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SUMMARY 

 

The Regent Honeyeater (Xanthomyza phyrigia) is an endangered Australian bird species. Breeding 

populations have been established at Australian zoos in support of re-introduction programs. This 

species is the host of a new species of Isospora (Apicomplexa). Oocysts are spherical, 25.8 (22.5-

28.75) by 23.8 (20-26.25) µm with a colourless to pale yellow smooth wall undergoing rapid 

exogenous sporulation, 90% sporulated oocysts in 8 hours at 20 C. Each oocyst contains one polar 

granule. Sporocysts are ovoid, 18.67 (17-19) by 9.49 (9-10) µm with a flat Stieda body and 

spherical substieda body devoid of a hyaline body. The asexual stages and sexual phase is within 

the enterocytes of the duodenum and jejunum. Faeces collected in the morning (AM, n=84) and in 

the afternoon (PM, n=90) revealed significant diurnal periodicity in oocyst shedding; 21% (18 of 

84) of the AM were positive with the mean of 499 oocysts.g-1 compared to the PM with 91% (82 of 

90) bird faeces positive with the mean of 129,723 oocysts.g-1. Therefore, parasite checks for these 

birds should be carried out in the afternoon to obtain an accurate result. In conclusion, it is plausible 

that captive birds with high parasite burdens could be less likely selected by females for 

reproduction after release due to their duller plumage than their wild counterparts. 

 

 

Key words: coccidia, Isospora, Regent Honeyeater, honeyeater, diurnal shedding, oocysts, recovery 

program. 
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INTRODUCTION 

Establishing baseline data for potentially threatening infectious agents are necessary for recovery 

and reintroduction programs (Polley et al., 2010; Thompson et al., 2010). Identification and 

knowledge of the life history of infectious agents in wildlife is imperative for the implementation of 

satisfactory recovery programs. One of the most common infectious agents of birds are coccidian 

parasites (Grulet et al., 1982; Levine, 1988). For example, poultry coccidiosis caused by Eimeria 

spp. is a highly contagious disease that is estimated to cost the broiler industry in excess of $1.5 

billion per annum worldwide (Sharman et al., 2010). Intestinal coccidian parasites in the genus 

Isospora are ubiquitous intestinal parasites of birds, however clinical and ecological implications 

are yet to be fully understood (Levine, 1988). All coccidian parasites undergo asexual and sexual 

development leading to production of environmentally resistant oocysts (Belli et al., 2006). What 

distinguishes Isospora species in birds from other coccidian parasites is their diurnal periodicity of 

life cycle and oocyst release. Boughton (1933) published the seminal paper describing release of 

oocyst in the late afternoon. This was later confirmed for wide range of species in diverse passerine 

birds (Brawner & Hill, 1999; Brown et al., 2001; Grulet et al., 1982; López et al., 2007; Misof, 

2004; Stabler & Kitzmiller, 1972). It has been experimentally documented that it represents an 

adaptive trait against desiccation and ultraviolet radiation (Martinaud et al., 2009). Little 

information exists about the pathology caused by Isospora species in birds, despite significant 

impact of parasites on bird’s fitness and reproductive success (Grulet et al., 1986b; Hõrak et al., 

2004; McGraw et al., 2002; Tung et al., 2007). Avian Isospora prevalence surveys that do not take 

into account the diurnal periodicity of the oocyst shedding will lead to incorrect results (Filipiak et 

al., 2009). 

The Regent Honeyeater, Xanthomyza phrygia (Shaw, 1794) (Aves: Passeriformes), is 

endemic to south-eastern Australia (Franklin et al., 1989). Historically, this bird could be seen 

overhead in flocks of hundreds ranging from Queensland to South Australia. It is no longer found in 

much of its former range (Franklin et al., 1989; Thomas, 2009). Its population is fragmented, and 
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the only remaining breeding habitat is in north-eastern Victoria, Capertee valley and the central 

coast of New South Wales. The primary threatening process for this species is extensive loss of its 

box ironbark eucalyptus forest habitat throughout its range. The Regent Honeyeater feeds on nectar 

and insects within box-ironbark eucalypt forests. They are a highly mobile species, which roams 

widely in search of unpredictable food sources.  

The Regent Honeyeater is classified as Endangered in the IUCN Red List of Threatened 

Species - Red List Category C2a (ii) & Criteria ver 3.1. (Bird-Life-International, 2008). The 

population of the Regent Honeyeater is estimated at between 800 and 2000 and is continuing to 

decline (Garnett & Crowley, 2000; Thomas, 2009). In Australia a National Recovery Program has 

been established and managed by the NSW National Parks and Wildlife Service and Parks Victoria 

to protect this endangered native species from possible extinction. In the past decade the Recovery 

Program has become a large-scale project involving habitat restoration, wild population monitoring 

and a zoo based breeding program operating at Taronga Zoo since 1995. A number of birds suitable 

for reintroduction were bred. In May 2008, 27 zoo bred Regent Honeyeaters were released to 

ironbark woodlands near Chiltern, Victoria. A further 44 zoo bred Regent Honeyeaters were 

released in the same area in May 2010. 

The aim of this study was to undertake a parasitological survey of a cohort of the Regent 

Honeyeaters at Taronga Zoo, Australia which were part of a breeding and reintroduction program 

for the species. We describe a new Isospora species representing the first coccidian species 

described from Australian endemic passerine birds. We confirm diurnal periodicity of oocyst 

shedding in this species. This information is useful in establishing appropriate health screening 

protocols for this species, particularly pre-release protocols prior to reintroduction to the wild. 
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MATERIAL AND METHODS 

 

Animals  

 

The Regent Honeyeaters used in this study were housed in four aviaries at Taronga Zoo, 

Mosman, New South Wales, Australia. Aviaries I-III were pre-release quarantine aviaries housing 

young birds prior to release. Aviary IV housed juveniles and adult breeding birds that were not part 

of the release cohort. All birds had been bred either at Taronga Zoo or Adelaide Zoo, South 

Australia, Australia. There was no difference in temperature, water, food supplements or contact to 

other endemic birds between the aviaries. 

 

Quarantine aviaries I and II 

 

Aviaries I and II were situated adjacent to each other with a corrugated iron gate between them 

(Taronga Zoo reference numbers BHH001-4). The perimeter of the aviaries was constructed from 

squared steel mesh, 3.5-4 ×13×5 m and 3.5-4 × 7×5 m (height× width × depth). Roof-high tree 

branches were placed in both aviaries as perches. Flooring in both aviaries was concrete and 

approximately half of the roof was covered for shelter from rain. The birds in these two aviaries 

were in contact with each other and for the purpose of this study were treated as a single population. 

Together these aviaries housed 36 birds. These birds varied in age (<1 year to adults) being held in 

pre-release quarantine prior to their release to the wild.  

 

Quarantine aviary III 

 

This aviary was a single row of four consecutive adjacent aviaries, each with an approximate 

dimension of 3.5-3.8×1.5×5 m (Taronga Zoo reference numbers BOB011-014). The aviaries were 
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separated from each other and the external environment by steel mesh. All aviaries were covered by 

a common roof covering half the aviary space, which sheltered the birds from rain. Roof-high tree 

branches were used as perches. The floor in the aviary was concrete. In total, eight birds (two in 

each) were housed in the aviary and were treated as single population. These birds were yearlings 

recently relocated from Adelaide Zoo also destined for release. 

 

Aviary IV 

 

This aviary consisted of three separate aviaries immediately adjacent to each other and 

separated by steel mesh (Taronga Zoo reference numbers BHH035-037). The aviaries shared a 

common roof across the back that covers a portion of the space from rain. The walls of the aviary 

were steel mesh. The three aviaries were of unequal size and shape, approximately 4×3×5 m. Each 

aviary contained roof-high perches constructed from tree branches. In total, nine birds (three in 

each) were housed in the aviary and were treated as single population due to the close contact 

between the birds. These birds were part of the permanent collection at the Zoo and were not 

destined for release at this time.  

 

Faecal collection 

 

Faecal samples were collected on two consecutive days in April, 2010 (Sydney GMT+11; 

daytime: 11h 35 min; sunrise at 6:10 am, sunset 5:45 pm). Sampling was carried out over a three 

hour period twice a day, with samples designated as ‘AM’ and ‘PM’. The collection involved 

placing clean plastic white bin-liners in each corner of the aviaries between 8:00 to 11:00 am for 

AM samples and between 2:30 to 5:30 pm for PM samples. At the end of each three hour sampling 

interval, individual faeces on the bin-liners were transferred into 2 ml sterile Eppendorf tubes. The 

sample tubes were labelled according to the day, time and the aviary from which they were 
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collected. The morning samples were kept at room temperature until the afternoon samples were 

collected. All samples were then preserved with 500 μl of 2.5% potassium dichromate (K2Cr2O7) 

added to each tube and stored at 4 ºC until parasitological examination. Since the birds were housed 

in grouped aviaries, individual bird identification was not possible. We have collected faecal 

samples from Aviary I+II (27 on day 1, 48 on day 2), Aviary III (14 on day 1, 25 on day 2) and 

Aviary IV (18 on day 1, 42 on day 2). 

 

Parasitological examination 

 

Samples were examined at the University of Sydney, NSW, Australia. Sample vials containing 

faeces and 500µl of 2.5% K2Cr2O7 were centrifuged for 2 minutes at 1000 g. The potassium 

dichromate was pipetted out and the faecal pellet weighed to the nearest 0.001 g using an electronic 

balance. The pellet was then gently homogenised with 500 μl saturated salt flotation solution. For 

each sample, the McMaster chamber was used for counting oocysts. Each preparation was rested for 

at least a minute before counting to allow oocysts to float to the top. An oocyst average was taken 

from three grids to obtain oocyst number per sample. Coccidian oocyst counts per total volume 

representing the oocyst faecal content was converted to oocysts.g-1 of faeces (OPG). 

Coccidian oocysts were examined and measured with a calibrated ocular micrometer using 

bright field microscopy using 100x oil objective on an Olympus BX60 microscope equipped for 

Nomarski interference (DIC) contrast microscopy and photographed using an Olympus DP70 

camera. Images were recorded as TIFF and adjusted in Adobe Photoshop CS3.  

 

Statistical analysis 

 

Proportions of faecal samples positive were calculated, overall as well as by time of the day, 

sampling day, and by the aviary. Unconditional association of these three explanatory variables 
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with the outcome variable (presence or absence of oocysts in a sample) was evaluated using 

univariable logistic regression. Stratified analyses were conducted to investigate if the odds ratio 

between the morning and afternoon samples was confounded/ modified by the day collected or by 

the aviary. This included calculation of stratified odds ratios for each stratum (each day and each 

enclosure, respectively), testing them for heterogeneity using the Breslow-Day test, and combining 

them to calculate adjusted or Mantel-Haenszel odds ratios if there was no evidence of heterogeneity. 

Significance of adjusted odds ratios were tested by a Cochran-Mantel-Haenszel chi-square test. 

Finally, a multivariable logistic regression model was fitted to evaluate the combined effect of all 

three variables by using a backward stepwise approach.  

To compare parasite burden OPG between times of the day, sampling dates and the cages, 

summary statistics were calculated by each of the categorical explanatory variables, box-and-

whiskers plots (GraphPad Prism 4 Software, Inc., La Jolla, CA). All negative samples were 

excluded for this analysis and OPG was log transformed to satisfy the assumption of normality and 

equal variance. An outlier with 1,535,439 oocysts.g-1 count (PM sample) was removed before 

conducting analyses. Two sample t-tests were used to compare the mean log OPG between time of 

the day and sampling day, and ANOVA was used to compare the means between aviaries. All three 

variables and their first order interactions were tested in multiple linear regression models to test 

their association with log OPG by backward stepwise approach and retained if significant (P<0.05). 

The assumptions of linear regression were evaluated using residual diagnosis. 

Analyses were conducted using SAS statistical software (release 9.1, 2002-03, SAS Institute 

Inc., Cary, NC, USA) and UniLogistic macro (Dhand, 2010); all P-values were two sided, and odds 

ratios are reported with 95% confidence intervals (CI), unless indicated to be otherwise. 

 

Histological examination 
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Regent Honeyeater material held within the Australian Registry of Wildlife Health (Taronga 

Conservation Society Australia, Mosman, NSW, Australia) was obtained. In total, tissues from six 

birds were retrieved (1999-2010) that were catalogued with “coccidiosis”. Due to autolysis we 

excluded ARWH 2340.1. For the remaining five, ARWH 1881.1, ARWH 2204.1, ARWH 7298.1, 

ARWH 7341.1 and ARWH 7457.1, we retrieved paraffin blocks and cut 2 μm sections and stained 

with H&E and Giemsa for histopathological examination and identification of coccidian life cycle 

stages. 

Two birds from the cohort examined in this study were found dead after release; ARWH 

7598.1, was processed as above, however ARWH 7585.1 was too autolysed to examine coccidian 

development. 

 

Molecular characterisation 

 

Nucleic acid was extracted from 106 oocysts purified from a single faecal sample using the 

FastDNA Soil Kit Protocol with a Fast Prep-24 Homogenisation System equipped with QuickPrep 

Adapter (MP Biomedicals, Australia); the speed setting used was 6.0 for 40 s as described 

previously (King et al., 2010). A nested PCR amplification of a fragment of the subunit I of the 

cytochrome c oxidase gene (COI) from the parasite mitochondrial genome was applied according to 

Dolnik et al. (2009). Each reaction of 25µl contained 12.5 µl of 2x SAHARA Mix (BioLine), 0.5 µl 

of each 10 mM primer, and 100 ng of extracted DNA; deionised sterile water was used as a 

negative control. A touch down temperature profile was utilised for the first PCR according to 

Dolnik et al. (2009). PCR was performed in an Eppendorf Mastercycler Personel. Resulting 

products were resolved in 2% (w/v) agarose gel. PCR product of approximately 250 bp was 

considered as positive and cloned using the TA-TOPO Cloning Kit (Invitrogen, Australia) 

according to the manufacturer’s instructions. Four randomly selected plasmids with target inserts 

were sequenced bidirectionally using primers targeting sequences located within the vector by 
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Macrogen Inc. (Seoul, South Korea). Sequences were assembled, aligned with related sequences 

and analysed using the CLC Main Workbench 5.5 (CLC bio, Denmark). Phylogenetic analyses 

were conducted in MEGA4 (Tamura et al., 2007). 
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RESULTS 

 

Parasite description and identification 

 

Parasitological examination of the Regent Honeyeaters housed at Taronga Zoo revealed oocyst and 

parasite development of the genus Isospora Schneider, 1875. The sporulated oocyst is the stage that 

new coccidian species are predominantly defined by, because the oocyst is the most readily 

available stage in the life cycle. Besides specific guidelines for oocysts circumscription, it was 

emphasised that endogenous development and ecological parameters should be included whenever 

possible with the species description (Duszynski & Wilber, 1997). Morphological and ecological 

investigations showed that this parasite represents a new species, the description of which follows. 

 

Alveolata Cavalier-Smith, 1991 

Apicomplexa Levine, 1970  

Eimeriidae Minchin, 1903 

Isospora lesouefi sp. n.  

(Fig. 1, 2, 3, 4) 

 

Oocyst. Oocysts broadly spherical, 25.8 (22.5-28.75) µm by 23.8 (20-26.25) µm; shape index 

(length/width) 1.07 (1-1.17) (n=50). Oocyst wall smooth, colourless to pale yellow. Oocyst wall 

bilayered, 1 µm thick (outer layer 0.7 µm, inner layer 0.3 µm). One polar granule 1.83 (1.5-2) µm 

by 1.67(1-3) µm, grain shaped or rounded. Oocyst residuum absent. Sporocysts ovoid, 18.67 (17-

19) µm by 9.49 (9-10) µm, with thin, smooth, well defined unilayered sporocyst wall 0.5 µm thick. 

Sporocyst shape index 1.97 (1.81-2.11). Stieda body flat, 1.75 (1.5-2) µm by 1 µm. Substieda body 

spherical, 2.67 (2-3) by 2 µm. Absence of hyaline body protruding from the Stieda into substieda 

body. Sporocyst residuum present, composed of numerous granules of approx. 0.3 µm each, 
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condensed into oval cluster 8-5 µm in diameter. Sporozoites elongate, arranged head to tail within 

sporocyst, in some oocysts overlapping with the substieda body. Each sporocyst contains four 

sporozoites. Sporozoites with two refractile bodies, one bean-shaped refractile body (3.5 by 2.5 µm) 

and a smaller more spherical (2 by 2.5 µm) body. Sporozoite nucleus oval situated between 

refractile bodies. In between sporozoite refractile bodies and nucleus conspicuous transverse ridges. 

Sporozoites and sporozoite residuum float free within the sporocyst, not enclosed in a membrane. 

Oocysts were unsporulated when voided. Sporulation exogenous, up to 50% sporulated in 4 hours at 

20 C and up to 90% sporulated in 8 hours at 20 C.  

 

Nucleotide signature sequence. The haplotype fragment of the subunit I of the cytochrome c 

oxidase gene (COI) from the mitochondrial DNA of I. lesouefi sp. n. was identical across all four 

clones sequenced and submitted to GenBankTM (HQ221885). When comparing the sequence of I. 

lesouefi sp. n. to available sequences of Isospora hypoleucae (from Pied Flycatcher, Ficedula 

hypoleuca; haplotype iFICEHYP1: FJ269363) and Isospora spp. (from Blackcap, Sylvia atricapilla; 

haplotypes iSAT1-iSAT6: FJ269357- FJ269362) we found sequence divergences between 2.8 and 

4.8%. On a phylogenetic tree (Fig. 1), the I. lesouefi sp. n. haplotype clustered outside the 

Blackcap’s iSAT1, iSAT3 and iSAT4 possessing extraintestinal stages (Dolnik et al., 2009). 

 

Endogenous development. The parasite development was detected in the columnar epithelium of the 

duodenum and jejunum. Parasites were found intracellularly in enterocytes. Asexual development 

was detected in ARWH 7598.1 (Fig. 3). The asexual stages were detected in low numbers in 

Lieberkühn’s crypts surrounded by minimal host response (Fig. 3 A). We could detect two distinct 

types of meronts (Fig. 3 B, C) - according to by Grulet and colleagues (1986b).  

Sexual development was detected in ARWH 7457.1 (Fig. 4). The sexual stages were 

associated with loss of epithelial structure due to necrosis in the duodenum (Fig. 4 A, B) and 

jejunum (Fig. 4 C, D). The sexual stages were localised along the whole microvillus epithelium, 
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younger forms were at base of the cells (bellow the host cell nucleus), while more mature larges 

stages were progressively displacing the host nucleus to the side and moving towards the lumen. 

The enlarged epithelial cells were parasitised by one or more parasitic stages (dominantly by 

developing marcogametes and early oocysts). Similar endogenous development associated with 

moderate to marked intestinal coccidiosis of duodenum and jejunum were detected in ARWH 

1881.1, ARWH 2204.1, ARWH 7298.1, and ARWH 7341.1. 

 

Diurnal periodicity of Isospora lesouefi sp. n. oocyst shedding 

 

The proportions of positive faeces were based on freshly voided faeces collected from 53 

Regent Honeyeaters (Table 1, Supplementary Table S2). The proportions of I. lesouefi sp. n. 

oocysts positive samples were significantly different between morning (AM, 91% positive) and 

afternoon (PM, 21% positive) samples (Table 1, Fig. 5 A). The crude odds ratios indicate that PM 

samples were 37.6 times more likely to be positive compared to AM samples (Table 1). Breslow-

Day test for homogeneity of odds ratios between days was non-significant (P =0.48) indicating that 

it was appropriate to combine stratified odds ratios to calculate an adjusted odds ratio. Mantel-

Haenszel odds ratio adjusted for sampling day was 35.9 (95% CI: 14.68, 87.66) and was statistically 

significant (Cochran-Mantel-Haenszel chi-square test statistic 84.0; P <0.001). The confounding by 

sampling day was negligible (4.6%). Stratified odds ratios calculated for each aviary were not 

significantly different (Breslow-Day test for homogeneity of odds ratios P = 0.13). Therefore, after 

adjusting for aviaries, Mantel-Haenszel odds ratio was 39.2 (95% CI: 13.87, 110.75) and was 

statistically significant (Cochran-Mantel-Haenszel chi-square test statistic 78.2; P <0.001). This 

suggests that it was significantly more likely for oocysts to be detected in PM samples than in AM 

samples even after adjusting for sampling day or aviary. 

To control for both the variables and their interactions simultaneously, multivariable logistic 

regression analyses were conducted. Neither sampling day nor its interaction with sampling time 
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was significant and therefore both were removed from the model. The final model suggest that after 

adjusting for the variation due to enclosures, PM samples had 42 times greater odds to be positive 

compared to AM samples (Supplementary Table S3 A). However, samples from aviaries I/II and III 

were 5.6 and 3.4 times more likely to be positive compared to from aviary IV (Supplementary Table 

S3 A). Similar results were obtained when aviaries were controlled as a random effect rather than a 

fixed effect (odds ratio - PM versus AM = 38.35; 95% CI: 14.68, 100.16). 

We analysed data for I. lesouefi sp. n. burden in positive samples (Fig. 5 B, Supplementary 

Table S2). The means we significantly different, 499 (95% CI: 124-523) oocysts.g-1 (n=18) and 

129,723 (95% CI: 83,846-175,601) oocysts.g-1 (n=82) in the AM and PM samples, respectively (Fig. 

6). The geometric mean oocyst count in PM samples was 200 times greater than in AM samples 

(95% CI: 86.26 to 462.48 times). There was no significant difference in the mean oocyst count 

between sampling days (t97= 0.91; P = 0.37) or between aviaries (F2,96 = 0.95; P= 0.39).  

The multiple linear regression analyses conducted to investigate if the parasite burdens in AM 

and PM samples (=time of day) are influenced by sampling day or by the aviary revealed that the 

effect of time of sampling did not vary by sampling day or by the aviary (Supplementary Table S3 2 

B). However, after adjusting for variation due to time of sampling, there were significant 

differences in mean oocyst counts between aviaries, with samples from enclosure IV having 

significantly higher mean log oocyst counts than enclosure I/II (P = 0.02) but not enclosure III (P= 

0.65). There was no significant difference in the mean log counts between aviary I/II and aviary III 

(P = 0.36). After adjusting for this variation in aviaries, the geometric mean oocyst counts in the 

afternoon samples were 233.4 times greater than in the morning samples (95% CI: 101.28, 537.60). 

Similar results were obtained using linear mixed model and considering enclosures as random 

effects. The ratio of geometric mean between afternoon and morning samples was determined to be 

199.7 (95% CI: 86.26, 462.48) and aviaries accounted for about 8% of the variance in the model 

(intra cluster correlation = 8.11%, P = 0.069). 
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DISCUSSION 

 

Coccidia belonging to the genus Isospora in birds are a taxonomically difficult group due to (i) 

ambiguities in the morphology and (ii) unknown host specificity (Grulet et al., 1982; Levine, 1982). 

The name Isospora lacazei (Labbé, 1893) has been used loosely for many years for Isospora 

species of many different birds. Levine (1982) reviewed the historical literature and proposed to 

restrict the name I. lacazei to the species from European goldfinch (Carduelis carduelis) in Spain. 

To stabilise the taxonomy of the genus Isospora in birds, Levine (1982) assumed “that a coccidian 

species may be transmissible from one species to another in the same genus, but not from one genus 

to another in the same family until otherwise demonstrated”. The same conclusion has been adopted 

by Grulet and colleagues (1982; 1986a) to describe new bird Isospora species in House sparrows 

and to revise existing bird Isospora species (Grulet et al., 1982; Grulet et al., 1986a). Our newly 

described I. lesouefi sp. n. is the first Isospora species in the host genus Xanthomyza that is 

monotypic within the family Meliphagidae. Molecular phylogeny has demonstrated that the Regent 

Honeyeater is nested within Wattlebirds of the genus Anthochaera (Driskell & Christidis, 2004). No 

coccidian parasites have previously been named from the genera Xanthomyza or Anthochaera. 

In Australia, the House sparrow (Passer domesticus) is an introduced urban bird. They are 

known to be infected all year round with multiple Isospora species. In a study from France, wild 

House sparrows were infected with up to 12 distinct species based of freshly sporulated oocysts 

(Grulet et al., 1982; Grulet et al., 1986a). Characters of the Stieda apparatus (Stieda body, substieda 

body and their inclusions) together with the shape and number of polar granules were used to 

review and distinguish these species from each other and previously named species (Grulet et al., 

1982; Grulet et al., 1986a; Grulet et al., 1986b). Eight of these Isospora species were identified in 

House sparrow specimens from Adelaide, Australia (Grulet et al., 1986b). While size and shape of 

our species overlaps with majority of Isospora species from the House sparrow, the combination of 

the single grain shaped or rounded polar granule together with the simple symmetric Stieda 
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apparatus distinguishes our species from all known species in the House sparrow and the majority 

of described bird Isospora species. The shape and size of the oocyst resembles Isospora passeri 

Levine, 1982 that was described from House sparrows in Illinois, US (Levine, 1982; Levine & 

Mohan, 1960). In our species we neither observed endostideal bodies according to Levine and 

Mohan (1960) “sometimes [oocyst of I. passeri] contains a cylindrical core extending part way 

down from the Stieda body” nor are sporozoites and sporocyst residuums “enclosed in a membrane, 

forming more or less of a ball within the sporocyst”. These differences distinguish I. passeri from 

our species. Oocysts, Stieda apparatus and shape of polar granule resemble Isospora petrochelidon 

Stabler and Kitzmiller, 1972 from Cliff swallows from US (Stabler & Kitzmiller, 1972). Our 

species is distinguished by the presence of single polar granule and absence of a sporocyst 

membrane enclosing the sporozoites and residuum. Compared to the rapid sporulation of I. lesouefi 

sp. n., the average time for completion of I. petrochelidon sporulation was 24 hr at 21-28 ˚C 

(Stabler & Kitzmiller, 1972). Sporulation of Isospora spp. in passerine birds take 24 hours to 7 days 

(e.g., Anwar, 1966; Berto et al., 2009; Perrucci et al., 1998; Rossi et al., 1996; Upton et al., 1995). 

We are not aware of any other coccidian species with exogenous sporulation that would match 

sporulation time (8 hours) together with 90% efficiency of sporulation as demonstrated for I. 

lesouefi sp. n.  

The diurnal periodicity of the I. lesouefi sp. n. oocyst release in the afternoon faeces is 

homologous to other Isospora species in birds (Brawner & Hill, 1999; Brown et al., 2001; Grulet et 

al., 1982; López et al., 2007; Misof, 2004; Stabler & Kitzmiller, 1972). Our results confirm that 

shedding of I. lesouefi sp. n. was diurnal and that faeces collected in the afternoon reflect the true 

parasite prevalence. For example, by pooling all morning and afternoon faecal samples we would 

end up with only 57% (100/174) positive compared to 91% (82/90) positive faeces in the afternoon. 

Sampling before noon even indicated absence of the parasite (0/5 in Aviary 3 on Day 1) despite 

100% (9/9 in Aviary 3 on Day 1) positive faeces in the afternoon, thus suggesting that all birds in 

this aviary were infected with I. lesouefi sp. n. Therefore, parasite surveys that do not take into 
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account the diurnal periodicity of the oocyst shedding will lead to incorrect results (Filipiak et al., 

2009). 

There was ~200 times more oocysts I. lesouefi sp. n. in the afternoon faeces that contained tens 

of thousands of oocyst per gram compared to the morning samples with only few hundreds of 

oocysts per gram of faces. Similar to Isospora in Blackcaps (Sylvia atricapilla) (Dolnik, 2006), our 

results show that the production of oocysts is comparable from day to day, but is in contrary to 

Isospora in Blackbirds (Turdus merula) whose oocyst output strongly varied between successive 

days (Filipiak et al., 2009). It implies that a single faecal sample from the Regent Honeyeater 

collected in the afternoon processed using the McMaster chamber will produces an accurate 

measure of the parasitic load. This is important when health screening captive and wild birds and 

should also be taken into consideration when health screening other passerine species. Moreover, 

investigation whether oocyst shedding is diurnal should be a compulsory part of any new Isospora 

species in passerine birds. 

Histological examination of tissues from Regent Honeyeaters revealed endogenous Isospora 

development in the duodenum associated with marked necrosis of the intestinal villi. Whether these 

histopathological changes are reflected in clinical sings is unlikely because similar extent of 

Isospora development was reported in clinically healthy house sparrows (Grulet et al., 1986b). 

Some Isospora species in birds are known to undergo extraintestinal and possibly devastating 

disease - atoxoplasmosis, formally thought to be caused by a distinct parasite of the genus 

Atoxoplasma (Barta et al., 2005; Schrenzel et al., 2005). Molecular techniques have now provided 

direct evidence that these extraintestinal stages belong to the same Isospora species in the intestine 

(Schrenzel et al., 2005). Histopathological investigation has not provided evidence of such 

extraintestinal I. lesouefi sp. n. development in Regent Honeyeaters and the obtained sequence did 

not cluster with those with extraintestinal stages. Nevertheless, molecular probes based on the 

sequenced markers of I. lesouefi sp. n. will be instrumental in resolving this phenomenon, because 

histopathological investigation may have missed the presence of these stages.  
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In the Regent Honeyeater, males are characterised by a black upper body, decorated by bright 

yellow ornamentation especially around at the tip of the wings and tail and the belly area while 

females are duller and smaller in size (Higgins et al., 2001; Oliver, 1988). In wild bird populations, 

the brightness of male birds’ plumage reflects a character for mate selection (Hamilton & Zuk, 

1982). Females will select a mate according to the extent of development of such characteristics 

within a population to ensure that they have chosen the best available genotype to reproduce 

(Hamilton & Zuk, 1982; Zahavi, 1975). Plumage colour can originate either from melanin pigments 

or carotenoid pigments producing either black or brown colours or hue ranging from red to yellow 

respectively (McGraw & Hill, 2000; McGraw et al., 2002). In captive male Greenfinches 

(Carduelis chloris) tail feathers of birds infected with I. lacazei parasites contained 52% less 

carotenoids and also had smaller values of chroma and hue compared to tail feathers of 

Greenfinches medicated with coccidiostats (Hõrak et al., 2004). The colour deposition is 

compromised during parasitic infection, because a trade-off between the use of carotenoids for 

ornamental displays and the immune function in response to infection (Baeta et al., 2008; Lozano, 

2001). This could induce conflict between the social signal intended by the individual bird and that 

conferred by its appearance (Hill & Brawner, 1998). Whether I. lesouefi n. sp. infected birds are 

disadvantage over their wild counterparts, who are subjected to a different parasitic burden and 

carotenoid deposits in their plumage, remains to be investigated. 

We do not know yet what the ecological significance of an ongoing I. lesouefi n. sp. infection 

in the wild is. Nevertheless, after release the captive bred Regent Honeyeaters interact with each 

other and with wild Regent Honeyeaters in exactly the same way that wild Regent Honeyeaters 

interact and over both releases (2008 and 2010) captive birds demonstrated both courtship and nest 

building behaviour with wild birds (Ingwersen, personal observations). An investigation towards 

the reproduction and survival success of released birds in the wild correlated with the parasite 

burden is a logical step in our investigation and recovery of the Regent Honeyeater population in 

Australia. This information will not only be critical in the recovery of the Regent Honeyeater, but 
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also other remnant communities in the threatened box-ironbark forests of Victoria and New South 

Wales including the Painted Honeyeater or Swift Parrot and Superb Parrot. 
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Taxonomic summary 

 

Isospora lesouefi sp. n. (Apicomplexa: Eimeriidae) 

 

Type host: Regent Honeyeater, Xanthomyza phrygia (Shaw, 1794) (Aves: Passeriformes: 

Meliphagidae); syn. Anthochaera phrygia (Shaw, 1794). 

Type locality: Zoo breading flock at Taronga Zoo, Mosman, Sydney, New South Wales, Australia. 

Animals are alive at the Taronga Zoo or were released. 

Site of infection: Enterocytes. Duodenum and jejunum. Unsporulated oocysts recovered from 

faeces. 

Prevalence: Oocyst found in 21% (18/84) of morning faces and 91% (82/90) of afternoon faeces 

from enclosures with 53 captive birds. 

Type material / hapantotype: ARWH 7598.1. Formalin fixed paraffin embedded blocks at the 

Australian Registry of Wildlife Health, Mosman, NSW, Australia. Nucleotide sequence of the 

cytochrom oxidase I (COI) is available in GenBankTM under Accession No. HQ221885. 

Etymology: The specific epithet “lesouefi” is given in honour from the surname of Albert 

Sherbourne Le Souëf (1877-1951), the first director of Taronga Zoo who insisted that all 

walls and fences were camouflaged. As a Bachelor of Veterinary Science, he was a dedicated 

leader of the zoological community and passionate supporter of faunal and floral reservations 

and sanctuaries. 

Remarks: This is the first Isospora species described from a passerine bird in the genus 

Xanthomyza. The invasive House sparrow (Passer domesticus) from Adelaide are known to 

be infected with several Isospora spp. identical to those in Europe (Grulet et al., 1986b). 

While size and shape of our species overlaps with majority of Isospora species from House 

sparrow, the oocysts’ polar granule together with the Stieda apparatus distinguishes our 

species from all known species in the House sparrow. 
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Legends to figures 

 

Fig 1. Composite line drawing of sporulated Isospora lesouefi sp. n. oocyst in the Regent 

Honeyeater (Xanthomyza phrygia) at the Taronga Zoo and its phylogenetic relationship with related 

cytochrom oxidase I (COI) sequences. The Minimum Evolution tree was reconstructed using 

Kimura 2-parameter distances and bootstraped (1000 replicates). Tree rooted using COI of Eimeria 

tenella (EF174188). 

 

Fig 2. Photomicrographs of sporulated Isospora lesouefi sp. n. oocysts in the Regent Honeyeater 

(Xanthomyza phrygia) at the Taronga Zoo. Arrowhead, polar granule. DIC and blue 

autofluorescence; scale bar represents 5 µm. 

 

Fig 3. Intestinal coccidiosis caused by Isospora lesoueffi n. sp. Coccidian asexual development, 

merogony, in the jejunum of the Regent Honeyeater (Xanthomyza phrygia, ARWH 7598.1C). 

Intracellular developing meronts (arrows) with merozoites (arrowheads) are within the columnar 

epithelium (c) of the Lieberkühn’s crypts (A). Two types of meronts are recognized, meronts with 

delineated circular outline (large arrowhead, C) and meronts with undefined outline (arrow, B). 

Host inflammatory response is minimal (A-C). 2μm section, H&E. Scale bars represent 10 μm.  

 

Fig. 4. Intestinal coccidiosis caused by Isospora lesoueffi n. sp. Coccidian sexual development, 

gamogony (arrows), in the duodenum (A, B) and the jejunum (C, D) of the Regent Honeyeater 

(Xanthomyza phrygia, ARWH 7457.1B). Intracellular developing macrogametes, mature 

macrogametes and early oocyst are within the enterocytes of the columnar epithelium (c). 

Developmental stages are surrounded by necrosis (apoptotic nuclei, arrowhead) and the columnar 

epithelium (c) is enlarged (D). Maturating oocysts destroy the columnar epithelium. Host 

inflammatory response is minimal. 2μm section, H&E. Scale bars represent 20 μm. 
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Fig. 5. Presence of oocysts of Isospora lesouefi sp. n. in the Regent Honeyeater (Xanthomyza 

phrygia) at the Taronga Zoo aviaries. A. Quantitative representation of proportions of I. lesouefi sp. 

n. positive faeces in all (n=174) faecal samples collected across two different days (Day 1, n=59; 

Day 2, n=115). The pie charts size is proportional to the number of faecal samples (see 

Supplementary Table S1). Morning samples (AM) and afternoon (PM) samples are side by side. B. 

Qualitative representation of all faecal samples sorted into negative and five positive categories 

according to I. lesouefi sp. n. and time of the day, morning samples (AM, n=84) and afternoon (PM, 

n=90). 

 

Fig. 6. Statistical comparison of log transformed Isospora lesouefi sp. n. positive quantitative 

(oocysts.g-1) data in the Regent Honeyeater (Xanthomyza phrygia) at the Taronga Zoo aviaries. A. 

All positive samples for morning (AM, n=18) and afternoon (PM, n=82). Data represented as a 

scatter dot plot of individual samples (circles) and a box-and-whisker plot (whiskers: min. & max, 

mean: +). B. Positive samples split according to aviaries they were collected in and morning (AM: 

Aviary I+II, n=7; Aviary III, n=6; Aviary IV, n=5) and afternoon (PM: Aviary I+II, n=51; Aviary 

III, n=12; Aviary IV, n=19). Data represented as a box-and-whisker plot (box: whiskers: min. & 

max, mean: +). Unpaired t-test values are shown above AM and PM plots, means are significantly 

different if P<0.05. 
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Table 1. Comparison between presence and absence of Isospora lesouefi n. sp. oocysts in faeces of 

the Regent Honeyeater, Xanthomyza phrygia collected in the morning (AM) and in the afternoon 

(PM) on two consecutive days at four Taronga Zoo aviaries. 

 

Variables Categories Total Positive (%) Negative (%) Odds-ratios (95% CI) P 

Time 

AM 84 18 (21.4%) 66 (78.6%) 1.00  

<0.001

PM 90 82 (91.1%) 8 (8.9%) 37.58 (16.17, 97.96)

Day 

1 59 39 (66.1%) 20 (33.9%) 1.00  

0.097 

2 115 61 (53.0%) 54 (47.0%) 0.58 (0.30 1.10) 

Aviary 

I and II 75 58 (77.3%) 17 (22.7%) 5.12 (2.42, 10.81) 

<0.001III 39 18 (46.2%) 21 (53.8%) 1.29 (0.57, 2.90) 

IV 60 24 (40.0%) 36 (60.0%) 1.00  

 

 

 



Appendix A: Supplementary data 

 

Supplementary Table S1. Stratified analyses of the presence of Isospora lesouefi n. sp. oocysts in 

the morning (AM) and in the afternoon (PM) samples by sampling day and by aviary at which the 

birds were housed. 

 

Variables Categories 

 AM  PM 

 
Total 

Positive 

(%) 

Negative 

(%) 
 Total 

Positive 

(%) 

Negative 

(%) 

Day 
1  23 5 (22%) 18 (78%)  36 34 (94%) 2 (6%) 

2  61 13 (21%) 48 (79%)  54 48 (89%) 6 (11%) 

Aviary 

I and II  23 7 (30%) 16 (70%)  52 51 (98%) 1 (2%) 

III  27 6 (22%) 21 (78%)  12 12 (100%) 0 (0%) 

IV  34 5 (15%) 29 (85%)  26 19 (73%) 7 (27%) 

 



Supplementary Table S2. Burden of Isospora lesouefi n. sp. oocysts.g-1 in the morning (AM) and 

in the afternoon (PM) samples. 

 

Categories Total 

AM (oocysts.g-1) 

Total 

PM (oocysts.g-1) 

Median (25-75% perc.) 

Mean (95% CI) 

Median (25-75% perc.) 

Mean (95% CI) 

ALL 18 
406 (91-676) 

499 (124-523) 
82 

58,009 (17,793-162,294) 

129,723 (83,846-175,601) 

Aviary I+II 7 
432 (10-1,039) 

540 (-46-1,127) 
52 

39,723 (7,621-126,606)  

108,626 (44023-173228) 

Aviary III 6 
199 (76-809) 

439 (-173-1,052) 
12 

123,518 (28,649-250,282) 

155,362 (54,486-256,238) 

Aviary IV 5 
424 (252-817) 

513 (66-959) 
19 

85,972 (39,882-281,600) 

164,444 (86,513-242,375) 

Day 1 5 
424 (44-467) 

289 (7-572) 
34 

62,763 (17,494-16,2294)  

114,534 (65,308-163,759) 

Day 2 13 
388 (106-1,065) 

580 (224-935) 
48 

55,011 (15,931-184,755)  

140,483 (68,843-212,122) 

 



Supplementary Table S3. Multivariable logistic regression analyses to compare the qualitative 

presence of Isospora lesouefi n. sp. oocysts in faeces of the Regent Honeyeater, Xanthomyza 

phrygia, collected in the morning (AM) and in the afternoon (PM) on two consecutive days at three 

Taronga Zoo aviaries. B. Multivariable linear regression analyses to compare the quantitative log 

counts of Isospora lesouefi n. sp. oocysts in faeces. 

 

A 

Variables Categories b SE(b) Odds-ratios (95% CI for OR) P 

Intercept  -2.32 0.49    

Time 
AM 0  1.00  

<0.001 
PM 3.74 0.51 42.07 (16.47, 126.7) 

Aviary 

I and II 1.72 0.56 5.57 (1.95, 17.74) 

0.01 III 1.23 0.61 3.41 (1.06, 12.05) 

IV 0 0 1.00  

 

B 

Variables Categories b SE(b) (95% CI) P 

Intercept  5.95 0.46 (5.03, 6.87)  

Time 
AM 0   

<0.001 
PM 5.45 0.42 (4.62, 6.29) 

Aviary 

I and II -1.03 0.39 (-1.80, -0.27) 

0.030 III -0.43 0.49 (-1.42, 0.55) 

VI 0   

 

 


	Birds
	Binder1
	Figure1
	Figure2
	Figure3
	Figure4
	Figure5
	Figure6

	Table 1 -final v1
	Supplementary data - Appendix A v2



