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Abstract 

Diagnostic tests used for Johne’s disease in sheep either have poor sensitivity and specificity or only 

detect disease in later stages of infection. Predicting which of the infected sheep are likely to 

become infectious later in life is currently not feasible and continues to be a major hindrance in 

disease control. We conducted this longitudinal study to investigate if a suite of diagnostic tests 

conducted in Mycobacterium avium subspecies paratuberculosis (MAP) exposed lambs at 4 months 

post infection can accurately predict their clinical status at 12 months post infection. We tracked 

cellular and humoral responses and quantity of MAP shedding for up to 12 months post challenge in 

20 controls and 37 exposed sheep. Infection was defined at necropsy by tissue culture and disease 

spectrum by lesion type. Data were analysed using univariable and multivariable logistic regression 

models and a subset of variables from the earliest period post inoculation (4 months) was selected 

for predicting disease outcomes later on (12 months). Sensitivity and specificity of tests and their 

combinations in series and parallel were determined. Early elevation in faecal MAP DNA quantity 

and a lower interferon gamma (IFNγ) response were significantly associated with sheep becoming 

infectious as well as progressing to severe disease. Conversely, early low faecal MAP DNA and higher 

interleukin-10 responses were significantly associated with an exposed animal developing protective 

immunity. Combination of early elevated faecal MAP DNA or lower IFNγ response had the highest 

sensitivity (75%) and specificity (81%) for identifying sheep that would become infectious. 

Collectively, these results highlight the potential for combined test interpretation to aid in the early 

prediction of sheep susceptibility to MAP infection.  

KEYWORDS: Paratuberculosis; diagnostic tests; Mycobacterium; faecal DNA; Johne’s disease; 

interferon gamma. 
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1. Introduction 

Disease outcomes following exposure to virulent mycobacteria are not uniform; not all exposed 

individuals become infected and, amongst those that do, factors such as the rate of disease 

progression and disease pathology are variable (American Thoracic Society, 2000). This may partly 

be due to the nature of the pathogen as virulent mycobacteria are notoriously slow-growing 

organisms and can switch between dormant and active phases (Magombedze and Mulder, 2012). 

The host response also plays a pivotal role in orchestrating the progress of mycobacterial disease 

(Kunnath-Velayudhan and Gennaro, 2011).  

Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne’s disease in ruminants, a 

chronic debilitating disease resulting in chronic diarrhoea and eventually death. In ruminants the 

usual route of exposure to MAP is oral, via ingestion of contaminated milk or faecal matter. Once 

MAP enters the intestinal wall, initial contact is with phagocytic cells such as macrophages. At this 

stage, these cells of the innate immune system may be able to destroy the pathogen. Alternatively, 

MAP may actively evade intracellular killing mechanisms and take residence within these cells (Weiss 

et al., 2002). As a result, a more complex host response is required. Antigen presenting cells such as 

the macrophages and dendritic cells are able to indicate the presence of infection by presenting 

pathogen-derived antigens on their cell surface. These cells also release a variety of signals in the 

form of cytokines and chemokines (Weiss and Souza, 2008). The initial response predominantly 

involves the antigen-specific release of interferon gamma (IFNγ) by T lymphocytes and as disease 

progresses this response is replaced by an antibody response. In sheep, this classical response is as 

common as a simultaneous IFNγ and antibody response (Begg et al., 2011). IFNγ activates bystander 

macrophages and facilitates intracellular killing of MAP. While the IFNγ response is important in the 

cell-mediated control of intracellular pathogens like MAP it is not always a predictor of disease 

outcome (Jungersen et al., 2012). To counteract the host’s immune response, MAP can also actively 

induce certain cytokines to suppress and evade immune cells; interleukin (IL)-10 and tumour growth 

factor (TGF)β are two such cytokines (Weiss and Souza, 2008). IL-10 can also reduce the ability of 

macrophages to kill intracellular MAP (Weiss et al., 2005). The presence of specific antibodies 

produced by the humoral arm of the adaptive immune system is widely used as an indicator of 

disease although the exact mechanism by which it acts against an intracellular organism is not clear. 

As disease progresses (with the expression of clinical disease) in some animals there is a general 

suppression of the immune system and this is thought to be due to an increase in the secretion of 

immunosuppressive cytokines such as IL-10. However, we have previously shown that an early IL-10 

response also occurs after exposure to MAP (de Silva et al., 2011).  

Infected sheep can shed huge amounts of MAP in their faeces – as high as 108 mycobacterial 

bacilli per gram of faeces (Whittington et al., 2000) – and thus contaminate pasture and act as major 

source of infection for susceptible animals. Therefore, control of Johne’s disease is usually based on 

culling these highly infectious animals or by using management practices to avoid or minimise their 

contact with susceptible animals. Although vaccines can be used as a preventative measure, they are 

not fully protective in sheep as some continue to shed MAP after vaccination (Reddacliff et al., 2006; 

Eppleston et al., 2011).  

For any of the control measures to be fully effective, there is need of a sensitive and specific 

diagnostic test, or a suite of tests, to identify infectious animals – not when they are already 

shedding huge amounts of bacilli – but at a younger age when they are still in early stages of 
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infection. Achieving this goal would enable removal or separation of such animals from a flock prior 

to their being able to spread the disease.  Such a test should also prevent removal of animals that, 

although infected, are unlikely to become highly infectious but instead are likely to clear infection 

(Dennis et al., 2011). 

Most of the currently available diagnostic tests for MAP infection have poor sensitivity or 

specificity in younger age and only detect animals in later stages of infection, when they have 

already made substantial contributions to contamination of the pasture and have already infected 

many susceptible animals. Sensitive and specific diagnosis of disease in early age or our ability to 

identify infected animals prior their becoming highly infectious would be a major step forward in 

controlling the disease. We conducted this longitudinal study to investigate if there are any such 

diagnostic indicators that singly and in combination can predict the eventual clinical outcome of 

sheep. In this study, we monitored several potential indicators of infection and immune responses in 

experimentally challenged sheep from time of exposure to up to 1 year post inoculation (p.i.) and 

evaluated if indicators from an early age can predict pathological and clinical status of animals 1 year 

post-infection.  

Identifying indicators of protection against paratuberculosis has benefits in addition to the 

possible prediction of disease outcome (Berry et al., 2010; Kunnath-Velayudhan and Gennaro, 2011). 

Understanding the initial changes in immune parameters would inform the design of novel vaccines 

that drive a similar immune signature leading to the production of a more efficient vaccine.  

2. Materials and Methods 

2.1. Animals 

The use of animals (Merino sheep) in this study was approved by the University of Sydney Animal 

Ethics Committee.  

Merino lambs were obtained from the University of Sydney farms in NSW, Australia where the 

parent flocks were shown to be free from MAP infection by repeated testing using faecal culture (by 

the radiometric BACTEC method) and antibody ELISA (Institut Pourquier). The lambs were brought to 

and held within a control farm free from MAP infection for two weeks to acclimatise to the new 

environment. Negative infection status of the lambs was verified by antibody ELISA, IFNγ ELISA and 

faecal culture prior to experimental inoculation (Begg et al., 2010). All animals were managed 

similarly under conventional Australian sheep farming conditions in open paddocks; control animals 

were kept on pasture isolated from MAP-exposed animals. Fifty-seven lambs (3-4 months of age) 

were drafted into control and exposed groups using systematic sampling and either left unexposed 

(n=20) or orally exposed to MAP S strain (n=37). MAP exposed groups received a total of 6.72 x 109 

of a clonal isolate or 7.52 x 109 of a gut homogenate from a sheep with clinical Johne’s disease (de 

Silva et al., 2010).  For this study, data from animals exposed to the clonal isolate and gut 

homogenate were considered together as ‘MAP exposed’ animals. 

2.2. Sampling 

Blood/serum and faecal samples were collected at 4, 8 and 12 months p.i. and tissue samples were 

collected at 12 months p.i. when the animals were sacrificed. 

2.2.1. Blood and serum 
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Blood was collected from the jugular vein into lithium heparin-coated tubes (BD Vacutainer®) for the 

IFNγ, IL-10 and Proliferation assays and into tubes without anticoagulant for the collection of serum 

at 4, 8 and 12 months p.i. For all three assays whole blood or cells were cultured with medium alone 

(RPMI 1640/10% foetal calf serum/Penicillin/Streptomycin/β-mercaptoethanol) or with added MAP 

antigen (316v, 10 µg/mL). 

2.2.2. Faeces 

Faecal pellets were collected from each animal at the same time as blood samples and stored at -

80oC until used for detection of viable MAP by culture or MAP DNA by PCR. 

2.2.3. Tissues 

Animals were euthansed (barbiturate i.v.) at 12 months p.i . Tissue sections from the terminal ileum, 

ileocaecal lymph node, ileum (mid and anterior) and jejunum (mid, mid-proximal and anterior) and 

their associated lymph nodes, prescapular lymph node and liver were collected for culture (stored at 

-80oC until processed) or fixed in formalin. 

2.3. Laboratory testing  

2.3.1. Blood and serum 

2.3.1.1. IFNγ assay 

The IFNγ assay was carried out using whole blood cultured with MAP-specific antigen (316v) for 48 

hrs as previously described (Begg et al., 2009). Reagents for the in-house IFNγ ELISA were: capture 

antibody, IFN 6.19 (a generous gift from Dr Gregers Jungersen); detection antibody, CC302biotin 

(Serotec); conjugate, Streptavidin horseradish peroxidase (Vector Labs); substrate, 3,3´,5,5´-

tetramethylbenzidine (TMB) (Pierce). 

2.3.1.2. IL-10 assay 

The IL-10 assay was carried out using peripheral blood mononuclear cells cultured with MAP-specific 

antigen (316v) as previously described (de Silva et al., 2011). Reagents for the IL-10 ELISA were: 

capture antibody, CC318 (Serotec); detection antibody, CC320biotin (Serotec); conjugate, 

streptavidin horseradish peroxidise (Vector Labs); substrate, 3,3´,5,5´-tetramethylbenzidine (TMB) 

(Pierce). 

2.3.1.3. Antibody ELISA 

Serum samples were tested for MAP-specific antibodies using a commercially available kit (Institut 

Pourquier) as described previously (Gumber et al., 2006). An S/P of 0.7 or greater was considered to 

be positive.  

For the IFNγ, IL-10 and antibody ELISAs the S/P were calculated as: 

 (ODsample-ODnegative control)/(ODpositive control-OD negative control) 

2.3.1.4. Proliferation assay 

The flow cytometric Proliferation Assay was carried out using peripheral blood mononuclear cells 

and MAP-specific antigen (316v) as previously described (de Silva et al., 2010). Cells were labelled 

with the fluorescent tracking dye CFSE (carboxyfluorescein diacetate succinimidyl ester) prior to 

culture. 
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For the Proliferation Assay the Stimulation Index was calculated as: 

% CFSEdim cells in the presence of MAP antigen/% CFSEdim cells in the presence of culture medium 

2.4. Faecal culture and MAP DNA quantification 

The presence of viable MAP in faecal samples was detected by radiometric BACTEC culture and 

growth confirmed by IS900 and IS1311 PCR (Whittington et al., 1998). For quantification, MAP DNA 

was extracted from faecal samples and was assessed by quantitative IS900 PCR as described 

previously (Kawaji et al., 2007; Kawaji et al., 2011).  

2.5. Tissue culture and histopathology 

Tissue samples were cultured by the radiometric BACTEC method as described previously 

(Whittington et al., 1999). Growth index positive samples were confirmed by IS900 PCR and 

restriction enzyme analysis (REA). 

In addition, duplicate tissue sections of the cultured samples were fixed in formalin, sectioned at 5 

µm, stained with haematoxylin and eosin or the Ziehl Neelsen stain and graded following Perez et al 

(Perez et al., 1996). The lesion type (3a and 3c, paucibacillary; 3b multibacillary) or absence of a 

lesion was also used to classify animals.  

2.6. Disease classification 

Three main parameters were considered when categorising disease outcomes: tissue culture 

(infected or uninfected), faecal shedding (infectious or non-infectious) and histological lesion type 

(Table 11).  

2.7. Data  analysis 

2.7.1. Explanatory variables 

Faecal MAP DNA, serum antibodies, antigen-specific PBMC IFNγ, IL-10 and proliferation index 

measurements made at 4, 8 and 12 months p.i. were used as explanatory variables in statistical 

analyses to investigate their associations with the outcome variables. 

2.7.2. Outcome variables 

The following outcomes were defined for conducting statistical analyses: 

(a) Infected: This was a binary outcome based on tissue culture results which classified all sheep 

into positive (infected) and negative (uninfected) groups. Sheep that had MAP cultured from 

at least one tissue section, using radiometric BACTEC culture, and growth confirmed by 

IS900 and IS1311 PCR were classified as having MAP infection (de Silva et al., 2010) (Table 1). 

Sheep were classified as uninfected if MAP was not detected in their tissues by culture.  

(b) Infectious: A binary variable which classified a sheep with at least one faecal culture positive 

result at any time point as positive. 

(c) Multibacillary: A binary variable representing whether or not a sheep had developed 

multibacillary lesions at the time of necropsy. 

(d) Resistant/recovered: A binary variable representing sheep that were uninfected at the 

termination of the trial despite prior exposure to MAP. These animals did not shed MAP in 

                                                           
1
 All tables and figures are located at the end of this document. 
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their faeces at any of the sampling time points during the study and were uninfected (based 

on tissue culture at the time of necropsy).  

(e) Increasing disease severity-I: Sheep were classified into four ordered groups depending on 

histopathology and infection status: (i) recovered/resistant sheep as described above, (ii) 

sheep with paucibacillary (Perez type 3a, 3c) lesions (infectious and non-infectious) or no 

lesions but infected, and (iii) sheep with multibacillary (Perez type 3b) lesions. 

(f) Increasing disease severity-II: A second outcome variable was created using the same criteria 

as in (e) but after excluding the infected sheep without any lesions within the paucibacillary 

group. 

2.7.3. Statistical modeling 

All statistical analyses were conducted using the SAS statistical program (© 2002-2010 by SAS 

Institute Inc., Cary, NC, USA) unless indicated otherwise.  

2.7.3.1. Descriptive analyses 

Initially, descriptive analyses were conducted to make a preliminary evaluation of the association of 

explanatory variables with the outcome variables. This included calculation of summary statistics 

and creation of box-and-whisker plots for faecal MAP DNA, antibody, IFNγ, IL-10 and proliferation 

index measurements made at 4, 8 and 12 months p.i. – both overall as well as after classification by 

the outcome variables.  

2.7.3.2. Univariable analyses 

Univariable logistic regression analyses were conducted to evaluate the association of explanatory 

variables with all outcomes – binomial logistic regression for the binary outcome variables (infected, 

infectious, multibacillary and resistant/recovered) and ordinal logistic for the ordinal outcome 

variables (increasing disease severity-I and II).  The descriptive and univariable analyses were 

facilitated by SAS UniLogistic macro (Dhand, 2010b).  

2.7.3.3. Multivariable analyses 

All the explanatory variables with some association with the outcome (P < 0.20) at the univariable 

level were then tested for collinearity and only one of a pair of highly collinear variables was 

retained for further analyses. Multivariable logistic regression analyses (binomial for binary 

outcomes and ordinal for ordinal outcomes) were then conducted to evaluate the association of 

explanatory variables after adjusting for each other. As the interest was in the selection of a best 

subset of variables from the earliest period p.i. for predicting the outcomes (to enable early 

discrimination of future diseased and non-diseased individuals), variables representing 

measurements at 4 months p.i. were first included in multivariable models followed by those from 8 

and 12 months. Variables from the 8 and 12 month time points were only retained if their inclusion 

did not result in exclusion of the variables representing measurements made at 4 months p.i. 

Variables with P < 0.05 were retained in multivariable analyses. Finally, first order interactions were 

tested and retained if significant (P < 0.05). Multivariable analyses were performed using SAS 

MultiLogistic macro (Dhand, 2010a). 

Model fit for binomial logistic regression models was evaluated using the Hosmer-Lemeshow 

Goodness-of-Fit Test. The assumption of proportional hazard for ordinal models was evaluated using 

Score test in the SAS Logistic procedure. 
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2.7.3.4. Calculation of diagnostic sensitivity and specificity 

Receiver Operating Characteristic (ROC) curves were created based on the binomial multivariable 

logistic regression models to determine cut-off values at which the variables will have the maximum 

sum for sensitivity and specificity to discriminate infected and non-infected sheep if used as 

diagnostic tests. Sensitivity and specificity achieved by the variable at the determined cut-off values 

were calculated and reported. 

3. Results 

3.1. Status of exposed and unexposed animals 

Non-exposed control sheep were included in the trial to ensure that the parameters measured were 

different to the MAP-exposed sheep. The control group were all uninfected based on negative tissue 

culture and histopathology at the trial endpoint and were consistently negative for faecal MAP DNA, 

faecal culture and antibody ELISA results and did not respond in the IFNγ assay (S/P < 0.05) at any 

time point tested throughout the trial period. These results indicate that the control group had no 

environmental exposure to MAP during the study period. Data from the control group were not used 

for further analysis.  

 The trial was terminated at 12 months p.i. when weight loss greater than 10% of body 

weight was observed in some sheep within the exposed group. For the MAP-exposed sheep, disease 

outcome was classified based on tissue and faecal culture and histopathology results (Table 1). To 

determine if a sheep was infected we cultured tissue samples from six intestinal sites – including the 

sites most commonly associated with JD lesions in sheep the ileo-caecal region (Perez et al 1996) – 

and two non-intestinal sites and their associated lymph nodes i.e. a total of 12 tissue samples. These 

sections were also assessed for the presence of histological lesions. While this was an extensive set 

of samples from each animal it is still possible that we may have missed the only site of infection in 

some sheep which may have resulted in misclassification of these sheep as uninfected. Faecal 

shedding of MAP was not detected in any of the MAP-exposed uninfected sheep at any of the time 

points sampled during the study. None of the resistant/recovered group was infectious while all of 

the multibacillary group were infectious during the trial period. Of the 12 sheep with paucibacillary 

lesions 7 were non-infectious and 5 were infectious. 

3.2. Descriptive results 

Summary statistics for the explanatory variables for the MAP-exposed sheep over time are shown in 

Table 2. Overall, serum anti-MAP antibodies and faecal MAP DNA increased with time while IFNγ and 

PBMC proliferation peaked at 8 months p.i. 

3.3. Logistic regression results 

Six logistic regression models were built for as many outcome variables. Results of univariable 

models (only with P-values <0.05) are shown in Table 3. Variables representing faecal MAP DNA (log 

10) at 4, 8 and 12 months had significant associations with most outcomes. The odds ratios for these 

variables – representing the change in the odds of the outcome for one unit increase in the log 10 

MAP DNA content (Table 3) – were >1 for all outcomes except the outcome ‘Resistant/recovered’. It 

suggests that as faecal MAP DNA content increased, odds of a sheep to be tissue culture positive, 

faecal culture positive or being multibacillary increased but odds of a sheep to be disease-free 

(resistant/recovered) decreased. 
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 The assumption of linearity (on logit scale) was evaluated in the final models. Although not 

perfect, the association was found to be approximately linear for most of the explanatory variables 

which is considered to be adequate (Hosmer et al., 2005). Results of final multivariable logistic 

regression models are presented in Figure 1 as odds ratios and 95% confidence intervals. The six 

disease outcomes shown on the vertical axis in Figure 1are described in Section 2.7.2 above and in 

Table 1. Faecal DNA at 4 months p.i. was significant in all of the models and had a similar direction of 

association except for animals being resistant, i.e. a higher value of faecal DNA at 4 months p.i. 

increased the likelihood of an animal to be infected (tissue culture positive), infectious (faecal 

culture positive) and multibacillary at the termination of the trial but reduced the likelihood to be 

resistant/recovered (free from disease at 12 months p.i.).  

 A lower MAP-specific IFNγ response at 4 months p.i. significantly predicted three outcomes:  

positive faecal culture (infectious), multibacillary disease (severe pathology) and increasing disease 

severity-I (Fig. 1). Interestingly, the results indicated that if a lamb had a higher specific IFNγ 

response at 4 months p.i., it was less likely to be infectious (faecal culture positive), less likely to 

become multibacillary and less likely to have severe disease (Fig 1). Similarly, the IL-10 response at 4 

months was significant in three models and had strong associations with tissue culture, being 

resistant and increasing disease severity (Fig. 1). The results suggest that lambs with a higher specific 

IL-10 response at 4 months p.i. are less likely to be infected (tissue culture positive), are more likely 

to be disease-free (resistant/recovered) and are less likely to have severe disease at 12 months p.i. 

The only other significant variable was the lymphocyte proliferation index at 12 months p.i. and this 

suggested that animals with a higher proliferation index were less likely to develop multibacillary 

disease. 

3.4. Diagnostic sensitivity and specificity  

Based on ROC curves (Fig 2), we selected cut-off values in order to achieve maximum combined 

sensitivity and specificity. The cut-off values for a ‘positive’ result were: >3.39 fg for faecal MAP DNA, 

<0.38 for IFNγ S/P and <0.28 for IL-10 S/P. Using these cut-off values, we calculated sensitivity and 

specificity of diagnosing various disease outcomes using different tests and combinations of tests 

(Table 4). Combinations of two diagnostic tests were assessed in parallel (i.e. a positive result in 

either test was considered positive) and in series (i.e. both tests needed to give a positive result to 

be considered positive). Based on these results, the potential for early identification of the likelihood 

of a sheep becoming MAP infected, infectious or progressing to multibacillary disease was greatest 

when a positive result was recorded in either the faecal DNA test or the IFNγ assay i.e. when faecal 

MAP DNA was high or when IFNγ was low. For this combination, sensitivity ranged from 58-75% and 

specificity ranged from 67-83%.  

4. Discussion 

While lambs are more susceptible to MAP infection than older animals, sheep of all ages exposed to 

MAP may also become infected (McGregor et al., 2012). In this study we have successfully identified 

indicators from a young age that reflect future disease outcome, albeit under experimental infection 

conditions. Most mycobacterial diseases are inherently long-term in nature and subclinically infected 

individuals can appear unaffected for many years. Therefore it was surprising to find that at only a 

few months after exposure the host response contains a wealth of information regarding the 

eventual disease outcome. 
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The most striking observation was that the IFNγ response is a marker of exposure to MAP 

but is not a marker of infection. This has previously been noted by Jungersen et al in relation to 

bovine paratuberculosis (Jungersen et al., 2012). We are able to expand on this and report that 

although all exposed sheep have an IFNγ response, the strength of this early IFNγ response reflects 

future disease outcome. Sheep that had a weaker early IFNγ response were the ones that were more 

likely to be infectious (i.e. shed MAP in their faeces), more likely to be truly infected (i.e. have viable 

MAP in intestinal tissues) and more likely to have severe multibacillary disease pathology. IFNγ is the 

main cytokine which regulates the function of macrophages, activating these cells to produce 

cytotoxic free radicals which are an essential antimicrobial defence mechanism. This cytokine also 

enhances expression of MHC molecules which enable interaction with lymphocytes and as a result 

facilitates cell-mediated immune mechanisms. Thus the stronger IFNγ response in sheep that are 

able to remain free from disease is perhaps a reflection of efficient control or elimination of the 

pathogen by the host.  

 Another intriguing finding of this study is the importance of the antigen-specific IL-10 

response soon after exposure on future disease outcome. An IL-10 response at 4 months p.i. was 

associated with increased likelihood of disease resistance and decreased likelihood of infection. Two 

cytokines with very different actions, IFNγ and IL-10, were associated with protection. In 

Mycobacterium tuberculosis (Mtb)-infected human macrophages, pre-treatment with IFNγ facilitates 

expression of Mtb antigens on the cell surface while pre-treatment with IL-10 results in retention of 

Mtb antigens within endosomal compartments (Bobadilla et al., 2012). Hence while IFNγ is 

associated with a favourable host response, IL-10 allows pathogen persistence. With such seemingly 

diametrically opposing actions at the cellular level, how do we reconcile the paradoxical effect of 

both IFNγ and IL-10 being protective at a whole animal level?  Our results are supported by findings 

in experimentally infected calves: at 15 months p.i. a lower IL-10 response in peripheral blood cells is 

associated with a greater extent of intestinal tissue infiltration by MAP (Subharat et al., 2012). While 

IL-10 has potent immunosuppressive effects it also enhances survival and differentiation of B cells 

(Mocellin et al., 2004). Perhaps, at a tissue level the immunosuppressive properties of IL-10 are 

important to enable a tightly controlled immune response to minimise tissue destruction. Sheep that 

are resistant to MAP infection have higher numbers of B cells in lymph nodes draining sites of 

infection (Begg and Griffin, 2005).We have also previously shown that a combined IFNγ and antibody 

response is a common response in MAP-exposed sheep (Begg et al., 2011). While the benefits of an 

antibody response to an intracellular pathogen are not entirely certain, it is possible that this 

antibody response is a reflection of the effects of an early IL-10 response. Clearly there is much to be 

discovered about the role of IL-10 in the systemic host response to mycobacterial diseases. 

 Anti-MAP antibody levels at 12 months p.i. were also significant in univariable analyses. At 

this time point, with one unit increase in antibody S/P ratio, the odds of an animal to be infected 

increases 7.4 times, to be infectious increases 3.2 times, to be multibacillary increases 4 times and to 

be resistant increases 0.1 times. However, antibody results were not significant at earlier time points 

and by this time (i.e. 12 months p.i.) the sheep had already started to show signs of clinical disease. 

 Some sheep are able to recover from natural MAP infection (Dennis et al., 2011). Similarly 

we also found in this study that about 30% of MAP-exposed sheep had either resisted or recovered 

from infection. The absence of histological lesions or viable MAP in any of the 6 intestinal tissue 

sections tested and the absence of faecal shedding throughout the trial indicate an absence of 

infection. It is certain that MAP exposure had occurred as the lambs were dosed orally three times 
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and all had an antigen-specific IFNγ response. In addition, there were two MAP-exposed animals that 

were infected but did not have any histological lesions. Since it was not clear where these animals fit 

within the paratuberculosis disease spectrum, when grouping for the outcome variable for 

increasing disease severity (for statistical analysis), two different schemes were created. These 

animals were included with the paucibacillary group in Increasing Disease Severity-I and excluded 

from analysis for Increasing Disease Severity-II. The results for both disease severity outcomes 

supported results for the other outcome variables. 

Sheep that progress to multibacillary disease pose the greatest threat to the rest of their 

flock and other flocks as they are most likely to become infectious and shed greater numbers of MAP 

in their faeces and contaminate the environment. Based on the tests used in this study, faecal MAP 

DNA and the peripheral blood IFNγ response have the potential for predicting which animals will 

eventually succumb to multibacillary disease. Selective removal of such animals, early, will be 

valuable in limiting the spread of paratuberculosis. 

In conclusion, we have shown that early host responses in chronic MAP infection can be 

predictive of disease outcomes. This brings us closer towards understanding the nature of protective 

immunity in paratuberculosis and will aid in the development of effective vaccines.    
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Tables and Figures 

Table 1: Disease outcome of experimental exposure of sheep to MAP  

Outcome variables Categories Frequency Percent 
No. of culture 
positive tissue 

sections per animal 
Lesion type 

No. of tissue 
sections with 

lesions per 
animal 

Extra-intestinal spread 
of MAP 

Tissue culture 
   

    

(Infected) Negative 12 32     

 
Positive 26 68 2-6 3a, 3c, 3b 3-6  

Faecal culture 
   

    

(Infectious) Negative 21 57 0-4    

 
Positive 16 43 3-6 3a, 3c, 3b 5-6  

Multibacillary 
   

    

 
No 27 71 0-4    

 
Yes 11 29 4-6 3b 6 

Detected in hepatic 
tissue 

Resistant/Recovered 
   

    

 
No 26 68     

 
Yes 12 32 0 

None, except 
for two with 3a 
lesion with no 

AFB 

0-1 None 

Increasing disease 
severity-I    

    

 
Recovered/resistant 12 32     

 
Paucibacillary lesions* 15 39 2-4 3a, 3c 3-6  

 
Multibacillary lesions 11 29     

Increasing disease 
severity-II    

    

 
Recovered/resistant 12 34     

 
Paucibacillary lesions 12 34     

 
Multibacillary lesions 11 31     

*Included infected animals with no lesions 
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Table 2: Summary of results for explanatory variables 

Explanatory variables 
Time post 
infection N Minimum 

Lower 
Quartile Median 

Upper 
Quartile Maximum 

Antibody (S/P) 
       

 
4 months 38 0.002 0.01 0.01 0.02 0.242 

 
8 months 37 0.003 0.03 0.27 0.67 2.566 

 
12 months 34 -0.001 0.11 0.59 1.30 2.569 

IFNγ (S/P) 
       

 
4 months 38 0.029 0.38 0.67 1.14 1.499 

 
8 months 37 -0.014 0.62 0.95 1.14 1.326 

 
12 months 37 0.005 0.10 0.32 0.72 1.177 

Faecal MAP DNA 
(log10) 

       

 
4 months 38 -5.00 -5.00 -5.00 -2.42 -1.09 

 
8 months 38 -2.90 -2.48 -2.23 -0.88 2.34 

 
12 months 37 -5.00 -2.01 -1.09 1.71 3.33 

Proliferation (SI) 
       

 
4 months 38 1.2 2.9 4.1 7.9 30.4 

 
8 months 36 0.7 5.6 11.0 17.0 37.0 

 
12 months 37 0.4 2.4 6.1 8.8 87.0 

IL-10 (S/P) 
       

 
4 months 37 0.000 0.02 0.10 0.24 0.494 

 
8 months 33 0.000 0.01 0.03 0.19 0.598 

  12 months 32 0.005 0.05 0.11 0.37 0.754 
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Table 3: Univariable results 

Outcome Variable Explanatory Variables Odds ratios LCL UCL P-value 

Tissue culture (Infected) 

     

 
Faecal MAP DNA (log10) at 4 months p.i. 1.7 1.0 3.4 0.050 

 
Faecal MAP DNA (log10) at 8 months p.i. 3.5 1.3 20.5 0.004 

 
Faecal MAP DNA (log10) at 12 months p.i. 1.5 1.1 2.4 0.007 

 
Antibody (S/P) at 12 months p.i. 7.4 1.8 56.1 0.004 

Faecal culture (Infectious) 

     

 
Faecal MAP DNA (log10) at 4 months p.i. 1.8 1.1 3.1 0.029 

 
Faecal MAP DNA (log10) at 8 months p.i. 42.2 4.7 - <0.001 

 
Faecal MAP DNA (log10) at 12 months p.i. 2.6 1.6 5.3 <0.001 

 
Antibody (S/P) at 12 months p.i. 3.2 1.1 11.0 0.028 

 
Proliferation (SI) at 8 months p.i. 0.9 0.8 1.0 0.014 

 
IFNγ (S/P) at 4 months p.i. 0.1 0.01 0.7 0.015 

Multibacillary 

     

 
Faecal MAP DNA (log10) at 8 months p.i. 8.2 2.8 55.5 <0.001 

 
Faecal MAP DNA (log10) at 12 months p.i. 13.5 3.2 859.2 <0.001 

 
Antibody (S/P) at 12 months p.i. 4.0 1.3 15.7 0.015 

 
Proliferation (SI) at 8 months p.i. 0.9 0.8 1.0 0.030 

 
Proliferation (SI) at 12 months p.i. 0.5 0.3 0.8 <.0001 

 
IFNγ (S/P) at 12 months p.i. 0.02 - 0.4 0.005 

 
IL-10 (S/P) at 12 months p.i. 0.01 - 0.7 0.035 

Resistant/Recovered 

     

 
Faecal MAP DNA (log10) at 4 months p.i. 0.6 0.3 1.0 0.050 

 
Faecal MAP DNA (log10) at 8 months p.i. 0.3 0.05 0.8 0.004 

 
Faecal MAP DNA (log10) at 12 months p.i. 0.6 0.4 0.9 0.007 

 
Antibody (S/P) at 12 months p.i. 0.1 0.02 0.6 0.004 

Increasing disease severity-I 

     

 
Faecal MAP DNA (log10) at 4 months p.i. 1.7 1.1 2.8 0.026 

 
Faecal MAP DNA (log10) at 8 months p.i. 5.9 2.5 20.5 <0.001 

 
Faecal MAP DNA (log10) at 12 months p.i. 2.4 1.6 3.9 <0.001 

 
Antibody (S/P) at 12 months p.i. 5.3 1.9 18.2 0.001 

Increasing disease severity-II 

     

 
Faecal MAP DNA (log10) at 4 months p.i. 1.7 1.1 2.9 0.028 

 
Faecal MAP DNA (log10) at 8 months p.i. 6.0 2.5 21.4 <0.001 

 
Faecal MAP DNA (log10) at 12 months p.i. 2.3 1.6 3.8 <0.001 

  Antibody (S/P) at 12 months p.i. 5.0 1.8 17.2 0.002 
a LCL: Lower 95% confidence limit; bUCL: Upper 95% confidence limit 
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Table 4: Sensitivity and specificity values for diagnostic tests done at 4 months post inoculation for various outcomes at 12 months post inoculation. 

  Infected
1
 at  

12 months p.i. 
Infectious

2
 Severe pathology

3
 at 12 

months p.i. 
Resistant

4
 at 

12 months p.i. 
 Se Sp Se Sp Se Sp Se Sp 

Faecal DNA  34.6 

(0.093) 

91.7 

(0.079) 

43.8 

(0.124) 

90.5 

(0.064) 

45.5 

(0.150) 

81.5 

(0.074) 
8.3 (0.079) 

65.4 

(0.093) 

IFNγ  30.8 

(0.091) 

91.7 

(0.079) 

43.8 

(0.124) 

90.5 

(0.064) 

45.5 

(0.150) 

85.2 

(0.068) 
8.3 (0.079) 

69.2 

(0.091) 

IL-10  92.0 

(0.054) 

33.3 

(0.136) 

93.8 

(0.061) 

20.0 

(0.089) 

90.9 

(0.087) 

19.2 

(0.077) 

66.7 

(0.136) 
8.0 (0.054) 

Faecal DNA and IFNγ 
7.7 (0.052) 

100.0 

(0.00) 

12.5 

(0.083) 

100.0 

(0.00) 

18.2 

(0.117) 

100.0 

(0.00) 
0.0 (0.00) 

92.3 

(0.052) 

Faecal DNA or IFNγ 57.7 

(0.097) 
83.3 (0.11) 

75.0 

(0.108) 

81.0 

(0.086) 

72.7 

(0.134) 

66.7 

(0.091) 

16.7 

(0.108) 

42.3 

(0.097) 

Faecal DNA and IL-10 
32 (0.093) 100 (0.00) 

43.75 

(0.124) 
95 (0.049) 

45.45 

(0.150) 

88.46 

(0.062) 
0 (0.00) 68 (0.093) 

Faecal DNA or IL-10 96.0 

(0.039) 
25.0 (0.13) 

93.8 

(0.061) 

15.0 

(0.079) 

90.9 

(0.087) 

11.5 

(0.063) 

75.0 

(0.125) 
4.0 (0.039) 

Standard errors are shown in parentheses; Cut-off values: Faecal DNA 3.39 fg, IFNγ S/P <0.38, IL-10 S/P <0.28 
1
Tissue culture positive, 

2
Faecal culture positive at any one sampling, 

3
Multibacillary disease pathology, 

4
Tissue culture negative  
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Figure 1. Odds ratio and confidence limits for association of predictor variables with the six outcome 
variables.  The bars indicate confidence intervals around odds ratios. Only the significant associations are 
shown. An odds ratio > 1 indicates that an elevated value of the explanatory variable increases the odds of 
the outcome. The time post inoculation that the test was carried out is indicated in months (m). Infected = 
tissue culture positive at 12 months p.i.; Infectious = faecal culture positive at least one sampling time 
point; Resistant = uninfected and non-infectious at 12 months p.i. 
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Figure 2. ROC curves based on logistic regression models for the following outcomes: (a) Tissue culture; (b) 

Faecal culture; (c) Multibacillary; (d) Resistance. Areas of the ROC curve based on each individual 

explanatory variable as well as the overall model are shown in each panel. 

 


