate change stressors on 

fertilisation have pooled gametes from multiple males and females (Table 3). These studies show 

that the responses of species vary. Approximately half of the studies show that fertilisation is 

robust to increases in temperature and decreases in pH while the other half show that fertilisation 

is sensitive (Table 3; Byrne, 2011; 2012; Byrne and Przeslawski, 2013). Six of these studies find 

that species are only vulnerable to extreme pH levels (Table 3). 

The response of fertilisation to climate change stressors may be species-specific although 

different fertilisation conditions, sperm-egg contact time, sperm concentrations and the vials 

used can influence results (Byrne, 2012). Even the length of time that the eggs are exposed to 
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experimental water prior to addition of sperm can influence fertilisation. Thus species-specific 

responses may also be influenced by variable methodological approaches. 

A pattern emerging from Table 3 is that sperm concentration can affect the outcome of 

climate change fertilisation experiments. For the coral Acropora tenuis, there were no effects of 

stressors when optimal sperm concentrations were used (Chua et al., 2013). However, the sperm 

concentration required to obtain 50% of maximum fertilisation increased 6 to 8 fold with the 

addition of a single stressor (pH or temperature) and 50 fold when both factors interacted. Thus 

near-future changes in pH and temperature narrow the range of sperm concentrations that are 

capable of yielding high fertilisation success (Albright and Mason, 2013). 

Therefore, the robust response of fertilisation to ocean change stressors seen in many 

studies (Table 3) could be due to the use of high sperm concentrations. It has been suggested that 

experiments which assess fertilisation success should aim for lower fertilisation success to allow 

detection of both negative and positive effects (Suquet et al., 1995; Cosson et al., 2008). Most 

investigations use high sperm concentrations, where fertilisation in control treatments are ≥ 75% 

(e.g. Byrne et al., 2010; Ho et al., 2013; Sung et al., 2014). This may not be representative of 

broadcast spawning in the field where sperm levels are likely to be limiting (Levitan, 1998).  

In field experiments conducted with synchronously spawning sea urchins, fertilisation 

was low at distances over 10 cm from the spawning male, similar to laboratory experiments with 

low sperm concentrations (Pennington, 1985). In experiments with Strongylocentrotus 

droebachiensis, solutions with more than 106 sperm/ml (30-40 sperm per egg) continually 

resulted in 80% fertilisation (Pennington, 1985), likely due to the kinetics of sperm to egg 

encounters (Rothschild and Swann, 1951). Therefore the use of high sperm concentrations in 

climate change fertilisation experiments may be masking the effects of stressors which might be 

more evident at lower sperm concentrations.  

  

1.3.3.3 Impacts on calcifying and non-calcifying larvae 

A meta-analysis of effects of climate change stressors on marine invertebrate development found 

that the larvae were more vulnerable than embryos to both increased temperature and decreased 

pH (see Przeslawski et al., 2015 for comprehensive review). Increased temperature can decrease 

planktonic larval duration by stimulation of metabolism up to a thermal threshold limit (Chen 

and Chen, 1992; Staver and Strathman, 2002; O’Connor et al., 2007; Byrne et al., 2010). Ocean 
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acidification can impair or inhibit skeletogenesis in echinoderm larva (Byrne et al., 2012; 

Sheppard Brennand et al., 2010) and this appears to be due to hypercapnic effects of increased 

organism CO2 on metabolism (Stumpp et al., 2012; Byrne and Przeslawski, 2013; Evans and 

Watson-Wynn, 2014). 

As carbonate mineral saturation is reduced with a decrease in ocean pH, echinoderms and 

other marine calcifiers have been the focus of climate change studies because their CaCO3 

skeletons are expected to be vulnerable to dissolution in low pH water (Kleypas et al., 1999; Orr 

et al., 2005). This however may be influenced by the exposure of the skeleton to surrounding 

waters. For instance, mollusc larvae that do not have a protective cover on their skeleton may be 

more vulnerable to skeletal dissolution than echinoderm larvae whose skeleton is covered by 

epithelium (Ries et al., 2009). Skeletogenesis in echinoderms starts in late gastrulation/early 

prism stages (Politi et al., 2004). The calcareous endoskeletons are deposited through 

intracellular biomineralisation and are essential in creating the framework for the body, often 

defining the body plan in echinoderms (Yajima and Kiyonoto, 2006). The spicules that make up 

the larval skeleton in sea urchins are deposited by primary mesenchyme cells, which accumulate 

calcium from the seawater and secrete CaCO3 (Wilt, 2002). The calcite skeleton possessed by 

echinoplutei is important for maintenance of swimming and feeding structures, passive 

orientation, as well as providing defense against predators (Pennington and Strathmann, 1990; 

Kurihara and Shirayama, 2004; Soars et al., 2009). Thus calcifying larval stages are considered 

to be highly vulnerable to ocean acidification, and decreased pH has been shown to be a greater 

stressor for calcifying rather than non-calcifying larvae (Przelawski et al., 2015).  

Lecithotrophic larvae develop to the final stage without the need for exogenous nutrients. 

They receive nourishment through the nutritive reserves in the egg provided by the mother and 

hence generally have larger eggs. It has been suggested that lecithotrophic larvae may be better 

suited to deal with climate change effects as compared to planktotrophic larvae (Dupont et al., 

2010; Hardy et al., 2014) with an evolutionary shift towards this larval type in echinoderms 

evident through past climate change and extinction events (Uthicke et al., 2009).  
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Table 3. Effects of ocean change stressors on fertilisation in echinoderms in response to near and far future, and extreme pH 

and temperature levels (IPCC, 2013). The pH levels are those provided by the study and represent pHNIST. pCO2 values are given 

when provided in the study. Studies are separated into those that used a ‘spawner population approach’ where gametes of multiple 

males and females were pooled, or those that followed ‘individual pair responses’ where single male-female crosses were used.  

Species Stressor Results Reference 
Individual pair responses 

Echinodermata 
Sterechinus neumayerii  pH (8.052, 7.967, 

7.83/384,473,666ppm) 
Pairs showed varying responses to pH levels of 
7.83 with some pairs showing positive responses 
to decreased pH 

Sewell et al., 2014 

Pseudoboletia Indiana  pH (8.08, 7.88, 7.71/348, 617, 924ppm) 
AND temperature (22, 25˚C) 

pH levels of 7.71 decreased fertilisation with 
effects alleviated by +3˚C. Responses varied 
between pairs 

Foo et al., 2014 

Heliocidaris erythrogramma  pH (8.1, 7.8, 7.6 /970, 1600ppm) Overall effects of pH levels up to pH 7.6 not 
significant however responses of pairs ranged 
from negative to positive effects 

Schlegel et al., 2012 

Heliocidaris erythrogramma  pH (7.7/1000ppm) Fertilisation decreased with pH levels of 7.7 Havenhand et al., 2008 
Spawner population approach 

Echinodermata 
Paracentrotus lividus  pH (8.08, 7.93/380, 750ppm) AND 

hypoxic conditions 
There was a negative effect of low pH on 
fertilisation success and when combined with 
hypoxia, the effect was even greater. 

Graham et al., 2015 

Strongylocentrotus 
droebachiensis  

pH (8.13, 8.05, 7.63, 7.58, 7.20/192, 
397, 770, 980, 2110ppm) 

At pH levels of 7.63 and below, the fertilisation 
success was greatly decreased. 

Bogner et al., 2014 

Evechinus 
Chloroticus  

Temperature (+3°C) AND low salinity No effect of temperature on fertilisation with 
salinities of 29pp and below causing a decrease 
in fertilisation success. 

Delorme and Sewell, 
2014 

Strongylocentrotus 
purpuratus and S. 
franciscanus  

pH (8, ~7.5/495, ~1427ppm) Low pH decreased fertilisation however this was 
specific to the sperm-egg ratio used. Fertilisation 
of S. purpuratus was largely robust to pH across 
a wide ranges of sperm:egg ratios while S. 
franciscanus was very sensitive to decreases in 
pH. 

Frieder et al., 2014 
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Hemicentrotus pulcherrimus 
and Strongylocentrotus 
nudus  

pH (7.99, 7.96, 7.92, 7.78/380, 450, 550, 
750, 1000, 1500ppm) 

Fertilisation was not significantly decreased in 
any of the pH levels tested 
 
 

Sung et al., 2014 

Patiriella regularis   pH (8.15, 7.8, 7.6/423, 1058, 1738ppm) No effect of decreased pH on fertilisation Byrne et al., 2013 
Arbacia lixula  pH (8.2, 7.9/498, ~1100ppm) AND 

temperature (20, 24, 26, 27°C) 
Fertilisation success was significantly decreased 
at temperature treatments of 27°C. Temperature 
and pH had no significant effect on fertilisation 
at temperature <27°C. 
 

Gianguzza et al., 2013 

Arachnoides placenta  pH (8.4, 7.79, 7.65, 7.12/526 1301, 
1892, 6784ppm) 

Fertilisation decreased significantly with pH 
levels of 7.79 and below across a range of 
sperm:egg ratios (4:1 to 4000:1). 

Gonzalez-Bernat et al., 
2013a 

Odontaster validus  pH (8.1, 7.8, 7.6, 7/327, 691, 1130, 
4604ppm) 

At near-future pH ranges (pH 7.8 and 7.6), 
fertilisation was not significantly decreased, 
except at the lowest sperm concentration (103 
sperm/ml) where fertilisation was reduced to 60 
and 61% in pH 7.6 and 7.8, respectively. 

Gonzalez-Bernat et al., 
2013b 

Sterechinus neumayerii  pH (8.12, 7.87, 7.69/433, 927, 
1417ppm) AND temperature (1, 3, 5 ˚C) 

Fertilisation resilient to pH levels tested and 
temperature increases of +4˚C 

Ho et al., 2013 

Centrostephanus rodgersii  pH (8.1, 7.8, 7.6, 7.04/469, 1011, 1652, 
6238ppm) AND temperature (+3˚C) 

Fertilisation was robust to pH levels of 7.6 and 
only slightly reduced at pH 7.04 with no effects 
of temperature. 

Pecorino et al., 2013 

Acanthaster planci  pH (8.1, 7.9, 7.7 /520, 877, 1658ppm) Fertilisation rates were decreased in pH 7.9 and 
further reduced in pH 7.7, likely due to 
decreases in sperm motility 

Uthicke et al., 2013 

Paracentrotus lividus  pHT (8, 7.8, 7.6, 7.4, 7.2, 7., 
6.8/311,697,1037,1690,2686,4292, 
8108ppm) 

Fertilisation decreased with pH levels of 7.6 and 
below  

Moulin et al., 2011 

Strongylocentrotus 
franciscanus  

pH (8.04, 7.81, 7.55/464,828, 1578ppm) Fertilisation decreased with pH levels of 7.8 and 
below 

Reuter et al., 2011 

Sterechinus neumayerii  pH (8, 7.7, 7.5) AND temperature (+1.5 
˚C and 3˚C) 

At elevated temperatures, there was a negative 
interactive effect of temperature and pH 7.5 on 
fertilisation success 

Ericson et al., 2012 

Heliocidaris 
erythrogramma, 

pH (8.2, 7.9, 7.8, 7.6/ 327-335 814-851 
1051-1104 1729-1828ppm) and 

No effects of pH or temperature on fertilisation 
success 

Byrne et al., 2010 



24 
 

H. tuberculata, Tripneustes 
gratilla, Centrostephanus 
rodgersii and Patiriella 
regularis  

temperature (18, 20, 22, 24, 26˚C) 

Hemicentrotus 
pulcherrimus and 
Echinometra mathaei  

pH (8.01, 7.77, 7.61, 7.38, 7.03, 
6.83/360, 860, 1360, 2360, 5360, 
10360ppm) 

Fertilisation decreased with pH levels of 7.4 and 
below 

Kurihara and 
Shirayama, 2004 

Annelida 
Arenicola marina  pH (7.77, 7.47/1400, 3000ppm) AND 

copper toxicity 
Fertilisation success was negatively affected by 
both pH 7.77 and copper individually, but no 
additive effects when exposed as combined 
stressors.  

Campbell et al., 2014 

Pomatoceros lamarckii  pH (range 8.1–7.2/302 -3781ppm) AND 
copper toxicity 

Fertilisation success was slightly but 
significantly reduced at the 7.6 and 7.4 pH 
treatments with no additional impact of copper 

Lewis et al., 2013 

Cnidaria 
Acropora digitifera  pH (8.1, 7.79/438, 990ppm) AND 

temperature (+4°C) 
Fertilisation success decreased in response to 
increased temperature. In contrast, fertilisation 
was not affected by decreased pH. 

Iguchi et al., 2014 

Acropora tenuis  pH (8.01, 7.78/400, 800ppm) AND 
temperature (+3°C)  

The sperm concentration required to obtain 50% 
of maximum fertilisation increased 6 to 8 fold 
with the addition of a single stressor (pH or 
temperature) and 50 fold when both factors 
interacted.  

Albright and Mason, 
2013 

Acropora millepora and A. 
tenuis  

pH (8.16, 8.03/~421, ~655ppm) AND 
temperature +(2°C) 

No effects on fertilisation for either species Chua et al., 2013 

Mollusca 
Haliotis diversicolor and 
H. discus hannai 
Crassostrea angulata  

pH (8.15, 7.94, 7.71, 7.61, 7.43/448, 
784, 1401, 1794, 2780ppm) 

For all species, fertilisation significantly 
decreased in pH levels of 7.43.  
 

Guo et al., 2015 

Mimachlamys asperrima  pH (8.2, 7.89, 7.81, 7.69/390, 600, 750, 
1000ppm) 

Fertilisation decreased at pH 7.81 and below Scanes et al., 2014 

Crassostrea gigas  pH (8.2, 7.87, 7.48/580, 1386, 
3573ppm) 

Fertilisation was reduced in pH 7.87 and further 
reduced in pH 7.48. 

Barros et al., 2013 

Macoma balthica  pH (8.1, 7.8, 7.5/601, 1455, 2128ppm) Fertilisation greatly declined in pH 7.5. Van Colen et al., 2012 
Mytilus edulis pH (8.06, 7.62/419–469, 1388– There was no effect of decreased pH on Bechmann et al., 2011 
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1493ppm)  fertilisation success 
Haliotis discus hannai  pH (7.94 7.68 7.49 7.41/500, 1100, 

1650, 2150ppm) 
Fertilisation success was only decreased when 
exposed to pH levels of 7.49 and below. 

Kimura et al., 2011 
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1.4 Identifying gaps in ocean change studies 

Investigation of the effects of ocean acidification and ocean warming on marine invertebrates has 

involved multistressor studies of larvae, fertilisation and the sperm cell. There have been 

contrasting results among species and stages of development. However, both gametes are 

important and the egg may be negatively affected by ocean change stressors. Research on the egg 

is lacking. This is particularly important to address because empirical data and fertilisation 

models in flow indicate that egg target size and turbulent mixing determine collision frequency, 

rather than the swimming ability of the sperm (Denny and Shibata 1989).  

The egg cell is often the biggest cell produced by marine invertebrates and yet there is a 

great knowledge gap on effects of ocean change stressors on the egg cell with only one study on 

the effects of low pH on egg intracellular pH, and no existing studies on the effect of stressors on 

the jelly coat. This is a focus in this thesis. 

This thesis aims to fill current knowledge gaps effects of ocean acidification on the egg 

cell through investigation of the effects of ocean acidification on the size of the jelly coat, 

comparing responses of the eggs of four echinoids (Heliocidaris erythrogramma, H. tuberculata, 

Centrostephanus rodgersii, and Echinometra mathaei).  

 

1.5 The Potential to Persist in the Face of Ocean Change; Acclimatisation and Adaptation 

Environmental stressors, such as those associated with climate change, are a significant 

evolutionary force in nature and will influence the shape of marine communities now and into 

the future through selection (Hoffmann and Merilä, 1999). In the face of a changing ocean, the 

adaptive capacity of marine species will include a mixture of organism plasticity, shifts in 

species range and genetic evolution. The pace of adaptation will be greatly influenced by stress 

tolerance, dispersal ability, the latitudinal range the species inhabits and potential for genetic 

change (Bernhardt and Leslie, 2013; Williams et al., 2008).  

The four main outcomes for populations subjected to global change stressors are (1) 

acclimatisation, (2) shifts in distribution, (3) microevolution/adaptation and (4) extinction 

(Hoffmann and Parsons, 1991). Table 4 provides a glossary of evolutionary biology and 

quantitative genetic terms. Although animals can evolve on rapid ecological timescales, 

relatively few studies consider adaptive capacity of marine species to climate change (Merilä and 

Hendry 2014). Thus far, most climate change stressor studies have involved placing the life 
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stages of marine species directly into future scenarios. Although this approach provides some 

insight into the tolerance of species to ocean change, it represents a “future shock” approach and 

is likely to overestimate the sensitivity to stressors and their impacts (Byrne, 2012; Dupont et al., 

2013). Furthermore, the life stage (e.g. fertilised eggs, embryos, larvae, juveniles and adults) at 

which species are introduced to environmental conditions has differed greatly among studies 

(Byrne, 2012). We need to go beyond the limited life stage approach to complete the lifecycle of 

species, where possible to incorporate acclimatisation and adaptation, important considerations 

as climate and ocean change is much more gradual than in experimental conditions (Gaylord et 

al., 2014; Munday et al., 2013; Somero et al., 2012; Stillman and Paganini, 2015).  

More recent studies have involved longer term incubations (months to years) with the 

aim to achieve acclimation of embryos and adults to the new environment (e.g. Suckling et al., 

2015; Thor and Dupont, 2015). The rate at which stressors are introduced is also important and 

can influence experimental outcomes (Suckling et al., 2014b). To avoid the acute approach, 

stressors can be introduced gradually over weeks until the target experimental levels are reached 

and then the animals are held in conditions to achieve acclimation. Furthermore, the length of the 

incubation/acclimation period also varies and has been shown influence whether the effect of 

acclimation is neutral, positive or negative (Suckling et al., 2014a). For example, for the sea 

urchin S. droebachiensis, female fecundity decreased when acclimated to low pH for 4 months 

with no difference observed for females acclimated for 16 months (Dupont et al., 2013). A key 

consideration is the physiological state and season that the incubations begin. For instance, it 

took one year to retrain the gametogenic cycle and reprogram physiology of sea urchins in 

experiments where photoperiod was manipulated (Bay-Schmith and Pearse, 1987). 

 

1.5.1 Acclimatisation 

Marine animals, such as those that reside in the intertidal may be adapted to tolerate fluctuating 

environments (Byrne, 2011; Melzner et al., 2009; Sanford and Kelly, 2011). Intertidal habitats 

can fluctuate more than 0.5 pH units daily (Duarte et al., 2013; Wootton et al., 2008), a 

phenomenon also noted for coral reefs during day-night cycles (Birkeland et al., 2008). 

Populations of the seastar Parvulastra exigua can experience pH levels from 7.54 to 8.91, and 

temperatures from 10 to 24°C across a 24 hour cycle in the tide pools it inhabits (Nguyen et al., 

2014). Juveniles from these populations are resilient to conditions well beyond near future ocean  
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Table 4: Glossary of evolutionary biology and quantitative genetic terms  

 

Term Definition 
Acclimation Species adjust to experimental conditions without an adjustment in their 

genetics. Effects are therefore reversible 
Acclimatisation Similar to acclimation, however the term used when the effect is induced 

by natural environmental changes 
Adaptive evolution Genetic change in a population over many generations to adjust the 

organism to its environment. It is maintained by natural selection. 
Additive genetic 
variation 

Primary cause of resemblance between relatives and primary determinant 
of observable genetic properties of the population, and of the population 
response to selection 

Allele Alternative forms of a gene found at the same location on a chromosome 
Broad sense heritability Broad-sense heritability of a trait describes the proportion of phenotypic 

variation due to genetic effects, and thus may also include dominance and 
epistasis effects 

Dam Female parent 
Dominance The connection between alleles in one gene where the effect of one allele 

on phenotype masks the contribution of the second allele  
Epigenetics Heritable modification of gene expression without change to DNA 

sequences. DNA methylation, modification of histones and non-coding 
RNA associated gene silencing are all systems which can initiate epigenetic 
change 

Epistasis Interactions within or between genes 
Environmental stressor A situation that lies outside  the organism’s optimal conditions, causing an 

impact on Darwinian fitness, and can be an influential evolutionary force 
Evolutionary rescue The genetic adaptation of a population allowing persistence through 

environmentally induced effects which would have otherwise caused 
extinction 

Fitness The potential of a certain genotype to pass on genes to future generations 
that influence reproductive success  

Genetic assimilation The process where phenotypes induced by an environmental signal become 
genetically fixed via natural selection, i.e. the environmental signal is no 
longer required for expression of that phenotype 

Genetic correlation Proportion of variance that two genetic traits share 
Genetic rescue Increased population fitness and genetic diversity through immigration of 

new alleles  
Genotype x 
Environment (G x E) 
interactions 

The differing responses of individual genotypes under changes in the 
environment 

Heritability  The proportion of observed differences of a trait among individuals due to 
genetic differences 

Narrow sense 
heritability 

Narrow-sense heritability is the proportion of genetic variation that is due 
to additive genetic effects only and describes the degree of resemblance 
between relatives 

Non-additive genetic The proportion of phenotypic variance which is due to epistatic interactions 
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variation and dominance deviations 
North Carolina II A breeding design involving individual mating of Nsires and Ndams to allow 

partitioning of the phenotypic variance of offspring of known relatedness 
into genetic and environmental components 

Phenotypic plasticity The ability of an organism of one genotype to produce more than one 
phenotype when exposed to different environments. Plasticity can be 
adaptive (promotes persistence in new environment) or non-adaptive 
(response is away from favoured optimum) 

Quantitative genetics The study of the effects that heredity and environment have on traits that 
can be quantitatively measured 

Reaction norm Also known as interaction plot, shows the pattern of phenotypic expression 
of specific genotypes over certain environments  

Selection Where the environment or genetics determine which types of organism 
succeed  

Selective breeding Also known as artificial selection, is the process where animals and/or 
plants are bred for particular traits 

Sire Male parent 
Transgenerational 
effects 

Effects on offspring phenotype and patterns of gene expression that are 
passed from one generation to the next that cannot be explained by changes 
to the DNA sequence 

Transgenerational 
plasticity 

The transmission of information from one generation to the next resulting 
in an alteration of traits without an alteration to DNA. Transgenerational 
effects can be adaptive, resulting in pre-adapted offspring that exhibit traits 
associated with increased fitness in environmental conditions experienced 
by their parents 
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change conditions. The adults also showed high metabolic resilience to ocean warming and 

acidification, levels well beyond projected climate change (McElroy et al., 2012). In contrast, the 

mussel Mytilus calfornicanus which experiences fluctuations in pH due to seasonal upwelling 

was less tolerant to acidification than its congener M. galloprovincialis which occurs in a more 

stable pH environment (Waldbusser et al., 2015). Both species showed a very similar response in 

shell growth when exposed to low pH.   

Although many shallow water and intertidal species inhabit environments where 

temperature and pH can fluctuate markedly, laboratory studies rarely incorporate fluctuating 

conditions and therefore the treatments may not be realistic. A study which compared the 

response of the calcifying macroalga Arthrocardia corymbosa to either a constant low pH 

treatment or a treatment which incorporated natural diurnal pH fluctuations found different 

responses in growth dependent on whether pH was constant or fluctuating (Cornwall et al., 

2013).  Moreover, fluctuating pH conditions reduced the negative effect of acidification on 

corals (Dufault et al. 2012). 

 

1.5.1.1 Acclimatisation and Thermal Tolerance Limits 

Species with broad latitudinal distributions across thermal regimes may have an in-built capacity 

to persist in warming oceans (Bradshaw and Holzapfel, 2001). It is often found that progeny of 

parents from cooler climates are less thermotolerant than those from the warmer regions of their 

range, likely due to adult thermal acclimatisation (Byrne et al., 2010; Visser, 2008; Zippay and 

Hofmann, 2010). For the sea urchin Heliocidaris erythrogramma, Northern (warmer) 

populations show significantly higher warm thermal tolerance than Southern (cooler) 

populations, providing the possibility that these populations could persist through poleward 

migration of thermotolerant propagules with southward flow of the East Australian Current 

(Byrne et al., 2010). Similar results have been seen for the snail Littorina littorea and the mussel 

Mytilus edulis where warmer populations have a higher thermal tolerance (Sorte et al., 2011). 

This phenomenon of poleward migration is a global phenomenon due to global climate warming 

(Sunday et al., 2015). 

Temperature acclimatisation capacities differ greatly between marine invertebrates with 

limits set by their physiological systems (Somero, 2010). Animals can alter their physiology in 

response to various environmental factors without a change in genetics and thereby reducing 
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their sensitivity to temperature change (Chevin et al., 2010; Hoffmann and Sgrò, 2011; 

Seebacher et al., 2014; Stillman and Paganini, 2015). Although physiological acclimatisation to a 

changing climate is a feature of many species, a recent meta-analysis shows physiological rates 

have increased ~20% in the past 20 years (Seebacher et al., 2014). It is not known whether this 

increase is detrimental or has the potential to compromise normal physiological functioning but 

may explain the differences in acclimatisation potential between different species (Seebacher et 

al., 2014). 

Phenotypic plasticity of many marine invertebrates has been investigated through 

laboratory based studies on thermal tolerance limits and acute heat stress tests because 

temperature is a key factor determining the biogeography and distribution of marine species 

(Monaco and Helmuth, 2011; Somero et al., 2010; Sunday et al., 2014; Terblanche et al., 2011; 

Tomanek, 2010). For example, large thermal envelopes for development have allowed expansion 

of invasive species in a warming ocean, as shown for the sea urchin C. rodgersii which has a 9˚C 

thermal envelope (13–22˚C) for development. This influenced expansion of this species over 

1000km in ~60 years (Ling et al., 2008). The lower thermal limit for successful development of 

C. rodgersii corresponds to the maximum winter temperature in Tasmania thus allowing local 

populations to reproduce (Hardy et al., 2013; Ling et al., 2009). Similarly, for C. rodgersii in 

New Zealand, the thermal window for early development is likely to contribute to its current 

distribution where the current southern limit of distribution coincides with the lower limit of their 

larval thermal window (Pecorino et al., 2013). 

Although species may display broad developmental thermal envelopes, it does not 

necessarily mean that this envelope is reflected in their latitudinal distribution (Garcia Molinos et 

al., 2015; Hardy et al., 2013). The tropical echinoid Arachnoides placenta displays a broader 

envelope (17–31°C) than C. rodgersii (13–22°C) but has not expanded its distribution likely due 

to limited habitat (Hardy et al., 2013). For both species, future warming of their habitat is likely 

to lead to contractions at their warm range edge as they are currently living near the upper 

thermal tolerance limits. Therefore in this case, a broader thermal envelope will not necessarily 

be beneficial for the resilience of the species to ocean warming (Hardy et al., 2013). The shifts in 

marine distribution currently underway are creating novel communities and novel species 

interactions (Burrows et al., 2014; Sunday et al., 2015). 



32 
 

Many marine species appear to be currently operating at the edge of their thermal 

tolerance (Sunday et al., 2014) and so further acclimatisation to warming may be limited, 

especially for some polar species (Peck et al., 2009; Peck, 2015). The ecologically dominant 

asteroid Odontaster validus is one of the most thermotolerant of Antarctic marine species studied 

to date and so may be resilient to habitat warming (Peck et al., 2008). A study on the porcelain 

crab Petrolisthes cinctipes shows that in the short term, increased tolerance to warmer 

temperatures is beneficial, but in the long term the effects are detrimental due to a reduction in 

overall energy (Paganini et al., 2014).  

It is important to combine information on the thermal tolerance of adults and progeny 

with other traits such as metabolic performance, swimming ability and sublethal responses (e.g. 

reproduction, growth) to more fully understand species’ vulnerability and to forecast individual 

responses to ocean change (Chan et al., 2015; Chown et al., 2010; Dawson et al., 2011; Francis 

Pan et al., 2015; Magozzi and Calosi, 2015; Stumpp et al., 2011; Sunday et al., 2015). In 

response to ocean warming, based on climate velocity trajectories and species' thermal tolerance, 

current biodiversity is likely to be redistributed with the ability of marine ectotherms to reflect 

their thermal niche dependent on suitable colonisation conditions (Burrows et al., 2014; Garcia 

Molinos et al., 2015; Sunday et al., 2015). 

Marine organisms live in a multistressor world and, while understanding thermal 

tolerance is important, other stressors need to be considered and in combination. The addition of 

a second stressor (e.g. ocean acidification) may reduce thermal tolerance breadth (Pörtner, 2008; 

Pörtner, 2010). This is seen in larvae of the sea urchin Strongylocentrotus purpuratus where 

increased temperature and low pH had additive effects that exceeded thresholds for optimal 

physiological performance as revealed by significant reductions in larval metabolism and 

downregulation of histone encoding genes (Padilla-Gamino et al., 2013). For the sea urchin 

Sterechinus neumayeri, blastulae raised in control conditions were able to survive heat shocks up 

to +20˚C, 5˚C higher than embryos raised in low pH conditions (Kapsenberg et al., 2014).  

 

1.5.1.2 Phenotypic Plasticity and Genetic Assimilation  

When phenotypes induced by environmental conditions become genetically fixed through natural 

selection, even when the environmental signal is no longer required for expression of that 

phenotype, genetic assimilation has occurred in the population (Collins et al., 2013; Pigliucci et 
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al., 2006). Genetic assimilation can facilitate phenotypic evolution and can thus alter natural 

selection (Pigliucci et al., 2006). However, it is often contested whether phenotypic plasticity 

facilitates or hinders genetic evolution (Chevin and Lande, 2010; Merilä, 2015). A recent study 

on guppies provides evidence that adaptive phenotypic plasticity can weaken the strength of 

directional selection which in turn reduces the rate of genetic adaptation (Ghalambor et al., 

2015). However, these authors also found that 89% of the genes expressed changed in the 

opposite direction to that of phenotypic plasticity. This inverse relationship can facilitate 

evolution by increasing directional selection (Ghalambor et al., 2015). 

Thus, in the short term, acclimatisation can allow adjustment to changing conditions in 

some species and may help buy species time to allow for genetic adaptation to occur. However, 

plasticity has limits in its potential to buffer marine ectotherms to increased temperature and 

acidification (Gunderson and Stillman, 2015). Therefore in the long term, adaptation will be 

required for population persistence (Hoffmann and Parsons, 1991). 

 

1.5.2 Adaptation 

Adaptation or micro-evolution (Table 4) occurs over many generations and is a heritable, genetic 

change in response to environmental selection (Hoffmann and Merilä, 1999; Hoffmann and 

Parsons, 1991). It involves a change in gene frequency within a population with natural selection 

playing a primary role (Hoffmann and Parsons, 1991). It is important to be able to determine 

whether responses are genetic (evolutionary) or phenotypic (plastic, non-genetic) to identify the 

role of each in resiliency to ocean change (Gienapp et al., 2008). Clear-cut evidence of species 

genetic adaptation to global warming is scarce (Gienapp et al., 2008).  

The rate of adaptation is influenced by generational turnover time with short-lived 

species, and those with fast generation likely to show greater potential evolutionary adaption 

(Byrne, 2011; Dam, 2013). For example, the coccolithophore Emiliania huxleyi was exposed to 

low pH over 500 asexual generations and it was found that growth and calcification in the 

selected clones was eventually restored (Lohbeck et al., 2012). Similar results were seen with 

sexual reproduction in the the copepod Tisbe battagliai after several generations in low pH 

(Fitzer et al., 2012). 

The ability to adapt to future changes in environmental conditions depends on the 

existence of additive genetic variances within populations (Table 4), the proportion of genetic 
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variation that responds to natural selection (Billington and Pelham, 1991). Selection will favour 

the individuals with more advantageous traits where the genetic basis of these phenotypes will 

become more common in a population, eventually resulting in macroevolution (Gassmann et al., 

2009; Hoffmann and Parsons, 1991). The types of genetic variance include additive and non-

additive, with the latter being interactions between parental haplotypes. Additive genetic 

variance is considered to be the intrinsic genetic quality of the male and female parent (Neff and 

Pitcher, 2005). Natural selection favours the traits that facilitate success of following 

generations. Thus the potential to adapt to the pressures exerted by climate change depends on 

the rate that these climate change stressors are being altered and the amount of additive genetic 

variation in fitness related traits within populations (Billington and Pelham, 1991). Fitness 

related traits are those that contribute to species’ ability to survive and produce viable offspring. 

If there is a selection gradient, traits are heritable, and if genetic variance is present in the 

population, adaptation to ocean stressors will proceed (Dam, 2013). 

 

1.5.2.1 Evidence of Standing Genetic Variation 

Standing genetic variation, i.e. genetic variation already present in current populations (Table 4), 

could provide a reservoir of resilience to ocean change (Anttila et al., 2013; Hoffmann and Sgrò, 

2011; Kelly et al., 2013; Pespeni et al., 2013a, 2013b). For Atlantic salmon, high phenotypic 

variation between families and great similarity between siblings indicates the presence of 

standing genetic variation in the response to increased temperature, providing increased 

resilience to ocean warming (Anttila et al., 2013). Garfield et al., 2013, found extensive variation 

in gene expression in the gene regulatory network (GRN) for the sea urchin Strongylocentrotus 

purpuratus, and this was associated with measureable variation in larval skeleton morphology. 

As the expression of most genes were attributed to significant paternal effects, this variation is 

likely to be heritable and shows that the larval skeleton is a trait that can be targeted by natural 

selection (Garfield et al., 2013). Latitudinal temperature gradients appear to have generated local 

genetic adaptation in S. purpuratus along the coast of North America, despite having an open 

population with a recruitment regime dependent on larvae. Larvae generated from the gametes of 

adults from six populations of S. purpuratus spanning regions of different temperature, showed 

differences in gene regulation related to biomineralization and ion transport (Pespeni et al., 

2013a). 
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Studies of local adaptation can provide important information on the potential for natural 

selection giving insight into the ecological and genetic factors that influence evolution (Kawecki 

and Ebert, 2004). A further study by Pespeni et al., (2013b) cultured larvae from different 

populations of S. purpuratus under near future ocean acidification scenarios. These populations 

included the progeny of adults that lived in different pH environments due to exposure to 

variable upwelling conditions. Although there was little observable difference in performance of 

larvae between low pH and control conditions, larvae from different populations showed 

significant differences in over 40 functional groups of proteins, including genes for lipid 

metabolism and biomineralization (Pespeni et al., 2013b).  

For the coral Acropora hyacinthus, populations that are living in naturally high 

temperature environments were more resistant to bleaching, likely due to a reservoir of alleles 

that were pre-adapted to high temperature (Bay and Palumbi, 2014; Palumbi et al., 2014). 

Furthermore, constitutive frontloading of transcripts related to heat shock proteins and 

antioxidant enzymes enabled corals to maintain physiological homeostasis during periods of 

temperature stress (Barshis et al., 2013).  

These case studies demonstrate that for sea urchins and corals, the capacity for rapid 

evolution to ocean acidification is likely to occur due to standing genetic variation present in 

current populations. 

 

1.5.2.2. Evolutionary Rescue 

Evolutionary rescue allows populations to survive a rapidly changing climate where adaptive 

evolutionary change restores positive growth to the population thus preventing extinction 

(Carlson et al., 2014; Gonzalez et al., 2013; Whiteley et al., 2015). For evolutionary rescue in the 

face of a warming and acidifying ocean, factors such as population size, organism life span and 

the amount of genetic variance for the required traits greatly determine the success of a species 

(Bell and Gonzalez, 2009; Hoffmann and Sgrò, 2011; Willi et al., 2006). Thus, determining the 

existence of genetic variation in populations will help to determine whether evolutionary rescue 

is possible as the ocean continues to warm and acidify.  

For the porcelain crab species, some larvae and juveniles show increased tolerance to 

decreased pH. For the resilient subset, enhanced acid-base regulation prevented a decrease in 

metabolism, a phenomenon observed in other ectotherms in response to decreased pH (Carter et 
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al., 2013). These variable responses suggest potential for this species to adapt to ocean 

acidification. Studies which track specific genotypes’ performance across environmental 

conditions have shown genetic variation in response to ocean acidification (Sunday et al., 2011; 

Kelly et al., 2013), ocean warming (Pistevos et al., 2011) and both (Foo et al., 2012, Foo et al., 

2014) which would suggest the potential for evolutionary rescue of these species in a changing 

ocean. 

 

1.5.2.3 Human Assisted Evolution 

The genetic enhancement of corals with enhanced stress tolerance through human assisted 

evolution is currently being investigated. Coral nurseries are used to grow coral to a size that 

allows them to survive transplantation and seeding of degraded reefs (Amar and Rinkevich, 

2007; Guest et al., 2014). This idea can be expanded through assistance of the genetic adaptation 

of the symbionts that are essential for coral survival. These symbionts are subjected to ocean 

change stressors in the lab to identify those with enhanced tolerance. Larval and juvenile corals 

can then be inoculated with the stress-tolerant symbionts (Van Oppen et al., 2015).  

A similar concept to human assisted evolution is genetic rescue, where the immigration 

of new alleles into a population restores growth. The main purposes of genetic rescue are to 

restore genetic diversity in populations that are small and isolated (Whiteley et al., 2015). 

Genetic improvement of many plants and animals has been utilised for many years, and could 

help augment the capacity of corals and other ecologically and economically significant species 

to endure a changing climate (Van Oppen et al., 2015). For the oyster Saccostrea glomerata, the 

progeny of adult lines selected for disease resistance or growth rate (Parker et al., 2011) were 

more resilient to low pH than wild larvae. When larvae/juveniles generated under low pH were 

outplanted into ambient conditions until reproductive maturity, positive carry over effects were 

still evident in the F2 generation. This emphasizes the importance of human assisted evolution 

through laboratory selection and outplanting in generating resilient genotypes for the aquaculture 

industry (Parker et al., 2015). A recent genomic study shows that genetic rescue of reef-building 

corals is possible where the survival of coral larvae under high temperatures increased tenfold 

when parents came from a warmer location from a different latitude (Dixon et al., 2015). 
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1.5.3 Reaction Norms and Visualization of Genotype by Environment Interactions 

When phenotypic variation occurs as a result of exposure to different environmental conditions, 

this is indicative of interactions between genes and the environment (G x E interaction; Figure 

1.4; Neff and Pitcher, 2005). Reaction norms show the response of a specific genotype across a 

range of environments and allow visualization of G x E interactions (Lynch and Walsh, 1998). 

There are four main environmental response patterns (reaction norms) that can occur (Figure 

1.4a-d): (1) different genotypes display a similar response to a range of environments due to 

previously strong selection and (2) genotypes display parallel responses. Both of these examples 

do not show evidence of genetic variation. The other two cases which are more common, are 

indicative of G x E interactions: (3) non-parallel reaction norms or trait expression across 

environments with genotypes responding similarly in some environments but differently in 

others, affecting selective outcomes and (4) the rank order of the genotypes for a trait varies 

depending on the environment (Neff and Pitcher, 2005; Sultan, 2007). Thus a G x E interaction 

could be summarized as a genotype that performs well in one environment but not as well in a 

second environment (Eisen and Saxton, 1983).  

 

1.6 Assessing Evolutionary Potential in a Changing Ocean 

To assess whether a population can respond to ocean change stressors, studies investigate the 

magnitude of genetic variance and/or presence of different genotypes for tolerance of the 

different traits in environments that differ in stressor levels (Tables 5-7). Experimental designs 

can replicate genotypes in different ways including as full-sib or half-sib families, or clones 

(Tables 5-7). Performance of the different genotypes is assessed across various environmental 

conditions allowing an interaction between genotype and the stressor to be detected. These 

interactions are indicative of genetic variation in stress tolerance, and from this, the heritability 

of stress tolerance can also be estimated (Shaw and Etterson, 2012).  

 

1.6.1 Use of Quantitative Genetic Designs with Free Spawning Marine Invertebrates 

For free spawning invertebrates, male and female gametes can be isolated for experimental 

matings for application in evolution studies (such as quantitative genetic designs) which follow 

the success of the offspring of individual sets of parents. They provide a tractable and  
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Figure 1.4. The pattern of phenotypes produced by given genotypes under different 

environmental conditions (reaction norms). The variation in the fitness of a genotype and the 

expressed phenotype across multiple environments is due to genetic effects, environmental 

effects and genetic x environmental effects (G x E). Within a population, genotypes can show (a) 

almost identical responses across a range of environments or (b) differ consistently across 

environments. When the genotypic difference varies from one environment to another (non-

parallel reaction norms), this is indicative of G x E interactions and is shown by a difference in 

the genotype’s magnitude of response to environment by (c) expression of different genotypes 

only in some environments or (d) the rank order of the genotype varies depending on 

environment, i.e. there is a G x E effect with a change in the fitness rank of the two genotypes. 

This can promote selective diversification among distinct environments. 
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controllable model system for quantifying the contribution of heritable genetic variation to the 

overall phenotypic variation (Neff and Pitcher, 2005). 

The North Carolina II (NCII) quantitative breeding design allows variance of a 

population among relatives of known relatedness to be partitioned into additive, maternal, 

interactive and environmental components (Lynch and Walsh, 1998). It involves mating a set of 

NS sires with ND dams in all combinations generating Ns x Nd families or genotypes, allowing 

genetic effects to be detected as it examines all possible crosses between individuals. Thus free 

spawning marine invertebrates provide an ideal model system for utilisation of the NCII design 

(Figure 1.5; Lynch and Walsh, 1998; Neff and Pitcher, 2005).  

As the development of specific genotypes can be tracked using paired mating model 

systems, quantitative genetics and animal breeding designs including the NCII have been used 

for many years in agriculture and aquaculture to generate stress tolerant animals and crops and 

those most suited to a specific environment (Falconer and Mackay, 1996; Henning and 

Townsend, 2005; Lynch and Walsh 1998). Selective breeding of salmon has created family lines 

that are resistant to sea lice, a problem costly to the industry (Jones et al., 2002). The selective 

breeding program for Pacific oysters (Crassostrea gigas) selects for genetic improvement and 

resistance to disease (Kube et al., 2011; Ward et al., 2000). Pedigree inbred lines have shown the 

potential of C. gigas to redistribute energy in response to ocean change stressors (Applebaum et 

al., 2014). Pedigree lines provide genotypes that can be re-tested, allowing non-additive genetic 

components of phenotypic variance to be captured (Applebaum et al., 2014; Pace et al. 2006).  

The NCII design has also been used to estimate the amount of variation in the size of the 

tropical abalone Haliotis asinina attributable to additive genetic effects in selective breeding 

programs (Lucas et al., 2006). Animal breeding design experiments with the ascidian Styela 

plicata, show a difference in resistance to differing copper concentrations between different 

male-female crosses (Galletly et al., 2007). This suggested that this population used different 

genetic mechanisms to adapt to different pollution levels. However only recently has this design 

been utilised for marine species to assess adaptive capacity to ocean change stressors (Clark et 

al., 2013; Foo et al., 2012; Munday et al., 2013 Sunday et al., 2011;). As changing ocean 

conditions are creating intense selection pressure on many marine organisms, studies which 

demonstrate genetic adaptation to climate change are essential but scarce (Merilä and Hendry, 

2014). The studies using this design in a climate change context are listed in Table 5. 
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Figure 1.5. The North Carolina II design with free spawning marine invertebrates. The 

design involves mating NS sires with ND dams in all combinations allowing genetic effects to be 

partitioned into additive, maternal, interactive and environmental components. The example on 

the top shows that fully crossing two dams with two sires results in four possible genotypes. For 

a tractable and robust design, this needs to be repeated in blocks to create large numbers of 

genotypes for analysis. Clonal studies replicate genotypes by using clones of colonial organisms 

such as corals and bryozoans. Clones of the same genotype can be placed across various 

treatments and performance contrasted. Sea urchin and coral symbols courtesy of the Integration 

and Application Network, University of Maryland Center for Environmental Science 

(ian.umces.edu/symbols/). 
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As the ability to adapt to future changes in the environment depends on the existence of 

additive genetic variance within populations and DNA is considered to be the only contribution 

from the father to offspring, determining paternal variance is a good way to estimate genetic 

quality and determine species’ adaptive potential. A male possessing good genes will produce 

offspring with a higher fitness regardless of female genotype (Neff and Pitcher, 2005). If species 

possess the adaptive capacity for ocean warming and ocean acidification, there needs to be 

evidence of a significant interaction between sire and either temperature or pH treatments, this 

would indicate existing genetic variation in the species response to climate change stressors. A 

significant dam and temperature interaction would indicate effects of both maternal provisioning 

(environmental, phenotypic) and genetic variation. Maternal effects are also important in 

population evolutionary dynamics as they impact the rate and direction of genetic change under 

selection (Tadros and Lipschitz, 2009). However, there are two maternal effects components: 

genetic and environmental, and these cannot be separated in quantitative genetic experiments 

(Rasanen and Kruuk, 2007). An interaction between sire and dam would indicate genetic 

variance due to non-additive genetic effects, i.e. the influence of the particular compatibility of 

the set of male and female gametes (Falconer, 1989). Although these are non-heritable effects, 

investigation of pair compatibility is also of interest in ocean change research and effects and 

individual pair results can be investigated with the NCII design. 

Quantitative genetic designs are powerful tests which may reveal hidden evolutionary 

capacity. For the polychaete Galeolaria caespitosa, genetic variation was found in the species’ 

response for two lower temperatures but not to high temperature, which may have led to the 

conclusion that ocean warming may eradicate this species. However using a multivariate 

analysis, G. caespitosa is likely to have high adaptive potential due to correlated responses to 

selection across all thermal environments (Chirgwin et al., 2015). 

Studies on sea urchins, mussels and macroalgae have found significant levels of variation 

among genotypes, providing the potential for adaptation to ocean warming and acidification 

(Clark et al., 2013; Foo et al., 2012; Foo et al., 2014; Kelly et al., 2013; Lymbery and Evans, 

2013; Sunday et al., 2011;). These studies have largely investigated adaptation to a single 

stressor (temperature: Chirgwin et al., 2015; Clark et al., 2013; Lymbery and Evans, 2013; 

acidification: Kelly et al., 2013; Sunday et al., 2011) with two studies investigating the response 

to both stressors concurrently (Foo et al., 2012; Foo et al., 2014). Although these experiments all 
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involve the use of the NCII design, they differ in whether the male-female crosses are fertilised 

in treatments, or transferred to treatments after fertilisation in control conditions. Thus far there 

are seven published studies using the gametes of free spawning invertebrates to investigate 

within-population genetic variation for tolerance to climate change stressors (including 

temperature and/or acidification; Table 5).  

It is now understood that environmental effects can also alter sperm phenotype. There is 

evidence that both the pre and post-release environments of the sperm can affect offspring 

phenotype (Marshall et al., 2015). Within ejaculate differences in the sperm of Styela plicata has 

been shown to influence offspring fitness (Crean et al., 2012). Traditionally in quantitative 

genetic studies, sperm effects are assumed to be purely genetic (Lynch and Walsh, 1998) and 

thus it is assumed that the only source of variance contributed to offspring from the sire is 

genetic effects. However, as the sperm environment may also affect the offspring phenotype, 

estimating genetic variance from paternal lines may not be accurate (Crean and Bonduriansky, 

2014). This has important implications for evolutionary studies (Bonduriansky and Day, 2009). 

Thus far there are six published studies using the gametes of free spawning invertebrates to 

investigate within-population genetic variation for tolerance to climate change stressors 

(including temperature and/or acidification; Table 1.4). Our understanding of multistressor 

interactions is limited and this is a focus in this thesis. 

 

1.6.2 Clonal studies  

Another approach to replicate genotypes without sourcing gametes for dam x sire crosses is to 

use clones of colonial organisms such as bryozoans and corals (Figure 1.5; Császár et al., 2010; 

Durrant et al., 2013; Pistevos et al., 2011). Different colonies of the same species are used to 

represent different genotypes. These are then divided up to form replicates or clones. A recent 

study by Durrant et al., (2013) compared the growth of different colonies of the bryozoan 

Celleporaria nodulosa to various temperature and pH treatments, comparing performance across 

the seasons. Decreased pH and increased temperature reduced the growth of the colonies with a 

large seasonal effect however there was no presence of G x E interactions where all genotypes 

(or clones) performed similarly to treatments in both seasons. This indicates little adaptive 

potential within populations under directional selection from climate change stressors. In contrast, 

another study using similar methods found that clones of the bryozoan Celleporella hyalina had  
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Table 5. Studies with marine animals and plants that use the North Carolina II design to test for within-population genetic 

variation in tolerance to ocean change and other anthropogenic stressors. This quantitative genetic design allows replication of 

different genotypes across environmental conditions and allows interactions between genotypes and stressors to be detected. The 

stressors tested and biotic trait scored, experimental design, fertilisation conditions and outcome are indicated. Most studies examine 

only one stressor and fertilise in control conditions. Only two have incorporated ocean warming and acidification scenarios and 

fertilised in treatment.    

Species Stressor/Trait Experimental design Fertilisation conditions Outcome Reference 
Single stressor studies 

Hormosira banksia 
(macroalga) 

temperature/ 
growth, 
photosynthesis

NCII design, 3 sires x 
3 dams x temperature, 
fully crossed 

Crosses were fertilised 
and left for an hour in 
control conditions to let 
phototactic zygotes 
settle and then 
transferred to treatments 

The presence of genetic 
variation in thermal 
sensitivity was found 

Clark et al., 
2013 

Strongylocentrotus 
franciscanus (urchin) and 
Mytilus trossulus (mussel) 

pH/ growth NCII design, sire x 
dam x pH, fully 
crossed 
(M. trossulus: 4 dams 
and 10 sires, S. 
franciscanus: 10 dams 
and 10 sires) 

Crosses were fertilised 
in control conditions and 
then transferred to 
treatments  

The urchin showed greater 
genetic variation for larval 
size in response to ocean 
acidification than the mussel 

Sunday et al., 
2011 

Strongylocentrotus 
purpuratus (sea urchin) 

pH/ larval size Modified NCII, 2 
sires x 4 dams (where 
1 male and 2 dams of 
each cross were from 
different sites) 

Not stated Incorporating 
heritability/adaptation into 
modelling showed that  
the low pH driven decrease 
in population growth rate is 
up to 50% smaller than that 
predicted by the ‘no-
adaptation’ scenario 

Kelly et al., 
2013  

Heliocidaris temperature/ NCII design, 3 sires x Crosses were fertilised Hatching success was Lymbery and 
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erythrogramma armigera 
(sea urchin) 

larval hatching 
success 

3 dams x temperature, 
fully crossed 

in control conditions 
where only fertilised 
eggs were transferred to 
treatments 

reduced at higher 
temperatures, however 
analyses revealed significant 
additive genetic variance and 
G x E interactions 
underlying hatching success 

Evans, 2013 

Styela plicata (ascidian) copper/ 
hatching 
success 

NCII design, 3 sires x 
3 dams x copper 
concentration, fully 
crossed 

Fertilised in control 
conditions and then 
transferred to treatments 

Significant G x E 
interactions in hatching 
success across copper 
concentrations 

Galletly et al., 
2007 

Galeolaria caespitosa 
(polychaete) 

temperature/ 
survival 

NCII design, 2 sires x 
2 dams, fully crossed 

Fertilised in control 
conditions and then 
transferred to treatments 
after 2 hours 

Significant sire x 
temperature interactions with 
correlated responses across 
all thermal environments 

Chirgwin et 
al., 2015 

Multistressor studies
Centrostephanus rodgersii 
(sea urchin) 

temperature, 
pH/ early 
development 

NCII design, 3 dams x 
3 sires x temperature 
x pH, fully crossed  

Fertilised in treatments Significant sire x stressor 
interactions indicate adaptive 
potential 

Foo et al., 
2012 

Pseudoboletia indiana (sea 
urchin) 

temperature, 
pH/ early 
development 

NCII design, 2 dams  
x 4 sires x 
temperature x pH, 
fully crossed 

Fertilised in treatments Significant sire x stressor 
interactions, increased 
temperature alleviated 
effects of low pH 

Foo et al., 
2014 
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contrasting responses to increasing temperature and decreasing pH, thus demonstrating the 

existence of genetic variation which may enable future adaptation to ocean change (Table 6; 

Pistevos et al., 2011). 

In field studies with the seagrass Zostera marina, increasing the genotypic diversity of 

communities exposed to extremely high water temperatures enhanced density and biomass 

production allowing normal functioning. This study highlights the importance of genetic 

diversity and its role in buffering against extreme climactic events (Reusch et al., 2005). 

 

1.6.3 Laboratory selection experiments with short generation species 

For taxa that have short generation times, laboratory selection experiments have been utilized 

to assess whether animals can adapt to environmental stressors over multiple generations. 

Taxa such as diatoms, phytoplankton and coccolithophores can produce multiple generations 

in the order of hours to days. Thus, laboratory cultures of different genotypes of these taxa 

can easily be established and studied over timescales where populations can evolve (Table 7; 

Figure 1.6; Collins et al., 2014; Dam, 2013; Kurihara and Ishimatsu 2008; Stillman and 

Paganini, 2015). These short generation species present unique opportunities to quantify 

evolutionary responses of populations to ocean change stressors. Zooplankton are well 

equipped for rapid evolutionary responses to ocean change due to extremely large population 

sizes and population genetic structure greatly linked to the particular ecological requirements 

of each organism (Peijnenburg et al., 2013). 

The ability of the different populations to respond to selection by various stressors are 

tested by exposing them over multiple generations to the stressor of interest and the 

remaining genotypes can then be compared to controls to see if they have adapted to 

environmental conditions (Collins et al., 2014; Dam, 2013; Lohbeck et al., 2012). For 

example, the coccolithophore Emiliania huxleyi was exposed to low pH over 500 asexual 

generations and it was found that growth and calcification in the selected clones was 

eventually restored (Lohbeck et al., 2012). Rapid adaptation has also been noted in aquatic 

environments, with copepods inhabiting lakes acidified to pH 6 due to SO2 emissions over an 

8 year period (Derry and Arnott, 2007). However, not all populations have the presence of 

additive genetic variation in response to stressful environments. Other species present in the 

acidified lakes were unable to adapt as seen for the copepod and were eradicated (Derry and 

Arnott, 2007). For the copepod Tigriopus californicus, there was little adaptive potential in 

response to increased temperature across ten generations (Kelly et al., 2011). For the 

copepod, Tisbe battagliai, exposure of several generations to low pH conditions resulted in a  
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Table 6. Studies with marine animals and plants that use clones to test for within-population genetic variation in tolerance to ocean 

change stressors. The stressors tested and biotic trait scored, experimental design and outcome are indicated. Studies are separated into those 

that examine either single or multiple stressors.    

Species Stressor/Trait Experimental design Outcome Reference 
Single stressor studies 

Zostera marina (seagrass) temperature/ growth rate, 
survival 

Field experiment using genotyping 
to identify different clones 

Increasing genotypic diversity of seagrass 
communities helped maintain normal 
functioning even with exposure to high 
temperature 

Reusch et al., 2005 

Zostera marina (seagrass)  temperature/ growth Clone diversity x temperature Positive effect of genotypic diversity on shoot 
densities of eelgrass in high temperature 

Ehlers et al., 2008  

Acropora millepora (coral) 
symbiont  

temperature/ photosynthesis, 
gene expression, growth 

Among clonal lineages with 4 
pairs of branches from 20 colonies 

Unlikely that  thermal adaptation of the coral 
hosts will occur in time to match predicted 
rates of rapid ocean warming 

Császár et al., 2010 

Multistressor studies 
Celleporella hyalina. 
(bryozoan)  

temperature, pH/ growth, 
reproduction 

4 colonies (genotype) cut into 25 
fragments (clones) and exposed to 
temperature x pH treatments 

The presence of relevant levels of genetic 
variation among individuals may enable 
future adaptation via non-mutational natural 
selection to low pH and high temperature 

Pistevos et al., 
2011  

Celleporaria nodulosa 
(bryozoan) 

temperature, pH/growth 7 colonies cut into 18 fragments 
and exposed to temperature x pH 
treatments 

In winter, low pH decreased growth. In 
summer, high temperature decreased growth 
of bryozoan colonies. The effects of 
decreased pH and increased temperature may 
be seasonally dependent and worse during 
summer. 

Durrant et al., 2013 
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Figure 1.6. Laboratory selection experiments are used for taxa that have short 

generation times. Populations are exposed over multiple generations to the stressor of 

interest and the remaining genotypes can then be compared to controls to see if they have 

adapted to environmental conditions. Copepod symbol courtesy of the Integration and 

Application Network, University of Maryland Center for Environmental Science 

(ian.umces.edu/symbols/). 
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reallocation of energy resources to maintain reproductive output. However, this came at a 

cost with decrease in somatic growth (Fitzer et al., 2012).  

Laboratory selection experiments have been taken one step further through 

identification of gene differences between the start and end of the adaptation process 

(Lohbeck et al., 2014). Genes related to pH regulation and carbon transport were up-regulated 

in low pH adapted populations which allowed restoration of growth and calcification in the 

coccolithophore Emiliania huxleyi, highlighting the underlying molecular mechanisms related 

to adaptation to low pH (Lohbeck et al., 2014). More recently, laboratory selection 

experiments have been utilized to understand transgenerational effects and their part in 

increasing resilience to ocean change (see below). 

 

1.6.4 Genetic Correlations; Interactions Across Multiple Environments 

Genetic correlations are useful in understanding the performance of genotypes in response to 

different environments and accompany identification of G x E interactions as they help 

understand the relationship across multiple environments (Sgrò and Blows, 2004). For 

example, in multistressor studies, genetic correlations can reveal whether adaptation to both 

stressors can occur simultaneously (Figure 1.7) (Clark et al., 2013; Foo et al., 2012; Foo et 

al., 2014; Sgro and Blows, 2004). A genetic correlation is the proportion of variance that two 

genetic traits share and is central to understanding evolutionary processes (Astles et al., 

2006). A trait expressed in multiple environments is treated as two different traits and so a 

high genetic correlation indicates that the same set of genes influences the two traits similarly 

and that genotypes would be consistent across environments. For example, Clark et al., 

(2013) found positive genetic correlations between 120 hour old embryos of the marine alga 

Homosira banksii grown in various temperature treatments, indicating that genotypes that 

performed well in the control were also those who performed well in elevated temperatures. 

Furthermore, positive genetic correlations have been found for the embryos of the sea urchin 

Centrostephanus rodgersii where embryos that performed best in high temperature scenarios 

also performed best in low pH (Foo et al., 2012). 
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Table 7. Studies with marine animals and plants that use selection experiments with short generation species to test for adaptation to 

ocean change stressors. The stressors tested and biotic trait scored, experimental design and outcome are indicated.   

Species Stressor/Trait Experimental design Outcome Reference
Scottolana Canadensis (copepod) temperature/ growth Northern and southern populations 

reared in different temperature 
scenarios over several generations 

Northern populations locally 
adapted to grow in lower 
temperatures 

Lonsdale and 
Levinton, 1985 

Acartia tsuensis (copepod)  pH/ survival The copepods were grown in low 
pH over two generations 

No effect of low pH with 
copepods, with first and second 
generations developing from eggs 
to adults normally 

Kurihara and 
Ishimatsu, 2008 

Tisbe battagliai (copepod) pH/ naupliar production, 
growth 

The copepods were raised in low 
pH conditions for four generations 

Copepods reallocated energy 
resources with great costs to 
somatic growth 

Fitzer et al., 2012 

Gephyrocapsa oceanica 
(coccolithophorid) 

pH/ growth rate, carbon 
fixation 

The coccolithophores were 
exposed to low pH over 670 
generations 

Selected coccolithophores were 
adapted to low pH conditions 

Jin et al., 2013 

Tigriopus californicus (isopod) temperature/ survival 30 different lines exposed over 10 
generations to increased 
temperature  

Low adaptation potential to 
increased temperature 

Kelly et al., 2011 

Thalassiosira pseudonana (diatom) pH/ photosynthesis Diatoms were exposed to low pH 
conditions over 100 generations 

No evidence of genetic variation 
in low pH conditions  

Crawfurd et al., 2011 

Emiliania huxleyi (coccolithophore) pH/ growth, calcification Exposed populations of clones to 
low pH and assessed growth over 
500 asexual generations 

Growth and calcification in 
selected clones raised in low pH 
was mostly restored 

Lohbeck et al., 2012; 
2014 
 

Daphnia pulex (crustacean) temperature, salinity/ 
metabolism 

Daphnia were raised for six 
generations in various temperature 
and salinity treatments 

The effects of temperature and 
salinity were reduced with each 
generation grown in treatment 
conditions 

Chen and Stillman, 
2012 
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Calanus finmarchicus (copepod) pH/ food availability The copepods were exposed to low 
pH for two generations under 
limited food availability 

The delay in developmental rate 
observed in low pH in F1 
disappeared in the F2 offspring 

Pederson et al., 2014 

 

 

 

 

Figure 1.7. Examples of possible genetic correlations. Genetic correlations calculate the proportion of variance that two traits share. For positive 

genetic correlations (A), similar genes influence both traits. For a correlation of 0 (B), different sets of genes influence both traits. For negative 

genetic correlations (C), performance in trait one will have trade-offs with performance in trait two. 
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With more pronounced G x E interactions, the genetic correlation across the 

environments becomes lower. If the correlation is 0, the performance of a genotype in one 

environment does not predict its performance in another. However, negative genetic 

correlations indicate that performance in one environment has trade-offs with performance in 

the other environment, which is an important prerequisite for evolutionary specialization 

(Figure 1.7) (Eisen and Saxton, 1983). For example, if a negative genetic correlation was 

found for a species regarding performance across decreased pH and increased temperature, it 

is unlikely that adaptation to both stressors simultaneously could occur (Sgrò and Blows, 

2004). Therefore calculating genetic correlations is important because, although genetic 

variance may be present, selection by ocean warming and acidification will only result in 

adaptation if tolerance is unconstrained by negative genetic correlations (Blows and 

Hoffmann, 2005). 

 

1.6.5 Heritability  

Heritability is defined as the proportion of phenotypic variation (VP) due to variation in 

genetic values (VG). Genotypes are not passed on from parents to offspring; it is the alleles at 

the loci that influence different traits that are inherited. The effect a particular allele has on a 

trait depends on that allele's frequency in the population, and the effect of each genotype that 

includes that allele. The additive genetic value of an individual is then the sum of the average 

effects of all the alleles the individual carries (Falconer and Mackay, 1996). According to 

Mendelian principles, one allele from each locus is present in the egg and the sperm, and it is 

in this way that additive genetic values are passed on from parents to offspring. 

Broad-sense heritability of a trait is defined as the proportion of trait variation that is 

due to genetic effects, and thus includes all potential sources of genetic variation (additive, 

maternal, paternal, dominance and epistasis effects).  For example, parents of corals from 

warm locations delivered greater thermotolerance to their offspring compared to parents from 

cooler locations, where broad-sense heritability accounted for 87% of larvae survival (Dixon 

et al., 2015). Narrow-sense heritability is the proportion of genetic variation due to additive 

genetic effects only and describes the degree of resemblance between relatives. A study with 

the polychaete Hydroides elegans calculated the narrow sense heritability of egg size to be 

0.45, which indicates that there is significant potential for egg size to respond to selection 

pressures such as ocean change (Miles et al., 2007). 

There is often no distinction made between broad and narrow sense heritability, 

however narrow-sense is most commonly used in animal and plant selection programs 
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because the response to selection depends on only additive genetic variance (Falconer and 

Mackay, 1996; Hill et al., 2008; Lynch and Walsh, 1998). As heritability is calculated as a 

ratio of variance components, the value always lies between 0 and 1, where a value of 1 is 

completely genetic.   

Heritability is estimated by measuring the extent to which the offspring resemble the 

parents (Kruuk et al., 2000; Kruuk, 2004). As it is not often possible to observe similarity 

between two generations (parents and offspring), it is often favourable to measure heritability 

across one generation (Lynch and Walsh, 1998). For studies such as those involving the NCII 

method, the design allows variance to be separated into paternal, maternal, interaction and 

error effects (Lynch and Walsh, 1998). Therefore, heritability can be calculated by 

partitioning total phenotypic variance (VP), i.e. the trait of interest, into genetic (VG) and 

environmental variance (VE) components obtained through analyses of variance (ANOVA). 

Depending on whether the study involves clones as replicates or half-sib and full-sib families, 

this determines which components from the ANOVA represent VG and VE. Then heritability 

can be calculated as VG/VP (Falconer and Mackay, 1996).  

In Sunday et al., (2011), narrow sense heritability was calculated for sea urchins and 

mussels for larval size in a low pH environment. By incorporating the calculation into the 

breeder’s equation to simulate the response to selection, they determined that the sea urchin 

was likely to have a faster evolutionary response than the mussel. Similarly, heritability was 

calculated for sea urchins in multistressor environments in Foo et al., (2014) where the dam 

contribution was much larger at fertilisation than at gastrulation, suggesting that performance 

at the prezygotic stage was dominated by maternal effects. Sire effects remained similar 

throughout both developmental stages.  

For clonal studies, variation within clones gives an estimate of VE where variation 

among colonies is due to VG + VE. Therefore genetic variation among colonies (VG) can be 

estimated by VP – VE. For laboratory selection experiments, similarities between parents and 

offspring can be observed directly (Collins et al., 2014). 

 

1.7 Transgenerational Effects 

Transgenerational effects are effects on offspring phenotype determined from parental 

environmental history. In this case, gene expression patterns are passed from one generation 

to the next and cannot be explained by changes to the DNA sequence. Transgenerational 

effects can result in pre-adapted offspring that exhibit traits associated with increased fitness 

in environmental conditions experienced by their parents. This can be a type of 
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transgenerational plasticity (Figure 1.8; Salinas and Munch 2012) or be due to differential 

selection for favourable alleles in a population of larvae. Transgenerational experiments 

involve exposure of parents to environmental conditions during their reproductive 

conditioning (i.e. gamete development). These parents are used to generate gametes for the 

F1 population. The resultant offspring are then exposed to the environments the parents were 

exposed to, to determine whether parental exposure can influence effects on the offspring 

(Parker et al., 2015). It has been established that the stress response experienced during an 

early life stage can carry over to subsequent stages. For instance, juveniles of the oyster 

Ostrea lurida performed worse in low pH if the larvae were also exposed to low pH 

(Hettinger et al., 2012).  

Several recent studies have investigated transgenerational plasticity in response to 

climate change stressors, especially with fish. In these studies, exposure of parents to 

environmental conditions reduced the negative impacts of the stressors on their offspring 

(Donelson and Munday, 2015; Munday, 2014;  Salinas et al., 2013). Donelson et al., (2011) 

found that the negative effects of warming in a tropical reef fish was completely ameliorated 

when previous generations were exposed to the same elevated temperatures. Similar 

transgenerational plasticity was seen in the minnow Cyprinodon variegatus (Salinas and 

Munch, 2012). For reef fish juveniles, parental exposure to low pH increased juvenile 

survival in low pH conditions, much higher than juveniles whose parents were sourced from 

ambient conditions (Miller et al., 2012). Similar results were also seen for Atlantic silversides 

(Murray et al., 2014) and offspring of the fish Gasterosteus aculeatus (Schade et al., 2014).  

Transgenerational effects can also change with season, where success of offspring of 

the fish Menidia menidia in reduced pH corresponded with pH fluctuations in the parents’ 

habitat at different times of the year (Murray et al., 2014). More recently, the molecular 

processes underlying transgenerational acclimation to increased temperature were 

investigated in tropical reef fish. For offspring whose parents were acclimated to increased 

temperature, there was an upregulation of immune and stress related genes which better 

equipped the juveniles to cope with thermal stress (Veilleux et al., 2015).  

A marine fish that has temperature-dependent sex determination was raised over 

several generations in various ocean warming scenarios (Donelson and Munday, 2015). For 

temperatures of +1.5°C, there was complete restoration of the normal offspring sex ratio of 

0.5 (equal numbers of male and female offspring) after one generation. At +3°C however, 

there was only a limited improvement in sex ratio even after two generations of rearing in 

elevated temperature. In this case the proportion of female offspring was greatly reduced. 
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Therefore transgenerational plasticity can ameliorate effects of ocean warming on the sex 

ratio of the reef fish species that was investigated to some extent but may be limited as 

environmental conditions become more extreme (Donelson and Munday, 2015). 

Climate change transgenerational experiments have also been conducted with marine 

invertebrates. In the Sydney rock oyster, adults exposed to decreased pH for five weeks 

during reproductive conditioning produced larvae with a reduction in development time and 

increased body size when raised in similar conditions (Parker et al., 2012). It is important to 

note that the time parents are acclimated has been shown to give rise to differing responses in 

their offspring. Adults of the sea urchin Psammechinus miliaris acclimated to environmental 

conditions for either 28, 42 or 70 days produced offspring with varying survival rates 

dependent on parental pre-exposure (Suckling et al., 2014a). Exposure of the sea urchin 

Echinometra mathaei to low pH for seven weeks did not improve performance of larvae in 

low pH (Uthicke et al., 2013). Similarly, for the sea urchin S. droebachiensis, fewer offspring 

compared to the control successfully developed into juveniles when exposed to low pH when 

adults were only acclimated for four months. However, when adults were acclimated for 16 

months, there was no difference in larval survival in response to low pH in comparison with 

the control (Dupont et al., 2013). Ideally, acclimation periods for adults should cover the 

minimal length of time needed for negative effects of ocean stressors to disappear, which is 

likely to vary for different species (e.g. Sydney rock oyster: 5 weeks, Green sea urchin: 16 

months; Parker et al., 2012; Dupont et al., 2013). The duration of gametogenesis is a key 

consideration when assessing appropriate acclimation period. 

Carry over effects are not always positive (Parker et al., 2015). For the spiny 

damselfish, parental acclimation did not improve behavioural or sensory performance in 

response to decreased pH (Welch et al., 2014). Genetic adaptation will be essential for this 

species to overcome this negative effect of ocean acidification. This emphasizes that the type 

of trait assessed (e.g. temperature tolerance, calcification, sensory performance) can 

determine the inferences made with respect to the presence of positive or negative 

transgenerational effects. It is important to assess a suite of traits to better understand the 

effects of parental environment on performance and the fitness of offspring (Monaco and 

Helmuth, 2011; Stillman and Paganini, 2015). 
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Figure 1.8 The performance of offspring in a changing ocean can be influenced by both 

genetic effects, and transgenerational effects when their parents have experienced a 

similar environment. Acclimation of parents to experimental conditions erases/reduces the 

influence of physiological history. The parents are conditioned to a new environment during 

gamete development. Performance of the offspring can then be assessed by considering 

morphological traits, changes in physiology and the epigenome. Sea urchin symbol courtesy 

of the Integration and Application Network, University of Maryland Center for 

Environmental Science (ian.umces.edu/symbols/). 
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Female multiple mating, has been identified as a bet hedging strategy that yields 

multigenerational fitness (Garcia-Gonzalez et al., 2015). For the sea urchin H. 

erythrogramma armigera, polyandrous females show maximized chances of offspring 

survival in changing ocean conditions (Garcia-Gonzalez et al., 2015). Mating with multiple 

males creates larvae of greater genetic diversity, increasing the chance that the optimal 

phenotype for survival in environmental conditions will be represented. For offspring of the 

tubeworm Hydroides elegans, performance of offspring from parents acclimated in control 

and low pH environments in the laboratory was mediated by parental acclimation with 

different influences from each gender (Lane et al., 2015). Overall, performance of offspring 

in low pH scenarios were similar regardless of whether the parents were acclimated to control 

or low pH environments. However, the growth rate for offspring of females acclimated to low 

pH conditions decreased in control conditions, a result not found for males (Lane et al., 

2015). This research highlights that transgenerational effects can both facilitate and impede 

genetic evolution (Chevin and Lande, 2010; Merilä, 2015) and this may be driven by gender 

differences and different selection pressures (Lane et al., 2015). 

 

1.8 Multigenerational Effects 

For the majority of transgenerational studies, adults are acclimated in environmental 

conditions and performance of offspring are assessed to determine whether resilience can be 

transferred across a generation (Parker et al., 2015; Salinas and Munch, 2012). Whether these 

positive effects are able to persist into adulthood and further on into the next generation is 

less understood (Parker et al., 2015). 

A study with the copepod Pseudocalanus acuspes raised for two generations in low 

pH treatments found that ocean acidification effects were alleviated. When the parental 

population were acclimated to low pH, subsequent generations showed a recovery in 

metabolism and respiration, measurements which were decreased in offspring whose parents 

were not exposed to low pH (Thor and Dupont, 2015). Furthermore, the fecundity of adults 

was significantly decreased in low pH if parents were not previously exposed to low pH 

(Thor and Dupont, 2015). More recently, Parker et al., (2015) examined whether 

transgenerational effects continued across generations where larvae of the oyster Saccostrea 

glomerata with a prior exposure to decreased pH were raised into adults and spawned, with 

the F2 generation also raised in low pH. Prior history of larval exposure to decreased pH 

carried on into adult hood and resilience of the F2 larvae and juveniles were also increased 
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with lower abnormality seen in decreased pH treatments in comparison to those with no prior 

history of low pH exposure (Parker et al., 2015).  

Parental exposure to climate change can cause transgenerational changes that allow 

offspring to endure stressors, with carry over effects persisting over later life-history stages 

and multiple generations. A caveat with multigenerational experiments though, is that only 

the survivors of previous generations are considered. As stated in Parker et al., 2015, there 

was high mortality (46%) during F1 larvae development which would have resulted in a 

naturally selected population of adults most tolerant to low pH which were then used for the 

F2 generation. 

 

1.9 Epigenetics 

The outcomes of quantitative genetic breeding, multigenerational and transgenerational 

experiments in regimes where climate change stressors are used may be influenced by the 

epigenome (Vandegehucte and Janssen, 2014). For the anemone fish and green sea urchin, 

epigenetic inheritance was identified as the transgenerational mechanism in which parental 

exposure improved offspring performance to low pH (Dupont et al., 2013; Miller et al., 

2012). Transgenerational effects can include epigenetic effects which are heritable changes in 

the genome, without alteration to DNA (Figure 1.8; Burton and Metcalfe, 2014; Turner, 

2009). 

Some examples of mechanisms that can produce such changes include DNA 

methylation and modification of histones which can alter how genes are expressed without 

changing the DNA sequence (Cavalli 2006; Henikoff et al., 2004). DNA methylation is well 

documented in mammals but there is very limited data on invertebrates. Investigation of 

DNA methylation in the oyster Crassostrea gigas revealed that methylation is common in the 

oyster genome (Gavery and Roberts, 2010) where categories of functional genes display 

significantly different levels of methylation, especially with respect to gene families involved 

in stress and environmental responses. DNA methylation has been identified as the 

mechanism in which C. gigas survives changing ocean conditions (Vandegehucte and 

Janssen, 2014). In a study with the Antarctic polychaete Spiophanes tcherniai, embryos were 

raised for one month in either control or increased temperature scenarios (+4°C). DNA 

methylation in the epigenome was much higher for groups of those cultured at increased 

temperature treatments in comparison to the control polychaetes (Marsh and Pasquelone, 

2014). More research into the patterns of methylation is needed though to understand its 

contribution to gene regulation. 
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For Drosophila embryos exposed to heat stress, modification of the histones changed 

the chromatin structure of the DNA resulting in the expression of silenced genes (Seong et 

al., 2011). This also resulted in a phenotype of white eye colour which was often passed on to 

offspring suggesting these epigenetic changes were heritable (Seong et al., 2011).  

It is becoming increasingly evident that environmental history of parents and even 

previous generations (e.g. grandparents) can play a major influence on the phenotype of 

offspring through epigenetic effects (Burton and Metcalfe, 2014; Daxinger and Whitelaw, 

2010; Ho and Burggren, 2010; Marsh and Pasquelone, 2014). Since epigenetic inheritance 

can allow phenotypic plasticity to cross generations, where plastic responses in the parents 

can alter offspring development, plastic responses can allow population to persist in a 

changing environment, especially those changing too fast for genetic adaptation (Lloyd 

Morgan 1896; Merilä, 2012). Therefore, the phenotypic change in a population might not 

always involve adaptive evolution and be entirely mediated by non-genetic factors 

(Bonduriansky and Day, 2009). Considering only genetic variation in adaptive capacity 

studies might not reveal true population persistence, and effects of stressors may be 

overestimated (Sunday et al., 2011; Thor and Dupont, 2015). 

 

1.10 Thesis outline 

Sea urchins provide a tractable system for study of gamete and fertilisation responses. The 

effects of ocean acidification and ocean warming on marine invertebrate gametes have 

mainly focused on the sperm cell. This thesis addresses this issue with an aim to identify 

effects of ocean acidification on the extracellular jelly coat of the egg. We focus on four sea 

urchin species; Centrostephanus rodgersii, Heliocidaris erythrogramma, Heliocidaris 

tuberculata, Echinometra mathaei.  

For free spawning invertebrates, male and female gametes can be isolated for 

experimental matings for application in quantitative genetic studies which follow the success 

of the offspring of individual sets of parents and a tractable system to investigate genetic 

variation to climate change stressors. This thesis investigates the genetic basis of resistance to 

warming (+3°C) and acidification (-0.3-0.5 pH units) in early development of sea urchins 

including polar, tropical and temperate species. As ocean change is gradual and animals may 

show potential to adapt, quantitative genetic designs are used here to investigate adaptive 

capacity of echinoid species to ocean acidification and warming.  

The potential for an evolutionary response of early development (to blastulae) of the 

Antarctic sea urchin S. neumayeri to near future ocean warming and acidification was 
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investigated in multifactorial experiments using a NCII breeding design. A similar design (to 

gastrulae) was employed for the tropical sea urchin P. indiana, with incorporation of 

heritability estimates across the different environments tested. For the temperate sea urchin 

H. erythrogramma, genetic variance in response to ocean warming and ocean acidification 

was quantified across the life cycle from fertilisation to the settled juvenile, incorporating 

effects of treatments on calcification in the juveniles. 

 

1.10.1 Aims  

The aims and hypotheses are addressed in four data chapters: 

1. Chapter Two characterises the response of the egg jelly coat in response to ocean 

acidification across four echinoderm species. It was predicted that acidification would 

reduce the size of the jelly coat as low pH water is a routine method to remove the 

jelly coat for developmental biology studies. 

2. Chapter Three investigates the adaptive capacity of early development in the 

Antarctic sea urchin Sterechinus neumayeri to increased temperature and 

acidification. For this highly stenothermal species where isolation in cold waters over 

evolutionary timescales is associated with losses from the genetic tool kit, it was 

predicted that there would be a reduction in the genetic variation required for 

adaptation to a changing ocean. 

3. Chapter Four investigates whether the tropical sea urchin Pseudoboletia indiana 

possesses heritable genetic variation in response to increased temperature and 

acidification. Due to recent expansion to Sydney, it was predicted that warming would 

facilitate development in Sydney populations without deleterious effects. 

4. Chapter Five investigates genetic variation in the sea urchin Heliocidaris 

erythrogramma to ocean change stressors across the life cycle, from fertilisation to 

the settled juvenile. It was predicted that the magnitude of the effect of stressors 

across the various developmental stages would differ, and that as a lecithotrophic 

species with a large egg, H. erythrogramma may show strong maternal effects in 

response to ocean acidification and warming. 
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CHAPTER TWO: CHANGES IN THE JELLY COAT OF ECHINOID EGGS IN 

RESPONSE TO ACIDIFICATION, COULD THIS DRIVE VARIATION IN 

FERTILISATION ASSAYS? 

 

2.1 Abstract 

The egg jelly coat performs important roles in fertilisation as a source of sperm activating 

compounds, in gamete recognition, and in increasing the target size for sperm. The effect of 

ocean acidification (OA) (-0.5 pH units) on jelly coat area was investigated in four echinoids: 

Echinometra mathaei, Heliocidaris tuberculata, Centrostephanus rodgersii and H. 

erythrogramma. After 15 minutes, there was a significant reduction in jelly coat area for E. 

mathaei and C. rodgersii of ~50% at pH 7.6 with no effect of decreased pH for the other two 

species. The reduction in jelly coat size at lower pH suggests that sperm-egg collision rates 

and fertilisation success will be negatively affected by OA for some species. Egg diameter 

and jelly coat area differed between females within species suggesting effects of OA on jelly 

coat size might select against susceptible phenotypes. The results show the importance of 

considering impacts of stressors on the egg. Variability in egg and jelly coat size of females 

within and between species and differences in the response of the jelly coat to reduced pH are 

potential sources of variation. These may contribute to contrasting outcomes of fertilisation in 

OA experiments using the gametes of free spawning marine invertebrates. 

 

2.2 Introduction 

Due to increased atmospheric CO2, the ocean is expected to decrease in surface ocean pH by 

approximately 0.3 pH units by the end of the century (IPCC, 2013) Many marine 

invertebrates release their gametes into the overlying water and so they are directly exposed 

to water conditions (Pechenik, 1987) Echinoderm gametes and fertilisation are commonly 

used in ecotoxicology to assess effects of contaminants, including increased CO2 (Byrne, 

2011, 2012). Virtually all CO2-driven ocean acidification (OA) research on gametes have 

focussed on the sperm cell, investigating sperm motility, respiration, swimming velocity and 

intracellular pH (Martin et al., 2011; Schlegel and Havenhand, 2012; Schlegel et al., 2015). 

Only one study has investigated the effects of OA on the egg cell showing that intracellular 

pH decreased with exposure to pH 7.6 (Bogner et al., 2014). Low pH seawater (~pH 5) is 
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long known to remove the jelly coat (Inoue and Yoshioka, 1980; Podolsky, 2002) indicating 

that it is also important to understand the impacts of OA on eggs.  

The jelly coat that surrounds the eggs of many marine invertebrates (Bonnell et al., 

1994; Farley and Levitan, 2001; Suzuki, 1989) serves many roles before and during 

fertilisation (Kanatani and Nagahama, 1983; Podolsky, 2002). Jelly coats provide an 

economical method to increase egg target size for sperm thereby facilitating fertilisation 

success by increasing sperm-egg collision frequency (Farley and Levitan, 2001; Podolsky, 

2002; Vogel et al., 1982). The jelly coat also contains specific-specific gamete recognition 

compounds that stimulate sperm metabolism and promote the acrosome reaction (AR) in a 

species-specific manner (Matsui et al., 1986). In sea urchins, the egg jelly coat contains short 

peptides, speract and resact, which attract sperm and promote directional swimming and 

orientation of the sperm, increasing the probability of fertilisation (Islam et al., 2008; 

Matsumoto et al., 2003; Miller, 1985). These peptides switch on signaling pathways in the 

sperm, resulting in an increase in intracellular Ca2+ resulting in increased sperm respiration 

and motility (Islam et al., 2008; Matsumoto et al., 2003). 

The egg jelly coat of sea urchins is a polysaccharide fibre network embedded in a 

glycoprotein matrix that hydrates in contact with seawater (Bonnell et al., 1984; Pomin, 2015; 

Suzuki, 1989). These fibre networks reduce the mechanical stress the egg experiences when 

passing through the gonopore during spawning because the jelly coat preferentially 

compresses rather than the egg (Bolton et al., 2000; Thomas and Bolton, 1999). For Arbacia 

punctulata and Lytechinus variegatus, eggs with their jelly coats removed are destroyed at 

levels of shear stress that eggs normally encounter in nature (Thomas and Bolton, 1999). The 

jelly coat also protects against polyspermy where up to 90% of sperm remain trapped in the 

jelly coat, even at high sperm to egg ratios (Bohus-Jensen, 1953; Hagstrom, 1953). Complete 

or partial removal of the jelly coat is required to achieve hybridisation between some sea 

urchin species and thus the jelly coat acts as a barrier preventing interspecies fertilisation 

(Raff et al., 1999). 

A large component of the egg jelly coat consists of sulphated glycans with varying 

numbers of glycosidic linkages and attached sulfate groups (Pomin, 2015; SeGall and 

Lennarz, 1979), where the patterns of glycosidic linkages and sulfation are responsible for the 

species specific induction of the AR (Vilela-Silva et al., 2008). A “pH-jelly water balance” 

model proposed by Shu et al., (2015) suggests that the decrease in jelly coat size at lowered 

pH is due to water loss and depends on the surface charge of the glycans (Menkhorst and 

Selwood, 2008; Shu et al., 2015). 
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In developmental biology research, jelly coats are often removed by exposing eggs for 

several minutes to acidified seawater (pH 5-5.5) through addition of mineral acid (Dale and 

DeFelice, 2011; Podolsky, 2002; Vacquier, 2011). Low pH water solubilises the jelly coat, an 

effect that may also occur with CO2-driven OA exposing molecules that are usually 

concealed in the gel matrix (Dale and DeFelice, 2011). The effect of removal of the jelly coat 

on fertilisation is not well understood, with conflicting results (Podolsky, 2002). Studies that 

reported little or no effects of jelly coat removal involved short experiments with high levels 

of sperm, where removal of the jelly coat increased fertilisation rate by removal of a barrier 

(Hagstrom, 1959; Vacquier et al., 1978). In contrast, studies investigating fertilisation in 

sperm limiting conditions found a decreased fertilisation success (McLaughlin and 

Humphries, 1978; Styan, 1998). Removal of the jelly coat using acidified seawater is 

detrimental for some species, as seen in the clumping of dejellied eggs in Arbacia punctulata 

and Strongylocentrotus franciscanus (Vacquier, 2011). 

Our understanding of the effects of OA on marine invertebrate gametes are based 

almost entirely on the sperm cell, with contrasting behavioural responses of sperm and 

outcomes for fertilisation reported (Martin et al., 2011; Schlegel and Havenhand, 2012; 

Schlegel et al., 2015). Thus far, there is only one OA study on eggs and no studies have 

considered the effects of OA on the egg jelly coat (Bogner et al., 2014). As both gametes 

have to be functional for fertilisation, and the function of the egg and its extracellular coat are 

likely to be affected by OA, this study investigated the effects of OA on the size of the jelly 

coat of four echinoid species with different egg sizes (three with small eggs, 70-111 µm 

diameter: Heliocidaris tuberculata, Centrostephanus rodgersii, Echinometra mathaei, and 

one with large eggs, 390 µm diameter: Heliocidaris erythrogramma). We hypothesised that 

CO2-driven ocean acidification would impact the size of the jelly coat and that this may differ 

between species given the key role that the jelly coat plays in fertilisation. Inherent 

differences in egg jelly coats and their sensitivity to OA may contribute to variation in results 

between studies on marine invertebrates investigating the impact of OA on fertilisation 

(Byrne, 2012).  

 

2.3 Methods 

2.3.1 Study species, collection sites and spawning procedure 

Heliocidaris erythrogramma, Centrostephanus rodgersii and Heliocidaris tuberculata were 

collected from Bottle and Glass Point (33.84833° S, 151.26944° E), Sydney, NSW. Animals 

were transported in ambient seawater in a cool box and transferred promptly to flow through 
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aquaria. Echinometra mathaei were collected from Woolgoolga (30°06′38″S 153°12′02″E) 

and transferred to large flow through aquaria at the National Marine Science Centre in Coffs 

Harbour, NSW. All animals were used for experiments within days of collection. Spawning 

was induced by injection of 2-4 mL of 0.5 M KCl. Eggs were examined for consistency in 

shape and transferred to a beaker (500mL) of fresh filtered seawater (FSW, 1 µm). 

 

2.3.2 Experimental conditions 

Experimental treatments consisted of two pHT levels (Mean ± SE, control 8.00 ± 0.02 and 

7.59 ± 0.01, n= 4) (Table 2.1). Treatments were based on model projections for end of 

century surface ocean waters in south-east Australia (IPCC, 2013) To achieve experimental 

treatments, FSW was bubbled with a mixture of air and CO2 where pH adjustment was 

tracked using a pH meter (WTW—Wissenschaftilich-TechnischeWerkstatten GmbG P4) and 

probe (WTW SenTix 41 pH electrode). Probes were calibrated using NIST high precision 

buffers pH 4.0, 7.0 and 10.0 (ProSciTech). The actual pH on the total scale was determined 

using the spectrophotometric approach with m-cresol purple indicator dye (Acros Organics 

lot AO321770) and a USB4000 spectrophotometer following the procedures outlined in SOP 

6b of Dickson et al., 2007 and the equations of Liu et al., 2011. Experiments were conducted 

at room temperature (Mean = 20.48˚C, SE = 0.49, n = 4). The mean salinity of treatment 

water was 34.7 psu, and dissolved oxygen remained >90%.  

Samples of the water (250 mL) were collected at the conclusion of each experiment 

and fixed with 100 µL of saturated HgCl. These were used to determine total alkalinity (TA) 

by potentiometric titration (Metrohm 888 Titrando) using certified reference standards 

(Dickson et al., 2007). Experimental pCO2 (Table 2.1) were determined from TA, 

temperature, pHT and salinity data using CO2SYS using the dissociation constants of 

Mehrbach et al. 1973 as refitted by Dickson and Millero 1987. 

 

2.3.3 Jelly coat experiments 

For each of the four species, five females were used. For each female, egg counts were 

determined in 100 µL aliquots from the egg suspension and transferred to treatments within 

minutes of spawning. Approximately 200 eggs were placed into containers (100mL glass 

jars) one for each of the two treatments (control pH: 8.1, pH 7.6) and one for each of the five 

time points (0, 5, 10, 15 and 30 minutes). Thus, each time point for each pH treatment had an  
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Table 2.1. Water conditions in jelly coat experiments for each species. Values for pHT 

measured per treatment are shown. pCO2 and the saturation states of calcite (Ca) and 

aragonite (Ar) were calculated in CO2SYS using the data on total alkalinity, temperature 

and salinity. 

 

pH Measure E. mathaei H. tuberculata C. rodgersii H. erythrogramma 
8.1 pHT 8.04 7.95 8.00 8.01 

 pCO2 289.6 375.7 312.0 317.9 
Ca 5.57 4.63 4.69 5.27 
Ar 3.63 3.01 3.04 3.43 

7.6 pHT 7.55 7.62 7.59 7.59 
 pCO2 1076.6 902.5 927.9 978.0 

Ca 2.17 2.43 2.11 2.34 
Ar 1.41 1.58 1.37 1.52 

 TA 2290.22 2305.39 2204.92 2300.65 
 Temperature 21.2 20.2 19.2 21.3 
 Salinity 34.5 34.9 35.0 34.3 
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independent jar. Jelly coats expand to approximately 80% of their maximum thickness within 

minutes of contact with seawater and so the time points covered the greatest changes in jelly 

coat size (Podolsky, 2001). At each time point, a sample of eggs was taken from each pH 

treatment and suspended in Sumi ink (Holbein) so that the jelly coat could be visualised 

microscopically (Leica) (Figure 2.1). This method was repeated for the eggs of five females 

per time point for each of the four species.  

Using Image J (U. S. National Institutes of Health), jelly coat size indices were 

obtained by taking the ratio of the diameter of jelly coat plus egg over the diameter of the egg 

only. As the spawned eggs were consistently spherical, the diameter was determined by 

measuring across the centre of the eggs (Figure 2.1). This allowed the size of the jelly coat to 

be compared across different females, which produce eggs of varying size. To determine 

effects of decreased pH on the jelly coat, the total area of the egg plus jelly coat minus the 

egg area only measured in Image J, provided an estimate of jelly coat area. Egg and jelly coat 

area measurements indicated changes in egg target size (sensu, fertilisation models, Podolsky, 

2004) in response to decreased pH. 

 

2.3.4 Statistical analyses 

To investigate variation in the size of the egg and jelly coat within species, data on the size of 

the egg and jelly coat at time 0 were analysed using a one-way analysis of variance 

(ANOVA) in GMAV42 with female as a random factor. For determining the effect of 

decreased pH on jelly coat area, females represented separate replicates. The mean jelly coat 

size per female (determined from five eggs) was used as the datum for analysis. Data were 

analysed using a three way ANOVA with time and pH as fixed factors, and species as a 

random factor. The three way ANOVA indicated a significant species x pH interaction thus 

data for each species was analysed separately using a two way ANOVA with time and pH as 

fixed factors.43 The assumptions of homogeneity of variance were confirmed using Cochran’s 

test. Where there were significant effects, Student Newman-Keuls (SNK) tests were used for 

post hoc analyses.  

 

2.4 Results 

2.4.1 Comparison of the egg and jelly coat size within species 

For all species except E. mathaei, egg diameter differed significantly among females (small 

egg species ± 9µm; large egg species ± 43µm) (Tables 2.2 & 2.3). For all four species, the  
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Figure 2.1. Eggs of Centrostephanus rodgersii suspended in Sumi Ink allow the 

extracellular jelly coat to be visualised. The total area of the egg plus jelly coat (A) minus 

the egg area only (B) determined in Image J gave an estimate of jelly coat area. An index of 

relative jelly coat size (jelly coat index) was obtained by taking the ratio of (C) diameter of 

jelly coat plus egg over (D) diameter of the egg only. Scale bar = 100µm. 
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jelly coat index, i.e. the size of the jelly coat relative to the egg diameter, significantly 

differed across the five females (Tables 2.2 & 2.4). It appears that as egg diameter increases, 

the relative size of the jelly coat decreases (Table 2.2). 

 

2.4.2 Effects of ocean acidification on jelly coat size 

The three way ANOVA analysis indicated that there was a significant species x pH 

interaction (Table 2.5). Thus to investigate the effects of pH on each species individually, 

separate ANOVA analyses for each species were run.43 

 

2.4.3 Echinometra mathaei 

For E. mathaei, egg jelly coat area in controls remained stable for five minutes and then 

decreased by ~10% at 15 minutes, although this was not significant (Figure 2.2).  There were 

significant effects of decreased pH on the jelly coat area (Table 2.6; Figure 2.2). By five 

minutes in decreased pH, the jelly coat area was reduced by ~45%. There were no significant 

effects of time, or time x pH. Thus, after the jelly coat decreased in size in the first five 

minutes, there was little change thereafter in the low pH treatment. 

 

2.4.4 Heliocidaris tuberculata 

For H. tuberculata, egg jelly coat area in controls decreased by ~10%, five minutes post 

spawning, although this was not significant (Figure 2.2). There were no significant effects of 

decreased pH, time or time x pH. In decreased pH, the egg jelly coat area was reduced but 

this was not significantly different to the reduction seen for the egg jelly coat area in controls 

(Table 2.6; Figure 2.2).  

 

2.4.5 Centrostephanus rodgersii 

For C. rodgersii there were significant effects of time, decreased pH and time x decreased pH 

on egg jelly coat area (Table 2.6; Figure 2.2). The effects of decreased pH on egg jelly coat 

area were evident by five minutes, with a ~45% decrease in jelly coat area. The post hoc tests 

for the time x decreased pH interaction indicated that at 30 minutes, the jelly coat area in 

controls significantly increased by ~20% 30 minutes post spawning however this increase 

was not reflected for egg jelly coats in decreased pH (Figure 2.2).  
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Table 2.2. Egg diameter, egg plus jelly coat diameter and relative size indices of the jelly 

coat for four species of echinoid. For each female, egg diameter and egg plus jelly coat 

diameter were measured for five eggs. 

   

Female Egg diameter (µm±SE)   Range (µm) Egg + JC diameter 

(µm±SE) 

Range (µm) Relative JC size 

index (±SE) 

E. mathaei 

1 70.84 (1.21)  (69-74) 121.91 (5.30)  (109-140) 1.70 (0.06) 

2 69.76 (1.44)  (66-74) 119.47 (2.10)  (112-125) 1.71 (0.03) 

3 70.06 (1.02)  (68-73) 133.74 (1.30)  (132-139) 1.91 (0.03) 

4 67.70 (1.57)  (67-70) 126.58 (3.16)  (115-132) 1.88 (0.08) 

5 70.84 (1.62)  (64-73) 116.90 (3.20)  (108-126) 1.65 (0.04) 

MEAN 69.84 (1.37)  123.72 (3.01)  1.77 (0.05) 

H. tuberculata 

1 93.24 (1.65)  (88-99) 166.74 (2.42)  (160-175) 1.80 (0.04) 

2 90.88 (1.01)  (87-94) 175.50 (5.76)  (162-182) 1.93 (0.06) 

3 96.68 (0.79)  (94-99) 155.25 (2.31)  (151-163) 1.60 (0.03) 

4 93.49 (0.99)  (93-96) 151.76 (7.42)  (135-171) 1.62 (0.064) 

5 97.18 (0.77)  (95-99) 166.48 (5.37)  (152-179) 1.71 (0.05) 

MEAN 94.29 (1.04)  163.15 (4.66)  1.73 (0.05) 

C. rodgersii 

1 117.00 (1.66)  (113-121) 180.91 (2.64)  (171-186) 1.55 (0.02) 

2 118.33 (2.15)  (112-124) 193.07 (2.75)  (187-203) 1.63 (0.01) 

3 104.60 (1.35)  (100-109) 158.04 (2.81)  (150-167) 1.51 (0.02) 

4 108.27 (2.28)  (103-116) 185.74 (5.99)  (182-207) 1.72 (0.06) 

5 116.52 (1.69)  (114-120) 193.29 (2.40)  (187-201) 1.66 (0.04) 

MEAN 112.94 (1.83)  182.21 (3.32)  1.61 (0.03) 

H. erythrogramma 

1 390.46 (5.97)  (375-407) 506.69 (7.94)  (476-521) 1.29 (0.02) 

2 394.25 (8.45)  (368-421) 502.59 (15.61)  (494-532) 1.27 (0.02) 

3 420.92 (12.17)  (423-441) 550.07 (7.90)  (530-575) 1.27 (0.01) 

4 395.05 (8.63)  (368-418) 542.86 (10.07)  (514-569) 1.38 (0.01) 

5 377.27 (5.20)  (340-392) 480.60 (14.91)  (448-525) 1.27 (0.03) 

MEAN 395.59 (8.08)  516.56 (11.29)  1.29 (0.02) 
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Table 2.3. Results of ANOVA analysis on differences in egg diameter across females 

within species. Significant results (p ≤ 0.05) are indicated in bold. 

Source df MS F P 

E. mathaei 

female 4 8.3204 0.84 0.5184 

residual 20 9.9549   

H. tuberculata 

female 4 35.9369 5.99 0.0024 

residual 20 5.9984   

C. rodgersii 

female 4 191.0083 10.82 0.0001 

residual 20 17.6509   

H. erythrogramma 

female 4 2042.4284 9.10 0.0002 

residual 20 224.3471   

 

Table 2.4. Results of ANOVA analysis on differences in relative size indices of the jelly 

coat across females within species. Significant results (p ≤ 0.05) are indicated in bold. 

Source df MS F P 

E. mathaei 

female 4 0.0629 4.81 0.0070 

residual 20 0.0131   

H. tuberculata 

female 4 0.0909 7.32 0.0008 

residual 20 0.0124   

C. rodgersii 

female 4 0.0347 5.42 0.0040 

residual 20    

H. erythrogramma 

female 4 0.0095 4.46 0.0097 

residual 20 0.0021   
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Table 2.5. Results of three way ANOVA analysis on the effects of decreased pH on jelly 

coat area for four echinoid species. Significant results (p ≤ 0.05) are indicated in bold. 

Source df MS F P 

species 3 7303.43 20.71 0.0000 

time 3 71.38 0.42 0.7400 

pH 1 23627.06 2.97 0.1832 

species x time 9 168.02 0.48 0.8882 

species x pH 3 7952.81 22.55 0.0000 

time x pH 3 93.53 0.39 0.7655 

species x time x pH 9 241.99 0.69 0.7203 

residual 128 352.63   

 

Table 2.6. Results of individual two way ANOVA analyses on the effects of decreased 

pH on jelly coat area for four echinoid species. Significant results (p ≤ 0.05) are indicated 

in bold. 

Source df MS F P 

E. mathaei 

time 3 42.21 0.10 0.9583 

pH 1 13143.09 31.76 0.0000 

time x pH 3 223.52 0.54 0.6582 

residual 32 413.79   

H. tuberculata 

time 3 167.22 0.42 0.7370 

pH 1 174.65 0.44 0.5104 

time x pH 3 97.59 0.25 0.86 

residual 32 394.22   

C. rodgersii 

time 3 635.7227 6.17 0.0020 

pH 1 26168.5963 253.82 0.0000 

time x pH 3 339.9145 3.30 0.0328 

residual 32 103.1003   

H. erythrogramma 

time 3 162.90 0.67 0.5750 

pH 1 23.20 0.10 0.7589 

time x pH 3 36.9344 0.15 0.9273 

residual 32 242.12   
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Figure 2.2. The effect of decreased pH on jelly coat area over time for four echinoids. 

The percentage difference relative to the starting area (line from 0) is shown for eggs in the 

different pH treatments. Data represent means for five females. Error bars represent standard 

error. 
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2.4.6 Heliocidaris erythrogramma 

For H. erythrogramma, the egg jelly coat area in controls increased over the first 15 minutes 

followed by a decrease at 30 minutes, however this change in size was not significant (Figure  

2.2). There were no significant effects of decreased pH or time on the jelly coat area with 

jelly coats in decreased pH showing similar behaviour to that of the control (Table 2.6; Figure 

2.2). 

 

2.5 Discussion 

The results here with sea urchin eggs have implications for other marine invertebrate species 

whose eggs are surrounded by a jelly coat, including other echinoderms, molluscs and some 

cnidarians (Farley and Levitan, 2001; Hofmann, 2013; Plickert, 2013; Rosati, 1995; Schatten 

and Chakrabarti, 2013; Suzuki, 1989). The eggs of commercially important species such as 

abalone (Mozingo et al., 2005; Shiroya and Sakai, 1995) and oysters (Loosanoff and Davis, 

1950) have jelly coats similar to those of sea urchins (Suphamungmee et al., 2010). 

Extracellular layers around these eggs play an important role in fertilisation. Abalone sperm 

exposed to egg jelly water increase in motility indicating that the jelly coat contains chemo-

attracting molecules (Suphamungmee et al., 2010). Similar chemo-attractive properties exist 

for the jelly coat of many asteroids (Miller, 1985). Thus chemo-attractants found in the jelly 

coats of echinoids, asteroids and abalone create a chemical sphere around the eggs thereby 

increasing their effective target size for sperm (Jantzen et al., 2001; Miller, 1985). The jelly 

coat around the eggs of abalone is also sensitive to pH (Lewis et al., 1982) and thus may be 

vulnerable to OA, as seen here for sea urchins. In cnidarians the jelly may be less important 

because the jelly coat is extremely thin and transitory (Plickert, 2013; Schatten and 

Chakrabarti, 2013). 

 For two of the echinoid species, C. rodgersii and E. mathaei, we showed that the jelly 

coat decreased in area in response to CO2-driven low pH (pH 7.6), similar to the that seen in 

early studies, albeit at lower pH levels and with addition of mineral acid (pH 5-5.5; e.g. 

Menkhorst and Selwood, 2008; Podolsky, 2002). In contrast, the jelly coat of the eggs of H. 

tuberculata and H. erythrogramma appeared more resilient and was not affected by 

decreased pH. The sea urchins used in this study are often sympatric in the same reefs, and it 

is known that the jelly coat is an important structural barrier in preventing cross fertilisation 

(Raff et al., 1999). The reduction in the size of the jelly coat due to OA could thus have an 

effect on species-specific gamete recognition, influencing gamete wastage and hybridisation 

between species.  
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 Because of the important role of jelly coat constituents in stimulating sperm metabolism 

and species-specific gamete recognition, as well as influencing egg target size, the decrease 

in jelly coat in near future OA conditions would be expected to lead to a decrease in 

fertilisation, especially in sperm-limiting conditions (Farley and Levitan, 2001; Podolsky, 

2002). For the sea urchin L. variegatus, eggs with jelly coats accrue 2.2 more collisions 

across a range of sperm concentrations compared to those without jelly coats. Eggs stripped 

of the jelly coat require double the amount of sperm to accrue 50% fertilisation compared to 

eggs with jelly coats (Farley and Levitan, 2001). Although this was attributed to egg target 

size, the removal of sperm attractants in stripped eggs is also a likely contributing factor. 

Furthermore, sperm have been shown to differentially select eggs based on jelly coat 

chemical cues (Evans et al., 2012) and thus, the reduction of the jelly coat in low pH may 

impact on mate choice. Thus, the reduction in jelly coat size could encourage the mating of 

incompatible partners (Evans et al., 2012). 

 In control pH water, jelly coats across the four echinoids exhibited different behaviour, 

where for some species the jelly coat appeared to increase in size, while others decreased in 

size. The behaviour of the jelly coat thus differed between species and is likely due to 

differences in the chemical constituents of the jelly coat and the dynamics of hydration (Shu 

et al., 2015; Vilela-Silva, 2008). The significant interaction of time x pH found for C. 

rodgersii indicated that decreased pH affects the normal dynamics of hydration because the 

increase in jelly coat area in the controls was not observed for jelly coats in decreased pH. 

Thus, time can have a significant influence on the outcome for jelly coat integrity. This could 

be a factor influencing the variable responses of fertilisation tests within and between species 

in OA conditions as studies investigating the effects of low pH on fertilisation typically score 

fertilisation around five minutes, or at a later stage (Byrne, 2011).  

  It is not known why the jelly coat area of the two Heliocidaris species was not affected 

by decreased pH. The difference in the jelly coat responses to low pH between this genus and 

the other two species is likely due to differences in hydration levels and jelly constituents 

including sialic acid and glycans which are known to differ among species, as shown for sea 

urchins and frogs (Jondeung and Czihak, 1982; Pomin, 2015; Shu et al., 2015). In frogs, these 

components are sensitive to pH (Shu et al., 2015). Furthermore, the surface charge of the 

glycans contributes to the level of hydration in the jelly coat, a feature greatly affected by the 

pH of the water. Intra-specific variation in glycosylation in egg jelly coats could drive 

different levels of hydration (Menkhorst and Selwood, 2008; Shu et al., 2015) and hence the 
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differences in jelly coat size seen within and between species in controls and in the sensitivity 

to decreased pH. 

  For three of the four echinoids examined, there was significant variation in the diameter 

of the eggs between females of the same species. The relative size of the jelly coat also 

significantly differed between females of the same species. The degree to which energy is 

invested in egg jelly coat production varies among echinoids where a greater volume of jelly 

coat correlates with more energy invested in this extracellular structure (Bolton et al., 2002). 

Our study and these previous results show that not all eggs are created equal, and that the 

jelly coat around the eggs of some females might be better able to endure effects of low pH 

contributing to a more resilient fertilisation response in OA conditions. If this is a heritable 

trait, OA might select against the more susceptible phenotypes (Foo et al., 2012, 2014; 

Schlegel and Havenhand, 2012). Environmental stressors such as OA, which have strong 

effects on jelly coat size may induce strong selection on marine species that have egg coats as 

ocean pH changes (Shu et al., 2015).  

 For the frog Rana arvalis, egg coats displayed extensive intra-specific and inter-

population variation in sensitivity to decreased pH. Low pH water caused severe water loss in 

the jelly and subsequently reduced the hatching success of the embryos. However the eggs of 

populations adapted to low pH conditions retained a greater amount of water in their jelly 

coat (Shu et al., 2015). For this frog species, jelly coats mediated the effects of low pH on 

developing embryos. Although this example is for a vertebrate with eggs that are laid in 

freshwater, it is possible that a similar situation has occurred for the sea urchins examined in 

this study. The Heliocidaris species may be already adapted to low pH conditions which in 

turn reduces the sensitivity of their jelly coats to low pH. 

 Inherent variability in the size of eggs and jelly coats of females within and between 

echinoid species and differences in the response of the jelly coat to reduced pH as seen here, 

along with other factors such as differences in gamete compatibility (e.g. bindin-egg bindin 

receptor system, Evans and Sherman, 2013) provide insights into potential sources of 

variation in the contrasting outcomes of OA fertilisation experiments even with the same 

species (Byrne, 2011 review). Another important factor revealed here is the handling of eggs 

in OA experiments, as the time that the eggs are in treatment prior to introduction of sperm 

may influence how much of the jelly coat remains and therefore attractiveness of eggs to 

sperm. This would be especially important in low sperm concentrations.   
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2.5.1 Conclusions 

The jelly coat performs a number of important functions before and during fertilisation 

including an increase in effective egg target size and chemo-attraction of sperm. The decrease 

in jelly coat area observed for species with small eggs could affect all these functions, 

contributing to a reduction in fertilisation in OA conditions. The higher sensitivity of the 

small eggs to low pH may be due to different chemical compositions in the jelly coat and 

different surface charges of the glycans, which help to control the level of hydration in the 

coat. However, as eggs and jelly coats show significant variation between females for all 

species, less susceptible individuals could be selected for in an acidifying ocean. The results 

of these experiments suggest that some species are less vulnerable to OA, at least with respect 

to integrity of the egg jelly coat. This may help protect against the effects of OA from the 

outset of spawning. 
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CHAPTER THREE: CONTRIBUTIONS OF GENETIC AND ENVIRONMENTAL VARIANCE IN EARLY 

DEVELOPMENT OF THE ANTARCTIC SEA URCHIN STERECHINUS NEUMAYERI IN RESPONSE TO 

INCREASED OCEAN TEMPERATURE AND ACIDIFICATION1 

 

3.1 Abstract 

Breeding designs such as the North Carolina II can be used to identify the sources of genetic and 

environmental variances in embryo performance. Here this approach is used for the Antarctic sea 

urchin Sterechinus neumayeri to explore how the contribution of sire and dam can influence the 

performance of cleavage stage embryos and blastulae, and how these contributions differ when 

exposed to stress from increased temperature and acidification. The interrelationship of sire-dam 

effects was also compared across developmental stages. The effects of warming (+3°C) and 

acidification (-0.3 and -0.5 pHT units) on 24 sire-dam crosses was investigated. These stressors 

decreased cleavage success and the percentage of normal blastulae, with a negative interactive 

effect between stressors. The response to these factors differed among the sire-dam pairs 

indicating the influence of gamete compatibility. A positive genetic correlation indicated that 

genotypes that performed well as blastulae in low pH also performed well at increased 

temperatures. Performance at cleavage was a good predictor of performance at the later blastula 

stage. Significant dam by temperature interactions indicated differential performance among 

maternal half-siblings in response to increased temperature. Adaptation depends on additive 

genetic variance for stress tolerance being present in populations, however there were no sire by 

stressor interactions found. This indicates that S. neumayeri will need to rely on phenotypic 

plasticity to persist through an ocean decreasing in pH and warming, at least with respect to early 

development. 

 

 

 

                                                 

1 This chapter is under review: 
Shawna A. Foo, Kate M. Sparks, Sven Uthicke, Sam Karelitz, Mike Barker, Maria Byrne, Miles Lamare. Contributions 
of genetic and environmental variance in early development of the Antarctic sea urchin Sterechinus neumayeri in 
response to increased ocean temperature and acidification. Marine Biology (under review). 
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3.2 Introduction 

Offspring fitness is determined by the intrinsic quality of maternal and paternal haplotypes and 

their interaction (Evans et al., 2008). High latitude marine ecosystems are among the most 

vulnerable to global change and so understanding the contributions of genetic and environmental 

sources of variance in development will provide insights into their vulnerability in a changing 

ocean (Peck, 2005; Turley et al., 2010). The Southern Ocean has the greatest increase in 

anthropogenic CO2 and is predicted to reach a CO2 concentration of 1000 µatm by 2100, 

equivalent to a drop in 0.4 pH units (IPCC 2013). In parallel with ocean acidification, sea surface 

temperatures are expected to increase by a further 2.6˚C by 2100 (IPCC, 2013). Faced with such 

rapid change, polar regions are considered a bellwether for climate induced changes in other 

oceans (Fabry et al., 2008).  

The sea urchin Sterechinus neumayeri is the most abundant echinoid in coastal Antarctica 

and is vital for ecosystem functioning due to its role as a grazer and predator (Bosch et al., 1987). 

In studies of the impacts of warming and/or acidification on fertilisation and development in S. 

neumayeri, where multiple parents were used to generate progeny, fertilisation and early 

development (cleavage) were resilient to near-future acidification and/or warming (pH 7.6/+3˚C) 

(Ericson et al., 2010; Ho et al., 2013). With single sire-dam crosses however, effects varied with 

pairs with deleterious effects evident at pH 7.8 in most crosses, with two pairs exhibiting 

enhanced performance (Sewell et al., 2014). By the blastula stage, deleterious effects are evident 

in embryos reared from fertilisation at 3˚C at all pH levels tested (pH 8, 7.7 and 7.5) (Ericson et 

al., 2012). It is clear that the multiple parent spawning approach provides the group mean 

response but cannot allow assessment of effects on individual genotypes (Schlegel and 

Havenhand, 2012; Sewell et al., 2014). The spawner versus individual genotype experimental 

approaches could influence differences in results, thus an understanding of genetic and 

environmental variances in performance to stressors will help to more accurately identify 

vulnerabilities in a changing ocean. 

Experimental breeding designs where gametes of sires and dams are crossed in all 

combinations allow the contribution of genetic and environmental effects to be estimated through 

the generation of paternal and maternal half siblings, and full siblings (Lynch and Walsh, 1998). 

As DNA is the only contribution from the father to offspring, estimation of paternal variance can 

be used to determine additive genetic variance and species’ adaptive potential, as paternal effects 
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are largely genetic (Lynch and Walsh, 1998). The ability to adapt to a changing environment 

depends on the existence of additive genetic variance present within populations; the proportion 

of genetic variation that responds to natural selection (Billington and Pelham, 1991; Kelly et al., 

2013). There is increasing evidence, however, that the sire component does not exclusively 

represent additive genetic variance (Crean and Bonduriansky, 2014; Jensen et al., 2014; 

Marshall, 2015) and thus estimating genetic variance from paternal lines may not be accurate 

(Crean and Bonduriansky, 2014). It can still offer important insights into adaptive potential by 

providing evidence of whether different genotypes are present in the population.  

 Maternal variance represents both genetic and environmental effects, where components 

cannot be separated in quantitative genetic experiments (Räsänen and Kruuk, 2007). Maternal 

effects are also important in population evolutionary dynamics because they influence the rate 

and direction of genetic change under selection (Falconer, 1989; Hoffmann and Sgro, 2011). 

Significant dam and temperature/pH interactions would indicate effects of both maternal 

provisioning (e.g. environmental) and/or additive genetic variation. Production of offspring of 

higher fitness is also influenced by the genetic compatibility of a sire and dam haplotype (sire x 

dam variance) and represents non-additive genetic effects (Falconer, 1989).  

As the negative effects of changing ocean conditions on marine biota are of major 

concern, it is important to understand the capacity of species to acclimatise and adapt to change 

(Munday et al., 2013; Sunday et al., 2014). For polar species, persistence in changing 

environments may be facilitated and highly depend on phenotypic plasticity to acclimatise to 

changing conditions as Antarctic marine species are assumed to have narrow adaptive capacity 

due to environmental thermal stability over evolutionary timescales (Enzor et al., 2013; Peck, 

2015).  

In this study, the contributions of genetic and environmental variance in early 

development of S. neumayeri to concurrent ocean warming and ocean acidification was assessed 

using the North Carolina II quantitative genetic design, which involves mating a set of Ns sires 

with Nd dams in all combinations (Neff and Pitcher, 2005). Genetic correlations for S. neumayeri 

early embryos were determined to quantify the relationship of the performance of genotypes 

across multiple warming/ acidification environments (Sgro and Blows 2004; Astles et al., 2006; 

Bell, 2013). To determine whether performance at one stage can predict performance later on in 

development, pair performance was contrasted across both stages.  
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3.3 Materials and Methods 

3.3.1 Study species and collection sites  

Sterechinus neumayeri were collected (20-25 m depth) by SCUBA diving from Winter Quarters 

Bay, Ross Island, Antarctica (77˚ 50’ S, 165˚ 0’ E) in November 2013 during their peak 

spawning period (Brockington et al., 2007). Animals were transported in ambient seawater in a 

cool box and transferred to flow through aquaria (100 L; -1.1˚ C) shortly after collection. 

Individuals were spawned for experiments within two days of collection. The animals were 

collected under an Antarctic Marine Living Resources Act 1981 Permit (Permit No: 

AMLR13/R03/Lamare/K068). All applicable international, national, and/or institutional 

guidelines for the care and use of animals were followed. 

 

3.3.2 Fertilisation and the North Carolina II design 

Spawning of S. neumayeri was induced by injection of ~1 ml of 0.5 M KCl and the eggs from 

each dam were placed in separate beakers of fresh, filtered seawater (FSW; 1 µm) following 

routine procedures for sea urchins (Foltz et al., 2004). Sperm from each sire was stored dry in an 

Eppendorf tube at -1.1˚C until use (< 1 hour). Egg density was determined in counts of 100 µl 

aliquots from the egg suspension. Haemocytometer counts of sperm samples diluted with FSW 

were used to determine the amount of sperm solution required to achieve a final sperm 

concentration of 1 x 104 sperm ml-1 and sperm:egg ratio of ~740:1 . Based on the approach in 

Foo et al., (2012, 2014), sire-dam crosses were made in three consecutive experimental runs 

(blocks) with each block using gametes from 2 dams and 4 sires crossed in all combinations. 

Each block thus resulted in 8 full-sib families, resulting in a total of 24 families for the 

experiment. For fertilisation, approximately 11,000 eggs from each dam were placed in 

containers (800 ml glass beakers) containing FSW. Eggs were fertilised and after 10 minutes, the 

water in each container was changed to remove excess sperm and prevent polyspermy. 

Immediately after rinsing, embryos were transferred into rearing containers; 50mL falcon tubes 

(approx. 600 embryos per tube) with mesh covered windows; and exposed to six flow-through 

experimental temperature/pH treatments. Falcon tubes were fully immersed in the six treatment 

tanks. 

Each family was exposed to each of 6 combinations of pH and temperature treatments 

with three replicates for each family by treatment combination. Thus each block used a total of 
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144 falcon tubes (2 dams x 4 sires x 3 pH levels x 2 temperature x 3 replicates). At 24 h and 72 

h, a haphazardly selected subsample of approximately 50 embryos was pipetted from each 

replicate, placed into 1.5 mL eppendorf tubes and fixed with formalin in FSW to a final 

concentration of 2%. The first 30–50 embryos from each tube were examined microscopically 

and scored for successful development. At 24 h, the percentage of cleavage stage embryos was 

determined. Given the slow development of this species, embryos were exposed to treatments for 

24 h to assess the effects of treatments on cleavage. At 72 h, the percentage of blastulae was 

calculated from counts of normal/abnormal and arrested embryos as illustrated in Ericson et al., 

(2010). The number of embryos arrested at fertilisation (e.g., fertilisation envelope only) was low 

in controls (<1%) indicating that polyspermy was minimal.  

 

3.3.3 Experimental conditions – temperature and pH treatments 

Experimental treatments consisted of two temperatures (Mean ± SE, control -0.94 ± 0.001˚C and 

2.02 ± 0.003˚C) and three pHT levels (Mean ± SE, control 7.97 ± 0.02, 7.66 ± 0.04, and 7.50 ± 

0.02, n = 24) in all combinations (Table 3.1). Treatments are within model projections for near 

future (2100) conditions for the Southern Ocean (IPCC 2013). Filtered experimental FSW was 

supplied from a flow through system (ambient pHT 8.00 - 0.94˚C) at Scott Base, Ross Island, 

Antarctica. Water temperature was controlled by aquarium heaters (300W, Jager) and mixers 

supplying 80 L tanks. The experimental pH was regulated by injection of pure CO2 into two of 

these tanks using an automatic CO2 injection system with feedback to solenoids through two 

pHNIST calibrated controllers (TUNZE pH/CO2 controllers 7074/2, TUNZE 

AQUARIENTECHNIK GMBH, Penzberg, Germany) set at ppm equivalent to pH 7.6 and pH 

7.8. Unmanipulated FSW served as the ambient control. The actual pH on the total scale that was 

delivered to treatments and tanks was monitored twice daily (n = 24 per treatment across blocks) 

using the spectrophotometric approach with m-cresol purple indicator dye (Sigma Aldrich batch 

2303-01-7) and a Hitachi U-1100 spectrophotometer (Dickson et al., 2007). Temperature was 

constantly monitored with HOBO loggers at five minute intervals. The salinity of treatment 

water was 35 psu, and dissolved oxygen remained > 90% (n = 24 per treatment across blocks).  

Water samples (1L) were collected at the beginning of each block, filtered through a 0.45 

mm syringe filter, and fixed with 100 µl of saturated HgCl. These were used to determine total 
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Table 3.1. Experimental conditions in experiments with Sterechinus neumayeri embryos. Average values (± SE) of pHT, pCO2) 

were calculated from CO2SYS using data on total alkalinity (TA = 2349.3 ± 0.6 µmol/kg, n = 12), salinity (35 ± 0.00, n = 24) and 

temperature for each treatment.  

 

 -1.0 2 

 pH 8.1 pH 7.75 pH 7.6 pH 8.1 pH 7.75 pH 7.6 

Temp (˚C) -1.01 (0.002) -0.94 (0.002) -0.87 (0.003) 2.07 (0.007) 1.95 (0.005) 2.06 (0.003) 

pHT 8.00 (0.02) 7.67 (0.06) 7.51 (0.03) 7.93 (0.01) 7.65 (0.02) 7.49 (0.01) 

pCO2 442.1 (22.59) 1009.7 (147.45) 1443.8 (106.02) 527.6 (7.45) 1065.3 (48.59) 1532.5 (36.72) 
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alkalinity (TA) by potentiometric titration. Experimental pCO2 and pHT (Table 3.1) was 

determined from TA, temperature, and salinity data using CO2SYS (Pierrot et al., 2006) 

applying the dissociation constants of Mehrbach et al., (1973) as refitted by Dickson and Millero, 

(1987). 

 

3.3.4 Statistical Analyses 

Percentage of cleavage stage embryos and blastulae data were analysed using permutational 

analysis of variance (PERMANOVA; Anderson, 2001) with temperature and pH as fixed factors, 

experimental block as a random factor, and sire and dam as random factors nested within blocks. 

Since some significance tests involved quasi-F ratios (in which significance tests derived from 

the F distribution are unreliable (Quinn and Keough, 2002)), significance of the F statistics was 

calculated using 9999 permutations of the raw data for all factors in the PERMANOVA routine 

of Primer V6 (Anderson et al., 2008). To check that treatments were not different among blocks, 

a three-way ANOVA was run with temperature, pH and block as fixed factors. 

Reaction norms (interaction plots, see Quinn and Keough, 2002) were plotted to visualize 

the interactions between sire genotypes across a range of environments (Lynch and Walsh, 

1998). The genetic correlation of embryo performance (% of normal embryos) across 

temperature and pH environments were used to quantify the genotype x environment interaction 

using variance components derived from restricted error maximum likelihood (REML) estimates 

calculated in the R package lme4 (available at http://cran.r-

project.org/web/packages/lme4/index.html). Variance components for the random factors were 

calculated in a single analysis with all factors (Temperature, pH, Block, Sires, dams). Genetic 

correlations were calculated using the causal variance components associated with the sire 

effects (additive genetic (VA)) and the interaction effects between sires and each of the 

environmental factors of temperature (VAT), pH (VA pH) and both temperature and pH (VAT pH). 

Genetic correlations for the same trait averaged over both types of environments (r*G), the 

genetic correlation for the same trait within one environmental class (i.e. temperature; r*G(T)) and 

the genetic correlation within the other environmental class (i.e. pH; r*G(pH)) were calculated 

using equations from Eisen and Saxton, (1983): 

 

r*G = VA/(VA + VAT + VA pH + VAT pH) 
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r*G(T) = (VA + VAT)/(VA + VAT + VA pH + VAT pH) 

r*G(pH) = (VA + VA pH)/(VA + VAT + VA pH + VAT pH) 

 

Linear regression analyses were performed in Microsoft Excel (2013) to assess the relationship 

between performance across the two different life history stages; cleavage and blastula using 

percentage performance data for each pair over both stages over the six treatments. 

 

3.4 Results 

3.4.1 Cleavage stage embryos  

For embryos collected 24 h post-fertilisation, decreased pH had a significant effect on cleavage 

success (= percentage of cleavage stage embryos) with a significant interactive effect with 

increased temperature (PERMANOVA, Figure 3.1; Table 3.2). As displayed in the box and 

whisker plots, the percentage of cleavage stage embryos in control conditions was 88% and this 

was reduced to 84% and 83% in pH 7.8 and 7.6 respectively. At 3 ˚C, the percentage of cleavage 

stage embryos was 82%. When coupled with low pH, the percentage of cleavage stage embryos 

was unchanged at pH 7.8 (82%) but further reduced at pH 7.6 (79%) showing the negative 

synergistic effect of both stressors and exemplifying the temperature x pH interaction (Figure 

3.1; Table 3.2).  

There were significant sire x dam (pair), and sire x dam x temp x pH interactions 

showing the influence of parental combinations, resulting in variable responses among families 

to the same treatment as displayed in the scatter plot (Table 3.2; Figure 3.2). For example, pair 

24 showed only a 4% reduction in performance in pH 7.6/+3 ˚C compared to 23% reduction for 

pair 14. Dam identity also influenced cleavage success and contributed the second highest 

percentage (22%) of variance at this developmental stage. The block x temperature interaction 

found may be due to the different performances of sire and dam to temperature within each block 

as temperature treatments were consistent across blocks (see Table 3.3). Genetic correlations 

were not calculated at this stage as there were no significant sire effects. 

 

3.4.2 Blastulae 

At ambient temperatures, decreased pH significantly reduced the percentage of normal blastulae 

from 86% to 79% (ANOVA, Table 3.4, Figure 3.3). The box and whisker plots show that when 
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low pH was coupled with +3˚C, the percentage of blastulae was further reduced to 80% and 77% 

in pH 7.8 and 7.6 respectively. The block x temperature x pH interaction found is likely to be 

due to the different interactive effects of stressors on performances of sire and dam within each 

block as treatments were consistent across blocks (see Tables 3.3 and 3.5).  

The effects of sire and dam on the percentage of normal blastulae were significant. Dam 

contributed the highest percentage (38%) of variance. This maternal effect indicates the presence 

of both additive genetic and environmental effects (Table 3.4). Furthermore, the interaction 

between dam and temperature was significant where different slopes in the reaction norm show 

that progeny of some dams performed worse in high temperature, while some benefitted in the 

same treatment (Figure 3.4). Sire accounted for 1.4% of the total variance however no sire x 

stressor interactions were found. 

The genetic correlation (r*G) in the blastula trait across the temperature/pH environments 

based on paternal half siblings was 0.34. This indicates that the half siblings that were less 

sensitive to increased temperature performed the same in decreased pH. There were also positive 

genetic correlations across the two temperature levels (r*G(t) = 0.34) and across the three pH 

levels (r*G(pH) = 0.81). Thus, half siblings that performed well at control temperatures also 

performed the best in high temperatures and likewise for pH. 

 

3.4.3 How does performance at the blastula stage compare with performance at cleavage? 

To address the notion that progeny of pairs perform consistently across developmental stages, 

scatter plots of the relationship between fertilisation success and percentage of normal blastula 

were plotted. Pairs were shown to perform consistently across all environments with significant 

positive correlations shown for all environments (Figure 3.5; Table 3.6). R2 values for scatter 

plots ranged from 0.17 to 0.32 across treatments (Figure 3.5). Thus, genotypes that performed 

well at cleavage were good genotypes as blastulae across all temperature and pH environments 

tested.  
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Figure 3.1. Percentage of Sterechinus neumayeri cleavage stage embryos across 24 pairs in the 

six experimental treatments. The solid bar represents the median, with the box representing the 

25th and 75th percentiles, the whiskers the 1.5 interquartile range, and outliers indicated by dots. 

 

 

 

 

 

 

 



86 

 

 

Figure 3.2. Scatter plot showing the difference in percentage of cleavage with respect to the control treatment in 24 different 

Sterechinus neumayeri sire-dam pairs across five experimental temperature-pH treatments. Negative effects are indicated by data 

below the x axis with positive effects of treatment above the x axis from left to right. Pairs are illustrated from the best to the worst 

performing. 
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Table 3.2. Permutational ANOVA of percentage cleavage stage embryos of Sterechinus 

neumayeri in single dam-sire crosses across various temperature (Te) and pH conditions. 

Temperature and pH were fixed factors, with experimental block (Bl) as a random factor, and 

sire (Ma) and dam (Fe) identity as random factors nested within block. The percentage of total 

variance from REML estimates of variance components are shown for random factors (nt = not 

tested). Significant effects are shown in bold. 

 

Source df MS F P %  
Fixed effects 

Te 1 2943.3 3.3071 0.2261 nt 
pH 2 846.52 22.111 0.0106 nt 
TexpH 2 226.42 8.978 0.0328 nt 

Random effects 
Bl 2 5907.3 3.0081 0.0599 24.58 
Ma(Bl) 9 78.409 1.0202 0.4919 <0.01 
Fe(Bl) 3 1916.3 25.076 0.0002 21.92 
BlxTe 2 892.34 6.5072 0.0054 12.37 
BlxpH 4 38.29 0.53971 0.875 <0.01 
Ma(Bl)xFe(Bl) 9 76.857 2.0711 0.0336 1.95 
Ma(Bl)xTe 9 24.33 0.69293 0.7068 <0.01 
Ma(Bl)xpH 18 46.03 1.0749 0.434 <0.01 
Fe(Bl)xTe 3 118.66 3.3772 0.0678 1.63 
Fe(Bl)xpH 6 103.92 2.4313 0.0658 1.20 
BlxTexpH 4 24.984 1.7628 0.1303 <0.01 
Ma(Bl)xFe(Bl)xTe 9 35.112 0.9462 0.4964 <0.01 
Ma(Bl)xFe(Bl)xpH 18 42.822 1.154 0.2923 0.76 
Ma(Bl)xTexpH 18 33.878 0.45448 0.9473 <0.01 
Fe(Bl)xTexpH 6 22.349 0.29981 0.9246 <0.01 
Ma(Bl)xFe(Bl)xTexpH 17 74.543 2.0088 0.0122 1.93 
Res 286 37.109   33.66 
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Table 3.3. ANOVA analysis of pH treatments across blocks for Sterechinus neumayeri. 

Two-way ANOVA testing for significant differences in pH(T) among the three pH(T) treatment 

levels (8.0, 7.7, 7.5), across the three experimental periods (blocks), and the interaction of block 

with pH (pH level x block). Seawater pH readings are not transformed, with variances 

homogeneous among pH levels (Levene’s test, p = 0.372) and blocks (Levene’s test, p = 0.947). 

Measurements were normally distributed. 

 

Source df SS F P 
pH level 2 2.947 970.27 <0.001 
Block 2 0.0059 1.948 0.149 
pH level x Block 4 0.0021 0.348 0.844 
Error 86    
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Figure 3.3. Percentage of normal Sterechinus neumayeri blastulae across 24 pairs in the six 

experimental treatments. The solid bar represents the median, with the box representing the 25th 

and 75th percentiles and the whiskers the 1.5 interquartile range. 
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Figure 3.4. Reaction norm showing the responses of Sterechinus neumayeri progeny of six dam 

genotypes to increased temperature. The reaction norm shows the percentage of normal blastulae 

in experimental temperatures pooled for pH. Lines represent the mean percentage of normal 

blastulae for maternal half siblings (n = 6). 
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Table 3.4. Permutational ANOVA of percentage blastulation data of Sterechinus. 

neumayeri in single dam-sire crosses across various temperature (Te) and pH conditions. 

Temperature and pH were fixed factors, with experimental block (Bl) as a random factor, and 

sire (Ma) and dam (Fe) identity as random factors nested within block. The percentage of total 

variance from REML estimates of variance components are shown for random factors (nt = not 

tested). Significant effects are shown in bold. 

 

Source df MS F P %  
Fixed effects

Te 1 351.74 0.69633 0.563 nt 
pH 2 1424.7 108.61 0.0029 nt 
TexpH 2 177.02 8684 0.5582 nt 

Random effects 
Bl 2 2549.2 0.70681 0.6691 <0.01 
Ma(Bl) 9 134.71 5.4419 0.0101 1.37 
Fe(Bl) 3 3517 140.78 0.0001 37.59 
BlxTe 2 506.4 1.1974 0.3843 <0.01 
BlxpH 4 12.963 0.46125 0.935 <0.01 
Ma(Bl)xFe(Bl) 9 24.754 0.54423 0.8405 <0.01 
Ma(Bl)xTe 9 58.284 0.7784 0.6434 <0.01 
Ma(Bl)xpH 18 94.11 1.4677 0.2108 1.86 
Fe(Bl)xTe 3 428.05 5.7415 0.0166 9.02 
Fe(Bl)xpH 6 72.298 1.1322 0.3833 0.18 
BlxTexpH 4 258.69 3.4892 0.0065 3.03 
Ma(Bl)xFe(Bl)xTe 9 74.876 1.6462 0.099 <0.01 
Ma(Bl)xFe(Bl)xpH 18 64.121 1.4097 0.1254 <0.01 
Ma(Bl)xTexpH 18 61.417 1.1011 0.4229 0.74 
Fe(Bl)xTexpH 6 29.588 0.53049 0.7816 <0.01 
Ma(Bl)xFe(Bl)xTexpH 17 55.776 1.2262 0.2383 2.65 
Res 286 45.485  43.56 

 

 

 

 

 

 

 

 



92 

 

Table 3.5. ANOVA analysis of temperature treatments across blocks for Sterechinus 

neumayeri. Two-way ANOVA testing for significant differences in temperature between the two 

treatment levels (-1, 2 ˚C), across the three experimental periods (blocks), and the interaction of 

block with temperature (temp x block). Seawater temperatures readings are not transformed, with 

variances homogeneous among pH level (Levene’s test, p = 0.717) and among blocks (Levene’s 

test, p = 0.390). Measurements were normally distributed. 

Source df SS F P 
Temp 2 0.149 0.038 0.967 
Block 2 0.389 0.088 0.9152 
Temp x Block 4 0.225 0.026 0.998 
Error 14    
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3.5 Discussion 

For S. neumayeri, decreased pH significantly reduced cleavage success, the magnitude of which 

depended on the individual pair indicating the importance of sire-dam compatibility, a feature 

characteristic of sea urchin fertilisation. For later development, the percentage of normal 

blastulae was reduced in ocean acidification scenarios. Significant dam by temperature 

interactions indicated differential performance among maternal half-siblings in response to 

increased temperature. On the other hand, no significant sire by stressor interactions were found. 

As adaptation depends on additive genetic variance for stress tolerance being present in 

populations, this may mean that at least with respect to early development, S. neumayeri will 

need to rely on maternal effects to persist through an ocean decreasing in pH and warming. 

 

3.5.1 Contributions of genetic and environmental variance across early development 

Previous studies on S. neumayeri using embryos generated from multiple parents, found that 

fertilisation and early development were resilient to future changes (Ericson et al., 2010; Ho et 

al., 2013). In contrast, with single sire-dam crosses, results indicate significant effects of 

decreased pH on the percentage of cleavage stage embryos, with significant influences of dam 

and combination of sire and dam. This is likely due to not only differences in experimental 

design, but an effect of differences in gamete compatibility typical of sea urchin fertilisation 

(Palumbi, 1999, Schlegel and Havenhand, 2012; Sewell et al., 2014). The magnitude of the 

response to increased temperature and acidification differed among sire-dam pairs, with three 

pairs exhibiting slightly positive responses to decreased pH scenarios, similar to that found by 

Sewell et al., (2014) for fertilisation in S. neumayeri. The significant contribution of dam to 

embryo performance may be due to the presence of maternal protective factors (e.g. stress 

proteins) loaded into sea urchin eggs during oogenesis (Hamdoun and Epel, 2007). For 

Sterechinus neumayeri, maternal protective factors are important in reducing oxidative damage 

to the lipids of embryos where adult sea urchins exposed to oxidative stress produce eggs with 

greater levels of antioxidants (Lister et al., 2015). 
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Figure 3.5. Scatter plots of the relationship between pair performance at cleavage (y-axis) and at blastulation (x-axis) for Sterechinus 

neumayeri. Each point represents the mean performance of an individual pair in each treatment across both stages. Positive 

relationships were evident for all treatments: pH 8.1/-1˚C (R2 = 0.24, p = 0.01), pH 8.1/+3˚C (R2 = 0.17, p = 0.04), pH 7.8/-1˚C (R2 = 

0.32, p = 0.004), pH 7.8/+3˚C (R2 = 0.18, p = 0.04), pH 7.6/-1˚C treatments (R2 = 0.24, p = 0.01) and pH 7.6/+3˚C treatments (R2 = 

0.17, p = 0.04). 
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Table 3.6: Linear regression analyses of the relationship between pair performance at 

cleavage and at blastulation across treatments for Sterechinus neumayeri. Significant effects 

are shown in bold. 

 

Treatment df SS F P 
pH 8.1/-1 ˚C 1 188.40 7.089 0.014 
pH 7.8/-1 ˚C 1 574.59 10.19 0.004 
pH 7.6/-1 ˚C 1 383.71 7.03 0.015 
pH 8.1/2 ˚C 1 248.87 4.61 0.043 
pH 7.8/2 ˚C 1 305.35 4.66 0.042 
pH 7.6/2 ˚C 1 300.08 4.47 0.046 
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 Blastulae were sensitive to increased acidification but not increased temperature. There 

was a significant interaction between dam and temperature where eggs of some dams were more 

sensitive to increased temperature than others. This could be due to both genetic and 

environmental effects. Therefore, dams may buffer embryos through phenotypic plasticity and 

impact the rate of selection from ocean change stressors (Räsänen and Kruuk, 2007).  

The response of different dam-sire pairs to experimental treatments differed in the 

magnitude of the effect on percentage development. These effects of parental combination could 

help to buffer the effects of ocean change. The identity of sire significantly contributed to the 

development of progeny indicating the presence of additive genetic variance in blastulation of S. 

neumayeri in control scenarios. However there were no sire by stressor interactions found which 

may indicate limited selection of genotypes in response to warming and acidification. In 

response to the effects of warming and acidification, animals have shown mixed responses in the 

amount of additive genetic variance present. The lack of additive genetic variance in response to 

stressors found for S. neumayeri could be due to evolution in a stenothermal environment where 

isolation in cold waters over evolutionary timescales is also associated with other losses from the 

genetic tool kit (Harrison and Gerstein, 2002; Hoffmann and Willi, 2008). 

The temperate sea urchin Centrostephanus rodgersii and the tropical sea urchin 

Pseudoboletia indiana showed great additive genetic variation in the responses of each genotype 

to pH, temperature and pH x temperature (Foo et al., 2012, 2014). In single stressor studies, the 

sea urchins Strongylocentrotus franciscanus and S. purpuratus exhibited high genetic variation 

in larval growth in response to low pH conditions (Sunday et al., 2011; Kelly et al., 2013).  

These three species inhabit regions which experience greater natural fluctuations in pH and 

temperature (Hofmann et al., 2013) than S. neumayeri, potentially influencing the genetic 

variance seen in response to the stressors (Etterson and Shaw, 2001).  

On the other hand, family lines of the copepod Tigriopus californicus exposed to thermal 

gradients showed no additive genetic variation in their response to increased temperature (Kelly 

et al., 2011). Similarly, clones of the bryozoan, Celleporaria nodulosa showed no additive 

genetic variation in tolerance to temperature and pH (Durrant et al., 2013). The absence of 

genotype x environment interactions found for S. neumayeri shows that the performance of 

family lines does not differ among the pH/temperature scenarios and could be due to the narrow 

geographical ranges that this sea urchin inhabits. As our design consists of 6 dams and 12 sires, 
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resulting in 24 genotypes, this may not have been sufficient enough to detect additive genetic 

effects. A larger design, especially one using many more sires would be more powerful (Conner 

and Hartl, 2004), but would be difficult to achieve. 

As the blastula stage was negatively affected by decreased pH for all S. neumayeri 

genotypes, this developmental stage may represent a bottleneck of sensitivity with negative flow 

on effects for subsequent stages in development. The magnitude of the effects of pH and 

increased temperature was relatively small, with a reduction of 10% in the most extreme 

treatment as compared with the control for both stages. Development to the 3-day old blastula 

stage was investigated, while S. neumayeri has a total pelagic larval duration of up to 115 days 

(Bosch et al., 1987). During this long planktonic phase, seawater conditions directly affect 

development and so with a decrease in normal development noted by day 3, this could have flow 

on effects further down the track (Lamare and Barker, 1999). Larvae of S. neumayeri reared in 

various ocean acidification/warming scenarios have been shown to have significantly shorter 

arms and abnormal changes in body allometry, with consequential effects for feeding and 

swimming (Clark et al., 2009, Byrne et al., 2013; Yu et al., 2013).  

Although the early post-metamorphic settlement stage may be a mortality bottleneck as 

the case for many benthic invertebrates (Gosselin and Qian, 1997), small subadult S. neumayeri 

have been shown to very tolerant of high temperature limits (Peck et al., 2013). Kapsenberg et 

al., (2014) found that ~80% of S. neumayeri embryos that reached the blastulae stage at pH 7.9 

and 7.7 at 2.6˚C survived thermal shock of up to 15˚C. As these temperatures are much higher 

than they ever will experience, this indicates that survivors may be relatively robust to 

environmental stress albeit in acute scenarios. After acclimation of adult S. neumayeri to 

increased temperature (+2˚C) and deceased pH (-03–0.5 units) for 6-8 months, there were no 

detectable effects of stressors on growth, feeding or behaviour (Suckling et al., 2015).  

There was a genetic correlation of 0.34 for the blastulation trait between increased 

temperature and decreased pH treatments. Positive correlations indicate that selection on one 

trait is not constrained by selection on the other trait, which is the case for negative correlations. 

This means that overall, the progeny of parents that performed the best in the lower pH 

environment also performed the best in the warmer environment. This may be due to an overlap 

in the gene sets that contribute to genetic variation in performance in response to these two 

stressors (Via and Lande, 1985; Sgro and Blows, 2004). There were also positive genetic 
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correlations among the three levels of pH indicating that genotypes that performed the best in the 

control conditions also performed the best in the stressed pH environment and similarly for the 

different temperature environments.  

 

3.5.2 Linking performance across pre and post-zygotic developmental stages 

As found for S. neumayeri, it is often assumed that certain genotypes that perform the best during 

early development will continue to have superior performance across all developmental stages 

(Marshall and Keough, 2008). In contrast, for the tropical sea urchin Pseudoboletia indiana, 

performance across stages became unpredictable in stressful environments. For P. indiana, 

performance of pairs at fertilisation predicted performance at the later stage of gastrulation 

however this relationship was lost in decreased pH scenarios (Foo et al., 2014). 

 The positive genetic correlations for S. neumayeri across all six treatments show that best 

performing genotypes may have already been selected for in this species. This may be due to 

evolution in stable environments where long generation times and slow growth of Antarctic 

invertebrate species have created populations with low genetic diversity adapted to a specific 

environment (Peck, 2005, 2015; Pörtner, 2007). Antarctic organisms have undergone various 

genetic changes and adaptations essential for life in the cold, and these often underlie losses of 

other traits not required under stable thermal conditions found in the Southern Ocean (Pörtner et 

al., 2007; Somero, 2010). As pairs were shown to perform differently across treatments, where 

some even showed enhanced performance in stressful environments, these could be the 

genotypes selected for in the future. 

 

3.5.3 Conclusions 

The contributions of genetic and environmental variance in response to ocean stressors was 

tested here using a North Carolina II design of 24 sire-dam crosses exposed to conditions 

predicted for 2100 (IPCC, 2013). Although decreased pH and increased temperature impacted 

cleavage success and the percentage of normal blastulae, the response to these factors differed 

among the sire-dam pairs. Furthermore, significant dam by temperature interactions indicated 

differential performance among maternal half-siblings in response to increased temperature due 

to both genetic and environmental effects. A positive genetic correlation indicated that genotypes 

that performed well as blastulae in low pH also performed well at high temperatures. 
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Performance at cleavage was a good predictor of performance at the later blastula stage. On the 

other hand, there were no sire by environment interactions found indicating limited adaptive 

potential at these stages of development. Thus, at least with respect to early development, S. 

neumayeri will likely need to rely on phenotypic plasticity to persist through an ocean decreasing 

in pH and warming at least in the short term. Dams may buffer embryos through phenotypic 

plasticity and influence selection under ocean change stressors. 
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CHAPTER FOUR: INCREASED TEMPERATURE, BUT NOT ACIDIFICATION, 

ENHANCES FERTILISATION AND DEVELOPMENT IN A TROPICAL URCHIN:  

POTENTIAL FOR ADAPTATION TO A TROPICALIZED EASTERN AUSTRALIA1 

 

4.1 Abstract 

To predict effects of global change on marine populations, it is important to measure the 

effects of climate stressors on performance and potential for adaptation. Adaptation depends 

on heritable genetic variance for stress tolerance being present in populations. We determined 

effects of near-future ocean conditions on fertilisation success of the sea urchin 

Pseudoboletia indiana. In 16 multiple dam-sire crosses, we quantified genetic variation in 

tolerance of warming (+3°C) and acidification (-0.3-0.5 pH units) at the gastrulation stage. 

Ocean acidification decreased fertilisation across all dam-sire combinations with effects of 

pH significantly differing among the pairings. Decreased pH reduced the percentage of 

normal gastrulae with negative effects alleviated by increased temperature. Significant sire by 

environment interactions indicated the presence of heritable variation in tolerance of stressors 

at gastrulation and thus the potential for selection of resistant genotypes, which may enhance 

population persistence. A low genetic correlation indicated that genotypes that performed 

well at gastrulation in low pH did not necessarily perform well at higher temperatures. 

Furthermore, performance at fertilisation was not necessarily a good predictor of performance 

at the later stage of gastrulation. Southern range edge populations of Pseudoboletia indiana 

may benefit from future warming with potential for extension of their distribution in south 

east Australia.  

 

4.2 Introduction 

Anthropogenic CO2 emissions are causing the climate in the ocean to change at an 

unprecedented rate (Doney et al., 2012). Many studies show the deleterious effects of 

concurrent ocean warming and acidification on early development of marine organisms 

(reviews: Byrne 2011; Byrne and Przewalski 2013). Populations can respond to climate 
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change through shifts in distribution, phenotypic plasticity and/or genetic adaptation or 

otherwise risk extinction. Predicting the prospects for long-term persistence in marine 

populations requires a better understanding of the capacity for phenotypic adjustment, a 

plastic response to environmental changes, and adaptation, a genetic response (Yeh and Price 

2004; Gienapp et al., 2008; Hoffman and Sgro 2011; Hansen et al., 2012). 

Shifts in distribution allow species to track favourable environmental conditions. In 

response to ocean warming, poleward range shifts have been observed in marine species 

including fish, plankton, sea urchins and macroalgae (Perry et al., 2005; Parmesan 2006; Ling 

et al., 2009; Wernberg et al., 2011; Poloczanska et al., 2013). Some species however, have a 

limited ability to shift their distributions in the time frames needed due to constraints such as 

limited dispersal potential, long generation times and lack of suitable habitat to migrate to 

(Hansen et al., 2012). For these species, the ability to produce multiple phenotypes under 

different conditions (phenotypic plasticity) can facilitate persistence in changing 

environments (Scheiner 1993; Via et al., 1995). Phenotypic plasticity may thus convey short 

term tolerance to climate change stressors providing a temporal window for adaptive genetic 

change to occur (Thompson 1991; Chevin et al., 2010).Long term persistence of populations 

will likely depend on genetic adaptation in the face of ocean change.  

To predict whether marine populations will persist, it is important to determine the 

effects of ocean change stressors on performance, and the potential for adaptation which is 

dependent on the levels of heritable variation for stress tolerance. Taxa like sea urchins where 

male and female gametes can be isolated for experimental matings, provide a tractable and 

controllable model system for quantifying the contribution of heritable genetic variation to 

the overall phenotypic variation. Sires are considered to only contribute genetic effects to 

offspring performance (but see Crean et al., 2013) and so sire x environment interactions can 

be used to determine the presence of additive genetic variation in the response of offspring to 

environmental change (Lynch and Walsh 1998). On the other hand, dam effects include both 

additive genetic effects and environmental effects such as variation in egg provisioning 

(Mousseau and Fox 1998).  

Despite the clear need to understand genetic variation in stress tolerance present in 

marine populations (Munday et al., 2013; Sunday et al., 2013), relatively few studies have 

used the tools of quantitative genetics in global change studies with marine organisms. 

Results to date indicate mixed outcomes for populations with respect to the presence of 

additive genetic variation in response to stressful environments. The copepod Tigriopus 

californicus showed little adaptive potential in response to a selection regime of increased 
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temperature (Kelly et al., 2012). Similarly, the bryozoan, Celleporaria nodulosa showed no 

variation in tolerance to temperature and pH among clones (Durrant et al., 2013). On the 

other hand, studies on sea urchins, mussels, bryozoans and macroalgae have found significant 

levels of variation among genotypes, providing the potential for adaptation to ocean warming 

and acidification (Pistevos 2011; Sunday et al., 2012; Foo et al., 2012; Kelly et al., 2013; 

Clark et al., 2013). These studies have largely investigated adaptation to a single stressor 

(temperature: Meyer et al., 2009, Kelly et al., 2012; Clark et al., 2013; acidification: Sunday 

et al., 2012; Kelly et al., 2013; Pespeni et al., 2013; Sunday et al., 2013) with three studies 

investigating the response to both stressors concurrently (Foo et al., 2012; Pistevos et al., 

2011; Durrant et al., 2013). Thus, we have limited understanding of possible interactions 

between genotypes and multiple stressors. 

In this study, the potential for adaptation to increased temperature and acidification in 

the tropical sea urchin Pseudoboletia indiana was investigated with a quantitative genetics 

approach using male-female crosses in all combinations of parents under warming-

acidification regimes. This species has a broad Indo Pacific distribution, from Madagascar to 

Hawaii and Easter Island and from Japan to Australia (Turner and Graham 2003). With its 

recent poleward extension into the Tasman Sea (Pope 1964; Australian Museum records), P. 

indiana is also found in the warm temperate waters of Sydney Harbour representing its 

southern range end. In east Australia, poleward range extension of tropical species is 

occurring due to increased southerly flow of the East Australian Current and as temperature 

continues to rise, P. indiana and other tropical species have the potential to migrate poleward 

in this region and elsewhere (Johnson et al., 2011; Sunday et al., 2013). The impact of 

increased temperature on echinoderm development is well understood, especially for 

temperate species (Review: Byrne 2010).  For several Australian temperate sea urchin 

species, a 3 ˚C increase in temperature is deleterious to early development (Foo et al., 2012; 

Byrne 2012). Therefore, it is of interest to assess the effects of regional ocean warming on 

populations of a tropical sea urchin species at its warm temperate edge.  

The responses of echinoderm fertilisation to increased acidification and temperature 

have been mixed with outcomes depending on the species and whether the experimental 

design incorporated multiple male and female parents (spawner population approach) or 

individual pair responses (Byrne 2011,12; Schlegal et al., 2012). While  experimental designs 

that pool multiple males and females find that fertilisation is fairly robust todecreased pH, 

results withsingle male-female crosses aremore variable (Foo 2012; Schlegal et al., 2012; 

Sewell et al., 2014). In sea urchins, fertilisation is mediated by the protein bindin which 
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controls sperm attachment to the egg (Vacquier and Moy 1977). Eggs show strong 

discrimination depending on male bindin genotype mating most successfully with sperm 

having a similar bindin genotype to the egg (Palumbi 1999; Zigler 2008; Evans and Sherman, 

2013). Intense sperm competition at fertilisation and differences in compatibility between 

parental haplotypes are non-additive genetic differences  and can explain the differences in 

experimental outcomes using multiple males/females vs individual pairs. 

Here, we use the North Carolina II quantitative genetic design (Lynch and Walsh 

1998), where sires and dams are mated in all combinations to determine if additive genetic 

variance underlies the tolerance of P. indiana embryos to ocean change scenarios predicted 

for this region for 2060 and beyond (Hobday and Lough 2011; IPCC 2014). Maternal 

influence wanes as the zygotic genome takes over in sea urchin development soon after 

fertilisation (Tadros and Lipschitz 2009; Hamdoun and Epel 2007). Thus while fertilisation 

was undertaken in experimental conditions to better reflect future scenarios, genetic 

performance was assessed at the embryo stage with respect to the contributions of sire and 

dam to determine if P. indiana has the additive genetic variance required to adapt changing 

ocean conditions. Furthermore, investigating the performance of genotypes across multiple 

environments, as in this study, allows calculation of genetic correlations among traits, the 

proportion of variance that two genetic traits share (Sgro and Blows, 2004). We addressed the 

following questions (1) Is fertilisation robust across future ocean change scenarios? (2) Does 

the performance of pairs differ across the different treatments? (3) Will the percentage of 

normal gastrulae be reduced in ocean warming and ocean acidification scenarios? (4) How 

does performance of genotypes among treatments compare across two stages (fertilisation 

and gastrulation)  and (5) Will significant additive genetic variation (significant interactions 

of sire with warming and acidification treatments) facilitate persistence of P. indiana? 

 

4.3 Materials and methods 

4.3.1 Study species and collection sites  

Pseudoboletia indiana was collected from 4-6 m depth at Camp Cove, Sydney Harbour, New 

South Wales (33˚ 50’ 21.32 S, 151˚ 16’42.2 E) in April 2013 during their peak spawning 

period (Zigler et al., 2008). Animals were transported in ambient seawater in a cool box and 

transferred to large flow through aquaria (80 L; 22˚ C) shortly after collection. They were 

used for experiments within days of collection. The temperature during the collection period, 

as indicated by sea surface temperature (SST) recordings during the spawning season, ranged 



104 
 

between 21.5 to 22.5˚ C (http://www.metoc.gov.au/products/data/aussst.php). The animals 

were collected under permit (NSW DPI: P00/0015-6.0). 

 

4.3.2 Fertilisation and the North Carolina II design 

Spawning of P. indiana was induced by injection of 2 – 4 ml of 0.5 M KCl.  Following 

routine procedure, eggs from each female were placed in separate beakers of fresh, filtered 

seawater (FSW; 1 µm). Sperm from each male was stored dry at 4˚C until use. Egg density 

was determined in counts of 100 µl aliquots from the egg suspension. Approximately 200 

eggs were placed in rearing containers (100 ml glass jars) containing experimental seawater 

20 minutes prior to fertilisation. Thus eggs were fertilised in experimental temperature/pH 

conditions (see below). Haemocytometer counts of semen samples diluted with experimental 

FSW were used to determine the amount of sperm solution required to achieve a final sperm 

to egg ratio of 500:1; 1 x 103 sperm/ml. Eggs were fertilised with the sperm solutions and 

after 10 minutes, the water in each jar was changed to remove excess sperm and prevent 

polyspermy.  

Single sire-dam crosses were done in two experimental runs (blocks) with each block 

using gametes from 2 dams and 4 sires crossed in all combinations. Each block thus resulted 

in 8 full-sib families (total of 16 families) and were run concurrently. Each family was 

exposed to each of the 6 combinations of pH and temperature treatments with three replicates 

for each family by treatment combination. Thus each block had a total of 144 jars (2 females 

x 4 males x 3 pH levels x 2 temperature x 3 replicates). At 1 h and 24 h, a haphazardly 

selected sample of approximately 50 embryos was pipetted from the containers, placed into 

tubes and fixed with 2% glutaraldehyde in FSW. The first 30–50 embryos haphazardly 

selected from each tube were examined microscopically (Leica) and scored for successful 

development. At 1 hour, the percentage of successfully fertilised embryos was determined 

based on the presence of a fertilisation envelope and/or cleavage. At 24 hours, the percentage 

of gastrulae was calculated from counts of normal/abnormal and arrested embryos (see 

Gilbert 2000). The number of embryos arrested at fertilisation (e.g., fertilisation envelope 

only) was low (<1%) indicating that polyspermy was minimal. 

 

4.3.3 Experimental conditions 

Experimental treatments consisted of two temperatures (Mean ± SE, control 22.08 ± 0.06 ˚C 

and 25.04 ± 0.04 ˚C) and three pHNIST levels (Mean ± SE, control 8.12 ± 0.004, 7.85 ± 0.031, 

and 7.69 ± 0.006) in all combinations (Table 4.1). Treatments were based on model  
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projections for near future (2060) surface ocean waters in the southeast Australia global 

change hot spot where SST have been warming appreciably for decades (Hobday and Lough 

2011; IPCC 2014). 

Filtered (1 µm) experimental FSW was supplied from a flow through system (ambient 

pHNIST 8.12, 22.1 ˚C) at the Sydney Institute of Marine Science. Water temperature was 

controlled by thermal mixers supplying 80 L header tanks. Experimental pH was controlled 

via a mixed CO2 supply where a pH controller (Parker) regulated the amount of CO2 gas 

supplied into the airline. The required amount of air and CO2 was bubbled through ceramic 

diffusers into the 80L header tanks controlled by an automatic CO2 injection and pCO2 

feedback system (BioSys custom system), set at ppm equivalent to pH 7.6 and pH 7.8. The 

controls were FSW at ambient temperature and pH. .  

Temperature, pH and salinity were measured in all treatments (n = 9 per treatment 

across both blocks) using a pH meter (WTW —Wissenschaftilich-TechnischeWerkstätten 

GmbG P4) and probe (WTW SenTix® 41 pH electrode; precision ± 0.01 pH units). These 

parameters were measured at the beginning of the experiment with the water used to fill jars 

and measured in 8 randomly selected jars from each treatment at the end of the experiment 

(24 hours). The salinity of treatment water was 34 psu, and dissolved oxygen remained > 

90%. Probes were calibrated using NIST high precision buffers pH 4.0, 7.0 and 10.0 

(ProScitec).  

Water samples (250 ml) were collected at the beginning and conclusion of the 

experiment, filtered through a 0.45 mm syringe filter, and fixed with 100 µl of saturated 

HgCl. There were used to determine total alkalinity (TA) by potentiometric titration 

(Metrohm 888 Titrando) using certified reference standards (Dickson et al., 2007) and total 

dissolved carbon (TCO2) using the Apollo SciTech DIC Analyzer AS-C3 

(http://www.apolloscitech.com/DIC.htm). Experimental pCO2 and pHT (Table 4.1) was 

determined from TA, TCO2, temperature, pHNIST and salinity data using CO2SYS (Pierrot et 

al., 2006) using the dissociation constants of Mehrbach et al., 1973 as refitted by Dickson and 

Millero 1987. 
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Table 4.1. Experimental conditions in experiments with Pseudoboletia indiana. Mean values (±SE, n = 9) for pHNIST measured daily per 

treatment is presented with pHT (determined in CO2SYS using data for dissolved inorganic carbon (DIC) and TA) for comparison. pHT, pCO2 

and the saturation states of calcite (ca) and aragonite (ar) were calculated in CO2SYS using data on DIC and total alkalinity (TA = 2258.1 ± 

15.6 µmol/kg, n = 12), salinity (34.1 ± 0.04, n = 12) and temperature for each treatment. 

 

 22˚C 25˚C 

 pH 8.1 pH 7.8 pH 7.6 pH 8.1 pH 7.8 pH 7.6 

Temp 21.81 (0.02) 21.91 (0.01) 22.5 (0.02) 24.77 (0.05) 25.20 (0.00) 25.14 (0.02) 

pHT 8.00 (0.02) 7.86 (0.02) 7.56 (0.03) 7.95 (0.04) 7.69 (0.02) 7.64 (0.01) 

pHNIST 8.08 (0.00) 7.88 (0.00) 7.71 (0.01) 8.11 (0.00) 7.82 (0.00) 7.66 (0.01) 

pCO2 347.75 (2.51) 616.93 (5.59) 923.72 (21.49) 319.00 (3.65) 706.15 (6.18) 1070.67 (14.86) 

Ca  4.84 (0.02) 3.44 (0.02) 2.42 (0.05) 5.76 (0.04) 3.35 (0.02) 2.46 (0.03) 

Ar  3.16 (0.02) 2.25 (0.02) 1.58 (0.03) 3.79 (0.02) 2.21 (0.01) 1.62 (0.02) 
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4.3.4 Statistical analyses 

Percentage fertilisation and percentage of normal gastrulae data were analysed using analysis 

of variance (ANOVA) with temperature and pH as fixed factors, experimental block as a 

random factor, and sire and dam as random factors nested within blocks. Since some 

significance tests involved quasi F ratios (in which significance tests derived from the F 

distribution are unreliable (Quinn and Keough 2002), we calculated significance of the F 

statistics using 9999 permutations of the raw data for all factors in the PERMANOVA routine 

of Primer V6 (Anderson et al., 2008). The assumptions of normality and homogeneity of 

variance were checked by frequency histograms of the residuals and scatter plots of residuals 

versus estimates. The distribution of the residuals was normal and no transformation was 

necessary. 

For the gastrulation trait, the stage by which the zygotic genome is fully operational 

(Tadros and Lipschitz 20009), reaction norms were plotted to visualize the interactions 

between male genotypes across a range of environments (Lynch and Walsh 1998). The 

genetic correlation of embryo performance (% of normal gastrulae) across temperature and 

pH environments were used to quantify the genotype x environment interaction using 

variance components derived from restricted error maximum likelihood (REML) estimates 

calculated in the R package lme4 (available at 

http://cran.rproject.org/web/packages/lme4/index.html). Variance components for the random 

factors were calculated in a single analysis with all factors (Temperature, pH, Block, Males, 

Females). Genetic correlations were calculated using the causal variance components 

associated with the sire effects (additive genetic (VA)) and the interaction effects between 

sires and each of the environmental factors of temperature (VAT), pH (VA pH) and both 

temperature and pH (VAT pH). Genetic correlations for the same trait averaged over both types 

of environments (r*G), the genetic correlation for the same trait within one environmental 

class (i.e. temperature; r*G(T)) and the genetic correlation within the other environmental class 

(i.e. pH; r*G(pH)) were calculated using equations from Eisen and Saxton (1983): 

 

r*G = VA/(VA + VAT + VA pH + VAT pH) 

r*G(T) = (VA + VAT)/(VA + VAT + VA pH + VAT pH) 

r*G(pH) = (VA + VA pH)/(VA + VAT + VA pH + VAT pH) 

 



108 
 

Linear regression analyses were performed to assess the relationship between performance 

across the two different life history stages; fertilisation and gastrulation using percentage 

performance data for each pair over both stages over the six treatments. 

Heritability was estimated using animal, sire and dam models for fertilisation and 

gastrulation data across all treatments (Knott et al., 1995; Lynch and Walsh,1998). The 

animal model considers all relationships in the pedigree and computes additive genetic 

variance based on the additive genetic relationship matrix. A detailed description and 

application of the animal model are given in Kruuk (2004). Multiple observations on the 

same genotype were included in the models as random effects and were used to compute 

repeatability (variation between replicates). Temperature and pH were fixed effects and block 

a random effect. The models were fitting using ASReml (Gilmour et al., 2009). Heritability 

estimates were also calculated for each treatment combination. 

 

4.4 Results 

4.4.1 Effects of increased temperature and decreased pH on fertilisation and the importance 

of pair compatibility 

Fertilisation success in the 16 sire/dam crosses for Pseudoboletia indiana ranged between 

29% and 93% in the control conditions (mean of 63.5% ± SE 4.6). Decreased pH had a 

significant effect in reducing fertilisation success. Both factors were strongly influenced by 

male/female pairings as indicated by significant sire x dam x temp and sire x dam x pH 

interactions (Table 4.2; Fig. 4.1). The sire x dam x temp x pH interaction indicates the effect 

of increased temperature in reducing the negative effect of decreased pH on percentage 

fertilisation (Table 4.2; Fig. 4.1). This is also evident in the scatter plot as seen in the 

comparison of fertilisation in the 22 ˚C /pH 7.6 and 25˚C/7.6 treatments (Fig. 4.1). The most 

extreme pH treatment lowered fertilisation success across all but two pairs showing the 

influence of gamete compatibility resulting in different responses to the same treatment (Fig. 

4.1).  

Sire and dam identity also influenced fertilisation success with significant interactions 

between sire and temperature and between dam, temperature and pH (Table 4.2). The sire x 

temperature interaction indicates that the effect of +3˚C varied among paternal half-siblings. 

Similarly, the effects of pH and temperature varied among maternal half-siblings with an 

increase in fertilisation success at +3˚C and a decrease with lowered pH (Table 4.2). 
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Figure 4.1. The difference in fertilisation success with respect to the control treatment (22 ºC, 

pH 8.1) in 16 different male-female pairs across five experimental treatments for 

Pseudoboletia indiana. Mean fertilisation success per genotype is displayed for the different 

pH levels across the control temperature (a) and increased temperature (b). Symbols above 

the line display higher fertilisation success than the control, while fertilisation success was 

lower than the control for those symbols below the line. Pairs are ranked from the best to the 

worst performing from left to right. 
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Table 4.2. ANOVA of percentage fertilisation data of Pseudoboletia indiana. ANOVA of 

fertilisation data of single dam-sire crosses across various temperature (Te) and pH 

conditions. These were fixed factors, with experimental block (Bl) as a random factor, and 

male (Ma) and female (Fe) identity as random factors nested within block. Significant effects 

are shown in bold (p < 0.05).  

Source df MS F P
Bl 1 94.712 3.35E-02 0.9998 
Te 1 21958 13.714 0.1692 
pH 2 45612 20.5 0.047 
Ma(Bl) 6 1986.6 7.0254 0.0193 
Fe(Bl) 2 9266.1 32.769 0.0012 
BlxTe 1 1601.1 0.76159 0.5789 
BlxpH 2 2225 2.3551 0.0837 
TexpH 2 6921.6 3.7581 0.2195 
Ma(Bl)xFe(Bl) 6 282.77 1.607 0.1482 
Ma(Bl)xTe 6 1934.1 4.63 0.0438 
Ma(Bl)xpH 12 893.52 1.6226 0.2046 
Fe(Bl)xTe 2 716.66 1.7156 0.2522 
Fe(Bl)xpH 4 285.05 0.51764 0.7227 
BlxTexpH 2 1841.8 0.99945 0.4698 
Ma(Bl)xFe(Bl)xTe 6 417.73 2.374 0.0341 
Ma(Bl)xFe(Bl)xpH 12 550.68 3.1295 0.0004 
Ma(Bl)xTexpH 12 261.83 0.52167 0.8594 
Fe(Bl)xTexpH 4 2083.1 4.1505 0.0257 
Ma(Bl)xFe(Bl)xTexpH 12 501.9 2.8523 0.0013 
Res 192 175.96   
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4.4.2 Effects of increased temperature and decreased pH on gastrulation 

Increased temperature significantly increased the percentage of normal gastrulae, with 

temperature increasing performance at the two decreased pH treatments but not at the control 

pH (Table 4.3). The effects of sire and dam on the percentage of normal gastrulae were 

significant as were the interactions between sire and temperature, and dam and temperature. 

The sire by environment interactions are illustrated in reaction norms showing the response 

of paternal half-siblings to pH and temperature treatments (Fig. 4.2). The significant sire x 

temperature interaction indicates that the effect of the + 3 ˚C treatment varied among paternal 

half-sib families, as shown by the different slopes in the reaction norms. Male and female 

compatibility was also important with significant sire x dam, sire x dam x temp, sire x dam x 

pH, and sire x dam x temp x pH interactions (Table 4.3). 

There was a low genetic correlation (r*G) of 0.1 in the gastrulation trait across all 

environments indicating that genotypes that performed well in a particular combination of 

temperatures and pH might not necessarily perform similarly in other environmental 

combinations. However, there were stronger positive genetic correlations across the three 

temperature levels (r*G(t) = 0.47) and across the three pH levels (r*G(pH) = 0.63). Thus, 

genotypes that performed well at control temperatures also performed the best in high 

temperatures and similarly for pH. 
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Table 4.3. ANOVA of percentage of normal gastrulae of Pseudoboletia indiana. ANOVA 

of gastrulation data of single dam-sire crosses across temperature (Te) and pH treatments. 

Temperature and pH are fixed factors, experimental block (Bl) a random factor, and male 

(Ma) and female (Fe) identity random factors nested within block. Significant effects are 

shown in bold (p < 0.05). 

 

Source df MS F P
Bl 1 590.18 0.31628 0.8814 
Te 1 23030 249.9 0.0377 
pH 2 65919 15.575 0.058 
Ma(Bl) 6 1422.8 8.056 0.0116 
Fe(Bl) 2 1001.7 5.6715 0.043 
BlxTe 1 92.157 6.59E-02 0.9977 
BlxpH 2 4232.5 2.8429 0.0464 
TexpH 2 27451 919.88 0.0019 
Ma(Bl)xFe(Bl) 6 176.61 2.2257 0.041 
Ma(Bl)xTe 6 1178.3 6.251 0.0216 
Ma(Bl)xpH 12 1248 2.4223 0.0677 
Fe(Bl)xTe 2 3079.1 16.336 0.0037 
Fe(Bl)xpH 4 422 0.81907 0.53 
BlxTexpH 2 29.841 0.65838 0.7135 
Ma(Bl)xFe(Bl)xTe 6 188.49 2.3754 0.0296 
Ma(Bl)xFe(Bl)xpH 12 515.22 6.493 0.0001 
Ma(Bl)xTexpH 12 280.2 0.39025 0.9441 
Fe(Bl)xTexpH 4 855.69 1.1918 0.3676 
Ma(Bl)xFe(Bl)xTexpH 12 718 9.0486 0.0001 
Res 192 79.35   
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Figure 4.2. Reaction norms showing the responses of the progeny of eight male genotypes to 

increased temperature and reduced pH for Pseudoboletia indiana. The reaction norms show 

the percentage of normal gastrulae in experimental temperatures pooled for pH (A) and in 

experimental pH levels pooled for temperature (B). Lines represent the mean percentage of 

paternal half siblings with standard errors indicated (n = 8).   

 

 

 



114 
 

4.4.3 Does performance at fertilisation predict gastrulation success? 

The relationships between fertilisation success and percentage of normal gastrulae show that 

the pairs did not perform consistently across all environments (Fig. 4.3). A positive 

relationship was evident for the control pH/22.08 ˚C, pH 7.9/+2.99˚C and pH 7.7/+2.99˚C 

environments. Here, genotypes that had a high percentage of fertilisation also had the highest 

percentage of normal gastrulae. However, this does not hold true when decreased pH is 

considered in isolation. Thus, genotypes that perform well at fertilisation were good 

genotypes at gastrulation, but only under certain pH/temperature conditions. 

 

4.4.4 Repeatability and heritability estimates for fertilisation and gastrulation 

The heritability estimate from the animal model at fertilisation was moderate (0.222 ± 0.1), 

contributed mainly by the dam component as the heritability estimate from the sire 

component was zero (Table 4.4). Estimates of repeatability (0.0356 ± 0.0323) and heritability 

(0.062 ± 0.047) from the animal model for gastrulation were quite low, with the heritability 

based on sire component lower when compared to fertilisation (0.094 ± 0.075) albeit with 

equally large standard error. Heritability estimates were also calculated for each of the six 

treatments. However as estimates were quite variable across different models and between 

different treatments these have comparatively large standard errors (Table 4.5).    

 

4.5 Discussion 

This study examined the performance of replicate male-female pairs of Pseudoboletia 

indiana at fertilisation and the potential to adapt to climate change stressors at gastrulation. 

Decreased pH significantly reduced fertilisation success, the magnitude of which depended 

on the individual pair, indicating the importance of pre-zygotic effects and the sperm bindin-

egg bindin receptor system characteristic of sea urchin fertilisation (Palumbi 1999). The 

percentage of normal gastrulae was reduced in ocean acidification scenarios but increased in 

warming scenarios. There was a slight positive genetic correlation between performance in 

increased temperature and decreased pH. Most importantly, the significant interaction 

between male and each stressor indicated the presence of additive genetic variance in the 

response of progeny to increased temperature and acidification. Interestingly, performance at 

fertilisation did not necessarily predict performance at gastrulation. 
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Figure 4.3. Scatter plots of the relationship between pair performance at fertilisation (y-axis) and at gastrulation (x-axis) for Pseudoboletia 

indiana. Each point represents the mean performance of an individual pair in each treatment across both stages. A positive relationship was 

evident for the control pH/control temp (R2 = 0.81, p = 0.000002), pH 7.8/+3˚C (R2 = 0.51, p = 0.002) and pH 7.6/+3˚C treatments (R2 = 0.66, p 

= 0.0001). 
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Table 4.4. Heritability estimates at fertilisation and gastrulation for Pseudoboletia 

indiana. Animal, sire and dam models were used to estimate heritability for fertilisation and 

gastrulation across all treatments. Multiple observations on the same genotype were included 

in the model as random effects and were used to compute repeatability. Temperature and pH 

were fixed effects and experimental block a random effect. The models were fitted using 

ASReml. 

 

 Trait Model Parameter Estimate SE 
Fertilisation IntraFamily Repeatability 0.1932 0.0721 
Fertilisation Animal Heritability 0.2217 0.0951 
Fertilisation Sire Heritability 0.1582 0.1079 
Fertilisation Dam Heritability 0.3251 0.2461 
Gastrula IntraFamily Repeatability 0.0356 0.0323 
Gastrula Animal Heritability 0.0621 0.0472 
Gastrula Sire Heritability 0.0904 0.0754 
Gastrula Dam Heritability 0.0206 0.0423 
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Table 4.5. Heritability estimates at fertilisation and gastrulation for Pseudoboletia 

indiana separated across the six experimental treatments. Animal, sire and dam models 

were used to estimate heritability for fertilisation and gastrulation across each treatment. 

Multiple observations on the same genotype were included in the model as random effects 

and were used to compute repeatability. Temperature and pH were fixed effects and 

experimental block a random effect. The models were fitted using ASReml. 

 

Cleavage stage embryos 

Treatment Model Parameter Estimate SE 

22/8.1 IntraFamily Repeatability 0.3481 0.2137 

 Animal Heritability 0.4581 0.3077 

 Sire Heritability 0.2324 0.2277 

 Dam Heritability 0.9236 0.8808 

22/7.8 IntraFamily Repeatability 0.454 0.2189 

 Animal Heritability 0.6504 0.1356 

 Sire Heritability 0.5087 0.3415 

 Dam Heritability 0.83 0.4861 

22/7.6 IntraFamily Repeatability 0.3454 0.2402 

 Animal Heritability 0.3493 0.2912 

 Sire Heritability 0 0 

 Dam Heritability 1.0973 1.0709 

25/8.1 IntraFamily Repeatability 0.2956 0.1653 

 Animal Heritability 0.3082 0.202 

 Sire Heritability 0.2286 0.2898 

 Dam Heritability 0.3915 0.3678 

25/7.8 IntraFamily Repeatability 0.7922 0.0792 

 Animal Heritability 0 0 

 Sire Heritability 0.509 0.6304 

 Dam Heritability 0 0 

25/7.6 IntraFamily Repeatability 0.6547 0.1176 

 Animal Heritability 0.6328 0.1623 

 Sire Heritability 0.5942 0.3773 

 Dam Heritability 0.6789 0.4653 

Gastrulae    

22/8.1 IntraFamily Repeatability 0.3648 0.2432 
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 Animal Heritability 0.5092 0.3646 

 Sire Heritability 0.3431 0.3043 

 Dam Heritability 0.8666 0.873 

22/7.8 IntraFamily Repeatability 0.7349 0.0966 

 Animal Heritability 0.2946 0.3511 

 Sire Heritability 0.4095 0.5361 

 Dam Heritability 0.2108 0.4083 

22/7.6 IntraFamily Repeatability 0 0 

 Animal Heritability 0 0 

 Sire Heritability 0 0 

 Dam Heritability 0 0 

25/8.1 IntraFamily Repeatability 0.5989 0.2681 

 Animal Heritability 0.1926 0.4094 

 Sire Heritability 0.3911 0.5657 

 Dam Heritability 0.0272 0.3078 

25/7.8 IntraFamily Repeatability 0.8684 0.2079 

 Animal Heritability 0 0 

 Sire Heritability 0.5594 0.7079 

 Dam Heritability 0 0 

25/7.6 IntraFamily Repeatability 0.7118 0.103 

 Animal Heritability 0.3491 0.3280 

 Sire Heritability 0.4223 0.5004 

 Dam Heritability 0.2892 0.4205 
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4.5.1 Fertilisation success: Prezygotic effects 

For P. indiana, fertilisation success decreased at low pH with significant influences of sire, 

dam and combination of sire and dam. For other sea urchin species using the multiple parent 

(population) approach (e.g. Heliocidaris erythrogramma, H. tuberculata), fertilisation is fairly 

robust to future ocean change scenarios (Byrne 2012; Byrne and Przeslawski 2013). For P. 

indiana, this is not the case for single male-female crosses as also found for other sea urchin 

species using a similar approach (Schelgal et al., 2012; Sewell et al., 2014) The multiple 

parent spawning approach does not allow detection of intra-specific variation. To allow a full 

assessment of offspring response to treatments, the genotype of the parents was taken into 

account, as in the design of our experiment.. For P. indiana, none of the males consistently 

performed the best across all treatments indicating there is no universally good male. Reduced 

pH can decrease the number of motile sperm (i.e. moving) in some sea urchins (Schlegal et 

al., 2012) and this may have influenced the results with P. indiana. Swimming speed of sea 

urchin sperm is either not affected (Schelgal et al., 2012) or actually enhanced (Caldwell et 

al., 2011) in ocean acidification scenarios. It should be noted that within-ejaculate variability 

of individual sperm, as shown to be important by Crean et al., (2012) where the offspring of 

the tunicate Styela plicata sired by longer-lived sperm performed better in control conditions, 

remains unexplored for P. indiana. 

Although decreased pH had an overall negative effect on percentage fertilisation, the 

scatter plot revealed that two pairs actually showed a positive response in decreased pH 

conditions with an increase of 36% and 16% compared to the control,  also seen for 

Sterechinus neumeyeri and Centrostephanus rodgersii in response to acidification scenarios 

(Sewell et al., 2014; Foo et al., 2012). As non-additive genetic differences (i.e. non heritable) 

due to parental haplotype compatibility (e.g. sperm bindin – egg bindin receptor system) 

dominates the fertilisation biology of sea urchins (Palumbi 1999; Zigler 2008; Levitan and 

Ferrell 2006) this difference was expected.  

Certain individuals may disproportionately contribute to the success of future 

generations (Schlegal et al., 2012), although following through to gastrulation as in this study 

for P. indiana indicated that this is not straight forward. It is clearly important to follow 

through with zygotic (post-fertilisation) development to better understand adaptive potential 

(e.g Sunday et al., 2012). Furthermore, this is supported by heritability estimates at 

fertilisation where it can be seen that the dam contributes most to heritability at this stage 

compared to the sire component. 
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4.5.2 Gastrulation: Additive genetic variance, genetic correlations and adaptive potential 

At gastrulation (a post-zygotic trait), normal development decreased at low pH for all 

genotypes of P. indiana with warming significantly increasing the percentage of normal 

gastrulae. The interaction between pH and temperature indicated that warming somewhat 

alleviated the effects of decreased pH. If this was a single stressor study, one may have 

concluded that normal development could not occur in a decreased pH environment, but here 

we show that coupled with increased temperature, normal development can occur. For the 

biota of eastern Australia, temperature is the more important and contemporary stressor 

(Hobday and Lough 2011) with negative effects of present day and near future warming 

reported for several echinoderm species (Nguyen et al., 2012). Thus it is interesting that 

decreased pH is the more important negative stressor for P. indiana.  

The significant contribution of sire to progeny performance, and the interaction 

between sire and temperature and with pH at gastrulation indicates the presence of additive 

genetic variation in tolerance to ocean warming and acidification conditions. It can be seen 

that the offspring of some males were more strongly affected by acidification than others but 

only at increased temperatures. Selection mediated by increased temperature and acidification 

would be expected to favour the more tolerant P. indiana genotypes allowing species 

persistence in future ocean change conditions. Most importantly, the significant sire x pH x 

temperature interaction, and non-significant sire x pH interaction indicate that adaptation to 

ocean acidification would not occur in this species in isolation from ocean warming. 

For many echinoderms, maternal effects result in variable egg quality likely due to 

phenotypic effects associated with the maternal nutritive history, egg nutrients and maternal 

environmental history (Byrne et al., 2008, 2011). Normal development in sea urchins is 

influenced by maternal transcripts which may be influenced by maternal stress history 

(Hamdoun and Epel 2007). Thus, the significant interaction between dam and temperature 

where eggs of some females were more susceptible to stressors than others could be due to 

both genotypic and environmental/phenotypic effects.  

Development in P. indiana was enhanced in the +3˚C treatments. If spawning time in 

this species is influenced by temperature, as appears the case for many sea urchins (Byrne 

1999), there is potential that adult P. Indiana may be able to track favourable temperature 

conditions for offspring, to spawn at times to facilitate developmental success, a phenotypic 

adjustment of reproduction. Phenological change in biological events such as spawning is a 

major response to marine global change as seen for diatoms, copepods and fish larvae 
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(Edwards and Richardson 2004). Developmental plasticity may provide short term tolerance 

to climate change allowing the time for adaptive evolution to occur (Sultan 2007). 

Furthermore, epigenetic (non-genetic inheritance) can also affect progeny’s response to 

environmental change (Bonduriansky et al., 2011). The environmental conditions the parent 

experiences can influence parts of its phenotype that can affect the development of its 

progeny (Visser 2008, Bonduriansky and Day 2009).  

 There was a genetic correlation of close to zero for the gastrulation trait among all 

temperature and pH treatments. This means that the progeny of parents that performed the 

best in the lower pH environment did not necessarily mean they performed the best in the 

warmer environment. This may indicate that there is little overlap in the gene sets that 

contribute to genetic variation in performance in response to these two stressors. Thus, 

evolution is not constrained in adapting to both stressors simultaneously. A previous study on 

a temperate sea urchin species found a high positive genetic correlation indicating similar 

gene sets influence performance in both ocean acidification and warming environments, 

which could enhance the speed at which natural selection can occur (Foo et al., 2012). For P. 

indiana there were positive genetic correlations among the three levels of pH indicating that 

genotypes that performed the best in the control conditions also performed the best in the 

stressed pH environment and similarly for the different temperature environments.  

The presence of standing genetic variation as indicated by significant sire x stressor 

interactions, and absence of a trade-off between tolerance to both pH and temperature, 

contributes to the potential of P. indiana to adapt to concurrent ocean acidification and 

warming and adds to the resilience of this important species in a changing ocean. When 

comparing heritability estimates across both stages it can be seen that the dam contribution is 

much larger at fertilisation, suggesting that the pre-zygotic stage is dominated by maternal 

effects. Sire effects remained similar throughout both developmental stages. However 

estimates, especially at gastrulation, were quite low with proportionately large standard errors. 

Moreover, there were large differences in the estimates from animal, sire and dam models. As 

estimates of heritability should be lower as compared to their respective repeatability 

estimates, these results suggest that more data incorporating a greater number of genotypes 

are required to obtain more precise estimates of heritability and to better understand the 

genetic architecture of these traits (Lynch and Walsh, 1998). 
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4.5.3 Linking performance across different life history stages 

When comparing the performance of pairs across fertilisation and gastrulation, there was a 

positive relationship for the control environment, and the two treatments with combined pH 

and increased temperature. Pairs that had the highest fertilisation success in these 

environments also had the highest percentage of normal gastrulae. However, when decreased 

pH is considered in isolation, this does not hold true for pairs with performance being 

unpredictable.  

It is often assumed that certain genotypes that perform the best will continue to have 

superior performance across all developmental stages, e.g. larger larvae in various marine taxa 

typically show higher performance as juveniles and adults (Marshall and Keough 2008). Here 

we show however that pairs that perform best in pre-zygotic stages did not necessarily predict 

their performance in post-zygotic stages, or in stressed conditions. This indicates the lack of 

connection between pair performance at both stages and shows that looking only at prezygotic 

effects (e.g. fertilisation) cannot be used to predict performance. Here we only considered the 

gastrulation trait and the disconnection between fertilisation success and gastrulation success 

for some pairs highlights the importance of considering all developmental stages.  

 

4.5.4 Implications for Pseudoboletia indiana and the tropicalisation of eastern Australia 

The gastrulae stage of many echinoderms is sensitive to warming with an increased 

temperature of 4˚C above ambient being deleterious to many species (Byrne 2011, Byrne et 

al., 2010). In this study however, P. indiana exhibited a higher percentage of normal 

gastrulation at 3˚C above ambient, with this level of warming being beneficial to early 

development. Temperature is likely to have been an important factor in establishing 

populations of this tropical species at its southern range edge in Sydney. Elsewhere in its 

range, P. indiana experiences temperatures 28˚C and above (Clark and Rowe 1971). In 

Sydney, this species spawns in Summer and Autumn at temperatures ranging from 22 to 23 

˚C (Zigler et al., 2012). Although the cool temperature tolerance of development is not 

known, it seems likely that the population in Sydney may be living where temperatures are 

just warm enough for successful development. This is similar for newly established 

Centrostephanus rodgersii populations in Tasmania where they live at their lower limit of 

developmental tolerance (12 ˚C) (Hardy et al., 2014; Ling et al., 2009).  

Ocean warming may facilitate the success of P. indiana in the temperate waters of 

Eastern Australia and may provide an opportunity for poleward range extension as seen with 
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other tropical echinoids and asteroids (Hardy et al., 2014, Pecorino et al., 2013). Tropical 

echinoids tend to have a broader developmental thermal tolerance compared with temperate 

species facilitating poleward range extension to cooler climes (Hardy et al., 2014; Sunday et 

al., 2011). Southerly expansion of P. indiana is possible as there appears to be suitable habitat 

for this rocky reef species. As the latitudinal distribution of many marine species is related to 

the thermal tolerance of planktonic stages, understanding species’ potential for poleward 

range extension with respect to the thermal tolerance of development is key to understanding 

how the seascape will change with further warming and acidification as not all species are 

affected equally (Sunday et al., 2012). 

 In conclusion, early development in P. indiana was sensitive to acidification at pH 7.6 

while warming (+3 ˚C) alleviated the negative effects of acidification at gastrulation. 

Male/female compatibility significantly affected performance however the pairs that 

performed the best in control conditions did not necessarily perform the best in stressed 

environments. Furthermore it was clear that performance of pairs across different 

developmental stages was particularly unpredictable in ocean acidification conditions. Our 

analyses revealed the presence of significant additive genetic variation underlying success at 

gastrulation in response to ocean acidification and warming scenarios. Furthermore, due to P. 

indiana’s increased performance in warmer conditions, this species has potential to expand its 

population in Sydney at its range edge and beyond. The presence of tolerant genotypes 

indicates that Sydney Harbour populations of P. indiana are resilient to +3 ˚C and combined 

with the lack of a negative correlation between tolerance to both decreased pH and warming 

will contribute to the potential of early development in P. indiana to adapt to a changing 

ocean.  In eastern Australia, the Sydney region approximates the southern range edge of many 

tropical sea urchin species (e.g Diadema spp.) (Miskelly 2002), that like P. indiana would be 

expected to have enhanced performance as the ocean warms with potential for population 

expansion locally and extension of their distribution poleward. 
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CHAPTER FIVE: ADAPTIVE CAPACITY OF THE SEA URCHIN 

HELIOCIDARIS ERYTHROGRAMMA TO OCEAN CHANGE: RESPONSES FROM 

FERTILISATION TO THE JUVENILE 

  

5.1 Abstract 

To accurately predict impacts of ocean acidification and warming on the responses of marine 

populations, it is important to determine an organism’s capacity for phenotypic plasticity and 

the potential for genetic adaptation. We determined the effects of near-future acidification 

and warming across the life cycle of Heliocidaris erythrogramma from fertilisation to 

metamorphosis in the progeny of 16 sire-dam crosses. Sources of variation in tolerance to 

warming (+3 °C) and acidification (-0.3-0.5 pH units) were investigated for fertilisation, 

larval success and juvenile metamorphosis. Across all life stages, maternal legacy was 

important, with dam identity significantly interacting with stressors. Across the genotypes 

tested, fertilisation was negatively affected by increased temperature, but not pH. Larval 

development was compromised in low pH, but not temperature. By the settled juvenile stage, 

no impact of warming or acidification was evident and this was likely due to selective 

mortality of sensitive individuals. Across all environments tested, the juveniles exhibited a 

similar ability to calcify. The impact of warming and acidification on development after 

fertilisation was influenced by parental identity, with the offspring of some dam-sire pairs 

more sensitive than others. That the progeny of some sire-dam pairs showed high stress 

tolerance indicates the potential for selection of resistant genotypes and adaptation that could 

facilitate the persistence of H. erythrogramma populations. Performance of progeny at one 

stage could not predict the performance later in development and shows the importance of 

assessing impacts of ocean change across the life cycle of marine invertebrates. 

 

5.2 Introduction  

The world’s oceans are changing due to anthropogenic gas emissions, creating an imperative 

to assess the potential impacts of climate change on marine populations (Byrne, 2012; 

Bernhardt and Leslie, 2013). In response to environmental change, animals can respond by 

shifting their distribution, adjusting their phenotype or genetically adapting (Gienapp et al. 

2008; Hoffmann & Sgro 2011). While shifts in distribution as species track favourable 

environmental conditions are now a global phenomenon (Burrows et al., 2014; Garcia 

Molinos et al., 2015; Sunday et al., 2015), this phenotypic response is not an option for all 
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species, such as those that have restricted dispersal, physical barriers and habitat 

fragmentation (Hansen et al. 2012; Kinlan & Gaines, 2003). For these species, 

acclimatisation to changing conditions and genetic adaptation will be essential for survival 

(Gienapp et al. 2008; Visser, 2008). Acclimatisation allows species to adjust to a new or 

changing environment in their lifetime with potential for these effects to be passed on to 

offspring and across generations (Ghalambor et al., 2007; Whitman and Agrawal, 2009; 

Chown et al., 2010).  

The ability to genetically adapt to a changing marine environment depends on the 

existence of additive genetic variance within the population (Billington and Pelham, 1991). 

Standing genetic variation can provide a reservoir of resilience to stressors (Anttila et al., 

2013; Kelly et al., 2013; Pespeni et al., 2013) especially if the variation is present for the trait 

of interest. Within a population, the presence of genetic variance influences the response of 

life history traits, such as fertilisation and larval success, to increased temperature and 

acidification (e.g. sea urchins, mussels, Sunday et al., 2011; Foo et al., 2012, 2014).  

The environment the species experiences can influence the presence and pattern of 

genetic variation across the range that the species inhabits. Variable conditions experienced 

among populations across the species range have been shown to result in the presence of 

locally adapted genotypes (Sanford & Kelly, 2010). Thus species with a broad latitudinal 

distribution across a range of thermal or pH environments are likely to have populations with 

an in-built capacity to persist in changing oceans (Bradshaw and Holzapfel, 2001). 

For free spawning marine invertebrates, the gametes of the male and female parent 

can be isolated for experimental matings, making it possible to compare the performance of 

offspring genotypes in different environments. The North Carolina II quantitative breeding 

design where sires and dams are crossed in all combinations, allows variance in traits within a 

population to be partitioned into additive, maternal, interactive and environmental 

components, with the potential for genetic adaptation strongly related to the levels of additive 

genetic variation (Lynch and Walsh, 1998). The opportunity to control matings provides a 

model system to investigate selection in different environments from fertilisation in offspring 

generated in experimental conditions (Foo et al., 2012, 2014). 

Studies have used this breeding design to investigate the responses of the offspring of 

sea urchins, mussels and macroalgae in response to climate change stressors and have found 

significant levels of variation in stress tolerance among genotypes, indicating the potential for 

adaptation to those stressors (Sunday et al., 2011; Foo et al., 2012; Clark et al., 2013; Kelly et 

al., 2013; Lymbery and Evans, 2013; Foo et al., 2014). These studies largely involve a single 
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stressor (temperature: Chirgwin et al., 2015; Clark et al., 2013; Lymbery and Evans, 2013; 

acidification: Kelly et al., 2013; Sunday et al., 2011) with two studies investigating the 

response to both stressors in combination (Foo et al., 2012, 2014).  

We used the short development time of the sea urchin Heliocidaris erythrogramma, 

with access to the juvenile in 3–5 days, as a model system to assess the response of genotypes 

to both increased temperature and acidification across the life cycle using the North Carolina 

II design. Heliocidaris erythrogramma is a widely distributed and ecologically important sea 

urchin endemic to southern Australia (Keesing, 2013). Previous studies have investigated the 

outcome of sire-dam crosses in this species using a single stressor or considering 

performance at one life history stage only. There is previous evidence for significant additive 

genetic variance in embryos at metamorphosis (Evans et al., 2007) and for embryos fertilised 

in control conditions and then transferred to increased temperature treatments (+3°C), 

significant sire x temperature interactions and pair x temperature effects were evident at 

hatching (Lymbery and Evans, 2013). In sire-dam crosses, fertilisation success was reduced 

(Havenhand et al., 2008) or variable with some pairs performing better than others (Schlegel 

et al., 2012) in low pH (-0.4 pH units) conditions. Studies using gametes from multiple 

parents found that fertilisation in H. erythrogramma is resilient to increased acidification and 

temperature (-0.3-0.5 pH units, +4˚C) (Byrne et al., 2009, 2010a) with larvae and juveniles 

sensitive to increases in temperature (+4-6˚C) but tolerant to 2˚C warming (Byrne et al., 

2009; Byrne et al. 2011). In multistressor studies, juveniles survived temperature increases of 

+4˚C coupled with decreases in pH up to 0.7 units however the number of abnormal juveniles 

increased in response to combined effects of increased temperature (+2-4˚C) and (-0.3–0.5 

pH units) (Wolfe et al., 2013).  

In this study, the performance of the progeny of 16 male-female crosses of H. 

erythrogramma were followed from fertilisation to identify the sources of variation in 

tolerance to warming (+3°C) and acidification (-0.3-0.5 pH units) for fertilisation, larval 

success and juvenile metamorphosis. As calcification in H. erythrogramma (Wolfe et al., 

2013) and other marine calcifiers is negatively affected by ocean acidification (Kroeker et al., 

2013; Przeslawski et al., 2015), we also tested for variation in calcification among genotypes. 

We took the approach of initiating the stressor treatments with gametes prior to fertilisation, 

as these cells are known to be highly sensitive to stressors (e.g. Reuter et al., 2011; Schlegel 

et al., 2012). In contrast to fertilising in control conditions and subsequent transfer of zygotes 

to stress treatments, this approach provides a more realistic assessment of stressor responses 

for a free spawning marine invertebrates in the carry over effects from the parental (sperm, 
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eggs) to the zygotic genotype. For H. erythrogramma, it was predicted that adaptive capacity 

is likely to stem from standing genetic variation maintained through balancing selection 

across a large spatial environmental mosaic along the coast of Australia (Keesing, 2013) as 

shown for Strongylocentrotus purpuratus (Pespeni et al., 2013). 

 

5.3 Materials and methods 

5.3.1 Study species, spawning and fertilisation 

Heliocidaris erythrogramma was collected (3-5 m depth) near Coffs Harbour, New South 

Wales (30˚ 15’ S, 153˚ 08’ E) in April and transferred to large flow through aquaria (3500 L) 

shortly after collection. Spawning was induced by injection of 2 ml of 0.5 M KCl. Eggs from 

each female were placed in separate beakers of fresh, filtered seawater (FSW; 1 µm) and 

sperm from each male was stored dry at 4 ˚C until use. Egg density was determined in counts 

of 100 µl aliquots from the egg suspension. Approximately 1000 eggs were placed in rearing 

containers; 100 ml plastic jars, with mesh sides to allow water to flow through. Positioning of 

the window ensured at least 40 ml of water remained in each container at any time as it was 

constantly renewed. The eggs were supplied with flowing experimental FSW, with randomly 

assigned temperature/pH conditions for approximately 20 minutes before sperm were 

introduced. Haemocytometer counts of semen samples were used to determine the amount of 

sperm required to achieve a consistent sperm concentration. Just prior to fertilisation, 1 µl of 

the semen sample was activated in 1 ml of experimental FSW. The amount of diluted sperm 

to add into each rearing container to achieve a sperm to egg ratio of 200:1 was determined 

from the original sperm count. Before addition of sperm, the flow through system was turned 

off to allow fertilisation and turned back on after 10 minutes to remove excess sperm.  

 

5.3.2 Manipulation of temperature and pH 

The experiments were conducted in a flow through water system with a flow rate 7.8 

mL/min, ambient pH of 8.18, temperature of 23.7˚C, salinity of 33.6 psu, and dissolved 

oxygen >90%. Experimental treatments were based on model projections for near future 

(2100) surface ocean waters in the southeast Australia region (IPCC 2013; CSIRO and BOM, 

2015). The treatments consisted of two temperatures (control 23.7 ˚C, 26.52 ˚C) and three 

pHNIST levels (control 8.11, 7.86, 7.7 pH units) in all combinations (Table 5.1). The 

experiments were conducted in UV sterilised and filtered (1 mm) FSW that was supplied to 

three 60 L header tanks. The experimental pH was regulated by injection of pure CO2 into 

two of these tanks using an automatic CO2 injection system with two pH controllers (Tunze), 
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set at pH 7.6 and pH 7.8. The CO2 was mixed in these tanks using a vortex mixer (Red Sea). 

A third header tank was allowed to track ambient pH. All header tanks (control and 

experimental treatment water) were continuously bubbled with air to promote mixing and to 

maintain dissolved oxygen >90%. A constant volume was maintained in the header tanks 

using a float valve. Water from the header tanks was fed into sub-header tanks (20 L) where 

it was warmed to the required temperature (+2.8˚C) using an aquarium heater (200 W, Jager) 

or unmanipulated for the ambient control. Temperature was automatically regulated using 

temperature sensors in the rearing containers and a temperature controller (Tunze) connected 

to the heaters. Water from each sub-header tank was continually circulated using 20 watt 

pumps to maintain even temperatures within each treatment. Water was delivered 

individually into individual rearing containers using irrigation dripper valves. 

Temperature, pH and salinity were measured daily in all treatments across random 

containers (n =33 per treatment) using a Hach Hqd Portable Multiprobe. The probe was 

calibrated frequently using NIST buffers pH 4.0, 7.0 and 10.0 (Oakton) with pH on the total 

scale determined through calibration with TRIS buffers [mean ± SE pHT in the three 

treatments was 8.10 ± 0.01 (control), 7.80 ± 0.00, and 7.63 ± 0.00]. Temperature was also 

monitored with this meter [mean ± SE temperatures were 23.66 ± 0.08 ˚C (control) and 26.48 

± 0.08 ˚C, see Table 5.1]. Water samples (250 ml) were collected at the beginning and end of 

the experiment for each treatment, filtered through a 0.45 mm syringe filter, and fixed with 

150 µl of saturated HgCl. These water samples (n=12) were then used to determine total 

alkalinity by potentiometric titration using an automatic titrator (Metrohm 888 Titrando) and 

calibrated against certified reference standards (Dickson et al., 2007). Experimental pCO2 

(Table 5.1) was determined from TA, temperature, pHNIST and salinity data using CO2SYS 

(Pierrot et al., 2006) using the dissociation constants of Mehrbach et al., 1973) as refitted by 

Dickson and Millero (1987).  

 

5.3.3 The North Carolina II breeding design 

Single sire-dam crosses were completed in two experimental runs (blocks) with each block 

using gametes from 2 dams and 4 sires crossed in all combinations. Each block thus resulted 

in 8 full-sib families (total of 16 families). Each family was exposed to each of 6 treatments. 

Thus each block had a total of 144 containers (2 females x 4 males x 3 pH levels x 2 

temperature x 3 replicates).  
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Table 5.1. Experimental conditions in experiments with Heliocidaris erythrogramma. 

Mean values (±SE, n = 33) for pHNIST measured daily per treatment is presented with pHT 

(determined using tris buffers) for comparison. pHT, pCO2 and the saturation states of calcite 

(ca) and aragonite (ar) were calculated in CO2SYS using data on DIC and total alkalinity 

(TA = 2205.2 ± 9.3 µmol/kg, n = 12), salinity (33.6 ± 0.06, n = 14) and temperature for each 

treatment. 

 24 ˚C 27 ˚C 

 pH 8.1 pH 7.8 pH 7.6 pH 8.1 pH 7.8 pH 7.6 

Temp 23.57 (0.08) 23.60 (0.09) 23.82 (0.08) 26.53 (0.06) 26.21 (0.06) 26.70 (0.13) 

pHT 8.10 (0.01) 7.80 (0.00) 7.63 (0.00) 8.12 (0.00) 7.80 (0.00) 7.63 (0.00) 

pHNIST 8.18 (0.01) 7.88 (0.01) 7.69 (0.00) 8.18 (0.01) 7.83 (0.00) 7.70 (0.00) 

pCO2 386.8 864.4 1401.1 391.8 1002.6 1400.1 

Ca  5.21 2.97 2.08 5.78 3.18 2.24 

Ar  3.41 1.95 1.36 3.82 2.10 1.48 
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At the control temperature (24 °C), H. erythrogramma develops to the juvenile stage 

within 4 days. At 2 hours post fertilisation (hpf), 24 hpf and 96 hpf, a random sample of 

approximately 50 embryos was pipetted from the containers, placed into tubes and fixed with 

2% formalin in FSW. The first 30–50 embryos randomly selected from each tube were 

examined microscopically (Leica) and scored for successful development. At 2 hpf, the 

percentage of fertilised embryos was determined through counts of unfertilised, fertilised and 

cleavage stage embryos. At 24 hpf, the percentage of larvae was calculated from counts of 

normal/abnormal and arrested embryos. At 72 hpf, coralline algae (Amphiroa anceps) were 

added to each container to induce the larvae to settle. At 96 hpf, the percentage of 

metamorphosed larvae was calculated from counts of normal/abnormal juveniles and arrested 

embryos. The number of embryos arrested at fertilisation (e.g., fertilisation envelope only) 

was low (<1%) indicating that polyspermy was minimal. 

 Photographs of juveniles from each replicate across all genotypes and treatments were 

taken and the number of spines counted as a proxy for calcification for at least 10 individuals 

per replicate. 

 

5.3.4 Statistical analyses 

Data on development for each time point and spines were analysed using analysis of variance 

(ANOVA) conducted in the PERMANOVA routine of Primer V6 with temperature and pH 

as fixed factors, experimental block as a random factor, and sire and dam as random factors 

nested within blocks. Since some significance tests involved quasi F ratios (in which 

significance tests derived from the F distribution are unreliable (Quinn and Keough, 2002)), 

we calculated significance of the F statistics using 9999 permutations of the raw data for all 

factors (Anderson et al., 2008).  

Coefficients of variation (CV) were calculated for each treatment across all 

developmental stages to determine whether stressful treatments can increase the variability in 

the response of embryos and juveniles. The CV, (defined as the standard deviation divided by 

the mean and multiplied by 100 expressed as a percentage using the formula: 
	
 x 100 where 

 = standard deviation, and µ = mean) expresses the relative variability of a measurement and 

is less likely to increase as an artefact of increases in the mean (Quinn and Keough, 2002).  

Linear regression analyses were performed in Microsoft Excel (2013) to assess the 

relationship between performance of individual male-female pairs across different life history 

stages; fertilisation and larvae, and larvae and juveniles. Male-female pairs were used for 
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these analyses due to significant interactions among males, females and stressors (see 

Results). 

 

5.4 Results 

 

5.4.1 Fertilisation 

Increased temperature significantly reduced the percentage of fertilisation with no significant 

effect of decreased pH (Table 5.2). There was a significant effect of sire identity on the 

percentage of fertilisation across all environments and a significant interaction between dam 

identity and temperature (Table 5.2). Reaction norms of maternal half-siblings show that the 

effect of increased temperature on the percentage of fertilisation differed between the female 

parents (Figure 5.1).  

 

5.4.2 Larvae 

Decreased pH, but not increased temperature, significantly reduced the percentage of normal 

larvae (Table 5.2). There was a significant dam x temperature interaction indicating that dam 

identity was an important source of variation in determining the percentage of normal larvae 

in increased temperature as shown in the reaction norms (Figure 5.1). In addition, the 

significant interactions between sire x dam and sire x dam x pH in the percentage of normal 

larvae indicates the importance of parental pair to the developmental success of their 

progeny. The different responses of the offspring of the 16 pairs to decreased pH are shown 

in the reaction norms (Table 5.2; Figure 5.2).  

 

5.4.3 The percentage of metamorphosed larvae 

On day 4 when the larvae had settled and metamorphosed, there were no significant effects of 

increased temperature or decreased pH on the survivors that settled (Table 5.2). There was a 

significant interaction between sire x dam x pH indicating that success to the settled juvenile 

stage was significantly affected by sire-dam pair as shown in the reaction norms (Figure 5.2). 

There was also a significant interaction between dam x pH x temperature where increased 

temperature greatly reduced the percentage metamorphosed with responses dependent on pH 

level and maternal identity (Figure 5.3).  
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Table 5.2. ANOVA of percentage of fertilisation, normal larvae and metamorphosed larvae of Heliocidaris erythrogramma. ANOVA of 

data of single dam-sire crosses across temperature (Te) and pH treatments. Temperature and pH are fixed factors, experimental 

block (Bl) a random factor, and male (Ma) and female (Fe) identity random factors nested within block. Significant effects are shown in 

bold (P < 0.05). 

  Fertilisation Larvae Metamorphosed 
Source df MS F P(perm) MS F P(perm) MS F P(perm) 
Bl 1 672.62 0.23 0.93 8122.60 11.77 0.01 354.84 0.25 0.92 
pH 2 1509.20 6.43 0.22 4213.00 43.21 0.02 2648.30 6.44 0.27 
Te 1 11666.00 197.66 0.05 1.81E+05 15.81 0.25 44312.00 15.52 0.25 
Ma(Bl) 6 2725.40 9.93 0.00 718.18 0.40 0.89 1206.70 3.55 0.08 
Fe(Bl) 2 1324.90 4.83 0.06 125.98 6.97E-02 0.93 1565.90 4.61 0.07 
BlxpH 2 234.87 0.65 0.72 97.51 0.28 0.97 411.17 0.48 0.85 
BlxTe 1 59.02 0.13 0.98 11419.00 2.26 0.16 2854.90 1.77 0.23 
pHxTe 2 809.25 1.86 0.35 3624.40 14.75 0.07 8162.20 5.15 0.17 
Ma(Bl)xFe(Bl) 6 274.57 1.02 0.42 1808.60 4.34 0.00 339.81 1.00 0.43 
Ma(Bl)xpH 12 406.41 1.51 0.25 1239.80 1.45 0.26 1599.00 1.75 0.17 
Ma(Bl)xTe 6 430.71 3.39 0.08 1357.60 2.60 0.14 1372.40 3.36 0.08 
Fe(Bl)xpH 4 368.38 1.37 0.30 2153.60 2.52 0.10 1155.60 1.27 0.33 
Fe(Bl)xTe 2 1008.30 7.94 0.02 3931.90 7.54 0.02 467.97 1.15 0.38 
BlxpHxTe 2 435.40 1.32 0.31 245.81 0.34 0.94 1585.30 0.71 0.68 
Ma(Bl)xFe(Bl)xpH 12 269.95 1.00 0.45 853.17 2.05 0.02 913.08 2.69 0.00 
Ma(Bl)xFe(Bl)xTe 6 126.92 0.47 0.83 521.61 1.25 0.28 408.58 1.20 0.31 
Ma(Bl)xpHxTe 12 418.05 1.68 0.19 624.95 1.38 0.30 1053.70 1.87 0.15 
Fe(Bl)xpHxTe 4 102.50 0.41 0.80 1420.20 3.13 0.06 1986.40 3.53 0.04 
Ma(Bl)xFe(Bl)xpHxTe 12 249.09 0.92 0.53 453.52 1.09 0.37 562.25 1.66 0.08 
Res 192 270.15   416.36   339.44   
Total 287          
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Figure 5.1. Reaction norms showing the percentage of fertilised embryos (top panel) and 

normal larvae (24 hpf) (bottom panel) of Heliocidaris erythrogramma maternal half siblings 

in response to increased temperature pooled for pH. Lines represent the mean percentage for 

maternal half siblings (n = 4). 
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Figure 5.2. Reaction norms show the percentage of normal larvae (24 hpf) (top panel) and 

metamorphosed juveniles (96 hpf) (bottom panel) across Heliocidaris erythrogramma 

offspring of the 16 sire-dam pairs in response to experimental pH levels pooled for 

temperature. Lines represent the mean percentage for full siblings (n = 16).  
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Figure 5.3. Histogram displaying the percentage of metamorphosed juveniles for each 

Heliocidaris erythrogramma female across the six treatments. The significant interaction 

between female x pH x temperature shows that settlement was influenced by increased 

temperature and decreased pH however this varied with maternal identity. 
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5.4.4 Coefficients of variation 

In control temperature, there was only a slight increase in variation from fertilisation to the 

juvenile stage across all pH levels. Increased temperature greatly increased the variation 

across all developmental stages. Furthermore, at increased temperature there appears to be a 

synergistic effect with decreased pH where pH 7.6 increased the variation seen across 

developmental stages in comparison the control pH of 8.1 (Figure 5.4). 

 

5.4.5 Calcification 

There was a significant effect of maternal identity on the number of spines produced per 

juvenile. There were also significant effects of sire x dam, sire x dam x temp, sire x dam x pH 

and sire x dam x pH x temp. This indicates the strong influence of parental pair on spine 

number in response to stressors as shown in the reaction norms (Figure 5.5; Table 5.3).  

 

5.4.6 Performance across life history stages 

In none of the six combinations of temperature and pH was there significant relationships 

between fertilisation success and the percentage of normal larvae (Figure 5.6). Genotypes that 

had a high fertilisation success did not subsequently have the highest percentage of normal 

larvae. However, the relationships between percentage of normal larvae and subsequent 

metamorphosis did show that pairs in certain environments performed consistently (Figure 

5.7). Genotypes that had a high percentage of normal larvae in the control pH/27°C and pH 

7.6/27°C environments also had the highest percentage of metamorphosed larvae. Thus, 

performance of specific genotypes at fertilisation did not predict performance of that 

genotype at the larval stage, however performance at the larval stage did predict 

metamorphosis in two environments. There was no correlation found for the pH 7.8/27°C 

environment. With removal of two outliers, a positive correlation became evident but this 

was not done. 
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Figure 5.4. Effects of increased temperature and decreased pH on the coefficients of 

variation of developmental success across fertilisation, larvae and juveniles of Heliocidaris 

erythrogramma. 
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Figure 5.5. Reaction norms showing total number of spines present on Heliocidaris 

erythrogramma juveniles (96 hpf) across offspring of the 16 sire-dam pairs in response to 

experimental temperatures pooled for pH (top panel) and in experimental pH levels pooled 

for temperature (bottom panel). Lines represent the mean number of spines for full siblings (n 

= 16). 
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Table 5.3. ANOVA of number of spines present on metamorphosed larvae of 

Heliocidaris erythrogramma. ANOVA of data of single dam-sire crosses across temperature 

(Te) and pH treatments. Temperature and pH are fixed factors, experimental 

block (Bl) a random factor, and male (Ma) and female (Fe) identity random factors nested 

within block. Significant effects are shown in 

bold (P < 0.05). 

 Spines 

Source df MS F P(perm) 

Bl 1 2.38 0.13 0.98 

pH 2 113.70 1.56 0.39 

Te 1 357.59 79.72 0.07 

Ma(Bl) 6 25.94 1.13 0.45 

Fe(Bl) 2 170.43 7.43 0.02 

BlxpH 2 72.87 2.08 0.11 

BlxTe 1 4.49 0.51 0.75 

pHxTe 2 143.45 3.75 0.21 

Ma(Bl)xFe(Bl) 6 22.95 5.53 0.00 

Ma(Bl)xpH 12 19.92 0.71 0.72 

Ma(Bl)xTe 6 34.93 1.02 0.49 

Fe(Bl)xpH 4 28.69 1.02 0.43 

Fe(Bl)xTe 2 41.44 1.21 0.36 

BlxpHxTe 2 38.25 2.32 0.09 

Ma(Bl)xFe(Bl)xpH 12 28.10 6.77 0.00 

Ma(Bl)xFe(Bl)xTe 6 34.29 8.27 0.00 

Ma(Bl)xpHxTe 12 9.63 0.26 0.99 

Fe(Bl)xpHxTe 4 23.23 0.61 0.66 

Ma(Bl)xFe(Bl)xpHxTe 12 37.81 9.12 0.00 

Res 192 4.15   

Total 287    
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Figure 5.6. Scatter plots of the relationship between pair performance at fertilisation (y-axis) and at the larvae stage (x-axis) of Heliocidaris 

erythrogramma. Each point represents the mean performance of an individual pair in each treatment across both stages. No relationships were 

evident for any of the six treatments. 
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Figure 5.7. Scatter plots of the relationship between pair performance at the larval stage (y-axis) and as metamorphosed larvae (x-axis) of 

Heliocidaris erythrogramma. Each point represents the mean performance of an individual pair in each treatment across both stages. A positive 

relationship was evident for the pH 8.1/27°C (R2 = 0.69, P = 0.000) and pH 7.6/27°C treatments (R2 = 0.64, P = 0.000).
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5.5 Discussion 

Across the genotypes tested, fertilisation was negatively affected by increased temperature, but 

not by decreased pH. Larval development was compromised in decreased pH, but not by 

increased temperature. By the juvenile stage, no impact of warming or acidification was evident, 

likely due to selective mortality of sensitive individuals and resilience of the survivors. Across 

all environments tested, the juveniles exhibited a similar ability to calcify. Maternal identity and 

parental pair exerted significant influences on how developmental success in H. erythrogramma 

was affected by environmental stress. That the progeny of some sire-dam pairs showed high 

stress tolerance indicates that the survival of resistant genotypes could facilitate the persistence 

of H. erythrogramma populations under stressful conditions. 

At fertilisation, the significant contribution of sire effects were expected because 

fertilisation success in H. erythrogramma and other sea urchins is significantly influenced by 

sperm traits such as motility, velocity and viability (Gage et al., 2004; Evans & Marshall, 2005; 

Garcia-Gonzalez & Simmons, 2005; Evans et al., 2007). The significant dam x temperature 

interaction at fertilisation, indicates that eggs of different females were differently affected by 

warming, where eggs of some females were less affected by +3°C with respect to fertilisation 

success.  

The differences in the effects of each stressor varied among females and this remained 

throughout development of H. erythrogramma. Strong maternal effects at fertilisation were 

anticipated due to known variability in egg size, quality and maturity, attributes which have been 

shown to be important sources of variation in H. erythrogramma and other sea urchins (Styan, 

1998; Marshall et al., 2004; Levitan, 2006). The maternal legacy that continues onto larvae and 

metamorphosis may be due to the presence of maternal protective factors (e.g. stress proteins) 

loaded into sea urchin eggs during oogenesis (Hamdoun & Epel, 2007). In addition, H. 

erythrogramma produces a large egg that provides all the nutrition needed to support 

development to metamorphosis and eggs are also supplied with maternal transcripts to facilitate 

rapid development (Raff & Byrne, 2006). Over evolutionary history, lecithotrophic larvae have 

been shown to be more resilient to extinction driven by climate change (Uthicke et al., 2009). 

Significant maternal provisioning, as in H. erythrogramma, may provide a strong buffer against 

stressors (Hamdoun & Epel 2007; Byrne, 2011).  
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The interaction of sire and dam with stressors becomes apparent after fertilisation and are 

influenced by gamete compatibility. At the larval and juvenile stages, the progeny of certain 

pairs were sensitive and others less sensitive to warming and acidification. Pairs that perform 

better are likely to be selected for in changing ocean conditions (Hoffmann &Parsons, 1991; 

Gassmann et al., 2009; Ghalambor et al., 2015).  

The effects of stressors on calcification were influenced by sire-dam combination. The 

lack of an overall effect of pH or temperature on calcification across all genotypes tested is 

similar to that found in other studies of H. erythrogramma (Byrne et al., 2009; Byrne et al. 2011; 

Wolfe et al., 2013). The resilience of the juvenile stage is likely due to selective mortality of 

sensitive individuals at the larval stage. Due to the flow through conditions, dead offspring 

would have been washed from the system. To discern how differential mortality could have 

affected the outcome, we would have had to track a known population of individual H. 

erythrogramma as in Byrne et al., (2010b) where increased temperature caused ~70% mortality 

in the larvae. That a subset of resilient progeny became juveniles and were able to calcify as 

normal shows the potential for persistence of this species under stressful conditions. However, 

survivorship data are needed to more fully understand the influence of sensitive and resistant 

genotypes on overall adaptive capacity. 

The ranking of pair performance across life history stages did not show consistent 

performance between the fertilisation and larval stages. However, when comparing pairs from 

larvae to metamorphosis, the pairs that performed the best at the larval stage performed the best 

at metamorphosis in two of the high temperature treatments. This may suggest that increased 

temperature can impose selection on specific genotypes, possibly revealing pairs that are likely 

to be selected for under future ocean warming (Ghalambor et al., 2015). 

A marked increase in variation among genotypes occurs with an increase in temperature. 

The coefficients of variation for each trait also showed a slight increase in variation with 

development, well known for development in H. erythrogramma and other marine invertebrates 

(Pechenik, 1987). When decreased pH is considered at control temperatures, the variability in the 

progeny’s response is not changed from the control response. However at increased temperature, 

decreased pH of 7.6 causes an even greater increase in variation. This indicates that at pH 7.6 

only, the synergistic effects of increased temperature and decreased pH may make the probability 
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of success more unpredictable as development progresses, resulting in a larger selection pressure 

on genotypes (Hoffmann & Merilä, 1999).  

Although early development is impacted by decreased pH and increased temperature, by 

metamorphosis, individuals in the extreme treatments appear similar to those in the control in 

both development and number of spines. The resilience of H. erythrogramma to ocean stressors 

tested here may be due to the presence of genetic variation across the metapopulation of this 

species (Sanford & Kelly, 2010). The broad distribution and abundance of H. erythrogramma in 

a variety of intertidal and subtidal environments indicates that this species has a wide 

environmental tolerance, and if there is local adaption to areas of differing conditions, then gene 

flow among populations is likely to contribute to the levels of genetic variation in stress 

tolerance within a given population (Byrne et al., 2010b).  

Our results indicate that the effects of environmental stressors and contributions of sire 

and dam change throughout the life cycle of a sea urchin. For H. erythrogramma, maternal and 

parental pair effects have the strongest influence on the outcome of fertilisation and 

development. In the face of a warming and acidifying ocean, maternal buffering and sire-dam 

pairs with high tolerance to stressors will allow for adaptation in this species. These are 

important mechanisms in persisting through an ocean decreasing in pH and warming for species 

like H. erythrogramma that have a significant maternal investment in production of large eggs.  
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CHAPTER SIX: GENERAL DISCUSSION 

 

Anthropogenic emissions of carbon dioxide (CO2) have enhanced the greenhouse effect 

causing an increase in both atmospheric and sea surface temperature (IPCC, 2013). 

Oceans have acted as a sink for excess CO2 with absorption of over 40% of these 

emissions (Zeebe et al., 2008; IPCC, 2013). This is causing oceans to simultaneously 

increase in temperature, decrease in pH, increase in partial pressure of CO2 

(hypercapnia) and decrease in CaCO3 saturation (Kerr, 2010; Howes et al. 2015). The 

rate of ocean warming and acidification differs among regions and is influenced by 

ocean circulation, coastal processes and ocean chemistry (Poloczanska et al., 2007). 

Marine animals along the east Australian coast are particularly vulnerable as this region 

is a climate change hot spot due to ocean warming faster than the global average (Wu et 

al., 2012; Poloczanska et al., 2013). Additionally, the Southern Ocean is the world’s 

fastest acidifying marine system and is predicted to reach a CO2 concentration of 1000 

ppm by 2100, equivalent to a drop in 0.4 pH units (IPCC, 2013). 

Gametes and early embryogenesis form the foundation developmental stage for 

population persistence (Pechenik, 1987; Byrne, 2010). As marine invertebrate gametes 

and embryos are vulnerable to changes in pH and temperature of surrounding waters, 

this thesis used free spawning echinoids as model species to identify effects of ocean 

change stressors on the egg and investigate the genetic basis of resistance to climate 

change stressors through application of an animal breeding design. 

 

6.1 Impacts of ocean acidification on the extracellular jelly coat of the egg 

The jelly coat of the egg exhibited variable vulnerability to ocean acidification across 

species, and within species. Eggs are not created equal with respect to egg size and jelly 

coat sensitivity. The jelly coat around the eggs of some females might be better able to 

endure effects of low pH contributing to a more resilient fertilisation response in ocean 

acidification conditions. If this is a heritable trait, an acidifying ocean might select 

against the more susceptible phenotypes (Foo et al., 2012; Schlegel and Havenhand, 

2012, Foo et al., 2014). Thus environmental stressors such as decreased pH, which have 

strong effects on jelly coat size, may induce strong selection on marine species that have 

egg coats as ocean pH changes (Shu et al., 2015).  
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The different responses of the jelly coat to decreased pH across species indicates 

that egg incubation time in experimental treatments may be a previously unappreciated 

source of variance in ocean acidification fertilisation studies. The differences in egg and 

jelly coat size between females of the same species may contribute to the strong 

maternal effects seen in the fertilisation response to ocean change scenarios seen here 

and in other studies (Evans and Marshall, 2005). The strong sire, dam and sire-dam pair 

effects found across fertilisation for species tested indicates that both individual effects 

of stressors on gametes (e.g. jelly coat) and gamete compatibility is important in 

determining fertilisation success. Thus for experiments investigating acclimatisation and 

adaptive potential of marine invertebrates to ocean change stressors, it is essential that 

gametes are fertilised in experimental treatments. This thesis presents studies that are 

the first quantitative genetics studies to fertilise animals in experimental seawater levels 

(excluding Sterechinus neumayeri experiments). This is a novel feature, currently not 

done in any other marine climate change studies that use the North Carolina II breeding 

design. It is clear that to reflect real world scenarios, quantitative genetic selection tests 

need to incorporate the gametes and gamete compatibility traits, allowing selection to 

occur from the outset of development.  

 

6.2 Investigating the adaptive potential of sea urchins across latitudes, the 

responses of polar, tropical and temperate species  

The levels of phenotypic plasticity and genetic variation in natural marine populations 

for traits critical for survival and reproduction in future ocean climates remains largely 

unknown (Munday et al., 2013; Sunday et al., 2014). In response to climate change, 

marine species can tolerate change through their existing genotype, adapt genetically, 

migrate or become extinct (Sultan, 2007; Przelawski et al., 2008).  

Plastic responses in the parents can alter offspring development, a form of 

developmental plasticity through the influence of environment on gamete quality 

(Ghalambor et al., 2007). This “gamete imprinting,” is particularly important with 

respect to the egg, as exemplified by loading of protective factors e.g. hsps in the egg by 

the mother (Hamdoun and Epel, 2007) and can allow a population to persist in a 

changing environment (Merilä, 2012). 
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Variable conditions experienced by species across their range can result in the 

presence of locally adapted genotypes (Sanford & Kelly, 2010). This can provide 

considerable genetic variation across the species metapopulation. Species with a broad 

latitudinal distribution across a range of thermal or pH environments are likely to have 

an in-built capacity to persist in changing oceans (Bradshaw and Holzapfel, 2001).  

 

6.2.2 The Antarctic sea urchin Sterechinus neumayeri 

For the polar sea urchin S. neumayeri, maternal effects and sire-dam effects observed 

may buffer early development in an ocean decreasing in pH and increasing in 

temperature. Positive correlations were found across life history stages across all six 

treatments which shows that performance of pairs at one developmental stage was a 

good predictor for later development. This supports the long standing hypothesis that 

that best performing genotypes may have already been selected for in this species 

(Marshall and Keough, 2008). This may be due to evolution in stable environments 

where long generation times and slow growth of Antarctic invertebrate species have 

created populations with low genetic diversity (Peck 2005; Pörtner 2007). 

Antarctic marine species are assumed to have narrow adaptive capacity due to 

environmental thermal stability over evolutionary timescales (Somero, 2009; Enzor et 

al., 2013). This could explain why no significant sire x stressor interactions influenced 

the response of S. neumayeri to warming and acidification. Species deficient of 

flexibility in their response to stressors have increased vulnerability to becoming extinct 

in future ocean change conditions. Maternal effects will need to be significant in 

buffering S. neumayeri embryos through phenotypic plasticity. A caveat for the 

inferences made here is that development only to the blastula stage was investigated 

(first 72 hours) but S. neumayeri has a long pelagic larval duration of up to 115 days 

(Bosch et al., 1987). Thus it is not known if genetic variation could be present in the 

response of later development to stressors. 

 

6.2.3 The tropical sea urchin Pseudoboletia indiana 

For the tropical sea urchin P. indiana, inherent genetic variation as well the positive 

effect of increased temperature countering the effects of low pH will facilitate 

persistence of the species in its current range and potentially expansion of populations 
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in NSW. This strengthens the notion that multistressor studies are required to better 

represent real life scenarios (Byrne 2012; Przeslawski et al. 2015) as a single stressor 

ocean acidification study may have concluded high vulnerability of P. indiana to future 

ocean change. 

When comparing the performance of pairs across fertilisation and gastrulation, 

there was a positive relationship for the control environment, and the two treatments 

with combined pH and increased temperature. Pairs that had the highest fertilisation 

success in these environments also had the highest percentage of normal gastrulae. 

However, when decreased pH was considered in isolation, this did not hold true for 

pairs with performance being unpredictable. Here, we found that decreased pH had the 

potential to make compatible pairs incompatible. Thus these results run counter to the 

hypothesis that performance at one stage can predict performance later further on in 

development (Marshall and Keough, 2008), especially when ocean change stressors are 

considered. 

Pseudoboletia indiana displays the largest latitudinal distribution of the species 

examined and showed heritable genetic variation in response to stressors. Species with 

large ranges may be winners in a changing ocean as seen for other marine invertebrates 

with large distributions (Pespeni et al., 2013; Garcia Molinos et al., 2015). However as 

our experiments were conducted in NSW, a region in which P. indiana has recently 

expanded (Pope, 1964), these experiments should be conducted in the natural, tropical 

range of P. indiana to identify whether local adaptation has occurred in NSW.  

 

6.2.4 The temperate sea urchin Heliocidaris erythrogramma 

For the temperate sea urchin H. erythrogramma, inherent resilience likely due to 

preadaptation to a habitat which highly fluctuates in temperature and pH levels will 

facilitate survival. This species also shows a resilient response of the egg jelly coat to 

decreased pH as well as survival of resilient juveniles in ocean stressor scenarios.  

The ranking of pair performance across life history stages did not show 

consistent performance between fertilisation and larvae. However, when comparing 

pairs from larvae to metamorphosis, pairs that performed the best at the larval stage, 

performed the best at metamorphosis, but only in two of the high temperature 

treatments. Therefore increased temperature may impose greater selection on specific 
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genotypes in comparison to low pH (Ghalambor et al., 2015). These results are similar 

to that of P. indiana where in increased temperature scenarios, the more resilient 

phenotypes performed best across both stages.  

Thus, the assessment of ocean change stressors across a range of life-history 

stages is essential in identifying where the vulnerabilities might lie in adaptation to 

ocean change. One can not necessarily predict the good performing genotypes based on 

performance at fertilisation and early development. This is challenging for species with 

very long generational times, i.e. S. neumayeri, so H. erythrogramma represents a 

perfect model system for assessing effects across the life cycle. 

 

6.3 Winners and losers in a changing ocean 

Future ocean warming and acidification is going to result in range shifts, extinctions and 

invasions affecting overall ecosystem function (Brierley & Kingsford, 2009; Burrows et 

al., 2014; Sunday et al., 2014). Across polar, tropical and temperature sea urchins, the 

mechanisms that may facilitate persistence in a changing ocean differ, revealing the 

potential winners and losers (see Table 6.1 for summary). For S. neumayeri, no additive 

genetic variation was present in the response of early embryos to ocean change 

stressors. Phenotypic plasticity through maternal effects, and non-additive sire-dam 

effects will be essential in buffering development as the ocean increases in temperature 

and acidification. However in the long term, adaptation may be required for population 

persistence (Hoffmann and Parsons, 1991). Thus S. neumayeri represents the most 

vulnerable species examined. 

Pseudoboletia indiana shows a great susceptibility to decreased pH. Ocean 

acidification could change normal fertilisation dynamics rendering compatible pairs 

incompatible. These effects could be due to a sensitive egg jelly coat but this remains to 

be examined. Investigating the effects of stressors on the egg cell should be a priority to 

determine factors that can drive reduction in fertilisation success in a changing ocean. 

Pseudoboletia indiana covers the largest latitudinal distribution and therefore 

largest temperature gradients, a factor likely to influence its resilient response to 

increased temperature. Pseudoboletia indiana was the only species examined here that 

showed heritable genetic variation in responses to stressors. Increases in temperature 
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Table 6.1. Summary of quantitative genetics experiments with Sterechinus neumayeri, Pseudoboletia indiana and Heliocidaris 

erythrogramma. As studies differed in the developmental stage they were collected, results have been separated into prezygotic and postzygotic 

development. The table contrasts the responses of the difference species regarding: (1) overall effects of increased temperature and decreased pH 

on prezygotic development, (2) whether there were significant contribution of sire and dam to performance at prezygotic development, (3) 

whether sire and dam compatibility was important for fertilisation success, (4) overall effects of increased temperature and decreased pH on 

postzygotic development, (5) whether there were significant sire x stressor interactions and hence the presence of additive genetic variance, (6) 

whether there were significant dam x stressor interactions and lastly (7) whether sire x dam interactions affected postzygotic development. 

 Sterechinus neumayerii Pseudoboletia indiana Heliocidaris erythrogramma 
 Prezygotic development 

Effects of 
pH/temperature 

Decreased pH decreased % cleavage stage 
embryos with a significant interactive effect 

with increased temperature 

Decreased pH decreased % fert Increased temp decreased % fert 

Contributions of sire 
and dam 

Significant dam contribution Significant sire and dam 
contributions 

Significant sire contributions 

Sire/dam 
compatibility 

Sire/dam compatibility important 
 

Sire/dam compatibility important in 
stressor scenarios 

 

Sire/dam compatibility not important 
 

 Postzygotic development 
Effects of 

pH/temperature 
Decreased pH decreased % blastulae Increased temperature increased the 

% of normal gastrulae 
Decreased pH decreased % larvae with no 

effects of stressors at metamorphosis 

Sire x stressor 
interactions 

None Sire x temp None 

Dam x stressor 
interactions 

Dam x temperature  Dam x temp Dam x temp x pH 

Sire x dam 
interactions 

None Sire x dam x temp 
Sire x dam x pH 

Sire x dam x temp x pH 

Sire x dam x pH 
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and its alleviation of the negative effects of decreased pH will allow persistence and 

expansion of populations in NSW.  

For H. erythrogramma, inherent resilience is likely due to preadaptation to a 

habitat which highly fluctuates in temperature and pH levels. The extracellular jelly coat 

of H. erythrogramma was unaffected by a decrease in pH showing a strong resilience of 

the egg to ocean change. Strong maternal effects found throughout the entire life cycle 

will be an important mechanism in persisting through a changing ocean, especially for 

lecithotrophic species like H. erythrogramma that have a significant maternal 

investment in production of large eggs, a trait already shown to have buffered species 

through past climate change extinction events (Uthicke et al., 2009). The robust 

response of H. erythrogramma to end of century predictions suggest that this species 

will be a winner, with persistence of populations across Australia and potential for 

northern populations to supplement populations at the southern end of its range (Byrne 

et al., 2010).  

Results from this thesis suggest that animals from fluctuating intertidal 

environments and broad latitudinal distribution across a range of thermal or pH 

environments are likely to have an in-built capacity to persist in changing oceans 

(Bradshaw and Holzapfel, 2001; Pespeni et al., 2013). On the other hand, polar species 

may show a reduced capacity to persist in changing oceans.  

 Studies which investigate the contributions of genetic and environmental 

variance to progeny performance are important in identifying resilient genotypes for 

genetic rescue. The main purposes of genetic rescue are to restore genetic diversity in 

populations that are small and isolated (Whiteley et al., 2015). Free spawning marine 

invertebrates provide an ideal model for quantitative genetics using separate male x 

female pairs to determine the potential that more resilient pairs could seed future 

populations in a changing ocean (Foo et al. 2012; Schlegel et al., 2012; Foo et al. 2014. 

Genetic improvement of many plants and animals has been utilised for many years, and 

could help augment the capacity of corals and other ecologically and economically 

significant species to endure a changing climate (Van Oppen et al., 2015). 

 The results of this thesis show that considering only genetic variation in adaptive 

capacity studies might not reveal true population persistence, and effects of stressors 

may be overestimated (Sunday et al., 2011; Thor and Dupont, 2015). Phenotypic change 



152 
	

in a population might not always involve adaptive evolution and be entirely mediated by 

non-genetic factors (Bonduriansky and Day, 2009). Plastic responses, as seen for H. 

erythrogramma, can allow populations to persist in a changing environment, especially 

those changing too fast for genetic adaptation (Lloyd Morgan 1896; Merilä, 2012).  

 

6.4 Future directions 

As highlighted by Chapter Two, the jelly coat of the egg can be greatly affected by 

ocean change stressors with potential flow on effects for fertilisation. Therefore this is 

an important aspect to consider in future climate change studies. As exemplified by 

Chapters Three to Five, discerning variation into paternal, maternal and environmental 

effects is challenging. The field of quantitative genetics was originally developed for 

agriculture with high numbers of replicates and therefore applying the same statistical 

tests may mean that important effects remain undetected as the tests may not be able to 

account for much lower sample sizes. Furthermore, the computation of heritability 

estimates is not so straightforward, and the appropriate statistics need to be developed to 

consider multistressor environments. 

Future research is moving towards multistressor, long term studies which 

transcend generations. Parental exposure to climate change can cause transgenerational 

changes that allow offspring to endure stressors, with carry over effects persisting over 

later life-history stages and multiple generations. To estimate the adaptive potential of 

marine species to a changing climate, there is a need for long term, multigenerational 

experiments which capture developmental plasticity, genetic variation and 

transgenerational effects. It will be essential to measure multiple traits related to 

morphology and physiology, lethal and sub lethal effects and to quantify corresponding 

changes in the transcriptome, proteome and metholome. Ultimately, a combined 

approach will be most informative in making informed predictions of how the seascape, 

marine communities and ecosystems will be altered by climate change.  This is needed 

to empower development of effective management strategies to protect marine 

resources. 
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APPENDIX ONE: CONTRIBUTION OF EACH AUTHOR TO MANUSCRIPT 

Experimental design 

Shawna Foo, Symon Dworjanyn, Alistair Poore and Maria Byrne all contributed to the design of the 
experiment. 

Materials 

Reagents, materials and analysis tools were provided by Maria Byrne, Alistair Poore and Mehar 
Khatkar. 

Experiment execution 

The experiments were performed by Shawna Foo at the Sydney Institute of Marine Science. This 
involved single dam-sire crosses of 2 female and 4 male sea urchins, with embryos fertilised in 6 
different pH/temperature treatments. This was repeated 2 times, with embryos collected at two 
different developmental stages. At the end of the experiment, we had data on the percentage of 
normally developing embryos at two different stages for 16 different genotypes across 6 different 
treatments.  

Statistical analysis 

Data on development for each time point were analysed by Shawna Foo using analysis of variance 
(ANOVA) conducted in the PERMANOVA routine of Primer V6. Variance components were 
calculated by Alistair Poore in R to allow calculations of genetic correlations. Heritability estimates 
were calculated by Mehar Khatkar. 

Manuscript 

The paper was written by Shawna Foo with contributions from Alistair Poore, Symon Dworjanyn, 
Maria Byrne and Mehar Khatkar. All authors contributed to editorial revisions. 
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