
Copyright and use of this thesis

This thesis must be used in accordance with the 
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright 
may be an infringement of copyright and 
copyright owners may be entitled to take 
legal action against persons who infringe their 
copyright.

Section 51 (2) of the Copyright Act permits 
an authorized officer of a university library or 
archives to provide a copy (by communication 
or otherwise) of an unpublished thesis kept in 
the library or archives, to a person who satisfies 
the authorized officer that he or she requires 
the reproduction for the purposes of research 
or study. 

The Copyright Act grants the creator of a work 
a number of moral rights, specifically the right of 
attribution, the right against false attribution and 
the right of integrity. 

You may infringe the author’s moral rights if you:

- �fail to acknowledge the author of this thesis if 
you quote sections from the work 

- attribute this thesis to another author 

- �subject this thesis to derogatory treatment 
which may prejudice the author’s reputation

For further information contact the 
University’s Copyright Service.

sydney.edu.au/copyright



 

 

 

 

 

THE ROLE OF FREE BETA SUBUNIT OF 

HUMAN CHORIONIC GONADOTROPIN 

IN HIGH-GRADE SEROUS CANCER  
 

Snega Marina Sinnappan 

 

This thesis is submitted in fulfilment of the requirement for the degree of 

Doctor of Philosophy, Faculty of Medicine, University of Sydney 

 

 

Functional Genomics Laboratory 

Hormones and Cancer Group 

Kolling Institute of Medical Research 

Northern Clinical School 

Royal North Shore Hospital 

Faculty of Medicine 

University of Sydney 

 

September, 2015 

 

 

 

  



 

 

Declaration 

The work described in this thesis was performed by the candidate, except 

where due acknowledgement has been made. 

This work was undertaken in the Functional Genomics Group at the Kolling 

Institute of Medical Research, Royal North Shore Hospital. I declare that no 

part of this work has been submitted previously for the purpose of obtaining a 

degree or diploma in any other university. 

 

 

Snega Marina Sinnappan 

 

September 2015 

 

 



 

 

Dedication 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
This thesis is dedicated to my family and loving husband. 

 

 

 

 
  



 

i 

 

Acknowledgments 

First and foremost I would like to acknowledge my supervisors, Professor 

Deborah Marsh and Professor Robert Baxter. Their support and guidance have been 

paramount to the completing of this work. Thank you for supporting my ideas and 

encouraging me to present my work at local, national and international conferences.   

I would like to thank Mrs Kristie Dickson a colleague and friend who has been 

invaluable during the course of my PhD.  Thank you for not only your practical 

assistance in the lab, but all your advice on how to balance work and family. Thank 

you to Dr Casina Kan, Dr Martyn Bullock and Dr Sergey Kurdyukov for all their 

technical support and help into putting things into perspective during the challenging 

times.  

Many thanks to all members past and present of the Hormones and Cancer Group 

and in particular the Functional Genomics lab for all their support. I can truly say 

this work was a product of team work. It has been a privilege to have worked with 

you all. 

 I would also like to acknowledge the financial support provided by the Dora 

Lush Biomedical Research Postgraduate Scholarship and Northern Clinical School 

Top-Up as well as The Postgraduate Research Support Scheme, Beryl and Jack 

Jacobs Travel Awards, Kolling Travel Awards.  

I would like to thank my friends for their understanding and always keeping my 

spirits up. Thank you to my loving family in India and South Africa, for their 

encouragement and support; though we are far apart I know I am never far from your 

thoughts. Lastly, I would like to thank my husband Carl who has been my rock and 

who has always believed in me during the trying times  ̶  Thank you.  



 

ii 

 

Abstract 

Introduction: Ovarian cancer is one of the most lethal gynaecological cancers in the 

developed world. Development of chemoresistance to platinum-based drugs is a key 

factor for the high morbidity seen in this malignancy. Epithelial ovarian cancer 

(EOC) is the most common form of ovarian cancer, with high-grade serous cancer 

(HGSC) accounting for up to 75% of EOC. The β-subunit of human chorionic 

gonadotropin (hCGβ) is elevated in a number of epithelial cancers, including ovarian 

cancer, and is often associated with aggressive and metastatic disease with poor 

clinical outcomes. Studies have shown evidence of the biological activity of hCGβ in 

epithelial cancer including proliferation, apoptosis, and migration. The level of 

hCGβ has also been shown to be associated in chemoresistance in small-cell lung 

cancer patients.  

Aims and Methods: The aim of this thesis was to investigate the role of hCGβ in 

modulating oncogenic functions and drug resistance in HGSC cell line models. The 

expression levels of the genes encoding hCGβ, CGB, and secreted hCGβ were 

determined by qRT-PCR and ELISA, respectively, in a panel of eight HGSC cell 

lines: A2780, A2780cis, CaOV-3, HEY, OVCAR-3, OV202, PEO-1 and SKOV-3. 

hCGβ was downregulated with two siRNAs or overexpressed using an expression 

plasmid vector in order to determine its role in cell proliferation, migration, adhesion 

and response to platinum-based drugs. The quantitative proteomic technique, 

isobaric tags for relative and absolute quantitation (iTRAQ), was employed to 

determine the mechanism by which hCGβ might be involved in the response of 

HGSC cells to cisplatin. A selected number of proteins found to be dysregulated 

were validated by western blotting. 
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Results and Discussion: All eight HGSC cell lines expressed CGB transcript(s) and 

secreted hCGβ, with SKOV-3 and HEY cells being the highest expressers. HEY 

cells and the pair of cisplatin sensitive/resistant cell lines, A2780 and A2780cis, were 

chosen for functional studies. The effect of hCGβ on cell proliferation was cell type 

dependent, as downregulation of hCGβ significantly decreased proliferation of 

A2780cis and HEY cells, but its effect on A2780 cells seemed to be dependent on 

the siRNA used to downregulate hCGβ. This suggested that the two siRNAs 

targeting hCGβ may have some differences in their actions. Overexpression of hCGβ 

had no effect on proliferation in any cell line, suggesting that a threshold level may 

be reached beyond which hCGβ had no effect. Downregulation of hCGβ increased 

cell adhesion of HEY and A2780cis cells on the various extracellular matrix (ECM) 

proteins, which suggested that hCGβ may be inhibitory to cell adhesion. Cell 

migration was not influenced by hCGβ. 

hCGβ may have a role in the response of HGSC cells to cisplatin, as 

downregulation of hCGβ in A2780cis and HEY cells increased sensitivity to 

cisplatin; however, this effect was not seen in the cisplatin sensitive A2780 cells. 

This suggested that hCGβ may be involved in the response of HGSC cells towards 

cisplatin but only when cells have acquired resistance to cisplatin. An increase in 

drug sensitivity was also observed when cells were treated with carboplatin and 

oxaliplatin, particularly in A2780cis cells. This was not surprising for carboplatin 

which is thought to have a similar mode of action to cisplatin, but unexpected for 

oxaliplatin as it is thought to have a different mode of action. These results suggested 

that hCGβ may be involved in a common mechanism of action for all three drugs.  

iTRAQ and pathway analysis revealed a number of proteins and pathways that 

were differentially regulated when cells were treated with cisplatin following hCGβ 
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downregulation, compared to cisplatin treatment alone. Validation by western 

blotting revealed that the wings apart-like homolog (WAPAL) and sirtuin 1 (SIRT1) 

proteins were both downregulated when cells were treated with cisplatin following 

hCGβ downregulation compared to cisplatin treatment alone; however, this effect 

was dependent on the siRNA used to target hCGβ, indicating that the two siRNAs 

worked by different mechanisms to confer cisplatin sensitivity. A compensatory 

upregulation of the highly homologous LHB gene (encoding the β-subunit of 

luteinising hormone) by one siRNA but not the other provided a plausible 

explanation as to why the two siRNAs had some different effects. Interestingly, one 

of the siRNAs decreased the level of SIRT1 independent of cisplatin treatment, 

suggesting that SIRT1 could be a secondary target of the siRNA and therefore be a 

contributing factor to the increased sensitivity to drug treatment. Downregulation of 

SIRT1 increased cisplatin sensitivity in A2780cis cells but not HEY cells. From this 

result it can be inferred that the increased sensitivity toward cisplatin following 

downregulation of hCGβ was not caused by a decrease in SIRT1 alone.  

Conclusion: This study has demonstrated that hCGβ is potentially involved in cell 

proliferation, adhesion and response to platinum-based drugs in HGSC cells. 

However, further work on the mechanism by which hCGβ regulates cellular 

responsiveness to platinum-based drugs would be needed with the view to 

establishing a targeted therapeutic approach that could have future implications on 

how chemoresistance is managed in ovarian cancer.  
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 Literature Review Chapter 1

 

1.1 Ovarian cancer  

Ovarian cancer is one of the most lethal gynaecological cancers in the developed 

world, and accounts for half of the gynaecological cancer-related deaths of women in 

Australia [1, 2]. The lack of specific symptoms, poor diagnostic methods, diagnosis 

at an advanced stage and development of drug resistance are key factors for the high 

morbidity seen in this malignancy. Ovarian cancer is predominantly diagnosed in 

postmenopausal women with 60% of new diagnoses being in patients 60 years and 

over. Of all ovarian cancer diagnosis, 3-17% are in women aged 40 years and under  

[3]. Within the first 5 years of diagnosis, the survival rate for older women is 

significantly lower than for women diagnosed at 30 years of age or younger [2]. The 

survival rates of patients with ovarian cancer is also linked to the stage of diagnosis 

with 80-90% cure rates for patients with stage I cancer (when the malignancy is 

confined to the ovaries) dropping to 20-30% when patients are diagnosed at an 

advanced stage (III and IV, when the tumour(s) have metastasised beyond the pelvis) 

[4-8]. Unfortunately, only 20-25% of ovarian cancers are detected at stage I [5, 8]. 

 

1.1.1 Familial risk factors 

Between 5 to 15% of ovarian cancers are considered to be caused by hereditary 

germline mutations [8, 9]. Women with a family history of breast and ovarian 

cancer, in particular first degree relatives, have a higher risk of developing ovarian 

cancer [6, 10, 11]. Among the best studied hereditary risk factors contributing to 
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ovarian cancer are germline mutations in the breast cancer type 1 and 2 genes 

(BRCA1 and BRCA2) [10-13]. The lifetime risk of ovarian cancer in the general 

population jumps from 1.8% to 30–65% and 15-30% in carriers of the BRCA1 and 

BRCA2 mutations, respectively [8, 14-16]. Interestingly, the two genes also seem to 

have differential levels of risk based on age, with women carrying BRCA1 mutations 

presenting with disease predominantly before 50 years of age and BRCA2 mutation 

carriers after 50 years [16, 17]. Bilateral prophylactic oophorectomy is a preventative 

procedure chosen by some women who are carriers of a BRCA1 or BRCA2 mutation 

[18, 19].  

Mutations in mismatch repair genes MLH1 and MSH2 which are linked to 

hereditary nonpolyposis colorectal cancer (HNPCC or Lynch syndrome) have also 

been associated with an increased risk (up to 7%) of developing ovarian cancer [8, 

20, 21]. 

 

1.1.2 Protective factors 

The use of oral contraception has been shown to play a protective role in the 

development of ovarian cancer [22, 23]. Studies have also shown that the longer the 

duration of use of the oral contraceptive, the better the protective outcome. In 

addition, oral contraception has been shown to have a long term protective effect 

against ovarian cancer, even after the cessation of use, but only up to 20 years since 

the last use [24-27]. The use of oral contraceptives has also been found to have a 

protective effect in women who are carriers of BRCA1/2 germline mutations who are 

at increased risk of developing ovarian cancer as discussed in section (1.1.1) [28]. 
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Parity (child birth) has been shown to have an inverse effect on the risk of 

developing ovarian cancer [29-32]. 

The protective role of oral contraception and parity supports two theories about 

the development of ovarian cancer: the incessant ovulation theory and the 

gonadotropin theory [33-35]. These two theories will be further discussed in section 

1.2.  

 

1.1.3 Symptoms 

Ovarian cancer has been referred to as the ‘silent killer’ as the disease is 

asymptomatic or symptoms may only occur at an advanced stage of disease [36]. 

However, symptoms can arise at earlier stages of the disease but are often ignored or 

misdiagnosed [37]. These symptoms include abdominal distention, pelvic and 

abdominal pain and fatigue but since these symptoms are non-specific to ovarian 

cancer, the disease can be dismissed or misdiagnosed [38].  

 

1.1.4 Detection 

Ovarian cancer can be detected and diagnosed by transvaginal ultrasound and 

determining the level of serum biomarker CA-125. CA-125 is elevated in 50% of 

patients with stage I ovarian cancer and up to 90% in patients with an advanced stage 

of disease [6]. Though CA-125 has been used for several decades as a biomarker for 

ovarian cancer it has a number of drawbacks:  1. high levels of CA-125 can be 

detected in early pregnancy, during the menstrual cycle and in benign conditions 
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such as endometriosis [39, 40]; 2. elevated levels of CA-125 have also been shown 

in other cancers such as breast [41], gastric [42] and non-Hodgkin lymphoma (NHL) 

[43]; and, 3. twenty percent of ovarian cancer tumours do not express CA-125 [44]. 

CA-125 however has been shown to be a valuable biomarker in monitoring the 

progress of ovarian cancer during treatment and follow-up of recurrent disease [45-

47].  

Alternate or additional biomarker(s) for the detection of ovarian malignancies 

have been studied and one such marker that has been extensively investigated is the 

human epididymis secretory protein 4 (HE4). HE4 has been shown to be superior to 

CA-125 as it is able to better distinguish between benign and malignant pelvic 

masses and can detect malignancies at stage I of the disease [48, 49] which is 

thought to be  due to HE4 being released earlier than CA-125 [50]. The combination 

of HE4 and CA-125 has been shown to be more specific at distinguishing between 

malignant and benign tumours compared to either biomarker alone, leading to the 

development of the Risk of Ovarian Malignancy Algorithm (ROMA) [48, 49]. 

ROMA incorporates HE4 and CA-125 as well as menopausal status, to determine the 

likelihood of finding malignant abnormalities [51, 52].  Although HE4 or ROMA 

has had promising results, studies have also shown it does not outperform CA-125 as 

a predictor of ovarian cancer [53].   

OVA1 is an assay approved by the FDA in 2009 for pre-surgical prediction of 

pelvic malignancies. OVA1 is a multivariate index assay encompassing five 

biomarkers: CA-125, 2-microglobulin, apolipoprotein A1, transthyretin, and 

transferrin [54]. It has been shown to be more sensitive and effective at detecting 

advanced and early stage malignancies in both pre- and postmenopausal women 
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compared to CA-125 alone [55]. Studies have also shown that OVA1 is capable of 

detecting malignancies (up to 76%) missed by standalone CA-125 assay [56]. 

 

1.1.5 Staging 

The Federation of International Gynaecology and Obstetrics (FIGO) staging 

system which is based on surgical and pathological observations is the most 

commonly used staging system, established in 1988 (Rio de Janeiro). Since its 

establishment, FIGO has undergone revision, with the current version, outlined in 

Table 1-1, approved in 2012 [57, 58]. 
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Table 1-1 FIGO nomenclature for ovarian carcinomas 

Stage Description 

Stage I Tumour confined to ovaries or fallopian tube(s) 

IA: Tumour limited to one ovary (capsule intact) or fallopian tube; no 

tumour on ovarian or fallopian tube surface; no malignant cells in the 

ascites or peritoneal washings. 

IB: Tumour limited to both ovaries (capsules intact) and fallopian 

tubes; no tumour on ovarian or fallopian tube surface; no malignant 

cells in the ascites or peritoneal washings. 

IC: Tumour limited to one or both ovaries or fallopian tubes, with any 

of the following: 

IC1: Surgical spill 

IC2: Capsule ruptured before surgery or tumour on ovarian or 

fallopian tube surface. 

IC3: Malignant cells in the ascites or peritoneal washings. 

 

Stage II Tumour involves one or both ovaries or fallopian tubes with pelvic extension 

(below pelvic brim) or primary peritoneal cancer 

IIA: Extension and/or implants on uterus and/or fallopian tubes 

and/or ovaries. 

IIB: Extension to other pelvic intraperitoneal tissues. 

 

Stage III Tumour involves one or both ovaries or fallopian tubes, or primary peritoneal 

cancer, with cytologically or histologically confirmed spread to the 

peritoneum outside the pelvis and/or metastasis to the retroperitoneal lymph 

nodes 

IIIA1: Positive retroperitoneal lymph nodes only (pathologically 

proven): 

IIIA1(i) Metastasis up to 10 mm in greatest dimension. 

IIIA1(ii) Metastasis >10 mm in greatest dimension. 

IIIA2: Microscopic extrapelvic (above the pelvic brim) peritoneal 

involvement with or without positive retroperitoneal lymph nodes. 

IIIB: Macroscopic peritoneal metastasis beyond the pelvis up to 2 cm 

in greatest dimension, with or without metastasis to the 

retroperitoneal lymph nodes. 

IIIC: Macroscopic peritoneal metastasis beyond the pelvis more than 

2 cm in greatest dimension, with or without metastasis to the 

retroperitoneal lymph nodes (includes extension of tumor to capsule 

of liver and spleen without parenchymal involvement of either organ). 

 

Stage IV Distant metastasis excluding peritoneal metastases 

Stage IVA: Pleural effusion with positive cytology. 

Stage IVB: Parenchymal metastases and metastases to extra-

abdominal organs (including inguinal lymph nodes and lymph nodes 

outside of the abdominal cavity). 

Table extracted and adapted from [57, 58] 
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1.1.6 Histological subtypes 

Ninety percent of ovarian cancers are malignant epithelial cancers (EOC) and 

there are five distinguished histological types: high-grade serous ovarian carcinoma 

(HGSC), endometrioid carcinoma (EC), clear-cell carcinoma (CCC), mucinous 

carcinoma (MC), and low-grade serous carcinoma (LGSC). Characteristics of the 

histological subtypes are outlined in Table 1-2. 
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Table 1-2 Characteristics of histological subtypes of ovarian cancer 

Classification Incidence Characteristics 

high-grade 

serous carcinoma  

(HGSC) 

60-80% [59] HGSC are the most common and aggressive of 

ovarian cancers accounting for more than two 

thirds of EOC cases and are thought to 

originate from precursor lesions from the 

fimbria of the fallopian tube [60, 61]. Up to 

80% of HGSC present at an advanced stage 

and respond to conventional chemotherapy 

[58, 60]. Though these tumours are generally 

initially responsive to chemotherapy, they 

develop drug resistance resulting in poor 

patient survival outcomes [62].  

low-grade serous 

carcinoma 

(LGSC) 

<5% [60, 63] LGSC are thought to originate from serous or 

adenofibroma cystadenoma [64] and 

borderline tumours as well as the fallopian 

tube [65, 66]. They are often resistant to 

platinum-taxane based chemotherapy [67, 68]. 

mucinous 

carcinoma (MC) 

3% [60, 63, 65] MC consists of a mix of borderline, non-

invasive or invasive carcinomas as well as 

cystadenomas [69]. 80% of MC are 

cystadenomas with low proliferative potential 

[69]. The origin of MC is still under 

speculation and mostly unknown and is 

thought to arise from metastatic 

gastrointestinal tumours [60, 65, 70, 71]. 

endometrioid 

carcinoma (EC) 

10% [60, 63] 

 

EC are thought to arise from atypical 

endometriosis or endometriotic cysts [60, 72, 

73].   

clear-cell 

carcinoma 

(CCC) 

10% [60, 63] 

 

CCC are thought to rise from atypical 

endometriosis or endometriotic cysts [60, 72] 

and do not respond well to platinum-taxane 

based chemotherapy [74, 75]. 
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1.1.7 Aetiology 

Ovarian cancer is a complex disease and the underlying molecular events 

involved in tumorigenesis of the cancer are poorly understood.  However, some of 

the molecular events or pathways that are known to be implicated in the 

development of the different histological subtypes of ovarian cancer are summarised 

in Table 1-3 and are discussed further in this section.  

 

Table 1-3 Dysregulated molecular pathways in the different histological 

subtypes of ovarian cancer 

Histological subtypes Molecular pathway   Reference 

High-grade serous 

carcinoma (HGSC)  

Mutations in TP53 and BRCA1/2 and 

hypermethylation of BRCA1   

[14, 62, 76-

78] 

 

Low-grade serous 

carcinoma (LGSC) 

 

Mutations in BRAF and KRAS  [8, 79, 80] 

 

Mucinous carcinoma  (MC) Mutations in BRAF and KRAS [8, 80, 81] 

 

Endometrioid carcinoma 

(EC) 

Mutations in PTEN, PIK3CA, BRAF, 

KRAS and ARID1A 

[65, 77, 82, 

83] 

 

Clear-Cell carcinoma 

(CCC) 

Mutations in PTEN, PIK3CA and 

ARID1A  

[8, 84] 
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1.1.7.1 TP53 

TP53 is the most common and well-studied tumour suppressor gene in ovarian 

cancer [85] and mutations in TP53 occur in up to 96% of  HGSC [62, 76] but are less 

frequent in the other four histological subtypes [77, 84]. TP53 mutations are also 

more frequent at a later stage of tumour progression, with mutations more prevalent 

in stages III and IV (58%) compared to I and II (27%) which could suggest that 

TP53 mutations occur at a later stage of cancer development [86].  Contrary to this 

notion, the fact that TP53 mutations have been identified in low stage HGSC [86-

88], and in precursor lesions [66, 89] suggests that TP53 mutations may be an early 

event in the development of HGSC.  

 

1.1.7.2 KRAS and BRAF 

Activating mutations in KRAS and BRAF which code for the V-Ki-ras2 Kirsten 

rat sarcoma viral oncogene homolog (KRAS) and proto-oncogene B-RAF (BRAF) 

proteins, respectively, are commonly found in mucinous, endometrioid and LGSC 

compared to HGSC [64, 81, 90, 91]. KRAS and BRAF are upstream regulators of 

mitogen-activated protein kinase (MAPK) and mutations in KRAS and BRAF result 

in constitutive activation of the MAPK pathway [77]. Interestingly, the two 

mutations are mutually exclusive with tumours carrying either a KRAS or a BRAF 

mutation [79].  

 

1.1.7.3 Phosphotidylinositol 3-kinase (PI3-kinase)/AKT pathway 

The phosphatidylinositol 3-kinase (PI3K)/AKT pathway which is involved in a 

number of cellular processes including survival, apoptosis, cell cycle arrest and DNA 
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repair, has been found to be dysregulated in ovarian cancer [92, 93]. Phosphatase and 

tensin homolog (PTEN) is an antagonist of the PI3K pathway and inactivating 

mutations in the PTEN gene occur in 14–21% of endometrioid cancer [77]. Although 

PTEN mutations were initially associated with only endometrioid cancer [90], they 

have since been shown in other histological subtypes including HGSC [62, 76, 94] 

and mucinous cancer [95]. In addition to PTEN, other genes such as PIK3CA and 

AKT2 which are involved in the PI3K pathway have also been shown to be amplified 

in ovarian cancer [96, 97]. PIK3CA which codes for the human p110α subunit of 

PI3K  is amplified in 40% of ovarian cancer [97]. 

 

1.1.7.4 ARID1A 

Somatic mutations in AT-rich interactive domain1A gene (ARID1A) which codes 

for the BAF250a protein have been reported in almost 50% of clear cell carcinoma 

and 30% of endometrioid cancers [82]. BAF250a forms part of the SWI/SNF 

complex which is involved in chromatin remodelling and cellular processes such as 

proliferation, DNA repair and tumour suppression [98]. It is speculated that mutation 

in ARID1A and loss of BAF250a is an early event in the development of the cancer 

from endometriosis as they are detected in preneoplastic lesions [82]. In a study by 

Weigand et al. mutations in ARID1A were not present in HGSC tumours [82]. 

 

1.1.7.5 BRCA1/2 

As discussed in section 1.1.1 carriers of BRCA1/2 mutations have an increased 

risk of ovarian cancer. In addition to inactivating germline mutations, somatic 

mutations in BRCA1/2 have been identified in serous ovarian cancer [62, 76, 99-
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101]. Hypermethylation of the promoter region BRCA1 leading to loss of BRCA1 has 

also been documented in HGSC [62, 76]. 

 

1.2 Site of origin 

The site of origin for ovarian cancer is a controversial and evolving topic of 

research. A widely accepted, but highly disputed, theory is that epithelial ovarian 

cancers arise from the cells of the ovarian surface epithelium (OSE) or ovarian 

epithelial inclusions (OEI) [9, 59, 102]. An explanation behind this train of thought 

is explained by the incessant ovulation theory put forward by Fathalla which 

suggests that the constant rupture and repair of the OSE during ovulation predisposes 

the cells to malignant transformations [33]. In support of this theory, Schildkraut 

et al. found that high levels of TP53 mutations in ovarian cancer tumours were 

associated with higher number of ovulatory cycles [103]. Interestingly, the risk of 

ovarian cancer also seems to be associated with the number of ovulation cycles, 

particularly in women in their 20s [104, 105]. Furthermore, pregnancy and oral 

contraceptives which allows for a break in the ovulation cycle have been found to 

decrease the risk of ovarian cancer [30, 106]. Another theory which suggests that 

EOC cancer may develop from OSE is the gonadotropin hypothesis which suggests 

that high levels of pituitary gonadotropins during ovulation, in particular of follicle 

stimulating hormone (FSH) and luteinising hormone (LH), directly leads to 

malignant transformation of ovarian epithelium [107, 108]. In agreement with this 

theory factors such as multiple pregnancies, breast feeding and oral contraception 

which lead to a reduction of these hormones, seem to play a protective role in 

ovarian cancer [105, 106, 109].  Some studies have shown that fertility treatments 
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which increase the levels of FSH and LH also increase the risk of ovarian cancer  

[30, 110, 111]; however, subsequent studies have shown little or no link between 

fertility treatment and increased risk of ovarian cancer [1, 10, 106, 112].  

One of the main criticisms of the OSE being the site of origin of EOC is that 

EOC cells are morphologically distinct to OSE cells often displaying a Müllerian 

phenotype. This discrepancy has been explained by the suggestion that cells of the 

OSE differentiate into a Müllerian-like phenotype and invaginate into the stroma 

forming small OEI mesothelial cysts before metaplasia into EOC cells [59, 102, 

113].  A major criticism for this explanation is that intermediate precursor lesions 

have been rarely identified [59, 102].  

A more recent and increasingly accepted theory about the site of origin of EOC 

specifically for HGSC is that they arise from fallopian tube [65, 71, 114, 115]. In 

support of this theory samples from prophylactic salpingo-oophorectomy specimens 

from BRCA mutation carriers displayed high levels of dysplasia and early serous 

malignancies often referred to as serous tubal intraepithelial carcinomas (STICs) or 

tubal intraepithelial carcinoma or (TIC) at the fimbriated end of the fallopian tube 

[61, 89]. These precursor lesions contained abnormal immunohistochemical 

expression of p53 and TP53 mutations similar or identical to HGSC [59, 61, 116]. 

STICs also have upregulated levels of cyclin E1, Rsf-1 and fatty acid synthase which 

is also observed in HGSC [66]. Despite this evidence for the origin of serous ovarian 

cancer, a consensus of the origin of ovarian cancer has not been reached perhaps due 

to the diverse nature of the different histological subtypes. 
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1.2.1 Type I and II EOC 

EOC can be classified into two broad tumour groups based on morphological, 

immunohistochemical and molecular characteristics, and subsequent clinical 

presentations: Low-grade-Type I and high-grade-Type II [59, 71, 90, 117]. Type I 

cancers are composed of low-grade serous, mucinous, endometrioid or clear cell 

carcinomas and account for 25% of  EOC [71]. These cancers are often detected at 

an early stage, have a less aggressive growth and a low-malignant potential (LMP). 

They are however less likely to respond to, or are even resistant to, conventional 

platinum-taxane based chemotherapy [81]. Type I tumours are thought to develop 

from serous borderline tumours from OEIs or serous cystadenoma which develop 

into invasive carcinoma [59]. Type II cancers account for 75% of EOC and include 

high-grade serous and endometrioid cancers as well as undifferentiated carcinomas 

[66, 71]. These tumours are poorly differentiated, and are generally diagnosed at a 

late stage (III-IV) [118]. Type II tumours are more aggressive and genetically 

unstable, with greater gene copy number abnormalities compared to type I tumours; 

however, they do generally respond initially to conventional chemotherapy. Type I 

serous cancer have wild-type TP53 and BRCA1/BRCA2 and often present with 

mutations in BRAF, KRAS, PTEN, PIK3CA and ARID1A [66, 81, 119]. Type II in 

particular HGSC, almost always have a mutation in TP53 (up to 96%), and  can also 

have BRCA1 or BRCA2 mutations [76].  
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1.2.2 Clinical management  

The current treatment of ovarian cancer is primary cytoreductive surgery 

(surgical resection or debulking) to remove as much of the macroscopic tumour as 

possible, followed by adjuvant combination chemotherapy consisting of platinum-

based chemotherapeutic agents such as carboplatin, in combination with a taxane 

such as paclitaxel. Optimal cytoreduction has been linked to better patient survival 

[120]. Furthermore, in patients whose tumours cannot be completely removed, it is 

thought that cytoreduction improves the ability of chemotherapeutic agents to 

penetrate remaining tumour deposits. In some cases, neoadjuvant chemotherapy is 

employed before interval cytoreduction, when extensive metastasis has occurred 

and/or primary debulking is not possible due to poor health of the patient [118, 121]. 

However, studies have reported conflicting results of the benefit of neoadjuvant 

therapy over primary cytoreductive surgery; van der Burg et al. showed that 

neoadjuvant therapy was more beneficial [122] while others have shown patients are 

no better or even worse off with neoadjuvant therapy compared to primary 

cytoreduction [120, 123]. Despite the arguments for neoadjuvant or primary 

cytoreduction followed by adjuvant therapy, it is clear that optimal cytoreduction is a 

primary prognostic factor for overall patient survival [122, 123]. 

Genotyping patients either at germline or somatic levels has given rise to 

personalised treatment that is specific to a patient. One example is a new line of 

treatment that has been approved in patients who carry BRCA1/2 mutations. Tumour 

cells that carry these mutations are unable to repair double stranded breaks (DSBs) in 

the DNA by homologous recombination. The enzyme poly(ADP-ribose) polymerase 

is involved in the repair of single stranded breaks (SSBs) in DNA by excision repair.  
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PARP inhibitors prevent the repair of SSBs, thus leading to DSBs. In this case DSBs 

cannot be repaired by the mutant BRCA proteins, thus leading to synthetic lethality 

and subsequent cell death [124]. Following a Phase II study in platinum-sensitive 

relapsed HGSC patients, the FDA approved (in December 2014) the first PARP 

inhibitor Lynparza (olaparib) in patients with advanced disease carrying BRCA 

mutations. 

 

1.3 Human chorionic gonadotropin  

Human chorionic gonadotropin (hCG) is a gonadotropic hormone important in 

the maintenance of early pregnancy, in particular rescue of the corpus luteum which 

produces progesterone required for the maintenance of pregnancy. hCG is 

predominantly produced by the syncytiotrophoblasts of the placenta. Levels of 

hormone can be detected in the maternal serum 8-10 days after ovulation near the 

time of implantation of a fertilised egg. After 7 weeks of gestation, progesterone 

production by the placenta takes over the function of the corpus luteum [125]. 

Though the main function of hCG in pregnancy seems to be the rescue of the corpus 

luteum, there is increasing evidence that hCG may be involved in cellular 

differentiation and angiogenesis [126, 127].  Shi et al., proposed  that hCG may be 

involved in the differentiation of cytotrophoblast into syncytiotrophoblasts by 

showing that the addition of exogenous hCG to cytotrophoblasts in culture resulted 

in the cells beginning to merge into multinucleated cells and increased cadherin 

production which indicate differentiation into syncytiotrophoblasts [126].  Berndt 

et al. showed that exogenous hCG could be involved in endometrial angiogenesis 

which could also be important in pregnancy [127]. They found that hCG increased 
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proliferation of endothelial cells (HUVEC) and endometrial epithelial cells (EEC) 

(isolated from the endometrium of fertile women) as well as increased the VEGF 

production in EEC. In addition, the ex vivo aortic ring assay (with rat aortic rings 

cultured in collagen) and in vivo mouse matrigel plug assay also showed increased 

angiogenesis by increased microvessel outgrowth and haemoglobin respectively in 

the presence of exogenous hCG [127]. 

 

1.3.1 Structure of hCG 

hCG is a heterodimeric glycoprotein consisting of  non-covalently linked α- and 

β-subunits. It has a total molecular mass of 36 kDa composed of 237 amino acids, 

92 amino acids in the α-subunit and 145 amino acids in the β-subunit [128, 129].  

hCG belongs to the gonadotropin-glycoprotein family which includes FSH, LH and 

thyroid-stimulating hormone (TSH). Interestingly all four hormones share the same 

α-subunit but differ in their β-subunit resulting in different and specific biological 

roles [130]. Both the α- and β-subunits are required for hCG to interact with its 

extracellular receptor [131]; however, it is the β-subunit which is responsible for 

specific hormone activity [132]. FSH and TSH have specific cellular receptors; 

however LH and hCG interact with the same receptor known as the luteinising 

hormone/chorionic gonadotropin receptor (LHCGR) (Figure 1.1). The β-subunit of 

hCG (hCGβ) is highly homologous to the β-subunit of LH (LHβ), sharing 82% 

sequence homology. LHβ is composed of 121 amino acids whereas hCGβ has 145 

amino acids [133, 134]. The major difference between hCGβ and LHβ is the 

additional 24 amino acids at the carboxyl terminal of hCGβ [134]. The glycosylation 

sites within these extra amino acids are thought to contribute to the longer half-life 
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and higher biological potency of hCG compared to LH (hours compared to minutes) 

[133, 135-138].   

 

Figure 1.1 α- and β subunits of the gonadotropin-glycoprotein family 

The follicle stimulating hormone (FSH), luteinising hormone (LH), thyroid 

stimulating hormone (TSH) and human chorionic gonadotropin (hCG) share a 

common α-subunit but each has a unique β-subunit. FSH and TSH interact with 

different cellular receptors, FSHR and TSHR receptively, but LH and hCG share 

a common LHCGR receptor. 

 

Although LH and hCG bind to the same receptor, share a high sequence 

homology and promote progesterone production, they are important in different 

biological settings. LH, which is secreted from the anterior pituitary gland, is 

predominantly involved in the menstrual cycle regulating follicular maturation and 

induction of ovulation; whereas the main role of hCG is the maintenance of 

pregnancy [133].  

hCG is heavily glycosylated with 25–30% of the protein’s molecular weight 

composed of both N- and O-linked oligosaccharides [132, 139]. The α-subunit 
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contains two N-linked glycans whereas the β-subunit contains two N-linked glycans 

and four additional O-linked glycans. The position on the sugar residues is depicted 

in Figure 1.2. The degree of glycosylation has been found to not only affect protein 

stability but also the biological activity of the hormone [140, 141]. 

 

Figure 1.2  Amino acid sequence of hCG α-subunit and β-subunit 

Numbers indicate amino acid residue positions and N and O indicate the 

positions of N- and O-linked oligosaccharides. 

Image extracted from Cole[139] 

 

hCG also bears resemblances to the proteins of the cysteine knot family which 

includes transforming growth factor β (TGF-β), neuronal growth factor (NGF) and 

platelet-derived growth factor beta (PDGFB) due to the presence of cysteine knot 

disulphide bonds [132, 142]. The structural similarity of hCG to the cysteine knot 

family is thought to contribute to its biological activity which may be independent of 

the presence of the α-subunit and binding to LHCG receptor (for further discussion, 

see section 1.5). 
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1.3.2 Isoforms of hCGβ 

So far in this thesis, hCG has been discussed as a single molecule, however it 

occurs in at least four known physiological isoforms which include hCG, 

hyperglycosylated (h-hCG), free hCGβ and pituitary hCG [133, 143]. These different 

isoforms seem to have different functions which are summarised in Table 1-4. As 

this thesis will focus on hCGβ, its function will be discussed in detail in sections 1.4 

and 1.5. 

Table 1-4 Isoforms of human gonadotropin 

Isoform Produced  by Function 

hCG villous 

syncytiotrophoblast cells 

-Rescue of the corpus luteum and 

progesterone production [144, 145] 

-Maintenance of pregnancy [133, 

145, 146] 

-Foetal growth and development 

[146] 

-Angiogenesis of uterine vasculature 

[147-150] 

hyperglycosylated hCG 

(h-HCG) 

cytotrophoblast cells 

and choriocarcinoma 

cells  

-Normal function: 

Implantation of pregnancy e.g. 

invasion of cytotrophoblast/ 

trophoblast  [151, 152] 

 

-Choriocarcinoma: 

Antiapoptotic and growth of 

choriocarcinoma cells [153]   

free β-subunit non-trophoblastic 

malignancies 

-Proliferation, anti-apoptotic and 

migration [154-156]  

 

pituitary hCG 

 

anterior pituitary -Generally unknown role however 

like LH maybe be involved in the 

menstrual cycle [143] 

Table adapted from Cole et al. [143] 



Chapter 1 

21 

 

In addition to these isoforms, hCG can also be detected in a shorter 

proteolytically degraded form consisting of nicked-hCGβ and the core fragment of 

hCGβ (hCGβcf) which can be detected in the placenta, blood and urine [157]. 

 

1.3.3 Expression of hCG subunits 

The expression of the α- and β-subunits is thought to be controlled by different 

regulatory pathways due to imbalance of expression of the two subunits: specifically 

the α-subunit is found to be produced in excess compared to the β-subunit [158]. The 

α-subunit is encoded by a single gene located on chromosome 6q12-q21; however, 

the β-subunit of hCG (hCGβ) is encoded by multiple genes arranged in a gene 

cluster of six nonallelic genes located on chromosome 19q13.3 organised in tandem 

and inverted pairs along with the LHB gene which codes for the β-subunit of 

luteinising hormone (Figure 1.3) [130, 159]. These genes share 89-99% nucleotide 

sequence identity [160] and have been thought to have evolved from the ancestral 

LHB gene [161]. CGB1 and CGB2 are considered to be psueudogenes and though 

their gene transcripts have been detected in both the placenta [162] and pituitary 

[163] their function and protein product remains to be identified. 
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Figure 1.3 Gene cluster on chromosome 19q13.3 encoding the β-subunit of 

human chorionic gonadotropin  

CGB6/7 are type I genes coding for hCGβ with an arginine, methionine and 

alanine at positions 2, 4, and 117 respectively and CGB3/9, CGB5, and CGB8 

are type II genes coding for hCGβ with a lysine, proline and aspartic acid at 

positions 2, 4, and 117 respectively. CGB1 and CGB2 are pseudogenes.  

Image extracted and adapted from Jameson et al. [164]and Aldaz-Carroll [165] 

 

 

Two structurally different isoforms (types I and II) of hCGβ are expressed which 

differ in a single amino acid at position 117: type I hCGβ is encoded by CGB6/7 

(alleles) and has an alanine at position 117, and type II hCGβ  encoded by CGB3/9 

(alleles), CGB5, and CGB8 has an aspartic acid at this position. In addition to the 

difference in the amino acid at position 117, type I gene products have an arginine 

and methionine at positions 2 and 4, respectively whereas, type II gene products 

have a lysine and proline at positions 2 and 4 respectively (Figure 1.3) [165]. 

Expression of the two isoforms seems to be tissue-specific with type I genes 

expressed in normal nontrophoblastic tissues and type II genes expressed in the 

normal trophoblastic tissue and non-trophoblastic malignant tumours [166, 167]. 

Type I genes have also been shown to be expressed in renal cell carcinoma which is 

a non-trophoblastic tumour [168]. However it should be noted that a general tissue 
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specific pattern of gene expression cannot be made.  For example Dirnhofer et al. 

also found that CGB7, CGB5, CGB3, CGB8 and CGB1/2 were expressed in the 

pituitary [163]; and  Bo and Boime found that all six CGB genes were expressed in 

the placenta albeit at varying levels: CGB5> CGB3 = CGB8>CGB7, CGB1/2 [162].   

1.4 hCG and cancer 

Elevated expression of hCGβ is common in trophoblastic cancers and germline 

tumours and monitoring the levels of hCGβ as a biomarker for prognosis, relapse 

and therapeutic response has been well established in these cancers [134, 169-171]. 

hCGβ is expressed by a number of non-trophoblastic epithelial cancers e.g. in 

bladder [172, 173], cervical [174] and pancreatic [175] cancers and is often 

associated with aggressive disease and poor survival outcomes [134]. Interestingly, it 

is the monomeric β-subunit (hCGβ) and not the intact dimer which is predominantly 

expressed by epithelial cancers [134, 176]. Often the presence of hCGβ is a hallmark 

of aggressive and metastatic disease and is associated with poor clinical outcome 

[177, 178]. High hCGβ levels have also been associated with tumours which are 

resistant to radiotherapy [179] and chemotherapy [180]. Expression of hCGβ has 

been well documented in ovarian cancer and is summarised in (Table 1-5).    
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Table 1-5 Detection of hCG/hCGβ in serum, ascites or tumour tissue from 

ovarian cancer patients 

% Expression 

(cohort size) 

Detected 

in 

Comments 

33% (N=173) Serum Strong association between high levels of hCGβ 

and poor survival. Patients with high levels of 

hCGβ had poorer survival rates - 19% compared 

to 65% in patients with normal levels of hCGβ 

[181]. 

29% (N=146) Serum The frequency of hCGβ elevation correlated 

with the stage of disease with 12% in stage I and 

82% in stage IV [182]. 

100% (N=15) Tissue High levels of hCGβ transcript in ovarian cancer 

tissue compared to almost no expression in 

normal tissue [183]. 

41% (N=27) Serum 

and 

ascites 

The ratio of hCG/hCGβ levels was found to be 

elevated in serum and ascites fluids of patients 

with ovarian cancer [184].  

36% (N=73) Serum High levels of hCGβ correlated with poor 

survival outcome of patients [185].  

67% (N=123) 

68% (N=156) 

Serum  

Tissue 

Higher levels of hCG were detected in malignant 

tumours compared to benign tumours. In 

mucinous carcinomas expression of hCG was 

significantly higher at stage III compared to 

stage I  [186]. 

 

Survival studies have shown a negative correlation between high levels of hCGβ 

and survival in patients with ovarian cancer [181, 182]. In one study Vartiainen and 

colleagues showed that the frequency at which hCGβ was elevated in patients with 

ovarian cancer correlated with the stage of the disease and poor survival outcomes. 

They found that elevated hCGβ occurred at a frequency of 82% in patients with 

stage IV disease compared to 12% with stage I [182].  Another study also by 
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Vartiainen et al. found that the combination of hCGβ and p53 expression levels was 

a strong prognostic marker in patients with serous ovarian cancer (Figure 1.4). They 

found that the five-year survival for patients with either elevated serum hCGβ levels 

or aberrant p53 expression was 44% but only 14% in patients who had both elevated 

hCGβ levels as well as aberrant p53 expression. The five-year survival outcome for 

patients with normal hCGβ and p53 expression was 82% [181].  

 

Figure 1.4 Overall disease-specific survival in 167 patients with serous 

ovarian carcinoma in relation to serum hCGβ and p53 tissue expression 

Figure extracted from Vartiainen et al. [181] 

The value of hCGβ as a tracker of disease progression in ovarian cancer is not 

well established but Grossman et al. showed that the ratio of hCG/hCGβ correlated 

with tumour burden in a 47 year old patient with ovarian cancer who had undergone 

surgical invention as well as chemotherapy (Figure 1.5) [184]. 
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Figure 1.5 Serial expression of hCG/hCGβ serum concentration in a 47 year 

old woman with ovarian cancer 

During chemotherapy without clinical response (0-12 weeks) hCG/hCGβ levels 

were elevated. At 12 weeks when the tumour was surgically removed (arrow) 

levels dropped, followed by an increase as the tumour began to relapse.  

Figure extracted from Grossman et al. [184] 

 

1.5 Evidence to support biological activity of hCGβ 

Since the free β-subunit of hCG cannot interact with the LHCG receptor it was 

originally thought to have no functional biological role; however, a number of 

studies have shown evidence of its biological activity in epithelial cancer including 

proliferation, apoptosis and malignant transformation and this is further discussed in 

sections 1.5.1 to 1.5.4. 

 

1.5.1 hCGβ and cell proliferation 

Gillot et al. observed that exogenous hCGβ could promote proliferation of 

bladder cancer cell lines T24, SCaBER, RT112 and 5637 in a dose dependent 

manner shown by the tetrazolium salt reduction assay (MTT) [154]. T24 cells 
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produced the least amount of secreted hCGβ but showed the highest proliferative 

response to exogenous hCGβ. This group also showed that the proliferative effect of 

hCGβ could be reversed with the addition of anti-hCGβ anti-serum in a dose 

dependent manner and that the anti-serum could only inhibit cell growth in bladder 

cancer cell lines that produced endogenous hCGβ [154].  

 

1.5.2 hCGβ and cell apoptosis 

hCGβ has been shown to be involved in preventing apoptosis in some cancer cell 

lines [155, 187]. Janowaska et al. showed that downregulation of hCGβ in the 

cervical carcinoma cell line HeLa, caused an increase in the population of cells 

undergoing apoptosis (shown by cell cycle analysis) [187].  Butler et al. found more 

evidence in support of the anti-apoptotic role of hCGβ by showing that exogenous 

hCGβ reversed the apoptotic effects of TGF-β1 in a dose dependent manner in 

bladder cancer cell lines [155]. They proposed that due to the structural similarity 

between hCGβ and TGFβ (discussed in section 1.3.1), hCGβ may be competing with 

dimeric TGFβ for the TGFβ receptor. This is a plausible theory, given that it has 

been found that like some members of the cysteine knot family, hCGβ can form 

homo-dimers which are required for receptor interaction [188]. Therefore, even if 

hCGβ cannot interact with the LHCG receptor, it may be able to participate in 

cellular processes by binding an alternate receptor. 
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1.5.3 hCGβ and cell migration and invasion 

Wu et al. showed that overexpression of hCGβ in prostate carcinoma cell lines 

caused a change in cellular morphology which increased their migratory 

characteristics [156]. The cells’ morphology changed from rounded cells to more 

elongated shapes with increased cellular protrusions, decreased E-cadherin 

expression and increased migration and invasion through matrigel. A successive 

paper also from Wu and colleagues, showed that activation of ERK1/2 and 

subsequent upregulation of matrix metalloproteinase-2 (MMP-2) were the 

mechanism by which hCGβ induced invasion and migration in a prostate cell line 

model DU145 [189]. They also demonstrated that hCGβ could increase motility of 

the human glioblastoma cell line U87MG by the same mechanism [190]. 

 

1.5.4 hCGβ and malignant transformation 

Whether hCGβ is a driver of cancer progression or can actually transform normal 

cells into malignant cells was studied by Guo et al. [191]. This study showed that 

overexpression of hCGβ in OSE cells caused an increase in proliferation, anchorage 

independent growth and a decrease in apoptosis by mechanisms that increased pro-

survival proteins such as Bcl-XL, as well as a decrease in the pro-apoptotic protein 

phospho-Bad. They also found that xenografts of these transformed cells were 

tumorigenic in nude mice. 

  



Chapter 1 

29 

 

1.6 Platinum-based chemotherapeutics in ovarian cancer 

Cis-platinum(II) diammine dichloride (cisplatin) was the first platinum-based 

chemotherapeutic drug approved by the FDA in 1978. Though cisplatin has been a 

successful cytotoxic agent, it has a number of toxic side effects which include oto-, 

neuro- and nephrotoxicity. Cyclobutane-1,1-dicarboxylic acid platinum(II) 

(carboplatin) is a second generation platinum anti-cancer drug introduced in 1989 

and is more stable and has fewer side effects compared cisplatin [192, 193]. 

However, resistance and cross-resistance of cisplatin and carboplatin is common and 

has led to the development of a third generation of platinum-therapeutics, out of 

which, oxaliplatin has proven to be the most successful [192]. The chemical structure 

of cisplatin, carboplatin and oxaliplatin is depicted in Table 1-6. Despite their 

molecular differences, the primary target of platinum drugs is thought to be DNA, 

resulting in cytotoxicity (discussed in detail in section 1.6.2).  

The use of cisplatin in conjunction with cyclophosphamide and later paclitaxel 

showed that these combinations improved patient survival outcomes compared to 

cisplatin treatment alone [194, 195]. The cisplatin-paclitaxel combination was then 

replaced with carboplatin-paclitaxel combination and is now accepted as standard for 

the treatment of ovarian cancer, in particular advanced ovarian cancer [196].  

Interestingly, the International Collaborative Ovarian Neoplasm (ICON) 3 trial 

showed that the addition of paclitaxel did not improve the benefit of using 

carboplatin as a single agent treatment [197].  
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Table 1-6  Chemical structure of cisplatin, carboplatin and oxaliplatin 

Drug Structure 

Cisplatin 

(cis-dichlorodiammineplatinum(II)) 

 

Carboplatin  

(cis-diammine(1,1-

cyclobutanedicarboxylato)platinum(II)) 

 

Oxaliplatin 

 ([1R,2R]-1,2-cyclohexanediamine-N,N′)oxalate(2-)-

O,O′platinum(II)) 
 

Structures extracted from Turner and Mascorda [198] 

 

1.6.1 Uptake of platinum-based drugs 

Though cisplatin has been widely used for a number of decades, the actual 

mechanism by which it enters cells is yet to be fully understood. It was initially 

thought that the drug might enter cells through passive diffusion but the fact that the 

side effects (nephrotoxicity, ototoxicity) seem to be specific to certain cell types 

implies that there may be specific drug transporters, perhaps expressed by specific 

cell and/or tissue types responsible for cisplatin transport [199]. Furthermore, studies 

have found a link between lowered cisplatin accumulation and resistance which 

cannot be explained by mere diffusion of this drug [200]. Indeed, there is increasing 

literature that suggests that cisplatin is transported across cell membranes by active 
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means through membrane transporters. Some of the transporters include the copper 

transporters 1 and 2 (CTR1 and CTR2) [201, 202], the P-type copper-transporting 

ATPases (ATP7A and ATP7B) [203, 204], multidrug extrusion transporter 1 

(MATE1) [199] and the  multidrug resistance-associated protein  2 (MRP2) [205].  

 

1.6.2 Mechanism of action of platinum-based drugs 

Cisplatin, carboplatin and oxaliplatin are administered as prodrugs and are 

activated inside the cell by aquation (hydrolysis ), which is initiated by the low 

chloride environment [206]. Two water molecules replace two chloride ions, 

bidendate cyclobutanedicarboxylate and bidentate oxalate ions, on cisplatin, 

carboplatin and oxaliplatin respectively [198]. 

Hydrolysis of the drugs is important for their biological activity, as once they are 

aquated, the drugs become positively charged and can interact with nucleophilic 

DNA, RNA and proteins; but preferentially bind to the N-7 position on the imidazole 

ring of purines, guanosine and adenosine of DNA, forming monoadducts and intra-, 

inter- and DNA-protein cross links (Figure 1.6) [192, 207]. The DNA-adducts cause 

distortion of the DNA helix which leads to interference with DNA replication and 

transcription and subsequently leads to apoptosis [208-210]. 
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Figure 1.6 DNA-adducts formed by platinum-based chemotherapeutics 

Image extracted from Rabik and Dolan [192] 

 

About 90% of cisplatin-DNA adducts are 1,2- or 1,3-intrastrand cross links 

[206]. Carboplatin is thought to be therapeutically equivalent to cisplatin and forms 

similar DNA adducts to cisplatin which could explain their similar mechanism of 

action as well as cross-resistance [192, 211]. However, a higher concentration of 

carboplatin is required compared to cisplatin to produce equivalent anti-tumour 

effects due to the higher stability and lower DNA interaction of carboplatin [211]. 

Oxaliplatin is as potent (and sometimes more potent) as cisplatin. Despite having 

similar, but fewer DNA adducts, oxaliplatin causes the same number of DNA strand 

breaks as does cisplatin [212-214]. Oxaliplatin has a different mechanism of action 

and no reported cases of cross-resistance to cisplatin which is possibly due to the 
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difference in the way the DNA is distorted by its bulky 1,2-diaminocyclohexane 

(DACH) ring [214].  

It is thought that the 1,2-intra strand crosslinks caused by cisplatin is the major 

driver of apoptosis. It is believed that the High-Mobility Group Protein (HMGB) 

family are able to bind to these DNA-lesions, preventing DNA replication and 

transcription as well as preventing the lesions from being repaired, leading to the 

activation of pro-apoptotic signals [192, 215]. Apoptosis is also thought to be 

induced by activation of the endoplasmic reticulum (ER)-stress pathway. 

 

1.6.3 Platinum-Resistance 

The initial response rate to platinum therapy in patients with ovarian cancer is 

70-80%; however, development of resistance to the drug is common with patients 

relapsing within two years of initial treatment resulting in a 5-year patient survival 

rate of only 15–20% [216-219]. Resistance is multifactorial and includes drug 

inactivation, reduced drug accumulation, increased DNA repair and tolerance to 

DNA damage, as well as failure to induce apoptosis (Figure 1.7) [192, 219].  
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Figure 1.7 Mechanisms of platinum-based (cisplatin) drug resistance  

Platinum resistance, in particular to cisplatin (pt), is multifactorial involving a 

number of mechanisms. Cisplatin can either be exported out of the cells through 

efflux pumps, have reduced accumulation due to mutations or low expression of 

entry pumps/ transporters, and once inside the cells the drug can be inactivated 

by thiol containing proteins and the damaged DNA can be repaired and/or 

tolerated leading to failure to activate cisplatin-adduct induced apoptosis. 

 

1.6.3.1 Drug inactivation by thiol containing proteins 

Cisplatin has a tendency to react with thiol containing proteins forming insoluble 

sulphides and limiting its reactivity with DNA. Increased levels of thiol containing 

proteins/peptides, e.g. glutathione (GSH), metallothionein and thioredoxin, have 

been correlated with increased cisplatin resistance [192, 220-222]. Enzymes 

involved in the regulation of GSH levels such as gamma-glutamylcysteine 

synthetase and gamma-glutamyl transpeptidase have been shown to be upregulated 

in cisplatin-resistant ovarian cancer cell lines [223]. Ishikawa and Ali-Osman 

showed that in L1210 leukemia cells, cisplatin formed a complex with GSH which 

was subsequently expelled from the cells by the ATP-dependent glutathione 
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transporter pumps (GS-X pump), providing another perspective on how GSH and 

glutathione transporters may be associated with cisplatin resistance [224]. 

Interestingly, GSH has been shown to also reduce the toxic effects of cisplatin. In 

fact, one study found that administering GSH in conjunction with cisplatin in 

patients with ovarian cancer reduced the toxic effects of cisplatin and improved their 

overall quality of life; however, the effect of administered GSH on cisplatin 

sensitivity was not considered [225].  

 

1.6.3.2 Reduced drug accumulation 

Studies have shown a correlation between reduced sensitivity to cisplatin and 

reduced intracellular levels of cisplatin which could be due to reduced influx or 

increased efflux of the drug [226]. As previously mentioned (section 1.6.1), cisplatin 

transport into and out of the cell can be regulated through heavy metal transporters, 

e.g. the CTR 1/2 copper transporters [199]. It is therefore plausible that irregularities 

in these transporters could result in reduced drug accumulation and resistance to 

platinum compounds. A study by Larson et al. using an isogenic pair of CTR1(+/+) 

and CTR1(-/-) mouse embryonic fibroblasts showed that deletion of this copper 

transporter reduced intracellular accumulation of cisplatin and increased cell survival 

[202]. The same group also showed that increased exposure of CTR1 (+/+) fibroblast 

cells to cisplatin significantly reduced CTR1 expression. In addition, they showed 

that CTR1 (-/-) cells not only had reduced intracellular levels of cisplatin, but also 

less carboplatin and oxaliplatin; however, the effect on oxaliplatin levels was less 

than that of cisplatin. This result demonstrated that oxaliplatin was less dependent on 

the CTR1 transporter, suggesting that its mode of intracellular transport is different 

from that of cisplatin. These results were in agreement with Holzer et al. who 
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reported that CTR1(-/-) embryonic fibroblasts cells accumulated lower levels of 

cisplatin and carboplatin and were also less sensitive to the drugs compared to the 

wild-type CTR1 (+/+) cells. Interestingly, they showed that accumulation of 

oxaliplatin in CTR1(-/-) cells was also lower compared to CTR1 (+/+) cells but this 

was only evident at low concentration of oxaliplatin and not at high concentrations 

of the drug; suggestive of additional means by which oxaliplatin enters the cell 

[227]. Lee et al. showed that high expression of CTR1 in tumour tissue from patients 

with ovarian cancer was associated with higher sensitivity to platinum-based 

treatment and improved survival [228]. 

CTR2 like CTR1 is a copper transporter; however, its cellular distribution is 

different from CTR1. CTR1 is predominantly a plasma membrane protein whereas 

CTR2 is expressed in late endosomes and lysosomes, as well as on the plasma 

membrane [229, 230]. Interestingly, the links between CTR2 and CTR1 expression 

and cisplatin sensitivity are different. Lee et al. showed that patients with ovarian 

cancer who had low expression levels of CTR1 along with high expression levels of 

CTR2 were resistant to platinum-based therapy and had poor survival outcomes 

[228]. Furthermore, in vitro studies have shown that downregulation of CTR2 in 

mouse embryonic fibroblasts with either CTR1 (+/+) or CTR1 (-/-) showed increased 

sensitivity to cisplatin and carboplatin and drug accumulation independent of CTR1 

expression [201]. Blair et al. also showed in a panel of six ovarian carcinoma cell 

line models, a positive correlation between CTR2 expression and IC50 levels for 

cisplatin (indication of drug sensitivity) [201]. 

The copper-transporting P-type adenosine triphosphate proteins ATP7A and 

ATP7B which regulate copper efflux, are elevated in some ovarian cancers resulting 

in a negative correlation with cisplatin sensitivity [204, 220, 231]. Katano et al. 
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observed that the expression of either ATP7A or ATP7B was increased in cisplatin 

resistant (A2780/CP, 2008/C13*5.25, and IGROV-1/CP) cell lines compared to their 

cisplatin-sensitive parental line (A2780, 2008, and IGROV-1) and was associated 

with reduced intracellular cisplatin accumulation, formation of fewer DNA adducts 

and reduced sensitivity to cisplatin [203]. The ATP-binding cassette (ABC) 

transporters e.g. ABCB1 which codes for the multi-drug efflux pump MDR1 

P-glycoprotein (MDR1 or P-gp), has been associated with chemoresistance [232]. 

In vitro work by Yang et al. showed that the cisplatin-resistant ovarian cancer 

SKOV3/CIS cell line expressed low levels of MDR1 mRNA which they attributed to 

the increase in the levels of the micro RNA miR-130a [233]. Ren et al. on the other 

hand showed that MDR1 was not involved in cisplatin-resistance in cisplatin-

resistant A2780 cells [234].  Patch et al. reported that promoter fusion and 

translocation in the 5’ region of ABCB1 was observed in 8% of HGSC patient with 

recurrence, resulting in upregulation of MDR1; however, authors of this study 

attributed MDR1 expression to resistance to paclitaxel which was part of the 

combination treatment for HGSC [62]. Expression of another member of the ABC 

transporters which has also been implicated with cisplatin resistance in cell lines is 

the multidrug resistance protein 2 (MRP2, ABCC2) or the canalicular multiple 

organic anion transporter (cMOAT) [235, 236]. However, studies in patients with 

ovarian cancer, found that MRP2 expression was not associated with response to 

platinum-based chemotherapy, progress-free survival or overall survival time [237-

239]. Interestingly, MRP2 can be localised in the cytoplasmic or nuclear member 

and Surowiak et al. observed that cisplatin resistance in patients with ovarian 

carcinoma could be attributed its nuclear localisation [240]. 
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1.6.3.3 Defects in DNA damage repair, increased DNA repair and tolerance to 

DNA damage 

Platinum-resistant cancer cells have been shown to evade activation of pro-

apoptotic pathways by employing a number of different mechanisms to overcome 

DNA damage induced by platinum-based compounds. These mechanisms which 

include defects in the DNA damage repair pathways, increased DNA repair and 

tolerance to DNA damage are discussed further in this section. 

Formation of DNA adducts has been shown to lead to cell cycle arrest and in the 

case of cisplatin, this is thought to occur predominantly in the S and G2 phases of the 

cell cycle. This break in the cell cycle is thought to give cells a chance to repair DNA 

damage and prevent activation of the DNA-damage induced apoptosis pathway [241, 

242]. 

Mismatch repair (MMR) proteins are important mediators of DNA repair, cell 

cycle arrest and activation of apoptosis, failing repair of damaged DNA. MMR 

proteins are important in the recognition of cisplatin induced DNA adducts, and 

mutations or aberrations in expression levels of some of the genes/proteins 

associated with the MMR system have been linked to cisplatin resistance [208, 214, 

220, 241, 243]. For example, loss of MutS protein homologue 2 (MSH2) and MutL 

protein homologue 1 (MLH1), which are inducers of cisplatin-induced cell cycle 

arrest and apoptosis, have been associated with cisplatin resistance in ovarian cancer 

[220, 244, 245].  Interestingly, the lack of cross-resistance between cisplatin and 

oxaliplatin is proposed to be due to the MMR system not being able to recognise 

oxaliplatin-DNA adducts [246].  
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Nucleotide excision repair (NER) is another mechanism through which some 

cancers can repair cisplatin-DNA adducts and is an important determinant of 

cisplatin sensitivity. NER has also been implicated in the activation of apoptosis 

induced by cisplatin [242, 247]. Patients with ovarian cancer who are resistant to 

cisplatin have been shown to have elevated levels of the DNA repair genes XP 

complementation group (XPA, XPG) and excision repair cross-complementation 

group I (ERCCI) which are involved in NER [192, 248-252]. Saldivar et al. observed 

allelic variations of the XPA and XPG genes in ovarian tumours which were linked to 

a poor response to cisplatin treatment [253].  Elevated levels of the ERCC1 gene 

which encodes the excision repair cross-complementation group 1 (ECCR1) in 

tumour samples have been linked to clinical resistance or poor survival in a number 

of tumours including colorectal [254], non-small-cell lung [255], and ovarian cancer 

[252, 256, 257]. Steffensen et al. observed that expression levels of ECCR1 

negatively correlated with patient response to platinum-based therapy but also noted 

that it was not an indicator of patient survival in ovarian cancer [257]. Studies have 

also shown that single nucleotide polymorphisms in ECCR1 can be a predictor of 

how well patients with ovarian cancer respond to platinum-based chemotherapy, but 

is not a predictor of overall survival [258-260].   

Though the NER system has been shown to have a preferential affinity for the 

less common 1,3 intrastrand cross links compared to the more common 1,2 

intrastrand cross links formed by cisplatin, the 1,2 cross links seemed to be more 

rapidly repaired [261]. A plausible explanation for these conflicting observations is 

that trans-lesion DNA replication or repair of damaged DNA is facilitated by high 

mobility group proteins (e.g. HMGB1), which have an affinity for 1,2 intrastrand 
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cross links and induce MMR opposite the 1,2 intrastrand which in turn facilitates 

DNA repair by NER [261, 262].  

BRCA1/2 genes are often deregulated through somatic or germline mutations in 

EOC and are involved in homologous recombination DNA repair. BRCA1/2 

mutations in ovarian tumours have been linked to high sensitivity towards cisplatin 

[263]. However, even in BRCA1/2 mutant carriers, the occurrence of platinum 

resistance is common. Though PARP inhibitors have proven to be useful in this 

group of patients, reversion of BRCA2 to wild-type has been shown, leading to 

disease relapse and poor patient outcomes [62, 264, 265].  

Epigenetic changes which include DNA methylation, histone modification, and 

posttranslational gene regulation by micro-RNAs (miRNAs), which can regulate 

gene expression independent of DNA sequence, have been associated with platinum-

resistance [266, 267]. For example, studies have shown hypermethylation of 

promoter regions of the DNA damage repair proteins BRCA1 and MLH1, leading to 

the loss of expression of these genes, is associated with platinum-resistance ovarian 

cancer [62, 268-271]. 

Tolerance of cisplatin-DNA damage has been observed in cisplatin-resistant 

ovarian cancer cell lines compared to the parental cisplatin sensitive cell lines [221, 

272]. The theory behind DNA damage tolerance is that adducts formed by cisplatin 

can be bypassed by DNA replicative enzymes during DNA replication.  
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1.6.3.1 Failure of apoptotic pathway 

Apoptosis induced by DNA damage is central to the cytotoxic effects of 

platinum-based drugs. A network of pathways is involved in regulating apoptosis 

and interception of one, or more of these pathways can be a mechanism employed by 

cancer cells to evade cell death. Apoptosis can be triggered through the intrinsic or 

extrinsic pathway [273, 274]. The intrinsic pathway involves disruption of the 

mitochondrial membrane and an array of protein regulators such the B-cell 

lymphoma-2 (BCL-2) family proteins, BCL-2-associated X protein (BAX), caspases, 

and PI3K/AKT pathway. The extrinsic pathway is triggered by binding of ligand to 

the death receptors, e.g. the TRAIL receptor, leading to activation of molecules 

involved in apoptosis such as caspases [273, 274]. 

A key player in the intrinsic pathway is the tumour suppressor p53 which is 

mutated in almost 38-50% of cancers [275], which could confer inherent resistance 

to cisplatin induced apoptosis [276]. Loss of p53 function however, does not 

exclusively render cells resistant to cisplatin [219, 220]. Aurora kinase A is elevated 

in a number of cancers and in vitro data suggests that it is involved in the 

destabilisation and degradation of p53 leading to the loss of wild-type p53 and is a 

proposed mechanism of cisplatin resistance [277]. Dysregulation of PIK3/AKT 

pathway, as discussed in section 1.1.7.3, has also been linked to cisplatin resistance 

in a range of cancers including ovarian cancer [220, 274].   

 

1.6.4 hCGβ and resistance to chemotherapy 

The link between elevated levels of hCGβ and poor survival outcomes in patients 

with cancer is well studied [278]; however, its link to chemoresistance is still not 
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determined. Both patient studies and in vivo data exist to suggest that hCGβ may 

have a role in chemoresistance. Szturmowicz et al. aimed to determine whether the 

level of hCGβ in the serum of patients with  small-cell lung cancer could be used a  

prognostic factor or used to reclassify the cancer into different subtypes [180]. They 

found that serum levels of hCGβ was elevated in 21 of 156 patients (14%) which 

correlated with poor survival outcomes (5% compared to 21% 2-year survival). What 

was interesting about their data is that 73% of patients with normal levels of hCGβ 

responded to chemotherapy, compared to 48% of patients with elevated hCGβ levels. 

This data suggests that hCGβ could be involved in resistance to chemotherapy.  

A study by Berman et al. used xenografts of tumours established from patients with 

small cell lung cancer which had differing responsiveness to the chemotherapeutic 

drug cyclophosphamide. One chemosensitive xenograft (HX78) which was never 

exposed to cyclophosphamide was made resistant by repeated exposures to the drug 

[279]. They found that when the xenografts were maintained in culture the 

cyclophosphamide resistant (HX78Cy) line produced up to five times more  hCGβ 

(detected in the media by radioimmune assay) compared to the parental 

chemosensitive line (HX78) [280]. This suggests that the levels of secreted hCGβ 

could be linked to chemoresistance. 
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1.7 Hypothesis and aims 

Given that hCGβ is expressed by a number of epithelial cancers including 

ovarian cancer and evidence suggests that it has a biological role in some cancer cell 

line models, we sought to study the role of hCGβ in cellular processes in ovarian 

cancer cell lines.   

Central hypothesis: hCGβ is expressed in HGSC cell lines and has a role in 

proliferation, migration, adhesion and sensitivity to platinum-based drugs. 

Aim 1: Characterise the expression of CGB and secreted hCGβ levels in HGSC cell 

line models. 

Aim 2: Determine the role of hCGβ on proliferation, migration and adhesion of 

HGSC cell lines. 

Aim 3: Determine the role of hCGβ in sensitivity of HGSC cell lines to the platinum-

based drugs cisplatin, carboplatin and oxaliplatin.  

Aim 4: Determine the mechanism by which hCGβ may regulate sensitivity of HGSC 

cells to cisplatin treatment by detecting global protein changes using the quantitative 

proteomic technique isobaric tags for relative and absolute quantitation (iTRAQ). 
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 Material and Methods Chapter 2

 

2.1 Chemicals and Reagents 

A list of chemicals and reagents used in this thesis are outlined in Table 2-1. 

Table 2-1 List of chemicals and reagents 

Item Catalogue  # Manufacturer 

Ampicillin Sodium Salt  A9518-5G Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Agar 214010 Bacto Laboratories  Pty. 

Ltd., Mt Pritchard, NSW, 

Australia 

β-mercaptoethanol M3148-25ML 

 

Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

3(N-Morpholino) 

propanesulfonic acid 

(MOPS)  

M1254-1KG 

 

Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Bromophenol blue 114391-25G Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Carboplatin C2538-100MG Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Cell Gibco Cell Dissociation 

Buffer enzyme-free, PBS  

13151-014 Life Technologies 

Corporation, Mulgrave, 

VIC, Australia 

CellTiter 96® AQueous One G3581 Promega, Alexandria NSW, 

Australia 

Cisplatin 4319H Hospira Australia Pty Ltd 

VIC , Australia 

Cytosine beta-D-

arabinofuranoside  

C1768-100MG Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Dimethyl Sulfoxide (DMSO)  67-68-5 

 

Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 
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RNase-Free DNase Set   79254 Qiagen Pty. Ltd., 

Chadstone, VIC, Australia  

Dulbecco’s Phosphate buffered 

saline (PBS)  

21600-010 Life Technologies 

Corporation, Mulgrave, 

VIC, Australia 

Ethanol, absolute  E7023-500ML Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Ethylene glycol-bis(β-aminoethyl 

ether)-N,N,N′,N′-tetraacetic acid 

tetrasodium salt (EGTA) 

E8145-10G Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Ethylenediaminetetraacetic acid 

(EDTA) 

0105-5009 

 

Astral Scientific Pty. Ltd., 

Caringbah, NSW, Australia 

Fetal Bovine Serum (FBS)  FBS500-S AusgeneX Pty. Ltd., 

Oxenford, QLD, Australia 

Glycerol  

 

15524 Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Glycine  

 

VWRC10119CU-

5KG 

Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Hybond-C-Extra Nitrocellulose 

Membrane 

RPN303E 

 

Crown Scientific Pty. Ltd., 

Minto, NSW, Australia 

Methanol  5005-10L Thermo Fisher Scientific 

Australia Pty. Ltd., 

Scoresby, VIC, Australia 

NuPAGE Novex 4-12% Bis-Tris 

gels  

Gel NP0321BOX 

 

Life Technologies 

Corporation, Mulgrave, 

VIC, Australia 

Opti-MEM® Reduced Serum 

Medium  

31985-062 Life Technologies 

Corporation, Mulgrave, 

VIC, Australia 

Oxaliplatin O9512-5MG Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Ponceau S P7170-1L 

 

Bio-Rad Laboratories Pty. 

Ltd., Gladesville, NSW, 

Australia 

Propan-2-ol (isopropanol) 425-2.5L 

 

Thermo Fisher Scientific 

Australia Pty. Ltd., 

Scoresby, VIC, Australia 
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Ribonuclease A (RNaseA)  R6513-10MG 

 

Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

RPMI 1640 R0278-50ML 

 

Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

SeeBlue® Plus2 Pre-stained 

Protein Standard 

LC5925 Thermo Fisher Scientific 

Australia Pty. Ltd., 

Scoresby, VIC, Australia 

Sodium dodecyl sulfate (SDS) 

 

L3771-500G Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Sodium chloride BIOSB0476-5kg Astral Scientific Pty. Ltd., 

Caringbah, NSW, Australia 

Sucrose S0389-1KG Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Sodium fluoride 201154-5G Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Sodium orthovanadate S6508-10G Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Triton® X-100 T9284-500ML Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Tryptone  211705 Bacto Laboratories  Pty. 

Ltd., Mt Pritchard, NSW, 

Australia  

Trypsin-EDTA T4049 

 

Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Tween-20 P5927-500ML Sigma-Aldrich Pty. Ltd., 

Castle Hill, NSW, Australia 

Yeast extract 212750 Bacto Laboratories  Pty. 

Ltd., Mt Pritchard, NSW, 

Australia 
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2.2 Commercial kits 

A list of commercial kits used in this thesis is outlined in Table 2-2. 

Table 2-2 List of commercial kits 

Kit Catalogue # Manufacturer 

10X Gene Expression Master Mix  

 

4369016 Life Technologies 

Corporation, Mulgrave, 

VIC, Australia 

MycoAlert
TM

 Mycoplasma 

Detection Kit 

LT07-318  Lonza, North Sydney, 

NSW, Australia 

Cell Line Nucleofector® Kit L  VCA-1005  Lonza, North Sydney, 

NSW, Australia 

Cell Line Nucleofector® Kit V  VCA-100V Lonza, North Sydney, 

NSW, Australia 

ECM Cell Adhesion Array Kit, 

colorimetric 

ECM540 Merck Millipore, 

Bayswater, VIC, Australia 

Chorionic Gonadotropin beta 

Human ELISA kit  

ab108638  Abcam, Melbourne, VIC, 

Australia 

PureYield™ Plasmid Midiprep 

System 

A2495 Promega, Alexandria, 

NSW, Australia 

Pierce® BCA Protein Assay  

 

23227 

 

Thermo Fisher Scientific 

Australia Pty. Ltd., 

Scoresby, VIC, Australia 

RNeasy Kit 74034  Qiagen Pty. Ltd., 

Chadstone, VIC, Australia 

Super Signal® West Dura Stable 

chemiluminescent substrate 

PIE34075 

 

Thermo Fisher Scientific 

Australia Pty. Ltd., 

Scoresby, VIC, Australia 

Super Signal® West Pico Stable 

chemiluminescent substrate 

PIE34080 

 

Thermo Fisher Scientific 

Australia Pty. Ltd., 

Scoresby, VIC, Australia 

SuperSignal™ West Femto 

Maximum Sensitivity Substrate 

34095 Thermo Fisher Scientific 

Australia Pty. Ltd., 

Scoresby, VIC, Australia 
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Superscript III Reverse 

Transcription Kit 

18080-400 

 

Life Technologies 

Corporation, Mulgrave, 

VIC, Australia 

X-tremeGENE 9 DNA Transfection 

Reagent 

06365787001 Roche Products Pty. Ltd., 

Dee Why, NSW, Australia 

 

 

 

2.3 Routine equipment  

A list of equipment used routinely in this thesis is outlined in Table 2-3. 

Table 2-3 List of Equipment 

Equipment Manufacturer 

ABI 7900 HT Fast real-time PCR  Life Technologies/Applied Biosystems, 

USA 

epMotion 5070  Eppendorf, Hamburg, Germany 

 

Fijifilm LAS-4000 imaging system  Fijifilm Australia, Brookvale, NSW, 

Australia 

Incucyte™ FLR Kinetic Imaging System  

 

Essen Bioscience, MI , USA 

Moxi Z  Gene Target Solutions Pty Ltd., Dural, 

NSW, Australia 

NanoDrop ND-1000 spectrophotometer  NanoDrop Technologies, Wilmington 

DE, USA 

Veritas
TM

 Microplate  Promega Corporation, Alexandria, NSW, 

Australia 

Victor Multilabel Plate Reader  Perkin Elmer, Australia 
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2.4 Cell lines 

All cell lines used were classified as human serous epithelial ovarian cancer cells 

at the commencement of this thesis. OVCAR-3 and SKOV-3 cells were purchased 

from The American Type Culture Collection (ATCC, VA, USA). PEO1 cells were 

obtained from Dr S. P. Langdon (Cancer Research UK Centre, University of 

Edinburgh, Edinburg, UK).  HEY and CaOV-3 cells were a gift from 

Prof A. DeFazio (Westmead Millenium Institute, Sydney, Australia).  A2780 and 

A2780cis cells were a gift from Ms R. Harvey (Bill Walsh Cancer Laboratory, 

Kolling Institute of Medical Research, Australia). OV202 cells were a gift from 

Dr K. Kalli and Dr C. Conover (Mayo Clinic, Rochester, MN, USA).  Characteristics 

and origin of the cell lines are outlined in Table 2-4.  

 

During the course of this thesis, Domcke and colleagues published data 

identifying the  preferred cell lines to use as models of high-grade serous ovarian 

cancer (HGSC) based on genomic data [281]. All preferred models, such as 

OVCAR-3 and CaOV-3, for study were TP53 mutants.  While A2780, HEY and 

SKOV-3 appeared as less preferred models for the study of HGSC.  In agreement 

with Domcke et al., Ince and colleagues published a paper in June this year, also 

indicating that the SKOV-3 and A2780 cell lines may not be preferable models for 

studying HGSC [282]. Substantial work had already been undertaken using these 

cell lines for this thesis and extensive data on these lines is reported. This is true not 

only for this thesis, but in the ovarian cancer literature where these cell lines are 

amongst those most frequently published in studies of HGSC. The A2780 / A2780cis 

pair are still regarded as excellent matched lines for studying developed drugged 

resistance. OV202 and PEO1 were not reported by Domcke and colleagues [281]. 
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Table 2-4  Histology, origin and TP53 status of experimental cell lines  

Cell line Histology Origin TP53 status 

A2780 Undifferentiated carcinoma Tumour [283] Wild-type  [281, 

282] 

A2780cis Cisplatin resistant cells derived from A2780 cells Tumour [284] Wild-type 

CaOV-3 Serous adenocarcinoma Unknown [285] Mutant [281, 

286] 

OV202 Serous epithelial ovarian cancer Tumour [287] unknown 

OVCAR-3 Poorly differentiated papillary epithelial ovarian cancer Ascites [288] Mutant [281] 

SKOV-3 Serous adenocarcinoma Ascites [289, 290] Null [282, 286] 

PEO1 Poorly differentiated serous adenocarcinoma Ascites [291] Mutant [292] 

HEY Moderately differentiated papillary cystadenocarcinoma Xenograft of a peritoneal deposit [293] Wild-type [294] 
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2.5 Cell line maintenance 

2.5.1 Cell line culturing conditions 

All cell lines were grown in culture media composed of RPMI 1640 media 

supplemented with 10% foetal bovine serum (FBS). They were maintained in a 

humidified incubator at 37°C and 5% CO2   and routinely cultured in 10 mL of culture 

media in T75 flasks unless stated otherwise. 

 

2.5.2 Passaging cell lines 

Cells were passaged when 80% confluent by washing them in 5 mL of 

phosphate-buffered saline (PBS) and incubating them in 2 mL of 0.25% 

trypsin/EDTA for 3 min at 37°C to detach the cells from the flask. Once detached, 

5 mL of culture media was added to the flask to neutralise the trypsin and the cell 

suspension transferred to a 15 mL tube and centrifuged at 300 x g for 3 min. The 

supernatant was discarded and the cell pellet was resuspended in fresh culture media 

and replated in T75 flasks.  PBS, trypsin/EDTA and culture media were warmed up 

to 37°C in a water bath prior to use. The cell lines were passaged twice weekly and 

the splitting ratio range is outlined in Table 2-5.  
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Table 2-5 Split ratio range for cell lines 

Cell line Split ratio range 

A2780 1:20-1:30 

A2780cis 1:20-1:30 

CaOV-3 1:3-1:5 

HEY 1:5-1:10 

OVCAR-3 1:3-1:5 

OV202 1:3-1:5 

PEO-1 1:5-1:10 

SKOV-3 1:3-1:5 

 

2.5.3 Routine cell counting 

On a routine basis cell number concentrations were determined using a 

haemocytometer or automatically counted using the Moxi Z. 

 

2.5.4 Cryopreservation of cell lines 

All cell lines were cryopreserved in liquid nitrogen. Cells growing in flasks were 

trypsinised, pelleted by centrifugation and resuspended in an appropriate amount of 

culture media containing 10% (v/v) of dimethyl sulfoxide (DMSO) to yield a cell 

concentration of 1 x 10
6
 cells / mL. One mL of the cell suspension was aliquoted into 

a 2 mL cryrovial. Prior to long term storage, the cells in cryrovials were stored 

at -80°C in cell freezers containing isopropanol for at least 24 h before being 

transferred to liquid nitrogen tanks for long term storage. Cells were cultured from 
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liquid nitrogen stocks by defrosting them in a water bath at 37°C, resuspending the 

cells in culture media, pelleting the cells by centrifugation at 300 x g for 3 min, then 

resuspending them in fresh media before plating them into culture flasks. 

 

2.5.5 Mycoplasma testing 

One mL of conditioned media from cultured cells was routinely monitored for 

mycoplasma using the MycoAlet™ Mycoplasma detection kit. This assay relies on 

the conversion of ATP to ADP (by enzymes produced by Mycoplasma) giving a 

luminescent signal which was read on the Veritas
TM

 Microplate luminometer.   

 

2.5.6 Cell typing 

Authenticity of the cell lines was determined by CellBank Australia (Children’s 

Medical Research Institute, Westmead, Australia) using an AmpFLSTR® 

Identifiler® PCR Amplification Kit. 

 

2.6 Gene expression 

2.6.1  RNA isolation  

Total RNA was extracted using the RNeasy kit including a DNA digestion step 

as per the manufacturer’s protocol. Briefly, culture media was removed from the 

cells and the proprietary RNA extraction buffer added directly to the cells. The RNA 

was precipitated with 70% ethanol, transferred to an RNA extraction column, 
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cleaned through a series of wash and centrifugation steps and finally eluted from the 

column with 30 μL of RNase and RNase-free water. DNA was digested on the 

column in the middle of the wash steps with DNase I in buffer RDD according to the 

manufacturer’s protocol. RNA was stored at -80°C. 

 

2.6.2 RNA and DNA quantification  

The quality and quantity of RNA and DNA was determined by measuring 

absorbance at wavelengths 260 and 280 nm using the NanoDrop ND-1000 

spectrophotometer.  Two μL of the RNA sample was quantified and a ratio of 

1.8-2.1 of A260/A280 was deemed acceptable to carry out qRT-PCR.    

 

2.6.3 Complementary DNA synthesis 

RNA was reverse transcribed into complementary DNA using the SuperScript® 

III First-Strand Synthesis System with oligo(dT) primers according to the 

manufacturer’s protocol.  Briefly, 0.2-5 ng of RNA was mixed with 1 μL of 

oligo(dT) and 1 μL annealing buffer and made up to 8 μL with RNase free water. 

The annealing reaction mix was incubated in a thermal cycler at 65°C for 5 min and 

rapidly cooled on ice for at least 1 minute. Ten μL of 2x First-Strand reaction mix 

and 2 μL SuperScript®III/RNAseOUT Enzyme was added to the annealing reaction 

mix and incubated for 50 min at 50°C followed by termination at 85°C for 5 min. 

The cDNA was then diluted 1:5 or 1:10 with RNase free water and stored at -20°C. 
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2.6.4 Quantitative RT- realtime PCR 

Gene expression was determined by quantitative real-time reverse transcriptase 

PCR (qRT-PCR) using TaqMan gene expression assays.  The efficiency of the PCR 

reaction for each assay was initially determined to be ~90% by absolute quantitation 

from a standard curve. The qRT-PCR reaction mix consisted of 10 μL of 2x reaction 

Master mix, 1 μL of 20x Taqman gene expression probe (Table 2-6 for probe details) 

and 5 μL of cDNA made up to 20 μL in RNase free water. Twenty μL of the reaction 

mix was pipetted in triplicate for each sample (cDNA) into a 96 well plate using the 

epMotion 5070 automated pipetting system.  Five μl half reactions were prepared 

when a 384 well plate format was used. The PCR reaction was conducted on the 

ABI 7900 HT machine with an amplification program of 95°C for 10 min, followed 

by 40 cycles of 95°C for 15 sec and 60°C for 1 min.   

 

Relative gene expression was determined by delta-delta Ct analysis against the 

HMBS (hydroxymethylbilane synthase) reference gene using RQ Manager Software 

(Life Technologies). 

 

Table 2-6 TaqMan Probes 

Assay ID Gene Symbol Gene name 

Hs00361224_gH CGB cchorionic gonadotropin, beta polypeptide  

Hs00751207_s1 LHB luteinizing hormone beta polypeptide 

 Hs00609297_m1* HMBS hydroxymethylbilane synthase 

All TaqMan probes were obtained from Life Technologies Australia Pty Ltd, 

Mulgrave, VIC, Australia. *endogenous reference gene 
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2.7 Protein expression 

2.7.1 Detection of secreted hCGβ protein using enzyme-linked immunosorbent 

assay (ELISA) 

The level of hCGβ secreted by the cell lines was determined using the Chorionic 

Gonadotropin beta Human ELISA kit which detects free hCGβ according to the 

manufacturer’s protocol. Briefly, 50 μL of conditioned media and hCGβ standards 

were incubated overnight at 4ºC in ELISA well strips coated with anti-hCGβ capture 

antibodies. Excess sample was aspirated from the strips and the wells washed five 

times with 300 µL of deionized water. One hundred and fifty μL of anti-Chorionic 

Gonadotropin beta HRP conjugate was added and incubated for 30 min. The strips 

were then washed five times with 300 µL of deionized water and 100 μl TMB 

substrate added and incubated for 20 min. One hundred µL stop solution was then 

added to terminate the reaction. The absorbance was read at 450 nm on a 

spectrophotometer microplate reader Victor Multilabel Plate Reader. The 

concentration of protein was calculated based on the standard curve (range 0.25 

ng/mL - 50 ng/mL). Refer to Appendix A, Supplementary Figure 1 for standard 

curve. 

 

2.7.2 Western blotting 

Protein expression from cell lysates was determined using western blotting. Cells 

growing in either flasks or well plates were washed in cold PBS and directly lysed in 

Laemmli buffer.  Lysates were transferred to 1.5 mL Eppendorf tubes and sonicated 

with a probe for 30 sec to shred the DNA. The lysates were boiled at 95°C for 5 min 
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and 10-20 μL of the lysates were run against the SeeBlue® Plus protein protein 

standard (range 4-250 kDa) on precast 4-12% NuPAGE® Novex Bis-Tris gels for 1 

h at 180 V in MOPS SDS buffer. Protein from the gel was transferred onto a 

nitrocellulose membrane for 90-120 min at 100V in cold blotting buffer. The 

membranes were then blocked in blocking buffer for at least 30 min, followed by 

incubation with primary antibody overnight at 4°C.  Unbound primary antibody was 

washed off in wash buffer (3 x 10 min washes) and probed with Horseradish 

Peroxidase coupled (HRP) secondary antibodies in blocking buffer for 1 h before a 

final wash (3 x 10 min washes). Refer to Table 2-7 for composition of buffers used 

for western blotting and Table 2-8 for the antibodies used to probe proteins of 

interest. Bands were detected using chemiluminescence Super Signal ECL Pico, 

Dura or Femto reagent (in order of increasing sensitivity) on the Fujifilm LAS-4000 

imaging system. The intensity of the bands was quantitated using Multi Gauge 3.0 

software (Fujifilm Australia, Brookvale, NSW, Australia). 
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Table 2-7 Composition of buffers used for western blotting 

Laemmli buffer Running buffer Blotting buffer Blocking buffer Wash buffer 

SDS              6% w/v Tris   50 mM Tris  25 mM Tris pH 7.4    40 mM Tris pH 7.4  20 mM 

Sucrose       40% w/v Glycine  384 mM Glycine  152 mM Skim milk 5% NaCl  150 mM 

Tris, pH 6.8  20 mM SDS 0.1% Methanol  20% v/v Tween-20  0.1% Tween-20  0.1% 

Bromophenol blue  0.15% w/v         

β-mercaptoethanol  5% v/v         

 

Table 2-8 List of antibodies for western blotting 

Antibody Catalogue  # and source Produced in Molecular weight (kDa) Dilution 

Anti-WAPL ab109537, Abcam Rabbit 133 1:50 000  

Anti-LIM Kinase 1 ab108507, Abcam Rabbit 73 1:1000 

Anti-SIRT1 ab32441, Abcam Rabbit 83 and  110 (ubiquitinated) 1:5000 

Anti-hCGβ SAB4500168-100UG,  Sigma-Aldrich Rabbit 17 1:1000 

Anti-GAPDH  2118, Cell Signalling Rabbit 39 1:10 000 

Secondary Anti-rabbit 

IgG – HRP linked 

NA934V, GE Healthcare Life Sciences Donkey Secondary Antibody 1:2500 
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2.8 siRNA downregulation using nucleofection 

RNA interference (siRNA) was used to downregulate gene expression. In order 

to minimise off target effects, two siRNA targeting two different regions of the gene 

were used.  siRNAs used are outlined in Table 2-9. 

Table 2-9 List of siRNA used for nucleofection 

siRNA Catalogue # Sequence of probe Target gene 

HS_CGB_4 

FlexiTube siRNA 

SI00344162 CACCACCATCTGTGCCGGCTA CGB 

HS_CGB_5 

FlexiTube siRNA 

SI03057607 CACCATGACCCGCGTGCTGCA CGB 

Hs_CGB_7 FlexiTube 

siRNA 

SI03114580 TCCCTAGCACTGACGACTGA CGB 

Hs_SIRT1_2 

FlexiTube siRNA 

SI00098441  SIRT1 

Hs_SIRT1_3 

FlexiTube siRNA 

SI00098448  SIRT1 

AllStars SI03650318    non-

silencing 

control 

All siRNAs were sourced from Qiagen Pty. Ltd., Chadstone, VIC, Australia. Note: 

siRNA against CGB do not discriminate against the different CGB genes. 

Transfection was conducted by nucleofection using the Amaxa Nucleofector 

system which is based on cell electroporation. Briefly, cells at 80% confluency were 

harvested, counted, pelleted and resuspended in 100 μL of the proprietary 

transfection solution containing 7.5 μl of 20 μM of siRNA. Cells were then 
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electroporated using a specific program tailored to the cell type being transfected. 

The cell number, transfection solution and electroporation program for nucleofection 

of different cell lines is outlined in Table 2-10.  

The level of downregulation of the gene transcript was determined 24 h post 

transfection by qRT-PCR (refer to section 2.6) and at the protein level 48 h post 

transfection, using either ELISA or western blotting (refer to sections 2.7.1 and 

2.7.2, respectively). 

Table 2-10 Transfection conditions using the Amaxa Nucleofector system 

Cell line Cell number Solution Program 

HEY 1.5 x 10
6
 V U-023 

A2780 3 x 10
6
 L T-020 

A2780cis 3 x 10
6
 L T-020 

 

The protocol to transfect HEY cells using the Amaxa nucleofection system had to 

be optimised as Lonza did not provide an existing protocol. Optimisation involved 

transfecting the cells with a green fluorescent protein (GFP) vector provided in the 

optimisation kit using a range of programs to achieve the highest GFP expression 

while maintaining cell viability.  

HEY cells were passaged and grown to 80% confluence 2 days prior to 

transfection. Cells were harvested and 1.5 x 10
6
 cells transfected with 2 μg of 

pmaxGFP vector (part of kit) in 100 μL of Solution V using the following programs:  

A-020, T-020, T-030, X-001 and X-005. Cells were then seeded into 6 well plates 

and observed using a florescent microscope 24 h after transfection. 
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Cell viability was unaffected by the different programs used to transfect the HEY 

cells using nucleofection; however, GFP expression did vary and the T-020 

programme showed the highest level of GFP expression (Figure 2.1). The T-020 

program was used for subsequent transfections of HEY cells.  
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Program Fluorescence Phase-contrast 

 

 

A-020 

  

 

 

T-030 

  

 

 

X-003 

  

 

 

T-020 

  

 

 

X-005 

  

Figure 2.1 Optimisation of transfection of HEY cells using Amaxa 

nucleofection  

Expression of GFP vector vs cell viability 24h post transfection using the 

following programs: A-020, T-020, T-030, X-001, X-005. T-020 highlighted in 

green provided the optimum transfection efficiency.  
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2.9 hCGβ overexpression 

hCGβ was transiently overexpressed in cells using plasmid DNA. 

2.9.1 Plasmid preparation 

2.9.1.1 Bacterial culture 

The pCI-neo-hCG plasmid containing an hCGβ insert cloned into the XbaI and 

XhoI sites was purchased from Addgene in E.coli bacterial cells (Catalogue #16574, 

Addgene MA, USA).  The hCGβ insert (534 base pairs)  was generated from human 

placental cDNA amplified using the 5'−TGTGCTCTAGATCATGACCAAGG-

ATGGAGATGTTCCAG−3' and 5'−GCACAGTCTAGATTATTGTGGGAGGAT-

CGGG−3 primers and sequenced and cloned in the pCI-neo vector by Clontech, Palo 

Alto, California [295].  pC1-neo control vector also in E.coli were a gift from Dr S. 

Firth (Hormones and Cancer Laboratory, Kolling Institute of Medical Research, 

Australia).  The stocks were  struck out on Lysogeny broth (LB) agar plates (1% w/v 

NaCl and Tryptone, 0.5% w/v yeast extract, 1% w/v agar,  pH 7.5) containing 0.1 

mg/mL ampicillin and grown overnight at 37°C. A single colony was then picked 

and grown in 5 mL of LB broth (1% w/v NaCl and Tryptone, 0.5% w/v yeast extract, 

pH 7.5) containing 0.1mg/mL ampicillin overnight at 37°C in an orbital shaker.  

 

2.9.1.2 Glycerol stock of bacterial strains 

1 mL of the bacterial culture was pelleted, resuspended in 1 mL of LB broth 

containing 10% glycerol (v/v) and stocked at -80°C.  
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2.9.1.3 Plasmid extraction and DNA quantification 

Fifty to 100 mL of LB broth was inoculated with the bacterial stocks containing 

plasmids and grown overnight at 37°C in an orbital shaker. Plasmid DNA was 

extracted from the bacteria using a PureYield™ Plasmid Midiprep System according 

to the manufacturer’s protocol. Briefly, bacterial cells were pelleted and cells lysed 

with proprietary reagents provided in the kit. DNA was then extracted and purified 

through a column system and a series of wash (using proprietary reagents provided 

in the kit) and centrifugation steps. Finally, DNA was eluted from the column with 

300 μL of Nuclease-Free Water and quantified using the NanoDrop™ 

spectrophotometer (section 2.6.2). 

 

2.9.2 Plasmid transfection 

One μg of pCI-neo-hCG and pCI-neo control plasmids were transfected into cell 

lines using a non-lipid based X-tremeGENE 9 DNA Transfection Reagent. 

Two  x  10
5 

of  HEY cells and 4 x 10
5
 of A2780 and A2780cis cells were plated in 

six well plates in 2 mL of culture media and after 18-24 h, transfection was carried 

out according to the manufacturer’s protocol. Three μL transfection reagent, 97 μL 

Opti-MEM® I reduced serum medium and 1 μg of plasmid DNA were mixed and 

incubated for 15 min at room temperature (RT). The reaction mix was added to the 6 

well plate containing cells and overexpression of intracellular hCGβ and secreted 

hCGβ was determined at 48 h using western blotting and ELISA respectively.  
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2.10 Statistical analysis 

Statistical analysis was performed using SPSS Statistics software v 22 (IBM 

Australia Ltd., St Leonards, NSW, Australia). Statistical significance was determined 

using the following models: 

• t-test to compare two sample means 

• one-way analysis of variance (ANOVA) with LSD Post Hoc test to compare 

means of three or more samples 

• two-way ANOVA to compare multiple levels of two factors with multiple 

observations at each level  

• repeated measures ANOVA when comparing dose or time response curves  

Data was presented as the mean ± Standard error of the mean (S.E.M) from at 

least three independent experiments.  A P value of less than 0.05 was considered to 

be significant. 
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 Expression of hCGβ and its role in prolifera-Chapter 3

tion, adhesion and migration 

 

3.1 Introduction 

Presence of the β-subunit of hCG (hCGβ) has been reported in serum, malignant 

ascites, cyst fluid and tumour tissue from women with ovarian cancer [181, 183-185, 

296].  Studies conducted by Ind et al. and Vartianen et al. showed that high serum 

levels of hCGβ corresponded to poor survival rate of patients with ovarian cancer 

[181, 185]. 

The fact that free hCGβ cannot bind to the receptor LHCGR without being 

associated with its α-subunit has led to the suggestion that it does not have a 

biological function and that it may be just a biological marker in epithelial cancers. 

Contrary to this idea, studies have shown that hCGβ may have effects on biological 

functions such as proliferation and migration in non-trophoblastic epithelial cancers 

distinct from the intact hCG heterodimer (Chapter 1, section 1.5). In this chapter, the 

expression of both CGB gene transcript and secreted hCGβ protein was determined 

in eight commonly studied HGSC cell lines. The role of hCGβ in proliferation, 

adhesion and migration was determined by transiently down regulating hCGβ by 

siRNA transfection, as well as overexpression of this protein. 
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3.2 Materials and Methods 

Refer to Chapter 2, section 2.5 for details on how cells were grown, harvested 

and counted. 

 

3.2.1 Expression of CCA and CGB transcripts in HGSC cells 

Cells were grown until 80% confluent in six well plates in culture media before 

total RNA was extracted and the CCA and CGB transcript levels (encoding  hCGβ 

and hCGα proteins) determined by qRT-PCR. Methodological details of RNA 

isolation, cDNA preparation and determination of the levels of hCGβ transcript by 

qRT-PCR are described in Chapter 2, section 2.6. 

 

3.2.2 Determining secreted hCGβ protein levels in conditioned media  

SKOV-3, HEY, OV202, PEO-1, A2780, A2780cis, CaOV-3 and OVCAR-3 cells 

were grown until 80% confluent in T25 flasks and serum starved for 18-24 h in 4 mL 

of RPMI containing 0.1% bovine serum albumin (BSA). Fifty μL of conditioned 

medium from each cell line was then assayed using the Chorionic Gonadotropin beta 

Human ELISA kit described in Chapter 2, section 2.7.1. 

 

3.2.3 Downregulation and overexpression of hCGβ 

hCGβ was downregulated or overexpressed in HEY, A2780 and A2780cis 

according to the protocols described  in Chapter 2, sections 2.8 and 2.9 respectively.  
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3.2.4 Proliferation assay 

Given that hCGβ has been shown to increase cell proliferation in bladder cancer 

cells and normal ovarian surface epithelial cells [155, 191], the effect of 

manipulating hCGβ levels on proliferation of three HGSC cell lines HEY, A2780 

and A2780cis was studied.  

 

3.2.4.1 Effect of hCGβ downregulation and overexpression on cell proliferation 

Twenty-four hours post transfection with siRNA or plasmid, 1 x 10
5
 A2780 and 

A2780cis cells (in 5 mL culture media) and HEY (in 10 mL of culture media) were 

seeded into a T25 or T75 flask respectively. Cells were allowed to grow for 3 and 6 

days with culture media replenished every 2 days. After day 3 or day 6, cells were 

harvested, resuspended in 0.5-2 mL of culture media and the cell number determined 

using a Coulter counter (Ac·T diff Analyzer, Beckman Coulter, Sydney, NSW 

Australia). 

 

3.2.4.2 Effect of exogenous hCGβ downregulation on cell proliferation 

determined by MTS viability assay 

The effect of exogenous recombinant hCGβ on cell proliferation was determined 

using the colorimetric CellTiter 96® AQueous One Solution (MTS) cell viability 

assay over 4 days. Recombinant hCGβ expressed in Pichia pastoris was purchased 

from Sigma-Aldrich. The MTS assay is based on the MTT (3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide) assay and works on the principle of viable 

cells converting the active component, a tetrazolium compound called 3-(4,5-
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dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS) [297], from a yellow colour to soluble formazan which is a deep 

brown/maroon colour. The absorbance of formazan is measured at 490 nm and is 

proportional to the number of viable cells. 

Compared to cell counts, the MTS assay can underestimate changes in cell 

number therefore changes in proliferation can go undetected. Furthermore, RPMI 

media has been shown to reduce MTS which can diminish the results of the 

assay[298]. However the assay has an advantage over cell counts used in section 

3.2.4.1 as it allows for higher throughput and the effect of a range of hCGβ 

concentrations could be tested at one time. HEY, A2780 and A2780cis cells were 

seeded in triplicate in 100 μl of culture media into a 96-well plate (Table 3-1 for 

seeding densities). Six hours after seeding, cells were treated with 100 μl culture 

media containing hCGβ in 0.1% BSA at 10 X, 25 X and 50 X the basal endogenous 

concentration of  hCGβ expressed by the individual cell lines (Table 3-1 summarises 

the concentrations of hCGβ used). The culture media of untreated cells contained 

0.1% BSA as a vehicle control. The cells were incubated for 4 days at 37 ºC and 5% 

CO2.  After 4 days, the percentage of viable cells was determined by the addition of 

the MTS reagent to each well at a dilution of 1:5. After an incubation period of 1-2 h 

for HEY cells and 2-3 h for A2780 and A2780cis cells at 37 ºC and 5% CO2, the 

absorbance was measured at 490 nm on the Wallac Victor 1420 Multilabel Counter. 

The background absorbance from blank wells was subtracted from the wells that 

contained cells. The percentage of viable cells indicative of proliferation was 

calculated as follows:  
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% 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 ℎ𝐶𝐺𝛽 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠
 × 100 

 

Prior to performing the MTS cell viability assay, the optimal cell number 

required to produce a reading above the blank reading at 490 nm, was determined. 

Cells were seeded at a density of 0.5- 5 x10
3
 cells per well in triplicate in a 96 well 

plate and allowed to grow for 96 h (marking the end of the viability assay) at which 

point the MTS reagent was added. The aim was to achieve a cell number that would 

give an absorbance reading between 0.1 and 0.5 within 1- 4 h. 

 

Table 3-1 Seeding density of cell lines and concentration of hCGβ for cell 

proliferation assay  

Cell line Seeding density  

/  per well 

Concentration of hCGβ (ng/mL) 

  Basal level 10 X 25 X 50 X 

HEY 1 x 10
3
 4 40 100 200 

A2780 2.5  x  10
3
 0.9 9 22.5 45 

A2780cis 2.5  x  10
3
 0.6 6 15 30 

Note: Basal levels were determined in section 3.2.2. 

3.2.5 Wound healing assay 

The wound healing assay was used to determine cell migration 48 h after siRNA 

or plasmid transfection. HEY cells were seeded at 5 x 10
4
 in 250 μL of culture media 

in 96-well plates and allowed to form a confluent layer overnight at 37°C in 5% 
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CO2. Once the confluent layer was formed, 150μl of condition media was removed 

from individual wells and reserved in a separate 96-well plate. A scratch was then 

made to the confluent layer using the Incucyte WoundMaker (Essen Bioscience) 

tool. Loosened cells were washed off with 200 μL of warm PBS (twice). The 

remaining cells were replenished with the conditioned media with 5 μM of the cell 

proliferation inhibitor cytosine β-D-arabinofuranoside. Note that the conditioned 

media was used in order to take into account secreted levels of hCGβ. The plate was 

placed into an Incucyte™ FLR Kinetic Imaging System and the Incucyte™ software 

was programmed to generate phase-contrast photographs of the scratched region at 

3 h time intervals for up to 48 h. The Incucyte™ software was then used to 

automatically determine the percentage of wound closure in individual wells, at a 

given time point relative to the size of the wound at time zero. 

 

3.2.6 Cell adhesion assay 

Cell adhesion was studied in HEY and A2780cis cells using the ECM Cell 

adhesion Array colorimetric kit according to the manufacturer’s protocol.  The kit 

consisted of 12 x 8-well strips percolated with an extracellular matrix (ECM) 

protein: Collagen I (ColI), Collagen II (ColII), Collagen IV (ColIV), Fibronectin 

(FN), Laminin (LN), Tenascin (TN), Vitronectin (VN) and BSA as a negative 

control, as well as Assay, Cell Stain, and Extraction buffers.   

Forty-eight hours after siRNA or plasmid transfection, cells growing in a T25 

flask were harvested and resuspended into a single cell suspension before being 

plated onto the ECM matrix proteins. Specifically, cells were washed with warm 

PBS and detached from the flask by incubating them with 4 mL of Cell Gibco Cell 
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Dissociation Buffer enzyme-free PBS for 20 min at RT. Cell clumps were broken by 

gently pipetting the cells up and down with a 5 mL pipette and the cell suspension 

was transferred to a 15 mL centrifuge tube and cells pelleted by centrifugation at 

300 x g for 3 min. The pellet was washed in 2 mL of warm PBS to remove residual 

serum proteins from the growth media and re-pelleted by centrifugation. This wash 

step was repeated once more before the cells were resuspended in the Assay buffer, 

counted and diluted in an appropriate volume of Assay buffer to attain a density of 

5x10
5
 and 1x10

6
 cells/mL of HEY and A2780cis cells, respectively. One hundred μl 

of the cell suspension was added (in duplicate) to ECM coated wells and incubated at 

37°C in 5% CO2 for 1 and 2 h for HEY and A2780cis cells, respectively. After the 

cells had adhered, the Assay buffer was gently aspirated and unattached cells were 

washed off with 200 μL of Assay buffer (repeated one more time).  

The remaining attached cells were fixed and stained for 5 min at RT with 100 μL 

of Cell Stain solution. Excess stain was washed off with 200 μL of deionised water 

(repeated four times) and wells were left to air dry. The cell-bound stain was 

solubilised by the addition of 100 μL of Extraction buffer to each well and placed on 

a shaker for 5 min. Absorbance at 560 nm was measured with the Victor Multilabel 

Plate Reader. The absorbance readings, which were proportional to the amount of 

cells that had attached to the matrix, were plotted on a bar graph. 

Prior to the adhesion assay, the ideal cell number to form a confluent layer and 

time required for the cells to adhere to the ECM surfaces were optimised. Cell 

suspensions of 0.5-2 x 10
5 

of HEY and A2780cis cells were prepared in Assay buffer 

as described in the above section and incubated on the ECM matrix proteins to attain 

a confluent layer within 1-2 h on at least one matrix protein. An optimum cell 
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number of 5 x 10
4
 and 2 x 10

5
 and incubation times of 1 and 2 h were determined for 

HEY and A2780cis cells, respectively.  
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3.3 Results 

3.3.1 Expression of CGB transcript and secreted hCGβ in HGSC cell lines 

All eight HGSC cell lines: SKOV-3, HEY, OV202, PEO-1, A2780, A2780cis, 

CaOV-3 and OVCAR-3 expressed hCGβ at both the transcript and protein levels to 

varying degrees (Figure 3.1). qRT-PCR data normalised to cDNA from SKOV-3 

cells showed that HEY cells expressed the highest level of CGB, followed by 

SKOV-3 cells. OV202, PEO1, A2780, A2780cis, CaOV3 and OCAR-3 cells 

expressed considerably lower levels of CGB compared to HEY and SKOV-3 cells 

(Figure 3.1 A). Notably, the A2780cis cells had much lower CGB expression than 

the parental A2780 cell line. 

The level of basal secreted hCGβ determined by ELISA (Figure 3.1 B) from 

conditioned media revealed a similar relative expression pattern to the transcript 

levels, specifically SKOV-3 (13.80 ± 0.82 ng/mL)  and HEY (3.94 ± 0.34 ng/mL) 

cell lines produced significantly higher levels of hCGβ compared to OV202 

(0.12 ±0.01 ng/mL), PEO1 (1.39 ± 0.57 ng/mL), A2780 (0.95 ± 0.19 ng/mL), 

A2780cis (0.40 ± 0.02 ng/mL), CaOV-3 (0.23 ± 0.03 ng/mL) and OVCAR-3 

(0.15 ± 0.02 ng/mL) cell lines. There were however some notable differences in 

protein expression levels compared to transcript levels. SKOV-3 cells produced 

significantly higher levels (more than 4 times) hCGβ protein compared to HEY cells, 

whereas HEY cells expressed 1.4 times more CGB transcript compared to SKOV-3 

cells. Although OV202 cells expressed at least 2 times higher levels of CGB 

transcript compared to PEO1, A2780 and A2780cis cells, they secreted lower levels 

of hCGβ protein.  
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Figure 3.1 Expression of CGB transcript and secreted hCGβ in HGSC cell 

lines 

Expression of CGB and hCGβ in 8 HGSC cell lines (A) CGB transcript level 

relative to HMBS, determined by qRT-PCR normalised to CGB/HMBS 

expression in SKOV-3 cells. (B) Secreted hCGβ protein levels determined by 

ELISA. Data are expressed as mean ± SEM; (N=3). * P < 0.05, ** P < 0.005. 
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3.3.2 Expression of CGA in HGSC cell lines 

Analysis of expression of CGA was also carried out in the eight HGSC cell lines 

to determine if the cells could potentially produce whole hCG protein that would 

require the presence of both subunits. All cell lines expressed some level of CGA 

(Figure 3.2). Expression levels of CGA in the cell lines were normalised to levels in 

A2780 cells. CGA expression for CaOV-3 cells is not shown on the graph as they 

expressed 660 times more CGA compared to A2780 cells. 

 

Figure 3.2 Expression of CGA in HGSC cell lines normalised to expression 

in A2780 cells 

Expression of CGA transcript level relative to HMBS, determined by qRT-PCR 

normalised to CGA/HMBS expression in A2780 cells. Data are expressed as 

mean ± SEM; (N=3). The relative expression value for CaOV-3 cells (not 

shown) was 660 ± 328. 

  

0

0.2

0.4

0.6

0.8

1

1.2

A2780 A2780cis OVCAR-3 HEY PEO1 SKOV-3 OV202

C
G

A
 e

xp
re

ss
io

n
 r

e
la

ti
ve

 t
o

 H
M

B
S 

 

Cell line 



Chapter 3 

77 

 

The degree of expression of CGA and CGB transcripts in the cell lines was 

different. The expression level of CGA transcript in the order of highest to lowest 

expression level was: CaOV-3> A2780> A2780cis> HEY> OVCAR-3> PEO1> 

SKOV-3> OV202 whereas the expression level of the CGB in the order of highest to 

lowest expression level was SKOV-3> HEY> OV202> PEO1> A2780> A2780cis> 

CaOV-3> OVCAR-3.  The most striking differences were that: 1. CaOV-3 cells 

which expressed one of the lowest levels of CGB, expressed the highest level of 

CGA; 2. SKOV-3 cells which expressed the second highest level of CGB expressed 

almost no CGA, and 3. HEY cells which expressed the highest level of CGB and 

higher levels compared to the A2780 and A2780cis cells expressed lower amounts of 

CGA compared to A2780 and A2780cis cells. Interestingly, A2780 expressed higher 

levels of both the CGA and CGB transcript compared to A2780cis cells. 

 

3.3.3 Downregulation of hCGβ 

Twenty-four hours after siRNA transfection, an average reduction of 50-60% in 

CGB transcript was achieved in HEY, A2780 and A2780cis cells using either of two 

hCGβ targeting siRNAs: CGB_4 and CGB_5 (Figure 3.3 A). CGB_4 siRNA caused 

a reduction of 65, 55 and 60% of CGB in HEY, A2780 and A2780cis cells, 

respectively.  A reduction of 55, 60, and 60% of CGB in HEY, A2780 and A2780cis 

cells, respectively was achieved with the CGB_5 siRNA.  

The secreted hCGβ level in conditioned media was determined in HEY cells 48 h 

post transfection using ELISA, and indicated a 50% downregulation of hCGβ with 

both CGB_4 and CGB_5 siRNAs (Figure 3.3 B). Due to limited cell number after 

siRNA transfection, the level of secreted hCGβ in A2780 and A2780cis was below 
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the detectable thresh-hold of the ELISA assay (as reflected in Figure 3.1 B) hence 

hCGβ downregulation at the protein level could not be determined. Each transfection 

yielded 1.5 x 10
6
 of A2780 and A2780cis cells and ~ 6 x 10

6
 cells were needed to 

produce secreted hCGβ protein levels which could be detected by the ELISA kit.   
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Figure 3.3  Downregulation of CGB and secreted hCGβ 

CGB transcript level (A) in HEY, A2780 and A2780cis cells  determined 24 h 

post transfection by qRT-PCR and secreted hCGβ protein level (B) in HEY cells, 

determined 48 h post transfection by ELISA on conditioned media. Secreted 

hCGβ could not be detected in conditioned media from A2780 and A2780cis 

cells, likely due to the small number of cells used for these assays. siRNAs: non-

silencing control, CGB_4 and CGB_5.  Data normalised to negative non-

silencing control siRNA and expressed as mean ± S.E.M; N=3. 
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3.3.4 Effect of hCGβ downregulation on cell proliferation 

Cell proliferation was determined following hCGβ downregulation at 3 and 6 

days in HEY, A2780 and A2780cis cells. A general trend of reduction of cell 

proliferation was observed when hCGβ was downregulated (Figure 3.4).  

In HEY cells (Figure 3.4 A), there was a significant reduction in cell proliferation 

following siRNA treatment (ANOVA; P = 0.013), and the post hoc test revealed that 

both CGB_4 and CGB_5 siRNAs caused a significant reduction in proliferation 

(P = 0.026 and P = 0.005, respectively). Specifically, a reduction in cell number of 

25 and 10% was observed using the CGB_4 siRNA at day 3 and 6 respectively, and 

a 10% reduction was observed at both day 3 and 6 using the CGB_5 siRNA. 

In A2780 cells (Figure 3.4 B), a statistically significant difference in cell 

proliferation was observed with siRNA treatment (P = 0.01) however, the post hoc 

test revealed that this reduction was statistically significant only when the CGB_5 

siRNA was used (ANOVA; P = 0.004). Specifically, a reduction in cell number of 

40 and 30% at day 3 and 6 respectively was observed using the CGB_5 siRNA. 

In A2780cis cells (Figure 3.4 C) there was a significant reduction in cell 

proliferation following siRNA treatment (ANOVA; P = 0.01) and the post hoc test 

revealed that both CGB_4 and CGB_5 siRNAs showed a significant reduction in 

proliferation (P = 0.004 and P = 0.016, respectively). Specifically, a reduction in cell 

number of 50 and 25% was observed using the CGB_4 siRNA at day 3 and 6, and 40 

and 20% at day 3 and 6 respectively using the CGB_5 siRNA.   
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A 
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C 

 

Figure 3.4 Effect of downregulation of hCGβ on cell proliferation 

Effect of down regulating hCGβ on proliferation of HEY (A), A2780 (B) and 

A2780cis (C) cells. siRNAs: negative control non-silencing ( ),CGB_4( ), and 

CGB_5 ( ) . Results expressed as mean ± S.E.M; N=3. A significant reduction 

in cell proliferation following hCGβ downregulation was observed in HEY 

(P = 0.013) and A2780cis (P = 0.01) using ANOVA. 
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3.3.5 Effect of hCGβ downregulation on cell adhesion  

The effect of downregulation of hCGβ on cell adhesion to plates coated with 

different matrix proteins was examined in A2780cis and HEY cells. A2780cis did 

not attach to any of the collagen matrixes hence these matrixes were omitted from 

further examination. A general increase in cell adhesion was observed in both HEY 

and, more notably, in A2780cis cells when hCGβ was downregulated (Figure 3.5). In 

both HEY and A2780cis cells there was no significant difference in cell adhesion 

between the different ECM matrixes. However, when cell adhesion was analysed 

across all seven matrixes there was a significant difference (P < 0.0005) when hCGβ 

was downregulated in HEY cells with either CGB_4 or CGB_5 siRNAs. 

When the data were normalised to the non-silencing negative control siRNA the 

differences were more clear than the raw data (Figure 3.6). Cell adhesion increased 

by 10% on Fibronectin, Laminin and Vitronectin and by 20% on Tenascin in 

A2780cis when hCGβ was downregulated (Figure 3.6 A). However, the observed 

increase was not statistically significant due to high variation between experimental 

runs which could have been due to the high variability in the number of cells that 

attached to the ECM surfaces between experimental runs and the level of stain taken 

up by the cells. Statistical analyses were performed using t-test, comparing adhesion 

between cells treated with non-silencing control siRNA and CGB_4 or CGB_5 

siRNA. It is possible that increasing the number of replicates may have reached 

statistically significant differences. The increase in cell adhesion observed in HEY 

cells (Figure 3.6 B) when hCGβ levels were decreased was more noticeable 

compared to A2780cis cells but varied between the CGB_4 and CGB_5 siRNA. 

When CGB_4 was used to downregulate hCGβ the increase in cell adhesion was as 
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follows: 10% on Collagen I, 30% on Collagen II and IV, Fibronectin, Laminin, and 

Vitronectin, and a 50% increase on Tenasin. When CGB_5 was used the increase in 

adhesion was as follows: 40% on Collagen I and II, 80% on Collagen and Tenasin, 

50% on Fibronectin and Laminin and 60% on Vitronectin. As was the case for 

A2780cis cells, these increases did not reach statistical significance.  
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Figure 3.5 Effect of hCGβ downregulation on cell adhesion 

Effect of downregulation of hCGβ on cell adhesion to extracellular matrix 

proteins of A2780cis (A) and HEY (B) cell lines, 48 h post siRNA transfection. 

siRNAs: non-silencing control ( ),CGB_4( ),CGB_5( ). Collagen I (Col I), 

Collagen II (Col II), Collagen 1 (Col  IV),  Fibronectin (FN), Laminin (LN), 

Tenasin (TN), Vitronectin (VN). Results are expressed as mean ± S.E.M; N=3. 

Statistical test: two-way ANOVA. When cell adhesion was analysed across all 

seven matrixes in HEY cells there was a significant difference (P < 0.0005) 

when hCGβ was downregulated with either CGB_4 or CGB_5 siRNAs. 
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Figure 3.6 Effect of hCGβ on cell adhesion: data normalised to non-

silencing negative control 

Effect of downregulation of hCGβ, on cell adhesion to extracellular matrix 

proteins of A2780cis (A) and HEY (B) cell lines, 48 h post siRNA transfection. 

Data normalised to cells treated with negative control non-silencing siRNA. 

siRNAs: non-silencing control ( ),CGB_4 ( ) , CGB_5( ).Collagen I (Col I), 

Collagen II (Col II), Collagen 1 (Col  IV),  Fibronectin (FN), Laminin (LN), 

Tenasin (TN), Vitronectin (VN). Results expressed as mean ± S.E.M; N=3. Red 

dotted line indicates 100%. 
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3.3.6 Effect of hCGβ downregulation on cell migration  

Migration was measured by the rate of closure of a wound made in the cell 

monolayer. A2780 and A2780cis did not migrate or migrated to a maximum wound 

closure of 20% during the 48 h period of the assay, after which time they started 

dying (Figure 3.7 and Figure 3.8, respectively). Due to this limited ability for A2780 

and A2780cis cells to migrate despite hCGβ downregulation, migration was studied 

only in HEY cells.  

 

0 h 

 

24 h 

 

48 h 

Figure 3.7 Wound closure in A2780 cells over 48 h 

Representative images from the Incucyte of wound closure in A2780 cells at 0 h, 

24 h and 48 h. Outline of the wound depicted by dashed orange line. 

0 h 24 h 48 h 

Figure 3.8 Wound closure in A2780cis cells over 48 h  

Representative images from the Incucyte of wound closure in A2780cis cells at 0 

h, 24 h and 48 h. At 48 h cells can be seen to be lifting off the plate forming 

patches in the confluent layer (indicated by green arrows). Outline of the wound 

depicted by dashed orange line.  
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In HEY cells, downregulation of hCGβ did not seem to affect cell migration (Figure 

3.9).   

Control non-silencing siRNA 
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15 h 

Figure 3.9 Wound closure in HEY cells over 15 h following hCGβ 

downregulation 

Representative images from the Incucyte of wound closure in HEY cells at 0 h, 

6 h and 15 h, 24 h post siRNA transfection. Outline of the wound depicted by 

dashed orange line. 

 

However, a small increase in migration, 4-5% at 10 h, was seen as a result of 

downregulation of hCGβ following quantitation of wound closure (Figure 3.10). 

However, this effect did not reach statistical significance. 
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Figure 3.10 Effect of hCGβ downregulation on cell migration in HEY cells 

Effect of hCGβ downregulation on migration of HEY cells, 48 h post siRNA 

transfection. siRNAs: non-silencing control, CGB_4, CGB_5. Results are 

expressed as mean ± S.E.M; N=4. 

 

3.3.7 Overexpression of hCGβ 

hCGβ was overexpressed in HEY, A2780 and A2780cis cells in order to 

determine if increasing its levels would result in the opposite effect of 

downregulation with regards to proliferation. The effect of hCGβ overexpression on 

cell migration was also studied in HEY cells. Protein expression of hCGβ was 

examined in whole cell lysates and conditioned media 48 h post transfection with an 

empty vector (pCI-neo) or the vector containing hCGβ insert (pC1-neo+ hCGβ). 

Intercellular hCGβ was successfully transiently expressed in all three cell lines at 

levels which could be detected by western blot (Figure 3.11 A).  There was an 

apparent 3, 4 and 6 fold increase in hCGβ in A2780, A2780cis and HEY cells 

respectively (Figure 3.11 B). The ImageJ program used to quantify the intensity of 
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the bands will give a reading regardless of whether a band is visible to the naked eye, 

therefore the extent of overexpression is probably underestimated and it should be 

noted an hCGβ band is visible only after protein is overexpressed. Background 

corrections were made by measuring a region of the blot that contained no bands and 

subtracting it from measured bands. When the level of secreted hCGβ was measured 

it was found that hCGβ was dramatically increased from 0 ng/mL to 51.84 ng/mL, 

53.84 ng/mL and 47.02ng/mL in A2780, A2780cis and HEY cells respectively 

(Figure 3.11 C).   
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A 

 

B 

 

C 

 

Figure 3.11 Overexpression of hCGβ 

Expression of hCGβ 48 h post transfection in A2780, A2780cis and HEY cells 

(A) Western blot showing expression of hCGβ protein in cell lysates. (B) 

Measured intensity of bands on western blot and normalised to cells treated with 

empty pC1-neo vector. (C)  Secreted hCGβ measured by ELISA. Plasmid 

vectors:  pC1-neo (E), pC1-neo with hCGβ insert (β). Results expressed as mean 

± S.E.M; N=3. 
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3.3.8 Effect of overexpression of hCGβ on cell proliferation 

No significant effect on cell proliferation was observed in A2780, A2780cis and 

HEY cells when hCGβ was overexpressed (Figure 3.12).  

A 

 

B 

 

C 

 
Figure 3.12 Effect of hCGβ overexpression on cell proliferation 

Effect of hCGβ overexpression on proliferation of A2780(A), A2780cis (B) and 

HEY (C) cells. Plasmid vectors: pCI-neo( ) or pCI-neo with hCGβ insert( ). 

Results expressed as mean ± S.E.M; N=3.  
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It was possible that the large growth surface area used for the proliferation study 

(i.e. T75 flask for HEY cells and T25 flasks for A2780 and A2780cis cells) and the 

presence of serum proteins in the media could have diminished any effects of 

increased hCGβ.  Therefore, to test the effect of cells growing over a smaller growth 

surface and in serum free conditions the experiment was repeated using 6 and 

12 well plates for HEY and A2780 and A2780cis cells, respectively in serum free 

media. Specifically, 24 h post hCGβ transfection, 1 x 10
5
 cells were plated in 6 or 

12 well plates, incubated for 6 hours at 37°C in 5% CO2 after which the media was 

changed to serum free media (RPMI media containing 0.1% BSA). Cells were then 

allowed to grow for 4 days. A longer period could not be pursued as the cells were 

almost 100% confluent by the end of this time period. It was found that a decrease in 

surface area and serum starvation did not influence proliferation of any of the three 

cell lines transiently transfected with hCGβ (Figure 3.13).  
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Figure 3.13 Effect of hCGβ overexpression and serum starvation on cell 

proliferation in a 6 and 12 well format  

Effect of hCGβ overexpression on proliferation of A2780, A2780cis and HEY 

cells under serum starved conditions in a 6 or 12-well plate in 4 days. Plasmid 

vectors: pCI-neo ( ) or pCI-neo with hCGβ insert ( ). Results are expressed as 

mean ± S.E.M; N=3. 
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3.3.9 Effect of hCGβ overexpression on migration of HEY cells 

Overexpression of hCGβ had no effect on migration of HEY cells over a 21 h 

period (Figure 3.14). Representative images are shown at time points 0 and 21 h 

(Figure 3.15). 

 

Figure 3.14 Effect of hCGβ overexpression on migration of HEY cells 

Migration of HEY cells over a period of 21 h, 48 h after transfection. Plasmid 

vectors: Empty vector pCI-neo, pCI-neo with hCGβ insert. Results are expressed 

as mean ± S.E.M; N=4.  
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pC1-neo 

 

0 h 

 

 

21 h 

pCI-neo with hCG-β insert 

 

0 h 

 

21 h 

Figure 3.15 Wound closure in HEY after overexpression of hCGβ 

Representative images from the Incucyte of wound closure in HEY cells at 0 h 

and 21 h time points. 48 h post transfection. Plasmid vectors: pCI-neo plasmid 

and pCI-neo with hCGβ insert.  
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3.3.10 Effect of exogenous hCGβ on cell proliferation 

The effect of exogenous recombinant hCGβ on proliferation of HEY, A2780 and 

A2780cis cells was studied using the MTS cell viability assay. Exogenous hCGβ did 

not have a significant effect on cell proliferation (Figure 3.16) when delivered at 10, 

25 and 50 times the concentration of basal hCGβ levels expressed by the cells (Table 

3-1). 

 

Figure 3.16 Effect of exogenous hCGβ on cell proliferation 

Effect of exogenous hCGβ on proliferation of HEY, A2780, A2780cis cells 

when applied at 10 X, 25 X and 50 X the basal endogenous expression of hCGβ 

which was 4, 0.9 and 0.6 ng/mL for HEY, A2780 and A2780cis cells , 

respectively. Untreated cells received 0.1% BSA in RPMI media as the vehicle 

control. Proliferation was measured 4 days after treatment using the MTS cell 

viability assay. 
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3.4 Discussion 

3.4.1 Basal expression of CGB and secreted hCGβ 

All eight HGSC cell lines expressed CGB and secreted hCGβ protein to varying 

degrees with SKOV-3 and HEY cells being the highest expressers. The fact that 

hCGβ was expressed in the HGSC cell lines agreed with patient data showing that 

hCGβ is expressed in ovarian cancer [181, 183, 186]. Though the level of hCGβ 

secreted by the OVCAR-3 cells was below the lowest standard (0.25 ng/mL) in 

assay, the absorbance was above the blank (media only) and 0 ng/mL standard hence 

it can be inferred that hCGβ was secreted by the cells. 

 

3.4.2 Downregulation of hCGβ 

Three cell line models – HEY, A2780 and A2780cis cells – expressing a varied 

range of CGB/hCGβ, were selected for functional studies. HEY cells were chosen as 

they expressed the highest level of hCGβ and the pair of cisplatin-sensitive and 

resistant cells, A2780 and A2780cis, respectively were chosen for drug response 

studies (investigated in Chapter 4). hCGβ was successfully downregulated in A2780, 

A2780cis and HEY cells by 50-60% at the transcript level (Figure 3.3 A). A higher 

level of downregulation was unable to be achieved, despite increasing the amount of 

siRNA to the highest recommended amount (10 nM). A further increase in the 

amount of siRNA was not considered as it may have resulted in off-target effects. 

There are a number of reasons that may explain why a more efficient level of hCGβ 

downregulation could not be achieved. As mentioned in Chapter 1 section 1.3.3, 

hCGβ is encoded by 6 different genes. Therefore it is possible that the siRNAs are 
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differentially targeting the different CGB genes so that the reduction observed is a 

result of preferentially targeting one gene or a subset of the genes. siRNA binding 

could also be dependent on the which CGB gene is being expressed by the cells. If 

indeed only one or a subset of the genes were targeted, it is possible that other 

untargeted CGB genes could increase their expression in order to compensate for the 

loss of the other gene. The Taqman assay used to measure CGB downregulation does 

not distinguish between the different CGB genes and therefore cannot produce a 

representation of each individual gene product. We cannot therefore determine 

which gene(s) are targeted or if there is a compensatory effect. This theory could be 

tested by using primers that specifically target each transcript. In Chapter 4 section 

4.3.8, it was shown that CGB_4 and CGB_5 siRNA differentially targeted the LHB 

gene which encodes for the highly homologous LHβ protein. 

It could be argued that even if the different CGB genes are targeted it is the 

protein product which is of functional importance. This is a valid argument; 

however, hCGβ poses another challenging scenario as hCGβ can be either of two 

different protein products depending on the gene expressed. The two protein 

products differ in particular by a single amino acid at position 117: type I genes 

(CGB7) encodes hCGβ with an alanine at position 117, whereas type II genes 

(CGB3, CGB5 and CGB8) encode a protein product with an aspartic acid at position 

117.  Therefore if it is assumed that a higher level of gene knockdown could not be 

achieved due to the inability of the siRNAs to target all CGB transcripts then the 

protein product (type I or type II hCGβ) may be of importance. Differential 

expression of type I and type II genes can be detected using nested PCR which can 

detect single nucleotide gene products [165].  To date, there is no antibody assay that 

is capable of distinguishing between the two hCGβ protein products. However, 
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Aldaz-Carol et al. published a paper in 2015, suggesting they have designed a 

specific antibody for type II hCGβ [165].  

The expression of the α-subunit and β-subunit in HEY, A2780 and A2780cis 

cells shows the potential that these cells have to produce the heterodimeric hCG 

protein.  This has to be addressed as it would mean effects observed in functional 

studies involving hCGβ downregulation or overexpression cannot be attributed to, or 

distinguished from, either whole hCG or free hCGβ. However, a number of studies 

have investigated hCGβ on its own without regard to expression of the whole protein 

[156, 187, 191].  

The α-subunit of hCG has been shown to be biologically activate in endometrial 

stromal cells [299-301]. Specifically Blithe and colleagues found that the free α-

subunit could act synergistically with progesterone to regulate the differentiation of 

human endometrial cells in vitro [299, 300]. In an attempt to study the effect of 

hCGβ while discounting the presence of hCGα  we used exogenous recombinant 

hCGβ in experiments to determine its effect on cell proliferation (Figure 3.16). It 

was found that exogenous hCGβ did not influence cell proliferation. The drawback 

of the recombinant hCGβ is that its biological activity was unknown.  Furthermore, it 

was produced in yeast cells which may result in varied glycosylation and therefore 

different stability and activity of the protein compared to the product from 

mammalian cells. Therefore, downregulation or overexpression of hCGβ was the 

best approach to ensure that hCGβ produced by the cells had any biological 

importance.  
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3.4.3 Role of hCGβ in cell proliferation 

Downregulation of hCGβ with both CGB_4 and CGB_5 siRNAs significantly 

decreased cell proliferation in HEY and A2780cis cells (Figure 3.4 A and C 

respectively). However, only the use of CGB_5 siRNA caused a significant decrease 

in cell proliferation of A2780 cells.  These data suggest that the role of hCGβ in cell 

proliferation is cell type dependent which could be in part due to potential 

differences in the mechanism of action of the two siRNAs in different cell lines. The 

pro-proliferative role of hCGβ in HEY and A2780cis cells agrees with data shown 

Gillot et al. and Guo et al. [154, 191]. Gillot et al.  showed that exogenous hCGβ 

could increase cell growth of bladder cancer cell lines [154] and Guo et al. showed 

that overexpression of hCGβ in ovarian surface epithelial cells caused an increase in 

cell proliferation [191]. Since downregulation of hCGβ had a negative effect on cell 

proliferation in HEY and A2780cis cells it was expected that overexpression of 

hCGβ would have the opposite effect. However, overexpression of hCGβ seemed to 

have no measurable effect on cell proliferation in these cells (Figure 3.12). A 

possible explanation for this result is that increased expression of hCGβ beyond an 

endogenous threshold level could not further influence cell proliferation. The 

influence of exogenous hCGβ on cell proliferation was also investigated in the 

current study and results showed that exogenous hCGβ did not influence cell 

proliferation (Figure 3.16). This data is contrary to Gillot’s data that showed that 

exogenous hCGβ could increase cell growth of bladder cancer cell lines [154]. This 

could be due to the different hCGβ preparations and sources. The recombinant hCGβ 

sourced from Sigma that was used in the current study had not been confirmed to 

have biological activity; although Butler et al. showed hCGβ from Sigma had 

biological activity [155]. Given that the actual product number was not stated in this 
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paper, it is possible that the product used in our study is different and may be 

biologically less potent or inactive. 

 

3.4.4 Role of hCGβ on cell migration 

hCGβ did not have a significant effect on migration of HEY cells irrespective of 

whether it was downregulated or overexpressed (Figure 3.10 and Figure 3.14). This 

result is contrary to findings by Wu et al. who showed that overexpression of hCGβ 

in prostate carcinoma cell lines increased cell migration [156]. It is possible that the 

migratory effect of hCGβ is cell type dependent or that HEY cells express levels of 

hCGβ that are so high (Figure 3.1) that downregulation of 50-60% or overexpression 

of up to 6 fold did not have an overall impact on cell migration.  

As mentioned in section 3.3.6, A2780 and A2780cis cells did not migrate 

substantially within a 48h period; however, a 20% difference in wound closure was 

observed which could be attributed to cell spreading; as cells seemed to be more 

rounded at time zero perhaps due to the scratching and wash steps, compared to later 

time points which showed cells to be more spread out. 

 

3.4.5 Role of hCGβ on cell adhesion 

The effect of hCGβ on cell adhesion of extracellular matrixes has not been 

studied before; however the effect of hCGβ on anchorage independent growth has 

been reported by Guo et al. [191]. Specifically, Guo’s study showed that 

overexpression of hCGβ in ovarian surface epithelial cells increased their growth 
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potential in soft agar. Interestingly, our results showed that downregulation of hCGβ 

caused a general increased trend in cell adhesion of HEY cells on collagen I, II and 

IV, fibronectin, vitronectin, tenascin, and laminin (Figure 3.6 B) and A2780cis cells 

on fibronectin, vitronectin, tenascin, and laminin (Figure 3.6 B). Although cell 

adhesion and anchorage independent growth are two different assays each indicative 

of different cellular functions, they are related, as anchorage independent growth 

demonstrates that cells are capable of growing without having to attach to a surface 

which is characteristic of  anchorage dependent cells. 
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3.5 Conclusions 

All eight HGSC cell lines expressed CGB transcript and secreted hCGβ protein to 

varying degrees with SKOV-3 and HEY cells being the highest expressers. All cells 

also expressed CGA at varying levels with CaOV-3 expressing almost 700 times the 

amount of A2780 cells which were the next highest expresser of CGA. Expression of 

both the α- and β- subunits of hCG by the cells suggests the whole protein could 

potentially be expressed; however, specific commercial antibodies targeting hCGβ 

alone were not available hence the best means of studying the role of hCGβ was to 

overexpress and downregulate the gene, the means by which the role of hCGβ has 

been investigated in previously published studies.  

Downregulation of hCGβ significantly decreased proliferation of A2780cis and 

HEY cells suggesting that hCGβ may have a role in cell proliferation. The influence 

of hCGβ downregulation on cell proliferation of A2780 cells seemed to be 

dependent on siRNA used to downregulate hCGβ; suggesting that the two siRNA 

used to target hCGβ may be functioning by different mechanisms. hCGβ may play a 

role in cell adhesion, as downregulation of hCGβ caused a general increased trend in 

cell adhesion of HEY cells on collagen I, II and IV, fibronectin, vitronectin, tenascin, 

and laminin and A2780cis cells on fibronectin, vitronectin, tenascin, and laminin. 

Migration of HEY cells was not influenced by hCGβ. The effect of hCGβ on the 

response of HGSC cell lines and differences in the actions of CGB_4 and CGB_5 

siRNA are investigated in the next chapter.   
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 Role of hCGβ in the response to cisplatin and Chapter 4

other platinum-based drugs 

 

4.1 Introduction 

The role of hCGβ in the response of HGSC cell lines to chemotherapeutic drugs, 

in particular cisplatin, carboplatin and oxaliplatin, were investigated in this chapter.  

Two published studies have suggested that hCGβ could be involved in resistance of 

cancer cells to chemotherapy: 1. Szturmowicz et al. observed that patients with 

small-cell lung cancer who were resistant to chemotherapy and had poor outcomes, 

had elevated serum levels of hCGβ [180] and 2. Berman et al. found that xenografts 

of small cell bronchial carcinoma which expressed hCGβ were resistant to the 

chemotherapeutic drug cyclophosphamide [280]. Despite these observational studies, 

no further work has been published to determine the direct role hCGβ may play in 

the response of cancer cells to chemotherapy. Furthermore, the suggestion that hCGβ 

has an anti-apoptotic role in bladder and cervical cancer cells [155, 187], raises the 

possibility that hCGβ may have a role in determining how cells respond to an 

apoptotic chemotherapeutic agent. 

In order to investigate whether hCGβ plays a role in chemosensitivity (or 

chemoresistance) in HGSC cells, hCGβ was downregulated in three HGSC cell lines 

(HEY, A2780 and A2780cis) and the response to cisplatin determined. In addition, 

sensitivity to other platinum-based drugs, oxaliplatin and carboplatin, and the 

microtubule targeting agent paclitaxel was investigated. hCGβ was also 

overexpressed in the cisplatin sensitive and resistant cell lines A2780 and A2780cis 
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cells respectively, to determine whether high levels of hCGβ could confer decreased 

sensitivity of the cells to cisplatin.  

 

4.2 Materials and Methods 

hCGβ was downregulated (using siRNAs) or overexpressed (using a plasmid 

construct) in A2780, A2780cis and HEY cells as outlined in Chapter 2, sections 2.8 

and 2.9, respectively. 

 

4.2.1 Sensitivity of cells to chemotherapeutics  

The response of cells to drug treatment was studied using cell viability and 

clonogenic (survival) assays. Both assays reflect how cells respond to drug 

treatment, but work on different principles. The cell viability assay (also known as 

the cytotoxic assay) is a 3 day colorimetric assay and measures cell viability after 

drug treatment. The clonogenic assay measures the ability of cells to survive and 

form colonies (defined as ≥ 50 cells) after the drug has been withdrawn. The 

clonogenic assay is a longer assay compared to the viability assay, spanning up to 

2 weeks.   

 

 

4.2.1.1 MTS cell viability assay  

The MTS cell viability assay (described in Chapter 3, section 3.2.4.2 ) was used 

to determine the relative number of viable cells remaining 72 h after drug treatment. 

The protocol for this assay was based on the methods described by Persons et al., 
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[302] and O’Toole et al., [303] with a few modifications. Twenty-four hours after 

siRNA or plasmid transfection, HEY, A2780 and A2780cis cells were harvested, 

counted and seeded in triplicate in 100 μl of culture media into a 96-well plate. The 

seeding density for HEY cells was 1 x 10
3 

cells /well and 2.5 x10
3
 cells/well for 

A2780 and A2780cis cells. Eighteen to 24 h after seeding, the cells were treated with 

100 μl of cisplatin, carboplatin, oxaliplatin or paclitaxel in culture media and 

incubated for 72 h at 37 ºC and 5% CO2. Table 4-1 lists the final concentration range 

for each drug used to treat the cells.  Wells were set up for blank reading which 

contained culture media only. After 72 h of drug treatment, the percentage of viable 

cells was determined as per the protocol described in Chapter 3, section 3.2.4.2. 

Briefly, the MTS reagent was added to each well and incubated for a period of 1-2 h 

for HEY cells and 2-3 h for A2780 and A2780cis cells at 37 ºC and 5% CO2 and the 

absorbance was measured at 490 nm on the Wallac Victor 1420 Multilabel Counter. 

The background absorbance from blank wells was subtracted from the wells that 

contained cells. The percentage of viable cells was then calculated. The IC50 was 

calculated using GraphPad Prism version 6.04 software (GraphPad software, 

California, USA).  

Prior to performing the MTS assay the optimum drug concentration range was 

determined by treating the cells with 0.125-50 μM cisplatin, 3.12-300 μM 

carboplatin, 2.5-100 nM oxaliplatin and 2.5-100 nM paclitaxel.  From the drug 

concentration range a maximum dose which killed more than 80% cells (20% viable) 

and a minimum dose at which cells were unaffected by the drug were chosen, along 

with several drug doses in the middle of this range (Table 4-1).  
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Table 4-1 Drug concentration range analysed for cell viability assay 

Drug  Range for HEY Range for A2780 Range for A2780cis 

Cisplatin 0.4-6 μM  0.4-12 μM  0.4-12 μM  

Carboplatin 5-150 μM  Not tested 5-150 μM  

Oxaliplatin 1-50 nM Not tested 1-50 nM 

Taxol 1-50 nM Not tested 1-50 nM 

 

4.2.1.2 Clonogenic assay 

The clonogenic cell survival assay was based on a paper by Gan et al. with a few 

variations [304]. Twenty-four hours after siRNA or plasmid transfection, HEY, 

A2780 and A2780cis cells were harvested, counted and plated into 6 well plates at a 

seeding density of 120 cells/well in 1 mL of culture media and allowed to adhere for 

5-6 h at 37 ºC and 5% CO2 before being treated with cisplatin, carboplatin, 

oxaliplatin and paclitaxel in 500 μl culture media (Table 4-2 for drug concentration 

range). Seventy-two hours following drug treatment, the medium was replaced with 

1.5 mL drug free culture media and HEY cells and A2780 and A2780cis cells were 

allowed to form colonies over 3 or 8 days, respectively. Media was topped up with 

1 mL of fresh media every 3 days. Colonies were then fixed with 0.5% crystal violet 

in 20% methanol for 5 min and excess stain washed off with water. The stained 

plates were dried and colonies manually counted. The following equations were used 

to calculate the plating efficiency and the surviving fraction: 

𝐏𝐥𝐚𝐭𝐢𝐧𝐠 𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑖𝑛 𝑑𝑟𝑢𝑔 𝑓𝑟𝑒𝑒 𝑚𝑒𝑑𝑖𝑎

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑠𝑒𝑒𝑑𝑒𝑑
 

𝐒𝐮𝐫𝐯𝐢𝐯𝐢𝐧𝐠 𝐟𝐫𝐚𝐜𝐭𝐢𝐨𝐧 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑠𝑒𝑒𝑑𝑒𝑑 × 𝑝𝑙𝑎𝑡𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦)
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The IC50 was calculated using GraphPad Prism version 6.04 software. 

Table 4-2 Drug concentration range for clonogenic assays 

Drug  Range for HEY Range for A2780 Range for A2780cis 

Cisplatin 0.25-4 μM 0.13-2 μM 0.5-8 μM 

Carboplatin 0.56-25 μM Not tested 3.75-60 μM 

Oxaliplatin 0.63-1 μM Not tested 0.63-1 μM 

Paclitaxel 0.31-5 nM Not tested 0.31-5 nM 

 

Prior to the clonogenic assay the number of cells and the time required for cells 

to form colonies was optimised by seeding between 50-500 cells/well into 6 well 

plates and incubating the plates for 5-14 days at 37 ºC and 5% CO2, until colonies 

could be visualised and were not touching each other.  It was found that the optimum 

density was 120 cells/well for HEY, A2780 and A2780cis cells. The number of days 

required to form colonies was 6 days for HEY and 11 days for A2780 and A2780cis 

cells.   

The drug concentration range was also optimised prior to the clonogenic assay. 

The highest drug concentration used to treat the cells started at IC50 concentration 

based on the cell viability assay from which 2-fold dilutions were made. The 

IC50 concentrations were chosen as it was assumed that the seeding density for the 

clonogenic assay ( ≥10 times less than that used in the viability assay) would require 

considerably less drug to kill cells. The IC50 concentration was an adequate dose to 

prevent colony formation. 
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4.3 Results 

4.3.1 Sensitivity of cells to cisplatin determined by cell viability assay 

The response of A2780,  A2780cis and HEY cells to cisplatin, determined by the 

cell viability (MTS) assay, showed that A2780 cells were the most sensitive to 

cisplatin, followed by HEY cells and, as expected, A2780cis was the most resistant 

cell line (Figure 4.1).  

 

  

Figure 4.1 Response of A2780, A2780cis and HEY cells to cisplatin 

treatment 

Response of A2780, A2780cis and HEY cells to 72 h treatment with cisplatin, 

determined by the cell viability (MTS) assay. Data are expressed as 

mean ± S.E.M; (N=3). The IC50 (μM) for cisplatin for all three cell lines is 

marked on graph. 
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The derived IC50 concentrations showed that A2780cis cells had a significantly 

higher IC50 for cisplatin compared to A2780 cells (6.4 times higher) and HEY cells 

(2.5 times higher). HEY cells had an IC50 cisplatin concentration which was 2.5 

times greater than that of A2780 cells (Table 4-3). 

 

Table 4-3 IC50 concentration of cisplatin derived from the cell viability 

assay for A2780, A2780cis and HEY cells 

Cell line IC50  [μM] 

A2780 1.43  ± 0.04 ** 

A2780cis 9.23 ± 0.63  

HEY 3.5 ± 0.40 **,  #  

IC50 concentration of cisplatin derived from the cell viability (MTS) assay for 

A2780, A2780cis and HEY cells. Data are expressed as mean ± S.E.M; (N=3). ** P 

< 0.005 when samples were compared to A2780cis; # P < 0.05 when samples were 

compared to A2780.  

 

 

4.3.2 Sensitivity of cells to cisplatin relative to expression of secreted hCGβ  

A relationship between the level of CGB expression and hCGβ secreted by the 

cells and their sensitivity to cisplatin (expressed as IC50 concentrations derived from 

the cell viability assay) could not be established (Figure 4.2). The parental cisplatin 

sensitive A2780 cells expressed 3.5 times more CGB and 2 times more secreted 

hCGβ compared to the cisplatin resistant A2780cis cells and were more sensitive to 

cisplatin. HEY cells expressed 55 and 10 times more CGB and secreted hCGβ 

respectively compared to A2780cis cells and were more sensitive to cisplatin. In 

contrast, HEY cells expressed higher levels of CGB and hCGβ compared (16 and 4 
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times more, respectively) to A2780 cells but were less sensitive (up to 2.5 times) to 

cisplatin.  

 

  

Figure 4.2 Cisplatin sensitivity relative to the expression of CGB and 

secreted hCGβ 

IC50 of cisplatin (μM) for A2780, A2780cis and HEY cells derived from the cell 

viability (MTS) assay, relative to CGB/HMBS (arbitrary units) and secreted 

hCGβ (ng/mL) levels. Data are expressed as mean ± S.E.M; (N=3). 
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4.3.3 Effect of hCGβ downregulation on cell viability following cisplatin 

treatment  

Downregulation of hCGβ had different effects on the response of the cisplatin 

sensitive A2780 cells and cisplatin resistant A2780cis cells to cisplatin treatment 

(Figure 4.3). The degree of hCGβ downregulation was previously shown in 

Chapter 3, Figure 3.3. In A2780 cells, reducing the level of hCGβ by ~60% did not 

affect the response to cisplatin (Figure 4.3 A). In contrast, downregulation of hCGβ 

by ~60 % significantly increased the sensitivity of A2780cis cells to cisplatin (Figure 

4.3 B). An increase in sensitivity to cisplatin after hCGβ downregulation was also 

observed in HEY cells (Figure 4.3 C).  

Although both hCGβ targeting siRNAs (CGB_4 and CGB_5) downregulated 

hCGβ to similar levels and both caused increased sensitivity to cisplatin in HEY and 

A780cis cells, it was evident that the CGB_5 siRNA had a greater effect on how 

cells responded to cisplatin, suggesting that the two siRNAs did not function in an 

identical manner. 
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Figure 4.3 Effect of hCGβ downregulation on cell viability following 

cisplatin treatment  

Viability of A2780 (A), A2780cis (B) and HEY (C) cells after cisplatin 

treatment, 48h post transfection with non-silencing control ( ), 

CGB_4 ( ) or CGB_5( ) siRNAs. The MTS viability assay was used to 

determine cell viability. Data are expressed as mean ± S.E.M; (N=3). 

** P < 0.005, *** P < 0.0005. 
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4.3.4 Effect of hCGβ downregulation on cell viability following paclitaxel 

treatment 

As A2780 cells did not show any difference in sensitivity towards cisplatin 

following hCGβ downregulation, from here on drug sensitivity studies following 

hCGβ downregulation were followed only in HEY and A2780cis cells. 

Downregulating hCGβ in A2780cis and HEY cells had no significant effect on their 

sensitivity towards paclitaxel (Figure 4.4). Refer to Appendix B Supplementary 

Table 1 for IC50 concentrations for Paclitaxel. 

A 

 

B 

 
C 

 

D 

 
Figure 4.4 Effect of hCGβ downregulation on cell viability following 

paclitaxel treatment 

Viability of HEY (A and B) A2780cis (C and D) cells in response to paclitaxel, 

48h post transfection with non-silencing control ( ), CGB_4 ( ) and 

CGB_5 ( ) siRNAs. The MTS assay was used to determine cell viability. 

Data are expressed as mean ± S.E.M (N=3). 
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4.3.5 Effect of hCGβ downregulation on cell viability following treatment with 

carboplatin and oxaliplatin  

The response of A2780cis and HEY cells to other platinum-based drugs, 

carboplatin and oxaliplatin, was studied to determine whether the increase in 

sensitivity to cisplatin seen when hCGβ was downregulated, was also seen for these 

drugs. In A2780cis cells, downregulation with both CGB_4 and CGB_5 siRNAs 

showed a statistically significant increase in sensitivity to both carboplatin and 

oxaliplatin (Figure 4.5).  Although these trends were reflected in HEY cells, only 

downregulation with CGB_4 showed a statistically significant increase in sensitivity 

to carboplatin (Figure 4.6).  Refer to Appendix B, Supplementary Table 1 for IC50 

concentrations for carboplatin and oxaliplatin. 
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C 

 
   

D 

 
  

 

Figure 4.5 Effect of hCGβ downregulation on cell viability of A2780cis cells 

following treatment with oxaliplatin and carboplatin   

Viability of A2780cis cells following treatment with: Carboplatin (A and B), 

Oxaliplatin (C and D), 48 h post transfection with non-silencing control ( ), 

CGB_4 ( ) and CGB_5 ( ) siRNAs. The MTS assay was used to 

determine cell viability. Data are expressed as mean ± S.E.M; (N=3). *P < 0.05, 

***P < 0.0005. 
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Figure 4.6  Effect of hCGβ downregulation on cell viability of HEY cells 

following treatment with oxaliplatin and carboplatin   

Viability of HEY cells following treatment with: Carboplatin (A and B), 

Oxaliplatin (C and D), 48 h post transfection with non-silencing control ( ), 

CGB_4 ( ) and CGB_5 ( ) siRNAs.  The MTS assay was used to 

determine cell viability.  Data are expressed as mean ± S.E.M; (N=3). 

**P < 0.005. 
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4.3.6 Effect of hCGβ downregulation on cell survival following cisplatin, 

carboplatin and oxaliplatin treatment 

The clonogenic assay was used to measure cell survival. Downregulating hCGβ 

significantly decreased cell survival of A2780cis and HEY cells independently of 

any drug treatment. The number of colonies formed relative to the number of cells 

seeded was reduced by ~ 30% in HEY and A2780cis cells (Figure 4.7). Cell survival 

in the context of hCGβ downregulation was not studied in A2780 cells as the use of 

CGB_5 siRNA to downregulate hCGβ almost completely prevented colony 

formation in these cells and therefore subsequent drugs studies could not be pursued. 

 

Figure 4.7 Effect of downregulating hCGβ on the ability of HEY and 

A2780cis cells to form colonies 

The surviving fraction which is indicative of cell survival is expressed as the 

number of cells seeded divided by the number of colonies formed.  Data are 

expressed as mean ± S.E.M; (N=4). * P < 0.05, ** P < 0.005.  
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In A2780cis cells (Figure 4.8) there was a general trend towards decreased cell 

survival following treatment with all three platinum-based drugs independently when 

hCGβ was downregulated. The use of either CGB_4 or CGB_5 siRNA to 

downregulate hCGβ caused a significant increase in cisplatin sensitivity (Figure 4.8 

A and B). Both hCGβ targeting siRNAs also caused a significant increase in 

oxaliplatin sensitivity (Figure 4.8 E and F). The use of CGB_5 siRNA also caused a 

significant increase in carboplatin sensitivity (Figure 4.8 D), but despite CGB_4 

siRNA showing a similar increase in sensitivity towards carboplatin (Figure 4.8 C), 

it did not reach statistical significance (P = 0.079). Refer to Appendix B, 

Supplementary Table 2 for IC50 concentrations for carboplatin and oxaliplatin. 

 

In HEY cells a similar trend in the reduction of cell survival after cisplatin, 

carboplatin or oxaliplatin treatment was observed with downregulation of hCGβ 

(Figure 4.9). However, only the use of CGB_5 siRNA showed a significant increase 

in cisplatin and carboplatin sensitivity (Figure 4.9 B and D). The use of CGB_4 

siRNA also showed a similar trend in increased sensitivity to cisplatin, carboplatin 

and oxaliplatin treatment but these changes were not statistically significant (Figure 

4.9 A, C and E, respectively). Refer to Appendix B, Supplementary Table 2 for IC50 

concentrations for carboplatin and oxaliplatin. 
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Figure 4.8 Effect of hCGβ downregulation on cell survival of A2780cis cells 

after treatment with platinum-based drugs  

The clonogenic assay was used to measure cell survival in response to: Cisplatin 

(A and B, N=6), Carboplatin (C and D, N=4) and Oxaliplatin (C and D, N=4), 

24 h post transfection with a non-silencing control ( ), CGB_4 ( ) or 

CGB_5 ( ) siRNAs. Data are expressed as mean ± S.E.M. * P < 0.05, 

** P < 0.005, *** P < 0.0005. 
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Figure 4.9 Effect of hCGβ downregulation on cell survival of HEY cells 

after treatment with platinum-based drugs. 

The clonogenic assay was used to measure cell survival in response to: Cisplatin 

(A and B, N=4), Carboplatin (C and D, N=3) or Oxaliplatin (C and D, N=3), 

24 h post transfection with a non-silencing control ( ),CGB_4 ( ) or 

CGB_5 ( ) siRNAs. Data are expressed as mean ± S.E.M. *** P < 0.0005. 
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IC50 values for cisplatin, carboplatin and oxaliplatin in A2780cis cells indicated a 

decrease in the amount of drug required to cause a 50% reduction in cell survival 

when hCGβ was downregulated (Figure 4.10 A and B). Downregulation of hCGβ 

with either CGB_4 or CGB_5 siRNAs showed a significant decrease in the IC50 for 

cisplatin and oxaliplatin; however, only CGB_5 significantly decreased the IC50 for 

carboplatin. Despite a general trend in the reduction of IC50 for cisplatin, carboplatin 

and oxaliplatin by both CGB_4 and CGB_5 siRNAs in HEY cells (Figure 4.10 C 

and D), only CGB_5 siRNA caused a significant decrease in the IC50 for cisplatin 

and oxaliplatin in these cells. 
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Figure 4.10 IC50 of cisplatin, carboplatin and oxaliplatin in A2780cis and 

HEY cells after hCGβ downregulation based on survival assays 

IC50 of cisplatin (μM), carboplatin (μM), oxaliplatin (nM) derived from 

clonogenic assays which were used to measure cell survival, in A2780cis (A and 

B) and HEY (C and D) cells,   24h post transfection with a non-silencing control 

( ), CGB_4 ( ) or CGB_5 ( ) siRNAs. Data are expressed as mean ± S.E.M; 

(N=4). * P < 0.05, ** P < 0.005, *** P < 0.0005. 
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4.3.7 Effect of hCGβ downregulation using a third siRNA on cell survival 

following cisplatin, carboplatin and oxaliplatin treatment 

Although the two siRNA targeting hCGβ (CGB_4 and CGB_5) had similar 

levels (~ 60%) of knockdown in HEY and A2780cis cells (Figure 4.11), and showed 

similar trends in terms of cell survival and viability in response to cisplatin and 

carboplatin treatment, there were a few differences that had to be addressed. 

Therefore a third siRNA, CGB_7, targeting CGB was used. This showed a similar 

level of CGB downregulation to CGB_4 and CGB_5 siRNAs (Figure 4.11). 

 

Figure 4.11 Downregulation of CGB in HEY and A2780cis using three 

siRNAs 

CGB downregulation in HEY and A2780cis cells measured by qRT-PCR. 

Expression of CGB gene transcript relative to HMBS, normalised to CGB/HMBS 

expression in the control non-silencing siRNA (C) 24 h post siRNA transfection. 

siRNAs: non-silencing control (C), CGB_4, CGB_5 and CGB_7. Data are 

expressed as mean ± S.E.M. (N=3). Statistical analysis: one sample t-test, 

comparing the different siRNA treatments for each cell line to their respective 

control siRNA * P < 0.05, ** P < 0.005, *** P < 0.0005. 
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Although CGB_7 siRNA showed similar levels of hCGβ downregulation 

(~ 65%) in HEY and A2780cis cells, the resulting response to cisplatin and 

carboplatin in the two cell lines was different (Figure 4.12).  Note that a one sample 

t-test was used for statistical analysis to assess knockdown as the non-silencing 

control siRNA was normalised to 100%. In A2780cis cells, CGB_7 siRNA caused a 

small but significant increase in sensitivity to cisplatin and carboplatin (Figure 4.12 

A and B). The degree by which CGB_7 siRNA increased cisplatin sensitivity in 

A2780cis cells was in between the degrees shown by CGB_4 and CGB_5 siRNA 

(Figure 4.8 A and B). Treatment of HEY cells with CGB_7 siRNA showed no 

change in cisplatin or carboplatin sensitivity in HEY cells (Figure 4.12 C and D). 

This result was contrary to the trend in increased in cisplatin and carboplatin 

sensitivity of caused by treatment of HEY cells with either CGB_4 or CGB_5 

(Figure 4.9 A and B). 
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A 

 

B 

 
 

C 

 

D 

 
Figure 4.12 Effect of hCGβ downregulation using CGB_7 siRNA on cell 

survival following cisplatin and carboplatin treatment 

The clonogenic assay was used to measure cell survival of A2780cis (A and B) 

and HEY (C and D) cells in response to treatment with cisplatin and carboplatin, 

24 h post transfection with a non-silencing control ( ) or 

CGB_7 (   ). Data are expressed as mean ± S.E.M. (N=3). * P < 0.05. 
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4.3.8 Investigation of possible compensatory effects of LHβ on hCGβ 

downregulation 

The β-subunit of the luteinising hormone (LHβ) is highly homologous to hCGβ. 

Furthermore, the gene encoding LHβ, LHB, is positioned on the same gene cluster as 

the CGB genes [130]. For these reasons, a compensatory effect by LHB was 

investigated to determine whether functional differences observed by the siRNAs 

targeting hCGβ (in particular CGB_4 and CGB_5) could be due to changes in the 

LHβ levels. Downregulation of CGB by CGB_4 siRNA caused ~ 65 % increase in 

the expression of LHB in HEY cells and a 30 % increase in A2780cis cells (Figure 

4.13); however, statistical significance was reached only for HEY cells.  In contrast, 

downregulation of hCGβ by CGB_5 siRNA caused a significant decrease of LHB 

(~ 20%) in HEY cells and no change in A2780cis cells. CGB_7 caused a slight 

reduction of LHB expression in both cell lines (Figure 4.13 A) but this was not 

statistically significant. Endogenous levels of LHB were also determined and it was 

found that HEY expressed 15 times more LHB compared to A2780cis cells (Figure 

4.13 B). The one sample t-test was used for statistical analysis of LHB expression 

levels following CGB downregulation as the control siRNA was normalised to 

100%. 
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A 

 
B 

 

Figure 4.13 Effect of CGB downregulation on LHB gene expression in HEY 

and A2780cis cells and endogenous expression of LHB  

Effect of CGB downregulation on LHB expression in HEY and A2780cis cells 

(A) and endogenous expression of LHB in HEY and A2780cis cells measured by 

qRT-PCR (B). siRNAs: non-silencing control (C), CGB_4, CGB_7 and CGB_5. 

Data are expressed as mean ± S.E.M; (N=3). Statistical analysis: one sample 

t-test.  Comparing the different siRNA to their respective control siRNA HEY 

cells: * P < 0.05 (applicable to panel A only). 
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4.3.9 Effect of hCGβ overexpression on viability and survival of A2780 and 

A2780cis cells in response to cisplatin treatment 

Downregulation of hCGβ showed different effects in terms of how the cisplatin 

sensitive A2780 cells and cisplatin resistant cells A2780cis responded to cisplatin 

(Figure 4.3 A and B). Specifically, downregulation of hCGβ in A2780 cells did not 

affect how the cells responded to cisplatin; however, it did sensitise A2780cis cells 

to cisplatin. hCGβ was then transiently overexpressed in the two cell lines to 

determine whether an increase in hCGβ would affect response of A2780 cells to 

cisplatin and perhaps show a decrease (opposite to effect seen by downregulation of 

hCGβ) in cisplatin sensitivity in A2780cis. hCGβ was markedly overexpressed 

following plasmid transfection in A2780 and A2780cis cells as shown previously in 

Chapter 3 (Figure 3.11). Despite this increase, the response to cisplatin treatment for 

both cell lines in terms of either cell viability assessed by MTS assay (Figure 4.14) 

or cell survival assessed by clonogenic assays, (Figure 4.15) was unaffected. 
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Figure 4.14 Effect of hCGβ overexpression on cell viability following 

cisplatin treatment  

Viability of cells following hCGβ overexpression and treatment with cisplatin. 

Cells: A2780 (A) and A2780cis (B). Vectors: Empty pCI-neo ( ), pCI-neo 

containing hCGβ insert ( ). Data are expressed as mean ± S.E.M; (N=3). 
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Figure 4.15 Effect of hCGβ overexpression on cell survival following 

cisplatin treatment  

The clonogenic assay was used to measure cell survival of A2780 (A) and 

A2780cis (B) in response to hCGβ overexpression and cisplatin treatment. 

Vectors: Empty pCI-neo ( ), pCI-neo containing hCGβ insert ( ). 

Data are expressed as mean ± S.E.M; (N=3). 
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4.4 Discussion  

4.4.1 Correlation between levels of secreted hCGβ and cisplatin sensitivity 

A clear association between the level of CGB and secreted hCGβ (CGB and 

hCGβ) in HEY, A2780 and A2780cis cells and their sensitivity to cisplatin could not 

be established (Figure 4.2). If only the HEY and A2780 cells were taken into 

consideration it would appear that higher levels of CGB/hCGβ correlate with 

decreased sensitivity to cisplatin, which would agree with the hypothesis that high 

expression of hCGβ may be associated with resistance to chemotherapy. However, 

the question of whether the absolute level of CGB and hCGβ expressed by cells 

could determine sensitivity or resistance to cisplatin arises when the response of 

HEY and A2780 cells to cisplatin is compared to that of A2780cis cells relative to 

the levels of CGB and hCGβ they express. HEY and A2780 cells expressed higher 

levels of CGB and hCGβ compared to A2780cis cells, and if higher levels of CGB 

and hCGβ correlated with decreased sensitivity to cisplatin then HEY and A2780cis 

cells should be less sensitive to cisplatin compared to A2780cis which was not the 

case (Figure 4.2). It should be noted that only three cell lines were used in this 

experiment therefore conclusive correlative data cannot be inferred; however, there 

are a few possible reasons why HEY and A2780 cells are more sensitive to cisplatin 

compared to A2780cis cells that express lower levels of CGB and hCGβ. 1. Cisplatin 

resistance is multifactorial [192], therefore it is likely that the absolute level of CGB 

and hCGβ expression between cell types alone are not able to dictate how cells 

respond to cisplatin. However, it is possible that the relative level of CGB and hCGβ 

in conjunction with unidentified factors determines hCGβ’s role in sensitivity to 

cisplatin (or other platinum-based drugs); 2. Drug resistance in A2780cis is 
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independent of CGB and hCGβ expression and due to other factors e.g. preventing 

drug accumulation and increased DNA repair [250, 305]; and 3. It is possible that 

different isotypes (type I and II) [165] of hCGβ may be expressed at different levels 

in the different cell lines which may play a varied role in cisplatin response. Whether 

type I or II hCGβ have different functions remains to be established. The ELISA and 

gene expression assays used in this study did not have the specificity to determine 

expression of the different isotypes. 

 

4.4.2 Effect of hCGβ downregulation on cell viability following cisplatin and 

paclitaxel treatment 

Downregulation of hCGβ increased the sensitivity of cisplatin resistant A2780cis 

cells to cisplatin but did not affect the sensitivity of cisplatin sensitive A2780 cells to 

cisplatin (Figure 4.3 A and B). From this observation two things can be inferred 

about the role of hCGβ in cisplatin sensitivity: firstly, hCGβ may play a role in how 

cells respond to cisplatin, and secondly, hCGβ’s role in response to cisplatin is more 

important in cells that have acquired resistance (or decreased sensitivity) to cisplatin. 

In agreement with the second proposition, HEY cells which were less sensitive to 

cisplatin compared to A2780 cells, also displayed increased sensitivity to cisplatin as 

a result of decreased levels of hCGβ (Figure 4.3 C). These data agree with studies 

that have shown elevated levels of hCGβ to be associated with chemoresistance 

[180, 280].  

Though downregulation of hCGβ seemed to sensitise A2780cis and HEY cells to 

cisplatin based drugs it had no effect on how cells responded to paclitaxel (Figure 

4.4). One likely explanation is that the paclitaxel and cisplatin have different cellular 
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targets (microtubules and DNA, respectively) hence different mechanisms of actions. 

hCGβ may be central to the mechanism of action of cisplatin and not microtubule 

targets agents. The possible mechanism of action of hCGβ in response to cisplatin 

treatment is investigated in Chapter 5.  

 

4.4.3 Effect of hCGβ downregulation on cell viability following treatment with 

other platinum-based drugs 

Downregulation of hCGβ significantly increased the sensitivity of A2780cis to 

carboplatin and oxaliplatin (Figure 4.5) which indicates that the increase in the 

sensitivity to cisplatin in these cells (discussed in section 4.4.2 above) could 

cross-over to other platinum-based drugs. Though both CGB_4 and CGB_5 siRNA 

showed a trend of decreased viability when HEY cells were exposed to carboplatin 

and oxaliplatin, only the use of CGB_4 siRNA caused a statistically significant 

increase in sensitivity to carboplatin (Figure 4.6 A). This suggests that the increased 

sensitivity to cisplatin may not necessarily cross-over to carboplatin and oxaliplatin 

in HEY cells.  It should also be noted that, although the use of CGB_4 siRNA 

showed a statistically significant increase in cisplatin and carboplatin sensitivity in 

A2780cis cells, the effect was not as marked as when CGB_5 siRNA was used. A 

possible reason (involving LHB) why the two siRNA were displaying functional 

differences despite showing similar level of hCGβ knockdown is discussed in section 

4.4.6. 
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4.4.4  Effect of hCGβ downregulation on cell survival 

Cell survival was significantly decreased when hCGβ was downregulated in 

A2780cis and HEY cells (Figure 4.7). This result agreed with data from the cell 

proliferation studies which showed that downregulation of hCGβ significantly 

decreased proliferation of HEY and A2780cis cells (Chapter 3, Figure 3.4). Indeed, 

cell survival and proliferation assays are different assays, but they are both reflective 

of how the cells are able to survive and proliferate.  

 

4.4.5 Effect of hCGβ downregulation on cell survival following cisplatin, 

carboplatin and oxaliplatin treatment 

Cell survival following hCGβ downregulation and treatment with cisplatin, 

carboplatin and oxaliplatin showed a trend of decreased sensitivity to the drugs in 

HEY and A2780cis cells (Figure 4.8 and Figure 4.9, respectively). However, only 

treatment with CGB_5 siRNA caused a significant increase in sensitivity to cisplatin 

and carboplatin in both A2780cis (Figure 4.8 B and C) and HEY cells (Figure 4.9 B 

and C), as well as an increase in sensitivity to oxaliplatin in A2780cis cells (Figure 

4.8 E).  

Carboplatin has a similar mode of action to cisplatin, supported by the fact that 

cross-resistance is commonly observed between these two drugs [192, 202, 211, 214, 

227]. Therefore it was not surprising that the increase in sensitivity to cisplatin 

following hCGβ downregulation was also observed following carboplatin treatment; 

however it was unexpected that cross-sensitivity to oxaliplatin was also observed as 

this is not often the case [214, 215]. Oxaliplatin forms similar DNA cross-links as 
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cisplatin however the mechanism of action of oxaliplatin seems to be different to that 

of cisplatin [215]. It is thought that the bulky 1,2-diaminocyclohexane (DACH) ring 

of oxaliplatin distorts the DNA in a manner which compromises binding the HMGB 

and MMR proteins [215]. MMR proteins seem to preferentially recognise and repair 

cisplatin-DNA adducts over oxaliplatin-DNA and therefore DNA lesions formed by 

oxaliplatin are bypassed [306].  It has also been suggested that other oxaliplatin 

interactions other than DNA-interactions may contribute to its mechanism of action 

[306, 307]. However, the increase in sensitivity following hCGβ downregulation 

suggests that hCGβ may play a direct or indirect role in common pathway shared by 

all three drugs which contributes to their cytotoxic effect. 

Although CGB_4 siRNA showed a trend of increased sensitivity to the platinum 

drugs, statistically significant results were achieved only in A2780cis cells after 

exposure to cisplatin and oxaliplatin (Figure 4.8 A and E). These results indicate that 

although hCGβ may be involved in sensitivity to platinum-based drugs; it could be 

more due to the different secondary effects of the siRNAs. A third siRNA targeting 

hCGβ (CGB_7) was used to test this theory. CGB_7 siRNA knocked down hCGβ at 

comparable levels to CGB_4 and CGB_5 siRNAs (60-70%) (Figure 4.11); however, 

this caused a significant decrease in cell survival in only A2780cis cells and not 

HEY cells following exposure to cisplatin and carboplatin (Figure 4.12). This 

suggested that the repeated increase in drug (in particular cisplatin and carboplatin) 

sensitivity observed by the CGB_5 siRNA in A2780cis is not due to a mere 

secondary effect of the siRNA. This result however, does not explain why HEY cells 

behaved differently with regards to drug sensitivity depending on the siRNA used to 

target hCGβ. The effects displayed by CGB_5 siRNA in HEY cells could be due to 

an off target effect, or perhaps due a compensatory effect of the related LHB gene. 
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The Taqman assay used to measure CGB gene downregulation does not distinguish 

between the different CGB genes and therefore cannot provide a representation of 

each individual gene product. The LHB gene could be detected and the results are 

discussed in below. 

 

4.4.6 Compensatory effect of LHβ subunit following hCGβ downregulation 

A compensatory effect of LHβ following hCGβ downregulation was studied in 

HEY and A2780cis cells in an attempt to explain: 1. the functional differences 

caused by the two siRNA used to target hCGβ (CGB_4 and CGB_5); and, 2. the 

different functional effects the siRNAs had on the two cell types (HEY and 

A2780cis cells). It was found that when CGB was downregulated using CGB_4 

siRNA, the LHB transcript level increased by 65 % and 30 % in HEY and A2780cis 

cells, respectively. This effect was not seen when CGB_5 siRNA was used (Figure 

4.13 A). This result could contribute to the functional differences observed using the 

two siRNAs. In particular, the significant changes in cell survival and viability after 

drug exposure observed with the use of CGB_5 siRNA may have been masked by 

increased LHB levels caused by the CGB_4 siRNA.  Interestingly, the LHB levels 

decreased following hCGβ downregulation with CGB_5 in HEY cells only. These 

results suggest that both LHB and CGB may need to be downregulated concurrently 

in these cells but not A2780cis cells in order to increase their sensitivity to platinum-

based drugs. In agreement with this theory it was observed that the use of CGB_7 

siRNA to downregulate hCGβ did not conclusively reduce the levels of the LHB 

gene in HEY cells. This may be a reason why an increase in cisplatin or carboplatin 
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sensitivity was not observed following hCGβ downregulation with CGB_7 siRNA 

(Figure 4.12).  

A study by Zhang et al. showed that in vitro exposure to exogenous LH could 

decrease the sensitivity of ovarian cancer cell lines to cisplatin [308]. As indicated in 

our data the α-subunit is expressed by both HEY and A2780cis cells (Chapter 3, 

Figure 3.2) which could potentially bind with the LHβ subunit thus forming the LH 

heterodimer and contributing to the response to cisplatin.  Interestingly, although 

HEY cells expressed up to 15 times more endogenous LHB compared to A2780cis 

(Figure 4.13 B) they are more sensitive to cisplatin. However it is still possible that 

when hCGβ is downregulated in HEY cells, LHB may contribute to the response of 

these cells to cisplatin.   
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4.4.7 Effect of hCGβ overexpression on cell viability and survival following 

exposure to cisplatin 

Overexpression of hCGβ in A2780 and A2780cis cells did not affect their 

response to cisplatin either in terms of cell viability (Figure 4.14) or cell survival 

(Figure 4.15). This result was not surprising in A2780 cells given that 

downregulation of hCGβ did not affect their response to cisplatin (Figure 4.3). It was 

however hypothesised that increased expression of hCGβ may decrease the 

sensitivity of A2780cis cells to cisplatin, since downregulation of hCGβ sensitised 

A2780cis to cisplatin (Figure 4.3). A possible explanation for this result is that 

increased expression of hCGβ beyond endogenous levels of hCGβ may not have 

influenced cisplatin sensitivity because a threshold level at which hCGβ has a 

protective effect to cisplatin had been reached. Another explanation, and one that is 

further investigated in the next chapter, is that there are additional factors which are 

altered only when hCGβ is downregulated thus contributing to its mechanism of 

action.  
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4.5 Conclusion 

Downregulation of hCGβ increased the sensitivity of the HGSC cells A2780cis 

and HEY to the drugs cisplatin, carboplatin and oxaliplatin, suggesting that hCGβ 

plays a role in sensitivity of HGSC towards platinum-based drugs. However, the 

effect may be dependent on several factors including a predisposition to drug 

resistance (or decreased sensitivity) as cisplatin sensitive A2780 cells did not seem to 

be affected by hCGβ downregulation. Furthermore, the discrepancies in the results 

shown by the use of two or three different siRNAs targeting hCGβ suggests that 

other unidentified factors e.g. LHβ, are required for the response of HGSC towards 

platinum-based drugs. These additional factors and the mechanism by which hCGβ 

is involved in the response of HGSC cells to cisplatin are further investigated in 

Chapter 5.  
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 Mechanism by which hCGβ may regulate Chapter 5

sensitivity of HGSC cells to cisplatin treatment 

 

5.1 Introduction 

In the previous chapter it was found that hCGβ may have a role in the response of 

HGSC cell lines to the platinum-based drugs cisplatin, carboplatin and oxaliplatin. 

However the mechanism by which hCGβ could be involved in this response needed 

to be understood. Therefore, further investigation into global protein changes that 

occur when hCGβ is downregulated following cisplatin treatment needed to be 

undertaken. To this end, quantitative proteomics using isobaric tags for relative and 

absolute quantitation (iTRAQ) labelling followed by tandem mass spectrometry 

(MS/MS) was used.  One of the advantages of using iTRAQ is that it allows 

multiplexing with the ability to analyse and compare 4 (4-plex) or 8 (8-plex) samples 

in a single MS/MS run.  

Briefly, protein samples from A2780cis cells with and without hCGβ 

downregulation in the absence or presence of cisplatin were extracted, digested with 

trypsin, iTRAQ labelled, pooled together, separated with liquid chromatography and 

peptides (correlating to whole proteins) quantified using tandem mass spectrometry. 
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5.1.1 iTRAQ labelling and quantitation of protein expression 

The iTRAQ label or tag consists of three groups: a N-methyl piperazine reporter, 

a carbonyl balance and a N-hydroxy succinimide ester peptide reactive group shown 

in Figure 5.1. 

 

Figure 5.1 Structure of the iTRAQ label 

Structure depicts the reporter group (114-117 Da), balance group (28-31 Da) and 

peptide reactive group. 

Figure extracted from  [309] 

 

The reporter group has a mass ranging from 114-117 Da and the weight of each 

reporter group is counter balanced with the balance group from  28-31 Da to yield an 

isobaric (equal mass) tag with a total mass of 145 Da. The isobaric tag is covalently 

linked to peptides through an amide bond at the N-terminus of the peptide or side 

amino group of lysine via the peptide reactive group [310]. Once the peptides are 

labelled they are pooled together and fractionated by liquid chromatography and then 

identified and quantified by tandem mass spectrometry. In the first MS round the 

peptides with different iTRAQ labels will appear as a single peak, however the 

second MS round will yield the peptide sequences as well as dissociate the reporter 
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group with a different mass thus allowing the quantitation of peptides from the 

different samples. The process of iTRAQ from protein extraction to identification 

and quantitation is outlined in Figure 5.2. 

 

 

Figure 5.2 iTRAQ coupled with LC-MS/MS for the quantification of global 

protein changes  

Flow of how protein samples are labelled using iTRAQ methodology and 

quantified using liquid chromatography coupled with tandem mass spectrometry. 

Figure extracted from  [309]  
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5.2 Materials and Methods 

5.2.1 Downregulation of hCGβ for proteomics 

A2780cis cells were used for the proteomic study as these cells showed a 

consistent differential response to cisplatin treatment after hCGβ was downregulated. 

CGB_5 was the siRNA chosen to knockdown hCGβ as this was the siRNA that 

showed significant and the most reproducible results in regards to increasing 

sensitivity of cells (both HEY and A2780cis cell lines) to cisplatin treatment. Refer 

to Appendix C Supplementary Figure 2 for quantification of downregulation of CGB 

in A2780cis cells used in the iTRAQ experiment. 

hCGβ was downregulated according to the method described in Chapter 2, 

section 2.8 with a few changes. A large amount of protein (2 mg) was required for 

the proteomics study hence approximately 1 x 10
7
 cells had to be transfected per 

treatment. Three lots of 3.5 x 10
6
 cells were transfected and pooled into a 15 cm petri 

dish in 15 mL of culture media. The transfections consisted of 2 dishes of cells 

receiving the negative non-silencing control siRNA, and 2 dishes of cells receiving 

the CGB_5 siRNA. The media was replaced with fresh media 24 h after transfection. 

 

5.2.2 Treatment with cisplatin for proteomic studies 

Forty-eight hours after transfection one plate of cells receiving the non-silencing 

control and the other receiving CGB_5 siRNA, were treated with 6.5 μM of cisplatin 

approximating an IC50 dose based on the cell viability data (Chapter 4, section 4.3.1), 

and incubated for 24 h.  
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5.2.3 Protein extraction for proteomic studies 

Twenty-four hours after drug treatment, the cells were washed with PBS twice, 

followed by the addition of 1 mL of protein lysis buffer (Table 5-1) on ice. Cells 

were scraped off with a cell scraper and the lysate transferred to a 15 mL tube. 

Table 5-1 Components of protein lysis buffer for iTRAQ 

Component Concentration 

Sodium dodecyl sulfate 0.15% 

HEPES, pH 7.5 20 mM 

Sodium chloride 150 mM 

Sodium fluoride 10 mM 

Sodium orthovanadate 1 mM 

EDTA 1 mM 

EGTA 1 mM 

 

The lysates were sonicated for 1 min in 30 s bursts, centrifuged for 5 min at 

500 g and the supernatant transferred to a 1.5 mL Eppendorf tube. The amount of 

protein was quantified using the BCA Protein Assay Kit colorimetric assay 

according to the manufacturer’s protocol. Briefly, 25 μl of the protein lysates 

(diluted 1:5 in lysis buffer) was assayed in duplicate against 25 μl of the BSA 

standard: 2, 1.5, 1, 0.75, 0.5, 0.25, 0.125, 0.025 and 0 (blank, lysis buffer) μg/mL in 

a 96 well plate, also in duplicate. Two hundred μl of working reagent (included in 

the kit) was added to the wells and incubated for 30 min at 37ºC. The absorbance 

was then measured at 560 nm on the Wallac Victor 1420 Multilabel Counter. A BSA 

protein standard curve of absorbance vs protein quantity was graphed and the protein 

concentrations were determined based on this curve.  
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5.2.4 iTRAQ labelling and proteomic analyses 

Once the protein concentrations were established, the samples were sent to the 

Australian Proteome Analysis Facility (APAF Ltd, Sydney, Australia) for iTRAQ 

labelling and proteomics analysis. As this process was outsourced on a fee-for-

service basis, only a summary of the method for analysis is outlined here.  Briefly, 

protein lysates were buffer exchanged to 0.25 M triethyl ammonium bicarbonate, 

0.05% SDS on a Vivaspin 2 5-kDa filter, and 100 μg of protein was then reduced 

with tris(2-carboxyethyl)phosphine, alkylated with methyl methanethiosulfonate and 

trypsin digested. The digested samples were isotope labelled using the iTRAQ® 

Reagent - 4plex system (AB Sciex). Labels assigned to protein samples are 

summarised (Table 5-2). 

 

Table 5-2 Labels assigned to samples for proteomic studies 

Sample/Treatment Isotope label 

Control siRNA 114 

Control siRNA + cisplatin 115 

CGB_5  siRNA 116 

CGB_5  siRNA + cisplatin 117 

 

The labelled samples were washed and fractionated by strong cation exchange 

high performance liquid chromatography (HPLC) followed by nanoflow liquid 

chromatography electrospray ionisation tandem mass spectrometry (nanoLC ESI 

MS/MS) with data acquisition using the Eksigent Ultra nanoLC system (Eksigent) 
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coupled with a Triple TOF 5600 mass spectrometer (AB Sciex). The data was then 

processed using ProteinPilot V4.2b (AB Sciex) against the SwissProt 2012 Human 

database.  

Protein changes were reported as iTRAQ ratios. Proteins were considered to be 

upregulated if the ratio was above 1.2 or downregulated if the ratio was below 0.85. 

The top 10 upregulated and downregulated proteins of the following comparisons 

were tabulated (Table 5-3).  

 

Table 5-3 Summary of sample labels and what they measure 

Indicated 

by 

Label Ratio Measures 

A 115:114 control siRNA + cisplatin : control siRNA  Effect of cisplatin 

B 116:114  CGB_5   siRNA : control siRNA  
Effect of hCGβ 

downregulation  

C 117:114  CGB_5   siRNA + cisplatin : control siRNA  

Effect of hCGβ 

downregulation and 

cisplatin together 

D 117:116 CGB_5   siRNA + cisplatin : CGB_5 siRNA 

Effect of  cisplatin 

when hCGβ was 

downregulated 

E 

115: 114

117: 116
 

 

Where 

115:114 

is close 

to 1 

control siRNA +  cisplatin ∶  control siRNA

CGB_5   siRNA +  cisplatin ∶  CGB_5   siRNA siRNA
 

 

Where “A” is close to 1 (0.9 > ratio <1.1) 

Proteins that were 

only responsive to 

cisplatin when 

hCGβ was 

downregulated (i.e. 

were resistant to 

cisplatin in the 

presence of hCGβ). 

 

Note that “E” indicates proteins that did not change in “A” (i.e. proteins that did 

not alter in response to cisplatin measured by a ratio close to 1, 0.9 > ratio <1.1) but 
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had changed when “A” was divided by “D”. This subset of proteins was indicative of 

proteins that had not changed when cells were treated with cisplatin alone but had 

changed in a cisplatin-dependent manner in cells where hCGβ was downregulated. 

In other words, this ratio allowed us to determine in a relative sense, the overall 

effect of cisplatin on cells where hCGβ was downregulated. 

 

5.2.5 Ingenuity® Pathway Analysis  

The protein changes (ratios) from the proteomic data were uploaded into 

Ingenuity® Pathway Analysis (IPA) software (Qiagen) and differentially regulated 

networks and pathways were generated. Note: Statistical significance of dysregulated 

pathways was determined by IPA software. 

 

5.2.6 Validation of proteomic protein changes by western blotting 

Changes in protein abundance from the proteomic data, based on “E” (i.e. 

proteins that became cisplatin-sensitive when hCGβ was downregulated) were 

validated using western blotting in A2780cis cells, as well as HEY cells. The 

proteins of interest for validation were chosen from the top 10 downregulated or 

upregulated proteins, and/or if they played a role in more than one biological 

pathway.  

 

For western blotting, hCGβ was downregulated in HEY and A2780cis cells by 

siRNA transfection and 1 x 10
5
 or 4 x 10

5 
cells, respectively, were plated into 
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12 well plates. After 24 h the media was replaced with 750 μl of fresh culture media 

and cells incubated for a further 24 h after which 250 μl of culture media, with or 

without cisplatin was added to cells. Cells were treated with IC50 concentrations 

(based on cell viability data) of cisplatin: 3.25 μM for HEYs and 6.5 μM for 

A2780cis, which was added at 4 x the concentration to take into account the dilution 

factor. After 24 h, protein lysates were extracted blotted and protein expression 

quantified (Chapter 2, section 2.7.2 for details on western blotting). Note: Protein 

expression is expressed as changes in the levels of the protein following the different 

treatments compared to control non-silencing siRNA treatment alone and then 

divided by the average ratios of protein expression compared to the control GAPDH.  
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5.3 Results 

5.3.1 Global changes after hCGβ downregulation and cisplatin treatment 

The changes in proteins from the proteomic study are presented as iTRAQ ratios. 

The top 10 proteins that were up regulated or downregulated in the following ratios: 

“A”, “B”, “C” and “E” are presented in Table 5-4 to Table 5-7. All proteins 

identified by iTRAQ are listed in the supplementary data. Refer to Appendix C 

Supplementary Figure 3 for the total number of identified proteins and proteins that 

were up- or down-regulated. 
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Table 5-4 Top 10 proteins upregulated and downregulated when A2780cis 

cells were treated with non-silencing siRNA and cisplatin “A” 

Protein A B C 

60S ribosomal protein L36a  3.477 2.289 3.326 

60S ribosomal protein L36a-like  3.367 1.484 2.437 

Cytochrome c oxidase subunit 6C  2.989 1.777 2.494 

Cytochrome b  2.809 1.857 2.657 

SAP30-binding protein  2.430 1.674 2.407 

Protein FAM98B  2.381 1.251 1.691 

Signal peptidase complex subunit 1  2.376 1.762 2.401 

V-type proton ATPase subunit G 1  2.368 1.288 1.751 

ADP/ATP translocase 2  2.279 1.244 2.091 

U6 snRNA-associated Sm-like protein LSm6 2.259 1.368 1.802 

HIG1 domain family member 1A   0.544 0.935 0.797 

E3 ubiquitin-protein ligase ZFP91     0.528 0.797 0.697 

Acyl-CoA dehydrogenase family member 9, mitochondrial  0.519 0.645 0.421 

Zinc transporter ZIP10 0.508 0.976 0.743 

Uncharacterised protein C10orf46  0.486 1.025 1.078 

Spermatogenesis-associated protein 5  0.446 0.745 0.690 

SH3 domain-binding glutamic acid-rich-like protein 3  0.439 0.841 0.800 

VPS33B-interacting protein  0.391 0.649 0.649 

Histone H1.2  0.389 0.907 0.274 

PCNA-interacting partner  0.302 0.833 0.585 

Data are shown as iTRAQ ratios. “A” is the effect of cisplatin treatment, “B” is the 

effect of hCGβ downregulation, and “C” is the effect of both treatments combined. 

Upregulated (  ) and downregulated proteins (  ). 
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Table 5-5 Top 10 proteins upregulated and downregulated when A2780cis 

cells were treated with CGB_5   siRNA alone “B”  

Protein A B C 

High mobility group protein HMGI 1.078 3.043 3.123 

Histone H2A type 2-A  1.674 2.841 3.908 

Protein S100-A13  1.256 2.671 3.090 

Interstitial collagenase  1.055 2.448 2.398 

Spermatid perinuclear RNA-binding protein 0.912 2.313 1.355 

60S ribosomal protein L36a  3.477 2.289 3.326 

Protein phosphatase 1 regulatory subunit 14B  1.813 2.211 2.533 

Protein S100-A4  0.940 2.118 1.989 

Phosphate carrier protein, mitochondrial  1.988 1.954 2.004 

Cytoskeleton-associated protein 2 0.901 0.552 1.024 

G patch domain-containing protein 1  0.990 0.549 0.517 

GC-rich sequence DNA-binding factor 2  0.546 0.537 0.568 

Telomeric repeat-binding factor 1  0.670 0.536 0.733 

ADP-ribosylation factor 6  1.024 0.535 0.517 

UPF0498 protein KIAA1191  0.646 0.529 0.619 

DNA repair protein RAD51 homolog 1  1.129 0.522 0.469 

Argininosuccinate lyase  0.864 0.518 0.776 

Mitochondrial import receptor subunit TOM34  1.084 0.480 0.588 

Branched-chain-amino-acid aminotransferase, mitochondrial  0.940 0.475 0.521 

Data are shown as iTRAQ ratios. “A” is the effect of cisplatin treatment, “B” is the 

effect of hCGβ downregulation, and “C” is the effect of both treatments combined. 

Upregulated (  ) and downregulated proteins (  ). 
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Table 5-6 Top 10 proteins upregulated and downregulated when A2780cis 

cells were treated with CGB_5   siRNA and cisplatin “C” 

Protein A B C 

Histone H2A type 2-A  1.674 2.841 3.908 

60S ribosomal protein L36a  3.477 2.289 3.326 

Keratin, type I cytoskeletal 10  1.289 1.274 3.266 

Keratin, type II cytoskeletal 1  0.953 1.175 3.181 

High mobility group protein HMGI-C  1.078 3.043 3.123 

Protein S100-A13  1.256 2.671 3.090 

Cytochrome b  2.809 1.857 2.657 

Protein phosphatase 1 regulatory subunit 14B  1.813 2.211 2.533 

Cytochrome c oxidase subunit 6C 2.989 1.777 2.494 

60S ribosomal protein L36a-like  3.367 1.484 2.437 

ATP-dependent RNA helicase DDX51  0.656 0.750 0.548 

Branched-chain-amino-acid aminotransferase, 

mitochondrial  

0.940 0.475 0.521 

ADP-ribosylation factor 6  1.024 0.535 0.517 

G patch domain-containing protein 1  0.990 0.549 0.517 

DNA repair protein RAD51 homolog 1 1.129 0.522 0.469 

52 kDa repressor of the inhibitor of the protein kinase  0.571 0.650 0.456 

Probable methyltransferase-like protein 15  0.697 0.927 0.552 

Acyl-CoA dehydrogenase family member 10  0.820 0.698 0.430 

Acyl-CoA dehydrogenase family member 9, mitochondrial  0.519 0.645 0.421 

Histone H1.2  0.389 0.907 0.274 

Data are shown as iTRAQ ratios. “A” is the effect of cisplatin treatment, “B” is the 

effect of hCGβ downregulation, and “C” is the effect of both treatments combined. 

Upregulated ( ) and downregulated proteins ( ). 
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Table 5-7 Top 10 proteins upregulated and downregulated when A2780cis 

cells were treated with CGB_5   siRNA and cisplatin compared to cells that 

received non-silencing siRNA and cisplatin “E” 

Protein A D E (A/D) 

Cytoskeleton-associated protein 2  0.901 1.855 2.058 

Galectin-related protein  0.910 1.587 1.743 

Glycerophosphodiester phosphodiesterase 1 0.906 1.563 1.724 

Dual specificity tyrosine-phosphorylation-regulated 

kinase 1A  

0.988 1.701 1.721 

CpG-binding protein 0.926 1.525 1.647 

Numb-like protein  1.072 1.714 1.599 

Melanoma-associated antigen D2  0.918 1.454 1.584 

Transmembrane protein 237  1.004 1.556 1.550 

LIM domain kinase 1  0.974 1.500 1.541 

Ras and Rab interactor 1 1.025 0.9221 1.539 

SWI/SNF-related matrix-associated actin-dependent regulator 

of chromatin subfamily D member 1  

1.028 0.728 0.708 

Wings apart-like protein homolog  0.931 0.645 0.692 

GDP-D-glucose phosphorylase C15orf58 1.007 0.697 0.692 

Glutathione S-transferase theta-1 1.077 0.743 0.689 

5-azacytidine-induced protein 1 1.075 0.737 0.685 

Signal peptidase complex catalytic subunit SEC11C  1.045 0.703 0.672 

UPF0614 protein C14orf102  1.085 0.706 0.651 

Spermatid perinuclear RNA-binding protein  0.912 0.587 0.644 

Collagen type IV alpha-3-binding protein  1.061 0.631 0.594 

Tripeptidyl-peptidase 1  1.067 0.627 0.588 

NAD-dependent deacetylase sirtuin-1 1.099 0.915 0.833 

Data are shown as iTRAQ ratios. Description of “A”, “D” and “E” are shown in 

Table 5-3. Upregulated (  ) and downregulated proteins (  ). Proteins chosen for 

validation experiments (  ). 
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5.3.2 Pathways affected by hCGβ downregulation and cisplatin treatment 

The top four to five pathways affected by “A”, “B”, “C” and “E” obtained from 

IPA analysis are presented in Table 5-8. Refer to Appendix C, Supplementary Figure 

4 to Figure 7 which show the top networks. 

Cisplatin treatment alone “A” affected the cell death and survival, cell cycle, 

DNA replication, recombination and repair, and RNA processing pathways. 

Interestingly, two out of the five top pathways affected in “A” were also affected by 

hCGβ siRNA treatment alone “B”: the DNA replication, recombination and repair 

pathway, and the RNA post-translational modification pathway. DNA repair appears 

to be increased in “A” and “B” however RNA post-transcriptional modification 

seems to be increased in “A” and decreased in “B”.  In addition to these pathways 

protein synthesis in general seems to be decreased when cells are treated with hCGβ 

siRNA alone “B”.  

The top four pathways affected in “A” and hCGβ siRNA + cisplatin treatment 

“C” were the same; however, the cellular processes within the pathways and some of 

molecules associated with the cellular processes were different. For example, though 

the cell death pathway was affected in “A” and “C” the cellular processes within the 

pathway were different. In “A” there was an increase in cell death, apoptosis and 

necrosis where as in “C” neither cell death nor apoptosis seemed to be 

downregulated or upregulated. Another example is the cell cycle pathway: “A” had 

an increase in senescence but “C” had a decrease in senescence. 

 “E” (i.e. pathways that became cisplatin-sensitive when hCGβ was 

downregulated) showed a decrease in DNA repair and cell cycle progression, and the 

cellular morphology compared to cisplatin treatment alone “A”. 
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Table 5-8 Top five pathways affected when A2780cells were treated with “A”, “B”, “C” or “E” 

Pathway Direction of regulation of cellular processes within the 

pathway 

Associated molecules 

Treatment “A” 

Cell death and survival 

p-value range = 3.95e-2  to 2.73 e-6 

anoikis CDKN2A, EPHA2,  FADD, PLK1, SMAD4, SRC 

cell death, apoptosis and survival, necrosis CDKN2A, BAX, AKT1, CDK2, EPHA2, FADD, PLK1, JAK1, 

ABL2, H2AFX, HNRNPK, EIF4EBP1, CCNB1 

Cell cycle 

p-value range = 3.95e-2  to 3.32 e-6 

G2 phase, mitosis spindle checkpoints AKT1, SMAD4, CCNB1, BAX, SRC, CDKN2A, SFN, TOP2A 

interphase, M-phase, senescence, cytokinesis CDKN2A, AKT1, EIF4EBP1, NOTCH3, RELA, CDK2, TOP1, 

PLK1 

DNA replication, recombination and repair  

p-value range = 3.95e-2  to 4.63e-6 

DNA repair  POLD1, CDK2, H2AFX, XPC, CDKN2A, PCNA 

damage BAX, H2AFX, PLK1, TOP1, TOP2A, CDKN2A 

RNA Post-transcriptional modification 

p-value range = 3.95e-2  to 1.77e-16 

Processing and splicing RPS17, PABPC4, HNRNPK 

Treatment “B” 

Free Radicle Scavenging 

p-value range = 3.43e-2  to 4.02e-5 

accumulation, production and synthesis TXN, HK2, FTL, LIMK1, MAP2K1, SRC 

Molecular transport 

p-value range = 3.43e-2  to 4.02e-5 

accumulation of oxygen reactive species CDKN2A, VIPAS39, PPT1 

DNA replication, recombination and repair 

p-value range = 3.43e-2  to 3.99e-5 

metabolism of DNA, segregation of chromosomes, 

recombination, aberrations of chromosomes 

TOP1, CCNB1, PPT1, CDKN2A, MCL1 

increased repair and checkpoints CDKN2A, PRKDC, WRN, CCNB1 

RNA post-transcription modification 

P VALUE=3.43e-2  to 1.88e5-5 

processing CDK7 

Protein Synthesis 

p-value range = 2.38e-2  to 1.17e-5 

translation, expression, proteolysis and catabolism CDKN2A, FADD, MMP1, AURKA 

Treatment “C” 

Cell death and survival 

p-value range = 3.85e-2  to 2.92e-9 

cell viability ADAM17, SRC, CASP3, EPHA2, PRKDC, STAT3, BAX, FADD, 

KIF11, PAK1, PTK2, SFN, TXN, CDKN2A, MCL1, CCNB1, PCNA 

cell death and apoptosis ABL2, ADAM17, AX, CAPS3, CDKN2A,  CCNB1, BCAP31, HSF1, 

IKBKG, FADD, CHUK, EPHA2 

anoikis MCL1, PTK2, CDKN2A, SRC, FADD 

Cell cycle 

p-value range = 4.11-2  to 6.12e-6 

mitosis, cytokinesis, M-phase, S-phase  KIF11, FADD, CCNB1, LMNA, RAB35, TXN, SRC, CDKN2A 

senescence YAP1, RELA, CDKN2A, EIF4EBP1 
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DNA replication, recombination and repair 

p-value range = 4.11e-2  to 3.50e-6 

fragmentation, damage, degradation, replication FADD, PAK1, BAX, CAPS3, CDKN2A, PPT1, PKT2, PRKDC, 

NQ01, PCNA, POLD1 

segregation of chromosome KIF11, LMNA, CCNB1 

RNA post-transcription modification 

p-value range = 3.27e-2  to 1.28e-6 

processing CDK7, HNRNPK 

p-value range = 3.85e-2  to 6.12e-6 

organisation of cytoskeleton and cytoplasm KRT18, STAT3, PAK1, PTK2, KIF11, SRC, CHUCK, CCNB1, 

EPHA2 

segregation of chromosomes and binding components of 

chromosomes 

KIF11, CCNB1, LMNA 

Treatment “E” 

Cell assembly and organisation 

p-value range = 3.36e-2  to 6.73e-6 

organisation of cytoskeleton and cytoplasm NRF1, EP300, LIMK1, VHL, SUN2, MPRIP, SHARPIN, NUMB, 

MAP9, CHD3, CIT 

microtubule dynamics NUMB, MAP9, LIMK1, RPS6KB1, CIT, NEDD1, VHL, EP300 

Cell cycle 

p-value range = 3.36e-2  to 2.69e-5 

cell cycle progression and interphase AATF, CKS2, SIRT1, EP300, CIT, ERCC1, RPS6KB1, WRN, 

SUN2, CAMP1, LIMK1, VHL, ORC3, CIT, CDK13, HMOX1 

CASP3, MAP9 

DNA replication, recombination and repair 

p-value range = 3.36e-2  to 2.69e-5 

metabolism, replication  ORC3, SIRT1, WAPAL, CKS2, LIG3, WRN, EP300, NRF1, ERCC1, 

WRNIP1, GTPBP4 

repair ERCC1, SIRT1, LIG3, WRN, HMOX1, MRE11A 

Cellular morphology 

p-value range = 3.04e-2  to 3.76e-4 

autophagy  SIRT1, CAMK1, NAF1, GNAS, RPS6KB1, EP300, MFN2 

morphology CASP3, LIMK1, SIRT1, ERCC1, EP300, GNAS, GSK3A, 

SHARPIN, NEDD1, MPRIP 

Description of “A”, “B”, “C” and “E” are shown in Table 5-3. Upregulated (  ) and downregulated cellular processes (  ).  
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5.3.3 Validation of iTRAQ results: effect of hCGβ downregulation and 

cisplatin on the protein expression level of WAPAL, LIMK1, and SIRT1 

LIM domain kinase 1 (LIMK1), wings apart-like homolog (WAPAL) and sirtuin 

1 (SIRT1) were chosen for validation by western blotting. LIMK1 and WAPAL 

were chosen as they not only appeared in the list of 10 top up- and downregulated 

proteins in “E” (Table 5-7) but also appeared in at least one pathway that was 

dysregulated in “E” (Table 5-8). SIRT1 was not part of the top ten downregulated 

proteins in “E” (although still represented in Table 5-7) but it was chosen for further 

validation as it appeared to be important in a number of pathways (Table 5-8) hence 

could be essential in the mechanism by which hCGβ confers cisplatin resistance. 

Both LIMK kinase and SIRT1 have been previously implicated in ovarian cancer 

[311-313] as well in response of cancer cells to cisplatin treatment [314-316]. 

According to the iTRAQ analysis, the levels of WAPAL and SIRT1 were 

downregulated and LIMK1 levels were upregulated when A2780cis cells were 

treated with cisplatin after hCGβ downregulation, “E”, but were unaffected by 

cisplatin treatment alone “A” (Table 5-7). In order to validate these results, hCGβ 

was downregulated in A2780cis as well as HEY cells using CGB_4 and CGB_5 

siRNAs, followed by cisplatin treatment (or no treatment for controls). Changes in 

the level of WAPAL, SIRT1 and LIMK1 were then assessed by western blotting. 

Western blots representing the levels of WAPAL protein, LIMK1 and SIRT1 in 

HEY and A2780cis cells after hCGβ downregulation and cisplatin treatment are 

shown in Figure 5.3. Interestingly, LIMK1 could not be detected by western blot in 

A2780cis cells despite these cells being used for the iTRAQ study. Quantitative 
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representations of the levels of WAPAL, SIRT1 and LIMK1 are shown in Figure 

5.4, Figure 5.5 and Figure 5.6, respectively.  
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 B 

 

Figure 5.3 Effect of hCGβ downregulation and cisplatin on the expression 

levels of WAPAL, LIMK1 and SIRT1 

Protein levels of WAPAL, SIRT1 and LIMK1 levels in A2780cis (A), or HEY 

(B) cells following hCGβ downregulation and cisplatin treatment. LIMK1 was 

undetectable in A2780cis. 48 h post siRNA transfection: non-silencing control 

(C), CGB_4 and CGB_5. 

 

5.3.3.1 Effect of hCGβ downregulation and cisplatin on WAPAL expression  

In contrast to the iTRAQ results, WAPAL levels did not significantly decrease in 

A2780cis or HEY cells which were treated with cisplatin following hCGβ 

downregulation “D” compared to cells which were treated with cisplatin when hCGβ 

was not downregulated “A” (Figure 5.4 A and B, respectively). Treatment with 

cisplatin following downregulation of hCGβ with CGB_5 siRNA “D” significantly 

decreased the expression of WAPAL protein compared to the negative non-silencing 

siRNA, a result which was not shown by cells treated with cisplatin and the non-

silencing siRNA “A” as quantitated from western blots (Figure 5.4). Overall, this 

experiment was unable to confirm WAPAL as a protein whose regulation by 

cisplatin was dependent on the downregulation of hCGβ, although there was a trend 

towards this with CGB_5 siRNA in the HEY cells. 

Cisplatin   -    +    -    +     -   + 

siRNA    C   CGB_4  CGB_5  siRNA    C   CGB_4  CGB_5  

Cisplatin   -    +    -    +     -   + 

WAPAL 

SIRT1 

GAPDH 

WAPAL 

SIRT1 

LIMK1 

GAPDH 
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A 

 
 

 

B 

 
Figure 5.4 Effect of cisplatin treatment following hCGβ downregulation on 

WAPAL expression 

The effect of cisplatin treatment following hCGβ downregulation on the protein 

levels of WAPAL in A2780cis (A, N=4) and HEY cells (B, N=6), measured by 

western blotting, 48 h post siRNA transfection. Data are expressed as mean ± 

S.E.M. Statistical test: one-way ANOVA with LSD post hoc test. Statistical test: 

one-way ANOVA with LSD post hoc test, * P < 0.05, ** P < 0.005. Other 

differences were not significant 
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5.3.3.2  Effect of hCGβ downregulation and cisplatin on SIRT1 expression 

SIRTS levels did not significantly decrease in A2780cis or HEY cells which 

were treated with cisplatin following hCGβ downregulation “D” compared to cells 

which were treated with cisplatin when hCGβ was not downregulated “A” (Figure 

5.5 A and B, respectively). CGB_5 siRNA treatment alone compared to the non-

silencing control siRNA treatment alone caused a near significant (P=0.061) 

reduction of SIRT1 expression in A2780cis cells and a significant decrease in HEY 

cells (Figure 5.5 A and B, respectively). Overall, similar to WAPAL, this experiment 

was unable to confirm SIRT1 as a protein whose regulation by cisplatin was 

dependent on the downregulation of hCGβ although, again, there was a trend 

towards this with CGB_5 siRNA in the HEY cells. 
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A 

 
B 

 
 

Figure 5.5 Effect of cisplatin treatment following hCGβ downregulation on 

SIRT1 expression 

The effect of cisplatin treatment following hCGβ downregulation on the protein 

levels of SIRT1 in A2780cis (A) and HEY cells (B) measured by western 

blotting, 48 h post siRNA transfection. Statistical test: one-way ANOVA with 

LSD post hoc test, * P < 0.05, ** P < 0.005. 
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5.3.3.3 Effect of hCGβ downregulation and cisplatin on expression of LIMK1 

In Table 5-7, LIMK1 appeared upregulated by cisplatin when hCGβ was 

silenced. In contrast, in HEY cells the level of LIMK1 was significantly decreased in 

cells which were treated with cisplatin following hCGβ downregulation “D” as well 

as in cells which were treated with cisplatin alone “A” (Figure 5.6).  A significant 

decrease in LIMK1 was also observed with hCGβ downregulation alone or cisplatin 

treatment alone. As mentioned in section 5.3.3, LIMK1 could not be detected in 

A2780cis cells by western blot therefore data on LIMK1 expression following hCGβ 

downregulation and cisplatin treatment is not presented in Figure 5.6. 

 

 
Figure 5.6 Effect of cisplatin treatment following hCGβ downregulation on 

LIMK1 expression 

The effect of cisplatin treatment following hCGβ downregulation on the protein 

levels of LIMK1 in HEY cells measured by western blotting, 48 h post siRNA 

transfection. Data are expressed as mean ± S.E.M; (N=4). Statistical test: one-

way ANOVA with LSD post hoc test, * P < 0.05, ** P < 0.005. 
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5.3.4 Effect of SIRT1 downregulation on cisplatin sensitivity 

Of the three proteins validated by western blotting, SIRT1 showed the greatest 

promise as a protein whose levels might be significantly decreased in A2780cis and 

HEY cells when the cells were treated with cisplatin following downregulation of 

hCGβ with the CGB_5 siRNA (Figure 5.5). To further investigate whether a 

decrease in SIRT1 alone could be a possible mechanism by which CGB_5 or CGB_4 

siRNA could sensitise cells to cisplatin, SIRT1 was downregulated in A2780cis and 

HEY cells by siRNA transfection (Chapter 2, section 2.8) and the response of cells to 

cisplatin was assessed using the cell viability and clonogenic assays (Chapter 4, 

section 4.2.1).   

 

5.3.4.1 Downregulation of SIRT1 

SIRT1 was downregulated with both siRNAs directly targeting SIRT1 (SIRT1 

(2) and SIRT1 (3)) in both A2780cis and HEY cells by up to 90% (Figure 5.7).  
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A  

 

B 

 

Figure 5.7 Downregulation of SIRT1 in A2780cis and HEY cells 

Downregulation of SIRT1 in A2780cis and HEY cells 48h post siRNA 

transfection. Western blot showing levels of SIRT1 protein (A), quantification of 

SIRT1 knockdown (B). siRNAs: non-silencing control siRNA (C) two siRNAs 

targeting SIRT1: SIRT1 (2) and SIRT1 (3). Data are expressed as mean ± S.E.M; 

(N=3).  
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5.3.4.2 Effect of SIRT1 downregulation on cisplatin sensitivity determined by cell 

survival and viability 

In A2780cis cells, both siRNAs (SIRT1 (2) and SIRT1 (3)) targeting SIRT1 

showed a trend towards increased sensitivity to cisplatin treatment in terms of cell 

viability (Figure 5.8 A). However, this increase was statistically significant only 

when the SIRT 1(3) siRNA was used. This trend of increased cisplatin sensitivity 

was also evident in HEY cells but did not reach statistical significance (Figure 5.8 

B).  

The clonogenic assay showed that downregulation of SIRT1 in A2780cis cells 

significantly decreased cell survival following cisplatin treatment using both siRNAs 

targeting SIRT1 (Figure 5.9 A). However, SIRT1 downregulation in HEY cells did 

not affect cell survival following cisplatin treatment (Figure 5.9 B). 
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A 

 

B 

 

Figure 5.8 Effect of SIRT1 downregulation on the viability of A2780cis and 

HEY cells following cisplatin treatment  

Effect of SIRT1 downregulation on viability of A2780cis (A) and HEY (B) cells 

measured by the MTS assay in response to cisplatin treatment. 48 h post 

transfection with siRNAs: non-silencing control (C) ( ), SIRT1(2) ( ) 

and SIRT1(3) (  ). Data are expressed as mean ± S.E.M; (N=3). * P < 0.05.  
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A 

 

B 

 

Figure 5.9 Effect of SIRT1 downregulation on the survival of A2780cis and 

HEY cells following cisplatin treatment  

Effect of SIRT1 downregulation on survival of A2780cis (A) and HEY (B) cells 

measured using the clonogenic assay in response to cisplatin treatment. 24 h post 

transfection with siRNAs siRNAs: non-silencing control (C) ( ), SIRT1(2) 

( ) and SIRT1(3) ( ). Data are expressed as mean ± S.E.M; 

(N=3).  * P < 0.05, **P < 0.005. 
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Interestingly, a query of the online analysis software Kaplan Meier-plotter 

(KM-plotter) showed that SIRT1 was a negative prognostic marker of patient 

survival in ovarian cancer patients who received platinum treatment. Specifically 

high SIRT1 levels correlated with a lower rate of progress free survival in ovarian 

cancer patients who received platinum treatment (Figure 5.10). The KM-plotter is 

freely available online analysis software that enables the assessment of the 

prognostic value of a gene based on gene expression and clinical data from the Gene 

Expression Omnibus (Affymetrix microarrays only), European Genome-phenome 

Archive and The Cancer Genome Atlas archives [317].  

 

Figure 5.10 Kaplan-Meier Plot of SIRT1 levels and progress free survival in 

ovarian cancer patients who received platinum  therapy 

Assessment of the prognostic value of SIRT1 in ovarian cancer patients who 

received platinum therapy using data analysed by KM-Plotter. The cohort 

contained a total of 1185 patients, 320 patients expressed low SIRT1 and 865 

patients expressed high levels of SIRT1. Hazard ratio = 1.21 (1.04-1.41) and 

logrank P = 0.013. 
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5.4 Discussion 

5.4.1 iTRAQ protein changes 

Downregulation of hCGβ in A2780cis and HEY cells sensitised the cells to 

cisplatin treatment (Chapter 4, sections 4.3.3 and 4.3.6); however the mechanism by 

which hCGβ could be involved in the response to cisplatin needed to be understood. 

In order to do this the global protein changes that occurred when hCGβ was 

downregulated in A2780cis cells in the absence and presence of cisplatin were 

studied using iTRAQ. iTRAQ is a quantitative proteomic technique used to 

determine the relative abundance of specific proteins in one or more samples 

compared to a reference sample. One of the advantages of iTRAQ, and a reason why 

it was used in this study, is that it facilitates multiplexing, allowing comparison of up 

to 8 samples in one run. However the disadvantage of iTRAQ is that variability in 

labelling efficiencies and protein digestion could lead to discrepancies in the results.  

There are a number of other techniques which could have been used to overcome 

this problem. One example is use of the in vivo stable isotope labelling by amino 

acids (SILAC) technique, whereby “heavy” or “light” isotopes are used to label 

amino acids under different treatment conditions that are metabolically incorporated 

into cellular proteins causing a mass shift which can be quantified by MS-based 

techniques [318]. Specifically, two samples are grown in culture media containing 

either heavy (e.g. N
15

 and C
13

 L-lysine or Arginine) or light (naturally occurring) 

amino acids. The proteins are extracted and equal quantities of protein are pooled 

together before protein digestion and quantitation by MS-based techniques [319]. 

The disadvantage of SILAC is that it is relatively expensive and only two or three 
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samples can be compared in a single analysis [320, 321]. For these reasons, iTRAQ 

was deemed the most suitable technique for the current study. 

The 10 top upregulated and downregulated proteins when the A2780cis cells 

were treated with control non-silencing siRNA with cisplatin “A”, CGB_5 siRNA 

alone “B”, or CGB_5 siRNA with cisplatin “C” were different (Table 5-4, Table 5-5, 

Table 5-6, respectively). Interestingly, when all the protein changes which occurred 

in “A”, “B” and “C” were analysed by the IPA program, a number of pathways 

overlapped, in particular between “A” and “C” which was an unexpected result 

(Table 5-8). As mentioned earlier, hCGβ downregulation with CGB_5 siRNA 

significantly sensitised A2780cis cells to cisplatin; therefore it would be expected 

that different pathways would be dysregulated in these cells compared to cells which 

received cisplatin when hCGβ was not downregulated. However, even though the 

same pathways were affected in “A” and “C” the cellular processes and associated 

molecules within each pathway were different. For example the cell death pathway 

was affected in “A” and “C” but in “A” there was an increase in cell death, apoptosis 

and necrosis whereas in “C” neither cell death nor apoptosis seemed to be 

downregulated or upregulated. Another example is the cell cycle pathway: “A” had 

an increase in senescence and “C” had a decrease in senescence. It would be 

expected that “C” would have contained more cells that had undergone senescence 

because there seemed to be increased DNA fragmentation, damage and degradation 

in “C” and decreased DNA repair in “E” which could eventually lead to senescence 

[322]. A possible explanation is that cisplatin-induced senescence is dependent on 

the dose of cisplatin used to treat the cells [323]. Berndtsson et al. showed that DNA 

damage triggered by low cisplatin concentrations led to senescence of HCT116 

colon carcinoma cells whereas high cisplatin concentrations led to induction of 
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apoptosis by superoxide production [323]. Therefore it is possible that the cisplatin 

concentration used to treat the cells following hCGβ downregulation did not induce 

senescence. However it is also possible that given a longer exposure time these cells 

would have eventually undergone senescence.    

Interestingly DNA repair appears to be increased in “A” and “B”. This suggests 

that downregulation of hCGβ may have led to DNA damage in the cells and 

therefore the cells initiated DNA repair. Why would hCGβ downregulation lead to 

increased DNA damage or repair; could it have to do with additional secondary 

effects brought on by hCGβ downregulation? Indeed, one such effect is the impact of 

hCGβ downregulation on SIRT1 levels which has been shown to be involved in 

DNA repair [324] and is further discussed in section 5.4.2.2. It should be noted that 

the results in regards to either protein or pathway changes are based on a single 

iTRAQ experiment and therefore validation studies are important. Although the 

study of pathways affected by the different treatments was beyond the scope of this 

thesis we addressed some of the protein changes in sections 5.4.2 and 5.4.3. 

5.4.2 Validation of iTRAQ results 

Three proteins: WAPAL, SIRT1 and LIMK1, were chosen for validation 

experiments in A2780cis and HEY cells using western blot analysis. These proteins 

were chosen as they were either up- or downregulated following CGB_5 siRNA 

treatment in conjunction with cisplatin and not in cells that received non-silencing 

siRNA in conjunction with cisplatin (Table 5-7). They also appeared in more than 

one pathway or cellular process and may have had a potential role to play in how 

cells responded to cisplatin treatment.   
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5.4.2.1 WAPAL expression following hCGβ downregulation and cisplatin 

treatment 

In A2780cis and HEY cells, cisplatin treatment following downregulation of 

hCGβ did not significantly decrease the expression of WAPAL protein compared to 

cisplatin treatment alone, as quantitated from western blots (Figure 5.4). This data 

disagreed with the iTRAQ data which showed that WAPAL was decreased in a 

cisplatin-dependent manner in cells where hCGβ was downregulated “E” compared 

to cells which were treated with cisplatin alone “A” (Table 5-7). In other words the 

addition of siRNA targeting hCGβ did not increase cisplatin sensitivity. However, 

the data did show that treatment with cisplatin following downregulation of hCGβ 

with CGB_5 siRNA significantly decreased the expression of WAPAL compared to 

the cells treated with the negative non-silencing siRNA alone (Figure 5.4). This 

difference was not observed when cells were treated with the cisplatin in conjunction 

negative non-silencing siRNA compared to cells treated with the non-silencing 

siRNA alone. These data agree with the iTRAQ data which showed WAPAL levels 

were decreased in cells treated with cisplatin and CGB_5 siRNA “D” compared to 

cisplatin treatment alone “A” (Table 5-7). Not much is known about the WAPAL 

protein but it has been shown to be elevated in cervical cancer tissue [325]. Further, 

overexpression of WAPAL in NIH3T3 cells has been shown to make these cells 

tumorigenic in mice [325]. WAPAL is thought to be involved in mitosis by binding 

to cohesin which is involved in the timely separation of sister chromatids during 

mitosis [326]. Indeed, pathway analysis of the proteomic data suggests that 

segregation of chromosomes might be decreased when A2780cis were treated with 

both CGB_5 siRNA and cisplatin, “E”, which in turn could be a result of WAPAL 

(Table 5-8). Contrary to the results shown with the use of the CGB_5 siRNA, 
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cisplatin treatment following hCGβ downregulation by CGB_4 siRNA had no effect 

on WAPAL expression in either cell line. The manner in which both CGB_4 and 

CGB_5 regulate WAPAL in the presence of cisplatin suggest that WAPAL may be a 

secondary target of CGB_5 and this could account for the differences in the 

mechanism through which the two siRNAs sensitise cells to cisplatin treatment as 

seen in Chapter 4 (section 4.3.6). However, CGB_5 siRNA alone did not cause a 

decrease in WAPAL expression suggesting that WAPAL is not a direct off target 

effect of CGB_5 siRNA and therefore other downstream effects had occurred only 

when cells were treated with cisplatin in conjunction with CGB_5 siRNA. A search 

using the Blast® program confirmed that WAPAL was not a target of CGB_5 

siRNA however; it is possible that WAPAL levels in the presence of cisplatin could 

be indirectly altered due to the siRNA binding to alternative sequences.   
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5.4.2.2 SIRT1 expression following hCGβ downregulation and cisplatin treatment 

SIRT1 levels were not significantly downregulated when A2780cis and HEY 

cells were treated with cisplatin in conjunction with siRNAs targeting hCGβ 

compared to cells which were treated with cisplatin alone (Figure 5.5). This data 

disagrees with the iTRAQ data which showed that SIRT1 was decreased in a 

cisplatin-dependent manner in cells where hCGβ was downregulated “E” compared 

to cells which were treated with cisplatin alone “A” (Table 5 7). In other words the 

addition of siRNA targeting hCGβ did not increase cisplatin sensitivity. However, 

the data did show that treatment with cisplatin following downregulation of hCGβ 

with CGB_5 siRNA significantly decreased the expression of SIRT1 compared to 

the negative non-silencing siRNA, a result which was not shown by cells treated 

with cisplatin in conjunction with the negative non-silencing siRNA (Figure 5.5). 

These data agreed with the proteomics data where cisplatin treatment “A” alone did 

not affect levels of SIRT1 but cells treated with cisplatin and CGB_5 siRNA “D” 

showed a decrease in SIRT1 (Table 5-7). However, hCGβ downregulation using 

CGB_4 siRNA had no significant effect on SIRT1 levels in the presence or absence 

of cisplatin compared to the non-silencing control siRNA without cisplatin treatment 

Figure 5.5. As with the WAPAL expression levels, the manner in which both 

CGB_4 and CGB_5 regulate SIRT1in the presence of cisplatin could account for the 

differences in the mechanism through which the two siRNA sensitise cells to 

cisplatin treatment as seen in Chapter 4, section 4.3.6. Interestingly, SIRT1 

expression was also decreased by CGB_5 siRNA alone in both cell lines which 

suggests that indeed SIRT1 could be an off target effect of CGB_5 and could be an 

explanation of why CGB_5 siRNA treatment sensitises cells to cisplatin treatment. A 

search using the Blast® program however did not show that SIRT1 was a direct 
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target of CGB_5 siRNA however; it is possible that SIRT1 levels could be indirectly 

altered due to the siRNA binding to alternative sequences. Alternatively any effect of 

hCGβ downregulation by CGB_4 may have been offset by a compensatory increase 

in LHB (Figure 4.13).  The biological role of SIRT1 on cisplatin sensitivity is further 

discussed in section 5.4.3.   

 

5.4.2.3 LIMK1 expression following hCGβ downregulation and cisplatin treatment 

Changes in LIMK1 expression were detected by iTRAQ in A2780cis cells. 

However this result could not be validated in A2780cis as LIMK1 could not be 

detected in these cells, even after increasing the concentration of the LIMK1 primary 

antibody and using a more sensitive chemiluminescent (ECL) substrate for the HRP 

enzyme (SuperSignal™ West Femto Maximum). This could be due to low 

expression of the protein in A2780cis which could only be detected by MS/MS but 

not by western blot. In HEY cells, LIMK1 expression was decreased with cisplatin 

treatment alone “A” as well as hCGβ downregulation alone “B”, and cisplatin 

treatment in conjunction with hCGβ downregulation “D”. Interestingly, cisplatin 

treatment following hCGβ downregulation “D” caused a further decrease in LIMK1 

expression compared to cisplatin treatment alone “A”. These data disagree with the 

proteomic data attained from A2780cis cells which showed that LIMK1 expression 

increased with cisplatin and CGB_5 siRNA treatment, “E”, but was unchanged when 

cells were treated with cisplatin alone “A” (Table 5-7).  These differences between 

the two cell lines could be an indication of the different downstream effects of hCGβ 

downregulation and/or cisplatin treatment in HEY cells and A2780cis and could be a 

reason for differences in the way the cells respond in regards to response to drug 

treatment (Chapter 4, section 4.3.6).   
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LIMK1 is a Serine/Threonine kinase which phosphorylates cofilin, which binds 

actin filaments and thereby regulates the dynamics of the actin cytoskeleton [327]. 

LIMK1 has been associated with progression of a range of cancers including 

ovarian, breast and prostate cancer [311, 328, 329]. Both in vitro and in vivo data 

suggests that LIMK1 is mostly involved in invasion and migration of cancers and 

therefore potentially metastasis of cancer [311, 329-331]. Interestingly, Chen et al. 

showed that downregulation of LIMK1 can sensitise lung cancer cells to cisplatin 

[314]. In agreement with Chen et al. our data shows that the decrease in LIMK1 

levels by siRNA targeting hCGβ could be a mechanism by which hCGβ regulates 

cisplatin sensitivity.  

LIMK1 could have been chosen for further analysis to discover whether it had a 

role to play in cisplatin sensitivity independent of hCGβ and therefore could be a 

mechanism through which hCGβ confers cisplatin sensitivity; however, as LIMK1 

could not be detected in A2780cis cells this was not further investigated. Therefore 

results still need to be validated in A2780cis. This could be done by 

immunoprecipitating LIMK1 in order to concentrate it which may make it more 

visible on a western blot. 

5.4.3 Effect of SIRT1 downregulation on cisplatin sensitivity 

SIRT1 is a NAD-dependent deacetylase implicated in tumorigenesis and drug 

resistance [332]. It has a range of substrates including both histone proteins and 

non-histone proteins. These include transcription factors involved in apoptosis such 

as p53, and members of the forkhead transcription factors (FOXO) family [333, 

334].  SIRT1 levels have been found to be elevated in some epithelial cancers 

including colon [335, 336], prostate [337], breast [338] and ovarian [312]; however 
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its function as a tumour suppressor or promoter is still controversial [332]. 

Interestingly, higher expression of SIRT1 was observed in malignant serous ovarian 

carcinoma compared to the benign and borderline epithelial tumours, and it was 

associated with increased survival [312].  SIRT1 has been shown to be involved in 

inactivating p53 and hence preventing p53 driven apoptosis [339]. In vitro studies 

have shown that SIRT1 can be involved in drug resistance [316, 340]. A study by 

Zhang et al. found that patients with non-small cell lung cancer (NSCLC) whose 

tumours had high expression levels of SIRT1 were more likely to resist platinum-

based chemotherapy compared to patients whose tumours expressed low levels 

SIRT1. In the same study, it was also found that downregulation of SIRT1 in the 

NSCLC H292 cell line sensitised these cells to cisplatin treatment [315]. In prostate 

cancer cell lines it was found that pretreatment of PC3 and DU145 cells with sirtinol, 

an inhibitor of SIRT1, sensitised them to cisplatin by increasing apoptosis [340]. 

Chu et al. showed that cisplatin resistant IGROV and A2780cis cells had higher 

levels of SIRT1 compared to the parental chemosensitive cells [316]. Interestingly in 

this paper they also found that treatment of A2780 cells with a sub-lethal level of 

cisplatin induced expression of the cell cycle inhibitor p21/WAF1, therefore 

allowing the cells to adapt and survive the cytotoxic stress. Assessment of the 

prognostic value of SIRT1 using KM-plotter showed that ovarian cancer patients 

who received platinum-based therapy had a slightly lower rate of progress free 

survival when SIRT1 levels were high (Figure 5.10). This suggests that SIRT1 may 

be an indicator of patients’ response to platinum-based chemotherapy. 

In agreement with the involvement of SIRT1 in drug resistance, our data showed 

that downregulation of SIRT1 in A2780cis cells increased their sensitivity to 

cisplatin treatment (Figure 5.9 A). This result suggests that the decrease in SIRT1 
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expression following hCGβ downregulation by CGB_5 siRNA could be a 

mechanism by which hCGβ regulates sensitivity of A2780cis cells to cisplatin. 

However, CGB_4 siRNA did not cause a significant reduction in SIRT1 levels, 

again raising the possibility that SIRT1 could be an off target effect of CGB_5 

siRNA which results in the increased sensitivity to platinum-based drugs, a result 

which is not replicated by CGB_4 siRNA. However this does not explain why 

increased cisplatin sensitivity is not observed when SIRT1 is downregulated in HEY 

cells (Figure 5.9 B) despite CGB_5 siRNA increasing HEY cells sensitivity to 

cisplatin.  One explanation could be that although downregulation of hCGβ by 

CGB_5 siRNA decreases levels of SIRT1, it is not the mechanism through which 

hCGβ confers cisplatin sensitivity/resistance. Another explanation is that CGB_5 

siRNA confers cisplatin sensitivity in a SIRT1 dependent manner but the effect of 

SIRT1 on cisplatin sensitivity is cell type dependent. Lastly, it is possible that the 

effect of hCGβ on cisplatin sensitivity is independent of SIRT1 levels.  
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5.5 Conclusions 

Global protein changes detected by iTRAQ revealed a number of protein and 

pathway changes which occurred following hCGβ downregulation by 

CGB_5 siRNA and cisplatin treatment. Validation of changes in the expression of 

LIMK1, SIRT1 and WAPAL proteins by western blotting revealed that these 

proteins may be involved in the response of  A2780cis and HEY cells to cisplatin 

treatment following hCGβ downregulation, but the effect was dependent on the 

siRNA used to target hCGβ. Although changes in LIMK1 were mirrored by both 

siRNAs, changes in SIRT1 and WAPAL expression occurred only with the use of 

CGB_5 siRNA in the presence of cisplatin. This indicated that the two siRNAs 

worked by different mechanisms to confer cisplatin sensitivity. A possible 

compensatory effect of LHB upregulation by CBG_4 siRNA remains as another 

reason why the two siRNAs had different effects in some systems.   

SIRT1 expression was decreased following CGB_5 siRNA treatment alone. This 

may be an off target effect of CGB_5 siRNA which could have been responsible for 

the observed increase in cisplatin sensitivity of A2780cis and HEY cells.  Further 

investigation on the role SIRT1 on cisplatin sensitivity showed that it was indeed 

involved in cisplatin sensitivity but only in A2780cis cells and not HEY cells. This 

suggests that the effect of CGB_5 siRNA may be independent of SIRT1 levels and 

that the actual mechanism by which hCGβ downregulation confers cisplatin 

sensitivity has not yet been solved.  Despite the power of the quantitative proteomic 

analysis, it raised new questions requiring further exploration. 
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 General discussion Chapter 6

 

Ovarian cancer is the most lethal gynaecological disease in the developed world 

and although there have been great advancements in diagnosis, monitoring disease 

progress and treatment, it still remains a disease that is hard to fight. One of the main 

reasons it is such a challenging disease to combat is because even though a high 

percentage of cancers respond to conventional platinum-taxane based therapy, 

development of chemoresistance is common, leading to poor survival outcomes. 

Extensive research has focused on high throughput techniques aimed at 

understanding ovarian cancer at a molecular level. These techniques include 

proteomics, and whole genome and transcriptome sequencing which have 

undoubtedly added a tremendous amount of information to the field, but their impact 

on how the cancer is diagnosed and treated, and ultimately how this will translate to 

improved patient outcomes, is yet to be discovered. 

 

6.1 Focus of this thesis 

To gain a better understanding of high-grade serous ovarian carcinoma (HGSC) this 

thesis has taken a basic approach of studying the functional role of a single protein, 

hCGβ. hCGβ had been proposed as a useful prognostic marker for ovarian cancer  

[181, 182], but information on its functional role(s), if any, has not been well 

studied. The aim of this thesis was to determine the expression of hCGβ in HGSC 

cell lines and to explore the role of hCGβ in cellular processes including 

proliferation, migration and adhesion as well as in modulating the response of HGSC 

cells to platinum-based drugs. The power of proteomics was then employed to form 
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a global picture of the mechanisms by which hCGβ might be involved in the 

sensitivity and resistance of HGSC cells to cisplatin.  

The question may arise as to why we would investigate a protein which may not 

seem to play any role in ovarian cancer other than as a prognostic biomarker.  

Firstly, though the functional role of hCGβ has indeed been largely unknown, it is 

elevated in a number of cancers including ovarian cancer [134, 182-185]. This of 

course could imply that cancer cells simply produce hCGβ due to aberrant gene 

expression, but perhaps this is too simple an explanation. Secondly, hCGβ has been 

shown to have biological implications in terms of proliferation, migration and 

apoptosis in cancer cell line models other than ovarian cancer [155, 156, 180]. 

Thirdly, although the level of hCGβ has been shown to be associated with 

chemoresistance in small-cell lung cancer patients [180], a direct functional role of 

the molecule is still uncertain. This means that hCGβ has been a protein which has 

lingered in the background in the context of understanding ovarian cancer and 

chemoresistance, and therefore its functional significance needed to be investigated. 

 

6.2 Expression of hCGβ and its role in proliferation, migration and 

adhesion 

Firstly it had to be established that hCGβ was expressed in HGSC cell line 

models before its functional role could be investigated. It was demonstrated that 

CGB transcript and secreted hCGβ protein were expressed in all eight HGSC cell 

line models (SKOV-3, HEY, OV202, PEO-1, A2780, A2780cis, CaOV-3 and 

OVCAR-3) to varying degrees. Three cell line models – HEY, A2780 and A2780cis 

cells – expressing a varied range of CGB/hCGβ, were then selected for functional 
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studies. HEY cells were chosen as they expressed the highest level of hCGβ and the 

pair of cisplatin-sensitive and resistant cells, A2780 and A2780cis, respectively were 

chosen for drug response studies. hCGβ was then downregulated with at least two 

siRNAs, or its cDNA overexpressed with a plasmid vector to determine its effect on 

proliferation, migration, adhesion and response to platinum-based drugs.  

It was found that the effect of hCGβ on cell proliferation was cell type dependent 

as downregulation of hCGβ significantly decreased proliferation of A2780cis and 

HEY cells, but its effect on proliferation of A2780 cells was dependent on the 

siRNA used to downregulate hCGβ. This suggested that the two siRNAs targeting 

hCGβ may have some differences in their actions.  The influence of hCGβ 

downregulation on cell proliferation should be tested under low serum conditions, as 

growth factors in the serum may mask the effect of hCGβ. The addition of 

exogenous hCGβ or overexpression of hCGβ did not seem to affect cell proliferation, 

perhaps due to a threshold level of hCGβ being reached beyond which hCGβ had no 

influence. Furthermore, it has to be noted that the biological activity of exogenous 

recombinant hCGβ could not be easily determined prior to the study. 

Downregulation or overexpression of hCGβ did not seem to influence cell 

migration of the tested HGSC cells, contrary to published data by Wu and colleagues 

who showed that hCGβ increased the migratory characteristics of prostate cancer cell 

lines and the human glioblastoma cell line U87MG [156, 189, 190]. A possible 

explanation is that the influence of hCGβ on cell migration could be cell type 

dependent. As we only extensively studied cell migration in HEY cells which had a 

stronger potential to migrate compared to A2780 and A2780cis cells, it may be 

worthwhile testing for cell migration in a larger set of cell lines.  
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The role of hCGβ in HGSC cell adhesion has been investigated for the first time 

in this thesis. Cell adhesion is a means by which cells interact with their extracellular 

environment and has a number of implications on signalling pathways, which 

influence cell survival, apoptosis, migration and cancer metastasis [341]. Cell 

adhesion is regulated by integrins which are heterodimeric molecules composed of 

non-covalently associated α- and β- transmembrane glycoproteins which interact 

with extracellular matrix (ECM) proteins. There are up to 18 α- and 8 β- 

characterised subunits forming 24 different integrin combinations which bind to 

specific ECM proteins [341]. We found that downregulation of hCGβ resulted in a 

general increase in cell adhesion of HEY and A2780cis cells onto ECM proteins. 

This result raises the question of whether hCGβ could be regulating the different 

integrins within the cell, hence impacting on how the cells interact with ECM 

proteins. The influence of hCGβ on expression of integrins could be further 

investigated with integrin arrays, which is a high throughput technique which can 

determine the expression of a range of integrins on the cells surface [342].  Another 

possible explanation for the influence of hCGβ on cell adhesion is that it may be 

blocking cell adhesion, therefore downregulation of hCGβ could be eliminating this 

inhibitory effect on cell adhesion. The inhibitory effect of hCGβ should be further 

investigated by determining the impact of hCGβ overexpression or exogenous hCGβ 

on cell adhesion; however, this was not considered to be a cost-effective line of 

investigation to pursue for this thesis. 
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6.3 hCGβ and the cell response to chemotherapeutics 

Expression of hCGβ in epithelial cancers is often associated with aggressive 

disease with poor patient outcomes; however, the impact of hCGβ in 

chemoresistance has been largely unaddressed. Only two published papers were 

found to suggest that hCGβ may be involved in chemoresistance [180, 280]. 

Szturmowicz et al. found that patients with small-cell lung cancer who had elevated 

levels of hCGβ responded poorly to chemotherapy [180]. In vivo data published by 

Berman et al. found that small cell bronchial carcinoma xenografts which expressed 

hCGβ were resistant to the chemotherapeutic drug cyclophosphamide [280]. Both of 

these published studies were observational; therefore in this thesis, the functional 

role of hCGβ in the response of HGSC to platinum-based drugs has been a main 

focus. It was shown that hCGβ does in fact play a role in how HGSC cells respond to 

the platinum-based drugs cisplatin, carboplatin and oxaliplatin; a response that 

seemed to be specific to platinum-based drugs and not to the microtubule targeting 

agent paclitaxel. Downregulation of hCGβ increased the sensitivity of A2780cis and 

HEY cells to cisplatin; however, it had no influence on the response of cisplatin 

sensitive A2780 cells to the drug. The result suggests that the effect of hCGβ on drug 

response is cell type dependent. It could also be suggestive that cells need to have 

acquired resistance to platinum-based drugs; in this case A2780cis are cisplatin 

resistant and HEY have higher IC50 for cisplatin compared to A2780 cells.  

Whether the expression levels of hCGβ in tumour tissue or serum of patients with 

ovarian cancer (or other cancers) has a direct bearing on how patients respond to 

chemotherapy has to be further investigated. This could have future implications for 

determining which patients may benefit from platinum-based chemotherapy. As 

mentioned in Chapter 4, section 4.4.1 the absolute levels of hCGβ may not positively 
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correlate to drug response; however, it is possible that it is the absence (or lowered 

amount) of hCGβ that may determine how cells respond to drugs, particularly in 

cells that are already drug resistant. If indeed this is the case, then development of 

neutralising antibodies towards hCGβ, or other mechanisms of downregulating its 

expression or activity, could be a potential way of combating drug resistance in 

ovarian cancer.   

 

6.4 Potential role of LHβ in the response to platinum drugs 

It was observed that two hCGβ targeting siRNAs (CGB_4 and CGB_5) caused 

different biological effects in some experimental situations, despite a similar degree 

of hCGβ downregulation. In order to study whether a compensatory change in LHB 

could be a contributing factor to the different degrees of response of the two hCGβ 

siRNAs towards cisplatin, the LHB levels were determined following hCGβ 

downregulation. It was found that treatment with CGB_4 siRNA did in fact increase 

the levels of LHB but CGB_5 siRNA decreased its levels. These results were 

statistically significant in HEY cells compared to A2780cis cells, suggesting that in 

HEY cells both LHB and CGB may be an important determinant of the manner in 

which cells responded to cisplatin. Further to this point, a third siRNA (CGB_7) 

targeting hCGβ did not significantly affect the levels of LHB and did not influence 

how HEY cells responded to cisplatin treatment. This result demonstrated a potential 

link between LHB and response to cisplatin in some HGSC cells and maybe 

suggestive of some overlap of biological roles between LHβ and hCGβ. It was 

difficult to source a siRNA that specifically downregulated LHB independent of 

CGB levels. The manufacturer (Qiagen) who supplied our siRNAs, had a number of 
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siRNAs targeting LHB but these targeted identical sequences to CGB siRNAs. In 

future work, the role of LHB in response to cisplatin could be investigated by 

sourcing, or designing, siRNAs that specifically target LHB and by overexpressing 

LHB to determine whether it indeed has a role to play in drug response. Similarly, 

the expression of both LHβ and hCGβ (and/or LHB and CGB) in tumour tissue or 

serum from patients with ovarian cancer (or other cancers) could also be studied to 

determine whether their levels, together or independently, have an influence on how 

patients respond to chemotherapy.  

 

6.5 iTRAQ and the mechanism of action of hCGβ in response to 

cisplatin 

The quantitative proteomic technique of iTRAQ was used to determine the global 

protein changes that occurred when A2780cis cells were treated with cisplatin 

following hCGβ downregulation (with CGB_5 siRNA), in an attempt to understand 

the mechanism by which hCGβ regulates how HGSC cells respond to cisplatin. In 

the context of ovarian cancer, iTRAQ has been used to identify potential biomarkers 

[343] and differences between begin and malignant tumour tissue [344]; however, it 

had not been used to study chemoresistance. Multiple studies have been used iTRAQ 

and chemoresistance in two studies on mechanism of chemosensitivity or resistance 

in cancers such as head and neck carcinoma and colorectal cancer [345-347]; in 

these two studies, dysregulated proteins discovered by iTRAQ were validated using 

western blotting and the functional role of candidate proteins in chemosensitivity or 

resistance was investigated by gene silencing. This approach was followed in this 

thesis.  
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Pathway analysis of the protein changes from our iTRAQ study revealed that 

some pathways that were affected by cisplatin treatment in combination with hCGβ 

downregulation were also affected by cisplatin or hCGβ downregulation alone; 

however, the cellular processes and protein molecules involved in the overlapping 

pathways were different. This result was suggestive of the cells responding 

differently when treated with both cisplatin and hCGβ targeting siRNA compared to 

cisplatin or siRNA treatment alone, which was expected.  

Due to financial constraints, the iTRAQ experiment was conducted only once; 

and western blotting used to validate important protein changes. Specifically, 

changes in the levels of LIMK1, SIRT1 and WAPAL proteins were validated. SIRT1 

and WAPAL reflected the iTRAQ data; that is, their cellular abundance was altered 

by cisplatin treatment when hCGβ levels were decreased by siRNA, but not in the 

presence of normal hCGβ levels. This suggests that these proteins may be involved 

in the response of A2780cis and HEY cells to cisplatin treatment following hCGβ 

downregulation. However the results were dependent on the siRNA used to target 

hCGβ, indicative of different modes of action of the two siRNAs. Whether the 

differential responses related to differences in the compensatory induction of LHβ 

when hCGβ was downregulated, as discussed earlier, remains to be further explored. 

These findings meant that the actual mechanism by which hCGβ could be involved 

in drug response was not firmly established, although candidate proteins were 

identified. 
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6.5.1 Alternative strategy to iTRAQ 

iTRAQ has the advantage of multiplexing samples in a single experimental run; 

however, the results can be challenging to interpret due to differences in the labelling 

process of the individual samples. Therefore the list of deregulated proteins 

generated by iTRAQ in our single run may not provide a comprehensive reflection 

of the global protein changes that occurred when the cells were treated with cisplatin 

following hCGβ downregulation. In future work, the iTRAQ experiment could be 

repeated or used in conjunction with the label free technique Sequential Window 

Acquisition of all Theoretical Mass Spectra (SWATH) [348].  SWATH is a 

relatively new technique which allows for both relative and absolute quantitation of 

proteins in a precise and reproducible manner. It is operated in a data independent 

acquisition (DIA) mode whereby all precursor ions and product ions are detected and 

archived allowing for retrospective data analysis. Operation in DIA mode allows for 

a greater dynamic range, hence is more sensitive for low intensity ions which are 

often missed by data-dependent acquisition mode (whereby a precursor is selected in 

order for the product ion to be scanned) [349, 350]. The Australian Proteome 

Analysis Facility (APAF) has recently started to offer SWATH as an analytical 

option and in future this may be a more reliable method to study global protein 

changes. 

 

6.6 Approach of using antibodies to block effect of hCGβ 

Expression of both CGA and CGB by the all the HGSC cell lines suggests the 

whole hCG protein could be potentially expressed which in turn could contribute to 

some of the functional effects observed by free hCGβ. Use of an antibody that 
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specifically targets secreted hCGβ may have been a fruitful approach to studying the 

role of hCGβ independent of heterodimeric hCG. For this reason, the best means of 

studying the role of hCGβ was to overexpress and downregulate hCGβ; a means by 

which the role of hCGβ has been investigated in previously published studies [156, 

180, 191]. In future, antibodies against hCGβ could be developed to target free 

hCGβ allowing the study of hCGβ in culture independent of the whole hCG protein. 

Alternately, existing hCGβ antibodies designed for western blotting, for example, 

could also be tested to determine whether they could potentially be used to block 

hCGβ in culture. However, it is also possible that intracellular hCGβ may have a 

functional role in its own right which cannot be determined by antibodies directed at 

secreted hCGβ. Therefore the use of downregulation using siRNA, as employed in 

this thesis, is clearly a valuable experimental tool.  

 

6.7 Improving hCGβ downregulation 

hCGβ was downregulated by 50-60% using the highest amount of siRNA that 

could be used without theoretically introducing off target effects. Therefore a longer 

time course following siRNA transfection should be tested to determine whether a 

higher level of knockdown could be achieved. 

6.8 Validation of the on-target effects of hCGβ on response of cells 

to platinum-based drugs 

Validation of the increased sensitivity of the cells to platinum-based drugs following 

downregulation hCGβ can be done in two ways. 1. Addition of exogenous hCGβ 

following downregulation 2. Overexpressing hCGβ using a plasmid construct 



Chapter 6 

192 

 

containing a hCGβ gene insert (containing silent mutations) which is resistant to the 

siRNAs targeting hCGβ expressed by the cells [351, 352].  

 

6.9 Development of stable knockouts or overexpression 

In this thesis the functional role of hCGβ was studied using transient downregulation 

and overexpression systems. Although a lot of data has been generated using these 

systems, the development of stable systems could not only facilitate longer 

experiments but also in vivo experiments in animal models.  hCGβ could be stably 

downregulated using short hairpin RNA (shRNA) [353] and overexpressed using the 

same construct (pCI-neo-hCG) for transient overexpression, but by growing the cells 

under the selection of the antibiotic G418 [156]. It is possible that shRNA may result 

in better hCGβ knockdown compared to the use of siRNA. The disadvantage of 

stable downregulation of growth-regulatory proteins, which involves selection of 

clones or restricted cell populations, is that other cell markers may also inadvertently 

be selected, or that the selected populations may have upregulated mechanisms that 

compensate for the downregulated target protein. These disadvantages might in part 

be overcome by using an inducible vector to express the shRNA. 

 

6.10 SIRT1 and the response to cisplatin 

SIRT1 has been shown to be elevated in a number of cancers including ovarian 

cancer [312], however its role in tumorigenesis has not been established [332]. Our 

study shows that SIRT1 is potentially involved in the response to cisplatin of some 

HGSC cells, as downregulation of SIRT1 increased cisplatin sensitivity in A2780cis 
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cells but not HEY cells. In future work, the role of SIRT1 in the response to 

platinum-based drugs could be tested in different cell lines by downregulating or 

overexpressing SIRT1 or using an inhibitor of SIRT1, e.g. EX-527 (SEN0014196) 

[354].  

Expression of SIRT1 in tumour tissue of patients with ovarian cancer could also 

be studied to determine whether SIRT1 levels may be a prognostic marker of 

patients’ response to chemotherapy. Interestingly, a preliminary assessment of the 

prognostic value of SIRT1 using KM-Plotter showed that ovarian cancer patients 

who received platinum-based therapy had a slightly lower rate of progression free 

survival when SIRT1 levels were high. This suggests that SIRT1 could be a 

potentially valuable prognostic marker of patients’ response to chemotherapy. 

Further to this, if it is confirmed that SIRT1 has a functional role in chemosensitivity 

then a potential outcome could be the use of SIRT1 inhibitors alongside platinum-

taxane based therapy for the treatment of ovarian cancer. SIRT1 inhibitors have 

already been utilised in medical conditions such as diabetes and the neurological 

condition Huntington’s disease [355]. The selective SIRT1 inhibitor, Selisista (6-

chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide, SEN0014196, EX-527) is 

currently in Phase II clinical trials for the treatment of Huntington's disease [356].  

  

6.11 Changes in the field since undertaking this thesis 

One of the major changes in the field since the beginning of this thesis has been 

the characterisation of existing and new HGSC cell line models. Domcke et al. and 

Ince et al. deemed a number of cells lines, including SKOV-3 and A2780 cells that 

were used in this thesis, as potentially less suitable HGSC models as they did not 
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contain TP53 mutations or other genetic or molecular abnormalities characteristic of 

primary HGSC tumours [281, 282].  Ince et al. developed a method to isolate and 

propagate 25 ovarian cancer cells lines which were considered to be true 

representative models of the disease [282]. These cell lines not only reflected the 

histological, genotypic and molecular characteristics of the tumour cells they were 

derived from but these characteristics were maintained over successive passages.  

In the future, a panel of HGSC cell lines recommended by Domcke et al. and/or 

developed by Ince et al. should be used to confirm the functional role of hCGβ. As 

mentioned in Chapter 2, the A2780/A2780cis pair is a valuable model for studying 

drug resistance, however since Domcke et al. found that A2780 cells were not an 

optimum model for HGSC, cell lines resistant to cisplatin, carboplatin, oxaliplatin 

and paclitaxel could also be developed based on suitable HGSC models to allow the 

study of drug resistance in the context of hCGβ. This work would best be conducted 

in follow-up work, as development and testing of drug resistant cell lines can take up 

to 18 months [357]. Alternately, cell lines established by Ince and colleagues which 

are already resistant to platinum-taxane treatment could be used for drug based 

studies [282]. The advantage of using these cell lines is that they may be closer to a 

true representation of drug resistance as they are derived from chemoresistant 

tumours as opposed to having been artificially created in the lab. 

 

6.12 Concluding remarks 

This thesis has highlighted the potential role of hCGβ in cell proliferation, 

adhesion and response to platinum-based drugs in ovarian cancer cells. The LHβ, 

WAPAL and SIRT1 proteins were also discovered to be potentially involved in the 
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response to cisplatin and could have implications on how chemoresistance is 

managed in ovarian cancer. Future work on the mechanism by which hCGβ can 

regulate cellular response to platinum-based drugs needs to be established and may 

have implications for the management of chemoresistance in ovarian cancer. 
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Appendix A: Chapter 3 supplementary data 

 

Supplementary Figure 1: Standard curve for detection of hCGβ using the 

chorionic gonadotropin beta Human ELISA kit from Abam. Standard 

concentrations included 0, 2.5, 5, 10, 25 and 50 ng/mL of free hCGβ. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 10 20 30 40 50 60

O
.D

. 
(4

5
0

 n
m

) 

Free hCGβ (ng/mL) 



 

197 

 

Appendix B: Chapter 4 supplementary data 

Supplementary Table 1: IC50 concentration of cisplatin derived from the cell 

viability assay for A2780cis and HEY cells 

Cisplatin 

 NS control CGB_4 CGB_5 

A2780cis 12.48 ± 1.14 12.49 ± 1.43 7.46 ± 0.54 

HEY 4.65 ± 0.26 4.07 ± 0.13 3.90 ± 0.25 

Carboplatin 

 NS control CGB_4 CGB_5 

A2780cis 99.92 ± 6.60 100.43 ± 7.27 73.10 ± 7.13 

HEY 38.36 ± 2.89 37.53 ± 0.81 36.59 ± 0.72 

Oxaliplatin 

 NS control CGB_4 CGB_5 

A2780cis 9.15 ± 0.79 8.03 ± 0.58 7.44 ± 0.38 

HEY 15.64 ± 1.41 17.91 ± 0.75 15.69 ± 2.57 

Taxol 

 NS control CGB_4 CGB_5 

A2780cis 14.17 ± 1.12 14.07 ± 0.79 13.73 ± 1.23 

HEY 17.84 ± 4.40 15.26 ± 1.00 17.9 5 ± 3.31 
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Supplementary Table 2: IC50 concentration of cisplatin derived from the 

cell survival (clonogenic) assay for A2780cis and HEY cells 

Cisplatin 

 NS control CGB_4 CGB_5 

A2780cis 2.07 ± 0.35 2.58 ±  0.26 4.34 ±  0.39 

HEY 1.28 ± 0.07 1.22 ± 0.18 0.73 ± 0.02 

Carboplatin 

 NS control CGB_4 CGB_5 

A2780cis 23.15 ±  4.57 19.96 ±  4.64 11.85 ±  1.36 

HEY 9.94 ± 2.95 9.83 ± 2.45 5.61 ± 1.36 

 NS control CGB_4 CGB_5 

Oxaliplatin 

A2780cis 0.38 ±  0.06 0.28 ±  0.03 0.25 ±  0.05 

HEY 0.31 ± 0.07 0.34 ± 0.04 0.35 ± 0.03 
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Appendix C: Chapter 5 supplementary data 

Refer to Compact Disk or attached file for complete iTRAQ data.  

 

Supplementary Figure 2: Downregulation on CGB gene for A2780cis cells 

undergoing iTRAQ. siRNAs: non-silencing control (ctr), and CGB_5 (hCG).  

Data normalised to negative non-silencing control siRNA. 

 

 

 

Supplementary Figure 3: “A” is the effect of cisplatin treatment (ratio 115:114), 

“B” is the effect of hCGβ downregulation (ratio 116:114),  “C” is the effect of 

both treatments combined (ratio 117:114), “D” is the effect of  cisplatin when 

hCGβ was downregulated and “E” are proteins that were only responsive to 

cisplatin when hCGβ was downregulated ((115:114)/(117:115)).  
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Supplementary Figure 4: Effect of cisplatin treatment (ratio 115:114) on the cell 

death, survival, DNA replication, recombination and repair network. Indicated 

colours: RED: User input molecule that is upregulated, GREEN: user input 

molecule that is downregulated, GRAY: user input molecule that is neither up 

nor down-regulated, WHITE: molecule that is not user specified, but 

incorporated into the network through relationships with other molecules. 

Relationship and colour keys extracted from Ingenuity systems, IPA supporting 

documentation [358].  
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Supplementary Figure 5: Effect of hCGβ downregulation (ratio 116:114) on the 

cell morphology, cell death and survival network. Indicated colours: RED: User 

input molecule that is upregulated, GREEN: user input molecule that is 

downregulated, GRAY: user input molecule that is neither up nor down-

regulated, WHITE: molecule that is not user specified, but incorporated into the 

network through relationships with other molecules. Relationship and colour 

keys extracted from Ingenuity systems, IPA supporting documentation [358].  
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Supplementary Figure 6: Effect of cisplatin treatment followed by hCGβ 

downregulation (ratio 117:114) on the cell cycle, DNA replication, 

recombination and repair network. Indicated colours: RED: User input molecule 

that is upregulated, GREEN: user input molecule that is downregulated, GRAY: 

user input molecule that is neither up nor down-regulated, WHITE: molecule 

that is not user specified, but incorporated into the network through relationships 

with other molecules. Relationship and colour keys extracted from Ingenuity 

systems, IPA supporting documentation [358].  
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Supplementary Figure 7: Effect of a combination of cisplatin and hCGβ 

downregulation (ratio (115:114)/117:115) on the cell cycle, DNA replication, 

recombination and repair network. Indicated colours: RED: User input molecule 

that is upregulated, GREEN: user input molecule that is downregulated, GRAY: 

user input molecule that is neither up nor down-regulated, WHITE: molecule 

that is not user specified, but incorporated into the network through relationships 

with other molecules. Relationship and colour keys extracted from Ingenuity 

systems, IPA supporting documentation [358].  
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