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 Abstract 
 

Identifying overlapping binding patterns of different factors is a major objective of 

genomic studies, but existing methods to archive large numbers of datasets in a 

personalised database lack sophistication and utility. In addition, there is no comprehensive 

database built-in algorithm at present to identify overlapping regions. Therefore I have 

developed a novel region-mapping (RegMap) SQL-based algorithm to perform genomic 

operations. Using RegMap I benchmarked the performance of PostgreSQL and MySQL 

databases. Benchmarking identified that PostgreSQL extracts overlapping regions much 

faster than MySQL. Insertion and data uploads in PostgreSQL were also better, although 

general searching capability of both databases was almost equivalent. 

Using the RegMap algorithm I developed transcription factor DNA binding site analyser 

software (BiSA), for archiving of binding regions and easy identification of overlap with or 

proximity to other regions of interest. Results can be restricted by chromosome or base pair 

overlap between regions or maximum distance between binding peaks. BiSA is capable of 

reporting overlapping regions that share common base pairs; regions that are nearby; 

regions that are not overlapping; and average region sizes. BiSA can identify genes located 

near binding regions of interest and genomic features near a gene or locus of interest. BiSA 

can also calculate statistical significance of overlapping regions as an overlap correlation 

value. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA 

is that it is supported by a comprehensive knowledge base of publicly available 

transcription factor binding sites and histone modifications, which can be directly 

compared to user data.  
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Using the BiSA knowledge base I identified that HNF4G nuclear receptor significantly 

collocate with cohesin subunit STAG1 (SA1) and H3K4me3 promoter marks in HepG2 

cell line. In addition, I studied the overlap of various transcription factors and their binding 

sites in T47D cell-line and calculated statistical significance of the overlap using BiSA. 

This revealed that Progesterone Receptor (PR) binding as a result of RU486 (anti-

progestin) treatment was significantly co-located with many other factors than PR binding 

as a result of progesterone treatment. It was also identified that (Estrogen Receptor Alpha) 

ERα and PR binding due to estrogen and progesterone treatment in T-47D cells share 

~27% binding regions suggesting an interesting functional relationship between the 

receptors, which justified further study. 

To investigate ERα and PR relationship further, we re-analysed raw data to remove any 

biases introduced by the use of distinct tools in the original publications. We identified 

22,152 PR and 18,560 ERα binding sites (<5% false discovery rate) with 4,358 

overlapping regions among the two datasets. BiSA statistical analysis revealed a non-

significant overall overlap correlation between the two factors, suggesting that ERα and PR 

are not partner factors and do not require each other for binding to occur. However, Monte 

Carlo simulation by Binary Interval Search (BITS), Relevant Distance, Absolute Distance, 

Jaccard and Projection tests by Genometricorr revealed a statistically significant spatial 

correlation of binding regions on chromosome between the two factors. Motif analysis 

revealed that the shared binding regions were enriched with binding motifs for ERα, PR 

and a number of other transcription and pioneer factors. Some of these factors are known 

to co-locate with ERα and PR binding. In addition, gene expression analysis of ERα and 

PR revealed cell differentiation and apoptosis as top significant biological processes by the 

set of transcripts that were regulated by ERα-PR common regions. Therefore spatially 

close proximity of ERα binding sites with PR binding sites suggests that ERα and PR, in 
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general function independently at the molecular level, but that their activities converge on 

a specific subset of transcriptional targets. 

In summary, the BiSA comprehensive knowledge base contains publicly available datasets 

describing transcription factor binding sites and epigenetic modification and provides an 

easy graphical interface to biologist for advance analysis options. 
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Chapter 1:   Introduction 

1.1.    Background 

The mission of biological sciences is to discover how the information encoded in cells 

drive the normal growth and developmental processes. Recent studies employing the latest 

experimental techniques have shown that various cellular factors work together in complex 

ways. A large range of genomic datasets from such studies have been deposited in public 

repositories. However, there is no easy way for biologists to compare their own results 

with previously published studies. Therefore, work presented in this thesis is an effort to 

develop a comprehensive genomic resource describing transcription factor binding sites 

and epigenetic modifications. The database resource hosts and integrates information from 

datasets in the public domain and combines it with in-house datasets.  The resource and 

integrated tools provide novel ways of investigating and comparing uploaded datasets. The 

resource and tools are written for multiple computer platforms to cater for various research 

goals. An easy interface allows researchers to upload their datasets and provides novel 

options to analyse, statistically compare and annotate datasets.  

As a background to the work, the following sections describe the roles of different DNA 

elements, DNA-binding proteins and other chromatin factors in the development and 

progression of diseases. I also describe the experimental techniques and other software 

tools that are being used in this domain. 

1.2.   System Biology: from DNA to Organism 

Deoxyribonucleic acid (DNA) is the genetic material of all living organisms and carries the 

entire genetic information about an organism. Molecular messages transcribed from DNA 

encoded information are sent outside the nucleus to form proteins which regulate various 

cell functions. DNA transcription and its final translation into protein is a highly regulated 

process. Various genes are switched on or off at various stages of life and respond to 
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environment or drug stimulation. For example all human body parts contain the same 

genome, however, function of various body parts (eyes, heart, liver, stomach, brain etc) 

differ greatly. The answer lies in understanding how gene expression is regulated. 

1.3.   Gene Expression Regulation 

Gene expression is the process by which a DNA code is synthesised into DNA products 

such as proteins and various ribonucleic acids (RNA). These products control various 

cellular functions and physiology. Changes in cell functions are mediated by regulation of 

gene expression on several levels. Disruption of gene expression patterns have been 

observed in development and progression of a variety of human diseases, including cancer, 

neurodegeneration and osteoporosis (Kim et al., 2013b; Jamieson et al., 2012; Golub et al., 

1999; van't Veer et al., 2002). Comprehensive mapping of gene expression patterns by 

gene expression microarray has allowed the classification of disease sub-types, including 

cancers. (Golub et al., 1999; van't Veer et al., 2002). The expression of one gene can affect 

the expression of other genes, this all together gives a cell new biochemical or 

morphological properties (Beljanski, 2013). Up or down-regulation can cause serious 

diseases such as cancer and effect progression and relapse of the disease. For example, the 

over-expression of growth factor receptors frequently seen in cancer greatly impacts on 

chemotherapy response and relapses (Panasci et al., 2012).  

Gene expression is regulated via several mechanisms which define which genes will be 

expressed and which genes will be silenced. One of these mechanisms is the binding of 

proteins to locus specific DNA that triggers synthesis of messenger ribonucleic acid 

(RNA). Messenger RNA is translated into various proteins that perform functions 

necessary for life. The other important mechanism that regulates gene expression is the 

regulation of RNA. RNA-level regulation is driven by interference with messenger RNA 

translation by small interfering RNA (siRNA) and micro RNA(miRNA) that results in 
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cytoplasmic localisation and degradation of mRNA (Hooper and Hilliker, 2013; Shabalina 

and Koonin, 2008). This inhibition of RNA molecules that results in post transcription 

gene silencing is called  RNA interference (RNAi). RNAi plays a vital role in defense 

against viruses and transposable elements in eukaryotes (Shabalina and Koonin, 2008; 

Phillips, 2008).   

DNA level regulation by the binding of various proteins, chromatin conditions and DNA 

modifications have been extensively studied with recent high throughput technologies. 

These studies have provided us many striking novel insights into regulation of cell 

functions at the DNA level and have identified that these regulatory processes are 

extremely complex. Our full understanding of these processes will help identify pathways 

that are important in regulating gene expression. Therefore the focus of this thesis is the 

analysis of genomic level transcriptional regulation by developing a novel tool.  

1.4.   Transcription Factors 

It was established more than forty years ago that gene transcription is regulated inside the 

nucleus by binding of proteins to DNA  (Galas and Schmitz, 1978). These proteins, known 

as transcription factors (TFs), are sequence specific DNA-binding proteins that regulate 

gene expression and function under the influence of epigenetic marks. TFS have been 

highly studied in developmental biology and are largely responsible for the development of 

body parts in animal morphology. Disruption of TF pathways lead to abnormalities in 

organisation and development. For example, genetic studies in the fruit fly 

(Drosophila Melanogaster), have established that absence of the Homeotic protein 

antennapedia transforms the antenna producing segment into a leg producing segment 

(Herke et al., 2005; Chen et al., 2013). 

In addition to transcription factors’ ability to bind DNA in a sequence-specific manner, 

they also interact with other factors, RNA polymerase, chromatin remodelling complexes 
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and small noncoding RNAs to initiate, enhance or repress transcription. Based on these 

characteristic factors can be classified into three main types: i) General transcription 

factors ii) activators, and iii) co-factors. General transcription factors such as Transcription 

initiation factors TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH form a pre-initiation 

complex on the promoter region and are required for almost all types of transcription 

(Claessens and Gewirth, 2004). Transcription is initiated by the binding of TFIID followed 

by binding of other factors and direction of RNA Polymerase II to the transcription start 

site (Claessens and Gewirth, 2004; Maston et al., 2006). In vitro, this assembly is sufficient 

to initiate a low level of (basal) transcription from DNA templates. However, in vivo 

transcription is enhanced by activating factors. Activators bind to specific DNA sequences 

and can stimulate transcription of inactive genes. Initially it was thought that transcription 

factor binding regions were located in sequences upstream of the core promoter (Ptashne 

and Gann, 1997), however, it is now accepted that transcription factor binding sites could 

be up/downstream of promoter or within the gene body (Taniguchi, 2014; Tsang et al., 

2014; Stower, 2011). Co-factors can be part of various factor families such as 

homeodomain,  Pit-Oct-Unc (POU), Pax, cysteine rich zinc finger, helix-loop-helix (HLH), 

basic leucine zipper (bZIP), forkhead, ETS (Pabo and Sauer, 1992; Latchman, 2008; 

Maston et al., 2006). They could form homodimers or heterodimers before or after binding 

and this can dictate the specificity to DNA binding sites (Claessens and Gewirth, 2004).  

Transcription factors recruit co-factors in a complex way to regulate transcription. For 

example, in prostate and breast cancer forkhead box protein A1 (FOXA1) facilitates the 

binding of androgen receptor (AR) and estrogen receptor alpha (ERα) recpectively in 

regulating the transcription of AR or ERα dependent genes (Cheung and Kraus, 2010; 

Augello et al., 2011; Sahu et al., 2011; Fiorito et al., 2013). Another example of 

transcription factor cooperation is the interaction among Sox2, Oct4 and Nanog for 
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regulation of genes by binding at enhancer regions in embryonic stem (ES) cells (Chen et 

al., 2008; Zhang et al., 2011). Understanding how these factors work together will help 

identify novel target pathways used to regulate gene expression. Some factors contain two 

or more domains, for example, one could bind to DNA and another to other TFs to activate 

transcription like general control protein (GCN4) and glucocorticoid receptor (GR) 

(Murguia and Serrano, 2012; Meijsing et al., 2009). Some factors also have transcription 

activation domains but lack DNA binding domains, e.g. herpes simplex virus VP16 protein 

contains an activation domain however cannot bind to DNA because it does not contain 

any DNA binding domain. Therefore it recruits host cell factor (HCF) and the cellular 

factor Oct-1 DNA-binding domain to activate transcription (Simmen et al., 1997; Goding 

and O'Hare, 1989).  Similarly the Fos proteins (Fos, FosB, Fra-1 and Fra-2) alone cannot 

bind to DNA, and form heterodimers with the Jun proteins (Jun, JunB and JunD) to form a 

complex known as AP-1 transcription factor complex. The complex plays an important 

role in bone development, meloanoma development and progression and in other important 

cell functions (Nakatsu et al., 2014; Zenz et al., 2008; Wagner, 2010; Kappelmann et al., 

2014).  

Treating diseases by regulating co-factors has shown promising results in some studies. 

For example, c-Myc is over-expressed in many human tumours which gives rise to 

numerous tumorigenic phenotypes (Wolf et al., 2015). Myc is activated by Max protein, 

therefore, to control Myc activity, reducing the availability of Max has been shown to be a 

promising target for cancer therapy (Berg, 2011). Therefore in recent years much of 

research has been done to identify transcription factor co-factors that work together in 

regulation of genes.  

Transcription co-factor binding sites can be identified by various experimental techniques 

covered in the forthcoming sections, while, computational techniques have also been 
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employed to identify the co-activators, for example bioinformatic analysis of NKX2-1 

binding sites identified the presence of AP-1, forkhead box (FOXA1) and estrogen 

receptor β (ESR2) motifs in human lung adenocarcinoma establishing that these factors 

work together in differential gene expression of LMO3 (Watanabe et al., 2013).  

1.5.   Cis-regulatory Regions 

Transcription factors bind to specific sequences to regulate transcription, these regulatory 

regions are referred as cis-regulatory elements or cis-regulatory regions (Riethoven, 2010; 

Wray, 2007). Some cis-regulatory elements are conserved across many species 

(Wasserman et al., 2000; Bejerano et al., 2004). Some of these distant non-coding 

conserved cis-regulatory regions are shown to be acting as enhancers or silencers (Soccio 

et al., 2011; King et al., 2005; Shlyueva et al., 2014).  These cis-regulatory elements and 

transcription factors controlling gene expression are fundamental gatekeepers of cell 

physiology. So understanding how interactions between TF and cis-regions occur and may 

be altered in disease is very important, however, there are lots of gaps in our knowledge in 

this area which need to be explored further. 

In eukaryotes, protein-coding genes are regulated by a number of distinct transcriptional 

regulatory DNA elements, the most important of which are i) promoters ii) enhancers, iii) 

silencers and iv) insulators (Maston et al., 2006; Ogbourne and Antalis, 1998; Levine et al., 

2014) described in the following sections. 

1.5.1.   Promoter Regions 

Promoter regions are sequence specific templates that provision the transcription of genes 

by binding of RNA polymerase and other necessary transcriptional complex proteins. In 

eukaryote the promoters for RNA polymerase I and II are usually upstream of transcription 

start sites (TSS) but some promoters for RNA polymerase III lie downstream of the TSS, 

therefore, the promoter sequences define the direction of transcription (Cooper, 2000). In 
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recent studies DNA sequences from 500 to 3000 bp of TSS were considered as promoter 

regions (Meng and Vingron, 2014; He et al., 2014; Eckler et al., 2014). Sequences 

thousands of bases away from TSSs having elements that affect the transcription are called 

distal promoters (Riethoven, 2010; Delgado and Leon, 2006).  

1.5.2.   Enhancer Regions 

Enhancers are DNA sequences either upstream or downstream of TSS which enhance or 

stimulate transcription by binding to specific proteins. Enhancers can be located on the 

same or on different chromosomes than the genes they target. Enhancers play an important 

role in differential gene expression by mediating transcription factor signals in a cell type-

specific manner (Buecker and Wysocka, 2012) therefore they are also referred as cis-

regulatory modules (CRM) (Shlyueva et al., 2014). The first enhancer region was 

discovered more than 35 years ago which was 72 bp SV40 DNA segment that increased 

the transcription of the β-globin gene 200 times in a transgenic assay (Banerji et al., 1981). 

Since then a large number of studies have characterised their properties; however, their 

role in various diseases has not been fully understood (Shlyueva et al., 2014; Spitz and 

Furlong, 2012; Calo and Wysocka, 2013; Wang et al., 2013). 

An enhancer can span up to 500 base pairs or even much bigger in length and contains 

motif sequences to bind multiple TFs (Levine and Tjian, 2003). It is argued that distal 

enhancers recruit transcription factors forming a loop (Figure 1.1-A) bringing regulatory 

factors into close proximity and near to promoter regions so that the protein complex 

function combinatorial to activate transcription  (Jiang and Levine, 1993; Palstra and 

Grosveld, 2012; Bulger and Groudine, 2011b). There is another theory (Figure .1.1-B) 

about enhancers working that the enhancer proteins actively scan along the chromatin fiber 

until it comes into contact with promoter complex (pink oval) and activates transcription.  

Such distal spatial interactions have been confirmed by studying various interactions 
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between enhancers and their target genes using chromosome conformation capture (3C) 

techniques and its variants circular chromosome conformation capture (4C), chromosome 

conformation capture carbon copy (5C) and Hi-C methods or by chromatin interaction 

analysis with paired-end tag sequencing (ChIA–PET, which is a combination of chromatin 

immunoprecipitation and various 3C-based methods). (de Wit and de Laat, 2012; Shlyueva 

et al., 2014).  3C is an experimental technique to study spatial organisation of long 

genomic regions in living cells (Gavrilov et al., 2009).  

 

Figure 1-1: Enhancer regions. Enhancers shown as rectangle E recruit transcription 

factors forming a loop bringing regulatory factors into close proximity and near to 

promoter regions (shown as rectangle P). The protein complex recruit RNA Pol II to 

activate transcription. B) The enhancer binds to protein complex (red oval) which scans 

along the DNA in search of the promoter complex (pink oval) and activates transcription. 

Modified from (Bulger and Groudine, 2011b).  

It has been shown that interruption of mammalian enhancer function greatly affects the 

development and progression of diseases (Ong and Corces, 2012). For example, mutations 

and insertions in long-range enhancer sequences regulating expression of the sonic 

hedgehog regulator ZRS, develop several forms of preaxial polydactyly in humans, mice, 
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cats and chickens (Albuisson et al., 2011) demonstrating the importance of those sequences 

in ensuring normal developmental regulation. The locations of enhancer elements are 

varied for different genes that they regulate. They can be near promoter regions, within the 

introns of the regulated genes, in the body of neighbouring genes or even on a different 

chromosome.  

 Enhancers regions can be predicted by specific histone modifications identified by 

chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) (Maston et al., 

2012) (more detail can be found in the Epigenetics and ChIP-seq section).  

1.5.3.    Silencer Regions 

 Silencer regions suppress gene expression by the binding of repressor proteins. Silencers 

can be up or downstream of a TSS, within introns or exons (Ogbourne and Antalis, 1998). 

Silencers work exactly opposite to enhancers by turning off active genes (Maston et al., 

2006). Like enhancers, silencers often act at a distance that can reach 100 kb (kilo bases) to 

repress promoter activity. For example, polycomb (PcG) proteins bind to silencer DNA 

sequences inhibiting the expression of Hox genes through early development in Drosophila 

melanogaster (Dean, 2011; Kyrchanova and Georgiev, 2014). Some DNA regions can act 

both as enhancer or silencer regions depending on what proteins are bound to them. For 

example consensus sequence 5’-CACGTG-3’ which is known as E box when it is bound 

by MYC/MAX complex, transactivates its target genes implicated in the crucial cellular 

processes such as cell cycle regulation, proliferation, metabolism and mitochondrial 

biogenesis. However, when E box is bound to Mad/Max dimer it suppresses transcription 

(Dang, 2012; Taniguchi et al., 2014). 

1.5.4.   Insulator Regions 

Enhancer and silencer regions can act on a number of genes at long distances, however, 

their activity is blocked by the binding of proteins on specific DNA regions known as 
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insulators. Chromatin forms loops which divides chromosomes into biological domains 

separated by insulator regions. These insulator regions act by binding to insulator proteins 

such as transcriptional repressor CTCF (CCCTC-binding factor) (Fiorentino and Giordano, 

2012). 

Insulators play a key role in various cell physiologies such as embryonic, neuronal and 

haematopoietic differentiation.  In flies a number of insulator proteins are known however 

in vertebrates the CCCTC-binding protein CTCF is the only known insulator protein to 

date.  CTCF prevents undesirable interaction between active and inactive genomic regions 

by binding to insulator sequences, and it can also protect particular genes from enhancer 

activity (Herold et al., 2012; Dean, 2011). 

1.5.5.   Locus Control Regions 

“A Dictionary of Biomedicine” defines a Locus control region (LCR) as a non-transcribed 

region that contains the promoters and enhancers which regulate the expression of a 

particular gene (Lackie, 2010). The LCR was first described in transgenic mouse studies 

where it was identified that beta-globin LCR regulate expression of several genes (Palstra 

et al., 2008; Gerstein et al., 2007).  

LCR are also considered long-range cis-acting sequences that effect gene regulations. LCR 

influence dynamic intra- and interchromosomal interactions between specific genetic loci 

that regulate transcriptional initiation or silencing of these loci (Spilianakis et al., 2005). 

1.5.6.   Other DNA Regions 

There are other genomic regions which can influence gene transcription such as exons, 

introns, 3’-UTRs and intergenic regions. Historically the non-coding genome was believed 

to be ‘junk’, however, recent studies including the human genome project have revealed 

many previously undescribed genes, and new roles for non-coding DNA are constantly 

emerging (Shen et al., 2013; Djebali et al., 2012). 
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1.6.   Chromatin 

In mammalian cells, DNA is packaged into a very compact arrangement, termed 

chromatin, that stores about 2 metres of DNA into a nucleus of approximately 6 

micrometres diameter (Alberts, 2008; Le Guezennec et al., 2005). Chromatin is the 

combination of DNA and other proteins in the nucleus, where DNA is wrapped twice 

around octamer histone molecules (pair of each H2A, H2B and H3) called nucleosomes 

(Latchman, 2008).  The dense nature of chromatin regulates the binding of regulatory 

proteins and RNA polymerase,  affecting the silencing or expression of genes as a result. 

The binding of proteins to specific DNA sequences depends on the availability of target 

regions that are not tightly compacted (euchromatin) and the way the DNA is packaged in 

the chromatin structure (Figure 1.2). The condensed form of chromatin known as 

heterochromatin makes the DNA inaccessible for most protein binding preventing 

transcription in those regions. Therefore chromatin must remodel and must be in a 

euchromatin state in order for gene expression to take place (Phillips and Shaw, 2008; 

Russ et al., 2012). 
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Figure 1-2: Chromatin has two broad structures. The first is euchromatin, characterized 

by sparse nucleosome density and is generally associated with active gene transcriptional 

activity. Heterochromatin is characterized by high nucleosome density, is very compacted 

and is generally associated with repression of gene transcription. Nucleosomes consist of 

147 bp of DNA wound 1.65 turns around a complex of histone proteins, comprising two 

each of the H2A, H2B, H3, and H4 histone variants. Each histone has a soluble amino 

terminal tail that can be covalently modified by specific epigenetic marks discussed in the 

forthcoming section. Modified from (Russ et al., 2012). 

1.7.   Epigenetics 

In addition to DNA sequence, transcription factor binding is profoundly influenced by the 

cell-specific epigenome, the pattern of post-translational modifications to histones and 
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other chromatin proteins, and chemical modifications to DNA, which ultimately direct 

nuclear chromatin structure and accessibility to transcribed regulation (Holliday, 2006; 

Carey and Smale, 2001). There are two main types of epigenetic modifications i) DNA 

methylation and ii) histone modifications. In DNA methylation a methyl group is added 

to cytosine nucleotide. The specific cytosine is always located next to a guanine nucleotide 

that is linked by a phosphate; this is called a CpG site. In histone modifications, histone 

can be modified by either methylation or acetylation. These modifications dictate whether 

the chromatin state is active (not condensed) or not active (heterochromatin) (Simmons, 

2008; Egger et al., 2004; Jones and Baylin, 2002). 

In cancer, increased DNA methylation (hypermethylation) of proximal promoter regions is 

associated with inappropriate transcriptional silencing of genes and is found in virtually 

every type of human neoplasm (Jones and Baylin, 2002; Baylin and Herman, 2000; Jones 

and Laird, 1999). Promoter hypermethylation has also been found in tumour-suppressor 

genes such as the BRCA1 gene which is silenced by promoter hypermethylation in primary 

breast and ovarian carcinomas (Esteller et al., 2000). Other example of hypermethylation 

is the inactivation of tumour suppressor gene ppENK in development and progression 

of pancreatic carcinogenesis (Jones and Baylin, 2002; Yang et al., 2013).  

Histone H3 is the most characterised histone protein and majority of these modifications 

exist in the N-terminal tail.  Trimethylation of Histone H3 lysine K4 (H3K4me3) and 

H3K79me3 and H3K27me1, H3K9me1 and H4K20me1 are associated with gene 

activation, however, H3K27me2 and H3K27me3 are silencing marks (Table 1.1) (Wei et 

al., 2009). Some genomic regions co-localise activation (H3K4me3) and silencing marks 

(H3K27me3), known as bivalent chromatin marks (Azuara et al., 2006). These bivalent 

modifications could silence developmental genes in embryonic stem cells while keeping 

them poised for activation. (Roh et al., 2006; Bernstein et al., 2006). Its has been shown 



14 
 

that epigenetic marks H3K4me1,-2, -3; H3K9me1; H3K36me3; and H3K27me1 or –ac 

exhibit specific characteristics of enhancers (Maston et al., 2012; Creyghton et al., 2010; 

Pekowska et al., 2011; Zentner et al., 2011)  

Activation Marks H3K4me1, H3K4me2, H3K4me3, H3K9ac, 

H3K27me1, H3K9me1 

Silencing Marks H3K9me2, H3K9me3, H3K27me2 

H3K27me3,  

Table 1-1: Histone methylation marks identify the state of promoter of genes being active 

or silenced. 

Epigenetic modifications are inheritable and therefore are considered to drive many 

complex cell functions (Simmons, 2008; Egger et al., 2004). The tightly wound packaging 

of DNA around nucleosomes creates a barrier for reading and interpreting the stored DNA-

sequence information (Le Guezennec et al., 2005). Access to this information is controlled 

by covalent post-translational chromatin modifications such as acetylation, methylation, 

phosphorylation. Therefore these alterations play a key role in transcription regulation 

(Bauer et al., 2002). A number of enzymes have been identified which catalyse the 

addition and removal of these modifications to histone proteins (Collas and Dahl, 2008). 

Different combinations of modification marks establish whether nucleosomes will be 

remodelled to activate or de-activate gene expression. DNA transcription occurs only if the 

chromatin is not tightly compacted (Figure 1.2) and DNA is available to bind transcription 

factors. A classic example in female mammals, only one of the two X chromosomes is 

transcriptionally active to compensate for the difference in dosage of X-linked genes 

between males and females (Goto et al., 2002; Egger et al., 2004). This is achieved by 
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epigenetic modifications that silence one of the two X chromosomes. Such deactivation of 

gene expression by epigenetic marks is called epigenetic silencing.  

Recent studies have examined the effects of epigenetic drug treatments (Azad et al., 2013; 

Consalvi et al., 2011). Though a great deal of success has not been achieved yet, 

experimental and preclinical evidence results are promising. One of the barriers to using 

epigenetic drugs is their multiple effects on various pathways, however this could be a 

favourable property of this treatment, as tumour cells also exhibit abnormal regulation of 

many diverse pathways (Azad et al., 2013; Lawrence et al., 2015). 

1.8.   Techniques Investigating Binding of Proteins to DNA 

Apart from gene regulation, DNA binding proteins play a key role in the regulation of 

DNA replication and recombination, repair, segregation, chromosomal stability, cell cycle 

progression, and epigenetic silencing (Das et al., 2004). Therefore various experimental 

techniques have been developed to investigate transcription factor binding to DNA. The 

following sections describe the most used experimental methods that tremendously 

increased our understanding of DNA-protein interactions.  

1.8.1.    DNA Footprinting Assay  

Based on electrophoresis, Galas and Schmitz developed DNA footprinting in 1978 to study 

sequence-specific binding of proteins to DNA(Galas and Schmitz, 1978; Brenowitz et al., 

1986). In this assay, the specific DNA sequence, whose protein binding properties is being 

studied, is radioactively or fluorescently labelled (Hampshire et al., 2007). DNA fragments 

are mixed with the protein under study. Sufficient time is given to form DNA-protein 

complexes.  The complexes are then electrophoresed on a denaturing polyacrylamide gel, 

which separates the resulting DNA fragments according to their size. After electrophoresis 

the position of the DNA fragments are visualised by autoradiography (Leblanc and Moss, 

2001).  Figure 1.3 courtesy of Barski et al. (Barski and Zhao, 2009) explains the technique.  
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Figure 1-3:In vitro techniques used to detect DNA–protein interactions.: (A) 

Electrophoretic mobility shift assays can be used to determine direct binding between a 

specific sequence of radioactively labelled DNA and a purified protein. Unbound DNA, 

termed free probe, migrates at a relatively low molecular weight in the agarose gel. 

Binding of protein to this sequence results in the DNA band shifting to a high molecular 

weight region. Addition of an antibody that recognizes the bound protein causes an even 

greater shift in mobility, called supershifting. This assay can also be used with protein 

complexes to detect indirect protein–DNA interactions. (B) DNase footprinting assays 

allow identification of regions of DNA bound by proteins. A DNA oligomer is radioactively 

labeled on one end and mixed with the protein of interest. The DNA is then digested by a 

DNA endonuclease (DNase). The regions of DNA that are bound by proteins are protected 

from digestion. When the DNA is run out on a gel, the protected region shows up as a 

break in the laddering produced by DNase digestion (Vinckevicius and Chakravarti, 

2012a). 
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Once the sequence of a binding motif is identified from DNA footprinting then 

computational approaches can be used to identify genome-wide binding sites of 

transcription factors (Wasserman and Sandelin, 2004). For example, Laurell et al. used 

computational transcription factor-binding site predictions to suggest the sonic hedgehog 

ZRS limb enhancer mutation that creates new binding sites and causes ectopic gene 

expression (Laurell et al., 2012). However due to the repetitive nature of DNA sequence 

and short length of consensus sequences or motifs, typically from 6-15 base pairs, their use 

in genome-wide computational detection returns a large number of false positive regions. 

Most transcription factor binding sites identified by computational approaches fail to 

represent true in vivo binding sites, yet low significance variant motifs can often bind 

transcription factors in vivo (Barski and Zhao, 2009). This is likely to be due to the fact 

that many binding sites are highly cell context specific and their availability for binding is 

influenced by other factors besides the presence of a consensus motif sequence, such as 

chromatin structure and accessibility, or the expression of transcriptional cofactors. 

Today genome-wide protein-protein and DNA-protein associations are more widely 

studied by chromatin immunoprecipitation (ChIP) basedassays. 

1.8.2.    Electrophoretic Mobility Shift Assays (EMSA) 

Electrophoretic mobility shift assays (EMSA), or gel shift, is an in vitro experimental 

technique to study DNA and protein interactions.  Gel electrophoresis is also an important 

component in this method. In the experiment the shift of the negative control lane that has 

only radio labelled genetic material and a lane with mixture of DNA-protein complex is 

compared. If protein binds to DNA the complex migrates slowly and a shift can be seen 

when the gel is dried and placed against X-ray film. 



18 
 

1.8.3.    Chromatin Immunoprecipitation (ChIP) 

ChIP was developed by Varshavsky and colleagues in 1988 to study protein-DNA 

interactions (Solomon et al., 1988). ChIP technique provides accurate information about 

the binding of TF, cofactor recruitment and epigenetic status during activation or 

repression of a DNA sequence and associated regulatory regions. This is an in vivo 

technique in which protein of interest is allowed to interact with chromatin in a living cell 

or tissue. Chromatin is fragmented and then immunoprecipitated (IP) using a highly 

specific antibody against the protein of interest (Mukhopadhyay et al., 2008). 

There are two general types of ChIP procedures, Native and Cross-Linked, based on 

whether DNA-protein binding is cross-linked with formaldehyde (Das et al., 2004) or not. 

Generally, in Native-ChIP (NChIP) proteins are unfixed and are fragmented by 

micrococcal nuclease digestion whereas in Cross-Linked ChIP (XChIP) proteins are cross-

linked with formaldehyde and fragmented by sonication (Le Guezennec et al., 2005). 

Finally the DNA is reverse-cross-linked, purified and enrichment of ChIP-ed DNA is 

analysed by quantitative real-time polymerase chain reaction (ChIP-qPCR), microarray 

(ChIP-chip) or next generation sequencing (ChIP-Seq). 

There are a number of advantages and disadvantages for both of the techniques. In NChIP, 

antibody specificity is predictable and immunoprecipitation is very efficient as the 

antibody is able to bind effectively to the target antigen, therefore, precipitated DNA can 

be studied without further PCR amplification (Das et al., 2004; O'Neill and Turner, 2003). 

However, on the other hand, generally NChIP is limited to histone and histone 

modifications studies, as non-histone proteins are generally less tightly bound to DNA and 

may disassociate during sample preparation. Secondly nuclear digestion by micrococcal 

nuclease favours some genomic sequences over others, resulting in un-equal detection of 

those favoured genomic regions and thirdly as the nucleosomes are not fixed their 
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rearrangement can also occur. Overall NChIP requires more care than XChIP as the 

interactions are not fixed, however some studies have preferred this method for small cell 

numbers and higher sensitivity (O'Neill and Turner, 2003; Gilfillan et al., 2012).  

XChIP is one of the most useful techniques for studying in vivo gene regulation by 

formaldehyde cross-linking of proteins to proteins and proteins to DNA, followed by 

immunoprecipitation of the fixed material (Orlando, 2000). XChIP is suitable for non-

histone proteins and chromatin associated factors that bind weakly or indirectly to the 

DNA as cross-linking will fix these interactions. Cross-linking minimises nucleosome 

rearrangements as interactions are stabilised and there is less variability between 

experiments (Orlando et al., 1997). However limitations include the dependence on the 

availability of a highly specific antibody. Inefficient antibody binding may be observed 

due to the epitopes that the antibody need to recognize in the XChIP may be disrupted or 

destroyed by formaldehyde cross-linking and it may be necessary to test a variety of 

different antibodies to choose the best one (Mukhopadhyay et al., 2008). DNA sizes can 

vary widely due to over-fixation by formaldehyde. Another disadvantage of XChIP is that 

weak transient protein interactions can be fixed which can lead to false positive with 

results (Orlando et al., 1997).  

1.8.4.    ChIP-chip 

ChIP-chip or (ChIP-on-chip) refers to the combination of ChIP assay with DNA 

microarray technology (ChIP-chip) to facilitate large-scale or genome wide analysis of the 

location of DNA-bound proteins (Ren et al., 2000). An oligonucleotide microarray chip 

contains thousands of unique DNA sequences, which act as probes for DNA which is 

purified and labelled after the ChIP assay. The immunoprecipitated enriched DNA is 

amplified and labelled with a fluorescent dye (Cy5) or biotin and a sample of DNA that is 

not enriched by immunoprecipitation labelled by a different fluorophore (Cy3). In two-
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colour microarrays, both samples are hybridized to the microarray. The hybridized chip is 

placed in a laser scanner that activates the fluorescent dye present in the samples showing 

red and green spots (Ren et al., 2000). Various computational and statistical approaches are 

designed to capture and calculate the red and green ratio to normalise the enriched and 

reference channels (Royce et al., 2005; Lee et al., 2006; Elnitski et al., 2006). This allows 

the identification of DNA sequences that are over-represented in the ChIP sample, 

representing predicted binding sites. 

The ChIP-chip technique has successfully been applied to map the genomic location of 

many transcription factors such as progesterone receptor (PR) (Tang et al., 2011), estrogen 

receptor alpha (ERα) (Hurtado et al., 2008), androgen receptor(AR) (Yu et al., 2010), 

forkhead proteins (FoxA1) (Lupien et al., 2008), GATA binding protein 3 (GATA3) (Hua 

et al., 2009), and histone modifications and has defined many new biological insights.  

1.8.5.    ChIP-Seq 

ChIP followed by high throughput massively parallel sequencing (ChIP-Seq) has unveiled 

locations of protein binding sites and epigenetic marks genome-wide (Park, 2009). The 

ChIP-seq approach produces tens to hundreds of millions of short sequence reads usually 

referred to as ‘tags’ (Figure 1.4). In addition to the sequence itself, most platforms assign a 

quality score to each base, which is proportional to the estimated probability of an 

incorrect base call at that position (Cock et al., 2010). Low quality reads can be removed or 

trimmed. The remaining reads are then aligned with a reference, usually the genomic 

sequence of the organism used to generate the original ChIP samples. This is a 

computationally intensive step, and specific and highly efficient software tools have been 

developed to enable the task.  



21 
 

 

Figure 1-4: Strand-dependent bimodality in tag density. The shaded blue oval represents 

the protein of interest bound to DNA (solid black lines). Wavy lines represent either sense 

(blue) or antisense (red) DNA fragments from ChIP enrichment. The thicker portion of the 

line indicates regions sequenced by short read sequencing technologies. Sequenced tags 

are aligned to a reference genome and projected onto a chromosomal coordinate (red and 

blue arrows).  Sequence-specific binding events (e.g. transcription factors) are 

characterized by “punctuate enrichment”(Pepke et al., 2009)  and defined strand-

dependent bimodality, where the separation between peaks (d) corresponds to the average 

sequenced fragment length. Inspired by Jothi et al. (Jothi et al., 2008) modified from 

Wilbanks and Facciotti (Wilbanks and Facciotti, 2010). 
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Bowtie (Langmead et al., 2009) and BWA (Li and Durbin, 2009) are two widely used 

software programmes for sequence alignment.  The choice of program and the alignment 

parameters used affect the number of mapped reads. Specialized “peak calling” software is 

used to collate the number of sequence reads detected at each base position in the 

alignment reference. Tags are counted at each location and significant peaks, representing 

higher numbers of aligned tags at that location relative to a background level (Figure 1.4) 

are identified by peak-calling software. There are a number of software tools available for 

peak-calling (Kim et al., 2011; Pepke et al., 2009). The numbers of peaks reported by these 

programs are highly dependent on the parameters used (Kim et al., 2011; Pepke et al., 

2009). Peak calling algorithms are discussed in the forthcoming section.  Figure 1.5 

diagrammatically explains ChIP-Seq computational analysis steps. 

 

Figure 1-5: ChIP-Seq computational analysis steps. Output of one step becomes the input 

of other step. Sequenced reads (tags) from the sequencing platform the quality of reads are 

ensured, reads are mapped to a reference genome followed by peak-calling and finally the 

peaks are analysed.  

Quality

• Quality is checked on raw sequence data coming 
from high throughput sequencing pipelines.

Mapping
• Sequenced tags are aligned to a reference genome. 

Peak‐calling

• Tags are counted at each location and significant 
peaks are called.

Analysis

• Various analysises such as motif enrichment, and 
tendency to co-locate peaks for different factors are 
performed.
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Transcription factor peaks usually span few hundred base pairs such as Estrogen Receptor 

alpha (ER-alpha) while histone modification (e.g. H3K4me1) peaks are usually spread up 

to many kilobase pairs, however, in some cases, such as RNA polymerase II  a mix of 

small and long regions is detected (Pepke et al., 2009). 

ChIP-Seq has many advantages over ChIP-chip technology by providing a better signal-to-

noise ratio (Johnson et al., 2008; Ho et al., 2011), higher specificity, sensitivity and 

comprehensive coverage of transcription factor binding sites or epigenetic markers across 

the genome (Kim et al., 2011).  ChIP-seq also generally identifies a larger number of more 

narrowly focused binding intervals (often referred to as peaks) compared to ChIP-chip.  

A disadvantage of ChIP-Seq is that a great deal of computational work is required to 

analyse ChIP-Seq data. Box 1.1 lists advantages of ChIP-Seq technique over ChIP-chip 

technology. 

 

Box 1.1: Comparison of ChIP-Seq and ChIP-chip technologies. 

ChIP-Seq versus ChIP-chip 

Advantages over ChIP-chip 

 Higher resolution 

 Less noise, no cross hybridisation, higher dynamic range 

 Greater genome-wide coverage 

 Cheaper 

 Small amount of sample is required 

 Less amplification is required 

Disadvantages  

 Big datasets are generated, therefore need large storage space 

 Data-analysis is challenging, highly sophisticated bioinformatics 

tools and high computation power are required 
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Generally ChIP-Seq is a superior technology and has been employed by most recent 

studies on transcription factor binding sites and histone modifications (Furey, 2012; 

Vinckevicius and Chakravarti, 2012b).  

Both techniques are being employed for genome-wide profiling of various factors which 

has provided insight into their role in health and diseases. Therefore these assays have 

played fundamental role in unveiling striking novel biological findings which was not 

possible with other platforms (Vinckevicius and Chakravarti, 2012b; Carlberg, 2014). 

1.8.6.    Peak Calling Algorithms for ChIP-Seq 

After aligning the read tags, the major step is to find genomic regions that have a 

significantly higher number of tags than the background. Peak calling identifies the 

enrichment regions where the protein of interest binds on DNA. There are numerous open 

source peak-calling programs available, however the challenge of selecting a suitable tool 

for a study remains confronting (Laajala et al., 2009; Pepke et al., 2009; Wilbanks and 

Facciotti, 2010). Most early peak-calling software identified peaks by merely counting the 

regions of the genome having high read density in the ChIP sample (Johnson et al., 2007; 

Robertson et al., 2007). This method provides general peak identification, however the 

identification of the DNA binding location is not exact. Later software have taken the 

shape of the peak, directionality of sequencing reads and statistical significance of the peak 

compared to background into account (Valouev et al., 2008; Goecks et al., 2010a). For 

example FindPeaks software provides options to refine peaks by trimming, identify 

directional reads ignoring fragments after or before the peak on the forward or reverse 

strand, sub-peak identification and separating multiple peaks joined together (Fejes et al., 

2008). SiSSRs (Site Identification from Short Sequence Reads), MACS (Feng et al., 2012) 

and QuEST (Valouev et al., 2008) software shift tags by half of the estimated fragment 

size towards the centre of the peak to result in sharper peaks, while tag shifting is an option 
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in ERANGE and FindPeaks (Pepke et al., 2009). Cisgenome identifies peaks separately on 

the sense and antisense strands and then identifies the binding region between the two 

peaks.  

SiSSRs performs peak-calling in a defined window.  Default size is 20 base pairs (bp), 

however, users can set their own window size.  SISSRs usually calls a higher number of 

binding sites than other methods (Jothi et al., 2008). When two peaks are very close to 

each other, depending on the algorithm and parameters used, one peak-caller tool could 

combine the two peaks and report it as one, while another tool could report it as two peaks. 

This could affect downstream analysis. 

A typical final output of all of these tools is a genomic region tab delimited text file with at 

least 3 columns, chromosome, start and end coordinates (explained in Section 1.8.7), 

however, most tools provide additional information either as additional columns or in 

another file. Table 1.2 summarises different peak-calling tools based on the peak criteria, 

tag shift functionality, control data handling, false discovery rate (FDR), user input 

parameters and strand-based artifact filtering. 
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Profile Peak criteria a Tag shift Control data b Rank by FDR c 
User input 

parameters d 

Artifact 
filtering: 
strand-
based/ 

duplicate 
e 

Refs 

CisGenome 
v1.1 

Strand-specific 
window scan 

1: Number of reads 
in window 
2: Number of ChIP 
reads minus control 
reads in window 

Average for highest 
ranking peak pairs 

Conditional 
binomial used to 
estimate FDR 

Number of 
reads 
under peak 

1: Negative 
binomial 
2: 
conditional 
binomial 

Target FDR, 
optional 
window width, 
window 
interval 

Yes / Yes (Ji et al., 2008) 

ERANGE 
v3.1 

Tag 
aggregation 

1: Height cutoff 
Hiqh quality peak 
estimate, per-region 
estimate, or input 

Hiqh quality peak 
estimate, per-region 
estimate, or input 

Used to calculate 
fold enrichment 
and 
optionally Pvalues 

P value 1: None 
2: # control 
/ # ChIP 

Optional peak 
height, ratio to 
background 

Yes / No (Johnson et al., 
2007; Mortazavi 
et al., 2008) 

FindPeaks 
v3.1.9.2 

Aggregation of 
overlapped 
tags 

Height threshold Input or estimated NA Number of 
reads 
under peak 

1: Monte 
Carlo 
simulation 
2: NA 

Minimum peak 
height, subpeak 
valley depth 

Yes / Yes (Fejes et al., 
2008) 

F-Seq 
v1.82 

Kernel density 
estimation 
(KDE) 

s s.d. above KDE 
for 1: random 
background, 2: 
control 

Input or estimated KDE for local 
background 

Peak 
height 

1: None 
2: None 

Threshold s.d. 
value, KDE 
bandwidth 

No / No (Boyle et al., 
2008) 

GLITR Aggregation of 
overlapped 
tags 

Classification by 
height and relative 
enrichment 

User input tag extension Multiply sampled 
to estimate 
background class 
values 

Peak 
height and 
fold 
enrichment 

2: # control 
/ # ChIP 

Target FDR, 
number nearest 
neighbors for 
clustering 

No / No (Tuteja et al., 
2009) 

MACS 
v1.3.5 

Tags shifted 
then window 
scan 

Local region 
Poisson P value 

Estimate from high 
quality peak pairs 

Used for Poisson 
fit when available 

P value 1: None 
2: # control 
/ # ChIP 

P-value 
threshold, tag 
length, mfold 
for shift 
estimate

No / Yes (Zhang et al., 
2008) 

PeakSeq Extended tag 
aggregation 

Local region 
binomial P value 

Input tag extension 
length 

Used for 
significance of 
sample 
enrichment with 
binomial 
distribution 

q value 1: Poisson 
background 
assumption
2: From 
binomial 
for sample 

Target FDR No / No (Rozowsky et al., 
2009) 
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plus 
control 

QuEST 
v2.3 

Kernel density 
estimation 

2: Height threshold, 
background ratio 

Mode of local shifts that 
maximize strand cross-
correlation 

KDE for 
enrichment and 
empirical FDR 
estimation 

q value 1: NA 
2: # control 
/ # ChIP 
as a 
function of 
profile 
threshold 

KDE 
bandwidth, 
peak height, 
subpeak valley 
depth, ratio to 
background 

Yes / Yes (Valouev et al., 
2008) 

SICERv1.02 Window scan 
with gaps 
allowed 

P value from 
random background 
model, enrichment 
relative to control 

Input Linearly rescaled 
for candidate peak 
rejection and P 
values 

q value 1: None 
2: From 
Poisson 
P values 

Window length, 
gap size, FDR 
(with control) 
or E-value (no 
control) 

No / Yes (Zang et al., 
2009) 

SiSSRs 
v1.4 

Window scan N+ - N- sign 
change, N+ + N-

threshold in regionf 

Average nearest paired 
tag distance 

Used to compute 
fold-enrichment 
distribution 

P value 1: Poisson 
2: control 
distribution 

1: 
FDR1,2: N++ N-

 threshold 

Yes / Yes (Jothi et al., 
2008) 

spp 
v1.0 

Strand specific 
window scan 

Poisson P value 
(paired peaks only) 

Maximal strand cross-
correlation 

Subtracted before 
peak calling 

P value 1: Monte 
Carlo 
simulation 
2: # control 
/ # ChIP 

Ratio to 
background 

Yes / No (Kharchenko et 
al., 2008) 

USeq 
v4.2 

Window scan Binomial P value Estimated or user 
specified 

Subtracted before 
peak calling 

q value 1, 2: 
binomial 
2: # control 
/ # ChIP 

Target F   

Table 1-2: Publicly available ChIP-seq peak-calling software packages. Mmodified from Pepke et al. 2009. (Pepke et al., 2009) 

a The labels 1: and 2: refer to one-sample and two-sample experiments, respectively. 

b These descriptions are intended to give a rough idea of how control data is used by the software. 'NA' means that control data are not handled. 
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c Description of how FDR is or optionally may be computed. 'None' indicates an FDR is not computed, but the experimental data may still be analyzed; 

'NA' indicates the experimental setup (1 sample or 2) is not yet handled by the software. # control / # ChIP, number of peaks called with control (or 

some portion thereof) and sample reversed. 

d The lists of 'user input parameters' for each program are not exhaustive but rather comprise a subset of greatest interest to new users. 

e 'Strand-based' artifact filtering rejects peaks if the strand-specific distributions of reads do not conform to expectation, for example by exhibiting 

extreme bias of tag populations for one strand or the other in a region. 'Duplicate' filtering refers to removal of duplicate reads at the same genomic 

location. 

fN+ and N- are the numbers of positive and negative strand reads, respectively. 
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1.8.7.    Genomic Regions/Intervals 

The typical minimal output of the peak-calling process is genomic data in the form of 

chromosome, start and end coordinates which are usually referred as genomic intervals or 

genomic regions. Many genomic features such as, genes, exon, introns, coding sequences 

(CDS) are also represented by genomic regions in a similar format. For computational 

processing of such genomic regions, BED (Browser Extensible Data) and GFF (General 

Feature Format) file formats are mostly used. Both of these formats are based on tab-

delimited text files where each line in the file defines a genomic feature. Generally for 

transcription factors peaks can range from few thousand bases to tens of thousands bases 

(~ 5kb - 30 kb) however for histone modification usually a greater number of peaks are 

called which could be more than 100 kb. More about these formats is discussed in Chapter 

2.  

1.8.8.    Analysis of Enriched Genomic Regions 

The peak-calling process, described above, identifies the genomic regions where a 

transcription factor binds or epigenetic marks exist. Once genomic regions that represent 

the binding site for transcription factor or histone marks are identified, then we can 

perform a number of other analysis such as identifying transcription co-factors or 

pathway/genes that are regulated. Sequence motif analyses can reveal a degree of 

affinity on various DNA sequences (Kasowski et al., 2010; Hu et al., 2010; Arbiza et al., 

2013).  These analyses are explained below. 

1.8.8.1.  Motif analysis 

Motifs are short, recurring patterns in DNA sequence that are acknowledged to have a 

biological function. As they indicate sequence-specific binding sites for transcription 

factors, therefore, motif-based analysis is used to identify sequence motifs in the binding 

regions. To initiate the motif analysis, genomic coordinates converted into genomic 
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sequences usually in FASTA format are required. FASTA is a text based file format in 

which each nucleotide is represented by its letter (e.g. A for Adenine) (Pearson, 1994). The 

sequences can be extracted from UCSC Genome Browser or Galaxy and then motif 

discovery can be performed by any of the motif discovery tools (Table 1.3). Some analysis 

tools such as HOMER come with their own genomic databases and a genomic region file 

can be input without the need to manually convert it into FASTA.  Some motif analysis 

tools such as MEME-ChIP and peak-motifs, are part of analysis pipelines that perform 

several motif analysis steps, while several (e.g. FIMO, HOMER and PATSER) can 

perform motif prediction and mapping to identify candidate binding sites. 

Motif analysis gives insight into the regulatory mechanisms of the factor under study and if 

a predicted binding motif for that transcription factor is already known, finding the 

centrally located motif in a genomic region dataset validates the success of the ChIP-Seq 

experiment (Bailey et al., 2013). Motif analysis also has the power to identify motifs of 

other proteins, if they are present in the binding regions, that are associated with the 

transcription factor under study. De novo motif discovery analysis identifies novel 

regulatory sequences and help define their roles.  
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category Software tool 
Web 
server

Obtain 
peak 
regions

Motif 
discovery

Motif 
comparison

Central 
motif 
enrichment 
analysis 

Local 
motif 
enrichment 
analysis 

Motif 
spacing 
analysis

Motif 
prediction 
/ mapping 

Ref. 

Motif discovery + 
more 

ChIPMunk X  X      
(Kulakovskiy et al., 
2010) 

CisGenome   X X     (Ji et al., 2011) 

CompleteMOTIFS X  X X     
(Kuttippurathu et 
al., 2011) 

MEME-ChIP X  X X X    
(Machanick and 
Bailey, 2011) 

peak-motifs X  X X    X (Thomas-Chollier et 
al., 2012) 

HOMER  X X     X (Heinz et al., 2010) 

Cistrome X X X  X X  X (Liu et al., 2012) 

Motif comparison 
STAMP X   X     

(Mahony and 
Benos, 2007) 

TOMTOM X   X     (Gupta et al., 2007) 

Motif 
enrichment/spacing 

CentriMo X    X X   
(Bailey and 
Machanick, 2012) 

SpaMo X      X  
(Whitington et al., 
2011) 

Motif 
prediction/mapping 

FIMO X       X (Grant et al., 2011) 

PATSER X       X (Hertz and Stormo, 
1999) 

Table 1-3: Software tools for motif analysis of ChIP-seq peaks and their uses.  Modified from Bailey et al. 2013 (Bailey et al., 2013). 
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1.8.8.2.  Analysis of Overlapping Binding Regions Reveals Co-
operation between Binding Factors 

Identifying overlaps in genomic features such as histone modifications and other transcription 

factor binding sites is a fundamental task in this research (Meyer et al., 2012). Recent studies 

have revealed that there are often overlaps and co-association between transcription factors at 

binding sites (Gerstein et al., 2012). Identifying genomic localization of common binding 

regions is an important biological research question. For example, Motallebipour et al. 

(Motallebipour et al., 2009a) mapped the DNA binding sites of three important forkhead 

transcription factors FOXA1, FOXA2, and FOXA3 in human liver hepatocellular cells 

(HepG2). By comparing the data the study established that FOXA2 interacts with FOXA1 

and FOXA3, however, FOXA1 and FOXA3 do not interact. In some studies it is important to 

identify what binding sites do not overlap to understand the regulatory mechanism for 

example Schmidt et al. (Schmidt et al., 2010) performed ChIP-Seq experiments on Cohesin 

proteins (RD21, STAG1, SA1), CTCF and ERα  in  human breast cancer cells (MCF-7) to 

identify that Cohesin regulates gene expression in a tissue-specific manner, independent of 

CTCF binding. 

Once enriched genomic region datasets are obtained from the peak-calling process, these 

types of overlap analyses can be performed by software tools that can perform set-like 

operations using the genomic coordinates of the binding regions, for example BEDTools 

(Quinlan and Hall, 2010a), Pybedtools (Dale et al., 2011b), GenomicTools (Tsirigos et al., 

2012), BEDOPS Tools (Neph et al., 2012). These are command line tools that are primary 

designed to run on Linux/Mac environment. They can compare two genomic regions files and 

can report overlapping or non-overlapping regions. A user needs to learn about the use of 

their various parameters that can be employed in different situations. BEDTools, Pybedtools 

and GenomicTools load all of the data in computer memory and perform sorting and indexing 
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in memory, therefore fail on larger files. On the contrary, BEDOPS provides a separate utility 

(tool) to sort the files first and then loads only the information required to calculate next line 

of output, keeping memory utilisation and run time to smallest level (Neph et al., 2012). 

Pybedtools is a Python (computer language) interface for BEDTools so essentially overlap 

analysis options are similar to what BEDTools offers, however, the Python interface makes 

integration with the Python language and writing sophisticated queries easy. Similarly GROK 

(Genomic Region Operation Kit) and GenomicTools provide C++ API (application 

programming interface) to C/C++ programmers and claim a better efficiency in terms of time 

and memory requirements. GROK can also be integrated with R programming language. All 

of these tools are command line, whereas, Cisgenome and Galaxy provide a graphical 

interface, however, the analysis options are very basic. The UCSC table browser (Karolchik 

et al., 2004) provides browser-based function of genomic regions, however, the input is 

restricted to 1,000 regions (Zammataro et al., 2014). 

All of the tools in Table 1.4 lack a charting tool such as drawing a Venn diagram to 

graphically represent the level of overlap of two datasets.  
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Tool Features GUI Query 
interface * 

Statistical 
Significance 

Reference 

BedTools  ++++    (Quinlan and 
Hall, 2010a) 

PyBed Tools +++++    (Dale et al., 
2011b) 

GROK +++++    (Ovaska et 
al., 2013) 

BEDOPS ++++    (Neph et al., 
2012) 

Cisgenome +    (Ji et al., 
2008) 

GenomicTools ++++    (Tsirigos et 
al., 2012) 

Galaxy +    (Cock et al., 
2013) 

MULTOVL ++++    (Aszodi, 
2012) 

UCSC Table 
Browser 

++    (Kent et al., 
2002a) 

Table 1-4: Comparison of tools that operate on genomic regions. 

GUI = Graphical User Interface 
+ = Very basic overlapping features, +++++  = Sophisticated overlapping features  
* Easy integration with programming languages 

Various peak caller software call different number of peaks (genomic regions) depending on 

the algorithm and parameters in use for a peak-caller tool, therefore, it is required that when 

studying the degree of overlap of two datasets it should be identified whether the two datasets 

overlap by chance or the overlap is statistically significant. Table 1.5 lists recently published 

algorithms for determining the significance of overlap of two datasets. Out of all of the tools 

listed in Table 1.4 and Table 1.5 only MULTOVL operate on genomic regions and also 

computes the statistical significance of overlapping regions. Whereas only the IntervalStats 

(Chikina and Troyanskaya, 2012) tool provides a p-value for each region. More details about 

the IntervalStats implementation is discussed in Chapter 2. 
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Tool Genomic 
region 
operation 

Simulation p-value for 
each 
region 

Ref. 

MULTOVL    (Aszodi, 2012) 

IntervalStats    (Chikina and 
Troyanskaya, 
2012) 

Binary Interval 
Search (BiTS) 

   (Layer et al., 
2013) 

Genometricorr     (Favorov et al., 
2012) 

Table 1-5: List of tools that compute the statistical significance of overlapping regions. 

 

1.8.8.3.  Annotation analysis 

Annotation of genomic regions is another fundamental task in studying gene regulation by 

transcription factors (Meyer et al., 2012). This in essence refers to the association of genomic 

region data with information about nearby genomic features. Gene annotations including 

gene identities, gene names, chromosome, strand, coordinates of transcription start site (TSS), 

end site (TES), coding sequence (CDS) and exon positions can be downloaded from various 

public servers such as UCSC Genome Browser (Kent et al., 2002a) or Ensembl (Hubbard et 

al., 2002) as BED, GFF or other tab-delimited text format. Genomic regions are then 

compared to annotation to perform various analyses such as identifying the closest genes 

regulated by the genomic regions, regions that are within certain base pairs away from TSS or 

TES, distance of genomic regions from nearest TSSs. Tools listed in Table 1.4 can also be 

used to perform these analyses, however, out of these tools Cisgenome and UCSC Table 

Browser provide a user-friendly graphical interface. 
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1.9.    Challenges / Gaps 

Analysis of enriched genomic regions is a complex process due to the fact that current 

genome-wide approaches produce very large datasets, often containing tens of thousands of 

genomic regions, studies often seek to compare several experimental conditions, and results 

are highly dependent on the software tools employed and the analysis parameters used. In 

addition, most analyses are carried out through several steps, requiring the use of multiple 

software tools for specific tasks such as genomic alignment, binding region identification, 

motif analysis and gene annotation, as discussed above. Publicly deposited datasets are 

rapidly expanding in size and complexity. However there is currently a lack of tools that 

curate genomic regions, therefore, it is now acknowledged that genomics studies need more 

user-friendly and sophisticated data analysis and interpretation tools (Barski and Zhao, 2009; 

Dale et al., 2011b; Krystkowiak et al., 2013). One of the most challenging steps in genomic 

analysis is to compare multiple genomic region datasets from various experimental 

procedures, tissue type, temporal or developmental stages (Taslim et al., 2009; Sandmann et 

al., 2006).  When comparing peaks, investigating simply the overlap of two sets of peaks may 

not represent the optimal approach (Bailey et al., 2013) unless various experimental 

conditions, tissue types and statistical significance are taken into account. Bench biologists 

often experience the following challenges: 

1. Datasets from previous publications reporting transcription factor binding sites or 

histone modifications are scattered on journal websites, Gene Expression 

Omnibus (GEO) and other public servers and there is no central public resource or 

tool available where investigators can easily select datasets based on tissue type and 

conditions of an experiment.  

2. There are a few tools that provide a user-friendly interface to study overlapping or 

non-overlapping datasets, however, they are very limited in features and 
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sophistication. For example, the UCSC table browser provides the option to extract 

the data that overlap with features of another selected table, however, the tool does 

not report the total number of base pairs overlapping with other regions or distance 

from centre of the two comparing sets. Similarly Galaxy and Cisgenome provide very 

limited options to study overlapping genomic regions. However, they provide limited 

functionality for the user to set overlap criteria.  

3. Most tools do not provide for each overlap found all the regions involved in that 

overlap, the overlapping sections, total overlapping base pairs, distance from centres 

of regions. Most tools lack options to determine statistical significance of overlap 

results. 

4. There are no genomic region analysis tools that combine a curated database of 

published genomic region data with tools to identify and analyse overlaps between 

genomic datasets.    

The existence of a wealth of published data sets now presents unprecedented opportunities 

for data mining in large databases of archived genomic region data.  

1.10.    Aims 

Medical research depends heavily on the advent of statistical, mathematical and computer 

science algorithms and software. However biologists often lack expertise in computing and 

mathematics, which limits their ability to exploit high throughput genomic approaches. In 

contrast, computational scientists need a grounding in biology to write tools that can address 

meaningful questions in genomics. Therefore to address these needs this thesis had the 

following aims: 

i. This project aims to bridge this gap by providing easy Graphical User Interface (GUI) 

tools with illustrated use of the latest genome analysis tools. 
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ii. Collection of publicly available genomic region datasets from published ChIP-Seq 

and ChIP-chip studies into a single searchable curated repository. 

iii. Annotation of the genomic regions by organism, reference assembly, cell line, factor, 

conditions, total reported regions, peak caller software, experiment type (ChIP-

chip/seq), author and publication year. 

iv. Development of user-friendly genomic software for Windows as a standalone desktop 

application. The desktop version for bench biologists will be able to archive unlimited 

data in a personalised database and will provide easy tools to analyse the transcription 

factor binding sites and histone modifications datasets. 

v. Development of database resource and tools for large bioinformatics facilities that 

operate servers on Unix, Linux or Macintosh operating systems. 

vi. Development of a project website with installation guidelines and options to 

download the software for various computer platforms. 

vii. Analysis of the collected data that will serve as an example for further genomic 

research using the resource. 
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Chapter 2:   Selection of suitable computational 
resources to build a genomic database 

2.1.   Introduction 

Recent publications have highlighted the complexity of transcriptional regulation, and it is 

now known that there are many factors that must be analysed in parallel to interpret complex 

biological processes as explained in the Transcription Factors and the Epigenetics sections in 

Chapter 1. One of the data analysis outcomes of such genomic studies are DNA target regions 

which are generally referred as genomic regions or genomic intervals. Genomic regions are 

datasets containing locus information per chromosome (as explained in Section 1.5.6 and 

2.7). These data need to be stored in a way that enable application of mathematical operations 

to them. The data should be stored and retrieved by a technology that can be easily accessible 

to biologists, preferably at no cost and there should be a large community that make use of 

the technology. Tools or resources written in a technology well used in a community of users 

will be more likely to be used and maintained by the community. However, at the same time 

a developer of the resource/tool should not exclude other technologies which could provide 

future benefits and prospects. Therefore I began with an extensive survey of available 

platforms and technologies that were used in genomic research. In order to do this I collected 

a number of datasets first to understand what sort of the data the technology needs to handle. 

Later in the chapter I explained various issues, database benchmarking and testing of the 

software that I developed during my candidature. We named this resource and its tools the 

Binding Site Analyser (BiSA) to analyse, annotate and interpret genomic regions statistically 

and graphically. 

2.2.   Collection of Datasets 

PubMed and Google Scholar were searched for ChIP-chip and ChIP-seq transcriptional 

regulation studies  describing transcription factor binding sites and histone modifications and 
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it was identified that much of the datasets were deposited in public repositories such as Gene 

Expression Omnibus (GEO) (Edgar et al., 2002), European Bioinformatics Institute (EBI, 

http://www.ebi.ac.uk/), Cistrome Project (Liu et al., 2011a). Some datasets were collected 

from journal websites or directly from the authors. The source of the data and additional 

comments, if there were any, were also recorded.  

~1000 datasets of transcription factor binding sites and histone modifications were 

downloaded. The datasets were annotated with information about factor name, cell line, peak-

caller software, experiment type and sample treatment by reading the papers and associated 

files. The total collection comprises ~24 million genomic regions with a total combined size 

of about 1 Gigabyte. 

2.3.   Choice of Operating Systems  

It is very important to decide the operating system on which a tool would run and this affects 

the downstream decision of the database and the language of development. I reviewed two 

major types of operating systems, i) Unix-like operating systems, ii) and Microsoft Windows. 

Unix-like operating systems include variants of Linux and Apple Macintosh (Mac) OS X and 

later (Katayama et al., 2000; Winterbottom and Wilkinson, 1990; Accetta et al., 1986; 

Meyers and Lee, 2011).  Unix-based operating systems are very popular in the field of 

bioinformatics research and numerous tools are written to exclusively run on these operating 

systems (Dudley and Butte, 2009; Stajich and Lapp, 2006a). The popularity of these 

operating systems is credited for the range of free open source languages available and many 

open source projects (Oinn et al., 2004; Novak et al., 2013; Blankenberg et al., 2010; 

Giardine et al., 2005).  

On the other hand Microsoft Windows is the dominant operating system and holds ~90% of 

the operating system market (Share, 2013) and is widely known to be user-friendly. Many 
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researchers would have experience working on Windows. Therefore, initially I built BiSA for 

Windows operating system as a desktop application. However, identifying limitation with 

scalability as explained in the section 3.3, a web-based version for the Unix-like operating 

system was developed.  

For BiSA for Unix-like operating systems, we chose Red Hat Linux because it is one of the 

most popular distributions of Linux and there is a large community of users (McCarty, 2004) 

and is the platform recommended by the Sydney University Information and Communication 

Team where I conducted my research.  

2.4.   Database Selection  

The recent revolution in whole genome census approaches has seen an exponential increase 

in available data sets describing genomic features, such as transcription factor binding sites 

and histone modifications. Manual management of such files for curation and identifying 

relationships is cumbersome (Meyer et al., 2012) . Database systems are the tools that have 

been utilised in many fields to ease the task of handling data and their relationships. One of 

the main aims of this project was to develop a user-friendly archival and retrieval system for 

genomic regions coupled with tools to analyse data using database systems. Therefore 

various database systems are reviewed to identify the best database that could handle 

genomic regions data efficiently as explained below. 

2.5.   Relational or Non-Relational Databases 

There are two broad choices in database systems, relational and non-relational databases. For 

the last 4 decades classical databases have been built on the relational database management 

systems (RDBMS) model. A RDBMS stores data in a strict structure known as a schema. The 

schema comprises tables, views and stored procedures and each table has a common structure 

for all of its rows. These databases support a standard query language known as SQL 
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(Structured Query Language), therefore, today such databases are commonly referred to as 

SQL databases. In recent years non-relational databases, referred to as NoSQL, have been 

developed to store non-structured or schema-less data by reducing strict data (Kala Karun and 

Subu, 2013). NoSQL databases claim high performance, availability and easy scalability and 

replication over many servers in comparison to SQL databases. In NoSQL databases, such as 

MongoDB, instead of tables, databases have collections. NoSQL databases employ various 

non-relational techniques to store data: for example, Apache Cassandra stores data as 

key/value stores, MongoDB stores data as a collection of documents, AllegroGraph or Neo4J 

are graph databases (Have and Jensen, 2013; Marin and Dragos, 2013). Therefore NoSQL 

databases provide flexibility in schema design in order to deal with the challenge of 

scalability with SQL databases. Table 2.1 provides an overview of strengths and weaknesses 

of the two types of database models. 

Apart from a powerful query language, SQL databases have four other strengths i) all data 

operations (transactions) will commit (permanent) or not at all, ii) ensuring the complete 

change of state of the database, iii) ensuring independent running of transactions and iv) 

ensuring the state of completed transactions will persist (Cattell, 2011; Leavitt, 2010; Fortier 

et al., 1994). However, critics argue that the above constraints affect the performance of SQL 

databases; therefore, with minimum constraints NoSQL databases offer better speed, 

efficiency and scalability. With a powerful query language/interface SQL databases are a 

good choice for databases which are not expected to grow out of the capacity of a server, 

since scaling and distribution of SQL databases are not easy. 
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 Strengths Weaknesses 

Relational databases 

(SQL) 

 In common use 

 Built-in powerful query 

language 

 Best suited to structured data 

 Retrieval based on complex 

query is easy 

 Data operations precise 

 Not easy to scale 

 Less efficient on big data 

 Scaling is not easy 

 Distribution of data across 

partitions or servers is not easy 

Non- Relational 

databases 

(NoSQL) 

 Easy to scale 

 Efficient handling of big data 

 Lower administration 

 Schema-free so needs less 

development time 

 Better handling of unstructured 

data 

 Flexible data models 

 Lack of support  

 Lack of reporting tools  

 Lack of standardisation 

 Complex coding to retrieve data 

Table 2-1: Comparison of relational (SQL) databases and non- relational (NoSQL) 
databases. 

Keeping in mind the features of the two database types, it was clear that we were not dealing 

with the dimensions of data that NoSQL databases are designed for. Just to illustrate the data 

sizes the NoSQL databases are designed to deal with: Google web-indexing, the world’s 

largest search engine, uses Bigtable (Chang et al., 2008), Amazon is handling its billions of 

transactions by Dynamo and Cassandra is being used at Facebook inbox search (Kala Karun 

and Subu, 2013). I have also observed that NoSQL databases are not often used in 

bioinformatics (Have and Jensen, 2013). For example Galaxy, web-based bioinformatics 
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analysis platform, uses SQLite by default, UCSC genome browser and Ensemble use a 

MySQL database (Hermida et al., 2013; Kent et al., 2002a). Recently Paila et. al. have 

written a database application GIMINI for genetic variation and genome annotations and they 

preferred a relational database (SQLite) because of the native support for powerful SQL data 

exploration queries and its familiarity to many researchers  (Paila et al., 2013).  

We decided on the selection of SQL versus NoSQL database-type based on the following 

requirements for our application needs: 

1. In first round of development BiSA for Windows will be a desktop personal database 

resource and typically will be serving only one user at a time. 

2. In second round of development, BiSA web-based version unlike some of the 

commercial web servers, is going to be used by a limited number of investigators. 

3. Transcription factor binding sites and histone modifications are the final outcome of a 

ChIP-Seq experiment so data is usually refined and small at this stage. The file size 

for transcription factor binding sites is usually just a few hundred kilobytes and 

histone modifications or genetic annotations are less than a few hundred megabytes. 

The total size of our collected ~1000 datasets was slightly less than 1 Gigabyte (GB). 

4. The data is usually available as tab delimited text files and the format is standardised 

(explained in the Section 2.6). 

5. Most researchers and computational biologists are familiar with relational databases, 

and this is likely to increase the adoption of BiSA.  

Therefore considering all of our requirements I decided to choose a relational (SQL) 

database-type for the development of BiSA.   

Having decided on SQL, there are a number of SQL databases available, so I needed to work 

out which one would best be suited to our requirements. Therefore, I also performed an 
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extensive review of the databases with the criteria as being supported on Windows and Unix-

like operating system.  

2.6.   Reviewing Relational (SQL) Databases 

I reviewed the seven most widely used SQL databases (db-engines.com) for the suitability of 

BiSA. Table 2.2 summarises the four important features (operating system support, who 

owns or maintains the database, the type of license offered and maximum database size 

supported by a database engine) of seven well-known and widely used databases.   

SQLite is a serverless file-based database engine and the default database for many 

bioinformatics tools (Paila et al., 2013), however, SQLite is maintained by only three 

developers and is a relatively young database (Hipp et al., 2013). Another shortcoming is that 

unlike a dedicated database server SQLite is not designed to deal with the challenge of 

handling multiple jobs at a time and transactional locks may occurs on the production server. 

These locks cause timouts and job errors. On this besis, I eliminated SQLite for 

consideration. 

Four databases, Microsoft SQL Server (abbrivated as SQL Server), Microsoft Access, 

FileMaker and Oracle are proprietary, and consequently there is a cost associated with their 

utilisation (Table 2.2). Microsoft Access and FileMaker are used for small business 

applications such as invoicing, inventory control, or basic business applications. The 

maximum database size of Microsoft Access is 2 Gigabytes, and aimed at very small business 

applications, therefore I did not consider it any further as it would be limited in terms of 

extendability. FileMaker is a more professional database software than Microsoft Access with 

its cross compatibility on Windows and Mac operating systems and it offers an Advanced 

Server version as well. However, firstly it is a costly application, and secondly it is designed 

to develop business solutions and is not considered a general purpose database.  
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Microsoft SQL Server and Oracle are also proprietary databases and not free of cost, 

however, both products provide free Express Editions. In Express Editions, the memory 

utilisation is limited to 1GB though and only 1 central processing unit (CPU) is supported. 

SQL Server Express Edition supports maximum 10 GB while Oracle Express Edition 

supports 11 GB databases. These size limitations seem reasonable for the type of datasets we 

have been dealing with. In contrast to Oracle, many educational and research organisations 

have enterprise agreements for Microsoft products such as Microsoft Office and SQL Servers 

professional editions. Therefore free access to a professional or standard Microsoft SQL 

Server for a researcher is more likely to be available. Students can also download a free copy 

of SQL Servers from DreamSpark.com. SQL Servers professional editions can handle 

database sizes upto 534 Peta bytes. Moreover Microsoft SQL Server is natively supported on 

Windows and other Microsoft languages. Therefore Microsoft SQL Server seems a 

reasonable choice for BiSA on the Windows platform. However, there is a disadvantage of 

this choice in that there is no Unix-like version available. Therefore, for BiSA for Unix-like 

operating systems MySQL or PostgreSQL seem good candidates to be considered. Both 

MySQL and PostgreSQL have Windows versions available so they could be potentially used 

in both operating environment. These databases are widely used in a range of business 

applications and in research, therefore, there is large community-base and extensive 

documentation is also available (Welling and Thomson, 2003; He-qin, 2007; Di Giacomo, 

2005; Paulson, 2004).   

Databases 
Operating 

System 
Maintained By License 

Maximum 

Database Size 

SQL Server  Microsoft Proprietary 524 Petabytes 1 
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Microsoft Access  Microsoft Proprietary 2 Gigabytes 

Oracle  Oracle Corporation Proprietary Unlimited 2 

MySQL  Oracle Corporation 

GPL (General Public 

License) or 

Proprietary 

Unlimited 

PostgreSQL  Global Community 
PostgreSQL open 

source license  
Unlimited 

SQLite  

The SQLite 

Development Team
Public domain 128 Terabyte  

FileMaker  FileMaker Inc. Proprietary 8 Terabyte 

=Windows, =Linux, =Apple Macintosh (Mac) 

Table 2-2: Comparison of databases for operating system support, maintained by, license-

type and maximum database size of seven top databases. 

1 Free Microsoft SQL Express version’s maximum storage capacity is 10GB. 

2 Free Oracle Express version’s maximum storage capacity is 11GB. 

2.7.   Development of Overlapping Regions Algorithms 

From the initial analysis I short-listed three database Microsoft SQL Server, MySQL and 

PosgreSQL.  To identify which  database would be the best for development of a genomic 

region database, I developed and published (Khushi, 2015) a novel the RegMap (Region 

Mapping) benchmarking algorithm that operates on genomic locations natively in the 

database. Since previously developed algorithms act on flat files and at the time there was no 
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published algorithm available that analyse genomic regions natively in a database system. 

Using RegMap I tested the performance of these candidate databases. Following sections 

explain the various aspects of RegMap algorithm. 

2.7.1.   Processing Genomic Regions 

Many genomic features are saved in data repositories as tab-delimited text files. For 

computational processing of such files, BED (Browser Extensible Data) and GFF (General 

Feature Format) file formats have been widely used. BED format defines the first three fields 

as required and nine additional optional fields. The first three required fields are tab-delimited 

chromosome, start and end while strand as plus (+) or minus (-) sign is saved in the sixth 

optional field. GFF format defines nine required fields where chromosome or name of the 

feature is saved in the third column and fourth and fifth field contain start and end of the 

genomic position. Each line in the file defines a complete genomic feature. The other 

important difference between the two file formats is the start index of the first base in a 

chromosome. The BED format defines the chromosome start as zero, on the other hand, in 

GFF the first base is numbered 1. Therefore, region length in GFF file is calculated by 

subtracting the start from the end coordinate and increasing the result by 1, for example, for 

genomic region starting at base 100 and ending at base 200, the region length is calculated as: 

Region length = (end – start)+1 = (200-100)+1 = 101 

However the same interval in BED format will be expressed as starting from 99 and ending at 

200 so the region length if the feature is saved as BED format will be calculated as: 

Region length = (end – start) = 200-99 = 101 

This shows that the BED format requires one less mathematical operation and so is more 

computationally efficient. Therefore we decided to save all start coordinates zero indexed as 
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in the BED file format to keep mathematical operations efficient. When a dataset from the 

GFF file format is imported its start coordinate was decreased by 1 before saving into the 

BiSA database. 

Two genomic intervals or regions are said to often intersect or overlap if both intervals share 

at least one base pair in common on a same chromosome. However, this can be user-defined, 

for example, intervals may be said to overlap only if they share 100 bp or only if their centres 

are within 50 bp.  

To illustrate further, consider two regions Chr1:10-20 and Chr1:18-30,  these regions are said 

to overlap by 3 bases on 18,19 and 20 base pair positions on chromosome 1.  So we devised a 

variable ‘bp overlap’ which is calculated to be positive by counting the number of base pairs 

in common between two regions or negative when calculating distance between the ends of 

two non-overlapping regions.  

2.7.2.   Calculation of Base Pair Overlap (bp overlap) 

The bp overlap is represented as a positive number for regions having bases in common 

between two sets (shown as shaded region in Figure 2.1), and for non-overlapping regions the 

‘bp overlap’ is shown as a negative number of bases away from the corresponding ends. To 

illustrate the algorithm let us consider two regions A and B in the three scenarios (Figure 

2.1).  

i) One region is completely within the other or complete overlap. In this case the bp 

overlap is simply a positive number reported by calculating the region length of the 

smaller region that lies within the other region. If the two regions completely overlap 

each other then the length of either region can be reported as bp overlap. Since the 

start coordinate is saved in the BED format therefore region length can be calculated 

by just subtracting the start from the end coordinate as explained in the section above.  
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Computationally this case (Figure 2.1 i-a) is identified by checking if ‘A.End’ is less 

than or equals ‘B.End’ and ‘A.Start’ is greater than or equals ‘B.Start’,  implies A is 

within B, calculate region length of A. SQL pseudocode extract given below: 

WHEN A.End <= B.END AND A.Start >= B.Start 

THEN (A.End - A.Start) 

 

To identify the second case (Figure 2.1 i-b), if region B lies within region A, we need 

to verify if ‘B.End’ is less than or equals ‘A.End’ and ‘B.Start’ is greater than or 

equals ‘A.Sart’, calculate the region length of B. 

WHEN B.End <= A.END AND B.Start >= A.Start 

THEN (B.End - B.Start) 

 

ii) The second scenario is when region A lies on the left side of region B (Figure 2.1-ii). 

In this situation the two regions could share bases in common or could be distant to 

each other. Computationally this is checked if ‘A.End’ is less than or equals ‘B.End’ 

and ‘A.Start’ is less than or equals ‘B.Start’. The bp overlap is calculated by 

subtracting ‘B.Start’ from ‘A.End’.  

WHEN A.End <= B.End AND A.Start <= B.Start 

THEN (A.End - B.Start) 

In the above calculation, for the first situation (Figure 2.1 ii-a) bp overlap will be 

reported as a positive integer. Whereas, for the second situation (Figure 2.1 ii-b) when 

there are no common bases in the two regions, the bp overlap is calculated as a 

negative number. This is because in this case the ‘B.Start’ coordinate is greater than 

‘A.End’ therefore (A.End - B.Start) will be a negative number. 

iii) In the third case region A could be on the right side of region B. As above, the two 

regions could overlap or can be apart without intersecting each other. This is ensured 
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by checking that if ‘A.End’ is greater than or equals ‘B.End’ and ‘A.Start’ is greater 

than or equals ‘B.Start’. The bp overlap is calculated by subtracting ‘A.Start’ from 

‘B.End’. 

WHEN A.End >= B.End AND A.Start >= B.Start 

THEN (B.End - A.Start) 

 

Similar to the above case the overlapping regions (Figure 2.1 ii-a) will have positive 

bp overlap and non-overlapping regions will have negative bp overlap (Figure 2.1 ii-

b). 
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Figure 2-1: Various relative positions of the two regions. i) One region is completely within 

the other. ii) The overlapping or non- overlapping region A is on the left side of region B. iii) 

The overlapping or non- overlapping region A is on the right side of region B. 

2.7.3.   Calculation of Distance between Region Centres 

We also calculate the distance between the centres of the two nearest regions, we refer to this 

as ‘centre distance’. Some overlap analyses of transcription factors require restricting the 

overlap analysis based on maximum centre distance. This is important because transcription 

factor binding sites are typically 100-200 bases, however, some regions reported as binding 

sites during the peak-calling process are many thousand bases long due to multiple 

consecutive  peaks merged and reported as one peak as explained in the peak-calling Section 

1.5.5. Therefore a researcher might like to restrict analysis based on distance from region 

centres.  

To calculate the centre distance, the centres of the two regions are calculated and then the 

distance between the centres is calculated by the following SQL code. 

 (A.End + A.Start)/2 - (B.End + B.Start)/2 

Since the distance can be negative if the location of the centre of the region B is greater than 

location of the centre of region A, therefore, an ABS SQL functions is used to return the 

absolute (positive) value of the calculation by ignoring the negative sign. 

ABS (A.End + A.Start)/2 - (B.End + B.Start)/2 

The complete SQL code that implements the above explained ‘bp overlap’ and ‘centre 

distance’ algorithm is given in the Box 2.1. 

The code (Box 2.1) also contains information about the two regions and is saved as a view in 

the database, named vwKBCompareSites. A view acts like a table and performs all the 
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calculations during the run-time. Therefore we can run a query against the view and can also 

restrict results based on bp overlap, centre distance or chromosome.  

 

 

Box 2.1: SQL code to calculate the bp overlap and the centre distance. Key words are 

coloured. 

2.7.4.   Extracting Overlapping Sections of Regions Common in Two 
Datasets 

One region of a dataset can overlap two regions in another dataset. Therefore, certain 

analyses require the identification of overlapping sections of the regions common in two 

datasets. The overlapping regions must be intersected by at least 1 base pair, shown by grey 

shaded rectangles in Figure 2.1. Since both compared regions are restricted to be on the same 

chromosome, chromosome information can be taken from either region. Similarly if start or 

select A.Chr Chr_A, A.start Start_A, A.[end] End_A, 

 B.Chr Chr_B, B.start Start_B, B.[end] End_B,  

ABS((A.[end] + A.start)/2 - (B.[end] + B.start)/2) CentreDistance, 

 bpOverlap = CASE  

  WHEN A.[end] <= B.[END] AND A.Start >= B.Start   

THEN (A.[End] - A.Start)  

  WHEN B.[end] <= A.[END] AND B.Start >= A.Start   

   THEN (B.[End] - B.Start)  

  WHEN A.[end] <= B.[END] AND A.Start <= B.Start 

THEN (A.[End] - B.Start)  

  WHEN A.[end] >= B.[END] AND A.Start >= B.Start 

THEN (B.[End] - A.Start)   

  END  

 from  dbo.KBSites A inner join dbo.KBSites B on A.Chr=B.Chr 
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end coordinates are the same then they can be taken from either region.  Computationally to 

identify the start of the overlapping section, the two regions are compared and which region’s 

start is greater is checked; the greater start is taken as the start of the overlapping section of 

the region i.e. 

   WHEN Start_A>Start_B Then Start_A 

   WHEN Start_A<Start_B Then Start_B 

On the other hand, to identify the end of the overlapping section the smaller end coordinate is 

chosen i.e. 

   WHEN End_A>End_B Then End_B 

   WHEN End_A<End_B Then End_A 

Box 2.2 is an extract of the SQL code that is used to extract the overlapping regions.  

 

Box 2.2: SQL Code to extract the overlapping sections of the regions common in two 

datasets.  

select distinct Chr_A Chr_common, 

  CASE  

   WHEN Start_A=Start_B Then Start_A  

   WHEN Start_A>Start_B Then Start_A 

   WHEN Start_A<Start_B Then Start_B 

  End as Start_common, 

  CASE  

   WHEN End_A=End_B Then End_A  

   WHEN End_A>End_B Then End_B 

   WHEN End_A<End_B Then End_A 

  End as End_common 

  from vwKBCompareSites where bpOverlap>=1  
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2.8.   Benchmarking Database Performance using RegMap 

Using the above explained algorithm I developed a benchmarking script called RegMap 

(Region Mapping) and benchmarked the performance of SQL Server, MySQL and 

PostgreSQL for i) insertion of data ii) identification of overlapping regions. I have also 

compared the RegMap performance against database built-in spatial functions which, 

provided very limited functionality. 

The time rounded to the nearest second for each operation was recorded. The time noted for 

insertion of data also included the time it took to generate random regions for each product. 

RegMap benchmarking script generated all the required objects in a working database. The 

algorithm was completely developed in native SQL (Structured Query Language) and is 

therefore compatible with all SQL databases.  

 

Figure 2-2: Database structure employed to benchmark the performance of database 
systems. 

RegionDesc

regiondescid
integer (Primary Key)

descr
varchar(500)

totalregions
integer

Regions

regionid

integer (Primary 
Key)

regiondescid
integer (Foreign Key)

chr
varchar(50)

chrstart
integer

chrend
integer

geo
linestring

One 

Many
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Chromosomes were saved as character data-type and start and end coordinates as integer 

data-type (Figure 2-2). Primary key fields automatically generates clustered indexes, apart 

from this index no other index-type was created. To compare performance with database 

built-in spatial functions the coordinates were saved as linear spatial data-type, lseg in case of 

PostgreSQL or linestring in MySQL. Genomic regions were saved in the Regions table and 

were linked with the RegionDesc table where annotation of the regions was saved, thus 

simulating a production usage. Each region in the Regions table was automatically assigned a 

unique database id (Primary Key). The start coordinates of the genomic regions were indexed 

from 0, as described above, to speed up calculations, therefore region length was calculated 

by subtracting the start from the end coordinate.  

A total of 1005 datasets of transcription factor binding sites and histone marks from previous 

publications on human and mouse assemblies were collected. This ‘Knowledge Base’ was 

used to perform insertion and searching benchmarking. 

All testing and benchmarking were performed on PostgreSQL 9.0 and MySQL Community 

Server 5.6.15 GPL (x86_64) installed on HP Compaq 8200 Elite running Windows 7 

Professional having 4 core 2.5 GHz processor with 8GB memory. RegMap code was run in 

MySQL Workbench 6.1 for MySQL server and in pgAdmin III 1.81 for PostgreSQL 

benchmarking maintaining the default settings of each database. Client and database servers 

were on the same computer. MySQL Server supports a number of storage engines, in this 

performance benchmarking the two most widely used: InnoDB and MyISAM storage engines 

(Sheldon and Moes, 2005; Padilla and Hawkins, 2011). The results of 100 simulations were 

averaged for all operations. The default random region size was set to 500, however, this 

setting can be changed in the script.  
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I also performed RegMap benchmarking on Microsoft SQL Server, however, the detailed 

results are suppressed here, because, Microsoft licencing agreement (Microsoft.com) prohibit 

publication of any benchmarking results. 

2.8.1.   Benchmarking for Insertion of Data 

RegMap randomly generates regions in memory between the specified lower and upper range 

and then finally saves the data in the database in a single transaction. I identified that this 

technique was faster for both databases since each time an insert statement is executed 

against the database there are transaction overheads. So generating and saving regions one by 

one was much slower.  

I tested the performance by generating 5K, 10K, 20K, 40K and 80K regions and identified 

that PostgreSQL’s generation of random regions and insertion was much faster than MySql in 

both InnoDB and MyISAM storage engines. MySQL’s insertion of regions was dramatically 

slower and the time taken was almost double by doubling the number of regions inserted 

(Figure 2.2). MySQL-InnoDB performed slightly better than MySQL-MyISAM, therefore, in 

Figure 2.2 performance of MySQL-InnoDB is reported. PostgreSQL (RegMap) generated 

and saved 5K random regions in 1 second as compared to 219 second in MySQL-InnoDB 

and 237 second in MySQL-MyISAM, indicating that MySQL was  ~220 times slower. This 

difference dramatically increases for a much larger number of regions. For generating 80K 

random genomic regions PostgreSQL took 4 seconds as compared to 3,596 sec in MySQL-

InnoDB and 3,680 second in MySQL-MyISAM.  

In addition, the database write performance was tested by importing the 1005 files consisting 

of 23,827,431 real genomic regions, collected from previous studies, into both databases 

using bulk import statements of the databases. PostgreSQL COPY statement while MySQL 

LOAD DATA INFILE statement was used for this purpose. I performed the import of each file 

in three steps: i) data was imported into a staging table, ii) data was copied across the 
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production table while assigning a unique id, and iii) the staging table was emptied. This 

procedure was adopted because in reality the imported data usually needs to be processed and 

assigned a unique identity in order to link to other tables. PostgreSQL performed >5 times 

better than MySQL, PostgreSQL took ~445 seconds compared to ~2,940 seconds in MySQL-

InnoDB and 2,460 second in MySQL-MyISAM. The actual import script was published as a 

Supplementary File with my benchmarking article (Khushi 2015). 

Data upload performance is critical for bioinformatics servers where many users insert a large 

amount of data at once. This benchmark identified that PostgreSQL inserts and imports data 

much faster than MySQL. 

 

Figure 2-3: Comparison of region insertion performance.  For simplicity, MySQL times 

shown are for InnoDB storage engine as MyISAM did not perform as well. 

2.8.2.   Benchmarking for Identification of Overlapping Regions 

I further investigated the performance of reporting intersecting or overlapping regions using 

RegMap and using the database built-in functions in each database. The two databases have 

built-in functions that can be used to identify intersecting lines. Since these built-in functions 
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are usually used in geographical (spatial) mapping software I subsequently refer to the built-

in functions as Geo functions.  

PostgreSQL’s performance was again outstanding in finding overlapping genomic regions 

compared to MySQL (Figure 2.3). RegMap in PostgreSQL took 134 seconds to report 

intersecting regions for two datasets of 80K regions each, and 257 seconds using 

PostgreqSQL-Geo function. MySQL performance was tested using InnoDB and MyISAM 

storage engines. MySQL-MyISAM performed poorly compared to InnoDB, however, both 

engines demonstrated inferior performance as compared to PostgreSQL. For example, when 

two datasets of 80K regions were tested for overlaps using RegMAP, MySQL-InnoDB took 

1,119 seconds, and MySQL-MyISAM took 1,150 seconds. Therefore, for simplicity reasons, 

I presented the data for MySQL-InnoDB in Figure 2.3.  

 

Figure 2-4: Comparison of performance for identifying overlapping regions using RegMap 

and Geo functions. For simplicity, InnoDB times are shown for MySQL, as the MyISAM 

storage engine in MySQL did not perform as well. 
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Primary key fields by default generates clustered index, in addition, performance was tested 

by setting non-clustered index on various fields and PostgreSQL various index-types: B-tree, 

R-Tree, GiST, GIN, and Hash.  Applying these additional indexes did not improve 

performance in PostgreSQL while it had a negative effect in MySQL for both engines 

(InnoDB & MyISAM). I performed these tests on different computers and obtained slightly 

different timings, however, the overall outcome remained the same which was that 

PostgreSQL performance in identifying overlapping regions was much better than MySQL.  

Since RegMap identifies overlapping regions by calculating ‘bp overlap’ for each region, I 

finally concluded that queries that require extensive calculation of mathematical operations 

perform much better in PostgreSQL. 

2.8.3.   Searching and retrieving regions 

PostgreSQL was slightly better at performing a search of genomic regions than MySQL. The 

knowledge base of ~24 million genomic regions was searched for erroneous regions with  a 

start coordinate less than 0 or an end coordinate less than start. PostgreSQL identified 10 

erroneous regions in ~5 seconds while MySQL-InnoDB found the same erroneous regions in 

~21 seconds and MySQL-MyISAM in 6 seconds. Implementing various types of indexes on 

chromosome start and end fields did not improve performance for this query. However, 

searching for specific regions within a certain distance of a gene was instant in all databases. 

For example, searching regions within 100,000 upstream/downstream of the transcription 

start site of MYC gene (chr8:128748314) returned results in 3-5 seconds in all databases 

which was further reduced to ~1 second by implementing an index. Therefore I concluded 

that the general searching capability of PostgreSQL and MySQL is similar.  

2.8.4.   Advantages of RegMap over Geo functions 

The RegMap algorithm generally performed better than Geo functions, in addition, it 

provides extended functionality that the Geo functions do not provide. For example, Geo 
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functions only return a Boolean (true/false) value if the queried regions intersect or not. On 

the other hand, RegMap reports the number of bases common in the two regions or away 

from each other. Therefore it is easy to limit results based on the minimum number of bases 

that must overlap. It also provides the ability to restrict results based on the distance from the 

centre of regions; this is useful in returning regions that do not share common bases, but are 

present in close proximity within a specified distance. For example the SQL query select * 

from vwregions where bpoverlap<1 and centredistance<1000; will return regions that do not 

overlap however their centres are within a distance of 1000 bases. This type of analysis is 

important in identifying partner factors that bind on DNA in close proximity to each other 

without overlapping.  

I performed benchmarking natively using each product’s query interface, however, in the real 

world the database would be queried using front-end software and it is required that database 

and designed software have efficient way of handling data uploads. With all databases, a 

single SQL ‘INSERT’ statement is used to insert a single row into a database table. However, 

if a large number of rows are to be inserted, this is a very slow process due to additional 

computational tasks that are required to run with each transaction. To address the challenge, 

the databases include special statements to bulk import large number of rows such as SQL 

Server has BULK INSERT, MySQL has BULK COPY and PostgreSQL has COPY 

command. However these commands cannot pre-process the data and the format of the 

imported data needs to exactly match with the table structure where data needs to be inserted. 

This issue is usually addressed by importing data into a staging table and then after 

processing the data is transported into the target table. However genomic region files 

produced by different peak-callers have different numbers of columns (Wilbanks and 

Facciotti, 2010) creating a difficult scenerio for efficient importing into a database using bulk 

insert statements.  
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Microsoft SQL Server provides another unique way of bulk inserting using ‘table-valued 

parameters (TVP)’. The table-valued parameters, released since Microsoft SQL Server 2008 

R2, are special types of variables that behave like temporary tables and all genomic values 

can be pre-processed, populated into a TVP and passed to the database engine in a single 

step. This enables inclusion of a complex business logic in a single routine and reduces round 

trips to the server. In my testing using table-valued parameters Microsoft SQL Server out 

performed the other two databases for pre-processing and inserting data into a database table 

using TVP.  

SQL Server being a Microsoft product, the installation and support is better on Microsoft 

Windows. Therefore I decided to use Microsoft SQL Server for the development of BiSA for 

Windows howerever as there was no SQL Server version for Linux/Unix therefore I chose 

PostgreSQL over MySQL because of better performance. 

2.8.5.   Other Considerations for Choosing Between MySQL or 
PostgreSQL 

In above benchmarking PostgreSQL clearly outperformed MySQL, moreover, PostgreSQL 

conforms to International Standards Organization (ISO) standards for SQL, while MySQL 

does not conform to ISO standards. Transactions in PostgreSQL are more reliable and a 

programmer always gets the same results without faults (Conrad, 2006). PostgreSQL is 

released under the PostgreSQL License which is an open source license similar to the BSD or 

MIT licenses and is heavily used in the industry. Furthermore, the Galaxy development team 

prefers PostgreSQL because it works better with the SQLAlchemy (Copeland, 2010) database 

abstraction layer (http://wiki.galaxyproject.org).  Therefore, I decided to use PostgreSQL for 

developing BiSA for Unix-like operating systems. Figure 2.4 provides an overview of the 

process that I used in selection of a database.  
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Figure 2-5: Flow chart describing our decision for the selection of a database. Oval 

represents final successful choices. 

2.9.   Language Selection for Writing BiSA 

After deciding on the database the next step was to decide on a computer language for the 

development of front-end of the BiSA. Table 2.3 provides an overview of the operating 

system support, complexity, scripting, object orientation and whether the code run is 

compiled or interpreted for seven languages. A native compiled code is an executable 

programme that can be run by computer without any additional software aid, however, 

interpreted code needs an interpreter software whenever it is run. The native compiled code 
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runs faster (Sites et al., 1993).  On the other hand, a scripting language is usually high level 

language which is interpreted by another programme at run-time and it is usually easy to 

write programme in a scripting language (Ousterhout, 1998).  

Languages 
Operating 

Systems 
Complexity Scripting 

Object 

Oriented 

Compiled / 

Interpreted 

C/C++  +++++   Compiled 

Python  ++   Interpreted 

Java  ++++   Interpreted 

C# / 
VB.Net  ++   Compiled 

Perl  ++   Interpreted 

Ruby  ++   Interpreted 

 Windows Linux/Unix  Apple Macintosh 

Table 2-3: Overview of seven main computer languages. 

Historically C and its object-oriented extension C++ were designed to write a new operating 

system (Unix), therefore, it is best for writing low-level applications such as hardware 

drivers, compilers and system tools and in this function there is no competitor to C/C++. 

However the code is complex for trivial programming tasks and database interaction.  

Java is a popular language for writing cross-platform GUI (Graphical User Interface) 

applications that run on different operating systems and devices such as phones, tablets and 
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computers. The Java community has also developed  BioJava for computational biologists 

that has many built-in bioinformatics functions such as BLAST parser, sequence 

manipulation,  genetic algorithms and statistical distributions (Holland et al., 2008; Prlić et 

al., 2012). However, Java code is complex due to native objected-oriented support and 

enforces writing code to handle every possible error. Java like Python, Perl and Ruby is an 

interpreted language and converts programmes into its custom byte code before execution. 

The Java and Python compiled form of byte code, also known as object code, cannot run 

standalone natively and needs a run-time environment software. Therefore, their code 

performs slower than code written in languages that compile in native code. Python is often 

quoted as a rapid application development language and it is argued that a programmer can 

be much more productive in Python than in other languages (Ferg, 2011). 

Visual Basic .NET (VB.Net) and C# are two very different languages based on their syntax, 

classes and history, however, in the Table 2.3 I only have one row for them because both are 

Microsoft proprietary languages that are exclusively used to write applications run for the 

Windows operating systems. Both languages share the same runtime engine, both can access 

any .Net Framework object and share the same integrated development environment ‘Visual 

Studio’. Generally applications written in C# and VB.Net are not compatible on other 

operating systems, however, Mono open source project (http://www.mono-project.com/) can 

make the applications written in these languages compatible to Mac and Linux operating 

systems (Nishimura and Timossi, 2006; Kilgore, 2002).  

Ruby programming language is fully object oriented and has more advanced functions than 

Perl such as lambdas and procedures (Flanagan and Matsumoto, 2008). Lambda in Ruby is an 

in-line function which is handled as an object. The code is more condensed and readable and 

the Ruby development team has also developed BioRuby (Goto et al., 2010) which has most 
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features of other Bio-type languages such as BioJava, BioPerl, BioPython. However, there 

are not many bioinformatics tools that were written in Ruby and there are limited numbers of 

developers available. Therefore I did not consider Ruby any further. 

Perl is frequently used in bioinformatics, due to its heavy use during the human genome 

project in the 1990s (Wall et al., 2000). At the time Perl provided much needed strings 

processing capabilities to process long string of sequences and had a strong community base. 

Subsequently many bioinformatics tools and scripts such as BioPerl (Stajich et al., 2002) 

were developed. Perl has strong documentation and many books are written on Perl for 

Bioinformatics (Jagota, 2004; Tisdall, 2009; Tisdall, 2010). Perl is also the language of 

choice for the Ensembl genome browser. In research, Python and Perl are relatively 

traditionally established and consequently more widely used in the field of bioinformatics 

(Dudley and Butte, 2009; Kinser, 2010; Tisdall, 2009; Model, 2010). However, in contrast to 

Perl, Python gained much popularity in bioinformatics as a scriptable language that is object 

oriented from its outset (Stajich and Lapp, 2006b). In addition to the features typically found 

in other scripting languages, Python is useful for bioinformatics and other research because of 

its various scientific capabilities; thanks to NumPy, SciPy, Biopython (Cock et al., 2009) and 

many other open projects (Eric Jones, 2001; Oliphant, 2007) providing a large library of 

functions that solves many common problems in bioinformatics and other research fields. 

Python’s clear and easy syntax makes it suitable for beginners as well as experienced 

programmers (de Hoon et al., 2003). One of the distinct features of Python which is not 

mandatory in other languages is that it enforces indentation of nested blocks relative to each 

other. This makes understanding and interpretation of code very easy.  

Most Unix-like operating systems come with pre-installed Python, and many bioinformatics 

tools such as Galaxy are completely written in Python. As later explained in the Section 2.17 
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that we decided to build a web-based version of BiSA that run under Galaxy,  therefore, I 

decided to use Python to write BiSA for Unix-like operating systems. A Python version for 

Windows is also available, however, it is not natively supported and needs to be installed in 

addition to the database system which might be too much work for biologists. Therefore I 

decided to use the C# language to write BiSA for Windows because the final code is 

compiled to an executable (.EXE) file which can be downloaded and run straight away 

without any additional installation requirement. Figure 2.5 diagrammatically shows our 

decision for the selection of a computer language. 

2.10.   BiSA Database Schema 

BiSA employs a rational database management system-based architecture to archive 

unlimited numbers of binding datasets in a very flexible and convenient format. The BiSA 

database schema is straightforward. All information about a dataset such as factor label, cell 

line and condition are saved in the ‘kbdetails’ table while the genomic region data are saved 

in the ‘kbsites’ table and linked to the ‘kbdetails’ table by an identity (KBId) (Figure 2.6).  
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Figure 2-6: Flow chart describing selection for a language for the development of BiSA. 

Oval shows final selection of the language.  

There are four gene annotation tables for the four genomic assemblies hg19, hg18, mm9 and 

mm8 genome assemblies having exactly the same fields, therefore shown as one table 

structure in Figure 2.6. These annotation tables are not linked to KbDetails or KBSites tables. 

The email field in the KBDetails table is only used in the PostgreSQL database in BiSA for 

Linux web-based version to track the ownership of the datasets.  
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Figure 2-7: BiSA Database Schema. Every region in the KBSites table is linked with the 

KBDetails table by the KBId (Primary key in KBDetails, foreign key in KBSites 

table).Clustered indexes were generated on primary keys by default, no other index-type were 

created. Four annotation tables were created for hg19, hg18, mm9 and mm8 assemblies, 

having same structure, so shown as one ‘Annotation’ table. The email field in the KBDetails 

table is only used in PostgreSQL database in BiSA for Linux version. 
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I have also used temporary tables in some stored procedures to extract overlapping or non-

overlapping regions. The temporary tables are created on run-time in a SQL system database 

‘tempdb’ whose collation could be different from the collation of the BiSA database. A 

database collation is a set of rules for dealing and comparing characters in character set. The 

conflict of collation makes matching of characters difficult so I have written code for such 

stored procedures that run-time check and modify the collation for temporary tables. 

Microsoft SQL Server databases generate transaction logs that keep records of every 

transaction performed in the database. The transaction log could grow very fast depending 

upon the usage and the type of recovery model in use. Large logs could slow or stop the 

overall functionality of the database. There are three recovery models i) simple, ii) full and 

iii) bulk-logged. I have used the simple recovery model to keep the transactions logs small, 

however, the simple recovery model only enables the retrieval of data from the recent backup 

of a database (Bernstein et al., 1987; Haerder and Reuter, 1983). 

2.11.   BiSA Application Architecture 

There are three main layered components of the BiSA, i) Graphical User Interface (GUI), ii) 

the framework and iii) the database system. I have used Microsoft Visual Studio 2010 to 

design the GUI as the Windows form and middleware application was written using C# and 

Microsoft .Net Framework while Microsoft SQL Server is being used as database system. For 

the Linux environment the GUI is web-based written as Galaxy forms, while Python is used 

to interact between with the PostgreSQL database (Figure 2.7). 
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Figure 2-8: BiSA application architecture.  

In both Windows and Linux scenarios the database server can be hosted on another server on 

the network to reduce the work on one computer and to speed up the overall performance. 

Figure 2.8 diagrammatically shows the client-server architecture.  

 

Figure 2-9: BiSA in a client-server architecture. 

2.12.   BiSA Charts 

For generating Venn diagrams and histogram charts, I have written an application 

programming interface in C# to interact with Google Charts (Charts, 2014). Google Charts 

can draw a Venn diagram for a maximum of three datasets. In the application programming 

interface the size of each circle and the size of the overlap between the two datasets are 

specified. If there are three datasets to be compared then a number representative of the 

overlap of the three datasets is also required.  

Windows Version Linux Version 

C# Win Forms 

Dot Net Framework 

SQL Server 

Galaxy 

Python 

PostgreSQL 

GUI

Framework

Database
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Initially, I devised two algorithms to report overlapping regions among three datasets, 

however only the stringent algorithm that reports lesser overlapping regions is implemented 

in BiSA. To explain the algorithms let us consider three datasets. In the first algorithm, the 

overlapping regions of the two datasets are extracted and then these overlapping regions are 

checked for overlapping regions in the third datasets. For example, in Figure 2.9-A region A 

overlaps with two other regions B and C. Therefore region A is said to overlap the other two 

regions. When the regions of the first datasets that overlap with the other datasets are required 

to extract then this algorithm is implemented. However for the drawing of Venn diagrams we 

use the algorithm explained below.  

In the second algorithm the two datasets are checked for overlapping regions. The 

overlapping sections of the overlapping regions are extracted and checked for the overlapping 

regions in the third dataset. For example in Figure 2.9-B the overlapping section D is 

extracted from the overlapping regions A and B. This overlapping section is then overlapped 

with the third region C.  This algorithm is more stringent and requires at least 1 base pair in 

common in the three datasets. For drawing of the Venn diagram we calculate the number of 

common regions using this algorithm. 

 

Figure 2-10: Identifying three overlapping regions. A) Region A overlaps with regions B and 

C. B) The overlapping section D of the overlapping regions A and B is extracted and if the 
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section D overlaps with region C then the three regions A, B and C are reported as 

overlapping regions. We have implemented this stringent algorithm in drawing Venn 

diagrams to show the extent of overlap among three datasets. 

2.13.   Statistical Significance  

We have implemented IntervalStats (Chikina and Troyanskaya, 2012) in BiSA to test the 

statistical significance of overlap between two dataset. IntervalStats is a command line tool 

written mainly for the Unix environment. Therefore, we used the MinGW toolkit (MinGW, 

2013) to compile it for the Windows environment. The BiSA for Windows download 

package includes an IntervalStats executable file and dependent Dynamic Link Library code 

files, however, the tool runs independently of BiSA. When the IntervalStats tool is executed 

through the BiSA GUI, the datasets under study are saved in the ‘data’ subfolder. During the 

execution of the statistical tool the terminal window stays open to show the messages from 

the tool. IntervalStats calculates a p-value for each region in a query dataset against the 

nearest region from a reference dataset. A defined domain dataset, representing the line-space 

of all possible interval locations, acts as a background to the statistical test and can be 

restricted to specific locations, such as promoter proximal regions, to take into account 

known biases in binding site detection. In the simplest case, the domain comprises the entire 

genome. We have populated BiSA with a number of domain files such as promoter regions 

within 10kb of a TSS, intergenic regions and whole genome for hg19, hg18, mm9 and mm8 

assemblies.  Users can select one of the prepopulated domains or can specify a BED file as 

the domain. In addition to individual p-values for region overlap, IntervalStats returns a 

summary statistic, referred to as the Overlap Correlation Value, to identify the overall 

significance of overlap of two datasets. This summary statistic represents the fraction of 

regions in the query dataset with a p-value of overlap to the reference below a significance 

threshold value, and thus reflects the likely significance of overlap of the query and reference 
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datasets. The correlation coefficient can range from 0 to 1, the closer the value to 1 the 

stronger the significance of overlap of two datasets. We have set the threshold p-value to 

0.05, however this value can be changed in the configuration file, BiSA.exe.config if desired. 

2.14.   Gene Annotations 

BiSA also provides the functionality of annotating the regions of interest with known 

genomic features. For this functionality gene annotation data are obtained from the UCSC 

genome browser. Initially we have populated annotations for reference genomes hg18, hg19, 

mm8 and mm9. Custom gene definitions or additional genomes for other organisms can be 

uploaded in the software by the user. 

2.15.   BiSA on Sourceforge.net 

Since many bioinformatics tools are available free of charge and the community welcomes 

any new open source tools, we released BiSA as an open source free software available under 

GNU General Public License. Initially we hosted BiSA code base on CodePlex, Microsoft's 

free open source project hosting site because of better compatibility and options for Microsoft 

.Net Framework projects. However when I started developing BiSA for Linux using Python 

language and PostgreSQL database, we decide to re-locate BiSA on Sourceforge.net. The 

link for the project website is http://bisa.sorceforge.net. I also prepared download packages 

for the Windows and Linux environment and tested the download and installations on 

different computers and platforms.  

2.16.   BiSA for Windows: Installation and Configuration Testing 

BiSA for Windows employs Microsoft SQL Server, therefore, I tested BiSA on various 

recent versions of SQL Server including SQL Server Express versions. There are three main 

steps of installation of BiSA for Windows:  

i) Installation of Microsoft SQL Server database engine  
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ii) Downloading and restoring the BiSA database file  

iii) Linking of the front-end application to the database 

The installation of SQL Server could be a non-trivial task for many biologists therefore 

before publishing BiSA the installation, restoring and linking of BiSA were tested on various 

versions as explained below: 

i) Installation of Microsoft SQL Server database engine: 

There are many editions of SQL Server such as Express, Standard, Enterprise, Developer etc. 

I developed BiSA to work on all of these SQL Server database platforms. The Express 

Edition is limited to 1GB memory utilization and maximum database size is 10GB. Due to 

this limitation BiSA performance might be little slower on the Express Edition, therefore, it is 

recommended that a non-express edition is employed such as SQL Server 2008 

R2/2012/2014 Developer or Standard Edition. A free copy either from DreamSpark 

(Microsoft, 2013a) or from WebsiteSpark (Microsoft, 2013c) can be obtained. Most 

educational institution would have a licensed version under Microsoft Enterprise Agreement. 

Otherwise the free Express edition is available at 

http://www.microsoft.com/sqlserver/en/us/editions/express.aspx.   

I downloaded various versions of the databases along with the Microsoft SQL Server 

Management Studio (SSMS). SSMS is a visual tool to manage SQL Server which can be 

downloaded separately for SQL Server 2008 R2 from Microsoft download centre (Microsoft, 

2013b). The Microsoft SQL Server 2012/2014 Express edition is supplied with SSMS. The 

Microsoft SQL Server database engine installation wizard prompts to assign an instance 

name to the new installation. I named it ‘sqlexpress’ however a different name can be 

assigned, but the name must match the name in the ConnectionString of the BiSA 
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configuration file (BiSA.exe.config) explained in forthcoming sections.  After completing the 

installation of SQL database engine and the SSMS, SSMS can be used to restore the BiSA 

database (download from the project website http://bisa.sorceforge.net) as explained below.  

ii) Downloading and restoring the BiSA database 

The BiSA download includes the backup database file named BiSAx.xx.bak. To restore the 

file, Microsoft SQL Server Management Studio (SSMS) is opened and connected to the 

database engine. Right clicking on the ‘Databases‘ folder icon under Object Explorer and 

choosing ‘Restore Database...’ brings up the Restore Database screen (Figure 2.10).  

 

Figure 2-11: Restore database screen. A) Clicking ‘Device’ option makes “…” button (B) 

available for the selection of backup set. Specify a name of restore (C) and click the available 

backup set (D) 
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Finally clicking OK (Figure 2.10) restores the database to its original folder location of the 

backup where the backup was taken from. If the target system does not have the expected 

folder structure then Microsoft SQL Server gives the following error message:  

"System.Data.SqlClient.SqlError: Directory lookup for the file "C:\path\BiSA.mdf" failed 

with the operating system error 21(The device is not ready.). (Microsoft.SqlServer.Smo)" 

The BiSA backup was created on Microsoft SQL Server 2008 R2 therefore this problem can 

also happen if the restore is attempted on Microsoft SQL Server 2012/2014 that has a 

different folder structure. In that case the database has to be restored in another folder. 

Different folder than the default can be specified by choosing “Relocate all files to folder” 

under Files option on the Restore Database screen (Figure 2.10).  

Detailed steps with screenshots for restoration of BiSA database are described on the project 

website (http://bisa/sourceforge.net).  

iii) Linking of the front-end application to the database 

The BiSA download package also includes an XML-based configuration file named 

‘BiSA.exe.config’.  The configuration file holds the variables where the name of the database 

engine, database name and other settings are defined. More about configuring this file is 

discussed in section 2.15.    

2.17.   BiSA for Linux/Galaxy  

Unix, Linux and Mac share a similar operating system environment and with some effort 

applications can be written to support all of these platforms. Therefore BiSA is written to be 

run on any of the Unix-like operating systems. However, instead of writing our own web-

based front end, we decided to integrate BiSA with the Galaxy (Novak et al., 2013; 
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Blankenberg et al., 2010; Giardine et al., 2005)  genomic research web-based platform for the 

following reasons:  

i. Galaxy is an open source platform and provides a user-friendly web interface (Goecks 

et al., 2010b) (Schatz, 2010).    

ii. Users can download and install Galaxy locally and any tool that runs on Unix/Linux 

command line can be integrated in Galaxy (Taylor et al., 2007).  

iii. Many recently developed bioinformatics tools are Galaxy friendly (Liu et al., 2011b; 

Barash et al., 2013; Cock et al., 2013). 

iv. Galaxy provides eXtended Markup Language (XML) based programming platform 

which makes it easy to integrate existing tools to the Galaxy framework. 

v. Galaxy has a large user base and extensive documentation is available. 

vi. All tools run on a web server and a client does not need to install any tool.  

vii. Galaxy has been utilised by many Australian universities and has been used in the 

GVL (Genomics Virtual Lab) project which is funded by NeCTAR, an Australian 

Government project. 

2.18.   Tool Integration in Galaxy 

Galaxy provides a XML based tool configuration script (GalaxyTeam, 2013) which outlines a 

tool’s inputs as web form fields such as text boxes, dropdown option and checkboxes and 

also defines and links the output of the tool to the web interface.  XML is a mark-up language 

like HTML (Hyper Text Markup Language) defined by W3C (World Wide Web Consortium) 

(Bray et al., 1997), however unlike HTML, tags in the XML are not defined. Any text can be 

defined as a tag following some simple rules. Galaxy has defined its own XML tags to 

perform various options such as command tag specifies the language of the tool being used 

and all the parameters that will be passed to the tool. The Box 2.3 is a code extract of Galaxy 

XML that I wrote to import datasets from Galaxy into the BiSA database, the code also 
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checks the data type of the imported dataset if it is a GFF or BED dataset and parses 

parameters accordingly. 

 

Box 2.3:  An example of Galaxy XML code. The command tag specifies the language of the 

tool and sequence of the parameters that will be processed by BiSA import command 

importdatasets.py. 

Since BiSA for Galaxy is a web-based tool and intended to be used by many researchers at 

the same time, we also save the email address of the researcher when a dataset is imported as 

explained in Section 2.11 BiSA Database Schema. This ensures that only the owner of a 

dataset is allowed to delete or analyse its data. Galaxy’s built-in variable $__user_email__ 

provides the email address of the logged-in user, which is passed to BiSA import dataset 

command (Box 2.3). 

<command interpreter="python">importdatasets.py $__user_email__  

$input  $organism  $refgenome $cellline $dataLabel  

#if isinstance( $input.datatype, 

$__app__.datatypes_registry.get_datatype_by_extension('gff').__

class__): 

gff 

#else: 

bed 

#end if  

$out_file1 

</command> 
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2.19.   BiSA for Galaxy: Installation and Configuration Testing 

I developed BiSA to be compatible to run on all variants of Unix-like operating systems 

therefore I tested the installation of BiSA on various operating systems such as Red Hat 

Enterprise Linux (RHEL), Ubuntu and Mac. At the University of Sydney the RHEL server 

was hosted behind a firewall that required authentication, therefore, the following shell 

command was used to set the proxy. 

export http_proxy=http://username:password@web-cache.usyd.edu.au:8080 

Setting this proxy was also important to obtain Galaxy software updates automatically as 

whenever Galaxy was run, it checked for updates by default. By default Galaxy uses SQLite 

database, however, we have also chosen PostgreSQL database to write BiSA as explained 

above. PostgreqSQL was downloaded from www.postgresql.org for various platforms. 

I installed PostgreSQL on the same server as that of Galaxy, however, if PostgreSQL 

database server is on a different machine then it is required that configuration file 

(pg_hba.conf)  be configured to allow connections from the Galaxy machine. This file 

(pg_hba.conf) ensures that the database server is open for incoming connections to 

PostgreSQL port (default is 5432),  in case PostgreSQL is installed on Windows 7 machine 

then incoming connections to the port 5432 can be allowed by using Windows Firewall with 

Advanced Security under Control Panel. 

Once Galaxy and PostgreSQL were installed; BiSA was installed and configured using the 

following steps. 

1. BiSA Linux package was downloaded from the project website 

(http://bisa.sourceforge.net) (source code and the database backup file). 

2. A new database named bisa was created. 
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3. The database was restored by the following command:  

pg_restore --host=localhost --port=5432 --username=your_db_username --password 

 --dbname=bisa  /backup_location/bisa_pg_0.xxx.backup  

4. A new directory named bisa was created in the tools directory of the Galaxy 

installation typically /galaxy-dist/tools/. 

5. All source code files were copied (*.py and *.xml) in /galaxy-dist/tools/bisa/ 

6. A new section was added in /galaxy-dist/tools_conf.xml by writing the following 

lines: 

<section name="BiSA" id="BiSA"> 

<tool file="bisa/importdatasets.xml" /> 

<tool file="bisa/browsekb.xml" /> 

<tool file="bisa/analysis.xml" /> 

<tool file="bisa/statsign.xml" /> 

<tool file="bisa/annotation.xml" />  

<tool file="bisa/proximalfeatures.xml" />  

</section> 

7. Galaxy was stopped (if already running) and started by the sh run.sh command 

8. BiSA appeared as a new section on the left Tools panel. 

2.20.   BiSA Developmental Issues 

During the development of BiSA I came across many developmental issues, the most 

important of which are discussed in the following sections.  

Some issues stop a programmer from progressing any further. For example, Visual Studio 

(the GUI integrated environment to write C# applications) crashed and stopped working with 

the message “ContextSwitchDeadlock was detected”.  This error occurs because some of the 

genomic region processing code took longer to run than normal Windows programming. This 
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error was corrected by un-checking the ContextSwitchDeadlock option available in the 

Debug->Exceptions screen and expanding the "Managed Debugging Assistants" options. The 

ContextSwitchDeadlock option ensures that a programmer of a software interacts with the 

GUI all the time, however, in the case of genomic region processing this was not required.  

Another error does not allow the SQL Server to start and attempt to start the database engine 

gives the error message “Failed to generate a user instance of SQL Server due to a failure in 

starting the process for the user instance. The connection will be closed." This error was 

corrected by assigning the Local System account to start up the Microsoft SQL Server 

service.  

Some issues occur all the time and need to be addressed in a better way, such as connecting 

to the database. Therefore, I have created a separate text-based XML file ‘BiSA.exe.config’ 

and saved the connection string in the file. The connection string is a text-based instruction to 

the application informing where to locate the database server and what username/password 

should be used to connect the database. An example of the connection string that is used to 

connect the database on a local computer is below.  

<add name="BiSA.Properties.Settings.BiSAConnectionString" 

 connectionString="Data Source=localhost\sqlexpress; Initial Catalog=BiSA; 

 Integrated Security=True"   providerName="System.Data.SqlClient" />  

This connection string Integrated Security=True directs the application to use Windows 

Integrated Security therefore username and password are not required to connect to the 

Microsoft SQL Server as long as the database accepts incoming connections. The Data 

Source property sets the location of Microsoft SQL Server and its instance name. If SQL 

Server is installed as a default instance then specifying just the machine name for the Data 

Source is sufficient.  The Initial Catalog property sets the name of the database. If the SQL 
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Server is installed on a networked server (Figure 2.8), then it is required to set a database 

username and password. In this case the following connection string should be used. 

<add name="BiSA.Properties.Settings.BiSAConnectionString"  

connectionString="Data Source=Server_name_Or_Ip_address\instance_name; 

Initial Catalog=database_name; PWD=password;UID=username; persist security 

info=True" providerName="System.Data.SqlClient" /> 

I have written code to wrap potential errors and display alerts explaining the problem. For 

example, BiSA displays the following error message if there is a problem in connecting to the 

database. 

“Cannot open database BiSA requested by the login. The login failed. Login failed for user 

'ComputerName\UserName'”.  

This error means that there is a problem with the connection string as explained above. The 

BiSA.exe.config file also holds the value of the threshold p-value to calculate the correlation 

coefficient as explained in the statistical significance section. 

BiSA for Galaxy is written in Python and PostgreSQL database. If PostgreSQL is setup on 

another networked machine then it is required that the Galaxy web-front machine is 

authenticated in the PostgreSQL configuration file “pg_hba.conf” (Massa and Riggs, 2013).  

Otherwise the following error occurs:  

OperationalError: (OperationalError) FATAL: no pg_hba.conf entry for host  

2.21.   Discussion 

In this chapter I described how I have selected various computational tools to write BiSA 

bioinformatics resource and tools to analyse genomic data. Firstly, I developed a BiSA for 

Windows version as a desktop application to address needs of an investigator. The Windows 



84 
 

desktop version was written in C# using Visual Studio and Microsoft SQL Server was used 

as the backend database. Desktop version requires installation of Microsoft SQL Server 

which could be difficult for biologist, moreover, we identified its limitation with the 

scalability of useability for large bioinformatics facilities that run their computer systems in 

Unix-like operating systems. Therefore, in second round of development I built a web-based 

Unix/Linux/Mac version that runs under Galaxy. The Galaxy version is written in Python 

utilising PostgreSQL as backend database.  To systematically decide on a suitable database 

for BiSA, I performed database performance benchmarking by writing a Region Mapping 

(RegMap) algorithm for various databases.  

Various databases are heavily used in genomic research, therefore researchers would benefit 

from knowing which database product performs better for a specific type of data. 

Benchmarking software products helps vendors to improve their products and helps users to 

select a product suited to their needs. Various benchmarks for database systems exist and it is 

acknowledged that development and adoption of benchmarks advance research in a research 

area (Sim et al., 2003; Ray et al., 2011).  Ray et. al. (Ray et al., 2011) benchmarked databases 

for spatial data, Xu et. al. (Xu and G¨uting, 2012) benchmarked database for moving objects 

data. Similarly various other benchmarking efforts and their benefits are acknowledged (Bose 

et al., 2009; Venema et al., 2013; Arslan and Yilmazel, 2008) (Aniba et al., 2010). However 

there is no benchmarking effort exists for database performance on genomic region 

operations. Therefore RegMap, being natively written in SQL for Microsoft SQL Server, 

MySQL and PostgreSQL, will advance research in this field and will provide a baseline mark 

for future algorithms.	

ChIP-Seq analyses produce a large number of variant files. Usually detailed information 

about factor, cell-line, condition, peak-calling or analysis parameters used are recorded as 

part of file names or kept separate which makes it difficult to manage such information for a 
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large scale study. Databases provide a more effective way of managing curation, annotation, 

sorting and relationships among data. Therefore RegMap, being a SQL based algorithm, can 

be integrated in any language as most languages provide an application programming 

interface to connect to SQL-based databases. SQL’s simple syntax is also easy for a biologist 

to learn.  

There are a number of tools that are in use by the research community to operate on genomic 

regions, for example BEDTools (Quinlan and Hall, 2010b), Pybedtools (Dale et al., 2011b), 

GenomicTools (Tsirigos et al., 2012), and BEDOPS Tools (Neph et al., 2012). All of these 

tools are designed to operate on text files and integration of these tools in other languages is 

usually difficult. Tabix (Li, 2011)  is another efficient tool that is usually used to extract 

specific regions from large files. However, there is no algorithm available that performs 

genomic region operations natively in a relational database system. Therefore direct 

comparison of the performance between RegMap algorithm and other tools that work on files 

is not appropriate. 

RegMap benchmarking identified that PostgreSQL extracts overlapping regions much faster 

than MySQL. Insertion and data uploads in PostgreSQL were also better, although general 

searching capability of both databases were almost equivalent. For example, both databases 

when searched a table with ~24 million real genomic regions, returned results in ~1 second 

for regions that were within 100K of transcription start site of MYC gene. However we 

identified that applying database indexes do not improve the performance for these kinds of 

genomic operations. 

RegMap benchmarking shows that there is great deal of opportunity to improve the database 

built-in functions that are used to find intersecting geometrical shapes. I acknowledge that in 

other fields such as geo mapping application it is usually not required to find the thousands of 

intersecting features. However for genomic data such as histone marks, the genomic regions 
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can be more than 80 kb. Therefore, with increased use of databases in genomic applications, 

it is needed that database functions are improved and enhanced. I have proposed the 

introduction of a new ‘genomic region’ data-type in all databases (Khushi, 2015).  
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Chapter 3:   Binding Site Analyser (BiSA): database 
resource, archival and tools to analyse genomic regions 

3.1.   Introduction 

The recent revolution in whole genome census approaches has seen an exponential increase 

in available data sets describing genomic features, such as transcription factor (TF) binding 

sites and histone modifications. Recent studies have revealed that there are often overlaps and 

co-association between transcription factors at binding sites (Gerstein et al., 2012; Ballaré et 

al., 2013) and identifying relationships, such as overlaps in genomic features, has become a 

fundamental biological research tool (Meyer et al., 2012). Moreover, the existence of a 

wealth of published public data sets now provides opportunities for data mining in large 

databases of archived genomic data. 

Existing methods of finding overlaps such as BEDTools, UCSC Table Browser, Homer or 

Segtor (Heinz et al., 2010; Quinlan and Hall, 2010a; Renaud et al., 2011) are limited in 

functionality for simultaneous comparison to multiple archived data sets. Moreover, few tools 

provide a simple interface that can be easily implemented by biologists with limited 

computing skills.  

To address these challenges, we have developed BiSA (Binding Sites Analyser), which 

allows the investigator to analyse overlapping or non-overlapping regions, to visualise results 

by Venn diagram, and to identify the genes in the proximity of regions of study. BiSA is 

controlled through a user-friendly graphical user interface (GUI), installed on a Windows 

environment or embedded in the Galaxy web-based high throughput genomic analysis tool. 

Both options maximise the ease of use of this powerful tool for molecular biologists, who 

may lack the necessary computing skills required to use alternate approaches. 
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In Chapter 2, I discussed the basis on which various computation resources were selected and 

have described the backend design of BiSA including computational issues. In this chapter I 

describe the salient features of BiSA version for Windows and Galaxy. 

3.2.   BiSA for Windows 

The BiSA Windows GUI is split across seven tabs, which flow with the usual analysis steps 

of studying genomic regions, i) importing datasets, ii) selecting datasets to be compared, iii) 

performing analysis, iv) studying statistical significance of overlapping regions, v) 

performing annotation of genomic regions, vi) extracting proximal features of specific 

genomic regions and finally vii) administrating datasets (Figure 3.1. 

3.2.1.   Import Datasets to Knowledge Base (KB) 

This is an optional step as the user can choose to analyse only data already contained in the 

KB. The user browses for their dataset, which can be imported in tab-delimited or comma 

delimited BED or GFF format, assigns a logical name and description for the data, and 

uploads to the KB (Figure 3.1). The first 20 lines of the data can be displayed for verification. 

Chromosome position is 0 indexed as in BED format. Comments or header information in the 

file are reported as failed records in the ‘Report’ section. If no valid data are imported in the 

first 50 lines, the upload fails and BiSA stops the import process. The user enters information 

about organism and cell line, TF and conditions, which are saved along with the database 

record. The genome build for the genomic region coordinates must be entered during this 

process (Figure 3.1, circled) and the record will be limited in future analyses to comparison 

with other datasets generated in the same genome and build. Associated data and publication 

links can also be added at this stage. 



89 
 

 

Figure 3-1: Import Datasets to Knowledge Base (KB). This step is optional and users can 

study data already saved in the KB, without importing datasets. In this step, the user can 

upload their own transcription factor DNA binding sites or histone modification locations, 

usually as BED or GFF peak files. If the file extension is other than BED or GFF, BiSA 

prompts the user to choose the right format. It is important to specify a Reference Genome 

(encircled), for instance hg18/hg19 for human or mm9/mm8 for mouse. BiSA will only allow 

comparisons between datasets of the same reference genome.  

3.2.2.   Select Datasets 

This tab displays a list of all datasets in the KB including those uploaded in the first import 

tab. Data are selected for analysis by checking the "active" box beside the relevant dataset 

(Figure 3.2A). Only data from matching reference genomes can be selected for analysis. A 

checked tick in the ‘Active’ column represents an active dataset that can also be used in  the 

third analysis tab, and only active datasets can be annotated. To change the active status of 

datasets from one reference genome (e.g. hg18) to another (e.g. mm9), the user must 
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deactivate all datasets first, which can be done by toggling on and off the ‘Select All’ check 

box and pressing the Update button. Clicking on the text of any row displays further 

information about the data. Website addresses are hyperlinked to the source websites/articles 

for the data. After selecting datasets for analysis, clicking on the Update button activates 

datasets in the BiSA database. The search field (Figure 3.2B) allows the user to search the 

KB by organism, cell line, factor label, reference genome or peak caller. Only datasets that 

are active can be displayed by checking the ‘Active datasets only’ option in the ‘Display 

Filter’ (Figure 3.2C). Displayed data can be sorted according to any of the database fields by 

selecting the column heading for the field of choice (Figure 3.2D). 

3.2.3.   Analysis 

This is the main analysis screen where users can analyse active datasets. Six types of analysis 

are provided: a) calculate percentage overlap of all active datasets, b) extract regions that 

overlap with all active datasets, c) extract overlapping sections of regions common in all 

active datasets, d) extract regions that overlap between two selected datasets, e) extract 

regions that do not overlap with another selected dataset, f) extract overlapping sections of 

regions common in two datasets. Analysis can be restricted by chromosome.  
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Figure 3-2: BiSA Select Datasets screen. This tab displays a list of all datasets in the KB, 

populated by default or as a consequence of uploading in Step-1. Clicking on the text of any 

row displays the reference link of the article, raw data link and notes, if any, below the table. 

Website addresses are hyperlinked to the websites/articles from where the data are obtained. 

(A) Changing the Active ticks and clicking on the Update button implements the selection. (B) 

Users can search the KB by organism, cell line, factor label, reference genome or peak 

caller.  

 

The options a), b) and c) operate on all active datasets while options d), e) and f) are designed 

to work on two selected datasets.  Ticking the “Extract both datasets, bp overlap and centre 

distance between the regions” for options d), e) and f) displays both Dataset-A and Dataset-B 

regions, bp overlap and distance between two sets. The number of base pairs (bp) either in 

common in two sets (set by a positive number) or separating two sets (set as a negative 
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number) can be specified, as can be the maximum allowed distance between the centres of 

two compared regions. Overlapping results can be visualized as Venn diagrams or saved to 

the KB or a tab-delimited text file (Figure 3.3, circled).  

All analyses require setting minimum ‘bp overlaps’, however, specifying maximum distance 

allowable between two binding peaks or limiting results to a chromosome is optional.  A 

positive value for minimum bp overlap would restrict results for regions that share the 

specified number of common base pairs. For instance, setting ‘bp overlap’ to 3 will report 

regions that have at least 3 bases in common.  While studying TFs that compete for a specific 

DNA sequence or finding TFs that form a complex and bind to DNA, the minimum bp 

overlap can be set to 1 and maximum distance from the centre of two sets should be small, 

such as 50 bp. To study TFs that potentially bind close to each other a positive ‘bp overlap’ 

could be set keeping   ‘maximum distance from the centre of two sets’ empty. To study TFs 

that do not overlap however tends to bind in proximity to each other, a negative value of 

minimum bp overlap can be assigned to report nearby regions. For example assigning a bp 

overlap of -100 will report nearby regions separated by up to 100 bases, in this case, a 

maximum centre distance should be specified. The analysis results section is a data grid that 

populates the results of the performed analysis (Figure 3.3, circled). Results can be saved in a 

tab-delimited text format, to allow further analysis in other software. Results can also be 

sorted by selecting any column heading. The Venn diagram button visualizes overlaps of a 

maximum of three activated datasets (Figure 3.3, circled). If there are more than three active 

datasets for drawing the Venn diagram then BiSA displays a warning (Figure 3.4A). Overlap 

statistics are displayed below the Venn diagram, which can also be saved to a file for later 

reference or figure preparation (Figure 3.4B). Overlapping or non-overlapping regions can be 

saved back to the KB (Figure 3.3) allowing them to go into downstream analysis and 

independent annotation. 
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Figure 3-3: Analysis is the main overlap analysis tab of BiSA. BiSA offers six types of 

analysis:  Overlap finding option a) reports overlap percentage with respect to the total 

Dataset-A regions and percentage with respect to the other active dataset regions. 

Overlapping or non-overlapping regions of Dataset-A can be extracted by options b), d) or 

e). Whereas, option c) or f) can be used to extract overlapping sections of regions common in 

all or two datasets. The results of overlap analysis type b), c), d), e) and f) can be saved back 

into the Knowledge Base by the ‘Save to KB’ button, allowing them to go into downstream 

analysis and independent annotation. Ticking the “Extract both datasets, bp overlap and 

centre distance between the regions” for options d), e) and f) displays both Dataset-A and 

Dataset-B regions, bp overlap and distance between the two sets. 
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Figure 3-4: Venn diagrams in BiSA. BiSA can cross-compare a maximum of three active KB 

as a Venn diagram. (A) If there are more than three active datasets then a pop-up window 

appears that allows the investigator to select three datasets to be analysed. (B) Google 

Charts is used to draw Venn diagrams. The diagram can be saved as a high quality PNG file. 
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3.2.4.   Statistical Significance 

The number and location of TF binding regions discovered in a ChIP-seq experiment is 

influenced by experimental design, model used, sequencing depth and analysis approach. 

Therefore, this information is made available in as much detail as possible in BiSA, so that 

users can make judgements about the appropriateness of specific dataset comparisons. To 

determine the level of statistical significance of the degree of overlap in two datasets, the 

IntervalStats command line algorithm (Chikina and Troyanskaya, 2012) is implemented in a 

user friendly graphical interface. Active datasets to be compared are selected via two 

dropdown lists (Figure 3.5). Users can select one dataset as a query and the other one as a 

reference. IntervalStats only takes into account the regions that are within a defined domain 

dataset, representing the total available genomic area for binding. The results are saved as a 

tab-delimited text file with the regions from Dataset-A (query) and Dataset-B (reference), 

Dataset-A region size, the distance between them and the corresponding numerator and 

denominator used to calculate the p-value, which is saved as the last column. Once the 

IntervalStats tool finishes the process and the user closes the terminal window, BiSA 

calculates and displays an Overlap Correlation Value as described in the Section 2.13, which 

reflects the overall significance of overlap of the two datasets. 
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Figure 3-5: Statistical significance of overlapping regions. The statistical significance tab 

allows the user to determine the statistical significance of the extent of overlap of two sets of 

regions. Active datasets are loaded into two dropdown lists and the user selects one dataset 

as a query and the other one as a reference.  Only regions of both datasets that are within the 

selected domain dataset are included in the calculation. Clicking the Execute button calls up 

a command-line window and executes the IntervalStat tool. The command-line window stays 

open to display the messages from the tool. When the terminal window is closed BiSA 

calculates Overlap Correlation Value of the two datasets. 

 

3.2.5.   Annotation 

The annotation tab (Figure 3.6) allows the user to add nearby gene information to a selected 

set of binding regions. Users define maximum distances between binding peak and 

transcription start and end sites of nearby genes. The nearest gene per region or all genes 
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within the designated number of bp limits will be reported. Selecting “Load new genes” 

(Figure 3.6) allows custom gene definitions for additional organisms to be uploaded (Figure 

3.7). The delete genes button allows the user to delete the custom uploaded definitions. We 

also calculate the distance between centre of region to TSS represented as bpTSS, whereas, 

distance from the transcription end site (TES) shown as bpTES.  Therefore, a negative value 

in the bpTSS or bpTES column indicates that the region is upstream of the annotated TSS or 

TES respectively. 

 

Figure 3-6: Gene annotation. The annotation tab allows the user to add gene information, 

from human and mouse reference genome assemblies, taken from the UCSC Genome 

Browser, to their data. This data can be saved in tab-delimited text format for further 

analysis in other software. Annotation can be limited to a chromosome and strand. Start and 

End co-ordinate columns for transcript (tx) and cDNA (cds) represent the numerically lower 

and higher value chromosomal coordinates for genes on both strands. A negative value in the 

bpTSS or bpTES column indicates that the region is upstream of the annotated TSS or TES 
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respectively. Therefore a region within a gene on the positive strand will have a negative 

bpTES value and a positive bpTSS value as for the region highlighted. Only the top 50 results 

are displayed in the grid, however, the full annotated dataset is saved in a tab-delimited text 

file which can be opened in Excel or other spreadsheet management software for further 

analysis. The delete genes button allows the user to delete custom uploaded definitions. 

 

Figure 3-7: New gene definitions. New gene definitions may be uploaded in the software. The 

user must specify columns for chromosome, strand, lower and upper coordinates. 

 

3.2.6.   Proximal Features 

This tab lets the investigator discover features that are in proximity to a gene of interest. The 

nearby genomic features can be discovered by specifying a locus, chromosome and position 

(Figure 3.8A) or a gene (Figure 3.8B). The gene can be searched by specifying an assembly 

such as hg19 and typing either the exact gene symbol or typing the first few letters of the 

gene name and pressing the Search button which brings up a list of matching genes. Once a 



99 
 

gene is selected, its chromosome, strand, TSS and CDS (Coding DNA Sequence) are 

displayed and the user can select whether the distance should be calculated from the gene 

TSS or CDS (Figure 3.8C). The base-pair distance between genomic features and the regions 

is calculated from the centre of the regions and can be set (Figure 3.8D). Selecting ‘all active 

datasets’ reports cell line, feature/factor and total regions found within the specified distance. 

If the user selects a single KB dataset then full details of all regions within the specified 

distance are reported which can then be saved back into the KB. All results can also be saved 

to a file. 

3.2.7.   Administration 

From the Administration tab (Figure 3.9) users can delete a dataset, save selected data in a 

tab-delimited format, and view regions or region sizes. The distribution of region sizes over 

the dataset can also be listed or can be visualised as a histogram (Figure 3.9A). The Clean Up 

Database button (Figure 3.9B-circled) truncates transaction logs, to avoid an impact on 

software performance. 
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Figure 3-8: Proximal features. This tab allows users to search for genomic features located 

in proximity to a specific gene or genomic locus. Searching multiple datasets returns the 

numbers of binding sites for each factor identified. Selecting a single factor returns detailed 

binding region information for interactions in proximity to the gene or locus of interest. 
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Figure 3-9: Administration of datasets. From the Administration tab users can A) view the 

distribution of region sizes over the dataset as a table and histogram, and B) delete a dataset, 

save the data in tab-delimited text format.  

3.3.   BiSA for Other Platforms 

BiSA for Windows was designed to provide an easy desktop graphical user interface (GUI) 

for biologists to archive and analyse transcription factor binding sites and epigenetic 
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modifications. However, there are number of limitations in the desktop version identified as 

explained below: 

1. Personal computers are not as powerful as computer servers due to their limited 

processing power and available memory. This limitation can be partly addressed by 

installing and configuring the database server (Microsoft SQL Server) on an 

enterprise server having larger expandable memory and processing. However, 

transferring datasets over the network can still be challenging and will be a bottleneck 

in an overall performance of the tool.  

2. The second major limitation of the desktop version is difficulty in sharing of the 

results among other investigators. This means that an investigator has to manually 

save and move files across for combining analysis results performed by other 

researchers.  

3. Thirdly many large bioinformatics facilities operate their computer server on Unix, 

Linux or Macintosh (Mac) type operating systems, therefore, adopting a Windows 

based solution institution-wide might not be a feasible solution for bioinformaticians.  

Given this we also developed a web-based version of BiSA written for Unix-like operating 

environments. The web-based solution should be able to support other tools in the ChIP-seq 

and ChIP-chip analysis so that the output data from one pipe-line can be easily fed into the 

input of other tools and researchers should be able to share their results with other researchers 

anywhere in the world.  

3.4.   BiSA for Galaxy: Web Interface Overview 

In the previous chapter I explained the basis on which it was decided to write BiSA for the 

Galaxy platform. Once successfully integrated, BiSA appears as a new tool-set on the left 
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Tools section (Figure 3.10) of the Galaxy main menu. Its order in the tools depends on the 

location of the BiSA XML code in /galaxy-dist/tools_conf.xml file. The Galaxy web interface 

is divided into three parts as shown by two red lines on Figure 3.10. The left vertical section 

shows all the available tools in Galaxy. Galaxy has a long list of pre-configured tools which 

can be searched using the search tools text box available on the top of the Tools panel (Figure 

3.10A). The right vertical panel is called the History that shows all the uploaded datasets and 

results from a tool. Datasets are grouped into histories which can be named and the user can 

switch between different histories. The Options menu on the top of the History (Figure 3.10-

C) provides the option of creating new history, deleting current history, switching between 

histories, retrieving or purging deleted datasets, sharing and publishing datasets. Middle 

section loads a web-form that collects all the values of parameters that are required to run a 

tool, for example the registration form (Figure 3.10).  

Registering with Galaxy is mandatory for BiSA to maintain the privacy of each user and 

segregation of datasets from other users. This can be done by choosing the Register option in 

the User menu and completing four form fields: email, password, confirm password and 

public name (Figure 3.10). Password needs to be at least six characters long. A public name 

is not mandatory; this is the name that is shown to other users when the user shares datasets 

with other users or the public if they choose to. Once a user completes the registration form 

they are automatically logged in and the email address and password can be used for future 

logins.  
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Figure 3-10: BiSA for Galaxy web interface overview. The web interface is divided into three 

vertical parts, A) the left section is called the Tools, B) the right section is called the History 

and the middle section loads the web-form for a tool such as the registration form. 

3.4.1.   Importing Datasets into BiSA 

BiSA for Galaxy is a web-application where all processing is performed on the web server 

therefore a client can be anywhere in the world. Importing datasets into BiSA datasets is 

performed in two steps: datasets are first uploaded to the web-server and then imported into 

the BiSA database. The data can be uploaded to the web-server by any one of the following 

three methods: 

1. Direct browser upload 

2. FTP (File Transfer Protocol)  

3. Specifying a URL (Uniform Resource Locator) 
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Direct browser upload is a good option for small data files of no more than a few Megabytes. 

The maximum theoretical limit of browser upload is 2GB, however, browser upload is slow 

for files that are even as large as few hundred Megabytes. A second disadvantage of using 

browser-based upload for large files is that the protocol of the communication is usually 

HTTP (Hyper Text Transfer Protocol) which is an unreliable protocol if compared to FTP 

(File Transfer Protocol) (Singh et al., 2013; Kurose and Ross, 2012). This means that if 90% 

of the file is sent and then there is a failure, upload has to be restarted from the beginning 

unless special flash-based, java-based or javascript-based unloaders are being used. Due to 

these issues, I have setup the server to accept SFTP (Secure File Transfer Protocol) uploads 

for larger files. Uploading files using a URL is another useful option when data is hosted on a 

remote server and a direct link to the data is known.  

Datasets can also be imported directly from 23 recognised genomic facilities such as UCSC 

Table Browser and BioMart.  

A file can be uploaded through the browser by selecting the Upload File option in Get Data 

menu (Figure 3.11-A). The file is selected by clicking on the Choose File button (Figure 

3.11-B), the file format and the reference genome such as hg19 can also be specified. Once 

the file is uploaded, the file name becomes its label and is shown in the current history as a 

green highlighted text (Figure 3.11-C).   
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Figure 3-11: Uploading data into the Galaxy. A) Data file first needs to be uploaded into the 

web-server using Upload file option under Get Data menu item before it can be imported into 

the BiSA database.B) File to be uploaded can be chosen from local system. C) Uploaded file 

displays in history. 

More information about the file can be seen by clicking on the file name (Figure 3.12). The 

expanded file information shows various options, a preview of data in the file, the total 

number of genomic regions in the file, and the file format. The various attributes of the file 

such as file format, genome, chromosome and coordinates columns can be changed by 

clicking on the pencil icon (Figure 3.12-circled).  
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Figure 3-12: Clicking on the file name label reveals dataset information. 

It is important that Galaxy recognises the uploaded genomic regions file as either BED or 

GFF file format. Galaxy usually can automatically detect the file format, however, it is a 

good idea to specify the format manually to avoid any misinterpretation by the Galaxy script.  

Once the dataset is uploaded into Galaxy the dataset can be imported into BiSA by clicking 

on the ‘Import Dataset to KB’ option under the BiSA menu (Figure 3.13, circled). The file 

format must either be BED or GFF, but the file extension does not matter, for example in 

Figure 3.13 the file extension is TXT, however, its format is recognised as BED format 

therefore it automatically appears in the BiSA import dropdown box. The import datasets 

screen also provides text boxes to specify organism, reference genome, cell line and a unique 

data label.  

BiSA also records the email address of the user who uploads the dataset to identify owner of 

the datasets. Users cannot analyse other users’ datasets. 
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Figure 3-13: BiSA Import Datasets to KB (circled) automatically populates BED or GFF 
formatted datasets from the current history in the dropdown. 

Clicking the Execute button adds the job to the queue waiting to be processed, and a new 

dataset is added in the History, shown grey in the Figure 3.14. Once the processing of the 

data starts the colour of the dataset is changed to yellow and when the job finishes its colour 

is changed to green. If the job fails for any reason the colour turns red. These colours help in 

identifying the current status of dataset processing. All details of the dataset and the email of 

the logged-in user are saved in the ‘kbdetails’ table while the genomic regions are saved in 

the ‘kbsites’ table. The email address identifies the owner of the database. 
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Figure 3-14: Submitting Import Datasets to KB form adds a new job in the queue shown in 

grey in the History. The colour of the dataset changes to yellow when processing and finally 

turns green when the processing successfully finishes. Failed jobs are shown in red. 

3.4.2.   Browse Datasets 

Unlike BiSA for Windows there is no requirement to activate datasets in Galaxy. The Browse 

Datasets screen lets the user browse the available datasets to discover information about the 

datasets available in the knowledge base (KB). The dataset information fields are 

concatenated by a ‘’ sign starting with ‘Default’ or the seven initial letters of the email 

identifying the owner of the dataset. The ‘Default’ keyword represents that all users can use 

the dataset in any analysis, however, other datasets can only be used/analysed by their 

owners. Ideally BiSA should not display datasets belonging to other users, however, this is 

not possible at this stage because of a technical limitation in Galaxy. Hence, only labels of 

dataset are displayed and if users try to perform any analysis on a dataset that does not belong 

to them then BiSA displays an error message.  

In Browse Dataset the datasets can also be viewed based on hg19, hg18, mm9, or mm8 or 

other genomes (Figure 3.15).  
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Figure 3-15: Bowse Datasets can be used to browse the dataset information available in the 

Knowledge Base (KB). 

3.4.3.   Analysis 

Analysis is the main screen where overlapping and non-overlapping datasets can be studied. 

Like BiSA for Windows, users can set a positive ‘minimum base pair overlap’ number for 

extracting regions that share common bases or a negative number to include regions that are 

nearby. Users can only analyse default datasets loaded as KB or datasets belonging to them, 

otherwise analysis fails with a message on the History. Similarly analysis can be restricted to 

a chromosome or maximum distance between centres of the regions. Unlike the Windows 

version, it is not required that datasets are activated for analysing, rather all datasets are 

populated in two dropdown lists filtered based on the selected assembly (eg hg18) (Figure 

3.16).  
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Figure 3-16: Analysis is the main screen where overlapping and non-overlapping datasets 

can be studied. A) Option to save results in the Galaxy history or back into KB. B) Option to 

filter datasets based on an assembly. C) Option to add more datasets for analysis.  

The result dataset is saved on the History panel as described previously. However, if the 

result is required to be saved back into the Knowledge Base (KB) then the Save results drop 

down value should be changed to ‘Save result back to KB’ (Figure 3.16-A), selecting this 
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option reveals a new text box to enter the label for the dataset (Figure 3.17). Saving results 

back to KB only works for analysis options a), b) and c) where result datasets are genomic 

regions. More than two datasets can be analysed by clicking on ‘Add new Dataset Series’ 

(Figure 3.17-C), which adds a new dropdown menu populated with all datasets of the selected 

assembly (Figure 3.17). 

 

Figure 3-17: A section of Galaxy analysis screen. Result can be saved back to knowledge 

base database by changing ‘Save results’ dropdown value to ‘Save result back to KB’. More 

than two datasets can be studied by adding a new Dataset Series. 

Analysis options are largely similar to BiSA for Windows. However due to Galaxy’s web-

based technical environment features are designed differently. For example in the Windows 

version results are shown in a grid and are not saved on disk or in KB until relevant button 
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options are selected. In Galaxy all results are saved in the Galaxy History by default and are 

not shown on screen until explicitly viewed. Here I briefly describe the analysis options and 

their difference with the Windows version if any.   

a) Extract Dataset-A regions that overlap with Dataset-B and Dataset Series (if any):  

This option extracts the overlapping regions of the selected Dataset-A against Dataset-B and 

if more datasets are also selected through adding Dataset Series then the overlapping regions 

of Dataset-A and Dataset-B are checked for overlapping regions in the Dataset Series. The 

results can be saved back to KB by changing the ‘Save result’ option (Figure 3.16-A). 

b) Extract Dataset-A regions that do NOT overlap with Dataset-B regions (ignores 

Dataset Series).  

This option extracts the non-overlapping regions of Dataset-A. This option is designed to 

work for only two datasets in selection, therefore, disregards any dataset in Dataset Series if 

added.  

c) Extract Dataset-A overlapping pieces of regions common in Dataset-B and Dataset 

Series (if any).  

This option extracts the Dataset-A overlapping sections of regions common in all selected 

datasets. 

d) Calculate percentage overlap of Dataset-A with Dataset-B and Dataset Series. 

Like the Windows version, this option calculates  pair-wise total number of overlaps and its 

respective percentage. The result is generated as an HTML file saved on the History. To view 

the results the ‘eye’ icon on the History dataset is clicked (Figure 3.18-circled) and the result 

is shown in the main window. 
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Figure 3-18: HTML output of Galaxy analysis option. Option d) extracts Dataset-A 

overlapping sections of regions common in the all datasets and saves as HTML file in the 

History which can be viewed by clicking on the eye icon (circled).  

e) Draw a Venn diagram of overlaps for a maximum of three datasets.  

This option calculates the total number of overlapping regions among the three datasets and 

shows the overlaps graphically by drawing a Venn diagram. The Venn diagram is saved as a 

HTML file on the History which can be seen by clicking on the eye as described above. The 

Venn diagram in the Figure 3.19 shows the overlapping of three hg18 datasets FOXA1, 

FOXA2 and FOXA3 available in the KB. The diagram image can be saved locally by right 

clicking on the image choosing ‘save image as’. 
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Figure 3-19: Venn diagram is drawn as an HTML file and overlapping numbers used in the 

drawing are also shown. The Venn diagram shows the overlapping of three hg18 datasets 

FOXA1, FOXA2 and FOXA3 available in the KB. 

f) Calculate average region sizes for Dataset-A (round up to two digits).  

This option again generates an HTML file for the bin size of 100 and total number of regions 

counted in a descending order. Figure 3.20 shows the region sizes calculated for the 

Motallebipour  et al. (Motallebipour et al., 2009a) FOXA1 dataset. This reveals that ~90% of 

FOXA1 (7210 out of 8175 total regions) binding sites range from 100 to 400 bases.  

g) Delete Dataset-A (you can only delete your own uploaded datasets).  

In the Windows version the option to delete a dataset is provided under Administration tab, 

however, in the Galaxy version I have not developed a separate Administration link, 

therefore, a deletion option is provided here. When this option is executed BiSA checks the 

ownership of the dataset and if it matches with the logged-in user then the delete SQL 
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command is executed. Users cannot delete the default populated BiSA Knowledge Base (KB) 

or datasets that do not belong to them. 

 

Figure 3-20: Region sizes are calculated for a bin size of 100 and presented as a HTML file 

saved on the History. 

3.4.4.   Statistical Significance 

Statistical significance is determined in exactly the same way as in BiSA for Windows except 

that the Overlap Correlation Value and the output file are displayed on the History (Figure 

3.21). As explained in Chapter 2, the p-values are calculated by using the IntervalStat tool 

(Chikina and Troyanskaya, 2012) InvervalStats tool calculates the p-value of each query 

against the closest reference region,  this information for all the regions can be downloaded 

by clicking the save icon in the History (Figure 3.21-circled).  
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Figure 3-21: The statistical summary, the overlap correlation value and the output file is 

displayed on the History. The output file containing the p-values of all regions can be saved 

by clicking on the save icon in the History (circled). 

3.4.5.   Proximal Features 

This feature is the replication of the Windows version where transcription factor binding sites 

or histone modifications that are near to a gene or locus of interest can be discovered by 

specifying a distance within which the features are to be extracted. In Galaxy version the 

web-interface is different from the Windows version, by default the form (Figure 3.22-A) 

loads all hg19 genes, however, other genomic annotation datasets can be loaded by changing 

assembly to other genomes. The distance is calculated from the transcription start sites (TSS) 

of the genes. Changing ‘Find genomic features from’ gene to locus hides all genes and 

displays two text boxes for chromosome and position (Figure 3.22-B).  By default the regions 

are counted for each dataset of a selected assembly (such as hg19) and the output shows the 
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cell line, factor label and the counted regions within the distance. However if actual regions 

are required to be extracted then the option should be changed to ‘Select dataset to extract 

nearby regions’ and a dataset is selected (Figure 3.22-B). 

A B 

 

Figure 3-22: Genomic features can be extracted with a given distance. A) All genes for a 

selected assembly are loaded and distances are calculated from the transcription start sites 

(TSS). B) Selecting ‘Finding genomic features from a locus’, genes are hidden and two text 

boxes for chromosome and position are displayed. Actual regions can be extracted by 

selecting a dataset. 

3.4.6.   Annotation 

The datasets saved in the Knowledge Base (KB) can be annotated for the nearest genes and 

distance from transcription start sites (TSS). Similar to the BiSA for Windows upstream and 

downstream distances are specified and distances can be calculated from only the TSS or 

downstream distance can be calculated from the transcription end sites (TES). All genes with 

the distance can be reported or can be restricted to closest genes, chromosome or strand. 

Output file is tab-delimited text file linked on the History. 
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3.5.   BiSA Application Example 

To test the utility of BiSA, we studied six hg18 datasets available in the KB, transcription 

factors FOXA1 versus FOXA3 (Motallebipour et al., 2009a), CTCF versus SA1 (Schmidt et 

al., 2010) and ZNF263 (Frietze et al., 2010) versus c-Fos (Raha et al., 2010). The forkhead 

family of pioneer factors (FOXA1, FOXA2 and FOXA3) play important roles in early 

development to metabolism and homeostasis in adults, and are required for regulation of liver 

specific genes (Lee et al., 2005; Motallebipour et al., 2009a; Friedman and Kaestner, 2006). 

Their DNA-binding domains are highly conserved from yeast to mammals, and there is 

evidence for cooperative function between the family members (Motallebipour et al., 2009a; 

Soccio et al., 2011; Friedman and Kaestner, 2006). FOXA factors are pioneer factors due to 

their ability to bind condensed chromatin and reposition nucleosomes, allowing the binding 

of other factors (Friedman and Kaestner, 2006). These TFs work together in complex ways to 

regulate transcription, and co-location of binding sites of these factors have been extensively 

studied in the HepG2 cell line (Motallebipour et al., 2009a; Wallerman et al., 2009). Here we 

demonstrate the application of BiSA by investigating the overlap of binding sites for FOXA1 

(8175 regions)  and FOXA3 (4598 regions) (Motallebipour et al., 2009a) in HepG2 cells. We 

have also examined the MCF7 cell line datasets of Schmidt et al. for the overlap between 

CTCF and the cohesin complex component SA1 which are known to collocate on DNA 

(Schmidt et al., 2010). In addition we also studied two non-related transcription factors c-Fos 

(18211 regions) (Raha et al., 2010) and ZNF263 (4426 regions) (Frietze et al., 2010) in the 

K562 (erythromyeloblastoid leukemia) cell line.  

BiSA overlap analysis of FOXA1 and FOXA3 with at least 1 bp in common reveals that 2929 

FOXA1 regions overlap with FOXA3. On the other hand, 2937 FOXA3 regions overlapped 

with FOXA1, BiSA reported 5,246 unique FOXA1 binding sites and 4598 unique FOXA3 

binding sites. To investigate further,  when we extracted the overlapping common sections of 
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the regions of two transcription factors the overlapping number increased to 2,939 regions 

which shows that some regions of the two datasets overlap more than one region of the other 

dataset. To show this interaction graphically we drew a Venn diagram (Figure 3.25-A). The 

Venn diagram shows 2,939 common sections between the two datasets due to which the sum 

of common sections and unique regions do not equal to total regions of the dataset. We saved 

the overlapping sections back into the KB.  

‘View Region Sizes’ under the Administration tab is used to draw a histogram of region sizes 

using bin size 100 (Figure 3.25-B). The histogram, showing the distribution of overlapping 

region sizes, reveals that ~99% of overlaps exceed 200 bases and there are more than 1600 

regions that have at least 300 bp in common between the two datasets. Similarly the overlap 

analysis (39,568 common regions) of CTCF (49,243 regions) and SA1 (56,092 regions) is 

drawn as a Venn diagram and overlapping sections are represented in a histogram (Figure 

3.25-C,D). Similar to the FOXA1-FOXA3 example, the number of common overlapping 

sections (39586) is greater than the total number of unique overlapping CTCF binding sites 

(39,144) due to the fact that a subset of regions overlap multiple regions in the comparison 

dataset. By contrast, when the unrelated transcription factors, c-Fos and ZNF263, are 

compared, just 559 overlaps are detected as expected for unrelated TFs. A Venn diagram 

showing the dataset overlap and a histogram summarizing the overlaps are drawn (Figure 

3.25-E,F).   We also observed that in three comparisons >94% of the overlapping sections are 

>200 bases long, suggesting that overlapping regions usually share a significant section of the 

two sets 
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Figure 3-23: Example study of overlap between FOXA1 and FOXA3, CTCF and SA1, 

ZNF263 and c-Fos datasets. A) Venn diagram representation of 2,939 overlapping sections 

in FOXA1 (8,175 regions) and FOXA3 (4,598 regions) datasets. B) Histogram for bin size 

100 showing size distribution of FOXA1-FOXA3 common sections of overlapping regions. C) 

Overlap between CTCF and SA1 datasets. D) Distribution of overlapping sections of CTCF 

and SA1. E) Overlap between ZNF263 and c-Fos datasets. D) Distribution of overlapping 

sections of ZNF263 and c-Fos.  
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We annotated the common sections of regions to observe their distribution and distance from 

the nearest TSS by setting criteria of 100kb up and downstream from TSS and extracted the 

annotations of the closest genes. BiSA reported 3656 gene annotations for FOXA1-FOXA3 

overlapping sections, 45,508 annotations for CTCF-SA1 sections and 810 annotations for 

ZNF263-c-Fos sections. The annotation files also contain the distances from each TSS. Using 

these numbers we drew density plots for FOXA1-FOXA3 and CTCF-SA1 in R language 

showing the distribution of the overlapping regions upstream and downstream of TSSs 

(Figure 3.26). The plot reveals that the common regions of two datasets are concentrated 

around TSS suggesting the biological relevance of the overlap in agreement to the original 

publications.  

Finally we investigated the statistical significance of overlap for each of the example 

comparisons. We calculated p-values for all regions in both datasets for each comparison 

using the hg18 whole genome domain. Selecting FOXA1 as query and FOXA3 as reference 

returned an overlap correlation value (OCV) of 0.50. By contrast, if FOXA3 was compared 

as query to FOXA1 as reference, the OCV was increased to 0.72. This provided an average 

OCV value of 0.61.  
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Figure 3-24: Density plot showing distribution of distance from TSS of genes. Common 

sections of regions from FOXA1-FOXA3 and CTCF-SA datasets were annotated, and drew 

density plots for the distribution of distances from the TSS. 
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An average OCV between FOXA1-FOXA3 above 0.5 suggests that two datasets significantly 

overlap, implying that the overlap between FOXA1 and FOXA3 is statistically significant. 

The higher OCV value (0.72) for FOXA3 when selected as query indicate that binding 

pattern of FOXA3 is highly collocating with FOXA1 binding while low OCV (0.5) for 

FOXA1 shows higher independence from the FOXA3 binding pattern. The high degree of 

overlap between CTCF and SA1 also returned a significant average OCV at 0.79. By contrast 

the lower level of overlap seen between ZNF263 and c-Fos was reflected in a non-significant 

average OCV of 0.19, confirming that the two TFs are not related and do not act on the same 

DNA regions in general.   

3.6.    Discussion 

BiSA has been designed to meet the challenges of identifying genomic region overlaps in 

whole genome datasets. BiSA includes an up-to-date database of previously published studies 

reporting binding sites for different factors and specific histone modifications in a range of 

conditions and cell types. No tool, to our knowledge, includes such a pre-loaded knowledge 

base. Initially we have included data generated from human and mouse cells, and expansion 

to other organisms is easily possible. BiSA provides a user-friendly interface allowing the 

user to define and discover overlapping and nearby genomic regions either genome-wide or 

limited by chromosome. Users can visualize genomic overlap results as Venn diagrams and 

can save chart images for use in publications. BiSA can identify genes associated with 

binding regions of interest and also the statistical significance of overlapping regions. 

Although the Apple Macintosh Unix and Linux environments are popular in genomic 

research, Windows-based informatics tools also exist (Ji et al., 2008; Khushi et al., 2012a; 

Khushi et al., 2012b). BiSA for Windows exploits the power of multi-core personal 

computers. In comparison to BiSA, most bioinformatics tools are command line, and such 

tools are not easy to install or to operate by the bench biologist. Galaxy (Goecks et al., 2010a) 
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offers a web-based tool ‘Intersect’, however it is limited in functionality. BiSA’s Windows 

GUI is user-friendly for biologists and provides a sequential step-by-step guide through all 

the options. BiSA provides an easy interface to search and select KB based on organism, 

factor, cell line, condition, peak caller or first author name.  

Most bioinformatics facilities run their servers on Linux/Unix or MAC operating systems, 

therefore, we have designed BiSA version for Linux/Mac that runs under Galaxy platform. 

Choosing the Galaxy platform saved us writing a lot of code and we have used Galaxy’s 

built-in capability for managing users, security of datasets and sharing among other users. 

However, one disadvantage in that Galaxy has its own strict rules of what can be or cannot be 

done. One of the major issues that we observed with Galaxy was that programmatically it 

cannot be identified who is logged in until the user executes a tool. Therefore tools cannot be 

hidden from specific sets of users, however, when a users runs a tool then at its execution the 

user can be identified and restrictions can be applied.    

Finally, a major strength of BiSA is the comprehensive knowledge base, coupled with tools 

to analyse overlapping regions, statistical significance of the overlapping regions and ability 

to annotate and visualize the regions of interest. BiSA’s comprehensive KB is not only useful 

for rapid comparison of a user’s own results to previously published datasets, but also to 

inform decisions such as selection of a peak caller programme or in comparing numbers of 

peaks. The KB suggests that MACS is a popular peak caller software in ChIP-Seq studies 

followed by Cisgenome and HOMER, whereas, the MAT algorithm is widely used in ChIP-

chip studies. In summary, BiSA is designed for ease of use on a Windows platform, and 

includes a comprehensive knowledge base of binding site and histone modification datasets. 

BiSA has the potential to be a useful tool in identifying overlaps in genomic binding regions 

and histone modifications of common transcription factors for biologist. 
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Chapter 4:   Significance of Transcription Factor 
Overlapping Regions 

4.1.   Introduction 

Transcription factors (TFs) form complexes to regulate genes by either binding directly to 

specific DNA sequences or through recruitment of other DNA binding co-factors by a 

tethering mechanism (Wang et al., 2012).  Therefore, if two TFs co-locate on the same 

genomic location or very close to each other then it is likely that the two factors form a 

complex or interact in some way rather than independently regulating gene expression. 

Targeting transcription factors via protein-protein interaction can offer a novel strategy for 

cancer therapy. For example, in many human cancers MDM2 binds to tumour suppressor 

transcription factor p53 and impairs p53 function. This led to the discovery of Nutil, a small 

molecule inhibitor that perturbs the interaction between MDM2 and p53 (Johnston and 

Carroll, 2015; Vassilev et al., 2004; Klein and Vassilev, 2004). Therefore it is important in 

biology to identify interacting or partner TFs.  

Another example of TF cooperation is in human liver hepatocellular cells (HepG2) where the 

analysis of FOXA1 and FOXA3 ChIP-Seq data identified a co-location of FOXA1, FOXA2, 

and FOXA3 suggesting that these FOXA family factors formed a complex. Further analysis 

using co-immunoprecipitation identified that FOXA2 interacts with FOXA1 and FOXA3 

however, FOXA1 and FOXA3 did not interact (Motallebipour et al., 2009b).  

In this chapter I demonstrate the utility of the BiSA knowledge base for generating biological 

hypotheses by studying statistical significance of transcription factor co-occurrence. I first 

perform a validation of statistical comparison among datasets that are generated using 

different tools. I generate a spreadsheet for quick observation of overlap among various 

factors. Finally, I model a cell-line specific transcription factor co-localisation network by 
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calculating statistical significance of overlap of transcription factor binding regions. Based on 

the bioinformatic analysis, this chapter generated some biological relevant hypotheses by 

exploring co-localisation of among various factors so that they could be further studied in the 

laboratory. 

4.2.   Methods 

Transcription factors and histone marks act in a cell-specific manner (Arvey et al., 2012; 

Jolma et al., 2013; Eeckhoute et al., 2009). To study co-localisation of different factors the 

datasets should therefore be generated or derived from the same cell type. Secondly genomic 

coordinates significantly differ in different genomic assemblies, for example the transcription 

start site (TSS) for the BRCA1 gene in hg18 assembly is chr17:38449837 while the BRCA1 

TSS in hg19 assembly is chr17:41196311. Therefore, for any comparison datasets must be 

from the same assembly. 

The BiSA knowledge base (database) contains 1005 datasets of mouse and human assemblies 

consisting of ~24 million genomic regions.  Figure 4.1 shows the distribution of datasets for 

four assemblies (hg19, hg18, mm9 and mm8) in the BiSA database. This distribution showed 

that most studies were conducted on human assemblies in order to understand the molecular 

mechanisms that drive diseases in human. There were significantly more same cell line 

datasets in hg19 than other assemblies therefore, in this chapter I analysed hg19 datasets.  

The BiSA algorithm (RegMap) was used to identify regions that overlapped by at least 1 base 

pair. The analysis was primarily performed in BiSA for Windows with SQL Server due to the 

comparative better performance and ease of use. A script was written that generated the 

overlapping results for all datasets in the BiSA knowledge base (Box 4.1). The overlapping 

results were saved into a table (OverlapAllStudy) in the database. The results were exported 



128 
 

to a Microsoft Excel file and published (Khushi, 2015) for researchers who can browse and 

filter results without the need to install BiSA. 

 

Figure 4-1: Distribution of datasets for four (mm8, mm9, hg18 and hg19) reference 

assemblies in the BiSA knowledge base. 

In BiSA the IntervalStats tool (Chikina and Troyanskaya, 2012) is implemented to calculate 

the statistical significance of a factor overlapping with another factor as explained in Chapter 

2. IntervalStats calculates a p-value for each peak region by comparing a region from a query 

dataset to the nearest region in a reference dataset. The tool restricts the analysis to regions 

that are within a domain dataset which can be a whole genome or can be possible interval 

locations such as promoter proximal regions. Based on IntervalStat calculated p-values, BiSA 

also calculates a summary statistic, that we refer to as the Overlap Correlation Value (OCV). 

The OCV ranges from 0 to 1, the closer the value to 1 the stronger the significance of overlap 

of two datasets. The OCV represents the fraction of regions in the query dataset with a p-

value less than a specified threshold. For example for a threshold value of 0.05, if there were 

60 regions in query dataset (total 100 regions)  having p-value less than 0.05 then the OCV 

will be 0.6. For analysis in this chapter we set the p-value threshold to 0.05.  
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Box 4.1: SQL code to pair-wise count number of overlaps for datasets in human genome 

assembly, hg19. 

The ChIP-Seq analysis pipe-line involves identifying peak regions using peak-caller software 

as discussed in detail in Chapter 1. Different software identify different numbers of peaks and 

therefore, the total number of regions that overlap between two datasets can be subject to 

change and this could also change the OCV. According to the BiSA knowledge base the most 

popular peak caller used was MACS. There were ~82% (825/1005) datasets generated using 

MACS and many of the remaining studies had validated their peak-calling with MACS. The 

second most popular peak-caller was Homer (42 datasets). Therefore I investigated the 

variation in OCV when these two peak-callers were employed. I began by collecting raw 

sequence data from Welboren et. al. (Welboren et al., 2009). The authors performed ERα 

ChIP-Seq with three treatments: estradiol (E2), tamoxifen (Tam) and fulvestrant (Fulv). I 

Declare @KBId_A int, @KBId_B int, @TotalOverlaps varchar(50) 
 
 DECLARE c_KB1 CURSOR FOR SELECT KBId  from KBDetails where RefGenome='hg19' 
 OPEN c_KB1 
  
  FETCH NEXT FROM c_KB1 INTO @KBId_A 
 WHILE (@@FETCH_STATUS = 0) BEGIN 
   DECLARE c_KB2 CURSOR FOR SELECT KBId  from KBDetails where KBId <> @KBId_A 
and RefGenome='hg19'   
  OPEN c_KB2 
  FETCH NEXT FROM c_KB2 INTO @KBId_B 
  WHILE (@@FETCH_STATUS = 0) BEGIN         
    if not exists (select * from OverlapAllStudy where (KBId_A=@KBId_A 
and KBId_B=@KBId_B) or (KBId_B=@KBId_A and KBId_A=@KBId_B) ) BEGIN 
      select @TotalOverlaps=count(*) from vwKBCompareSites where 
KBid_A=@KBid_A and KBid_B=@KBid_B and bpOverlap>=1 
      insert into OverlapAllStudy Values(@KBid_A, 
@KBid_B,@TotalOverlaps) 
    END 
 
    FETCH NEXT FROM c_KB2 INTO @KBId_B 
  End  
     
  CLOSE c_KB2 
  DEALLOCATE c_KB2 
  
 FETCH NEXT FROM c_KB1 INTO @KBId_A 
End  
CLOSE c_KB1 
DEALLOCATE c_KB1 
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aligned raw sequences to the hg19 assembly using Bowtie 2 and called peaks using both 

MACS and Homer.  

For calculating OCV, one dataset was selected as a query factor while the other was selected 

as a reference dataset; OCV can change when datasets are swapped between query and 

reference due to the different numbers and lengths of regions in each dataset. I translated this 

relationship into ‘directionality of a factor’. When OCV of a query factor was equal or greater 

than 0.5 then I considered the relationship to be significantly influenced by binding of the 

reference factor, I then draw this relationship with an arrow from the reference factor to the 

query factor. This method helped us in visualising significantly interacting co-factors and was 

employed to study datasets for a breast cancer cell line (T47D) which is one of the main 

studied disease in our research group.  

4.3.   Results 

4.3.1.   Validation of Overlap Correlation Value (OCV) 

I performed a systematic validation to see how much the OCV varied if different peak-callers 

were used. Using the datasets from Welboren et. al. (Welboren et al., 2009) study, I called 

6,172, 6,105 and 2,447 regions for ERα-E2, ERα-Tam and ERα-Fulv, respectively using 

MACS. On the other hand, using HOMER, I called 6,893, 6,320 and 2,430 regions for ERα-

E2, ERα-Tam and ERα-Fulv, respectively. This indicated that the number of regions being 

called using the two peak-callers varied. Using BiSA, OCV was calculated for MACS 

datasets and then for HOMER datasets. I found there was a negligible difference in OCV 

when comparing the sets. For example, using MACS generated datasets when ERα-Fulv was 

selected as query and ERα-E2 was selected as reference the OCV was 0.67. The OCV 

decreased to 0.39 when datasets were swapped making average OCV 0.53 for ERα-E2 versus 

ERα-Fulv relationship. The average OCV for the same relation using HOMER datasets was 
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0.565. I considered this difference of 0.035 between the two average OCVs as insignificant. 

Similarly the differences for other comparisons were also minor (Figure 4.2).  

I further investigated the variation in OCV by cross comparing MACS datasets against 

HOMER and vice versa. I again found either no or very small change in OCV (Table 4.1, 

Table 4.2). For example when ERα-E2 dataset, generated by MACS, were selected as query 

and ERα-Fulv dataset, generated by HOMER, were selected as reference the OCV was 0.38 

(Table 4.1). The OCV remained unchanged (0.38) when ERα-E2 dataset, generated by 

HOMER, were selected as query and ERα-Fulv dataset, generated by MACS, were selected 

as reference (Table 4.2).  

This validation identified that OCV remained either unchanged or there was a negligible 

change for both significant and non-significant interactions. Therefore I concluded that 

applying this statistical analysis on BiSA knowledge base is valid when datasets were 

generated using MACS or HOMER. 

Query Datasets 

(MACS) 

 Reference Datasets (HOMER) 

ERα-E2 ERα -Fulv ERα-Tam 

ERα-E2 1 0.38 0.55 

ERα -Fulv 0.67 1 0.67 

ERα-Tam 0.56 0.37 1 

Table 4-1: OCV was calculated by selecting MACS datasets in first column (bold) as query 

while HOMER datasets were selected as reference. 
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Query Datasets  

(HOMER ) 

MACS (Reference Datasets) 

ERα-E2 ERα -Fulv ERα-Tam 

ERα-E2 1 0.38 0.56 

ERα -Fulv 0.67 1 0.7 

ERα-Tam 0.53 0.36 1 

Table 4-2: OCV was calculated by selecting HOMER datasets in first column (bold) as query 

while MACS datasets were selected as reference. 

4.3.2.   Development of a Spreadsheet for Easy Identification of 
Degree of Overlap among Datasets 

Using the BiSA overlap finding algorithm (RegMap) a Microsoft Excel file was generated 

containing information about cell line, factor name (either transcription factor or histone 

mark), treatment condition (if there is any), total number of regions, the number of 

overlapping regions and percentage found in other datasets. The results were spread across 

four spreadsheets depending on reference genome i.e hg19, hg18, mm9 or mm8 (Figure 4.3). 

Researchers can easily filter records based on restricting values in each field and then sorting 

on ‘Percentage  Overlaps’ to find out the most or least interacting dataset. Links were also 

provided to the raw data and original publications.  
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Figure 4-2: Peaks were called using MACS and HOMER tools for ERα datasets with E2, 

Tam and Fulv treatments. Pair-wise OCV was calculated to establish significance of 

variation. Venn diagrams show the degree of common regions among the two datasets. 
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Using the overlapping results data as described above, it was observed that in the HepG2 

(liver hepatocellular) cell line, HNF4G (Gertz et al., 2013) preferentially bound (6,633/6,839, 

97%) enhancer regions H3K4Me1 (Ram et al., 2011), and the majority of HNF4G binding 

sites (4,244/6,839, ~62%) were also found to overlap with STAG1 (Schmidt et al., 2010) 

binding sites (83,080 regions). 4,220 regions were common in the three datasets (Figure 4.4). 

The statistical significance of overlapping of HNF4G with STAG1 and H3K4me1 was further 

analysed in BiSA. BiSA revealed a statistically significant overlap correlation value 

(OCV=0.65) when HNF4G was selected as query and STAG1 was selected as reference 

dataset. Similarly OCV for HNF4G against H4K4me1 was also significant (OCV=0.5) 

(Figure 4.4).  

HNF4G is an orphan nuclear receptor whose ligand and function has not been fully 

understood, however recent studies have shown HNF4G overexpression induces growth of 

cancer tissue (Yang et al., 2014; Okegawa et al., 2013). On the other hand, STAG1 (Stromal 

Antigen 1), also known as SA1, is one of the four subunits of the cohesin complex (Losada, 

2014). Cohesin has important roles in transcription regulation, DNA repair, chromosome 

condensation, homolog pairing, etc. (Mehta et al., 2013; Losada, 2014). Therefore, 

statistically significant overlap of HNF4G with STAG1 indicates an important underlying 

biology which could be further explored in the laboratory. Thes results along with the Excel 

file containing overlapping results were published in my database benchmarking article 

(Khushi, 2015). 
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Figure 4-3: Spread sheet for easy identification of degree of overlap among different 

datasets. Datasets are segregated based on their reference assembly, records can be filtered 

by clicking on small arrow heads on the top of columns. 

 

Figure 4-4: Venn diagram showing degree of overlap among HNF4G, STAG1 and H3K4me1 
datasets. 

4.3.3.   Directionality of Transcription Cooperation 

I studied degree of co-localisation of two factors by calculating OCV. As described in the 

methods section, when OCV of a query factor was equal or greater than 0.5 I considered this 



136 
 

to be binding of the query factor depended on the reference factor and was illustrated this by 

drawing an arrow from the reference factor pointing to the query factor. For example, when 

JUND was selected as a query factor against P300 reference, the OCV was significant (0.78), 

however, when P300 was selected as query against JUND reference then OCV was non-

significant (0.37). This relationship was drawn as a one-way arrow pointing to JUND (Figure 

4.5 A-ii). A two way arrow was used to represent two-way co-localisation. For example, 

there was significant two-way co-localisation of PR binding sites when treated with R5020 or 

ORG2058 (Figure 4.5 B). By visualising directionality of transcription factor interactions we 

could easily identify the potential co-factors that justify further study of the factors.  

4.3.4.   Transcription Factor Networks in ER/PR Positive Breast 
Cancer 

Our research group study breast cancer which is one of the leading causes of cancer related 

deaths in the world (Kanavos, 2006; Jemal et al., 2011). The BiSA knowledge base contains a 

number of datasets for the T47D breast cancer cell line which is an ERα and PR positive 

breast cancer cell line. These steroid hormone receptors play a critical role in development 

and progression of breast cancer, therefore to find novel interacting partners I studied the 

statistical significance of co-location of different factors with ERα and PR in T47D cells.   
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Figure 4-5: The degree of transcription factor overlap was transcribed into a network 

diagram. A-i) JUND was selected as a query factor against P300 reference, the OCV was 

significant (0.78), however, when P300 was selected as query against JUND reference then 

OCV was non-significant (0.37). The JUND-P300 relationship is shown as one-way arrow 

pointing to JUND (A-ii). B-i) Overlap between three PR datasets generated by three 

treatments. Out of six possible combination, three relationships having significant OCV 
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(>0.5) are shown. B-ii) The relationship between PR-R5020 and PR-ORG2058 was 

significant when either factor was selected as a query factor, shown by two-way arrow.  

There were a number of ERα and PR datasets for T47D available in the BiSA knowledge 

base, therefore, I investigated which dataset would be most appropriate to study against other 

factors. For example, Yin et al. (Yin et al., 2012) generated PR binding sites by treatment 

with anti-progestin RU486 (mifepristone) and reported 31,457 binding regions.  Whereas, to 

study PR binding regions Ballare et al (Ballare et al., 2013) treated T47D cells with 10 nM 

R5020 for different lengths of time, Clarke and Graham (Clarke and Graham, 2012)  treated 

samples with 10 nM ORG2058 for 45 minutes before performing ChIP. I performed OCV 

statistical testing on how these datasets compare to each other in order to choose datasets for 

subsequent data analysis. Table 4.3 shows the OCV among various PR datasets.  
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PR-RU486 X 0.33 0.39 0.39 0.37 0.34

PR-ORG2058 
45min 

0.44 X 0.48 0.64 0.64 0.64

PR-R5020 5min 0.61 0.56 X 0.7 0.66 0.6
0.65

PR-R5020 30min 0.55 0.67 0.64 X 0.79 0.72
0.72

PR-R5020 60min 0.53 0.7 0.63 0.82 X 0.77
0.74

PR-R5020 360min 0.49 0.69 0.57 0.76 0.78 X 
0.70

     

Table 4-3: Overlap Correlation Value (OCV) for PR datasets with various treatments. OCV 

was calculated by selecting datasets from first column (bold) as query and datasets from 

other column datasets as reference. Ligand concentrations were 10 nanometre (nM). 
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I identified that the PR activation and binding due to treatment of ORG2058 or R5020 was 

very similar and the correlation among these datasets were statistically significant (Table 

4.3). The OCVs for the PR dataset treated with ORG2058 for 45 minutes against PR-R5020 

datasets were more than 0.5. ORG2058 and R5020, being agonists to PR, generally exhibit 

very similar properties, however, to identify any difference in the datasets I decided to study 

both datasets against other factors in my further analysis. 

The correlation among PR datasets, generated with treatment of R5020 at 5, 30, 60 and 360 

minutes, was also significant, however, I identified that the PR dataset treated with R5020 at 

60 minutes was most representative of the other 3 datasets, with average OCV 0.74 (Table 

4.3). Therefore I decided to use this dataset in further analysis and labelled this dataset as PR- 

R5020.  

On the other hand PR activation and resultant binding due to anti-progestin (RU486) 

treatment revealed non-significant OCVs against PR datasets that were generated by 

progestin activation which was in agreement with other studies that a factor’s binding pattern 

was different using antagonist treatment compared to agonist treatment (Yin et al., 2012). 

Therefore I labelled the PR dataset treated with RU486 as PR-RU486 in my subsequent 

analysis.  

Similarly, I had five datasets describing ERα binding sites from two studies (Joseph et al., 

2010; Gertz et al., 2012). Gertz et al published ERα binding sites by treating with 6 μL of 

5000× concentrated E2 (Estradiol), GEN (Genistein) and BPA (Bisphenol A), while Joseph 

et al. treated with ethanol and E2.  I calculated OCVs for these datasets (Table 4.4) against 

each other. I did not include ERα datasets generated after ethanol treatment for my 

subsequent analysis, since ERα is a ligand activated nuclear receptor. A higher OCV for 

ERα-BPA and ERα-GEN query datasets using the ERα-E2 dataset as reference revealed that 
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most ERα-BPA and ERα-GEN binding regions overlapped with E2 treatment dataset (Table 

4.4). This confirmed that BPA and GEN treatment regulated only a subset of ERα-E2 

regulated transcripts as found by the original study, therefore, the ERα-BPA and ERα-GEN 

datasets were not considered further. There was another ERα-E2 dataset from the Joseph et 

al. study (Joseph et al., 2010), however, I finally chose the Gertz et al. ERα-E2 dataset 

because the study reported more reads and higher number of binding regions (7,587 as 

compared to 5,437). In addition, JUND, CTCF and P300 binding datasets were also taken 

from the Gertz et al study (Gertz et al., 2013), however, FOXA1 datasets were taken from 

Joseph et al study (Joseph et al., 2010). GATA, JARID1B and XBP1 binding datasets were 

taken from Adoma et al, Yamamoto et al and Chen et al studies respectively (Adomas et al., 

2014; Yamamoto et al., 2014; Chen et al., 2014). 12 datasets for the T47D cell line were 

selected to study statistical significance of their co-localisation with each other (Table 4.5) 

and a heat map was drawn using R package gplots with hierarchical clustering (Figure 4.6). A 

network of transcription factor colocation (Figure 4.7) was also drawn using Dia tool (dia-

installer.de). 

Query 
Datasets 

ERα-
EtOH 

ERα-
BPA 

ERα-GEN ERα-E2 
(Joseph et. al.) 

ERα-E2 
(Gertz et. al.) 

ERα-EtOH 1 0.18 0.19 0.34 0.19 

ERα-BPA 0.35 1 0.97 0.84 0.99 

ERα-GEN 0.25 0.62 1 0.74 0.99 

ERα-E2  
(Joseph et. al.) 0.29 0.44 0.6 1 0.69 

ERα-E2  
(Gertz et. al.) 0.2 0.49 0.73 0.63 1 

Table 4-4: OCVs among different ERα datasets. OCV is calculated by selecting datasets in 

the first column (bold) as query and datasets from other columns were selected as reference. 
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Joseph et al treated samples with 10 nM E2 for 3 hour while Gertz et al treated samples with 

6 μL of 5000× concentrated ligands for 10 min. 
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FOXA1-
DMSO 

1 0.37 0.25 0.23 0.47 0.16 0.13 0.27 0.2 0.25 0.31 0.16 

FOXA1-
E2 

0.57 1 0.23 0.22 0.39 0.14 0.14 0.27 0.23 0.24 0.36 0.14 

PR-R5020 0.42 0.26 1 0.7 0.53 0.15 0.1 0.25 0.22 0.25 0.21 0.19 

PR-
ORG2058 

0.34 0.22 0.64 1 0.44 0.14 0.09 0.21 0.21 0.22 0.17 0.17 

PR-RU486 0.65 0.32 0.37 0.33 1 0.15 0.11 0.25 0.2 0.25 0.28 0.16 

JUND 0.96 0.67 0.43 0.45 0.86 1 0.05 0.78 0.56 0.74 0.28 0.37 

CTCF 0.26 0.17 0.11 0.1 0.18 0.06 1 0.1 0.08 0.11 0.75 0.1 

P300 0.94 0.61 0.43 0.4 0.8 0.37 0.11 1 0.45 0.52 0.5 0.32 

ERα-E2 0.65 0.57 0.39 0.41 0.58 0.29 0.08 0.47 1 0.5 0.29 0.28 

GATA3 0.63 0.39 0.32 0.32 0.55 0.25 0.11 0.36 0.33 1 0.28 0.23 

JARID1B 0.44 0.32 0.18 0.16 0.3 0.09 0.35 0.21 0.14 0.17 1 0.12 

XBP1 0.6 0.35 0.36 0.35 0.55 0.22 0.12 0.37 0.28 0.34 0.36 1 

 

Table 4-5: OCVs among 12 compared datasets. Datasets in the first column (bold) were 

select as query and the datasets from columns were selected as reference in the calculations 

of OCV. OCVs ≥ 0.5 are shown in red.  



142 
 

 

Figure 4-6: Hierarchical clustering heat map showing correlation of 12 datasets in T47D 

cells using OCV calculated in Table 4.5. 

ERα binding stimulated by E2 revealed a significant correlation (OCV=0.58) with PR 

binding stimulated with RU486 (anti-progestin) in comparison to PR binding stimulated by 

progestin treatment (OCV=0.33). ERα binding also showed a significant correlation with 

FOXA1 and GATA3 when ERα was selected as query factor. On the other hand, ERα 

binding influenced JUND binding when JUND was selected as a query factor (OCV=0.56). 

JUND query also revealed a significant correlation with ERα, P300, PR-RU486, FOXA1 and 

GATA3 (Figure 4.7).  
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Figure 4-7: Transcription factor network in T47D breast cancer cell line. . Arrow head 

points towards a query factor whose OCV was greater than 0.5. 

 When the OCV of a query factor was greater than 0.5 an arrow was drawn pointing to query 

from reference factor.  

When P300 was selected as a query factor it showed a significant correlation with PR-

RU486, FOXA1 and GATA3. P300 is a transcription co-activator which plays a critical role 

in cell growth, proliferation, oncogenesis, apoptosis progression and development of diseases 

(Ghosh and Varga, 2007; Shikama et al., 2003; Partanen et al., 1999; Zhang et al., 2014). 

Unlike transcription factors P300 does not bind directly to DNA, the molecule has a number 

of structural domains such as histone acetyltransferase (HAT) domain, and a C-terminal 
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glutamine-rich domain (Xu et al., 2001) which enables it to interact with nuclear receptors 

such as ERα/PR and other transcription factors such as GATA3, JARID1B and JUND 

(Figure 4.4). The P300 dataset demonstrated strong correlation with PR-RU486 OCV (0.8) 

and was almost twice the value reported by PR-R5020 (OCV=0.43) or PR-ORG2058 

(OCV=0.4). P300 OCV with ERa-E2 was also low (OCV 0.45).  

FOXA1 is a pioneer factor that facilitates the binding of ERα and other factors (Carroll et al., 

2005; Carroll et al., 2006; Hu et al., 2014; Jin et al., 2014). FOXA1 datasets when selected as 

the query against all other factors the OCV was not significant (Table 4.5, Figure 4.7). This 

statistical analysis confirmed previous findings that FOXA1 was a pioneer factor and its 

binding was independent of binding of other factors. On the other hand, co-location of JUND, 

P300 and ERα with FOXA1 datasets (DMSO and E2 treatment) revealed a significant OCV. 

Co-location of XBP1, GATA3 and PR-RU488 only revealed a significant co-location with 

FOXA1-DMSO dataset. Therefore in summarising these relationships in Figure 4.7, I used 

the FOXA1- DMSO dataset to show the relationship with other factors that significantly 

facilitates binding of JUND, P300, ERα, GATA3 and PR-RU486, XBP1.  

CTCF is a silencing factor and its co-location with cohesin components SA1 and RAD21 is 

known in some cell-types (Lee and Iyer, 2012; Herold et al., 2012; Fiorentino and Giordano, 

2012; Rubio et al., 2008). CTCF binding revealed no significant  overlap with other factors 

except JARID1B. Therefore I concluded that CTCF form homodimers by binding to itself, 

therefore, its binding to DNA results in tightly bound chromatin where these regions become 

unavailable for binding of other factors (Yusufzai et al., 2004; Holwerda and de Laat, 2013). 

JARID1B also known as PLU-1 was found highly expressed in some cancers including breast 

cancer (Yamane et al., 2007), therefore, the significant co-location (OCV=0.75) of CTCF 

with JARID1B identified an interesting biological correlation which should further be 

analysed.   
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4.4.   Discussion 

BiSA has a comprehensive knowledge base. By analysing a large number of datasets in a 

systematic way we can unveil interesting systems biology or generate new hypotheses that 

can further be explored in the laboratory.  

BiSA employs Structured Query Language (SQL) which is a powerful query language. Once 

a proper table structure was setup, it took only 12 seconds to count the number of regions on 

each chromosome in the hg19 genome assembly while there were total of ~24 million 

genomic regions in the BiSA database. Easy SQL statement can be used to query the whole 

database of unlimited number of datasets, while equivalent searching tasks require writing 

lengthy code in other languages. However installation of Microsoft SQL Server could be a 

non-trivial task for many biologists, therefore, I published an easy navigable spread sheet file 

for identification of interesting overlap among datasets (Khushi 2015). This Excel file 

provides filters on the fields that provision limiting records based on cell line, factor or 

percentage overlap. Links to original publications and raw data are also provided in the file. 

Therefore, once an interesting overlap is identified a researcher can study the actual regions 

in BiSA or download original data for studying in other tools.  

The analyses presented in this chapter can be performed without the BiSA by developing a 

command-line line tool in a conventional language such as Python and the performance could 

be compared against the database-driven BiSA. However, developing any such tool is outside 

the scope of this thesis.  

Statistical significance of degree of overlap between two datasets was calculated using BiSA 

embedded IntervalStats which calculates p-value of each query region against overlapping or 

closest reference region. Implementing this statistical technique on large datasets is very 

slow. IntervalStats is not a multi-threaded application, and consequently cannot take 
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advantage of multiple computational cores. My validation shows that this technique can be 

applied to datasets that were generated using the two most popular peak-caller tools MACS 

and Homer. By calculating the OCV, I studied the overlap of 12 datasets of various factors 

under different treatment conditions and then generated a network diagram. The network map 

of these factors revealed interesting biological interactions among various factors. The 

network map revealed that FOXA1 influenced binding of seven other factors JUND, P300, 

ERa, GATA3 and PR-RU486, XBP1, however, its own binding was independent of other 

factors. Interestingly ERα had significant OCV with PR when stimulated by anti- 

progesterone (RU-486) while ERα showed no significant overlap with PR when simulated 

with progesterone (R5020 or ORG2058).  

Mifepristone (RU-486), abbreviated as MFP, is one of selective progesterone receptor 

modulators as this synthetic compound binds to PR and exhibits phenotypes ranging from 

agonism and antagonism (Benagiano et al., 2008). My analysis showed that the binding sites 

that were targeted by PR were different under progesterone and mifepristone treatment, 

however, there were 8801 regions common regions between PR-RU486 and PR- 

R5020 which supports previous results that miferpristone acts as partial agonist in the 

absence of progesterone. Mifepristone is used as an abortifacient in first trimester, emergency 

contraception and in a low dose as contraceptive medicine (Benagiano et al., 2014). 

Tristan et al 2012 reviewed the literature for MFP effect on uterine fibroids and concluded 

that MFP reduced heavy menstrual bleeding and improved quality of life with no effect on 

fibroid volume (Tristan et al., 2012). However Yerushalimi et al showed that MFP vaginal 

treatment of 10mg/day significantly reduced the volume of fibroids from 135.3 ± 22.9 cm3 to 

101.2 ± 22.4 cm3 after 3 months of treatment  (Yerushalmi et al., 2014). Reduction in fibroid 

size with MFP treatment suggests that progesterone is the primary stimulant in uterine 

leiomyoma instead of estadiol  (Benagiano et al., 2014; Chabbert-Buffet et al., 2014). 
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Therefore the ERα-E2 significant overlap (OCV=0.65) with PR-RU486 identify an important 

biological cooperation among the two factors.  

CTCF, a silencing factor, showed a significant colocation with JARID1B (OCV=0.75).  

Recently it has been shown that deletion of the JARID1B gene induces apoptosis in two cell 

lines for mantle cell lymphoma and acute myeloid leukemia, confirms an important role of 

JARID1B in carcinogenesis (Su et al., 2015). In another study it has been shown that up-

regulation of JARID1B was related to poor prognosis and chemotherapy resistance in ovarian 

cancer (Wang et al., 2015). Furthermore its role in breast cancer and other cancers is also 

known (Yamane et al., 2007; Xiang et al., 2007; Yamamoto et al., 2014), therefore, 

statistically significant binding of CTCF with JARID1B identified an important biological 

correlation which should further be explored.    

In summary this chapter has shown the usefulness of the BiSA knowledge base. Using data 

from three different studies I identified that the HNF4G nuclear receptor significantly 

collocates with STAG1 and H3K4me3 promoter marks in the HepG2 cell line. Finally I drew 

a transcription factor action network in the T47D cell-line by extracting data from various 

studies. This network map revealed that PR binding as a result of RU486 (anti-progestin) 

treatment significant more active and co-locate with many other factors than previous 

thought. 
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Chapter 5:   Bioinformatic analysis of cis-regulatory 
interactions between progesterone and estrogen receptors 
in breast cancer 

5.1.   Introduction 

The ovarian steroid hormones progesterone and estrogen play critical roles in the 

development and progression of breast cancer and endometriosis (Salehnia and Zavareh, 

2013; Shao et al., 2014; D'Abreo and Hindenburg, 2013). These hormones exert their 

functions by activating specific nuclear receptors, estrogen binds to estrogen receptor (ER) 

and progesterone binds to progesterone receptor (PR) (Tsai and O'Malley, 1994). 

Once activated these receptors bind to their DNA response elements and regulate 

transcription of target genes. ER and PR, along with human epidermal growth factor 

receptor 2 (HER2), are used to classify phenotypes in breast cancers and to predict response 

to specific therapies (Kittler et al., 2013; Cadoo et al., 2013). A high number of ERα positive 

breast cancers are also PR positive (Cadoo et al., 2013; Penault-Llorca and Viale, 2012). 

Furthermore, studies from animal models and clinical trials have shown that progesterone via 

its receptor PR  is a major player in development and growth of breast cancer and uterine 

fibroids, however, PR inhibits the development of estrogen-driven endometrial cancer (Kim 

et al., 2013a; Ishikawa et al., 2010). Many recent reviews highlight the importance of the  

role that progesterone and estrogen play via their receptors in various types of breast cancers 

(Yadav et al., 2014; Abdel-Hafiz and Horwitz, 2014; Obiorah et al., 2014; Kalkman et al., 

2014; Wang and Di, 2014). Therefore it is important to understand how ERα and PR work 

together in regulating a number of cellular pathways, and clinical and molecular research on 

these factors continue to unveil new insights (Bulun, 2014).  

It is acknowledged that ERα and PR binding, as well as that of other steroid hormone 

receptors, is assisted by binding of the pioneer transcription factor FOXA1 (Ballare et al., 
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2013; Lam et al., 2013) to condensed chromatin, therefore, the interactions of FOXA1 with 

other factors have been well studied (Bernardo and Keri, 2012; Augello et al., 2011). There 

are a number of publications that have studied PR binding sites in progesterone-treated breast 

and other tissues (Yin et al., 2012; Clarke and Graham, 2012; Ballare et al., 2013). Many 

studies have also published ERα binding sites (Tsai et al., 2010; Schmidt et al., 2010; Joseph 

et al., 2010). However there is lack of investigation into the combined action of the two 

factors on DNA.  Therefore in this chapter we investigated the interaction of these nuclear 

receptors on DNA.  Our previously described (Chapter 3) and published BiSA database 

(Khushi et al., 2014) contains a number of datasets describing ERα and PR binding sites for 

various cell lines, therefore, we investigated the binding pattern of these factors in the T-47D 

breast cancer cell line. T-47D cells are derived from metastatic female human breast cancer 

and are known to be ERα and PR positive and their growth is simulated by treatment with 

estrogen (Ström et al., 2004; Chalbos et al., 1982). 

5.2.   Methods 

PR data were taken from the study of Clarke and Graham (Clarke and Graham, 2012) and 

ERα data were obtained from the ENCODE project (Gertz et al., 2012). PR data were 

obtained by treating T47D cells with the progestin ORG2058 for 45 minutes, followed by 

PR-specific chromatin immunoprecipitation and deep sequencing (ChIP-Seq). Gertz et al 

studied ERα binding sites by treating with estradiol (E2), GEN (Genistein) and BPA 

(Bisphenol A) and conclude that compared to E2, GEN and BPA treatment results in fewer 

ERα binding sites and less change in gene expression. We selected the E2-treated dataset for 

our study. Datasets from both studies were of 36 base pair lengths generated on the Illumina 

platform. The PR data were generated using an Illumina Genome Analyzer IIx while ERα 

libraries were sequenced on Illumina HiSeq 2000. The data used in this study have been 

derived from peer-reviewed publications, suggesting that they are of an acceptable quality, in 



150 
 

addition we also performed standard quality control checks prior to our re-analysis of the raw 

data. The two studies used different genome assemblies and different tools to align the reads 

and to call the peaks. Therefore, to remove any biases we re-analysed the raw ERα and PR 

data. We mapped the raw data to the GRCh37/hg19 human genome assembly using Bowtie 

version 2 (Langmead and Salzberg, 2012). The aligned replicates were merged using Picard 

tools (Li et al., 2009) and the Model-based Analysis of ChIP-seq algorithm (MACS) version 

1.4.2 (Zhang et al., 2008) was employed, with default settings, to identify PR and ERα 

binding regions in the two datasets.  Regions associated with greater than 5% false discovery 

rate (FDR) were removed (Zhang et al., 2008). 

We performed motif analysis using HOMER software (Heinz et al., 2010). HOMER employs 

a differential motif discovery algorithm by comparing two sets of sequences and quantifying 

consensus motifs that are differentially enriched in a set. HOMER automatically generates an 

appropriate background sequence matched for the GC content to avoid bias from CpG 

Islands. The tool is exclusively written for analysing DNA regulatory elements in ChIP-Seq 

experiments and has been used in number of high impact publications (Berman et al., 2012; 

Wang et al., 2011b; Xie et al., 2013).  

Overlapping features were studied in BiSA (Khushi et al., 2014). BiSA is a bioinformatics 

database resource that can be run on Windows as a personal resource or web-based under 

Galaxy (Goecks et al., 2010a) as a collaborative tool. BiSA is pre-populated with published 

transcription factor and histone modification datasets and allows investigators to run a 

number of overlapping and non-overlapping genomic region analyses using their own 

datasets, or against the pre-loaded Knowledge Base. Overlapping features can be visualised 

as a Venn diagram and binding regions of interest can also be annotated with nearby genes.  

BiSA also provides an easy graphical interface to find the statistical significance of observed 

overlap between two genomic region datasets by implementing the IntervalStats tool 
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(Chikina and Troyanskaya, 2012). The tool calculates a p-value for each peak region by 

comparing a region from the query dataset to all regions in a reference dataset. The tool 

restricts the analysis to regions that are within a domain dataset which can be a whole 

genome or can be possible interval locations such as promoter proximal regions. Based on 

IntervalStat calculated p-values BiSA calculates a summary statistic, that we refer to as the 

Overlap Correlation Value (OCV). The OCV ranges from 0 to 1, the closer the value to 1 the 

stronger the significance of overlap of two datasets. The OCV represents the fraction of 

regions in the query dataset with a p-value less than a specified threshold. In BiSA, we have 

set the threshold p-value to 0.05 and used a number of domains such as whole genome and 

promoter proximal regions for this analysis.  

We also investigated the spatial correlation of regions of whole datasets being closer to each 

other by Binary Interval Search (BITS) (Layer et al., 2013) and Genometricorr (Favorov et 

al., 2012). BITS implements a Monte Carlo simulation by comparing actual overlapping 

regions to random observed overlap. Genometricorr considers one genomic region set as a 

reference and the other set as a query and provides four asymmetric pair-wise statistical tests 

i) relative distance also called Local Correlation, ii) Absolute Distance, iii) Jaccard statistic 

and iv) Projection statistical tests. In Local Correlation the significance of relative distance 

between the genomic regions is measured by Kolmogorov-Smirnov test; in absolute distance 

test the significance of base pair distance among the regions is measured by permutation test; 

the Jaccard statistic takes into account the ratio of intersecting bases to the union base pairs. 

A Projection test calculates the overlapping centre points of query to reference regions and 

finds the significance of a result outside of the null expectation by binomial test (Favorov et 

al., 2012).  We performed 10,000 simulations for BITS and Genometricorr statistical tests. 

We performed functional annotation of ERα-PR common cis-regulatory regions using 

GREAT (Genomic Regions Enrichment of Annotations Tool) (McLean et al., 2010). GREAT 
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incorporates annotations from 20 ontologies covering gene ontology, phenotype data, human 

disease pathways, gene expression, regulatory motifs and gene families.  We performed 

GREAT annotation using its default settings.  A region was considered to have a proximal 

association with a gene if it was within 5kb upstream or 1kb downstream of the transcription 

start site (TSS). Regions outside this distance and up to 1000 kb from the TSS to the next 

gene proximal region were considered to have a distal association. 

5.3.   Results 

Analysis of PR and ERα ChIP-seq data from T-47D breast cancer cells revealed 22,152 PR 

and 18,560 ERα binding regions with FDR < 5%. HOMER motif analysis on the top ranked 

1,000 regions by peak score revealed the strong presence of a PRE motif (59.40%) and ERE 

motif  (48.80%) (Table 5.1, 5.2). These were the most statistically significant motifs 

identified, in agreement with other studies (Lin et al., 2007; Kim et al., 2013a). In addition, in 

PR binding regions we found motifs for the transcriptional partners FOXA1 and AP-2 

(TFAP2C) as other top ranked motifs. The transcription factor activator protein 2C 

(TFAP2C) was known to be involved in normal mammary development, differentiation, and 

oncogenesis (Cyr et al., 2015; Lal et al., 2013; Woodfield et al., 2010).  Interestingly PR 

motifs were present in 344 (34.4%) of the 1,000 top ranked ERα binding regions. Consensus 

FOXA1 motifs were also detected in 27% of PR binding regions and 24% of regions bound 

by ERα. FOXA1, a member of the forkhead family of transcription factors, was known to 

bind and reconfigure condensed chromatin to enable the binding of other transcription factors 

(Bernardo and Keri, 2012) . The presence of high quality (p-value < 1.00e-05) peaks and 

known conserved PR and ERα recognition sequences confirmed the success of the alignment 

and peak-calling process. 

The size distribution of ERα (18,560 regions) and PR (22,152 regions) binding regions were 

visualised by drawing a histogram and box plot (Figure 5.1, 5.2).  Mean PR binding region 
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size was 1508 bp with a median of 1336 bp. In contrast, ERα binding regions were on 

average half the size of PR binding regions, with a mean size of 601 bp and median 529 bp. 

Most PR binding regions (~94%) were greater than 1 kb, whereas most ERα binding regions 

(~95%) were less than 1kb. The longer PR regions may be due to longer input DNA fragment 

lengths in the original samples (Kharchenko et al., 2008; Landt et al., 2012) .  

Motif Name / Cell line P-value % of 
Targets 
Sequences 
with Motif 

 

PR(NR)/T47D 1e-123 59.40% 

 

FOXA1(Forkhead)/ 
LNCAP-FOXA1 

1e-28 27.10% 

 

AP-2gamma(AP2)/ 
MCF7-TFAP2C 

1e-10 13.70% 

Table 5-1: Motif analysis of PR regions. Known motif analysis of PR top 1000 regions using 

Homer software. 

Motif Name / Cell line 
P-
value 

% of Targets 
Sequences with 
Motif 

 

ERE(NR/IR3)/ 
MCF7-ERa 

1e-474 48.80% 

 

FOXA1(Forkhead)
/ 
LNCAP-FOXA1 

1e-22 24.30% 

 
PR(NR)/T47D-PR 1e-20 34.40% 

Table 5-2: Motif analysis of ERα regions. Known motif analysis of ESR1 top 1000 regions. 
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Figure 5-1: Distribution of PR binding region sizes. A) Box plot with mean and median 

information. B) Histogram of region sizes with bin size 1000 bp. 

 

Figure 5-2: Distribution of ERα binding region sizes. A) Box plot with mean and median 

information. B) Histogram of ERα region sizes with bin size 200 bp. 
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5.3.1.   Limited Overlap of ERα and PR Regions 

Using BiSA, we identified that almost one quarter (23.6%) of ERα binding regions (4,344) 

overlap with 3,870 unique PR binding regions. This revealed that some long PR binding 

regions spanned more than one ERα binding region and the reverse was also true for large 

ERα binding regions. In total, we found 4,358 regions that were common to the two datasets.  

The Venn diagram in Figure 5.3-A shows this overlap between the two ligand-activated 

transcription factors. The 4,358 overlapping sections of the regions common to the two 

datasets were extracted and plotted for their region lengths (Figure 5.3-B). Out of 4,358 

overlapping sections 4,279 (98.2%) were more than 100 bases long, suggesting a strong 

binding overlap between the two transcription factor data sets. An example of a shared ERα 

and PR binding region is shown in Figure 5.4. The 631 bp ERα binding region (red dotted 

lines) is completely contained within the 813 bp PR binding region (blue dotted lines) and the 

two regions share the peak centre location (Figure 5.4).  

 

Figure 5-3: Visualisation of ERα and PR overlapping common regions. 
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 A) Venn diagram showing overlap between ERα and PR data. The 4344 ERα binding regions 

overlap with 3870 unique PR binding regions making up 4358 overlapping sections.  B) 

Region Sizes of 4358 overlapping sections of the common regions in ERα and PR datasets. 

 

 

Figure 5-4: Example overlapping ERα-PR region. IGV (Integrative Genomics Viewer) 

snapshot of PR binding region at chr1:7507615-7508428 marked by blue dotted lines, ERα 

region is marked by red dotted lines. A) Progestin treated and control samples. The control 

as progestin treated input DNA sample.  B) E2 treated and control sample. The red boxes are 

reads that mapped to forward strand and blue boxes are reads that mapped to reverse strand. 

5.3.2.   Statistical Analysis of ERα-PR Overlap 

To determine whether the overlap between ERα and PR binding was statistically significant, 

statistical analysis was performed in BiSA, BITS and Genometricorr. In BiSA, using a whole 

genome domain and selecting the ERα cistrome as query and PR as reference revealed an 

overlap correlation value of 0.33. The value decreased to 0.26 when PR was selected as query 

and ERα as reference. This showed that, although a considerable proportion of ERα binding 



157 
 

regions are also bound by PR, the two receptors do not cooperate for binding at all sites. To 

determine whether the significance of ERα -PR binding overlap was greater in functionally 

relevant genomic regions, we compared the level of binding overlap over a range of genomic 

domains from promoter proximal (within 500 b of a TSS) to more distal regions (Table 5.3). 

We found a low though consistent overlap correlation value (~0.3) whether promoter 

proximal or distal sites were included in the analysis (Table 5.3). To confirm that the OCV 

result is independent of the mean region sizes of the two datasets, we fixed the PR region 

sizes to 300 bases from each side of peak summits to match mean ERα region length 

(mean=601) and performed the OCV test again. This did not change the OCV (0.33) for the 

whole genome dataset, and there was negligible change in OCV observed for other domains 

(Table 5.3).   

Using BITS and Genometricorr, we further investigated whether the spatial proximity 

correlation between PR and ERα binding was more significant than expected by chance. 

BITS Monte Carlo simulation reported that the spatial correlation of ERα and PR was 

statistically significant, with a p-value of 0.0001. Similarly Genometricorr’s Local 

Correlation test, Absolute Distance test, Jaccard test and Projection tests also reported the 

spatial correlation between the two factors as statistically significant (p-value =< 1e-04) 

(Figure 5.5). We repeated the tests for the 600bp fixed-width PR dataset and found no change 

in reported p-values from BITS or Genometricorr. This confirmed that a change in average 

region size between the two datasets does not affect the statistical analysis and demonstrated 

that the tendency for binding events for the two factors to be close to each other is 

statistically significant. Hence, the degree of overlap between the two factors was not 

significant, however, the spatial correlation of binding pattern was highly significant.   
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Domain  Overlap Correlation Value (OCV)  # of 
overlaps** 
/ total ERα 
regions in 
domain  
 
 

Query = ERα 

Reference = 
PR  

Query = PR 

Reference = 
ERα 

Query = ERα 
Reference = 
PR  
(600 bp long)* 

Whole Genome  0.33  0.26  0.33 4344 / 
18560 

500 bp upstream, 
downstream of TSS 

0.3 0.17 0.22 112 / 419 

1 kb upstream, 
downstream of TSS 

0.28 0.18 0.25 157 / 647 

5 kb upstream of TSS  0.3  0.21  0.28 304 / 1224 

5 kb upstream, 
downstream of TSS  

0.31  0.22  0.3 522 / 2147 

10 kb upstream, 
downstream of TSS  

0.31  0.22  0.3 929 / 3666 

5 kb upstream, 
downstream from 50kb 
upstream of TSS  

0.29 0.21  0.28 449 / 1929 

5 kb upstream, 
downstream from 100 kb 
upstream of TSS  

0.31  0.24  0.3 514 / 2017 

10 kb upstream, 
downstream from 100 kb 
upstream of TSS  

0.31  0.23  0.3 878 / 3495 

Table 5-3: BiSA Overlap Correlation Value (OCV) testing. BiSA Statistical analysis of 

overlapping of ERα against PR dataset using different domain datasets. .*PR binding regions 

are fixed to 600 bp long by cutting off 300 bp on both sides of peak summits. ** Number of 

overlaps in this column are reported by selecting ERα as query and PR as reference dataset. 

Therefore we conclude that, although there are a number of statistically significant shared 

binding sites in the ERα and PR datasets, and that ERα and PR often bind in proximity to 

each other, the observed overlap of the two factors is not strong enough for them to be 

considered as co-factors that consistently co-operate on shared binding regions.  However, 

the close proximity of the binding regions for the two factors shows a spatial convergence 

and is statistically significant. 
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Figure 5-5: Statistical significance test using Genometricorr. Genometricorr statistical 

significance analysis of ERα (query)-PR (reference). A) Relative and Absolute Distance 

Correlation tests are shown graphically. Overlay line is the data density when in blue section 

shows negative correlation while high density in red section shows positive correlation. B) 

Results from Jaccard and Projection tests are shown in text.   

5.3.3.   Motif Analysis  

The 4,358 common sections of ERα -PR were searched for known motifs. Known motif 

analysis in these common sections revealed a strong presence of ERE, forkhead protein and 

PRE motifs. In Table 5.4, we list the top ranked motifs, ordered by p-value. A PRE motif was 

found in 41.88% (1,825) of the total 4,358 regions, which was much higher than the number 

of ERE motifs detected (14.3% (623) of the sequences). However, this may reflect the higher 
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stringency of the position specific scoring matrix used to identify ERE motif occurrence than 

the matrix used to find PRE motifs since the p-value for ERE motif detection (1e-291) was 

much stronger than the p-value for PRE motif occurrence in the dataset (1e-179). Secondly, 

the ERE motif came from an MCF7 dataset. The presence of FOXA1 motifs in these regions 

suggests that the factor facilitates the binding of ERα and PR on these regions as previously 

reported (Bernardo and Keri, 2012; Augello et al., 2011; Nakshatri and Badve, 2009). In 

addition AP-2 and TEAD4 (TEA) motifs were also identified in these regions and in the 

1,000 top scoring PR binding regions. AP-2 has a known role in normal mammary 

development and breast cancer (Cyr et al., 2015; Lal et al., 2013; Woodfield et al., 2010). 

TEAD4 has also been shown to be co-expressed with other oncogenes and is correlated with 

poor prognosis (Xia et al., 2014; Mesrouze et al., 2014; Lim et al., 2014). The presence of the 

related motifs in the ERα-PR shared regions as well as in regions that bind uniquely ERα or 

PR suggests that AP-2 and/or TEAD play a key role for both receptors and could be 

important in facilitating cooperation between the two nuclear receptors. 

Using Homer, we also looked at relative position distributions of these motifs (Figure 5.6). 

We found that the motifs converge around the centres of the peaks, supporting their 

biological significance as primary binding events.  

We also performed de novo motif analysis that identified a dominant ERE element in the 

common section a canonical forkhead target sequence RYAAAYA. The symbol R in IUPAC 

(International Union of Pure and Applied Chemistry) codes represents the occurrence of 

either A or G and Y represents either C or T.  

 



161 
 

Motif Name / Cell line P-value % of Targets 
Sequences 
with Motif 

 

ERE(NR/IR3)/ 
MCF7-ERa 

1e-291 14.30% 

 

FOXA1(Forkhead)/ 
LNCAP-FOXA1 

1e-249 35.11% 

 

PR(NR)/ 
T47D-PR 

1e-179 41.88% 

 

AP-2gamma(AP2)/ 
MCF7-TFAP2C 

1e-122 20.38% 

 

TEAD4(TEA)/ 
Tropoblast-Tead4 

1e-86 17.97% 

Table 5-4: Known motif analysis of ERα and PR overlapping common regions. Top ranked 

known motif analysis of ERα-PR common sections (4358 regions)   

 

Figure 5-6: Motif position distributions in ERα-PR overlapping regions. Frequency 

distribution of ERE, FOXA1, PRE, AP-2 and TEAD4 motifs around centre of peaks using 50 
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bp bin size. 

The presence of forkhead target sequence in known and de novo motifs confirms the fact that 

the factor facilitates the binding of ERα and PR on these regions. De novo motif analysis also 

revealed AP-2/TFAP2C, TEAD4, GRHL2(CP2), and Ets1-distal (ETS), however, 

interestingly de novo analysis didn’t pick up the PRE (Table 5.5). Therefore we postulate that 

PR binding on some of these regions could be due to protein-protein tethering. AP2 and 

TEAD4 again came up as significant de novo motifs supporting their key role in these 

common regions.  

Rank Motif P-value % of 
Targets 

Best 
Match/Details 

1 1e-370 16.27% 
MA0112.2_ESR
1 

2 1e-280 39.19% 
MA0031.1_FOX
D1 

3 
 

1e-138 37.70% 
AP-
2gamma(AP2)/
MCF7-TFAP2C 

4 1e-128 17.05% 

TEAD4(TEA)/T
ropoblast-Tead4 

5 1e-101 14.20% 
GRHL2(CP2)/H
BE-GRHL2 

6 
 

1e-87 33.30% 

Ets1-
distal(ETS)/CD4
+-PolII 

Table 5-5: De novo motif analysis of ERα and PR overlapping common regions. Top ranked 

de novo motif analysis of ERα-PR common sections (4358 regions)   

We extracted the exact locations of ERE and PRE motifs from 4,358 ERα-PR common 

sections. We identified 8,259 PR motif locations and 1,831 ERα motif locations, ~4.5 times 

more PR motifs than ERα motifs. However, lower P-value of PR motifs (Table 5.4) could be 
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due to higher sequence variability than ERα motif sequences.  We also identified 598 motif 

locations sharing at least 1 bp in common (Figure 5.7). Of these 598 locations 285 locations 

were exactly the same. The sequences of these 285 locations were extracted using the UCSC 

Genome Browser and a sequence logo was drawn using Web Logo (Crooks et al., 2004) to 

visualise the pattern of these sequences (Figure 5.8). The difference in the middle part of this 

logo against PRE or ERE was quite noticeable, for example at the 7th position A was 

dominant with almost equal probability of T, G or C nucleotides; while in case of ERE logo it 

was almost always A and in PRE it ws dominant A with equally shared probability between T 

or G. 

5.3.4.   ERα-PR Common Regions Interact on Enhancer Regions  

We further investigated whether ERα and PR interact on enhancer (H3K4me1) or on 

promoter (H3K4me3) marks. Enrichment for monomethylation of histone H3 lysine 4 

(H3K4me1) is one of well studied chromatin signatures; these regions are known to involve 

in increasing transcription process. Whereas, enrichment for trimethylation of histone H3 

lysine 4 is tightly associated with promoters of active genes (Smith and Shilatifard, 2014). 

We observed that most ERα-PR overlapping sections (3018, 69.3%) overlap with H3K4me1 

marks (Figure 5.9), while only 201 (4.6%) regions overlapped with H3K4me3 marks. BiSA 

statistical analysis revealed a moderately significant overlap correlation value (OCV) of 0.51 

when ERα-PR common regions (4,358) were selected as query and H3K4me1 (73,263 

regions) selected as reference dataset against a whole genome domain. Therefore this 

confirmed that ERα and PR binding on these regions were facilitated by enhancer marks 

(Gadaleta and Magnani, 2014).  
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Figure 5-7: Overlapping of 1,831 ERE and 8,259 PRE motif locations in 4358 common ERα-

PR regions. 

 

PRE 
Motif 

 

ERE 
Motif 

 

 

Figure 5-8: Comparison of PRE and ERE motifs with sequence logo generated from 

sequences of 285 common ERE-PRE motif locations. Error bars represent confidence 

interval in variation of letter height. 
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Figure 5-9: Venn diagram showing an overlap of H3K4me1, H3K4me3 and ERα-PR common 
regions. 

5.3.5.   Bioinformatics Enrichment Analysis of ERα-PR Common 
Regions 

We used GREAT (Genomic Regions Enrichment of Annotations Tool) (McLean et al., 2010) 

to interpret the functional role of 4,358 ERα-PR common regions. Using GREAT default 

parameter as described in Methods, regions were annotated. GREAT revealed that only 34 

regions (~0.8%) are not associated with any gene and 3,687 (~85%) regions are associated 

with 2 genes (Figure 5.10). Most of the regions were found to be distal binding events while 

405 (~9%) regions are within 5kb of transcription start sites (TSS). Region to gene 

association revealed MYC has the maximum number of regions linked to this gene (26 

regions). The known role of the estrogen-induced MYC oncogene in breast cancer (Wang et 

al., 2011a; Orr et al., 2012) confirms a biologically relevant regions-to-gene association. PGR 

was also among the top 10 genes identified with the largest number of associated regions 

(Table 5.6). Gene ontology enrichment analysis of the genes associated with common regions 

revealed epithelial cell development as the most significant biological process (Table 5.7). 

Epithelial cell development was linked to 30 genes associated with 120 regions out of which 

4 regions were within 5kb of a TSS. Pathway Commons, a meta-database of public biological 

pathway information (Cerami et al., 2006), revealed the ERα signalling network as the most 
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significant term (p-value=5.7e-37) where 137 regions were found regulating 24 genes 

associated with this pathway (Table 5.8). The FOXA1 transcription factor network and IL6-

dedicated signalling events were also significant terms (p-value 1.6e-19 and 2.6e-17). Mouse 

phenotype analysis revealed two breast cancer related ontologies (abnormal mammary gland 

epithelium physiology and abnormal mammary gland development) as the most significant 

terms. There were 32 regions associated with 5 genes linked to abnormal mammary gland 

epithelium physiology and 189 regions associated with 52 genes linked to mammary gland 

development.  

Genes Total Regions 
MYC 26 
KCNMA1 23 
TRPS1 22 
TYRP1 18 
EIF3H 18 
MED13L 18 
MPDZ 18 
DSCAM 17 
KIAA0182 16 
PGR 15 

 

Table 5-6: Genes associated with ERα-PR common regions. 
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GO ID Description 
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0002064  Epithelial cell 
development 

32 5.29E
-21

4.63E-
17

7.35E-06 6.44E-02 30 120 AGT,B4GALT1,BASP1,BCL11B,BMP4,CITED1,C
OL18A1,DICER1,ESR1,FOXA1,GATA3,GDNF,GJ
A1,GREM1,GSTM3,HEG1,KCNE1,ONECUT1,PDE
4D,PGR,RAC1,SHROOM3,SPDEF,TFAP2A,TFAP2
C,TP63,VEZF1,WNT7B,WT1,XBP1 

0051897 Positive 
regulation of 
protein kinase B 
signaling cascade 

38 2.99E
-20

2.62E-
16

2.16E-03 1.00E+0
0

18 83 ANGPT1,CCR7,EGFR,F3,GATA3,IGF1,IGF1R,IGF
BP5,IL6,INSR,MTDH,NOX4,PTPRJ,SPRY2,TCF7L
2,TGFBR1,THBS1,TSPYL5 

0045834 Positive 
regulation of lipid 
metabolic process 

134 3.25E
-13

2.84E-
09

4.11E-04 1.00E+0
0

30 92 ABCG1,AGT,APOA1,CCR7,CYP17A1,EPHA8,FGF
1,FGF2,FGFR3,FLT1,GHSR,IGF1R,IRS1,IRS2,KIT,
LDLRAP1,MID1IP1,NOD2,PDGFB,PNPLA2,PPAR
A,PPARGC1A,PRKAA1,PRKCD,PRKCE,RAC1,SO
RBS1,SREBF1,VAV2,VAV3 

043551 Regulation of 
phosphatidylinosi
tol 3-kinase 
activity 

140 5.98E
-13

5.24E-
09

1.10E-04 9.64E-01 13 43 CCR7,EPHA8,FGF2,FGFR3,FLT1,IRS1,KIT,NOD2,
PDGFB,PIK3R1,RAC1,VAV2,VAV3 

0043552 Positive 
regulation of 
phosphatidylinosi
tol 3-kinase 
activity 

165 4.42E
-12

3.87E-
08

1.67E-04 1.00E+0
0

12 35 CCR7,EPHA8,FGF2,FGFR3,FLT1,IRS1,KIT,NOD2,
PDGFB,RAC1,VAV2,VAV3 

0090218 Positive 171 7.76E 6.80E- 3.15E-04 1.00E+0 12 35 CCR7,EPHA8,FGF2,FGFR3,FLT1,IRS1,KIT,NOD2,
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regulation of lipid 
kinase activity 

-12 08 0 PDGFB,RAC1,VAV2,VAV3 

0050731 Positive 
regulation of 
peptidyl-tyrosine 
phosphorylation 

195 2.92E
-11

2.56E-
07

1.97E-04 1.00E+0
0

34 98 ADNP,AGT,ANGPT1,CD44,EFNA5,EHD4,FGF10,F
GFR3,GHR,HES1,HGF,IGF1,IL12A,IL12B,IL15,IL2
0,IL6,IL6ST,ITGB1,JAK2,KIT,KITLG,LIF,LOC284
889,NOD2,NRP1,OSM,PAK2,PDGFB,PTK2B,RICT
OR,SYK,TNK2,VEGFA 

0043550 Regulation of 
lipid kinase 
activity 

211 9.74E
-11

8.53E-
07

1.53E-03 1.00E+0
0

13 43 CCR7,EPHA8,FGF2,FGFR3,FLT1,IRS1,KIT,NOD2,
PDGFB,PIK3R1,RAC1,VAV2,VAV3 

0060740 Prostate gland 
epithelium 
morphogenesis 

261 1.84E
-09

1.61E-
05

6.07E-04 1.00E+0
0

13 61 AR,BMP4,CD44,ESR1,FGFR2,FOXA1,FRS2,GLI2,I
GF1,IGF1R,NOG,SOX9,TP63 

0060512 Prostate gland 
morphogenesis 

273 2.39E
-09

2.10E-
05

9.81E-04 1.00E+0
0

13 61 AR,BMP4,CD44,ESR1,FGFR2,FOXA1,FRS2,GLI2,I
GF1,IGF1R,NOG,SOX9,TP63 

Table 5-7: Top 10 Gene Ontology (GO) biological process associated with ERα-PR common regions. P-values are calculated by binomial and 

hypergeometric tests and corrected by Bonferroni Correction. Binomial Rank is based on the Bionomial P-value, lowest P-value gets higher 

rank. 
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517105 Validated 
nuclear estrogen 
receptor alpha 

40 5.78E-37 9.28E-34 1.83E-03 1.00E+00 24 137 AP1B1,ATP5J,C10orf12,CALCOCO1,CCND1,CD8
2,CEBPB,COL18A1,CTSD,DSCAM,EBAG9,ESR1,
GREB1,HDAC4,HSF2,LMO4,MTA1,MYC,NCOA3



169 
 

network ,NCOR2,NRIP1,PGR,PRDM15,XBP1 
517173 FOXA1 

transcription 
factor network 

46 1.60E-19 2.58E-16 1.06E-06 1.70E-03 24 96 AP1B1,AR,ATP5J,CEBPB,COL18A1,DSCAM,ESR
1,FOS,FOXA1,FOXA2,FOXA3,NCOA3,NFIA,NFI
B,NFIC,NR2F2,NRIP1,PISD,PRDM15,SCGB1A1,S
ERPINA1,SFTPA1,SFTPD,XBP1 

517023 IL6-mediated 
signaling events 

51 2.67E-17 4.29E-14 2.27E-04 3.65E-01 21 83 BCL2L1,CEBPB,CEBPD,FOS,FOXO1,GAB2,HCK,
IL6,IL6ST,IRF1,JAK1,JAK2,LMO4,MAPK14,MITF
,MYC,PIAS1,PIAS3,PIK3R1,PRKCD,RAC1 

517048 FOXA 
transcription 
factor networks 

53 4.20E-17 6.75E-14 8.24E-07 1.32E-03 37 114 ABCC8,ALAS1,AP1B1,APOA1,AR,ATP5J,CEBPA
,CEBPB,CEBPD,COL18A1,CREB1,DSCAM,ESR1,
FOS,FOXA1,FOXA2,FOXA3,FOXF1,HADH,KCNJ
11,NCOA3,NF1,NFIA,NFIB,NFIC,NR2F2,NR3C1,
NRIP1,PISD,PRDM15,SCGB1A1,SERPINA1,SFTP
A1,SFTPD,TAT,TFRC,XBP1 

517138 C-MYB 
transcription 
factor network 

55 2.42E-16 3.89E-13 2.50E-04 4.02E-01 32 122 ATP2B1,BIRC3,CBX4,CCND1,CD34,CDK6,CEBP
A,CEBPB,CEBPD,COL1A2,GATA3,HES1,HIPK2,I
QGAP1,KIT,KITLG,LEF1,MAD1L1,MAT2A,MYB,
MYC,NLK,PIAS3,PPP3CA,RAG2,SND1,TAB2,TF
EC,TOM1,UBE2I,YEATS4,ZFHX3 

485310 Effects of PIP2 
hydrolysis 

62 3.31E-14 5.32E-11 1.67E-04 2.68E-01 12 51 DAGLA,DAGLB,DGKB,DGKH,DGKI,DGKK,PRK
CD,PRKCE,PRKCH,PRKCQ,TRPC6,TRPC7 

485288 Platelet 
activation, 
signaling and 
aggregation 

64 7.00E-13 1.13E-09 9.66E-04 1.00E+00 45 128 ADRA2A,AP2B1,AP2S1,APOA1,ARRB1,BCAR1,
CALM1,CALM2,CAP1,DAGLA,DAGLB,DGKB,D
GKH,DGKI,DGKK,FYN,GAS6,GNA13,GNA14,GN
AQ,GNB1,GRIP2,IGFBP3,LAMP2,LAT,MAPK14,
MAPK3,P2RY1,PDPK1,PIK3R1,PRKCD,PRKCE,P
RKCH,PRKCQ,PTK2,PTPN1,RAPGEF3,RHOB,SE
PT5,SYK,TRPC6,TRPC7,VAV2,VAV3,YWHAZ 

517065 HIF-1-alpha 
transcription 
factor network 

65 1.55E-12 2.49E-09 1.92E-04 3.08E-01 27 82 ABCG2,ADM,ALDOA,BHLHE40,BNIP3,CITED2,
CP,CREB1,CXCL12,EDN1,EGLN1,EGLN3,FOS,HI
F1A,HK1,HMOX1,ID2,ITGB2,NDRG1,NOS2,NT5
E,PFKFB3,RORA,SLC2A1,TFF3,TFRC,VEGFA 
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517031 Integrins in 
angiogenesis 

74 1.58E-10 2.54E-07 7.45E-04 1.00E+00 25 75 BCAR1,CD44,CSF1,FGF2,FN1,FOS,IGF1,IGF1R,I
RS1,KDR,MAP3K1,MAPK3,MAPK8,NFKBIA,PIK
3R1,PTK2,PTK2B,PXN,RAC1,ROCK1,SDC1,SYK,
TGFBR2,VAV3,VEGFA 

Table 5-8: Top 10 Pathway Commons terms associated with ERα-PR common regions. 
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0010172 Abnormal 
mammary gland 
epithelium 
physiology 

19 1.20E-22 8.78E-19 2.02E-03 1.00E+0
0 

5 32 CTNNA1,DDR1,KDM4B,NCOA3,PGR 

0000628 Abnormal 
mammary gland 
development 

44 1.86E-19 1.36E-15 1.09E-06 7.94E-03 52 189 AHR,AR,AREG,ARHGAP5,B4GALT1,BCL2
L11,CCND1,CD44,CDH1,CEBPB,CITED1,C
SF1,DDR1,ELF5,ESR1,FGF10,FGFR2,FKBP
4,FOXA1,GATA3,GJA1,GLI2,GLI3,HPRT1,I
D2,IGF1,IL6,IL6ST,ITGB1,JAK2,KDM4B,LE
F1,LIF,MKL1,MSX1,MSX2,MYBL1,NCOA3,
NOS2,NR3C1,NRG1,NRG3,NTN1,PGR,PHB,
PLGLB1,PRLR,TGFA,TP63,UBE3A,XDH,ZF
PM2 

0002098 Abnormal vibrissa 
morphology 

46 3.85E-19 2.81E-15 1.36E-06 9.94E-03 34 126 ACD,AREG,ATP7B,BARX2,BMP7,CTNNA1
,DICER1,DLX6,EGFR,FGFR2,FOXC1,GATA
3,GLI3,HOXC13,INHBA,INHBB,KITLG,KR
T17,LAMP2,LBR,LEF1,MECP2,MOCS1,MS
X2,POU3F4,RIPK4,SGK3,SPINK5,ST14,TCF
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7L2,TGFA,TP63,TRPS1,VDR 
0002842 Increased systemic 

arterial blood 
pressure 

50 1.61E-18 1.17E-14 2.86E-04 1.00E+0
0 

40 140 ADM,ADORA2A,AGT,CD44,CD47,CHGA,C
ORIN,CTH,CYP4A11,DDAH1,DLL1,DRD5,
EDN1,EGFR,GDNF,GPER,HPRT1,HSD11B2
,IER3,IGF1,IRS1,IRS2,KCNJ11,KCNK9,KCN
MA1,NEDD4L,NOS2,NR3C1,PODXL,PPM1
L,PRKG1,PTGIS,SCNN1B,SPECC1L,THBS1
,TRPC6,VAV2,VAV3,VDR,WNK1 

0006382 Abnormal lung 
epithelium 
morphology 

68 6.95E-17 5.07E-13 1.31E-05 9.56E-02 44 155 ABCA12,ARRB1,BID,BMPER,CEBPA,CELS
R1,CITED2,CTGF,DICER1,EGFR,EPAS1,ER
RFI1,EYA1,FOXA2,GLI2,GREM1,HES1,HIF
1A,HPS1,IGF1,ITCH,KEAP1,KLF5,LIF,LMO
7,MAPK14,NDST1,NEUROD1,NFIB,NR3C1,
PGGT1B,RAB38,RUNX3,S1PR3,SCGB1A1,S
FTPD,SOX2,TCF21,TGFBR1,THBS1,TMEM
38B,TRPS1,VEGFA,WNT7B 

0008372 Small malleus 97 3.67E-15 2.68E-11 1.62E-03 1.00E+0
0 

6 37 GDF6,HOXA1,MSX1,MSX2,MYC,TBX1 

0010900 Abnormal 
pulmonary 
interalveolar 
septum 
morphology 

105 6.38E-15 4.65E-11 2.67E-03 1.00E+0
0 

21 87 ABCA12,B4GALT1,CAV2,DUSP1,EGFR,EP
AS1,ERRFI1,HCK,HIF1A,IGF1,KL,LIF,MAN
1A2,MAPK8,NDST1,NR3C1,PKDCC,SFTPD
,TMEM38B,TRPS1,VEGFA 

0001284 Absent vibrissae 120 4.50E-14 3.28E-10 2.39E-03 1.00E+0
0 

12 60 CTNNA1,HOXC13,INHBA,INHBB,KRT17,L
AMP2,LEF1,RIPK4,ST14,TCF7L2,TP63,TRP
S1 

0001179 Thick pulmonary 
interalveolar 
septum 

123 4.90E-14 3.57E-10 6.92E-04 1.00E+0
0 

20 79 ABCA12,B4GALT1,CAV2,DUSP1,EGFR,EP
AS1,ERRFI1,HCKx,HIF1A,IGF1,LIF,MAN1
A2,MAPK8,NDST1,NR3C1,PKDCC,SFTPD,
TMEM38B,TRPS1,VEGFA 

0001881 Abnormal 
mammary gland 

127 6.35E-14 4.63E-10 3.02E-03 1.00E+0
0 

30 98 AR,AREG,ATP7B,B4GALT1,CCND1,CDH1,
CEBPB,CSF1,CTNNA1,DDR1,EGFR,ELF5,E
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physiology SR1,FOXB1,GJA1,GUSB,HIF1A,ID2,INHBB
,JAK2,KDM4B,LIF,MKL1,NCOA3,NOS2,PG
R,PLGLB1,PRLR,TGFA,XDH 

Table 5-9: Top 10 mouse phenotypes associated with ERα-PR common regions.
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Figure 5-10: ERα-PR common regions-gene association. A) Number of associated genes 
per region. B) Region-gene association binned by orientation and distance to TSS. C) 
Region-gene association binned by absolute distance to TSS. 
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5.3.6.   Differential Gene Expression Analysis by ERα/PR Binding 

Clarke and Graham (Clarke and Graham, 2012) reported 1005 regulated transcripts by PR 

binding while Gertz et a. (Gertz et al., 2012) published 920 regulated transcripts by ERα 

binding in T47D cells. We found that 63 regulated genes were in common in the two gene 

expression studies. Of these 63 common regulated genes, 20 were up-regulated while 14 

genes remained down-regulated in both treatments (Table 5.10).  

Genes Estrogen 
treatment 

Progesterone 
treatment 

ABCC12, ACOT1, ACOT2, AGR3, AZGP1, BNIP3, 
CITED4, CLIC6, CMTM7, GADD45B, HK2, IL6ST, 
KRT15, KRT16, RAB4B, RUNX1, SEC14L2, 
SERPINA3, SLC16A3, SPAG4 
 

Up  Up  

C3orf57, CLDN1, EPHA4, TGFB3 Down  Down  

ACOX2, CADM1, CXCL12, FGD3, KCTD6, NPEPPS, 
OLFM1, PDZK1, PGR, PXK, RARA, RBBP8, STC2, 
TEX14 

Up  Down  

ARL4A, ARL4D, CDKN2B, CORO2A, CYFIP2, DLG2, 
DLX1, EFNA1, FAM107B, FBXO32, FZD4, ITPKA, 
KCNB1, MSX2, MTERFD3, MTSS1, NANOS1, RCAN1, 
SLC7A8, SOX9, TM4SF1, TNFRSF21, TRIM29, 
TSC22D3, VTCN1 

Down  Up  

Table 5-10: Common differentially expressed transcripts by the treatment of estrogen or 

progesterone. 

5.3.7.   Gene Expression Regulation due ERα-PR Common Regions 

To investigate the regulation due to regions that were common in ERα and PR, we 

annotated the 4,358 ERα-PR overlapping regions for all genes with transcription start sites 

(TSS) within 50 kb of a shared region using BiSA and identified 3,338 genes nearby to the 

binding regions. Cross comparing these genes with respective ERα and PR gene expression 

data, we found that 264 genes were regulated by progestins and  218 genes were reported 

to be estrogen-regulated in T47D cells. 35 genes were present in the both ERα and PR 

expression datasets. We further investigated the functional relationships of these 
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differentially regulated transcripts using The Database for Annotation, Visualization and 

Integrated Discovery (DAVID ) v6.7  (Huang da et al., 2009). DAVID functional 

annotation clustering for each set of transcripts that were common in gene expression data 

and BiSA reported genes with TSS within 50 kb of binding regions, revealed regulation of 

apoptosis or anti-apoptosis as one of the top functional annotation cluster (Table 5.11).  

Group of Transcripts 

Regulated by ERα-PR 

Common Regions 

Functional Annotation Count P-Value 

264 genes regulated by 

progestin and ERα-PR 

common regions 

Negative regulation of cell differentiation 

Negative regulation of myeloid cell 

differentiation 

12 

5 

4.0E-4  

9.8E-4 

218 genes regulated by 

estradiol and ERα-PR 

common regions 

Identical protein binding 

Apoptosis 

Programmed cell death 

19 

17 

17 

1.2 E-3 

4.5 E-3 

5.2 E-3 

35 common genes regulated 

by progestin and estradiol  

Monocarboxylic acid binding 

Apoptosis 

Programmed cell death 

3 

5 

6 

6.9 E-3 

4.4E-3 

 1.5E-2 

Table 5-11: Top DAVID functional annotation of estrogen and progestin regulated 

transcripts that were associated with ERα-PR shared binding regions. 

The identification of processes related to cell differentiation and apoptosis as top biological 

processes due to transcripts that were regulated by ERα-PR shared regions suggests that 
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the ERα-PR overlapping regions had an important role in regulating genes that involved in 

facilitating programmed cell death. Therefore we concluded that ERα-PR overlap is 

biologically relevant.  

5.4.   Discussion 

The BiSA database provides a good starting point for studying overlapping binding of a 

range of transcription factors from a comprehensive collection of published studies 

(Khushi et al., 2014). The datasets available in BiSA represent the original genomic 

locations identified in the published studies from which they are sourced. Although the 

same standard pipeline has often been applied, it must be acknowledged that differences in 

read alignment algorithms (Lunter and Goodson, 2011; Kerpedjiev et al., 2014) and the use 

of a variety of peak-caller programmes  (Ladunga, 2010; Pepke et al., 2009; Wilbanks and 

Facciotti, 2010) has an impact on downstream analysis, largely due to differences in 

stringency that affect the number of genomic regions identified. Our initial investigation of 

the overlap in ERα and PR binding in T-47D cells, utilizing the published binding regions, 

revealed an overlap of ~27% of ERα binding regions with the published PR cistrome (data 

not shown). This suggested an interesting functional relationship between the receptors, 

which justified further study. To perform a more rigorous exploration of their overlapping 

binding patterns, we reanalysed the raw ERα and PR ChIP-seq data using a standardized 

pipeline. This illustrates the value of BiSA as an easy to implement first pass tool to 

investigate potential functional relationships in transcription factor binding and epigenomic 

datasets. 

The BiSA statistical overlap correlation value (OCV) represents a statistical summary 

value of the set of p-values calculated by the IntervalStats tool and reflects the overall 

correlation of two binding site datasets. IntervalStats calculates a p-value for each query 

region against the closest reference region within the given domain. It is designed to 
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identify factors that target the same genomic locations. As described in examples in our 

previous study (Khushi et al., 2014) the OCV should be greater than 0.5 for partner factors, 

reflecting a statistically significant correlation between two binding patterns. For example 

the OCV for known partners, FOXA3 (query) to FOXA1 (reference) was 0.72 

(Motallebipour et al., 2009b). Similarly the OCV for CTCF (query) and SA1 (reference), 

which are known to co-locate on DNA, was 0.82 (Schmidt et al., 2010). Therefore the 

lower OCV for ERα-PR suggests that the majority of ERα and PR binding events are 

independent of each other, however, the OCV test does not challenge the biological co-

occurrence of binding of the two factors on the reported regions where IntervalStats reports 

a statistically significant p-value. A consistent overlap was found both proximal and distal 

to gene promoters (Table 5.3). It is acknowledged that gene expression is regulated 

through interaction at a number of cis-regulatory elements, which includes promoters and 

enhancers. Moreover, enhancers can spread over a range of distances from the TSS. 

Therefore, the detection of binding sites over a range of distances and locations is to be 

expected  (Calo and Wysocka, 2013; Bulger and Groudine, 2011a). This spatial correlation 

between the two factors is identified as statistically significant by Monte Carlo simulation 

using BITS, Relevant Distance, Absolute Distance, Jaccard and Projection tests using 

Genometricorr. Therefore, the regions from the two factors are found in close proximity 

more often than expected by chance although they do not exactly overlap.  Therefore the 

consistent OCV observed using various domains and statistically significant spatial 

convergence suggest that the consistent overlap may have biological significance. 

Although not all sites overlapped, many of the shared ERα and PR binding regions were 

highly statistically significant binding sites for both receptors, as determined by a strong p-

value and low FDR value in MACS, suggesting that these are biologically valid binding 

regions for these receptors and that their overlap reflects converging function on a subset 

of gene targets.  
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ERα and PR overlapping regions found to significantly colocation with enhancer regions 

(H3K4me1). It would be nice to compare the results with H3K27 acetylation marks, 

however, at this stage no such data is available publicly. 

In recent years a number of studies have published ERα binding regions in the MCF-7 cell 

line (Grober et al., 2011; Schmidt et al., 2010; Welboren et al., 2009; Tsai et al., 2010; 

Hurtado et al., 2008; Gu et al., 2010; Joseph et al., 2010; Hu et al., 2010). However only 

two studies have published ERα data in T47D cells (Joseph et al., 2010; Gertz et al., 2012). 

We chose to study the Gertz et. al. 2012 dataset because using data from the Joseph et al. 

study we called only 1,817 peaks with FDR < 5%, which can be an indication of low 

quality ChIP (Landt et al., 2012). On the other hand for the PR dataset two datasets in 

T47D were available (Clarke and Graham, 2012; Yin et al., 2012), we did not employ the 

datasets published by Yin et al. (Yin et al., 2012) because the experiment was performed 

with an antiprogestin (RU486) treatment, which would not be expected to elicit the same 

binding pattern as PR agonist, and lacked any control sample. MACS distributes read tags 

from the control sample along the genome to model Poisson distribution, and false 

discovery rate (FDR) is calculated by swapping control and ChIP samples. Therefore it is 

recommended for ChIP-seq studies to have an appropriate input control sample (Wilbanks 

and Facciotti, 2010). ENCODE guidelines also emphasise the importance of using a 

suitable control dataset to adjust for variable DNA fragment lengths (Landt et al., 2012). 

Welboren et. al. (Welboren et al., 2009) studied effects of tamoxifen and fulvestrant 

treatment on the binding of ERα in MCF7 cell-line, however, due to different cell line this 

data cannot be compared with datasets available for T47D cell line. 

There is a slight difference in the reported low-significance motifs for PR data between this 

report and the Clarke and Graham study (Clarke and Graham, 2012).  The two most 

significant motifs (PRE and FOXA1) are the same in the two studies, However, Clarke and 
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Graham found an NF1 half-site as one of the significant motifs and AP-1 sites as non-

significant while in this study we found an AP-2 motif higher in significance than the NF1 

motif (not shown). This minor difference is due to the difference in binding regions as 

Clarke and Graham published 6,312 PR bound regions in T47D cells by aligning to the 

hg18 build of human genome and using the ERANGE peak caller, however, in this study 

we reported 22,152 PR regions by aligning to the hg19 assembly and using MACS as our 

peak caller. The two tools have different statistical algorithms that assign significance to 

the peaks. ERANGE (Enhanced Read Analysis of Gene Expression) algorithm is used for 

analysis both RNA-Seq and ChIP-Seq data while MACS is exclusively designed to call 

peaks for ChIP-Seq data (Feng et al., 2011; Mortazavi et al., 2008).   

The ERα-PR data were collected from two separate publications where the binding of each 

factor was studied by stimulation of T-47D cells with estrogen or progesterone 

independently. Therefore the focus of this study was to examine the correlation of ERα-PR 

binding patterns which revealed an interesting convergence on specific loci. We studied 

the association between common regions and nearby genes and found biologically relevant 

gene  pathways. The Myc oncogene, which was most highly associated with binding sites 

common to ERα and PR, was up-regulated in the ERα regulated gene expression dataset. 

Myc is a known target of both estrogen and progesterone and plays a key role in the 

normal breast and breast cancer (Hynes and Stoelzle, 2009; Curtis et al., 2012) PR itself is 

also regulated by both hormones and the PGR gene was highly associated with shared ERα 

and PR binding regions. Transcriptional regulation by estrogen and progesterone co-

treatment in this cell model was not available, however it would be interesting to study the 

binding of the two factors under the influence of both stimuli (estrogen and progesterone) 

to observe the impact of converging ERα and PR regulation in comparison to individual 

stimulation.  
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In summary, we have evidence for a biologically relevant interplay between PR and ERα 

in a subset of binding sites in breast cancer cells. Our analysis demonstrated the utility of 

our developed and published software BiSA (Khushi et al., 2014), which has a 

comprehensive knowledge base,  consisting of transcription factor binding sites and 

histone modifications collected from previously published studies. Using BiSA we 

identified that ERα and PR co-locate on a subset of binding sites. The BiSA statistical 

testing of overlap revealed a low overlap correlation value (OCV) suggesting that the two 

factors are not obligate cofactors. However, spatial correlation testing using Monte Carlo 

simulation by BITS, Relevant Distance, Absolute Distance, Jaccard and Projection tests by 

Genometricorr revealed a statistically significant correlation between the two factors. The 

ERα, FOXA1, PR, AP-2 and TEAD4 binding motifs are significantly enriched in regions 

that are bound by both ERα and PR. In addition, gene expression analysis revealed 

apoptosis as one of the significant biological process by the set of transcripts that were 

regulated by ERα-PR common region suggesting that their overlap is biologically relevant.  
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Chapter 6:   Discussion 

At the time of initial inception of the project in 2009, there was a lack of tools available to 

explore genomic regions.  UCSC Genome Browser (Kent et al., 2002b) and Galaxy 

provided very limited functions to find overlapping regions. BedTools (Quinlan and Hall, 

2010a) was published in 2010, and in later years a number of other tools were published 

(Tsirigos et al., 2012; Neph et al., 2012; Renaud et al., 2011; Dale et al., 2011a). However, 

there was no integrated tool available that had pre-loaded data from previous publications, 

gene annotations and options to visualise the degree of overlap. These were basic needs in 

most ChIP-Seq studies, therefore, we decided to develop an integrated tool that could 

perform the above necessary operations and with up-to-date datasets from published 

studies for comparison of data with previous reports. 

In Chapter 2, I surveyed SQL and No-SQL based databases and decided to design the 

software using SQL-databases because genomic data follows a strict format which fulfils 

the requirement of SQL-based databases. No-SQL databases are mainly designed to 

incorporate non-standard data. Moreover, SQL databases provide a powerful query 

interface and rational design that makes it easy to link data between different tables. To 

review SQL databases in depth I developed a novel algorithm RegMap (Region Mapping) 

natively written in SQL to find overlapping or nearby genomic regions. Using the RegMap 

algorithm I performed performance benchmarking for widely used databases. The 

benchmarking results for PostgreSQL and MySQL databases were published (Khushi 

2015), however, benchmarking for other proprietary databases was not published because 

of their licensing agreements. Database benchmarking revealed that searching and 

retrieving information were very efficient for all databases.  Results were retrieved in a few 

seconds (<5s) while searching millions of records. However performance related to basic 

mathematical calculations such as subtraction greatly varied among the different databases 
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when large data was processed. Benchmarking identified that PostgreSQL extracts 

overlapping regions much faster than MySQL, in addition, insertion and data uploads in 

PostgreSQL were also time-efficient. The RegMap algorithm performed better than 

database built-in Geo-mapping functions to report intersecting genomic regions. Other 

limitations of built-in Geo functions are that they cannot be used to report nearby genomic 

regions easily. The ability to easily identify nearby genomic regions is built into the 

RegMap algorithm, therefore, with some modifications the algorithm can also be used in 

other computer science applications where nearby spatial data required to be identify such 

as finding nearby geometrical lines or streets. RegMap algorithm was implemented in the 

development of BiSA (Binding Sites Analyser)  (Khushi et al., 2014) software using 

Microsoft SQL Server on Windows version and PostgreSQL on Unix/Linux. Most tools 

that are available to identify overlapping or non-overlapping regions were written for 

Unix/Linux environment. On Windows, which is one of the most popular operating 

systems, there is no comprehensive tool available. Cisgenome (Ji et al., 2011) for Windows 

has very limited options to compare genomic regions. Cisgenome lacks options to extract 

nearby regions and restrict on distance from centre of regions. Therefore BiSA for 

Windows addressed the need for a comprehensive Windows-based application to analyse 

genomic regions. 

Chapter 2 described the BiSA database schema. The database design allows archiving 

unlimited numbers of genomic regions. In recent years due to a steep reduction in 

sequencing costs the rate of generation of genomic data has been growing exponentially. 

Therefore the BiSA database architecture allows researchers to archive and analyse 

unlimited numbers of genomic regions. The BiSA Windows based Graphical user Interface 

(GUI) is very easy to operate, however, we identified that installation of the Microsoft 

SQL Server could be a non-trivial task for biologists. Therefore we developed a web-based 
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version that runs under Galaxy which could be installed once for unlimited number of 

users. BiSA has been populated with >1000 datasets of transcription factors and histone 

modifications. Each dataset has information about genomic assembly, first author, cell line, 

factor, treatment or other useful information which are saved in notes. Links to 

publications and raw data are also recorded, which makes it easy to read about the 

background to the study design. 

Chapter 3 describes all options and application of BiSA. BiSA is an integrated graphical 

user interface (GUI) tool that provides a number of options to study overlapping/non-

overlapping or nearby regions, which otherwise is achieved by a number of different tools. 

Users can visualize genomic overlap results as Venn diagrams and can save chart images 

for use in publications. BiSA can identify genes associated with binding regions of interest 

and also the statistical significance of overlapping regions. In BiSA, the  statistical 

significance of overlapping regions is calculated by the IntervalStats (Chikina and 

Troyanskaya, 2012) tool as this helps in identifying partner factors. BiSA calculates an 

Overlap Correlation Value (OCV) which is a summary statistic of p-values of overlapping 

regions less than a value defined as BiSA threshold. We set this threshold to 0.05, 

however, this can be changed in the BiSA configuration file. An OCV greater than 0.5 is 

considered a significant correlation between two factors. Other statistical tools such as 

Genometricorr (Favorov et al., 2012) and BITS (Layer et al., 2013) are designed to identify 

the statistical significance of the special relationship of two sets of regions.  

Chapter 4 describes the utility of the BiSA knowledge base, which provides a great 

opportunity to mine genomic regions for the identification of biologically relevant 

relationships. In this chapter, I identified that MACS and HOMER were two most popular 

peak-caller tools. As I explained in Chapter 1, different peak-callers identify different 

number of peaks (genomic regions) which could affect calculation of OCV for two 
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datasets. Therefore, I systematically performed validation for calculating the OCV and 

identified that this technique can be applied to datasets that were generated using these two 

peak-callers. Using the data from three different studies I identified that HNF4G nuclear 

receptor significantly collocated with STAG1 and H3K4me3 promoter marks in HepG2 

cell line. STAG1 (Stromal Antigen 1), also known as SA1, is one of the four subunits of 

the cohesin complex involved in transcription regulation, DNA repair, chromosome 

condensation, homolog pairing. Therefore, the statistical significant overlap of HNF4G 

with STAG1 indicates an important underlying biology which could be further explored in 

the laboratory.  

The BiSA knowledge base has a number of datasets describing genomic locations of 

various factors such as ERα, PR and FOXA1 for the T47D breast cancer cell line. In 

Chapter 4, I also studied the correlation between these datasets by calculating OCV and 

drawn a network diagram for significant correlations where OCV was greater than or equal 

to 0.5.The calculation of OCV is a computationally intense task as each region from one 

dataset is matched to its closest region in other dataset then the significance of two regions 

being overlapping or close to each other is calculated.  Therefore I narrowed down my 

selection to 12 datasets based on a number of criteria explained in Chapter 4. The network 

map revealed that FOXA1 influenced the binding of seven other factors JUND, P300, 

ERα, GATA3, PR-RU486, and XBP1. This analysis also revealed that the binding sites 

that were targeted by PR were different under progesterone and anti-progestin 

(mifepristone) treatment. Interestingly ERα had significant OCV with PR when stimulated 

by anti-progestin while ERα showed no significant overlap with PR when simulated with 

progestin. Mifepristone is used as an abortifacient in the first trimester, as emergency 

contraception and in low dose as a contraceptive. Therefore I hypothesised that in the 

presence of mifepristone and estradiol, ERα and PR target similar genomic locations in 
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regulation of gene expression. This relationship could further be validated in the 

laboratory.  

Using BiSA we identified the degree of overlap for datasets in a pair-wise fashion and 

looked for biologically relevant overlapping datasets. We identified that ~27% of ERα 

binding regions overlap with PR binding regions in the T47D breast cancer cell line. Since 

ERα and PR are known to be major players in regulation and progression of breast cancer, 

the sharing of more than one quarter of binding sites between these two factors was 

interesting.  In Chapter 5, we studied these datasets in great depth by sourcing raw data 

from original publications. Using BiSA, we identified that the OCV between ERα and PR 

was only 0.33 when ERα was selected as query and PR was selected as reference and OCV 

further reduced to 0.26 when PR was selected as query against the whole genome as 

domain background. Therefore, the ERα-PR OCV less than 0.5 reflected that the 

correlation was not statistically significant. Based on this finding we concluded that the 

two factors do not usually share binding sites and the observed overlap suggests that their 

activities converge on specific DNA loci. Motif analysis revealed ERα, FOXA1, PR, AP-2 

and TEAD4 binding motifs are significantly enriched in common ERα-PR  regions and  

gene expression analysis identified apoptosis as one of the significant biological process by 

the set of transcripts that were regulated by ERα-PR common regions. Therefore ERα-PR 

analysis suggests that their overlap is biologically relevant.  

In future I have planned to extend the project by designing a unique web interface to 

address some of the limitation of BiSA for Galaxy. For example, although BiSA for 

Galaxy provides essential web-based operations, at present it doesn’t provide a way to 

filter tool options based on a logged-in user. This means that every user of a Galaxy tool 

will be presented with the same set of features, therefore, options cannot be customised 

based on user identification.   
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In summary, in this thesis I described the development of a bioinformatics resource and 

tools (BiSA) to identify genomic regions overlap and statistical significance of the overlap. 

BiSA can annotate genomic regions and degree of overlap can be visualised as a Venn 

diagram. The BiSA database contains a comprehensive knowledge base and I have 

demonstrated how BiSA can be used to study various publicly available datasets. These 

example analyses showed a great utility of BiSA tools and its built-in knowledge base 

Therefore I envision that the BiSA resource and tools will continue to support growth and 

knowledge in bioinformatics and genomic research. I have published three peer-reviewed 

articles which are attached as appendix to the thesis. 
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Benchmarking Database Performance for Genomic Data
Matloob Khushi1,2*
1Bioinformatics Unit, Children’s Medical Research Institute, Westmead, NSW, Australia
2Centre for Cancer Research, Westmead Millennium Institute; Sydney Medical School, Westmead,
University of Sydney, Sydney, Australia

ABSTRACT
Genomic regions represent features such as gene annotations, transcription factor binding sites and epigenetic modifications. Performing
various genomic operations such as identifying overlapping/non-overlapping regions or nearest gene annotations are common research
needs. The data can be saved in a database system for easy management, however, there is no comprehensive database built-in algorithm at
present to identify overlapping regions. Therefore I have developed a novel region-mapping (RegMap) SQL-based algorithm to perform
genomic operations and have benchmarked the performance of different databases. Benchmarking identified that PostgreSQL extracts
overlapping regionsmuch faster thanMySQL. Insertion and data uploads in PostgreSQLwere also better, although general searching capability
of both databases was almost equivalent. In addition, using the algorithm pair-wise, overlaps of>1000 datasets of transcription factor binding
sites and histonemarks, collected from previous publications, were reported and it was found that HNF4G significantly co-locates with cohesin
subunit STAG1 (SA1). J. Cell. Biochem. 116: 877–883, 2015. © 2015 Wiley Periodicals, Inc.

KEY WORDS: TRANSCRIPTION FACTOR BINDING SITES; EPIGENETIC MODIFICATIONS; DATABASE BENCHMARKING; MANAGING GENOMIC LOCATIONS

DATA; REGMAP

The recent revolution in whole genome census approaches has
seen an exponential increase in available data sets describing

genomic features, such as transcription factor binding sites and
histone modifications. Curation of such data and identifying
relationships, such as overlaps in genomic features and closest
gene annotation, are fundamental tasks in this research [Meyer et al.,
2012]. The files containing such genomic data usually have
chromosomal location (chromosome, start and end) information in
them. A number of tools such as Galaxy [Goecks et al., 2010],
BedTools, GenomicTools [Tsirigos et al., 2012] and BEDOPS Tools
[Neph et al., 2012] have been developed to find overlapping/non-
overlapping nearby regions [Quinlan and Hall, 2010; Neph et al.,
2012; Zammataro et al., 2014]. The relationships among the files are
usually manually managed. With exponential growth in available
genomic information, managing manual relationship and curation
of such files are becoming more cumbersome day by day. These
relationships and curation can be better managed using a relational
database such as Microsoft SQL Server, Oracle, MySQL or
PostgreSQL; however, there is no dedicated published algorithm
available that is natively built into a database system to operate on
the genomic features. I have therefore developed a novel algorithm
Region Mapping (RegMap) that operates on genomic locations
natively in the database and have benchmarked the performance of

two major open-source free databases PostgreSQL and MySQL. I
have also compared the RegMap performance against database
built-in spatial functions which provide very limited functionality.

METHODS

Two genomic regions (genomic intervals) are said to intersect or
overlap if both intervals share at least one base pair in common on a
chromosome. Chromosomes were saved as character data-type and
start and end coordinates as integer data-type for the RegMap
algorithm. To compare performance with database built-in spatial
functions the coordinates were saved as linear spatial data-type.
Genomic regions were saved in the Regions table and were linked
with the RegionDesc table where annotation of the regions was
saved, thus simulating a production usage. Each region in the
Regions table was automatically assigned a unique database id
(Primary Key). The start coordinates of the genomic regions were
indexed from 0, according to UCSC recommendations (http://
genome.ucsc.edu/) to speed up calculations, therefore region length
was calculated by subtracting the start from the end coordinate.

RegMap generates all the required objects in a working database.
The algorithm was developed in native SQL (Structured Query
Language) and is therefore compatible with all SQL databases.
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A total of 1005 datasets of transcription factor binding sites and
histone marks from previous publications on human and mouse
assemblies were collected, including hg 19, hg 18, mm9 or mm8.
This ‘Knowledge Base’ was used to perform search benchmarking.

All testing and benchmarking were performed on PostgreSQL 9.0
and MySQL Community Server 5.6.15 GPL (x86_64) installed on a
personal computer of 4 core 2.4 GHtz processor with 8GB memory.
MySQL Server supports a number of storage engines, however I have
benchmarked performance for two widely used InnoDB and
MyISAM storage engines [Sheldon and Moes, 2005; Padilla and
Hawkins, 2011]. The results of 100 simulations were averaged for all
operations. RegMap code was run in MySQL Workbench 6.1 for
MySQL server and in pgAdmin III 1.81 for PostgreSQL benchmarking
maintaining the default settings of each database. The default
random region size was set to 500, however, this setting can be
changed in the script.

RESULTS

DEVELOPMENT OF THE RegMap ALGORITHM
RegMap finds overlapping or non-overlapping regions by calculat-
ing the number of bases common or away between two regions.
Therefore, a variable ‘bp overlap’ was devised which was calculated
positive (shown as shaded regions in the Fig. 1) by counting the

number of base pairs in common between two regions or calculated
negative when away from the ends of the two regions. An illustration
of the algorithm can be found in Figure 1. There are three
possibilities:

i) One region is within, or completely overlaps, the other. In this
case the bp overlap is simply a positive number reported by
calculating the length of the smaller region that lies within the
second region. If the two regions completely overlap each other then
the length of either region can be reported as the bp overlap. For
example, where region A lies within region B (Fig. 1-i-a), this can be
identified computationally by checking if A.End is less than or equal
to B.End and if A.Start is greater than or equal to B.Start. The region
length of A can be calculated by the SQL pseudocode extract given
below:

WHEN A.End�B.END AND A.Start�B.Start
THEN (A.End � A.Start)
Conversely, when region B lies within region A (Figure 1-i-b) or

completely overlaps, this can be confirmed by checking whether B.
End is less than or equal to A.End and if B.Start is greater than or
equal to A.Start. The region length of B can then be calculated:

WHEN B.End�A.END AND B.Start�A.Start
THEN (B.End � B.Start)
ii) RegionA is located on the left side of region B. In this possibility

the two regions may share bases in common (Figure 1-ii-a) or can be
completely away from each other (Figure 1-ii-b). Computationally

Fig.1. Various possible relative positions of the two genomic regions. (i) One genomic region is completely within the other. (ii) The overlapping or non- overlapping region A is
on the left side of the region B. (iii) The overlapping or non- overlapping region A is on the right side of the region B.
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this is verified by checking whether A.End is less than or equal to B.
End and A.Start is less than or equal to B.Start. The bp overlap is
calculated by subtracting B.Start from A.End:

WHEN A.End�B.End AND A.Start�B.Start
THEN (A.End � B.Start)
Using the above calculation, for the first situation (Fig. 1-ii-

a) the bp overlap will be reported as a positive integer. For the
second situation (Fig. 1-ii-b) when no common bases exist
between the two regions, the bp overlap is returned as a
negative number. This is because the B.Start coordinate is
greater than A.End therefore (A.End � B.Start) will be a
negative number.

iii) Region A is located on the right side of region B. As above, the
two regions could overlap or can be apart without intersecting each
other. This is verified by checking whether A.End is greater than or
equal to B.End and if A.Start is greater than or equal to B.Start.
The bp overlap is calculated by subtracting A.Start from B.End:

WHEN A.End�B.End AND A.Start�B.Start
THEN (B.End � A.Start)
Similar to the above case the overlapping regions (Fig. 1-iii-a) will

have positive bp overlap and non-overlapping regions will have
negative bp overlap (Fig. 1-iii-b).

I also calculated the distance between the centres of two regions,
referred to as ‘centre distance’. Sometimes a small base pair overlap
of very long regions does not make any biological sense so overlap
analysis may be required to limit to a certain distance from the centre
of two regions. This is also useful in extracting regions that do not
overlap but are very close to each other. To calculate the distance, the
centres of the two regions are determined and then the absolute
(positive) distance between the centres is calculated by the following
SQL code extract.

abs ((A.EndþA.Start)/2 � (B.EndþB.Start)/2)
The full code for the algorithm has been provided in Supple-

mentary File 1.

BENCHMARKING FOR INSERTION OF GENOMIC REGIONS
RegMap script randomly generates region data between the
specified lower and upper range which is temporarily saved in
memory and then saved in the database in a single transaction.
This technique was faster for both databases, since each time an
insert statement was executed against the database there were
transaction overheads. Therefore, generating and saving
regions one by one was much slower than saving all the data
at once.

I tested the performance by generating 5 K, 10K, 20 K, 40 K and
80K regions and identified that PostgreSQL’s generation of random
regions and insertion was much faster than MySql in both InnoDB
and MyISAM storage engines. MySQL’s insertion of regions was
dramatically slower and the time taken was almost double by
doubling the number of regions inserted (Fig. 2). MySQL-InnoDB
performed slightly better than MySQL-MyISAM, therefore, in
Figure 2 performance of MySQL-InnoDB is reported. PostgreSQL
(RegMap) generated and saved 5K random regions in 1 s as
compared to 219 s in MySQL-InnoDB and 237 s in MySQL-MyISAM,
indicating that MySQL was �220 times slower. This difference

dramatically increases for a much larger number of regions. For
generating 80 K random genomic regions PostgreSQL took 4 s as
compared to 3,596 s in MySQL-InnoDB and 3,680 s in MySQL-
MyISAM.

In addition, the write performance was tested by importing the
1005 files consisting of 23,827,431 real genomic regions, collected
from previous studies, into both databases using bulk import
statements of the databases. PostgreSQL COPY statement while
MySQL LOAD DATA INFILE statement was used for this purpose. I
performed the import of each file in three steps: i) data was
imported into a staging table, ii) data was copied across the
production table while assigning a unique id, and iii) the staging
table was emptied. This procedure was adopted because in reality
the imported data usually needs to be processed and assigned a
unique identity in order to link to other tables. PostgreSQL
performed >5 times better than MySQL, PostgreSQL took �445 s
compared to �2,940 s in MySQL-InnoDB and 2,460 s in MySQL-
MyISAM. The actual import script is also provided in the
Supplementary File 1.

Data upload performance is critical for bioinformatics servers
where many users insert a large amount of data at once. Therefore
this benchmark identified that PostgreSQL inserts and imports data
much faster than MySQL.

BENCHMARKING FOR IDENTIFICATION OF OVERLAPPING REGIONS
I further investigated the performance of reporting intersecting or
overlapping regions using RegMap and using the database built-in
functions in each database. The two databases have built-in
functions that can be used to identify intersecting lines. Since these
built-in functions are usually used in geographical (spatial) mapping
software I subsequently refer to the built-in functions as Geo
functions.

PostgreSQL’s performance was again outstanding in finding
overlapping genomic regions compared to MySQL (Fig. 3). RegMap
in PostgreSQL took 134 s to report intersecting regions for two
datasets of 80 K regions each, and 257 s using PostgreqSQL-Geo
function. MySQL performance was tested using InnoDB and
MyISAM storage engines. MySQL-MyISAM performed poorly
compared to InnoDB, however, both engines demonstrated inferior
performance as compared to PostgreSQL. For example, when two
datasets of 80 K regions were tested for overlaps using RegMAP,
MySQL-InnoDB took 1,119 s, and MySQL-MyISAM took 1,150 s.
Therefore, for simplicity reasons, I presented the data for MySQL-
InnoDB in Figure 3.

Applying various indexes on these regions did not improve
performance in PostgreSQL while it had a negative effect in MySQL
for both engines (InnoDB & MyISAM). I performed these tests on
different computers and obtained slightly different timings,
however, the overall outcome remained the same which was that
PostgreSQL performance in identifying overlapping regions was
much better than MySQL.

Since RegMap identifies overlapping regions by calculating ‘bp
overlap’ for each region, I finally concluded that queries that require
extensive calculation of mathematical operations perform much
better in PostgreSQL.
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SEARCHING AND RETRIEVING REGIONS
PostgreSQL was slightly better at performing a search of genomic
regions than MySQL. The knowledge base of �24 million genomic
regionswas searched for erroneous regionswith a start coordinate less
than 0 or an end coordinate less than start. PostgreSQL identified 10
erroneous regions in �5 s while MySQL-InnoDB found the same
erroneous regions in�21 s andMySQL-MyISAM in6 s. Implementing
various types of indexes on chromosome start and end fields did not

improve performance for this query. However, searching for specific
regionswithin a certain distance of a genewas instant in all databases.
For example, searching regions within 100,000 upstream/down-
stream of the transcription start site of MYC gene (chr8:128748314)
returned results in 3–5s in all databases which was further reduced to
�1 s by implementing an index. Therefore I concluded that thegeneral
searching capability of PostgreSQL andMySQL is similar. The Queries
are provided in the Supplementary File 1.

Fig.2. Comparison of region insertion performance. For simplicity, MySQL times shown are for InnoDB storage engine as MyISAM did not perform as well.

Fig.3. Comparison of performance for identifying overlapping regions using RegMap and Geo functions. For simplicity, InnoDB times are shown for MySQL, as the MyISAM
storage engine in MySQL did not perform as well.
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ADVANTAGES OF RegMap OVER GEO FUNCTIONS
The RegMap algorithm not only outperformed the Geo functions, in
addition, it provides extended functionality that the Geo functions
do not provide. For example, Geo functions only return a Boolean
(true/false) value if the queried regions intersect or not. On the other
hand, RegMap reports the number of bases common in the two
regions or away from each other. Therefore it is easy to limit results
based on the minimum number of bases that must overlap. It also
provides the ability to restrict results based on the distance from the
centre of regions; this is useful in returning regions that do not share
common bases, but are present in close proximity within a specified
distance. For example the SQL query select * from vwregions where
bpoverlap<1 and centredistance<1000; will return regions that do
not overlap however their centres are within a distance of 1000
bases. This type of analysis is important in identifying partner
factors that bind on DNA in close proximity to each other without
overlapping.

MINING KNOWLEDGE BASE
The Supplementary File 2 contains overlapping results of >1000
datasets of transcription factor binding sites and histone marks with
information about cell line, treatment condition (if there is any), total
number of regions, the number of overlapping regions and its
percentage found against other datasets (Supplementary File 2). The
results are spread across four spreadsheets based on the aligned
reference genome i.e. hg 19, hg 18, mm9 or mm8. Researchers can
easily filter records based on restricting values in each field and then
sorting on ‘Percentage Overlaps’ to find out the most or least
interacting dataset. There are links provided to the raw data and to
the publications.

This useful knowledge base can help in developing new
hypotheses that can further be tested and analysed in the wet lab.
For example, using the knowledge base a novel cis-regulatory
interaction between estrogen receptor alpha (ERa) and progestin
receptor (PR) was identified [Khushi et al., 2014a]. I observed that
among all factors in hg 18 assembly SA1, Rad21 and CTCF binding
locations were comparatively conserved in MCF7 (breast adeno-
carcinoma cell line) when compared to their binding locations in H1
hESC (human embryonic stem cell line). These factors targeted
similar genomic locations in the two distinct cell-lines, despite
previous reports describing the binding pattern of various factors to
be cell specific [The ENCODE Project Consortium, 2012; Wang et al.,
2012].

In the HepG2 (liver hepatocellular) cell line, I identified that
HNF4G preferentially binds (6633/6839, 97%) to H3K4Me1
(enhancer) regions, and the majority of HNF4G binding sites
(4244/6839, �62%) were also found overlapping with STAG1
binding sites (83080 regions). The statistical significance of
overlapping of HNF4G is further analysed in BiSA [Khushi et al.,
2014b] which revealed a statistically significant overlap correlation
value of 0.65. As previously described, the overlap correlation value
greater than 0.5 shows a statistical significant overlap of a query
factor [Khushi et al., 2014b]. HNF4G is an orphan nuclear receptor
whose ligand and function has not been fully understood, however
recent studies have shown HNF4G overexpression to induce growth
of cancer tissue [Okegawa et al., 2013; Yang et al., 2014]. On the

other hand, STAG1 (Stromal Antigen 1), also known as SA1, is one of
the four subunits of the cohesin complex [Losada, 2014]. Cohesin has
important roles in transcription regulation, DNA repair, chromo-
some condensation, homolog pairing, etc. [Mehta et al., 2013;
Losada, 2014]. Therefore, statistical significant overlap of HNF4G
with STAG1 indicates an important underlying biology which could
be further explored in laboratory.

DISCUSSION

Various databases are heavily used in biomedical and cellular
biochemistry, therefore researchers would benefit from knowing
which database product performs better for a specific type of data.
Benchmarking software products also helps vendors to improve
their products. Various other benchmarks for database systems
exist and it is acknowledged that development and adoption of
benchmarks advances research in a research area [Sim et al., 2003;
Arslan and Yilmazel, 2008; Bose et al., 2009; Aniba et al., 2010;
Ray et al., 2011; Venema et al., 2013]. For example, Ray et al.
[2011] benchmarked databases for spatial data, whereas, Xu et al.
[2012] benchmarked databases for moving objects data. However
no benchmarking effort exists on database performance for
genomic region operations. Therefore RegMap, being natively
written in SQL and adaptable for any SQL-based database, will
advance research in this field and will provide a baseline mark for
future algorithms.

Many bioinformatics analyses produce a large number of variant
files. Usually detailed information about factor, cell-line, condition,
peak-calling or analysis parameters used are recorded as part of file
names or kept separate which makes it difficult to manage such
information for a large scale study. Databases provide a more
effective way of managing curation, annotation, sorting and
relationships among data. RegMap, being a SQL-based algorithm,
can be integrated into any language as most languages provide API
(application programming interface) to connect to SQL-based
databases. SQL’s simple syntax is also easy for biologists to learn.
There are a number of tools that are in use by the research
community to operate on genomic regions, for example BEDTools
[Quinlan and Hall, 2010], Pybedtools [Dale et al., 2011], Genomic-
Tools [Tsirigos et al., 2012], and BEDOPS Tools [Neph et al., 2012].
All of these tools are designed to operate on files and integration of
these tools in other languages is usually difficult. Tabix [Li, 2011] is
another efficient tool that is usually used to extract specific regions
from large files. The database capability of searching specific
genomic regions was equivalent to Tabix. Both databases, when
searching a table with �24 million real genomic regions, returned
results in �1 s for regions that were within 100K of transcription
start site of MYC gene. There are only a few tools which provide an
easy interface to other languages, such as Pybedtools which provides
Python interface, and GROK andGenomicTools which provide Cþþ
API (application programming interface) to C/Cþþ programmers.
There are a few GUI (Graphical User Interface) tools such as
Cisgenome [Ji et al., 2011], Galaxy [Goecks et al., 2010], and the
UCSC table browser [Karolchik et al., 2004] which provide very basic
genomic operation analysis options. However, there is no algorithm
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available that performs genomic region operations natively in a
relational database system. Therefore direct comparison of the
performance between RegMap algorithm and other tools that work
on files is not appropriate.

RegMap, being an SQL based algorithm, is easy to apply on an
unlimited number of datasets. The algorithm was applied to �1000
datasets of transcription factor binding sites and epigenetic marks
and and an easy navigate-able Excel file was generated. This data
can be used to develop new hypotheses such as identification of
novel biochemical partners of a factor or factor’s binding influenced
by a histone mark. Once an interesting interaction is found, actual
genomic locations could be studied using tools such as BiSA [Khushi
et al., 2014b]. Using the knowledge base a novel interaction between
HNF4G and cohesion subunit STAG1/SA1 was identified. The
majority of HNF4G binding sites overlapped STAG1 and this overlap
was statistically significant suggesting an important biochemical
partnership on a specific subset of genomic regions.

The performance of proprietary databases such as Oracle or
Microsoft SQL Server was not reported because of their licensing
restrictions, however, using the algorithm researchers/institutions
can benchmark the suitability of either product for their own use.

I acknowledge that in other computational infrastructure data-
base performance could vary, however, I have done rigorous testing
on different machines to conclude that similar relative results would
be obtained. The results also revealed that there is a great deal of
room present to improve the database built-in functions that are
used to find intersecting geometrical shapes. In other fields such as
geo mapping application it is usually not required to find the
thousands of intersecting features. However genomic studies deal
with a large amount of data. With increased use of databases in
genomic applications, there is a need for database functions to be
improved for genomic operations. Therefore it is proposed here that
‘genomic region’ data-type in all databases should be implemented.

In summary, RegMap is an open source database-driven
algorithm used to find overlapping/non-overlapping regions,
and results can be limited by the number of bases in common
or maximum distance between the centres of two sets. Using the
algorithm I benchmarked performance of two widely used open
source databases, PostgreSQL and MySQL. The benchmark
revealed that PostgreSQL performs much better in identifying
overlapping genomic regions. Data upload/import function of
PostgreSQL was also better than MySQL. Data upload performance
is critical for bioinformatics facility servers where many users
insert a large amount of data simultaneously. Using the algorithm
the overlapping of >1000 datasets of transcription factor binding
sites and histone modifications were calculated and identified that
HNF4G binding significantly overlaps with cohesion subunit
STAG1/SA1 binding on DNA.
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Abstract

Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions.
Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to
archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed
transcription factor DNA binding site analyser software (BiSA), for archiving of binding regions and easy identification of
overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap
between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share
common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify
genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance
of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of
BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone
modifications, which can be directly compared to user data. The documentation and source code are available on http://
bisa.sourceforge.net
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Introduction

The recent revolution in whole genome census approaches has

seen an exponential increase in available data sets describing

genomic features, such as transcription factor (TF) binding sites

and histone modifications. Recent studies have revealed that there

are often overlaps and co-association between transcription factors

at binding sites [1,2] and identifying relationships, such as overlaps

in genomic features, has become a fundamental biological

research tool [3]. Moreover, the existence of a wealth of published

data sets now presents unprecedented opportunities for data

mining in large databases of archived genomic data.

Existing methods of finding overlaps such as BEDTools, UCSC

Table Browser, Homer or Segtor [4,5,6] are limited in function-

ality for simultaneous comparison to multiple archived data sets.

Moreover, few tools provide a simple interface that can be easily

implemented by biologists with limited computing skills.

To address these challenges, we have developed BiSA, which is

pre-loaded with transcription factor binding sites and histone

modification locations, for a range of cell-types and conditions,

reported in previous ChIP-chip and ChIP-Seq studies. BiSA allows

the investigator to analyse overlapping or non-overlapping regions,

to visualise results by Venn diagram, and to identify the genes

located near to regions under study. BiSA is controlled through a

user-friendly graphical user interface (GUI), installed on a

Windows environment or embedded in the Galaxy web-based

high throughput genomic analysis tool. Both options maximise the

ease of use of this powerful tool for molecular biologists, who may

lack the necessary computing skills required to use alternate

approaches.

Methods

BiSA employs a rational database management system-based

architecture to archive unlimited numbers of binding datasets in a

very flexible and convenient format. BiSA is developed in C# and

SQL Server 2008 for the Windows environment, while Python

and PostgreSQL have been used to develop a Linux version that

runs under the Galaxy [7] web-based environment. We have used

Google Charts to generate Venn diagrams. To calculate common

sections on Venn diagrams for three datasets, BiSA first extracts

overlapping regions of two datasets and then overlaps the result

with the third dataset.

There are three main steps of installation of BiSA for Windows:

i) installation of the MS SQL Server database engine. BiSA is fully

compatible with the free Express Edition of SQL Server [8], ii)

downloading and restoring the BiSA database file using SQL

Server Management Studio, and iii) linking the front-end

application to the database. Detailed step-by-step installation

instructions with screenshots for Windows and Linux environ-

ments are available at the project website http://bisa.sourceforge.

net/. We will periodically update the database to include datasets

from the latest published studies.
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The BiSA database schema is straightforward. All information

about a dataset such as factor label, cell line and condition are

saved in the ‘kbdetails’ table while the genomic region data are

saved in the ‘kbsites’ table and linked to the ‘kbdetails’ table by an

identity. There are four gene annotation tables covering the

human hg19 and hg18, and mouse mm9 and mm8 genome

assemblies. In addition to the options provided by the graphical

user interface (GUI), a user can analyse data via SQL Server

Management Studio by structured query language (SQL). SQL is

an accessible database interrogation language, and simple SQL

statements can be used to analyse data, for example:

1. Erroneous reporting of an end coordinate smaller than the start

coordinate for a genomic region can be discovered by the SQL

statement: SELECT * FROM kbsites WHERE [end],start

Running this query on the BiSA KB, interrogated ,18 million

regions in less than 1 second and discovered one dataset where

this error was present.

2. The gene annotation tables in BiSA contain gene names and

symbols, NCBI accession IDs, chromosome, strand, and the

coordinates of transcription start site (TSS), end site (TES),

coding sequence (CDS) and exon positions. To return all

annotation details in the hg19 assembly for the breast cancer

susceptibility gene BRCA1, an investigator could use the query:

SELECT * FROM Annotation_hg19 WHERE gen-

e_id = ‘BRCA1’

3. To report all genomic features within 100 kb upstream or

downstream of the BRCA1 TSS. The user could then use the

coordinates returned in example 2, in the SQL query:

SELECT * FROM kbsites WHERE chr = ‘chr17’ AND

start. = 41096311 AND start, = 41296311

4. Average region length in dataset ID 10 can be retrieved by the

SQL statement: SELECT AVG([end] - start) FROM kbsites

WHERE kbid = 10

Initially we have populated the BiSA database with ,600

datasets of transcription factor binding sites and histone modifi-

cations amounting to approximately 18 million genomic regions.

The data have been collected from previously published studies

deposited on the publishing journals’ websites, Gene Expression

Omnibus (GEO), European Bioinformatics Institute (EBI),

Figure 1. Import Datasets to Knowledge Base (KB). This step is optional and users can study data already saved in the KB, without importing
datasets. In this step, the user can upload their own transcription factor DNA binding sites or histone modification locations, usually as BED or GFF
peak files. If the file extension is other than BED or GFF, BiSA prompts the user to choose the right format. It is important to specify a Reference
Genome (encircled), for instance hg18/hg19 for human or mm9/mm8 for mouse. BiSA will only allow comparisons between datasets of the same
reference genome.
doi:10.1371/journal.pone.0087301.g001
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Cistrome Project [9] and some datasets are collected directly from

the authors. The source of the data and additional comments, if

there are any, are recorded in the kbdetails table. Addition of more

datasets is a straightforward process. We refer to the sum of these

datasets as the Knowledge Base (KB). Users can expand on an

existing KB or build their own KB. The KB, currently, comprises

human (hg18 & hg19 build) and mouse (mm8 and mm9)

assemblies.

BiSA steps through the process of studying binding region

interaction, annotation, statistical significance and management of

datasets in seven GUI screens. An investigator can study

overlapping regions by setting the minimum base pair (bp)

overlap. It is also possible in BiSA to limit reported overlaps

based on a maximum distance between binding peaks. This is

important since binding region boundaries are highly dependent

on the peak caller software and parameters used.

We have implemented IntervalStats [10] in BiSA to test the

statistical significance of overlap between two dataset. IntervalStats

is a command line tool written mainly for the Unix environment.

Therefore, we used the MinGW toolkit [11] to compile it for the

Windows environment. The BiSA for Windows download package

includes an IntervalStats executable file and dependent DLL

libraries, however, the tool runs independently of BiSA. When the

IntervalStats tool is executed through the BiSA GUI, the datasets

under study are saved in the ‘data’ subfolder and the files are

passed to the IntervalStats tool. During the execution of the

statistical tool the terminal window stays open to show the

messages from the tool. IntervalStats calculates a p-value for each

region in a query dataset against the nearest region from a

reference dataset. A defined domain dataset, representing the line-

space of possible interval locations, acts as a background to the

statistical test and can be restricted to specific locations, such as

promoter proximal regions, to take into account known biases in

binding site detection. In the simplest case, the domain comprises

the entire genome. We have populated BiSA with a number of

domain files such as promoter regions within 10 kb of a TSS,

intergenic regions and whole genome for hg19, hg18, mm9 and

mm8 assemblies. Users can select one of the prepopulated

domains or can specify a BED file as the domain. In addition to

individual p-values for region overlap, IntervalStats returns a

summary statistic, referred to as the Overlap Correlation Value, to

identify the overall significance of overlap of two datasets. This

Figure 2. Select Datasets. This tab displays a list of all datasets in the KB, populated by default or as a consequence of uploading in Step-1. Clicking
on the text of any row displays the reference link of the article, raw data link and notes, if any, below the table. Website addresses are hyperlinked to
the websites/articles from where the data are obtained. (A) Changing the Active ticks and clicking on the Update button implements the selection. (B)
Users can search the KB by organism, cell line, factor label, reference genome or peak caller.
doi:10.1371/journal.pone.0087301.g002
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summary statistic represents the fraction of regions in the query

dataset with a p-value of overlap to the reference below a

significance threshold value, and thus reflects the likely significance

of overlap of the query and reference datasets. The correlation

coefficient can range from 0 to 1, the closer the value to 1 the

stronger the significance of overlap of two datasets. We have set

the threshold p-value to 0.05, however this value can be changed

in the configuration file, BiSA.exe.config if desired.

Gene annotations are obtained from the UCSC genome

browser and will be updated periodically. Initially we have

populated annotations for reference genomes hg18, hg19, mm8

and mm9. Custom gene definitions or transcription factor binding

sites or epigenetic modifications for additional genomes for other

organisms can be uploaded in the software.

Results

The BiSA Windows GUI is split across seven tabs
i) Import Datasets to Knowledge Base (KB). This is an

optional step as the user can choose to analyse only data already

contained in the KB. The user browses for their dataset, which can

be uploaded in tab delimited or comma delimited BED or GFF

format, assigns a logical name and description for the data, and

uploads to the KB (Figure 1). The first 20 lines of the data can be

displayed for verification. Chromosome position is 0 indexed as in

BED format. Comments or header information in the file are

reported as failed records in the ‘Report’ section (Figure 1). If no

valid data are imported in the first 50 lines, the upload fails and

BiSA stops the import process. The user enters information about

organism and cell line, TF and conditions, which are saved with

the database record. The genome build for the genomic region

coordinates must be entered during this process (Figure 1, circled)

and the record will be limited in future analyses to comparison

with other datasets generated in the same genome and build.

Associated data and publication links can also be added at this

stage.

ii) Select Datasets. This tab displays a list of all datasets in

the KB including those uploaded in Step-1. Data are selected for

analysis by checking the ‘‘active’’ box beside the relevant dataset

(Figure 2A). Only data from matching reference genomes can be

Figure 3. Analysis is the main overlap analysis tab of BiSA. BiSA offers six types of analysis: Overlap finding option a) reports overlap
percentage with respect to the total Dataset-A regions and percentage with respect to the other active dataset regions. Overlapping or non-
overlapping regions of Dataset-A can be extracted by options b), d) or e). Whereas, option c) or f) can be used to extract overlapping sections of
regions common in all or two datasets. The results of overlap analysis type b), c), d), e) and f) can be saved back into the Knowledge Base by the ‘Save
to KB’ button, allowing them to go into downstream analysis and independent annotation. Ticking the ‘‘Extract both datasets, bp overlap and centre
distance between the regions’’ for options d), e) and f) displays both Dataset-A and Dataset-B regions, bp overlap and distance between the two sets.
doi:10.1371/journal.pone.0087301.g003
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selected for analysis. A checked tick in the ‘Active’ column

represents an active dataset that can be used in analysis in Step-3,

and only active datasets can be annotated. Users can only activate

datasets of matching reference genomes. To change the active

status of datasets from one reference genome (e.g. hg18) to another

(e.g. mm9), the user must deactivate all datasets first, which can be

done by toggling on and off the ‘Select All’ check box and pressing

the Update button. Clicking on the text of any row displays further

information about the data. Website addresses are hyperlinked to

the source websites/articles for the data. After selecting datasets

for analysis, clicking on the Update button activates datasets in the

BiSA database. The search field (Figure 2B) allows the user to

search the KB by organism, cell line, factor label, reference

genome or peak caller. Only datasets that are active can be

displayed by checking the ‘Active datasets only’ option in the

‘Display Filter’ (Figure 2C). Displayed data can be sorted

according to any of the database fields by selecting the column

heading for the field of choice (Figure 2D).

Figure 4. Venn diagrams. BiSA can cross-compare a maximum of three active KB as a Venn diagram. (A) If there are more than three active
datasets then a pop-up window appears that allows the investigator to select three datasets to be analysed. (B) Google Charts is used to draw Venn
diagrams. The diagram can be saved as a high quality PNG file.
doi:10.1371/journal.pone.0087301.g004
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iii) Analysis. This is the main analysis screen where users can

analyse active datasets. Six types of analysis are provided: a)

calculate percentage overlap of all active datasets, b) extract

regions that overlap with all active datasets, c) extract overlapping

sections of regions common in all active datasets, d) extract regions

that overlap between two selected datasets, e) extract regions that

do not overlap with another selected dataset, f) extract overlapping

sections of regions common in two datasets. Analysis can be

restricted by chromosome. The options a), b) and c) operate on all

active datasets while options d), e) and f) are designed to work on

two selected datasets. Ticking the ‘‘Extract both datasets, bp

overlap and centre distance between the regions’’ for options d), e)

and f) displays both Dataset-A and Dataset-B regions, bp overlap

and distance between two sets. The number of base pairs (bp)

either in common in two sets (set by a positive number) or

separating two sets (set as a negative number) can be specified, as

can be the maximum allowed distance between the centres of two

compared regions. Overlapping results can be visualized as Venn

diagrams or saved to the KB or a tab delimited text file (Figure 3,

circled).

All analyses require setting minimum ‘bp overlaps’, however,

specifying maximum distance allowable between two binding

peaks or limiting results to a chromosome is optional. A positive

value for minimum bp overlap would restrict results for regions

that share the specified number of common base pairs. For

example, while studying TFs that compete for a specific DNA

sequence or finding TFs that form a complex and bind to DNA,

the minimum bp overlap can be set to 1 and maximum distance

from the centre of two sets should be small, such as 50 bp. To

study TFs that potentially bind close to each other but without

overlap, a negative value of minimum bp overlap can be assigned

to report nearby regions. For example assigning a bp overlap of 2

100 will report nearby regions separated by up to 100 bases, in this

case, a maximum centre distance should be specified. The analysis

results section is a data grid that populates the results of the

performed analysis (Figure 3, circled). Results can be saved in a tab

delimited text format, to allow further analysis in other software.

Results can also be sorted by selecting any column heading. The

Venn diagram button visualizes overlaps of a maximum of three

activated datasets (Figure 3, circled). If there are more than three

Figure 5. Statistical significance of overlapping regions. The statistical significance tab allows the user to determine the statistical significance
of the extent of overlap of two sets of regions. Active datasets are loaded into two dropdown lists and the user selects one dataset as a query and the
other one as a reference. Only regions of both datasets that are within the selected domain dataset are included in the calculation. Clicking the
Execute button calls up a command-line window and executes the IntervalStat tool. The command-line window stays open to display the messages
from the tool. When the terminal window is closed BiSA calculates Overlap Correlation Value of the two datasets.
doi:10.1371/journal.pone.0087301.g005
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active datasets, BiSA displays a warning (Figure 4A). Overlap

statistics are displayed below the Venn diagram, which can also be

saved to a file for later reference or figure preparation (Figure 4B).

Overlapping or non-overlapping regions can be saved back to the

KB (Figure 3) allowing them to go into downstream analysis and

independent annotation.

iv) Statistical Significance. The number and location of TF

binding regions discovered in a ChIP-seq experiment is influenced

by experimental design, model used, sequencing depth and

analysis approach. Therefore, this information is made available

in as much detail as possible in BiSA, so that users can make

judgements about the appropriateness of specific dataset compar-

isons. To determine the level of statistical significance of the degree

of overlap in two datasets, the IntervalStats command line

algorithm [10] is implemented in a user friendly graphical

interface. Active datasets to be compared are selected via two

dropdown lists (Figure 5). Users can select one dataset as a query

and the other one as a reference. IntervalStats only takes into

account the regions that are within a defined domain dataset,

representing the total available genomic area for binding. The

results are saved as a tab delimited text file with the regions from

Dataset-A (query) and Dataset-B (reference), Dataset-A region

size, the distance between them and the corresponding numerator

and denominator used to calculate the p-value, which is saved as

the last column. Once the IntervalStats tool finishes the process

and the user closes the terminal window, BiSA calculates and

displays an Overlap Correlation Value as described in the

Methods section, which reflects the overall significance of overlap

of the two datasets.

v) Annotation. The annotation tab (Figure 6) allows the user

to add nearby gene information to a selected set of binding

regions. Users define maximum distances between binding peak

and transcription start and end sites of nearby genes. The nearest

gene per region or all genes within the designated number of bp

limits will be reported. Selecting ‘‘Load new genes’’ (Figure 6)

allows custom gene definitions for additional organisms to be

Figure 6. Gene annotation. The annotation tab allows the user to add gene information, from human and mouse reference genome assemblies,
taken from the UCSC Genome Browser, to their data. This data can be saved in tab delimited text format for further analysis in other software.
Annotation can be limited to a chromosome and strand. Start and End co-ordinate columns for transcript (tx) and cDNA (cds) represent the
numerically lower and higher value chromosomal coordinates for genes on both strands. A negative value in the bpTSS or bpTES column indicates
that the region is upstream of the annotated TSS or TES respectively. Therefore a region within a gene on the positive strand will have a negative
bpTES value and a positive bpTSS value as for the region highlighted. Only the top 50 results are displayed in the grid, however, the full annotated
dataset is saved in a tab delimited text file which can be opened in Excel or other spread sheet management software for further analysis. The delete
genes button allows the user to delete custom uploaded definitions.
doi:10.1371/journal.pone.0087301.g006

Genomic Intervals Archiving and Overlap Analysis

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e87301



uploaded (Figure 7). The delete genes button allows the user to

delete the custom uploaded definitions.

vi) Proximal Features. This tab lets the investigator discover

features that are in proximity of a gene of interest. The nearby

genomic features can be discovered by specifying a locus,

chromosome and position (Figure 8A) or a gene (Figure 8B).

The gene can be searched by specifying an assembly such as hg19

and typing the exact gene symbol or typing the first few letters of

the gene name and pressing the Search button which brings up a

list of matching genes. Once a gene is selected, its chromosome,

strand, TSS and CDS are displayed and the user can select

whether the distance should be calculated from the gene TSS or

CDS (Figure 8C). The distance between genomic features and the

regions is calculated from the centre of the regions and can be set

(Figure 8D). Selecting ‘all active datasets’ reports cell line, feature/

factor and total regions found within the specified distance. If user

selects a single KB dataset then full details of all regions within the

specified distance are reported which can then be saved back into

the KB. All results can also be saved to a file.

vii) Administration. From the Administration tab (Figure 9)

users can delete a dataset, save selected data in a tab delimited

format, and view regions or region sizes. The distribution of region

sizes over the dataset can also be listed or can be visualised as a

histogram (Figure 9A) The Clean Up Database button truncates

transaction logs, to avoid an impact on software performance.

BiSA Application Example. To present the BiSA utility, we

have studied six hg18 datasets available in the KB, transcription

factors FoxA1 against FoxA3 [12], CTCF against SA1 [13] and

ZNF263 against c-Fos [14]. The forkhead family of pioneer factors

(FoxA1, FoxA2 and FoxA3) play important roles in early

development to metabolism and homeostasis in adults, and are

required for regulation of liver specific genes [12,15,16]. Their

DNA-binding domains are highly conserved from yeast to

mammals, and there is evidence for cooperative function between

the family members [12,16,17]. FOXA factors are pioneer factors

due to their ability to bind condensed chromatin and reposition

nucleosomes, allowing the binding of other factors [16]. These TFs

work together in complex ways to regulate transcription, therefore,

the co-location of binding sites of these factors has been extensively

studied in the HepG2 cell line [12,18]. Here we demonstrate the

application of BiSA by investigating the overlap of binding sites for

FoxA1 (8175 regions) and FoxA3 (4598 regions) [12] in HepG2

cells. We have also examined the dataset of Schmidt et al. for the

overlap between CTCF and the cohesin complex component SA1

which are known to collocate on DNA [13]. In addition we also

studied two non-related transcription factors c-Fos (18211 regions)

[14] and ZNF263 (4426 regions) [19] in the K562 (erythromyelo-

blastoid leukemia) cell line.

BiSA overlap analysis of FoxA1 and FoxA3 with at least 1 bp in

common reported 2929 FoxA1 regions. To show this interaction

graphically we drew a Venn diagram (Figure 10-A). When we

Figure 7. New gene definitions. New gene definitions may be uploaded in the software. The user must specify columns for chromosome, strand,
lower and upper coordinates.
doi:10.1371/journal.pone.0087301.g007
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extracted the overlapping common sections of the regions the

number increased to 2939 regions which shows that some regions

of the two datasets overlap more than one region of the other

dataset. We saved the overlapping sections back into the KB.

‘View Region Sizes’ under the Administration tab is used to draw

a histogram of region sizes using bin size 100 (Figure 10-B). The

histogram, showing the distribution of overlapping region sizes,

reveals that ,99% of overlaps exceed 200 bases and there are

more than 1600 regions that have at least 300 bp in common

between the two datasets. Similarly the overlap analysis (39,144

common regions) of CTCF (49,243 regions) and SA1 (56,092

regions) is drawn as a Venn diagram and overlapping sections are

represented in a histogram (Figure 10-C,D). Similar to the FoxA1-

FoxA3 example, the number of common overlapping sections

(39586) is greater than the total number of CTCF binding sites due

to the fact that a subset of regions overlap multiple regions in the

comparison dataset. By contrast, when the unrelated TFs, c-Fos

and ZNF263, are compared, just 559 overlaps are detected. A

Venn diagram showing the dataset overlap and a histogram

summarizing the overlaps are drawn (Figure 10-E,F).

We annotated the common sections of regions to observe their

distribution and distance from the nearest TSS by setting criteria

of 100K bp up and downstream from TSS and extracted

annotations closest to genes. BiSA reported 3656 gene annotations

for FoxA1-FoxA3 overlapping sections, 45,508 annotations for

CTCF-SA1 sections and 810 annotations for ZNF263-c-Fos

sections. The annotation files also contain the distances from the

TSSs.

Finally we investigated the statistical significance of overlap for

each of the example comparisons. We calculated p-values for all

regions in both datasets for each comparison using the hg18 whole

genome domain. Selecting FoxA1 as query and FoxA3 as

reference returned an overlap correlation value (OCV) of 0.50.

By contrast, if FoxA3 was compared as query to FoxA1 as

reference, the OCV was increased to 0.72. This provided an

average OCV value of 0.61. An average OCV above 0.5 suggests

that two datasets significantly overlap, implying that the overlap

between FoxA1 and FoxA3 is statistically significant. The high

degree of overlap between CTCF and SA1 also returned a

significant average OCV at 0.79. By contrast the lower level of

overlap seen between ZNF263 and c-Fos was reflected in a non-

significant average OCV of 0.21, confirming that the two TFs are

not related and do not act on the same DNA regions in general.

Figure 8. Proximal features. This tab allows users to search for genomic features located in proximity to a specific gene or genomic locus.
Searching multiple datasets returns the numbers of binding sites for each factor identified. Selecting a single factor returns detailed binding region
information for interactions in proximity to the gene or locus of interest.
doi:10.1371/journal.pone.0087301.g008
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Discussion

BiSA has been designed to meet the challenges of identifying

genomic region overlaps in whole genome datasets. BiSA includes

an up-to-date database of previously published studies reporting

binding sites for different factors and specific histone modifications

in a range of conditions and cell types. No tool, to our knowledge,

includes such a pre-loaded knowledge base. Initially we have

included data generated from human and mouse cells, and

expansion to other organisms is planned. BiSA provides a user-

friendly interface allowing the user to define and discover

overlapping and nearby genomic regions either limited by

chromosome or genome-wide. Users can visualize genomic

overlap results as Venn diagrams and can save chart images for

use in publications. BiSA can identify genes associated with

binding regions of interest and also the statistical significance of

overlapping regions.

Although the Apple Macintosh Unix and Linux environments

are popular in genomic research, Windows based informatics tools

also exist [20,21,22]. BiSA for Windows exploits the power of

today’s multi-core personal computers. In comparison to BiSA,

most bioinformatics tools are command line, and such tools are

Figure 9. Administration of datasets. From the Administration tab users can delete a dataset, save the data in tab delimited text format, and
view the distribution of region sizes over the dataset as a table and histogram.
doi:10.1371/journal.pone.0087301.g009
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not easy to install or to operate by the bench biologist. Galaxy [7]

offers a web-based tool ‘Intersect’, however it is limited in

functionality. BiSA’s Windows GUI is user-friendly for biologists

and provides a sequential step-by-step guide through all the

options. BiSA provides an easy interface to search and select KB

based on organism, factor, cell line, condition, peak caller or first

Figure 10. Example study of overlap between FoxA1 and FoxA3, CTCF and SA1, ZNF263 and c-Fos datasets. A) Venn diagram
representation of 2,929 overlapping regions in FoxA1 (8,175 regions) and FoxA3 (4,598 regions) datasets. B) Common sections of overlapping regions
are saved back into the KB, and for bin size 100 a histogram of the size distribution of region overlaps is drawn. The histogram shows that there are
more than 1,600 regions that have at least ,300 bp in common between the two datasets. C) Overlap of 39,144 regions between CTCF and SA1
datasets. D) Distribution of overlapping sections of CTCF and SA1. E) Overlap of 559 regions between ZNF263 and c-Fos datasets. D) Distribution of
overlapping sections of ZNF263 and c-Fos. We also observed that in three comparisons .94% of the overlapping sections are .200 bases long,
suggesting that overlapping regions usually share a significant section of the two sets.
doi:10.1371/journal.pone.0087301.g010

Genomic Intervals Archiving and Overlap Analysis

PLOS ONE | www.plosone.org 11 February 2014 | Volume 9 | Issue 2 | e87301



author name. We have also developed a BiSA version for Linux/

Mac that runs under Galaxy.

A major strength of BiSA is the comprehensive knowledge base,

coupled with tools to analyse overlapping regions, statistical

significance of the overlapping regions and ability to annotate and

visualize the regions of interest. BiSA’s comprehensive KB is not

only useful for rapid comparison of users’ own results to previously

published datasets, but also to inform decisions such as selection of

a peak caller programme or in comparing numbers of peaks. The

KB suggests that MACS is a most popular peak caller software in

ChIP-Seq studies followed by Cisgenome and HOMER, whereas,

the MAT algorithm is widely used in ChIP-chip studies. In

summary, BiSA is designed for ease of use on a Windows platform,

and includes a comprehensive knowledge base of binding site and

histone modification datasets. BiSA has the potential to be a useful

tool in identifying overlaps in genomic binding regions and histone

modifications of common transcription factors.
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ABSTRACT
Chromatin factors interact with each other in a cell and sequence-specific manner
in order to regulate transcription and a wealth of publically available datasets exists
describing the genomic locations of these interactions. Our recently published BiSA
(Binding Sites Analyser) database contains transcription factor binding locations
and epigenetic modifications collected from published studies and provides tools
to analyse stored and imported data. Using BiSA we investigated the overlapping
cis-regulatory role of estrogen receptor alpha (ERα) and progesterone receptor (PR)
in the T-47D breast cancer cell line. We found that ERα binding sites overlap with a
subset of PR binding sites. To investigate further, we re-analysed raw data to remove
any biases introduced by the use of distinct tools in the original publications. We
identified 22,152 PR and 18,560 ERα binding sites (<5% false discovery rate) with
4,358 overlapping regions among the two datasets. BiSA statistical analysis revealed
a non-significant overall overlap correlation between the two factors, suggesting that
ERα and PR are not partner factors and do not require each other for binding to
occur. However, Monte Carlo simulation by Binary Interval Search (BITS), Relevant
Distance, Absolute Distance, Jaccard and Projection tests by Genometricorr revealed
a statistically significant spatial correlation of binding regions on chromosome
between the two factors. Motif analysis revealed that the shared binding regions
were enriched with binding motifs for ERα, PR and a number of other transcription
and pioneer factors. Some of these factors are known to co-locate with ERα and PR
binding. Therefore spatially close proximity of ERα binding sites with PR binding
sites suggests that ERα and PR, in general function independently at the molecular
level, but that their activities converge on a specific subset of transcriptional targets.

Subjects Bioinformatics, Computational Biology, Molecular Biology
Keywords Transcription factors, Estrogen receptor alpha, Progesterone receptor, ERα, ESR1, PR,
Breast cancer, T47D, BiSA, Genomic region database

INTRODUCTION
The ovarian steroid hormones progesterone and estrogen play critical roles in the

development and progression of breast cancer and endometriosis (D’Abreo & Hindenburg,

2013; Salehnia & Zavareh, 2013; Shao et al., 2014). These hormones exert their functions
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by activating specific nuclear receptors, estrogen binds to estrogen receptor (ERα) and

progesterone binds to progesterone receptor (PR) (Tsai & O’Malley, 1994).

Once activated these receptors bind to their DNA response elements and regulate

transcription of target genes. ERα and PR, along with human epidermal growth factor

receptor 2 (HER2), are used to classify phenotypes in breast cancers and to predict

response to specific therapies (Cadoo, Fornier & Morris, 2013; Kittler et al., 2013). A high

number of ERα positive breast cancers are also PR positive (Cadoo, Fornier & Morris, 2013;

Penault-Llorca & Viale, 2012). Furthermore, studies from animal models and clinical trials

have shown that progesterone via its receptor PR is a major player in development and

growth of breast cancer and uterine fibroids, however, PR inhibits the development of

estrogen-driven endometrial cancer (Ishikawa et al., 2010; Kim, Kurita & Bulun, 2013).

Many recent reviews highlight the importance of the role that progesterone and estrogen

play via their receptors in various types of breast cancers (Abdel-Hafiz & Horwitz, 2014;

Kalkman, Barentsz & van Diest, 2014; Obiorah et al., 2014; Wang & Di, 2014; Yadav et

al., 2014). Therefore it is important to understand how ERα and PR work together in

regulating a number of cellular pathways, and clinical and molecular research on these

factors continue to unveil new insights (Bulun, 2014).

It is acknowledged that ERα and PR binding, as well as that of other steroid hormone

receptors, is assisted by binding of the pioneer transcription factor FOXA1 (Ballare et al.,

2013; Lam et al., 2013) to condensed chromatin, therefore, the interactions of FOXA1

with other factors have been well studied (Augello, Hickey & Knudsen, 2011; Bernardo

& Keri, 2012). There are a number of publications that have studied PR binding sites

in progesterone-treated breast and other tissues (Ballare et al., 2013; Clarke & Graham,

2012; Yin et al., 2012). Many studies have also published ERα binding sites (Joseph et al.,

2010; Schmidt et al., 2010; Tsai et al., 2010). However there is lack of investigation into the

combined action of the two factors on DNA. Therefore in this report we investigated the

interaction of these nuclear receptors on DNA. Our previously published BiSA database

(Khushi et al., 2014) contains a number of datasets describing ERα and PR binding sites

for various cell lines, therefore, we investigated the binding pattern of these factors in the

T-47D breast cancer cell line. T-47D cells are derived from metastatic female human breast

cancer and are known to be ERα and PR positive and their growth is simulated by the

treatment of estrogen (Chalbos et al., 1982; Ström et al., 2004).

METHODS
PR data were taken from the study of Clarke & Graham (2012) and ERα data were

obtained from the ENCODE project (Gertz et al., 2012). PR data were obtained by treating

T47D cells with the progestin ORG2058 for 45 min, followed by PR-specific chromatin

immunoprecipitation and deep sequencing (ChIP-Seq). Gertz et al. studied ERα binding

sites by treating with estradiol (E2), GEN (Genistein) and BPA (Bisphenol A) and conclude

that compared to E2, GEN and BPA treatment results in fewer ERα binding sites and less

change in gene expression. We selected the E2-treated dataset for our study. Datasets from

both studies were of 36 base pair lengths on the Illumina platform. The PR data were
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generated using an Illumina Genome Analyzer IIx while ERα libraries were sequenced on

Illumina HiSeq 2000. The data used in this study have been derived from peer-reviewed

publications, suggesting that they are of an acceptable quality, in addition we also ensured

standard quality control checks prior to our re-analysis of the raw data. The two studies

used different genome assemblies and different tools to align the reads and to call the

peaks. Therefore, to remove any biases we re-analysed the raw ERα and PR data. We

mapped the raw data to the GRCh37/hg19 assembly using Bowtie version 2 (Langmead &

Salzberg, 2012). The aligned replicates were merged using Picard tools (Li et al., 2009) and

Model-based Analysis of ChIP-seq Algorithm (MACS) version 1.4.2 (Zhang et al., 2008)

was employed, with default settings, to identify PR and ERα binding regions in the two

datasets. Regions associated with greater than 5% false discovery rate (FDR) were removed

(Zhang et al., 2008).

We performed motif analysis using HOMER software (Heinz et al., 2010). HOMER

employs a differential motif discovery algorithm by comparing two sets of sequences

and quantifying consensus motifs that are differentially enriched in a set. HOMER

automatically generates an appropriate background sequence matched for the GC

content to avoid bias from CpG Islands. The tool is exclusively written for analysing DNA

regulatory elements in ChIP-Seq experiments and has been used in number of high impact

publications (Berman et al., 2012; Wang et al., 2011b; Xie et al., 2013).

Overlapping features were studied in BiSA (Khushi et al., 2014). BiSA is a bioinformatics

database resource that can be run on Windows as a personal resource or web-based under

Galaxy (Goecks et al., 2010) as a collaborative tool. BiSA is pre-populated with published

transcription factor and histone modification datasets and allows investigators to run a

number of overlapping and non-overlapping genomic region analyses using their own

datasets, or against the pre-loaded Knowledge Base. Overlapping features can be visualised

as a Venn diagram and binding regions of interest can also be annotated with nearby

genes. BiSA also provides an easy graphical interface to find the statistical significance of

observed overlap between two genomic region datasets by implementing the IntervalStat

tool (Chikina & Troyanskaya, 2012). The tool calculates a p-value for each peak region by

comparing a region from the query dataset to all regions in a reference dataset. The tool

restricts the analysis to regions that are within a domain dataset which can be a whole

genome or can be possible interval locations such as promoter proximal regions. Based on

IntervalStat calculated p-values BiSA calculates a summary statistic that we refer to as the

Overlap Correlation Value (OCV). The OCV ranges from 0 to 1, the closer the value to 1

the stronger the significance of overlap of two datasets. The OCV represents the fraction of

regions in the query dataset with a p-value less than a specified threshold. In BiSA, we have

set the threshold p-value to 0.05 and used a number of domains such as whole genome and

promoter proximal regions for this analysis.

We also investigated the spatial correlation of regions of whole datasets being closer

to each other by Binary Interval Search (BITS) (Layer et al., 2013) and Genometricorr

(Favorov et al., 2012). BITS implements a Monte Carlo simulation by comparing actual

overlapping regions to random observed overlap. Genometricorr considers one genomic
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Table 1 Motif analysis of PR regions. Known motif analysis of PR top 1,000 regions using Homer software.

Motif Name P-value % of targets sequences
with motif

PR(NR)/T47D 1e–123 59.40%

FOXA1(Forkhead)/LNCAP-FOXA1 1e–28 27.10%

AP-2gamma(AP2)/MCF7-TFAP2C 1e–10 13.70%

region set as a reference and other set as a query and provides four asymmetric pair-wise

statistical tests (i) relative distance also called local correlation, (ii) absolute distance,

(iii) Jaccard statistic and (iv) projection statistical tests. In local correlation the significance

of relative distance between the genomic regions is measured by Kolmogorov–Smirnov

test, in absolute distance test the significance of base pair distance among the regions is

measured by permutation test, Jaccard statistic takes into account the ratio of intersecting

bases to the union base pairs. A projection test calculates the overlapping centre points

of query to reference regions and finds the significance of result outside of the null

expectation by binomial test (Favorov et al., 2012). We performed 10,000 simulations

for BITS and Genometricorr statistical tests.

We performed functional annotation of ERα-PR common cis-regulatory regions using

GREAT (Genomic Regions Enrichment of Annotations Tool) (McLean et al., 2010).

GREAT incorporates annotations from 20 ontologies covering gene ontology, phenotype

data, human disease pathways, gene expression, regulatory motifs and gene families. We

performed GREAT annotation using its default settings. A region was considered to have

a proximal association with a gene if it was within 5 kb upstream or 1 kb downstream of

the transcription start site (TSS). Regions outside this distance and up to 1,000 kb from the

TSS to the next gene proximal region were considered to have a distal association.

RESULTS
Analysis of PR and ERα ChIP-seq data from T-47D breast cancer cells revealed 22,152

PR and 18,560 ERα binding regions with FDR <5%. HOMER motif analysis on the top

ranked 1,000 regions by peak score revealed the strong presence of a PRE motif (59.40%)

and ERE motif (48.80%) (Tables 1 and 2). These were the most statistically significant

motifs identified, in agreement with other studies (Kim, Kurita & Bulun, 2013; Lin et

al., 2007). In addition, in PR binding regions we found motifs for the transcriptional

partners FOXA1 and AP-2 (TFAP2C) as other top ranked motifs. The transcription

factor activator protein 2C (TFAP2C) is known to be involved in normal mammary

development, differentiation, and oncogenesis (Cyr et al., in press; Lal et al., 2013; Woodfield

et al., 2010). Interestingly PR motifs were present in 344 (34.4%) of the 1,000 top ranked

ERα binding regions. Consensus FOXA1 motifs were also detected in 27% of PR binding

regions and 24% of regions bound by ERα. FOXA1 is a member of the forkhead family of

transcription factors, which are known to bind and reconfigure condensed chromatin to
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Table 2 Motif analysis of ERα regions. Known motif analysis of ESR1 top 1,000 regions.

Motif Name P-value % of targets sequences
with motif

ERE(NR/IR3)/MCF7-ERa 1e–474 48.80%

FOXA1(Forkhead)/LNCAP-FOXA1 1e–22 24.30%

PR(NR)/T47D-PR 1e–20 34.40%

enable the binding of other transcription factors (Bernardo & Keri, 2012) . The presence

of high quality (p-value <1.00e–05) peaks and known conserved PR and ERα recognition

sequences confirmed the success of the alignment and peak-calling process.

The size distribution of ERα (18,560 regions) and PR (22,152 regions) binding regions

were visualised by drawing a histogram and box plot (Figs. 1 and 2). Mean PR binding

region size was 1508 with a median of 1336. In contrast, ERα binding regions were on

average half the size of PR binding regions, with a mean size of 601 and median 529.

Most PR binding regions (∼94%) were greater than 1 kb, whereas most ERα binding

regions (∼95%) were less than 1 kb. The longer PR regions may be due to longer input

DNA fragment lengths in the original samples (Kharchenko, Tolstorukov & Park, 2008;

Landt et al., 2012).

Limited overlap of ERα and PR regions
Using BiSA, we identified that almost one quarter (23.6%) of ERα binding regions (4,344)

overlap with 3,870 unique PR binding regions. This revealed that some long PR binding

regions spanned more than one ERα binding region and the reverse was also true for

large ERα binding regions. In total, we found 4,358 sections that were common to the two

datasets. The Venn diagram in Fig. 3A shows this overlap between the two ligand-activated

transcription factors. The 4,358 overlapping sections of the regions common to the

two datasets were extracted and plotted for their region lengths (Fig. 3B). Out of 4,358

overlapping sections 4,279 (98.2%) were more than 100 bases long, suggesting a strong

binding overlap between the two transcription factor data sets. An example of a shared

ERα and PR binding region is shown in Fig. 4. The 631 bp ERα binding region (red dotted

lines) is completely contained within the 813 bp PR binding region (blue dotted lines) and

the two regions share the peak centre location (Fig. 4).

Statistical analysis of ERα-PR overlap
To determine whether the overlap between ERα and PR binding was statistically

significant, statistical analysis was performed in BiSA, BITS and Genometricorr. In

BiSA, using a whole genome domain and selecting the ERα cistrome as query and PR

as reference revealed an overlap correlation value of 0.33. The value decreased to 0.26

when PR was selected as query and ERα as reference. This showed that, although a

considerable proportion of ERα binding regions are also bound by PR, the two receptors
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Figure 1 Distribution of PR binding region sizes. (A) Box plot with mean and median information.
(B) Histogram of region sizes with bin size 1,000.

do not cooperate for binding at all sites. To determine whether the significance of ERα-PR

binding overlap was greater in functionally relevant genomic regions, we compared the

level of binding overlap over a range of genomic domains from promoter proximal (within

500 b of a TSS) to more distal regions (Table 3). We found a low though consistent overlap

correlation value (∼0.3) whether promoter proximal or distal sites were included in the

analysis (Table 3). To confirm that the OCV result is independent of the mean region

sizes of the two datasets, we fixed the PR region sizes to 300 bases from each side of peak

summits to match mean ERα region length (mean = 601) and performed the OCV test

again. This did not change the OCV (0.33) for the whole genome dataset, and there was

negligible change in OCV observed for other domains (Table 3).

Using BITS and Genometricorr, we further investigated whether the spatial proximity

correlation between PR and ERα binding was more significant than expected by chance.

BITS Monte Carlo simulation reported that the spatial correlation of ERα and PR was

statistically significant, with a p-value of 0.0001. Similarly Genometricorr’s Relative
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Figure 2 Distribution of ERα binding region sizes. (A) Box plot with mean and median information.
(B) Histogram of ERα region sizes with bin 200.

Correlation test, Absolute Distance test, Jaccard test and Projection tests also reported the

spatial correlation between the two factors as statistically significant (p-value =<1e–04)

(Fig. 5). We repeated the tests for the 600bp fixed-width PR dataset and found no change

in reported p-values from BITS or Genometricorr. This confirmed that a change in

average region size between the two datasets does not affect the statistical analysis and

demonstrated that the tendency for binding events for the two factors to be close to each

other is statistically significant. Therefore we conclude that, although there are a number

of statistically significant shared binding sites in the ERα and PR datasets, and that ERα

and PR often bind in proximity to each other, the observed overlap of the two factors is

not strong enough for them to be considered as co-factors that consistently co-operate on

shared binding regions. However, the close proximity of the binding regions for the two

factors shows a spatial convergence and is statistically significant.

Motif analysis
The 4,358 common sections of ERα-PR were searched for known motifs. Known motif

analysis in these common sections revealed a strong presence of ERE, forkhead protein
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Figure 3 Visualisation of ERα and PR binding region overlap. (A) Venn diagram showing overlap
between ERα and PR data. The 4,344 ERα binding regions overlap with 3,870 unique PR binding regions
making up 4,358 overlapping sections. (B) Region sizes of 4,358 regions common to the ERα and PR
datasets.

and PRE motifs. In Table 4, we listed the top ranked motifs, ordered by p-value. A PRE

motif was found in 41.88% (1,825) of the total 4,358 regions, which was much higher

than the number of ERE motifs detected 14.3% (623) of the sequences. However, this may

reflect the higher stringency of the position specific scoring matrix used to identify ERE

motif occurrence than the matrix used to find PRE motifs since the p-value for ERE motif

detection (1e–291) was much stronger than the p-value for PRE motif occurrence in the

dataset (1e–179). The presence of FOXA1 motifs in these regions confirms that the factor

facilitates the binding of ERα and PR on these regions as previously reported (Augello,

Hickey & Knudsen, 2011; Bernardo & Keri, 2012; Nakshatri & Badve, 2009). In addition

AP-2 and TEAD4 (TEA) motifs were also identified in these regions and in the 1,000 top

scoring PR binding regions. AP-2 has a known role in normal mammary development and

breast cancer (Cyr et al., in press; Lal et al., 2013; Woodfield et al., 2010). TEAD4 has also

been shown to be co-expressed with other oncogenes and is correlated with poor prognosis

(Xia et al., 2014; Mesrouze et al., 2014; Lim et al., 2014). The presence of the related motifs in
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Figure 4 Example overlapping region. IGV snapshot of PR binding region at chr1:7507615–7508428
(marked by blue dotted lines) and ERα binding region (marked by red dotted lines). (A) Progestin treated
and control samples. (B) Estradiol (E2) treated and control sample. The red boxes are reads that mapped
to the forward strand and blue boxes are reads that mapped to the reverse strand of the human genome
(build hg19).

Table 3 BiSA Overlap Correlation Value (OCV) testing. BiSA Statistical analysis of overlap between ERα and PR datasets using different domain
datasets.

Domain Overlap Correlation Value (OCV) # of overlapsb/total
ERα regions in domain

Query = ERα

Reference = PR
Query = PR
Reference = ERα

Query = ERα

Reference = PR (600 bp long)a

Whole Genome 0.33 0.26 0.33 4,344/18,560

500 bp upstream, downstream of TSS 0.3 0.17 0.22 112/419

1 kb upstream, downstream of TSS 0.28 0.18 0.25 157/647

5 kb upstream of TSS 0.3 0.21 0.28 304/1,224

5 kb upstream, downstream of TSS 0.31 0.22 0.3 522/2,147

10 kb upstream, downstream of TSS 0.31 0.22 0.3 929/3,666

45 kb–55 kb upstream of TSS 0.29 0.21 0.28 449/1,929

95 kb–105 kb upstream of TSS 0.31 0.24 0.3 514/2,017

90 kb–110 kb upstream of TSS 0.31 0.23 0.3 878/3,495

Notes.
a PR regions are fixed to 600 bp long by cutting off 300 bp on both sides of peak summits.
b Number of overlaps in this column is reported by selecting ERα as the query and PR as the reference dataset.

the ERα-PR shared regions as well as in regions that bind uniquely ERα or PR suggests that

AP-2 and/or TEAD play a key role for both receptors and could be important in facilitating

cooperation between the two nuclear receptors.

Using Homer, we also looked at relative position distributions of these motifs (Fig. 6).

We found that the motifs converge around the centres of the peaks, supporting their

biological significance as primary binding events.
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Figure 5 Statistical significance test using Genometricorr. Genometricorr statistical significance anal-
ysis of ERα (query)-PR (reference). (A) Relative and Absolute Distance Correlation tests are shown
graphically. Overlay line (data density) when in the blue section shows negative correlation while the
high density in the red section shows positive correlation. (B) Results from Jaccard and Projection tests
are shown in text.

Figure 6 Motif position distributions in ERα-PR overlapping regions. Frequency distribution of ERE,
FOXA1, PRE, AP-2 and TEAD4 motifs around centres of peaks using a 50 bp bin size.
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Table 4 Known motif analysis of ERα and PR overlapping common regions. Top ranked known motif analysis of ERα-PR common sections (4,358
regions).

Motif Name P-value % of targets sequences
with motif

ERE(NR/IR3)/MCF7-ERa 1e–291 14.30%

FOXA1(Forkhead)/LNCAP-FOXA1 1e–249 35.11%

PR(NR)/T47D-PR 1e–179 41.88%

AP-2gamma(AP2)/MCF7-TFAP2C 1e–122 20.38%

TEAD4(TEA)/Tropoblast-Tead4 1e–86 17.97%

Enrichment analysis of ERα-PR common regions
We used GREAT (Genomic Regions Enrichment of Annotations Tool) (McLean et al.,

2010) to interpret the functional role of 4,358 ERα-PR common regions. GREAT revealed

that only 34 regions (∼0.8%) are not associated with any gene and 3,687 (∼85%) regions

are associated with 2 genes (Fig. 7). Most of the regions were found to be distal binding

events while 405 (∼9%) regions are within 5 kb of transcription start sites (TSS). Region

to gene association revealed MYC has the maximum number of regions linked to this gene

(26 regions). The known role of estrogen-induced MYC oncogene in breast cancer (Orr

et al., 2012; Wang et al., 2011a) confirms a biological relevant regions-to-gene association.

PGR was also among the top 10 genes identified with the largest number of associated

regions (File S1). Gene ontology enrichment analysis of the common regions revealed

epithelial cell development as the most significant biological process (File S1). Epithelial

cell development was linked to 30 genes associated with 120 regions out of which 4 regions

were within 5 kb of a TSS. Pathway Commons, a meta-database of public biological

pathway information (Cerami et al., 2006), revealed the ERα signalling network as the most

significant term (p-value = 5.7e–37) where 137 regions were found regulating 24 genes

associated with this pathway. The FOXA1 transcription factor network and IL6-dedicated

signalling events were also significant terms (p-value 1.6e–19 and 2.6e–17). Mouse phe-

notype analysis revealed two breast cancer related ontologies (abnormal mammary gland

epithelium physiology and abnormal mammary gland development) as the most signifi-

cant terms. There were 32 regions associated with 5 genes linked to abnormal mammary

gland epithelium physiology and 189 regions associated with 52 genes linked to mammary

gland development. The File S1 also lists regions and associated genes with the ontologies.

DISCUSSION
The BiSA database provides a good starting point for studying overlapping binding by

a range of transcription factors from a comprehensive collection of published studies

(Khushi et al., 2014). The datasets available in BiSA represent the original genomic
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Figure 7 ERα-PR common region-gene association. (A) Number of associated genes per region. (B) Region-gene association binned by orientation
and distance to TSS. (C) Region-gene association binned by absolute distance to TSS.

locations identified in the published studies from which they are sourced. Although the

same standard pipeline has often been applied, it must be acknowledged that differences

in read alignment algorithms (Kerpedjiev et al., 2014; Lunter & Goodson, 2011) and the

use of a variety of peak-caller programmes (Ladunga, 2010; Pepke, Wold & Mortazavi,

2009; Wilbanks & Facciotti, 2010) has an impact on downstream analysis, largely due

to differences in stringency that affects the number of genomic regions identified. Our

initial investigation of the overlap in ERα and PR binding in T-47D cells, utilizing the

published binding regions, revealed an overlap of ∼27% of ERα binding regions with

the published PR cistrome (data not shown). This suggested an interesting functional

relationship between the receptors, which justified further study. To perform a more

rigorous exploration of their overlapping binding patterns, we reanalysed the raw ERα

and PR ChIP-seq data using a standardized pipeline. This illustrates the great value of BiSA

as an easy to implement first pass tool to investigate potential functional relationships in

transcription factor binding and epigenomic datasets.

The BiSA statistical overlap correlation value (OCV) represents a statistical summary

value of the set of p-values calculated by the IntervalStat tool and reflects the overall

correlation of two binding site datasets. IntervalStat calculates a p-value for each query

region against the closest reference region within the given domain. It is designed to

identify factors that target the same genomic locations. As described in examples in

our previous study (Khushi et al., 2014) the OCV should be greater than 0.5 for partner

factors, reflecting a statistically significant correlation between two binding patterns. For

example the OCV for known partners, FOXA3 (query) to FOXA1 (reference) was 0.72

(Motallebipour et al., 2009). Similarly the OCV for CTCF (query) and SA1 (reference),

which are known to co-locate on DNA, was 0.82 (Schmidt et al., 2010). Therefore the

lower OCV for ERα-PR suggests that the majority of ERα and PR binding events are

independent of each other, however, the OCV test does not challenge the biological
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co-occurrence of binding of the two factors on the reported regions where IntervalStat

reports a statistically significant p-value.

A consistent overlap was found both proximal and distal to gene promoters (Table 3).

It is acknowledged that gene expression is regulated through interaction at a number of

cis-regulatory elements, which includes promoters and enhancers. Moreover, enhancers

can spread over a range of distances from the TSS. Therefore, the detection of binding sites

over a range of distances and locations is to be expected (Bulger & Groudine, 2011; Calo &

Wysocka, 2013). This spatial correlation between the two factors is identified as statistically

significant by Monte Carlo simulation using BITS, Relevant Distance, Absolute Distance,

Jaccard and Projection tests using Genometricorr. Therefore, the regions from the two

factors are found in close proximity more often than expected by chance although they do

not exactly overlap. Therefore the consistent OCV observed using various domains and

statistically significant spatial convergence suggest that the consistent overlap may have

biological significance. Although not all sites overlapped, many of the shared ERα and

PR binding regions were highly statistically significant binding sites for both receptors,

as determined by a strong p-value and low FDR value in MACS, suggesting that these

are biologically valid binding regions for these receptors and that their overlap reflects

converging function on a subset of gene targets.

In recent years a number of studies have published ERα binding regions in the MCF-7

cell line (Grober et al., 2011; Gu et al., 2010; Hu et al., 2010; Hurtado et al., 2008; Joseph et al.,

2010; Schmidt et al., 2010; Tsai et al., 2010; Welboren et al., 2009). However only two studies

have published ERα data in T47D cells (Gertz et al., 2012; Joseph et al., 2010). We chose to

study the Gertz et al. (2012) dataset because using data from the Joseph et al. (2010) study

we called only 1,817 peaks with FDR <5%, which can be an indication of low quality ChIP

(Landt et al., 2012). On the other hand for the PR dataset, we did not employ the datasets

published by Yin et al. (2012) because the experiment was performed with an antiprogestin

(RU486) treatment, which would not be expected to elicit the same binding pattern as

PR agonist, and lacked any control sample. MACS distributes read tags from the control

sample along the genome to model Poisson distribution, and false discovery rate (FDR)

is calculated by swapping control and ChIP samples. Therefore it is recommended for

ChIP-seq studies to have an appropriate input control sample (Wilbanks & Facciotti, 2010).

ENCODE guidelines also emphasise the importance of using a suitable control dataset to

adjust for variable DNA fragment lengths (Landt et al., 2012).

There is a slight difference in the reported low-significance motifs for PR data between

this report and the Clarke and Graham study (Clarke & Graham, 2012). The two most

significant motifs (PRE are FOXA1) are the same in the two studies, however, Clarke

and Graham found an NF1 half-site as one of the significant motifs and AP-1 sites as

non-significant while in this study we found an AP-2 motif higher in significance than the

NF1 motif (not shown). This minor difference is due to the difference in binding regions

as Clarke and Graham published 6,312 PR bound regions in T47D cells by aligning to hg18

and using the ERANGE peak caller, however, in this study we reported 22,152 PR regions

by aligning to hg19 assembly and using MACS as our peak caller.
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The ERα-PR data was collected from two separate publications where the binding

of each factor was studied by stimulation of T-47D cells with estrogen or progesterone

independently. Therefore the focus of this study was to examine the correlation of ERα-PR

binding patterns which revealed an interesting convergence on specific loci. We studied the

association between common regions and nearby genes and found biologically relevant

gene pathways. The Myc oncogene, which was most highly associated with binding sites

common to ERα and PR, is a known target of both estrogen and progesterone and plays

a key role in the normal breast and breast cancer (Curtis et al., 2012; Hynes & Stoelzle,

2009). PR itself is also regulated by both hormones and the PGR gene was highly associated

with shared ERα and PR binding regions. Transcriptional regulation by estrogen and

progesterone co-treatment in this cell model was not available, however it would be

interesting to study the binding of the two factors under the influence of both stimuli

(estrogen and progesterone) to observe the impact of converging ERα and PR regulation in

comparison to individual stimulation.

CONCLUSION
In summary, we have evidence for a biologically relevant interplay between PR and ERα

in a subset of binding sites in breast cancer cells. Our analysis demonstrated the utility of

our previously published software BiSA (Khushi et al., 2014), which has a comprehensive

knowledge base, consisting of transcription factor binding sites and histone modifications

collected from previously published studies. Using BiSA we identified that ERα and PR

co-locate on a subset of binding sites. The BiSA statistical testing of overlap revealed a low

overlap correlation value (OCV) suggesting that the two factors are not obligate cofactors.

However, spatial correlation testing using Monte Carlo simulation by BITS, Relevant

Distance, Absolute Distance, Jaccard and Projection tests by Genometricorr revealed a

statistically significant correlation between the two factors. In addition, the discovery that

ERα, FOXA1, PR, AP-2 and TEAD4 binding motifs are significantly enriched in regions

that are bound by both ERα and PR suggests that their overlap is biologically relevant.
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