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Abstract 

This study was conducted to evaluate the effectiveness of GudairTM vaccine in decreasing the 
prevalence of shedding of Mycobacterium avium subsp. paratuberculosis (MAP) in flocks of 
varying initial prevalence. Thirty seven self-replacing Merino flocks from New South Wales 
and Victoria (Australia) that had been vaccinating lambs with GudairTM for at least five years 
were enrolled in the study. These flocks had been tested prior to or at commencement of 
vaccination using pooled faecal culture, agar gel immunodiffusion or both tests. These pre-
vaccination test results were used to estimate pre-vaccination prevalence. Post-vaccination 
prevalence was estimated from culture of usually 7 pools of 50 sheep collected from the 
enrolled flocks in 2008-2009, approximately five or more years after commencement of 
vaccination.   

A Bayesian model was developed to estimate and compare the pre- and post-
vaccination prevalences for the enrolled flocks. Apparent pre- and post-vaccination 
prevalences for flocks were modelled as functions of the true pre- and post-vaccination 
prevalences, respectively, and the sensitivities and specificities of the respective diagnostic 
tests. Logit-normal models were specified on pre- and post-vaccination true prevalences and 
were then used to make inferences about the median and 90th percentile of the prevalence 
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distributions and their differences. Priors were mostly specified based on published 
literature or analysis of abattoir surveillance data for this population of flocks.  

The analysis found a significant decline in ovine Johne’s disease prevalence from a 
pre-vaccination median prevalence of 2.72% [95% probability interval (PI): 1.40; 6.86%] to a 
post-vaccination median prevalence of 0.72% (0.39; 1.27%). However 30 of the 37 flocks still 
contained sheep that were shedding MAP in their faeces. The results suggest that 
vaccination with Gudair™ is usually effective in reducing the prevalence of faecal shedding 
but the response to vaccination is variable among flocks.  This approach could be 
implemented in similar situations to compare prevalences where information from multiple 
diagnostic tests with varied sensitivities and specificities is available. 
Keywords: Ovine Johne’s disease; Gudair; Vaccination; Abattoir surveillance; Faecal culture; 
Agar gel immune-diffusion test. 
 
 
 

1. Introduction 
Ovine Johne’s disease (OJD), a chronic disease of sheep caused by Mycobacterium avium 
subsp. paratuberculosis (MAP), results in substantial economic losses due to reduced 
production, increased mortalities and the costs associated with the disease control 
programmes (Bush et al., 2006). The infection usually enters a flock by introduction of 
infected sheep and then spreads within the flock mainly by the faecal-oral route. Clinically 
infected sheep can shed up to 108 MAP per gram of their faeces, thus contaminating the 
pastures (Whittington et al., 2000b). Susceptible sheep, especially lambs, are infected by 
ingesting MAP organisms whilst grazing contaminated pastures. Although many disease 
control programmes have been implemented in Australia, vaccination has become the major 
intervention since the registration of Gudair™ vaccine in April 2002.  

There are mixed reports of the effectiveness of Gudair™ vaccination. While it is 
considered to be very effective in controlling mortalities, several studies in low numbers of 
flocks have shown that MAP shedding continues to occur in vaccinated sheep (Eppleston et 
al., 2005; Reddacliff et al., 2006; Windsor, 2006). The persistence of shedding for an 
extended period following the onset of a vaccination programme presents a risk for spread 
to other flocks. In addition, there is risk of recrudescence of OJD in vaccinating flocks after 
cessation of vaccination (Eppleston et al, 2011).  

This study aimed to assess the long term effect of vaccination on the persistence of 
shedding by vaccinated sheep, and involved a range of flocks with varying initial prevalence.  
It was considered timely to estimate the decline in OJD prevalence in commercial flocks that 
had been vaccinating for five or more years. Although data were available for these flocks on 
the level of infection at the start of vaccination, these flocks had been tested by either 
serological or faecal culture tests and in some cases by both tests. This presented difficulties 
in estimating pre-vaccination prevalences and comparing them to the post-vaccination 
estimates using frequentist statistical approaches. Therefore, we developed a cohesive 
Bayesian model to make objective inferences about the differences in prevalence 
distributions for pre- and post-vaccination flocks.  

2. Methods 
2.1. Selection of sheep flocks 
The reference population for the study was the OJD infected sheep flocks in New South 
Wales (NSW) and Victoria with a range of prevalence levels. The study population included 
flocks that met the following selection criteria: (1) high level of willingness to participate in 
the study and managerial ability of the flock owner; (2) self-replacing Merino flock lambing 
>500 ewes per year; and (3) OJD positive diagnosis with a continuous vaccination 



 3 

programme that commenced with lambs in 2002 or earlier, with the inclusion of flocks 
commencing vaccination in 2003 if required, i.e. five or more years prior to the conduct of 
this study.  

 Potential flocks were identified from official data including disease surveillance and 
laboratory testing information held in the databases at the University of Sydney, the NSW 
Livestock Health and Pest Authorities (formerly the Rural Land Protection Boards), the NSW 
and Victorian Departments of Primary Industries. Farm owners or managers were then 
contacted to determine whether they met the selection criteria and to obtain their consent 
for participation. Forty-one flocks from NSW and Victoria were enrolled in 2008-2009 to take 
part in the study. However, four flocks had to be excluded from the analyses reported in this 
paper because subsequent to sampling it was discovered that they did not meet the 
selection criteria of being self-replacing Merino flocks or had not vaccinated lambs before 6 
months of age. 
2.2. Pre-vaccination OJD prevalence data 
Majority of flocks had commenced vaccination in 2002 following registration of the vaccine 
in April of that year. Pre-vaccination prevalence data were obtained from farmers and 
regulatory agencies by examining property disease records prior to 2002. The diagnostic 
tests used for estimation of pre-vaccination prevalence levels varied across flocks: (a) Agar 
gel immune diffusion (AGID) test was used for 7 flocks, (b) pooled faecal culture (PFC) for 20 
flocks, and (c) both AGID and PFC for 10 flocks.  

2.3. Post-vaccination OJD prevalence data 

2.3.1. Faecal sampling 
Post-vaccination testing in all of the selected 37 flocks was done using only PFC.  Details of 
the methods have been provided elsewhere (Windsor et al., 2011). Briefly, we aimed to 
select 7 pools of 50 sheep from each enrolled flock (a cohort of sheep) but the pool numbers 
and sizes collected from some flocks varied due to logistic issues. Faecal sample collection 
was performed by the local District Veterinarians and involved collecting one faecal pellet 
per rectum from each selected sheep. Pellets collected from 50 sheep were pooled in a 
sterile plastic container and constituted one pool. Note that we tested flocks only post-
vaccination but utilised pre-vaccination testing records available with the farmer or animal 
health authorities. Also note that the sheep sampled post-vaccination were not the same as 
those tested pre-vaccination. 

2.3.2. Pooled faecal culture (PFC) 
Pooled faecal samples were cultured using a modified BACTEC radiometric method 
(Whittington et al., 2000a). Culture positive samples were further confirmed by polymerase 
chain reaction and restriction endonuclease analysis by demonstrating the presence of IS900 
(Cousins et al., 1995; Whittington et al., 1998). The OJD prevalence of each cohort was 
calculated from PFC results using a Bayesian model for variable pool size (Dhand et al., 
2010).  

2.4. Bayesian analyses 
We developed a Bayesian approach to obtain true pre-vaccination prevalence estimates 
after adjusting for sensitivities and specificities of diagnostic tests. These prevalence 
estimates were then compared to the true post-vaccination prevalence estimates. A schema 
of the Bayesian approach taken is presented in Fig. 1.  

2.4.1. Modelling apparent prevalences 
2.4.1.1. Pre-vaccination 
The pre-vaccination prevalences were estimated based on three types of test data since 
flocks were tested by AGID alone, PFC alone or both AGID and PFC.  In each case, we 
modelled either a single apparent prevalence or two apparent prevalences, as functions of  



 4 

 

Figure 1. A schema of the models developed for analysis of pre- and post-vaccination 

data. Se: sensitivity; Sp: specificity; PFC: pooled faecal culture; AGID: agar gel 

immunodiffusion test 

 

the true prevalences, the sensitivities and specificities of the particular tests, all using a 
Bayesian adaption of the Rogan and Gladen (1978) approach. Note that for flocks tested 
using both tests the model determined one true prevalence estimate per flock, although 
different apparent prevalences were estimated based on AGID and PFC results.  

The number of positive animals (or pools) for a flock   was assumed to be 
binomially distributed (Eq. (1)) as a function of apparent pre-vaccination OJD prevalence of 

the flock  and the total number of samples (or pools) tested . The apparent 
prevalence was related to the true animal-level pre-vaccination OJD prevalence for that flock 

 through test sensitivity and specificity as described by Rogan and Gladen (1978) for 
individual samples (Eq. (2)) and by Dhand et al (2010) for pooled samples (Eq. (3)). The 
approach is diagrammatically presented in Figure 2 using flocks tested with AGID as an 
example. 

  … (1) 

  … (2) 

  … (3) 

where k is the pool size, i.e. number of sheep constituting a pool;  and  are the AGID 

sensitivity and specificity; and  and  are the PFC sensitivity and specificity, 

respectively. 
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Figure 2. A diagrammatic representation of the code for modelling pre-vaccination prevalence 

for flocks tested with Agar gel immunodiffusion test (AGID). The number of AGID positive 

animals for a flock   was assumed to be binomially distributed as a function of apparent 

pre-vaccination OJD prevalence of the flock  and the total number of samples tested . 

Apparent prevalence for the flock was related to its true prevalence  through AGID test 

sensitivity  and specificity . A logit normal distribution was specified on true 

prevalences. Priors were specified on the mean ( ) and the standard deviation (  ) of the logit 

normal prevalence distribution and on sensitivity and specificity of AGID test.  

 

2.4.1.2. Post-vaccination 
In contrast to pre-vaccination data based on two types of tests, only PFC data were available 
for post-vaccination animal-level prevalence estimation.  The modelling of post-vaccination 
prevalence data follows a similar procedure, except that the pool sizes were variable rather 

than fixed at  for the post-vaccination PFC data. Therefore, was replaced by the actual 

pool size for each of the individual pools as in Dhand et al. (2010).  Thus, if pool  in flock is 

of size  , then the post-vaccination apparent pool prevalence (  is: 

  … (4) 

where is the true post-vaccination prevalence in flock .  

Pre-vaccination and post-vaccination true prevalences (  and , respectively) were 
modelled using logit-normal (LN) distributions (see Section 2.4.2) while priors were later 
specified on test sensitivities and specificities (see Section 2.4.4.1). 

2.4.2. Modelling true prevalences and obtaining inferences 
2.4.2.1. Pre-vaccination 

Pre-vaccination true prevalences  were modelled as independent and sampled from a 
LN distribution: 

   … (5) 

which implies that: 

 
 

… (6) 

 

 

 Prior specified for  

Prior specified for  

Prior specified for  
Prior specified for  
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Here  is the mean and  a random effect corresponding to flock i;  is the standard 
deviation of the prevalence distribution on the logit scale in the selected flocks. Priors were 

later induced for  and  based on analysis of abattoir surveillance data (see Section 2.4.4.2).  

The median of the prevalences among flocks of the same type ( is simply the 

formula in Eq. (6) with the random effect set to be zero.  The 90th percentile of pre-

vaccination prevalences ( is the above expression (Eq. (6)) with the random effect 

replaced by . Note that the 90th percentiles are the values for which 90% of all 
prevalences will be smaller, and 10% larger. 

 
 

… (7) 

 
 

… (8) 

 
2.4.2.2. Post-vaccination 
A similar approach as pre-vaccination prevalence was used to model post-vaccination 
prevalences (Eqs. (9) and (10)). 

  … (9) 

 
 

… (10) 

where  is a random effect for flock  and is modelled with a  distribution. 
Inferences for the median prevalence and the 90th percentile of post vaccination prevalences 
were similarly obtained as shown below in Eq. (11) and (12): 

 
 

… (11) 

 
 

… (12) 

Priors were later specified on  and  (see Section 2.4.4.3).  

2.4.3. Model variations 
The model discussed above (called Model I from here onwards) assumes statistical 
independence of pre- and post-vaccination prevalences, and allows for both different 
medians and different levels of spread.  We considered two variants of this model: (a) where 

,  meaning that the median prevalence was allowed to change, but that variability 
in prevalences was assumed to be similar for pre- and post-vaccination (labelled Model II) 

and (b) where  was modelled with a bivariate normal distribution, which would 
allow for non-zero correlation between pre and post-vaccination prevalences (labelled 
Model III).  Model II is a simplification of Model I and is analogous to having a random effect 

for each flock since is shared by flock  for pre and post-vaccination. Model III is a 
generalisation of our assumed model. We compared all three models by calculating the 
Deviance Information Criterion (DIC) as suggested by Spiegelhalter et al. (2002).  

2.4.4. Elicitation of priors 

We required priors for sensitivity and specificity for both the tests; for  and  for the pre-

vaccination true-prevalence model; and for    and   for the post-vaccination prevalence 
model.  
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2.4.4.1. Sensitivity and specificity priors 
Beta priors for sensitivity and specificity of AGID and PFC tests were elicited based 

on previous research (Sergeant et al., 2003; Dhand et al., 2010). Sergeant et al. (2003) 
estimated average AGID sensitivity to be 24.6% using data from six known infected and 12 
assumed uninfected sheep flocks (Table 1). Our concentrated specificity prior reflected a 
very high specificity for AGID reported in that study.  

We used the same priors for sensitivity and specificity of PFC as used in Dhand et al. 
(2010) based on analysis of Whittington et al. (2000a) data (Table 1). See Dhand et al. (2010) 
for further details. 

2.4.4.2. Priors on  and  for the pre-vaccination true-prevalence model 

Abattoir surveillance data from the same population of flocks as our data were 
available.  We used these data to obtain prior information for the pre-vaccination 
prevalence distribution (See Appendix A for details about analysis of abattoir surveillance 
data). Results of surveillance data indicated that our best guess of the median of the Logit 

prevalence distribution of the flocks was 0.08 and that we were 95% sure that the 

median prevalence was less than 0.3 . We consider a Normal prior for : 

, 

where  is the mean and  is the standard deviation.  

The mean, a, was calculated to be -2.46 [=  as our best guess for the median 
prevalence based on analysis of abattoir surveillance data.  

The standard deviation, b, was calculated to be 0.97, assuming the 95th percentile of the 
prior be 0.30:  

 

Similarly, we used information about the 90th percentile of prevalences, namely, the 
prevalence for which 90% of the prevalences were smaller and 10% larger, in order to induce 

a uniform prior (0, 3) for .  It was determined that this value could not be larger than 0.8, 
with virtual certainty.  The value of 3 was obtained as: 

 
where  is the value such that we are virtually 100% certain that this value cannot 

exceed (assumed to be 0.80), given our prior guess for   The ideas behind this 
specification can be found in Christenson et al (2010); see Appendix B for the details. 

2.4.4.3. Priors for  and   for the post-vaccination true-prevalence model 

A diffuse uniform distribution prior (–6, 6) was specified for  in the absence of any prior 
information. This prior allows for a broad range of differences in pre and post vaccination 
prevalence distributions, without attaching too much mass to the possibility that they are 
radically distinct. 
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Table 1. Priors for sensitivities and specificities for agar gel immunodiffusion test and pooled faecal culture test used in the study. 

Priors Input values  Prior distributions
2
 

 Prior distributions
2
 for 

sensitivity analyses Source of priors 

  Mode 

Lower/ 

Upper
1
   a b Mean (95% PI) 

 Mode Lower/ 

Upper
1
 a b   

Agar gel immuno-diffusion test (AGID)          

Sensitivity
3
 (  0.25 0.60  2.43 5.30 0.31 (0.06, 0.65)  0.30 0.72 1.98 3.30 Sergeant et al. (2003) 

Specificity (  0.995 0.99  1137.5 6.71 0.99 (0.99, 1.00)  - - - - Sergeant et al. (2003) 

Pooled faecal culture test (PFC)         

Sensitivity
4
 (  0.60 0.40  10.9 7.6 0.59 (0.36, 0.80)  0.48 0.32 11.89 12.80 Dhand et al (2010) 

Specificity (  0.995 0.99  1137.5 6.71 0.99 (0.99, 1.00)  - - - - Dhand et al (2010) 

1
Lower 5% limits were elicited for sensitivity and specificity estimates; 

2
a and b are parameters of the respective beta probability distributions. 

3
 

AGID sensitivity estimates (  were increased by 20% and 
4
PFC sensitivity estimates (  was reduced by 20% for sensitivity analyses. 

AGID and PFC specificity estimates ( respectively) were not changed. 

 

Similarly, a relatively diffuse uniform distribution prior (0, 3) was specified for  . This prior places the mild restriction that we are virtually certain that the 
90th percentile is less than 0.84, which is quite conservative. 

2.4.5. Implementation 
The models were implemented in WinBUGS (Lunn et al., 2000). The WinBUGS code is available for download as a Supplementary material 

(Supplementary 1). Convergence was checked by monitoring histories and running quintiles based on distinct initial values. All models were run for 50,000 
iterations for each of the two chains with distinct starting values; the initial 5000 iterations were discarded



 9 

2.4.6. Sensitivity analyses 
A standard sensitivity analysis involves modification of the prior distributions and re-

analysis to determine the effect of the prior on inferences.  We thus modified our priors on 
the sensitivities and specificities of the AGID and PFC tests to determine their effect on 
prevalence estimates. PFC sensitivity estimates were reduced by 20% while the AGID 
sensitivity estimates were increased by 20% (Table 1). 

Another aspect to our sensitivity analysis involves the model for the data itself.  
Some of the flocks had moderate to large counts of positive post vaccination pools, 
indicating that some flocks may not have a reduced prevalence.  We investigated this by 
using a modification to the model that allowed for the post vaccination prevalence 
distribution to be a mixture of two logit-normal distributions rather than a single unimodal 
distribution (labelled as Model IV) and compared models using the DIC criteria. 

3. Results 
Data were analysed for 37 flocks after excluding four of the 41 flocks that did not 

meet the selection criteria. Pre-vaccination prevalence was estimated based on PFC for 
seven flocks, AGID for 20 flocks and both PFC and AGID for 10 flocks while post-vaccination 
prevalence was estimated using PFC test for all 37 flocks. Details of the samples collected 
pre- and post-vaccination are presented in Appendix C. 

3.1. Pre- and post-vaccination prevalences 
Model I had a lower DIC (335.43) than the two other variants tested (DIC for Model II 

= 369.94, and DIC for Model III = 335.76).  Moreover, Model I was simpler so it was preferred 
over Model III although their DICs were similar. Hence Model I was selected for all results 
presented in this paper. 

Inferences for pre- and post-vaccination prevalences are presented in Table 2 and 
Figure 3a. The median pre-vaccination prevalence was 2.72% (1.40, 6.86%) which declined to 
0.72% (0.39, 1.27%) post-vaccination. The percent decrease in prevalence was estimated to 
be 73.4% (95% PI: 42.0, 90.2%). The posterior probability that the median pre-vaccination 
prevalence exceeded the median post-vaccination prevalence was almost one, indicating 
that we could be virtually certain that the median post-vaccination prevalence was lower 
than the median pre-vaccination prevalence.  

To examine the spread of the prevalence distribution, we estimated 90th percentiles 
of the pre- and post-vaccination prevalences. The results suggest that 90% of the flocks had 
prevalences lower than 3.16% after vaccination, whereas the same proportion of flocks had 
prevalence lower than 16.04% before vaccination. However, 30 of the 37 flocks were still 
shedding MAP post vaccination. 

We also calculated the proportion of flocks with prevalence greater than 2% and 5% 
pre- and post-vaccination of the 37 flocks. Pre-vaccination, 16 flocks (43.2%) had prevalence 
greater than 2% while 12 (32.4%) had prevalence greater than 5%. Post-vaccination, 
however, four flocks (10.8%) had prevalence greater than 2% and one flock (2.7%) had 
prevalence greater than 5%.  
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Table 2. Posterior estimates for pre- and post-vaccination prevalences from the primary analyses (Model I) as well as from the sensitivity 

analyses.  

Parameters  Results from the primary analyses (Model I)  Results of sensitivity analysis 

After increasing prior AGID sensitivity 

estimates by 20% 

After reducing prior PFC sensitivity estimates 

by 20% 

Median (%) 95% PI Probability
1
  Median (%) 95% PI Median (%) 95% PI 

Median Prevalence         

Pre-vaccination 2.72 (1.40, 6.86%)   2.76 (1.40, 7.48%) 3.42 (1.64, 9.61%) 

Post-vaccination  0.72 (0.39, 1.27%)   0.73 (0.39, 1.29%) 0.81 (0.42, 1.52%) 

Difference 1.99 (0.64, 6.00%) 0.999  2.01 (0.65, 6.64%) 2.59 (0.79, 8.68%) 

90th Percentile of prevalence          

Pre-vaccination 16.04 (5.79, 58.33%)   16.54 (5.78, 62.40%) 22.09 (7.19, 71.04%) 

Post-vaccination  3.16 (1.59, 10.29%)   3.14 (1.58, 10.49%) 3.85 (1.82, 15.3%) 

Difference 12.40 (1.53, 54.01%) 0.987  12.85 (1.66%, 57.81%) 17.44 (1.63, 65.49%) 

1
Posterior probability that the difference is positive; 95% PI: 95% probability interval; AGID: agar gel immunodiffusion test; PFC: pooled faecal 

culture. 
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Figure 3. (a) Pre-and post-vaccination median prevalences. (b) Priors and posteriors for 

agar gel immunodiffusion test (AGID) and pooled faecal culture (PFC) sensitivities used 

for analysis of pre- and post-vaccination data. 

 

3.2. Sensitivity and specificity estimates 
Priors and posteriors for sensitivity of AGID and PFC are shown in Figure 3b. The 

results suggest that posterior estimate of PFC sensitivity was higher than the inputted prior 
PFC sensitivity, but posterior estimate of AGID sensitivity was lower than the prior estimate. 
Posterior estimates of sensitivities and specificities are summarised in Table 3.  

3.3. Sensitivity analyses 
Sensitivity analyses produced minor to moderate changes in prevalence estimates 

after modification of prior estimates (Table 2). When AGID sensitivity estimates was 
increased by 20%, the pre-vaccination and post-vaccination prevalence estimates remained 
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almost stable but the reduction in prior PFC sensitivity estimates resulted in a greater 
change.  

 

Table 3. Posterior estimates for sensitivities and specificities of agar gel 

immunodiffusion test and pooled faecal culture based on Bayesian analyses. 

Parameters  Median 95% PI 

Agar gel immuno-diffusion test (AGID)   

Sensitivity 0.12 (0.04, 0.30) 

Specificity 0.997 (0.995, 0.999) 

Pooled faecal culture test (PFC)   

Sensitivity 0.77 (0.66, 0.88)  

Specificity 0.994 (0.989, 0.998) 

 

Allowing for the post vaccination prevalence distribution to be a mixture of two logit 
normal distributions (Model IV) did not improve model fit as the DIC increased to 338.25. 

4. Discussion 
Following the registration of Gudair™ vaccine in April 2002, OJD control in Australia 

has largely relied on voluntary vaccination and biosecurity, the latter facilitated by producer 
awareness of disease risk at trading (Windsor, 2006; Eppleston et al., 2011).  This risk-based 
trading approach is a farmer self-declaration system for OJD risk and involves vendor 
declaration in a national Sheep Health Statement when sheep are sold, with allocation of 
Assurance Based Credit (ABC) points for the key risk factors in the spread of OJD (AHA, 
2010). Each credit represents an approximate 4-fold decrease in the risk that the sheep are 
infected, with up to 4 of the 12 ABC points available being allocated for approved 
vaccination. This programme aims to encourage flock owners to commence vaccination 
programmes as a precaution to improve their ability to sell re-stocked sheep through the risk 
based trading ABC scheme. Given the emphasis on vaccination in control of OJD, it is obvious 
that the industry needs credible evidence for effectiveness of vaccination (Windsor, 2006), 
particularly over time when losses due to OJD are less apparent in vaccinating infected flocks 
(Eppleston et al., 2011). 

Our study aims to provide information on the decline in OJD prevalence following 
the introduction of a vaccination strategy in flocks with varying disease prevalence. It is 
based on a convenient sample of flocks as it was considered sensible to utilise commercial 
flocks that had been vaccinating for five or more years. A randomised controlled clinical trial 
– as conducted in the initial evaluation of the vaccine in Australia when mortalities were high 
(Reddacliff et al., 2006) – would have been an ideal for evaluating effectiveness of a vaccine, 
but it is difficult to implement in current real-life on-farm situations. It would be almost 
impossible to ask farmers to agree on not vaccinating sheep for 4-5 years for OJD, 
particularly, if they have high disease prevalence.  

However, this convenience sampling did introduce a number of sources of variation 
in the study. Firstly, selection of farmers who had high willingness to participate in the study 
may have caused some selection bias towards flocks that have better management 
practices. Therefore, the effectiveness of vaccine could be different (lower or higher) in 
farmers with poorer biosecurity and management. Secondly, variation in prevalence 
estimates within and between flocks could in part be due to other biosecurity and 
management factors. These have been investigated based on crude classification of 
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prevalences and reported elsewhere (Windsor et al., 2011). Further analyses are required to 
investigate the effect of these factors based on objective prevalence estimates determined 
in this study. Thirdly, different tests or combination of tests were used pre- and post-
vaccination and the tests used different reference units (individual animal for AGID and a 
pool of faeces for PFC). The differences in use of diagnostic tests partly reflected the 
emergence of PFC as a test of choice in Australia as it replaced the previously preferred test, 
the AGID (Reddacliff et al., 2006). This necessitated the use of Bayesian approach which 
accounted for these uncertainties and allowed us to calculate and objectively compare true 
prevalence after adjusting for these differences in diagnostic tests. Fourthly, different 
animals tested pre- and post-vaccination and passage of variable time interval since pre-
vaccination testing could also have biased our results. Both of these sources of variation 
could not be avoided due to selection of convenience sample. It is acknowledged that these 
could have biased our estimates of median prevalences, despite the estimates being 
adjusted for variation in diagnostic test performances. However, the estimated differences 
in median prevalences pre- and post-vaccination should be reflective of what they would 
have been, if random samples of flocks had been taken.  

One of the other perceived limitations of the Bayesian approach is the potential use 
of subjective prior information which could impact the final results. However, all of our 
priors were based on previously published research or analysis of available data. We made 
substantial efforts in eliciting the prevalence prior distribution for the enrolled flocks by 
analysing abattoir surveillance data for many of the flocks in the study. This enabled 
improved estimates of the pre- and post-vaccination prevalences in various flocks, 
contributing to a superior evaluation of the effectiveness of vaccination in reducing 
prevalence. 

We further conducted sensitivity analyses to evaluate the effect of priors and 
determined that change in PFC prior estimates had a greater influence on the model than 
changing AGID prior estimates. It suggests that our prevalence estimates could be slightly 
biased if the PFC sensitivity information is incorrect.  

It is expected that there might be correlation between pre and post-vaccination 
prevalences for the same flocks. Therefore, we considered two models that allowed for this 
possibility, and one that assumed independence.  However, one of these models was found 
to be considerably inferior to the independence model, and the second was slightly inferior 
to it according to the DIC (Spiegelhalter et al., 2002).  We thus presented the results of only 
the independent model in this paper (Model I).  Although statistically speaking, there was a 
clear preference for the independence model, yet the inferences were quite similar 
regardless of whether we used dependence or independence model. A possible explanation 
for the lack of dependence is the period of time between pre and post vaccination was 
somewhat large (more than 5 years).  It is well known that correlation diminishes with time.  
For example, milk yield observations of a cow would be highly correlated if taken in a 
particular week than if taken six months apart.  Secondly, completely different animals 
tested at each farm pre- and post-vaccination could have influenced correlation. 

Interestingly, some of the flocks had moderate to large counts of positive pools post-
vaccination, indicating that vaccination may not have been effective for those flocks. It 
suggests that the post-vaccination prevalence distribution may be a mixture of two 
distributions. Further investigation into this aspect of the data was done by allowing for the 
post vaccination prevalence distribution to be a mixture of two logit-normal distributions 
rather than a single unimodal distribution (Model IV). However, this model was not found to 
be better than the simpler model based on the DIC criterion.  

Based on the results of Model I presented here, the median prevalence reduced 
from a pre-vaccination level of 2.72% to a post-vaccination level of 0.72%, indicating the 
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effectiveness of the vaccination in reducing MAP shedding. The Bayesian 95% credible 
interval was (0.64%, 6.0%) meaning that we are 95% sure (after seeing the observed data) 
that the median prevalence among flocks at pre-vaccination would be between 0.64% and 
6.0% larger than the median prevalence in flocks post-vaccination. Although a non-random 
sample of sheep flocks was obtained, we have no reasons to believe that these sheep flocks 
are substantially different from other fine wool Merino flocks in Australia. Therefore, we 
believe that the reduction in prevalence would be similar in the broader sheep population to 
what was observed in this study. However, please note that despite the median prevalences 
being different, there could be some flocks having lower or similar prevalence pre-
vaccination than at post-vaccination. 

However, sheep in 30 of the 37 flocks were still shedding MAP organisms in their 
faeces. This suggests that despite a rapid decrease in OJD mortality in flocks following the 
commencement of a vaccination programme, shedding of MAP persisted for at least five 
years in a majority of flocks and that many of the flocks have shedding at rates that would be 
of concern if sheep were being traded from these flocks or vaccination ceased. Similar were 
the findings of  a longitudinal observational study, which found that vaccinates had 
significantly lower prevalence of shedding than unvaccinated sheep but 10 of the 11 flocks 
had sheep with detectable shedding (Windsor, 2006). Further, in 6 of 7 flocks where 
vaccination ceased in wethers but not ewes, shedding rates significantly increased in the 
wether cohort (Eppleston et al., 2011). These studies provide evidence that long term 
vaccination is required to suppress the risk of OJD infection spreading or recrudescing in 
infected Australian sheep flocks.   

It must be noted that many of our flocks in this study had a low pre-vaccination 
prevalence. Effectiveness of the vaccine is likely to be better in flocks with higher 
prevalence, as found previously.  For example, a study conducted in three heavily infected 
flocks found that vaccination delayed the onset of faecal shedding of MAP by 12 months, 
and reduced the prevalence of shedders by 90% compared to unvaccinated lambs 
(Reddacliff et al., 2006).  Another investigation conducted on seven heavily infected farms 
demonstrated persistence of shedding but with a significant decline in the mean flock 
prevalence (Eppleston et al., 2005).  

 

Conclusions 

The results confirms that a Bayesian approach can be successfully used to calculate 
and objectively compare true prevalence when apparent prevalence estimates from 
inconsistently used diagnostic tests are available. Moreover, information from multiple 
sources can be incorporated in a cohesive Bayesian model as illustrated by the use of data 
from abattoir surveillance to elicit prevalence priors. The results also suggest that 
vaccination with GudairTM is usually effective in reducing prevalence of shedding but the 
response to vaccination is variable between flocks and that long-term vaccination is required 
to reduce the risks of disease spread or recrudescence. It appears that in the study area 
annual vaccination of lambs with GudairTM for as long as five years is unlikely to prevent the 
spread of OJD associated with sale of sheep.  
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Appendix A: Analysis of abattoir surveillance data to elicit priors for prevalences 
 
A1. Model for analysis of abattoir surveillance data  

The abattoir surveillance involves determination of lesion status of sheep at 
slaughter for samples of animals from given flocks.  Data for abattoir surveillance were 
available from 25 of the flocks in the current study. Thus for each flock, there is a binomial 
count of the number of animals with detected lesions.  These counts have a probability of 
being positive that is formulaically just like our previous ones: 

    

 

where  are number of lesion positive animals of the total number of samples 

tested  for a flock ;   is the apparent animal-level OJD prevalence of lesions in flock 

  is again the true animal-level OJD prevalence, now for the  flock in this sample; and 

 is the sensitivity and  the specificity of lesion detection.   

In addition, for each flock, a certain proportion, prop, of the observed lesions among 

those that were lesion positive (L+) were re-tested using histopathology ( .  The counts 

of histopathology positive ( ) results are again binomially distributed with 

probability ): 

 

 

 

where   is the sensitivity of a sample being histo-positive given that it lesion-positive. The 
(augmented data) likelihood function for this analysis combines binomial contributions from 
the lesion surveillance and binomial contributions from the histopathology results.   

The true animal-level prevalences  across flocks were modelled as independent 

and sampled from a  distribution, as was done in (Hanson et al., 2003).  Briefly, 

the mean , and variance  for this distribution are related to  as: 

 

 

where . So the mean, , is the average prevalence among the super population 

of flocks, and the standard deviation,  is large if ψ is small, and is small if ψ is 

large.   For example, if  and , then , we obtain a 
distribution that has 95% of the prevalences between 3% and 48% and a standard deviation 

of 0.12, whereas if we leave the mean alone and let , we obtain a prevalence 
distribution with 95% of the prevalences between 16% and 24% and a standard deviation of 
0.02. 

A2. Priors for analysis of abattoir surveillance data  

  Uncertainty about sensitivity and specificity for abattoir surveillance and for 
histopathology was modelled with independent Beta distributions which were elicited from 
previous published research (Bradley and Cannon, 2005; Dennis et al., 2011). Bradley and 
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Cannon (2005) estimated sensitivity of abattoir surveillance to be 52.5%, 74.1%, and 87.3%, 
for three inspectors. We calculated an average value of sensitivity and adopted it as a mode 
for the Beta prior distribution. Our estimate for the lowest value of sensitivity (5th percentile 
= 0.4) was based on the lowest 95% confidence interval for sensitivity reported in the paper 
(0.44). Similarly, our prior for surveillance specificity was based on the reported specificity of 
97 to 100% in the paper (Table A.1).  

 

Table A.1. Priors for sensitivities and specificities for abattoir surveillance and 

histopathology used for analysis of abattoir surveillance data. 

Priors Input values  Prior distributions
2
 Source of priors 

  Mode 

Lower/ 

Upper
1
   a b Mean (95% PI)   

Abattoir surveillance         

Sensitivity (  0.70 0.40  6.33 3.28 0.66 (0.35, 0.90 ) Bradley and  

Cannon (2005) Specificity (  0.98 0.95  151.7 4.08 0.97 (0.94, 0.99) 

Histopathology         

Sensitivity (  0.65 0.40  7.98 4.76 0.63 (0.36, 0.86) Dennis et al (2011) 

Specificity (  0.995 0.99  1137.5 6.71 0.99 (0.99, 1.00) (Same as PFC) 

1
Lower 5% limits were elicited for sensitivity and specificity estimates except for abattoir 

surveillance sensitivity for which the upper 95% limit was incorporated because the mode 

was less than 0.5); 
2
a and b are parameters of the respective beta probability distributions. 

 

Dennis et al. (2011) reported results of an investigation conducted to describe 
changes in infection status and enteric lesions of sheep naturally exposed to MAP. In this 
study, histopathological lesions could be detected only from 30 of the 46 infected sheep 
indicating a sensitivity of about 65%, which was used as a mode in forming a prior Beta 
distribution prior for histopathology sensitivity (Table A.1).  We assumed the lower 5% value 
of sensitivity to be the same as for abattoir surveillance (Table 1). 

Analysis  of the abattoir data was also performed in WinBUGS using priors for the 

mean of the prevalence distribution, , from previous work (Dhand et al., 2010), and using a 
non-informative prior for ψ (Table A.2). 

 

Table A.2. Priors for prevalence distributions for analysis of abattoir surveillance 

model: .  

Parameters Input values Priors Source of priors 

  Mode Upper
1
    

µ 0.16 0.70  Dhand et al (2010) 

ψ - - 
 2
 Vague 

1
Upper 95% limit for prevalence; 

2
Vague prior on dispersion parameter of prevalence 

distribution. 
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We note that these priors were used for analysis of abattoir surveillance data, where 
the output, in particular the mean and 95th percentile of the estimated prevalence 
distribution, was then used to form priors for the pre-vaccination OJD prevalence (Figure 1). 

A3. Results of analysis of abattoir surveillance data: 

The mean for the posterior distribution for  based on abattoir surveillance was 
estimated to be 0.08, and the corresponding 95% probability interval (PI) was (0.044, 0.14), 
meaning that we are 95% sure, after seeing these data, that the mean prevalence would be 
in this interval. However, we wanted to be conservative, so we selected 0.3 instead of 0.14 
to be the 95th percentile for our prior on the median prevalence for conducting principle 
analyses reported in the manuscript.  

Prior and posterior distributions for , shown in Figure 3a, indicate that the 

posterior was well supported by the prior. Priors and posteriors for sensitivity of abattoir 
surveillance and histopathology shown in Figure 4 suggest that posterior sensitivity of 
abattoir surveillance was similar to the prior sensitivity but posterior sensitivity of 
histopathology was inferred to be higher than under the posterior than under the prior. 
Posterior estimates of sensitivities and specificities are summarised in Table A.3.  

  

 

 

Figure 4. Comparison of prior and posterior distributions for analysis of abattoir surveillance 

data. (a) Mean prevalence (b) Sensitivity and specificity of abattoir surveillance and 

histopathology. 

Table A.3. Posterior estimates for sensitivities and specificities of abattoir surveillance 

and histopathology based on analysis of abattoir surveillance data. 

Test Median 95% PI 

Abattoir surveillance   

Sensitivity (  0.71 (0.49, 0.91) 

Specificity (  0.998 (0.997, 0.999) 

Histopathology   

Sensitivity (  0.78 (0.69, 0.86) 

Specificity (  0.998 (0.997, 0.999) 
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Table A.4. Number of samples tested (and positive) for agar gel immunodiffusion test 

(AGID) and pooled faecal culture (PFC) test, pre- and post-vaccination. 

Farm 

  

Pre-vaccination  Post-vaccination 

# of positive 

AGID tests 

Total # of 

AGID tests 

# of 

positive 

pools 

Total # 

of pools 

tested 

  # of 

positive 

pools 

Total # 

of pools 

tested 

A. Flocks tested with AGID pre-vaccination and PFC post-vaccination 

1 1 467 - -  0 7
 a
 

2 8 449 - -  1 7 

3 4 450 - -  4 8 

4 29 900 - -  3 7 

5 2 522 - -  2 7
a
 

6 2 848 - -  3 7 

7 2 454 - -   2 7 

B. Flocks tested with PFC both pre- and post-vaccination 

8 - - 6 7  1 7 

9 - - 2 7  1 7 

10 - - 3 7  3 7 

11 - - 3 11  2 7 

12 - - 5 7  0 7 

13 - - 1 7  0 7 

14 - - 7 7  1 7 

15 - - 3 7  1 8 

16 - - 5 7  1 7 

17 - - 5 10  1 7
 a
 

18 - - 4 10  1 7 

19 - - 19 19  6 7 

20 - - 9 10  1 7
 a
 

21 - - 2 7  2 7 

22 - - 3 14  5 7 

23 - - 1 7  5 7 

24 - - 6 7  3 7 

25 - - 0 7  0 7 

26 - - 3 7  1 7 

27 - - 3 7   4 8
 a
 

C. Flocks tested with both AGID and PFC pre-vaccination but PFC post-vaccination 

28 0 450 1 1  0 7 

29 4 217 3 3  2 7 

30 1 957 6 20  4 7 

31 3 678 8 10  1 8 

32 0 50 4 7  7 7 

33 1 1 4 7  0 7 

34 0 34 1 4  3 7 

35 1 130 2 7  1 7 

36 0 50 1 7  0 7 

37 11 644 4 7  3 7 
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a
 At least one of the pools was of a size different than 50, i.e. contained pellets from less than 

50 sheep. 
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Appendix B: Estimation of values of a, b and c for prevalence priors 

The logit-normal (LN) model for prevalences is specified as:  or 

. We show here how we elicited priors for . The ideas behind 
this specification can be found in Christenson et al. (2010). 

Let  be the  percentile of the LN distribution and  the  percentile of the 

standard normal distribution, and  the  percentile of the  distribution. So 

if , then . Note that  

since .  Then we can derive  by noting that: 

 

 

 

Thus,  

 

Then the median of the LN distribution is  

 

and the 95th percentile of the LN distribution is 

 

So half of the prevalences in the population of prevalences are less than  and 95% of them 

are less than . 

We place independent priors on  and  .  We first focus on specifying a prior for .  We 

specify  so we need to induce real prior information to determine  and .  It 

is easiest to think about the median prevalence  .  Since  , it is clear that if our 

best guess for  is say , then our best guess for  is simply: 

, 

where  is the same as . 

In addition, if we are 95% sure that   then we are equivalently 95% sure 

that .  We thus equate: 

 

Solving for , we obtain: 

 

So we have completely specified our prior for .   

Now we need a prior on .  We will place a Uniform (0, c) prior on .  We need some idea 

about how to pick c.  We do this by thinking about  , which is the 90th  
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percentile of the prevalence distribution.  Thus 90% of all prevalences are less than this 
number.  We want to pick a value, say max, such that we are virtually 100% certain that this 

value cannot exceed, given our prior guess .  So we write 

 

But this is equivalent to:  

  

Thus we are 100% sure that . 

Appendix C. 

See Table A4.  

Appendix D. Supplementary data 

Supplementary data associated with this article can be found, in the online version, at  
http://dx.doi.org/10.1016/j.prevetmed.2013.03.003. 
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