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Abstract 

A vital function of the brain is to acquire information about the events in the 

environment and to respond appropriately. The brain needs to integrate the incoming 

information from multiple senses to improve the quality of the sensory signal. It also needs 

to be able to distribute the processing resources to optimise the integration across 

modalities based on the reliability and salience of the incoming signals. This thesis aimed to 

investigate two aspects of the way in which the brain integrates information from the 

external environment: multisensory integration and selective attention. The hooded rat was 

used as the experimental animal model.  

In Chapter 2 of this thesis, I investigate the multisensory properties of neurons in 

superior colliculus (SC), a midbrain structure involved in attentive and orienting behaviours. 

I first establish that in rat SC, spiking activity is elevated by whisker or visual stimuli, but 

rarely both, when those stimuli are presented in isolation. I then show that visually 

responsive sites are mainly found in superficial layers whereas whisker responsive sites 

were in intermediate layers. Finally I show that there are robust suppressive interactions 

between these two modalities. 

In Chapter 3, I develop a rodent behavioural paradigm that can easily be paired with 

electrophysiological measurements. The design is adaptable to a variety of detection and 

discrimination tasks. Head position is restricted in the central nose-poke without head-

fixation and the eyes can be constantly monitored via video camera.  
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In Chapter 4, I ask whether selective spatial visual attention can be demonstrated in 

rats utilising the paradigms developed in Chapter 3. Selective attention is the process by 

which brain focuses on significant external events. Does being able to predict the likely side 

of the stimulus modulate the speed and accuracy of stimulus detection? To address this 

question, I varied the probability with which the signal was presented on left or right screen. 

My results suggest that rats have the capacity for spatial attention engaged by top-down 

mechanisms that have access to the predictability of stimulus location.   

In summary, my thesis presents a paradigm to study visual behaviour, multisensory 

integration and selective spatial attention in rats. Over the last decade, rats have gained 

popularity as a viable animal model in sensory systems neuroscience because of the access 

to the array of genetic tools and in vivo electrophysiology and imaging techniques. As such 

the paradigms developed here provide a useful preparation to complement the existing 

well-established primate models.  
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1.0 General Introduction 

An important function of the nervous system is to extract information from events in 

the environment and to convert that information to bodily movements. This ability of an 

organism to acquire information about the external world and to respond appropriately is 

critical for its survival. But the environment often contains a variety of signals about prey, 

predator, mate or shelter. For an efficient interaction with the environment, the brain needs 

to (1) integrate the incoming information from multiple senses to improve the quality of the 

sensory signal and speed up the detection of the biologically significant events and (2) be 

able to distribute the processing resources to optimise the integration across modalities and 

different features within a single modality based on the reliability and salience of the 

incoming signals. The latter ability allows the brain to “attend” to events that can offer the 

organism survival advantages - for example, to integrate different inputs about an external 

stimulus that signal the presence of a predator. This thesis aims to investigate selective 

attention and multisensory integration as paradigmatic examples of the way the brain 

integrates information from the external environment. In the following I briefly explain what 

I mean by selective attention and multisensory integration. 

Selective attention is the process by which the brain focuses on significant external 

events. Selective attention is required because the brain does not have the resources to 

process all possible information from the outside world and must select those events that 

are likely to be important. Non-human primates are currently the major animal model of 

selective attention. To acquire a mechanistic understanding of how selective attention is 

deployed, it would be useful to develop rodent models where specific, reproducible 
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experiments can be conducted exploiting the ease of behavioural experimentation and the 

availability of genetic tools. In Chapter 4 of this thesis, I introduce a behavioural paradigm to 

investigate selective attention in rats. 

Multisensory integration refers to the process by which information from different 

sensory modalities is combined to influence perception and behaviour. We know a great 

deal about how individual senses including vision, audition and somatosensation process 

information separately. However less is known about how the brain integrates information 

across sensory modalities to generate a coherent percept of the world. In Chapter 2, I 

investigate the multisensory properties of neurons in Superior colliculus (SC), a midbrain 

structure involved in attentive and orienting behaviours. SC contains neurons that exhibit 

both sensory and motor related properties and is therefore often served as an excellent 

model for understanding multisensory integration.  

In this introductory chapter, I review what we know of two of these major 

integrative functions in sensory pathways, selective attention, and multisensory integration, 

to motivate the experimental work that is described in subsequent chapters. First, I will 

briefly describe what we know about the emergence and influence of selective attention in 

the brain. Much of what is known about the mechanisms of attention comes from both 

human and non-human-primate research. I will first provide an overview of the studies on 

selective attention in primates (Section 1.3 and Section 1.4) and then in rodents (Section 

1.5). I will then describe what we know of multisensory and task integration in different 

areas of the brain (Sections 1.6-1.8). Both attention and multisensory integration are likely 

to involve superior colliculus, and the final sections of this chapter introduce SC as a model 
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system for understanding integrative function, outline the similarities and differences 

between species, and motivate the use of rodents in the experiments that I will describe.  

 

1.1 Selective attention 

Attention is an important function for perception: goal-driven perception and action 

depend on attention to direct limited resources towards a subset of relevant items 

(Treisman, 1960; Neisser, 1967). Attending to relevant items allows processing resources to 

be selectively devoted to part of the input rather than ineffectually dispersed across the 

entire scene (Lennie, 2003). Disorders of attention are among the most common and most 

devastating neurological conditions (Robbins & Arnsten, 2009). Attention-deficit 

hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are two of the most 

frequently occurring neuropsychiatric disorders. Attentional disorder is also strongly linked 

to confusional states, one of the most common mental disorders (Mesulam, 2010), and 

includes rarer syndromes such as hemi-spatial neglect. Attention is therefore an increasingly 

important target of scientific research.  

Selective attention is the process that allows us to filter out irrelevant locations or 

features of our environment in favour of the relevant. Attention therefore guides our 

behaviour by enhancing relevant sensory information while diminishing the less relevant 

(reviewed in: Beck & Kastner, 2009; Desimone & Duncan, 1995). Allocation of attention can 

be achieved by several modes and within several domains as illustrated in Table 1.1.  

It is important to explain what exogenous and endogenous modes of attention are. 

Exogenous modes of allocation are relatively involuntary and are driven by bottom-up 



Integrative function in rat visual system                    Saba Gharaei 

1.0 General Introduction    20 

 

stimulation (Posner, 2012). Endogenous modes of allocation are usually voluntary through 

top-down mechanisms and are specifically tuned to immediate behavioural goals of the 

individual (Jonides & Irwin, 1981; Müller & Rabbitt, 1989; Folk et al., 1992; Corbetta & 

Shulman, 2002; Berger et al., 2005; Jack et al., 2006). Framework of attentional allocation 

also describes four domains: space (with subdomains for covert and overt visual attention 

which I will explain below), time, sensory modality and task. Below, I will only focus on the 

domains that are relevant to the current thesis. 

   

Table 1.1: A framework of attention. Adapted from Posner (2012). 

 

 

Attention can be towards a particular location in space, often called spatial 

attention. Attention to space has been mainly studied in the context of vision with two 

subdomains for covert and overt allocations. Humans or other animals often orient their 

eyes, head or body to improve sensory perception through overt shifts of attention. 
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However allocation of spatial attention can also be covert where the brain can focus on 

aspects of the external world without orientating movements. This covert orienting by the 

brain is provided by selective attention. While overt spatial attention can be directly 

observed, covert spatial attention must be inferred from changes in performance in well-

designed situations where eye movements are monitored and maintained at fixation. Covert 

spatial attention is the focus of chapter 4 of my thesis, I will therefore return to paradigms 

attempting to measure covert spatial attention in later sections.  

A main paradigm for quantifying the effects of attention to sensory modality is the 

temporal order judgment experiment (Spence & Parise, 2010). In this task, participants are 

presented with two stimuli from different sensory modalities with varying presentation 

times and are asked to report which stimulus was presented first. In a task with visual and 

tactile stimuli, it is usually reported that visual stimulus has to lead the tactile stimulus to 

generate a simultaneous percept (Posner, 2012). This finding is mainly attributed to the 

peripheral processing time differences between the two modalities. It is important to 

mention that temporal simultaneity judgments are rarely confusing in real life even though 

visual stimuli are commonly perceived as occurring at a different time to simultaneously 

presented tactile stimulation in laboratory environments, and visual neurons have longer 

response latencies (at least in rodent sensory pathways). Spence and colleagues (2001) 

explored the effect of exogenous and endogenous attention to different modalities and 

reported that exogenous attention to a modality generates reaction time (RT) benefits 

regardless of the target modality. Endogenous attention to a modality produces RT costs for 

the unattended modalities without benefits for the attended modality (Spence et al., 2001).   
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Understanding how the brain implements selective attention is a necessary aspect of 

understanding brain function. However, to date, we know very little about the mechanisms 

through which attention is deployed. Much of what is known so far about the mechanisms 

of attention comes from both human and non-human-primate research. Extensive 

behavioural research in humans has explored the effect of selective attention on 

performance in both simple and complex tasks. The neural basis of attention has been 

mainly studied in the visual system of macaque monkeys. 

In the following, I will briefly describe neuronal basis of attention as mainly revealed 

in primate work. I will then explain seminal behavioural experiments studying human 

attention and the variations on these human studies to study selective attention in non-

human primates. I will then describe the limited attempts so far to study selective attention 

in rodents.  

 

1.2 Neuronal impacts and sources of attention  

Understanding the neuronal machinery of attention is important for various reasons 

such as increasing our knowledge about attention disorders. The focus of this thesis is not 

the neuronal impact of attention so I only briefly describe some of the main findings. 

Understanding the neurophysiological foundation of attention requires research on animals. 

Non-human primates are currently the major animal models of selective attention. The 

effect of attention has been most widely studied in the visual cortex and SC of monkeys.  

Attention is accompanied by an increased responsivity of nerve cells whose 

receptive fields overlap the location that attention is directed to, as first shown by Goldberg 

& Wurtz, (1972). The increased stimulus-evoked firing rate has been shown in various visual 
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areas including V1 (Herrero et al., 2008), V2 (Buffalo et al., 2010), V4 (Moran & Desimone, 

1985; McAdams & Maunsell, 1999) and MT (Treue & Trujillo, 1999; Busse et al., 2008; 

Niebergall et al., 2011). Attention to the area of visual space overlying the receptive fields of 

the recorded neurons, has also been shown to reduce noise correlations across neurons 

(Mitchell et al., 2009; Cohen & Maunsell, 2009) and to induce synchrony across a neuronal 

population (Fries et al., 2002, 2008; Buschman & Miller, 2007; Gregoriou et al., 2009). 

Attentional selection of a spatial location can also narrow and shift the neuronal receptive 

field centres towards the focus of attention (Anton-Erxleben et al., 2007; Womelsdorf et al., 

2008). Monkey’s frontal eye field (FEF; a region located in the frontal cortex) is a key 

structure involved in primate oculomotor control and critical in the voluntary control of 

visual attention. Single unit recordings from monkey FEF has identified separate types of 

neurons mediating covert and overt attention (Sato & Schall, 2003; Thompson et al., 2005).  

Most of the studies particularly those aimed at identifying neurophysiological of 

controlling attention have focused mainly on exogenous, spatial attention. However, the 

neurophysiological effects of feature-based attention and endogenous attention are less 

well understood (Noudoost et al., 2010). Feature-based attention (Bichot et al., 2005; 

Mirabella et al., 2007; Katzner et al., 2009; Ernst et al., 2010) and endogenous attention 

(Buschman & Miller, 2007; Katyal & Ress, 2014) can also control neuronal responses within 

the visual system.   

Correlates of visual attention are not limited to the cortical areas (refer to the 

following for the neuronal mechanisms of selective attention in cortex: Desimone and 

Duncan, 1995; Reynolds and Chelazzi, 2004; Petersen and Posner, 2012) and have also been 

shown in subcortical structures such as the thalamus (Robinson & Petersen, 1992; Bender & 

Youakim, 2001; O’Connor et al., 2002; McAlonan et al., 2008) and SC (Goldberg & Wurtz, 
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1972; Ignashchenkova et al., 2004; Shipp, 2004; Zénon & Krauzlis, 2012; Ngan et al., 2015). I 

will return to the involvement of SC in selective attention in Section 1.14.  

Human fMRI work appears to confirm the effect of attention shown in monkey 

experiments, but has not been able to shed light on how attention is generated. Acquiring a 

deeper understanding of how selective attention is controlled and deployed, requires the 

development of animal models other than monkeys, where specific, reproducible 

experiments can be conducted. Although studying attention has been traditionally 

performed in primates, it appears increasingly promising to follow it in rodents. I will return 

to the behavioural experiments in rodents in Section 1.5.  

Primates and rodents share fundamental similarities in the organisation of brain such 

as common plan for the cortex (Krubitzer, 2007; Carandini & Churchland, 2013). In rodents, 

Frontal Orienting Field (FOF), a homologues area to FEF in primates (Leonard, 1969), is a 

candidate area for selective attention. In the literature, FOF is also known as primary 

whisker motor cortex or the premotor area. Similar to primate FEF, the FOF in rat projects to 

SC (Reep et al., 1987). It also has strong reciprocal projections to prefrontal cortex (Condé et 

al., 1995) and brainstem areas involving orienting behaviours (Stuesse & Newman, 1990). 

Unilateral reversible inactivation in FOF has been found to produce contralateral neglect in 

rats (Erlich et al., 2011).  

 

1.3 Measuring covert spatial attention in humans  

The possibility that spatial attention could be covert without eye movements was 

shown phenomenologically by Wundt and Helmholtz in the mid -19th century. However, it 

was not until 100 years later that cognitive psychologists started to develop paradigms that 
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could measure the properties of covet spatial attention under sufficient experimental 

controls. Here we focus on the Posner cueing paradigm because it has been effectively 

applied to the explanation of these properties and to the distinction between endogenous 

and exogenous spatial attention.  

The Posner cueing paradigm is an influential procedure in the study of human 

attention. In this task, a cue is used to attract participant’s attention to a location in space 

that may contain a target (Posner, 1980). A standard paradigm resembles the following: A 

participant sits in front of a computer screen and is instructed to fixate at a central fixation 

point. A cue is then briefly presented on the screen. The cue may either be presented 

centrally close to the fixation point (an arbitrary symbol indicating to where the participant 

has to orient attention covertly), or peripherally close to the target location (Figure 1.1). The 

cue is then removed and after an interval (stimulus onset asynchrony) has passed a target 

appears. The participant must then respond quickly to the target (usually by a key press). 

The cue correctly indicates the target location on high proportion of trials; on the remainder 

of trials the target is presented at an uncued location (predictive cueing; for example, 80% 

valid and 20% invalid). The cueing can also be in a non-predictive manner (50% valid and 

50% invalid). This paradigm allows the comparison of performance in conditions where 

attention is directed to a location (attended; valid cue), or away from that location 

(unattended; uncued or invalid cue). Performance in detecting or discriminating a target 

typically benefits in trials in which the target appears at the cued location than at uncued 

locations, measured either by accuracy or reaction time (Posner, 1980; Carrasco, 2011). The 

improvement in accuracy and shorter reaction times are evidence of attention. It is 

important to note that the cue in the deployment of attention can be exogenous 

(involuntary or bottom-up) or endogenous (voluntary or top-down) (Jonides & Irwin, 1981; 
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Müller & Rabbitt, 1989; Folk et al., 1992; Corbetta & Shulman, 2002; Berger et al., 2005; 

Jack et al., 2006). An endogenous cue is according to internal, behavioural goals. One such 

example of an endogenous cue is when it relies on inputs from the central visual field and is 

presented in the same location as the fixation point in the centre of the screen. An 

exogenous cue, however, is presented in the periphery near where the target will be 

presented (Figure 1.1).  

 

 

 

 

 
 
Figure 1.1: An example of a paradigm that modulates spatial attention.  
On some trials the cue validly indicates the stimulus location and on the remainder of the 
trials, the stimulus is presented at an uncued location (invalid cue). Top panel shows a case 
that the cue was presented centrally close to the fixation point (endogenous). Bottom panel 
shows when a peripheral cue presented close to the stimulus location (exogenous).  

 

 



Integrative function in rat visual system                    Saba Gharaei 

1.0 General Introduction    27 

 

 

In covert attention tasks involving humans, participants are asked not to move their 

eyes by looking at a fixation point. Thus, during target presentation, the same sensory 

information is provided in valid and invalid trials. Likewise, the same motor response is 

required in valid and invalid trials. Therefore, differences between RTs in invalid and valid 

trials reflect both the benefit achieved by the prior orienting of attention towards the 

expected target location and the costs of prior orienting of attention towards an incorrect 

target location (Posner and Cohen, 1984). The shorter RT and better performance for validly 

cued targets are only revealed for certain combinations of variables including Stimulus-

Onset Asynchrony (SOA), cue predictability, and cue type (peripheral or central) suggesting 

that different processes underlie orienting of attention (Klein, 2000; Milliken et al., 2003). In 

humans, RTs to validly cued targets are usually faster for SOAs of up to about 250 ms; this is 

termed facilitation. In contrast, for SOAs of greater than 300 ms, invalidly cued targets show 

shorter RTs, and this effect is termed inhibition of return (IOR; Klein, 2000). Therefore the 

pattern of RTs in the cueing paradigm seems be to biphasic, with facilitation at short SOAs 

followed by IOR (see Samuel & Kat, 2003, for a review).  

The Posner paradigm has been widely used across different populations of 

participants, for example children and neuropsychological patients and has greatly 

contributed to the current knowledge of attentional processes (for example Posner, 1988; 

RAFAL et al., 1988; Brodeur and Pond, 1997; Bartolomeo and Chokron, 2002; Bayliss and 

Tipper, 2006; Ristic and Kingstone, 2009; Hayward and Ristic, 2013). Furthermore, this 

paradigm served as the basis for the development of the difference between exogenous and 

endogenous attentional processes (Jonides & Irwin, 1981; Berger et al., 2005).  
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1.4 Studies of attention in non-human primates 

Because it is so simple in concept and execution, variations of the Posner paradigm 

have been widely employed in studying neural circuits of attention of non-human primates. 

A standard paradigm resembles the following. A monkey sits in a chair immobilised via head 

post and views a screen on which two stimuli are presented. The stimuli remain present for 

several seconds while the monkey keeps its eyes directed to a central fixation point. The 

monkey’s task is to detect a brief change in one of the stimuli (target), and indicate this by a 

rapid response (eye movement or lever press) as soon as possible after the target. The time 

of the target is chosen randomly on each trial. The change is more likely to occur in one of 

the two stimuli than the other: this bias can be cued endogenously by grouping trials into 

blocks, or by providing a spatial cue shortly before each trial. That the monkey was 

attending to one of the locations is established by greater accuracy (hit-rate) and shorter RT 

for changes at the cued location, compared to the uncued location. The near-threshold 

stimulus changes show the strongest improvements in the performance and RT (Dosher & 

Lu, 2000; Reynolds et al., 2000; Herrmann et al., 2010; Nandy et al., 2013). 

 

 

1.5 Studies of attention in rodents 

Selective attention is frequently thought of as a high level mechanism and to exist 

only in primates with elaborate cerebral cortex. However, rodents have long being used as a 
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model of sustained attention (for example: Carli et al., 1983; Bunsey and Strupp, 1995; 

Bushnell, 1998; Humby et al., 1999; Bushnell and Strupp, 2009; Jaramillo and Zador, 2011; 

Rodgers and DeWeese, 2014; Zhang et al., 2014). A widely used method for assessing 

sustained attention in rodents is 5-choice serial reaction time test (5-CSRTT) which is 

employed to explore the whether rodents can maintain attention to five opening ports to 

detect a flash (Carli et al., 1983; Bari et al., 2008). A standard paradigm resembles the 

following. A rodent is placed in a chamber with five ports where a small and brief flash of 

light is presented in one of the ports after a short delay. The task requires the animal to 

indicate the location of the visual flash via a nose poke. A 3-choice alternative of the 5-

CSRTT has also been developed which tests similar function (Bunsey & Strupp, 1995; 

Morgan et al., 2001; Gendle et al., 2004). These tasks are well suited to measuring sustained 

attention as the animal must maintain attention to all of the ports to detect the flash and 

respond quickly and accurately.  

While the 3-choice and 5-CSRTT are suitable for measuring sustained visual 

attention, they are less suited to measuring covert selective attention as the animals can 

orient body and head towards a particular port. The Posner paradigm has not been widely 

deployed in work on rodent attention. Limited attempts have explored whether rats can use 

cues to spatial location, and can show reduced reaction time or improved accuracy at cued 

locations (Weese et al., 1999; Bushnell & Strupp, 2009; Marote & Xavier, 2011). Marote and 

Xavier (2011) utilised a 3-choice nose-poke task in rats to investigate the effects of non-

predictive and predictive peripheral visual cues to a target using SOAs of 200-1200 ms. They 

observed faster RT for some of the SOAs. Rats in both predictive and non-predictive 

conditions performed faster in valid trials than invalid trials for SOAs of 200 and 400 ms. The 

rats in the predictive conditions also showed faster RT for the SOA of 800 ms. My 
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experiments seek to confirm or extend their study. Wagner and colleagues (2014) used a 

similar attention task to investigate whether IOR could be demonstrated in rats. However, 

they could not robustly show IOR in all of the rats using the 3-holed wall operant chambers. 

A caveat of these studies is that unlike the work in primates, they have not measured or 

constrained the position of the head or eyes during the task. Therefore, these studies do not 

tell us whether improved performance seen in some of the conditions reflects changes in 

position of the body with respect to the stimuli, or whether it reflects the allocation of 

selective attention. 

 

 

1.6 Multisensory integration 

An organism’s sensitivity to environmental events and hence its survival is increased 

by combining information from multiple senses. Most environmental events stimulate 

multiple senses and then each sense independently delivers a unique perspective on the 

event. A multisensory stimulus is therefore an event which produces several independent 

energies that are simultaneously detectable by different senses. The brain has developed 

the capacity to integrate information across different senses (Figure 1.2). This process of 

utilising different available information is called multisensory integration (Rowland et al., 

2007a; Stein et al., 2009a, 2009b). A hypothesis for multisensory integration to happen is 

that information must first converge from different senses onto individual neurons as 

shown in Figure 1.2 (Meredith, 2002). 
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Figure 1.2: The sequence of multisensory processing.  

Environmental events usually produce several physical energies. These energies are 
simultaneous but do not influence the physical properties of each other. In the nervous 
system, these energies are detected by receptors (gaps in vertical black bar) specifically 
tuned for a particular stimulus modality. Nevertheless, in many areas of the brain, modality-
specific projections converge onto individual neurons. These individual neurons are 
influenced by two to more sensory modalities. Multisensory integration can occur due to 
this convergence of multiple inputs which changes perception and behaviour. Adapted from 
Meredith (2002).  

 

 

Multisensory integration has obvious survival advantages for an organism and 

species and has been shown to facilitate and speed the detection, localisation, and 

identification of an evolutionary significant event (Wallace et al., 1993; Hughes et al., 1994; 

Frens & Van Opstal, 1995; Corneil & Munoz, 1996; Stein et al., 2009a; Fetsch et al., 2010; 



Integrative function in rat visual system                    Saba Gharaei 

1.0 General Introduction    32 

 

Hirokawa et al., 2011; Clery et al., 2015). Further benefits of multisensory integration 

include strong effect in reduction of signal ambiguity, for example in human language 

perception (Grant et al., 2000; Shams et al., 2000; Calvert et al., 2004; Massaro, 2004; 

Sathian, 2005). 

 

 

1.7 Multisensory response 

At the neuronal level, a multisensory stimulus often produces a response that differs 

from that expected from the response to the component unisensory stimuli. A neuron can 

increase its response under the multisensory condition compared to the unisensory 

conditions. This is referred to as enhancement (Figure 1.3A). Nevertheless, enhancement of 

the response during multisensory condition is insufficient to account for a number of 

perceptual phenomena. For instance, suppression of responses to an unattended stimulus 

during selective attention cannot be attributed to spatial enhancement effects (Meredith, 

2002). This suppression of responses to a non-attended stimulus is observed in both cross-

modal selective attention (Wallace et al., 1993; Foxe et al., 1998; Hillyard & Anllo-Vento, 

1998) and stimuli within the same modality (Moran & Desimone, 1985; Reynolds et al., 

1999; Worden et al., 2000). A response can therefore also be depressed under the 

multisensory condition (Figure 1.3B). 
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Figure 1.3: Extracellular recordings from two example neurons in cat SC.  

The response of the neurons is shown for individual stimulus presentations (rasters) and 

peristimulus time histograms (PSTH; bin width 10 ms). A. Example neuron showing response 

enhancement during multisensory condition. This neuron responds to presentation of a 

somatosensory stimulus and an auditory stimulus when presented in isolation. When the 

two stimuli are combined, the resultant multisensory response is more than individual 

responses. B. Example neuron showing response depression during multisensory condition. 

The auditory stimulus failed to activate this neuron. A moving visual stimulus, however, 

evoked strong responses. The response of the neuron was significantly reduced during 

multisensory condition. Adapted from Meredith and Stein (1986). 
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The resultant form of multisensory integration (which can be either response 

enhancement or depression) is determined by physical parameters of the component 

stimuli and their spatial and temporal relationship (Meredith & Stein, 1986, 1996; Meredith 

et al., 1987; Calvert et al., 2004). Early studies in cat SC mainly utilised visual and auditory 

stimuli to investigate the multisensory integration (Rowland et al., 2007b; Rowland & Stein, 

2008). These studies have yielded three general rules for multisensory integration 

(Meredith, 2002). The first two involve space and time: a spatial rule predicting higher 

efficiency of interaction for spatially congruent stimuli (visual and auditory); a temporal rule 

postulating the same for temporal alignment. The third is the rule of inverse effectiveness. It 

predicts stronger modulations of neuronal activities by the multisensory stimulus when at 

least one of the individual stimuli (visual or auditory) is weakly effective. Thus, the 

magnitude of multisensory integration is inversely related to the efficacy of the stimuli being 

integrated. Generally, studies in cats and primates have shown that multisensory stimuli 

that are in close spatial and temporal register enhance the responses of multisensory 

neurons in SC (Wilkinson et al., 1996; Frens & Van Opstal, 1998; Jiang et al., 2001, 2002; 

Perrault et al., 2003; Burnett et al., 2004; Bell et al., 2005; Stanford et al., 2005; Stanford & 

Stein, 2007). However as shown before in Figure 1.3B, a multisensory stimulus can also 

depress neuronal responses in the SC (Meredith & Stein, 1986; Kadunce et al., 1997; Mysore 

et al., 2010; Hirokawa et al., 2011). Meredith and stein (1986) investigated the visual, 

auditory, and somatosensory convergence in cat SC and showed that 20% of the neurons in 

the deep layers produced significantly fewer responses to the multisensory stimulus than 

elicited by uni-sensory stimuli presented in isolation. The majority of the neurons exhibiting 
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response depression to multisensory stimulus appeared to be influenced by stimuli from 

only one modality during uni-sensory presentations. Therefore the inhibitory or suppressive 

influence of a seemingly ineffective stimulus only becomes evident during multisensory 

presentation.  

 

 

1.8 Different areas of the brain involved in multisensory integration  

Many areas of the brain contain individual neurons that show multisensory 

responses. In the mammalian brain a key area responsible for multisensory integration is 

the Superior Colliculus (SC), a midbrain structure often served as a model for understanding 

multisensory processing (Wallace et al., 1993; Jiang et al., 2001; Perrault et al., 2003; 

Stanford et al., 2005; Rowland et al., 2007b, 2007a; Rowland & Stein, 2008). The model 

system I have chosen for the current thesis is also the SC and I will explain SC in detail in 

later sections. In addition to the SC, various brain areas ranging from other midbrain 

structures, thalamus and cortical areas have been demonstrated to contain neurons that are 

capable of integrating cross-modal cues and many of these areas have connection to the SC. 

Studies in cats and primates have shown multisensory influences on neuronal activity within 

classically defined uni-sensory regions including low-order areas of sensory cortices 

(Wallace et al., 1993; Calvert, 2001; Ghazanfar & Schroeder, 2006; Ghazanfar & 

Chandrasekaran, 2007; Kayser & Logothetis, 2007). This conflicts with the classical view of 

sensory organisation where multisensory responses are confined to highly specialised 

regions of the brain (Ghazanfar and Schroeder, 2006; Stein and Stanford, 2008). 
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 Evidence has emerged of multisensory convergence in cortical pathways previously 

considered as being exclusively devoted to the processing of uni-sensory inputs (Schroeder 

& Foxe, 2005; Ghazanfar & Schroeder, 2006). The main evidence demonstrating that 

multisensory integration occurs early in cortical sensory processing came from studies of the 

auditory cortex of primates (Cahill et al., 1996; Lakatos et al., 2007; Kayser et al., 2008, 

2010; Bizley & King, 2009). Brosch and colleagues (2005) found that non-auditory stimuli 

(visual or somatosensory stimulation and movements) could activate and affect processing 

within the auditory cortex of the monkeys. Other research indicated that auditory cortical 

neurons responded to somatosensory stimulation (Fu et al., 2003). Even eye position or 

direction of gaze could affect neuronal activity within the primary auditory cortex (Werner-

Reiss et al., 2003). The effects observed in the study by Werner-Reiss and colleagues (2003) 

where the modulation of auditory cortical neurons occurred as a function of eye position 

can be produced by some other factors that are correlated with eye position such as spatial 

attention. In another study, field potential multisensory responses of dynamic visual facial 

stimuli paired with voices were demonstrated within the primate auditory cortex (Ghazanfar 

et al., 2005).  

Although primary sensory regions show subtle responses that are influenced via 

stimulation of other sensory modalities, higher association regions show a higher 

occurrence of multisensory neurons compared to primary regions (Sugihara et al., 2006; Gu 

et al., 2008; Dahl et al., 2009). These insights into multisensory involvement of higher 

association regions came from functional imaging studies in humans (Beauchamp et al., 

2004; Driver & Noesselt, 2008; Lewis & Noppeney, 2010) and microelectrode recording 

studies in other primates (Gu et al., 2008; Dahl et al., 2009).  
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Attention and multisensory integration are both important for integration of 

information in the environment. Selective attention can modify multisensory integration 

processes at multiple stages (Talsma & Woldorff, 2005). An individual needs to attend 

across different modalities to bind the inputs and detect salient events. For example an 

fMRI study in humans demonstrated that multisensory mechanisms can integrate both 

endogenous and exogenous spatial information to orient towards the most relevant spatial 

location (Santangelo et al., 2009).   

Above I have described multisensory integration and attention in primates and 

rodents. An area that appears to be involved in both attention and multisensory integration 

in both species is SC, a well-known site of sensorimotor integration. It receives inputs from 

multiple sensory modalities and plays an important role in moving the eyes, head and body 

towards or away from a biologically significant event. In the following sections I introduce SC 

as a model system for understanding integrative function.  

 

1.9 Anatomy of SC 

The optic tectum is a structure that forms a major part of the vertebrate midbrain. In 

mammals, this structure is called the Superior Colliculus (SC). It forms part of the roof of the 

midbrain and appears as a bump on either side of the midline beneath the posterior part of 

the cerebral cortex. Figure 1.4 shows the location of SC in rat brain. 
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Figure 1.4: Location of SC in rat brain. 

SC is ideally located in a central position of the rat brain in order to receive and process 
sensory inputs from differing modalities and to coordinate motor responds. Adapted from 
Paxinos and Watson (1986). 

 

 

 

 

The anatomical structure and input/output architecture of the mammalian SC is 

conserved across species (Huber & Crosby, 1943; Harting et al., 1973; Gaither & Stein, 1979; 

Sahibzada et al., 1986; Ozen et al., 2000; Sefton et al., 2004; May, 2006; Isa & Hall, 2009). 
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The SC is articulated as having seven lamina or independently identifiable layers, as outlined 

in Table 1.2 (Huerta & Harting, 1984).  

 

 

Table 1.2: Lamina of the SC. From the surface the layers are stratum zonale, stratum 

griseum superficiale, stratum opticum, stratum griseum intermediale, stratum album 

intermediale, stratum griseum profundum and stratum album profundum. Table based on 

original information from Lund and Lund (1972) and Huerta and Harting (1984). 

 

 

 

The seven layers alternate between lamina composed of fibre connections and 

lamina largely constituted by soma of the neurons. These lamina were initially considered as 

being partitioned into two separate regions on the basis of their differing functionality; the 
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superficial layers comprised the top three lamina while the four remaining lamina were 

ascribed as the deeper layers (Stein, 1984; Sparks & Hartwich-Young, 1989; Stein & 

Meredith, 1993). The division was roughly based on differences in uni-sensory versus 

multisensory functionality, cell morphology, physiology and the variations in afferent-

efferent connections (Stein, 1984; Stein et al., 2009b). It has also been established that 

there are connectional and physiological differences between the individual layers (Huerta 

& Harting, 1984). The three superficial layers are innervated by retinal axons. Neurons in 

these superficial layers project to intermediate and deep layers, which also receive auditory 

and somatosensory inputs. Lee and colleagues (1997) demonstrated that brief electrical 

stimulation of the superficial layers evokes a strong and prolonged excitation in premotor 

neurons of the intermediate layers. This led to further experimentation that found that 

sensory inputs from the retina and visual cortex are received by cells in the superficial 

layers, and then transmitted to premotor neurons in the intermediate layers. The premotor 

neurons, in turn, issue command signals to the midbrain and gaze centres to initiate saccade 

and body movements (May, 2006; Isa & Hall, 2009). 

 

1.10 Cellular architecture of SC 

SC is an elaborate multilayered structure which contains various cell types. Ramón y 

Cajal identified and illustrated cell types and arrangements in the rabbit SC by Golgi method 

(Figure 1.5A). In a recent study, Gale and Murphy (2014) distinguished different classes of 

neurons in the superficial layers of mouse SC on the basis of their morphology and 

electrophysiological characteristics (Figure 1.5B). Briefly, Narrow-field cells (NF) are often 

direction selective and prefer small stimuli. They project to deeper layers of the SC and to 

the parabigeminal nucleus (PBg) which is a brainstem nucleus that provides cholinergic 
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feedback to the superficial SC and is thought to be involved in attention. Apart from PBg, 

the brainstem parabrachial region is another source of cholinergic activity (Sooksawate & 

Isa, 2006). Wide-field cells (WF) respond to small moving stimuli anywhere within a large 

region of space and project to pulvinars. Horizontal cells are inhibitory GABAergic (Mize, 

1992) and respond to large stationary or fast moving stimuli and project to PBg and to 

dorsal and ventral LGN. Stellate cells prefer small stimuli and project to both PBg and LGN.  

The circuitry of SC is complex involving broad connectivity with various brain areas 

and the interaction of multiple neurotransmitters. Inhibition occurs through abundant 

presence of GABA receptors on the superficial grey densities (Binns, 1999; Endo & Isa, 

2001). Activation of inhibitory GABAc receptors on interneurons can increase outputs of SC 

via dis-inhibition and there is evidence for cholinergic modulation of these efferent path-

ways (Lee & Nguyen, 2001; Schmidt et al., 2001; Sefton et al., 2015). 

Except the WF cell type, other superficial SC neurons project to PBg which is thought 

to involve in attention (Mufson et al., 1986; Illing et al., 1990; Mysore et al., 2011). 

Cholinergic activity is implicated in mechanisms involving attention, and is high in both 

superficial layers and the intermediate grey layer of SC (Tan & Harvey, 1989). NF neurons 

project to deeper layers of SC and therefore provide visual inputs to the layers that are 

thought to be more involved in spatial attention and orienting movements (Gale & Murphy, 

2014). Unlike the superficial layers where acetylcholine is distributed homogeneously, it 

occurs in clusters or patches in deeper layers (Graybiel, 1978; Illing & Graybiel, 1986).  
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Figure 1.5: Different cells in SC 

A. Ramón y Cajal's drawing of collicular cells of the rabbit. The letters indicate cell types 

revealed by Golgi-stained material. B. Identification of four superficial SC cell types on the 

basis of their somato-dendritic morphology visualised either by filling cells with fluorescent 

dye during whole cell recordings performed in vitro or by Neurobiotin electroporation 

during cell attached recordings performed in vivo. Narrow-field cells (NF) have thick primary 

dendrites that extend ventrally into the Stratum Opticum (deepest portion of the superficial 

SC) and dorsally to the surface of superficial SC. Wide-field cells (WF) have somas in the 

Stratum Opticum and extend elaborately branched thin dendrites to the dorsal surface of 

the superficial SC. Horizontal cells have horizontally extending long dendrites. Stellate cells 

have a small field of thin dendrites extending in numerous directions. Adapted from Ramón 

y Cajal (1995) and Gale and Murphy (2014). 
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1.11 Topographic organisation  

The brain has developed well-defined topographic sensory maps. The topographic 

maps facilitate spatially guided behaviours by providing interactive informational 

representations of the space (White & Munoz, 2011). Much of the knowledge about the 

topographic organisation in the SC comes from research in cats. Each of the three sensory 

representations for visual, auditory and somatosensory is laid out in topographic maps with 

different maps in overlapping spatial register with one another (Stein et al., 1976, 2009b, 

2014; Stein, 1981; Middlebrooks & Knudsen, 1984; Meredith & Stein, 1990; Stein & 

Meredith, 1993). These topographic maps extend vertically through the layers of the SC. The 

neurons in a vertical column of SC represent the same general region of visual, auditory and 

somatosensory space. The visual and somatosensory topographical maps within the SC 

develop very early in mammals, and only become aligned with the auditory maps as they 

slowly develop over a longer postnatal period (King et al., 1996, 1998). A topographic map 

of auditory space exists in the SC of most mammals (King & Palmer, 1985; Gaese & Johnen, 

2000). Neurons within the deeper layers of the SC are tuned directionally with auditory 

receptive fields that vary depending on the origin point of the audition (Vachon-Presseau et 

al., 2009).  

The sensory maps, in turn, overlap with a common premotor map where movement 

of the eyes, head and limbs can be initiated (Wurtz & Goldberg, 1971; Sparks, 1986; Jay & 

Sparks, 1987a, 1987b; Groh & Sparks, 1996a, 1996b; White & Munoz, 2011). It is through 

this arrangement that incoming sensory information from a biologically significant event 

match with the outgoing motor signals. Therefore a coordinated overt response such as eye 
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movement is initiated regardless of which sense or combination of senses was activated 

(Stein et al., 2009b, 2014). 

As mentioned above, much of the knowledge about multisensory integration and the 

topographic organisations comes from the research in cats. Given that the focus of a 

chapter of this thesis is to study spatial and temporal overlap of visual and somatosensory 

signals in SC of rats, I will now review thoroughly a few experiments on the topographic 

organisation of these two maps in rodents. Dräger and Hubel (1975; 1976) showed that the 

topographic representation of the mouse visual field is similar to what had been found in 

other mammals (Feldon et al., 1970; Hughes, 1971; Lane et al., 1973; Stein et al., 1975), with 

the temporal part of the contralateral visual field projecting posteriorly and the inferior 

visual field laterally (Figure 1.6). There exists an area of central vision with higher 

magnification in the mice, however the difference in magnification is small compared to 

those found in primates and cats (Dräger and Hubel, 1975; 1976). The magnification in this 

central area is anisotropic with only an increase for the vertical direction in the visual field. 

As evident from Figure 1.7, representation of whiskers covers the major part of the 

SC somatosensory receptive fields. The projections of whiskers and the other body parts 

follow spatial rules given by the visual projection. The paws are visible to the mouse in the 

lowest part of the visual field and the ears in the temporal field of vision. The A and E rows 

of the whiskers are respectively associated with the highest and the lowest visual field 

coordinates. In any successive perpendicular electrode penetration in mouse SC, 

somatosensory receptive fields recorded in the deeper layers are concerned with that group 

of whiskers or with those parts of the body that were in alignment with the visual receptive 

fields recorded in the upper layers (Figure 1.7).   
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Figure 1.6: Map of visual field onto surface of SC in the mouse.  

It shows the projection of the SC onto a horizontal plane with the interrupted curves 

representing lines of constant elevation and solid curves representing lines of constant 

azimuth. Star indicates the position of the disc of the contralateral eye. Inset represents the 

general plan of visual-field representation onto SC. Adapted from Dräger and Hubel (1976).  

 



Integrative function in rat visual system                    Saba Gharaei 

1.0 General Introduction    46 

 

 

Figure 1.7: Correlation between visual and somatosensory receptive fields.  

A. Map of somatosensory projection onto SC. Letters and numbers refer to different 

whiskers, using terminology shown on the side figure. B. The visual field regions and 

whiskers from which responses could be evoked in three successive electrode tracks 

perpendicular to the surface of SC. In the upper panels, whiskers from which maximum 

responses could be evoked are drawn as thicker lines. Adapted from Dräger and Hubel 

(1975) and Dräger and Hubel (1976).  
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1.12 Many areas of the brain are connected to SC  

 

Harting and colleagues (1992) utilised anterograde auto-radiographic method to 

reveal the distribution of projections from 25 cortical areas to cat SC. The remarkable 

finding was that all of these cortical areas project to SC (Figure 1.8). The superficial layers 

receive projections from 17 of the areas studied and all of the cortical areas, except areas 17 

and 18, project to intermediate/deep layers. Most of these projections terminate in a non-

continuous way and there are elaborate double tier modes of distribution (Kawamura et al., 

1982; Segal & Beckstead, 1984; Stechison et al., 1985; Illing & Graybiel, 1986; McHaffie et 

al., 1988; Hall et al., 1989; Harting et al., 1992). The deeper layers send extensive inputs to 

brain stem areas involved in the regulation of eye movement and orientation. 
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Figure 1.8: Widespread areas of cortex project upon SC.  

Anterograde transport studies of twenty-five cortical areas in Cats. Ps, posterior 

suprasylvian area; PMLS, posteromedial lateral suprasylvian area; AMLS, anterolateral 

medial suprasylvian area; ALLS, anterolateral lateral suprasylvian area; PLLS, posterolateral 

lateral suprasylvian area; S V, fifth somatosensory cortical area; AES, anterior ectosylvian 

sulcus; S IV, fourth somatosensory cortical area; FEF, frontal eye field area; DLS, dorsal 

lateral suprasylvian area. Adapted from Harting et al. (1992). 
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In rodents, similar to other mammals, the superficial layers receive extensive inputs 

from the retinal axons, the visual cortex, and the PBg (Sefton et al., 2004, 2015; Skaliora et 

al., 2004; May, 2006). These superficial layers project to several other areas involved in 

vision and attention (Malpeli & Schiller, 1978; Mackay-Sim et al., 1983; Sefton et al., 2004; 

Skaliora et al., 2004; May, 2006; Terjung, 2011). The intermediate and deeper layers receive 

visual, auditory, and somatosensory (mainly whisker) inputs (Vidyasagar, 1978; Sefton et al., 

2004). The inputs to these deeper regions come from multiple cortical and subcortical areas. 

Some of these inputs come from the barrel cortex (Cohen et al., 2008) as well as visual and 

other sensory cortices (Wang & Burkhalter, 2013). Cells in deeper layers can also be 

activated via cells in superficial layers and by the contralateral SC (Takemoto et al., 1978; 

Yamasaki et al., 1984; Isa et al., 1998; Hilbig et al., 2000; Terjung, 2011). This connectivity 

may provide a mechanism for selective attention to support spatial attention or the 

competition between right and left hemi-fields. There are two main sources of whisker 

inputs to SC, a direct input from the trigeminal complex and an indirect input from the 

barrel cortex (Castro-Alamancos & Keller, 2011; Bezdudnaya & Castro-Alamancos, 2011). 

The intermediate and deeper layers project extensively to brain stem regions associated 

with motor control (Sahibzada et al., 1986; Dean et al., 1989; Herbert et al., 1997; Sefton et 

al., 2004; Terjung, 2011). Table 1.3 outlines main inputs and outputs of SC in mammals as 

provided by Schiller (2011).    

 



Integrative function in rat visual system                    Saba Gharaei 

1.0 General Introduction    50 

 

       

 

Table 1.3. Inputs and outputs of mammalian SC. Adapted from Schiller (2011). 

 

Inputs Outputs 

Retina Pulvinar 

Ventral lateral geniculate nucleus Lateral geniculate nucleus 

Occipital cortex Pretectum 

Parietal cortex Posterior nuclear group 

Temporal cortex Suprageniculate nucleus 

Frontal cortex Intralaminar thalamic nuclei 

Parabigeminal nucleus Reticular formation 

Reticular formation Pontine nuclei 

Substantia nigra Parabigeminal nucleus 

Cerebellum Inferior olive 

Periaquiductal grey Oculomotor complex 

Inferior colliculus Central gray 

Spinal cord Spinal cord 
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1.13 SC involvement in approach or avoidance behaviours 

An unexpected prominent event can either signal the presence of a prey or a 

predator, therefore it is important for an organism to decide whether to approach or avoid 

(Sahibzada et al., 1986; Dean et al., 1989; Furigo et al., 2010; Favaro et al., 2011). 

Consequently, there are two kinds of behaviours both gated by SC. The orienting approach 

behaviours are primarily mediated by the crossed descending projections from the deeper 

layers (Castro-Alamancos & Keller, 2011). The ability of SC to move the head (Dean et al., 

1986), to guide eye movement’s speed and direction (McHaffie & Stein, 1982) and to 

control whisker movements (Hemelt & Keller, 2008) is mainly relevant in this approach 

behaviour. SC is also involved in aspects of spatial navigation and spatially guided 

movements (Felsen & Mainen, 2008). The connection between whisker responsive cells in 

SC and the pre-dorsal bundle mediates approach (Dean et al., 1989; Westby et al., 1990; 

Cohen & Castro-Alamancos, 2010a, 2010b). In an odour discrimination task, Stubblefield 

and colleagues (2013) manipulated SC activity of mice by optogenetic techniques and found 

that the direction of orienting movements was affected. In rats, SC cells show an increased 

response associated with reward retrieval which is not caused by sensory or motor 

influences (Weldon et al., 2007). 

Avoidance or defensive responses evoked by threatening stimuli are also associated 

with SC (Dean et al., 1989; Wei et al., 2015). For example, it has been shown that potentially 

harmful looming stimuli initiate responses in the SC of many species including mice and 

humans (Westby et al., 1990; Liu et al., 2011; Billington et al., 2011; Wei et al., 2015). 

Microstimulation of SC can cause defensive reactions including freezing and escape 
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(Sahibzada et al., 1986; Brandão et al., 2003). Escape responses caused by fear have also 

been shown to involve SC (Cohen & Castro-Alamancos, 2007, 2010a, 2010b; Churchland et 

al., 2010). Liang and colleages (2015) showed that a flash of light induces a transient arrest 

of locomotion which is directly dependent on SC activity. Using optogenetic manipulations 

they show that visual cortex directly drives this arrest locomotion via cortico-tectal 

projections (Liang et al., 2015). 

For many species such as fish, primates and birds, the prey and predators could 

appear from many directions. By contrast, in rodents escape and avoidance behaviours are 

associated with the upper visual field as predators are often detected as movements in the 

upper visual field (Westby et al., 1990; Comoli et al., 2012). However, approach behaviours 

are associated with the lower visual field where prey is often found. These ecological factors 

are therefore compatible with the idea that escape and avoidance behaviours are 

represented in the medial SC whereas approach behaviours are represented in the lateral SC 

(Comoli et al., 2012). Indeed, stimulation of rat lateral SC induces approach behaviours, 

whereas stimulation of medial SC produces defence responses (Sahibzada et al., 1986; Dean 

et al., 1986; Comoli et al., 2012). Furthermore, modulation of neuronal activity in lateral SC 

is observed during hunting in the rats, whereas activity of medial SC enhances in the 

presence of a predator (Favaro et al., 2011; Comoli et al., 2012). 

Neurons in deep layers of SC respond to noxious stimuli (Stein & Dixon, 1979; 

McHaffie et al., 1989; Redgrave et al., 1996). SC is involved in autonomic orienting reflexes 

and cardiovascular changes in response to a sudden aversive stimulus such as the 

appearance of a predator (Dean et al., 1989; Netser et al., 2010). Keay and colleagues (1988) 
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showed that stimulation of the rat SC produces cardiovascular responses and these 

modulations depend on the location of the stimulation within SC.  

 

1.14 Involvement of SC in attention   

The main evidence to show the importance of SC in spatial attention and attentional 

shifts comes from primate research (Goldberg & Wurtz, 1972; Ignashchenkova et al., 2004; 

Shipp, 2004; Zénon & Krauzlis, 2012; Ngan et al., 2015). These attentional shifts in SC 

include both overt shifts through moving the body, head and the eyes and covert allocation 

of attention in the absence of any movements (Sparks, 1999; Gandhi & Katnani, 2011; 

Krauzlis et al., 2013). Cells in the intermediate and deep layers of SC are likely to be involved 

in selecting which stimuli will guide behaviour. Neuronal responses are more for visual 

targets that will be selected as the end point of saccades compared with those that are 

ignored (Krauzlis & Dill, 2002; McPeek & Keller, 2002; Krauzlis et al., 2013). For some of 

these cells, this modulation is related to the selected visual target rather than to the 

movement of upcoming saccade (McPeek & Keller, 2002; Horwitz et al., 2004). Micro-

stimulation of SC causes saccades to the target location of the activated area and 

inactivation of SC causes saccades to the distractor area (Carello & Krauzlis, 2004; Nummela 

& Krauzlis, 2010). SC is also essential in covert attention in the absence of any orienting 

movements (Ignashchenkova et al., 2004). Neurons in the superficial layers of primate SC 

increase their responses when an attended test stimulus is within their receptive field 

relative to a distractor within the receptive field (Gattass & Desimone, 2014). Lovejoy and 

Krauzlis (2010) showed that inactivating intermediate layers of SC leads to deficits in covert 
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spatial attention. Interestingly, these deficits are not accompanied by corresponding 

attentional modulations in the visual cortex (Zénon & Krauzlis, 2012). 

There is limited research in rats investigating the involvement of SC in attention. 

Similar to guiding saccades in primates, SC in rats has been shown to involve in guiding 

licking behaviours (Ngan et al., 2015). Mathis and colleagues (2015) showed that structural 

abnormalities in SC of genetically modified mice can cause problems with response 

inhibition. This defect in response inhibition was specific to attentional problems and was 

not due motor abilities or visually driven behaviour (Mathis et al., 2015). 

 

1.15 Differences and similarities of SC between species 

As is made clear throughout this chapter, the sensory and motor organisation of the 

SC is fundamentally similar between different mammalian species (Stein, 1981). These 

similarities are in spite of the differences in their phyletic levels and ecological niches. 

Multisensory properties of the SC have mainly been studied in cats whereas its role in 

attentional modulation has mainly been investigated in primates. However recent studies in 

rodents show similar anatomical, physiological and functional organisation of SC. Below, I 

point out some of the differences observed between species that may be due to different 

ecological stresses.    

There are key differences in the general organisation and neuronal circuitry of the 

visual system across species (Dräger & Hubel, 1975b; Stein, 1981; Ngan et al., 2015). 

Compared to rodents, the primate and cat visual system is more specialised to central and 

binocular vision. Unlike rodent SC, in primates and cats there are marked differences 
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between the representation of the central region of retina and the rest of the retina (Dräger 

& Hubel, 1976). In our experiments, these differences should not be a problem as we utilise 

large visual flashes. The primate SC gets information from the hemi-retina of both eyes 

which are dedicated to the contralateral visual field whereas in rodent, information mainly 

comes from the retina in the contralateral eye (Stein, 1981; Heesy, 2009) with a sparse 

ipsilateral projections (Lemke & Reber, 2005; Dhande & Huberman, 2014). Additionally, 

rodents have laterally placed eyes and their eye movements are usually non-conjugate to 

maintain an overhead continuous binocular field instead of fixating on a target (Wallace et 

al., 2013).  

There are also species differences in the modalities emphasised in the deeper layers 

of SC. In rodents, the somatosensory system is prominent with extensive whisker 

representations (Dräger & Hubel, 1976). However, in cats the auditory inputs seem to be 

more significant than the somatosensory (Gordon, 1973). Compared to cats, rodents use 

their whiskers much more for navigation and the prominent whisker representation in 

rodent SC could reflect its adaptation to specific environmental pressures. The 

somatosensory topographic map in the cat SC is mainly dedicated to the face and other 

body parts than whiskers (Gordon, 1973; Stein et al., 1975). In cats and primates who have 

well-developed eye and head movements, the relationship between body parts and visual 

fields is not constant. Therefore, it is not expected to see a very close relationship between 

the SC representations of the visual and somatosensory systems (Stein, 1981). By contrast, 

in rodents there is an elaborate topographical register between whiskers and visual fields 

(Dräger & Hubel, 1976). This may be due to the facts that rodents tend to orient their whole 

body instead of moving the eyes and also because their whiskers cover a large part of the 
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visual fields. Therefore, instead of utilising auditory and visual stimuli which are mainly used 

for research in cats’ SC, I investigate the overlap in visual and whisker representations in rat 

SC (Chapter 2). 

Many neurons in SC of different species are orientation or direction selective 

meaning that they respond preferentially to lines of a certain orientation or movement axis. 

There are species differences in the proportion of these cells and the specific direction most 

often preferred. In cats nasal-temporal movements along the horizontal meridian is the 

frequent preferred direction (Sterling & Wickelgren, 1969; Stein & Arigbede, 1972; Palmer & 

Rosenquist, 1974) and they seems to be as the result of inputs from the visual cortex 

(Palmer & Rosenquist, 1974; Stein et al., 1975). In primates, the distribution of preferred 

directions is random (Goldberg & Wurtz, 1972). In rats, superior and temporal movements 

are often preferred (Fukuda & Iwama, 1978; Girman & Lund, 2007), while in mouse inferior-

superior movements are usually preferred (Dräger & Hubel, 1975b). In my experiments, the 

species difference in preferred direction is not a potential issue as I use stationary visual 

stimuli.  

Three very recent studies investigated the orientation and direction selectivity of 

superficial layers of SC in mice (Feinberg & Meister, 2014; Ahmadlou & Heimel, 2015; Inayat 

et al., 2015). Although these studies are not directly relevant to my research, they point out 

the potentially important role of SC in rodent vision. Feinberg and Meister (2014) used 2-

photon microscopy and intrinsic imaging in awake mice and showed that neurons with 

similar orientation preferences form large patches of vertical columns. In a concurrent 

study, Ahmadlou and Heimel (2015) also confirmed the existence of these orientation 

columns by extracellular recordings and calcium imaging. Interestingly, the columnar 
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organisation in the mouse SC is different from the randomly spread (“salt and pepper”) 

orientation preferences in V1 (Ohki et al., 2005; Van Hooser et al., 2005) which may suggest 

a more important role for the SC in rodent vision. These orientation columns in SC of mice 

are reminiscent of the orientation columns observed in the visual cortex of primates (Hubel 

& Wiesel, 1968; Blasdel & Salama, 1986).  

 

1.16 Why I choose to study rats 

Whilst rodents have a simpler visual system than primates, with lower spatial acuity 

and simpler cortical architecture (Chalupa & Williams, 2008), they are gaining popularity as 

a viable animal model in visual neuroscience because of the access to molecular and genetic 

tools and in vivo optical imaging techniques. These tools allow cell-type-specific 

neurophysiology (Sohya et al., 2007; Kerlin et al., 2010; Runyan et al., 2010; Bock et al., 

2011) and exquisite control of neuronal activity (Huber et al., 2008; Cardin et al., 2009). 

Rodents are widely used as models for human diseases, and their behaviour is studied in 

laboratories to find new drugs for psychiatric and neurologic disorders. Furthermore, the 

behavioural phenotype of transgenic rodents is used as a read-out in the search for the 

genetic basis of brain disorders and to reveal the underlying functional role of proteins and 

genes. Other advantages of using rodents for behavioural experiments are that they are 

cheaper and generally can be trained more rapidly than monkeys. Therefore, we aimed to 

develop a simple behavioural paradigm to study rodents’ visual behaviour.  

The main differences between rodents and primates’ vision to consider while 

developing a behavioural model are the lack of a high acuity central vision, lack of binocular 

overlap and low spatial acuity. The spatial acuity in hooded rats is 1.2 cycles/degree 

(Lashley, 1938; Wiesenfeld & Branchek, 1976; Birch & Jacobs, 1979; Dean, 1981; Fagiolini et 
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al., 1994; Seymoure & Juraska, 1997; Girman et al., 1999; Sefton et al., 2004). Unlike 

rodents, primates have central vision fovea and thus move their eyes to bring high acuity 

vision to the area of interest. One needs to consider the low spatial acuity and lack of 

central vison when studying rodent vision and make the stimuli ecologically relevant to the 

animal. In our experiments, these differences should not be a problem as we use large visual 

stimuli and the gratings have low spatial frequency.  

We have chosen to develop a rodent model in rats, rather than mice, because there 

is a much richer history in behavioural training in rats and thus a higher likelihood of 

success. 

 

 

1.17 Aims and objectives 

The current thesis aims to investigate selective attention and multisensory 

integration in rats. Both attention and multisensory integration involve SC and are aspects 

of the way the brain integrates information from the external environment. As mentioned 

before in the introduction, SC is an excellent model for understanding multisensory 

integration. Little is known about multisensory integration and the areas involved in 

rodents. Rats are capable of combining information across senses and show performance 

benefits to cross modal stimuli. The SC of rodents has a laminar organisation that is 

strikingly similar to primates (Girman et al., 1999; May, 2006; Isa & Hall, 2009). We have 

therefore aimed to study multisensory integration in the SC of rats. In chapter 2 of the 

current thesis, we first investigate the spatial and temporal overlap between responses of 



Integrative function in rat visual system                    Saba Gharaei 

1.0 General Introduction    59 

 

neurons in the rat SC to visual and whisker inputs. We then characterise the nature of 

multisensory interaction between these two modalities. 

In chapter 3, we seek to develop a rat model of visual behaviour. Our criteria for the 

paradigm development are to be able to achieve multiple trials in a restricted period of time 

with restriction of head movements and the ability to know eye positions. Adaptability of 

our paradigm to wide range of tasks is another factor that we have considered. In this 

chapter, I provide an overview of the apparatus development, basic task structure and how 

we utilised learning theories to help us shape the rats.  

To acquire a deeper understanding of how selective attention is controlled and 

deployed requires the development of animal models other than monkeys, where specific, 

reproducible experiments can be conducted. Chapter 4 aims to develop a rodent model of 

selective attention. The work here will complement a general model of sustained attention 

in rodents (5-CSRTT) and the 3-choice task. These models are well suited to measuring 

sustained visual attention, but are less suited to measuring selective attention. They are also 

ill suited to exploring the neural mechanisms of attention, or attention’s impact on the 

signals of nerve cells, because careful control of the sensory stimuli is required to 

characterise these nerve cells. Our aim is therefore to develop a behavioural model of 

selective visual attention in rats. 
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2.0 Distribution of visual and somatosensory signals in 

superior colliculus of rat 

 

 

2.1 Introduction 

Evolutionarily significant events in the environment are often simultaneously 

detected by more than one sense, and the brain has evolved the capacity to integrate 

information across the senses. Since each sense can independently convey a given event, a 

more accurate perceptual evaluation and decision may be made through the combination of 

different sensory signals (Meredith, 2002; Stein et al., 2014). Combining signals from 

different senses facilitates detection, localisation and identification of the event, and has 

obvious survival advantages. Multisensory integration is therefore a process by which 

information from different sensory modalities is combined to influence perception and 

behaviour (Stein et al., 2009b).  

Multisensory integration can be quantified using different models. In the current 

chapter, I quantify multisensory integration employing a few of these models and introduce 

another. One common way to quantify the effects of multisensory integration is to compare 

the multisensory response with the response elicited by a uni-sensory stimulus when 

presented in isolation (usually this is the most effective stimulus that produces the largest 

response (Meredith & Stein, 1986; Wallace et al., 1993; Rowland & Stein, 2008; Stein et al., 

file:///M:/Members/Saba/Thesis/Ch2SC/paperIntroductioVersion3.doc%23_ENREF_21
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2009a; Ghose et al., 2014). An alternative approach is the summation model, where the uni-

sensory responses are summed to give a prediction of the expected multisensory response 

(Populin & Yin, 2002). In this model, multisensory response can be sub-additive, additive or 

super-additive. Although comparison with summed uni-sensory responses is useful when 

examining the underlying computation engaged during multisensory integration, it is 

problematic as a criterion for identifying multisensory integration because it faces 

substantial empirical and theoretical challenges (Stein et al., 2009a). These models are basic 

and descriptive but limited in capturing multisensory integration and there is room for 

development as multisensory integration is thought to be nonlinear. In this chapter, I 

introduce a broader model to capture integration over a range of stimulus intensities.  

Understanding the neuronal machinery of multisensory integration is important and 

many regions of the brain contain individual neurons that show multisensory responses. A 

number of brain areas such as parietal cortex, secondary somatosensory cortex, insula, 

caudate nucleus and globus pallidus utilise multisensory integration to facilitate and speed 

the reaction to a stimulus of interest (Hughes et al., 1994; Chudler et al., 1995; Frens & Van 

Opstal, 1995; Corneil & Munoz, 1996; Brett-Green et al., 2004; Nagy et al., 2006; Lemus et 

al., 2010; Hirokawa et al., 2011; Lippert et al., 2013). An excellent example is the superior 

colliculus (SC), a midbrain structure which has often served as a model for understanding 

multisensory integration as it receives inputs from multiple sensory modalities (Wallace et 

al., 1993; Jiang et al., 2001; Perrault et al., 2003; Sefton et al., 2004; Skaliora et al., 2004; 

Stanford et al., 2005; May, 2006; Rowland et al., 2007b, 2007a; Rowland & Stein, 2008). The 

multimodal integration shown in SC is also consistent with a SC’s well-known role in 
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orienting the animal towards appetitive stimuli such as prey and away from threatening 

stimuli such as predator. 

The anatomical structure and input/output architecture of the mammalian SC is 

substantially conserved across species, presumably reflecting the common need to 

transform sensory signals into appropriate orientation responses (Sahibzada et al., 1986; 

Sefton et al., 2004). The SC is a laminated structure traditionally divided into superficial 

layers and intermediate/deep layers with the complexity of sensory integration increasing 

with depth (May, 2006; Girman & Lund, 2007). Superficial lamina in the SC are primarily 

oriented to the reception and organisation of afferent sensory inputs from the retina and 

the visual cortex (Huerta & Harting, 1984). Topographically, a retinal visual projection is 

mapped onto the surface of the SC with descending columns into the superficial layers 

(Lund & Lund, 1972). Projections from the superficial layers then descend into the 

intermediate and deeper layers where sensory inputs from different modalities are 

combined (Edwards et al., 1979). Each of the three sensory representations for visual, 

auditory and somatosensory in SC is laid out in topographic maps with different maps in 

overlapping spatial register with one another (Stein et al., 1976, 2009b, 2014; Stein & 

Gallagher, 1981; Middlebrooks & Knudsen, 1984; Meredith & Stein, 1990; Stein & Meredith, 

1993). The topographical sensory maps are also synchronised with a premotor map, which 

allows the matching of inbound afferent sensory information originating from an external 

environmental stimulus to be coordinated with an outbound efferent motor signal where 

movement of the eyes, head and body can be initiated (Guitton & Munoz, 1991; Groh & 

Sparks, 1996a; Stein et al., 2009b). It is through this arrangement that a coordinated 
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response is initiated regardless of which sense or combination of senses was activated (Stein 

et al., 2009b, 2014). 

Multisensory integration in SC has mostly been investigated in cats, and to a lesser 

extent in primates. Early studies in cat SC have shown that when multisensory stimuli (visual 

and auditory) are in close spatial and temporal register, they enhance the responses of 

multisensory neurons in SC (Wallace et al., 1993; Wilkinson et al., 1996; Frens & Van Opstal, 

1998; Jiang et al., 2001, 2002; Perrault et al., 2003; Burnett et al., 2004; Bell et al., 2005; 

Stanford et al., 2005; Rowland et al., 2007b, 2007a; Stanford & Stein, 2007; Rowland & 

Stein, 2008; Hirokawa et al., 2011). However a multisensory stimulus can also depress 

neuronal responses in the SC (Meredith & Stein, 1986; Kadunce et al., 1997; Mysore et al., 

2010; Hirokawa et al., 2011). Meredith and Stein (1986) investigated the visual, auditory, 

and somatosensory convergence in cat SC and showed that 45% of the neurons in the deep 

layers showed more response to a multisensory stimulus than a uni-sensory stimulus 

presented in isolation while 20% showed response depression. The majority of the neurons 

exhibiting response depression to multisensory stimulus appeared to be influenced by 

stimuli from only one modality in uni-sensory presentations. Therefore the inhibitory 

influence of a seemingly ineffective stimulus may only become evident during multisensory 

presentation.  

Much less is known about multisensory integration in rodents. Rats are capable of 

combining information across senses and show performance benefits to cross modal stimuli 

(Tees, 1999; Pinto-Hamuy et al., 2004; Winters & Reid, 2010; Gleiss & Kayser, 2012; Raposo 

et al., 2012; Lippert et al., 2013; Sheppard et al., 2013). Given the current advances in 

genetic techniques and behavioural neuroscience, rodents provide a good model system for 
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studying multisensory integration. In rodents, similar to other mammals, the superficial 

layers of SC process visual information. They receive extensive inputs from the retinal axons, 

the visual cortex, and the parabigeminal nucleus (Sefton et al., 2004; Skaliora et al., 2004; 

May, 2006). These superficial layers project to several other areas involved in vision (Malpeli 

& Schiller, 1978; Mackay-Sim et al., 1983; Sefton et al., 2004; Skaliora et al., 2004; May, 

2006; Terjung, 2011). The intermediate and deeper layers receive visual, auditory, and 

somatosensory (whisker) inputs (Vidyasagar, 1978; Sefton et al., 2004). The inputs to these 

deeper regions come from multiple cortical and subcortical areas. Cells in deeper layers can 

also be activated via cells in superficial layers and by the contralateral SC (Takemoto et al., 

1978; Yamasaki et al., 1984; Isa et al., 1998; Hilbig et al., 2000; Terjung, 2011). The 

intermediate and deeper layers project extensively to brain stem regions associated with 

motor control (Sahibzada et al., 1986; Dean et al., 1989; Herbert et al., 1997; Sefton et al., 

2004; Terjung, 2011).  

In rodents, the whiskers cross in front of a large part of the visual fields. Of particular 

interest to the current study is the spatial and temporal overlap between responses of 

neurons in the rodent SC to visual and whisker inputs. Dräger and Hubel (1975; 1976) 

investigated the relationship between the topographic representations of these two sensory 

systems in rodent SC. They showed that the topographic representation of the mouse visual 

field is similar to what had been found in other mammals, with the temporal part of the 

contralateral visual field projecting posteriorly and the inferior visual field laterally. A major 

part of somatosensory representation is dedicated to whiskers. The most striking feature of 

the somatosensory projection was its topographic organisation relative to the visual field. In 

any electrode penetration, somatosensory receptive fields recorded in the deeper SC were 
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concerned with that group of whiskers or with those parts of the body that were in 

alignment with the position of the visual receptive fields recorded in the upper layers. 

Therefore, the somatosensory organisation, represented in deeper layers, appeared 

topographically arranged so as to be in spatial registration with the visual input. However, a 

quantitative evaluation of the distribution of visual and whisker inputs in rodent SC has not 

been done and that is what we are aiming to establish in the current study.  

In this chapter, I first investigate the spatial and temporal overlap between 

responses of neurons in the rat SC to visual and somatosensory (whisker) inputs. I then use 

a generalised model framework to characterise the interaction between the two modalities. 

Neurons in the intermediate layers of SC strongly respond to simultaneous multi-whisker 

vibrations (Hemelt & Keller, 2007; Cohen et al., 2008; Bezdudnaya & Castro-Alamancos, 

2014), and in order to maximise the chance for interactions between the two modalities, I 

used full-field visual flashes and multi-whisker vibrations (Wallace et al., 2004; Lippert et al., 

2013). To explore the laminar organisation of functional responses in SC, I use multichannel 

linear probes that allowed rapid characterisation of visual and whisker response properties 

within individual animals.  

 

2.2 Methods 

 

2.2.1 Ethical approval 

Adult male hooded rats (Long Evans, n = 11, weighing between 243 and 447 g) were 

obtained from Monash Animal Research Platform and University of Adelaide. Procedures 

were approved by institutional (University of Sydney) Animal Ethics Committee, and 
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conform to the Society for Neuroscience and NHMRC policies on the use of animals in 

neuroscience research.  

 

2.2.2 Experimental preparation 

Each animal was initially sedated with an intramuscular (I.M.) injection of a 

combination of ketamine (80 mg/kg) and xylazil (6 mg/kg). I then gave preoperative 

intramuscular injections of dexamethasone (0.3 mg/kg; Maine Pharmaceuticals, VIC, AUS) to 

reduce inflammation. The trachea was then exposed and an endotracheal tube was inserted 

to control the breathing of the animal artificially and the head was placed in a stereotaxic 

frame.  

Post-surgical anaesthesia was maintained by isoflurane (0.5–1% in a mixture of 1:1 

nitrous oxide and oxygen) for the duration of the experiment. The electrocardiogram (ECG) 

and SpO2 were monitored continuously. The animal was artificially ventilated, with a 60:40 

mix of N2O and Carbogen, so as to keep end-tidal CO2 near 33 mmHg. ECG signals were 

monitored to ensure adequate depth of anaesthesia. Dominance of low frequencies (1–5 

Hz) in the EEG recording, and absence of EEG changes under noxious stimulus (paw-pinch) 

were taken as the chief sign of an adequate level of anaesthesia. Rectal temperature was 

kept near 37°C with the use of a heating blanket.  

At the end of the experiment the animal was euthanased with intravenous 500 

mg/kg sodium pentobarbitone (Lethobarb; Verbac Australia, NSW, AUS) and was perfused 

transcardially with 0.9% sodium chloride and then 4% paraformaldehyde in 0.1 m phosphate 
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buffer. The brain was then removed and post-fixed for 24 h. The tissue was then transferred 

to a 30% sucrose solution in 0.1 m phosphate buffer.  

 

2.2.3 Recordings 

A craniotomy of ca. 3 mm was made over SC within the following coordinates: 6.8 

mm from Bregma, 1.5mm lateral from midline. These coordinates routinely yielded visual 

and whisker responsive cells. In 7 animals, extracellular recordings were obtained using 

high-impedance single electrodes (3-5 MOhm, Thomas Recordings). The analogue signals 

from the electrodes were amplified, band-pass filtered (0.3–10 kHz) and sampled at 48 kHz 

by the same computer that generated stimuli. Multiple neurons recorded simultaneously 

were isolated using real time principal components analysis. Off-line analysis was used to 

confirm and refine the identification of spike waveforms. The timing of waveforms was 

recorded with an accuracy of 0.1 ms.  

In 4 other animals, a 2 × 16 dual-shank linear silicon probe (Neuronexus; A2x16-

10mm-50-500-177-A32), with an inter-contact distance of 50 μm and inter-shank distance of 

500 μm, was inserted perpendicular to the cortical surface (Figure 2.1A). I recorded multi-

unit activity from a total of 672 electrode contacts at 21 recording sites (21 penetrations, at 

2x16 depths per penetrations). Signals from each contact point were amplified, bandpass-

filtered (0.3–5 kHz), and digitized at a rate of 24 kHz by an RZ2 real-time processor (Tucker-

Davis Technologies, FL, USA). The function findpeaks in the Matlab environment 

(MathWorks, Natick, MA, USA) was used to identify candidate waveforms with peak 

amplitude that exceeded 4 standard deviations (SDs) of the raw signal on the relevant 

channel. All the analyses were performed using Matlab. 
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Figure 2.1: A. Schematic representation of the dual-shank electrode array. B. Schematic 

representation of the experimental set-up C. A picture of the experiment set-up. 
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2.2.4 Sensory Stimulation 

Measurements were carried out in a dim room. Visual stimuli were generated by a 

G5 Power Macintosh computer using custom software (EXPO; P. Lennie, Brain & Cognitive 

Sciences, University of Rochester, USA); they were drawn with eight-bit resolution using 

commands to OpenGL. Visual stimuli were displayed on a calibrated LCD monitor 

(viewSonic703b; refresh rate 85 Hz, mean luminance ~ 45 cd/m2) viewed directly at a 

distance of 30 cm in a dimly lit room, and centred on the grand mean of multiunit activity 

from recording electrodes. The visual stimulus was a circle with an increment or decrement 

in light from the mean luminance background. Somatosensory stimuli were generated 

through a sound card of the same G5 Power Macintosh computer using custom software 

EXPO. Whisker vibrations were provided by a vibrating metal mesh, attached to a mini-

shaker (Brüel & Kjær; vibration exciter 4810 and amplifier 2718). The mesh, placed at a 

distance of 0.5 cm from the base, contacted most whiskers of the contralateral whisker pad 

and moved along the vertical axis with position modulated by a sine wave with a frequency 

of 10 Hz. As schematically represented in Figure 2.1B, I used full-field visual flashes and 

multi-whisker vibrations, in order to maximise the chance for interactions between the two 

modalities (Wallace et al., 2004; Lippert et al., 2013).  

For each neuron, I first obtained response to full contrast visual or multi-whisker 

stimuli, at maximum intensity (visual contrast = 1; whisker vibration amplitude = 2.43 mm) 

as described below. In each case the set of stimuli were presented in a pseudo-random 

sequence for 0.5 s, with inter-stimulus interval of 0.5 s. The stimulus set always included 

presentation of a blank screen with no whisker vibrations. Responses were obtained for a 

median 100 repetitions of each stimulus (mean 93, SD 17.9, range 34–100). 
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In another stimulus set, the 25 combinations of 5 visual contrast levels (0, 0.12, 0.25, 

0.5, 1.0) and 5 somatosensory vibration amplitudes (mm) (0, 0.297, 0. 595, 1.351, 2.432) 

were presented in pseudorandom order. The inter-stimulus interval was 0.3 s. Responses 

were obtained for 50 repetitions of each stimulus. We presented the visual stimulus 0.08 s 

before the whisker stimulus. The duration of the visual stimulus was 0.2 s and the duration 

of whisker stimulus was 0.12 s (both stimuli turned off together). This interval was chosen 

based on our previous data collection and prior data suggesting that the stimulus onset 

asynchrony optimises the opportunity for multisensory interactions (Meredith et al., 1987; 

Stein & Meredith, 1993; Ghose et al., 2012, 2014).  

 

2.2.5 Analysis 

Peristimulus time histograms (PSTH, binwidth 10 ms) were generated for each 

stimulus. Mean spike count was calculated for the duration of the stimulus and for most 

analysis the baseline activity over the same duration was subtracted from the mean spike 

count. Response latency was defined as the occurrence of two consecutive post-stimulus 

bins displaying significant responses (t-test; p< 0.05). 

 

2.2.6 Classification of neuronal responses  

To characterise neuronal responses to visual and whisker stimuli, we used a 

nonparametric method based on the signal detection theory: a receiver operating 

characteristics (ROC) analysis (Green & Swets, 1966). The ROC quantifies stimulus detection 

based on single trial observations by taking into account the trial-by-trial variability in 
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neuronal response. The ROC provides a criterion-free method for deciding whether neurons 

are responsive to sensory stimulation. Formally, the ROC estimates whether an ideal 

observer could classify whether a given spike density was recorded under one of two 

conditions. For any stimulus type, the spike counts pre and post stimulus were compared 

(for a time window of 500ms). The overlap between the two spike count distributions was 

quantified by applying multiple criterion levels, ranging from the minimum to the maximum 

observed spike count. Each criterion yielded a hit (stimulus present condition) and false-

alarm (stimulus absent condition) rate. Plotting hits and false-alarm rates against each other 

for every criterion led to an ROC curve. The area under the ROC curve was then calculated 

by summing of the trapezoids between two consecutive criteria (connected by straight 

lines).  

The area under ROC necessarily falls within the range of 0 to 1, where 0.5 reflects no 

difference between the distributions (and thus no sensory response). An area of 1 indicates 

no overlap between the two distributions. Statistical significance of this area was 

determined as follows: the two spike count distributions were rearranged 1000 times (that 

is, the trial labels of the two distributions were shuffled 1000 times). For each iteration the 

area under ROC for the pair of shuffled distributions was calculated and subtracted from the 

observed area under ROC. The fraction of shuffled area under ROC greater than the 

observed area under ROC was calculated. This fraction value gave the significance (the 

neurons with this fraction less than 0.05 are the ones that responded significantly to the 

stimulus).  
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2.2.7 Quantifying multisensory integration 

Following prior work on multisensory integration (Meredith & Stein, 1986; Wallace 

et al., 1993; Perrault et al., 2005; Ghose et al., 2014), we characterised multisensory 

interactions using the “interactive index” (ii):  

       Equation 2.1 

where CM is the mean response evoked by the multisensory stimulus (visual plus whisker), 

and SMmax is the mean response evoked by the preferred single modality stimulus (visual or 

whisker). The interaction index characterises how the multisensory response differs from 

the largest evoked uni-sensory response. A positive ii value indicates increased response in 

the multisensory condition, whereas a negative ii indicates a reduction of response in the 

multisensory condition. Statistical comparisons between these conditions were performed 

using a nonparametric Wilcoxon rank sum test, as the data was not normally distributed, 

according to the Kolmogorov-Smirnov normality test. 

2.2.8 A simple model of multisensory integration  

The intensity response function of sensory neurons can often be characterised by a 

sigmoidal function. Parameters of the sigmoidal function, such as baseline, inflection point, 

response range and saturation quantify key aspects of the neuron’s response profile. These 

features are also quantifiable by classes of normalisation models (e.g. Carandini & Heeger, 

2012) that form the computational framework for sensory integration. Normalisation at the 

stage of multisensory integration provides a simple description of how neurons weigh inputs 

from each modality, across a range of stimulus strengths. For example, the normalisation 
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model makes explicit predictions regarding cross-modal suppression. Ohshiro and 

colleagues (2011) proposed that divisive normalisation which acts at the stage of 

multisensory integration accounts for key features of integration such as the principle of 

inverse effectiveness and the spatial principle. To characterise neuronal responses to a 

range of stimulation amplitudes across two modalities, we used the following normalisation 

equation, based on Naka-Rushton function (Naka & Rushton, 1966): 

 

 Equation 2.2 

where V is the strength of the visual input and S is the strength of the somatosensory input 

each in the range 0 to 1; The numerator is weighted linear sum of these inputs, with the 

parameter w1 controlling the relative excitatory drive assigned to each modality. The 

denominator contains two terms: one is again a weighted sum of visual and whisker inputs, 

the relative strength is controlled by the parameter w2 (controlling the relative suppressive 

drive assigned to each modality); the second (M50) is a constant that defines the weighted 

suppressive strength at which half the maximal response is attained. Additional parameters 

provide an expansive nonlinearity (n), scale the response (Rmax) and provide a maintained 

discharge (b). In total there are 6 free parameters; for each site we found the combination 

of parameters that best predicted response (minimised the square error between the model 

predictions and observed responses), using the function “fit” in the Matlab environment. 

There are separate weights in the numerator and denominator because the normalization 

pool may weigh contributions differently. The visual and somatosensory input strengths are 

expressed in linear units.  



Integrative function in rat visual system                    Saba Gharaei 

2.0 Distribution of visual and somatosensory signals in superior colliculus of rat 74 

 

For each site we found the best predictions of the model described above, as well as 

a reduced model that did not contain the normalisation term (the denominator). The 

reduced model has 4 free parameters (it does not have the free parameters w2 and M50). To 

establish the improvement in model predictions gained by adding the normalisation term 

(and thus adding two extra free parameters), we utilised the Akaike Information Criterion 

(AIC) to compare the full and the reduced model (Akaike, 1973). The selection of the model 

is important, as under-fitting a model may not capture the true nature of the response 

variability, while an over-fitted model loses generality (Snipes & Taylor, 2014). AIC is 

therefore a method to select the model that best balances these problems.  

 

Akaike (1973) showed that the selection of the best model is determined by an AIC 

score: 

 

𝐴𝐼𝐶 = 𝑛 ×  ln
𝑅𝑆𝑆

𝑛
+ 2𝑘       Equation 2.3 

 

where K is the number of free parameters, n is the number of data samples and RSS is the 

residual sums of squares. 

 

Hurvich and Tsai (1989) further refined this estimate to correct for small data 

samples; If ratio of n/K < 40, then AICc is calculated using the following bias adjustment: 
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     Equation 2.4 

 

The best model is the model with the lowest AICc (or AIC) score. It is important to 

note that the AIC and AICc scores are ordinal and do not convey any information on their 

own. They are merely a way of ranking different models. 

 

2.3 Results 

Here, I first show that we achieved robust responses from both visual and whisker 

stimulations in the rat SC. Following that, I will characterise the overlap between 

representation of visual and whisker inputs in terms of location and time. I will then 

characterise the interaction between these two modalities. 

Our first aim is to characterise the overlap in responses of neurons in rat SC to visual 

and whisker inputs, in time and location. To do this we measured spiking activity 

simultaneously from different layers with multichannel linear probes, during presentation of 

either full-field visual or multi-whisker stimuli. We used these large stimuli to elicit response 

from multiple neurons instead of tailoring the stimulus for one neuron’s RF. In order to 

reveal the physiological correlates underlying the laminar organisation of the SC, we first 
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presented the visual and whisker stimuli separately. The stimulus duration was 0.5 s for 

both types of stimuli, with an inter-stimulus interval of 0.5 s. 

Figure 2.2 shows the response of example sites, recorded at different depths within 

the SC, to visual and whisker stimuli. To assess the visual and whisker responses, we used an 

objective method to categorise the response types using an ROC analysis (Section 2.2.6). 

This method will be described in the next section. Robust responses were obtained for both 

visual (red) and whisker (blue) stimuli. Each column shows a simultaneously recorded set of 

neurons. The dashed vertical gray lines indicate the onset and offset of the stimulus. The left 

two columns show the responses of neurons on a representative electrode shank placed 

such that the most superficial recording site was at a depth of 2.75 mm (distance between 

each recording site is 0.05mm). Based on atlas of Paxinos and Watson (1986), the SC is 

expected to start at the depth of 3mm from the surface of the brain. The 3 most superficial 

sites do not show stimulus related activity (grey). Deeper sites show clear visual responses 

(mainly responding to both ON and OFF phases of the stimulus). The two right columns 

show a representative example of a deeper penetration into SC. In this case, we observe 

robust visual and whisker responses in the intermediate sites. In summary, visually 

responsive electrodes are in the superficial and intermediate layers. Whisker responsive 

electrodes are in intermediate layers. We also observed individual sites that responded to 

both visual and whisker (black) stimulations when presented in isolation. These sites were 

observed across the different layers of SC.  

 

 



Integrative function in rat visual system                    Saba Gharaei 

2.0 Distribution of visual and somatosensory signals in superior colliculus of rat 77 

 

 

 

 

Figure 2.2: Response of example sites in SC to visual and whisker stimuli 

Example peristimulus time histograms (PSTH; bin width 10ms) to visual or whisker 
stimulation as recorded at different depths. Each column shows a simultaneously recorded 
set of neurons. The left two columns show a representative electrode shank placed at the 
depth of 2.75 mm for the most superficial site (the distance between each site is 0.05mm). 
The two right columns represent an example deeper penetration in SC. The dashed vertical 
grey lines indicate the onset and offset of the stimulus (stimulus duration = 500ms). The 
response of each site has been normalised to the maximum of PSTH for that site. Visually 
responsive electrodes (red) are in the superficial and intermediate layers. Whisker 
responsive electrodes (blue) are in intermediate layers. Response to both visual and whisker 
stimulation (black) are also observed across layers of SC. The same colour coding used in this 
figure, will be used throughout the chapter. 
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2.3.1 Spatial overlap between visual and whisker representations 

 

To assess the distribution of visual and whisker responses at different depths within 

SC, we used an objective method to categorise the response types. We quantified the trial-

to-trial response variability using an ROC analysis (Figure 2.3), which quantifies the overlap 

in spike rate during stimulus present condition and stimulus absent condition. Figure 2.3A 

shows example ROC curves, for three example neurons, for visual or whisker stimulation. 

The dashed line shows what is expected by chance, and the area under the dashed line is 

0.5. By contrast, for the whisker responding neuron, the area under the ROC curve for the 

whisker stimulation (i.e. AUC (Whisker)) is 0.68, indicating that activity during whisker 

stimulation is generally higher than spontaneous activity. For the visual stimulation of the 

whisker neuron, the same analysis provides an ROC value of 0.49, indicating activity is not 

different to spontaneous activity (the corresponding values for the visual responsive neuron 

are as follows: AUC (Visual) = 0.95 and AUC (Whisker) = 0.48; and for the example neuron 

that responded significantly to both visual and whisker stimulation: AUC (Visual) = 0.73 and 

AUC (Whisker) = 0.58). The same characterisation was performed for all recorded units. In 

the following analysis I include measurements from 672 electrode contacts at 21 recording 

sites obtained using multi-electrode arrays.  

 

We expected that visual and whisker responses should be concentrated at different 

depths within SC. Figure 2.3B shows the distribution of ROC values, during visual or whisker 
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stimulation, as a function of depth below the surface of SC. Individual sites are colour coded 

according to criteria that will be described below – sites where multiunit activity showed no 

response to either stimulus (grey symbols), showed response to visual stimulation only (red 

symbols), whisker stimulation only (blue symbols), or both (black symbols). Figure 2.3B 

shows that visually responsive sites are mainly found in superficial layers whereas whisker 

responsive sites are in intermediate layers. There is a region of overlap, ca. 0.6-1.3 mm 

where sites could show substantial ROC for whisker or visual stimulation. In addition, we 

observed sites with significant multisensory responses throughout the SC; however, even 

these multisensory sites generally showed strong preference for one of the modalities. 
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Figure 2.3: Response characterization of SC neurons using ROC analysis  

A. Receiver operating characteristic (ROC) curves corresponding to a whisker neuron, a 
visual neuron and a neuron that responded significantly to both visual and whisker stimuli. It 
quantifies the response overlap between stimulus present and absent conditions. Every dot 
in this inset indicates hit and false-alarm rates for one response criterion. The empirical dots 
are connected by straight lines to estimate the area under the curve with a trapezoid 
method. The area under ROC curve values are calculated for visual and whisker stimulation. 
The value of area under ROC curve falls within the range of 0 to 1; area of 0.5 indicates that 
the hit rate is equal to the false-alarm rate, reflecting complete overlap between stimulus 
absent and stimulus present distributions. Area of 1, on the other hand, indicates no overlap 
between the two distributions and thus perfect discriminability. B. For each unit, depth from 
the surface of the SC is plotted against the area under ROC for visual (right) and whisker 
(left). The units with significant response to both visual and whisker stimulation were 
plotted on both sides (black circles). The visually responsive electrodes with high response 
rate (higher ROC values) were mainly in superficial layers. Whisker responsive electrodes 
with high response rate were mainly in intermediate layers.  

 

2.3.2 Comparison of visual and whisker responses at individual sites 

The analyses above show that visual and whisker responses are concentrated at 

different levels of the SC, with a limited region of overlap. To compare the visual and 
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whisker responses at individual sites, I compared the area under ROC curve for visual and 

whisker stimulation (Figure 2.4A). In addition to the multiunit measurements described 

above I include additional single-unit measurements, made using single electrodes, from 65 

neurons (Figure 2.4A; filled symbols). An area under ROC of 0.5 indicates neural activity is 

not responsive to the sensory stimulus. Neurons that do not respond significantly to either 

visual or whisker stimulation would therefore lie at the lower left of the figure, where both 

ROC values are around 0.5 (grey symbols). Sites that respond significantly to visual 

stimulation but not to whisker stimulation would have an area under ROC value of around 

0.5 for whisker stimulation and higher ROC values for visual stimulation (p < 0.05; red 

symbols). By contrast, sites that respond significantly to whisker stimulation but not to 

visual stimulation would have an area under ROC value of around 0.5 for visual stimulation 

and higher ROC values for whisker stimulation (p < 0.05; blue symbols). Sites that respond 

significantly to both visual and whisker stimulations (p < 0.05; black symbols) are also 

present. These sites generally showed strong preference for one of the modalities. This is 

apparent by the lack of any site with high visual and whisker area under ROC (i.e. no sites 

appear at the upper right of the figure). Figure 2.4B shows example PSTHs for a visual site 

(1), a whisker site (2) and a site that responded to both (3). These example sites are also 

indicated in Figure 2.2. 

We used the comparison in Figure 2.4A to classify units as visual, whisker or both. 

Figure 2.4C shows the distribution of sites using this classification. To factor out differences 

in encounter rates, at each depth we calculated the proportion of sites that could be 

activated by one or both stimuli. Figure 2.4C reinforces the impression that there is overall 

segregation of visual and whisker responses in SC.  



Integrative function in rat visual system                    Saba Gharaei 

2.0 Distribution of visual and somatosensory signals in superior colliculus of rat 82 

 

 

 

Figure 2.4: A. The area under ROC curve values are calculated for visual and whisker 
stimulation for all the sites and plotted against each other. Filled symbols represent the 
single units recorded using single electrodes (both n = 12; visual n = 39; whisker n = 14; 
unresponsive n = 43). There is limited convergence of the visual (red) and whisker (blue) 
inputs. B. PSTHs for the 3 example numbered sites (from Figure 2.2) are shown. C. Depth 
distributions of 672 electrode contacts at 21 recording penetration. Y axis shows the depth 
from the surface of SC. X axis shows the proportion of all the recording sites at that depth. 
Visually responsive electrodes (red bars on the left; n = 133) were mainly in superficial 
layers. Whisker responsive electrodes (blue bars in the middle; n = 172) were mainly in 
intermediate layers. Significant response to both visual and whisker stimulation was 
observed scattered across layers of SC (black bars on the right; n = 85).  

 

In summary, spiking activity is elevated by whisker or visual stimuli, but rarely both, 

when those stimuli are presented in isolation. The distribution of sites that prefer visual or 

whisker stimulation is distinct, but does show overlap at depths between 0.6 and 1.3 mm.  
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2.3.3 Temporal overlap between visual and whisker representations 

The analyses above show limited spatial overlap between visual and whisker 

representations in rat SC. To characterise the overlap between responses of neurons to 

visual and whisker inputs in terms of time, we calculated the response latency to each 

stimulus when presented in isolation. From PSTHs (binwidth 12 ms) generated for each 

stimulus, response latency was defined as the first occurrence of consecutive post-stimulus 

bins displaying significant responses (p < 0.05). Figure 2.5 shows the response latency 

distribution for the visual (left) and whisker (right) stimulations. The latency distribution of 

visual and whisker stimulation is distinct: the median visual response latency was 111ms, 

and the median whisker response latency was 35ms. These response latencies are slightly 

larger than reported in the literature for SC and extrastriate areas (Cohen et al., 2008; 

Bezdudnaya & Castro-Alamancos, 2011; Vermaercke & Op de Beeck, 2012; Ghose et al., 

2014). This can be due to the fact that we used long (500ms) and large stimuli to elicit 

response from multiple neurons instead of tailoring the stimulus for one neuron’s RF. 

Indeed the visual latency that we obtained in our experiment seems consistent with a 

previous experiment when using large flashes of 500ms (Girman & Lund, 2007).  

In summary, there is limited temporal overlap between visual and whisker 

representations in rat SC.  
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Figure 2.5: Response latency of visual and whisker sites in SC 

The histograms of the response latency are given for visual (n = 118) and whisker 
stimulation (n = 176). Stimulus-evoked response latency was defined as the first of two 
consecutive significant PSTH bins compared to the baseline. The median visual latency 
(111ms) was longer than whisker latency (35ms).  

 

 

 

2.3.4 Combined visual and whisker stimuli supresses the response 

So far we have considered responses to visual and whisker stimuli presented in 

isolation, and find little evidence for convergent representations. Stimuli presented to one 

modality may nevertheless modulate the responsivity of neurons to stimuli presented to the 

other modality, and we now assess whether and how joint presentation of whisker and 

visual stimuli affects spiking responses. These measurements are from recordings made in a 

subset of the sessions that were also used in the analyses above. Preliminary analyses 

suggested that the visual responses lagged whisker responses by ca. 80 ms (similar to that 

obtained by subsequent analysis of the full data set – Figure 2.5). We therefore sought to 

maximise opportunity for multisensory interactions by presenting visual stimulus 80 ms 
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before the whisker stimulus. In the following analyses I include responses from 105 neurons, 

recorded at 352 electrode contacts from 11 recording sites. 

Figure 2.6 compares the responses of the multisensory and the uni-sensory stimuli. 

Figure 2.6A shows average of normalised PSTHs obtained at maximum visual contrast (left), 

maximum whisker vibration (middle) or the corresponding multisensory condition (right). I 

plot separately the visual sites (top row), whisker sites (middle row) and sites that 

responded to both (bottom row). To compare the observed and the predicted multisensory 

response, the predicted response (sum of the uni-sensory conditions; grey line) is 

superimposed over the observed response. The observed responses appear lower than the 

sum of the respective uni-sensory responses. Across neurons (n = 105), the magnitude of 

the observed response to multisensory stimulus is compared against the response 

magnitude to the preferred stimulus (visual or whisker) when presented alone (Figure 2.6B). 

Overall observed responses to multisensory stimuli were consistently lower than the 

response to the preferred stimulus. Next, I quantified the multisensory response based on 

the summation model where the uni-sensory responses are summed to give a prediction of 

the expected multisensory response. Across neurons (n = 105), the magnitude of the 

observed response to multisensory stimulus is compared against the predicted response 

(Figure 2.6C). The dashed line shows what is expected if the response of the neurons to the 

multisensory stimulus was additive. Overall, observed responses to multisensory stimuli 

were mainly sub-additive (lie below the line of unity). In summary, our results show that 

observed responses to multisensory stimuli were consistently lower than the sum of the 

respective uni-sensory responses. 
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Figure 2.6: Spiking responses to visual, whisker, and combined stimulation in SC 

A. The top row shows normalised mean PSTH of the sites that responded significantly to 
visual stimulus but not to the whisker stimulation. The normalised average PSTHs are 
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plotted for maximum visual (left), whisker (middle) and multisensory (right) stimulations. 
Onset and offset of visual and whisker stimuli are represented by blue and red square waves 
on top of the PSTH plots for each condition. The duration of visual stimulation was 200ms 
and whisker stimulation was 120ms. In multisensory condition, grey is the predicted 
response by summing of visual and whisker stimuli when presented alone. Background 
activity has been subtracted from all the conditions. The middle row shows the responses of 
whisker only sites to maximum visual, whisker and maximum multisensory stimulations. 
Bottom row shows normalised mean PSTH of the sites that responded significantly to both 
visual and whisker stimuli. B. Each point (n = 105) plots the observed magnitude of response 
evoked by multisensory stimulus against the response magnitude to the preferred stimulus 
(visual or whisker) when presented alone. Overall observed responses to multisensory 
stimuli were consistently lower than the response to the preferred stimulus (negative 
deviation from the line of unity). This plot is log-log-transformed for better visibility. C. Each 
point (n = 105) plots the observed magnitude of response evoked by multisensory stimulus 
against the predicted response by summing of visual and whisker stimuli when presented 
alone. Overall observed responses to multisensory stimuli were consistently lower than the 
sum of the respective uni-sensory responses (negative deviation from the line of unity). This 
plot is log-log-transformed for better visibility.  

 

 

 

A common metric for assessing multisensory integration, is the interactive index 

(“ii”; Equation 2.1), which relates the multisensory response to the preferred stimulus 

response (the larger of the two uni-sensory responses). Figure 2.7 shows the distribution of 

the interactive index across the population of neurons. For clarity, individual points are not 

categorised by the preferred sensory stimulus; I return to this below. Figure 2.7 shows 

negative interactive indexes in majority of the cells, that is, suppression of response during 

multisensory stimulation. Average interaction index for whisker preferring sites was –11% (n 

= 40), for visual preferring sites was -6.1% (n = 26) and for sites responsive to both stimuli 

was -15.7% (n= 39). Statistical comparisons between multisensory response and the 

response to the preferred stimulus was significant at 21/105 sites (p < 0.05; nonparametric 
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Wilcoxon rank test; black symbols in Figure 2.7); all of these showed negative interaction 

indices; 6 were whisker preferring, 2 were visual preferring, and 13 responded to both 

stimuli. Note that all 13 sites that respond to both stimuli show strong preference for 

whisker stimulation (mean whisker ROC = 0.84; mean visual ROC = 0.53).  

We considered the possibility that facilitatory interactions are found in neurons with 

weak responses to the preferred stimulus, and suppressive interactions are found in those 

with strong responses, or vice versa. Figure 2.7B compares interaction index with response 

amplitude for the preferred stimulus: there is a small yet significant negative relationship 

such that in neurons with weak responses to the preferred modality, the interaction tends 

to be slightly more facilitatory (correlation coefficient = -0.24, p < 0.01). We also considered 

the possibility that interaction indices were found in neurons that show relatively strong 

responses to the non-preferred stimulus in isolation. Figure 2.7A shows that the relative 

response to the non-preferred stimulus, which is always low, does not predict the 

interaction index.  

 

In summary, we show that there are robust interactions between sensory modalities, 

even though under uni-sensory conditions the non-preferred stimulus elicits very weak or 

no response from those neurons. These interactions are primarily suppressive.  
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Figure 2.7: Quantification of multisensory interactions   

For every unit (n = 105), response magnitude to the preferred stimulus (visual or whisker) is 
plotted as the function of interactive index (ii). Statistically significant ii values are plotted in 
black. Most of the observations evidence multisensory depression (negative ii values). The 
inset shows the response of a representative example neuron (star) that showed significant 
response depression under multisensory condition. The top panel plots the response to 
non-preferred stimulus over the response to preferred stimulus as the function of ii. 
Background activity has been subtracted. It shows that even though under uni-sensory 
conditions the non-preferred stimulus did not elicit any responses from the cells, it still 
reduced the responses under multisensory conditions.  

 

2.3.5 Response surfaces for multisensory stimulation 

 

Above we characterised neuronal response to the most intense visual or whisker 

stimulus, alone or in combination. These responses are drawn from a larger set of 

responses, to a matrix of stimuli that included all combinations of visual stimulation at each 

of 5 contrast levels and whisker stimulation at each of 5 vibration amplitudes.  
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In the following we characterise response across the joint surface. To do this we 

compared response to the predictions of a simple normalisation model of sensory 

combination (Equation 2.2 in Section 2.2.8):  

 

 

 

 

 

Where V and S are the strength of visual and whisker inputs respectively, each in the range 

0 to 1. The numerator is weighted linear sum of these inputs, with the parameter w1 

controlling the relative excitatory drive assigned to each modality. The denominator 

contains two terms: one is again a weighted sum of visual and whisker inputs, the relative 

strength is controlled by the parameter w2; the second is a constant that defines the input 

strength at which half the maximal response is attained. Additional parameters provide an 

expansive nonlinearity (n), scale the response (Rmax) and provide a maintained discharge (b). 

In total there are 6 free parameters; for each site we found the combination of parameters 

that best predicted response (minimised the square error between the model predictions 

and observed responses). We included for analysis 88 sites where the model provided good 

predictions (r2>0.6). These included 15/26 (58%) of visually responsive sites, 30/40 (75%) of 

whisker responsive sites and 29/39 (74%) for sites that responded to both stimuli. Most of 
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the excluded sites responded only to stimuli of the highest intensity, or showed low and 

variable response across the joint surface. For these excluded sites, even response to the 

highest intensity stimulus was relatively small (mean whisker ROC = 0.587; mean visual ROC 

= 0.594).  

Figure 2.8 shows the response of an example whisker neuron (A) and an example 

visual neuron (B) with good model fits. The response (z axis) is plotted against whisker 

intensity levels (y axis) and visual intensity levels (x axis). Every point is the response to one 

of the 25 possible visual and whisker combinations. The surface is the fitted model with 

lighter colours indicating more evoked responses. The response of both these example 

neurons increased with the intensity of their preferred stimulus (whisker for the neuron in A 

and visual for the neuron in B).  A suppressive impact of the less preferred stimulus modality 

(although modest in magnitude) is observable at the largest values of its intensity (the 

curves slightly bend downward at such extreme intensity values of the non-preferred 

modality). 
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Figure 2.8: The response of example neurons across a range of stimulation amplitudes 

The response of each neuron to all 25 stimulus conditions was fitted by a model (described 

in Section 2.2.8) to quantify the whole matrix of responses. The base line activity has been 

subtracted. For clarity, only mean response is plotted (the SEM is shown for one response 

condition).The average response of the neuron (z axis) is plotted against different levels of 

visual contrast (x axis) and different levels of whisker vibration (y axis) for A. an example 

whisker neuron (W1 = 0.0933; W2 = 0.2786) and B. an example visual neuron (W1 = 1; W2 = 

0).  
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We are primarily interested in the weight parameters w1 and w2, which respectively 

describe the contribution of each sensory modality to the excitatory and suppressive 

mechanisms in the receptive field. Figures 2.9 and 2.10 summarise these parameters. To 

allow comparison with the analyses above, the symbol colour in Figure 2.9 and 2.10 shows 

the category (visual, whisker, both) obtained from the ROC analyses. Figure 2.9A shows the 

distribution of w1, which ranges from 0 to 1: higher values indicate predominantly visual 

input and lower values indicate predominantly whisker input. Consistent with the ROC 

analyses, the sites with lower w1 are whisker preferred sites and the ones with higher w1 are 

visual. Nevertheless, one cell stands out and shows strange behaviour; the cell is classified 

as a whisker cell using ROC analyses (blue circle) but it has a high w1 value from the model 

which indicates predominantly visual inputs. Further examination revealed that the cell was 

indeed a whisker cell. While the r2 of the fit was high (r2>0.6), in close inspection the fit 

exhibited an irregular surface profile producing a misleading high w1 value. It is important to 

note that it was only one cell that showed a strange response function.  

Sites with lower w1 (whisker) are located deeper in the SC than sites with higher w1 

(visual). This is consistent with the ROC analysis, which was based on responses to a high 

intensity stimulus. Also consistent with the above analyses, Figure 2.9B indicates that all but 

one of the sites with lower w1 values (whisker, w1< 0.5) have negative interactive indexes 

(mean -14.4, n= 59). Sites with higher w1 values (visual, w1 > 0.5) show more uniformly 

distributed interactive indexes nevertheless mainly negative (mean -7.8, n= 29). This 

suggests that the each modality suppresses the responses to the other modality.   
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Figure 2.9: Investigating the response across a range of stimulation intensities. 

A. The depth from the surface of the SC is plotted against excitatory coefficient (w1) of the 
model. In the model, w1 values range from 0 to 1; higher values indicate predominantly 
visual input and lower values indicate predominantly whisker input. Neurons with poor 
model fits (r2<0.6) were excluded from the analysis. To allow comparison with the previous 
analyses (Section 2.3.4), the symbol colour in this figure shows the category (visual, whisker, 
both) obtained from the ROC analyses described before (Section 2.3.6). Sites with lower w1 
(whisker; blue) are located deeper in the brain than the sites with higher w1 (visual; red). B. 
w1 values are plotted against the interactive index. Most of the sites with lower w1 values 
(whisker) seem to have negative ii whereas the sites with higher w1 values (visual) seem to 
have uniformly distributed ii.  
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Figure 8C compares, for those sites where the full model offered better predictions, 

the distributions of w1 and w2. Most points are clustered to the left of the plot, indicating 

that sites with predominantly whisker input were more likely to show suppressive 

interactions. Further, most points lie above the line of unity, indicating relatively stronger 

contribution of visual input to the suppressive mechanism (denominator) than the 

excitatory mechanism (numerator). 

The model allows us to estimate the relative weight of visual and whisker inputs to 

suppressive mechanism (w2) but this will only be meaningful where the model is well 

constrained. To restrict analyses to informative sites, we calculated the Akaike Information 

Criterion (AICc; see Section 2.2.8) for the full model, and a reduced model in which the 

denominator was removed. The best model is the one with the lowest AICc values. Figure 

2.10A compares AICc vales for the full and reduced models at individual sites. Most data 

points are below the unity line (dashed red line in Figure 2.10A), indicating lower AICc scores 

for the reduced model. For analysis of suppressive mechanisms (w2, in the denominator), 

we only included those sites that show added benefit of normalisation term (that is, AICc 

was lower for the full model than the reduced model; Figure 8B). This restricts the analysis 

to neurons that are potentially informative about the denominator of the model. Figure 

2.10C shows that the inhibitory coefficient (w2), which also ranges from 0 to 1, has higher 

values than the w1 coefficient (i.e. majority of the data points are located above the dashed 

grey unity line in Figure 2.10C). This indicates that these sites are inhibited by the presence 

of the other stimulus. The w2 values do not seem to associate with the M50 values of the 

model (Figure 2.10D). The interaction between w1 and w2 further indicates a suppression of 

responses by the other modality stimulus; when w1 is low w2 is above the diagonal line.  
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Figure 2.10: Investigating the model parameters  

A. AICc values for the full and reduced models are plotted against each other (n = 352 
electrode contact points). Most data points are below the dashed unity indicating lower 
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AICc scores for the reduced model. B. The histogram of the difference between AICc values 
for the full and reduced models are plotted. The best model is that with the lowest AICc 
values. Therefore, for sites to the right of zero line (dashed gray line), the reduced model is 
better than the full model. For sites to the left of the zero line, the full model is better. C. 
For sites with good fits (r2>0.6) and lower full AICc values, inhibitory coefficient (w2) of the 
model is plotted against w1. Similar to w1, w2 ranges from 0 to 1. For these sites, w2 values 
are higher than w1 values which indicates a depression of responses by the other modality 
stimulus. D. w2 values are plotted against the M50 value from the model. The value of w2 

does not seem to associate with the M50 value.  

 

 

2.4 Discussion  

 

I have shown that in rat SC, spiking activity is elevated by whisker or visual stimuli, 

but rarely both, when those stimuli are presented in isolation. As expected visual and 

whisker responses were concentrated at different levels of the SC but did show an area of 

overlap. Visually responsive sites were mainly found in superficial layers whereas whisker 

responsive sites were in intermediate layers. Investigation of response latency revealed that 

there is limited temporal overlap between visual and whisker representations such that the 

visual responses lagged whisker responses. I then showed that there are robust suppressive 

interactions between these two modalities when they are aligned in time, even though 

under uni-sensory conditions the non-preferred stimulus elicits very weak or no response 

from those neurons.  

 

Section 2.4.1 Spatial overlap 

Dräger and Hubel (1975; 1976) showed that in mouse, whisker topographic 

organisation in intermediate/deep layers of SC is arranged so as to be in spatial registration 
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with the representation of the visual field. They found that in any electrode perpendicular 

penetration, whisker receptive fields recorded in the deeper SC were concerned with that 

group of whiskers that were in alignment with the position of the visual receptive fields 

recorded in the upper layers. They did not, however, compare the response to each 

modality at each site, or the interactions between modalities. We aimed to quantitatively 

evaluate the distribution of visual and whisker inputs in rat SC. Using multichannel linear 

probes, I simultaneously recorded neuronal activity from different SC layers to reveal the 

physiological correlates underlying the laminar organisation. In these simultaneous 

recordings, to increase the number of responsive neurons, I used full-field visual stimuli and 

multi-whisker vibrations. We used full-field visual stimuli and multi-whisker vibrations to 

maximise the chance of observing responses from either modality on the multichannel 

probes. These large stimuli were capable of producing robust spiking activity, as has also 

been reported elsewhere (Hemelt & Keller, 2007; Cohen et al., 2008; Hirokawa et al., 2011; 

Ghose et al., 2014; Bezdudnaya & Castro-Alamancos, 2014). Nevertheless, the sensitivity of 

neurons in the uppermost layers of SC can decrease using full-field visual flashes. Girman 

and Lund (2007) showed that increasing the size of flashing spots increased responses of 

cells in the most superficial sub-lamina, reaching a maximum at diameters between 1.5–10°. 

The neurons’ responses decreased thereafter with increasing the size; the stimuli here were 

up to 100 degrees diameter (median = 87 deg; mean = 75 deg).  

We found that when we presented the visual or whisker stimuli in isolation, the 

neurons were rarely activated by both. There was limited spatial overlap between the 

distribution of sites that prefer visual or whisker stimulation and an area of overlap was 

found at depths between 0.6 and 1.3 mm from the surface of the SC. On individual 
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recording shanks (e.g. left panel of Figure 2.2) we often saw interdigitation of sites 

responsive to either modality. These sites on individual shanks were located in the 

intermediate layers (0.7 ± 0.13 mm from the surface of the SC). The location of responsive 

whisker and visual sites in our simultaneous recordings is consistent with previous 

anatomical and functional studies of whisker and visual representations in SC (May, 2006; 

Hemelt & Keller, 2007; Cohen & Castro-Alamancos, 2010c, 2010b; Ghose et al., 2014; 

Bezdudnaya & Castro-Alamancos, 2014; Watson et al., 2015). 

 

Section 2.4.2 Combined visual and whisker stimulation 

An advantage of our approach is that we characterised response of neurons to 

combined visual and whisker stimulation at multiple stimulus intensities. Under these 

conditions, each modality generally suppressed the responses obtained through the other 

modality. The suppressive interactions between sensory modalities has previously been 

observed in SC (Meredith & Stein, 1986; Kadunce et al., 1997; Mysore et al., 2010; Hirokawa 

et al., 2011) and other areas of the brain (Wallace et al., 1992; Dehner et al., 2004; Meredith 

et al., 2006). In cat SC, the neurons that exhibit response depression to multisensory 

stimulus, are often only influenced by stimuli from one modality in uni-sensory 

presentations (Meredith & Stein, 1986). This observation in cat SC is consistent with our 

results in rats: the response to the non-preferred stimulus was always low and the 

suppressive influence of a seemingly ineffective stimulus only became evident during 

multisensory presentation. 

Lippert and colleagues (2013) showed that in the rat parietal cortex, visual and 

whisker inputs converge and interact. The visual and whisker stimuli were either presented 
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synchronously or asynchronously with a variety of stimulus sequence delays. For the multi-

unit activity, the nature of multisensory interaction was independent of stimulus order and 

was consistently sub-linear. This is similar to what we found in SC. In our experiments, apart 

from the asynchronous multisensory presentation described before, we also presented the 

visual and whisker stimuli synchronously in the multisensory condition and observed similar 

suppression of responses (data not shown here). As well as multi-unit responses, Lippert 

and colleagues (2013) measured current source density (CSD) responses in the rat parietal 

cortex and showed that the sign of multisensory interaction was dependent on stimulus 

order. When the whisker stimulus preceded the visual, supra-linear summation of CSD was 

observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This is in 

contrast to their multi-unit activity where the interaction was suppressive regardless of 

stimulus sequence. Local pharmacological silencing abolished these multisensory 

interactions suggesting that the observed non-linear interactions are due to local intra-

cortical and not from collicular or thalamic processes (Lippert et al., 2013).  

There is an important inference to make from the experiments like ours where the 

suppressive influences of one modality onto the other are evident only when the stimuli are 

combined: it is well possible that the proportion of multisensory neurons in brain is 

underestimated. When stimuli from different modalities are presented sequentially, they 

are ineffective in identifying depressive interactions except in the neurons that have an 

unusually high and regular spontaneous activity (Meredith, 2002).  
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Section 2.4.3 Multisensory convergence  

Events in the environment are often simultaneously detected by more than one 

sense. The brain has evolved the capacity to integrate information across the senses and 

this can be of critical importance to survival. There are some challenges regarding 

multisensory integration that the brain has to overcome. A main problem is whether 

different sensory information came from the same source (such as prey) or different sources 

(prey and the wind). And then combine different information if they come from the same 

source (Ma & Pouget, 2008). Another issue that the brain has to solve is to estimate the 

reliability of different sensory information. For example visual information is more reliable 

during the day than in the dark, whereas in the dark the brain can trust whisker or auditory 

information.  

There are multiple ways that inputs from different sensory modalities can converge. 

They can converge within a particular region without terminating on the same neuron (areal 

convergence as illustrated in the left side of Figure 2.11). In this form of convergence, 

individual neurons only respond to one modality and there is no multisensory integration 

(Meredith, 2002). Alternatively, inputs from different sensory modalities can converge onto 

the same neuron which responds to either modality and can also show multisensory 

integration (neuronal convergence in the right side of Figure 2.11). It is however more likely 

that population of unimodal neurons intermix with one another within an area of the brain 

where the multisensory functions fall within a continuum between these two forms of 

convergence (as illustrated in the middle panel of Figure 2.11).  
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Figure 2.11: Forms of multisensory convergence. 

Within a particular region of the brain, inputs from two modalities can converge. In the areal 
convergence on the left, the inputs from different modalities do not terminate on the same 
neuron. In the neuronal convergence on the right, inputs from the different sensory 
modalities converge onto individual neurons. It is also possible that multisensory 
convergence is a continuum between these two forms and shows properties of both. 
Adapted from Meredith (2002).  

 

 

In our experiments, we found an area of overlap within SC where (nearby) neurons 

responded robustly to visual or whisker stimuli. Therefore the nature of convergence 

between these two modalities may be areal, with uni-modal visual and whisker neurons are 

intermingled within the area. Nevertheless, we observed robust suppressive interactions 

between these two modalities, indicating that these uni-modal neurons are connected to 

other neurons (either multisensory, or sensitive to the other modality) that can in turn 

influence the responses. The convergent suppressive component between these two 

modalities is probably indirect. It is possible that in rat SC, the suppressive interactions arise 
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from intra-SC connections between otherwise unimodal neurons rather than from direct 

multimodal input converging on the same neuron from sensory sources outside SC. Indeed, 

it would be predicted that in the case of convergence, spatially coincident stimuli would 

depress and not enhance multisensory response (Meredith, 2002). Eventually, these 

suppressive interactions between the senses may serve to influence the quality of a 

perception rather than to detect an environmental event.  

In general, multisensory integration is important for precise perception and 

behavioural performance. There are a number of accounts as to how the brain integrates 

neuronal responses across two or more modalities. It is important to note that there are 

uncertainties in the information available to our senses, and in their encoding by sensory 

systems. Optimal integration requires that the summation of information takes the 

reliability of each source into account (see Angelaki et al., 2009 for a review). The Bayesian 

account of multisensory integration formulates how the reliability of different sensory 

signals affects the summation: it has been shown that humans and other primates employ a 

strategy of placing greater weight on a more reliable sensory cue (Gu et al., 2008; Fetsch et 

al., 2012). The mathematical combination of different sensory inputs by single neurons is 

usually in line with optimal probabilistic models of computation in neural circuits (Fetsch et 

al., 2012). Consistent with the Bayesian ideas, the normalisation framework employed in this 

thesis incorporates weights that determine the relative contribution of each sensory 

modality to the overall summation. 

Our findings are consistent with complex convergent multisensory circuits in rat SC. 

The convergent suppressive component between these two modalities is likely to be 

indirect. These findings open the door to interesting questions about the circuits that 
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mediate these suppressive interactions between different modalities. These interactions can 

be as result of dynamics within SC circuity, or there might be a potential role of specific 

neocortical inputs to the SC in mediating multisensory integration in collicular neurons. 

Studies of SC of cats and primates have indeed shown that the multisensory integration is 

mediated by some cortical areas (for example  Jiang et al., 2001; Alvarado et al., 2007). It 

appears likely, that homologous cortical areas are present in the rodents. There are several 

good candidates for such areas in rat's neocortex (Toldi et al., 1986; Brett-Green et al., 

2003; Wallace et al., 2004; Lippert et al., 2013; Ibrahim et al., 2016). This is an important 

issue in understanding of how and through which neural circuitry multisensory integration 

works. 

As an evolutionary ancient midbrain structure that receives inputs from multiple 

sensory modalities, SC is expected to play a key role in orienting behaviour to external 

events (Meredith, 2002; Stein et al., 2014). However, the circuits underlying multisensory 

integration and the mechanism by which rat SC may facilitate and speed the reaction to a 

stimulus of interest remain elusive. Our work here reveals the functional arrangement of 

whisker and visual responsive neurons across rat SC, the suppressive nature of their 

interaction, and identifies potential differences across species in the physiological properties 

of SC neurons. 
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3.0 Visual behaviour in freely moving rats 

 

3.1 Introduction  

In order to understand the relationship between neuronal responses and visual 

perception, we need to be able to measure performance in well controlled behavioural 

visual tasks. As the visual system of non-human primates closely resembles that of humans, 

it has been the primary candidate for such measurements during operant conditioning 

(Newsome et al., 1989; Britten et al., 1992; Hegdé & Van Essen, 2003; Read & Cumming, 

2003; Williams & Shapley, 2007; Nienborg & Cumming, 2010; Gattass & Desimone, 2014). 

There is, however, increasing interest in applying similar methods to rodents. Whilst rodents 

have a simpler visual system than primates, with lower spatial acuity and simpler cortical 

architecture (Chalupa & Williams, 2008), they are gaining popularity in visual neuroscience 

because of the readily available molecular and genetic tools. These tools are more readily 

applied in mice, but are increasingly available for rats. Here I provide a rodent model of 

visual behaviour in rats, where a rich history of behavioural training provides a platform for 

discovering the neurobiology of behaviour.  

The analysis of neural-behavioural correlates requires a paradigm that adheres to 

the following criteria: a) allows multiple observations (trials) in a restricted period of time; 

b) restricts the range of head movements and allows knowledge of eye position; c) is 

adaptable to a wide range of tasks. In what follows I evaluate these criteria in the context of 

existing behavioural methods.  
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Multiple trials in a restricted period of time 

 Large number of trials provides statistical power and gives us the opportunity to 

fully explore relevant stimulus parameters and to resolve even small differences in 

performance or neural activity across various conditions. Achieving large numbers of trials is 

particularly important in the context of electrophysiological measurements. An ideal 

apparatus therefore requires the ability to complete large number of trials in a short period 

of time which also has the ability to easily be paired with electrophysiological 

measurements.  

A common paradigm used to investigate visually guided behaviour involves training 

rodents to swim in a water maze towards a submerged platform, indicated by a visual 

stimulus (Prusky et al., 2000; Prusky & Douglas, 2004; Douglas et al., 2006; MacKinnon et al., 

2010). The swimming task, however, yields only a few trials per session. Other tasks have 

trained rodents in two-alternative forced choice (2AFC) in a self-paced regime, where 

animals have free access to the home cage at any time (Meier & Reinagel, 2011; Meier et 

al., 2011; Clark et al., 2011). Whilst these tasks yield large number of trials, they are not 

within a restricted period of time and therefore not ideal for electrophysiological 

measurements.   

 

Restriction of head movements and stable eye positions for tracking 

It is critical to have control of head and eye motion with respect to visual stimuli for 

reliable and valid electrophysiological measurements. Assessment of visual receptive fields 

requires stable head and eye position, and capacity to monitor both. The water-maze 

method (above) does not allow this. Head-fixation has been used for behavioural research, 
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particularly in monkeys, to facilitate precise stimulus control, behavioural assessment and 

neural recording. For example, receptive fields of sensory neurons can be stimulated in 

precise ways to assess perception (Britten et al., 1992).   

More recently, the head-fixed preparation has been applied to rodents (primarily 

mice) in a variety of visual tasks (Lee et al., 2007; Sawinski et al., 2009; Andermann et al., 

2010; Busse et al., 2011; Sriram & Reinagel, 2012; Histed et al., 2012; Carandini & 

Churchland, 2013; Feinberg & Meister, 2014). Head-fixation offers greater experimental 

control over sensory inputs and motor outputs compared to the freely moving preparation. 

However, time is needed to habituate the animal to head-fixation and stress is an unwanted 

effect of head-fixation that, at the very least, can lead to prolonged training periods needed 

to condition the animals even to simple tasks—if they do not prevent learning 

altogether. The head-fixed preparation also makes repeated testing (e.g. months/ years) 

difficult as the implant needs to be maintained. Finally, the behavioural repertoire of 

rodents includes many whole-body movements that are impossible to perform under head-

fixation (Schwarz et al., 2010). 

 

Adaptability to wide range of tasks 

Another criterion to consider is adaptability to a variety of tasks. In the experiments I 

conduct here we chose to employ a Go/NoGo task. Nevertheless the experimental design is 

adaptable to a variety of tasks including two-alternative forced choice (2AFC). The 2AFC 

paradigm has been successfully developed to study complex visual tasks in rats such as 

shape processing and objection recognition (Zoccolan et al., 2009; Tafazoli et al., 2012; 

Vermaercke & Op de Beeck, 2012; Alemi-Neissi et al., 2013; Rosselli et al., 2015). The 

Go/NoGo task is one of the standard paradigms of animal psychology (Blough & Blough, 
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1977) and is often used in rodent studies (Abraham et al., 2004; Andermann et al., 2010; 

O’Connor et al., 2010; Smear et al., 2011; Histed et al., 2012). In its simplest form, the 

Go/NoGo task requires the animal to produce an operantly conditioned response (for 

example lick a spout) in the presence of one kind of stimulus (CS+) and not to produce this 

response in the presence of another kind of stimulus (CS−). For detection of a brief signal 

(visual or auditory), the occurrence of the signal is defined as CS+ and its absence as CS−. 

One advantage of the Go/NoGo task is that there is one response metric. Therefore 

observed differential responses are not due to competing motor plans.  

In summary, an ideal setup for pairing behaviour with electrophysiological 

measurements allows a large number of trials in a restricted period of time, restricted range 

of head movements, the monitoring of eye position, and adaptability to wide range of tasks. 

My aim here is to develop an operant apparatus that adheres to these. As I will describe, the 

animal’s primary task is to initiate a trial by entering a central nose-poke, and to maintain 

the nose-poke until a relevant signal indicates availability of reward. Sucrose water reward 

is then provided at the reward spout if the animal arrives at the reward spout within an 

allocated time following signal onset. From this I can measure response time and accuracy. 

The design of the experimental apparatus restricts the range of head motions without head-

fixation, allowing eye-position to be monitored via video feed. The rats are free to move, 

but as I will show they generally keep their head stable at a central nose-poke during visual 

stimulation. The design is adaptable to a variety of tasks including 2AFC visual detection and 

discrimination tasks, measurement of attentional modulations in visual tasks and also in 

tasks employing different sensory modalities.  

The current chapter provides an overview of the apparatus development, basic task 

structure and the learning theories used in shaping the behaviour of the rats. I describe the 
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platform for establishing passive visual stimulation. This will also form the basis for 

behavioural tasks that I describe in the next chapter.  

 

 

3.2 Methods and paradigm development 

  

 

3.2.1 Subjects 

Adult male hooded rats (Long Evans; n = 8; 6-8 weeks at the start of the training) 

were obtained from the Florey Neuroscience Institute at Melbourne University. All 

procedures were approved by the Animal Care and Ethics Committee at the Australian 

National University. Rats were housed in an independently ventilated and air filtered 

transparent plastic box (two rats per box). The colony room was climate controlled and had 

a 12 hour light-dark cycle, with lights were turned off at 7pm. In the 3 days prior to 

commencement of the study, each rat was handled for 15 minutes per day to accustom 

them to the experimenter and to ease any anxiety.   

 

3.2.2 Food and water regulation 

To provide motivation, rats were provided regulated access to food and water, which 

they were gradually adapted to. Measured rat chow (5g per 100g of body weight) was 

provided after each daily experiment. Water was removed from the home cage 2-4 hours 

before the start of the experiment, but was provided ad libitum at all other times. Rats 

readily adapted to this scheduling of food and water access, showed normal growth 
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trajectories, and no signs of distress. On weekends and days we did not run the behavioural 

experiments, we provided rats with measured rat chow (5g per 100g of body weight) and ad 

libitum access to water. Weight, social behaviour and grooming behaviour were monitored 

each weekday. We estimated expected weight as 85% of the weight before implementation 

of food and water regulation, with additional cumulative 3g/wk up to a maximum of 400g. 

Body weight was always above 85% of the expected weight. 

 

3.2.3 Apparatus 

The experimental apparatus was a custom-made Plexiglas chamber (Figure 3.1A). 

The chamber was framed by a front panel, floor panel, walls and an L-shaped ceiling with 

posts and rails (Thorlabs, Inc.) formed over a magnetic honey comb base. The floor panel 

was elevated 9.5 cm from the base using posts, and contained multiple slots for waste to fall 

through. The side-walls were attached to the floor panel using two Dovetail optical rails 

(Thorlabs, Inc.). The distance between the side walls was 6.5 cm. The ceiling and back plate 

were attached, forming an L-shape in cross section, and was held in place via slots in the 

floor panel. The distance between the front panel and back panel of the ceiling was 18 cm, 

and it rested 13 cm above the floor plate.  

A substantial advantage of the current design is that the front panel has a triangular 

aperture through which the rat’s head can extend, allowing direct viewing of the monitors. 

The vertex of the triangle was 9 cm above the floor panel and the width was 5cm; these 

dimensions ensured the animal could not escape, and limited the range of potential head 

movements. A platform placed below the aperture, 6.5 cm from the floor, formed a step for 

the animal to rest its front paws on.  
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As I will describe, rats were trained to interact with sensors and reward port 

attached to a post outside the chamber, 4 cm from it and accessible only by extending the 

head through the triangular aperture. The post held a central nose-poke and a reward spout 

below its, both of which were framed by infra-red sensors. The reward spout delivered 10% 

sucrose in water solution via a motorized pump (Watson Marlow).  

Visual stimuli were presented on two LCD monitors (Dell – Model No. P2012Ht, 60 

Hz Refresh rate, width 25 cm and height 44 cm; mean luminance ~ 80 cd/m2) normal to 

each other and normal to the line of sight from the central nose poke, at a distance of 16 cm 

from the central nose poke. This is closer than the distance established for maximum 

behavioral visual acuity in rats (20-30 cm; Wiesenfeld and Branchek, 1976), but allowed a 

wider field of view. Visual stimuli were generated using Matlab (Mathworks, Natick, MA, 

USA) and PsychToolbox (Kleiner et al., 2007) to control standard OpenGL capable graphics 

cards (intel 4000HD).  

The behavior of the rat (nose-poke or the response at the reward spout) was 

continuously registered into a data acquisition card (National Instruments) using a custom-

built circuit that measured contact at the spouts or nose-poke through optical sensors. 

Custom-written code controlled the experiment (presenting visual stimuli, providing 

auditory signals, registering the behaviour of the rats along with the corresponding time 

stamp of each behavioral action, and controlling rewards.  

 

3.2.4 Modifications for electrophysiological recording 

Modifications of the basic configuration described above were required to allow 

electrophysiological recordings from animals, obtained by chronic implants of multiple 
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moveable tetrodes. My primary consideration was to minimise any force applied to the 

implanted micro-drive (Figure 3.1B), by reducing the likelihood of the implant contacting 

ceiling or walls of the chamber. The implanted micro-drive, the head-stage preamplifier, and 

the tether attached to the head-stage all provide potential force points. I note that animals 

were initially habituated to the basic configuration, described above, which discouraged 

attempts to exit the chamber. The flexibility of the chamber design allowed transition from 

the basic to modified design within 1 minute. 

In the modified chamber, the distance between the side walls of the chamber was 

increased (from 6.5 cm to 11 cm) and the ceiling was replaced with another (increasing 

height from 13 cm to 23 cm). The increase in ceiling height provides an opening in the front 

panel, above the triangular aperture. Two plexiglass rods were therefore attached to the 

ceiling to close the potential exit (Figure 3.1C). A slot (width 2.5 cm) through the middle of 

the ceiling allowed access for the tether.  
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A 

 

 

B 

 

C 

 

Figure 3.1: A. The behavioural apparatus and its schematic drawing. B. A photograph of the 
micro-drive for electrophysiological recordings along with a photograph of an implanted rat. 
C. The modified apparatus for electrophysiological recordings.  
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3.2.5 Alternative designs 

The designs described above reflect the outcome of several rounds of trial and error. 

I note three particular deviations from the current design that substantially influenced 

performance.  

First, in initial implementations, the chamber was wider, with 9.5 cm distance 

between the side walls. This eased capacity of the animals to turn within the apparatus and 

thus provided greater opportunity for ‘distraction’: fewer trials per session (rat1: 74 ± 18; 

rat2: 87 ± 13) and more training sessions were required to achieve criterion performance. 

Decreasing the distance to 6.5 cm led to faster training and more trials per session from the 

same rats (rat1: 278 ± 19; rat2: 304 ± 11).  

Second, early designs included a metal, T-shaped, step for animals to rest their 

forepaws. A small metal rod was attached to a threaded metal bolt that in turn was tapped 

to the floor panel. This type of step was adequate for the behavioural training but brought 

about two confounds during recording. First, the metal introduced an alternative electrical 

contact and thus noise. Second, implanted rats could place their head under the platform, 

providing potential trap and substantial force on the implant. The plexiglass cube, which 

extends to the floor panel, alleviates both these problems and in addition encourages the 

animal to stretch to the nose-poke, reducing range of possible head movements. 

Third, early designs included a separate back panel which could be adjusted, 

depending on the size of the rat, to decrease the distance between the front and back 

panels. This feature was unnecessary, as it became apparent that it was the width of the 

chamber that influenced turning behaviour. The subsequent L-shaped ceiling/back is 

substantially easier and faster to place.  
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3.2.6 Overall task structure and response categories 

In the following I provide an overview of the basic task structure; I outline specific 

modifications to it where necessary in later sections. The animal’s primary task was to 

initiate a trial by entering a central nose-poke, and stay there until a relevant signal 

indicated availability of reward. Sucrose water reward was provided at the reward spout if 

the animal arrived at the reward spout within an allocated time following signal onset. To 

promote faster response, the volume of the sucrose reward was greater for responses 

within half of the maximum time allowed (Kaneko et al., 2006). Reward was ~ 0.07 mL for 

faster responses and ~0.05 mL for slower responses.  

It is useful to describe some terms that define the structure of the task (Table 3.1).  

 

Table 3.1: Some terminology used in the behavioural tasks throughout the thesis 

Nose-poke delay Time between nose-poke initiation and signal onset, set by 

the experimenter. 

Maximum execution latency Maximum time between signal onset and arrival to the 

reward spout for the reward to be available, set by the 

experimenter. 

Inter trial interval Minimum time between two consecutive nose-poke 

initiations, set by the experimenter. The central nose-poke 

sensor was unresponsive if the animals entered it before 

the inter trial interval had passed. The inter trial interval 

was 4 sec for most of the experiments.    

Reaction time The time between signal onset and the animal’s exit from 

the nose-poke. 

Execution latency The time between signal onset and animal’s arrival at the 

reward spout. 
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It is also useful to define the four possible behavioural outcomes (Table 3.2) as also 

schematically represented in Figure 3.2. 

 

 

Table 3.2: Possible behavioural outcomes  

Hits Trials in which animals waited in the central nose-poke until signal onset, 

then left the central nose-poke and entered the reward spout within the 

maximum execution latency. Animals could then start a new trial 

provided the inter trial interval had passed. 

Misses Trials in which animals waited in the central nose-poke until signal onset 

but failed to leave or go to the reward spout within the maximum 

execution latency. Animals could then start a new trial provided the inter 

trial interval had passed. 

False alarms Trials in which animals left the central nose-poke before signal onset and 

yet went to the reward spout. A penalty time (1 sec) was added to the 

inter trial interval. 

Non-valid trials Trials in which animals left the central nose-poke before signal onset but 

did not go to the reward spout. We think that in most of these cases the 

animal has accidentally initiated a trial by for example breaking the 

sensor beam with their whiskers. The penalty time was not added to 

these trials and the rats could start a new trial immediately. 
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Figure 3.2: Schematic representation of the possible behavioural outcomes. Shaded grey 
area defines the 0.5 sec maximum execution latency.  

 

 

In the following I provide the shaping procedure for both active and passive tasks. 

First I outline the shaping for the passive task where the rats passively observe a visual 

stimulus and after a fixed nose-poke delay an auditory white noise signals the availability of 

reward. Second, I outline the shaping procedure for the active task where the rats 

responded to a change in the visual stimulus. In this case, it is crucial to ensure that the rats 

perform the task based on the visual signal and not merely based on timing predictions.  

 

3.2.7 Shaping animals for passive observation 

The aim of these behavioural tasks was to provide a platform for electrophysiological 

measurements of visual responses in the brain of awake and unrestrained animals. 

Assessment of visual receptive fields requires stable head and eye position, and capacity to 

monitor both. To avoid potential head or eye movements during presentation of visual 

stimuli, or confound between temporal structure of the stimulus and cues to leave the 

central nose poke, here the signal to leave is provided by an auditory tone.   
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Spout shaping: animals learn that reward can be collected. Animals are placed in the 

experimental chamber for 30 mins to explore the chamber and collect reward from the 

reward spout. Upon approach to the reward spout an auditory white noise signal (0.1 sec 

duration) was presented through speakers and sucrose reward was provided. The auditory 

signal was provided to facilitate development of an association between the signal and the 

reward. One shaping session was provided. During this session the central nose-poke was 

removed from the post and the stimulus monitors were turned off.  

Nose-poke shaping: animals learn association between central nose-poke and 

reward spout. The central nose poke was attached and animals were required to enter it to 

initiate a trial. An auditory white noise signal (duration 0.1 sec) was presented as soon as 

the central nose-poke was entered. Sucrose reward was provided only if entrance to the 

central nose-poke was followed by entrance to the reward spout within 3 sec (maximum 

execution latency = 3 sec). Once animals learned to nose-poke (1 session), I gradually 

decreased the maximum execution latency to 1 sec (3 sessions). The stimulus monitors 

remained off in this stage of the shaping. 

Delay period shaping: animals learn to stay in central nose-poke during a delay 

before presentation of auditory white noise signal, which indicated that the rat animal could 

proceed to the reward spout. The stimulus monitors were turned on and a randomly chosen 

visual stimulus (gratings or uniform fields, viewed through small apertures) appeared at 

random locations following entrance to the central nose-poke. The visual stimulus was 

therefore unrelated to the animal’s task. The delay between entering the nose-poke and the 

presentation of the auditory signal was gradually increased from 0 to 2 sec over 33 sessions, 

by increasing the mean of a slightly variable (uniform distribution) delay time. The steps to 

get to 2 sec nose-poke delay are shown in Figure 3.3 (error bars denote range of the 
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uniform distribution). It is important to note that the 2 seconds was not the limit the rats 

could wait in the nose-poke and the delay times could have been increased further. This was 

merely a time that we chose as to being enough for the purpose of our experiments. 

 

 

 

Figure 3.3: The steps to get to 2 sec nose-poke delay in the Delay period shaping of the 
passive task (error bars denote range of the uniform distribution).  

 

 

Shaping in preparation for later recordings: animals are familiarized with a wider 

chamber and a delayed visual stimulus presentation for later electrophysiological 

measurements. For 12 sessions, the distance between the side walls of the chamber was 

increased (from 6.5 cm to 11 cm). The reason for this gradual change was to adapt the rats 

to perform in a wider chamber with the modified higher ceiling. During this stage the visual 

stimulus appeared 0.2 sec after the nose-poke initiation. The time before visual stimulus 

presentation (0.2 sec) was for later electrophysiological measurements. In any 

electrophysiological recording, it is essential to have a measure of the base-line activity of 

the neurons where the rat is stable in the nose-poke with all the other conditions the same 
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as the time during stimulus presentation. The auditory white noise signal was presented at a 

fixed delay of 2 sec. After 22 sessions at this stage of shaping, the rats were ready to be 

implanted for recording. Figure 3.4 summarizes the shaping of the animals for the passive 

task and its general structure.   

 

 

Figure 3.4: A. the steps for shaping of the animals in passive observation task. B. Schematic 
representation of the passive task. Rats approach a nose-poke aperture. Rats then initiate a 
trial by nose-poking into the aperture and a visual stimulus would appear with the nose-
poke. After a delay of 2 sec during which nose-poke was continually maintained, rats receive 
an auditory signal (0.1 sec). Rats then make a behavioural decision by leaving the nose-poke 
and entering the reward spout after the presentation of the auditory signal and receive 
sucrose water.  
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3.2.8 Shaping animals for reaction time task (Active) 

Spout shaping: animals learn that reward can be collected. Animals are placed in the 

experimental chamber for 30 mins to explore the chamber and collect reward from the 

reward spout. Upon approach to the reward spout sucrose reward was provided. One 

shaping session was provided. During this session the central nose-poke was removed from 

the post and the stimulus monitors were turned off.  

Nose-poke shaping: animals learn association between central nose-poke and 

reward spout. The central nose-poke was attached and animals were required to enter it to 

initiate a trial. Sucrose reward was provided only if entrance to the central nose-poke was 

followed by entrance to the reward spout within 3 sec. In this stage of the shaping, a white 

circular aperture on a grey background was continually present on each monitor. The white 

apertures briefly turned black (0.15 sec) as soon as the central nose-poke was entered, 

signaling the availability of reward. Once rats learned to nose-poke (1 session), I gradually 

decreased the maximum execution latency to 1 sec (2 sessions).   

Delay period shaping: animals learn to stay in central nose-poke during a delay 

before a visual signal (luminance change). The delay between entrance to the central nose-

poke and visual change was gradually increased from 0 to 0.45 sec over 9 sessions (by 

increasing the fixed delay time 0.05 sec on each session). False-alarms led to an auditory 

beep played through speakers and 1 sec was added to the inter trial interval. The system 

was nonresponsive during this penalty time.  

Countering timing-based performance: completion of the task may simply reflect 

accurate internal clock and prediction of the time required to obtain access to reward. To 

counter this potential cue the following two steps were applied. First, once animals had 
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learnt to wait for delay periods of 0.45 sec, the maximum execution latency was decreased 

to 0.5 sec (over 15 sessions). Second, over 27 additional sessions, variability was gradually 

added to the delay period, eventually reaching a delay range of 0.45-1.45 sec (uniform 

distribution). This increase in variability was achieved in steps of 0.05 sec. The criteria for 

moving to a session with longer variable delay were twofold: the percentage of ‘hits’ for 

that session was at least 75%, and the actual time spent at the central nose-poke was 

significantly longer in the later half of delay periods than the earlier half. The steps to get to 

0.45-1.45 sec variable nose-poke delay are shown in Figure 3.5 (error bars denote range of 

the uniform distribution).  

 

 

Figure 3.5: The steps to get to 0.45-1.45 sec variable nose-poke delay in the Countering 
timing-based performance of the active task (error bars denote range of the uniform 
distribution).  

 

At the end of this stage of the shaping, the animals were moved to the testing phase 

to investigate whether selective visual attention can be demonstrated in rats. The 

manipulation of attention load and the testing phase forms Chapter 4 of the current thesis. 
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Figure 3.6 summarizes the shaping of the animals for the active task and its general 

structure.   

 

 

 
 
Figure 3.6: A. the steps for shaping of the animals in the reaction time active task. B. 
Schematic representation of the active detection task. Rats approach a nose-poke aperture 
and a white circular aperture on a grey background was continually present on each 
monitor. Rats then initiate a trial by nose-poking into the aperture. After a delay of between 
0.45-1.45 sec during which nose-poke was continually maintained, rats receive a visual 
signal. The visual signal is one of the white apertures briefly turning black (0.15 sec) 
signaling the availability of reward. Rats then make a behavioural decision by leaving the 
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nose-poke and entering the reward spout if they identify the presences of the visual signal. 
Correct detection is rewarded by sucrose water.  
 
 
 

3.2.9 Development of shaping procedures  

 

The shaping procedures above were arrived at following earlier experiments (4 rats) 

in which animals did not learn to associate the presence of visual change (signal) and the 

availability of reward. 

First, in earlier experiments the white apertures were not present continually: the 

monitors were grey and white apertures would appear only after entrance into central 

nose-poke. Animals then needed to wait for the contrast change to occur before leaving the 

nose-poke, whereupon the apertures would disappear and appear again at the next 

entrance to the central nose-poke. The problem with this arrangement was that the visual 

stimulus was changing more than once during each trial. The appearance and disappearance 

of the white apertures appears to have been confused by the rats with the actual signal 

change, which was also a contrast change in the visual stimulus. The rats therefore did not 

learn the visual signal change and made many false-alarms (around 40%). If rats left the 

nose-poke consequent to the visual signal detection, the time spent in the nose-poke would 

depend on the duration of the delay before signal presentation. However the actual time 

spent at the central nose-poke was not significantly longer in the later half of delay periods 

than the earlier half (Wilcoxon rank sum test; p>0.05). In the final experiments the white 

apertures were constantly present and the only luminance change was the signal.  

Second, a common practice in training rats in visual tasks (for example Meier et al., 

2011) is to present flickering screens after false-alarm or error trials, indicating the system is 
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nonresponsive during the resultant penalty time. Flickering screens following false-alarm 

trials, however, appeared to have reduced the capacity of animals to associate the visual 

signal with reward, likely for similar reasons to that discussed above. Our task was a 

luminance change detection, having a flickering screen seemed to have confused the rats 

and decreased the significance of the contrast change of the actual signal. The rats failed to 

learn about the visual change - made many false-alarms (around 40%) and the time spent at 

the central nose-poke was not significantly longer in the later half of delay periods than the 

earlier half (Wilcoxon rank sum test; p>0.05). In the final experiments an auditory beep 

(instead of flickering screens) was presented for the false-alarm trials indicating the system 

was nonresponsive. 

Third, long maximum execution latency (time allowed between signal and arrival to 

the reward spout) seemed to encourage animals to adopt timing-based method for task 

success instead of visual signal. In these animals, performance was high when the maximum 

execution latency was long (1 sec) but the actual time spent at the central nose-poke was 

not significantly longer in the later half of delay periods than the earlier half (Wilcoxon rank 

sum test; p>0.05). When the maximum execution latency was reduced to 0.5 sec, 

performance dropped significantly (t-test; p<0.01). It is therefore important that the nose-

poke delays come from a wide range and the maximum execution latency is short.  

Fourth, in the earlier experiments, a clear auditory tone was provided as a secondary 

reinforcer with the visual change, to guide the shaping. The idea was that the auditory tone 

is a stronger signal and the simultaneous presentation of the tone and the visual change 

would help the rats to learn about the visual change. The volume of the auditory tone would 

then be gradually decreased until the tone was completely off. However, instead of helping 

with the learning, the tone appeared to block learning of the visual change. Performance 
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was high when the auditory tone was present, but when entirely extinguished performance 

dropped dramatically (t-test; p<0.01), indicating that the animals associated tone and 

reward but not visual change and reward. Subsequent attempts to train animals over 27 

sessions without the tone did not lead to successful association. I then reintroduced the 

tone with a lower volume with the following structure: on 10% of the trials, tone was 

presented alone and was not rewarded; on 10% of trials visual signal was presented alone 

and was rewarded with a larger amount of sucrose; on other trials both tone and visual 

signal were presented together and rewarded. However even with this new arrangement 

the animals did not learn the association between reward and visual change. For the trials 

with tone, the actual time spent at the central nose-poke was significantly longer in the later 

half of delay periods than the earlier half (Wilcoxon rank sum test; p<0.01). However, this 

was not the case for the visual only trials (Wilcoxon rank sum test; p>0.05).  

Fifth, a challenge in training animals is to alleviate frustration when not receiving 

reward. In initial experiments it became clear that it was important not to penalise non-valid 

trials, in which animals left the nose-poke before signal presentation but did not go to the 

reward spout. Originally I categorised these trials as false-alarms, a penalty time was added 

to inter trial interval, and a beep provided to indicate incorrect behaviour. Video 

observation, however, showed that in many of these trials the animals did not appear to 

intend to initiate a trial and had instead accidentally activated the sensor (e.g. whiskers 

breaking the sensor beam). Penalising the animals on these trials led to apparent 

frustration. Additionally, inter trial interval beyond 5 sec, and long false-alarm penalty time 

(more than 2 sec) appeared to increase frustration, and they continually checked the reward 

port during these periods.   
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3.2.10 Electrophysiology 

Rats were implanted with either Axona Versa Drive Microdrives (Axona System, 

London) or Neuralynx VersaDrive-4 (Neuralynx, Inc.) that allowed independent movement 

of 4 tetrodes (4.0 mm travel distance and 0.25 mm pitch; Figure 3.1B). To make a tetrode, 

four Platinum 10% Iridium 7µm Microwires were twisted together and were plated with 

platinum black and gold solution. The Microdrive was then assembled using 4 tetrodes (16 

recording channels). The spacing between the tetrodes was 0.6 mm. Electrodes were 

implanted in the superior colliculus (6.8 mm from Bregma, 1.5mm lateral from midline).  

 

3.2.11 Analysis 

All Analyses were performed in MATLAB (Mathworks). Spike sorting was performed 

using Plexon Offline Sorter (Plexon Systems, TX). The successful implantation served to 

demonstrate feasibility of recording neuronal activity during the behavioural paradigm. As 

the isolated units were not responsive to visual stimuli, neuronal data is not reported in the 

thesis. 

 

3.2.12 High-Speed Videography and eye Tracking 

Eye and head position were monitored non-invasively using a high-speed video 

camera, but we did not enforce fixation. High-speed video (76 frames/s) was acquired from 

above the nose-poke through a lens (M5018-MP2; f = 50mm F1.8) by a High-speed camera 
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(USB 2.0 Monochrome Industrial Camera; DMK 22BUC03) with a resolution of 744x480 

pixels. Infrared Illumination was provided constantly. For each video sequence, we obtain 85 

frames following nose-poke onset.  

 

 

3.3 Results 

 

3.3.1 Passive observation 

The aim of the passive behavioural tasks was to provide a platform for 

electrophysiological measurements of visual responses in the brain in awake and 

unrestrained rats. As shown in Figure 3.7A, both rats successfully performed hundreds of 

trials per session (rat 1: 293 ± 12 trials; rat 2: 290 ± 11 trials). The rats learnt to stay in 

central nose-poke during the nose-poke delay before presentation of the auditory white 

noise signal (Figure 3.7B). This delay was gradually increased from 0 to 2 sec over 33 

sessions (Delay period shaping described in Section 3.2.7; the dashed red line in Figure 3.7 

represents day 33 where the nose-poke delay reached the goal of 2 sec). Day 33 onwards 

shows shaping where nose-poke delay was fixed at 2 sec and animals were familiarized with 

a wider chamber and the higher ceiling for electrophysiological measurements (Shaping in 

preparation for later recordings in Section 3.2.7). Therefore both rats showed a drop in the 

number of trials performed on some of the sessions with increased distance between the 

side-walls. Both rats showed high hit rate across sessions (Figure 3.7C; rat 1: 85 ± 1.4; rat 2: 

81 ± 1.5). Figure 3.7 contains more sessions for rat 2 as rat 1 was implanted with the Micro-

drive earlier.   
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Figure 3.7: A. Both rats performed multiple trials per day. Day 0 indicates the time when the 
rats had learnt the association between central nose-poke and reward spout (end of nose-
poke shaping, beginning of Delay period shaping described in the methods section). The 
dashed red line represents day 33 where the nose-poke delay reached the goal of 2 sec (end 
of Delay period shaping, beginning of Shaping in preparation for later recordings). B. The 
rats learnt to stay in central nose-poke during the nose-poke delay before presentation of 
the auditory white noise signal. This delay was gradually increased from 0 to 2 sec over 33 
days. C. Both rats showed high performance (hits over all the trials) across days. The 
performance drop for Days 59 and 60 was due to a problem with the sucrose reward.  
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3.3.2 Reaction time task (active) 

 

The details of the reaction time task and the selective attention manipulations will 

be explained in chapter 4. Here I only present results to indicate that our design was also 

successful in a reaction time active task. Similar to rats in the passive observation group, 

both rats in the reaction time task successfully performed hundreds of trials per session 

(Figure 3.8A; rat 1: 324 ± 14 trials; rat 2: 350 ± 14 trials). Note that on day 18, the rats were 

provided rat chow before the experiment by mistake and therefore performed fewer trials. 

The mean reaction time, the time between signal onset and the animal’s exit from the nose-

poke, was stable across sessions (Figure 3.8B; rat 1: 0.22 ± 0.003 sec; rat 2: 0.23 ± 0.003 sec). 

For the data shown in Figure 3.8, the nose-poke delay variability was 0.45-1.45 sec (uniform 

distribution). In Figure 3.8C, this variability is plotted against the actual time spent at the 

central nose-poke. If rats left the nose-poke consequent to signal detection, the time spent 

in the nose-poke would depend on the duration of the delay before signal presentation. 

Indeed, the rats learnt to stay in central nose-poke during the nose-poke delay before 

presentation of visual signal with the time in nose-poke significantly longer for later signals 

(Wilcoxon rank sum test; p<0.05). Thus the completion of the task did not simply reflect 

prediction of time required to obtain access to reward. Please note that for rat 1 it seems 

that the curve saturates at large delays before signal presentation. This reflects that fact 

that for long delays, the rat left the nose-poke too soon before the signal presentation 

(False Alarm). This has been discussed in the next chapter (Section 4.3.1) where the 

probability of leaving the nose poke when the stimulus was absent increases with time. 
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Figure 3.8: A. Both rats performed multiple trials per day. Day 0 indicates the first day when 
the nose-poke delay variability was 0.45-1.45 sec (uniform distribution). B. The mean 
reaction time, the time between signal onset and the animal’s exit from the nose-poke, is 
plotted across days and was stable across sessions. C. Actual time spent at the central nose-
poke is plotted against the time of signal occurrence (nose-poke delay). The rats stayed 
longer in central nose-poke for later signals. Error bars represent ± SEM. 
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3.3.3 Head and eye stability in the nose-poke 

 

An ideal setup for pairing behaviour with electrophysiological measurements allows 

restricted range of head movements and the monitoring of eye position. We monitored eye 

and head position non-invasively using a high-speed video camera. We then analysed the 

recorded data for each trial by choosing the region of interest around the eye. A custom 

written Matlab code detected the pupil position at every frame. Figure 3.9 shows an 

example of chosen region of interest and the detected pupil for rat 1 in the passive task.  

 

  

 

 

Figure 3.9: An example of the Matlab gui window where the region of interest (dotted lines) 

around the eye is selected. Please note that the detected pupil within the region of interest 

is shown on the right (the black dot with detected confidence circles around it).  

 

 Figure 3.10A plots the pupil x and y positions relative to the median position during 

the nose-poke poke duration in one trial. The example images on the top of the figure show 

the rat’s position at times 0, 0.4, 0.8 and 1.2 sec respectively. In this example trial, the head 

seems to be stable in the nose-poke with small position changes in both x and y axes. The 
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red dots are the frames which the program detected the current frame to have low 

correlation (less than 0.2) with the average. Close investigation of these instances revealed 

that these are the occurrences where there is head movements to get to the central 

position of the nose-poke or the eye was closed. The positon changes observed in this panel 

can be due to head or eye movements. We therefore tried to isolate the eye movements by 

compensating for the head movements using a custom written Matlab code, using affine 

transformations (rotation and translation) to register the images. The circumference of the 

eye is the dominant feature, and is what guides the registration. These registered files are 

then analysed the same as above by finding the pupil x and y position for the same trial 

(Figure 3.10B). The positional change of the pupil was converted into an angular change in 

eye position. This was done by using the following formula based on the eye radius of rats 

(2.623 mm; Zoccolan et al., 2010) and millimetre per camera pixel of our images (0.06): 

 

    Position in Degrees =  
180

𝜋
 sin−1 |eye position −median(eye position)×MmPerCameraPix|

EyeRadius
  

         Equation 3.1 

The eye seems stable and is not moving during the nose-poke. Red dots here also 

indicate substantial head movements or the eye being closed and therefore the program 

cannot obtain an estimate of the pupil position. Thus these instances do not indicate eye 

movement. It is important to note that occasionally the animal’s whiskers cover the pupil 

and distort the estimate of pupil position. As yet we haven’t been able to identify an 

algorithm that can identify these frames generically. An example is at time 1.2 sec where 

the whisker occluded the pupil (the last image). 
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Figure 3.10: An example eye tracking during one trial. A. The pupil x and y relative positions 
during the nose-poke poke duration. B. The pupil x and y relative positions compensated for 
the head movements. The example images on the top represent 0, 0.4, 0.8 and 1.2 sec 
respectively. The region of interest is shown as white dotted lines. The red dots are the 
frames that the program detected the current frame to have low correlation (less than 0.2) 
with the average. 
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Across trials (n = 17 for each rat), both rats were stable in the nose-poke with 

minimal head/eye movements (Figures 3.11, 3.12 and 3.13). The median x and y positions 

for rat 1 are 0.28 and 0.57 mm respectively. For rat 2, median x and y positions are 0.48 and 

1.04 mm respectively. The median eye movements acquired from the registered files 

compensating for the head movements are as follows for rat1: x position is 1.22 and y 

position 1.11 degrees. The corresponding values for rat 2 are 3.98 and 3.79 degrees 

respectively. In general, rat 2 was less stable in the nose-poke.  

 

 

 

Figure 3.11: Relative pupil positions on every frame during the nose-poke across 17 trials 
(absolute values are calculated; hence all positive values). The relative positions are plotted 
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separately for rat 1 (A. x positions and B. y positions) and rat 2 (C. x positions and D. y 
positions).  

 

 

 

 

 

 

Figure 3.12: Relative pupil positions during the nose-poke across 17 trials compensated for 

the head movements. The relative positions are plotted separately for rat 1 (A. x positions 

and B. y positions) and rat 2 (C. x positions and D. y positions). 
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Figure 3.13: Relative pupil positions during the nose-poke across 17 trials. A. x and y relative 
positions for both rats. The median x and y positions for rat 1 are 0.28 and 0.57 mm 
respectively. For rat 2, median x and y positions are 0.48 and 1.04 mm respectively. B. x and 
y relative positions for both rats compensating for the head movements. The median x and y 
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positions are for rat1 are 1.22 and 1.11 degrees respectively. The corresponding values for 
rat 2 are 3.98 and 3.79 degrees respectively. It is important to note the outliers in the 
relative positions. These outliers indicate those instances that there was substantial head 
movements or the eye being closed and therefore the program could not obtain an estimate 
of the pupil position. Thus these instances do not indicate eye movement. It is also 
important to note that occasionally the animal’s whiskers cover the pupil and distort the 
estimate of pupil position. As yet we have not been able to identify an algorithm that can 
identify these frames generically. 

  

3.4 Discussion 

 

I have developed a rodent behavioural setup that can easily be paired with 

electrophysiological measurements. The design is adaptable to a variety of detection and 

discrimination tasks. The rat’s task is to initiate a trial by entering a central nose-poke, and 

to maintain the nose-poke until a relevant signal indicates availability of reward. Rats 

successfully performed hundreds of trials in a restricted period of time and learnt to stay in 

central nose-poke during the nose-poke delay before presentation of the signal. Head 

position was restricted in the central nose-poke without head-fixation and the eyes could be 

constantly monitored via video camera. Both rats were stable in the nose-poke with 

minimal head/eye movements. 

 

3.4.1 Go/NoGo task 

The basic task structure is a main step when designing any behavioural experiment 

probing perceptual decisions. The task structure includes the number of stimuli given to the 

animals in each trial and the number of responses the animal can produce. One of the 

simplest designs is a Go/NoGo task where the animal reports the presence of a single 

stimulus by performing or withholding a single response (for example lick a spout). We 
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employed a Go/NoGo task for our experiments as it is often used in rodent studies 

(Abraham et al., 2004; Andermann et al., 2010; O’Connor et al., 2010; Smear et al., 2011; 

Histed et al., 2012). 

Two key issues to consider with Go/NoGo detection tasks are impulsivity and 

motivation of the animals (Schwarz et al., 2010; Carandini & Churchland, 2013). The 

motivation and impulsivity of the animal can be examined respectively by the following: 

does each and every signal lead to a response? And is a response where the signal was not 

present, due to internal non-sensory drive? It is therefore important to measure not only 

the rate of correct detections, but also the rate of false alarms. In our experiments, 

motivation of the animals was high as they performed hundreds of trials per session and the 

proportion of misses was low. The false alarm rate is a measure of impulsivity and was 

measured in the trials where signal was going to be presented late (1.35-1.45 sec after the 

nose poke onset) but the animals left the nose-poke even though the stimulus was not 

actually presented. Generally, in detection tasks, a false alarm rate of 10-20% is desirable as 

lower rate has the risk of overestimating detection threshold with conservative animals 

(Schwarz et al., 2010). 

In spite of its demonstrated practicality and efficiency, the Go/NoGo paradigm has 

three main limitations. These limitations are less applicable to my experiments as I used 

relatively easy signals for both the passive and active tasks. First, true signal misses can be 

confounded with lack of motivation such as frustration or satiation. This can be a particular 

issue in the detection experiments where stimuli of various intensities are used to measure 

psychometric functions (e.g. contrast psychometric curve). To overcome this problem, it is 

important to employ stimuli containing not only deflections close to threshold, but also 

strong supra-threshold stimuli (Schwarz et al., 2010). These strong stimuli serve as constant 
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monitor for the motivation of the animal over the session as they should have near 100% 

GO responses if the motivation of the animal is high. Second, true detection of signal is 

confounded with internal timing predictions or random guessing responses. Sometimes rats 

lick randomly to increase their chance of receiving reward on hard signals. Using catch trials 

where no stimulus is actually presented is a good method to measure response due to 

random licking strategies. The third issue is lack of feedback to the animal in the case of 

misses and correct rejections. The animal is only rewarded for hits but not correct rejections 

and is punished (usually by a time-out penalty) for false alarms but not misses. Giving 

feedback on these trials (i.e. rewarding correct rejections and punishing misses) can 

however confuse the animal especially in the case of near threshold signals (Schwarz et al., 

2010). The reason for a possible confusion in these near threshold trials is that the animal 

sometimes gets punished (for misses) and sometimes gets rewarded (for correct rejections) 

while the internal state of the animal is the same (no signal detected).  

 The distribution of delays between the nose-poke onset and the stimulus that signal 

the availability of food can either be uniformly distributed or exponentially distributed.  In 

the former case, the frequency of each signal occurrence within a specified range is uniform 

but the momentary probability of the signal (i.e. the hazard function) increases as time 

progresses. With the exponentially distributed signals, short delays are more frequent than 

longer delay, but the momentary probability of the signal is constant across time within the 

trial. Previous work has shown that rats' response rates remain stable as time progresses 

during the trial when stimuli are uniformly distributed, whereas their response rates 

declines when the stimuli are exponentially distributed (Harris et al., 2011). Therefore, in 

our reaction time active experiments we chose uniformly distributed stimuli.  Choosing 

exponentially distributed stimuli would have led to a flat hazard function however the rats’ 
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response rate would have declined for the low probability late stimuli. This would have 

promoted a timing strategy and leaving the nose-poke early into the trial. 

 

3.4.2 Adaptability of our design and its contrast with others  

A major advantage of our design in studying visual behaviour is that the rats view the 

monitors directly not through a transparent screen as in some existing set-ups. Another 

advantage of our set-up is its simplicity by employing a Go/NoGo task. Nevertheless the 

experimental design is adaptable to two-alternative forced choice (2AFC) with minor 

modifications. In the 2AFC paradigms, two reward ports are placed on either sides of a 

central nose-poke and in a discrimination task, the animal has to go to the left or right 

reward port depending on the trial. The 2AFC paradigm has been successfully developed to 

study complex visual tasks in rats such as shape processing and objection recognition 

(Zoccolan et al., 2009; Tafazoli et al., 2012; Vermaercke & Op de Beeck, 2012; Alemi-Neissi 

et al., 2013; Rosselli et al., 2015). These studies have shown that rats are capable of 

efficiently processing complex information about a visual object. Extension of our paradigm 

to 2AFC visual detection and discrimination tasks can be achieved by putting two posts 

around the nose-poke post for having the reward spouts. The paradigm can also be 

extended to tasks employing different sensory modalities such as whisker stimulation. A 

vibrating mesh can be placed on a post next to nose-poke for applying whisker stimuli. 

Multisensory integration can also be investigated by for example presentation of both visual 

and whisker stimuli.  
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3.4.3 Head and eye movement 

The design of the experimental apparatus restricted the range of head motions 

without head-fixation, allowing eye-position to be monitored via video feed. As we did not 

employ head-fixation, the rats were free to move. Nevertheless they generally kept their 

head stable at the central nose-poke during visual stimulation. Sriram and Reinagel (2012) 

monitored the eye position of head-fixed rats in a visual task, using an infrared tracker. They 

noted that when aroused rats perform very infrequent low-amplitude (<5 degrees) 

saccades. After saccades, the eye position typically decays back to the central fixation point. 

The rats maintain fixation within a 5 degrees circle around the mean eye position more than 

65% of the time (Sriram & Reinagel, 2012). Similarly, Zoccolan and colleagues (2010) showed 

that awake head-fixed rats show low amplitude saccades with median amplitude of 3.6 

degrees. The inter-saccadic interval had a mean of 137.9 sec however in some cases they 

observed short inter-saccadic intervals of 0.750 sec (Zoccolan et al., 2010). The infrequent 

eye movements provide sufficient durations to record neuronal activity and to investigate 

the correlation between behaviour and neuronal responses. The low amplitude of eye 

movement further helps to maintain the position of the receptive field within a full-field 

stimulus. 

In our experiments we achieved a measurement of head and eye displacement on 

the image plane. This is serves as a first-order understanding of whether the rat gaze was 

stable during a trial. However, unless a calibration procedure is developed, which is able to 

map the orientation of the head and gaze with respect to the monitor, then no precise 

information about what monitor location the rat is pointing to (within a trial or across trials) 

can be achieved (Wallace et al., 2013). Knowledge of absolute head-induced slip could be 
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obtained by having some form of template, and or head tracking, and this may be a target 

of future experiments. The apparatus and the analysis here are designed to obtain a 

relatively stable eye and head position to restrict movements and maintain the position of 

receptive fields within a large stimulus. Experiments requiring small visual stimulus tailored 

to the receptive field of neurons should employ a head-fixation apparatus.  
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4.0 Are rats capable of selective, spatial attention?  

4.1 Introduction 

Selective attention is a process by which brain focuses on events that offer 

organisms survival advantages. Selective attention is apparently required because brain 

does not have the capacity to process all possible information from the outside world and 

must select those events that are likely to be relevant. Understanding selective attention 

requires research on animals: it is not possible to simulate attention in vitro, because 

attention is defined by its impact on behaviour; we cannot yet rely on non-invasive methods 

in humans because we do not yet know how attentional signals are communicated between 

nerve cells. Non-human primates are currently the primary animal models of selective 

attention. In this chapter we aim to establish the feasibility of studying selective attention in 

rodents and develop a behavioural model of selective visual attention in rats. 

Humans and other animals often move their eyes, head or body to improve sensory 

perception, providing one form of selective attention, but the brain can also focus on 

aspects of the external world without orientation of the body. This covert orienting by the 

brain is also a form of selective attention. A seminal procedure in the study of human covert 

attention is the Posner cueing paradigm, where participants direct their gaze to a central 

fixation point and respond as quickly as possible to a peripheral target, which is preceded by 

a cue (Posner, 1980). The cue may either be presented close to the fixation point (an 

arbitrary symbol indicating to where the subject has to orient attention covertly), or close to 

the peripheral target location. In addition, the cue can correctly indicate the target location 

on some proportion of trials; on the remainder of trials the cue incorrectly predicts the 
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target location. This paradigm allows the comparison of performance and reaction time (RT) 

in conditions where attention is directed to a location (attended), or away from that 

location (unattended). Performance in detecting a target is typically better and RT is shorter 

in trials in which the target appears at the cued location (valid trials) than at uncued 

locations (invalid trials). This improvement in performance is evidence of spatial attention.  

The shorter RT and better performance during the Posner cueing paradigm are 

revealed for certain combinations of variables, including Stimulus-Onset Asynchrony (SOA; 

the time from the onset of the cue to the onset of the target), cue predictability, and cue 

type (peripheral or central), suggesting that different processes underlie orienting of 

attention (Luck & Vecera, 2002; Marote & Xavier, 2011). In humans, RTs to validly cued 

targets are usually faster for SOAs of up to about 250 ms. This is termed facilitation. In 

contrast, for SOAs of greater than 300 ms, invalidly cued targets show shorter RTs, and this 

effect is termed inhibition of return (IOR; Klein, 2000). Therefore the pattern of RTs in the 

spatial cueing paradigm seems be biphasic, with facilitation at short SOAs followed by IOR 

(see Samuel and Kat, 2003, for a review).  

In covert attention tasks involving humans, participants are asked not to move their 

eyes and look at a fixation point. Thus, during target presentation, the same sensory 

information is provided in valid and invalid trials. Likewise, the same motor response is 

required in valid and invalid trials. Therefore, the difference between RTs in invalid and valid 

trials reflects both the benefit achieved by the prior orienting of attention towards the 

expected target location and the costs of prior orienting of attention towards an incorrect 

target location. Thus in the invalid cue trials, inhibition of attentional focus and the re-

orienting of attention is required to detect the target presented at another location (Posner, 

1980; Posner & Cohen, 1984). 
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Variations on the Posner paradigm have been widely used in non-human primates 

where a monkey has to covertly detect a target on one side of the screen. The target 

location can be cued by grouping trials into blocks, or by providing a spatial cue shortly 

before each trial. For example, in block designs, one of the two stimuli will be the location of 

the change on 80% of trials within the block. If a spatial cue is used, it will be a valid cue on 

80% of trials. If the response is made within the allowed time, the monkey receives a reward 

(e.g. fruit juice). If the monkey responds too early, the trial is aborted, no reward is 

provided, and the monkey is required to wait (time-out penalty) before the next trial is 

initiated. That the monkey was attending to one of the locations is established by greater 

accuracy and shorter RT for targets at the cued location, compared to the uncued location. 

Bowman and colleagues (1993) showed that macaques can endogenously attend to cued 

locations, such that faster RT for valid cues is observed for SOAs as short as 100 ms. This is 

shorter than what is observed in humans. The difference can reflect species differences or 

the extensive training to achieve the level of performance required in these kinds of 

behavioural tasks.  

The Posner paradigm has not been widely deployed in work on rodent attention. 

Instead the standard 5-CSRTT paradigm (Carli et al., 1983; Muir et al., 1996; Broersen & 

Uylings, 1999; Inglis et al., 2001; Milstein et al., 2007; Harati et al., 2008; Bushnell & Strupp, 

2009) resembles the following. A rodent is placed in a chamber with five opening ports in a 

horizontal arrangement along front wall of the chamber and a food port with a transparent 

door located on the back wall. The animal can initiate a trial by opening door of the food 

port. A small and brief flash of light is then presented in one of the five ports after a short 

delay. That task requires the animal to indicate via a nose poke the location of the visual 

flash. If the animal chooses the correct port, a food pellet or liquid reward is delivered into 
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the food port. If the animal fails to respond on time or responds in the wrong port, a short 

period of time-out is presented (e.g. darkness of the chamber) and no reward is delivered. 

This task is well suited to measuring sustained attention as the animal must maintain 

attention to all of the ports to detect the flash and respond quickly and accurately, but it is 

not useful for studying selective spatial attention.  

Limited attempts have employed 5-CSRTT or its 3 holes alternative and have 

explored whether rats can use cues to spatial location (Ward & Brown, 1996; Bushnell, 

1998; Weese et al., 1999; Phillips et al., 2000; Bushnell & Strupp, 2009; Marote & Xavier, 

2011; Wagner et al., 2014). Marote and Xavier (2011) and Wagner and colleagues (2014) 

focused on covert orienting of attention itself, while the other studies investigated the 

effect of lesions or pharmacological interventions on covert attention. Figure 4.1 shows the 

procedure to test spatial attention in a 2-alternative forced choice (or 3-hole paradigm).  

 

 
 
 
Figure 4.1: 3-hole nose-poke task in rats. Trial starts with a light at the centre port. When 
the animal nose pokes in the centre port, a cue appears in a peripheral port. The cue is a 
dim light which is followed by a bright target after a set SOA. RT is defined as the time 
between onset of the target and nose-poke offset. Adapted from Wagner et al. (2014). 
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 Marote and Xavier (2011) used SOAs of 200, 400, 600, 800 and 1200 ms and showed 

reduced RT or greater accuracy at cued locations for some SOAs. IOR has not been robustly 

demonstrated in rats (Wagner et al., 2014). These studies have not measured the position of 

the head or eyes during the task. These studies therefore do not tell us whether improved 

performance (where present) reflects changes in position of the body with respect to the 

stimuli, or whether it reflects the allocation of selective attention. 

Here we train rats in a visual detection task, where they are required to respond to a 

change in the luminance or the orientation of a visual stimulus. Rats initiate a trial by nose-

poke into a small aperture, after which a visual change (reduction in luminance, or rotation in 

orientation) occurs in either the left or right visual field, at a random time. Change on either 

left or right indicates to the animal to leave the aperture and seek sugar water reward from 

a small spout below it.  

To attempt to manipulate spatial attention we utilise two methods: (1) we vary the 

probability with which the signal is presented on left or right: such that its location is either 

fully-predictable, random, or in blocks where it is more likely to be presented on one side; (2) 

we present a spatial cue indicating that the change is more likely to occur on that side than 

the other. Our aim is to develop a behavioural model of selective visual attention in rats. The 

work here will complement the more general models of sustained attention in rodents.  
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4.2 Methods 

4.2.1 Subjects 

Adult male hooded rats (Long Evans; n = 2; 6 weeks at the start of the training) were 

obtained from the Florey Neuroscience Institute located at Melbourne University. All 

procedures were approved by the Animal Care and Ethics Committee at the Australian 

National University. Rats were housed in an independently ventilated and air filtered 

transparent plastic box (two rats per box). The colony room was climate controlled and had 

a 12 hour light-dark cycle, with lights turned off at 7pm. In the 3 days prior to 

commencement of the study, each rat was handled for 15 minutes per day to accustom 

them to the experimenter and to ease any anxiety.  

 

4.2.2 Food and water regulation 

To provide motivation rats were provided regulated access to food and water, which 

they were gradually adapted to. Measured rat chow (5g per 100g of body weight) was 

provided after each daily experiment. Water was removed from the home cage 2-4 hours 

before the start of the experiment, but was provided ad libitum at all other times. Rats 

readily adapted to this scheduling of food and water access, showed normal growth 

trajectories, and no signs of distress. On weekends and days that behavioural experiments 

were not run, rats received measured rat chow (5g per 100g of body weight) and ad libitum 

access to water. Weight, social behaviour and grooming behaviour were monitored each 

week day. We estimated expected weight as 85% of the weight before implementation of 

food and water regulation, with additional cumulative 3g/wk up to a maximum of 400g. 

Body weight was always above 85% of the expected weight. 
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4.2.3 Task Structure 

The experimental apparatus, the overall task structure, response categories and 

shaping procedure have been explained in details in Chapter 3 (Section 3.2.3, Section 3.2.6 

and Section 3.2.8). Briefly, I trained rats in a visual detection task, where they were required 

to respond to a change (0.15 s) in the luminance of a visual stimulus. Rats initiated a trial by 

nose-poke into a small aperture, after which a visual change (reduction in luminance from 

white to black) occurred in either the left or right visual field, at a random time (0.45-1.45 

sec, uniform distribution). Change on either left or right cued the animal to leave the 

aperture and seek sugar water reward from a small spout below it within 0.5 sec. On trials 

that the rats left the nose-poke before 0.15 sec is finished, the stimulus turned off as soon 

as they left the nose-poke. To promote faster responses, the volume of the sucrose reward 

was greater for responses within half of the maximum time allowed (Kaneko et al., 2006). 

We did not set a minimum reaction time for delivering the reward. Licking before the 

change (false-alarm) caused the trial to be cancelled, presentation of an auditory beep, and 

a time-out period. After the rats learnt the task with a luminance change of white to black, 

the signal luminance was reduced - the change was from white to mean luminance grey. 

Figure 4.2 schematically illustrates the task structure. To test if the rats could transfer their 

knowledge of visual luminance change to another visual change feature, in additional 

experiments the signal was a change in the orientation of the visual stimulus. After the rats 

learnt the task with an orientation change of 90 degrees, the orientation change was 

reduced gradually to 20 degrees. I will explain these experiments from Section 4.3.2 

onwards.  
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The rats were monitored visually through a closed-circuit video camera and were 

under constant infrared illumination. A high speed camera above the nose-poke monitored 

head and pupil positions.  

 

 

Figure 4.2. Schematic representation of luminance change task. Rats approach a nose-poke 
aperture and a white circular aperture on a grey background is continually present on each 
monitor. Rats then initiate a trial by nose-poking into the aperture. After a delay of between 
0.45-1.45 sec during which nose-poke is continually maintained, rats receive a visual signal. 
The visual signal is one of the white apertures briefly turning grey (0.15 sec) signaling the 
availability of reward. Rats then make a behavioural decision by leaving the nose-poke and 
entering the reward spout if they identify the presences of the visual signal. Correct 
detection is rewarded by sucrose water.  

 

 

4.2.4 Performance calculations 

 

I utilise several methods to compare performance accuracy across different 

experimental conditions, and in the following I explain why I chose a particular method for 

the analyses. A conventional way to calculate performance is hits over all the trials as 

follows: 

 

 



Integrative function in rat visual system                    Saba Gharaei 

4.0 Are rats capable of selective, spatial attention?  152 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  
𝐻𝑖𝑡

𝐻𝑖𝑡 + 𝑀𝑖𝑠𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚
 

          Equation 4.1 

 

This is a powerful way to calculate the overall performance of an animal. However, it 

is important to note that the false-alarms occur before the rat is exposed to the signal and 

therefore, one cannot assign its occurrence to any within-trial conditions. Thus, the 

behavioural performance needs to be calculated without considering the false-alarms and 

then corrected for chance which is based on the occurrence of false-alarms. The 

performance (p) is corrected using the following formula (Tanner & Swets, 1954): 

 

𝑝 =  
𝑝′ − 𝑐

1 − 𝑐
 

          Equation 4.2 

 

 

Where p' is the observed hit rate and c is the false alarm proportion as follows: 

 

𝑝′ =  
𝐻𝑖𝑡

𝐻𝑖𝑡 + 𝑀𝑖𝑠𝑠
 

          Equation 4.3 

 

 

𝑐 =  
𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛
 

          Equation 4.4 
 

 

Note that correct rejection is staying in the nose-poke and not leaving the nose-poke 

while waiting for the late signal to occur. As we didn’t have any trials with no signal 
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appearing, the late stimuli (the last time bin of 100 ms) was used to investigate the false-

alarm rate and the correct rejection. 

 

Given that the false-alarm proportion changes with time, the chance performance at 

any point in time is different. Therefore chance performance needs to be computed 

separately as a function of time using the following formula: 

 

𝐶ℎ𝑎𝑛𝑐𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑡)  =  𝑐 (𝑡) 𝑥 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑡) 𝑥 𝐵𝑖𝑛 𝑤𝑖𝑑𝑡ℎ  
 
          Equation 4.5 

 

where c is the false-alarm rate at any point in time. Probability of reward at any point in 

time depends on the maximum execution latency (MEL; maximum time between signal 

onset and arrival to the reward spout for the reward to be available) and on range of nose-

poke delays (time between nose-poke initiation and signal onset). The probability of reward 

is calculated as follows: 

 

0.45 <  𝑡 <  𝑀𝐸𝐿 +  0.45     →          𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑡)   =  (𝑡 − 0.45) / (1.45 − 0.45)   

𝑀𝐸𝐿 +  0.45 ≤  𝑡 <  1.45     →          𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑡)   =  𝑀𝐸𝐿 / (1.45 − 0.45)     

               Equation 4.6 

  

where MEL is the maximum execution latency and is 0.5 sec in all the experiments.  
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4.2.5 Analysis 

All Analyses were performed in MATLAB (Mathworks). Multiple factor analysis of 

variance (ANOVA) with 1 or 2 models was used to compare performance and RT for different 

experiments and across factors such as SOA and validity. When required, post-hoc analyses 

involved an analysis of variance of contrast variables (Tukey-Kramer: for multiple comparison 

of population marginal means). 

  

 

4.3 Results 

 

In the first set of experiments, I varied the probability with which the signal was 

presented on left or right: either fully-predictable (100% on one side), random (50% on each 

side), or in blocks where it was more likely (90%) to be presented on one side (Table 4.1). In 

experiment 1 the signal was randomly presented on left or right (8 sessions). In experiment 

2 the signal was fully-predictable and was presented 100% on one side throughout a given 

session (16 sessions). In experiment 3 the signal was more likely (90%) to be presented on 

one side throughout a given session (32 sessions, with the high probability side chosen 

randomly each session).  
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Table 4.1: The probability with which the signal was presented on left or right on different 
experiments. The same colour coding used in this table (Left: Magenta; Right: Cyan) will be 
used throughout the chapter. 
 
 

 

 

 

4.3.1 Luminance change experiments 

 

4.3.1.1 Rats learn the detection task and show a bias for the left side 

In the luminance change detection task the signal was reduction in luminance from 

white to grey for 0.15 second. Both rats learned the task, completing hundreds of trials per 

session (rat 1: 324 ± 14; rat 2: 350 ± 14). To characterize overall performance for left and 

right stimuli, for each rat we first combine the trials of a given side across sessions in which 
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the signal was randomly presented on left or right (50% on each side). False alarm rates 

were generally low and consistent for both rats (Figure 4.3; rat 1: mean = 25.80 ± 0.86 %; 

rat2: mean = 19.66± 0.71 %; all reported error measures are standard errors). As in this 

experiment left and right signals were presented randomly within each session, false-alarm 

rates are the same for right and left sided signal (the signal is not presented to the animal 

when it leaves). While the side on which the signal was presented was chosen randomly, 

both rats showed a leftward bias in performance: hit rates were higher and misses were 

lower for left sided signals than the right sided signals (Figure 4.3). 

 

 

 

 

 
 
Figure 4.3: The proportion of hits (h), misses (m) and false-alarms (f) in the luminance 
detection task is plotted separately for A. Rat 1 and B. Rat2. False alarm rates are the same 
for right and left sided signal because in these trials the signal is not presented to the animal 
when it leaves.   
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To ensure that behaviour was based on signal detection and not non-specific 

strategies such as an internal clock, the signal was presented after a variable nose-poke 

delay time (uniformly distributed from 0.45 sec to 1.45 sec). Figure 4.4 A&B illustrate the 

performance (defined as hits over all the trials; Equation 4.1) as a function of the time after 

nose-poke that the stimulus was presented. Please note that each session is divided into 10 

time bins. These time bins are formed based on the time the signal occurred and are 100 ms 

each. In both rats performance drops for later signals. In these analyses I use the 

conventional method, where false alarm rates are considered in the calculation for each 

time bin. The false alarms, however, occur irrespective of any experimental manipulation as 

by definition they happen before the rats are exposed to the signal. It is therefore important 

to consider the false alarm rates separately.  

At any point in time, the probability of leaving the nose poke when the stimulus was 

absent is plotted in Figure 4.4 C&D (Equation 4.4). For both rats, this measure of false alarm 

rate increases with time. Performance measures can be recalculated to factor out this 

increase in false alarm rate (Section 4.2.4) and Figure 4.5 A&B show this corrected 

performance (black symbols; Equation 4.2). The corrected measures are very similar to 

performance calculated simply on the basis of hits and misses trials (grey symbols; Equation 

4.3). As described in section 4.2.4, the chance performance at any point in time is calculated 

based on the false alarm rate for that time (red dashed line; Equations 4.5 and 4.6). In Figure 

4.5C&D, the performance is plotted separately for left and right side. For both rats the 

performance was greater for the left sided than right sided targets and especially higher at 

early delay times (t-test p-value < 0.01). 

Because the analyses produce such similar results, but the conventional measure is 

easier to comprehend and calculate, throughout the rest of the chapter I will use proportion 
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of hits over hits and misses as the measure of performance when comparing different 

conditions (Equation 4.3).   

 

 

 

 

 

 

 
 
 
 
Figure 4.4: The performance defined as hits over all the trials is plotted as a function of the 
time signal after nose-poke initiation for A. Rat 1 and B. Rat2. In both rats performance 
drops for later signals. Error bars represent ± SEM. False-alarm rate at any point in time 
after nose-poke initiation is plotted for C. Rat 1 and D. Rat2. False-alarm rate is the 
probability of leaving the nose-poke when the stimulus was absent.  
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Figure 4.5: Performance measures corrected for the false-alarm rate increase overtime is 
plotted in black for A. Rat 1 and B. Rat2. The grey lines plot the performance measures 
defined as hits over hit and miss trials. The red dashed lines plot the chance performance at 
any point in time which is calculated based on the false alarm rate for that time. The 
corrected performance is plotted separately for left and right sided signals for C. Rat 1 and 
D. Rat2 
 

 

4.3.1.2 Reaction time  

We used several analysis techniques to explore the difference in RT (the time 

between signal onset and nose-poke exit) between different conditions. In this section I will 
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present these techniques for comparing RT for the signals that were randomly presented to 

left and right sides. In later sections I will return to the RT comparison between different 

predictability conditions.  

Figure 4.6 shows RT comparisons for left and right sided signals (rat 1: panels A-E; rat 

2: panels F-J). Consistent across all the analysis techniques, rat 1 had faster RT for the left 

side than right side (t-test pvalue < 0.01) whereas rat 2 showed similar RT for both sides (t-

test pvalue > 0.05). For rat 1, the distribution of RT for left sided signals showed an earlier 

and sharper peak than those for right-sided signals (panel A). The overlap between the two 

RT distributions was quantified by applying multiple criterion levels, ranging from the 

minimum to the maximum observed RT. The cumulative response functions are then 

plotted for both left and right sides as a function of RT (panel B). The obtained cumulative 

response functions for left and right are then plotted against each other (panel C). The area 

under the curve was then calculated by sum of the trapezoids between two consecutive 

criteria (connected by straight lines). The area of the curve falls within the range of 0 to 1 

where 0.5 reflects no difference between the distributions. Statistical significance was 

determined by rearranging the two RT distributions 1000 times (shuffling of the two 

distributions).  

For rat1, the RT to left side was significantly faster than the right side (area under the 

curve = 0.6; p<0.01). The median RT was faster for left side than the right side (panel D; 

p<0.01) and this difference was preserved across different signal delay times (panel E). With 

the same format as panels A-I, panels F-J compare the RT for left and right sided target for 

rat 2. This rat’s RT was similar for left and right signals despite the greater performance for 

the left sided targets. Both rats showed faster RT for later signal times (Figure 4.6 E&J). As 
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the experiment consisted of variable signal delays (0.45-1.45 sec), the animals’ expectation 

of a signal increases with time. This is almost certainly the reason that the RT is faster for 

later signals.  

The results from different RT comparison techniques are consistent with each other. 

Thus for simplicity purposes, to compare RT between different predictability conditions, I 

will only present the cumulative response analysis throughout the rest of the chapter.  
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Figure 4.6: Reaction time comparisons for left and right sided signals. A. The RT 
distribution for left and right sided signals for rat 1. B. The cumulative response functions for 
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both left and right sides as a function of RT. C. The cumulative response functions for left 
and right plotted against each other. D. Box and whisker plot of right and left RT showing 
that the median RT was faster for left side than the right side. E. Left and right RT across 
different signal delay times. Error bars represent ± SEM. With the same format as panels A-I, 
panels F-J compare the RT for left and right sided target for rat 2.  

 

 

 

4.3.1.3 Effects of predictability on performance luminance change experiments 

Does being able to predict the likely side of the stimulus modulate the speed and 

accuracy of stimulus detection in rats? To address this question, we varied the probability 

with which the signal was presented on left or right: either fully-predictable (100% on one 

side; 16 sessions), random (50% on each side; 8 sessions), or in blocks where it was more 

likely (90%) to be presented on one side (32 sessions, with the high probability side chosen 

randomly each session). 

Consistent with the above results where the signal was randomly presented on left 

or right (section 4.3.1.1), hit rates were higher and misses were lower for left sided signals 

than the right sided signal in other experiments (Figure 4.7). The overall false alarm rate was 

high for the experiments where the signal was always or most of the time presented on the 

right side.    
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Figure 4.7: The proportion of hits (h), misses (m) and false-alarms (f) in the luminance 
detection task for different predictability modulation experiments. Panels A-D show the 
proportion of responses for rat 1. A. The sessions where the signal was presented randomly 
on left or right (50% on each side). B. The sessions where the signal was fully-predictable 
(100% on one side). C. The sessions where the signal was presented on the left side on 90% 
of the trials and 10% on the right. D. The sessions where the signal was presented on the 
right side on 90% of the trials and 10% on the left. Panels E-H show proportion of responses 
for rat 2. 
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Figure 4.8 shows performance in different predictability manipulations. Please note 

that each session is divided into 10 time bins. These time bins are formed based on the time 

the signal occurred and are 100 ms each. Therefore for each predictability condition and 

each stimulus side, the data from all the sessions of the same time bin have been pooled 

together. For rat 1, the performance for the left side was high on all the experiments (panel 

A). Multiple factor ANOVA with 2 models, revealed significant effect of time of signal and 

predictability group (F9,544 = 8.35; F3,544 = 5.36; p<0.01). There was a significant 

performance difference (post-hoc contrast test using Tukey-Kramer) between high 

probability and low probability trials such that the performance on the low probability trials 

was 2.5% higher. Multiple factor ANOVA also revealed significant time x group interaction 

effect (F27,544 = 3.26; p<0.01), indicating that the magnitude of the difference between 

groups depended on signal time. For the right side (panel B), there were significant effects 

of time of signal and group (F9,544 = 42.38; F3,544 = 7.68; p<0.01) but the interaction was 

not significant (F27,554 = 0.91; p>0.05). The rat’s performance was significantly higher for 

the sessions when the signal was fully presented on the right compared to the other 

predictability modulation conditions.   

 

Similar to rat 1, rat 2 had significant performance effect for the left side on the time 

of signal and group as well as interaction between the two (panel C; F9,569 = 49.05; F3, 569 

= 49.26; F27, 569 = 4.21; p<0.01). The performance was significantly higher for the low 

probability trials compared to all the other conditions. Performance was significantly lower 

for high probability trials compared to the fully predictable trials. For the right sided signals 
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(panel D), the performance was significantly different across groups and across time (F3,578 

= 5.63; F9, 578 = 46.38; p<0.01). The time x group interaction effect was not significant (F27, 

578 = 0.82; p>0.05). The rat’s performance was significantly higher for the low probability 

trials compared to the high probability and fully predictable trials.  

 

Together, these results indicate that performance was modulated by predictability, 

but there was substantial variability between rats and the spatial arrangement of the 

stimuli. Indeed performance seems to be slightly higher for the low probability trials 

compared to the other conditions (except for the right sided signals in rat 1 where 

performance was highest in the fully predictable condition).    
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Figure 4.8: Performance comparison across different predictability modulation 
experiments in the luminance change tasks. A. Performance comparisons for left sided 
targets in rat 1, B. for right sided targets in rat 1, C. for left sided targets in rat 2 and D. for 
right sided targets in rat 2. Performance is calculated as hits over hits and misses (Equation 
4.3). Error bars represent ± SEM. 
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4.3.1.4 Effects of predictability on reaction time in luminance change experiments 

RT was systematically modulated by predictability: across both rats and spatial 

arrangement, RT was fastest for the fully-predictable and slowest for the random signals. 

When intermixed, RT was faster on low-probability than high-probability trials.  

For rat 1, the RT for the left sided targets was significantly different between 

different predictability conditions (Figure 4.9 panel A; One-way ANOVA; F3,6628 = 23.68; 

p<0.01). We performed a multiple comparison (Tukey-Kramer) of reaction times using one-

way ANOVA. This method determines which means are significantly different using 

confidence level of 95 %. Small graphs on Figure 4.9 show the mean reaction time for each 

condition and the magnitude of the differences. These panels display a graph of the means 

comparisons with the confidence intervals around them. Non-overlapping confidence 

intervals show a significant difference (p-value <0.05). RT was significantly slower for the 

random signals compared to the other three conditions, and was significantly faster for 

fully-predictable than other conditions. In addition RT was significantly faster on low-

probability than high-probability trials (post-hoc contrast test using Tukey-Kramer). RT for 

right sided targets was also significantly different between experiments (panel B; F3,6136 = 

26.28; p<0.01).  

For rat 2, RT for the left sided targets was significantly different between 

experiments (panel C; One-way ANOVA; F3,6875 = 30.77; p<0.01). Similar to rat 1, RT was 

significantly slower for the random signals compared to the other three conditions (post-hoc 

contrast test using Tukey-Kramer). It was significantly faster for fully-predictable than other 

conditions. RT for the right sided targets was also significantly different between 

experiments (panel D; F3,6136 = 35.42; p<0.01).  
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Figure 4.9: Reaction time comparison across different predictability modulation 
experiments in the luminance change tasks. A. Cumulative for left sided targets in rat 1, B. 
for right sided targets in rat 1, C. for left sided targets in rat 2 and D. for right sided targets 
in rat 2. Small graphs on the figure show the mean reaction time for each condition and the 
magnitude of the differences. These panels display a graph of the means comparisons with 
the confidence intervals around them. Non-overlapping confidence intervals show a 
significant difference (p-value <0.05). 
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4.3.2 Orientation change experiments 

 

The orientation change experiments were similar to the luminance change tasks 

except the rats were required to respond to a change of orientation of one of the gratings 

(0.15 sec) instead of the luminance change. As schematically illustrated in Figure 4.10, rats 

initiated a trial by nose-poke into a small aperture, after which a rotation in orientation 

occurred in either the left or right visual field, at a random time (0.45-1.45 sec, uniform 

distribution). Change on either left or right cued the animal to leave the aperture and seek 

sugar water reward from a small spout below it within 0.5 sec.  

 

 

 

 

 

Figure 4.10: Schematic representation of orientation change task. Rats approach a nose-
poke aperture and a circular grating on a grey background is continually present on each 
monitor. Rats then initiate a trial by nose-poking into the aperture. After a delay of between 
0.45-1.45 sec during which nose-poke is continually maintained, rats receive a visual signal. 
The visual signal is one of the gratings briefly changes orientation (0.15 sec) signaling the 
availability of reward. Rats then make a behavioural decision by leaving the nose-poke and 
entering the reward spout if they identify the presences of the visual signal. Correct 
detection is rewarded by sucrose water. 
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4.3.2.1 Effects of predictability on performance in orientation change experiments 

 

Similar to the luminance change task, both rats learned the orientation change task 

and showed a leftward bias in performance. When the side on which the orientation change 

occurred was chosen randomly, for both rats, hit rates were higher and misses were lower 

for left sided signals than the right sided signals (Figure 4.11A&B). For both rats, the misses 

and false alarm rates were very similar to the luminance change experiment (refer to Figure 

4.3) suggesting that rats’ overall motivation and impulsivity remained the same over months 

of training. Figure 4.11C&D plots the performance at any point in time separately for left 

and right side. For both rats the performance was greater for the left sided than right sided 

targets and especially higher at early delay times. 
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Figure 4.11: The proportion of hits (h), misses (m) and false-alarms (f) in the orientation 
change task is plotted separately for A. Rat 1 and B. Rat2. False-alarm rates are the same for 
right and left sided signal because in these trials the signal is not presented to the animal 
when it leaves. Performance measures corrected for the false-alarm rate increase overtime 
and are plotted separately for left and right sided signals for C. Rat 1 and D. Rat2. The red 
dashed lines plot the chance performance at any point in time which is calculated based on 
the false-alarm rate for that time.  
 

 

Figure 4.12 shows performance in different predictability manipulations. For rat 1, 

the performance for the left side was high on all the experiments (panel A). Multiple factor 

ANOVA revealed significant effect of time of signal and predictability group (F9,271 = 6.08; 
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F3,271 = 9.2; p<0.01). The performance was significantly lower for the condition where the 

signal was fully-predictable than the other three conditions (Tukey-Kramer: for multiple 

comparison of population marginal means; p<0.05). ANOVA also revealed significant time x 

group interaction effect (F27,271 = 1.97; p<0.01), indicating that the magnitude of the 

difference between groups depended on signal time. For the right side (panel B), there were 

significant effects of time of signal and group (F9,273 = 50.60; F3,544 = 25.95; p<0.01) and 

their interaction was also significant (F27,273 = 1.87; p<0.01). The rat’s performance was 

significantly lower for the low-probability trials compared to all the other predictability 

conditions.   

Rat 2 had significant performance effect for the left side on the time of signal and 

group as well as interaction between the two (panel C; Multiple factor ANOVA; F9,273 = 

20.96; F3,273 = 27.73; F27,273 = 2.85; p<0.01). The performance was significantly lower for 

the fully-predictable condition compared to all the other conditions (Tukey-Kramer: for 

multiple comparison of population marginal means; p<0.05). Performance was significantly 

lower for high-probability trials compared to low-probability trials. For the right sided 

signals (panel D), the performance was significantly different across groups, time as well as 

their interaction (F3,274 = 44.31; F9,274 = 20.24; F27,274 = 2.25; p<0.01). The rat’s 

performance was significantly higher for the low-probability trials compared to all the other 

predictability modulation conditions. Performance was significantly lower for the fully-

predictable trials than the high-probability trials. 
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Figure 4.12: Performance comparison across different predictability modulation 
experiments in the orientation change tasks. A. Performance comparisons for left sided 
targets in rat 1, B. for right sided targets in rat 1, C. for left sided targets in rat 2 and D. for 
right sided targets in rat 2. Performance is calculated as hits over hits and misses (Equation 
4.3). Error bars represent ± SEM. 
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4.3.2.2 Effects of predictability on reaction time in orientation change experiments 

 

RT was systematically modulated by predictability. For rat 1, the RT for the left sided 

targets was significantly different between different predictability conditions (Figure 4.13 

panel A; one-way ANOVA; F3,4307= 8.59; p<0.01). RT was significantly slower for the fully-

predictable signals compared to random and low-probability signals. RT was significantly 

faster on low-probability than random trials. The RT for the right sided targets was also 

significantly different between experiments (panel B; F3,3779 = 8.87; p<0.01). RT was 

significantly faster for fully-predictable compared to all three other conditions.  

For rat 2, the RT for the left sided targets was significantly different between 

experiments (panel C; F3,4465 = 6.94; p<0.01). RT was significantly faster for the fully-

predictable signals compared to random and high-probability signals. RT for the right sided 

targets was also significantly different between experiments (panel D; F3,3924 = 5.02; 

p<0.01). RT was significantly slower for the random signals compared to fully-predictable 

and high-probability conditions.  
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Figure 4.13: Reaction time comparison across different predictability modulation 
experiments in the orientation change tasks. A. Cumulative RT for left sided targets in rat 1 
B. for right sided targets in rat 1 C. for left sided targets in rat 2 D. for right sided targets in 
rat 2. Small graphs on the figure show the mean reaction time for each condition and the 
magnitude of the differences. These panels display a graph of the means comparisons with 
the confidence intervals around them. Non-overlapping confidence intervals show a 
significant difference (p-value <0.05). 
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In summary, RT was systematically modulated by predictability in both luminance 

and orientation change experiments. Together, across both rats and both sides, it was 

fastest for the fully-predictable (204ms) and slowest for the random signals (235ms). The RT 

was on average 6ms faster on low-probability than high-probability trials.  

 

4.3.3 Spatial cueing experiments 

 

In the next stage, the same rats were trained in a cued version of the previous 

paradigm to signal the rats as to the location of the target. In this set of experiments, we 

presented the spatial cue (0.2 sec) as soon as the rats entered the nose-poke. The spatial 

cue was black screen around the grating (Figure 4.14). The rats were required to respond to 

the orientation change of either left or right grating at a random SOA time (time between 

the onset of the cue and the signal presentation; 0.45-1.45 sec, uniform distribution). 
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Figure 4.14: Schematic representation of spatial cueing orientation change task. Rats 
approach a nose-poke aperture and a circular grating on a grey background is continually 
present on each monitor. Rats then initiate a trial by nose-poking into the aperture when a 
spatial cue of black screen around the grating (0.2 sec) appeared. The example in this figure 
is a valid cue where the cue side is on the same side as the orientation change. After a delay 
of between 0.45-1.45 sec during which nose-poke is continually maintained, rats receive the 
orientation change signal. The visual signal is one of the gratings briefly changed orientation 
(0.15 sec) signaling the availability of reward.  

 

 

4.3.3.1 Valid and neutral cues 

In this experiment (16 sessions) the signal was presented randomly on each side. On 

80% of the trials a spatial cue was presented on the same side that would undergo 

orientation change (valid cue). The rest of the trials (20%) contained a neutral cue where the 

cue was presented on both screens but only one of the screens would undergo the 

orientation change (Table 4.2).   
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Table 4.2: The probability with which the signal and the spatial cues were presented.  
 
 

 

 

 

Figures 4.15 and 4.16 compare the performance and RT for the trials where the 

signal was validly cued (valid cue; green) and trials where the spatial cue was presented on 

both screens (neutral cue; yellow) and therefore did not indicate the position of the signal. 

For both rats, the performance and RT did not differ between the valid and neutral cue trials 

(ANOVA; p>0.05). Note that SOA is the time between the onset of the cue and the signal 

presentation and as the onset of the cue is the same as the nose-poke onset, SOA is the 

same as time of signal in previous experiments.   
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Figure 4.15: Performance comparison for the neutral and valid trials in the spatial cueing 
task. A. Performance comparisons for left sided targets in rat 1, B. for right sided targets in 
rat 1, C. for left sided targets in rat 2 and D. for right sided targets in rat 2. Performance is 
calculated as hits over hits and misses (Equation 4.3). Error bars represent ± SEM. 
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Figure 4.16: Reaction time comparison for the neutral and cue trials in the spatial cueing 
task. A. Cumulative RT for left sided targets in rat 1, B. for right sided targets in rat 1, C. for 
left sided targets in rat 2 and D. for right sided targets in rat 2.  

 

 

 

4.3.3.2 Valid and invalid cues  

In these experiments, the percentage of the valid cues was the same as the previous 

experiment (80%) but for the rest of the trials, instead of having a neutral cue presented on 

both screens, an invalid cue was presented on the side that the signal was not going to 

appear. For 16 sessions, the signal was presented randomly on each side (Table 4.3A). Next, 
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for 46 sessions, the signal was more likely (80%) to be presented on the right side (Table 

4.3B).  

 
Table 4.3: The probability with which the signal and the spatial cues were presented.  
 

 

   

Similar to the previous experiment with neutral cues, there was no significant 

performance or RT differences on the trials with valid and invalid cues (ANOVA; p>0.05). 

This was the case for both random and right high-probability experiments. For simplicity, I 

am not presenting the corresponding figures.  

 

4.3.3.3 Increasing the reliability of the cue 

Given that using SOAs of 0.45-1.45 sec we did not observe any accuracy or RT 

difference between valid and invalid cues, in the last two experiments we decreased the 

SOA further. In these experiments the SOA varied between 0.1 and 1.1 sec and the cue 
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duration was 0.1 sec (instead of 0.2 sec in the previous experiments). In one experiment (20 

sessions), the percentage of the valid and invalid cues was the same as the previous 

experiments (80% valid; 20% invalid; Table 4.4A). In the other experiment (10 sessions), all 

the cues were valid (Table 4.4B). Therefore the cue was fully predictive of the signal side. It 

is important to note that in both of these experiments the probability of signal presentation 

was random and the difference was in the predictability of the cues.  

 

 
Table 4.4: The probability with which the signal and the spatial cues were presented.  
 

 

 

Similar to the previous experiments, there was no significant performance or RT 

difference for the trials with valid and invalid cues (ANOVA; p>0.05). We then compared the 

performance and RT across experiments: for the experiment where the cue was fully-

predictive of the signal side (purple on Figures 4.17 and 4.18) and when it was predictive on 

80% of the trials (maroon on Figures 4.17 and 4.18). As fully-predictive experiment only 
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contained valid cues, to compare between the two experiments only valid cue trials were 

considered. Interestingly, for both rats the performance was slightly higher and the RT was 

faster for the fully-predictive compared to mostly-predictive experiment.  

Figure 4.17 shows performance in the two manipulations. For rat 1, the performance 

for the left side was high on both experiments (panel A). ANOVA revealed significant effect 

of time of signal (F9,279 = 25.43; F3,271 = 9.2; p<0.01). However in this rat, for the left sided 

signals, there was no effect of group and the interaction between time and group was not 

significant (F1,279 = 1.27; F9,279 = 1.62; p>0.05). For the right side (panel B), there were 

significant effects of time of signal and group (F9,280 = 131.25; F1,280 = 4.06; p<0.05) but 

their interaction was not significant (F9,280 = 1.32; p>0.05). The rat’s performance was 

significantly higher for the fully-predictive than mostly-predictive experiment. 

Rat 2 showed significant performance effect between the two experiments for both 

left and right sided signals. Performance difference for the left sided signals was significant 

for the time of signal, group as well as interaction between the two (panel C; F9,275 = 11.21; 

F1,275 = 17.29; P<0.01; F9,275 = 3.08; p<0.01). The rat’s performance was significantly 

higher for the fully-predictive than mostly-predictive experiment. For the right sided signals 

(panel D), the performance was significantly different across groups and time (F9,276 = 

44.59; F1,276 = 5.06; p<0.01) but their interaction was not significant (F9,276 = 0.33; 

p>0.05). Performance was significantly higher for the fully-predictive than mostly-predictive 

experiment. 

 

 



Integrative function in rat visual system                    Saba Gharaei 

4.0 Are rats capable of selective, spatial attention?  185 

 

 

 

Figure 4.17: Performance comparison for the fully predictive cue experiment and the 
experiment where the cue predicted the position of the target on 80% of the trials. A. 
Performance comparisons for left sided targets in rat 1, B. for right sided targets in rat 1, C. 
for left sided targets in rat 2 and D. for right sided targets in rat 2. Performance is calculated 
as hits over hits and misses (Equation 4.3). Error bars represent ± SEM. 

 

Next we compare the RT between the two signal predictability modulation 

experiments. For rat 1, the RT for the left sided targets was significantly faster for the fully-

predictive cue compared to the mostly-predictive experiment (Figure 4.18 panel A; F1,3705 

= 8.59; p<0.01). For this rat, the RT for the right sided targets was not significantly different 

between the two experiments (panel B; F1,3124 = 0.01; p>0.05).  
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For rat 2, the RT for both left (panel C) and right sided targets (panel D) was 

significantly faster for the fully-predictive cue compared to the mostly-predictive 

experiment (F1,3305 = 24.08; F1,2943 = 6.22; p<0.05).  

 

 

 

 

Figure 4.18: Reaction time comparison for the fully predictive cue experiment and the 
experiment where the cue predicted the position of the target on 80% of the trials. A. 
Cumulative RT for left sided targets in rat 1, B. for right sided targets in rat 1, C. for left sided 
targets in rat 2 and D. for right sided targets in rat 2.  
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4.4 Discussion 

Selective attention is the process through which brain directs its processing capacity 

to events that are likely to be behaviourally relevant. Non-human primates are currently the 

primary animal models of selective attention. In this chapter I established the feasibility of 

studying selective attention in rodents and described a behavioural model of selective visual 

attention in rats. Rats responded to a change in the luminance or the orientation of a visual 

stimulus and performed >300 trials per session at a high level of performance on both tasks. 

I employed two key experimental manipulations: (1) I varied the probability with which the 

signal was presented on left or right: such that its location was either fully-predictable, 

random, or in blocks where it was more likely to be presented on one side; (2) I presented a 

spatial cue indicating the side where the signal was more likely to occur. The reaction time 

was systematically modulated by signal predictability: it was fastest for the fully-predictable 

and slowest for the random signals. Additionally, rats reacted faster to low-probability than 

high-probability trials. In the spatial cueing experiments, I did not observe performance or 

RT difference between trials with valid and invalid cues. Nevertheless, the performance was 

higher and the RT was faster when the cue was fully predictive of the signal side compared 

to when the cue was predictive on 80% of trials. In the following sections I assess the results 

above and previous work in the context of three models of attention allocation: no spatial 

covert attention, top-down attention, and combinations of top-down and bottom-up 

effects. I also briefly consider the side bias observed in both rats.   

 

4.4.1 No covert spatial attention in rats? 

In the spatial cueing experiments I did not observe performance or RT difference 

between trials that involved valid or invalid cues. This may indicate that unlike primates, rats 
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are not capable of covert spatial attention in the context of spatial cueing experiments. In 

this context it is important to note that in covert attention tasks involving humans and other 

primates, subjects fixate on a fixation point during signal presentation. In this way, the same 

sensory information is provided in valid and invalid trials. The difference between RTs in 

invalid and valid trials is thus taken to reflect both the benefit achieved by the prior 

orienting of attention towards the expected signal location and the costs of prior orienting 

of attention towards an incorrect target location (Posner and Cohen, 1984).  

Unlike the work in primates, previous studies in rats have not measured the position 

of the head or eyes during the task (Weese et al., 1999; Marote and Xavier, 2011; Wagner et 

al., 2014). These studies therefore do not tell us whether the improved performance, which 

they observed in some of the SOAs, reflects the allocation of covert selective attention or 

whether the improved performance simply reflects changes in position of the body with 

respect to the stimuli. For example, in a trial that the cue is presented to the right side, the 

rat may pre-orient its body towards the right side before onset of the target. If the target is 

then presented to the right side (valid trial), the rat is expected to be faster and more 

accurate because of its prior body orientation. If however the target is presented to the left 

side (invalid trial), the rat is expected to miss the target or react slower to it because of its 

body orientation. Thus what appears to be a covert validity effect (Weese et al., 1999; 

Marote & Xavier, 2011; Wagner et al., 2014) may instead be the result of an overt 

orientation to the cued side. Even subtle prior orienting may induce measureable effects.  

As shown in Chapter 3, in the paradigm developed in my thesis the arrangement of 

the nose-poke sensor, the reward spout and the monitors was such that the head and the 

eyes were relatively stable in the nose-poke. In the absence of overt body/eye orientation, 

the rats did not exhibit the validity effect. My results indicate that the observed validity 
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effects in previous rat experiments could have been due to overt body/head movements. It 

therefore remains an open question whether rats are capable of covert spatial attention in 

spatial cueing experiments. 

In many primate studies, attention is manipulated on a single trial basis. In our rat 

experiments to attempt to manipulate spatial attention we utilised two methods: (1) we 

varied the probability with which the signal was presented on left or right: such that its 

location was either fully-predictable, random, or in blocks where it was more likely to be 

presented on one side; (2) we presented a spatial cue indicating that the change was more 

likely to occur on that side than the other. The question of whether attention is manipulated 

on a single trial basis cannot be answered based on the first method (varying the probability 

with which the signal is presented on left or right) as these probabilities are changed on a 

session by basis. The spatial cueing experiments can answer this question by for example 

examining the RT and performance in the experiment that the spatial cue was always 

present but the signal could randomly occur in left or right side. However we did not 

observe performance or RT improvements in our spatial cueing experiment. The failure to 

observe an effect of the spatial cue cannot be attributed to lack of motivation as the rats 

performed hundreds of trials per session. 

 

4.4.2 Top-down modulation of attention? 

I observed faster reaction times for fully-predictable signals compared to random 

signals. These results support idea that a mechanism of spatial attention is engaged by top-

down mechanisms that have access to the predictability of signal location. A similar 

predictability effect was present for the RT and performance differences between fully 
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predictive spatial cue and the cues that predicted the side of the signal on 80% of trials. 

These results show that although the validity effect was not observed for the cued trials, the 

predictability still exerted a significant effect on behaviour. These results provide support 

for the top-down, endogenous, modulation of attention. 

Endogenous modes of allocation are usually voluntary and provided through top-

down mechanisms that are specifically tuned to immediate behavioural goals (Jonides & 

Irwin, 1981; Müller & Rabbitt, 1989; Folk et al., 1992; Corbetta & Shulman, 2002; Berger et 

al., 2005; Jack et al., 2006). Exogenous modes of allocation are, on the hand, reflexive, 

relatively involuntary and driven by bottom-up stimulation (Prinzmetal et al., 2005; Posner, 

2012). We found a significant modulation by predictability through (putative) top-down 

mechanisms but did not observe any difference between valid and invalid cues (putatively 

bottom-up). The bottom-up capture of attention may depend on the stimulus properties 

such as the size or contrast of the cue or the signal. For example a study in humans showed 

that the physical characteristics of the cues and signals (such as luminance) affected the 

pattern of RTs at the shorter SOAs but not at the longer SOAs (Pratt et al., 2001). The lack of 

bottom-up capture in our experiments may thus be due to the specific choice of stimulus 

parameters. On the other hand, it is possible that our findings point to fundamental 

differences between rats and humans in the way they sample the environment. 

The performance was higher and the RT was faster when the cue was fully predictive 

of the signal side compared to when the cue was predictive on 80% of trials. One way to 

interpret these results is that the predictability exerted a significant effect on behaviour and 

supports the top-down, endogenous, modulation of attention. In these experiments, the 

onset of the cue is close in time to the onset of the signal on early trials (SOA varied 
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between 0.1 and 1.1 sec). Another way to interpret these results is that the cue is acting as a 

second signal, upon which the animal can make the decision. Therefore, given the time 

proximity of the cue and the signal on early SOAs, it is possible that the rats are responding 

to the cue itself. However, it is important to note that in these experiments the SOAs are all 

intermix within a session, therefore the fact that the rats actually waited for the longer 

signals is indicative that they are not just leaving the nose-poke based on the cue. If the 

response of the rats was based on the cue itself, then we would have expected a larger 

proportion of trials as early False Alarms. This is not what we observed. 

4.4.3 Combinations of top-down and bottom-up effects 

Slower reaction time for high-probability than low-probability signals may be related 

to more bottom-up mechanisms, repetition suppression and surprise. Repetition 

suppression is a robust phenomenon of reduction in neural responses to stimulus repetition 

(Summerfield et al., 2008; Kaliukhovich & Vogels, 2012; Hsu et al., 2014). Repetition 

suppression is thought to comprise of both top-down prediction and bottom-up adaptation 

effects (Hsu et al., 2014). The associated reduction of neural response possibly allows the 

system to save resources and provide a more efficient representation (Pariyadath & 

Eagleman, 2007). Reduction of neural responses to high-probability stimuli may therefore 

allow low-probability stimuli to obtain attentional resources more easily (Desimone & 

Duncan, 1995). This in turn may be related to a well-known phenomenon called the oddball 

effect observed in humans. When a low-probability stimulus (oddball) appears in between a 

repeated presentation of high-probability stimuli, the judged duration of the oddball is 

overestimated (Tse et al., 2004; Pariyadath & Eagleman, 2007; Schindel et al., 2011).  
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Attention is complex and can be exerted through a combination of top-down and 

bottom-up mechanisms. In our experiments, the faster reaction time for fully-predictable 

signals compared to random signals supports the presence of a top-down mechanism. On 

the other hand, the slower reaction time for the high-probability than low-probability 

signals suggests that the bottom-up mechanisms are also involved. The extent to which the 

bottom-up mechanisms influence rodent behaviour remains an open question. 

 

4.4.4 Side bias 

While human data in attention experiments is often analysed for both sides 

combined (but see Berger, 2006), our analyses were done separately for each side. Both rats 

showed a leftward bias where the performance was higher for the left sided signals than the 

right. RTs for left-sided signals were also faster in Rat 1. Side bias in rats has been previously 

reported (Mittleman et al., 1988; Rodriguez et al., 1992; Ward & Brown, 1996; Cowell et al., 

1997; Weliky et al., 2003; Wagner et al., 2014). Consistent to our leftward bias, a previous 

experiment in rats studying the effects of spatial attention observed faster RTs to left-sided 

targets (Wagner et al., 2014). Another study reported that rats have asymmetry in RT when 

trained to orient towards a visual signal presented to either eye (Mittleman et al., 1988). 

When the visual signal is presented to the “dominant” eye, RTs are faster than to the “non-

dominant” eye (Mittleman et al., 1988). In this experiment, the right eye was the dominant 

eye in 65 % of the rats. Lateralised behaviour in rats has also been stated in other 

behavioural tasks such as in Morris water maze (Cowell et al., 1997) and T-maze test 

(Rodriguez et al., 1992).  It would be interesting to investigate if these side biases are 

reflected anatomically.   
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5.0 Conclusion 

 

The work in this thesis investigated multisensory integration and selective spatial 

attention in rats. We developed a simple behavioural paradigm to study rodents’ visual 

behaviour. Rodents are gaining popularity as a viable animal model in visual neuroscience 

because of the access to molecular and sophisticated genetic tools and in vivo optical 

imaging techniques. These tools allow cell-type-specific neurophysiology and exquisite 

control of neuronal activity (Sohya et al., 2007; Huber et al., 2008; Cardin et al., 2009; Kerlin 

et al., 2010; Runyan et al., 2010; Bock et al., 2011). Other advantages of using rodents for 

behavioural experiments are that they are cheaper and depending on the task can be 

trained more rapidly than monkeys. For research involving sophisticated genetics, the 

mouse is currently the preparation of choice, however it remains to be determined whether 

mice can perform all the behavioural tasks that are now established in rats (Reinagel, 2014). 

Transgenic rats are starting to emerge and rats are the more generally used species in 

translational research as disease models. We consider rat model in vision research a 

valuable preparation which is complementary to other established models.  

In Chapter 2, I showed that in rat SC, spiking activity was elevated by whisker or 

visual stimuli, but rarely both, when those stimuli were presented in isolation. Visually 

responsive sites were mainly found in superficial layers whereas whisker responsive sites 

were in intermediate layers. There were robust suppressive interactions between these two 

modalities, even though under uni-sensory conditions the non-preferred stimulus elicits 



Integrative function in rat visual system                    Saba Gharaei 

 

 

 

5.0 Conclusion  194 

 

very weak or no response from those neurons. In order to maximise the chance for 

interactions between the two modalities, we used full-field visual flashes and multi-whisker 

vibrations (Wallace et al., 2004; Lippert et al., 2013). We therefore did not tailor the visual 

and whisker stimuli to the receptive field of individual neurons. It is possible that fine level 

of integration can only be observed when the stimuli are tailored to the receptive field. 

Future experiments can tackle on multisensory integration of visual and whisker inputs 

using single whisker stimulation and small visual flashes.    

It is likely that integration is more prominent in behaving animals. Anaesthesia can 

reduce the sensitivity of the neurons and therefore supress the response to the non- 

preferred stimulus. Experiments involving multisensory stimulations are also more 

susceptible to the effects of changing brain states (Lippert et al., 2013). Furthermore, in 

awake preparations the influence of neuronal oscillations on multisensory integration can 

be investigated (Lakatos et al., 2007). Future research can investigate the effect of 

multisensory integration on SC of awake behaving rats in a preparation similar to the one I 

explained in Chapter 3.  

 In Chapter 3, I developed a rodent behavioural setup that can easily be paired with 

electrophysiological measurements. Our design is adaptable to a variety of detection and 

discrimination tasks. The paradigm can also be extended to tasks employing different 

sensory modalities such whisker stimulation. A vibrating mesh can be placed on a post next 

to nose-poke for applying whisker stimuli. Multisensory integration can also be investigated 

by for example presentation of both visual and whisker stimuli.  
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In Chapter 4, I investigated selective spatial attention in rats utilising the behavioural 

setup that I developed in Chapter 3. The reaction time was systematically modulated by 

attention: it was fastest for the fully-predictable and slowest for the random signals. The RT 

was faster on low-probability than high-probability trials. In the spatial cueing experiments 

the performance was higher and the RT was faster for the experiment where the cues were 

fully predictive of the signal side compared to mostly predictive experiment where the cue 

was predictive on 80% of the trials. Nevertheless, we did not observe performance or RT 

difference between trials with valid and invalid cues. Future experiments can explore the 

effect of the physical characteristics of cues and signals on RT and performance. For 

example a study in humans showed that the physical characteristics of the cues and signals 

(such as luminance) affected the pattern of RTs at the shorter SOAs but not at the longer 

SOAs (Pratt et al., 2001).  

A further approach to study the effect of selective spatial attention would be to use 

a different sensory modality as a cue (such as whisker vibrations or auditory cues). The 

signal can remain a visual change in these experiments. Before a rat can see a predator 

approaching, it might use the auditory cues or the vibrations induced by the predator’s 

movement. These whisker or auditory cues might thus present a more ecological capture of 

attention. 
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