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Abstract 

The pathogenesis of preeclampsia and intrauterine fetal growth restriction, common 

pregnancy complications, has eluded researchers over decades. The current paradigm suggests 

defective placentation in early gestation and inadequate vascular remodelling of maternal 

spiral arteries leading to ischemia as the central cause of these pregnancy complications. 

Placental ischemia is thought to release soluble factors such as sFlt-1 and sEndoglin that enter 

the maternal circulation, resulting in endothelial dysfunction and the clinical presentation of 

preeclampsia. While the pathogenesis of preeclampsia has been extensively studied, the 

causative mechanisms underlying IUGR are less well understood.  

A collection of studies into the pathogenesis of preeclampsia (PE) and intrauterine fetal 

growth restriction (IUGR) are presented, focusing on factors involved in the angiogenesis and 

maintenance of the microcirculation of the placental villi as well as maternal factors such as 

circulating monocytes and lipid status. A key feature of the research is the use of abnormal 

umbilical artery Doppler resistance in the definition of IUGR. 

The research presented has examined the placental expression and circulating levels of pro 

and anti-angiogenic factors. The focus has been on the VEGF family and its receptors (Flt-1, 

KDR) as well as Endoglin, a transforming growth factor β receptor.  A comparison of the 

angiogenic factor milieu has been made between normal pregnancy and pregnancies 

complicated by PE, IUGR and PE+IUGR. 

We found moderately strong placental expression of VEGF and Flt-1 in all clinical groups 

with no major differences between the groups.  Placental expression of PlGF and KDR were 

significantly reduced in IUGR as compared to normal and preeclampsia only pregnancies. 

The results of this study raise the possibility that changes in VEGF and Flt-1 expression may 
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be a consequence rather than the cause of placental pathology, and that reduced expression of 

PlGF and KDR may be a main cause for the development of intrauterine fetal growth 

restriction. 

This is the first description of digital image analysis techniques in the assessment of 

angiogenic factor expression in the placenta. The study has shown that automated digital 

image analysis is an alternative and more reproducible method to manual reading of placental 

immunohistochemical staining. 

The findings on the circulating angiogenic factors clearly establish that the deranged 

angiogenic profile of elevated sFlt-1 and sEndoglin and low PlGF is a feature of not only 

pregnancies complicated by preeclampsia, but also intrauterine fetal growth restriction. Pro 

and anti-angiogenic factors and their ratios were assessed as biomarkers in identifying normal 

vs pathological pregnancies complicated with preeclampsia and/or intrauterine fetal growth 

restriction. The ratios sEng / PlGF and sFlt*sEng/PlGF were identified as possible biomarkers 

of placental disease that should be assessed in future longitudinal studies.  

To investigate possible causes of the disparity in the clinical presentation of PE and IUGR 

with concordant circulating pro and anti-angiogenic factor levels, the research was extended 

to study the contribution of maternal peripheral and fetal monocytes to the angiogenic profile. 

The findings of this study suggest that maternal and fetal monocyte-derived Flt-1 and 

maternal monocyte Endoglin expression are unlikely to significantly contribute to the 

pathogenesis of PE or IUGR. 

 Maternal and fetal monocyte phenotype and polarization were examined in the placental 

diseases of PE and IUGR. This data suggested a trend towards a lower circulating maternal 

percentage of classical monocytes and a higher percentage of intermediate and non-classical 
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monocytes in pregnancies complicated by preeclampsia and intrauterine fetal growth 

restriction. For the first time, a new distribution of monocyte subsets with intermediate 

monocytes as the dominant subtype has been documented in the fetal circulation.  

CD86, CD163 and the CD86/CD163 ratios were examined as a surrogate of inflammatory 

(M1) and healing (M2) phenotypes in pregnancies complicated by PE and IUGR. Whilst a 

gestational related change in M1/M2 phenotype in third trimester normal pregnancy was not 

detected, pregnancies complicated by IUGR showed a clear shift towards M2 (healing) 

monocyte phenotype.  

Recent work has suggested that the maternal metabolic syndrome or lipid status may 

predispose to preeclampsia and may be a possible explanation for the disparity in clinical 

presentation of PE and IUGR.  The present work explored the differences in maternal and 

fetal lipid profiles between PE, IUGR and PE+IUGR. The maternal and fetal triglyceride 

levels were significantly higher in preeclampsia compared to normal pregnancy and thus 

suggested an increased maternal risk of preeclampsia during the pregnancy. This study 

documented the first description of elevated Apo lipoprotein B levels in cord blood at delivery 

in PE and IUGR, suggesting a useful link in identifying newborns at risk of cardiovascular 

disease in later life.  

 This research contributes to the literature on pathogenesis of preeclampsia and 

intrauterine growth restriction, demonstrating similarities and differences between the two 

conditions which has lead us closer towards an understanding of their pathogenesis.  The 

findings are in line with recent opinions, suggesting a move away from the traditional 

diagnosis of preeclampsia using hypertension and proteinuria and embracing the use of 

biomarkers in the diagnosis.  
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Chapter 1 - Angiogenesis and monocytes in preeclampsia and 

intrauterine fetal growth restriction 

1.1 Introduction 

“The (umbilical) vessels join the uterus like the roots of plants and through them the embryo 

receives its nourishment.” 

                 Aristotle, On the Generation of Animals, ca. 340 B.C. 

1.2 Human pregnancy and placentation 

1.2.1 Placental development in human pregnancy 

In mammalian reproduction, the placenta is the organ through which nutrients, wastes and 

respiratory gases are exchanged between the maternal and fetal circulations, providing all the 

metabolic demands for fetal growth and development. The rate of this trans-placental 

exchange depends mainly on rates of uterine (maternal placental) and umbilical (fetal 

placental) blood flow (1). 

Early pregnancy is a critical period of gestation because of the major developmental events 

that take place, including embryonic organogenesis as well as formation of the placenta, a 

process known as placentation (2, 3). 

1.2.2 Haemochorionic placentation 

Human placenta is described as a haemochorial, a type of placenta having the maternal blood 

in direct contact with the chorionic trophoblast.  
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1.2.3 Placental histology- Villous architecture of the human placenta 

The implantation of the embryo is an invasive process in human reproduction. The cells of the 

implanting blastocyst consist of the outer wall (trophoblast), forerunner of the fetal 

membranes, including the placenta. The inner cell mass that forms the embryoblast develops 

into the embryo, umbilical cord and the amnion. 

The early embryo erodes the maternal tissues leading to implantation. The proliferating 

cytotrophoblast starts trophoblast invasion, formation of the villi of the placenta and 

adaptation of maternal blood vessels for pregnancy and anchorage of the developing placenta. 

The structure of the placental villi is shown in Figure 1.1. 

All placental villi have the same basic structure. 

Syncytiotrophoblast is an epithelial layer that covers the external surface of the villi, 

separating the interior of the villi from the maternal blood that surrounds the villi. The 

syncytiotrophoblast represents a continuous multinucleated surface layer without separate cell 

borders. 

Cytotrophoblast lies beneath the syncytiotrophoblast. This is composed of individual or 

aggregated cells also called Langerhan cells. Cytotrophoblast comprises the stem cells of the 

syncytiotrophoblast that supports the growth and regeneration of the latter. 

The trophoblast basement membrane separates syncytiotrophoblast and cytotrophoblast from 

the stromal core of the villi. The stroma is composed of varying number and type of 

connective tissue cells, connective tissue fibers and ground substance. The fetal vessels are 

seen within the villous stroma in various sizes and calibers, ranging from arteries and veins in 

the stem villi to capillaries and sinusoids in the peripheral branches. 
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Figure 1.1 Structure of the placental villi. Adopted from Benirschke (2).   

Hofbauer cells are oval eosinophilic histiocytes of mesenchymal origin, found in the placenta, 

in mesoderm of the chorionic villi, particularly numerous in early pregnancies. They are 

believed to be a type of macrophage and are most likely involved in preventing the 

transmission of pathogens from the mother to the fetus (4). 
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1.3 Placental angiogenesis and blood flow through gestation 

1.3.1 Angiogenesis and vasculogenesis 

The vascular system develops through two separate processes: vasculogenesis and 

angiogenesis (5). Vasculogenesis forms blood vessels in place by the aggregation of 

angioblasts into a cord and a primitive vascular network. Vasculogenesis is thought to have 

three major steps: induction of haemangioblast angioblasts, assembly of primordial vessels 

and transition from vasculogenesis to angiogenesis (6). 

Angiogenesis is the formation of new vessels by sprouting of capillaries from existing vessels. 

Two forms of angiogenesis have been described: sprouting and non-sprouting angiogenesis 

(7). Angiogenesis is essential for normal mammalian development and is controlled by the 

local balance of pro- and anti-angiogenic factors. 

These two processes, vasculogenesis and angiogenesis, are involved in placental 

development. Vasculogenesis is responsible for establishment of the primitive vascular 

network, whereas during angiogenesis the existing vasculature is remodeled (8). 

The vasculature is the first organ to arise during development, since its function is required 

for growth. Blood vessels run through every organ of the body, ensuring metabolic 

homeostasis by the supply of nutrients and the removal of waste products. During 

development, blood vessel formation is fine-tuned by several families of angiogenic factors; 

some stimulate and others inhibit vessel growth in order to obtain a vascular bed adapted to 

the specific needs of each organ. Malformation or dysfunction of blood vessels can lead to 

compromised organ function, resulting in congenital and acquired diseases (9).  
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1.3.2 Placental angiogenesis 

Adequate placental angiogenesis is critical for the establishment of the placental circulation 

and thus for normal fetal growth and development. Extensive angiogenesis in maternal and 

fetal placental tissues is accompanied by a marked increase in uterine and umbilical blood 

flow (10). The rate of placental blood flow depends on the extent of placental vascularization, 

which is determined by placental angiogenesis.  

Placental growth increases with gestational age as evident by the increasing placental weight 

with gestation. Vascular growth, or angiogenesis, is indeed a major component of the increase 

in placental growth throughout gestation (10). Extensive angiogenesis in maternal decidua 

and fetal villi with expansion of the tertiary villi and small arterial channels results in an 

increase in vascular density and a decrease of the vascular resistance of the placental 

circulation (11). While vascular density of maternal placental tissues continues to increase 

slowly throughout gestation, vascular density of the fetal placental cotyledons remains 

relatively constant through mid-gestation and increases dramatically during the last third of 

gestation in association with dramatic fetal growth (1). 

 

1.4 Placental vascular disease 

1.4.1 Placental supply to the fetus 

The exponential increase in fetal growth during the last half of pregnancy depends primarily 

on the growth of the placental vascular beds and the resultant increases in uterine and 

umbilical blood flow (10). Uterine and umbilical blood flow that represents the circulation to 

the maternal and fetal portions of the placenta, respectively, increases exponentially 
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throughout gestation, essentially keeping pace with fetal growth (10). Internal and external 

factors such as maternal and fetal genotype, the number of fetuses, maternal under-nutrition, 

maternal age, parity, environmental factors can have effects on placental size and function, 

affecting the rates of fetal oxygen and nutrient uptakes (10).  

1.4.2 Placental insufficiency 

Placental insufficiency secondary to placental vascular disease is a major cause of fetal death 

in-utero, fetal growth restriction, preterm delivery as well as neonatal and long term 

morbidity. In the mother, placental changes can cause preeclampsia, the maternal syndrome 

associated with placental vascular disease. Increased uterine vascular resistance and reduced 

uterine blood flow can be used as predictors of high-risk pregnancies and are associated with 

fetal growth restriction (12, 13). Thus, factors that influence placental vascular development 

and function will have a dramatic impact on fetal growth and development, and thereby on 

neonatal survival and growth. 

1.4.3 Umbilical artery Doppler in identifying placental vascular disease. 

In a clinical setting, maldevelopment of the angiogenesis of the placenta can be demonstrated 

by using Doppler ultrasound techniques (14, 15). Studies into Doppler evaluation of the 

umbilical vasculature have shown that significant placental insufficiency clinically 

manifesting as the fetal syndrome of intrauterine growth restriction and/or the maternal 

syndrome of preeclampsia (16) can be clinically diagnosed by an increased resistance pattern 

of the umbilical circulation as evident by increased systolic diastolic ratio or resistance index 

(Figure 2.1 and Figure 2.2) on flow velocity waveforms (12, 15). The level of this increased 

resistance has been identified at the small arteries and arterioles. These clinical and Doppler 

findings have been correlated with pathological changes in the placenta. Examination of 
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placentas of normal pregnancies and pregnancies with high resistance Doppler indices has 

shown a significant reduction in the number of small arteries and arterioles, correlating the 

clinical and ultrasound findings with histological changes (14). This reduction in small 

vessels could be due to failure of formation or obliteration of existing vessels. Evidence of 

increasing systolic/diastolic ratios in compromised fetuses with advancing gestation (15) 

supports the hypothesis of obliterative vasculopathy as a cause of placental insufficiency (11). 

This vessel obliteration has been associated with luminal thrombosis, intimal endovasculitis 

and fibro-proliferative changes in the arterial vessel media. The underlying cause of this 

placental vascular obliteration has not been elucidated but factors thought to be involved 

include rejection of feto-placental tissue or aberration in the angiogenesis process (17, 18).  

 

1.5 Definition and Pathogenesis of hypertensive disorders in pregnancy 

1.5.1 Definition of hypertension in pregnancy 

Hypertension in pregnancy may develop as a result of the pregnancy or following pre-existing 

hypertension (either essential or secondary). Hypertension arising for the first time after 20 

weeks may be an isolated finding, such as gestational hypertension or part of a multisystem 

disorder, i.e. preeclampsia. 

Following the consensus statement by The Australasian Society for the Study of Hypertension 

in Pregnancy (ASSHP) (19) and statement from the International Society for the Study of 

Hypertension in Pregnancy (ISSHP) (20), hypertension in pregnancy is diagnosed when 

systolic blood pressure is ≥ 140 mmHg and/or diastolic blood pressure is ≥ 90 mmHg.  
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The hypertension in pregnancy guidelines have been revised twice since the ISSHP 2001 

guidelines, by SOMANZ in 2008 and ISSHP/ SOMANZ 2014 (21). 

1.5.2 Classification of hypertension in pregnancy 

Gestational hypertension 

Gestational hypertension is hypertension arising in pregnancy after 20 weeks gestation 

without any other feature of the multisystem disorder preeclampsia and which resolves within 

3 months postpartum. 

Preeclampsia 

Preeclampsia is usually first detected by the measurement of high blood pressure but features 

other than hypertension are required to make a diagnosis. It is now recognized that 

preeclampsia is a disorder which affects other organ systems including the feto-placental unit. 

Proteinuria is the most commonly recognized feature of preeclampsia after hypertension but 

should not be considered mandatory to make the clinical diagnosis. 

 

The definition of preeclampsia has changed over the last 15 years with the realisation that 

preeclampsia is a multisystem disorder and the different definitions are listed below. 

2001 ISSHP and 2008 SOMANZ guidelines for diagnosis of preeclampsia (20, 22) 

A clinical diagnosis of preeclampsia can be made when the following criteria are fulfilled: 

 Hypertension arising after 20 weeks gestation and the onset after 20 weeks of 

gestation of one or more of: 
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 Proteinuria ≥ 300mg/24 hours or spot urine protein/creatinine ratio ≥30mg/mmol 

 Renal insufficiency-serum/plasma creatinine ≥0.09mmol/L or oliguria 

 Liver disease-raised serum transaminases and/or severe epigastric/right upper quadrant 

pain 

 Neurological problems-convulsions (eclampsia); hyperreflexia with clonus; severe 

headache with hyperreflexia; persistent visual disturbances (scotoma) 

 Haematological disturbances- thrombocytopenia; disseminated intravascular 

coagulation; haemolysis 

 Fetal growth restriction 

 

2014 ISSHP/SOMANZ guidelines for diagnosis of preeclampsia (21) 

 A diagnosis of preeclampsia can be made when hypertension arises after 20 weeks 

gestation and is accompanied by one or more of the following signs of organ involvement:  

 Renal involvement  

o Significant proteinuria –a spot urine protein/creatinine ratio ≥ 30mg/mmol  

o Serum or plasma creatinine > 90 μmol/L 

 Oliguria: <80mL/4 hr Haematological involvement  

o Thrombocytopenia <100,000 /μL 
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o Haemolysis: schistocytes or red cell fragments on blood film, raised bilirubin, 

raised lactate dehydrogenase >600mIU/L, decreased haptoglobin  

o Disseminated intravascular coagulation  

 Liver involvement  

o Raised serum transaminases  

o Severe epigastric and/or right upper quadrant pain.  

 Neurological involvement  

o Convulsions (eclampsia)  

o Hypereflexia with sustained clonus  

o Persistent, new headache  

o Persistent visual disturbances (photopsia, scotomata, cortical blindness, posterior 

reversible encephalopathy syndrome, retinal vasospasm)  

o Stroke  

 Pulmonary oedema  

 Fetal growth restriction (FGR) 

Chronic hypertension 

Presence or history of hypertension prior to conception or in the first half of pregnancy. It is 

considered “essential” if there is no underlying cause or “secondary” if associated with a 

definitive aetiology. 
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Preeclampsia superimposed on chronic hypertension. 

Development of new signs and/or symptoms associated with preeclampsia after gestational 

week 20, as above, in a woman with chronic hypertension. 

White coat hypertension  

White coat hypertension is defined as hypertension in a clinical setting with normal blood 

pressure away from this setting when assessed by 24 hour ambulatory blood pressure 

monitoring or home blood pressure monitoring using an appropriately validated device.  

Research definition of PE 

The ASSHP also suggested a research definition of preeclampsia for investigators, restricted 

to new onset hypertension after 20 weeks with properly documented proteinuria, stating it will 

be less sensitive but more specific, ensuring recruitment of true preeclamptic patients into 

scientific research studies (19). 

1.6 Preeclampsia – Pathophysiology and clinical implications 

1.6.1 Introduction and clinical Implications 

Preeclampsia affects 2–7% of pregnant women (23). This condition results in substantial 

perinatal morbidity and mortality across the world, especially in developing countries. While 

hypertension and proteinuria are the commonest features, preeclampsia is a multi-organ 

disorder, progressing to HELLP (haemolysis, elevated liver enzymes and low platelets) 

syndrome and eclampsia (seizures) in some women. Preeclampsia only occurs in the presence 

of the placenta (24). Therefore, currently the only successful treatment remains the delivery of 
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the placenta and hence the fetus, which may lead to significant morbidity and even death of 

the baby in the case of early-onset preeclampsia.  

1.6.2 Pathophysiology of preeclampsia 

Speculation as to the aetiology of preeclampsia has been ongoing for many years. While 

progress has been made in describing the placental and maternal circulatory changes that are 

present in preeclampsia, the pathophysiologic mechanism of the cause of preeclampsia is still 

not clear. Two broad classes of preeclampsia have been described, maternal and placental, 

although an individual case can be a mix of the two aspects (25). The placental preeclampsia 

is postulated to result from a failure of villous trophoblast differentiation, which can  on the 

placental side ultimately lead to an abnormal release of trophoblast material into the maternal 

circulation (26). Maternal preeclampsia is thought to result from endothelial dysfunction 

secondary to circulating factors released from the placenta (see section 1.6.2.3). Preeclampsia 

has also been further subdivided into early (< 34 weeks) preeclampsia with signs of fetal 

growth restriction and late onset preeclampsia (>34 weeks) with normally grown fetuses (27).  

1.6.2.1 Genetics 

A familial increase in the susceptibility to develop preeclampsia has been described, but 

extensive studies to date have not identified any particular gene or loci that can be used as a 

screening test, suggesting the involvement of multiple genetic factors (28, 29). 

1.6.2.2 Abnormal placentation 

Impaired extra villous cytotrophoblast invasion leading to inadequate vascular remodeling of 

the spiral arteries has been postulated to be central to the pathophysiology of preeclampsia 

(30). These suboptimal physiological changes result in reduced uteroplacental perfusion 
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leading to placental hypoxia and the release of placental circulatory factors that produce the 

maternal syndrome of preeclampsia (25, 31). 

1.6.2.3 Endothelial dysfunction and activation 

Endothelial activation in the maternal circulation has been described in preeclampsia and is 

thought to lead to the clinical manifestations in the mother (32, 33). The hypothesis was 

advanced that alterations of endothelial function could explain much of the pathophysiology 

of preeclampsia. Extensive data have been generated to support the hypothesis (34). Markers 

of endothelial activation can be demonstrated in women with preeclampsia, many preceding 

clinically evident disease and disappearing with resolution of the disease. It was postulated 

that factors produced by the poorly perfused placenta, entered the systemic circulation and 

altered endothelial cell activity. This was proposed to change vascular sensitivity to 

circulating vasopressors, activate coagulation, and reduce vascular integrity resulting in the 

pathophysiological changes of preeclampsia (33).  

The hypothesis has been expanded to include maternal susceptibility to preeclampsia by the 

generation of endothelial injury and injurants. This concept is stimulated by the observation 

that reduced placental perfusion per se is not sufficient to generate the maternal syndrome. 

Women with growth restricted fetuses and placentas from preterm deliveries also demonstrate 

failure of the physiological remodeling of decidual vessels resulting in reduced placental 

perfusion in preeclampsia. 

This has led to the concept that preeclampsia is secondary to an interaction of reduced 

placental perfusion and maternal factors such as obesity, insulin resistance, lipid status, 

ethnicity, hypertension, and elevated plasma homocysteine concentration. These factors are 

also risk factors for atherosclerosis in later life (33).  



 

 

15 

1.6.2.4 Immunology of preeclampsia 

It is suggested that the placental aspects of preeclampsia may have an immunological basis, 

with maternal immune responses to trophoblast determining normal and abnormal 

placentation (25).  It is hypothesised that the maternal immune system ‘learns’ to 

accommodate the fetus, and that pre-eclampsia results from a relative failure to develop 

maternal tolerance to paternal allo-antigens (35). 

1.6.2.5 Placental histopathology 

There is no single placental lesion pathognomonic of preeclampsia. The histopathological 

changes seen in preeclampsia can be categorized into several different groups of pathologies 

(36). 

 Uteroplacental vascular pathologic features and secondary villous damage - These 

changes are seen in 26% of preeclamptic placentas and include villous fibrosis, 

hypovascularity, increased syncytiotrophoblast knotting, villous infarcts and abruption 

placentae (37). Placental infarcts seen in preeclamptic placentas are thought to be due 

to occlusion of maternal spiral arteries (37). 

 Lesions involving coagulation - The changes within the placenta include thrombi 

within chorionic and fetal stem vessels and microcirculatory occlusion demonstrated 

by avascular terminal villi (36). 

 Lesions involving chronic inflammation-Changes include chronic uteroplacental 

vasculitis, decidual plasma cell infiltrates, decidual eosinophil infiltrates, dense basal 

lymphocytic infiltrates and villitis of anchoring villi (36). 
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 Lesions involving coagulation and chronic inflammation have been documented 

independent of uteroplacental vascular pathologic features and may represent a part of 

a repair response to placental ischaemic damage (36). 

1.6.2.6 Involvement of other organs 

Glomerular endotheliosis involving glomerular hypertrophy, narrowing or occlusion of 

capillary lumens by swelling of endothelial cells and mesangial cells is the most characteristic 

renal lesion seen in preeclampsia and is a specific variant of thrombotic microvasculopathy 

(38). Glomerular endotheliosis is not a lesion specific to preeclampsia. The more severe 

lesions are seen in preeclampsia while milder pathology is described in normal pregnancy and 

gestational hypertension. Pathological changes seen in other organs such as petechial 

haemorrhages in the brain, liver, adrenal and heart are thought to be most likely due to 

hypoperfusion (38).  

1.7 Intrauterine fetal growth restriction (IUGR) 

1.7.1 Incidence, morbidity and mortality 

Intrauterine growth restriction is a common complication that occurs in 4-7% of births in 

developed countries (12). It carries an increased risk of perinatal morbidity and mortality (12, 

39, 40). Growth restricted fetuses have a 4-8 fold increase in perinatal mortality compared 

with fetuses in the normal range of growth (13). Fifty percent of those that survive experience 

short and long term morbidity including intrapartum fetal distress, hypoglycaemia, 

hypocalcaemia, meconium aspiration pneumonia (41) and abnormal neurological impairment 

(42). At least 20% of stillborn fetuses have evidence of fetal growth restriction, a 

disproportionately high rate that indicates a higher risk of fetal demise (43). The majority of 

SGA babies are born to normotensive mothers (81.7%), but some are born to women with 
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preeclampsia (10.7%) or gestational hypertension (7.6%) (44). Small for gestational age 

neonates at birth can also be associated with impaired neural development and cognition (45, 

46). Epidemiological studies have highlighted a correlation between low birth weight and 

adult vascular disease such as coronary artery disease, stroke, type 2 diabetes and 

hypertension (47, 48). 

1.7.2 Intrauterine growth restriction (IUGR): Clinical definitions 

Fetal growth depends on modulation of the genetically predetermined growth potential by 

fetal, placental, maternal and external factors. Fetuses who are not reaching their genetic 

growth potential are considered growth restricted. There is still debate over a precise 

definition. Birth weight <10th centile is described as small for gestational age (SGA) while 

varying thresholds (<3rd, <5th or <10th centile) have been used as intrauterine growth 

restriction (49). The causes of SGA and IUGR are varied including congenital abnormalities, 

infections, substance abuse and constitutionally small fetuses. SGA fetuses may not all be 

growth restricted (constitutionally small) and growth restricted fetuses may not all be SGA.  

Although the etiology of fetal growth restriction can be varied, IUGR resulting from placental 

insufficiency is very relevant to clinical management as the outcome for the fetus can be 

altered by appropriate timely diagnosis and delivery. Ultrasound assessment of fetal anatomy, 

biometry, liquor volume and Doppler studies are central to the management of a suspected 

IUGR fetus. Umbilical artery Doppler assessment to determine impedance in the feto-

placental circulation has become the clinical standard for identifying IUGR in preterm 

pregnancies <34 weeks (50-52). In a review by the Cochrane collaboration, the only 

investigation proven by randomized controlled trials to reduce perinatal mortality was 

umbilical artery Doppler ultrasound (53). Unfortunately umbilical artery Doppler is not 
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reliable in late onset fetal growth restriction >34 weeks of gestation and significant morbidity 

and mortality occurs even in fetuses with normal Doppler waveforms (54). 

1.7.3  IUGR Pathogenesis /Abnormal placentation 

Disorders of placental implantation are thought to be central to the pathogenesis of IUGR as 

well as preeclampsia. Large numbers of non-transformed spiral arteries as well as obstructive 

lesions such atherosis and thrombosis can be seen in the maternal vascular bed in IUGR (55). 

Suboptimal maternal adaptation to pregnancy and inadequate vascular remodeling of maternal 

spiral arteries are suggested to increase placental vasoactive substances, leading to vascular 

reactivity (30). If hypoxia stimulated angiogenesis cannot overcome these challenges, 

placental auto regulation becomes deficient. Maternal placental floor infarction, villous 

obliteration and fibrosis increase the resistance to blood flow, producing a fetal-maternal 

mismatch that decreases placental mass and the effective exchange area. The balance of 

compensatory and non-compensatory mechanisms determines the fetal outcome. If 

compensatory mechanisms are unsuccessful, stillbirth can be the result. With successful 

compensation, the shortage of nutrients could be subclinical, unmasked by the exponential 

requirement for nutrients in late second and third trimester. Vascular studies may appear 

normal while asymmetrical growth may be the only manifestation of fetal growth restriction 

(56). 

1.7.4 IUGR Placental histopathology 

Histopathological changes associated with the clinical syndromes of preeclampsia and 

intrauterine fetal growth restriction have been well described, although placental findings in 

IUGR are often varied, from morphologically unremarkable through to severe uteroplacental 

vasculopathy, with no single pathological feature associated with high sensitivity or 
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specificity (2, 36, 57).. The morphologic features such as maternal vascular changes, villous 

infarction, shrinkage and loss of villi, excessive numbers of syncytiotrophoblastic knots, and 

accelerated peri-villous fibrin deposition, are generally presumed to result from impaired 

utero-placental blood flow. Extensive infarction and thrombosis can also be noted in severe 

disease (58).     

Pregnancies complicated by IUGR secondary to placental vasculopathy share many 

pathogenic abnormalities with preeclampsia (24), including maternal endothelial cell 

dysfunction (59-61) and leukocyte (neutrophil) activation (62). Uteroplacental fibrinoid 

necrosis, circulating nucleated erythrocytes, avascular terminal villi, villous fibrosis and 

villous infarction were significantly represented in placentae of fetal growth restriction (57). 

Decidual vasculopathy and acute atherosis have been described in the preeclamptic and IUGR 

maternal spiral arteries as a contributor to pathophysiology (63, 64). This is especially 

relevant in view of the possible predisposition to preeclampsia in the presence of the maternal 

metabolic syndrome (55, 65). 

 

1.7.5 Preeclampsia and fetal growth restriction-shared and disparate components 

Preeclampsia and IUGR are pregnancy specific disorders characterized by abnormal 

placentation. There is evidence of endothelial dysfunction in IUGR and preeclampsia. Pre-

existing conditions such as hypertension, renal disease, systemic lupus erythematosis and 

older age that involve endothelial dysfunction are common to IUGR and preeclampsia (66). 

Family history of hypertension, coronary heart disease and stroke elevates the susceptibility to 

preeclampsia (67). Endothelial activators such as vascular cellular adhesion molecule-1 

(VCAM), intercellular adhesion molecule-1 (ICAM) and endothelin-1 are elevated in the 
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maternal plasma and serum of women with both conditions (60, 68, 69), although more 

extensively in preeclampsia. These lines of evidence support the view that endothelial 

dysfunction predisposes to IUGR and preeclampsia (66). With similar predisposition and 

placental pathology, why some pregnant women develop maternal disease of preeclampsia 

while other pregnancies show IUGR only is a question yet to be answered. 

It has been postulated that both preeclampsia and IUGR arise from a maternal predisposition 

to endothelial dysfunction, which contributes to shallow implantation. Release of placental 

cytokines from an endothelial induced placental abnormality in the presence of the maternal 

metabolic syndrome of adiposity, insulin resistance, hyperglycaemia, hyperlipidaemia and 

coagulopathies may lead to preeclampsia, while absence of the maternal metabolic syndrome 

can lead to isolated IUGR (66). This theory focuses on maternal predisposition only. 

Contribution of a potential fetal susceptibility and circulation to the risk of IUGR and 

preeclampsia has not been well addressed in research to date. 

 

1.7.6 Preeclampsia and IUGR: long term maternal and neonatal outcomes 

The long term maternal and neonatal cardiovascular risks of preeclampsia have attracted 

recent research interest. Women who have had preeclampsia appear to be at increased risk of 

premature death, mortality from ischaemic heart disease, cardiovascular diseases including 

ischaemic heart disease, hypertension, stroke, venous thromboembolism, renal failure and 

type 2 diabetes while being relatively protected from cancer (47, 70). 

Children born to mothers affected by preeclampsia during the pregnancy appear to be more 

prone to hypertension, insulin resistance, diabetes, stroke and neurological problems (70). 
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Similar increases in maternal and fetal risks have been identified with a history of isolated 

intrauterine fetal growth restriction (71). 

 

1.8 Angiogenic Factors and their function 

1.8.1 Angiogenic factors  

Vascular Endothelial Growth Factor family  

The best-characterized group of angiogenic growth factors is the vascular endothelial growth 

factor (VEGF) family. VEGF, also referred to as VEGF-A, is the founding member of this 

family, which also includes VEGF-B, VEGF-C, VEGF-D, VEGF-E, placental growth factor 

(PlGF), and a recently identified tissue-specific endothelial growth factor (endocrine gland-

derived vascular endothelial growth factor, EG-VEGF) (9, 72, 73).  The VEGF family also 

includes their receptors VEGFR-1 (also called Flt-1), VEGFR-2 (also called KDR, in humans 

and fetal liver kinase, Flk in mice) and VEGFR-3 (Flt-4), as well as the co-receptors, 

neuropilin-1 (NRP-1) and NRP-2 (74, 75).  

1.8.1.1 Vascular endothelial growth factor-A 

Vascular endothelial growth factor (VEGF) was originally described as "vascular 

permeability factor" (76) and as "vascular endothelial cell growth factor" (77). It is a heparin 

binding angiogenic growth factor which is an endothelial cell-specific mitogen in vitro and an 

angiogenic inducer in a variety of in vivo models (78, 79). For more than a decade, the role of 

vascular endothelial growth factor (VEGF) in the regulation of angiogenesis in physiological 

and pathological processes has been the object of intense investigation (80). Multiple studies 

have characterized the actions of VEGF and its receptors to be mainly mitogenic for 
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endothelial cells as well as playing a major role in mediation of vasculogenesis, angiogenesis, 

control of microvascular permeability, vasodilatation and anti-apoptotic activity (78, 80, 81). 

VEGF mRNA is produced by tumour cells as well as in non-malignant cells in response to 

hypoxia (82) and inflammation.VEGF mediates its effects mainly by interacting with two 

tyrosine kinase receptors, VEGF receptor-1 (Flt-1) and VEGF receptor-2 (KDR) (81). 

1.8.1.2 Placental growth factor (PlGF) 

Placental growth factor (PlGF) is an angiogenic factor that shares a 42% sequence homology 

with VEGF based on amino acid and cDNA sequences (83). Found on human chromosome 

14, PlGF consists of seven exons. Alternative mRNA splicing of the primary PlGF transcript 

results in four isoforms, PlGF-2 shown to be the clinically active form (84). Genetic 

deficiency of PlGF does not significantly affect vascular development in the embryo (85).  

Although PlGF is mainly expressed in trophoblasts (86), a contribution from human umbilical 

vein endothelial (HUVEC) cells, placenta, heart and lungs has also been shown (87, 88). 

Interaction between the VEGF family angiogenic factors and their receptors has been 

summarized in Figure 1.2.  
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1.8.2 Angiogenic factors and their function 

1.8.2.1 Vascular endothelial growth factor activities 

Mitogenesis, angiogenesis, and endothelial survival 

VEGF promotion of vascular endothelial cell (EC) growth derived from arteries, veins, and 

lymphatics has been well documented in-vitro (78). The vascular progenitors differentiate to 

ECs in response to VEGF. While VEGF-A is a key regulator of blood vessel growth, VEGF-

C and VEGF-D regulate lymphatic angiogenesis (89). Although endothelial cells are the 

primary targets of VEGF, several studies have reported mitogenic effects also on certain non-

endothelial cell types, such as retinal pigment epithelial cells (90), pancreatic duct cells (85), 

and Schwann cells (86). VEGF has also been shown to stimulate surfactant production by 

alveolar type II cells, resulting in a protective effect from respiratory distress syndrome in 

mice (91).VEGF is a survival factor for endothelial cells, both in vitro and in vivo (92-94). In 

vitro, VEGF prevents endothelial apoptosis induced by serum starvation. Such activity is 

mediated by the phosphatidylinositol 3-kinase (PI3 kinase)/Akt pathway (93, 94).  

Effects of VEGF on bone marrow cells and hematopoiesis 

The earliest evidence of VEGF activity on blood cells was a report describing its ability to 

promote monocyte chemotaxis (95). Associations between monocyte function and angiogenic 

factors have been detailed further in Section 1.12.3. Subsequently, further effects of VEGF on 

hematopoietic cells have been described, including inducing colony formation by mature 

subsets of granulocyte-macrophage progenitor cells (79), increase production of B cells and 

the generation of immature myeloid cells (80). VEGF delivery to adult mice inhibits dendritic 

cell development (81), leading to the hypothesis that VEGF facilitates tumor growth by 

allowing escape of tumors from the host immune system (57). 

http://edrv.endojournals.org.ezproxy1.library.usyd.edu.au/content/25/4/581.full#ref-85
http://edrv.endojournals.org.ezproxy1.library.usyd.edu.au/content/25/4/581.full#ref-86
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Figure 1.2 VEGF and the VEGF-receptor system.  

VEGF-A, a major contributor to angiogenesis, binds and activates VEGFR-1 as well as 

VEGFR-2, and regulates vasculogenesis, angiogenesis, inflammatory responses, and 

carcinogenesis. The soluble form of VEGFR-1 appears to be an important modulator for the 

placental vasculature. (With permission from Shibuya 2006 (96)). 

 

Enhancement of vascular permeability and hemodynamic effects 

The ability of VEGF to induce microvascular permeability is a step necessary for 

angiogenesis, by providing extravasation of fibrin, which represents a scaffold for endothelial 

cell proliferation and migration (97). This function may play an important role in 

inflammation and other pathological circumstances (80). 
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Several studies have pointed to the critical role of nitric oxide (NO) in VEGF-induced 

vascular permeability, as well as angiogenesis (98-100).  

1.8.2.2 Role of VEGF in Physiological Angiogenesis 

VEGF has been identified as a major determinant of angiogenesis in normal physiological 

processes. 

VEGF A has been shown to have an essential role in vasculogenesis and angiogenesis in the 

mouse embryonic and postnatal development. VEGF C regulates lymphatic development 

(80). Inactivation of a single or both alleles of VEGF –A and C result in embryo lethality by 

day 12.  VEGF is  required not only for proliferation but also for survival of endothelial cells 

(101). VEGF gradient is needed for directional growth and cartilage invasion by metaphyseal 

blood vessels (102, 103). VEGF-dependent blood vessel recruitment is essential not only for 

coupling cartilage resorption with bone formation, but also for bone homeostasis (104). 

VEGF plays an important role in reproductive homeostasis, being involved in the cyclic 

proliferation and regression of blood vessels in the endometrium, during ovarian follicle 

development  (105, 106), oocyte fertilization and development and homeostasis of germ cells 

(9). VEGF has been established as the principal regulator of ovarian angiogenesis and plays a 

key role in corpus luteal development and function by establishing vasculature for delivery of 

cholesterol to luteal cells for progesterone biosynthesis (105, 107). Recently, VEGF-induced 

capillary network has been identified as essential for pancreatic cell angiogenesis and fine 

tuning blood glucose regulation (108).  

VEGF and KDR expression has been found on type II pneumocytes, and VEGF directly 

stimulated surfactant production of type II pneumocytes in vitro (9, 109). These data indicate 

an important role for VEGF in fetal lung development via its effect on epithelial maturation, 
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independent of its pro-angiogenic effects. Genetic studies in mice have revealed an important 

role for VEGF and PlGF in renal development and disease. During glomerular development, 

podocytes express VEGF, Flt-1 and KDR (110). Conditional deletion of VEGF in glomerular 

podocytes resulted in nephron malformation and nephrotic syndrome (111).  

1.8.2.3 Role of VEGF in Pathological Conditions 

Solid tumors and hematological malignancies 

In situ hybridization studies have shown that VEGF mRNA is upregulated in many human 

tumours, including carcinoma of the lung, breast, gastrointestinal tract, kidney, ovary, 

endometrium and glioblastoma multiforme (80). Clinical trials in cancer patients are ongoing 

with several VEGF inhibitors, including a humanized anti-VEGF monoclonal antibody and an 

anti-KDR antibody bevacizumab (Avastin) (80). Thrombosis, increased blood pressure, and 

proteinuria were among the side effects of treatment in initial studies (112).  

Intraocular neovascular syndromes 

Neovascularization and vascular leakage are major cause of visual loss in diabetes mellitus, 

occlusion of central retinal vein, oxygen exposure in prematurity as well as age-related 

macular degeneration (113, 114).  Animal studies have clearly shown the role of VEGF as a 

mediator of ischaemia induced intraocular neovascularization (115).  

Inflammation and brain edema. 

VEGF up-regulation has been implicated in various inflammatory disorders such as psoriasis, 

rheumatoid arthritis, brain edema as well as in keratinocytes in wound healing (80).Vascular 

endothelial growth factor has been shown to have anti-apoptotic activity, and whether it plays 

a role in abnormal placental apoptosis is unknown. 



 

 

27 

1.8.2.4 Placental growth factor activities 

Although the exact physiological actions of PlGF are not clear, evidence suggests a pivotal 

role for PlGF in regulating VEGF-dependent angiogenesis under pathological conditions (85). 

PlGF has been hypothesized to play a role in placental development and angiogenesis. PlGF 

is a very weak stimulator of endothelial chemotaxis and proliferation, and when binding 

competition studies are performed with extracellular domains from either Flk-1/KDR or Flt-1, 

PlGF appears to be able to bind to Flt-1 but not to Flk-1/KDR (116). PlGF homodimers bind 

Flt-1 and NRP-1 while PlGF/VEGF-A heterodimers bind KDR and Flt-1/KDR heterodimers 

in vitro (24). 

Evidence to date suggests that, whereas the VEGF/KDR axis is important for physiological 

angiogenesis and pathological angiogenesis, the PlGF/Flt axis appears to be specifically 

crucial for pathological angiogenesis by modulating the effects of the VEGF/KDR axis (9). 

Proposed mechanisms by which PlGF potentiates angiogenesis include stimulating 

endothelial cells via Flt-1, separating VEGF-A from Flt-1 by competing for the receptor, 

allowing VEGF-A to activate KDR, recruiting monocytes/macrophages which have a crucial 

role in vessel growth  (88) and inducing the secretion of VEGF-A from monocytes (117). 

Monocytes/macrophages have been proposed as critical players in the process of angiogenesis 

and wound healing. The strong placental expression of PlGF could contribute to the increased 

demand for angiogenesis in the growing placenta which may be partially mediated by chemo-

attraction of peripheral blood monocytes (9).  
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1.8.3 Angiogenic factors and their control 

1.8.3.1 VEGF Isoforms  

The human VEGF-A gene is localized in chromosome 6p21.3 (118).  It is organized into eight 

exons, separated by seven introns. Alternative exon splicing of the VEGF-A gene results in 

the generation of four different isoforms, VEGF121, VEGF165, VEGF189, VEGF206 (119, 120).  

Bioavailable native VEGF is a heparin-binding homodimeric glycoprotein of 45 kDa (121). 

Such properties closely correspond to those of VEGF165, which has been identified as the 

major VEGF isoform (122). The two VEGF monomers are oriented side-by-side and head-to-

tail and held together by one interchain disulfide bond to form the dimeric structure which is 

stabilized by a hydrophobic core region (123, 124). 

1.8.3.2 Regulation of VEGF Gene Expression  

Hypoxia is a potent stimulus for the expression of VEGF-A mRNA and is mediated via 

hypoxia-inducible-factor-1α (125, 126). In addition, several growth factors including 

fibroblast growth factor, transforming growth factors (TGF-α and TGF-β), keratinocyte 

growth factor, insulin-like growth factor 1 (IGF-1) and platelet-derived growth factor, as well 

as the inflammatory cytokines, interleukin (IL)-1α and IL-6, hormones such as TSH, βhCG 

are also known to up-regulate VEGF-A expression (24, 81).  

 

1.9 Angiogenic factor receptors: VEGR Receptors 

VEGF binding sites were initially localized to the vascular endothelial cell surface in vitro 

(127) and in vivo (128, 129). Subsequently, it has been shown that VEGF binding sites also 

occur on bone marrow derived cells such as monocytes (130).   
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The biological effects of VEGF are mediated by two high affinity receptor tyrosine kinases 

(RTKs) VEGFR-1/ fms-like tyrosine kinase (Flt-1) and VEGFR-2/ kinase insert domain 

receptor (KDR). These differ considerably in signaling properties. 

Both VEGFR-1 (Flt-1) and VEGFR-2 (KDR) have seven extracellular immunoglobulin-like 

domains, a single transmembrane region and a consensus tyrosine kinase sequence that is 

interrupted by a kinase-insert domain (131, 132).  

1.9.1 VEGFR-1 / fms-like tyrosine kinase (Flt-1) 

Fms-like tyrosine kinase receptor (Flt-1) is a transmembrane receptor with its gene on 

chromosome 13q12-q13 (133). Flt-1 has been localized to several human tissues including 

endothelial cells, placental trophoblast, monocytes and macrophages (24, 80). Flt-1 

expression is up-regulated by hypoxia via a HIF-1-dependent mechanism (134).  Flt-1 binds 

VEGF-A, VEGF-B and PlGF with high affinity (116, 135). The latter molecules do not bind 

KDR (80), the main functional receptor of VEGF-A.  Although the binding site for VEGF and 

PlGF has been identified as primarily the second Ig-like domain on the receptor (136-138),  

binding of VEGF leads to a weak tyrosine auto-phosphorylation, while activation of Flt by 

PlGF results in the expression of distinct target genes (139, 140). The binding-affinity of Flt-1 

for VEGF-A is higher in magnitude than that of KDR, whereas the kinase activity of Flt-1 is 

about 10-fold weaker than that of KDR (96). 

Recently, it has been shown that PlGF regulates inter- and intra-molecular cross-talk between 

the VEGF receptors. Activation of Flt-1 by PlGF resulted in trans-phosphorylation of KDR 

(141). The observed potentiation of the action of VEGF by PlGF could be explained, at least 

in part, by displacement of VEGF from Flt-1 binding (116) and also partially by trans-

phosphorylation of KDR, thus amplifying VEGF-driven angiogenesis through KDR.  
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In adulthood, Flt-1 tyrosine kinase transduces several downstream signals including cell 

migration and mild DNA synthesis (Figure 1.3). However, signal transduction pathways from 

Flt-1 leading to vascular permeability and migration of macrophages as well as vascular 

endothelial cells remain to be clarified (96). 

1.9.1.1 Soluble VEGFR-1/Flt-1 (sFlt-1) 

Alternative splicing of the Flt-1 pre-mRNA results in the production of sFlt-1, a soluble form 

comprising the ligand-binding domain of Flt-1 but lacking the membrane-spanning and 

intracellular domains (142). Soluble Flt-1 has been shown to be secreted by endothelial cells, 

monocytes and placental tissues (96). Flt-1 binds not only VEGF-A but also PlGF (116) and 

VEGF-B (135).  sFlt-1 has potent antagonistic action of VEGF-A and PlGF, by inhibiting 

their binding to cell surface receptors  as well as by forming heterodimers with the other 

VEGF receptor KDR (143).  

 

 

Figure 1.3 Possible signal transduction pathways from VEGFR-1. VEGFR-1(Flt-1) tyrosine 

kinase transduces several downstream signals including cell migration and mild DNA 

synthesis in adulthood (Included with permission from Shibuya 2006 (96)). 
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The evidence to date show that synergism exists between VEGF and PlGF in vivo, in a 

complex maze of interactions involving Flt-1, KDR, sFlt and sKDR. The known mechanisms 

of interactions are summarized in Figure 1.2. 

It has been proposed that Flt-1 may not be primarily a receptor transmitting a mitogenic 

signal, but rather a “decoy” receptor, able to regulate in a negative fashion VEGF  activity on 

the vascular endothelium, by sequestering VEGF and rendering this less available to VEGFR-

2/KDR (116). The membrane-bound form of Flt-1, as well as the soluble form sFlt-1, has the 

ability to perform such a decoy function (85). 

Gene-targeting studies on Flt-1 have demonstrated its essential role during embryogenesis. 

Flt-1 knockout mice show excessive proliferation of angioblasts with failure to organize 

vascular channels, leading to fetal death in early gestation (144, 145).   

It has been shown that the migration of monocytes/macrophages in response to VEGF or 

PlGF is mediated by Flt-1 (146, 147) and requires the tyrosine kinase domain of Flt-1 (148). 

Since Flt-1 mRNA was detected in the early mouse trophoblast before day 13, it is possible 

that Flt-1 may regulate the migration of trophoblast cells in implantation (142). Key functions 

of Flt-1 signaling in the vascular endothelium could be the paracrine release of tissue-specific 

growth/survival factors, possibly in a vascular bed-specific fashion (149), as well as the 

regulation of angiogenesis. 

These characteristics of Flt-1 suggest that it has a dual function in angiogenesis (80), as both a 

negative regulator by sequestering VEGF via its ligand-binding domain, and a positive 

regulator by signaling towards migration/proliferation via its tyrosine kinase activity (96). 

sFlt-1 mRNA has been detected using RT-PCR analysis in adult lung, liver, kidney, and 
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uterus, suggesting that sFlt-1 may have a role in maintaining endothelial cells in a quiescent 

state in the adult. 

1.9.2 VEGFR-2 / Kinase domain region (KDR human, Flk-1 mouse) 

KDR is a transmembrane receptor with its gene localized to chromosomes 4q11-q12 (133, 

150). KDR binds VEGF-A, VEGF-C and VEGF-D and is expressed by endothelial cells, 

neuronal cells and megakaryocytes. The binding affinity of VEGF-A for KDR is lower than 

that of Flt-1 (dissociation constant (Kd) 75–250 pm vs. 25 pm) (151). The receptor plays a key 

role in developmental angiogenesis and hematopoiesis as evidenced by lack of vasculogenesis 

and failure to develop blood islands and organized blood vessels in Flk-1 null mice, resulting 

in death in-utero between day 8.5 and 9.5 (152). The pro-angiogenic biological activities of 

VEGF and PlGF appear to be mediated exclusively by the KDR/Flk-1 receptor and include 

the mitogenic, angiogenic, and permeability-enhancing effects of VEGF on the endothelium 

(153). The expression of KDR appears to be auto-regulated, being up-regulated by VEGF-A, 

VEGF-C and VEGF-D.  

sKDR is a soluble form of the KDR receptor detected in human plasma. In vitro studies have 

determined that the sKDR fragment can be found in the conditioned media of mouse and 

human endothelial cells, thus suggesting that it may be secreted, similar to sFlt-1, or 

proteolytically cleaved from the cell (154). While soluble KDR is also considered to have 

anti-angiogenic properties (155), its mechanism of action has not been defined.  Similar to 

sFlt-1, sKDR may have regulatory consequences with respect to VEGF-mediated 

angiogenesis as well as potential to serve as a quantitative biomarker of angiogenesis and 

anti-angiogenic drug activity. 
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1.9.3 Neuropilins (NRP) 

In addition to the receptor kinases, VEGF interacts with a family of co-receptors, the 

neuropilins. NRP-1 binds VEGF-A, VEGF-B and PlGF while NRP-2 binds VEGF-A, VEGF-

C and PlGF (156). In endothelial cells, NRPs are thought to increase VEGF signaling by 

ensuring optimal presentation of ligands to the receptors and by stabilizing VEGF/VEGFR 

complexes (24, 157).  

The interaction between VEGF-A, PlGF and the two tyrosine kinase receptors FLT and KDR 

are represented in Figure 1.4. Figure 1.5 summarizes the role of the VEGF receptor tyrosine 

kinases in different cell types. The angiogenic response to VEGF varies between different 

organs and is dependent on the genetic background of the animal. Inactivation of the genes for 

VEGF-A and VEGF receptor-2 / KDR leads to embryonic death due to the lack of endothelial 

cells. Inactivation of the gene encoding VEGF receptor-1/Flt-1 leads to an increased number 

of endothelial cells, which obstruct the vessel lumen. VEGF receptor-1/Flt-1 exerts a negative 

regulatory effect on VEGF receptor-2/KDR, at least during embryogenesis (158).  

 

 

http://www.nature.com.ezproxy1.library.usyd.edu.au/nm/journal/v9/n6/full/nm0603-669.html#f2
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Figure 1.4 Schematic representation of the role of VEGF and PlGF in angiogenesis. The 

VEGF/VEGFR-2 axis is crucial for developmental and physiological angiogenesis, whereas 

VEGFR-1 (during development mainly present in its soluble form, sVEGFR-1) regulates 

VEGF bioavailability (left panel). In contrast, PlGF is a master switch of pathological 

angiogenesis after birth  (printed with permission from Tjwa (9). 

1.9.4 Soluble Endoglin (sEng)  

In 2006, a novel placenta-derived soluble TGF-beta co-receptor Endoglin (sEng) was 

identified. Endoglin also known as CD105 is an 180kDa homodimeric transmembrane 

glycoprotein, a co-receptor for members of the TGF-β superfamily TGF-β1 and TGF-β3 (159). 

This co-receptor may have roles in hematopoiesis, cardiovascular development and 

angiogenesis. Endoglin-/- knockout mice die in utero at day 10-11 and display weak 

embryonic vasculature and abnormal cardiac development (160, 161). In humans, mutations 

of the Endoglin gene are responsible for hereditary telangiectasia type 1 (162). 
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Figure 1.5 Role of the VEGF receptor tyrosine kinases in different cell types. 

Reproduced with permission from Ferrara N 2003 (89). VEGFR-1 and VEGFR-2 are 

expressed in the cell surface of most blood endothelial cells. However, VEGFR-3 is largely 

restricted to lymphatic EC.  

Endoglin has been shown to be highly expressed in vascular endothelial cells (163), 

chondrocytes (164), erythroid precursors, a subpopulation of hematopoietic stem cells, 

monocytes (165) and term placental syncytiotrophoblast (166). Although its function has not 

been clearly elucidated, increased levels of soluble form of Endoglin have been demonstrated 

in atherosclerosis (167), certain cancers including breast (168), colorectal and myeloid 

malignancies (169). sEng, the extracellular domain of the co-receptor Endoglin released by 

proteolytic cleavage of the membrane-bound Endoglin (170), impairs binding of transforming 

growth factor-β1 to cell surface receptors, leading to decreased endothelial nitric oxide 

signaling, hence inhibiting angiogenesis and promoting vascular dysfunction (171).  

http://www.nature.com.ezproxy1.library.usyd.edu.au/nm/journal/v9/n6/fig_tab/nm0603-669_F2.html
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1.10 Role of angiogenesis and angiogenic factors in placental vascular 

disease associated with preeclampsia and intrauterine fetal growth 

restriction 

1.10.1 VEGF family angiogenic factors and receptors in normal placenta. 

Angiogenesis and vascular transformation are integral processes in the normal development 

of the placenta.  The successful establishment requires the development of a fetal placental 

circulation and vascular remodeling of the maternal vessels. Several factors have been shown 

to play a significant role in placental angiogenesis including VEGF, PIGF, FGF, insulin like 

growth factor (IGF), the angiopoietin (ANG) protein families, as well as their respective 

receptors (80) .  

In the human placenta VEGF has been identified in villous trophoblast in the first trimester 

and in the syncytiotrophoblast and extra-villous trophoblast at term (1). VEGF is implicated 

in trophoblast proliferation, differentiation and invasion of the uterine vessels as well as 

ongoing angiogenesis of the umbilical circulation (172). PlGF belongs to the VEGF family 

and plays an important role in enhancing VEGF-driven angiogenesis. In contrast, loss of PlGF 

impairs angiogenesis, wound healing and inflammatory responses (139, 173). 

KDR is the major signal transducer of VEGF in endothelial cells, and mediates most known 

VEGF’s bioactivities including cell proliferation, migration, and permeability (89). In 

contrast, Flt-1 has been shown to have an inhibitory role in VEGF dependent endothelial 

function (153). VEGF, PlGF and their receptors Flt-1 and KDR are expressed in the placental 

trophoblast throughout gestation (153).  Early studies into the expression and localization of 

angiogenic factors in the placenta have described varying results that may have been 

dependent on the techniques used. 
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In first trimester placenta, VEGF immunoreactive protein has been detected in the 

cytotrophoblast shell suggesting a role in the regulation of cytotrophoblast growth and 

differentiation as they also expressed VEGF receptor (Flt-1) protein (174). VEGF and Flt-1 

immunoreactive proteins were expressed in Hofbauer cells within the villous mesenchyme, 

macrophages and in maternal decidual cells while weak VEGF immunoreactive protein was 

seen in syncytiotrophoblast surrounding the placental villi in first and second trimester 

placentae. Extra villous trophoblast showed immunostaining for Flt-1 but no staining for 

VEGF (174). Smooth muscle cells surrounding the vein and arteries of the umbilical cord 

showed weak VEGF immunoreactivity while no immunoreactivity was localized in 

endothelial cells in this study. 

Immunostaining of PlGF protein has been localized to the vascular endothelium and 

syncytiotrophoblast membrane and in the media of large blood vessels of the placental villi, 

while staining within the mesenchyme was weak and diffuse (175).  PlGF mRNA was 

predominantly expressed by the villous trophoblast, whilst there was no apparent expression 

of PlGF mRNA within the villous mesenchyme. These results suggest that PlGF may be an 

important paracrine factor for vascular endothelial cells in placental angiogenesis and an 

autocrine mediator of trophoblast function (175). 

A study into localization and expression of VEGF and PlGF in placentas of normal pregnancy 

revealed that immunostaining localized the VEGF and PIGF proteins mainly in the vascular 

endothelium, while expression of mRNA was found in chorionic mesenchyme and villous 

trophoblast. These data imply that VEGF and PIGF are produced by different cells but that 

both target the endothelial cells of normal human term placenta (176). Another study on 

VEGF expression found mRNA to be produced by cells within the villous mesenchyme, 

decidual macrophages and decidual glands but not by trophoblast. The mRNA encoding PlGF 
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was produced in large amounts by villous cytotrophoblast, syncytiotrophoblast and extra 

villous trophoblast (177). The discrepancies are likely due to staining techniques used in the 

early studies into VEGF staining as more recent analyses have confirmed the expression of 

angiogenic factors using several techniques. 

Placenta is thought to be the likely source of plasma sFlt-1 during pregnancy (178). sFlt-1 has 

been identified in conditioned medium of cultured mouse placenta. These results indicate that 

sFlt-1 is produced in the placenta (142). In a mouse model, the expression of Flt-1 and sFlt-1 

in placental syncytiotrophoblast during pregnancy was stage dependent with mRNA encoding 

full-length membrane-bound Flt-1 detected in early gestation and high levels of sFlt-1 mRNA 

being expressed with increased gestation (142).  

It is clear that sFlt-1 is a potent antagonist of VEGF in vivo and that the physiological 

alternative splicing of Flt-1 pre-mRNA to generate Flt-1 and/or sFlt-1 is used for the 

regulation of placental angiogenesis. sFlt-1 is also produced by human umbilical vein 

endothelial cells in vitro (143) suggesting that an alternative splicing mechanism for Flt-1 pre-

mRNA also exists in endothelial cells. The balance of the locally expressed VEGF and sFlt-1 

appear to be important in the regulation of placental endothelial cell function.  

 Previous studies localized Flt-1 protein and messenger RNA (mRNA) to extra villous 

trophoblast, syncytiotrophoblast, and villous cytotrophoblast in normal pregnancy (174, 179).  

It has been demonstrated that both Flt-1 isoforms can be detected in the placenta (180), and 

that sFlt-1 protein could be found in supernatant of explants of the placental villi. These 

observations suggest that sFlt-1 is produced by the human placenta and could be released into 

the maternal circulation.  In 1990, a study by Shibuya et al. (131) showed that the short 

mRNA of the Flt-1 gene is highly expressed in normal placental tissue. Helshe et al. (181) 

showed that this mRNA is expressed on trophoblast in the placenta. In situ hybridization 
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using probes specific for the two forms of fms like tyrosine kinase and Northern blot analysis 

have shown that sFlt-1 expression increased but membrane bound Flt-1 decreased  in placenta 

in late gestation (142). 

The expression of the angiogenic growth factors, VEGF and PIGF has been demonstrated 

using RNase protection assays in isolated human term cytotrophoblast and in-vitro 

differentiated syncytiotrophoblast (182). VEGF expression increased approximately eightfold 

in trophoblast cultured under hypoxic conditions while PIGF expression decreased (182). 

These results suggest that distinct regulatory mechanisms govern expression of VEGF and 

PIGF in trophoblast. Characterization of the VEGF/PIGF receptors, KDR and Flt-1, revealed 

the presence of Flt-1 mRNA in isolated cytotrophoblast and in vitro differentiated 

syncytiotrophoblast. KDR was not detected in the isolated trophoblast. The authors suggested 

that trophoblast-derived VEGF/PIGF could act in a paracrine fashion to promote uterine 

angiogenesis and vascular permeability within the placental bed. In addition, presence of Flt-1 

on normal trophoblast suggests that VEGF/PIGF functions in an autocrine manner to perform 

an as yet undefined role in trophoblast invasion, differentiation, and/or metabolic activity 

during placentation (182). The localization of angiogenic factors and their receptors in 

placental tissue has been summarized in Table 3.1. 
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Angiogenic 

factors 

Positive tissue 

VEGF Cytotrophoblast, Syncytiotrophoblast, Vascular endothelium 

macrophages 

PlGF Cytotrophoblast, Syncytiotrophoblast, Extra villous Trophoblast 

Vascular endothelium, Villous stroma 

Flt-1 

 

Cytotrophoblast, Syncytiotrophoblast, Extra villous Trophoblast 

macrophages 

KDR Vascular endothelium 

 

Table 1.1 Angiogenic factors and their receptor localisation in placental tissue (175, 176, 

179). 

 

1.10.2 Angiogenesis in placental vascular disease 

Although it is the common belief that late spontaneous abortion, preeclampsia, intrauterine 

growth restriction and abruption share a common aetiology, these conditions give rise to 

different villous morphologies. In the model proposed by Kingdom and Kaufmann (30) it is 

suggested that high altitude and preeclampsia lead to reduced intra-placental oxygen 

concentration, which in turn lead to compensatory, predominantly branching angiogenesis of 

terminal villi and reduced vascular impedance. This might explain the low sensitivity of 

umbilical artery Doppler in the diagnosis of IUGR in late pregnancy (183). In pre-term IUGR 

with absent umbilical artery end-diastolic flow, there is a failure of terminal villi formation 

leading to impairment of feto-placental blood flow and transplacental gas exchange (16, 184). 
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Kingdom and Kaufmann  suggest that in this situation, the feto-placental circulation is 

compromised to a greater extent than the uteroplacental circulation and that rising intra-

placental oxygen content results in suppression of angiogenic drive to form terminal villi. 

This leads to abnormal non-branching angiogenesis, leading to increase in vascular 

impedance (30). 

As growth is a function of cellular destruction as well as replication, cell apoptosis has been 

studied in the placenta. It has been observed that placental apoptosis increased as pregnancy 

progressed and that pregnancies complicated by intraIUGR and preeclampsia exhibited a 

higher degree of apoptosis compared to normal pregnancies (185, 186). Angiogenic factors 

such as VEGF have been shown to have anti-apoptotic activity, and whether it plays a role in 

abnormal placental apoptosis is unknown. 

 

1.10.3 Placental tissue expression of VEGF family angiogenic factors in preeclampsia 

and IUGR. 

Published literature has suggested a role for VEGF, its receptors and antagonists in the 

pathogenesis of preeclampsia and IUGR.  Several research groups have demonstrated an 

increase in the maternal circulating splice variant of Flt-1 receptor (sFlt-1), a decrease in 

placental growth factor and soluble kinase domain receptor as well as a reduction in free 

VEGF with the development of preeclampsia (178, 187-189).  Increased production of anti-

angiogenic factors sFlt-1 and  soluble Endoglin (sEng) by the placenta is postulated  to 

contribute to the pathophysiology in preeclampsia (PE) by leading to endothelial dysfunction 

(190). Recent data on anti-angiogenic factors have demonstrated similar results in both PE 
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and IUGR, with no clear explanation as to why the maternal syndrome is  not evident in 

isolated IUGR (189). 

Studies on VEGF immunoreactivity of placental trophoblast in preeclampsia have shown 

inconclusive results (191-194). While some studies have demonstrated reduced VEGF 

immunoreactivity (195-197) compared with uncomplicated pregnancies, others have reported 

an increase in VEGF staining (191, 198). This study included a mix of patients with early and 

late onset of preeclampsia as well as intrauterine fetal growth restriction complicating 

preeclampsia (199).  Placental VEGF expression has been demonstrated in placentas from 

both normotensive and preeclamptic women at term (191).  The immunostaining in this study 

was localized to the syncytiotrophoblast and decidual trophoblast. The expression of VEGF 

was found to be further increased in amount and intensity of immunostaining in preeclampsia 

as compared to normal pregnancy.  IUGR was specifically excluded in the patient selection of 

this study. 

Discrepant findings have been published on placental VEGF mRNA levels in preeclampsia as 

compared to normal pregnancy. Variable results have been described including increased 

VEGF levels (193), reduced VEGF levels (200), and no difference in VEGF expression at 

delivery in decidua basalis or placenta in pregnancies complicated by preeclampsia (201). 

Placental production and expression of sEng, Flt-1, and PlGF in normal and preeclamptic 

pregnancies were further assessed by immunohistochemistry and  trophoblast cell culture 

under normal and  hypoxic conditions  (190).  Immunohistochemical staining of trophoblast 

from preeclamptic placentas showed significantly higher sEng, sFlt-1, and PlGF compared 

with those from normal pregnancies. Under lowered oxygen conditions, trophoblast from PE, 

but not normal pregnancy released more sFlt-1 and less PlGF.  Enhanced Flt-1 and soluble 

Flt-1 expression has been demonstrated in the placental tissues in preeclampsia using 
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Northern Blot analysis (155). A comparative morphological study of the placentas with 

preeclampsia showed increased expression of Endoglin and Flt-1 in all placental structures. 

The intensity of Endoglin and Flt-1 expression was maximum in the syncytiotrophoblast and 

extra villous cytotrophoblast cells in severe preeclampsia (202).  

PIGF mRNA and protein are localized to the trophoblast bilayer and villous mesenchyme of 

the human placenta throughout gestation (175).  Few studies have explored the placental 

angiogenic milieu associated with IUGR. Early placental development occurs in an 

environment of relative hypoxia. Hypoxia promotes angiogenesis and up-regulates vascular 

endothelial growth factor (VEGF) expression while it down-regulates placental growth factor 

(PIGF). One study has shown PlGF mRNA to be increased in placentas of IUGR pregnancies 

compared with gestationally-matched normal placentae (203).  Contrasting findings have 

been described where hypoxia down-regulates placental growth factor, whereas fetal growth 

restriction up-regulates placenta growth factor expression (203). 

A recent study into placental expression of VEGF family mRNA in adverse pregnancy 

outcomes (75) demonstrated reduced expression of VEGF, PlGF, Flt-1 and KDR in 

gestational hypertension, preeclampsia as well as small for gestational age fetuses. The 

selection criteria for the IUGR or SGA in the published studies have not included any 

physiological parameters such as umbilical artery or uterine artery Doppler studies that may 

identify placental cause of IUGR rather than constitutionally small fetuses. 

KDR expression has been demonstrated in the placenta (181) and is known to be mainly 

localized to the vascular endothelium. Endothelial cells in the villi with hypoxic changes have 

demonstrated stronger immunostaining for KDR than did those in normal villi (192). While 

the expression of sFlt-1 in preeclampsia is well described, less is known about sKDR.  A 

study into plasma KDR concentrations and placental mRNA expression showed that 
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preeclampsia is associated with reduced plasma concentrations of KDR as well as decreased 

placental expression of the sKDR mRNA splice variant (204). A previous report on 

preeclampsia showing no difference in KDR levels did not distinguish between membrane 

bound and soluble forms (205).  Whether or not there is similar variation in IUGR has not 

been demonstrated. 

In summary, while variable results have been demonstrated in multiple studies on the 

expression of angiogenic factors in the placenta, preeclampsia is generally associated with an 

increase in VEGF and Flt-1 while the results are not conclusive for PlGF. Hypoxic conditions 

lead to a reduction in PlGF. Placental expression of angiogenic factors in intrauterine growth 

restriction is not well categorized. 

 

1.10.4 Soluble angiogenic markers in placental disease preeclampsia 

Aberrations in the soluble angiogenic factors have been described in pregnancy complications 

such as preeclampsia and intrauterine fetal growth restriction.  

The last decade has seen a plethora of publications investigating the role of angiogenic factors 

in placental disease, in particular the VEGF family, and their receptor levels in the maternal 

circulation. While it is evident that the angiogenic factors and their receptor levels are 

aberrant in placental disease, whether there are differences between preeclampsia with and 

without IUGR and isolated IUGR is not clear. It is still not established whether these changes 

are part of the pathogenesis of placental disease or a reactionary change to the disease process 

in the placenta.  
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1.10.4.1 VEGF-A in preeclampsia 

Although VEGF plays an important role in placental angiogenesis, the serum or plasma level 

of VEGF-A has not been a reliable marker for identification of pathological pregnancies. The 

commercially available ELISA kits measure the free VEGF-A, which is the biologically 

active form. The measurable levels in the maternal blood have been documented to be below 

the detection levels of the assay (206-208). The few studies measuring total VEGF have 

demonstrated elevated VEGF levels in preeclamptic pregnancies as compared to 

normotensive pregnancies (205, 209-211). These findings suggest that the total circulating 

VEGF-A may be increased in preeclamptic pregnancies and that the free level is reduced due 

to binding to the soluble receptor sFlt-1. Soluble Flt-1 binds VEGF-A with a higher affinity 

than PlGF, resulting in extremely low circulating levels of free VEGF-A (75). 

1.10.4.2 soluble fms like tyrosine receptor-1 (sFlt-1) in preeclampsia 

Elevated sFlt-1 levels have been shown to be a feature of preeclampsia and are proposed to 

play a significant role in the pathogenesis of the condition by causing an anti-angiogenic state 

and endothelial dysfunction in the maternal circulation. Further support for this hypothesis is 

provided by the fact that the incidence of preeclampsia is increased in mothers carrying 

Trisomy 13 fetuses (212). The genes for sFlt-1 and Flt-1 are localized to chromosome 13 and 

maternal circulating levels of sFlt-1 have been demonstrated to be elevated in Trisomy 13 

(213).   

The first documentation of circulating elevated sFlt-1 in preeclampsia was by Clark et al 1998 

(179), followed by Maynard et al in 2003 (155)  in a study that demonstrated that placental 

soluble fms-like tyrosine kinase 1 (sFlt1) is up regulated in preeclampsia, leading to increased 

systemic levels of sFlt-1 that fall after delivery. Based on these data the increased circulating 

sFlt1 levels in patients with preeclampsia were suggested to decrease circulating levels of free 
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VEGF and PlGF and inhibit their biological activities. Considerable evidence have been 

published on elevated serum sFlt-1 levels in preeclamptic pregnancies both prior to (214, 215) 

and at the time of clinical diagnosis (155, 178, 205, 215), as well as several reviews on the 

role of pro and  anti-angiogenic factors in preeclampsia (24, 187, 216, 217). In a retrospective 

study, Levine et al. (215) reported that soluble Flt-1 is elevated in mid-pregnancy in 

preeclamptic patients 5 weeks before clinical symptoms were observed, and that there is a 

strong correlation between the level of soluble Flt-1 in maternal serum and the pathological 

degree of preeclampsia. In a review of 34 studies on soluble markers of preeclampsia, the 

mean concentrations of sFlt1 and sEng were significantly higher than in normal pregnancy 

(218, 219).  

 In preeclamptic women, the sFlt-1 level is observed to be directly (24) proportional to the 

degree of proteinuria (178), higher in those with earlier onset disease (178, 215), increased  

disease severity (155, 178) (215) and in those with small-for-gestational-age fetuses (209, 

215).  

Major sites of placental sFlt-1 expression are degenerative syncytiotrophoblasts known as 

syncytial knots (179). Whether the excess sFlt-1 is contributed to by other cell types such as 

macrophages in the placenta or monocytes in the maternal or fetal peripheral circulation has 

not been explored.  

The pathophysiology of up regulation of sFlt-1 in pre-eclampsia and pregnancy complications 

and whether it is a second order phenomenon is still to be completely understood. It has been 

postulated that soluble Flt-1 secreted from the trophoblast layer between the maternal and 

fetal blood vessels plays an important role in creating a barrier of ‘VEGF-low’ layer between 

the fetal and maternal sides in normal pregnancy. Unusual stress such as hypoxia in placenta 

or viral infection may induce abnormal expression of soluble Flt-1, which, in turn, blocks 
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physiological VEGF in various tissues at maternal side, and induces tissue dysfunction such 

as proteinuria (96).  

Soluble Flt-1 overexpression in rats has been shown to result in the characteristic clinical 

features of preeclampsia, hypertension, proteinuria and glomerular endotheliosis. The anti-

angiogenic state induced by excess placental production of sFlt-1 can be ‘rescued’ by 

administering VEGF-A and PlGF (155). 

1.10.4.3 Placental growth factor (PlGF) in preeclampsia 

Studies into the PlGF levels in normal pregnancy have documented a steady increase in serum 

PlGF during the first two trimesters, a peak at 29–32 weeks and a decline towards full term 

(206, 215). Published studies have shown serum PlGF levels to be significantly lower than 

normal pregnancies in early onset preeclampsia less than 37 weeks compared with late onset 

preeclampsia, severe disease compared with mild disease and in preeclampsia associated with 

fetal growth restriction (215, 220). Measured urinary PlGF levels have been shown to have 

similar profiles to the serum levels in normal and preeclamptic pregnancies (221). Maternal 

serum PlGF is known to be reciprocal to the levels of sFlt-1 (215). 

1.10.4.4 soluble Kinase Domain Receptor (sKDR) in preeclampsia 

Several studies have investigated the levels of the soluble form of the KDR receptor (sKDR) 

in human plasma. Maternal plasma sKDR is reduced in preeclampsia and in growth-restricted 

pregnancies (222-224) compared to non-pregnant and normal pregnancy levels.  

1.10.4.5 soluble Endoglin (sEng) in preeclampsia 

Literature to date on Endoglin in pregnancy has shown that the soluble form of Endoglin is 

elevated in preeclampsia and may play a significant role in the pathogenesis of the disease 

(188, 223, 225, 226). Placental expression and peripheral levels of sEng are up-regulated in 
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preeclampsia with the levels correlating with disease severity and falling after delivery. Over-

expression of sEng in pregnant rats leads to increased vascular permeability and hypertension 

without proteinuria. These effects are amplified by co-administration of sFlt-1, leading to 

severe preeclampsia including the HELLP (hemolysis, elevated liver enzymes, low platelets) 

syndrome and fetal growth restriction (170). These findings suggest that sEng may act in 

concert with sFlt-1 to induce dysfunction of the maternal endothelium (26, 218, 227) and  

severe preeclampsia (170). Although the available data suggest that the placenta is a major 

source of sEng during pregnancy, other sources such as maternal vasculature or monocytes 

cannot be ruled out. 

A case-control study of healthy nulliparous women showed the levels of sEng to increase 

gradually with increasing gestation in normal pregnancy and the development of preeclampsia 

(188). This increase in sEng is associated with an increase in the ratio of sFlt-1: PIGF and the 

composite biomarker (sFlt-1+ sEng): PIGF has been suggested to be predictive of 

preeclampsia (188). 

1.10.5 Soluble angiogenic markers in small for gestational age (SGA) / intrauterine fetal 

growth restriction (IUGR) 

1.10.5.1 sFlt in SGA / IUGR 

The published literature has produced conflicting results on circulating levels of sFlt-1 in 

mothers of small for gestational age fetuses. Maternal serum sFlt-1 has been described as 

increased (205, 224) or showing no difference in the first trimester (228), in the second 

trimester (229) or at term  (209) in normotensive women who deliver a SGA infant. A 

longitudinal study evaluating sFlt-1 at 4 week intervals from the first antenatal clinic visit 

until delivery has shown no difference in maternal serum sFlt-1 levels in normotensive 
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women destined to deliver a SGA infant compared with controls (230). The definition of SGA 

in this study was birth weight <10th centile for gestational age. Doppler studies were not 

incorporated in the assessment. Four studies have been reported incorporating uterine artery 

Doppler velocitometry in the assessment of small for gestational age fetuses (224, 231-233) 

while sparse data is available on angiogenic factor levels in small for gestational age fetuses 

with abnormal umbilical artery Doppler waveforms (224), a marker of placental insufficiency 

and vascular disease.  

1.10.5.2 PlGF in SGA / IUGR 

Published literature is consistent in showing lower PlGF levels in established SGA in 

normotensive women in the third trimester. The evidence for PlGF in first and second 

trimester is less consistent with some studies showing lower levels as early as the first 

trimester of pregnancy compared with gestational age-matched controls  (207, 230, 234-236) 

and others however reporting  no significant difference in maternal peripheral (206, 237) or 

urinary PlGF levels (238).  A longitudinal study examining PlGF concentration in pregnant 

women at <14, 15–19, 21–25, 27–30, 35–38 weeks gestation has shown a reduction in PlGF 

reaching significantly different levels at 27–30 weeks in normotensive women delivering an 

SGA infant compared with normotensive controls (206). 

1.10.5.3 soluble Kinase Domain Receptor (sKDR) in SGA / IUGR 

In published studies, no significant difference in mean plasma sKDR levels was noted 

between preeclamptic and normotensive women with SGA infants (222).  sKDR levels did 

not vary between normal and abnormal uterine artery Doppler resistance in normotensive 

SGA pregnancies (222).  
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1.10.5.4 soluble Endoglin (sEng) in SGA / IUGR 

A study into maternal plasma concentrations of soluble Endoglin in pregnancies with 

intrauterine growth restriction demonstrated that IUGR was characterized by elevated 

circulating sEng, to a lesser extent than preeclampsia and that there was a strong positive 

correlation between the sEng and sFlt1 concentrations (239). 

1.10.6 Angiogenic factors in the fetal circulation 

Few studies have been published on fetal angiogenic factor levels. In the literature to date, 

several studies by the same authors have explored the differences between clinical groups of 

preeclampsia and IUGR as well as maternal and cord blood levels of pro and anti-angiogenic 

factor levels. Umbilical vein sFlt-1 was positively and soluble kinase insert domain receptor 

(sKDR) negatively correlated with umbilical artery Pulsatility Index (PI) (240). No 

correlation could be found between umbilical artery serum angiogenic factors and clinical 

outcome (224, 240). Placental growth factor (PlGF) levels in the umbilical vein were below 

the detection limit in nearly all samples of IUGR fetuses and lower than in those with 

preeclampsia. In IUGR, sFlt-1 was increased, and PlGF and sKDR were decreased in serum 

from the umbilical vein. Additionally, fibroblast growth factor (FGF) was increased in serum 

from the umbilical vein of women with pregnancies complicated by IUGR (224). In normal 

and IUGR pregnancies, absolute levels of VEGF were higher, and levels of sFlt-1 and PlGF 

levels were lower in serum from the umbilical vein and umbilical artery compared with 

maternal serum (224). The authors concluded that the correlations between maternal and fetal 

angiogenic growth factor serum levels and Doppler ultrasound indices of uterine and 

umbilical arteries in preeclampsia and IUGR reflect the severity of the disorders especially for 

the fetus and that these findings suggest an imbalance of angiogenic and anti-angiogenic 

factors in IUGR, with formation of an anti-angiogenic state in maternal and, to a lesser extent, 
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umbilical vein blood. The placenta appears to play a central role in the release of sFlt-1 into 

maternal and umbilical blood. Umbilical artery blood was unaffected in IUGR, indicating that 

the fetus does not contribute to changes in angiogenic growth factor concentrations. 

In an assessment of umbilical vein serum, amniotic fluid, and maternal serum from 

preeclamptic and uncomplicated pregnancies that were delivered by caesarean section, low 

concentrations of soluble Endoglin were found in fetal circulation, which did not differ 

between preeclampsia and control pregnancies. These results suggested that the fetus appears 

not to contribute to elevated circulating maternal soluble Endoglin concentrations in 

preeclampsia (241). 

1.10.7 Angiogenic factors and their receptor levels as a predictive test for preeclampsia 

and intrauterine fetal growth restriction 

Recent research has been focused on exploring clinical, ultrasound and laboratory parameters 

that may lead to early detection or prediction of preeclampsia. These studies have suggested 

previous history of preeclampsia, pre-existing medical conditions such as renal disease, 

chronic hypertension, pre-gestational diabetes, multiple pregnancy and anti-phospholipid 

antibody syndrome as clinical factors, uterine artery Doppler resistance on ultrasound 

parameters and angiogenic factors sEndoglin, sFlt-1/PlGF ratio, ADAM-12, PAPP-A, 

Pregnancy Protein13, homocysteine, ADMA, uric acid, leptin and urinary albumin and 

calcium are other parameters as having potential in the prediction of preeclampsia (21, 242).  

Angiogenic factors and their receptor levels have been evaluated for their screening potential 

for preeclampsia and fetal growth restriction. The results on sFlt-1-1 has been variable with 

some studies demonstrating no significant difference in maternal serum sFlt-1 levels prior to 

20 weeks of gestation in women who develop preeclampsia compared with normal 
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pregnancies (243), while a few studies have shown a significant difference prior to 20 weeks 

(244). In a longitudinal study by Levine et al, maternal serum sFlt-1 levels significantly 

increased 5 weeks prior to the onset of hypertension and proteinuria in women who 

subsequently developed early onset preeclampsia (215). 

In women who subsequently develop preeclampsia, serum PlGF concentrations have been 

shown to be lower as early as 10–13 weeks of gestation (206, 207, 215, 237, 245-249), with a 

further reduction in levels 5 weeks prior to the clinical onset of the disease (215). First 

trimester urinary PlGF levels however have not been shown to be of value in predicting 

preeclampsia (250). Current evidence suggests that high serum sFlt-1 and low serum PlGF in 

first and second trimester can distinguish women who subsequently develop preeclampsia 

from those who remain normotensive throughout pregnancy (244).  

The performance of angiogenic factors as biomarkers is improved by using the levels of PlGF 

in the assessment (235, 249, 251-255) and also using composite markers such as sFlt / PlGF 

(256-258) or (sFlt-1+ sEng)/ PIGF rather than individual markers (252). However, published 

literature suggests that VEGF family proteins do not have sufficient power to accurately 

predict late onset preeclampsia, small for gestational age (SGA) pregnancies or preterm birth 

(24). 

A recent large study evaluated the performance of a combination of maternal clinical and 

biochemical markers in first trimester including mean arterial pressure, uterine artery 

pulsatility index, fetal nuchal translucency thickness, pregnancy associated plasma protein A 

(PAPP-A), free β-hCG, PlGF, placental protein 13 (PP13), disintegrin and metalloprotease 

(ADAM 12) in the prediction of small for gestational age in the absence of preeclampsia. The 

detection rates in this study were 73% for SGA requiring delivery before 37 weeks and 46% 

for those delivering at term (236). Several other studies have evaluated the predictability of a 
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combination of biomarkers including angiogenic factors in the early prediction of 

preeclampsia and SGA/IUGR with varying predictability (259). 

Based on the published literature, the predictive value of VEGF family angiogenic growth 

factors appear to be more consistent for preeclampsia than for small for gestational age (SGA) 

or fetal growth restriction (IUGR). Current data are insufficient to recommend the angiogenic 

factors in first or second trimester as reliable biomarkers for the prediction of SGA or IUGR. 

A recent review provided a summary of studies screening for preeclampsia as well as IUGR 

(24). The evidence to date on the use of circulating angiogenic factors in the prediction and 

diagnosis of preeclampsia was recently reviewed (219), with the authors suggesting the use of 

sFlt-1/PlGF ratio in the diagnosis and the management of preeclampsia. The role of 

angiogenic factors in fetal growth restriction has not been as well established as in 

preeclampsia. Variable definitions of small for gestational age and intrauterine fetal growth 

restriction have led to inconsistent results on the angiogenic factor profile of fetal growth 

restriction.  

 

1.11 Role of peripheral monocytes in normal pregnancy and placental disease  

1.11.1 Human blood monocytes 

There is evidence that decidual macrophages play a major role in vascular remodeling in early 

placentation as well as a role in the immune mechanism responsible for the acceptance of an 

allogenic fetus by the mother (260). Suboptimal vascular remodeling of spiral arteries is 

thought to play a key role in the pathogenesis of preeclampsia (261). Monocytes, the 

peripheral precursor of macrophages have been less studied in the pathogenesis of pregnancy 
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complications and may play a significant role in pathogenesis of pregnancy complications 

including preeclampsia and IUGR. 

Monocytes are mononuclear cells arising from bone marrow precursors that circulate in blood 

and eventually migrate into body tissues where they further mature into macrophages and 

perform multiple functions in the body including roles in homeostasis, immune defense, and 

tissue repair (262).  

  

1.11.2 Monocyte phenotype and subtypes: classical, intermediate and non-classical 

Human monocytes were initially defined on the basis of morphology and cyto-chemistry 

(monocyte-specific esterase) and later by expression of cell-surface markers such as CD14 

and the light scatter properties in flow cytometry (262). Classical monocytes are the cells 

described by hematologists for a century as monocytes on the basis of size and structure.  

With the aid of  immunofluorescence and flow cytometry, an additional subset of cells co-

expressing CD14 and CD16 antigens and  labelled as “non-classical “ monocytes (263) have 

been identified in human  peripheral blood. These CD14+/CD16+ cells account for 2.2% of 

the mononuclear cells and form about 13% of all cells identified by the monocyte-specific 

CD14 monoclonal antibody.  The CD14+/CD16+ cells can be assigned to the monocyte 

lineage based on typical morphology, on expression of additional monocyte associated 

molecules, on the ability to form reactive oxygen intermediates and on the expression of 

monocyte specific NaF-sensitive esterase. Light scatter analysis reveal lower forward angle 

and right angle light scatter for the CD14+/CD16+ cells compared with the regular 

monocytes, and the average cell size is 13.8 and 18.4 microns, respectively. Expression of 

class II antigens on these "small monocytes" is twofold higher compared with the regular 
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monocytes. By contrast, the capacity to adhere to plastic surfaces, as well as the ability to 

phagocytize antibody coated erythrocytes is clearly reduced in the CD14+/CD16+ monocyte 

subset as compared with the regular monocytes. Hence the CD14+/CD16+ cells represent a 

new monocyte subset with a distinct functional repertoire. The classical CD16− monocytes 

and these CD16+ cells have been shown to share morphology, cytochemistry, and many cell 

surface markers (263).  

Several research groups have extensively studied the phenotypes and functions of these two 

groups including whole genome wide analysis (262, 264-268). More recently, it has become 

evident that further heterogeneity exists in the CD16 positive subtype of monocytes, and an 

intermediate monocyte phenotype between classical and CD14+CD16+ monocyte subsets has 

been described (269). These are low in numbers, but have been shown to have unique features 

and expand with cytokine treatment and in inflammation (270). There appears to be a 

developmental relationship between these cells, changing from classical to intermediate to 

non-classical in the presence of infection or inflammation (271, 272). This change has been 

shown with infection or with macrophage colony-stimulating factor  (M-CSF) treatment, as 

an increase first of the intermediate cells followed by an increase of the non-classical 

CD14+CD16++ monocytes (273). The increase in CD14 or CD16 levels indicated as “+” and 

“++” denotes an expression level that is ∼ 10-fold and 100 fold above the isotype control.   

Recently a proposed nomenclature of monocyte subtypes by a group of experts in the field 

was endorsed by the Nomenclature Committee of the International Union of Immunological 

Societies (262) to facilitate communication and standardization of research into monocytes. 

The proposed nomenclature for monocytes subdivides human monocytes into 3 subsets 

classical, intermediate, and non-classical on the basis of the expression of CD14 and the 

CD16 receptors as listed in Table 1 and Figure 1.6 (262). At this stage the nomenclature does 
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not include markers of monocyte activation. The use of CD14 and CD16 markers have been 

published in many studies as being useful in distinguishing the monocyte subtypes. It is 

recommended to use antibodies directed against the lipopolysaccharide-binding domain for 

CD14 and those that bind to the Fc-binding domain for CD16 (262). Their use is 

recommended for determination of monocyte sub-populations (262). 

The classical monocytes show high CD14 expression but no CD16 (CD14++CD16−), the 

intermediate monocytes show a high level of CD14 together with low CD16 (CD14++CD16+), 

and the non-classical monocytes express a low level of CD14 together with high CD16 

(CD14+CD16++). When the intermediate and the non-classical monocytes are not separately 

defined, then it is proposed to classify them collectively as CD16+ monocytes. Gene 

expression profiling revealing the defining features of the classical, intermediate, and non- 

classical human monocyte subsets has been published  (268). 

Human monocyte subtype CD14 CD16 

Classical ++ - 

Intermediate ++ + 

Non-classical + ++ 

Table 1.2 Human blood monocytes classification (262) 
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1.11.3 Monocyte subtypes and their in-vivo functions 

1.11.3.1 Classical monocytes 

CD14++ CD16- monocytes, commonly referred to as the “classical subset are associated with 

extravasation and inflammation. Once infiltrated into tissues, these monocytes develop into 

macrophages and help with pathogen clearance and wound healing (274). Classical 

monocytes are generally described to play an anti-inflammatory role in many disease states 

(275). 
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Figure 1.6 Nomenclature of monocytes and dendritic cells (DCs) in blood based on cell 

surface marker expression. The 6 types of cells are shown with different symbols, which 

represent the crucial markers of the respective cells. Blue hook indicates CD14; red square 

flag, CD16; green flag, CD303; blue flag, CD1c; red diamond flag, CD141. A higher number 

of a given symbol indicates a higher density of a given receptor. The arrows in the upper 

portion represent the developmental relationship (262).  

1.11.3.2 Intermediate monocytes 

A recent study explored genetic evidence for a distinct role of CD14++CD16+ intermediate 

monocytes in human immunity (276). The three monocyte subtypes were purified using 

SuperSAGE in combination with high-throughput sequencing.  Unique identifiers of 

CD14++CD16+ monocytes were revealed, delineating these cells from the 2 other monocyte 
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subsets. Gene Ontology (GO) enrichment analysis suggested diverse immunologic functions, 

linking CD14++CD16+ monocytes to Ag processing and presentation (e.g. CD74, HLA-DR, 

IFI30, CTSB), to inflammation and monocyte activation (eg. TGFB1, AIF1, PTPN6) and to 

angiogenesis (e.g. TIE2, CD105) (276). 

Intermediate monocytes with CD14++ and CD16+ are gaining increasing attention in the 

research world as an inflammatory marker. They are low in frequency, have their unique 

features and expand with cytokine treatment and inflammation (262). The intermediate 

monocyte subset has been suggested to be a transitional population between the classical and 

the non- classical subsets and has often been previously grouped together with the non-

classical subset in the published literature. The combined non-classical and intermediate 

subsets are thought to replenish tissue resident macrophages and dendritic cells (277) and 

have been shown to produce pro-inflammatory cytokines (266, 278). Their pro-inflammatory 

association was also illustrated by the fact that their number increases during inflammatory 

conditions, such as during sepsis (271, 278). Their role in HIV-1 infection and atherosclerosis 

has been recently explored (279, 280). 

1.11.3.3 Non-classical monocytes 

In vitro experiments have shown that the CD16+ non-classical monocytes are far more mobile 

than their CD16- relatives with patrolling behaviour (281).  Human non-classical monocytes 

have exhibited crawling behaviour on the endothelium after being adoptively transferred into 

mice (282).  Smooth and mediated movements of CD16+ monocytes in vitro through large 

frontal areas of extended lamellipodium in a seemingly crawling manner have been described  

(269). This behaviour suggests a surveillance function for the non-classical monocytes, 

surveying the endothelium for signs of inflammation or damage and poised to transmigrate 

rapidly (269). Genes associated with cytoskeleton mobility, such as Rho GTPases, RHOC and 
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RHOF, and several upstream Rho activators and downstream effectors were most highly 

expressed by the non-classical subset (268, 276) and may explain the highly motile behaviour 

of the non-classical subset. The non -classical monocytes have been shown to play a pro-

inflammatory and pro-fibrogenic role (283). 

1.11.4 Markers of monocyte activation into M1 inflammatory and M2 anti-

inflammatory subtypes 

1.11.4.1 Classification of inflammatory subtypes 

Monocytes and macrophages are immune system cells that play an indispensable role in 

homeostasis and defense. Depending on the environment, monocytes can differentiate into 

macrophages or dendritic cells. Monocytes and macrophages can be phenotypically polarized 

by the environment to mount specific functional programs. Polarized activation of cells of the 

monocyte-macrophage lineage into M1 and M2 cells ( Figure 1.7) is an operationally useful, 

simplified descriptor of the functional plasticity of these cells (284). 

Polarized macrophages can be broadly classified in two main groups: classically activated 

macrophages (M1), whose prototypical activating stimuli are IFN gamma and LPS, and 

alternatively activated macrophages (M2), further subdivided in M2a (after exposure to IL-4 

or IL-13), M2b (immune complexes in combination with IL-1beta or LPS) and M2c (IL-10, 

TGFβ or glucocorticoids) (285).  M1 exhibit potent microbicidal properties and promote 

strong IL-12-mediated Th1 responses, whilst M2 support Th2-associated effector functions.  

A transition from pro- inflammatory M1 to anti-inflammatory M2 phenotype is characterized  

by changes in cell surface marker expression including CD14, CD36, CD163, CD204, 

CD206, B7-H4 and CD11b, which are distinctive of M2 monocytes and  macrophages (286). 
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M2 polarized macrophages play a role in resolution of inflammation through high endocytic 

clearance capacities and trophic factor synthesis, accompanied by reduced pro-inflammatory 

cytokine secretion (285).  Differentiation of monocytes into M1 and M2 macrophages play a 

central role in wound healing (287).   

 

Figure 1.7 Key properties and functions of polarized macrophages. ROI and RNI indicate 

reactive oxygen and nitrogen intermediates. M2s refer to diverse forms of M2 activation 

(284). 

1.11.4.2 CD86 

CD86 is a 75kDa cell surface protein expressed primarily on monocytes, dendritic cells and 

activated B cells. It plays an important role in co-stimulation of T cells in primary immune 

responses (288, 289) and is strongly expressed by M1-type macrophages/monocytes. 
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1.11.4.3 CD163 

CD163, a 110-130 kDa transmembrane glycoprotein is a member of the scavenger receptor 

superfamily known as Scavenger receptor cysteine-rich type 1 protein M130 (M130), 

haemoglobin scavenger receptor and macrophage-associated antigen. It is a monocyte 

/macrophage-restricted antigen expressed on tissue macrophages and peripheral blood 

monocytes. The expression of CD163 on monocytes is up regulated upon cellular activation 

and reportedly changes on monocytes and macrophages as these cells differentiate. This 

finding suggests a role for this molecule in the differentiation and/or regulation of monocyte 

and macrophage function. CD163 is considered part of the M2 anti-inflammatory profile of 

antigens (290-292). 

1.11.5 Monocytes in pregnancy 

Pregnancy is associated with a major adaptation of the maternal immune system to 

accommodate the semi-allogeneic fetus (293, 294). The innate immune system is known to be 

significantly activated and is thought to be favourable to the newly implanted fetus. An 

increase in the number of peripheral blood monocytes has been demonstrated as well as an 

activated phenotype from the second  trimester onwards comparable to that seen in systemic 

sepsis (295, 296). Whether the changes in monocyte number and behaviour during pregnancy 

are the result of changes in monocyte subsets was explored in a recent study (274). The 

findings of this study showed that the percentage of combined non-classical and intermediate 

monocytes is higher during human and rat pregnancies compared to non-pregnant controls. 

The higher percentage of intermediate monocytes in contrast to non-classical monocytes is 

responsible for the higher percentage of combined non-classical/intermediate monocytes 

(274). 
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Changes in the leukocyte populations in pregnancy have been characterised in previous 

studies. A study on phenotype and intracellular cytokines of circulating granulocytes, 

monocytes, and T  lymphocytes of pregnant women during pregnancy reported an increased 

percentage of granulocytes and a decrease in lymphocytes as well as the presence of 

generalized leukocyte activation  (295). In this study the proportion of monocytes was seen to 

remain stable throughout gestation although a progressive up-regulation of surface markers 

CD11a, CD54, and CD64 was detected. Monocytes also showed higher production of 

interleukin (IL)-12 and IL-1beta compared with the non-pregnant state, and granulocytes had 

greater potential to synthesize IL-8.  These changes were particularly marked in late gestation 

(295). T lymphocytes did not have any characteristics of the activated state and showed    

decreased IL-6 production. These authors demonstrated that activation of maternal monocytes 

and granulocytes increases during pregnancy and proposed the idea that pregnancy results in 

an elevation of the innate immune system and suppression of the adaptive immune system 

(295). 

A recent study of the influence of pregnancy and labour on monocyte subpopulations 

characterised monocytes by flow cytometry using CD14, CD16 in the peripheral venous 

blood of non-pregnant, late normal gestation and preterm labour. This study did not 

demonstrate any difference in the relative proportion of each monocyte subset within the 

groups (297).  

The molecular characteristics of monocytes that were derived from the maternal circulation 

and the placenta using CD14 immune selection were examined by microarray and real-time 

reverse transcriptase-polymerase chain reaction for genotype and expression patterns. CD14 

monocytes from the maternal blood and the placenta share strong phenotypic and genotypic 

similarities with an enhanced inflammatory pattern in the placenta, as opposed to the fetal 
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genotype of the trophoblast cells. The functional traits of the CD14 in blood and placental 

monocytes suggested that they both contribute to propagation of inflammation at the maternal 

fetal interface (298).  

1.11.6 Effect of preeclampsia and IUGR on monocyte phenotype (subtypes) and function 

(inflammatory markers) 

The leukocytes of healthy pregnant women have been shown to differ substantially and 

significantly from those of non-pregnant women with increased CD11b, CD14, and CD64 and 

increased intracellular reactive oxygen species (296). In preeclampsia there was, in addition to 

these changes, reduced expression of L-selectin and further increases in intracellular reactive 

oxygen species. These changes were similar but not identical to sepsis. The authors concluded 

that normal third-trimester pregnancy is characterized by remarkable activation of peripheral 

blood leukocytes, which is further increased in preeclampsia. This study did not specifically 

characterize any pregnancy or preeclampsia related changes in monocytes (296).  

An increase in peripheral blood monocytes and an altered activation status of these monocytes 

in preeclampsia as compared to healthy pregnancy has been suggested  by previous studies 

(299-303).  

A study into the characterization of monocyte subtypes in pregnancy and preeclampsia found 

that inflammatory changes associated with preeclampsia showed increased phenotypic and 

metabolic changes in granulocytes and monocytes by demonstrating a significant increase in 

mean channel brightness for CD11b on granulocytes and monocytes associated with 

preeclampsia (274). Basal intracellular reactive oxygen species were increased in monocytes 

but not in granulocytes (304). It has been suggested that placental syncytiotrophoblast 
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membrane microparticles (STBM), which are released into the peripheral blood, may 

contribute to the maternal inflammatory response of monocytes (305). 

The inflammatory role of monocytes in preeclampsia has just started to be explored with just 

a handful of studies documenting a change in the monocyte subsets and inflammatory 

markers associated with preeclampsia. Monocyte subtypes in isolated intrauterine fetal 

growth restriction is still to be explored. Whether the difference in the maternal syndrome 

between PE and isolated IUGR can be explained by a difference in the maternal monocyte 

activation and secretion of inflammatory markers remains to be explored.  

1.11.7 Inflammatory subtypes in pregnancy 

Studies assessing the M1/M2 phenotype of peripheral blood monocytes in preeclampsia are 

few; moreover, studies examining monocyte activation and inflammatory markers in IUGR 

have not been published. A recently published study evaluated whether the monocyte 

inflammatory state in preeclampsia  might be associated with polarization to either M1 

(classically activated)  or M2 alternatively activated monocyte subsets (306).  The research 

focused on surface receptors characteristic of M1 activation, such as Toll-like receptor (TLR) 

2, TLR4, and CD64, or M2, such as CD163 and CD206 as detected by flow cytometry. 

Tumour necrosis factor-alpha (TNF-α), interleukin-(IL)-12p40, IL-12p70, and IL-10 were 

evaluated in the supernatant of monocyte cultures by ELISA. This study demonstrated that 

expression of M1 markers TLR4 and CD64 by monocytes from preeclamptic women was 

significantly higher, while the expression of CD163 and CD206 expression was significantly 

lower compared with normal term pregnant women. Endogenous production of TNF-α, IL-

12p40, and IL-12p70 by monocytes was increased, while synthesis of IL-10 was lower in 

women with preeclampsia. They concluded that monocytes from women with PE are 

classically activated, producing higher levels of pro-inflammatory cytokines, and express 
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surface receptors characteristic of the M1 subset. These results provide evidence that the 

systemic inflammatory environment in preeclampsia may differentiate and polarize these cells 

to the M1 phenotype (306).  Monocyte subsets in this study were characterized as M1 and M2 

rather than into subsets of classical, intermediate or non-classical based on CD14 and CD16 

expression. Whether or not similar changes were associated with normal pregnancy as 

compared to non-pregnant females was not explored.  

1.11.8 Fetal/Cord blood monocytes in normal and complicated pregnancy  

Fetal or cord blood monocyte phenotypes have not been well described. There are no 

comprehensive data describing the distribution of monocyte subsets in cord blood. A study 

into cord blood monocyte subsets and Toll like receptor expression in normal pregnancy and 

pregnancies complicated by parasitic infections described a lower percentage of non-classical 

(CD14+CD16+) monocytes in cord blood as compared to the maternal circulation(307). The 

distribution of intermediate monocytes was not mentioned in this study.  Another study, 

dividing monocytes into two groups of classical and non-classical, reported similar 

frequencies of monocyte subsets in cord blood and adult peripheral blood with concordant 

expression of CD11c, CD80, CD86, CD163 and HLA-DR (308). Human fetal and adult 

monocytes have been shown to be functionally distinct in response to cytokines associated 

with in-utero infection and preterm labour (309). The molecular characteristics of CD14 

monocytes that were derived from the maternal circulation and placenta have been shown to 

be concordant and different to trophoblast cells. Fetal monocytes have not been profiled with 

respect to preeclampsia or intrauterine fetal growth restriction.  
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1.12 Angiogenic factor modulation of the immune system 

1.12.1 Flt-1 expression on maternal monocytes 

Until recently, the expression of Flt-1 has been localized to only two tissues in the body other 

than trophoblast in pregnancy, namely vascular endothelium and monocytes including 

monocyte derived mature dendritic cells (310). Flt-1 was initially thought to be almost 

exclusively expressed on vascular endothelial cells. As an exception, Flt-1 transcript was 

found to be expressed in human peripheral blood monocytes. The first report of Flt-1 

expression external to endothelial cells was the detection of Flt-1 messenger RNA (mRNA) in 

human peripheral blood monocytes (146, 147). The synthesis of Flt-1 has been recently 

described by activated platelets binding to monocytes in preeclampsia (311). The strong 

placental expression of PlGF by trophoblast could contribute to the marked angiogenesis seen 

in the growing placenta which may be partially mediated by chemo attraction of peripheral 

blood monocytes (95, 148).  

Using monoclonal antibodies against 2 different antigenic epitopes on the Flt-1 extracellular 

domain, it has been shown that human peripheral blood expresses Flt-1 as a cell surface 

molecule. KDR was not found to be expressed at detectable levels on monocytes in this study 

(312).  A study by Clauss et al (147) also showed that monocytes, in contrast to endothelium, 

express only the VEGF receptor Flt-1, but not the second known VEGF receptor, KDR (146), 

and that Flt-1 also specifically binds PlGF. Both VEGF and PlGF stimulate tissue factor 

production and chemotaxis in monocytes at equivalent doses, in addition to triggering release 

of further VEGF (146). 

Neutralizing antibodies to the KDR receptor reduce the VEGF-stimulated tissue factor 

induction in endothelial cells to levels obtained by stimulation with PlGF alone, but neither 
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affects PlGF-induced tissue factor induction in endothelial cells nor the VEGF-dependent 

tissue factor production in monocytes. These findings strongly suggest Flt-1 as a functional 

receptor for VEGF and PlGF on monocytes and endothelial cells and identify this receptor as 

a mediator of monocyte recruitment and pro-coagulant activity (147). 

CD34+cells9 a marker for primitive bone marrow derived progenitor cells) in human cord 

blood, originally negative for the Flt-1 expression, have been shown to differentiate into Flt-

1+ cells with monocyte-macrophage markers after culture in the presence of hematopoietic 

cytokines (312). 

1.12.2 Endoglin expression on maternal monocytes  

Endoglin (CD105) is a component of the TGF-β receptor system and acts as a co-receptor for 

TGF- β1 and TGF- β3 with high affinity (313-315). While Endoglin is primarily expressed on 

endothelial cells (163) and induces proliferation and migration of these cells, it has also been 

demonstrated to be present on other tissues including macrophages (165), erythroid precursors 

(316), syncytiotrophoblast (166), activated monocytes (165), and stromal cells (317). The 

expression of CD105 is increased in activated endothelium and tissues undergoing 

angiogenesis such as tumors and in cases of wound healing or inflammation.  Soluble 

Endoglin (sEng) inhibits TGFβ1 binding to its receptor on cell surface, disordering the work 

of TGFβ1 signal pathway and thus preventing stimulation of endothelial nitric oxide synthase 

and vessel dilatation (202). The soluble form of Endoglin has been proposed to reduce the 

bioavailability of TGF-β1, thus inhibiting its signaling pathway (318).  Elevated levels of 

soluble Endoglin levels have been documented in preeclampsia as well as in intrauterine fetal 

growth restriction (178). Increased levels of Endoglin have been shown to indicate more 

severe placental disease (189, 230).  
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 1.12.3 Monocyte functions and anti-angiogenic factors 

Treatment of human monocytes with vascular endothelial growth factor (VEGF) isolated 

from tumour cell supernatants was reported to induce monocyte activation and migration. 

Recombinant human VEGF165, and VEGF121 had a major effect on human monocyte 

migration (147). Chemotactic activity of VEGF165 was inhibited by a specific antiserum 

against VEGF, by heat treatment of VEGF165, and by protein kinase inhibitors. Placental 

growth factor, a heparin-binding growth factor related to VEGF, has also been shown to be 

chemotactic for monocytes (147). 

Barleon et al showed that VEGF and PlGF stimulate the chemotaxis of human monocytes and 

neutrophils via the Flt-1 receptor in vitro. A demonstration of VEGF-mediated monocyte 

migration even in the presence of KDR-neutralizing polyclonal antibody, suggested that this 

cell migration signal is mediated by Flt-1 (146). These results strongly suggest that Flt-1 is a 

novel cell surface marker as well as a biologically functional molecule for monocyte-

macrophage lineages.  

Investigation into the intracellular signaling pathways mediating the biological functions 

triggered by Flt-1 in primary monocytes revealed that both PlGF-1 and VEGF-A can activate 

Flt-1–dependent signaling pathways of PI-3K, p38 kinase, Akt, and ERK1/2 in primary 

human monocytes, leading to the activation of several intracellular signaling pathways. These 

pathways are critically involved in primary monocyte chemotaxis (319).  

1.12.4 Role of monocytes in pregnancy complications of preeclampsia and IUGR 

Peripheral blood mononuclear cells (PBMC) of pregnant women have been shown to be 

capable of expressing variable amounts of Flt-1 proteins (320). This study suggested that Flt-1 

dysregulation in PBMCs of pregnant women resulting in over-expression of sFlt-1 could be 
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an additional (extra-placental) source of sFlt-1 that contributes to the pathogenesis of 

preeclampsia.  The strong placental expression of PlGF could contribute to the marked 

angiogenesis seen in the growing placenta which may be partially mediated by chemo-

attraction of peripheral blood monocytes (95, 148). While there are sparse data available on 

monocytes in preeclampsia, there are no published studies exploring peripheral monocyte-

derived anti-angiogenic factors in pregnancy complications of fetal growth restriction. 

Whether the excess circulating sFlt-1 observed in preeclampsia is produced by other cell 

types such as monocytes/macrophages in the placenta as well as maternal peripheral 

circulation has not been explored. 

1.12.5 Monocyte subtypes and angiogenic factors  

The proposed nomenclature for monocytes subdivides human monocytes into 3 subsets on the 

basis of the expression of CD14 and the CD16 receptors, classical CD14++CD16-. Little is 

known about the pro and anti-angiogenic factor expression by different subtypes of 

monocytes. One of the published studies on gene expression on monocyte subsets suggested 

that surface marker KDR and Endoglin were expressed on intermediate monocytes (321). 

These genes were apparent only after the threshold criteria in their analysis were lowered. 

This may be because pro-angiogenesis is not a feature of all intermediate monocytes, and/or 

that pro-angiogenic monocytes can also be found within non-classical and classical subsets. 

Only the intermediate subset was able to form cell clusters upon vascular endothelial growth 

factor (VEGF) stimulation (269).  

In one of the few studies on different functional properties of the two monocyte subsets 

classical (CD14++CD16+) and non-classical (CD14+CD16++), CD16++ monocyte 

chemotaxis towards the angiogenic ligands VEGF-A and PlGF was reduced compared to 

CD16- monocytes (322). Flt-1 protein expression was lower in CD16+ monocytes than in 
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CD16- monocytes.  The reduced chemokinesis of CD16+  monocytes was attributed to lower 

Flt-1 levels,  secondary to lower Flt-1 expression (322). The authors concluded that these 

novel functional differences between CD16- monocytes and CD16+ monocytes may predict 

different functional roles of both monocyte subsets in vascular repair, arteriogenesis and 

atherogenesis (322). No data are available for any variation in PE and IUGR. 

1.12.6 Fetal circulation /Cord blood monocytes and angiogenic factors expression  

There is no published literature on whether fetal/placental circulating monocytes contribute to 

the anti-angiogenic factor expression. 

1.12.7 Monocyte polarization and anti-angiogenic factor expression 

The association of monocyte polarization into M1/M2 phenotypes and correlation with anti 

angiogenic factor expression has not been described in the literature. 

 

1.13 Significance of maternal metabolic syndrome including dyslipidaemia 

in clinical preeclampsia and fetal growth restriction. 

1.13.1 Lipid profile  

Lipid profile is a panel of blood tests that serves as an initial broad medical screening tool for 

abnormalities in lipids such as cholesterol and triglycerides. The results of this test can 

identify dyslipidemias and help determine the risk of cardiovascular disease. The lipid profile 

typically includes total cholesterol (TC), high density cholesterol (HDL) and triglycerides 

(TG). Using these values low density lipoprotein (LDL) and total cholesterol/high density 

cholesterol ratio (TC/HDL) are calculated.  
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1.13.1.1. Cholesterol 

Cholesterol, an essential component of the cell wall, is a lipid that is mainly synthesized 

rather than absorbed by the body. In addition to its importance within cells, cholesterol also 

serves as a precursor for the biosynthesis of steroid hormones, bile acids and vitamin D (323). 

Cholesterol is carried in the blood as part of particles called lipoproteins. While there are 

different types of lipoproteins, the most relevant to cholesterol transport are HDL and LDL. 

1.13.1.2 HDL 

High-density lipoprotein (HDL) is one of the five major groups of lipoproteins which carry 

cholesterol in the blood stream. HDL is considered to prevent atheroma forming and is often 

referred to as good cholesterol. In healthy individuals, about 30% of blood cholesterol is 

carried by HDL (324). 

HDL particles remove fats and cholesterol from cells, including within artery wall atheromas, 

and transport it back to the liver for excretion or re-utilization. In addition to its 

cardiovascular effects, HDL has been shown to be a potent inhibitor of inflammation, acting 

on a number of pathways. HDL inhibits endothelial inflammation in both in vitro and in vivo 

models, reducing the expression of key cell adhesion molecules (324). In addition, HDL has 

been shown to have an effect on the coagulation pathway by inhibiting platelet activation and 

reducing thrombus formation. By reducing the activation of leukocytes, HDL can inhibit 

leukocyte recruitment to the endothelium. HDL has been suggested as an anti-inflammatory 

molecule for a number of diseases (324). 

1.13.1.3 LDL 

Low-density lipoprotein (LDL) is one of the five major groups of lipoproteins. The majority 

of cholesterol in the blood is LDL cholesterol, with the proportion varying from person to 
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person. A study has shown that higher levels of LDL particles are associated with health 

problems, including cardiovascular disease (325). LDL molecules are often called bad 

cholesterol as they are responsible for transport of their cholesterol and fat content into artery 

walls, attract macrophages, and thus promote atherosclerosis (326).  

1.13.1.4 Apo lipoprotein AI (Apo1) 

As a major component of the high density lipoprotein complex, Apo lipoprotein A-1 has a 

specific role in lipid metabolism (327). ApoA1 promotes fat efflux, including cholesterol, 

from tissues to the liver for excretion (327). Apo A-1 is also thought to be a prostacyclin 

stabilizing factor, and may have an anti-coagulation effect.  Apo A1 and Apo E interact to 

modify triglyceride levels in coronary heart disease patients (327, 328).  

1.13.1.5 Apo lipoprotein B 

Apo lipoprotein B (ApoB) is the primary Apo lipoprotein of chylomicrons and low density 

lipoproteins which is responsible for carrying cholesterol to body tissues. It is absolutely 

required for their formation and on the LDL particle appears to act as a ligand for LDL 

receptors in various cells throughout the body (329).   

1.13.1.6 Triglycerides (TG) 

Triglycerides are a commonly measured component of lipid profiles for assessment of 

cardiovascular risk.  A triglyceride is an ester formed by combining glycerol with three fatty 

acid molecules.  Plasma triglycerides are primarily produced by the intestine and liver while 

dietary triglycerides enter the circulation within chylomicrons. Triglycerides assembled from 

de-novo synthesized fatty acids and from lipids returning to the liver are secreted in very-low-

density lipoprotein (330).  

http://en.wikipedia.org/wiki/Lipid_metabolism
http://en.wikipedia.org/wiki/Cholesterol
http://en.wikipedia.org/wiki/Prostacyclin
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1.13.2 Hyperlipidaemia and the risk of cardiovascular disease 

Heart disease remains the most common cause of death in the developed countries (331).  

Observational epidemiological studies have identified multiple independent risk factors for 

coronary artery disease, including age, gender, smoking, diabetes, hypertension and 

dyslipidaemia (331). Dyslipidaemia is causally related to cardiovascular disease (332). 

Hypercholesterolemia and hyperlipidaemia are strongly associated with cardiovascular 

disease as they promote atherosclerosis, a precursor to myocardial infarction, stroke, and 

peripheral vascular disease. The specific markers of dyslipidaemia include individual and 

combinations of HDL, LDL, Apo lipoprotein B and triglycerides. 

The role of low-density lipoprotein (LDL) particles in the development of atherosclerosis and 

cardiovascular disease is well documented (333). Reducing the high levels of LDL using 

treatments such as HMG-CoA reductase inhibitors (statins) has reduced the risk of 

cardiovascular disease and is now considered part of standard clinical management. Data from 

several studies have demonstrated that although this risk reduction is demonstrable when LDL 

is at high levels, the protective benefit is lower when the LDL is at moderate or low levels 

(334, 335). 

Since the Framingham Heart Study (336), elevated levels of HDL cholesterol have been 

recognized as an independent protective factor against coronary heart disease. In a re-analysis 

of the data from several studies including the Framingham Heart Study (337) on 

hyperlipidaemia and cardiovascular risk, Gordan et al (338) found that a 1mg/dl (0.026 mmol) 

increment in HDL was associated with a significant coronary heart disease risk decrement of 

2% in men and 3% in women as well as a significant decrease in cardiovascular disease 

mortality rates of  3.7% in men and 4.7% in women. The 95% confidence intervals for these 

decrements in coronary heart and cardiovascular disease risk were in the range of 1.9-2.9%. 
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ApoB has been documented to be predictive of ischemic cardiovascular disease in the general 

population (339). There is considerable evidence that levels of ApoB may be a better 

indicator of risk of heart disease risk than total cholesterol or LDL (340).   However, 

primarily for historic reasons, cholesterol, and more specifically LDL, remains the primary 

lipid test clinically in use for the risk factor of atherosclerosis. A panel of 30 international 

experts concluded that CVD risk is more directly related to the circulating atherogenic LDL 

quantity than to cholesterol content and advocated using Apo B as a therapeutic target in 

managing patients on lipid lowering therapy (341). 

Some studies have suggested that ApoB and the Apo B/Apo A1 ratios are thought to be a 

better marker of risk of vascular disease and a better guide to the adequacy of statin treatment 

than any cholesterol index (342). Several studies including the INTERHEART study found 

that the ApoB / ApoA1 ratio is more effective at predicting heart attack risk in patients who 

had had an acute myocardial infarction, than either the ApoB or ApoA1 measure alone (343).   

A recent large study concluded that the non-fasting Apo B/Apo A1 ratio was superior to any 

of the cholesterol ratios for estimation of the risk of acute myocardial infarction  in all ethnic 

groups, in both sexes, and at all ages (343).  

Hyperlipidaemia is an established risk factor for coronary heart disease in both men and 

women. Raised triglycerides are a component of the metabolic syndrome and are strongly 

associated with future risk of diabetes as well as cardiovascular disease (344, 345). Published 

epidemiological studies on hypertriglyceridemia and cardiovascular disease support the view 

that triglycerides are an independently associated risk factor (332) and are thought to form a 

component of cardiovascular risk above that delineated by low density lipoprotein (LDL) 

cholesterol. Elevated TG has been suggested as an explanation for residual cardiovascular risk 

even after statin therapy (346). 
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In summary, HDL and its major protein Apolipoprotein AI are thought to be protective 

against atherosclerosis through the ability to mediate reverse cholesterol transport, while 

elevated ApoB, LDL and Triglycerides have been described as leading to a higher risk of 

cardiovascular disease. Published studies to date suggest that LDL, ApoB/ApoA1 and 

TC/HDL are useful markers for screening for increased cardiovascular disease risk.  

 

1.13.3. Lipid profile in normal pregnancy 

1.13.3.1 Maternal lipid profile in normal pregnancy 

Several authors have examined the changes in lipid and lipoprotein profile in pregnancy. 

Pregnancy related increase in serum triglyceride and, to a lesser extent, of cholesterol (347-

350) has been documented. An increase in the levels of Apo lipoproteins AI and B in mid 

pregnancy was first reported by Hilman et al (351). The findings were later confirmed by 

other studies such as (352). Pregnancy changes and reference values have been described on a 

study of 719 healthy pregnant women across all 3 trimesters showed that all lipids and 

apolipoproteins were significantly elevated in pregnancy (350). The most prominent change 

in this study was a 2.7-fold triglyceride increase in the third trimester. In second trimester of 

pregnancy, ApoB levels increased by 56%, total cholesterol by 43%, low-density lipoprotein 

(LDL) cholesterol by 36% and Apolipoprotein A1 by 32%, high-density lipoprotein (HDL) 

cholesterol rose maximally (25%). The data on elevated HDL levels in pregnancy have been 

more controversial with some studies failing to detect any change (353, 354). The atherogenic 

indices TC/HDL, ApoB/ApoA1 and LDL/HDL have been shown to be reduced in first 

trimester and elevated in third trimester (350). Further studies into normal pregnancy changes 

have described elevated triglycerides, total HDL and LDL cholesterol levels along with 
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corresponding Apo lipoprotein (355, 356). None of the lipoprotein components have been 

correlated with the age and parity of the pregnant women (350).  

1.13.3.2 Fetal lipid profile normal pregnancy 

Lipid profile of the fetal and placental circulations in normal pregnancy have only been 

mentioned as part of investigation into IUGR (48, 357) and have not been well characterized. 

1.13.3.3 Lipid profile in the postnatal period 

Both cholesterol and triglyceride concentrations have been shown to decrease significantly 

within 24 hours of delivery and this has been reflected in all lipoproteins(347). While 

triglyceride levels continued to decrease rapidly returning to non-pregnant levels during the 

puerperium, LDL remain elevated for at least six to seven weeks post-partum.  The pregnancy 

related increase in lipids and triglyceride levels have been shown to reverse earlier and 

completely during lactation, leading to a lower long term cardiovascular risk (358). 

 

1.13.4 Lipid profile in pregnancy complications of preeclampsia and intrauterine fetal 

growth restriction 

1.13.4.1 Maternal Lipid profile in preeclampsia 

Early pregnancy dyslipidaemia is associated with an increased risk of preeclampsia (359-

361). Increased serum triglyceride levels in early pregnancy before 20 weeks are associated 

with preeclampsia (359). Diffuse endothelial dysfunction, secondary to oxidative stress, is an 

important pathological feature of preeclampsia (33). Elevated oxidized-LDL, particularly in 

conjunction with elevated triglycerides, appears to be a risk factor of preeclampsia. Oxidative 

conversion of low density lipoproteins (LDL) to oxidized-LDL is considered an important 



 

 

78 

step in transforming macrophages into lipid-laden foam cells destined to develop into early 

atherosclerotic lesions (362). Levels of Apolipoprotein A were found to be elevated in severe 

preeclamptic women (363) while very-low-density lipoproteins were also increased in 

pregnancies complicated by hypertension or preeclampsia (347, 363).  

Conflicting data have been published on lipid profiles in preeclampsia. Preeclamptic women 

have been shown to exhibit, in the third trimester and puerperium, higher mean serum TG 

concentration and lower high density lipoprotein (HDL) cholesterol and Apolipoprotein AI 

levels compared with healthy pregnant women in third trimester of pregnancy (364). LDL-

mean particle diameter (LDL-MPD) and LDL cholesterol-Apo lipoprotein B ratio were also 

significantly reduced in the pathologic group. Another published study has not confirmed 

these findings, documenting that triglycerides, total cholesterol, LDL, HDL, and LDL 

cholesterol did not differ significantly between preeclamptic women and pregnant controls 

(365). ApoA1 and ApoB levels have also been described to not be different in normal and 

preeclamptic patients (366). 

Peripheral monocytes and tissue macrophages are known to have a role in dyslipidaemia and 

atherosclerosis (367). A role for the lipid status and metabolic milieu of the mother has been 

proposed as a mechanism for the clinically diverse presentations of preeclampsia and fetal 

growth restriction in the mother with similar placental disease (65). 

1.13.4.2. Maternal Lipid profile in IUGR 

The lipid profiles in pregnancies complicated by IUGR without PE have not been well 

characterized. Lipid profile in  mothers with insulin resistance and IUGR in the fetus has been 

noted to have lower total TC and LDL levels when compared with normal pregnancy controls 

(368).  In one of the few studies on lipid profile in IUGR, a cross-sectional study of lipid and 
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lipoprotein concentrations in the third trimester, from normal pregnancies, and those 

complicated by IUGR without preeclampsia found no significant differences in the median 

concentrations of triglyceride, high-density lipoprotein, and very-low-density lipoprotein 1 

(VLDL1), between cases and controls. The TC, LDL, VLDL2 and intermediate density 

lipoprotein levels were significantly lower. Because VLDL2 and intermediate-density 

lipoprotein are the synthetic precursors to LDL in the circulation, their significantly lower 

concentrations may imply a failure of appropriate LDL synthesis in IUGR pregnancies.  LDL 

measurements in the mother were proposed by the authors as a screening test for pregnancies 

at risk for IUGR (369).  

 

1.13.4.3 Fetal lipid profile in PE and IUGR 

While little literature is available on the fetal lipid profile in PE, the lipid status in cord blood 

and neonates of IUGR pregnancies has been documented. 

Fetal / umbilical cord blood serum lipids and low-density lipoprotein (LDL) concentrations 

were measured in IUGR and constitutionally small for gestational age neonates and compared 

with those of healthy, adequate for gestational age, born neonates. Fetal high-density 

lipoprotein cholesterol (HDL) and total cholesterol (TC) concentrations were found to be 

significantly lower in the IUGR compared to the normal and SGA groups (357). In a 

comparison between asymmetrical and symmetrical fetal growth restriction, the serum 

triglyceride levels with respect to controls were observed to be elevated in the asymmetrical 

IUGR groups. The authors concluded that newborns with intrauterine growth retardation have 

higher triglyceride levels than normal term newborns. SGA at birth has been associated with 

cardiovascular disease in late life (48). The elevated TG may play a role. Cholesterol levels 
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have not been shown to be influenced by birth weight and gestation while triglyceride values 

increased with prematurity and growth retardation in a south east population (370).  

A comparison of circulating Apolipoprotein A1 and B concentrations in fetal umbilical 

plasma samples obtained at diagnostic cordocentesis of growth-retarded compared with 

normal fetuses found that while there were no differences in median plasma Apolipoprotein 

AI concentrations between the groups, plasma Apolipoprotein B levels and the ApoB/A1 ratio 

were significantly higher in growth-retarded fetuses.  This observation may reflect the link 

between low birth weight and adult onset atherosclerosis (371). Apolipoproteins are under 

genetic control and present a genetic risk for changes in the metabolism of cholesterol, 

coagulation, and cardiovascular disease in adulthood (372). Maternal smoking during 

pregnancy has marked effects on lipid metabolism in the fetus leading to lower HDL, ApoA1, 

higher TC/TG and ApoB/ApoA1 ratios (373). 

 

1.14 Overview and Significance  

It is clear that establishment and maintenance of adequate placental angiogenesis and 

placental circulation is critical for normal fetal growth and development. Placental vascular 

disease as defined by abnormal umbilical artery Doppler studies underlies pregnancy 

complications such as intrauterine growth restriction and preeclampsia.  

To date most of the studies on angiogenic factors have investigated aberrations in levels of 

angiogenic factors in maternal blood. Whether aberrations arise from the fetal circulation or 

the placenta is less well documented.  
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With the elucidation of aberrations in the pathophysiology of angiogenic factors, the 

pathogenesis of placental vascular disease can be better understood. Better understanding of 

the pathogenesis of placental disease may lead to the development of diagnostic tests for early 

detection of these clinically significant disease processes.  

A collection of studies into the pathogenesis of preeclampsia and intrauterine fetal growth 

restriction are presented, focusing on factors involved in the angiogenesis and maintenance of 

the microcirculation of the placental villi as well as maternal factors such as circulating 

monocytes and lipid status. Previous literature on angiogenic factors has used various 

definitions for PE and IUGR, leading to inclusion of different types and stages of 

preeclampsia as well as small for gestational age fetuses including normal constitionally small 

fetuses in the patient selections. Automated analysis of placental expression of angiogenic 

factors in PE and IUGR has not been published. The results of this work will identify and 

compare the localisation of angiogenic factors and their receptors in the human placenta and 

levels in the maternal peripheral and fetal cord blood between normal pregnancy and 

pregnancies complicated by preeclampsia and fetal growth restriction. An analysis of 

placental staining using automated image analysis will be developed and described as an 

objective method to reduce interobserver variability in assessing immunohistochemical 

staining. 

The role of maternal and fetal monocytes in preeclampsia has just started to be explored in the 

literature and there are currently no studies published on IUGR.  This study will also aim to 

clarify the contribution of maternal peripheral monocytes to the angiogenic profile of the 

normal and complicated pregnancy as well as investigate whether monocyte phenotype and 

polarization of monocytes/macrophages into inflammatory vs healing phenotypes play a role 

in the pathogenesis of placental vascular disease. The literature is sparse on the maternal 
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monocyte contribution to the circulating sFlt-1 and Endoglin levels. There are no data 

published on fetal monocyte sFlt-1 and Endoglin expression. While the lipid status in 

preeclampsia has been previously explored in the literature, the role of maternal and fetal lipid 

status in IUGR is not clearly defined. A pilot study into the maternal and fetal lipid status in 

PE, IUGR and PE+IUGR will be presented. 

Better understanding of the pathogenesis of placental disease may lead to the development of 

diagnostic tests for early detection of placental disease. Manipulation of regulators of 

angiogenesis may provide novel and powerful methods to prevent or reverse the progression 

of the disease, reducing perinatal morbidity and mortality associated with placental disease 

and ensure positive outcomes for most pregnancies. Identifying and screening for maternal 

risk factors may lead to preventative strategies for preeclampsia and intrauterine fetal growth 

restriction during pregnancy as well as long term cardiovascular diseases in the mother. 

1.15: Hypotheses 

1. Aberrant expression of placental angiogenic factors is associated with placental vascular 

disease and its clinical manifestations such as fetal intrauterine growth restriction (IUGR) and 

preeclampsia (Chapter 3). 

2.  Maternal peripheral and fetal umbilical arterial blood levels of angiogenic factors and their 

receptors are deranged in fetal intrauterine growth restriction (IUGR) and preeclampsia as 

compared to normal pregnancy (Chapter 4). 

3. There is a difference in the monocyte phenotype in preeclampsia compared to normal 

pregnancy and pregnancy complicated by fetal growth restriction (Chapter 5). 
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4. Inflammatory marker expression on monocytes shows a pro-inflammatory phenotype in PE 

but not in IUGR (Chapter 5).  

5. The monocyte phenotypes will be different with increasing gestation in normal pregnancy 

(Chapter 5). 

6. There will be a difference in the cord blood monocyte subset distribution between 

pregnancies complicated by preeclampsia and fetal growth restriction as compared to normal 

pregnancy (Chapter 6).  

7. There will be a difference between the cord blood monocyte subset distribution between 

maternal and fetal circulations (Chapter 6). 

8. The monocyte expression of Flt-1 and Endoglin will change with increasing gestation in 

normal pregnancy (Chapter 7). 

9. There will be a difference in the expression of membrane bound anti-angiogenic factors 

Flt-1 and Endoglin in different monocyte subtypes (Chapter 7). 

10. Abnormalities in soluble anti-angiogenic factors such as sFlt-1 and sEndoglin found in 

maternal plasma of mothers with preeclampsia and /or fetal growth restriction are contributed 

to by maternal circulating monocytes and/or fetal circulating monocytes (Chapter 7). 

11. There will be a difference in the monocyte expression of membrane bound anti-

angiogenic factors Flt-1 and Endoglin in preeclampsia as compared to the normal pregnancies 

and pregnancies complicated by fetal growth restriction (Chapter 8).  

12. The inflammatory M1 monocyte phenotype is associated with an increased expression of 

Flt-1 and Endoglin. 
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13. The maternal and fetal lipid profile differs between the clinical groups of normal 

pregnancy, preeclampsia, intrauterine fetal growth restriction and preeclampsia with IUGR. 
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Chapter 2 – Materials and Methods 

2.1 Ethics approval 

The collection and use of the samples for this research was approved by two separate ethics 

committee submissions. 

1. Human Research Ethics committee of the Western Sydney Area Health Service 

approval number HREC2005/10/4.14 (2219) and the University of Sydney. 

2. Human Research Ethics committee of the Western Sydney Local Health District: 

Approval number HREC/13/WMEAD/117 (3706). 

All women provided written informed consent before the collection of samples. All samples 

were collected between January 2006 and May 2014.  

2.2 Summary of research 

Several prospective case control studies were performed, investigating maternal, fetal and 

placental angiogenic factor expression, monocyte subsets and lipid profiles in normal 

pregnancies and pregnancies complicated by preeclampsia and intrauterine fetal growth 

restriction. 

The research included in this thesis was performed in two stages of sample collection and 

experiments. The placental work and maternal circulating angiogenic factors presented were 

performed under a separate ethics application and a time scale (sample collection 2005-2008) 

to the later chapters on monocyte work (sample collection 2013-2014).  
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Stage 1: 2006-2011 

Experiment 1: Localisation and placental expression of angiogenic factors and their receptors 

in normal and complicated pregnancies using immunohistochemistry (Results Chapter 3). 

Experiment 2: Expression of angiogenic factors and their receptors in the maternal peripheral 

circulation and fetal cord blood in normal and complicated pregnancies (Results Chapter 4). 

Stage 2: 2012-2014 

Experiment 3: Characterization of maternal and fetal monocyte phenotype and polarization in 

preeclampsia and intrauterine fetal growth restriction (Results Chapter 5). 

Distribution of cord blood monocyte subtypes in preeclampsia and intrauterine fetal growth 

restriction (Results Chapter 6). 

Experiment 4: Anti-angiogenic factor expression by maternal and fetal monocytes 

(Results Chapter 7). 

Experiment 5: Maternal and fetal lipid profiles in preeclampsia and intrauterine fetal growth 

restriction (Results Chapter 8). 

2.3 Patient selection 

2.3.1 Participant groups 

Participants were recruited from four clinical groups of pregnant patients over 16 years of age, 

between 24-41 weeks of gestation, delivering a singleton pregnancy at a major tertiary centre, 

Westmead Hospital in Sydney Australia.  
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1. Normal pregnancy (Normal) 

2. Pregnancies complicated by preeclampsia (PE) 

3. Pregnancies complicated by intrauterine fetal growth restriction (IUGR) 

4. Pregnancies complicated by preeclampsia and intrauterine fetal growth restriction 

(PE+IUGR) 

2.3.2 Selection criteria 

Gestational age was calculated using last menstrual period (LMP) dates and confirmed by 

antenatal ultrasound. The confirmed expected date of confinement (EDC) and gestation from 

the hospital records were used for the study. The hospital has a protocol on deciding on the 

final EDC by correlation of the (LMP) dates and the first trimester ultrasound. When there is 

a discrepancy of > 4 days between LMP and ultrasound dates, the ultrasound dates were used 

for the EDC to manage the pregnancy. 

Normal pregnant women were enrolled from either the delivery suite or the antenatal clinic at 

Westmead Hospital. A patient was considered to have a normal pregnancy if she met the 

following criteria: (1) no medical, obstetrical, or surgical complications, (2) delivery of a 

normal term (≥37 weeks) infant whose birth weight was over the 10th percentile for 

gestational age. 

Since the research was commenced in 2005, preeclampsia was defined according to the 2001 

guidelines of the International Society for the Study of Hypertension in Pregnancy / 

Australian Society for the Study of Hypertension in pregnancy (ISSHP / ASSHP): diastolic 

blood pressure of 90 mmHg or more on two or more consecutive occasions more than 4 hours 

apart and proteinuria of more than 300mg /24 hours or proteinuria as spot urine 
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protein/creatinine ratio ≥ 30mg /mmol (20). All patients included in stages 1 and 2 of the 

research study satisfied the ISSHP / ASSHP 2001 criteria for preeclampsia. The 2001 

ISSHP/ASSHP definition of hypertension and proteinuria were continued throughout the 

research as it was thought appropriate to continue the same definition of preeclampsia since 

the focus of the research was to define the maternal, fetal and  placental factors that lead to the 

development of the maternal syndrome of preeclampsia with and without the fetal syndrome 

of intrauterine fetal growth restriction.  

The recent 2014 release of the ISSHP and SOMANZ guidelines is acknowledged (21) and 

included in the literature review. The ISSHP /SOMANZ statements were released after the 

presented research was conducted.  

Intrauterine fetal growth restriction was defined as birth weight less than 10th centile (374) 

with umbilical artery Doppler Systolic / Diastolic ratio or Resistance Index >95th centile for 

gestation (375) or in the presence of abnormal waveforms (absent or reversed end-diastolic 

velocities).  The elevated resistance of the umbilical artery Doppler was included in the 

selection criteria to ensure the study of placental IUGR rather than constitutionally small 

fetuses or IUGR secondary to other causes such as intrauterine infection.  The birth weight 

centiles were incorporated into the study by the fact that all neonates delivered to the IUGR or 

PE+ IUGR groups were <10th centile for gestation, while all normal pregnancy and PE only 

groups delivered a neonate with birth weight ≥ 10th centile for gestation.  All ultrasound 

assessments were performed by trained and qualified staff using General Electric (GE)  

Voluson 730 or GE Voluson E8 ultrasound equipment.  

Patients satisfying the criteria for inclusion were recruited from the antenatal clinic, obstetric 

ultrasound service and from the inpatient wards. The samples were collected prior to 
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established labour and prior to caesarean section in elective caesarean section to eliminate any 

bias due to the method of delivery. 

2.3.3 Urinary protein excretion 

The first stage of the study (sample collection 2005-2008) used a 24 hour urinary collection 

and a value of protein excretion of > 300mg /24 hours was used in the definition of 

preeclampsia  (results presented in Chapter 3 and 4) as this was the hospital clinical practice 

at the time.  

The second stage of the study (sample collection 2013-2014) used spot urinary protein 

/creatinine ratio of ≥ 30mg/mmol as the definition of proteinuria in the diagnosis of 

preeclampsia.  The change was due to a change in practice protocols at the hospital from 24 

hour urinary collection to spot urine testing for quantification of proteinuria.  

2.3.4 Exclusion criteria 

Patients with pre-existing hypertension, renal disease with pre-existing proteinuria, pre-

existing diabetes, gestational diabetes and multiple pregnancies were excluded from the study. 

Patients with any overt signs or evidence of bacterial or virus infections (chorioamnionitis, 

upper respiratory tract infections, urinary tract infection, known active Hepatitis A, B, C or 

HIV infection) were excluded from the study. 

2.3.5 Umbilical artery Doppler resistance 

Umbilical artery Doppler resistance (Figure 2.1) has been well described as a physiological 

measure of placental function (14, 15, 376). In a comparison of the screening efficiency of the 

different indices, the sensitivity was not shown to be significantly different although the 
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specificity was higher with Pulsatility index (377).  All patients with PE, PE+IUGR or IUGR 

underwent antenatal ultrasound examination after 24 weeks of gestation and within 7 days of 

delivery. The frequency of ultrasound was determined by the clinical guidelines of the 

hospital and the presence of preeclampsia or IUGR, with biometry evaluated fortnightly and 

elevated resistance of the umbilical artery Doppler resistance re-assessed on a weekly basis. 

 

Index Abbreviation Description 

S / D ratio SD Peak Systolic velocity/ End Diastolic velocity 

Pulsatility Index  PI (Peak Systolic velocity-End Diastolic velocity) / 

time averaged maximum velocity  

Resistance 

(Resistive) Index  

RI (Peak Systolic velocity-End Diastolic velocity) / 

Peak Systolic velocity 

Table 2.1 Description of indices used for evaluation of umbilical artery Doppler resistance. 

 

2.3.6 Data collection 

De-identified demographic information of the mother and neonate as well as details of 

diagnosis, ultrasound findings and clinical outcomes were extracted from the hospital patient 

files and ultrasound records. The demographic data for the pregnancies recruited into the 

study were personally collected by the investigator on a data collection form to eliminate 

errors associated with a hospital database and cross checked with the obstetric clinical 

database (Obstetrix) at Westmead Hospital.  Data storage was in a secure research facility at 

the hospital. 
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Figure 2.1 Commonly used umbilical artery Doppler Indices and their calculation.  

RI = Resistance index (also called resistive index or Pourcelot’s index); Systolic/diastolic 

(S/D) ratio, sometimes called the A/B ratio and Pulsatility index (PI).  These indices are all 

based on the maximum Doppler shift waveform (378). 
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Figure 2.2 Umbilical artery Doppler waveform evaluation was used to assess placental 

function. Elevated systolic /diastolic ratio or Resistance index was used as an indicator of 

significant placental insufficiency including loss of villi (15, 375). A: Doppler sampling 

technique for recording umbilical artery Doppler waveform. B: Normal S/D ratio and 

resistance Index. C: Elevated Systolic/Diastolic ratio or Resistance index. D: Absent end 

diastolic flow indicating severe placental disease. 
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2.4 Immunohistochemistry 

2.4.1 Placental sample collection and processing 

A prospective cohort study was undertaken into the placental expression and localization of 

angiogenic factors and receptors of the vascular endothelial growth factor family. Placentas 

were collected at delivery from all consented patients. Four representative 1cm x 1cm 

placental blocks were selected randomly from each placenta, 2cm away from the placental 

margin. Areas of obvious infarction were avoided. The tissues were fixed in 10% neutral 

buffered Paraformaldehyde for 18 hours prior to embedding in paraffin. Although the 

heterogeneous nature of the placenta is well known, placental immunohistochemistry on 

representative samples was chosen due to the focus of interest being to describe the 

expression of angiogenic factors and their receptors with respect to the histologic type of 

tissue. Similar techniques and number of samples have been described in previous published 

literature (379). Placental weights were not available for all pregnancies. Placental weights of 

the normal pregnancies were not recorded. 

2.4.2 Placental Morphologic Criteria  

The hematoxylin and eosin stained slides were reviewed by an independent blinded perinatal 

pathologist. The placental morphological characteristics were classified using accepted 

pathological features of preeclampsia and fetal growth restriction such as increased syncytio-

trophoblastic knots, villous hypercapillarization, increased perivillous fibrin deposition, 

villous infarction, shrinkage of villi, vascular obliteration and villous fibrosis. 
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2.4.3 Quantification of number of villi  

The number of villi per high power field (magnification x 400) was recorded for five 

randomly selected fields from each placental sample by an independent perinatal pathologist. 

The morphologically normal villi in a placental sample containing villous infarction were 

considered peri-infarction villi. 

2.4.4 Placental immunohistochemical staining for angiogenic factors and their receptors 

The overall goal was to achieve optimal specific staining accompanied by minimal 

interference from background staining. The placental expression of VEGF, PlGF, Flt-1 and 

KDR were examined using commercially available polyclonal antibodies (Table 2.2) on 

formalin fixed, paraffin embedded serial tissue sections prepared for immunohistochemistry 

by standard methods. 

2.4.4.1 Optimization 

Primary antibody dilutions were optimized using manual immunohistochemical staining 

methods using Santa Cruz biotechnology Immunocruz staining systems. Manually optimized 

antibody dilutions were used to assess the localization and expression of VEGF, PlGF, Flt-1 

and KDR. 

2.4.4.2 Staining Method 

The staining procedure was performed using the rabbit ImmunoCruz staining system sc-2051 

(Santa Cruz, California, USA). The antibodies and the dilutions used are listed in Table 2.2. 
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 Antibody Host Source Dilution Incubation 

time 

anti-VEGF antibody 

(sc-152) 

Rabbit 

polyclonal 

Santa Cruz 

Biotechnology, 

California, 

USA 

1:100 2 hours 

Anti-PlGF antibody 

(sc-1880) 

Goat 

polyclonal 

Santa Cruz 

Biotechnology, 

California, 

USA 

1:50 2 hours 

anti-Flt-1 antibody 

(sc-316) 

Rabbit 

polyclonal 

Santa Cruz 

Biotechnology, 

California, 

USA 

1:100 2 hours 

Anti-KDR antibody 

(sc-19530) 

Goat 

polyclonal 

Santa Cruz 

Biotechnology, 

California, 

USA 

1:50 2 hours 

Table 2.2 Summary of primary antibodies used for immunostaining. 

 

Five micron sections were cut from formalin fixed tissue embedded in paraffin blocks and 

mounted on silane coated slides for immunohistochemistry. To remove possible variation 

arising from manual staining techniques, an automated immunostainer (Discovery XT, 

Ventana Medical Systems, Tucson, Arizona, USA) was used with standard staining 

techniques. The samples were incubated with blocking serum to reduce non-specific reactions 

(20 min), and incubated with the primary antibody at 370 Celsius. The slides were incubated 

with secondary antibody for 20 min at 370C. The sections were counterstained with Mayer’s 

Hematoxylin. Immunoreactivity was localized with 3,3’-diaminobenzide (DAB) map kit with 

an incubation time of 30 minutes. All sections were stained in one of two batches to minimize 
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inter-batch variations. A Haematoxylin and Eosin (H&E) stain was performed on a 

consecutive paraffin section for all samples. 

2.4.4.3 Controls 

Tissue sections stained with secondary antibody only were used as negative controls.  

  

2.4.5. Semi-quantitative (manual) analysis of immunohistochemical staining intensity 

Quantification of immunoreactivity was accomplished using an immunohistochemical scoring 

system. Five randomly selected high power fields (magnification x 400) from each placental 

sample were examined by two independent observers (one blinded to clinical group) for 

VEGF and Flt-1 staining and scored for localization, tissue types and intensity in colour. 

Staining intensity was rated on a scale of 0 to 3, with 0 = negative; 1 = weak staining; 2 = 

moderate staining, and 3 = strong staining. The mean of the 5 fields was taken as the staining 

intensity score for each sample. Localization of staining was recorded for trophoblast, 

vascular endothelium, stromal cells and Hofbauer cells (defined in Chapter 1 section 1.2.3).  

The slides stained with PlGF and KDR were not assessed with the semi-quantitative method 

due to the low overall staining intensity levels. This was based on the results of comparison 

between the semi-quantitative (manual) and automated quantitative staining assessments for 

VEGF and Flt-1 that suggested a correlation between the methods for moderate and strong 

staining, with a poor correlation for weak staining.  

To assess the inter-observer variability in semi-quantitative scoring of immunostaining, two 

observers manually analyzed and scored VEGF immunostaining of 120 slides from 30 

placentas. Observer 2 was blinded to the clinical study groups. 
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2.4.6 Analysis of placental angiogenic factor expression using Aperio Scanscope digital 

image analysis 

2.4.6.1 Digital image analysis of immunohistochemical staining.   

Traditionally, immunohistochemical staining characteristics have been presented as positive 

or negative staining. Semi-quantitative manual reading of immunohistochemistry staining 

with semi-quantitative scoring systems were used to compare staining characteristics between 

normal and pathological pregnancies including studies of angiogenic factors.  While digital 

image analysis techniques have been used in two studies to evaluate placental morphological 

characteristics (379, 380) in preeclampsia and intrauterine fetal growth restriction, to date no 

studies have been published using digital imaging techniques for the analysis of placental 

angiogenic factor expression. Digital image analysis were used in this study and  

reproducibility of the results was assessed. 

2.4.6.2 Digitization of images  

Four placental samples from each placenta were analyzed for each of the angiogenic factors 

and receptors VEGF, PlGF, Flt-1 and KDR. A total of 120 individual slides for each of the 

biomarkers were digitized using the Aperio Scanscope CS microscope (Aperio Technologies, 

Vista, CA, Version 6.25) with a 20x objective magnification and a digital image generated.  

2.4.6.3 Quantification of immunohistochemical staining 

Quantitation of percentage of cells that were immunopositive (DAB, brown colour) was 

accomplished using Aperio Image scope reader software v11.2.0.780, a free software image 

viewer.  

To numerically analyze the immunohistochemical staining, the digitized images were read 

using the Positive pixel count algorithm for quantitative analysis. The region of interest (ROI) 
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on each of the virtual slides was set as the whole tissue sample to minimize any selection bias 

in choosing more or less stained sections for analysis.  

Using the positive pixel count algorithm, the intensity of membrane specific staining was used 

to calculate the staining intensity and percent target labeled for each sample by digitally 

analyzing the color intensity. A color markup image for each slide was obtained based on 

membrane staining intensity. The output was viewed as determinations of staining intensity 

ranging from 0 to 3 to correlate with conventional manual scoring methods (0, negative; and 

3, strong staining) and statistical analyses were performed using the mean of these values. 

2.4.7 Positive pixel count algorithm (Aperio technologies version 9.1) for quantification 

of staining 

The Positive Pixel Count algorithm was used to quantify the amount of brown (DAB) stain 

present in the scanned slide images.  

For pixels that satisfy the colour specification, the algorithm counted the number and intensity 

sum in each intensity range. Intensity (Red + Green + Blue)/3) is the measure of brightness of 

the pixel and is the average of the given three colours.  Intensity ranges from zero (black) to 

255 (bright white), so that a large intensity value means that the pixel is brighter. Intensity is 

the opposite of density. Intensity is proportional to the amount of light transmitted through the 

slide, while density is proportional to the amount of light that is blocked by the stained tissue 

(Figure 2.3). It is worth noting that using this positive pixel algorithm, the stronger staining 

pixels will have a lower value due to lower intensity (brightness) of the pixel while the higher 

numbers indicate lower staining. 



 

 

100 

 

Figure 2.3 Intensity ranges as assigned by the Aperio positive pixel algorithm (381). 

Isp = strong positive intensity. Ip = positive intensity. Iwp = weak positive intensity.  

 

The algorithm’s pre‐configured set of default input parameters for brown colour 

quantification in the three intensity ranges were used for the quantification of the current 

slides. A pre-programmed algorithm for analysis of IHC staining consisted of the following: 

hue value of 0.1 (consistent with recognition of brown pixels), hue width of 0.5 and colour 

saturation of 0.04. These parameters allowed for consistent identification of brown pixels 

(positive immunoperoxidase signal) and consistent exclusion of pixels containing other 

colours. 

The pseudo colour markup image generated by the program corresponded to the desired 

colour and intensity ranges observed with the naked eye using a light microscope (Table 2.3 

and Figure 2.4). The thresholds used to define each intensity category are listed in Table 2. 

Pixels which stained, but did not fall into the positive colour specification, were considered 

negative stained pixels. These pixels were also counted by the algorithm, so that the fraction 

of positive to total stained pixels could be determined.  
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Intensity range Intensity 

range 

Colour on mark-up 

image 

Semi-quantitative 

levels 

No tissue NA White NA 

Negative >220 Blue negative 

Weak‐Positive 

Intensity 

175-220 Yellow 1 

Moderate Positive 

Intensity 

100-175 Orange 2 

Strong‐Positive 

Intensity 

<100 Red 3 

 

Table 2.3 Intensity thresholds and colour as assigned by the positive pixel algorithm.  

Colour coding of the three intensities were used to ensure that the three thresholds correlated 

with the colour intensity as viewed through the light microscope. Different colors indicate the 

intensity level of positive pixels (red = strong, orange = moderate, yellow = low). Black 

arrows = syncytiotrophoblast, Red arrow = vascular endothelium. 
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Figure 2.4 The image scope markup image showing the correlation between the manual read 

of intensity (A) and the automatic analysis using the Positive Pixel count algorithm set 

thresholds (B). Magnification x 200 
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The analysis of immuno-histochemical staining of digitized images achieved using the Aperio 

Scanscope CS microscope and Aperio Image scope reader software has been shown to 

correlate with manual reading of slides via photomicroscope in several different tissues (382, 

383).  The percentage of strongly positive /3+ pixels was used to compare pathologist’s scores 

with Aperio algorithm results. Satisfactory digital images were obtained from all 

immunohistochemically stained slides. No cases were excluded from the analysis. 
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2.5 Enzyme-linked immunosorbent assay (ELISA) for measurement of 

circulating angiogenic factor levels 

2.5.1 Methods and population 

A prospective cross-sectional case control study was conducted. A total of 84 patients 

between 24-40 weeks of gestation, delivering at Westmead Hospital during the period 2005 -

2007 were recruited into four clinical groups normal pregnancy, preeclampsia, preeclampsia 

with IUGR and IUGR. 

2.5.2 Sample Collection 

Maternal venipuncture was performed and blood collected within 24 hours prior to delivery 

for all of the pregnancies delivered during the study and during the antenatal clinic visits for 

the normal controls less than 37 weeks from uncomplicated pregnancies. Umbilical artery 

cord blood samples were collected at delivery. All maternal and cord blood collections were 

performed manually with 10-20ml syringes.  The umbilical cord was wiped down with an 

alcohol wipe prior to sample collection to avoid maternal cell contamination. The same 

technique was used for all blood sample collections. Blood samples were collected into tubes 

containing EDTA. The samples were left at room temperature for 30 minutes, centrifuged 10 

minutes at 1000g and plasma stored at −70°C. The samples were collected prior to established 

labour in laboring women and prior to caesarean section to eliminate any bias due to the 

method of delivery. 
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2.5.3 Measurement of circulating pro and anti-angiogenic factor levels using ELISA  

The concentrations of plasma free VEGF, PlGF, sFlt-1, sKDR and sEndoglin were measured 

using enzyme-linked immunosorbent assay (ELISA, R&D Systems, Minneapolis, US), 

performed according to the manufacturer's instructions. 

These assays used the quantitative sandwich immunoassay technique. Recombinant human 

VEGF, Flt-1, PlGF, sKDR and sEng standards and maternal plasma specimens were diluted 

in 0.1% PBS and incubated in duplicate wells for 2 hours in 96-well plates pre-coated with 

monoclonal capture antibody directed specifically to the biomarkers VEGF, sFlt-1, PlGF, 

sKDR or sEng. During this incubation, the immobilized antibodies in the plate bound the 

marker being tested which was present in the standards and samples. The wells were then 

washed three times in 0.05% PBS and incubated with a secondary antibody against VEGF, 

sFlt-1, P1GF, sKDR, or sEng conjugated to horseradish peroxidase for an additional 2 hours.  

After an incubation period, the assay plates were washed again three times to remove 

unbound antibody-enzyme reagent. With the addition of a substrate solution 

(tetramethylbenzidine), colour developed in the assay plates proportionally to the amount of 

the angiogenic factor bound in the initial step. The plates were read with a BioRad microplate 

reader (model 680) and optical density was determined at 450 nm. BioRad Immunowash 

model 1575 was used for plate washing.  

All assays were done in duplicate, and the protein levels were calculated using a standard 

curve derived from known concentrations of the respective recombinant proteins (see Figure 

2.4 A and B) for each set of data. Correction wave length was set at 570nm. The antibodies 

used, minimal detectable levels, inter and intra assay coefficients of variation have been listed 

in Table 2.4. 
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The measurable free plasma VEGF levels were noted to be less than the sensitivity level of 

the commercial assay in the optimization steps of the study using normal and pathological 

pregnancies. Further measurement of the VEGF levels was not undertaken of the study 

samples as this was unlikely to produce any interpretable results. The R&D Systems ELISAs 

for serum sFlt-1, PlGF and KDR have been previously validated. Correlations between serum 

and plasma levels of angiogenic factors have also been done and have been found to be 

parallel with the plasma levels marginally lower than serum levels. Plasma levels rather than 

serum are recommended (209, 384).  

 

 

 

Figure 2.5 Examples of standard curves generated for sFlt-1 using known concentration 

controls. 

A 11.10.2007: Regression type- linear; Correlation Coefficient  0.992.  B 13.10.2007 

Standard Curve for sFlt-1 13.10.2007; Correlation Coefficient 0.993. A correlation coefficient 

of > 0.09 was considered as an acceptable result for the assay. 
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Antibody for 

Immunoassay 

Company Minimum 

detectable 

levels (from 

product 

sheet) 

Inter-assay 

precision 

(coefficient of 

variation %) 

Intra-assay 

precision 

(coefficient 

of 

variation%) 

Human VEGF 

Immunoassay 

DVE00 

R&D 

Systems 

USA 

9.0pg/mL 6.2-8.8 6.7-5.1 

Human PlGF 

Immunoassay 

DPG00 

R&D 

Systems 

USA 

7.0pg/mL 10.9-11.8 3.6-7.0 

Human sFlt-1 

Immunoassay 

DVR100B 

R&D 

Systems 

USA 

3.35pg/mL 6.0-9.2 1.7-4.0 

Human sKDR 

Immunoassay 

DVR200 

R&D 

Systems 

USA 

4.6pg/mL 6.9-7.0 2.9-4.2 

Human sEng 

Immunoassay 

DNDG00 

R&D 

Systems 

USA 

0.007ng/mL 6.3-6.7 2.8-3.0 

Table 2.4 The antibodies used in ELISA, minimal detectable levels, inter and intra assay 

coefficients of variation. 
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2.6 Flow cytometry for characterization of maternal and fetal monocyte 

phenotype, monocyte polarization and angiogenic factor expression in 

preeclampsia and intrauterine fetal growth restriction. 

2.6.1. Methods and population 

A prospective cross sectional case control study was conducted. Pregnant women between 24-

40 weeks of gestation, delivering at Westmead Hospital during the period 2013 -2014 were 

recruited and classified into four clinical groups of normal pregnancy, preeclampsia, 

intrauterine fetal growth restriction (IUGR) and preeclampsia with IUGR.  

2.6.2. Sample collection 

For each sample from a pathological pregnancy at gestational age between 26-40 weeks, two 

maternal venous samples from normal pregnancy were collected as controls. Patients also had 

cord blood umbilical vein samples collected at delivery where possible.   

For each pregnancy in the study, the following samples were collected with consent from the 

mother:  

 7 ml of peripheral venous blood from the mother  

 7 ml of cord blood from the umbilical artery at delivery 

Preterm normal pregnancy samples were collected antenatally. The term normal pregnancy 

and the maternal samples for pathological pregnancies were collected antenatally within 7 

days prior to delivery.  Not all corresponding fetal cord blood samples could be collected due 

to several reasons including inadequate blood volumes in the umbilical cord of fetal growth 
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restricted fetuses, two cases of fetal demise after maternal blood collection due to severe fetal 

growth restriction, one case delivering in another hospital and emergency delivery after hours.   

Patient numbers were limited by technical difficulties associated with cord blood processing, 

time constraints (each sample requiring approximately 12 hours for collection, preparation 

and flow cytometric and analysis) as well as the limitations of a single operator study. A 

number of cord blood samples were clotted and adequate monocyte numbers could not able to 

be harvested for flow cytometry.  

2.6.3. Sample preparation 

The maternal venous blood and fetal cord blood from the umbilical vein were collected using 

sterile tubes containing an EDTA salt as the anticoagulant. The samples were kept at room 

temperature (18 – 25°C) prior to analysis. The samples were analyzed within 2 hours of 

venipuncture. 

Before cell staining for flow cytometry, an aliquot (500 µl) of the blood samples was used to 

establish total blood leukocyte numbers. Leukocytes were counted using a microcell counter 

(model Sysmex X1-1800c, Roche diagnostics, Australia Pty Ltd) at the Institute of Clinical 

Pathology and Medical research (ICPMR), Westmead Hospital. 

2.6.4.1 Staining of whole blood for expression of monocyte markers using flow cytometry 

Flow cytometry was performed on whole blood samples. Staining was performed for 

expression of surface markers - CD14 used for identification of monocytes, CD16 for 

classification into monocyte subtypes and CD86 and CD163 for classification into phenotypes 

M1 and M2. 



 

 

110 

2.6.4 Flow cytometry 

Monocyte phenotype assessment and cell marker profile was assessed by flow cytometry 

using a BD Canto II flow cytometer and Flow Jo software version 10.6 (Tree star, Inc., 

Ashland, OR, USA). Two flow cytometry protocols using a multicolour fluorescence minus 

one principle and a three colour protocol were used for data acquisition.  

Cell processing first involved specific staining of monocytes by incubation of whole blood 

aliquots with cell surface antibodies. This was followed by BD FAC lysing Solution Optilyse 

C for lysing red blood cells and fixation. Any unbound antibody was removed by two wash 

steps using PBS as described in the protocols (Figures 2.11 and 2.12). Standard operating 

procedures were followed to minimize variations in results due to sample preparation and 

analysis. All steps were performed at room temperature. Data on the stained samples was 

acquired on the Flow cytometer within 6 hours of preparation to minimize the inter-assay 

variation. 

2.6.5 Isotype controls 

The positive data set for each antibody was identified by using fluorescence minus one 

protocol with the recommended isotype control for each antibody fluorochrome colour and 

volume and overlying its image on the histogram. To minimize variations, isotype controls 

were used with the same dilutions as the marker of interest.  

2.6.6. Monocyte gate 

Using FACS Canto II flow cytometer, 20000 events in the P1/monocyte gate, defined as cells 

with respective side scatter (SSC) and CD14 staining characteristics, were acquired. 

Corresponding levels of CD86, CD163 expression were recorded on the cells obtained from 
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the CD14 cell gate. The results are expressed as mean fluorescence intensity (MFI) in CD14+ 

cells analyzed. 

2.6.7 Optimization steps in developing staining protocols 

The staining process was optimized for antibody concentrations, staining time, wash steps and 

use of mouse block to reduce non-specific staining. Some of the optimization steps are 

presented in the following Figures 2.6-2.10. The antibodies and the concentration used  

(2.5uL-20uL) are indicated in the legend within each figure.  

 

 

 

 

 

 

Figure 2.6 The effect of one cycle of washing on the differentiation of cell types on flow 

cytometry.  

A: With wash cycle. B: Without wash cycle. With the inclusion of a wash cycle, a small 

difference was noted in reducing the amount of debris.  

A B 

SS
C

-H
 

SS
C

-H
 



 

 

112 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Optimization steps for titration of monocyte surface receptor antibodies. 

A = CD14, B: CD16, C: CD86 and D: CD163. The tested concentrations all resulted in 

histograms appropriate for analysis (as presented here) and different to the isotype controls 

(results not presented). The smallest concentration for each marker was used for testing of the 

samples. 
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Figure 2.8 Effect of wash step on the fluorescence intensity of monocyte surface receptor 

antibodies.  

A: CD14, B: CD16, C: CD86 and D: CD163. Red line = No wash step. Blue line = With wash 

step. No notable difference seen in the fluorescence intensity of the given antibodies with 

washing, as evident by the overlapping histograms. The separate peaks in the washstep (blue 

line) likely represents a separate cell type other than monocytes. 
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Figure 2.9 CD14 (Per-CP-A) and CD16 (APC-HT-A) with and without mouse block. 

 A: flow cytometry image showing separation of cell types with mouse block; B: Mean 

fluorescence Intensity of CD14 with mouse block; C: flow cytometry image showing 

separation of cell types without mouse block; D: Fluorescence Intensity of CD16 without 

mouse block. Red line = isotype control. Blue line = CD14 and CD16. No difference observed 

in the staining characteristics.  

A difference in the fluorescent intensity was observed with the wash step in Flt-1 staining 

with the MFI reduced by the wash step. The difference was less marked with Endoglin. These 

findings may be due to the attachment of soluble Flt-1 to the cell surface, which is washed 

away with the wash steps (Figure 2.9). A decision was made to include two wash steps in the 
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staining protocols as the study was specifically focusing on cell surface expression of Flt-1 

and Endoglin.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Effect of wash step on the fluorescence intensity of monocyte surface receptors 

Flt-1 and Endoglin on maternal peripheral and fetal cord blood.  

 A: Fetal monocytes stained with Flt-1. B: Fetal monocytes stained with Endoglin. C: 

Maternal monocytes stained with Flt-1. D: Maternal monocytes stained with Endoglin. Blue = 

isotype control. Red line = Antibody. A difference in the fluorescent intensity was observed 

with the wash step in Flt-1 staining, possibly due to washing of soluble Flt-1 attached to the 
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cell surface. The difference was less marked with Endoglin. A wash step was included in the 

protocol since the aim of the study was to test the surface marker expression. 

2.6.8 Optilyse B vs Optilyse C for red cell lysis and fixation of cells 

OptiLyse C Lysing Solution is an erythrolytic reagent intended for the lysis of red blood cells 

in the preparation of biological samples for flow cytometry analysis after staining of 

leukocytes with fluorescent antibodies. Immunostaining followed by whole blood lysis is the 

preferred method for providing flow cytometric results. The biological sample containing red 

blood cells for lysis is incubated in the presence of the OptiLyse C solution, which results in 

the lysis of red blood cells accompanied by the fixation of leucocytes.  

Both Optilyse B (100ul) recommended for BD FACS machines and Optilyse C (300ul) 

recommended for Beckman Coulter flow cytometers were tested in the sample preparation 

and the optimization steps. Optilyse C was found to have a superior performance with lysing 

of the red blood cells resulting in a reduced amount of debris detected through the flow 

cytometer. Although Optilyse C is compatible with a “No wash” technique of lysing and 

fixation of the cells, the use of two wash steps in the sample preparation to remove excess 

antibodies produced superior results. 
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2.6.9  Flow Cytometry Protocol 1 -Multicolour Flow Cytometry for expression of 

monocyte markers 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.5 Multicolour flow cytometry protocol antibody selection 

Antibody 

Company and 

Catalogue No Colour 

Band pass 

filter Purpose Clone 

Antibody 

volume 

CD14 BD(340585) PerCP 670LP 
Monocyte 

marker 
MɸP9 2.5ul 

CD16 BD A(560195) APC-H7  780/60 

Monocyte 

subtype 

marker 

3G8 2.5ul 

CD86  BD (555658) PE 585/42 M1 marker 
2331(FU

N-1) 
2.5ul 

CD163  BD (562643) BV421 450/50 M2c marker GHI/61 1ul 

FLT-1 

(VEGFR1) 

R&D 

(FAB321A) 
APC 660/20 Flt-1 Rc 49560 5ul 

Endoglin 

CD105 
BD (561443) FITC 530/30 

Endoglin Rc 

CD105 
266 5ul 

Mouse IgG1 

isotype 

R&D 

(IC002A) 
APC 660/20 

Isotype 

control for 

Flt-1 Rc 

11711 5ul 

Mouse 

IgG1,k  
BD (555749) PE 585/42 

Isotype 

control for 

CD86  

MOPC-

21 
2.5ul 

Mouse 

IgG1,k 
BD (62438) BV421 

450/50 

 

Isotype 

control for 

CD163 

X40 1ul 
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2.6.9.1 Antibody selection 

A multicolour flow cytometry protocol was developed using six colours and a fluorescence 

minus one technique (Table 2.5 and Figure 2.11). Cells were washed and incubated with the 

following monoclonal antibodies according to the manufacturer’s instructions. Fluorescence 

compensation was achieved with compensation beads. 

2.6.10 Flow Cytometry Protocol – Three colour protocol for expression of monocyte 

markers 

2.6.10.1 Antibody selection 

A three colour flow cytometry protocol was developed using identifying colours for CD14 

and CD16 and same phycoerythryn colour for the antibodies of interest CD86, CD163, Flt-1 

and Endoglin (CD105) (Table 2.6, Table 2.7 and Figure 2.12). Cells were washed and 

incubated with the following monoclonal antibodies according to the manufacturer’s 

instructions. The antibodies and the volume used are described in Table 2.6. The voltages 

used on Flow cytometer are listed in Table 2.7. 
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Figure 2.11 Multicolour FACS protocol for Monocytes in pregnancy - Staining technique of 

whole blood for flow cytometry. 

 

Multicolour FACS protocol Monocytes in pregnancy:  

1. Do WBC count on blood and dilute blood with PBS to a density of 5x10^6/mL (5/WBC of 

ml blood + add up to 1ml of PBS) 

2. Add antibodies to tubes.  

 Tube 1 Tube 2 Tube 3 Tube 4 Tube 5 

CD14 -PerCP 2.5µL 2.5µL 2.5µL 2.5µL 2.5µL 

CD16 – APC-H7 2.5µL 2.5µL 2.5µL 2.5µL 2.5µL 

CD163 – BV421 1 µL 1µL 1µL 1µL 1µL 

CD86 - PE 2.5µL  2.5µL  2.5µL 2.5µL 2.5µL 

Endoglin FITC 5µL 5µL 5µL 0 5µL 

FLT-1 APC 5µL 5µL 5µL 5µL 0 

Iso – BV 421 0 0.5µL 0 0 0 

Iso - PE 0 0 1µL 0 0 

Iso - FITC 0 0 0 5µL 0 

Iso – APC 0 0 0 0 5µL 

3. Add 100ul aliquot to tubes Vortex and incubate in the dark for 20mins at RT in dark 

4. Add 300µL of Optilyse C lysing solution (to lyse the RBC and Fix the white blood cells). 

Vortex gently each tube before moving on to next.  

5. Incubate for 10mins at RT in the dark.  

6. Add 500ml of PBS, leave for 10 minutes 

7. Wash step 1 

Add 3ml of PBS 

Centrifuge for 5 minutes at 500g, aspirate  

Remove the supernatant with vacuum aspiration 

8. Wash step 2:Add 3ml of PBS 

Centrifuge for 5 minutes at 500g, aspirate  

Remove the supernatant with vacuum aspiration 

9. Resuspend in 500ul of PBS.  

10. Analyse by flow cytometry. Count 20000 events  in P1 (approximate monocyte gate) 
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Table 2.6 Three colour flow cytometry protocol: Antibody selection. 

Antibody 

Company 

and 

Catalogue 

No 

Colour 
Bandpass 

filter 
Purpose Clone 

Optimised 

volume of 

Antibody 

CD14 BD560349 
V450 

purple 
 450 

Monocyte 

subtype 
MɸP9 

2.5ul for 

1x106 cells 

or 100ul 

CD16 Ab 140477 APC 660/20 
Monocyte 

subtype 
3G8 

2.5ul for 

1x106 cells 

or 100ul 

Mouse 

IgG1,k  
BD (555749) PE 585/42 

Isotype control 

for CD105, 

CD309 (KDR), 

CD86, CD163 

MOPC-21 5ul 

Mouse 

IgG1isotype  
R&D 

(IC002P) 
PE 585/42 

Isotype control 

for Flt-1 
11711 10ul  

CD86  BD 555658 PE 585/42 M1 
2331 

(FUN-1) 
 5ul  

CD163  BD 556018 PE 585/42 M2 GHI/61  5ul  

Flt-1 

(VEGFR1) 

R&D 

(FAB321A) 
PE 585/42 Flt-1 Receptor 49560 10ul 

Endoglin 

CD105 
BD (561443) PE 585/42 

Endoglin 

Receptor 
266 5ul  

KDR  

(VEGFR2) 

CD309 

BD(560872) PE 585/42 KDR Receptor 89106 5ul 
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Figure 2.12 Three colour FACS protocol for monocytes in pregnancy - Staining technique of 

whole blood for flow cytometry. 

Three colour Monocytes in pregnancy FACS protocol Do WBC count on blood and dilute blood 

with PBS to a density of 5x10^6/mL (5/WBC of ml blood + add up to 1ml of PBS) 

1. Add antibodies to tubes.  

a. Prepare CD14 and CD16 cocktail: 20 ul of CD14 (V450 BD560349 2.5ul per tube x 8) 

and 20ul of CD16 (APC ab140477 2.5ul per tube x 8). Dilute with 40ul PBS, allocate 

10ul of the solution to each tube 

 V450 APC PE Comment 

1 CD14 2.5ul CD16 2.5ul FLT                                5ul Washx2 

2 CD14 2.5ul CD16 2.5ul Endoglin                      5ul Washx2 

3 CD14 2.5ul CD16 2.5ul CD86                           5ul Washx2 

4 CD14 2.5ul CD16 2.5ul CD163                         5ul Washx2 

5 CD14 2.5ul CD16 2.5ul BD PE Isotype              5ul Washx2 

6 CD14 2.5ul CD16 2.5ul R&D PE Isotype         5ul Washx2 

2. Add 100ul aliquot to 4 tubes Vortex and incubate in the dark for 30mins at RT in dark 

3. Add 300µL of Optilyse C lysing solution (to lyse the RBC and Fix the white blood cells). 

Vortex gently each tube before moving on to next.  

4. Incubate for 10mins at RT in the dark.  

5. Add 500ml of PBS, leave for 10 minutes 

6. Wash step 1 Add 3ml of PBS. Centrifuge for 5 minutes at 500g, aspirate  

Remove the supernatant with vacuum aspiration 

7. Wash step 2 :Add 3ml of PBS 

Centrifuge for 5 minutes at 500g, aspirate  

Remove the supernatant with vacuum aspiration 

8. Resuspend in 500ul of PBS.  

9. Analyse by flow cytometry. Count 15000 events  in P1 (approximate monocyte gate) 
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2.6.10.2 Voltage settings on BD Canto II FACS 

Laser Voltage 

FSC 360 

SSC 450 

PE 454 

APC 517 

V450 412 

  

Table 2.7 Voltage  setting on BD Canto II FACS for three colour FACS protocol are listed. 

 

2.6.11 Comparison between three colour and multicolour flow cytometry protocols 

A comparison was made between the multicolour protocol using a different colour and 

wavelength for each variable antibody being tested as compared to the three colour protocol 

using the same colour (Phycoerythryn) for all the variables being tested. 

The benefit of the multicolour protocol was that the effects of different variables on each 

other could be tested in the same sample. The negative was that CD16 antibody was not stable 

over 24 hours and that a larger volume of antibody was required to stain the samples.  

The three colour protocol was easier to execute and analyze as well as using a significantly 

lower volume of antibodies. A decision was made to continue with the three colour protocol 

for all the study samples and stain some representative samples of each group with the 

multicolour protocol. 
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2.6. 12 Flow Jo analysis and data collection. 

2.6.12.1 Gating strategy  

Flow Jo software version 10.6 (Tree star, Inc., Ashland, OR, USA) was used to gate the cells 

and analyse the expression of cell surface markers. In the gating strategy used for analysis, 

single cells were first selected using forward (FSC) and side scatter (SSC) plots (Figure 2.13).  

Analysis of the different physical properties of the forward scatter was used to distinguish 

between granulocytes, monocytes and lymphocytes and differentiate from cellular 

contaminants and debris. Subsequently the monocytes were selected from the live cells in the 

forward/side scatter. CD14 positive cells were selected to exclude contamination with natural 

killer cells. The selected CD14+ monocytes were then plotted against CD16 (Figure 2.14). 

Three subsets were identified: Classical (CD14++CD16-) intermediate (CD14++CD16+) and 

non-classical (CD14+CD16++) (Figure 2.15). The percentages of the three populations within 

the monocyte subtype population were calculated. By definition, the intermediate and 

classical monocyte subsets possess the same levels of CD14. Hence, the end point of CD14 

expression by the classical monocytes was used as a set point to segregate between the 

intermediate and non-classical subsets, as depicted in Figure 2.13. 

Surface expression of markers CD86 and CD163 and their increase in mean fluorescent 

intensity (MFI) over that of the isotype control was recorded for total monocytes as well as 

the different monocyte subtype populations. 
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Figure 2.13 Gating strategies for selection of CD14 monocytes. 

A: Analysis of the different physical properties of the forward scatter was used to distinguish 

between granulocytes, monocytes and lymphocytes and differentiate from cellular 

contaminants and debris. B: The monocytes were selected from the live cells in the 

forward/side scatter plot. C and D: CD14 positive cells were selected to exclude 

contamination with natural killer cells. 
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Figure 2.14 Gating strategies of the three monocyte subsets based on relative CD14 and CD16 

expression.  

Flow cytometry dot plot showing the distribution of classical, intermediate and non classical 

monocyte subsets. 

 

 

 

 

 

 

Figure 2.15 Flow cytometric gating strategy for monocyte subsets in human peripheral whole 

blood. 
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Classical monocytes express high levels of CD14 but no CD16; intermediate monocytes 

express high levels of CD14 and low CD16, while non-classical monocytes express low 

CD14 but high CD16. 

2.6.12.2 Mean Fluorescence Intensity (MFI) 

A single parameter histogram was used for evaluating the total number of cells in each sample 

that stained for the marker of interest (Figure 2.14and 2.15). Mean fluorescence intensity and 

percentage of total cells that express the marker were calculated for each marker of interest 

CD86, CD163, Flt-1, Endoglin and KDR using Flow Jo software and recorded separately for 

total monocytes, classical monocytes, intermediate monocytes and non classical monocytes. 

The results of the isotype control MFI was deducted from the sample MFI.  The following 

Figures 2.16 - 2.19 demonstrate establishment of positive staining for CD86, CD163, Flt-1 

and Endoglin. 
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Figure 2.16 Comparison of Mean Fluorescence Intensity between CD86 (red line) and its 

isotype control (blue line) in normal pregnancy.  
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Figure 2.17 Comparison of Mean Fluorescence Intensity between CD163 in normal 

pregnancy (red line), CD163 in PE+IUGR (orange line) and their isotype control (blue line). 
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Figure 2.18 Comparison of Mean Fluorescence Intensity between Flt-1 (red line) and its 

isotype control (blue line) in normal pregnancy at 30 weeks of gestation.  

 

Figure 2.19 Comparison of Mean Fluorescence Intensity between Endoglin (red line) and its 

isotype control (blue line) in normal pregnancy at 30 weeks of gestation.  
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2.7 Serum and plasma assays for measurement of cholesterol and lipid 

profiles 

A prospective cross-sectional case control study was conducted. The maternal peripheral 

venous blood was collected antenatally prior to delivery from 52 pregnant women between 

24-40 weeks of gestation, delivering at Westmead Hospital during the period 2013 -2014. 

Fetal cord blood from the umbilical vein was collected at the time of delivery from 30 of 

these pregnancies. Participants were recruited from four clinical groups of normal pregnancy, 

preeclampsia, intrauterine fetal growth restriction and a combination of PE+IUGR as 

described in section 2.3.1. Peripheral blood was collected from all consented patients by 

standard venipuncture techniques.  Testing was performed at the Institute of Clinical 

Pathology and Medical research (ICPMR), Westmead Hospital. 

The lipid profile including triglycerides (TG), total cholesterol (TC), High density lipoprotein 

(HDL), Low density lipoprotein (LDL), Apo lipoprotein A1 (ApoA1) and Apo lipoprotein B 

(ApoB) of each donor was tested and recorded. The ratios TC/HDL, ApoB/ApoA1 were 

calculated.  

Serum was analyzed for cholesterol and triglyceride using enzymatic analysis (Siemens 

Dimensions Vista system). Apo lipoproteins A1 and B were assayed by immunoturbidimetry 

(Abbott Diagnostic Architect C4000 Ci 4100). A summary of the techniques and commercial 

kits used for the assays are listed in Table 2.08.  The estimation of LDL cholesterol was done 

in the clinical laboratories using Friedewald equation to make the lipid profile cost effective 

(385). Specimens with triglyceride > 4-5 mmol/l were also used in the analysis as maternal 

triglycerides in pregnancy are generally over the 4.6 mmol/L range. The fasting time for the 

sample collection ranges from 6 hours to 12 hours. While the TG assays are generally 
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performed after a 10 hour fasting state, there is evidence non-fasting and postprandial 

triglycerides >2.5mmol/L can be considered parallel to the fasting 2.0mmol/L in assessing the 

risk of cardiovascular disease (386). 

Variable  Method/Assay   

Total Cholesterol 

(TC) 

Siemens Dimensions 

Vista system CHOL  

Automated 

enzymatic assays 

K1027 

High density 

cholesterol (HDL) 

Siemens Dimensions 

Vista system  

Automated 

enzymatic assays 

K3048A 

Low density 

cholesterol (LDL) 

Calculated from TC, 

HDL and TG  

TC-HDL- TG/2.2 

Triglycerides(TG) Siemens Dimensions 

Vista system 

Automated 

enzymatic assays 

Apolipoprotein A1 

(ApoA1) 

Abbott Diagnostic 

Architect C4000  

Automated  immuno-

turbidimetric assay 

Apo lipoprotein B 

(ApoB) 

Abbott Diagnostic 

Architect C4000  

Automated immuno-

turbidimetric assay  

 

Table 2.8 List of markers in the lipid profile and the commercial assays used for testing the 

samples. 

The venous blood collected was allocated last for the lipid profile testing. This resulted in a 

smaller number of samples available for analysis, especially in the fetal cord blood as the 

volume available was limited.  Several cord blood samples were not able to be processed due 

to clotting. The serum lipid levels have been documented to be significantly different in the 

pregnant population as compared to the non-pregnant women. Table 2.9 lists the reference 

ranges for pregnant population.  
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Variable  Reference 

range 

5th, 50th and 95th centile values for 

the pregnant population 

TC mmol/L 3.0-5.5 1.35, 7.38, 9.83 

HDL mmol/L ≥1.0 1.04, 1.63, 2.46 

LDL mmol/L ≤3.5 2.56, 4.31, 6.48 

TG mmol/L ≤2.0 1.4, 2.63, 4.68 

ApoA1g/L 1.10-1.89 1.42, 2.0, 2.61 

ApoBg/L 0.59-1.32 0.89, 1.32, 1.92 

 

Table 2.9   The reference ranges for serum and plasma lipids for non pregnant population as 

listed in the commercial assays and the 5th, 50th and 95th centile values in third trimester of 

pregnancy as published by Piechota et al (350). 
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2.8 Statistical analysis 

2.8.1 Sample size 

The sample numbers for the experiments 1 and 2 were selected after reviewing similar 

published studies. For maternal and fetal soluble markers, most published studies in this field 

have used 50-150 total patients to identify a significant difference in the blood markers.  The 

experiments 3-4 on monocytes in pregnancy complications is a new area of study where 

sample size cannot be accurately defined without preliminary data. As such the numbers were 

based on calculations by collaborators of this study who are investigating similar monocyte 

markers in other areas of study. The current studies were performed as preliminary 

experiments with a significance level of 0.05, without using Bonferroni corrections, to 

identify associations to be studied at a future date. Due to technical issues such as immediate 

clotting of fetal blood and inadequate sample volumes, all collected samples could not be 

analysed for all aspects of the study. 

2.8.2 Statistical software  

The statistical analyses for all results included in this thesis were performed by a senior 

hospital medical statistician. The statistical software packages SPSS for windows Version 21 

and SPLUS version 8 were used to analysing the data. Two-tailed tests with a 5% significance 

level were used throughout. 

2.8.3 Comparison of tested variables between clinical groups 

The studies presented in this research are exploratory in nature with the aim of identifying 

further areas of research and hypothesis generating rather than to prove a definite association 

regarding a clinical condition. 
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Continuous demographic and outcome variables were tested for departure from normality 

using Shapiro-Wilks tests.  Where no significant departure was detected such as demographic 

data, parametric analyses were conducted and data summarized using mean ± standard 

deviations. Where significant departure from normality was detected, non-parametric analyses 

were conducted and data summarized using median, upper and lower quartiles. 

One way analysis of variance or Kruskal-Wallis non parametric equivalent was used to test 

for differences between the clinical groups. Where statistically significant different 

heterogeneity was detected, multiple pairwise comparisons were used to examine differences 

between particular clinical groups. Bonferroni correction was applied to these multiple 

pairwise comparisons for placental and circulating angiogenic factor level analyses in Stage 1 

of the research (Experiments 1 and 2, chapters 3 and 4). 

Due to the exploratory nature of the experiments 3 and 4, further corrections were not 

performed in the analysis of the results in chapters 5, 6, and 7, as the levels of these 

corrections may potentially hide any significant trends that would benefit from further study.  

2.8.4 Comparison of maternal and fetal samples 

Paired t tests were used to compare the plasma levels in maternal and fetal samples. 

2.8.5 Presentation of data 

Box plots were used to illustrate the distribution of continuous variables by patient group.  

Data are summarized as median and interquartile range unless specified otherwise.  

Scatterplots were used to illustrate the association between continuous variables. Receiver 

operating characteristic (ROC) curves were used to evaluate the predictive value and 
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graphically present the sensitivity and specificity of a biological marker in predicting the 

presence of the pregnancy complications preeclampsia and IUGR.  

Data were adjusted for maternal age and parity using a general linear model where clinical 

group was fitted as a four level factor and maternal age and parity as continuous covariants of 

the clinical groups. 

2.8.6 Correlation between two variables tested 

We used Spearman rank correlation to quantify the extent of the association between 

variables. The rank correlations and associated p values have been given when significant 

correlation were noted.  

2.8.7 Evaluation of tested variables as potential biomarkers 

In experiment 2, receiver operating characteristic graphs were generated to evaluate an 

individual marker or ratio of markers in the maternal circulation as a predictor or identifying 

marker that distinguishes normal pregnancy from pathological pregnancies with preeclampsia 

or intrauterine fetal growth restriction. The areas under the ROC curves were used to quantify 

the global performance of each individual marker or their ratios in terms of predicting normal 

versus complicated pregnancies affected by preeclampsia and/or intrauterine fetal growth 

restriction. 

2.8.8 Immunohistochemistry 

2.8.8.1 Statistical analysis of semi-quantitative methods 

Four samples were analyzed from each placenta. The mean immunostaining data categorized 

into three levels of 1, 2 and 3 for each variable was used in repeated measures analysis of 

variance to investigate the effects of the intensity of VEGF staining characteristics and the 
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clinical group. For the three pathological groups, a linear mixed effects model was used to 

investigate the effect of villous infarction on the staining characteristics.   

2.8.8.2 Analysis of digital image analysis 

The median value of the four samples was used as representative of each placenta. Median 

and inter-quartiles were used to describe the representative results of four samples from each 

placenta as the digital analysis of staining allocate a range of intensities into one staining 

category such as weak, moderate and strong. Kruskal Wallis non-parametric analysis of 

variance was used to test for homogeneity across the four clinical groups for each of the 

variables VEGF, PlGF, Flt-1 and KDR. Mann-Whitney tests were used for pairwise 

comparisons between normal pregnancy and each of the clinical groups as well as between 

each of the pathological groups.  

2.8.8.3 Correlation between observers in semi-quantitative analysis and digital image 

analysis of staining intensity.  

The Bland-Altman plots were used to investigate the inter-observer variation in semi-

quantitative analysis of staining intensity. The Spearman rank correlation was used to 

quantify the extent of the association between the manual semi-quantitative reading and 

digital image analysis of the staining intensity for each of the clinical groups. The kappa 

correlation coefficient was also calculated as a measure of the association. 

2.8.9 ELISA 

Maternal and fetal levels of angiogenic factors PlGF, sFlt-1, KDR and sEng were log 

transformed prior to analysis in order to stabilise the variance. The log transformed variables 

were approximately normally distributed within each clinical group.  ANOVA was used to 

test for heterogeneity between the clinical groups. If this was observed, then pairwise multiple 
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comparisons with Bonferroni corrections were used to test for the differences between 

specific clinical groups. 

Spearman’s rank correlation was used to quantify the level of association between gestational 

age and each of the variables of interest.  Receiver operating characteristic (ROC) graphs and 

area under the curve (AUC) were used to quantify the performance of each individual marker 

and their ratios in predicting normal versus pathologic pregnancies affected by PE and/or 

IUGR.  

2.8.10 Flow cytometry 

Kruskal Wallis non-parametric analysis of variance was used to test for homogeneity across 

the four clinical groups for each of the variables percentage of monocytes, percentage of 

monocyte subtypes, mean fluorescence intensity of CD86, CD163, Flt-1 and Endoglin. Where 

heterogeneity was identified, Mann-Whitney tests were used for pairwise comparisons 

between normal pregnancy and each of the clinical groups as well as between each of the 

pathological groups. The Spearman rank correlation was used to quantify the extent of the 

association between monocyte surface Flt-1, Endoglin expression and gestational age in 

normal pregnancies. Data were also analyzed for any association between Flt-1, Endoglin 

expression and monocyte subtype as well as monocyte polarization and pro-inflammatory 

status as defined by CD86/CD163 ratio. 

The sample sizes were similar to those previously published M1/M2 marker expression on 

placental macrophages in preeclampsia (387).  
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2.8.11 Serum and plasma lipid profiles 

Kruskal Wallis non-parametric analysis of variance was used to test for homogeneity across 

the four clinical groups for each of the variables, TC, HDL, LDL, TC/HDL, Apo lipoprotein 

A1, Apo lipoprotein B and ApoB/ApoA1 ratio. Where heterogeneity was demonstrated, 

Mann-Whitney tests were used for pairwise comparisons between normal pregnancy and each 

of the clinical groups as well as between each of the pathological groups. The Spearman rank 

correlation was used to quantify the extent of the pairwise association between each of the 

variables TC, HDL, LDL, TC/HDL, Apo lipoprotein A1, Apo lipoprotein B and 

ApoB/ApoA1 ratio and gestational age.  
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Chapter 3 – Localisation and placental expression of angiogenic 

factors and their receptors in normal and complicated 

pregnancies using immunohistochemistry 

3.1 Summary 

Introduction: Angiogenic factors VEGF and PlGF as well as their receptors Flt-1 and KDR 

play a major role in the angiogenesis of the placenta. Aberrations in the expression of these 

factors may lead to pregnancy complications. 

Aims: Localization, quantification and comparison of VEGF, PlGF, Flt-1 and KDR in the 

placentas of normal pregnancy and pregnancy complications of PE, IUGR and PE+IUGR.  

Methods: 

A prospective cross-sectional case control study was conducted. A total of 30 pregnant 

women between 24-40 weeks of gestation, were recruited and classified into four clinical 

groups.  Representative placental samples from each group were immunohistochemically 

stained for VEGF, PlGF, Flt-1 and KDR. The VEGF staining characteristics of the placental 

biopsies were analyzed according to the presence or absence of villous infarctions in the 

sample. Analysis was performed using semi-quantitative methods and digital image analysis 

in identifying staining characteristic in the placenta. 

Results:  

A decreased number of placental villi were noted in both PE and IUGR compared to the 

normal term placenta. The cumulative effects of PE and IUGR appear to lead to a more 

significant loss of villous architecture than either condition alone. VEGF, Flt-1, and PlGF 
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were mainly expressed in the syncytiotrophoblast layer of the placenta, while KDR 

expression was found in the endothelial layer.  

Overall VEGF and Flt-1 were strongly expressed in normal, preeclamptic and IUGR 

placentas. The intensity of VEGF staining was reduced in the areas of significant pathology 

such as villous infarction compared to the non-infarcted areas. One of the most important 

findings in the present study is significantly reduced expression of PlGF and KDR in the 

placentas from pregnancies complicated by IUGR compared to normal and preeclamptic 

pregnancies. 

Conclusion: The results of this study suggest compensatory villous regeneration in non- 

infarcted areas of the placenta and that changes in VEGF and Flt-1 expression may be a 

consequence rather than the cause of placental vascular disease and preeclampsia. The lack of 

placental PlGF and KDR may lead to the development of intrauterine fetal growth restriction 

and may explain the loss of vasculature and villous architecture in IUGR.  
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3.2 Introduction 

Angiogenic factors VEGF and PlGF as well as their receptors Flt-1 and KDR play a major 

role in the angiogenesis of the placenta. Aberrations in the expression of these factors may 

lead to pregnancy complications. While variable results have been demonstrated in multiple 

studies on the expression of angiogenic factors in the placenta, preeclampsia is suggested to 

be associated with an increase in VEGF and Flt-1 while the results are not conclusive for 

PlGF (215, 219). Placental expression of angiogenic factors in intrauterine growth restriction 

is not well categorized. 

 

3.3 Aims:  

1. Localization of VEGF family angiogenic factors and their receptors in human 

placental tissue.  

2. Identify any difference in expression of pro-angiogenic factors VEGF and PlGF as 

well as their receptors Flt-1 and KDR between normal pregnancy and pregnancies 

complicated by preeclampsia and/or IUGR. 

3. Correlate the clinical and histopathological findings with pro and anti-angiogenic 

factor expression in an attempt to understand the pathogenesis of placental disease in 

preeclampsia and IUGR. 

4. Measure angiogenic and anti-angiogenic factor expression using digital pathology 

tools and correlate with semi-quantitative methods  
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3.4 Methods 

A prospective cross-sectional case control study was conducted. A total of 30 pregnant 

women between 24-40 weeks of gestation, were recruited from four clinical groups as 

described in Chapter 2.3.  

3.4.1 Placental H&E and immunohistochemical staining 

Representative placental samples from each group were H&E and immunohistochemically 

stained for VEGF, PlGF, Flt-1 and KDR using methods described in Chapter 2.4.4. The H&E 

stained slides were analysed for morphological characteristics.  Placental morphology 

including characteristic and semiquantitative staining analysis were performed by a qualified 

pathologist and two research scientists as described in Chapter 2.4.2-2.4.3.  The VEGF 

staining characteristics of the placental biopsies were analyzed according to the presence or 

absence of villous infarctions in the sample.  

3.4.2 Staining characteristics 

For manual semi-quantitative staining, a scoring system from 0-3 was used, with 3 indicating 

strong staining. The same slides were scanned by Aperio ScanScope scanner. Image analysis 

was performed with Aperio Positive Pixel Count Algorithm to quantify the proportion of 

antigen-positive pixels in the area analyzed. The evaluation of staining was performed using 

semi-quantitative methods (Chapter 2.4.4) and digital image analysis (Chapter 4.4.5) to 

identify staining characteristic in the placenta. 

The percentage of immune-reactive cells and the intensity as evaluated by automatic Aperio 

digital image analysis software were recorded for each of the antibodies staining for VEGF, 

PlGF, Flt-1 and KDR. Stronger staining of an antibody (darker brown pixels) was associated 

with a lower intensity score in the positive pixel algorithm. Please refer to Chapter 2.4.6 
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section for detailed explanation of the positive pixel algorithm and chapter 2.8.8 for the 

analysis of results.  

3.4.3 Statistics 

Demographic data and semi-quatitative analysis data are presented as mean ± standard 

deviations. Automatic digital analysis data are summarized as median and interquartile range 

unless specified otherwise (Please refer to Chapter 2.8.8). 

 

3.5 Results 

3.5.1 Maternal and neonatal demographic data and clinical characteristics of the study 

population 

The demographic data and clinical characteristics of the four clinical groups are given in 

Table 3.1. Results are presented for 120 placental samples from 30 pregnancies. No 

statistically significant difference was seen in maternal age between the clinical groups. 

 

The pregnancies from the study groups delivered earlier and had lower birth weights as 

compared to term normal controls. The mean gestational age at delivery and birth weight in 

the control group were significantly different to the pathological groups but were comparable 

between the pathological groups. The majority of the pregnancies were delivered by caesarean 

section (n = 28) with the exception of two patients with isolated IUGR. 
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  Clinical groups Normal 

Pregnancy 

(n = 5) 

PE 

(n = 9) 

IUGR 

(n = 10) 

PE + IUGR 

(n = 6) 

Maternal age (years) 27.8 27.2 30.0 31.8 

Gestation at delivery 

(weeks) 

38.7(0.4) 31.7(1.2)* 32.4(1.0)* 33.1(1.6)* 

Birth weight (g) 3478(329) 1784(230)* 1860(183)* 1588(271)* 

Placental weight (g) 470(117) 350(62) 247(42)* 249(34)* 

Primigravidae (n) 1 7 2 7 

Current Smokers(n) 0 2 1 1 

Caesarean sections (n) 5 9 8 6 

Maternal Corticosteroid 

treatment prior to delivery 

N/A 8 4 6 

 

Table 3.1: Maternal and fetal demographic data and clinical characteristics of the study 

population. Results are presented as mean ± SD for each continuous variable unless otherwise 

specified. * Significantly different to normal pregnancies p <0.05.  

3.5.2 Morphological characteristics of the placenta 

Comparative morphological study of the placentas was carried out by an independent 

pathologist.  The results are displayed in Table 3.2. 

Approximately 50% of the placental biopsies in the three pathological groups had areas of 

villous infarction as well as widespread syncytial knots, loss of villi, and fibrin deposition.  

Villous infarction was not detected in the placental samples from the control group. Fifty 
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percent of term placentas had occasional syncytial knots (Table 3.2). A striking feature in all 

the three pathological groups was the prominent presence of extra-villous trophoblast in the 

stem villi with infiltration into the areas of villous infarctions. The morphological changes 

associated with preeclampsia and IUGR are demonstrated in Figures 3.1 and 3.2. 

Placental morphology Normal 

Pregnancy 

(n = 5) 

PE 

( n = 9) 

IUGR 

( n = 10) 

PE+IUGR 

( n = 6) 

No of placental biopsies 20 36 40 24 

Mean number of villi per 

high power field  

(Magnification x 400) 

12.7 

(SD 0.53) 

11.3 * 

(SD 0.39) 

10.4* 

(SD 0.37) 

9.3* 

(SD 0.49) 

Placental biopsies with 

loss of villi 

0/20 (0%) 16/36(44%)* 19/40 (47.5)* 11/24 (45%)* 

Loss of villi 0/20 18/36* 34/40* 12/24* 

Hypovascular villi 0/20 1/36 7/40* 3/24* 

Syncytial knots 10/20 34/36* 40/40* 22/24* 

Intervillositis 0/20 0/20 4/40 0/24 

Perivillous fibrin 4/20 20/36 32/40* 18/24 

Large infarcts 0/20 2/36 3/40 6/24* 

 

Table 3.2: Placental morphological characteristics by clinical group.   

Placental biopsies stained with Haematoxylin and Eosin were examined for known 

pathological features of preeclampsia and intrauterine fetal growth restriction. The number of 

villi per high power field mean ± standard deviation and sections with infarcted villi were also 

documented.  * Significantly different to normal pregnancies, p <0.05.  
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Figure 3.1 Morphological changes associated with preeclampsia and IUGR.  

A: Normal placenta, B: Intrauterine fetal growth restriction, C: Preeclampsia, D: Preeclampsia 

and intrauterine fetal growth restriction. Thin arrow: Hypovascular villi and fetal thrombotic 

vasculopathy. Thick arrow: Syncytial knotting.  Sections B, C and D demonstrate loss of 

villus density. Magnification x 200. 

 

Figure 3.2 Loss of villi associated with preeclampsia and intrauterine fetal growth restriction 

(B) compared to normal term placenta (A). Magnification x 50. 
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3.5.3 Density of terminal villi 

The normal pregnancy group, as expected showed normal term placental morphology, 

vasculature and villous architecture (Table 3.2). Placentas from pregnancies with IUGR as 

defined in the methods section 2.3.3 with high resistance umbilical artery Doppler waveforms 

had a significant reduction in the mean number of villi per high power field (p < 0.001) in 

comparison to the normal group (Figures 3.2 and 3.3).  

 

Figure 3.3 Number of villi per high power field (x400) in placental biopsies represented as 

mean ± SE. Preeclampsia and IUGR had significantly fewer number of villi than normal 

placenta. The combination of PE and IUGR appear to have a cumulative effect in reducing the 

number of villi. * Significantly different to normal pregnancies p <0.05.  
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3.5.4 Angiogenic factors and their receptors: Analysis of Immunostaining intensity  

A total of 120 formalin-fixed placental tissue specimens from four clinical groups were 

analysed  manually for intensity of staining characteristics.  The immunolocalisation of the 

VEGF staining in different tissue types was similar in all clinical groups. Immunostaining for 

VEGF was detected in syncytiotrophoblast, cytotrophoblast, extra villous trophoblast, 

endothelium, and Hofbauer cells (Figure 3.4) while the Flt-1 immunoreactivity was mainly 

syncytiotrophoblast, cytotrophoblast and Hofbauer cells. The average VEGF staining 

intensity score was correlated with the clinical groups and did not demonstrate any 

differences between the groups.  Immunohistochemical staining intensity for VEGF (Figure 

3.5) and Flt-1 in syncytiotrophoblast, endothelium, stroma and Hofbauer cells were scored 

separately (Figures 3.6 and 3.7). No staining was evident in negative control sections. 

Increased staining for KDR was demonstrated in the endothelial cells.  Strong PlGF 

immunoreactivity was localized to the syncytiotrophoblast and endothelium with minor 

staining of the villous stroma. A feature of the pathological placentas from PE and IUGR, was 

the prominent presence of extra villous trophoblast in the stem villi and areas of villous 

infarction (Figure 3.4). These cells demonstrated intense immunoreactivity for VEGF as well 

as its Flt-1 receptor. Comparative images for angiogenic factors VEGF and PlGF as well as 

their receptors Flt-1 and KDR are presented in Figure 3.8 for the four clinical groups. 
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Figure 3.4 VEGF immunostaining in preeclamptic placentas.  

A: syncytiotrophoblast (curved arrow), B Vascular endothelium (thick arrow), C: Hofbauer 

cells (smaller arrow), D: Extra villous trophoblast (rectangle) demonstrated intense VEGF 

immunoreactivity in the pathological clinical groups. Magnification x 200. 
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Figure 3.5 VEGF Staining Intensity of Trophoblast (A), vascular endothelium (B), villous 

stroma (C) and Hofbauer cells (D).  Results presented as mean ± SD. 

No significant difference seen between clinical groups for staining of trophoblast, villous 

stroma and Hofbauer cells. For VEGF staining of vascular endothelium, a statistically 

significant difference was noted between normal pregnancy and IUGR. 
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Figure 3.6 Immunolocalization of Flt-1 in the placenta.   

A: Normal term placenta x 200 B: Preeclampsia x 200, C: Isolated IUGR x 400 D: endothelial 

staining  isolated IUGR x 400. Small arrow = intense staining of Hofbauer cells. Large arrow 

= staining of endothelial cells.  
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Figure 3.7 Flt Staining Intensity. 

A: Trophoblast, B: Vascular endothelium, C: Villous stroma, D: Hofbauer cells.  Results 

presented as mean ± SD. No significant difference seen between clinical groups for staining 

of trophoblast. IUGR and PE+IUGR groups showed increased staining of endothelium, 

villous stroma and Hofbauer cells. 
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Figure 3.8 Comparative immunolocalisation and expression of VEGF, PlGF, Flt-1 and KDR 

in placental villous structures. Representative sections of placenta from normal pregnancy 

(A1-A4) and pregnancies complicated by PE (B1-B4), IUGR (C1-C4) and PE+IUGR (D1-

D4).  Images E1-4 represents negative controls for VEGF, PlGF, Flt-1 and KDR. 
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3.5.5 Association of villous infarction with the VEGF and Flt-1 staining Intensity 

The Intensity scores for VEGF staining were further analyzed according to presence or 

absence of villous infarction within the same placental biopsy. The VEGF staining intensity 

of syncytiotrophoblast was found to vary with the proximity of villous infarction within a 

placental sample (Figure 3.9). Morphologically normal villi within a placental sample with 

villous infarction (peri-infarction), displayed a significantly reduced VEGF staining intensity 

of trophoblast (Figure 3.10) as compared to the villi of placental sections without the presence 

of villous infarctions (p = 0.0001). This reduced VEGF expression in the peri-infarction 

syncytiotrophoblast was evident irrespective of the clinical group and was statistically 

significant for preeclampsia (p = 0.0006), preeclampsia with IUGR (p = 0.0076) as well as the 

IUGR only groups (p = 0.0001). Villous infarctions in placental samples were also associated 

with a significantly reduced staining of villous vascular endothelium in IUGR but no 

difference was noted in the Flt-1 expression of trophoblast. 
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Figure 3.9 H&E stained placental biopsy demonstrating area of villous thrombosis, infarction, 

hypovascular villi and resultant loss of villi.  Increased fibrin deposition noted.  Arrows point 

to infarcted villi. 
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Figure 3.10 VEGF staining of trophoblast in the presence and absence of villous infarction in 

the placental biopsy. The median and interquartile staining scores are shown for each clinical 

group.  The placental biopsies from normal pregnancies did not show evidence of villous 

infarction. The placental biopsies of the pathological pregnancies are divided into average 

VEGF staining intensity score of placental biopsies with no evidence of villous infarction (the 

box plots in blue) and the average VEGF staining intensity score of placental biopsies with 

evidence of villous infarction (box plots in green).  The VEGF staining intensity scores were 

significantly lower in the placental biopsies with infarction as compared to without infarction 

in PE, IUGR and PE+IUGR. No difference noted between pathological groups. * = p <0.001. 
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3.5.6 Placental VEGF: Quantitative analysis of immunohistochemical staining. 

VEGF immune staining characteristic for positive pixel counts and staining intensity in all 

clinical groups are presented in Table 3.3 and Figures 3.11-3.13. Stronger staining of an 

antibody (darker brown pixels) was associated with a lower intensity score in the positive 

pixel algorithm. Please refer to Chapter 2 section 2.4.7 for detailed explanation of the positive 

pixel algorithm. 

Summary of results for percentage of positive placental tissue and intensity for each marker 

are presented in Figures 3.11 and 3.12.  
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Growth 

Factor 

Clinical 

Group 

Average 

Area(mm2) 

Analyzed 

Average % 

of positive 

cells 

Distribution of intensity of 

positive cells % 

  

        Weak Moderate Strong 

VEGF Normal 17.82 69.76 21.72 37.69 10.35 

  PE 34.45 74.52 30.57 39.05 4.90 

  IUGR 25.46 75.2 27.91 36.7 10.59 

  PE+IUGR 25.33 71.34 25.46 37.31 8.57 

PlGF Normal 23.38 57.11 23.38 30.19 3.54 

  PE 31.42 68.70 31.42 35.4 1.88 

  IUGR 10.49 15.76 10.49 5.23 0.04 

  PE+IUGR 12.00 20.07 12.00 8.00 0.07 

Flt Normal 22.01 76.52 26.17 39.91 10.44 

  PE 40.10 77.66 27.85 43.98 5.83 

  IUGR 30.52 82.23 33.88 42.01 6.34 

  PE+IUGR 31.18 80.24 33.06 42.22 4.96 

KDR Normal 18.68 13.77 6.53 6.91 0.33 

  PE 31.08 6.06 3.96 1.72 0.38 

  IUGR 18.58 8.11 4.87 3.20 0.04 

  PE+IUGR 22.2 11.85 7.93 3.86 0.06 

 

Table 3.3 The percentage of immune-reactive cells and the intensity as evaluated by 

automatic Aperio digital image analysis software were recorded for each of the antibodies 

staining for VEGF, PlGF, Flt-1 and KDR.   
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Figure 3.11 VEGF immunostaining: Percentage of positive staining pixels over total pixels.   

Over 65% of tissue stained positive for VEGF in all clinical groups.  Statistically significant 

differences were seen between Normal pregnancy and PE (p = 0.019) and between Normal 

pregnancy and PE+IUGR (p = 0.004). No significant difference was noted between the 

pathological groups.  
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Figure 3.12 VEGF average staining intensity for all positively stained pixels. 

All the clinical groups demonstrated an average VEGF staining intensity in the moderate 

range (100-175) with some variation in the levels in the intensity between the groups. Normal 

pregnancy placentas had lower intensity (higher staining) compared to preeclampsia. (p = 

0.007). No significant difference between Normal vs. IUGR (p = 0.055) and Normal vs. 

PE+IUGR (p = 0.052). No difference was seen between the pathological groups. Arrow 

indicates that higher intensity = lower staining. 
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Figure 3.13 VEGF staining demonstrating percentage of the tissue staining at different levels 

of staining intensity (weak, moderate and strong) as generated by automated image analysis 

software using a positive pixel count algorithm.  

The majority of the positive staining tissue for VEGF in all clinical groups was in the weak to 

moderate staining intensity. 

 

3.5.7 Placental PlGF: Quantitative analysis of immunohistochemical staining. 

PlGF immunostaining characteristic for positive pixel counts and staining intensity in all 

clinical groups are presented in Table 3.3 and Figure 3.14-3.16. The PlGF staining was lower 

in area and intensity in pregnancies complicated by IUGR. 
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Figure 3.14 PlGF immunostaining: Percentage of positive staining pixels over total pixels.  

Statistically significant difference seen in the percentage of area positive for PlGF between 

normal pregnancy and IUGR (p = 0.001) as well as between normal pregnancy and PE+IUGR 

(p = 0.004) with IUGR showing a lower percentage of positive cells.  Significant difference 

also seen between PE and IUGR (p = 0.001) as well as PE and PE+IUGR (p = 0.012). No 

difference was seen between Normal pregnancy and PE. 
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Figure 3.15 PlGF average staining intensity for all positively stained pixels.  

The PlGF staining intensity was in the moderate range (intensity 100-175) for Normal 

pregnancy and PE, while IUGR and PE+IUGR staining intensity was weak (>175). No 

difference was seen between normal pregnancy and PE. Arrow indicates that higher intensity 

= lower staining. 
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Figure 3.16  PlGF staining demonstrating percentage of the tissue staining at different levels 

of staining intensity (weak, moderate and strong) as generated by automated image analysis 

software using a positive pixel count algorithm.  

The majority of the positively staining cells for PlGF in the normal and preeclamptic tissue 

were moderately stained while the pregnancies with IUGR demonstrated mainly weak 

staining. 
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3.5.8 Placental Flt-1: Quantitative analysis of immunohistochemical staining. 

Flt-1immune-staining characteristic for positive pixel counts and staining intensity in all 

clinical groups are presented in Table 3.3 and Figures 3.17-3.19. 

        

Figure 3.17 Flt-1 immunostaining: Percentage of positive staining pixels over total pixels.  

All clinical groups displayed a high percentage area of positive pixels averaging over 75% of 

total area, median ranging from 78-85%. The area positive appeared to be marginally 

increased in the pathological pregnancies.  
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Figure 3.18 Flt-1 average staining intensity for all positively stained pixels.  

The staining intensity for normal pregnancy was in the moderate range (100-175) with a small 

reduction in the staining in the pregnancies complicated by IUGR/PE+IUGR. Arrow indicates 

that higher intensity = lower staining. 

In combination with Figure 3.17, Flt-1 is noted to be more widely expressed in pathological 

group placentas, but at a lesser intensity.  
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Figure 3.19  Flt-1 staining demonstrating percentage of the tissue staining at different levels 

of staining intensity ( weak, moderate and strong) as generated by automated image analysis 

software using a positive pixel count algorithm.  

The majority of positively stained tissue in all clinical groups demonstrated moderate 

intensity of staining. 

3.5.9 Placental KDR: Quantitative analysis of immunohistochemical staining. 

KDR immune-staining characteristic for positive pixel counts and staining intensity in all 

clinical groups are presented in Table 3.3 and Figure 3.20-3.22. 
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Figure 3.20 KDR immunostaining: Percentage of positive staining pixels over total pixels.  

Statistically significant difference seen between normal pregnancy and PE (p = 0.012) and 

between PE and PE+IUGR (p = 0.05) only. 
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Figure 3.21 KDR average staining intensity for all positively stained pixels.  

Normal pregnancy placenta had higher intensity of staining compared to the pathological 

pregnancies with significant difference seen between Normal and PE (p = 0.002), Normal and 

IUGR (p = 0.013) as well as Normal and PE+IUGR (p = 0.004).  No difference in staining 

intensity was seen between the pathological groups. Arrow indicates higher intensity = lower 

staining. 
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Figure 3.22 KDR staining demonstrating percentage of the tissue staining at different levels of 

staining intensity (weak, moderate and strong) as generated by automated image analysis 

software using a positive pixel count algorithm.  

The majority of positively stained tissue in normal pregnancy was moderate intensity while 

the pathological groups PE, IUGR and PE+IUGR demonstrated mainly weak staining.  

3.5.10 Inter- and intra-observer variability 

To assess the inter-observer variability in semi-quantitative scoring of immunostaining, two 

observers manually analyzed and scored VEGF immunostaining of 120 slides from 30 

placentas (Figure 3.23). Observer 2 was blinded to the clinical study groups. 

The results showed a significant correlation between the scoring of the two observers (kappa 

correlation coefficient 0.469, p <0.01). The correlation coefficient for grading of VEGF 

immunostaining scores between two independent observers using Bland-Altman limits of 

agreement was 88% (p < 0.001). There is a significant tendency for observer 2 to score 

slightly higher than observer 1, mean difference 0.12 (SD 0.03, p<0.001). 
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Figure 3.23 The inter-observer variability in semi-quantitative scoring of immunostaining. 

A: Scatterplot of average score over 5 fields for each slide for Observer 2 versus Observer 1, 

using semi-quantitative analysis. B: Bland-Altman plot of inter-observer variability between 

Observer 1 and 2. 

 

3.5.11 Comparison between semi-quantitative and digital image analysis of VEGF 

staining 

The relationship between semi-quantitative and digital analysis of VEGF immunostaining in 

the placenta was defined (Figure 3.24) using Spearman rank correlation coefficients (SPSS1, 

Chicago, Illinois, USA).  A moderate correlation was seen between the average score for 

manual reading and the score generated by the automated digital image analysis, across all 

study subjects in the moderate to strong VEGF intensity levels (Figure 3.24). The correlation 

was weaker and did not reach significance in the weak intensity levels.  
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Figure 3.24 Spearman rank correlation for relationship between average scores for two 

manual observers and  automated digital analysis of positive pixel count for VEGF intensity 

across all samples from four clinical groups of  Normal, PE, IUGR and PE+IUGR. 

 Data presented for A = strong positive, B = moderate positive, C = all positive VEGF 

intensity. A moderate correlation was seen in the strong (correlation coefficient 0.51, p 

<0.01), moderate (correlation coefficient 0.37, p <0.01) and all positive staining (correlation 

A 
Correlation 

coefficient 0.51 

p < 0.01 

B 
Correlation 

coefficient 0.37 

p < 0.01 

C 
Correlation 

coefficient 0.45 

p < 0.01 
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coefficient 0.45, p <0.01).  The correlation was weaker and did not reach significance in the 

weak intensity levels (correlation coefficient 0.06, p = 0.34).  

 

3.6 Discussion 

Factors that influence placental vascular development and function will have an impact on 

fetal growth and development, and thereby on neonatal survival and growth. A substantial 

body of evidence indicates angiogenic factors play a significant role in placental angiogenesis 

as well as restoration of the placental vasculature.  In this study the expression of VEGF, 

PlGF and their receptors Flt-1 and KDR were determined in normal and pathological 

placentas to determine their role in the pathogenesis of preeclampsia and intrauterine fetal 

growth restriction.  

3.6.1 Placental morphology 

The description of placental morphology in this study is comparable to previous findings of 

syncytiotrophoblast knotting, villous infarcts, avascular villi and uteroplacental fibrinoid 

necrosis as characteristic placental morphological features of preeclampsia and  intrauterine 

growth restriction (36, 57). Placental morphological changes were similar in PE and IUGR.   

3.6.2 Villous architecture 

Previous published work on stereological assessment of placental morphology in PE and 

IUGR have shown that PE had an effect on intervillous stroma and terminal villi volume only. 

IUGR, alone or in combination with PE contributed towards significant reductions in 

volumetric and surface area terminal villous and vascular features (388). Further studies into 
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early and late onset preeclampsia have shown isolated early-onset PE to be associated with 

abnormal placental morphology, but placentas from late-onset PE were morphologically 

similar to placentas from gestational age matched controls, suggesting the existence of two 

subsets of this condition and supporting the hypothesis that late-onset preeclampsia is a 

maternal disorder and not a placental disease (389).  A study using digital image analysis of 

the morphology and composition of placental villi in pregnancies complicated by PE and 

IUGR (379) demonstrated significantly smaller placentas in growth restricted pregnancies.  

PE, with or without IUGR, had no effect on the total area occupied by villi. IUGR alone 

showed a real and consistent reduction in villous numbers. These measurements point to 

impoverished villus structure in idiopathic IUGR. The observed changes in PE with IUGR 

were more akin to PE without growth restriction than IUGR alone. The authors suggested that 

idiopathic IUGR and PE +IUGR have a separate aetiology; idiopathic IUGR arising through a 

reduction in villous area alone, and IUGR in PE caused by changes in syncytiotrophoblast and 

cytotrophoblast quantity (379). 

The findings on villous architecture are consistent with the above published studies. The study 

has confirmed that significant morphological abnormalities exist in the placentas of PE and 

IUGR. The loss of villi is significant in the IUGR with abnormal umbilical artery Doppler 

resistance. The effect is cumulative with a combination of PE and IUGR. These results of the 

number of villi per high power field and villous morphology, indicate loss of villous 

vascularity and tissue. While both PE and IUGR have changes compared to the normal term 

placenta, the cumulative effect of PE and IUGR appear to lead to a more significant loss of 

villous architecture than either condition alone. The decreased number of villi in the IUGR 

and PE+IUGR is also consistent with prior histopathological studies documenting loss of 

terminal villi with IUGR (15, 57). 
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3.6.3 Pro and anti-angiogenic factor levels in the placenta 

The localization of VEGF, PlGF, Flt-1 and KDR in placental tissues was similar across the 

four clinical groups. These results showed that positive staining for VEGF, Flt-1, and PlGF 

was mainly localized to the syncytiotrophoblast layer of the placenta, while KDR staining was 

mainly detected in the endothelial layer. There were significant differences detected in the 

staining intensity across the clinical groups in PlGF and KDR while VEGF and Flt-1 were in 

a similar immunostaining range. The interpretation of the staining intensity should take into 

consideration that while differences in staining intensity levels leading to different strengths 

of staining (weak, moderate and strong) may be clinically important, variations within a 

staining intensity levels are unlikely to be clinically significant or be detected by the naked 

eye. 

3.6.3.1 VEGF 

These results on the overall distribution and the intensity of VEGF in the placentas 

demonstrated that while a higher number of cells were positive for VEGF in the pathological 

placentas, the intensity of staining was in the moderate staining range in all the clinical 

groups. These findings are consistent with variable data from previous studies (191, 199, 201)  

showing increased as well as reduced VEGF levels in preeclampsia. The variation in staining 

may be explained by the fact that placental pathology is often patchy within the disc of the 

placenta and an overall assessment may not be able to demonstrate a difference. In a novel 

concept, the placental biopsies were analyzed according to the presence or absence of villous 

infarctions in the sample and have demonstrated that areas with active disease of the placenta 

as shown by villous infarction demonstrated significantly reduced VEGF staining and 

expression. A similar analysis on VEGF expression in relation to significant necrosis in tissue 

has been described in neuronal tumors by other researchers (80). This data seems to support 
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lack of VEGF as a causal factor in villous infarction or alternatively cellular death associated 

with infarction leading to reduced VEGF expression. The VEGF expression in placental 

samples without areas of infarction appears to be increased, suggesting a compensatory 

mechanism in the regeneration of the intact placental villi (194). 

3.6.3.2 PlGF 

In the current study, PlGF was significantly reduced in IUGR and PE+IUGR as compared to 

normal pregnancy and PE, both in the area positive as well as in intensity of staining.  

Consistent with previous descriptions such as, the PlGF expression was not significantly 

different in the preeclampsia only group (190). A recent longitudinal and cross sectional study 

into plasma PlGF levels (390) suggested that low maternal PlGF throughout pregnancy 

identifies a subset of preeclampsia patients that develop early and severe disease. That study 

did not include IUGR and it is not clear whether the described group of patients had 

significant IUGR as a result of low PlGF. The current study results on reduced  PlGF 

correlates with published literature (58) showing that PlGF expression is reduced in the 

presence of placental hypoxic/ischemic morphological changes and provides further evidence 

that hypoxic/ischemic changes occur in IUGR placentas. 

3.6.3.3 Flt-1 

These results on Flt-1 parallels previously published results documenting moderate to strong 

immune-staining of syncytiotrophoblast and extra villous trophoblast (202) in normal 

pregnancy and preeclampsia. The study has shown that a high percentage of cells stained for 

Flt-1 in all clinical groups with an increase noted in the pathological groups.  The Flt-1 

immunostaining intensity was moderate in all groups with a comparatively small reduction in 

staining intensity in pregnancies affected by IUGR/PE+IUGR compared to normal pregnancy 

and preeclampsia. 
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3.6.3.4 KDR 

Immunolocalization of KDR in the current study has demonstrated a lower membrane bound 

intensity and area positive for KDR expression in pathological placentas with preeclampsia 

and IUGR compared to normal pregnancy. The findings raise the possibility that a 

compromised expression of KDR may play a significant part in the pathogenesis of PE and 

IUGR. 

3.6.4 Automatic analysis 

While the conventional Hematoxylin-Eosin staining is the mainstay for pathologic diagnosis, 

immunohistochemical staining is increasingly used in research as well as clinical diagnosis. 

There is a need for standardization of analysis method for more reproducibility, less time 

consuming quantitative analysis methods. Newer tools using digital image analysis and 

algorithms are a way forward in achieving these targets. The published literature to date on 

angiogenic factors and their receptor expression using immunohistochemical methods has 

used semi-quantitative methods of interpreting and scoring the staining intensity (176, 180).  

The current study used semi-quantitative analysis of immunohistochemically stained slides to 

describe the localization and intensity of VEGF staining.  Image analysis using digitized 

slides and automated digital image analysis of staining characteristics were also used to 

objectively assess the expression of angiogenic factors VEGF and PlGF and their receptors 

Flt-1 and KDR in placentas of preeclamptic and IUGR pregnancies. A comparison was made 

between the semi-quantitative and digital analysis techniques for VEGF showing that while 

there is consistency between the techniques with moderate to strong staining, the correlation 

is not as strong with weak staining. The use of semi-quantitative techniques may explain 
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some of the variable results published in the last decade on immunohistochemical expression 

of angiogenic factors in the placenta. 

This is one of the few studies presenting digital image analysis of immunohistochemical 

staining in human placental tissue. A published comparative analysis of manual point 

counting method and automated pixel-counting method of area percentage estimations has 

suggested that the inter-observer concordance in the point-counting technique is reasonably 

high and the results obtained by the point counting method approach those seen by the 

automated pixel-counting when at least 300 points are overlaid (391).  A recently published 

study used a visual image analysis of formalin-fixed, wax-embedded sections stained with 

haematoxylin and eosin (H&E) to observe changes in the morphology and composition of 

placental villi in pregnancies complicated by PE and IUGR (379). A further study into 

placental morphometry and villous architecture in pregnancies complicated by IUGR used a 

computerized Video Image Analysis system for analysis (380).  

Several other studies such as have published comparisons between semi-quantitative scoring 

systems and digital analysis techniques for immunohistochemical staining (392). The 

accuracy of digital techniques including Aperio computer-assisted analysis of 

immunohistochemical staining  techniques have been assessed and validated in multiple tissue 

types including brain,  breast and kidney (383, 392-394). In published literature, Aperio 

Positive Pixel Count Algorithm is comparable to the pathologist’s scoring and could add 

benefits of automated and reproducible measurement (383).  

The present study shows that angiogenic factor immunostaining in the placenta can be easily 

evaluated using computer assisted image analysis on completely digitized slides. Digital 

pathology evaluation of VEGF staining in the placenta parallels semi-quantitative analysis in 

strong to intense staining, bringing objectivity to the analysis with reduction of intra-observer 

http://ovidsp.tx.ovid.com.ezproxy1.library.usyd.edu.au/sp-3.10.0b/ovidweb.cgi?&S=JBPGFPBGECDDKBFGNCNKKFDCAANJAA00&Complete+Reference=S.sh.22%7c29%7c1
http://ovidsp.tx.ovid.com.ezproxy1.library.usyd.edu.au/sp-3.10.0b/ovidweb.cgi?&S=JBPGFPBGECDDKBFGNCNKKFDCAANJAA00&Complete+Reference=S.sh.22%7c29%7c1
http://ovidsp.tx.ovid.com.ezproxy1.library.usyd.edu.au/sp-3.10.0b/ovidweb.cgi?&S=JBPGFPBGECDDKBFGNCNKKFDCAANJAA00&Complete+Reference=S.sh.22%7c29%7c1
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and inter-observer variability and is a useful tool to improve reproducibility of the scoring. 

The published parameters for definition of low, medium and strong staining would facilitate 

comparison and reproducibility of research findings from different research centers. With the 

adoption of digital pathology, image analysis of immunohistochemistry slides can be 

integrated seamlessly into the digital pathology workflow.  

3.6.5 Interpretation of results 

A novel feature in this study was the classification of the clinical groups according to the 

umbilical artery Doppler flow velocity waveforms as well as maternal hypertensive disease. A 

meta-analysis of twenty randomized controlled trials of umbilical artery Doppler ultrasound 

showed a significant reduction in the number of antenatal admissions, inductions of labour, 

and caesarean sections for fetal distress in the Doppler group and that the clinical action 

guided by Doppler ultrasonography reduces the odds of perinatal death by 38% (376). The 

Doppler resistance has been described as various indices using the peak systolic and end 

diastolic flow velocity of the umbilical artery Doppler waveform. All the described indices, 

Systolic / Diastolic ratio (S/D), Pulsatility index (PI) and Resistance (Resistive) Index (RI) are 

different forms of the same information and decrease with increasing gestation. A detailed 

description of the indices is provided in Figure 2.1 and 2.2 as well as Table 2.1 (376).  A birth 

weight of <10th percentile may be a result of multiple aetiological factors, including 

constitutionally small babies with normal placental function as well as in-utero growth 

restricted fetuses with placental vascular disease. Study of these placentas as one group is 

unlikely to provide us with clarification of the pathophysiology of placental vascular disease. 

Patient selection based on maternal symptoms, especially if mild may also not be very 

reflective of significant placental pathology. The use of umbilical artery Doppler waveform 

http://ovidsp.tx.ovid.com.ezproxy1.library.usyd.edu.au/sp-3.10.0b/ovidweb.cgi?&S=JBPGFPBGECDDKBFGNCNKKFDCAANJAA00&Complete+Reference=S.sh.22%7c29%7c1


 

 

181 

analysis in the selection of cases ensured that the samples were collected from pregnancies 

affected by placental vascular disease.  

The strength of this study is the strict criteria used for patient selection. The use of umbilical 

artery resistance in the identification of patients with a placental cause of IUGR has removed 

the ambiguity generated by previous studies and has added to the reliability of these findings. 

This study was limited by small patient numbers, limited placental samples and the cross 

sectional design, although comparable to previously published studies using similar 

techniques (379). The use of the digital image analysis of the whole placental biopsy has 

increased the area of placenta analysed for staining as compared to a limited number of high 

power fields usually analysed by the manual assessment of staining. 

To our knowledge, this is the first study to look at the expression and immunolocalisation of 

VEGF and receptors in preeclampsia and intrauterine growth retardation characterized by 

abnormal umbilical artery Doppler studies. The study has correlated the angiogenic effects of 

VEGF, PlGF as well as anti-angiogenic response of Flt-1 and KDR in the placenta to 

histopathological changes as well as clinical features of umbilical artery Doppler waveforms 

and preeclampsia. The current study adds to the existing literature as the first description of 

digital image analysis techniques in the assessment of angiogenic factor expression in the 

placenta. 

The findings of this study show that the level of overall VEGF and Flt-1 are in the same range 

for normal pregnancy and pregnancies complicated by PE and IUGR. The intensity of VEGF 

staining has been shown to be reduced in the areas of significant pathology such as villous 

infarction compared to the non-infarcted areas suggesting compensatory villous regeneration 

in these areas. One of the most important findings in the present study is that PlGF and KDR 

are significantly reduced in expression in the placentas from pregnancies complicated by 
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IUGR compared to normal and preeclamptic pregnancies. The intensity of Flt-1 was noted to 

be moderate and within similar range across all the clinical groups. The area positive was 

however higher in PE and IUGR. It is possible that the overall effect of the combination of 

moderate intensity and increased area is seen as higher Flt-1 staining on manual reading with 

photo-microscopy. 

The results of this study raise the possibility that changes in VEGF and Flt-1 expression may 

be a consequence rather than the cause of placental vascular disease and preeclampsia and 

that lack of PlGF and KDR may be a main cause for the development of intrauterine fetal 

growth restriction. 

We have also shown that automated digital image analysis using software such as Aperio 

positive pixel algorithm could be successfully used as an alternative method to the manual 

reading of placental immunohistochemical staining. 
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Chapter 4 - Expression of angiogenic factors and their receptors 

in the maternal peripheral circulation and fetal cord blood in 

normal and complicated pregnancies. 

 

4.1 Summary 

Introduction: Literature to date has described aberrant angiogenic factors and their receptor 

levels in placental disease. Whether there is a difference between preeclampsia and IUGR is 

not clear. It is still not established whether these changes are part of the pathogenesis of 

placental disease or a reactionary change to the disease process in the placenta. Circulating 

angiogenic factors are being evaluated as potential biomarkers for pregnancy complications 

such as PE and IUGR. 

Aim: To evaluate the plasma levels of angiogenic factors in preeclampsia (PE) and 

intrauterine fetal growth restriction (IUGR) and their potential as biomarkers to distinguish 

normal from pathologic pregnancies. 

Methods: Case control study included singleton pregnancies in four clinical groups of normal 

pregnancy, preeclampsia (PE), preeclampsia with intrauterine fetal growth restriction 

(PE+IUGR) and IUGR. The classification of IUGR included umbilical artery Doppler 

resistance. Maternal plasma placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 

(sFlt-1), soluble kinase domain receptor (sKDR) and soluble Endoglin (sEng) as well as fetal 

umbilical artery sFlt-1 levels were determined. Each individual marker and their ratios were 

assessed for their potential to distinguish normal pregnancy from pregnancies affected by PE 

and/or IUGR. 
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Results: The study found (i) elevated plasma sFlt-1, sEng and reduced PlGF, sKDR in PE 

and IUGR; (ii) similar angiogenic profiles in PE and IUGR and (iii) sEng and sFlt-

1*sEng/PlGF performed best as biomarkers in identifying pathologic pregnancies.  (iv) Fetal 

sFlt-1 levels were well below the maternal levels and no difference between clinical groups. 

Conclusions: PE and IUGR have similar angiogenic profiles, suggesting that angiogenic 

marker profiles lack specificity in identifying PE and that other factors are required for the 

identification of PE from IUGR. sEng is a predictor of established PE and IUGR and could be 

part of a biomarker profile for predicting PE or IUGR. 

 

 

This chapter is published in part in the journal article: Alahakoon TI, Zhang W, Trudinger BJ, 

Lee VW. Discordant clinical presentations of preeclampsia and intrauterine fetal growth 

restriction with similar pro- and anti-angiogenic profiles. J Matern Fetal Neonatal Med. 2014 

2014; 27(18): 1854-1859. 
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4.2 Introduction 

The balance between angiogenic factors and their pro and anti-angiogenic receptors are 

thought to play an important role in the ongoing control of placental angiogenesis in normal 

and complicated pregnancies (215). The last decade has seen a plethora of publications 

investigating the role of angiogenic factors in placental disease, in particular the VEGF 

family, and their receptor levels in the maternal circulation. Current knowledge of the changes 

in the angiogenic factors in preeclampsia and intrauterine growth restriction has been 

explored in detail in Chapter 1 of this thesis. While it is evident that the angiogenic factors 

and their receptor levels are aberrant in placental disease, whether there is a difference in 

preeclampsia and IUGR is not clear. It is still not established whether these changes are part 

of the pathogenesis of placental disease or a reactionary change to the disease process in the 

placenta. Circulating angiogenic factors are being evaluated as potential biomarkers for 

pregnancy complications such as PE and IUGR (215, 219). 

4.3 Aims 

 Measure VEGF family angiogenic factors and their receptors in maternal and fetal 

plasma. 

 Identify any differences in angiogenic factors and their receptor levels between normal 

pregnancy and pregnancies complicated by preeclampsia and/or fetal growth 

restriction. 

 Evaluate the predictive value of maternal and fetal plasma angiogenic factors and their 

receptors in identifying pregnancy complications such as preeclampsia and 

intrauterine fetal growth restriction 
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4.4 Methods 

A case control study was conducted including singleton pregnancies from four clinical groups 

of normal pregnancy, PE, PE+IUGR and IUGR. Maternal plasma PlGF, sFlt-1, sKDR and 

sEng as well as fetal umbilical artery sFlt-1 levels were determined. Each individual marker 

and their ratios were assessed for their potential to distinguish normal pregnancy from 

pregnancies affected by PE and/or IUGR. 

The sample collection and measurement of maternal plasma biomarkers using ELISA 

techniques were as described in Chapter 2.5. Statistical analysis detailed in Chapter 2.8.9. 

 

4.5 Results 

4.5.1 Clinical characteristics of the study population 

Results are presented for 84 maternal peripheral venous samples and 84 fetal umbilical 

arterial cord blood samples. The demographic data for the four groups are presented in Table 

4.1. There were no significant differences in maternal age, parity and gestational age at blood 

sampling between the four groups. A higher proportion of the pathological pregnancies were 

to primigravid mothers. The gestational age at delivery and birth weight were significantly 

different in the pregnancies complicated by preeclampsia and fetal growth restriction as 

compared to normal pregnancies. No significant differences in demographic data were noted 

between pregnancies complicated by PE, PE+IUGR and IUGR.  
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 Normal 

Pregnancy 

Preeclampsia 

(PE) 

Preeclampsia 

+ IUGR 

IUGR 

Patient number 29 15 16 24 

Maternal age 

(years)  

30.9 

(27.5-34.30) 

27.9 

(25.0-30.0) 

27.8 

(22.3-35.5) 

31.0 

(26.0-37.0) 

Primigravida % 21% 53%* 63%* 66%* 

Gestational age  

At venesection 

34.9 

(32.2-39.1) 

31.9* 

(30.3-34.1) 

31.9* 

(27.7-34.8) 

33.9* 

(31.2-37.0) 

Gestational age 

At delivery 

39.1 

(38.1-40.1) 

31.9* 

(30.3-34.1) 

31.9* 

(27.7-34.8) 

33.9* 

(31.2-37.0) 

Birth weight (g)  3452 

(3052-3850) 

1727 * 

(1340-2275) 

1392* 

(745-1918) 

1627* 

(1070-2206) 

Aspirin  

treatment 

0/29 1/15 2/16 1/24 

Smoking 1/29 2/15 1/16 2/24 

Antenatal 

steroids 

0/29 9/15 13/16 10/24 

Antihypertensive 0/29 11/15 9/16 0/24 

 

Table 4.1 Clinical characteristics of the study population.  

Results are presented as mean ± standard deviation unless otherwise specified. 

* Significantly different to normal pregnancies p <0.05.  
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4.5.2 Circulating plasma pro-angiogenic and anti-angiogenic factors: individual factor 

levels  

The plasma pro-angiogenic factor levels (PlGF) and anti-angiogenic soluble receptor levels 

sFlt-1, sKDR and sEng are listed in Table 4.2.   

4.5.2.1 Maternal VEGF levels 

The free or unbound plasma VEGF levels were below the sensitivity of the assay in 

preliminary ELISA experiments. Further testing of samples was not performed for VEGF.  
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Group 

Normal PE only PE & IUGR IUGR only 

Median 

(Interquartile 

range) 

N = 29 

Median 

(Interquartile 

range) 

N = 15 

Median 

(Interquartile 

range) 

N = 16 

Median 

(Interquartile 

range) 

N = 24 

Maternal 

plasma sFlt-1 

level (pg/ml) 

2798.0 

(1800,5732) 

8672* 

(8453,8904) 

8934.0* 

(8706,9175) 

7023* 

(5848,10093) 

Fetal/Cord 

blood sFlt-1 

level (pg/ml) 

161.0 

(115.0,220.0) 

322.0 

(198,719) 

415.5 

(277,562) 

288 

(159,460) 

Maternal 

sKDR level 

(pg/ml) 

9744 

(7337.0,11691.0) 

6229* 

(4856,7986) 

5466* 

(4519,6867) 

6441* 

(4165,7269) 

Maternal 

plasma sEng 

level (ng/ml) 

4.5 

(3.7,5.9) 

29.4* 

(16,46) 

97*# 

(50,134) 

34* 

(11,55) 

Maternal 

plasma PlGF 

level (pg/ml) 

226.0 

(128.0,458.0) 

46.0* 

(19,57) 

31* 

(8,47) 

30* 

(7,40) 

sFlt-1 / PlGF 11.76 

(4.1,39.8) 

187.70* 

(139,468) 

289* 

(192,1152) 

281* 

(156,1088) 

sKDR / sFlt-1 3.88 

(1.4,5.8) 

0.72* 

(0.56,0.90) 

0.61* 

(0.53,0.79) 

0.88* 

(0.54,1.16) 

sKDR/PlGF 42.09 

(23.70,63.17) 

169.09* 

(91,247) 

190* 

(107,793) 

241* 

(104,671) 

PIGF / sEng 42.80 

(17.9,158.9) 

2.20* 

(0.53,2.43) 

0.27*# 

(0.09,0.58) 

0.58* 

(0.37,2.41) 

sKDR / sEng 2132.20 

(1276,3183) 

211.65 

(76,449) 

60*# 

(47,93) 

164* 

(87,531) 

sFlt-1 / sEng 513.84 

(349.5,771.4) 

292.69 

(189,554) 

87*#† 

(65,179) 

197* 

(136,560) 

Table 4.2 Maternal plasma angiogenic factors and their receptor levels.  

Results are presented as median ± interquartile range for each continuous variable unless 

otherwise specified. Ratios are presented as log transformed values.* Significantly different to 

normal pregnancies, p < 05. # Significantly different from PE.  † Significantly different 

between pathologic groups PE, PE+IUGR and IUGR.  p < 0.05. 
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4.5.2.2 Maternal plasma PlGF levels 

Patients with preeclampsia (PE), intrauterine growth restriction (IUGR) and co-existing PE 

and IUGR had significantly reduced median plasma PlGF levels as compared to the normal 

pregnancies. There were no significant differences in median plasma PlGF concentrations 

between the complicated pregnancies PE, PE+IUGR and IUGR (Figure 4.1).  

 

 

Figure 4.1 Maternal plasma PlGF levels by group.  

Statistically significant difference between groups * p < 0.001. 
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4.5.2.3 Maternal plasma sFlt-1 levels 

Patients with preeclampsia (PE), intrauterine growth restriction (IUGR) and co-existing PE 

and IUGR had elevated median plasma sFlt-1 levels as compared to the normal pregnancies. 

There were no significant differences in median plasma sFlt-1 concentrations between the 

complicated pregnancies PE, PE+IUGR and IUGR. * p < 0.001 (Figure 4.2). 

 

 

Figure 4.2. Maternal plasma sFlt-1 by group.  

Statistically significant difference between groups * p < 0.001. 
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4.5.2.4 Maternal plasma sKDR levels 

Patients with preeclampsia (PE), intrauterine growth restriction (IUGR) and co-existing PE 

and IUGR had reduced median plasma sKDR levels as compared to the normal pregnancies. 

There were no significant differences in median plasma KDR concentration between the 

complicated pregnancies PE, PE+IUGR and IUGR. * p < 0.001 (Figure 4.3). 

 

 

Figure 4.3 Maternal plasma sKDR levels by clinical group.  

Statistically significant difference between groups * p < 0.001. 

 



 

 

193 

4.5.2.5 Maternal plasma sEndoglin 

The sEndoglin levels were significantly higher in preeclampsia and intrauterine fetal growth 

restriction compared to normal pregnancy. Significant differences were seen between the 

complicated pregnancies with sEng levels higher in PE+IUGR as compared to PE or IUGR 

alone * p <0.05, ** p = 0.001 (Figure 4.4). 

 

 

Figure 4.4 Maternal plasma sEndoglin levels by clinical group. Statistically significant 

difference between groups * p < 0.001. 
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4.5.3 Correlation between the levels of circulating receptors sFlt-1 and sKDR by clinical 

group 

The data were tested for a correlation between plasma sFlt-1 and sKDR levels using 

Spearman’s correlation coefficient (Figure 4.5).  As both of these are anti-angiogenic factors, 

a correlation was sought between these two factors. 
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Figure 4.5 Correlation of plasma sFlt-1 and sKDR by clinical group.  

A significant negative correlation was demonstrated (r = -0.54) at a significance level p < 0.01 

level (2-tailed). 
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4.5.4 Variation in angiogenic factors and their receptor levels with gestational age 

according to clinical group 

The level of association between gestational age and each angiogenic marker of interest was 

further evaluated using Spearman rank correlation. The results are displayed below in Figures 

4.6 - 4.9.  

4.5.4.1 sFlt-1 levels by gestational age and clinical group 

 

Figure 4.6 Spearman rank correlation for the level of association between gestational age and 

sFlt-1 levels for each clinical group. 

The plasma concentrations of sFlt-1 in normal pregnancies were higher in later gestations.  

No significant association demonstrated between gestational age and sFlt-1 levels in 

preeclampsia PE, PE+IUGR or IUGR. This could be explained by the fact that the PE and 

IUGR cases in the study had established pathology, even at an earlier gestation, with already 
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elevated levels of sFlt-1 and sEng. * = statistically significant p < 0.05. NS = Not statistically 

significant. 

4.5.4.2 sKDR levels by gestational age and clinical group 

 

 

Figure 4.7 Spearman rank correlation for the level of association between gestational age and 

sKDR levels for each clinical group.  

* = statistically significant p < 0.05. NS = Not statistically significant. There was no 

significant association demonstrated between gestational age and sKDR levels in any of the 

clinical groups. 
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4.5.4.3  sEng levels by gestational age and clinical group 

 

Figure 4.8 Spearman rank correlation for the level of association between gestational age and 

sEng levels for each clinical group. 

A significant association noted between gestational age and sEng for normal pregnancy (r = 

0.466, ** p < 0.05). There was no significant association (NS) demonstrated between 

gestational age and sEng levels in PE, IUGR or PE+IUGR. 
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4.5.4.4 PlGF levels by gestational age and clinical group 

 

 

 

Figure 4.9 Spearman rank correlation for the level of association between gestational age and 

PlGF levels for each clinical group. 

A significant negative association noted between gestational age and plasma PlGF levels for 

normal pregnancy (r = -0.609, * p < 0.001). A positive association was noted between 

gestational age and PE (r = 0.604, * p < 0.05). No significant association was demonstrated 

between gestational age and PlGF levels in PE+IUGR or IUGR. 
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4.3.5 Angiogenic factors and their receptors: Ratios between pro and anti-angiogenic 

factors 

The ratios between various angiogenic and anti-angiogenic factors in the four clinical groups 

are described in Table 4.2 and Figures 4.10- 4.13. The results are displayed as median ± 

interquartiles.  For all figures, the significant differences from normal pregnancy are 

identified as *p < 0.05. 

For sFlt-1/PlGF (Figure 4.10), sKDR/sFlt-1, sKDR/PlGF and sFlt-1*sEng//PlGF (Figure 

4.13), significant differences were seen between normal pregnancy and the pathological 

pregnancies. No significant differences seen between the pathological pregnancies PE, 

PE+IUGR and IUGR * p < 0.001. 

 

Figure 4.10 Maternal plasma sFlt-1/PlGF ratio by clinical group. 
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For the ratios PlGF/sEng (Figure 4.11)  and  sKDR/sEng, there were significant differences 

seen between  normal pregnancy and pathological pregnancies (* p < 0.001) as well as 

between PE+IUGR and IUGR only (** p < 0.01).  No difference was seen between 

preeclampsia and IUGR. 

 

Figure 4.11  Maternal plasma PlGF/sEng  ratio by clinical group  
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Figure 4.12 Maternal plasma sFlt-1/ sEng ratio by clinical group. 

For the ratio sFlt-1/sEng (Figure 4.12) significant differences were seen between normal 

pregnancy and PE  (**p <0.01), PE+IUGR and IUGR ( * p < 0.001).  No difference was seen 

between preeclampsia or intrauterine fetal growth restriction groups while the biomarker ratio 

of the pregnancies complicated by preeclampsia and intrauterine growth restriction 

(PE+IUGR) is different to preeclampsia or IUGR only (***p <0.001) 
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Figure 4.13 Maternal plasma sFlt-1*sEng/PlGF ratio by clinical group. 

Significant differences were seen between normal pregnancy and the pathological 

pregnancies.  No significant difference was seen between the pathological pregnancies PE, 

PE+IUGR and IUGR.  

* p < 0.001. 
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4.5.6 Circulating angiogenic and anti-angiogenic factor levels in identifying pregnancies 

complicated by preeclampsia and/or intrauterine fetal growth restriction.  

The predictive value of the circulating angiogenic factors, anti-angiogenic factors and their 

ratios to distinguish between normal vs pathological pregnancies complicated by 

preeclampsia, preeclampsia with fetal growth restriction or fetal growth restriction was 

assessed using ROC graphs. The relevant ROC graphs are displayed in Figures 4.14-4.16. 

 Table 4.3 summarizes the sensitivity and specificity of each individual or combination of 

factors as assessed by the area under the ROC graph. 

4.5.6.1 Individual biomarkers 

 

Figure 4.14 ROC curves for anti-angiogenic factors as individual biomarkers. 

A = Maternal plasma sFlt-1 level (pg/ml). B = sEng. AUC represent sensitivity and specificity 

in detecting normal vs pathological pregnancies. 



 

 

204 

4.5.6.2 Composite markers in identifying pathological pregnancies  

 

Figure 4.15 ROC curves for combination of pro and anti-angiogenic factors as biomarkers. 

A = sFlt-1/PlGF, B = PlGF/sEng, AUC displayed for sensitivity and specificity in detecting 

normal vs pathological pregnancies.  

 

Figure 4.16 Maternal plasma sFlt-1*sEng/PlGF Ratio. Sensitivity and specificity in detecting 

normal vs pathological pregnancies. 
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Table 4.3 Summary of screening performance using ROC curves of individual biomarkers 

and their ratios for identification of pregnancies complicated by preeclampsia and/or fetal 

growth restriction as different to normal pregnancies.  

The ratios with the best performance in sensitivity and specificity are highlighted in red. 

2 = number squared of the given value 
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4.5.7 Angiogenic factors in the fetal circulation 

4.5.7.1 Umbilical artery sFlt-1 levels 

The levels of fetal plasma Flt-1 levels from umbilical artery cord blood are presented in 

Figure 4.17, comparison with maternal plasma levels have been presented in Figures 4.18. 

  

Figure 4.17 Fetal umbilical artery plasma sFlt-1 levels.  

No significant differences were seen between the clinical groups normal pregnancy, PE, 

PE+IUGR and IUGR.  
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4.5.7.2 Comparison between maternal and fetal levels of sFlt-1 levels 

 

Figure 4.18 Comparison between maternal vs fetal plasma sFlt-1 levels using paired t tests. 

The fetal levels were significantly lower than the maternal levels for each clinical group 

including normal pregnancies. * p < 0.001.  
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4.6 Discussion 

4.6.1 Individual angiogenic factors 

In the current research, circulating levels of pro and anti-angiogenic factors were measured by 

ELISA in maternal and fetal (umbilical artery) plasma, and the levels were compared between 

four clinical groups of normal pregnancy, preeclampsia, preeclampsia with fetal growth 

restriction and isolated fetal growth restriction.  The results indicate that while anti-

angiogenic receptor levels of sFlt-1and sEndoglin appear to be significantly elevated, the anti-

angiogenic sKDR levels were reduced in the pathological pregnancies as compared to normal 

pregnancy. The pro-angiogenic factor PlGF was significantly lower in the pathological 

groups.  No significant differences in pro or anti-angiogenic factor level were observed 

between the pathological pregnancies except for with sEndoglin. 

It is now well established that serum/plasma  levels of sFlt-1, free PlGF, and free VEGF are 

altered in women with clinical preeclampsia (155, 209, 395). Higher levels of sFlt-1 (155, 

178, 215, 395, 396), elevated sEng (170, 188) and lower levels of PlGF (155) and VEGF have 

been documented in "end-point specimens" after the onset of preeclampsia as compared to 

normal pregnancy controls (215). In a landmark study, Maynard et al (155) showed that 

preeclampsia is associated with elevated circulating sFlt-1 protein.  This work also suggested 

that sFlt-1 acts through its antagonism of both VEGF and PlGF. 

In a similar study, Venkatesha et al (170) used adenoviral expression of sEng and sFlt-1, 

alone or in combination in pregnant rats to induce hypertension and proteinuria in pregnant 

rats. Proteinuria was modest in sEng treated rats, but severe in the sFlt1-treated group. The 

sFlt1+sEng group showed nephrotic range proteinuria, severe hypertension and biochemical 

evidence of HELLP syndrome (elevated lactate dehydrogenase and aspartate aminotransferase 
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and decreased platelet counts). Fetal growth restriction was observed in the litters born to the 

sFlt1+sEng group, probably related to the placental vascular ischemia and damage. These 

findings are consistent with these studies, with PE+IUGR group associated with elevated sFlt-

1 and higher levels of sEng than the other pathological groups. 

Accumulated evidence to date on angiogenic factors suggests that the balance between VEGF 

and PlGF as well as their receptors Flt-1 and KDR is important for effective vasculogenesis, 

angiogenesis, and placental development during pregnancy (178). The anti-angiogenic effect 

of sFlt-1 and sEndoglin has been suggested as the basis for the endothelial dysfunction and 

the clinical presentation of preeclampsia (178). The mechanism for initiating increased 

expression of membrane bound Flt-1 or sFlt-1 has not yet been elucidated but has been 

postulated to be in response to placental hypoxia (397).  

The findings on the angiogenic factor profile of this study parallels published data to date 

showing elevated sFlt-1 and sEng and low PlGF in pregnancies complicated by preeclampsia 

in comparison to normal pregnancies. This data clearly demonstrates that the deranged 

angiogenic profile in isolated/idiopathic fetal growth restriction, as documented with elevated 

sFlt-1, sEng and low PlGF, is similar to pregnancies complicated by preeclampsia and 

preeclampsia with fetal growth restriction.  The presented data are concordant with recently 

published results showing that patients destined to deliver a small for gestational age (SGA) 

neonate had higher plasma concentrations of sEng throughout gestation than those with 

normal pregnancies (230) but discordant with the published angiogenic factor profiles 

describing no significant differences in the plasma concentrations of sFlt-1 between patients 

destined to deliver an SGA neonate and those with normal pregnancies (230). A previous 

study on maternal plasma concentrations of soluble Endoglin in pregnancies with intrauterine 

growth restriction have shown similar results to the current data showing that the sEng levels 
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are elevated in SGA/IUGR patients (239). The levels of sEng in IUGR have been shown to be 

less than in preeclampsia in a published study (230). These discrepancies in results may be 

explained by the patient selection criteria where fetal growth restriction have been variably 

defined as SGA (birth weight <10th centile) only or SGA with elevated umbilical artery 

Doppler resistance in the current study. Population and methodological differences may have 

also contributed.  The inclusion of elevated umbilical artery Doppler resistance in the 

selection criteria of this ensured that IUGR of placental origin was included and 

constitutionally small fetuses and SGA due to other etiologies such as infection were 

excluded.  

PlGF is pro-angiogenic member of the VEGF family, with substantially higher plasma 

concentrations in pregnant women (248). Abundant PlGF is shown to be released by activated 

endothelial cells (141) while hypoxia is thought to reduce PlGF production (182). Chronic 

uteroplacental ischemia may account for the low maternal plasma concentration of PlGF in 

pregnancies complicated by preeclampsia or a SGA neonate (230). The measured PlGF levels 

in normal pregnancies show a trend towards higher values earlier in gestation and with a 

decline in late gestation. The pregnancies complicated by preeclampsia, preeclampsia with 

fetal growth restriction and idiopathic fetal growth restriction all show extremely reduced 

levels of PlGF. 

The key observation of this study is that changes in the concentrations of pro-angiogenic 

(PlGF) and anti-angiogenic factors (sEng and sFlt-1) are similar in pregnancies complicated 

by preeclampsia, preeclampsia with intrauterine fetal growth restriction and idiopathic fetal 

growth restriction. The angiogenic profiles in the normal uncomplicated pregnancies were 

significantly different to the pathological pregnancies, but each angiogenic factor profile 

showed a trend towards the pathological pattern with advancing gestation. The findings 
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suggest that the placental disease present in preeclampsia and intrauterine growth restriction 

represents an accelerated process of physiological changes that may happen in normal 

pregnancy with advanced gestation. The only demonstrable difference between pathological 

pregnancy groups was an elevated sEng and elevated ratios incorporating sEng in the 

pregnancies complicated by preeclampsia and fetal growth restriction. This is in contrast to 

previously published data showing elevated sEng and decreased PlGF, but no demonstrable 

increased in sFlt-1 in small for gestational age fetuses (209, 230). 

Transforming Growth Factor-β1 (TGF-β1) induces vasorelaxation through activation of 

eNOS by triggering de-phosphorylation of Thr495, providing a novel mechanism for 

endothelium-dependent vasoregulation (209). sEng interferes with TGF-β1 receptor binding 

and downstream signaling in endothelial cells, and attenuates eNOS activation. It has been 

proposed that the contributions of sEng and sFlt1 to the pathogenesis of maternal 

preeclampsia are, at least in part, related to their inhibition of VEGF and TGF-β1 stimulation 

of endothelial dependent  NO activation and vasomotor effects (209). It has been speculated 

that sEng is produced by the placenta as a compensatory mechanism to limit the effects of cell 

surface Endoglin. In preeclampsia, excessive production of cell surface Endoglin would lead 

to increased sEng in the maternal circulation, which in turn may be responsible for the clinical 

manifestations of preeclampsia (209). 

Membrane bound KDR is known to be the pro-angiogenic receptor for VEGF, mediating 

most of its actions and upregulated by VEGF (398). Its soluble receptor sKDR however has 

been shown to have anti-angiogenic properties. Few studies to date such as have explored the 

role of sKDR in pregnancy complications, showing a reduced level in both preeclampsia and 

fetal growth restriction (222, 399). This data confirms the previously documented pattern of 

low KDR in preeclampsia, preeclampsia with fetal growth restriction and idiopathic fetal 
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growth restriction of placental origin. The mechanism resulting in reduced sKDR is unclear 

with a possible explanation being the reduced bioavailability of VEGF to up-regulate KDR 

due to the blocking effect of the elevated sFlt-1 in these conditions (24). The binding of 

VEGF by sFlt-1 can lead to low free VEGF in conditions of elevated sFlt-1. 

The levels of free VEGF in the preliminary optimization steps were below the threshold 

values for the test (ELISA kit, R&D Systems). Published data from several authors reported 

increased systemic VEGF levels in women with preeclampsia in some studies (210, 400, 401)  

with decreased levels in others (155, 195). This discrepancy can be explained by the fact that 

the studies showing increased VEGF levels tested the total circulating VEGF using 

radioimmunoassay or non-R&D ELISA systems while a reduced VEGF was documented by 

studies using commercially available ELISA kits testing free VEGF only.  

4.6.2 Ratio of angiogenic factors  

In the current study maternal plasma angiogenic factors ratios were evaluated by clinical 

group. Significant differences were seen between normal pregnancy and the complicated 

pregnancies, similar to the individual markers in the pro/anti angiogenic marker ratios of sFlt-

1/PlGF, sKDR/PlGF, sKDR/sFlt-1 and sFlt-1+sEng/PlGF. No significant differences were 

seen between the complicated pregnancies. Only ratios including sEng showed a statistically 

significant difference between the pathological groups with ratios sEng/PlGF, sKDR/sEng 

and sFlt-1/sEng higher in the preeclampsia with fetal growth restriction as compared to the 

preeclampsia or fetal growth restriction alone. These data suggests sEng to be a valuable 

screening or diagnostic marker of placental disease. 

In a study by Levine et al (188), angiogenic biomarkers and ratios including sEng were 

assessed for the predictive value of developing preeclampsia. Circulating soluble Endoglin 
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levels increased markedly beginning 2 to 3 months before the onset of preeclampsia.  An 

increased level of soluble Endoglin was usually accompanied by an increased ratio of sFlt-

1:PlGF. The risk of preeclampsia was greatest among women in the highest quartile of the 

control distributions for both biomarkers but not for either biomarker alone. They concluded 

that rising circulating levels of soluble Endoglin and ratios of sFlt-1:PlGF herald the onset of 

preeclampsia. While the data presented here are concordant with the findings of Levine et al,  

that the circulating levels of sFlt-1 increases with gestation in normal pregnancy and earlier 

with preeclampsia, they also show that significantly elevated levels of sFlt-1 and low PlGF 

are also seen in pregnant women with isolated IUGR with  no clinical evidence of 

preeclampsia. 

4.6.3 Plasma levels with gestational age  

The relationship of the biomarkers to gestational age was investigated in the four clinical 

groups. It is important to note that this analysis has been done on cross-sectional rather than 

longitudinal data. The sFlt-1 and sEndoglin levels in normal pregnancy increased with 

gestational age while the PlGF levels decreased. Among normal pregnant women, there was a 

positive correlation between plasma concentrations of sFlt-1 and advancing gestational age. In 

comparison, there was no association detected between plasma sFlt-1 levels and gestational 

age in preeclampsia, intrauterine fetal growth restriction or a combination of these pregnancy 

complications. This could be explained by the fact that the PE and IUGR cases in the study 

had established pathology, even at an earlier gestation, with already elevated levels of sFlt-1 

and sEng as compared to the studies published that show increasing levels of sFlt-1 

approximately 5 weeks prior to established disease (215).  

A similar correlation was seen in the plasma sEndoglin levels with gestational age, in the four 

studied clinical groups. In contrast, the plasma PlGF levels showed a significantly negative 
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correlation between plasma concentrations and gestational age in normal pregnancy while 

only a mildly positive correlation was detected in preeclampsia, and no correlation in IUGR 

or PE+IUGR. sKDR did not reveal a gestation related change in any clinical group. Previous 

studies have suggested that circulating sFlt-1 and sEndoglin rise with normal pregnancy in 

later gestation to counteract increased VEGF production in the increasing placental mass. The 

low levels and the anti-angiogenic properties of KDR are less likely to play such a role. 

4.6.4 Pro and anti-angiogenic factors as biomarkers in identifying normal vs 

pathological pregnancies complicated with preeclampsia and/or intrauterine fetal 

growth restriction. 

Many studies to date have identified sFlt-1, PlGF and sEng as biomarkers for pregnancy 

complications of preeclampsia, intrauterine fetal growth restriction, placental abruption, 

mirror syndrome and fetal demise (230, 402-404). 

The angiogenic factor levels from the current study were evaluated for their effectiveness in 

discriminating normal from complicated pregnancies. As the angiogenic profiles of 

preeclampsia, preeclampsia with fetal growth restriction and idiopathic fetal growth 

restriction were similar, they were grouped together as pathological pregnancies as opposed to 

uncomplicated normal pregnancies. Individual factor levels and ratios of PlGF, sFlt-1 and 

sEng were assessed using receiver operating characteristics curves and calculation of 

sensitivity and specificity to identify the biomarkers. As illustrated in Figures 4.17-4.19 and 

Table 4.3, while individual markers sFlt-1 (91% sensitivity, 75% specificity, AUC 0.908) and 

sEng (95% sensitivity, 80% specificity, AUC 0.95) performed well, the composite ratios 

sEng/PlGF (94% sensitivity, 93% specificity, AUC 0.966) and sFlt-1*sEng/PlGF (94% 

sensitivity, 90% specificity, AUC 0.966) performed best as a diagnostic marker in 

distinguishing pathological pregnancies from normal pregnancies. These data are concordant 



 

 

215 

with previously published predictors of preeclampsia and fetal growth restriction (24, 178, 

188, 215, 252, 256, 257) that supports the use of a composite marker at mid gestation using 

sFlt-1, sEng and PlGF in screening for pregnancy complications associated with placental 

disease. The ROC graph followed a similar pattern for normal vs preeclampsia and normal vs 

intrauterine fetal growth restriction, but the number of cases was inadequate to reach any 

conclusions. It is important to note that these data do not suggest that preeclampsia and fetal 

growth restriction can be identified separately to each other by using the given individual 

biomarkers or their ratios. 

The circulating soluble Endoglin and sFlt-1 may both contribute to the clinical phenotypes of 

preeclampsia and fetal growth restriction. There is evidence suggesting that sFlt, PlGF as well 

as sEng may show elevated levels several weeks prior to the clinical onset of the disease (188, 

215). Prospective longitudinal studies are needed to assess whether these biomarkers can be 

of value as a screening test to predict the imminent onset of clinical disease.  

4.6.5 Fetal levels 

This study also measured the levels of sFlt-1 in fetal umbilical artery. Plasma levels were 

significantly lower than maternal circulating levels and there was no demonstrable difference 

between normal and complicated pregnancies. This finding suggests that the fetal contribution 

to the overall levels of circulating sFlt-1 in the maternal circulation is negligible and unlikely 

to play a part in the pathogenesis of preeclampsia. Since the fetal sFlt-1 levels were not 

significantly different between clinical groups, it is unlikely that fetal sFlt-1 contributes to 

complications such as fetal growth restriction.  
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4.6.6 Preeclampsia and Intrauterine fetal growth restriction: Disparity in clinical 

presentation with similar angiogenic profiles 

Shibata et al (209) looked at whether, as with preeclampsia, sFlt-1 is increased and free PlGF 

is decreased in villous placenta and maternal serum of normotensive women with small-for-

gestational-age (SGA) neonates. In a case-control study using banked samples, three groups 

of patients classified into normal pregnancy, preeclampsia and small for gestational age were 

studied for their circulating levels of serum sFlt and PlGF. sFlt-1 levels were higher in 

preeclamptics than controls but not increased in SGA pregnancies. PlGF was lower in both 

preeclampsia and SGA as defined by birth weight <10th centile as compared to normal 

pregnancy. PlGF did not differ between preeclampsia and SGA. They concluded that while 

there is a role for sFlt-1 in the maternal manifestations of preeclampsia, sFlt-1 does not appear 

to contribute substantially to decreased circulating free PlGF in SGA pregnancies in the 

absence of a maternal syndrome. 

In a longitudinal study of angiogenic (PlGF) and anti-angiogenic (sEng and sFlt-1) factors in 

normal pregnancy and patients destined to develop preeclampsia and deliver a small for 

gestational age neonate, Romero et al concluded changes in the maternal plasma 

concentration of sEng, sFlt-1, and PlGF precede the clinical presentation of preeclampsia, but 

only changes in sEng and PlGF precede the delivery of an SGA neonate (230). In comparison, 

the current study results are concordant with an elevation in sEng and a decrease in PlGF in 

both preeclampsia and IUGR as compared to normal controls but disparate in the results 

showing elevated sFlt-1 levels in both preeclampsia and IUGR.  The results of this study raise 

the question why some women with placental disease and anti-angiogenic profile develop the 

maternal syndrome of preeclampsia while other develops features of fetal growth restriction. 
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In a review on shared and disparate components of the pathophysiologies of fetal growth 

restriction and preeclampsia, Ness et. al. (65) suggested a difference in maternal metabolic 

syndrome as an explanation for the varied phenotypical expression of an anti-angiogenic 

profile in the mother. They hypothesize that both women experiencing preeclampsia and 

IUGR enter pregnancy with some degree of endothelial dysfunction, a lesion that predisposes 

to shallow placentation. Preeclampsia develops when abnormal placentation, through the 

mediator of elevated circulating cytokines, interacts with maternal metabolic syndrome, 

comprised of adiposity, insulin resistance / hyperglycaemia, hyperlipidemia, and 

coagulopathy. IUGR develops in the absence of antenatal metabolic syndrome. Among these 

women, the baby is affected by shallow placentation but the mother does not develop 

clinically apparent disease.  

4.6.7 Strength and limitations 

The strength of this study is in patient selection. The use of umbilical artery resistance in 

identification of patients with a placental cause of intrauterine fetal growth restriction has 

removed the ambiguity generated by previous studies showing variable angiogenic profiles in 

fetal growth restriction. In the literature to date, small for gestational age with birth weight 

less than 10th centile has been the most used definition for fetal syndrome of placental 

disease. The use of umbilical artery Doppler resistance to select true placental fetal growth 

restriction in this study has added to the reliability of these findings. With multiple varying 

causes of small for gestational age, including constitutionally normal fetuses, this raises the 

question whether most of the published literature on SGA and angiogenic factors had studied 

fetal growth restriction due to placental dysfunction. The current study has attempted to 

rectify this by selecting pregnancies with not only SGA but also abnormal umbilical artery 

Doppler studies to identify fetal growth restriction of placental origin. This is the only study 
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to date to present angiogenic factors in clearly defined groups of preeclampsia, fetal growth 

restriction and a combination of both conditions. The results presented in this study are 

limited by relatively small case numbers. The gestational age related changes are limited by 

the cross sectional nature of the data. The potential confounding effect of steroids have not 

been quantified. 

4.6.8 Conclusion 

We conclude that PE and IUGR have similar angiogenic profiles, suggesting that angiogenic 

marker profiles lack specificity in identifying PE and that other factors are required for the 

development of PE instead of IUGR.  sEng is a predictor of established PE and IUGR and 

could be a biomarker profiles for predicting PE or IUGR. Fetal sFlt-1 does not appear to make 

a significant contribution to the pathogenesis of preeclampsia or intrauterine fetal growth 

restriction. 
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Chapter 5 - Characterization of monocyte phenotype and 

polarization in preeclampsia and intrauterine fetal growth 

restriction 

5.1 Summary 

Background: Mononuclear cells arising from bone marrow precursors are known to circulate 

in blood and eventually migrate into body tissues where they further mature into variable 

forms of macrophages and perform multiple functions in the body including roles in 

homeostasis, immune defense, and tissue repair. Monocytes, the peripheral precursor of 

macrophages have been less studied and may play a significant role in the pathogenesis of 

pregnancy complications including preeclampsia and IUGR. 

Aim: To determine whether monocyte subset phenotype and polarization is altered in 

pregnancy complications such as preeclampsia and fetal growth restriction as compared to 

normal pregnancy. 

Methods: A prospective cross-sectional case control study was conducted. A total of 54 

pregnant women between 24-40 weeks of gestation, delivering at Westmead Hospital during 

the period 2013-2014 were recruited and classified into four clinical groups of Normal 

pregnancy, PE, IUGR and PE+IUGR. The distribution of maternal monocyte subtypes were 

characterized and compared for each clinical group using a classification of classical, 

intermediate and non-classical subtypes. Monocyte polarization towards M1 (inflammatory) 

and M2 (healing) phenotypes was assessed by surface expression of CD86 and CD163 

respectively using flow cytometry. Gestational age related changes were explored in normal 

pregnancy. 
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Results: There was no demonstrable change in the total monocyte count with gestational age. 

In normal pregnancy, a positive correlation was seen between gestational age and the 

following variables: percentage of non-classical monocytes, CD86 MFI, CD163 MFI and the 

percentage of monocytes expressing CD163. The percentage of intermediate monocytes was 

elevated and classical monocyte percentage decreased in PE, IUGR and PE+IUGR compared 

to normal pregnancy. There was no difference in the non-classical monocytes. This change is 

more prominently seen in earlier gestation <38 weeks. The percentage of monocytes 

expressing CD163 and the MFI of CD163 was increased in pregnancies complicated by 

IUGR. 

Conclusion: This study is consistent with previously published findings that intermediate 

monocytes are increased in pregnancies complicated by preeclampsia. The study has shown 

for the first time that there is also a shift towards increased intermediate maternal monocyte 

subtype in IUGR and PE+IUGR.  The study has also demonstrated polarization of maternal 

peripheral monocytes towards M2 in pregnancies complicated by IUGR. This change appears 

to be across all the monocyte subtypes classical, intermediate and non-classical. This M2 

polarization may represent the body’s response to and repair of significant placental injury.  
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5.2 Introduction 

There is evidence that decidual macrophages play a major role in vascular remodeling in early 

placentation as well as a role in the immune mechanism responsible for the acceptance of an 

allogenic fetus by the mother (260). Suboptimal vascular remodeling of spiral arteries is 

thought to play a key role in the pathogenesis of preeclampsia (30). Monocytes, the peripheral 

precursor of macrophages, have been less studied in the pathogenesis of pregnancy 

complications and may play a significant role in pathogenesis of pregnancy complications 

including preeclampsia and IUGR. 

 5.3 Aims:  

1. Classification of maternal peripheral monocytes into classical, intermediate and non- 

classical subtypes. 

2. Identify any variation of monocyte subtypes across different gestational periods in 

third trimester normal pregnancy. 

3. To determine whether monocyte subset phenotype is altered in pregnancy 

complications such as preeclampsia and fetal growth restriction as compared to 

normal pregnancy. 

4. Determine differences in the ratio of CD86/CD163 as an indicator or biomarker of 

monocyte activation between normal, preeclamptic and IUGR pregnancies. 
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5.4 Methods 

A prospective cross-sectional case control study was conducted. Maternal venous samples 

were collected within 7 days prior to delivery. Cord blood venous samples were collected at 

delivery. 

Sample preparation, staining protocols, experiment design, flow cytometry optimization and 

technique as well as the gating strategy have been described in detail in Chapter 2. Briefly, 

monocyte phenotype assessment and cell marker profile of whole blood monocytes was 

assessed by flow cytometry using a BD Canto II flow cytometer and Flow Jo software version 

10.6. Cell processing involved incubation of whole blood aliquots with cell surface antibodies 

followed by incubation with Optilyse C for lysing red blood cells and fixation. Two flow 

cytometry protocols using a three colour and a fluorescence minus one principle multicolour 

protocol were used for data acquisition. Data analysis involved the identification of the 3 

main monocyte populations classical CD14++CD16-, intermediate CD14++CD16+ and non-

classical CD14+CD16++ across the different clinical groups. Surface expression of 

inflammatory markers CD86 and CD163 and their Mean Fluorescent Intensity (MFI) over 

that of the isotype control was calculated for the different monocyte populations. The gating 

technique used in this study for monocyte subtypes parallel those previous published in 

pregnancy (274) as well as in other fields (270, 405).  
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5.5 Results 

5.5.1 Maternal and neonatal demographic data and clinical characteristics of the study 

population 

Results are presented for 54 maternal peripheral venous samples from four clinical groups as 

listed below, ranging from 24 – 40 weeks of gestation. Maternal and fetal demographic data 

and clinical characteristics of the study population are described in Table 5.1. 

Thirty six samples were collected from umbilical vein at delivery of the pregnancy.  A 

significant number of samples (9) were clotted and adequate monocyte numbers could not be 

harvested for flow cytometry. Twenty seven cord blood samples were analyzed and included 

in the study for monocyte phenotype.  The study was conducted as an exploratory study to 

identify aspects for future research. 

The maternal age was higher in the PE+IUGR group compared to PE (p = 0.035) and IUGR 

(p = 0.04) and non-significant compared to normal pregnancy. There was no significant 

difference in BMI between groups except the pregnancies complicated by IUGR, where the 

BMI was noted to be lower as compared to the PE group (p = 0.044). There were no 

statistically significant differences noted between clinical groups in gestational age at sample 

collection. The gestational age at delivery and birth weight showed significant differences 

between clinical groups (Table 5.1 and Figure 5.1). No differences in birth weight were noted 

between IUGR and PE+IUGR. 
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Clinical Group 

  

Normal 

(SD) 

 

PE 

(SD) 

 

IUGR 

(SD) 

 

PE+IUGR 

(SD) 

Number of maternal samples 24 9 12 9 

Number of fetal samples 8 4 9 6 

Maternal age (years) 29.4(3.6) 27.9(6.1) 28.3(4.9) 33.0(7.1)*, # 

BMI 27.3(5.3) 29.6(8.1) 24.18(5.3) # 28.2(6.3) 

Gestation at sample collection 

(weeks) 
34.8(4.2) 35.7(3.3) 34.8(4.2) 32.3(2.3) 

Gestation at delivery (weeks) 39.2(0.8) 36.18(3.5)* 35.48(3.6)* 32.68(2.5)*# † 

Birth weight (g) 3316(505) 2749(821)* 1879(670)*# 1509(540)*# 

Primiparous (%) 37.5 77.8* 58.3 88.9* 

Antihypertensive treatment (%) 0% 88% 0% 44% 

Smoking 8.3% 0.0% 8.3% 7.4% 

Mode of delivery (Rate of LSCS) 71% 78% 100% 100% 

Antenatal steroid within 7 days of 

delivery 
0% 11% 50% 33% 

Table 5.1 Maternal and fetal demographic data and clinical characteristics of the study 

population.  

Results are presented as mean ± SD for each continuous variable unless otherwise specified.  

* Significantly different from normal pregnancy. # Significantly different to PE.  

† Significantly different to IUGR. p < 0.05.    
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Figure 5.1 Birth weight by clinical group. 

* Significant difference between clinical groups p < 0.05. 

 

Analysis of the effect of confounding variables using Fishers exact test showed that 

preeclampsia and PE+IUGR groups included a higher percentage of primiparous patients as 

compared to normal pregnancy and IUGR only (p = 0.033). The majority of preeclamptic 

patients received anti-hypertensive treatment whereas only half of the PE+IUGR patients 

were medicated (p <0.001). No difference was noted in the incidence of smoking and mode of 

delivery between the different clinical groups. 
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5.5.2 Maternal leukocyte and monocyte counts in normal and pathological pregnancies 

Maternal circulating white cell count and the monocyte count as calculated by Sysmex 

cytometer is presented below (Table 5.2).  Forward and side scatter as well as surface 

expression of CD14 was used to identify the monocyte populations (Figure 5.2).  

 

 

 

 

 

 

 

 

 

 

Table 5.2 Maternal leukocyte count, monocyte count and the proportion of monocyte 

subtypes as a percentage of total count. 

Results are presented as median ± interquartile range for each continuous variable unless 

otherwise specified. * Significantly different to normal pregnancy p < 0.05. 

 
Group 

Normal PE only IUGR only PE+IUGR 

Median      

 (percentile 25, 75) 

Median       

(percentile 25, 75) 

Median   

 (percentile 25, 75) 

Median    

 (percentile 25, 75) 

WBC (x10^9 

cells/L) 
9.71 (8.47, 11.83) 7.92 (7.60, 10.07) 10.38 (9.03, 10.86) 10.52 (9.51, 12.22) 

Monocyte % 6.0 (5.5, 6.8) 6.4 (5.8, 7.7) 7.0 (6.2, 8.1) 6.3 (2.2, 6.7) 

Monocyte 

Classical % 

72.4 (47.2, 76.9) 52.1 (45.2, 71.9) 54.7 (32.5, 62.8)* 52.4 (40.8, 72.6) 

Monocyte  

Intermediate % 
22.5 (17.6, 48.3) 41.5 (16.6, 49.3) 38.7 (30.9, 58.6)* 41.7 (25.4, 52.8) 

Monocyte  

Non-classical % 

4.2 (3.2, 5.6) 4.5 (4.3, 5.4) 4.6 (3.5, 6.9) 5.7 (2.7, 7.1) 
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No differences were observed in the maternal peripheral leukocyte count and the total 

monocyte percentage between clinical groups normal pregnancy, preeclampsia, IUGR and 

PE+IUGR (Table 5.2).   

5.5.3. Maternal peripheral blood monocyte subsets   

To determine the changes in monocyte subsets during preeclampsia and intrauterine fetal 

growth restriction, surface expression of CD14 and CD16 were used to gate the total 

monocytes into three subsets classical (CD14++CD16-), intermediate (CD14++CD16+) and 

non-classical (CD14+CD16++) using flow cytometry. The results for monocyte subsets as a 

percentage of total monocytes are presented in Table 5.2 and Figure 5.3. The percentage of 

classical  monocytes was lower in the IUGR group compared to normal pregnancy (54.7% vs 

72.4%, p = 0.016). The percentage of intermediate monocytes is increased in the IUGR group 

as compared to Normal pregnancy (38.7% vs 22.5%, p = 0.033). There was no significant 

difference between the groups in the percentage of non classical monocytes. 
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Figure 5.2 Gating strategy and distribution of monocyte subgroups in a representative sample 

of each clinical group. 

Classical monocytes CD14++CD16-, Intermediate monocytes CD14++CD16+, Non-classical 

monocytes CD14+CD16++. A = Normal pregnancy, B = Preeclampsia, C= Intrauterine fetal 

growth restriction, D= Preeclampsia and intrauterine fetal growth restriction. 
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Figure 5.3 Intermediate monocyte counts as a percentage of the total monocyte count. 

Comparison box plots (median and interquartiles) between the clinical groups presented.  The 

percentage of intermediate monocytes is increased in the IUGR group as compared to Normal 

pregnancy (p = 0.033).  

The gestational age of sample collection was separated into >38 weeks and < 38 weeks as the 

normal samples were collected in 2 groups of elective caesarean deliveries > 38 weeks and 

antenatal normal pregnancies < 38 weeks (Figure 5.4 A and B). There was a statistically 

significant reduction in the percentage of classical monocytes in IUGR compared to Normal 

pregnancy. The differences in distribution reached statistical significance in the < 38 weeks 

gestation for IUGR (p = 0.001) and PE+IUGR (p = 0.021). The data also demonstrates an 

increase in the intermediate monocyte subtype as a percentage of total monocytes which 
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showed significance for all gestations between Normal and IUGR and reached statistical 

significance in the <38 weeks gestation for IUGR (p = 0.007) and PE+IUGR (p = 0.030). 
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Figure 5.4 Graphical representation of the composite of monocyte subgroups across the four 

clinical groups. A: All samples. B: Separate analysis presented for gestational age <38 weeks 

and >38 weeks at the time of sample collection. 

 

5.5.4 Markers of monocyte polarization 

Monocyte surface expression of CD86 as a M1 polarization marker and CD163 as a M2 

marker were investigated.  The percentage of total monocytes expressing the marker and 

mean fluorescence intensity (MFI) were calculated for each marker in each clinical group. 

Mean fluorescence intensity ratio of CD86/CD163 was evaluated as an indicator of monocyte 

polarization and correlated with the clinical groups and monocyte subtypes.  The data are 

presented in Table 5.3 and Figures 5.5 and 5.6. 

5.5.4.1 Expression of CD86 as a monocyte marker of M1 polarization 

The expression of maternal monocyte surface CD86 expression was detected with flow 

cytometry and quantified as mean fluorescence intensity using Flow Jo software. The results 

for expression of CD86 are presented in Table 5.3 and Figure 5.5. 

There was no demonstrable difference between the clinical groups in the percentage of total 

monocytes expressing CD86, with 98-99% of monocytes in each clinical groups showing 

CD86 as a surface marker. The analysis of the percentage of monocyte CD86 expression 

according to monocyte subtype showed some variation with  the different  monocyte subtypes 

with a statistically significant difference in intermediate monocytes CD86 expression between 

normal pregnancy and PE as well as a difference in non classical monocyte CD86 expression 

between normal pregnancy and PE+IUGR. 
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Table 5.3 Maternal monocyte expression of CD86 and CD163 as markers of monocyte 

polarization.  

Results are presented as median ± interquartile range for each continuous variable.  The MFI 

of the isotype control was set at 0 with any MFI less than this value truncated at 0.  

* Statistically significantly different from normal pregnancy. # Significantly different from 

PE. p <0.05. 

 

 Group 

Normal PE only IUGR only PE+IUGR 

Median  

(Percentile 25, 

75) 

Median  

(Percentile 25, 

75) 

Median  

(Percentile 25, 

75) 

Median 

(Percentile 25, 

75) 

Percentage of Monocytes 

expressing CD86 

99.1               

(98.9, 99.4) 

99.0               

(98.7, 99.3) 

99.3               

(98.2, 99.5) 

98.8               

(98.6, 99.4) 

Total monocytes CD86 MFI 
2432.5        

(2069.5, 3269.5) 

2231.0       

(2019.0, 2387.0) 

3153.5       

(1891.0, 3812.0) 

2568.0      

(1778.0, 2987.0) 

Classical monocytes CD86 MFI 
2628.0       

(2315.0, 3309.0) 

2364.0       

(2143.0, 2585.0) 

3338.0        

(2096.0, 3916.0) 

2778.0      

(1973.0, 3086.0) 

Intermediate monocytes CD86 

MFI 

3470.0       

(2822.5, 4743.5) 

2722.0*       

(2449.0, 3754.0) 

3759.5       

(2640.5, 4588.5) 

3157.0      

(2629.0, 3606.0) 

NonClassical monocytes CD86 

MFI 

5350.5       

(4411.0, 6250.5) 

5073.0       

(3959.0, 5904.0) 

5353.5        

(2159.0, 6492.5) 

3828.0*       

(1737.0, 4882.0) 

Percentage of monocytes 

expressing CD163 

63.5               

(56.1, 70.2) 

65.6               

(62.1, 73.3) 

78.0*              

(65.0, 84.7) 

77.1*              

(64.2, 96.5) 

Total monocytes CD163 MFI 
310.0           

(225.5, 370.0) 

377.0            

(247.0, 453.0) 

506.0           

(241.5, 686.0) 

866.0 *        

(452.0, 2717.0) 

Classical monocytes CD163 MFI 
427.0           

(343.5, 521.0) 

447.0           

(322.0, 564.0) 

662.0*           

(420.5, 770.0) 

679.0*#         

(579.0, 3056.0) 

Intermediate monocytes CD163 

MFI 

480.5 

(371.8,641.3) 

438* 

(365,564) 

633* 

(325,807) 

781*# 

(463,3231) 

Non-Classical monocytes CD163 

MFI  

21.5                  

(3.0, 58.0) 

0 *                               

(0, 0) 

50.5*#                   

(0, 123.5) 

222.0* #           

(63.0, 282.0) 
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Figure 5.5 Distribution of CD86 on peripheral blood monocyte subsets in representative 

samples of normal pregnancy and pregnancies complicated by PE, IUGR and PE+IUGR.   

Flow cytometry histogram plots of CD86 expression by different monocyte subsets are 

presented. Values in histograms are for MFI (Mean Fluorescence Intensity) of CD86 

expression. Red colour areas represents staining with isotype matched control antibody. Blue 

coloured areas represent staining with CD86 monoclonal antibody.  
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5.5.4.2 Expression of CD163 as a monocyte marker of M2 polarization 

The expression of maternal monocyte surface CD163 expression was detected with flow 

cytometry and quantified as mean fluorescence intensity using Flow Jo software. The results 

as groups presented in Table 5.3 and Figure 5.6. 

 

Figure 5.6 Distribution of CD163 on peripheral blood monocyte subsets in representative 

samples of normal pregnancy, PE and PE+IUGR. 

Flow cytometry histogram plots of CD163 expression by different monocyte subsets. Values 

in histograms are for MFI (Mean Fluorescence Intensity) of CD163 expression. Red colour 

areas represents staining with isotype matched control antibody. Blue coloured areas represent 

staining with CD163 monoclonal antibody.  
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Figure 5.7 Percentage of monocytes expressing CD163. 

Significantly more monocytes in the IUGR and PE+IUGR were noted to express CD163 

(Figure 5.7). The expression of CD163 was increased in IUGR and PE+IUGR compared to 

Normal pregnancy, with a variation in CD163 expression across the monocyte subtypes 

(Table 5.3). * Statistically significantly difference between clinical groups p <0.05. 

5.5.4.3 Ratio of CD86 / CD163 Mean Fluorescence Intensity (MFI) as a measure of 

monocyte polarization in the clinical groups. 

Ratio of CD86 / CD163 Mean Fluorescence Intensity as a measure of monocyte polarization 

towards M1 /M2 phenotypes was evaluated for the four clinical groups. A higher ratio would 

indicate polarization towards M1 phenotype. 
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Table 5.4 Ratio of CD86 / CD163. Correlation with clinical group and monocyte subtype. 

Results are presented as median ± interquartile for each continuous variable unless otherwise 

specified. * Statistically significantly different from normal pregnancy p <0.05. † Statistically 

significant difference from IUGR. # Statistically significantly different from PE. 

 

The ratio of CD86/ CD163 was decreased in PE+IUGR compared to Normal pregnancy and 

IUGR in total monocytes, with a similar variation in CD86/CD163 expression  ratio seen 

across the monocyte subtypes (Table 5.4). This change was seen consistently across the 

monocyte subtypes. The intermediate and non-classical monocytes also showed a lower 

CD86/CD163 ratio in IUGR+ PE compared to PE only.  

 
Group 

Normal PE only IUGR only PE+IUGR 

Median       

(Percentile 25, 75) 

Median  

(Percentile 25, 75) 

Median    

(Percentile 25, 75) 

Median  

(Percentile 25, 75) 

Total monocytes - CD86 MFI / 

CD163 MFI 

3.41             

(3.14, 3.86) 

3.05             

(2.92, 3.20) 

3.69             

(3.18, 4.10) 

1.80*†            

(0.96, 3.15) 

Classical monocytes - CD86 

MFI / CD163 MFI 

4.44            

(4.12, 5.66) 

4.09             

(3.23, 4.63) 

4.44             

(3.79, 4.83) 

2.49*†            

(0.95, 3.75) 

Intermediate monocytes - CD86 

MFI / CD163 MFI 

5.13            

(4.12, 6.64) 

4.93             

(3.29, 5.01) 

4.80             

(4.14, 5.90) 

2.62* #†          

(1.00, 3.78) 

Nonclassical monocytes - CD86 

MFI / CD163 MFI 

20.43        

(16.70, 24.28) 

17.74          

(15.58, 22.71) 

15.16*           

(9.64, 20.29) 

12.57* #†          

(3.70, 15.52) 
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5.5.5 Correlations between gestational age and distribution of monocyte subtypes and 

inflammatory markers in the third trimester of pregnancy. 

Spearman rank correlations for gestational age at sample collection and variables associated 

with monocyte phenotype and polarization in normal third trimester pregnancy are presented 

in Table 5.5 and Figures 5.8-5.9. 
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 Correlation 

coefficient 

Significance (2 

tailed) p value 

Interpretation 

White blood cell count -0.244 0.251 No significant correlation 

Total monocytes as a 

percentage of total WBC 

% 

0.094 0.662 No significant correlation 

Classical monocyte s as 

a % of total monocytes 

-0.364 0.080 Not statistically significant 

Intermediate monocytes 

as a  % of total 

monocytes 

0.294 0.163 Not statistically significant 

Non-classical monocytes 

as a  % of total 

monocytes 

0.414 0.044 Statistically significant trend 

towards increased non-classical 

monocytes with gestation 

Percentage of 

monocytes expressing 

CD86 

0.232 0.274 No significant correlation 

Total monocyte CD86 

MFI 

0.380 0.067 Not statistically significant 

Percentage of 

monocytes expressing 

CD163 

0.471 0.020 Statistically significant trend 

towards increased CD163 

expressing monocytes with 

gestation 

Total monocyte 

CD163MFI 

0.435 0.034 Statistically significant trend 

towards increased CD163 MFI 

with gestation 

Total monocyte 

CD86/CD163 

0.071 0.740 No significant correlation 

Classical monocyte 

CD86/CD163 

-0.122 0.571 No significant correlation 

Intermediate monocyte 

CD86/CD163 

-0.178 0.406 No significant correlation 

Non-classical monocyte 

CD86/CD163 

0.119 0.580 No significant correlation 

 

Table 5.5 Differential distribution of monocyte subtypes and inflammatory markers with 

increasing gestation in third trimester of pregnancy as tested in 24 pregnancies from 26 weeks 

to 40 weeks of gestation. Correlation coefficients using Spearman non parametric rank 

correlations and a two tailed significance at p < 0.05 presented. 
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Figure 5.8 Correlation between gestational age and total monocytes Mean Fluorescence 

Intensity (MFI).  A: CD86, B: CD163. Statistically significant trend noted towards increased 

CD163 MFI with gestation. 
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Figure 5.9 Correlation between gestational age and percentage of monocytes expressing A = 

CD86, B = CD163 as a surface marker. Statistically significant trend noted towards increased 

CD163 expressing monocytes with gestation. 
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5.6 Discussion 

Monocytes have been shown to be a heterogeneous cell population with subset specific 

functions and phenotypes. The new 2010 classification of monocytes is based on the 

expression of CD14 (receptor for lipopolysaccharide) and CD16 (Fcγ receptor III) (262). 

While the differential expression of CD14 and CD16 distinguishes classical 

(CD14++CD16−), intermediate (CD14++CD16+), and non-classical (CD14+CD16++) 

monocytes, current knowledge on human monocyte heterogeneity and their functional 

implications is still incomplete. While pro-inflammatory monocyte function and changes in 

subtype distribution have been described in preeclampsia in a handful of studies (274, 306), 

monocytes subtype phenotypes and functional changes in IUGR have not been published 

before.  

The differential distributions of monocyte subtypes in the maternal peripheral blood in normal 

pregnancies, PE, IUGR and PE+IUGR were investigated. Most studies on monocyte subsets 

have focused on the combined non-classical/intermediate monocytes. The present study used 

the recently recommended classification of monocytes into classical, intermediate and non-

classical subtypes (262).  To test whether monocyte polarization towards an M1 or M2 

phenotypes occurs in PE and IUGR, the study examined the expression of CD86 (M1 marker) 

and CD163 (M2 marker) on peripheral whole blood monocytes of the mother. 

In the group of 54 patients, the study was unable to demonstrate a difference in the total white 

cell count or the percentage of monocytes with increased gestation in third trimester or across 

clinical groups. Previously published studies have shown an elevated percentage of  

leukocytes and monocytes in healthy pregnant women as compared to non-pregnant women 

and an even further elevation in preeclamptic women compared to normal pregnancy (274). 

The results in this chapter are however consistent with other published studies showing a 
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stable proportion of monocytes throughout gestation (295).  The variation in results may be 

due to smaller patient numbers and other factors associated with the pregnant state, which are 

not clinically evident such as subclinical infection. 

Screening for subclinical infection in the mother was not carried out as part of the study. As 

no differences were observed in the maternal peripheral leukocyte count or the total monocyte 

percentage between clinical groups normal pregnancy, preeclampsia, IUGR and PE+IUGR 

(Table 5.2), it would be reasonable to assume that a significant infection was unlikely to have 

contributed to any variation in monocyte distribution.  

The variation in monocyte subtypes associated with gestational age was also investigated. 

This may be due to the small patient numbers in this study and the clinical variation of normal 

pregnancy. The significant increase in non-classical monocyte population percentage with 

gestation is a new finding described in this study and may reflect increasing injury and repair 

in the later term placenta (274).  This finding is consistent with a published animal study 

using an ATP infusion to create a model of preeclampsia (274). The authors demonstrated 

that the percentage of non-classical monocytes in pregnant rats increased even further with 

ATP infusion. This change was not seen in non-pregnant rats.  They concluded that the 

observation of ATP stimulated numbers/activation of non-classical monocytes occurred in 

pregnant rats only, suggesting that non-classical monocytes are specifically altered in 

pregnancy and may play a role in the pathophysiology of preeclampsia. 

Comparison of monocyte subgroup distribution between clinical groups showed a statistically 

significant decrease in classical monocytes and a significant increase in intermediate 

monocytes for IUGR pregnancies across all gestational ages and also for PE+IUGR <38 

weeks of gestation. This is the first description of monocyte subgroup distribution in 

pregnancies complicated by intrauterine fetal growth restriction.  
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Although a similar pattern was observed with PE, the difference between normal pregnancy 

and PE was not statistically significant. The percentage of non-classical monocytes was not 

noted to be significantly different between the pathological groups. The patient numbers were 

not adequate in this study to perform a useful analysis of effects of fetal gender or antenatal 

steroid on monocyte subset distribution and should be investigated in further study. 

Smaller patient numbers and the variability in gestational ages within the clinical groups may 

have contributed to these results (type 2 error) and further studies on larger patient groups are 

recommended to confirm any described trends in monocyte subgroup distribution. 

One of the few published studies of monocyte subtypes in preeclampsia found that the 

percentage of combined non-classical /intermediate monocytes is higher during pregnancy in 

humans and in rats as compared to non-pregnant controls (274). These results are concordant 

with these findings although the changes in this study for PE did not reach statistical 

significance (274, 406). The increase in the combined groups was mainly due to an 

augmentation of the intermediate subtype. A shift towards higher numbers of combined non-

classical/intermediate monocytes, in particular an increase in the intermediate subtype has 

been associated with several inflammatory diseases including sepsis, rheumatoid arthritis, 

HIV infection, atherosclerosis, atopic dermatitis and asthma (270, 278, 407, 408).   

An expansion of circulatory CD14+CD16+ monocytes (intermediate + non-classical) has 

been demonstrated in chronic liver disease and fibrosis as well as atherosclerosis and fibrotic 

plaque development. These monocytes are thought to contribute to the inflammation and 

fibrosis associated with these conditions (409). The intermediate monocytes may also play a 

similar role in inflammation and fibrosis in IUGR where villous thrombosis, loss of 

vascularity and fibrosis of infarcted areas play a significant role in the pathology of the 

placenta. The modulation of monocyte subset recruitment into tissues and their subsequent 
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differentiation have been suggested as potential approaches for therapeutic interventions in 

human liver fibrosis (409). Parallel interventions in IUGR may be a therapeutic approach to 

reduce the inflammation and damage to placental tissue in pregnancies complicated by IUGR.   

The current study also investigated the polarization of maternal and fetal monocytes into M1 

(inflammatory) and M2 (healing) types in preeclampsia and fetal growth restriction. The 

majority of maternal monocytes expressed CD86 as a surface marker. The percentage of 

monocytes expressing CD163 varied between groups with a significant increase in 

pregnancies complicated by intrauterine fetal growth restriction.  

Spearman non parametric rank correlations with gestational age revealed increased number of 

monocytes expressing CD163 as well as an augmentation in the CD163 MFI with increasing 

gestational age in normal pregnancy. The number of monocytes expressing CD86 did not 

change with gestation and was consistently in a high range, while the MFI of CD86 showed 

an increasing trend with gestational age which was not statistically significant. The high 

CD86 expression is likely a reflection of the increasing inflammatory status of pregnancy. 

The increase in CD163 with gestation may represent a response to increasing maturational 

changes, damage and repair in the term placenta. The gestational change in CD163 expression 

parallels the gestation related increase in anti-angiogenic factor expression of sFlt-1 and 

sEndoglin in late pregnancy (189). The ratio of CD86/CD163 mean fluorescence intensity 

(MFI) was used as a marker of inflammatory status within the maternal circulation. This ratio 

was relatively stable across gestation in third trimester with no demonstrable gestation related 

variations. This is consistent with the observation that both CD86 and CD163 MFI increased 

with gestation. The total monocyte CD86/CD163 ratio as well as the subgroup analysis 

showed a significant trend towards a reduced inflammatory status and polarization towards 

tissue remodeling monocytes (lower CD86/CD163 ratio) in pregnancies complicated by 
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intrauterine fetal growth restriction including IUGR only and PE+IUGR. A similar pattern 

was observed in the CD86/CD163 MFI ratio, confirming a shift towards M2 phenotype of 

monocytes in the IUGR pregnancies.  

The finding of increased M2 polarization in IUGR and PE+IUGR is consistent with other 

studies of organ damage demonstrating the presence of predominantly M2 monocytes in 

severe burn patients (410) and may reflect the presence of tissue damage and a healing 

response.  The M2 polarization is also consistent with the Th-2 immune adaptation of 

pregnancy. A polarization towards M2 may also promote excessive tissue remodeling and 

fibrosis. 

This is the first study to examine monocyte subsets in PE, IUGR and PE+IUGR concurrently. 

Our study was limited by the small sample numbers but was strengthened by the use of 

umbilical artery Doppler to define growth restriction of placental origin. The variability in 

normal pregnancy and the difficulty in determining the disease status of the placenta by 

external clinical parameters lead to variability in allocation of patient groups. Differences in 

the pathogenesis of early onset and late onset preeclampsia may have influenced the results of 

this clinical group (411). The possible development of placental disease with advancing 

gestation also leads to the possibility that a normal preterm pregnancy may result in a 

significant pregnancy complication later in gestation. These factors lead to difficulties in 

performing and interpreting research into pregnancy and its complications. 

Human monocytes are currently defined and classified by the extent of their cell surface 

expression of CD14 and CD16, with associated differences in function and phenotype related 

to the intensity of expression of these markers. With increasing interest in the function and 

behaviour of monocytes, it is important to have an understanding of how differing strategies 

of analysis can affect results and how different protocols and population backgrounds can 
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affect this highly morphogenic cell type (412).  Differences in monocytes have been 

associated with differences in ethnicity and this may need to be explored as a confounding 

variable when interpreting study results.  It is important to take into consideration that blood 

monocytes consist of a continuous population of cells, within which the dominant phenotype 

may vary dependent on the background of the study population. The potential confounding 

effect of steroids on monocyte populations have not been quantified. 
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Chapter 6 - Distribution of cord blood monocyte subtypes in 

preeclampsia and intrauterine fetal growth restriction 

 

6.1 Summary 

Background: Fetal monocytes circulate through the fetal and placental circulations and have 

the opportunity to play significant functions including roles in homeostasis, immune defense, 

and tissue repair. There is little available data on fetal monocyte phenotype and function. 

These cells may play a role in pathogenesis of pregnancy complications including 

preeclampsia and IUGR. 

Aim: Conduct a pilot study to describe the cord blood monocyte subset phenotype in normal 

pregnancy and in pregnancy complications such as preeclampsia and fetal growth restriction. 

Compare the monocyte phenotype distribution of maternal and fetal circulations. 

Methods: A prospective cross-sectional study was conducted. Cord blood samples from 27 

pregnancies were collected at delivery from normal pregnancy, PE, IUGR and PE+IUGR. 

The distribution of fetal monocytes subtypes was characterized by CD14 and CD16 

expression using flow cytometry and compared for each clinical group using a classification 

of classical, intermediate and non-classical subtypes. The cord blood monocyte distribution 

was correlated with the maternal monocyte subtype percentages.  

Results: There is a trend towards an increase in the intermediate and non-classical monocyte 

subsets in the cord blood of PE, IUGR and PE+IUGR as compared to the normal pregnancies, 

which reached statistical significance for the non-classical subsets. The intermediate 

monocytes were the dominant monocyte subtype in the cord blood of PE, IUGR and 
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PE+IUGR. A statistically significant reduction in the non-classical monocyte subset was 

observed in the cord blood of normal pregnancy group as compared to the maternal 

circulation.  

Conclusion: This study has documented for the first time in cord blood of pregnancies 

complicated by PE and IUGR pregnancies, a monocyte subset distribution with dominant 

intermediate subsets.  
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6.2 Introduction 

Fetal or cord blood monocyte phenotypes have not been well described. There is no 

comprehensive data describing the distribution of monocyte subsets in cord blood. A study 

into cord blood monocyte subsets and Toll like receptor expression in normal pregnancy and 

pregnancies complicated by parasitic infections described a lower percentage of non-classical 

(CD14+CD16+) monocytes in cord blood as compared to the maternal circulation. The 

distribution of intermediate monocytes was not mentioned in this study (307). Human fetal 

and adult monocytes have been shown to be functionally distinct in response to cytokines 

associated with in-utero infection and preterm labour (309). Fetal monocytes have not been 

profiled with respect to preeclampsia or intrauterine fetal growth restriction.  

 

6.3 Aims 

 Classification of cord blood monocytes into classical, intermediate and non-classical 

subtypes. 

 To determine whether cord blood monocyte subset phenotype is altered in pregnancy 

complications such as preeclampsia and fetal growth restriction.  

 Determine differences in the monocyte subset distribution between maternal and fetal 

(cord blood) circulations. 

6.4 Methods 

A prospective cross-sectional case control study was conducted. Umbilical cord blood 

samples were collected at delivery from pregnancies between 24-40 weeks of gestation, 
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delivering at Westmead Hospital during the period 2013 -2014. Sample preparation, staining 

protocols, experiment design, flow cytometry optimization and technique as well as the gating 

strategy have been described in detail in Chapter 2.6. 

6.5 Results 

6.5.1 Neonatal demographic data of the study population 

Results are presented for 54 maternal and 27 fetal cord blood samples from 24 – 40 weeks of 

gestation. Not all corresponding cord blood samples from the delivered pregnancies were able 

to be collected due to emergency delivery out of normal working hours and difficulty in 

harvesting cord blood from the umbilical cord in some cases.  Seven of the collected cord 

blood samples were clotted at processing. Adequate monocytes could not be harvested from 

these samples to perform flow cytometric analysis.  Neonatal demographic data are described 

as mean ± standard deviation (Table 6.1).  Maternal demographic data and clinical 

characteristics are the same as described in Chapter 5. 
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 Clinical Group 

 Normal 

(SD) 

PE 

(SD) 

IUGR 

(SD) 

PE+IUGR 

(SD) 

Number of maternal samples 24 9 12 9 

Number of fetal samples 8 4 9 6 

Gestation at delivery (weeks) 39.2(0.8) 36.1(3.5) 35.4(3.6) 32.6(2.5) 

Birth weight (g) 3316(505) 2749(821) 1879(670) 1509(540) 

Table 6.1 Fetal demographic data of the study population.   

Results are presented as mean  ±  SD for each continuous variable unless otherwise specified.  

 

6.5.2 Fetal leukocyte and monocyte counts in normal and pathological pregnancies 

complicated by preeclampsia and intrauterine fetal growth restriction 

Cord blood white cell count and the monocyte count as calculated by Symex cytometer are 

presented in Table 6.2. 

No differences were observed in the fetal/cord blood peripheral leukocyte count between 

clinical groups normal pregnancy, preeclampsia, IUGR and PE+IUGR (Table 6.2). In 

comparison to normal pregnancy, PE+IUGR group appear to have a significantly lower 

number of monocytes as a percentage of the total white cell count. 
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Table 6.2 Fetal leukocyte count, monocyte count and the proportion of monocyte subtypes as 

a percentage of total monocyte count. Results are presented as median ± interquartile range 

for each continuous variable unless otherwise specified. *Statistically significant difference 

from normal pregnancy p <0.05.  

 

6.5.3 Fetal/cord blood peripheral blood monocyte subsets   

To study the changes in monocyte subsets during preeclampsia and intrauterine fetal growth 

restriction, surface expression of CD14 and CD16 were used to gate the total monocytes into 

three subsets classical CD14++CD16-, intermediate CD14++CD16+ and non-classical 

CD14+CD16++ using flow cytometry. The results for fetal monocyte subsets as a percentage 

of total fetal monocytes are presented in Tables 6.2 and Figure 6.1. 

 
Group 

Normal PE only IUGR only PE+IUGR 

Median 

(Percentile 25, 75) 

Median 

(Percentile 25, 75) 

Median  

(Percentile 25, 75) 

Median  

(Percentile 25, 75) 

WBC (x10^9 cells/L) 
10.92           

(6.77, 15.44) 

8.04             

(3.84, 9.36) 

6.36              

(5.88, 8.45) 

5.54            

(3.34, 8.34) 

Monocyte % 
9.0                

(7.5, 11.0) 

8.5                 

(5.7, 11.3) 

8.1                 

(6.7, 11.3) 

6.4*                

(2.9, 7.2) 

Monocyte - Classical % 
61.8             

(47.7, 69.3) 

30.1*             

(17.6, 48.3) 

54.3             

(37.1, 67.9) 

42.6            

(21.8, 46.9) 

Monocyte - Intermediate % 
34.4            

(26.7, 46.9) 

59.3             

(41.6, 75.4) 

41.2             

(25.6, 55.3) 

48.8            

(41.3, 60.5) 

Monocyte - Nonclassical % 
2.5                

(2.2, 2.9) 

5.7*                 

(5.1, 8.2) 

3.4*                 

(3.0, 6.9) 

6.7*                

(5.5, 10.7) 
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Figure 6.1 Zebra plots of a representative sample from each clinical group showing the gating 

strategy and distribution of monocyte subgroups. Classical monocytes CD14++CD16-, 

Intermediate monocytes CD14++CD16+, Non-classical monocytes CD14+CD16++. The 

distribution of subtypes demonstrated for Normal pregnancy, PE, IUGR and PE+IUGR. The 

intermediate monocytes were the dominant monocytes subtype in PE, IUGR and PE+IUGR. 

A trend towards a higher percentage of intermediate monocytes was seen in the pregnancies 

complicated by PE and IUGR although this difference did not reach statistical significance as 

compared to normal pregnancy.  
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The percentage of classical monocytes was significantly lower in preeclampsia (median 30%, 

interquartile 17.6%, 48.3%) as compared to normal pregnancy (median 61.8%, inter quartiles 

47.7%, 69.3%,) (p = 0.042).  Although intermediate monocytes appear to be the dominant 

monocyte subtype in PE, IUGR and PE+IUGR, this trend was not statistically significant in 

any of the clinical groups. The percentage of non-classical monocytes was noted to be 

significantly increased in the pathological groups PE (median 5.7% interquartiles 5.1%, 

8.2%), IUGR (median3.4 % interquartiles 3.0%, 6.9 %), PE+IUGR (median 6.7% 

interquartiles 5.5 %, 10.7 %) as compared to normal pregnancy (median 2.5 % interquartiles 

2.2 %, 2.9%). 

 

6.5.4 Comparison of maternal and cord blood monocyte subset distributions. 

A comparison was made between the maternal circulating monocyte subset distribution (as 

described in Chapter 5 ) and the cord blood monocyte subset distribution in the four clinical 

groups of normal; pregnancy, PE, IUGR and PE+IUGR. Comparative graphs are presented in 

Figure 6.2. 
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Figure 6.2 Comparison of maternal and fetal cord blood CD14+ monocytes in normal 

pregnancy, PE, IUGR and PE+IUGR. 

The monocyte subset percentages have been compared between maternal and fetal circulation 

for each clinical group. The results are presented as median and interquartile. * p < 0.05, 

Mann-Whitney U test. The non-classical cord blood monocyte percentage was significantly 

lower than the maternal non–classical percentage in the normal pregnancy group. 
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6.6 Discussion 

In the present study the distribution of the monocyte subsets in the fetal circulation (cord 

blood) was explored in normal pregnancies, PE, IUGR and PE+IUGR. The results were 

compared to maternal circulating monocyte subtype distribution to identify any differences 

between the two populations.  

The  gestational age at sample collection and birth weights were  different between the normal 

pregnancies and the pathological pregnancies with gestation at cord blood collection and birth 

weights being significantly lower in PE, IUGR and PE+IUGR. By definition normal 

pregnancies will be delivered at term and this difference is difficult to overcome in the 

methodology of the study. The study was unable to demonstrate a difference in the total white 

cell count between the clinical groups. The percentage of monocytes as a percentage of total 

white cells in  the cord blood samples (5.5-10.9%) were noted to be lower than previously 

published results with one study reaching up to 22.9% (413).  This data finds a lower 

percentage of monocytes are in the PE+IUGR group. There are no published data for 

comparison in this clinical group.  

This is the first description of the distribution of monocyte subsets in the cord blood using the 

nomenclature of classical, intermediate and non-classical based on CD14 and CD16 

expression. Although there have been previous descriptions of monocyte subsets from cord 

blood of normal pregnancy, the distribution of monocyte subsets as a percentage of total 

monocytes has not been described using CD14 and CD16 expression. 

Although the intermediate monocytes, as a percentage of the total monocytes in the cord 

blood samples, were the dominant subtype in cord blood in PE, IUGR and PE+IUGR (Table 

6.2), reaching 59.3% in preeclampsia, 41.2% in IUGR and 48.8% in PE+IUGR as compared 
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to 34.4% in normal pregnancy, the difference did not reach statistical significance in this 

study.  This is in contrast to the classical subtype being the prominent subtype in maternal 

circulation (Table 5.4). The small number of samples due to difficulties in sampling and 

processing of cord blood sample are likely to have affected the analysis of this study. The 

non-classical subset was seen to expand in PE, IUGR and PE+IUGR, reaching statistically 

significant levels as compared to normal pregnancy. This is a new distribution of monocyte 

subsets not previously described. These findings suggest that the innate immune signaling 

pathways related to monocytes are activated and functional in the fetal circulation in PE and 

IUGR. This study can be interpreted as a promising preliminary study to further explore the 

role of different monocytes subsets in the fetal circulation. Further study is recommended to 

characterize the cord blood monocyte phenotypes and their functional roles associated with 

normal pregnancy as well as pregnancies complicated by preeclampsia and intrauterine fetal 

growth restriction.  

This study compared the maternal and the fetal monocyte subset distribution in normal 

pregnancy as well as pregnancies complicated by PE, IUGR and PE+IUGR. The results are 

limited by the small sample numbers. The study demonstrated that the non-classical 

percentages were lower in the cord blood as compared to the maternal circulation. These 

results are consistent with a previous study demonstrating  a higher percentage of 

CD14+CD16+ monocytes in  cultured cord blood monocytes as compared to cultured 

maternal monocytes stimulated with peptidoglycan (414). These findings are  also concordant 

with previous description of a lower percentage of non-classical monocyte subsets described 

in cord blood of normal pregnancy as compared to maternal circulation (307).  The 

differences suggest that fetal monocytes may be derived from fetal bone marrow rather than 

maternal bone marrow, although this was not assessed directly in this study.  
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Chapter 7 - Anti-angiogenic factor expression by maternal and 

fetal circulating peripheral monocytes 

 

7.1 Summary 

Introduction: Circulating levels of the anti-angiogenic factors sFlt-1 and sEndoglin are 

elevated in preeclampsia and IUGR. Whether or not excess sFlt-1 and Endoglin are produced 

by other cell types such as endothelial cells, monocytes/macrophages in the placenta as well 

as components of the maternal peripheral circulation has not been well explored.  

Aims: To identify any variation of monocyte expression of Flt-1 and Endoglin across clinical 

groups, normal pregnancy, PE, IUGR or PE+IUGR and also with gestation, subtypes and 

polarization. Explore the CD86/CD163 ratio as a marker of monocyte activation with anti-

angiogenic factor Flt-1 and Endoglin expression. 

Methods: A prospective cross-sectional study was conducted and patients recruited from four 

clinical groups including normal pregnancy, PE, IUGR and PE+IUGR. Peripheral blood 

samples were collected from 54 pregnant women between 24-40 weeks of gestation. Twenty 

seven of these patients also had an umbilical cord blood sample collected at delivery.  

Monocyte phenotype distribution using CD14 and CD16 expression as well as surface 

expression of Flt-1, Endoglin, CD86 and CD163 were assessed by flow cytometry.  For both 

maternal and fetal monocytes, the study examined Flt-1 and Endoglin expression overall and 

by subtype, and examined associations between monocyte anti-angiogenic factor expression 

and CD86/CD163 expression.   
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Results: Circulating monocytes from maternal and fetal circulations express Flt-1 and 

Endoglin as surface markers. A moderate positive correlation was noted in monocyte Flt-1 

and Endoglin expression with increasing gestational age in the third trimester of pregnancy.  

Flt-1 was mainly expressed by classical and intermediate monocytes. There was no overall 

variation in the maternal or fetal membrane bound Flt-1 expression across clinical groups 

other than an increase by the non-classical monocyte Flt-1 expression in preeclampsia.   

Surface expression of Endoglin was more prominent on intermediate and non-classical 

monocytes. Endoglin expression on maternal monocytes was reduced in PE+IUGR. A 

moderately positive correlation was noted between angiogenic factors Flt-1 and Endoglin 

expression and CD86/CD163 ratio indicating monocyte polarization.  

Conclusion: The findings of this study suggest that maternal and fetal monocyte-derived Flt-

1 and maternal monocyte Endoglin expression are unlikely to significantly contribute to the 

pathogenesis of PE or IUGR. 
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7.2 Introduction 

Studies to date on preeclampsia and IUGR have focused on placental expression of Flt-1 and 

Endoglin, the main cell of origin being trophoblast cells (174, 178, 179). The expression of 

Flt-1 has been localized to only three tissues in the body, namely vascular endothelium, 

monocytes and trophoblast in the placenta. Little is known about the pro and anti-angiogenic 

factor expression by different subtypes of monocytes. This study explores whether monocyte 

over-expression of sFlt-1 could be an additional (extra-placental) source of sFlt-1 that 

contributes to the pathogenesis of preeclampsia and IUGR. 

7.3 Aims 

 Identify any variation of maternal and fetal monocyte expression of Flt-1 and 

Endoglin across clinical groups normal pregnancy, PE, IUGR or PE+IUGR and also 

with gestation, monocyte subtypes and polarization.  

 Correlate the CD86/163 ratio as a marker of monocyte activation with anti-angiogenic 

factor Flt-1 and Endoglin expression. 

7.4 Methods 

A prospective cross-sectional case control study was conducted. Umbilical cord blood 

samples were collected at delivery from pregnancies between 24-40 weeks of gestation, 

delivering at Westmead Hospital during the period 2013 -2014. Sample preparation, staining 

protocols, experiment design, flow cytometry optimization and technique as well as the gating 

strategy have been described in detail in Chapter 2.6. 
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Data analysis involved the identification of the 3 main monocyte populations classical, 

intermediate and non-classical across the different clinical groups. Surface expression of anti-

angiogenic factors Flt-1 and Endoglin and inflammatory markers CD86 and CD163 (Table 

7.1) were examined.  Mean Fluorescent Intensity (MFI) was recorded for the different 

monocyte populations using Flow Jo automatic analysis software. 

7.5 Results 

7.5.1 Maternal and neonatal demographic data and clinical characteristics of the study 

population 

Results are presented for 54 maternal and 27 fetal cord blood samples from 24 – 40 weeks of 

gestation.  Demographic data is presented in Chapter 5 (Table 5.1). 

7.5.2 Differential distribution of maternal monocyte Flt-1 and Endoglin expression with 

increasing gestation in third trimester of pregnancy. 

Spearman rank correlation was performed to identify any correlation between gestational age 

in normal third trimester pregnancy and the markers of interest Flt-1 and Endoglin. The 

percentage of monocytes expressing Flt-1 and Endoglin did not change with gestation but the 

Mean Fluorescence Intensity of Flt-1 and Endoglin on the monocytes showed a statistically 

significant increase with gestation (Table 7.1, Figure 7.1).  
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 Correlation 

coefficient 

Significance   

(2 tailed) p value 

0.05 

Interpretation 

Total monocyte Flt-1 

MFI 

0.402 0.049 Statistically significant trend 

towards increased Flt-1 

expression with gestation 

Percentage of 

monocytes expressing 

Flt-1 

0.129 0.547 No significant correlation 

Total monocyte 

Endoglin (CD105) 

MFI 

0.457 0.025 Statistically significant trend 

towards increased Endoglin 

expression with gestation 

Percentage of 

monocytes expressing 

Endoglin (CD105) 

0.359 0.085  No significant correlation 

Table 7.1 Differential distribution of monocyte Flt-1 and Endoglin expression with increasing 

gestation in normal third trimester of pregnancy, as tested in 24 pregnancies from 26 weeks to 

40 weeks of gestation. 
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Figure 7.1 Mean fluorescent intensity of Flt-1 and Endoglin with increased gestation in 

normal pregnancies. There was a moderate and statistically significant correlation seen 

between gestational age and MFI of both Flt-1 and Endoglin. 

7.5.3 Maternal monocyte Flt-1 expression 

The expression of maternal monocyte surface Flt-1 expression was detected with flow 

cytometry and quantified as mean fluorescence intensity using Flow Jo software. The results 

for expression of Flt-1 are presented in Table 7.2 and Figures 7.2-7.3. 
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 Clinical Group 

Normal PE only IUGR only PE+IUGR 

Median 
(Percentile 25, 75) 

Median  
(Percentile 25, 75) 

Median 
(Percentile 25, 75) 

Median  
(Percentile 25, 75) 

Percentage of total 

monocytes expressing Flt-1 

42.0            

(33.4, 51.0) 

37.6             

(30.2, 54.9) 

48.2             

(25.1, 70.6) 

42.4            

(37.7, 44.5) 

Total monocytes Flt-1 MFI  
80.0             

(57.0, 126.0) 

49.0             

(19.0, 71.0) 

104.0           

(33.5, 194.5) 

73.0            

(51.0, 102.0) 

Classical monocytes Flt-1 

MFI  

140.0          

(81.0, 181.0) 

100.0           

(65.0, 167.0) 

185.5           

(96.0, 278.0) 

147.0        

(102.0, 178.0) 

Intermediate monocytes Flt-

1 MFI  

167.0          

(99.0, 238.5) 

128.0           

(90.0, 204.0) 

191.5           

(99.5, 337.5) 

140.0        

(119.0, 212.0) 

Non Classical Flt-1 MFI  
52.5            

(30.5, 98.0) 

88.0             

(48.0, 93.0) 

84.0             

(54.5, 103.0) 

97.0            

(73.0, 160.0) 

Percentage of monocytes 

expressing Endoglin 

62.7             

(57.1, 76.2) 

63.3             

(58.8, 73.3) 

74.5            

(63.0, 82.1) 

54.4*†            

(43.4, 63.6) 

Total monocytes Endoglin 

MFI 

330.0         

(291.0, 446.5) 

300.0         

(267.0, 403.0) 

362.5         

(299.5, 575.5) 

264.0*         

(75.0, 296.0) 

Classical monocytes 

Endoglin MFI 

342.0        

(302.5, 403.5) 

320.0         

(308.0, 330.0) 

454.5         

(314.0, 644.0) 

236.0*        

(216.0, 351.0) 

Intermediate monocytes 

Endoglin MFI 

653.0        

(523.0, 1034.5) 

483.0         

(444.0, 896.0) 

692.0         

(468.0, 937.0) 

499.0        

(395.0, 595.0) 

Non Classical monocytes 

Endoglin MFI 

582.0         

(526.0, 811.0) 

458.0         

(332.0, 678.0) 

658.0         

(293.0, 725.5) 

464.0        

(203.0, 641.0) 

Table 7.2 Maternal monocyte expression of Flt-1 and Endoglin as markers of anti-angiogenic 

activity. Results are presented as median ± interquartile range for each continuous variable. 

* Statistically significantly different from normal pregnancy p <0.05. † Statistically 

significantly different from IUGR p <0.05.  
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Figure 7.2 Distribution of Flt-1 on peripheral blood monocyte subsets in normal pregnancy 

and pregnancies complicated by preeclampsia and intrauterine fetal growth restriction or both. 

A representative sample from each clinical group is presented as flow cytometry histogram 

plots of Flt-1 expression by different monocyte subsets. Values in histograms are for MFI 

(Mean Fluorescence Intensity) of Flt-1 expression. Red colour areas represents staining with 

isotype matched control antibody. Blue coloured areas represent staining with Flt-1 

monoclonal antibody. A1-4: Normal pregnancy (Normal), B1-4: Preeclampsia (PE), C1-4: 

Intrauterine fetal growth restriction (IUGR), D1-4: Preeclampsia and intrauterine fetal growth 

restriction (PE+IUGR). 
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The number of total maternal monocytes expressing surface Flt-1 as a percentage of total 

maternal monocytes did not show any statistically significant differences between the clinical 

groups (Table 7.2). The results were the same in an analysis of the different monocyte 

subtypes classical, intermediate and non-classical. Although the total Flt-1 mean fluorescence 

intensity was not different across the clinical groups, differences were observed in the MFI of 

Flt expression in monocyte subtypes (Table 7.2 and Figure 7.4). The MFI of Flt-1 of classical 

and intermediate monocytes was higher than non-classical monocytes in all groups, reaching 

significance in normal pregnancy and IUGR.  
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Figure 7.3 Analysis of monocyte surface Flt-1 expression (MFI) according to the subtype and 

clinical group. Results are presented as median and interquartile range.  

* Statistically significant difference between groups p < 0.05. 

 

7.5.4 Maternal monocyte Endoglin expression 

The expression of maternal monocyte surface Endoglin was detected with flow cytometry and 

quantified as mean fluorescence intensity using Flow Jo software. The results for expression 

of Endoglin are presented in Table 7.2 and Figures 7.4-7.6. 
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Figure 7.4 Distribution of Endoglin on peripheral blood monocyte subsets in normal 

pregnancy and pregnancies complicated by preeclampsia and intrauterine fetal growth 

restriction or both. 

A representative sample from each clinical group is presented as flow cytometry histogram 

plots of Endoglin expression by different monocyte subsets. Values in histograms are for MFI 

(Mean Fluorescence Intensity) of Endoglin expression. Red colour areas represents staining 

with isotype matched control antibody. Blue coloured areas represent staining with Endoglin 

monoclonal antibody.  
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Figure 7.5 Number of maternal monocytes expressing surface Endoglin as a percentage of 

total maternal monocytes. 

The percentage of monocytes expressing Endoglin in PE+IUGR was significantly less than 

normal and IUGR pregnancies. No detectable difference was noted between normal and 

preeclamptic pregnancies. The expression of Endoglin MFI appears to be significantly 

decreased in PE+IUGR for total monocytes and classical monocytes, as compared to the 

normal pregnancies (Table 7.2). The expression of Endoglin was significantly higher in the 

intermediate monocytes compared to classical monocyte subtype in all clinical groups. The 

MFI of non-classical monocytes for Endoglin is higher than classical monocytes in normal 

pregnancy (Figure 7.6).  
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Figure 7.6 Analysis of monocyte surface Endoglin expression (MFI) according to the subtype 

and clinical group.  

 

7.5.5 Maternal monocyte KDR expression 

The current experiments were unable to demonstrate any surface staining for KDR on 

monocytes.  
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7.5.6 Correlation of anti-angiogenic factor Flt-1 and Endoglin expression with 

polarisation of monocytes into M1/M2 inflammatory phenotypes. 

Spearman rank correlations were performed to investigate the relationship between monocyte 

Flt and Endoglin expression and polarization of monocytes into the M1/M2 phenotypes as 

documented by CD86/CD163 ratio. The results are summarized in Table 7.3 and displayed in 

Figures 7.7 – 7.9. 

A moderately positive correlation was seen between Flt-1and Endoglin expressions. A 

strongly positive correlation was noted between Flt-1 and CD86 expression. The correlation 

between Flt-1 and CD163 was low (Table 7.3 and Figure 7.7). 

 

Figure 7.7 Correlations of total monocyte MFI of CD86, CD163, Flt-1 and Endoglin.  
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Variable 1 Variable 2 
Correlation 

coefficient 

Significance  

(2 tailed)  
Interpretation 

Total 

monocyte Flt-

1 MFI  

Total 

monocyte 

Endoglin MFI 

0.547 p < 0.001* 

Moderate positive 

correlation 

Statistically significant  

Total 

monocyte Flt-

1 MFI  

Total 

monocyte 

CD86 MFI 

0.643 p < 0.001* 
Strong positive correlation 

Statistically significant  

Total 

monocyte Flt-

1 MFI 

Total 

monocyte 

CD163 MFI 

0.274 P = 0.045* 
Low positive correlation 

Statistically significant 

Total 

monocyte Flt-

1 MFI 

Total 

monocyte 

CD86/CD163 

MFI ratio 

0.412 P = 0.002* 

Moderate positive 

correlation 

Statistically significant 

Total 

monocyte 

Endoglin MFI  

Total 

monocyte 

CD86 MFI 

0.571 p < 0.001* 

Moderate positive 

correlation 

Statistically significant   

Total 

monocyte 

Endoglin MFI 

Total 

monocyte 

CD163 MFI 

0.145 P = 0.297 No correlation 

Total 

monocyte 

Endoglin MFI 

Total 

monocyte 

CD86/CD163 

MFI ratio 

0.045 P = 0.001* 

Moderate positive 

correlation 

Statistically significant 

 

Table 7.3 Spearman rank correlations for relationships between total monocyte Flt-1 MFI, 

Endoglin MFI, CD86 MFI, CD163 MFI and CD86/CD163 MFI ratio.  

*Correlation is significant at p < 0.05 level (2-tailed).  
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A positive correlation was noted between Flt-1 and CD86/CD163 expression (Correlation 

coefficient 0.412, p = 0.002, Table 7.4, Figure 7.8) and between Endoglin and CD86/CD163 

expression (Correlation coefficient 0.45, p = 0.001, Table 7.4, Figure 7.9) 

 

 

Figure 7.8 Correlations of total monocyte Flt-1 MFI and CD86/CD163 MFI ratio as an 

indicator of monocyte polarization into M1/M2 phenotypes.  
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Figure 7.9 Correlations of total monocyte Endoglin MFI and CD86/CD163 MFI ratio as an 

indicator of monocyte polarization into M1/M2 phenotype.  
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7.5.7 Fetal Flt-1 expression 

The expression of fetal monocyte surface Flt-1 expression was detected with flow cytometry 

and quantified as mean fluorescence intensity using Flow Jo software. The results for 

expression of Flt-1 are presented in Table 7.4. The number of total maternal monocytes 

expressing surface Flt-1 as a percentage of total maternal monocytes did not show   

statistically significant differences between the clinical groups. The results were the same for 

fetal monocyte Flt-1 expression in an analysis of the different monocyte subtypes classical, 

intermediate and non classical.  

 

7.5.8 Fetal Endoglin expression 

The expression of fetal monocyte surface Endoglin expression was detected with flow 

cytometry and quantified as mean fluorescence intensity using Flow Jo software. The results 

for expression of Endoglin are presented in Table 7.4 and Figure 7.10. Significantly more 

fetal monocytes in the IUGR group were noted to express Endoglin as compared to normal 

pregnancy, PE and PE+IUGR. A similar pattern of Endoglin expression was seen when the 

Endoglin expression was analyzed for monocyte subtypes. 
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  Clinical Group 

Normal PE only IUGR only PE+IUGR 

Median 
(Percentile 25, 75) 

Median  
(Percentile 25, 75) 

Median  
(Percentile 25, 75) 

Median  
(Percentile 25, 75) 

Percentage of monocytes 

expressing Flt-1 

10.0              

(6.6, 28.9) 

32.3             

(12.6, 49.0) 

17.6             

(12.7, 43.0) 

30.4            

(12.3, 37.7) 

Total monocytes Flt-1 MFI  
6.0                

(0.0, 49.0) 

43.5               

(8.5, 87.5) 

30.0             

(15.0, 64.0) 

34.0            

(16.0, 87.0) 

Classical monocytes Flt-1 MFI  
58.0            

(43.5, 98.0) 

0.0                 

(0.0, 55.5) 

42.0             

(26.0, 137.0) 

68.0            

(34.0, 142.0) 

Intermediate monocytes Flt-1 

MFI 

107.0          

(68.0, 182.5) 

41.5             

(13.5, 128.0) 

50.0             

(43.0, 218.0) 

157.5           

(77.0, 223.0) 

Non Classical Flt-1 MFI  
72.0            

(67.5, 140.5) 

61.5               

(0.0, 168.5) 

48.0               

(4.0, 80.0) 

107.0          

(71.0, 152.0) 

Percentage of monocytes 

expressing Endoglin 

49.7            

(36.3, 59.3) 

52.5             

(39.9, 58.7) 

77.9 *#            

(74.5, 81.9) 
59.5 †      

 (46.8, 73.5) 

Total monocytes Endoglin MFI 
181.0           

(76.0, 331.0) 

222.5         

(108.5, 272.0) 

469.0 *#        

(426.0, 490.0) 
219.0 †       

(111.0, 280.0) 

Classical monocytes Endoglin 

MFI 

330.0        

(207.0, 511.5) 

235.5         

(204.0, 270.5) 

549.0*#         

(496.0, 642.0) 

333.5        

(259.0, 362.0) 

Intermediate monocytes 

Endoglin MFI 

375.0         

(228.5, 548.0) 

335.0         

(229.0, 403.5) 

745.0  *#      

(616.0, 869.0) 

417.0        

(269.0, 426.0) 

Non Classical monocytes 

Endoglin MFI 

279.0        

(184.5, 496.0) 

198.5           

(76.0, 307.5) 

537.0*#         

(457.0, 752.0) 

224.0        

(203.0, 332.0) 

Table 7.4 Fetal monocyte expression of Flt-1 and Endoglin as markers of anti-angiogenic 

activity.  

*Significantly different from normal pregnancy. # Significantly different from PE.  

†Significantly different from IUGR. Results are presented as median ± interquartile range for 

each continuous variable. For PE, 3 out of 4 MFI values for Flt-1 were not higher than the 

isotype control, resulting in a median value of 0.  
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Figure 7.10 Number of fetal monocytes expressing surface Endoglin as a percentage of total 

fetal monocytes. The results are presented as median ± interquartile range.  

* Statistically significant differences between clinical groups p < 0.05. 
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7.6 Discussion 

The objective of this study was to investigate the maternal and fetal circulating monocyte 

expression of membrane bound Flt-1 and Endoglin in preeclampsia and intrauterine fetal 

growth restriction.  

Monocytes and macrophages are known to differentiate into a variety of cell types such as 

osteoclasts in bone, Kupffer cells in liver, dendritic cells in the immune system, Hofbauer 

cells in the placenta and mature macrophages in a number of tissues. They are implicated in a 

variety of major disease processes such as inflammation, metabolic diseases, and cancer.  

While there are sparse data available on monocyte function in preeclampsia including Flt-1 

expression, there are no published studies exploring the role of peripheral monocytes in 

Endoglin expression in preeclampsia or the pregnancy complication of fetal growth 

restriction. 

It is established that soluble Flt-1 and soluble Endoglin play a significant role in the 

pathogenesis of preeclampsia (155, 178, 189). This study has clearly shown that circulating 

monocytes from maternal and fetal circulations express Flt-1 and Endoglin as surface 

markers. Gestational variations in the monocyte Flt-1 and Endoglin expression in normal third 

trimester of pregnancy were investigated. While the number of monocytes expressing Flt-1 

did not show any difference with gestation, the intensity of Flt-1 expression (MFI) showed a 

moderate increase with gestation in normal pregnancy (Figures 7.1 and 7.2). The percentage 

and MFI of Endoglin showed a moderate positive correlation with gestational age.  
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There was no overall variation in the membrane bound Flt-1 expression between the clinical 

groups of normal pregnancy, preeclampsia, intrauterine fetal growth restriction and a 

combination of preeclampsia and intrauterine fetal growth restriction. This data supports the 

notion that monocytes are unlikely to be the sole source of sFlt-1 in preeclampsia. 

Endoglin expression on maternal monocytes was reduced in PE+IUGR (Figure 7.5) and 

significantly increased on fetal monocytes in IUGR (Figure 7.10). These results suggest that 

monocyte Endoglin production from the fetal/placental circulation may contribute to the total 

circulating maternal Endoglin.  However for confirmation of this it is will be necessary to 

determine if Endoglin bound to fetal monocytes is secreted as soluble Endoglin, which 

reaches the maternal circulation , and whether there is sufficient quantity to impact on total 

soluble Endoglin. The authors’ previous work (chapter 4) showed significantly elevated 

maternal sEndoglin level in women with PE+IUGR compared to normal pregnancies (189). 

Little is known about the pro and anti-angiogenic factor expression by different subtypes of 

monocytes. The Flt-1 and Endoglin expression on circulating monocytes were further 

evaluated according to the monocyte subgroups. The Flt-1 MFI of classical and intermediate 

monocytes was noted to be higher than non-classical monocytes in all groups (Figure 7.3), 

reaching statistical significance in the normal pregnancy and IUGR groups. The surface 

expression of Flt-1 on non-classical monocytes is significantly lower than classical and 

intermediate in normal pregnancy and IUGR, but shows no difference in pregnancies affected 

by preeclampsia. This suggests an increase in Flt-1 expression by non-classical monocytes in 

pregnancies affected by preeclampsia.  
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The monocyte Flt-1 has been described to have a significant role in the chemotaxis of 

peripheral monocytes and tissue macrophages (147). It is possible that surface expression of 

Flt-1 on monocytes in preeclampsia and IUGR may have a functional role in chemotaxis and 

autocrine expression associated with placental injury in PE and IUGR. However this study 

has not supported a functional role of maternal monocyte-derived Flt-1 in PE or IUGR. 

No significant variation in Endoglin expression was noted between the clinical groups other 

than a small reduction in classical monocytes in PE+IUGR.  This data suggests that Endoglin 

is mainly expressed on intermediate and non-classical monocytes in normal pregnancy as well 

as pregnancies complicated by PE and IUGR (Figure 7.6). 

The study of monocyte Flt-1 and Endoglin expression was performed in stage two of the 

research and on a different patient population to the study on circulating angiogenic factors. 

Plasma samples from the monocyte study group have been stored for future research into 

correlation between monocyte Flt-1 and Endoglin expression and circulating sFlt-1 and sEng 

levels.  

The association of monocyte polarization into M1/M2 phenotypes and correlation with anti 

angiogenic factor Flt-1 and Endoglin expression has not been previously described in the 

literature. This is the first study to explore the relationship of Flt-1 and Endoglin with 

monocyte subtypes and M1/M2 polarization. The current study investigated whether Flt-1 and 

Endoglin were expressed differently by monocytes with inflammatory M1 or healing M2 

phenotype.  CD86 was used as a marker of M1 phenotype while CD163 was used as a M2 

marker. The CD86/163 ratio was used as an indication of the inflammatory status of the 

monocytes in the different clinical groups. These findings demonstrated that Flt-1 and 

Endoglin expression is strongly associated with the inflammatory (M1) monocyte phenotype, 

and that Flt-1 is also (weakly) expressed by M2 monocytes.   
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Previous results of this study have shown that while there were no significant differences in 

the M1/M2 polarization of monocytes between normal pregnancy and PE (Table 5.4), a 

significant shift towards M2 polarization of all subclasses of maternal peripheral monocytes is 

evident in pregnancies complicated by IUGR. This may represent the body’s response to and 

repair of significant placental injury.  This study has demonstrated a moderate association 

between M1 polarization and Endoglin/Flt-1 surface expression of monocytes.  The above 

findings as well as a reduced Endoglin expression in PE+IUGR documented in the current 

study suggest that monocyte surface expression of Flt-1 and Endoglin does not significantly 

contribute to the increased circulating Flt-1 and Endoglin noted in PE and IUGR. It is possible 

that M1 polarized monocytes and /or macrophages act locally within the placenta promoting 

the anti-angiogenic state. Further studies into placental monocytes and macrophages are 

required to further clarify this aspect. 

The current study has contributed significantly to the literature by an exploration of Flt-1 and 

Endoglin expression by maternal and fetal monocytes in normal pregnancy and pregnancies 

complicated by preeclampsia and fetal growth restriction. The data and the interpretations are 

limited by small patient numbers and the cross sectional design of the study.  
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Chapter 8 - Maternal and fetal lipid profiles in preeclampsia and 

intrauterine fetal growth restriction 

8.1 Summary 

Introduction: Elevated lipid levels in normal pregnancy as well as in preeclampsia have been 

documented. Maternal lipid status in PE and PE+IUGR has not been well documented.  

Aims: To characterize the serum levels of TC, HDL, LDL, Apo lipoprotein A1, Apo 

lipoprotein B and their ratios TC/HDL and ApoB/ApoA1 in the maternal and fetal 

circulations of normal pregnancy, PE, IUGR and PE+IUGR.  

Methods: A prospective cross-sectional case control study was conducted in the clinical 

groups normal pregnancy, PE, IUGR and PE+IUGR. Maternal and fetal lipid levels were 

measured by enzymatic analysis and immune-turbidimetric enzymatic assays. IUGR was 

defined by elevated umbilical artery Doppler resistance in association with SGA. 

Results: TC, HDL, LDL and TC/HDL levels did not show any significant variation between 

clinical groups in the maternal or fetal circulation.  Apo lipoprotein levels A1 and B were not 

different between maternal groups but there was a statistically significant elevation in fetal 

ApoB levels in PE, IUGR and PE+IUGR compared to normal pregnancies. TG levels were 

elevated in maternal PE and fetal IUGR compared to normal pregnancies. This data also did 

not support a gestational variation or a difference between PE and IUGR in cholesterol levels 

in the maternal and fetal circulation.   

Conclusion: Excessive elevation in maternal TG levels may have a role in the pathogenesis 

of PE and should be researched as a screening test to identify pregnant women at risk of 

preeclampsia as well as long term cardiovascular risk. The elevated TG and Apolipoprotein B 
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levels in cord blood may be a useful link in identifying newborns at risk of cardiovascular 

disease in later life.  

8.2 Introduction 

Preeclamptic women have been shown to exhibit, in the third trimester and puerperium, 

higher mean serum TG concentration and lower high density lipoprotein (HDL) cholesterol 

and Apolipoprotein A1 levels compared with healthy pregnant women in third trimester of 

pregnancy (364). LDL-mean particle diameter (LDL-MPD) and LDL cholesterol-Apo 

lipoprotein B ratio were also significantly reduced in the pathologic group. Antepartum serum 

triglyceride and free fatty acid concentrations were increased approximately twofold in 

women with preeclampsia relative to uncomplicated pregnancies in another study into lipids 

in preeclampsia. Total, high-density lipoprotein, and low-density lipoprotein cholesterol 

concentrations did not differ between groups (415). The lipid profiles in pregnancies 

complicated by IUGR without PE have not been well characterized. While little literature is 

available on the fetal lipid profile in PE, the lipid status in cord blood and neonates of IUGR 

pregnancies have been documented. 

 

8.2 Aims 

To examine the serum levels of TC, HDL, LDL, Apo lipoprotein A1, Apo lipoprotein B and 

their ratios TC/HDL and ApoB/ApoA1 in the maternal and fetal circulations of normal 

pregnancy, preeclampsia, intrauterine fetal growth restriction and preeclampsia with IUGR. 
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8.4 Methods 

A prospective cross-sectional case control study was conducted. Pregnant women between 

24-40 weeks of gestation, delivering at Westmead Hospital during the period 2013 -2014 

were recruited. Maternal samples were taken prior to delivery and some of the pregnancies 

had fetal cord blood samples collected at delivery as per the methods describe in Chapter 2.7. 

The lipid profile including fasting serum concentrations of total cholesterol, HDL, LDL, 

triglycerides ApoA and ApoB were tested and recorded for each donor. 

 

8.5 Results 

8.5.1 Maternal and neonatal demographic data and clinical characteristics of the study 

population 

Maternal fasting venous blood samples were collected from 52 women prior to delivery. 

Pregnancies that were delivered within one week of maternal blood sample collection had 

cord blood samples collected at delivery. The number of fetal samples was also limited by 

after hours emergency deliveries and the difficulty in collecting venous cord blood from the 

umbilical vein in some cases. Thirty cord blood samples from the above pregnancies were 

available for analysis. All women had a normal glucose tolerance test. All women were 

consuming an unrestricted diet and were fasting for at least 6 hours prior to the test. The 

normal pregnancy patients were gestationally matched to the pathological pregnancies 

complicated by PE and IUGR. The maternal and fetal demographic data are presented in 

Table 8.1. 

Analysis of the effect of confounding variables using Fischer’s exact test showed that 

PE+IUGR patients were older, were delivered earlier and had lower birth weights. There was 
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no significant difference in BMI between groups except the pregnancies complicated by 

IUGR only, where the BMI was noted to be lower as compared to the PE group. No 

difference was noted in the incidence of smoking and mode of delivery between the different 

clinical groups. The majority of preeclamptic patients received anti-hypertensive treatment 

whereas only half of the PE+IUGR patients were medicated. The gestational age at sample 

collection in the PE+IUGR group was significantly different from the other three groups of 

Normal, PE and IUGR. Significant differences in both gestation at delivery and birth weight 

seen between normal pregnancy and PE, IUGR and PE+IUGR, as well as PE+IUGR and the 

other three groups. No difference in gestational age was seen between PE and IUGR (Table 

8.1) 
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Group 

Normal PE only IUGR only PE+IUGR 

Mean (Standard 

Deviation) 
Mean (Standard 

Deviation) 
Mean(Standard 

Deviation) 
Mean (Standard 

Deviation) 

Number of patients 20 10 12 10 

Maternal age (years) 28.8 (4.0) 27.5 (5.8) 28.3 (4.9) 33.2 (6.7)*#† 

BMI 27.6 (5.4) 30.3 (8.0) 24.1 (5.3)# 28.0 (6.0) 

Gestation age at sample 

collection 
36.1 (3.8) 35.2 (3.4) 34.8 (4.2) 31.7 (2.8)*# † 

Gestation age at delivery 39.3 (0.8) 36.5 (3.4)* 36.2 (2.2)* 32.0 (3.0)*# † 

Birth weight (g) 3412 (388) 2897 (903)* 1831 (781)* 1398 (619)*# † 

Primipara (%) 40 80 58.3 90 

Smoking (%) 5.6 0.0 8.3 10 

Mode of delivery (LSCS) % 75 80 75 80 

Table 8.1: Maternal and fetal demographic data and clinical characteristics of the study 

population.   

Results are presented as mean ± SD for each continuous variable unless otherwise specified. 

*Statistically significant difference from normal pregnancy. # Statistically significant 

difference from PE.  †Statistically significant difference from IUGR. 
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8.5.2 Gestational age related changes in maternal lipid profile in normal third trimester 

pregnancy.  

Spearman rank correlation of gestational age and the measured variables total cholesterol, 

HDL, LDL, triglycerides ApoA1 and ApoB for all the study patients including PE, IUGR and 

PE+IUGR as well as for normal group only did not show any gestational variation. The 

correlation coefficients and the significance (2 tailed) have been listed in Table 8.2. 

 Normal pregnancy 

Rank correlation 

 

Normal pregnancy 

2 tailed significance 

All Groups 

Rank correlation 

 

All Groups 

2 tailed 

significance 

 TC -.125 

 

.598 -.041 .772 

HDL .057 

 

.812 .013 

 

.930 

LDL -.218 

 

.355 -.071 .623 

TC/HDL -.159 

 

.502 .023 .872 

ApoA1 .099 

 

.688 -.046 .749 

ApoB -.011 

 

.966 .034 .813 

ApoB/ApoA1 -.048 

 

.844 .071 .622 

Table 8.2 Gestation related changes in lipid profile within third trimester.  

Spearman rank Correlation coefficients and two tailed significance for gestational age 

variation in total cholesterol, HDL, LDL, triglycerides ApoA1 and ApoB and their 

ratiosTC/HDL, ApoB/ApoA1.  
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A significant correlation between gestational age and lipid parameters was not demonstrated 

for any of the groups for samples taken from 26 weeks to 40 weeks. This does not exclude 

gestation related changes in lipid profile in third trimester compared to first or second 

trimester.    

8.4.3 Maternal lipid profile in normal and pathological pregnancies complicated by 

preeclampsia and intrauterine fetal growth restriction.  

 

The maternal lipid profiles of each clinical group are summarized in Table 8.3 and Figures 8.1 

and 8.2.  

The results confirm that the TG levels are at higher levels in pregnancy compared to the 

normal population. There was a significant increase in the TG levels in preeclampsia as 

compared to normal pregnancy and IUGR (Figure 8.1). No significant differences noted 

between the clinical groups for Apolipoprotein with the majority of Apo A1 and B readings 

noted to be lower than the 95th centile for third trimester pregnancy (Figure 8.2). 
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Maternal Data 

Group 

Normal PE only IUGR only PE+IUGR 

Median  

(Quartiles 25, 75) 

Median  
(Quartiles 25, 75) 

Median 
(Quartiles 25, 75) 

Median  
(Quartiles 25, 75) 

Number of samples 7 5 8 10 

TC mmol/L 
6.6                 

(6.1, 7.5) 

7.2                 

(5.9, 8.0) 

6.9                 

(6.0, 7.5) 

6.2                

(5.5, 6.7) 

HDL mmol/L 
1.8                

(1.6, 1.9) 

1.8                 

(1.5, 2.1) 

1.6                 

(1.3, 1.9) 

1.5                 

(1.3, 2.1) 

LDL mmol/L 
3.6                

(2.4, 4.6) 

3.7                 

(2.2, 4.3) 

3.6                 

(3.0, 4.1) 

2.9                

(2.6, 3.0) 

TC/HDL ratio 
3.8                

(3.4, 4.7) 

3.8                 

(3.3, 4.9) 

4.0                 

(3.0, 4.7) 

3.7                

(2.9, 4.9) 

Trig mmol/L 
2.99            

(2.23, 4.11) 

4.21*†            

(3.39, 4.93) 

2.62             

(1.85, 3.19) 

2.99            

(2.19, 5.31) 

Apo A1 g/L 
1.91             

(1.65, 2.19) 

2.06             

(1.87, 2.39) 

1.87             

(1.71, 2.02) 

1.91            

(1.78, 2.22) 

Apo B g/L 
1.44            

(1.12, 1.82) 

1.38             

(1.19, 1.63) 

1.44             

(1.26, 1.53) 

1.24             

(1.08, 1.53) 

Apo B: Apo A1 
0.69 

(0.60, 0.98) 

0.63 

(0.59, 0.81) 

0.75 

(0.59, 0.87) 

0.67 

(0.47, 0.72) 

Table 8.3 Maternal lipid profile in normal pregnancy and pregnancies complicated by 

preeclampsia, intrauterine fetal growth restriction and a combination of PE and IUGR.  

Results are presented as median ± interquartile range for each continuous variable.  

*Statistically significant difference from normal pregnancy. † Statistically significant 

difference from IUGR. 
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Figure 8.1 Comparison of maternal total triglyceride (TG) levels between clinical groups.Blue 

line indicates the 95th centile value in the commercial TG assay used for analysis for non-

pregnant population. Red line indicates the 95th centile for third trimester pregnancy using 

reference ranges published by Piechota et al (350).  
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Figure 8.2 Comparison of maternal A = Apo lipoprotein A1 (ApoA1) levels and B = maternal 

Apo lipoprotein B (ApoB) levels between clinical groups. Blue line indicates the 95th centile 

value for non-pregnant population in the commercial ApoB assay used for analysis. Red line 

indicates the 95th centile for third trimester pregnancy using reference ranges published by 

Piechota et al (350). The ApoA1 and ApoB levels in all groups of pregnancy were above the 

non-pregnant levels.  

8.5.4 Fetal lipid profile in normal and pathological pregnancies complicated by 

preeclampsia and intrauterine fetal growth restriction 

The fetal lipid profiles of each clinical group are summarized in Table 8.4 and Figures 8.3-

8.5.  Although the fetal TG levels appeared to be higher in pathological groups as compared 

to normal pregnancy, the results did not reach significance except for PE+IUGR (Figure 8.3). 

No differences were noted in the cholesterol levels between groups. The Apo A1 levels were 

not statistically significant between groups. Significant differences were noted in ApoB levels 

between normal pregnancy and all three pathological groups. No significant differences seen 
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between PE, IUGR and PE+IUGR (Figure 8.4). The fetal Apo lipoprotein B/A1 ratios 

(ApoB/ApoA1) were significantly elevated in IUGR and PE+IUGR. 

 

Fetal Data 

Group 

Normal PE only IUGR only PE+IUGR 

Median 

(Quartiles 25, 75) 

Median  
(Quartiles 25, 75) 

Median 

(Quartiles 25, 75) 

Median  
(Quartiles 25, 75) 

Number of samples 7             5 8 10 

TC mmol/L 
1.5                

(1.3, 2.0) 

1.8                 

(1.5, 2.0) 

1.8                 

(1.5, 2.2) 

1.8                

(1.5, 2.2) 

HDL mmol/L 
0.6                

(0.4, 0.7) 

0.7                 

(0.7, 0.8) 

0.7                 

(0.5, 1.1) 

0.7                

(0.4, 0.7) 

LDL mmol/L 
0.8                

(0.6, 1.0) 

0.8                 

(0.7, 1.1) 

1.0                 

(0.8, 1.0) 

1.0                

(0.9, 1.1) 

TC/HDL ratio 
2.5                 

(2.2, 3.2) 

2.3                 

(2.2, 2.9) 

2.55               

(2.0, 3.4) 

3.1                

(2.6, 3.5) 

Trig mmol/L 
0.16            

(0.14, 0.21) 

0.35             

(0.23, 0.37) 

0.26             

(0.12, 0.54) 

0.36*            

(0.32, 0.43) 

Apo A1 g/L 
0.70            

(0.66, 0.81) 

0.78             

(0.77, 0.81) 

0.84             

(0.70, 0.94) 

0.70            

(0.60, 0.82) 

Apo B g/L 
0.20            

(0.20, 0.22) 

0.29*          

(0.22, 0.33) 

0.33*             

(0.32, 0.36) 

0.33*            

(0.29, 0.33) 

Apo B: Apo A1 
0.29   

(0.25, 0.30) 

0.35 

 (0.27, 0.42) 

0.37*  

(0.30, 0.47) 

0.42* 

(0.35, 0.53) 

Table 8.4 Fetal lipid profile in normal pregnancy and pregnancies complicated by 

preeclampsia, intrauterine fetal growth restriction and a combination of PE and IUGR.  

Results are presented as median ± interquartile range for each continuous variable. 

*Statistically significant difference from normal pregnancy.  
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Figure 8.3 Comparison of fetal total triglyceride (TG) levels between clinical groups.  

 

Figure 8.4 Comparison of A = fetal Apo lipoprotein A1 (ApoA1) and B = fetal Apo 

lipoprotein B (ApoB) levels between clinical groups.  
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Figure 8.5 Comparison of fetal Apo lipoprotein B/A1 ratio (ApoB/ApoA1) levels between 

clinical groups. Significant differences noted between Normal pregnancy, IUGR as well as 

PE+IUGR.  No significant differences seen between normal and PE as well as between the 

pathological groups.   

 

8.6 Discussion 

A number of previous studies have documented elevated lipids in normal pregnancy as well 

as in preeclampsia (350, 356). In one of the early studies on the subject, all lipids and Apo 

lipoproteins were found to be significantly elevated during the second and the third trimesters 

with a 2.7-fold triglyceride, 56% increase in ApoB, 43% increase in total TC, 36% increase in 

low-density lipoprotein (LDL) cholesterol and 32% increase in Apolipoprotein A1. High-

density lipoprotein (HDL) cholesterol rose maximally (25%) in the second trimester (350). 

No prior documentation was found for the status of lipids in defined IUGR or PE+IUGR as a 

group. The mechanism whereby pregnancy induces hyperlipidaemia has not been fully 

elucidated. 
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These results indicate that while Apo lipoprotein levels A1 and B levels were not different 

between clinical groups in the maternal circulation, significant variation existed in the fetal 

circulations with elevated Apo lipoprotein B levels in PE, IUGR and PE+IUGR as compared 

to normal pregnancies. The maternal data are consistent with previous reports of no difference 

in ApoA1 and ApoB levels in normal and preeclamptic patients (366). The data on fetal ApoB 

levels confirms the findings of a previous study showing elevated Apo B levels in 

cordocentesis samples of growth restricted fetuses (371). This is the first documentation of 

such a wide variation in ApoB levels in the neonatal cord blood at delivery. Increased Apo 

lipoprotein B levels and an elevated Apo lipoprotein B to A1 ratio in young adults have been 

shown to be predictors of atherogenesis in later life. Fetal growth restriction and low growth 

in the first years of life has been linked to cardiovascular disease in adulthood (48, 416). The 

elevated Apo lipoprotein B levels in the cord blood may be a useful link in identifying 

newborns at risk of cardiovascular disease in later life.  

The triglyceride levels were significantly higher in preeclampsia compared to normal 

pregnancy. The levels in IUGR were lower than normal and preeclampsia groups, reaching 

statistically significant differences as compared to preeclamptic group. A number of 

pregnancies displayed TG levels well above the 95th centiles for third trimester gestation, 

mainly in pregnancies complicated by preeclampsia and may represent pre-existing 

hyperlipidaemia or risk for hyperlipidaemia.  There was a weak correlation between BMI and 

TG levels that was not at a statistically significant level to have a confounding effect on the 

findings. 

Fetal total triglyceride (TG) levels in PE and PE+IUGR were higher than normal and IUGR 

groups, reaching statistical significance between normal and PE+IUGR.  The small sample 

number particularly in PE, is likely to have affected the calculation of statistical significance 
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between groups. This is consistent with previous findings suggesting higher TG levels in fetal 

growth restriction (357). These findings confirm previously published data that TG levels are 

elevated above non-pregnant levels in normal pregnancy and even higher in preeclampsia. 

The study has also documented that IUGR only is not significantly associated with elevated 

TG levels. These data are in concordance with previous suggestions that human gestation is 

associated with an 'atherogenic' lipid profile that is further enhanced in preeclampsia and that 

this profile may be a potential contributor to endothelial cell dysfunction (364). A mechanism 

for serum lipid related endothelial dysfunction has not yet been confirmed. 

Constitutional lipid abnormalities have been suggested as one of the maternal predisposing 

factors for developing preeclampsia (361). A review by Gratacos et al explored the different  

lines of evidence indicating that abnormal lipid metabolism is likely to be directly involved in 

its pathogenesis and not a mere manifestation of preeclampsia (361).  It has been documented 

for 35 years that preeclampsia is associated with hypertriglyceridemia (347). Triglycerides 

and free fatty acids have been noted to be already elevated in the first and second trimester in 

these women (417).  In vitro experiments have shown that lipid fraction dependent endothelial 

activation has been shown using preeclamptic plasma (418). The lipoprotein profile in 

preeclampsia parallels that of atherosclerosis with elevated LDL levels (419). Similar 

demographic profiles such as increased BMI, increased TG levels and elevated non-esterified 

fatty acid (NEFA) predispose women to preeclampsia and dyslipidaemia (420). 

Ethnic differences have been described in lipid profiles in pregnancy with African/Afro-

Caribbean pregnant women having lower serum concentrations of TC, LDL, HDL and TG 

concentrations compared with Caucasian women (421). The lipid profile in normal pregnancy 

in south eastern subcontinent and East Asian background has not been defined. The 
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multicultural nature of the patient population in this study with >50% of the population from 

the above mentioned ethnicities may have affected the presented results. 

The study was limited by small patient numbers and the cross sectional study design. It is 

possible that the results may be more conclusive with larger patient numbers. The LDL levels 

were obtained by calculation using the Friedwald equation which assumes that the 

composition of lipoproteins in pregnancy is the same as in normal metabolic states and also 

includes intermediate density cholesterol.  The calculation is generally applicable to 

triglyceride levels < 4.55mmol/L. The TG levels in pregnancy are often significantly higher 

than this range, leading to the LDL calculation to be less reliable in these patients. The 

Friedewald equation tends to underestimate LDL-C when triglycerides are elevated as is the 

case in pregnancy. The LDL levels in this study may be an underestimate 

 

The presented research raise interesting hyportheses regarding the pathogenesis and 

predisposition to preeclampsia and cardiovascular disease. Further studies with larger 

numbers are recommended to clarify the significance of maternal, fetal and neonatal TG 

levels as well as fetal/neonatal Apolipoprotein B levels on the risk of maternal preeclampsia 

and fetal growth restriction and long term cardiovascular risk. 
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Chapter 9 Summary of results and future directions 

9.1 Introduction 

The pathogenesis of preeclampsia and intrauterine fetal growth restriction, common 

pregnancy complications, has eluded researchers over decades. The current paradigm suggests 

defective placentation in early gestation and inadequate vascular remodeling of maternal 

spiral arteries leading to ischemia as the central cause of these pregnancy complications (34, 

222, 422). Placental ischemia is thought to release soluble factors such as sFlt-1 and 

sEndoglin that enter the maternal circulation, resulting in endothelial dysfunction and the 

clinical presentation of preeclampsia (222, 397, 422). The pathogenesis of preeclampsia is 

thought to act at three levels- defective placentation, placental ischemia, and endothelial cell 

dysfunction. Of these, endothelial dysfunction is considered to be a key factor associated with 

pre-eclampsia (193). 

Published literature to date on role of angiogenic factors suggests that while pro-angiogenic 

factors are essential in the development of the fetus and the placental interface with the 

mother, anti-angiogenic factors also plays an essential role in the regulatory control of 

angiogenesis during pregnancy. While the pathogenesis of preeclampsia has been extensively 

studied, the causative mechanisms underlying IUGR are less well understood.  

The research undertaken as part of this work has looked at the placental expression of pro and 

anti-angiogenic factors as well as investigated the circulating levels of these biomarkers. The 

focus has been on the VEGF family and its receptors as well as Endoglin, a transforming 

growth factor β receptor, as an additional significant biomarker.  A comparison of the 

angiogenic factor milieu has been made between normal pregnancy and pregnancies 
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complicated by PE, IUGR and PE+IUGR to assess differential factors that lead to maternal 

syndrome of preeclampsia vs the fetal syndrome of intrauterine fetal growth restriction.  

The results from this assessment of circulating pro- and anti-angiogenic factor levels suggest 

a disparity in the clinical presentation of preeclampsia and intrauterine fetal growth restriction 

with concordant circulating pro and anti-angiogenic factor levels. The expression of various 

angiogenic factors in the maternal circulation have been analyzed and presented as potential 

biomarkers for preeclampsia and intrauterine fetal growth restriction. The research presented 

in this thesis has been cited in a recent expert opinion published on the clinical implications of 

sFlt-1/PlGF as a marker of preeclampsia (219).  

 It is unclear why some pregnant women with similar placental disease and anti-angiogenic 

profile, develop endothelial dysfunction and preeclampsia, some develop preeclampsia and 

fetal growth restriction, while others have fetal growth restriction with no signs of maternal 

disease. 

To investigate possible causes of this disparity, the work was extended to study maternal and 

fetal monocytes and explore whether monocytes play a role in the contribution to the 

angiogenic factors and their receptors in normal and complicated pregnancies.  In addition to 

endothelium and placental trophoblasts, monocytes are the only other tissue/cell type known 

to secrete sFlt-1, a significant biomarker for placental disease. As part of the work presented 

here, anti-angiogenic factor expression was correlated to the monocyte subtypes and activity 

levels. In a review by Redman et al. al. (423), preeclampsia has been described as an 

exacerbation of a normal maternal inflammatory response in pregnancy and that defective 

placentation is a predisposing factor rather than the cause of preeclampsia. Generalized 

intravascular inflammatory reaction involving intravascular leukocytes as well as the clotting 

and complement systems are thought to be significant in this process. Monocytes have been 
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shown to be an integral part of inflammatory response of the body. In this research maternal 

monocyte phenotype and activation were assessed as biomarkers for placental disease of 

preeclampsia and intrauterine fetal growth restriction. A pilot study was also conducted to 

characterize fetal monocyte phenotype and their possible association with pregnancy 

complications. 

Previous work has suggested that the maternal metabolic syndrome or lipid status may 

predispose to preeclampsia (361)  and may be a possible explanation for the disparity in 

clinical presentation of preeclampsia and intrauterine fetal growth restriction.  The presented 

work explored the differences in maternal and fetal lipid profile between PE, IUGR and 

PE+IUGR. 

This research contributes to the literature on the pathogenesis of preeclampsia and intrauterine 

growth restriction demonstrating similarities and differences between the two conditions 

which has lead us closer towards an understanding of their pathogenesis.  While maternal 

lipid status appears to be a distinguishing factor in preeclampsia, low placental PlGF and 

KDR as well as a polarization of monocytes towards an M2 phenotype have been shown to be 

features of IUGR.  

Maternal and fetal monocytes appear to have potential role of biomarker in preeclampsia and 

fetal intrauterine fetal growth restriction.  This approach is in line with the revised statement 

of the ISSHP (2014), suggesting a move away from the traditional diagnosis of preeclampsia 

using hypertension and proteinuria and embracing the use of biomarkers in the diagnosis.  

Recent focus on the long term consequences of preeclampsia in the mother and intrauterine 

fetal growth restriction in the fetus has suggested that these conditions are no longer 

considered solely a disease of pregnancy (424). These findings on the lipid status contribute 
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to this discussion and present opportunities to evaluate maternal and fetal lipid markers in the 

long term cardiovascular risk assessment of the mother and the fetus. 

The inclusion of umbilical artery Doppler indices in the selection criteria was to ensure that 

the fetal growth restriction was due to placental causes and not due to constitutional factors or 

fetal anomalies. While previous studies into angiogenic factors have incorporated uterine 

artery Doppler in patient selection, no studies are currently available in the published 

literature on angiogenic factor expression in intrauterine fetal growth restriction due to 

placental causes as defined by abnormal umbilical artery Doppler waveform. 

 

9.2 Summary of research 

9.2.1 Placental pro and anti-angiogenic factors 

 Standard immunohistochemical methods were used to stain placental tissue for 

angiogenic factors. The current study adds to the existing literature as the first 

description of digital image analysis techniques in the assessment of angiogenic factor 

expression in the placenta. This study has also shown that automated digital image 

analysis using software such as Aperio positive pixel algorithm can be successfully 

used as an alternative method to the manual reading of placental 

immunohistochemical staining and that this technique may improve the 

reproducibility and accuracy of results in placental study. 

 Preeclampsia and intrauterine fetal growth restriction are associated with loss of 

villous architecture, vascularity and tissue. The cumulative effect of PE and IUGR 
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appear to lead to a more significant loss of villous architecture than either condition 

alone.  

 The localization of VEGF, PlGF, Flt-1 and KDR in the placental tissues types was 

similar across the four clinical groups. The positive staining for VEGF, Flt-1, and 

PlGF were mainly localized to the syncytiotrophoblast layer of the placenta, while 

KDR staining was detected in the endothelial layer.  

 While no major differences in placental VEGF and Flt-1 were noted between clinical 

groups, placental expression of PlGF and KDR were significantly reduced in 

pregnancies complicated by IUGR as compared to normal and preeclampsia only 

pregnancies. 

 The intensity of VEGF staining has been shown to be reduced in the areas of 

significant pathology such as villous infarction compared to the non-infarcted areas. 

The results of this research study raise the possibility that changes in VEGF and Flt-1 

expression may be a consequence rather than the cause of placental vascular disease 

and preeclampsia and that lack of PlGF and KDR may be a main cause for the 

development of intrauterine fetal growth restriction. 

9.2.2 Circulating angiogenic factors 

 Standard ELISA techniques were used to evaluate circulating angiogenic factor levels. 

Within the limitations of a cross sectional study, the sFlt-1 and sEndoglin levels in 

normal pregnancy were noted to be higher with increased gestational age while the 

PlGF levels decreased. No significant relationship to gestational age was seen within 

the pathological groups PE, IUGR and PE+IUGR as this study classified the patients 

on the basis of on established disease. sKDR did not reveal a gestation-related change 



 

 

305 

in any clinical group. The findings suggest that the placental disease present in 

preeclampsia and intrauterine growth restriction represent an accelerated process of 

physiological changes that may happen in normal pregnancy with advanced gestation. 

 Elevated maternal sFlt-1 and sEndoglin and low PlGF levels were demonstrated in 

pregnancies complicated by preeclampsia and IUGR, in comparison to normal 

pregnancies. Higher levels of sEndoglin in PE+IUGR indicating severe disease was 

the only difference between PE, IUGR and PE+IUGR. This study also measured the 

levels of sFlt-1 in fetal umbilical artery. Plasma levels were significantly lower than 

maternal circulating levels and there was no demonstrable difference between normal 

and complicated pregnancies. This finding suggests that the fetal contribution to the 

overall levels of circulating sFlt-1 in the maternal circulation is negligible and unlikely 

to play a part in the pathogenesis of preeclampsia. 

 Pro and anti-angiogenic factors and their ratios were assessed as biomarkers in 

identifying normal vs pathological pregnancies complicated with preeclampsia and/or 

intrauterine fetal growth restriction. While the sFlt/PlGF ratio appeared to have a 

significant ability to distinguish pregnancies affected by preeclampsia and/or fetal 

growth restriction (sensitivity 90%, specificity 90%), the ratios sEng/PlGF (sensitivity 

of 94% and a specificity of 93%) and sFlt*sEng/PlGF performed better in their 

predictive value (sensitivity of 94% and a specificity of 90%). These data suggests 

sEng to be a valuable screening or diagnostic marker of placental disease. Publication 

of the results presented in Chapter 4 of this work has been cited in a recent review on 

angiogenic factors as part of the evidence for recommending their use in a clinical 

setting (219).  
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9.2.3 Maternal and fetal monocytes subtypes and polarization in preeclampsia and 

intrauterine fetal growth restriction. 

 In a novel approach, knowledge of monocyte function and subtypes were utilized to 

develop flow cytometry protocols to characterize the maternal and fetal monocyte 

profiles in normal and pathological pregnancies. These data suggested a statistically 

significant trend towards a lower circulating maternal percentage of classical 

monocytes and a higher percentage of intermediate monocytes in pregnancies 

complicated by IUGR. Similar trends in preeclampsia were not statistically significant. 

This is the first description of monocyte subsets in pregnancies complicated by 

intrauterine fetal growth restriction. The results suggest that the distribution of 

monocyte subsets in IUGR is similar to preeclampsia with a higher percentage of 

intermediate monocytes compared to normal pregnancy.  

  The differences among monocyte subsets were investigated with regard to expression 

of monocyte/macrophage anti-inflammatory molecule, CD163 and the CD86/CD163 

ratio as a marker of inflammatory (M1) and healing (M2) phenotypes. A gestational 

related change in M1/M2 phenotype in third trimester normal pregnancy was not 

detected. 

 Pregnancies complicated by intrauterine fetal growth restriction showed a clear shift 

towards M2 (healing) monocyte phenotype. Overall no differences in polarization 

were noted between normal and preeclamptic pregnancies.  

 Interestingly, in PE, IUGR and PE+IUGR, the intermediate subset was the dominant 

subset of fetal monocytes with the intermediate monocyte count as a percentage of the 

total monocytes reaching 59.3% in preeclampsia, 41.2% in IUGR and 48.8% in 
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PE+IUGR as compared to 34.4% in normal pregnancy. This is a new distribution of 

monocyte subsets not previously described. These findings suggest that the innate 

immune signaling pathways related to monocytes are activated and functional in the 

fetal circulation in PE and IUGR. 

 The non-classical subset was seen to expand in PE, IUGR and PE+IUGR reaching 

statistically significant levels as compared to normal pregnancy. 

 This is the first description of the distribution of monocyte subsets in the cord blood 

using the nomenclature of classical, intermediate and non-classical based on CD14 

and CD16 expression.  

9.2.4 Anti-angiogenic factor expression by maternal monocytes 

 Flow cytometry experiments were designed to assess the angiogenic factor profile and 

polarization of monocytes. The results have clearly shown that circulating monocytes 

from maternal and fetal circulation express Flt-1 and Endoglin as surface markers. 

There was no variation in the membrane bound Flt-1 expression between the clinical 

groups of normal pregnancy, PE, IUGR and PE+IUGR. The maternal monocyte 

surface Endoglin expression was similar across clinical groups with some reduction 

seen in the PE+IUGR group. A significantly increased Endoglin MFI was seen in the 

fetal monocytes of the IUGR as compared to other clinical groups. 

 The study has shown that while surface expression of Flt-1 is more prominent on 

classical and intermediate monocytes, Endoglin is more likely to be expressed on 

intermediate and non-classical monocytes.   
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 These findings also demonstrated a moderate correlation with M1 monocyte 

inflammatory phenotype and surface expression of Flt-1 and Endoglin.  

9.2.5 Maternal and fetal lipid profiles in preeclampsia and intrauterine fetal growth 

restriction 

 These results indicate that while Apo lipoprotein levels AI and B levels were not 

different between clinical groups in the maternal circulation, significant variation 

existed in the fetal circulations with elevated Apo lipoprotein B levels in PE, IUGR 

and PE+IUGR as compared to normal pregnancies. This is the first description of 

elevated ApoB levels in cord blood at delivery in PE and IUGR, and may be a useful 

link in identifying newborns at risk of cardiovascular disease in later life.  

 The maternal and fetal triglyceride levels were significantly higher in preeclampsia 

compared to normal pregnancy. The levels in IUGR were lower than normal and 

preeclampsia groups, reaching statistically significant differences as compared to 

preeclamptic group. A number of pregnancies displayed TG levels well above the 95th 

centiles for third trimester gestation, mainly in pregnancies complicated by 

preeclampsia and may represent pre-existing hyperlipidaemia or risk for 

hyperlipidaemia. Excessive elevation in maternal TG levels may have a role in the 

pathogenesis of PE and may also identify pregnant women at risk of preeclampsia and 

long term cardiovascular risk. 

 Fetal total triglyceride (TG) levels in PE and PE+IUGR were higher than normal and   

IUGR groups, reaching statistical significance between Normal and PE+IUGR.  
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9.3 Future directions 

The following directions are suggested to follow on from the research presented in this thesis 

in studying the pathophysiology of preeclampsia and intrauterine fetal growth restriction. 

 

9.3.1 Anti-angiogenic factors  

 This research has identified low placental PlGF and KDR as an important aspect of the 

angiogenic profile of intrauterine fetal growth restriction. The factors controlling these 

pro-angiogenic factors need further study in understanding the pathogenesis of IUGR. 

Research to date on trophoblast culture and function has focused mainly on sFlt-1 

expression.  Experiments using cultured trophoblast may identify whether the low 

PlGF and KDR are cause or effect of preeclampsia and IUGR. Exposure of 

trophoblast from normal pregnancy to the sera of PE or IUGR and testing the effects 

on PlGF and KDR expression as well as testing cultured trophoblast from normal, PE 

and/or IUGR pregnancies for their PlGF and KDR expression under normal and low 

oxygen conditions may be worthwhile.  

 The presented  results as well as previously published data suggest that a screening 

test using a composite index of sFlt-1, PlGF and sEndoglin at 24-28 weeks of 

gestation may be a powerful tool in identifying pregnancies at risk of adverse 

pregnancy outcomes such as preeclampsia and intrauterine fetal growth restriction due 

to placental disease but not necessarily distinguish between preeclampsia or fetal 

growth restriction or both (425). The validity of such a screening test including sEng 

should be evaluated in future studies. Longitudinal studies during pregnancy as a 
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screening test for the risk of preeclampsia and IUGR is suggested.  If proven to be of 

value in altering clinical outcomes, this would be a cost effective method using 

minimum resources to identify where to focus antenatal care and management. 

 

9.3.2 Maternal monocytes and placental macrophages 

 The maternal immune mechanisms particularly associated with the 

monocyte/macrophage function and their role in implantation as well as in the 

peripheral circulation need to be explored. A major question to be answered is whether 

the mononuclear cells in pregnancy play a causative role in preeclampsia or whether 

any changes in their phenotype are secondary to the disease process.  A prospective 

longitudinal study on the monocyte subset distribution from early pregnancy in a low 

risk population and any changes associated with PE or IUGR may help answer these 

questions. An animal model of preeclampsia where monocyte polarization is induced 

in vivo (by injection of IL-4/IL-13 or adoptive transfer of M2 macrophages) may help 

to define the causative or reactionary nature of monocyte phenotype and polarization.  

 It is possible that circulating monocyte CD163 expression may be useful as a 

biomarker for significant placental damage and need for repair. Correlation studies 

with CD163 expression and clinical outcomes such as IUGR, hypoxic damage, low 

apgar score and stillbirth may be worthwhile to assess this as a biomarker.  

 A recently published study into the trigger for inflammatory changes in monocyte 

subsets in normal pregnancy and preeclampsia, has suggested that monocyte 

activation may be induced by syncytiotrophoblast membrane micro particles (STBM) 

released by the placenta. The higher amounts of placental STBM circulating in 
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maternal blood in preeclampsia might lead to activation of an excessive maternal 

inflammatory reaction. The significance of STBM in monocyte activation as well as in 

the pathogenesis of the maternal syndrome of preeclampsia deserves further study. 

 Ethnic differences have been demonstrated in monocyte subsets and may need to be 

explored as confounding variables when interpreting study results. While differences 

have been demonstrated between Caucasian and Caribbean/African individuals, the 

monocyte phenotypes in Southern Indian or East Asian backgrounds has not been 

explored. These findings would be significant when interpreting results on monocyte 

phenotypes from multicultural population backgrounds.  

 The newly described distribution of dominant intermediate monocyte subtype in the 

fetal circulation suggests that fetal monocytes may play a significant role in the 

pathogenesis of PE and IUGR. Further study is recommended to characterize the cord 

blood monocyte phenotypes and their functional roles associated with normal 

pregnancy as well as pregnancies complicated by preeclampsia and intrauterine fetal 

growth restriction.  

 

9.3.3 Maternal and fetal lipid profiles 

Patients with a family history of hypercholesterolemia have a defect in the gene for Apo 

lipoprotein B, the component of low density lipoprotein that binds the receptor. The risk of 

coronary disease is seven times higher in people with this mutation than in the general 

population.  Maternal and fetal gene polymorphisms for lipid metabolism should be 

investigated for their potential contribution to predisposition to preeclampsia and fetal growth 

restriction.  
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 In vitro studies are suggested to determine whether exposure to triglyceride, 

cholesterol or Apo lipoproteins affect monocyte polarization into M1/M2 phenotypes 

as an indicator of lipid stimulated inflammatory environment in preeclampsia. The use 

of CD86/CD163 may be a useful marker in monocyte/macrophage studies on M1/M2 

polarization 

 Lipid status in different ethnicities need to be further explored to understand not only 

any variations associated with different ethnicities but also the reference ranges for 

normal pregnancy and the hyperlipidaemia response. With increasing multicultural 

societies across the world, ethnic variations need to be taken into consideration in 

understanding processes associated with pathogenesis of disease and long term 

strategies for prevention of disease. 

 Further study should be conducted to evaluate the value of Apo lipoprotein B levels in 

the cord blood samples of growth restricted fetuses to identify risk of long term 

atherosclerosis. Testing of Apolipoprotein B levels in childhood or adolescent/young 

adults and correlating with birth weight may give an indication of whether a persistent 

ApoB level contributes to the pathogenesis of long term cardiovascular disease.  

 Further study is suggested to evaluate maternal lipid status, particularly fasting serum 

lipids in first trimester, second trimester and third trimester as a predictor of risk of 

preeclampsia as well as long term cardiovascular disease. This may require testing a 

large cohort of pregnant women and long term follow-up of cardiovascular status.  

 Longitudinal studies in pregnancy to evaluate the benefit of such a screening method 

for preeclampsia in the current pregnancy and the long term benefits of identifying 

mothers with pre-existing hyperlipidaemia or at risk of long term hyperlipidaemia 
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should be separately evaluated. Screening programs into hyperinsulinaemia and 

gestational diabetes in pregnancy are currently utilized to identify at risk pregnant 

women for diabetes in pregnancy as well as long term.  

 

Clearly much work is required to fully understand the complex pathophysiologies of 

preeclampsia and intrauterine fetal growth restriction. The presented research and the 

suggested line of inquiries will go some way towards advancing along this path. 
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