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Abstract

Now we are in a world saturated with data and information, and numerous quan-

titative methods for financial risk management are proposed and used by many

financial research institutions and organizations within recent years. Quantitative

financial risk measurement is now a fundamental tool for investment decisions,

capital allocation and external regulation. The Global Financial Crisis (GFC) has

once again emphasized the importance of accurate risk measurement and predic-

tion for financial organizations, which require accurate volatility estimation and

forecasting.

The intra-day range has been frequently used in the literature and proven its supe-

riority compared to return in volatility estimation and forecasting. Furthermore,

high frequency econometrics has been gaining more popularity in the last decade

and has developed into a major area in econometrics, driven by the increasing

availability of high frequency data and algorithm-based high frequency trading in

seconds or even milliseconds. The data recorded on a high frequency level con-

tain much more information than the conventional daily financial data, and thus

the volatility measures calculated based on high frequency data are much more

efficient than the daily return and range.

In this thesis, we aim to develop a series of volatility and tail risk models employing

intra-day and high frequency volatility measures. Firstly, the Realized GARCH

framework is extended to incorporate the realized range, as potentially more ef-

ficient series of information than realized variance. Furthermore, we propose an

innovative sub-sampled realized range and also adopt an existing scaling scheme,

in order to deal with the micro-structure noise of the high frequency volatility mea-

sures. In addition, a Bayesian estimator is developed for the Realized GARCH

type models, and presents favourable results compared to the frequentist estima-

tor. Through empirical studies on various market indices that consider predictive

likelihoods as well as 1% VaR and ES forecasting, results clearly indicate that

the realized range and sub-sampled realized range in a Realized GARCH frame-

work, with Student-t errors, lead to more accurate volatility and predictive density

forecasts.

Further, a new framework called Realized Conditional Autoregressive Expectile

(Realized CARE) is proposed, through incorporating a measurement equation into
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the conventional CARE model, in a manner analogous to the Realized GARCH

model. The intra-day range and realized measures (e.g. realized variance and

realized range, etc.) are employed as the dependent variable in the measurement

equation. The measurement equation here models the contemporaneous depen-

dence between the realized measure and the latent conditional expectile. In ad-

dition, a targeted search based on a quadratic approximation is proposed, which

improves the computational speed of estimation of the expectile level parameter.

Bayesian adaptive Markov Chain Monte Carlo methods and likelihood-based fre-

quentist methods are proposed for estimation, whilst their properties are compared

via a simulation study. Furthermore, the methods of sub-sampling and scaling are

applied to the realized variance and realized range, to help deal with the inher-

ent micro-structure noise of the realized volatility measures. In a real forecasting

study applied to 6 market indices and 3 individual assets, compared to the origi-

nal CARE, the parametric GARCH and Realized GARCH models, one-day-ahead

Value-at-Risk and Expected Shortfall forecasting results favor the proposed Real-

ized CARE model, especially the Realized CARE model incorporating the realized

range and the sub-sampled realized range.

Finally, we propose a new intra-day volatility estimator named signed range, which

incorporates open, high and low prices for its calculation. A high frequency simula-

tion study is conducted to analyze the relationship between signed range volatility

and return volatility. An adaptive MCMC is developed for the parameter estima-

tion and is compared with the maximum likelihood approach through simulation

study. Then we propose the symmetric and asymmetric Conditional Autoregres-

sive Signed Range (CARSR) type models, and the proposed models demonstrate

their superiority compared to GARCH and Conditional Autoregressive Range

(CARR) models in the 1% VaR and ES forecasting study.
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Chapter 1

Introduction

1.1 Financial risk measurement and forecasting

In recent decades, quantitative financial risk measurement has become a funda-

mental tool for investment decisions, capital allocation and external regulation.

Steinherr (1998) proposed that risk management is one of most important inno-

vations of the 20th century. From the perspective of financial risk, risk refers to

an action that will adversely affect a company’s capability of achieving its goals

and implementing its business strategies, and risk can be quantified or expressed

as the probability of loss or much less than expected returns (Dorfman, 2007).

In addition, quantitative financial risk measurement has become a fundamental

tool for investment decisions, capital allocation and external regulation, etc (En-

gle and Manganelli, 2004). Furthermore, the Global Financial Crisis (GFC) in

2008 has once again emphasized the importance of accurate risk measurement and

prediction for financial organizations. After the famous ’Black Monday’ in 1987,

on which a major stock market crash happened, the G-10 group agreed to set up

and form the original Basel Capital Accord in 1988, in order to better control

financial risk of financial institutions and protect them from unexpected financial

losses (Chen and Gerlach, 2013). However, the financial crisis continued to occur

in the 1990s, such as Orange Country lost 1.6 billion dollars in 1994, the Barings

Bank’s 1.4 billion money loss in 1995, etc (Chen et al., 2011). All these financial

crises and losses forced the market regulators and financial market risk assessment

institutions to establish a new benchmark for financial risk measurement. Then

1



Chapter 1. Introduction 2

Value-at-Risk was introduced and established in 1993 by JP Morgan to describe

and measure daily financial risk.

1.2 Value-at-Risk and Expected Shortfall

The 2008 GFC challenged market participators’ risk management abilities and

brought into question of financial risk management methods and practice. More

and more worldwide financial institutions and corporations now employ Value-at-

Risk (VaR) to assist their decisions on capital allocation and risk management.

The G30 Group published a report named ”Derivative Products Practices and

Rules” in 1993 and proposed VaR as a measurement tool to evaluate the market

risk. J.P. Morgan introduced and presented VaR in the RiskMetrics model at

1993, as a part of the ”Weatherstone 4:15pm” daily risk assessment report (Jorion,

1996). Value-at-Risk is a quantitative tool to measure and control financial risk. It

represents the market risk as one number and has become a standard measurement

for capital allocation and risk management of financial institutions. There are

three basic approaches to compute VaR: non-parametric; semi-parametric and

parametric, although there are numerous variations within each approach.

As a commonly used financial risk measurement, Value-at-Risk (VaR) summarizes

risk through a single number. VaR refers to: under the normal fluctuation con-

ditions in the market, the maximum possible loss of a financial asset or portfolio

at probability level α. More precisely, VaR means the maximum possible loss of

a financial asset or portfolio value within a specific period of time in the future,

under a certain probability (confidence level) (Jorion, 1996). From perspective of

statistics, VaR is just a number, shows the value under risk facing a ”normal”

market volatility state. It illustrates the amount of the maximum expected loss

(which can be an absolute value, may also be a relative value), within a given

confidence level and a certain holding period. For example, for a combination of

securities held by an investment company within the next 24 hours, under the

confidence level of 95%, in the case of normal fluctuations in the securities mar-

kets, the VaR value is 1 million dollars. It means the probability of the company

portfolio’s maximum loss being more than 1 million dollars is 5% in one day (24

hours), due to changes in the market price, which demonstrates this situation is

likely to emerge once on average every 20 trading days. In another way, we have

95% certainty to say that the loss of this investment company within the next
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trading day is less than 1 million dollars. 5% reflect the risk aversion level of the

managers of financial assets, which can be decided according to different investors’

degree of risk appetite and affordability.

However, VaR has been criticised, because VaR only considers the distribution

quantile and ignores the extreme loss beyond the VaR level. Expected Shortfall

(ES), which was proposed by Artzner et al. (1997, 1999), gives the expected loss

conditional on returns exceeding a VaR threshold. There, by definition, ES does

give the expected loss (magnitude) conditional on exceeding a VaR threshold and

is coherent and has been used widely for tail risk measurement. Both VaR and

ES are recommended tail risk measures in the Basel III Capital Accord, thus they

are both included in the thesis as the tail risk measures.

1.3 Parametric and non-parametric volatility

modelling

Volatility is an important characteristic of financial time series (Engle, 1982), thus

a key aspect of parametric VaR or ES measurement is return volatility estimation.

Statistically speaking, volatility equals to the square root of conditional variance

for the given past:

σt =
√
V ar(rt)|Ft−1

Where Ft−1 stands for the available information before time t. For the financial

time series, there is sufficient empirical evidence to show that the financial returns

are fat-tailed and negatively skewed, and has conditional heteroscedastic property.

Thus the traditional mean and variance time series model cannot describe and

capture daily assets returns properly. Models of conditional heteroskedasticity

for time series have become an increasingly hot research field in today’s financial

risk management field. Engle (1982) proposed the most popular and well known

volatility models: autoregressive conditionally heteroscedastic (ARCH) model, and

Bollerslev (1986) presented the generalized ARCH (GARCH) model. The GARCH

(1,1) is specified as Model (1.1). These models consider heteroscedastic property

of the financial time series in the model forecasting update equation. Till recently,

ARCH and GARCH models are recognized as one of the most important class for
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financial time series analysis as it has the ability to capture the commonly observed

change in variance of the observed stock index or exchange rate over time.

rt = µ+ σtεt = µ+ at, (1.1)

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1,

where rt stands for the return for day t, εt
i.i.d.∼ D1(0, 1). α1 is the news parameter

and β1 is the decay parameter. The parameters in this model should satisfy α0 > 0,

α1 > 0 and β1 > 0 to guarantee that σ2
t > 0. α1 + β1 < 1 is required to ensure

that σt is stationary.

Ghysels et al. (1996) pointed out some important features of volatility which play

a crucial role in predicting model construction and selection, such as heavy tails,

asymmetric effect, volatility clustering. Besides, numerical works show that the

shape of daily return distribution is fat-tailed and skewed. Thus the Gaussian dis-

tribution cannot describe the financial time series conditional return distribution

properly. In order to capture the daily return distribution’s fat-tail and skewness

property, different GARCH models are applied with diverse error distributions to

overcome these problems, such as Student-t, Two-sided Weibull (Chen and Ger-

lach, 2013), Asymmetric Laplace (Chen et al., 2011). The Exponential GARCH

model (Nelson, 1991) and GJR-GARCH model (Glosten et al., 1993) were pro-

posed in order to capture the well-known leverage effect. Furthermore, substantial

variants of GARCH volatility models are proposed, such as Integrated GARCH

(IGARCH, Engle and Bollerslev (1986)), Threshold GARCH (TGARCH, Zakoian

(1994)) and Double Threshold GARCH (DTGARCH, Li and Li (1996)).

However, the performance of parametric GARCH type models heavily depend

on the choice of error distribution. A semi-parametric model named Conditional

Autoregressive Expectile (CARE) was proposed by Taylor (2008). The expectile

can be estimated with Asymmetric Least Square (ALS), then it is transformed

into ES through a connection between expectile and ES (Newey and Powell, 1987).

Gerlach, Chen and Lin (2012) developed non-linear family of the CARE model and

the Bayesian estimation framework. Further, Gerlach and Chen (2016) extended
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the CARE type models with employing daily high-low range as an input.

1.4 Intra-day and high frequency volatility

measures

The high-low range has been known for a long time and recently was frequently

used as a latent volatility estimator. Based on the assumption that return follows

a Brownian motion with zero drift during the day, Parkinson (1980) derived the

relationship between range and return volatility estimator and proved that range

is a much more efficient and less noisy volatility estimator than return. Garman

and Klass (1980) proposed a volatility estimator that incorporated high, low, open

and close prices, which is even more efficient than range. In addition, an estimator

which allows for arbitrary drift was devised by Rogers and Satchell (1991), and

Yang and Zhang (2000) derived another drift-independent estimator.

Through a proper dynamic structure of the conditional mean of range, Chou (2005)

proposed the conditional autoregressive range (CARR) model, which successfully

demonstrated range’s superiority compared with return in empirical volatility fore-

casting. Brandt and Jones (2006) formulated the range-based EGARCH model

which is analogous to the EGARCH (Nelson, 1991) models, while used the square

root of high-low range to replace the absolute return. The advantages of range

encourage me to test the range related models and also add range into the GARCH

type model to improve the volatility estimation performance. In addition, Chen

et al. (2008) proposed the volatility forecasting using range-based threshold con-

ditional autoregressive model (TARR), which allows us to capture size and sign

asymmetry through a nonlinear specification.

Since nowadays the high frequency and ultra high frequency tick by tick data

are available in a number of databases, a voluminous literature has discussed

about various realized volatility measures. In particular, realized variance (RV)

is rapidly gaining popularity for estimating daily volatility, and it is basically the

sum of squared returns over non-overlapping intervals within a sampling period

(Andersen et al., 2003, and Barndorff-Nielsen and Shephard 2002). Furthermore,

considering the superiority of range with respect to return, a volatility estimator

named realized range (RR) was proposed by Martens and van Dijk (2007) and

Christensen and Podolskij (2007). Empirical analysis demonstrated the potential

and superiority of the realized range. The relative efficiency between realized range
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and realized variance are identical to the result of range square and return square,

which means RR is 5 times more efficient than RV theoretically.

1.5 Bayesian inference

Maximum likelihood (ML) is quite commonly used for the parameter estimation

of the GARCH type model, and is included in most statistical software packages.

Nevertheless, parameter estimation with ML has certain drawbacks. Specifically,

in ML estimation of GARCH type models, constrained estimation is normally re-

quired to ensure the models’ stationarity (e.g. α1 + β1 < 1 for Model (1.1)), and

this can cause problems in the parameters estimation and the standard error cal-

culation (see e.g. Silvapulle and Sen, 2004). This problem can be even severe when

the model becomes more complex, e.g. the Realized GARCH framework (Hansen

et al., 2011). Therefore, the Bayesian methodology is employed for parameter

estimation in this thesis work.

Generally, Bayesian decision theory is a fundamental method in statistical model

of decision-making, and its the basic idea and procedure is:

a. Calculate the conditional probability density expression and select a prior prob-

ability;

b. Use the Bayesian formula to convert the conditional and prior probability into

posterior probability;

c. Make classification decisions according to the result of the posterior probability.

Basically, the Bayesian model is a probability model that consists of a likeli-

hood function and a prior distribution. Firstly, denoting samples of size t as

y = (y1, y2, . . . , yt), and m parameters need to be estimated as θ = (θ1, θ2, . . . , θm),

the Bayes’ rule is presented in Equation (1.2). P (θ|y) is the posterior distribution.

P (y|θ) is the likelihood function, and P (θ) is the prior distribution. In Bayesian

inference, we start with the prior distribution for parameter θ that will be esti-

mated. Before seeing the data, the prior distribution demonstrates our degree of

belief about unobservable parameter θ. Then our degree of belief of parameter θ

can be updated through Bayesian calculation (posterior probability) after seeing

the data.
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P (θ|y) =
P (θ)P (y|θ)

P (y)
∝ P (θ)P (y|θ) (1.2)

Inference and estimation of Bayesian approach may require advanced Bayesian

computation methods. Markov Chain Monte Carlo (MCMC) scheme is a Bayesian

inference method that is well established and widely used. MCMC firstly con-

structs a Markov Chain that contains a sequence of unobservable parameters

θ1,θ2, . . .θn. In MCMC scheme, the next state θn+1 is sampled from one step

ahead conditional probability P (θn+1|θn), which forms a Markov Chain. After

running MCMC sampling scheme for required iterations, the estimated parameter

θ can be approximated by the posterior mean (Gilks, 2005).

1.5.1 The Metropolis algorithm

Introduced by Metropolis et al. (1953), the Metropolis algorithm works quite

efficiently, while it requires a symmetric proposal distribution, meaning g(θa|θb) =

g(θb|θa). The process of Metropolis algorithm is:

a. Choose θ1 as the starting value of the algorithm, which may be a choice based

on previous experience or just a random guess, or a random draw from a particular

distribution),

b. then for i = 1, 2, . . . , N , draw a candidate sample θ∗ (or called proposed sample)

from a symmetric proposal distribution g(θ),

c. Calculate the acceptance probability as:

Ai = min

{
1,

p(θ∗|y)

p(θi−1|y)

}
(1.3)

d. Draw a threshold value Bi from a uniform distribution [0, 1], and compare Ai

and Bi. If Ai > Bi, accept proposed sample and set θi = θ∗; otherwise, discard

the proposed sample and set θi = θi−1

e. The N proposed and accepted samples θ1,θ2, . . . ,θN will converge to the target

distribution p(θ|y), and their average can be then used as the parameter estimates.

1.5.2 The Metropolis Hastings algorithm

The basic Metropolis algorithm requires the proposal distribution to be symmetric,

while Hastings (1970) proposed an improvement on this technique and shows that
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proposal distribution g does not need to be symmetric. Therefore, the Metropo-

lis Hastings (MH) algorithm is generalised version of the Metropolis algorithm

and is used more frequently in reality since the less restrictions on the proposal

distribution.

The implementation process of the MH algorithm is similar to that of the Metropo-

lis algorithm, but the acceptance probability is slightly modified. Specifically, step

c. in the Metropolis algorithm is modified for the Metropolis Hastings algorithm

as following:

Ai = min

{
1,
p(θ∗|y)g(θ)i−1

p(θi−1|y)g(θ∗)

}
(1.4)

As can be seen, the proposed distribution density value with proposal samples

and accepted samples are included in the acceptance probability calculation. In

addition, the acceptance rate, which is ratio between the number of accepted

proposed sample and the total number of proposed samples, is an important metric

to evaluate the quality of the Metropolis or MH algorithms, because it measures

the suitability of the proposal distribution. Specifically, a MH algorithm with a

acceptance close to 1 can either indicate the proposal distribution is perfectly close

to the target distribution or indicate the variance of the proposal distribution is

too low, and cannot capture the tails of the target distribution p(θ|y). On the

other hand, if the acceptance rate is close to 0, meaning most of the proposed

samples are discarded, the proposed distribution might be inappropriate or its

variance might be too large.

1.5.3 Adaptive MCMC algorithm

In this thesis work, we employ an adaptive MCMC method, adapted from that

in Contino and Gerlach (2014), extended from work originally in Chen and So

(2006). This algorithm is a two step process. In step 1, also called the burn-in

period, a Metropolis algorithm employing a Gaussian proposal distribution, with

a random walk (RM) mean vector, is utilized for parameters θ to be estimated.

In each iteration of RW Metropolis, the candidate sample is generated from the

random walk kernel, θ∗ = θ+ ε , where ε follows a proposal distribution with zero

mean and changing variance/covariance. The variance/covariance is subsequently

tuned, aiming towards a target acceptance rate of 23.4% (Roberts, Gelman and
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Gilks, 1997). As discussed in Section 1.5.1, step c. decides whether the proposal

samples are accepted. Through the RWM process, we will get the adjusted vari-

ance/covariance and mean of the burnin samples, as initial values of next step of

the algorithm.

In step 2 (the MCMC sampling period), a mixture of three Gaussians proposal dis-

tribution is employed in an ”independent” Metropolis-Hastings (IMH) algorithm.

Proposal samples are drawn from a proposal distribution, and the sample is ac-

cepted or rejected with the probability in Equation (1.4). Afterwards we use the

sample mean as the estimation value of the parameter. After running the loop for

certain number of iterations, we will get the estimation results of each parameter.

The adaptive MCMC algorithm specifications will be discussed in each chapter

separately.

1.5.4 MCMC convergence and efficiency testing

In this thesis, we employ the Gelman-Rubin diagnostic (Gelman et al., 2014)

to diagnose the convergence of the adapted MCMC method. Further, an effective

sample size testing is incorporated to evaluate the efficiency of the MCMC (Gelman

et al., 2014). Firstly, The Gelman-Rubin statistics is calculated as below (for each

parameter):

a. Run m MCMC chains, each with length N . For example, for each of the 8

parameters in the Realized-GARCH-Gaussian-Gaussian frame, we run the adap-

tive MCMC for m = 5 times (each run with random starting values) with burn-in

RWM iterations 15, 000 and IMH iterations n1 = 5, 000.

b. Then we only use the IMH iterations n1 = 5, 000 in each chain for Gelman-

Rubin statistics calculation, since the MCMC posterior mean and RMSE is calcu-

lated based on the IMH results.

c. Supposing ψi,j is the i-th sample in j-th chain (i = 1, . . . , n1; j = 1, . . . ,m),

we can calculate the between-chain (B) and within-chain (W ) variance as below

(similar to a classical ANOVA):
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B =
n1

m− 1

m∑
j=1

(ψ.j − ψ..)2, (1.5)

where ψ.j = 1
n1

∑n1

i=1 ψi,j and ψ.. = 1
m

∑m
j=1 ψ.j. Then

W =
1

m

m∑
j=1

[
1

n1 − 1

n1∑
i=1

(ψi,j − ψ.j)2

]
. (1.6)

d. Compute the estimated marginal posterior variance ˆV ar(θ) for each parameter

as a weighted sum of B and W : n1−1
n1

W + 1
n1
B.

e. The Gelman-Rubin statistics (potential scale reduction factor) can be calculated

as:

R̂ =

√
ˆV ar(θ)

W
(1.7)

The potential scale reduction factor needs to be calculated separately for each

parameter. Intuitively speaking, the convergence of MCMC chain is good when

the chains have “forgotten” their starting values, and the output iterations from

different chains are indistinguishable. Statistically when interpreting the Gelman-

Rubin diagnostic results, Values of R̂ close 1 suggest convergence, while high value

of R̂ (probbaly greater than 1.1 or 1.2), then we should run the MCMC chains

longer to improve convergence to the stationary distribution.

After the diagnostic of the convergence of the MCMC iterations, we can compute

an approximate ”effective number of independent simulation draws”. In order

to calculate the effective sample size, we need an estimate of the sum of the

correlations ρ (refer to Gelman et al., 2014, page 286-287 for details), which is

computed based on between and within chains information. Firstly, we calculate

the variogram Vt at each lag t:

W =
1

m(n1 − t)

m∑
j=1

n∑
i=t+1

(ψi,j − ψi−t,j)2 (1.8)

Then the correlation estimate is computed as:

ρ̂t = 1− Vt

2 ˆV ar(θ)
, (1.9)
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here ˆV ar(θ) is the estimated marginal posterior variance in Gelman-Rubin diag-

nostic. However, since at large values of lag t the sample correlation is quite noisy,

we cannot sum all ρ̂t values to calculate effective sample size. Instead, Gelman

et al. (2014) computed a partial sum, starting from lag 0 and continuing until

the sum of autocorrelation estimates for two continuous correlation estimates is

negative. Then the effective sample size is:

n̂eff =
mn1

1 + 2
∑T

t=1 ρ̂t
(1.10)

here T is the first positive integer for which ρ̂T+1 + ρ̂T+2 is negative.

1.6 Tail risk forecast calculation and assessment

Both Value-at-Risk (VaR) and Expected Shortfall (ES) are recommended tail risk

measures in the Basel III Capital Accord. ES is defined as the expected value

of an r.v. Y , conditional on Y being more extreme than its α-level quantile:

i.e. ESα = E(Y |Y < Qα), where Qα is the quantile of Y . Value-at-Risk is here

defined as the α-level quantile of Y : Qα. Here we consider only α < 0.5 and thus

restrict this work to left-tail or negative risk on long positions, as is standard in

the literature.

We employ Gaussian and Student-t distributions in the proposed models for the

volatility estimation in this thesis work, and the VaR and ES calculations are

calculated differently based on different distributions. For a Gaussian distribution,

the VaR forecasts at give confidence level α = 1% can be calculated as:

VaRα,t = σtΦ
−1(α), t = 1, 2, . . .m, (1.11)

where Φ−1 is the inverse of standardized Gaussian distribution’s CDF, σt is con-

ditional volatility estimated and m stands for the forecasting step. The VaR with

standardized t distribution is calculated as below:

VaRα,t = σtt
−1
ν (α)

√
ν − 2

ν
, t = 1, 2, . . .m, (1.12)

where t−1 is the inverse of Student-t’s CDF with the ν degree of freedom estimated.

The calculation process of ES with Gaussian and t distributions are:
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ESα,t = −σt
φ(Φ−1(α))

α
, t = 1, 2, . . .m, (1.13)

where φ() is the pdf of standard Gaussian distribution.

ESα,t = −σt
(
gν(t

−1
ν (α))

α

)(
ν + (t−1

ν (α))2

ν − 1

)√
ν − 2

ν
, t = 1, 2, . . .m, (1.14)

where gν is the Student-t pdf (McNeil et al., 2005).

While various common tests can be applied to directly assess VaR quantile fore-

casts: e.g. the unconditional coverage (UC) and conditional coverage (CC) tests of

Kupiec (1995) and Christoffersen(1998) respectively, as well as the dynamic quan-

tile (DQ) test of Engle and Manganelli (2004) and the VQR test of Gaglianone et

al. (2011), proper or optimal assessment of a set of ES forecasts is still an issue

under investigation. The most common method applied to assess ES forecasts is

based on the fact that it is a conditional expectation beyond a VaR quantile; an

aspect which can be tested directly or indirectly. The direct test examines the

residuals, observations minus forecast ES level, for data that are violations, i.e.

more extreme than the corresponding VaR predictions, and tests whether these

residuals have mean 0. Since the ES predictions are usually not independent over

time, the residuals are often scaled by predicted volatility, e.g. see McNeil et al.

(2000), or by the predicted VaR levels, as in Taylor (2008).

Following Kerkhof and Melenberg (2004), Chen, Gerlach and Lu (2012) illustrated

how to treat ES forecasts as quantile forecasts in parametric models, where the

quantile level that ES falls at can be deduced exactly. Gerlach and Chen (2016)

further presented that across a range of non-Gaussian distributions, when applied

to real daily financial return data, the quantile where the 1% ES is estimated to

fall was ≈ 0.35%. Nominal levels for ES with various distributions are presented

in Table 1.1. Their approaches are followed to assess and test ES forecasts here,

treating them as quantile forecasts at appropriate quantile levels, as discussed in

Gerlach and Chen (2016), and applying the UC, CC, DQ and VQR tests.

1.6.1 UC and CC tests

The testing process of unconditional coverage (UC) and conditional coverage (CC)

tests of Kupiec (1995) and Christoffersen(1998) are presented now. The uncon-

ditional coverage test is a likelihood ratio test. Supposing in the α = 1% VaR
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Table 1.1: Nominal levels for ES for the Gaussian, Student-t, AL and TW
distributions

δα
α N(0, 1) t∗(10) t∗(6) t∗(4)
0.01 0.0038 0.0036 0.0034 0.0032
ES0.01 -2.665 -3.008 -3.293 -3.692

Sk − t∗(6) Sk − t∗(4) AL TW
0.01 0.0034 0.0032 0.0037 0.0037
ES0.01 -3.365 -3.857 -3.544 -3.433

Note: AL is the Asymmetric Laplace distribution specified in Chen, Gerlach, and
Lu (2012). TW is the two-sided Weibull distribution of Malevergne and Sornette
(2004); δα is independent of the single parameter of the AL; the TW δα is based
on the data employed in Gerlach and Chen (2016).

forecasting empirical study with T steps, we have the number of violations as m1,

and the number of non-violations as m0. Therefore, the violation rate π under

such condition will be m1

m1+m0
. The UC log likelihood ratio test statistics under the

null (of a correct unconditional coverage level) and the alternative hypothesis are:

`UC,H0 = m0 ∗ log(1− α) +m1log(α)

`UC,H1 = m0 ∗ log(1− π) +m1log(π)

The UC log likelihood ratio test statistics is asymptotically χ2
1 and is calculated

as below:

`UC,H0 = 2(`UC,H1 − `UC,H0)
n→∞→ χ2

1

In order to derive the log likelihood ratio of conditional coverage, a test for inde-

pendence comparing two different models for the probability of a violation at time

t needs to be established. This independence test introduces two Bernoulli process,

supposing one is independent with parameter p, and one is a two state Markov de-

pendent process with parameter δij. The log likelihood for the independent model

is:

`ind,H0 = log(pm1(1− p)T−m1)
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With the two-state process dependent model, the likelihood of a violation given

whether or not a violation occurred in the last period is calculated. Denoting

mij =
∑T

t=1(Hitt−1 = i)(Hitt = j), δ̂ij =
mij

mi0+mi1
, and p̂ = m01+m11

T
. Then the log

likelihood of the dependent model is:

`ind,H1 = log[δm01
01 (1− δm00

01 )δm11
11 (1− δm10

11 )]

Now the log likelihood ratio under the null of independence of the violation process

can be calculated as:

LRind = 2(`ind,H1 − `ind,H0)
n→∞→ χ2

1

Finally, the conditional coverage test statistics (the joint test of coverage and

independence) is given by:

LRCC = 2(`ind,H1 − `UC,H0)
n→∞→ χ2

2

1.6.2 DQ test

The dynamic quantile (DQ) test was proposed by Engle and Manganelli (2004).

Both the in-sample and out-of-sample tests are proposed in their paper, while we

only focus on the out-of-sample approach. To begin with, still supposing VaR fore-

casts are generated at given confidence level α, variable Ht with zero expectation

is constructed as below:

Ht = I(rt < V aRt)− α,

where I(rt < V aRt) indicates that it equals to 1 when rt < V aRt.

Then an artificial regression is built:

Ht = δ0 + δ1Ht−1 + . . .+ δkHt−k + δk+1V aRt + µt

Ht = µt +Xδ =

{
−α , P = 1− α

1− α , P = α

The reason of building this artificial regression is Ht must be uncorrelated with

constant µt, its lagged values ( k is the number of lags) and the VaR forecasts in
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order to make Ht have the correct unconditional and conditional coverage, and be

uncorrelated. Then we can have the OLS estimator δ̂OLS of this regression as:

δ̂OLS = (X
′
X)−1X ′H

n→∞→ N(0, α(1− α)(X
′
X)−1)

Finally, with H0 : δ = 0, the DQ test statistics is given by:

DQ =
δ̂
′
OLSX

′
Xδ̂OLS

α(1− α)

n→∞→ χ2
k+2

The authors recommend the use of 1 and 4 lags for the DQ test, while Chen,

Gerlach and Lu (2012) tested and found that little sensitivity of the DQ test

statistics to the number of lags selected.

1.6.3 VQR test

Based on the definition of VaR, we can treat it as the α quantile of the returns rt,

implied by P (rt < VaRt|Ft−1) = α.

Proposed by Gaglianone et al. (2011), VQR tests the following regression model

employing α conditional quantile as dependent variable and VaR as independent

variable:

Qrt(α|Ft−1) = β0 + β1V aRt

Then the following null hypothesis β0 = 0 and β1 = 1 is established to test the how

the VaR fit the data, or the H0 can be represented as: θ = 0, where θ = [β0 β1]
′
.

The null hypothesis should be interpreted as a Mincer and Zarnowitz (1969) type-

regression framework.

Let θ̂ be the quantile regression estimator of θ, Gaglione et al. (2011) derives the

asymptotic distribution of θ as:

√
T (θ̂ − θ) ∼ N(0, α(1− α)H−1

α JH−1
α )
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where J and H are defined as:

J = p lim
T→∞

1

T

T∑
t=1

xtx
′

t, xt = [1 VaRt]

Hα = p lim
T→∞

1

T

T∑
t=1

xtx
′

t[ft(Qrt(α|Ft−1))]

here the term ft(Qrt(α|Ft−1)) stands for the the conditional density of rt at the

quantile level α.

Now the test statistics of VQR testing is defined as:

V QR = T
[
θ̂
′(
α(1− α)H−1

α JH−1
α

)−1
θ̂
] n→∞→ χ2

2

1.7 Structure of the thesis

Chapter 1 briefly discusses the financial risk management, volatility modelling,

Bayesian inference and tail risk forecast calculation and assessment.

Chapter 2 incorporates the realized range volatility estimator into the Realized

GARCH framework. To help deal with the inherent micro-structure noise of the

realized volatility measures, an existing scaling procedures is employed to account

for the impact of micro-structure noise on realized range and realized variance,

and the methods of sub-sampling are proposed to be applied on the realized

range. A Bayesian adaptive Markov Chain Monte Carlo method is developed

and employed for estimation and forecasting, and demonstrates its superiority in

simulation study. The proposed realized range GARCH is studied with tail risk

forecasting experiment across different indices.

A new tail risk forecasting framework named Realized Conditional Auotregressive

Expectile (Realized-CARE) is proposed in Chapter 3, through incorporating a

measurement equation into the conventional CARE model, in a manner analogous

to the Realized GARCH model. In addition, a targeted search based on a quadratic

approximation is proposed that improves the computational speed of estimation

of the expectile level parameter. Bayesian adaptive Markov Chain Monte Carlo

methods and likelihood-based frequentist methods are proposed for estimation,

whilst their properties are compared via a simulation study. In a real forecasting
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study applied to 6 market indices and 3 individual assets, the performance of the

Realized-CARE model incorporating various realized measures are studied and

compared with the original CARE, the parametric GARCH and Realized GARCH

models.

In Chapter 4, we propose a new volatility estimator named signed range. Through

incorporating open, high and low prices, the proposed signed range possesses the

characteristics of both return and high-low range. Further, the relationship be-

tween signed range volatility and return volatility are studied through high fre-

quency simulation study. The symmetric and asymmetric Conditional Autoregres-

sive Signed Range (CARSR) type models are proposed and tested.

Chapter 5 concludes the thesis and discusses about the future work.

1.8 Chapter Summary

This chapter is a review of financial risk management and volatility modelling

in the literature. Both parametric and non-parametric volatility models are dis-

cussed, and the intra-day and high frequency volatility measured are reviewed.

Regarding the parameters estimation of volatility models, maximum likelihood

and Bayesian approaches are considered and discussed.



Chapter 2

Bayesian tail-risk forecasting with

Realized GARCH employing the

realized range and scaled &

sub-sampled realized measures

This chapter is an extended version of paper ”Gerlach and Wang, 2016: forecasting

risk via realized GARCH, incorporating the realized range”, Quantitative Finance,

16(4), 501-511.

2.1 Introduction

The 2008 Global Financial Crisis (GFC) challenged market participators’ risk

management abilities and brought the concern on the efficiency of financial risk

management methods and practice. It is also acknowledged that accurate volatility

estimation and forecasting can significantly facilitate the risk management prac-

tice. Modern market risk measurement and management incorporates tail risk

measures: e.g. Value-at-Risk (VaR), pioneered by JP Morgan in 1993, and condi-

tional VaR, or expected shortfall (ES), proposed by Artzner et al. (1997, 1999).

VaR is the maximum loss expected on an investment, over a given time period

at a specific quantile level and is an important regulatory tool, recommended by

the Basel Committee on Banking Supervision in Basel II, to control the risk of

financial institutions, by helping to set minimum capital requirements to protect

against large unexpected losses. VaR has been criticised, as it does not measure

the magnitude of the loss for violating returns and Artzner et al. (1999) found

18
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that VaR is not a ’coherent’ measure: i.e. it is not sub-additive; VaR can (some-

times) lead to portfolio concentration rather than diversification. ES does give

the expected loss (magnitude) conditional on exceeding a VaR threshold and is

coherent and has been incorporated into the Basel III Capital Accord. Thus, both

tail risk measures, VaR and ES, are considered here.

Among the volatility estimation models, the Autoregressive Conditional Heteroskedas-

ticity model (ARCH) and Generalized ARCH (GARCH) gained high popularity

in the recent years, proposed by Engle (1982) and Bollerslev (1986) respectively.

Numerous GARCH type models had been developed during the past decades. Es-

pecially, GJR-GARCH (Glosten et al. 1993) and EGARCH (Nelson, 1991) were

introduced to capture and describe the well known leverage effect (Black, 1976).

The standard GARCH type models only employ daily returns for the daily volatil-

ity estimation, and in recent years, various volatility estimators were proposed and

applied to improve the volatility estimation, such as range and realized measures.

High-low range has been proven to be a much more efficient and less noisy volatil-

ity estimator compared to return, see Parkinson (1980), Garman and Klass (1980),

and Alizadeh, Brandt, and Diebold (2002). The Conditional Autoregressive Range

model (Chou 2005) and Range-based EGARCH model (Brandt and Jones, 2006)

demonstrated the superiority of range.

Furthermore, since nowadays the high frequency and ultra high frequency tick by

tick data is available in a number of databases, a voluminous literature has dis-

cussed various realized volatility measures, including realized variance (RV) and

realized kernel (RK), etc, see Andersen and Bollerslev (1998), Barndorff-Nielsen

and Shephard (2002), Andersen et.al (2003) and Barndorff-Nielsen et.al (2004),

(2008). These realized measures consider the tick by tick intra-day process, thus

they are more informative than the daily return and provide a more accurate

volatility estimation. Hansen et.al (2011) introduced a new framework named Re-

alized GARCH (Re-GARCH), which adds a measurement equation compared to

the conventional GARCH. An important feature of the Realized GARCH is the

measurement equation which captures the joint dependence between volatility and

realized measures. The Realized GARCH is also closely related to the multiplica-

tive error model (Engle and Gallo, 2006) and the HEAVY model (Shephard and

Sheppard, 2010). Hansen and Huang (2016) extended Realized GARCH into the

Realized EGARCH framework, and allowed the Realized EGARCH model to have

more than one measurement equation. Takahashi, Omori and Watanabe (2009)
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proposed the realized stochastic volatility model and Takahashi, Watanabe and

Omori (2016) extended it with generalized hyperbolic distribution. Different RV

measures with various intra-day frequency, RK and their combinations were eval-

uated through both in-sample and out-of-sample testing. Based on their results,

the Realized GARCH and Realized EGARCH dominate the conventional GARCH

and EGARCH models. Realized EGARCH with 2 measurement equations (use

daily range square and RK respectively) gave the best out-of-sample result, and

the results generated from RV and RK are quite similar. Watanabe(2012) showed

that RK does not present improved results compared with RV in the Realized

GARCH framework, which demonstrates that Realized GARCH has the potential

of correcting the RV bias caused by microstructure noise.

In addition, Martens and van Dijk (2007) and Christensen and Podolskij (2007)

extended the daily high-low range with the high frequency intra-day data and

proposed the realized range (RR), which replaces every square return terms of

realized variance with scaled squared range (scaling factor 4log(2) presented by

Parkinson in 1980). Through both simulation and experiments with real-world

data sets, they proved that realized range has much lower mean squared error

than realized variance. Martens and van Dijk (2007) also presented and discussed

a few different bias-correction approaches for realized range. However, although

RR was already shown to be an efficient return variance estimator, the literature

has much less work on RR than RV.

In this chapter, we propose a new framework named Realized Range GARCH

(RR-GARCH), which incorporates realized range into the Realized GARCH by

Hansen et.al (2011), where both Gaussian and Student-t errors are considered

for the observation equation. The bias-correction process by Martens and van

Dijk (2007) is employed to get the scaled RV and scaled RR, and they are also

included in the Realized GARCH model (form Scaled-RV-GARCH and Scaled-

RR-GARCH respectively). Also, we develop a sub-sampled RR estimator, which

is inspired by the sub-sampled-RV (Zhang, Mykland and Aı̈t-Sahalia, 2005), and

they are both incorporated in the Realized GARCH framework (form sub-sampled-

RV-GARCH and sub-sampled-RR-GARCH respectively). Finally, the daily range

square Realized GARCH (Ra-Realized-GARCH) is also proposed and tested in this

work. Further, the MCMC estimation methods in Contino and Gerlach (2014) are

extended to estimate these models. The sampling properties of this estimator
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are compared to that for the usual maximum likelihood (ML) estimator, via a

simulation study, highlighting favourable performance for the MCMC estimator.

To assess the benefits of the proposed extended class of Realized GARCH models,

accuracy in terms of predictive likelihood and tail risk forecasting will be assessed,

and compared across a range of competing models, for five international market

index return series. The tail risk forecast combination methods of Chang et al.

(2011) and McAleer et al. (2013) are also incorporated into this study.

This chapter is structured as follows: Section 2.2 briefly reviews modern volatility

estimators, including Ra, RV and RR. The specifications for RR-GARCH and

other Re-GARCH type models are briefly presented in Section 2.3. Section 2.4

discusses parameter estimation via Bayesian MCMC. Section 2.5 presents some

simulation results comparing Bayesian and maximum likelihood estimation for

Realized GARCH models. Section 2.6 describes the data and presents the results

of the empirical study. Section 2.7 concludes, and discusses possible future work.

2.2 Realized measures

This section gives a brief introduction to various volatility estimators included in

the models employed in this chapter. First, for day t denote the intra-day high,

low and closing prices as Ht, Lt and Ct. The daily log return is then:

rt = log(Ct)− log(Ct−1) (2.1)

Assuming the mean return is zero, as standard, a constant daily return variance

can be estimated by:

V =
1

n

n∑
t=1

r2
t (2.2)

Based on the distribution of range derived by Feller(1951), Parkinson (1980) pro-

posed the high-low intra-day range (squared), with scaling factor 4log(2) as an

approximately unbiased variance estimator:

Ra2
t =

(logHt − logLt)
2

4 log 2
(2.3)

Through theoretical derivation and a simulation study, Parkinson showed that this

is a more efficient estimator than the traditional squared return. Garman-Klass
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(1980), Rogers and Satchell (1991) and Yang and Zhang (2000) derived other

range based estimators; a full study and comparison on the properties of different

volatility estimators is presented in Molnár (2012).

Gerlach and Chen (2015) incorporated overnight price movements into this mea-

sure, defining range plus overnight as:

RaOt = (log(max(Ct−1, Ht))− log(min(Ct−1, Lt)))× 100 , (2.4)

where Ct−1 is the closing price on day t− 1.

Extending into the high frequency intra-day framework, each day t can be di-

vided into N equally sized intervals of length 4, each intra-day time subscripted

as i = 0, 1, 2, ..., N . The log closing price at the i-th interval of day t is de-

noted Pt−1+i4. Then, the high and low prices during this time interval are

Ht,i = sup(i−1)4<j<i4Pt−1+j and Lt,i = inf(i−1)4<j<i4Pt−1+j respectively. Realized

variance (RV) has proven an efficient volatility estimator and gained popularity

in recent years. RV is simply the sum of the N intra-day squared returns, at

frequency 4, for day t, i.e.:

RV 4t =
N∑
i=1

[log(Pt−1+i4)− log(Pt−1+(i−1)4)]2 (2.5)

Proposed by Barndorff-Nielsen and Shephard (2002), the realized kernel is a more

robust volatility estimator compared to realized variance, especially when the re-

turns are contaminated with micro-structure noise.

The Realized Range (RR), proposed by Martens and van Dijk (2007) and Chris-

tensen and Podolskij (2007), has the following specification, which simply replaces

the intra-day squared returns with intra-day squared ranges, and scales:

RR4t =

∑N
i=1(logHt,i − logLt,i)

2

4 log 2
(2.6)

Theoretically, the RR may contain more information about volatility, in the same

way as the intra-day range contains more information than squared returns: it

uses all the price movements in a time period to form the high and low price, not

just the price at each end of each time period. Results in Martens and van Dijk

(2007) lend support to this hypothesis. Only when N → ∞, the scaling factor

4 log 2 makes the RR as an unbiased volatility estimator.
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Of course, both RV and RR have been criticized as being subject to micro-structure

noise bias and inefficiency, more so than daily returns or daily ranges. This issue

has been studied extensively, see Rogers and Satchell (1991), Barndorff-Nielsen

et al. (2004) and Christensen and Podolskij (2007) for discussion. In response,

Martens and van Dijk (2007) presented a scaling process, as in Equations (2.7)

and (2.8).

ScRV 4t =

∑q
l=1 RVt−l∑q
l=1 RV

4
t−l
RV 4t , (2.7)

ScRR4t =

∑q
l=1 RRt−l∑q
l=1 RR

4
t−l
RR4t , (2.8)

where RVt−1 and RRt−1 represent the daily return square and range square at day

t−1. This scaling process is motivated by the fact that the daily return and range

are less affected by micro-structure noise and thus can be used to help reduce

bias. Recently jumps in returns have also attracted attention in the analysis of

high-frequency data (Andersen, Bollerslev and Diebold, 2007), but are not tackled

in this thesis.

Further, Zhang, Mykland and Aı̈t-Sahalia (2005) proposed a sub-sampled process

to further smooth out micro-structure noise. For day t, N equally sized samples

are grouped into M non-overlapping subsets X(m) with size N/M = nk, which

means:

X =
M⋃
m=1

X(m), where X(k) ∩X(l) = ∅, when k 6= l.

Then sub-sampling will be implemented on the subsets X(i) with nk interval:

X(i) = i, i+ nk, ..., i+ nk(M − 2), i+ nk(M − 1), where i = 0, 1, 2..., nk − 1.

Representing the log closing price at the i-th interval of day t as Ct,i = Pt−1+i4,

the RV with the subsets X i is:

RVt,i =
M∑
m=1

(Ct,i+nkm − Ct,i+nk(m−1))
2; where i = 0, 1, 2..., nk − 1.
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We have the T/M RV with T/N sub-sampling for day t as (supposing there are

T minutes per trading day):

SSRV 4t,T/M,T/N =

∑nk−1
i=0 RVt,i
nk

, (2.9)

Then, denoting the high and low prices during the interval i+nk(m−1) and i+nkm

asHt,i = sup(i+nk(m−1))4<j<(i+nkm)4 Pt−1+j and Lt,i = inf(i+nk(m−1))4<j<(i+nkm)4 Pt−1+j

respectively, we propose the T/M RR with T/N sub-sampling as:

RRt,i =
M∑
m=1

(Ht,i − Lt,i)2; where i = 0, 1, 2..., nk − 1. (2.10)

SSRR4t,T/M,T/N =

∑nk−1
i=0 RRt,i

4log2nk
, (2.11)

For example, the 5 mins RV and RR with 1 min sub-sampling for any day can be

calculated, respectively, as below :

RV5,1,0 = (logCt5 − logCt0)2 + (logCt10 − logCt5)2 + ...

RV5,1,1 = (logCt6 − logCt1)2 + (logCt11 − logCt6)2 + ...
...

RV5,1,4 = (logCt9 − logCt4)2 + (logCt14 − logCt9)2 + ...

SSRV 45,1 =

∑4
i=0RV5,1,i

5

RR5,1,0 = (logHt0<t<t5 − logLt0<t<t5)2 + (logHt5<t<t10 − logLt5<t<t10)2 + ...

RR5,1,1 = (logHt1<t<t6 − logLt1<t<t6)2 + (logHt6<t<t11 − logLt6<t<t11)2 + ...
...

RR5,1,4 = (logHt4<t<t9 − logLt4<t<t9)2 + (logHt9<t<t14 − logLt9<t<t14)2 + ...

SSRR45,1 =

∑4
i=0 RR5,1,i

4 log(2)5

Only intra-day returns on the 5 minute frequency, additionally with 1 minute

sub-sampling when employed, are considered in this thesis work.
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2.3 Realized Range GARCH

This section reviews the literature on Realized GARCH and proposes the Realized

Range GARCH model.

2.3.1 Model description

The Realized GARCH model of Hansen et al. (2011) can be written as:

rt = σtzt, (2.12)

σ2
t = ω + βσ2

t−1 + γxt−1 ,

xt = ξ + ϕσ2
t + τ1zt + τ2(z2

t − 1) + σεεt ,

where rt = [log(Ct)− log(Ct−1)]×100 is the percentage log-return for day t, zt
i.i.d.∼

D1(0, 1) and εt
i.i.d.∼ D2(0, 1) and xt is a realized measure, e.g. RV; D1(0, 1), D2(0, 1)

indicate distributions that have mean 0 and variance 1. The three equations in

Model (2.12) are, in order: the return equation, the volatility equation and the

measurement equation, respectively. The measurement equation is a second ob-

servation equation that captures the contemporaneous dependence between latent

volatility and the realized measure. The term τ1zt + τ2(z2
t − 1) is used to capture

a leverage-type effect.

Hansen et al. (2011) utilized the RV (among others) as the realized measure

(i.e. xt) in Model (2.12); and chose Gaussian errors, i.e. D1(0, 1) = D2(0, 1) ≡
N(0, 1). Watanabe (2012) allowed D1(0, 1) to be a standardized Student-t and

skew Student-t distribution of Fernández and Steel (1998); Contino and Gerlach

(2014) allowed it to be the skewed-t of Hansen (1994) and also allowed D2(0, 1) to

be a standardized Student-t.

The following RG specifications are proposed in this thesis:

Realized Range GARCH (RR-RG): xt = RR4t

Range-squared Realized GARCH model (Ra-RG): xt = Ra2
t

Range Overnight-squared Realized GARCH model (RaO-RG): xt =

RaO2
t

Scaled Realized Variance GARCH (ScRV-RG): xt = ScRV 4t

Scaled Realized Range GARCH (ScRR-RG): xt = ScRR4t
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Sub-sampled Realized Variance GARCH (SSRV-RG): xt = SSRV 4t

Sub-sampled Realized Range GARCH (SSRV-RG): xt = SSRR4t

As discussed in Section 2.2, the scaling factor 4 log 2 makes the RR as an unbiased

volatility estimator, only when N → ∞. Although in the empirical study we

employ the 5 minute intra-day frequency, meaning N is finite and Equation (2.6)

is biased to calculate realized range, RR in the Re-GARCH or Re-CARE (proposed

in Chapter 3) models is not required to be unbiased, because the coefficient of the

RR in the model can adjust such bias. Therefore, this is another advantage of

using the Realized GARCH model with the realized-range based volatility as a

realized measure.

2.3.2 Stationarity and positivity

Stationarity is an important issue in time series modelling in general. In this

context it is important to understand the conditions or parameter restrictions

required so that the long-run unconditional variance exists and is positive, as well

as sufficient conditions ensuring each σ2
t is also positive.

Substituting the measurement equation into the volatility equation in 2.12 leads

to:

σ2
t = (ω + γξ) + (β + γϕ)σ2

t−1 + at, (2.13)

where at = γ[τ1zt−1 + τ2(z2
t−1 − 1) + εt−1], so that E(at) = 0. Taking expectations

of both sides of (2.13), the long-run variance is (ω+ γξ)/[1− (β+ γϕ)]. To ensure

this is finite and positive, the required conditions for the general Realized GARCH

model are:

ω + γξ > 0, (2.14)

0 < β + γϕ < 1

Further, to ensure positivity of each σ2
t , it is sufficient that ω, β, γ are all positive.

This set of conditions are subsequently enforced during estimation of all Realized

GARCH models in this chapter.
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2.4 Bayesian and likelihood estimation

The model specification for the general Realized GARCH is in (2.12).

2.4.1 Likelihood

Following Hansen et al. (2011), where D1 = D2 ≡ N(0, 1), the log-likelihood

function for model (2.12) is:

`(r, x; θ) = −1

2

n∑
t=1

[
log(2π) + log(σ2

t ) + r2
t /σ

2
t

]
︸ ︷︷ ︸

`(r;θ)

−1

2

n∑
t=1

[
log(2π) + log(σ2

ε) + ε2
t/σ

2
ε

]
︸ ︷︷ ︸

`(x|r;θ)
(2.15)

where εt = xt−ξ−ϕσ2
t−τ1zt−τ2(z2

t−1); the parameter vector to be estimated is θ =

(ω, β, γ, ξ, ϕ, τ1, τ2, σε)
′
, under the constraints in (2.14) and positivity on (ω, β, γ).

Hansen et al. (2011) derived the 1st and 2nd derivative of this log-likelihood

function, allowing calculation of asymptotic standard errors of estimation, via a

Hessian matrix. Subsequently, this model is denoted RG-GG (Realized GARCH

with Gaussian-Gaussian errors).

Under the choice D1 ∼ t∗(0, 1, ν); D2 ≡ N(0, 1), as in Watanabe (2012) and

Contino and Gerlach (2014), the log-likelihood function for model (2.12) is now:

`(r, x; θ) = −
n∑
t=1

[
A(ν) + 0.5 log(σ2

t ) +
ν + 1

2
(1 +

r2
t

σ2
t (ν − 2)

)

]
︸ ︷︷ ︸

`(r;θ)

(2.16)

−1

2

n∑
t=1

[
log(2π) + log(σ2

ε) + ε2
t/σ

2
ε

]
︸ ︷︷ ︸

`(x|r;θ)

where εt = xt− ξ−ϕσ2
t − τ1zt− τ2(z2

t − 1) and t∗(0, 1) ≡ t(0, 1, ν)×
√

ν−2
ν

, which

is a Student-t distribution with ν degrees of freedom, scaled to have variance 1;

and A(ν) = log(Γ
(
ν+1

2

)
)− log(Γ

(
ν
2

)
) + log(π(ν− 2)). The parameter vector to be

estimated is now θ = (ω, β, γ, ν, ξ, ϕ, τ1, τ2, σε)
′
, under the constraints in (2.14) and

positivity on (ω, β, γ); further we restrict ν > 4 to ensure the first four moments

of the error distribution are finite. Subsequently, this model is denoted RG-tG.
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2.4.2 Bayesian estimation

The likelihoods in (2.15) and (2.16) involve 8 and 9 unknown parameters respec-

tively; most of which are part of equations involving latent, unobserved variables.

The performance and finite sample properties of ML estimates of these likelihoods

are not yet well studied. As such, we also consider powerful numerical and compu-

tational algorithms in a Bayesian framework, under weak or uninformative priors,

as a competing estimator for these models.

2.4.2.1 Priors

The prior is chosen to be close to uninformative over the possible stationarity

and positivity region for the model parameters θ, with two exceptions. We add a

Jeffreys prior for the scale parameter σε in the measurement equation, and also a

Jeffreys-type prior for the intercept parameter ξ in this equation, i.e.:

π(θ) ∝ I(A)
1

σε

1

ξ
,

for the RG-GG model, and

π(θ) ∝ I(A2)
1

σε

1

ξ

1

ν2
,

for the RG-tG model. This is a mostly flat prior on the parameters in θ, restricted

by the indicator function being non-zero only over the region A (or A2), where A

is the region defined by (2.14) plus positivity for ω, β, γ and A2 is A intersected

with ν > 4. For the degrees of freedom parameter ν, the prior is equivalent to

a uniform prior on ν−1 ∼ Unif(0, 0.25), as used by Chen, Gerlach and So (2006),

among others.

2.4.2.2 Adaptive MCMC

An adaptive MCMC method, adapted from that in Contino and Gerlach (2014),

is employed, extended from work originally in Chen and So (2006). For the burn-

in period, a Metropolis algorithm employing a Gaussian proposal distribution,

with a random walk mean vector, is utilised for each block of parameters. The

var-cov matrix of each block is initially set to 2.38√
(di)

Idi , where di is the dimension

of the block (i) of parameters being generated, and Idi is the identity matrix of
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dimension di. This covariance matrix is subsequently tuned, aiming towards a

target acceptance rate of 23.4% (if di > 1, or 40% if di = 1), as standard, via the

algorithm of Roberts, Gelman and Gilks (1997).

During the MCMC sampling period, a mixture of three Gaussian proposal distri-

bution is employed in an ”independent” Metropolis-Hastings algorithm. The mean

vector for each block is the sample mean of the last 50% of the burn-in iterates

for that block; i.e. it is the same for each of the three mixture elements. The

proposal var-cov matrix in each element is CiΣ, where C1 = 1;C2 = 10;C3 = 100

and Σ is the sample covariance matrix of the last 50% of the burn-in iterates for

that block.

As an example, for the RG-GG model, two blocks were employed: θ1 = (ω, β, γ, ϕ)
′

and θ2 = (ξ, τ1, τ2, σ)
′

via motivations that parameters within the same equation

are likely to be more correlated in the posterior (likelihood) than those in separate

equations and the sampling scheme will mix faster when highly correlated parame-

ters are generated together, with the exception that the stationarity condition may

cause correlation between iterates of β, γ, ϕ, thus they are kept together. For the

RG-tG model a third block containing only ν−1 was added, with θ1,θ2 remaining

unchanged.

2.5 Simulation study

A simulation study is now presented to illustrate the comparative performance of

the MCMC and ML estimators, in terms of parameter estimation, quantile and

expected shortfall forecasting, accuracy. The aim is to illustrate the bias and pre-

cision properties for these two methods, highlighting the comparative performance

of the MCMC estimator. The results presented focus on the RG-GG and RG-tG

model specifications.
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Samples of size n = 1500 and n = 3000 are simulated from two specific models,

specified as:

Model 1 rt = σtzt, zt ∼ N(0, 1)

σ2
t = 0.02 + 0.75σ2

t−1 + 0.25xt−1 ,

xt = 0.1 + 0.95σ2
t + 0.1zt − 0.1(z2

t − 1) + εt

εt ∼ N(0, 0.52)

Model 2 rt = σtzt, zt ∼ t∗8(0, 1)

σ2
t = 0.01 + 0.7σ2

t−1 + 0.29xt−1 ,

xt = 0.01 + 0.99σ2
t + 0.25zt − 0.25(z2

t − 1) + εt

εt ∼ N(0, 22)

In each model rt is analogous to a daily log-return and xt is analogous to the daily

realized measure. The persistence level (β + γϕ) is deliberately chosen very close

to 1 in each case; with true values chosen close to those estimated from real data.

Here, t∗ represents the Student-t distribution, standardised to have variance 1. For

each model the forecast α-level quantile is then qα(rt+1|θ) = σt+1Φ−1(α) (Model

1), where Φ−1 is the inverse standard Gaussian cdf, and qα(rt+1|θ) = σt+1t
−1
ν (α)

(Model 2), where t−1
ν is the inverse standardised Student-t cdf. Following Basel

II and Basel III risk management guidelines, quantile levels of α = 0.01, 0.05 are

considered.

A total of 5000 replicated datasets are simulated from model 1 and from model 2,

for each sample size n = 1500, 3000. The RG-GG model is fit to each dataset from

Model 1, once using the MCMC method and once using the ML estimator, the lat-

ter employing the ‘fmincon’ constrained optimisation routine in Matlab software.

The MCMC sampler is run for N = 20000, with a burn-in of M = 15000, itera-

tions; in each case all iterations after burn-in are used to calculate the posterior

mean estimates. For both estimation methods, all initial parameter values were

arbitrarily set equal to 0.25. MCMC convergence was checked extensively by run-

ning the sampler from different starting points and visually observing convergence

to the same posterior well inside the burn-in period, for multiple simulated (and

real) datasets from each model; such convergence almost always occurs within one

thousand iterations.

Estimation results are summarised in Tables 2.1 and 2.2. Boxes indicate the op-

timal measure comparing MCMC and ML for both bias (Mean) and precision
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(RMSE). For n = 1500, the results are fairly mixed across the methods. Both

methods generate close to unbiased and quite reasonably precise parameter esti-

mates and quantile forecasts. The bias results slightly favour the ML method,

with 6 out of 8 parameter estimates and both quantile forecasts averaging closer

to their true value; whilst the precision is slightly lower for the MCMC method in

6 out of 8 parameter estimates, but slightly higher for the quantile forecasts.

For n = 3000, the results are more in favour of the MCMC method overall. Again

both methods generate close to unbiased and quite reasonably precise parameter

estimates and quantile forecasts. The bias results are mixed, with 4 out of 8 param-

eter estimates favouring each method, though both quantile forecasts favour the

ML; whilst the precision is slightly lower for the MCMC method for 8 parameters

and also for the quantile forecasts.

The typical increase in precision in the MCMC estimator is small in most cases,

but is notably larger for the parameters ω, ξ, σ. The latter two of these, which also

have smaller bias than the MLE, have Jeffreys-type priors, that shrink estimates

towards 0; clearly these priors have had an effect in this case at both sample sizes.

The increased RMSE for the ML estimator of ω is partly due to a few datasets

inducing large MLEs for that parameter, whilst the MCMC estimator was not

at all large in those cases, and further that often the MLE was very, very close

to the boundary at ω = 0 (i.e. > 20% of the MLEs were < 0.000001) whilst

the corresponding MCMC estimates were never similarly close to 0; this clearly

reduces the bias for the MLE in this case as well.

Estimation results for Model 2 are summarised in Table 2.2. For n = 1500, the

results are mostly in favour of the MCMC method. Both methods generate close to

unbiased and quite reasonably precise parameter estimates and quantile forecasts,

except the ML method for ν. This is because about 0.5% of MLEs for ν were above

30, and some of those were in the tens or hundreds of thousands, leading to large

Mean and RMSE results. We would like to point out that the parameter ν of the

Student-t distribution is not identified when it is large. For example, the likelihood

cannot distinguish between ν = 100000 and ν = 100001, which practically makes

the Student-t distribution the same as Gaussian distribution. As discussed in

Geweke (1993), the posterior with flat prior is non-integrable and improper in this

case. Therefore, through incorporating the 1/ν2 prior in the MCMC algorithm,

the highest ν estimate was 75 with the same simulated data sets. Therefore, here

it again demonstrates the superiority of MCMC. The bias results are evenly spread
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Table 2.1: Summary statistics for the two estimators of the RG-GG model,
data simulated from Model 1.

n = 1500 MCMC ML
Parameter True Mean RMSE Mean RMSE

ω 0.02 0.0299 0.0215 0.0216 0.0325

β 0.75 0.7420 0.0206 0.7471 0.0232

γ 0.25 0.2577 0.0233 0.2528 0.0237

ξ 0.10 0.1266 0.0664 0.1359 0.1206

ϕ 0.95 0.9367 0.0459 0.9406 0.0512

τ1 0.10 0.1003 0.0132 0.1000 0.0131

τ2 -0.10 -0.1008 0.0100 -0.1003 0.0098

σε 0.50 0.5002 0.0092 0.4991 0.0093

1% VaR -4.386 -4.3987 0.0904 -4.3864 0.0888

5% VaR -3.101 -3.1101 0.0639 -3.1014 0.0628
n = 3000 True Mean RMSE Mean RMSE

ω 0.02 0.0244 0.0173 0.0212 0.0343

β 0.75 0.7460 0.0145 0.7479 0.0305

γ 0.25 0.2540 0.0162 0.2516 0.0285

ξ 0.10 0.1136 0.0517 0.1175 0.1136

ϕ 0.95 0.9428 0.0325 0.9467 0.0462

τ1 0.10 0.1000 0.0092 0.0998 0.0092

τ2 -0.10 -0.1000 0.0070 -0.0997 0.0070

σε 0.50 0.5001 0.0064 0.4998 0.0095

1% VaR -4.382 -4.3873 0.0612 -4.3796 0.0682

5% VaR -3.098 -3.1020 0.0432 -3.0966 0.0482

between methods, though the ML quantile and ES forecasts average closer to their

true value; whilst the precision is slightly lower for the MCMC method in almost

all cases.

For n = 3000, the results are almost all in favour of the MCMC method. Again

both methods generate close to unbiased and quite reasonably precise parameter

estimates and quantile forecasts, except for the MLEs for ν. The bias and precision

results almost all favour the MCMC estimator.

The increase in precision in the MCMC estimator is small in most cases, but larger

for the parameters ν, ξ. Both of these have shrinkage priors; clearly these have had

a positive effect in this case at both sample sizes. Similar increases in precision for

Bayesian estimates over frequentist optimisation were found in Gerlach and Chen
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Table 2.2: Summary statistics for the two estimators of the RG-tG model,
data simulated from Model 2.

n = 1500 MCMC ML
Parameter True Mean RMSE Mean RMSE

ω 0.01 0.0877 0.0856 0.0686 0.0983

β 0.70 0.6952 0.0227 0.7008 0.0236

γ 0.29 0.2815 0.0268 0.2767 0.0321

ξ 0.01 0.3649 0.3840 0.3914 0.4616

ϕ 0.99 0.9451 0.0762 0.9480 0.0918

τ1 0.25 0.2019 0.0682 0.2003 0.0713

τ2 -0.25 -0.1898 0.0676 -0.1875 0.0694

σε 2.00 1.8749 0.1323 1.8707 0.1364

ν 8.00 8.4472 2.6691 1815.0 30559.0

1% VaR -5.362 -5.4108 0.2036 -5.3629 0.2012

5% VaR -3.442 -3.4522 0.0915 -3.4397 0.0949

1% ES -6.625 -6.7557 0.3804 -6.6655 0.5154

5% ES -4.659 -4.6925 0.1629 -4.6591 0.3357
n = 3000 True Mean RMSE Mean RMSE

ω 0.01 0.0783 0.0764 0.0671 0.0790

β 0.70 0.7008 0.0151 0.7035 0.0156

γ 0.29 0.2749 0.0232 0.2729 0.0265

ξ 0.01 0.3361 0.3518 0.3570 0.4104

ϕ 0.99 0.9599 0.0566 0.9598 0.0710

τ1 0.25 0.2014 0.0595 0.2006 0.0608

τ2 -0.25 -0.1872 0.0666 -0.1861 0.0677

σε 2.00 1.8760 0.1275 1.8741 0.1294

ν 8.00 8.2107 8.2938 1057.8 18671.7

1% VaR -5.371 -5.3814 0.1494 -5.3578 0.1553

5% VaR -3.448 -3.4471 0.0737 -3.4411 0.0783

1% ES -6.636 -6.6897 0.2574 -6.6439 0.2591

5% ES -4.666 -4.6694 0.1221 -4.6527 0.1751

(2014) and Gerlach, Chen and Chan (2011) for different classes of financial time

series models.

As discussed in Section 1.5.4, in order to evaluate the convergence and efficiency of

the employed MCMC method, we employ the Gelman-Rubin diagnostic (Equation

(1.7)) and an effective sample size test (Equation (1.10)) (Gelman et al., 2014).

For each parameter in the Realized-GARCH, we run the adaptive MCMC for

m = 5 times (each run with random starting values and different simulated data

sets) with burn-in RWM iterations 15, 000 and IMH iterations n1 = 5, 000, then
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only the IMH iterations n1 = 5, 000 in each chain are used for Gelman-Rubin

statistics and effective sample size calculation. For example, Figure 2.1 visualizes

the 5 MCMC chains with 5 random starting points for ϕ parameter of the RG-GG

model with simulated data generated from Model 1, and only the IMH iterations

n1 = 5, 000 (last 5000 iterations in the figure) are used for the convergence and

efficiency tests. Table 2.3 summarizes the Gelman-Rubin statistics and effective

sample for 8 parameters of the RG-GG model with simulated data of sample size

n = 1500 and n = 3000 respectively. As can be seen, the R̂ is very close to 1

(e.g. < 1.1) for each parameter (except for ξ with n = 1500 has R̂ slightly larger

than 1.1) in the RG-GG model, meaning excellent convergency testing results for

each parameter. Through closer check of the between- and within-chain variances,

we observer very small within-chain variances for each parameter, which leads to

a close to 1 R̂ and suggests good convergence property. In addition, Gelman et

al. (2014) suggested, as a default rule, running the simulation until total n̂eff is

5m. From Table 2.3, we can clearly see that the total effective sample sizes for all

parameters are larger than 5m = 25 (the average n̂eff for each chain is presented

as well), which proves the MCMC algorithm is efficient. Comparing the R̂ and

n̂eff results with n = 1500 and n = 3000, generally the R̂ and n̂eff results of

n = 3000 are better compared with that of n = 1500, which is consistent with

the results in Table 2.1 (bigger in-sample size leads to better estimation accuracy,

convergence and efficiency). Similar observations are found in the Gelman-Rubin

diagnostic and effective sample size test in the following chapters. Finally, Gelman

et al. (2014) also suggested that each chain can be split into 2 parts with n1/2

length, so that R̂ can assess stationary as well as mixing. We implemented this

test as well and still observe close to 1 R̂ and good n̂eff results, while the results

are not shown here.

Now we run the Gelman-Rubin diagnostic and effective sample size test with

the simulated data generated from Model 2. As presented in Table 2.4, all 9

parameters in RG-tG framework still have close to 1 R̂ (except for ξ with n =

1500 has R̂ slightly larger than 1.1) and satisfiable n̂eff . Therefore, based on the

MCMC results from Tables 2.1, 2.2, 2.3 and 2.4, we can confirm that the adapted

MCMC algorithm for the Realized-GARCH framework has better bias (Mean) and

precision (RMSE) results compared with ML, and the MCMC chains are proved

to have good convergence and efficiency performance given the employed steps of
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Figure 2.1: 5 MCMC chains with the simulated date set (n = 3000) and
random starting points for ϕ of the RG-GG model.

Table 2.3: Summary statistics of the Gelman-Rubin diagnostic and effective
sample size with RG-GG and simulated data set (simulated from Model 1).

n = 1500

Parameter R̂ Total n̂eff Average n̂eff
ω 1.07168 387 77
β 1.01295 750 150
γ 1.02517 672 134
ξ 1.12133 83 17
ϕ 1.03229 351 70
τ1 1.00286 1316 263
τ2 1.00299 1035 207
σε 1.00045 1,500 300
n = 3000
ω 1.05747 351 70
β 1.00674 891 178
γ 1.00475 824 165
ξ 1.07498 107 21
ϕ 1.00581 702 140
τ1 1.00060 2118 424
τ2 1.00120 1412 282
σε 1.00076 1986 397
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Table 2.4: Summary statistics of the Gelman-Rubin diagnostic and effective
sample size with RG-tG and simulated data set (simulated from Model 2.

n = 1500

Parameter R̂ Total n̂eff Average n̂eff
ω 1.06029 295 59
β 1.00028 1170 234
γ 1.02908 731 146
ξ 1.11055 104 21
ϕ 1.07682 367 73
τ1 1.00090 1820 364
τ2 1.00201 1295 259
σε 1.00146 2009 402
ν 1.00013 4242 848
n = 3000
ω 1.02884 353 71
β 1.00267 1152 230
γ 1.00897 783 157
ξ 1.03266 132 26
ϕ 1.02217 530 106
τ1 1.00054 1929 386
τ2 1.00082 1596 319
σε 1.00173 2395 479
ν 1.00197 2578 516

iterations.

2.6 Data and empirical study

2.6.1 Data description and cleaning

Five daily international stock market indices are analyzed: the S&P 500 (US);

NASDAQ (US); Hang Seng(Hong Kong); FTSE 100 (UK); DAX (Germany). Daily

closing price index data from Jan 3, 2000 to Sep 18, 2014 are obtained from

Thomson-Reuters Tick history, along with 1 minute and 5 minute open, close,

high and low prices for each day. The daily percentage log return series were

generated as yt = (ln(Ct)− ln(Ct−1))× 100, where Ct is the closing price index or

closing exchange rate on day t. Realized measures are obtained using the formulas

in Section 2.2. Three months’ data are used for the scaling process (q = 66 in

Equations (2.7) and (2.8)), so the the final start date of the data used is April 6,

2000. Market-specific non-trading days were removed from each series.
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The full data period is divided into an estimation sample: Apr 6, 2000 to Dec 31,

2007, of ≈ n = 1900 days; and a forecast sample: approximately m = 1660 trading

days from Jan 1, 2008 to Sep 18, 2014. The latter period includes most, if not all,

of the effects of the global financial crisis (GFC) on each market. Small differences

in forecast sample sizes and end-dates occurred across markets, due to market-

specific non-trading days. The exact in-sample sizes n and forecast sample sizes

m are given in Table 2.8. All series display the standard properties of daily asset

returns: positive excess kurtosis, persistent heteroskedasticity and mostly mild,

negative skewness. Figures 2.2, 2.3 and 2.4 visualize the S&P 500 absolute return

versus the RV & RR, scaled RV & scaled RR and sub-sampled RV & sub-sampled

RR respectively, for exposition.
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Figure 2.2: S&P 500 absolute return, square root of RV and square root of
RR.

2.6.2 In-sample parameter estimation results

This section presents the in-sample results to see estimated parameter of various

proposed models and how the adaptive MCMC works in the empirical study.

As presented in Section 2.6.1, the in-sample and out-of-sample sizes for different

markets are around 1900 and 1660 respectively. Now we focus on the estimation

results with first S&P 500 in-sample data set: observation 1 to 1960. To begin



Chapter 2. Realized Range GARCH 38

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

S&P 500 Abosulate Return
Sqrt Scaled RV
Sqrt Scaled RR

Figure 2.3: S&P 500 absolute return, square root of scaled RV and square
root of scaled RR.
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Figure 2.4: S&P 500 absolute return, square root of sub-sampled RV and
square root of sub-sampled RR.
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with, the RR-RG-GG and RR-RG-tG RWM iterates for each block with the 1st

S&P 500 in-sample data set are plot in Figures 2.5 and 2.7 respectively. As can be

seen, in the 15000 RWM iterations, the parameters started to converge after 1000

iterations, with the acceptance rates that are very close to the target 23.4%. Then

all IMH 5000 iteration values for the parameters θ, as in Figure 2.6 and 2.8, are

plugged into the predictive density formula. The adaptive MCMC iterates plots

are very similar for the other proposed models.
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Figure 2.5: Plots of 15000 RWM iterations of 2 blocks with RG-RR-GG and
S&P500. Acceptance rates for block 1 and 2: 21.0%, 20.9%.

Further, with the 1st S&P 500 in-sample data set and MCMC. The estimated pa-

rameters of 16 different Realized GARCH type models are presented in Table 2.5.

No matter employing the Gaussian or t distributions for the volatility equation of

Re-GARCH, we can clearly see the much smaller estimated σε with RR-RG com-

pared to RV-RG. This results is consistent with the findings in Martins and van

Dijk (2007), Christensen and Podolskij (2007): RR has much lower mean squared

error than RV, which might provide RR with higher accuracy and efficiency in

volatility estimation and forecasting. Through looking at the σε values estimated

from RG employing scaled and sub-sampled realized measures, the SSRV-RG pro-

vides clearly smaller σε compared to RV-RG, and SSRR-RG have similar σε es-

timated as RR-RG. However, we see increased σε through incorporating ScRV or

ScRR.
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Figure 2.6: Plots of 5000 IMH iterations of 2 blocks with RG-RR-GG and
S&P500. Acceptance rates for block 1 and 2: 38.0%, 42.0%.
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Figure 2.7: Plots of 15000 RWM iterations of 3 blocks with RG-RR-tG and
S&P500. Acceptance rates for block 1, 2 and 3: 21.3%, 20.4%, 21.0%.
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Figure 2.8: Plots of 15000 IMH iterations of 3 blocks with RG-RR-tG and
S&P500. Acceptance rates for block 1, 2 and 3: 31.8%, 80.6%, 34.7%.

Table 2.5: In-sample estimated parameters for 16 RG type models with S&P
500.

Models ω β γ ξ ϕ τ1 τ2 σε ν
Ra-RG-GG 0.1125 0.8222 0.1233 0.0070 0.8242 0.0228 0.5765 0.8196
RaO-RG-GG 0.6548 0.4855 0.0006 0.6092 0.2761 -0.0217 0.5712 0.7630
RV-RG-GG 0.0665 0.6430 0.3455 0.0218 0.8665 -0.0513 0.1696 0.9040
RR-RG-GG 0.0579 0.5332 1.0267 0.0204 0.3923 -0.0405 0.0512 0.3514
ScRV-RG-GG 0.0746 0.6326 0.2918 0.0214 1.0570 -0.0578 0.1900 1.1721
ScRR-RG-GG 0.0686 0.5498 0.5129 0.0183 0.7595 -0.0768 0.0908 0.6816
SSRV-RG-GG 0.0901 0.4584 0.6922 0.0348 0.6504 -0.0960 0.0882 0.6522
SSRR-RG-GG 0.0903 0.3956 1.1276 0.0227 0.4520 -0.0660 0.0504 0.4011
Ra-RG-tG 0.1501 0.8459 0.1193 0.0092 0.7219 0.0301 0.7700 0.7938 4.0859
RaO-RG-tG 0.0142 0.9870 0.0072 0.0130 0.7289 0.0061 0.7962 0.7582 4.0747
RV-RG-tG 0.0673 0.6398 0.3490 0.0243 0.8639 -0.0487 0.1702 0.9027 16.0763
RR-RG-tG 0.0603 0.5214 1.0549 0.0193 0.3911 -0.0401 0.0513 0.3517 15.2417
ScRV-RG-tG 0.0741 0.6300 0.2961 0.0209 1.0506 -0.0574 0.1895 1.1730 14.6134
ScRR-RG-tG 0.0667 0.5421 0.5293 0.0221 0.7498 -0.0771 0.0900 0.6822 14.9609
SSRV-RG-tG 0.0897 0.4510 0.7067 0.0328 0.6478 -0.0979 0.0862 0.6539 14.5389
SSRR-RG-tG 0.0848 0.3812 1.1738 0.0283 0.4449 -0.0660 0.0486 0.4016 13.8718

Finally, in order to study the convergence and efficiency performance of the em-

ployed MCMC algorithm with the real world data set, we also perform the Gelman-

Rubin diagnostic and effective sample size test with the 1st S&P 500 in-sample

data set. Similarly, 5 random starting points (m = 5 and n1 = 5000) are used for

the RR-RG-GG and RR-RG-tG models respectively. As can be seen in Tables 2.6

and 2.7, both the R̂ and n̂eff tests produce values that support good convergency

and efficiency results for both the RR-RG-GG and RR-RG-tG frameworks.
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Table 2.6: Summary statistics of the Gelman-Rubin diagnostic and effective
sample size with RR-RG-GG and S&P 500.

Parameter R̂ Total n̂eff Average n̂eff
ω 1.00044 1838 368
β 1.00271 1624 325
γ 1.00071 2563 513
ξ 1.00225 867 173
ϕ 1.00565 1179 236
τ1 1.00003 4084 817
τ2 1.00167 2933 587
σε 1.00021 3981 796

Table 2.7: Summary statistics of the Gelman-Rubin diagnostic and effective
sample size with RR-RG-tG and S&P 500.

Parameter R̂ Total n̂eff Average n̂eff
ω 1.00523 1318 264
β 1.00158 1475 295
γ 1.00127 2400 480
ξ 1.00051 12899 2580
ϕ 1.00291 634 127
τ1 1.00319 807 161
τ2 1.00077 3405 681
σε 1.00251 2304 461
ν 1.00037 3619 724

2.6.3 Out-of-sample forecasting: predictive log-likelihood

Approximately 1600-1700 one-step-ahead volatility, VaR and ES forecasts are gen-

erated separately for the RG-GG and RG-tG specifications using Ra square, RaO

square, RV, RR, ScRV, ScRR, SSRV and SSRR as the measurement equation in-

put. The period from April 6, 2000 to Dec 31, 2007 is used as the initial learning

period to generate the first day’s forecasts, being for Jan 3, 2008. This is approx-

imately 1900-2000 days in each market, with small differences due to trading day

and holiday variations. This estimation period window is then moved ahead by

one day to estimate each model and generate the next day’s set of forecasts, this

process continuing until forecasts are generated for each day in the forecast sample

period Jan 3, 2008 - Sep 18, 2014 for each model.

To assess and compare volatility forecasting accuracy between models we consider

the predictive likelihood, as in Hansen et al. (2011). Based on the sample period
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data, r1, . . . , rn, the ML method estimates the model parameters θ̂, which are

plugged in to form forecasts of σ̂2
n+1. Such forecasts are plugged into the one-

step-ahead return density function, usually logged, to form the one-step-ahead

predictive density estimate. For example, the 1st day predictive log-likelihood for

the RG-GG model is given by:

`n+1 = −1

2

[
log(2π) + log(σ̂2

n+1) + r2
n+1/σ̂

2
n+1

]
These log-density estimates are calculated for each day in the forecast period, and

subsequently summed to estimate the log-predictive likelihood for each model.

Alternatively, under the MCMC approach, each IMH iterate of values for the

parameters θ are plugged into the one day predictive density formula, as above,

giving an MCMC iterate of this quantity. These density iterates are subsequently

averaged over the MCMC sampling period to estimate each day’s predictive log-

density. The single day predictive density estimates are then summed over all

the days in the forecast period to give an MCMC estimate of the log-predictive

likelihood for each model.

Both approaches give predictive likelihoods that are equal to at least one decimal

place and give qualitatively the same order ranking of models. As such, only

the MCMC predictive likelihood estimates are reported here. Table 2.8 reports

these estimates across the parametric models considered here: being the RG-GG

and RG-tG models, each using Ra square and RaO square, RV, RR, ScRV, ScRR,

SSRV and SSRR as the input measurement, as well as standard GARCH-Gaussian

(G-G) and GARCH-t (G-t) models.

Firstly, we can see that Realized GARCH employing the realized range always has

improved predictive log-likelihood compared to the Realized GARCH with RV,

no matter using Gaussian or Student-t errors for the volatility equation. The in-

sample results might partially explain such improvement. In addition, we can see

the scaling and sub-sampling process contribute to the further improved predic-

tive log-likelihood, especially the proposed sub-sampled RR. In three out of five

markets the RG model with Student-t errors that uses the SSRR as measurement

input, is clearly favoured among the 18 models presented.

In four markets the RG that employs RaO as an input and Gaussian errors is the

least favoured model. In four out of five markets, the RV-RG-GG model beats the

GARCH-G. Clearly, by the measure of predictive likelihood, the RR and scaled



Chapter 2. Realized Range GARCH 44

and sub-sampled realized measures are more informative in all markets, compared

to the squared daily returns, Ra and RaO and RV. The RaO is the least favoured

measure.

The results here clearly indicate the superior predictive power of the RR-RG-tG,

SSRV-RG-tG and SSRR-RG-tG models over standard GARCH models and RG

models that employ RV, Ra or RaO as the realized measures. This suggests that

employing RR leads to significant gains in information and predictability of both

volatility and the predictive return distribution, over RV, Ra and RaO, and that

the RR-RG-tG, SSRV-RG-tG and SSRR-RG-tG models should be considered for

financial applications that require volatility or distributional forecasts, e.g. option

pricing and tail-risk forecasting (as illustrated in the next section).

Table 2.8: Log-predictive likelihoods; Jan 2008 - Sep 2014.

Model S&P500 NASDAQ Hang Seng FTSE DAX
G-G -2,390.2 -2,694.9 -2,846.6 -2,533.3 -2,851.0
G-t -2,357.1 -2,667.6 -2,832.2 -2,515.7 -2,822.2
Ra-RG-GG -2,440.0 -2,649.1 -2,855.1 -2,624.7 -2,853.2
RaO-RG-GG -2,461.4 -2,741.6 -3,278.1 -2,624.5 -2,875.2
RV-RG-GG -2,343.0 -2,656.5 -2,928.4 -2,496.7 -2,803.3
RR-RG-GG -2,311.2 -2,616.6 -2,893.0 -2,489.4 -2,783.6
ScRV-RG-GG -2,345.1 -2,659.7 -2,837.5 -2,500.5 -2,813.4
ScRR-RG-GG -2,322.3 -2,618.8 -2,822.9 -2,488.9 -2,788.6
SSRV-RG-GG -2,308.8 -2,613.4 -2,830.6 -2,479.3 -2,785.2
SSRR-RG-GG -2,299.0 -2,615.9 -2,868.5 -2,477.4 -2,778.5
Ra-RG-tG -2,464.2 -2,638.8 -2,863.5 -2,645.2 -2,842.1
RaO-RG-tG -2,459.6 -2,735.9 -3,066.3 -2,646.1 -2,872.5
RV-RG-tG -2,329.9 -2,647.0 -2,896.1 -2,490.0 -2,790.4
RR-RG-tG -2,299.5 -2,608.5 -2,877.8 -2,482.4 -2,775.2
ScRV-RG-tG -2,327.7 -2,646.6 -2,829.0 -2,492.5 -2,797.7

ScRR-RG-tG -2,307.4 -2,609.9 -2,816.0 -2,481.1 -2,778.9

SSRV-RG-tG -2,294.3 -2,605.1 -2,823.2 -2,479.7 -2,776.5

SSRR-RG-tG -2,287.2 -2,607.1 -2,862.4 -2,472.2 -2,770.9

m 1621 1672 1631 1697 1691
n 1960 1892 1890 1944 1936

Note: A box indicates the favored model in each market, based on minimum
predictive log-likelihood, whilst bold indicates the least favoured model.
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2.6.4 Out-of-sample forecasting: tail risk

The Basel II and III Capital Accords favour VaR and ES as tail risk measures for

financial institutions to employ in market risk management. Thus, it is highly im-

portant for institutions to have access to highly accurate VaR and ES forecast mod-

els, allowing accurate capital allocation, both to avoid default and over-allocation

of funds.

The same estimation sample period, forecast sample period and fixed, moving

window approach in the last section are employed in this section that focuses on

VaR and ES forecasting at 1% risk levels for five daily financial indices. Popular

non-parametric methods for forecasting VaR and ES, including Historical Simula-

tion (HS), using the last 100 (HS100) and the last 250 (HS250) days of returns,

are added to the competing models.

2.6.4.1 Value-at-Risk

Table 2.9 presents the estimation period sample size for each forecast n, and the

forecast sample size m, in each market; also presented are the numbers of returns

in the forecast period that are more extreme than the forecasted VaR (called

VaR violations) at the 1% quantile for each model in each market, and the mean

& median VaR violations of the 5 markets for each model. These numbers are

expected to be 0.01m: boxes indicate the model that has a violations closest to

that baed on the mean & median; bold indicates the model with VRate furthest

away from expected. Results for the MCMC estimated RG models are shown,

whilst ML methods were used for the standard GARCH models.

Although we can see that, based on mean and median VaR violations for 5 markets,

the Ra-RG-tG and RaO-RG-tG are favoured and they are the only two models

generated the conservative VaR forecasting results, e.g. violations are less than

0.01m, some of their VaR forecasts are too conservative, especially the RaO-RG-tG

model. This can be explained by the small value of degree of freedom generated

by Ra-RG-tG and RaO-RG-tG, refer to the in-sample estimation results Table

2.5. Also, the Ra-RG-tG and RaO-RG-tG are rejected in almost every markets

through back testing, which will be explained later on.

Besides the Ra-RG-tG and RaO-RG-tG models, clearly, the 2 models with VaR

violations typically closest to the expected 0.01m across the five markets are the
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Table 2.9: Counts of 1% VaR violations during the forecast period in each market.

Model S&P500 NASDAQ Hang Seng FTSE DAX Mean Median
G-G 41 42 33 33 33 36.4 33.0
G-t 27 32 26 26 24 27.0 26.0
HS100 23 27 27 28 30 27.0 27.0
HS250 24 26 25 24 21 24.0 24.0
Ra-RG-GG 38 36 32 24 30 32.0 32.0
RaO-RG-GG 40 24 40 24 24 30.4 24.0
RV-RG-GG 37 34 49 24 33 35.4 34.0
RR-RG-GG 34 29 45 20 29 31.4 29.0
ScRV-RG-GG 38 36 26 28 32 32.0 32.0
ScRR-RG-GG 38 33 28 27 31 31.4 31.0
SSRV-RG-GG 41 36 30 30 31 33.6 31.0
SSRR-RG-GG 39 30 40 22 26 31.4 30.0

Ra-RG-tG 17 26 21 12 18 18.8 18.0

RaO-RG-tG 21 4 32 12 6 15.0 12.0
RV-RG-tG 26 25 34 19 25 25.8 25.0

RR-RG-tG 27 22 29 14 23 23.0 23.0
ScRV-RG-tG 31 23 20 25 26 25.0 25.0
ScRR-RG-tG 30 27 23 21 25 25.2 25.0
SSRV-RG-tG 35 26 22 25 27 27.0 26.0

SSRR-RG-tG 25 23 27 15 21 22.2 23.0
Mean 26 21 21 16 22 21.2 21.0
Median 31 27 25 21 26 26.0 26.0
Min 2 2 6 3 2 3.0 2.0
Max 72 63 73 56 58 64.4 63.0
m 1621 1672 1631 1697 1691 1662.4 1672.0
n 1960 1892 1890 1944 1936 1924.4 1936.0

Note: Boxes indicate the model with mean or median VaR violations closest to its nominal level only for individual models, whilst
bold indicates the least favoured individual models.
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RR-RG-tG and SSRR-RG-tG. All models, except Ra-RG-tG and RaO-RG-tG

models, have higher than expected average VRates across the markets, which may

not be too surprising given that the GFC is at the start of the forecast sample;

this issue is examined further later.

Chang et al. (2011) and McAleer et al. (2013) proposed employing forecast

combinations of the VaR series from different models, potentially as a robust

to the GFC combined VaR forecast. We incorporated this approach since our

forecasting period includes the GFC. Specifically, four combinations of 1% VaR

forecasts from individual models are considered: the mean, median, minimum and

maximum, of each of the VaR forecasts from the 20 models in Table 2.9. The

VaR forecasts are negative in this chapter, so ”Min” is the most extreme of the

11 forecasts (i.e. furthest from 0) and ”Max” is the least extreme. The violations

for ”Mean” and ”Median”, ”Min” and ”Max” series are also presented in Table

2.9. As expected, the ”Min” approach is too conservative in each series, while the

”Max” series produces anti-conservative VaR forecasts that produce far too many

violations. The ”Mean” of the 20 models produced a series that generated closest

to the nominal violation rate on average overall; which was closely matched by the

the RR-RG-tG and SSRR-RG-tG models for 1% VaR forecasting.

Having a VRate close to 1% on average is not sufficient to guarantee an accurate

forecast model. Several tests exist in the literature to statistically assess forecast

accuracy and independence of violations, a requirement of a proper risk model.

These include the unconditional coverage (UC) Kupiec (1995), conditional cover-

age (CC) of Christoffersen(1998), dynamic quantile (DQ) of Engle and Manganelli

(2004) and VaR quantile regression (VQR) test of Gaglianone et al. (2011). The

UC tests the hypothesis that the true VRate is α(= 1%); the CC and DQ are

joint tests of that plus the independence of the violations over time; whilst the

VQR conducts a Mincer-Zarnawicz quantile regression of forecasted quantiles on

the forecast returns, whose parameters are jointly tested to be intercept zero and

slope one, respectively, as would indicate an accurate quantile forecasting model.

See the referenced chapter for more details.

Table 2.10 counts the number of markets in which each 1% VaR forecast model

is rejected, for each test, all conducted at a 5% significance level. Clearly, for 1%

VaR forecasting from 2008-2014, the RR-RG-tG and SSRR-RG-tG models have

forecast the most accurately and can be least rejected overall. In addition, the
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1% VaR series calculated by the mean of 20 VaR forecasts is rejected in only 2

markets and is thus ranked as the best model by this criterion.

Table 2.10: Counts of rejections for each test and 1% VaR model during the
forecast period over the five markets, α = 0.05.

α = 0.01 UC CC DQ4 VQR Total
G-G 5 5 5 5 5
G-t 4 2 5 3 5
HS100 4 4 5 1 5
HS250 2 3 5 1 5
Ra-RG-GG 4 4 5 4 5
RaO-RG-GG 2 2 3 5 5
RV-RG-GG 4 4 4 4 4
RR-RG-GG 4 4 3 3 4
ScRV-RG-GG 5 4 5 4 5
ScRR-RG-GG 5 4 5 4 5
SSRV-RG-GG 5 5 5 4 5
SSRR-RG-GG 4 3 3 3 4
Ra-RG-tG 1 0 5 1 5
RaO-RG-tG 3 3 3 4 5

RV-RG-tG 2 1 1 2 3

RR-RG-tG 2 2 1 2 3
ScRV-RG-tG 2 1 3 1 4

ScRR-RG-tG 2 2 2 0 3
SSRV-RG-tG 3 2 2 3 4

SSRR-RG-tG 2 1 1 3 3
Mean 1 0 1 1 2
Median 4 2 3 3 4
Min 5 5 3 5 5
Max 5 5 5 5 5

Note: Boxes indicate the model with lowest number of total rejections only for
individual models, whilst bold indicates the individual models with highest number
of total rejections.

Overall, RR-RG-tG and SSRR-RG-tG models are the best performing models at

1% VaR forecasting. In terms of employing forecast combination to produce a

VaR series that is robust to the GFC, the ”Mean” series showed the most po-

tential, having the closest overall violation rate to nominal and ranking first in

the diagnostic testing. However, the ”Median”, ”Min” and ”Max” series were not

competitive with many of the individual models, on these criteria.
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2.6.4.2 Expected Shortfall

The same set of models are employed to generate 1-step-ahead forecasts of 1% ES

during the forecast sample in each market. Chen, Gerlach and Lu (2012) discuss

how to treat ES forecasts as quantile forecasts in parametric models, where the

quantile level that ES falls at can be deduced exactly. Gerlach and Chen (2015)

illustrate that across a range of non-Gaussian distributions, when applied to real

daily financial return data, the quantile level that the 1% ES was estimated to

fall was ≈ 0.36%. Their approaches are followed to assess and test ES forecasts,

by treating them as quantile forecasts and employing the UC, CC, DQ and VQR

tests. As such, the expected number of violations from ES models are expected

to be = 0.0038m (exact for models with Gaussian errors); ≈ 0.0036m (for non-

parametric models) and estimated by the quantile level implied by the degrees of

freedom estimates for models with Student-t errors (also ≈ 0.0036m for the data

considered here), refer to Table 1.1 for details. Thus, based on the actual sizes

of m in Table 2.9, all models have an expected or target ES violation number of

between 6 and 6.5 in each market.

Figures 2.10 and 2.9 show the forecast sample returns from the S&P 500 and some

associated forecasted ES series. The models shown are the G-G, G-t, HS250,RR-

RG-tG and RR-RG-tG (estimated by MCMC). The violation numbers from these

four models are, respectively, 23, 11, 14, 6 and 5; the expected is 5.8(≈ 6). Despite

the large differences in number of violations, the ES forecasts from the RR-RG-tG

model, which has the lowest number of violations, are, visually from Figures 2.10

and 2.9 , often less extreme than those from the other three models shown. In

fact the ES forecasts from the RR-RG-tG model are less extreme than the G-G

on 26.3% of the forecast sample days, less extreme than the G-t model on 63.8%

of days and on 64.0% of the days less extreme than the RV-RG-tG model, which

can be clearly demonstrated through Figure 2.10. Further, at times where there

is a persistence of extreme returns (e.g. the GFC), close inspection of Figure 2.9

reveals that the RG-RR-tG model’s ES forecasts ”recover” the fastest, in terms

of being marginally the fastest to produce forecasts that again follow the tail of

the data; GARCH models are well-known to over-react to extreme events and to

be subsequently very slow to recover, due to their oft-estimated very, very high

persistence. As an example, from August, 2008-January, 2009 (114 observations),

the most volatile of the GFC period, the RG-RR-tG model’s forecasts are less

extreme than the G-G model’s on 36.0% of the forecast sample days; including
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Figure 2.9: S&P 500 1% ES forecasts plot with GG, Gt, HS250, RR-RG-tG and RR-RG-tG.
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every day in the period from 16/12/08 - 13/01/09; this percentage is 39.5% from

27/04/10-13/10/10 and 47.1% in the period 16/08/11 - 10/01/12. These are three

persistent high volatility periods in the S&P500 market during the forecast sample

period.

3150 3200 3250 3300 3350 3400 3450 3500 3550
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HS250
RV-RG-tG
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Figure 2.10: Zoomed in S&P 500 1% ES forecasts plot with GG, Gt, HS250,
RR-RG-tG and RR-RG-tG.

To summarise, Figures 2.10 and 2.9 highlight the extra efficiency that can be

gained by employing an RG model, specifically one that employs RR as an input.

The efficiency here can be deduced in that this model can produce ES forecasts

that have far fewer violations but are simultaneously less extreme than those of the

traditional GARCH model. Since the capital set aside by financial institutions, to

cover extreme losses, should be directly proportional to the ES forecast, the RG-

RR-tG model is saving the company money, by giving more accurate and often

less extreme ES forecasts, compared to GARCH models. More evidence for this

statement, and how it applies to other markets considered, is now presented.

Table 2.12 presents the numbers of returns in the forecast period that are more

extreme than the forecasted ES (called ES violations) at the 1% quantile for each

model in each market; called ES violations. The mean and median of ES violations

of 5 markets for each model are calculated as well. Similar to Table 2.9, boxes

indicate the model in each market that has an ES violations closest to that desired;
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Figure 2.11: S&P 500 1% ES forecasts with ”Mean”, ”Median”, ”Min” and ”Max”.
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bold indicates the model with ES violations furthest from that expected. All RG

type models are estimated with MCMC.

Clearly, the best model with ESRates typically closest to that expected for the 1%

ES across the five markets is the RR-RG-tG, closely followed by ScRR-RG-tG,

SSRV-RG-tG and SSRR-RG-tG. All models have higher than expected average

ESRates across the markets, which is not surprising given that the GFC is at the

start of the forecast sample; this issue is examined further later.

The mean, median, minimum and maximum of the 20 models’ 1% ES forecasts

are again calculated and visualised in Figure 2.11 and their ES violations are also

shown in Table 2.12 as well. The ”Mean” approach is again optimal among the

four combination methods, but with average violations of 6.8, which is actually

the closest to nominal ES violations and slightly better than the RR-RG-tG.

Having an average ESRate close to that expected is not sufficient to guarantee

an accurate forecast model. Following Chen et al. (2012) and Gerlach and Chen

(2014) the UC, CC, DQ and VQR quantile accuracy tests are applied to the

ES violations from each model, using that model’s nominal (or an estimate of)

1% ES quantile level. The quantile level corresponding to the median for the

estimated ν during the forecast sample is used for models with Student-t errors

(the actual estimated range across the t-distributed error models in all markets is

(0.0033, 0.00375)); 0.0036 is used for non-parametric models, 0.0038 for Gaussian

error models.

Table 2.11 counts the number of markets in which each model is rejected, for each

test, all conducted at a 5% significance level. For 1% ES forecasting from 2008-

2014, the ScRR-RG-tG and SSRV-RG-tG model has forecast got 0 rejection in

five markets overall. The next best is the SSRR-RG-tG, rejected in one out of the

five markets, and the RR-RG-tG got rejected twice. Of the forecast combination

series, the ”Mean” is only rejected once.

Figure 2.12 plots the averages of the 1% ES forecast residuals, standardised by the

1% VaR forecasts, for each of the five markets, plus the average of these averages,

for each individual forecast model/method. In this figure, RR-RG-GG is repre-

sented as RR, and RR-RG-tG is represented as RRt. An accurate 1% ES forecast

model should produce standardised residuals that average approximately 0. Table

2.11 illustrates that a bootstrap test on whether these averages differ from 0 is not

very powerful, compared to the UC, CC and DQ tests. Agreeing with those results,
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Table 2.11: Counts of 1% ES model rejections for each test and model during
the forecast period over the five markets, α = 0.05.

α = 0.01 UC CC DQ4 VQR Bootstrap Total
G-G 5 5 5 2 4 5
G-t 1 1 4 0 0 4
HS100 5 5 5 2 5 5
HS250 4 4 5 1 2 5
Ra-RG-GG 5 5 5 1 3 5
RaO-RG-GG 4 4 5 2 3 5
RV-RG-GG 5 4 4 1 1 5
RR-RG-GG 4 2 2 1 1 4
ScRV-RG-GG 5 5 4 1 3 5
ScRR-RG-GG 5 5 4 2 2 5
SSRV-RG-GG 4 4 3 1 1 4
SSRR-RG-GG 3 2 2 1 1 3
Ra-RG-tG 0 0 1 0 1 2
RaO-RG-tG 2 1 2 1 1 4
RV-RG-tG 1 1 1 1 1 2
RR-RG-tG 0 0 1 1 1 2
ScRV-RG-tG 0 0 1 0 1 2

ScRR-RG-tG 0 0 0 0 0 0

SSRV-RG-tG 0 0 0 0 0 0
SSRR-RG-tG 0 0 1 0 1 1
Mean 0 0 1 1 0 1
Median 0 0 1 2 0 2
Min 3 3 0 5 1 5
Max 5 5 5 3 5 5

Note: Boxes indicate the model with lowest number of total rejections only for
individual models, whilst bold indicates the individual models with highest number
of total rejections.
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Table 2.12: Counts of 1% ES violations during the forecast period in each market.

Model S&P500 NASDAQ Hang Seng FTSE DAX Mean Median
G-G 23 23 18 17 17 19.6 18.0
G-t 11 8 8 13 9 9.8 9.0
HS100 19 21 22 22 21 21.0 21.0
HS250 14 16 15 15 10 14.0 15.0
Ra-RG-GG 20 16 16 15 18 17.0 16.0
RaO-RG-GG 25 10 28 15 16 18.8 16.0
RV-RG-GG 21 18 32 13 16 20.0 18.0
RR-RG-GG 15 13 23 8 13 14.4 13.0
ScRV-RG-GG 19 14 17 16 18 16.8 17.0
ScRR-RG-GG 21 14 17 15 15 16.4 15.0
SSRV-RG-GG 20 15 18 12 15 16.0 15.0
SSRR-RG-GG 16 13 21 9 12 14.2 13.0
Ra-RG-tG 5 4 9 2 3 4.6 4.0
RaO-RG-tG 6 1 12 2 2 4.6 2.0
RV-RG-tG 6 9 16 7 7 9.0 7.0

RR-RG-tG 5 5 10 7 8 7.0 7.0
ScRV-RG-tG 6 9 10 9 8 8.4 9.0

ScRR-RG-tG 8 7 6 7 9 7.4 7.0

SSRV-RG-tG 7 8 7 7 7 7.2 7.0

SSRR-RG-tG 7 5 9 7 8 7.2 7.0
Mean 7 4 11 7 5 6.8 7.0
Median 8 7 11 8 9 8.6 8.0
Min 1 1 0 2 2 1.2 1.0
Max 51 42 51 33 40 43.4 42.0

Note: Boxes indicate the model with mean or median ES violations closest to its nominal level only for individual models, whilst bold
indicates the least favoured individual models.
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it is clear that the G-t, RV-RG-tG and RR-RG-tG and RG-tG employing scaled

and sub-sampled realized measures are the most accurate; whilst G-G, HS100,

HS250, RG-GG incorporating various realized measures clearly, consistently and

significantly under-estimate the 1% ES levels, causing negative average residuals

to result in all five series.

GG Gt HS100 HS250 Ra RaO RV RR ScRV ScRR SSRV SSRR Rat RaOt RVt RRt ScRVt ScRRt SSRVt SSRRt
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Figure 2.12: Residuals for 1% ES forecasts, standardised by 1% VaR forecasts,
averaged. For each model the five averages are shown, one for each data series,

as well as the average of these averages. A reference line is drawn at 0.

In summary, the RR-RG-tG model, estimated by MCMC, is the most accurate

at forecasting 1% ES for the forecast period from Jan, 2008 to Sep, 2014 across

five market index return series. It consistently displays ES violation rates closest

to the nominal rate predicted by the estimated Student-t error distribution, and

has competitive performance with standard diagnostic tests of quantile forecast

accuracy. The next best models are ScRR-RG-tG, SSRV-RG-tG, SSRR-RG-tG,

and they have really close tail risk forecasting performance. The series produced

by the mean of the 20 forecast models also presents accurate forecasting results.

Clearly, in the context of RG models, the use of RR led to greater efficiency

in ES forecasting; as it did also for predictive density forecasting. Finally, the

RR-RG-tG model was also highly competitive in 1% VaR forecasting, marginally

outperformed only by the ”Mean” series and SSRR-RG-tG.
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In terms of employing forecast combination to produce an ES series that is robust

to the GFC, the ”Mean” series showed the most potential, having the closest

overall ES violation rate to nominal. However, the ”Median”, ”Min” and ”Max”

series were not competitive with many of the individual models, on these criteria.

2.7 Chapter summary

In this chapter, the realized range, observed at a 5 minute frequency, was proposed

as an alternative realized measure for use in the Realized GARCH modelling frame-

work. This choice led to significant improvements in the out-of-sample predictive

likelihood and the forecasting of tail risk measures VaR and ES, compared to RG

models employing realized volatility or intra-day range, and traditional GARCH

models, as well as forecast combinations of these models; when combined with

Student-t errors in the observation equation. In addition, we employ an existing

scaling process and propose a sub-sampling process for RR to consider the micro-

structure noise, then the scaled and sub-sampled realized measures are employed

and tested in the Realized GARCH framework and demonstrate accurate tail fore-

casting results, especially with SSRR. The Realized GARCH model with RR and

SSRR employing Student-t error should be considered for financial applications

requiring volatility or tail risk forecasting, and should allow financial institutions

to more accurately allocate capital under the Basel Capital Accord to protect their

investments from extreme market movements. This work could be extended by

alternative frequencies of observation for the realized measures and considering

jumps in returns. In addition, we would apply and test different skew-t distribu-

tions (Aas and Haff, 2006) in the Realized-GARCH framework. Further, we could

extend the adapted MCMC algorithm to employ more flexible and fat-tail mix-

ture distribution as the MCMC proposal distribution, such as Adaptive Mixture of

Student-t (AdMit) distribution (Hoogerheide, Kaashoek and van Dijk HK, 2007),

to further improve the MCMC performance.

3



Chapter 3

Bayesian semi-parametric

Realized CARE models for

tail-risk forecasting incorporating

range and realized measures

3.1 Introduction

In recent decades, quantitative financial risk measurement has provided a funda-

mental toolkit for investment decisions, capital allocation and external regulation.

Value-at-Risk (VaR) and Expected Shortfall (ES) are tail risk measures that are

employed, as part of this toolkit, to help measure and control financial risk. VaR

represents the market risk as one number, a quantile of the risk distribution, and

has become a standard measurement for capital allocation and risk management,

since it was proposed in 1993. However, VaR has been criticised because it can-

not measure the expected loss for violating returns and is not mathematically

coherent, in that it can favour non-diversification. ES, proposed by Artzner et

al. (1997, 1999), gives the expected loss, conditional on returns exceeding a VaR

threshold, and is a coherent measure, thus in recent years it has become more

widely employed for tail risk measurement.

Volatility estimation can play a key role in calculating accurate VaR or ES fore-

casts. Since the introduction of the Auto-Regressive Conditionally Heteroskedas-

tic (ARCH) model of Engle (1982) and the generalised (G)ARCH of Bollerslev

58
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(1986), both employing squared returns as model input, many different volatil-

ity estimators and volatility models have been developed. However, Parkinson

(1980) and Garman and Klass (1980) considered the daily high-low range as a

more efficient volatility estimator compared to the daily return. The availability

of high frequency intra-day data has generated several more popular and effi-

cient realized measures of volatility, including realized variance (RV): Andersen

and Bollerslev (1998), Andersen et al. (2003); and realized range (RR): Martens

and van Dijk (2007), Christensen and Podolskij (2007). In order to further deal

with the well-known, inherent micro-structure noise accompanying high frequency

volatility measures, Zhang, Mykland and Aı̈t-Sahalia (2005) and Martens and van

Dijk (2007) designed the sub-sampling and scaling processes, respectively, aiming

to provide smoother and more efficient realized measures.

Hansen et al. (2011) extended the GARCH model framework by proposing the

Realized GARCH (Re-GARCH), adding a measurement equation that contem-

poraneously links unobserved volatility with a realized measure. Gerlach and

Wang (2016) extended the Re-GARCH model through employing RR as the real-

ized measure (called RR-GARCH) and illustrated that the proposed RR-GARCH

framework can generate more accurate and efficient volatility, VaR and ES fore-

casts compared to traditional GARCH and Re-GARCH models. However, the tail-

risk forecast performance of these parametric volatility models heavily depends on

the choice of error distribution. A semi-parametric model that directly estimates

quantiles and expectiles, and implicitly ES, called the Conditional Autoregressive

Expectile (CARE) model is proposed by Taylor (2008). The relevant expectile can

be estimated with Asymmetric Least Square (ALS), which is transformed to be

an estimate of ES through a connection discovered by Newey and Powell (1987).

Gerlach, Chen and Lin (2012) developed the non-linear family of CARE models

and an associated Bayesian estimation framework. Further, Gerlach and Chen

(2016) extended CARE type models through employing daily high-low range as

input.

In this chapter, a Realized Conditional Autoregressive Expectile (Re-CARE) frame-

work is proposed, which is roughly analogous to the Re-GARCH framework. The

Re-CARE includes the CARE model but adds a measurement equation that links

the latent conditional expectile with the realized measure. The work in Gerlach

and Chen (2016) allows a likelihood formulation for CARE models, giving an MLE

that is equivalent to the ALS estimator. A standard parametric assumption on the
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errors of the Re-CARE measurement equation allows this formulation to be ex-

tended, permitting an Re-CARE likelihood to be developed and an ML estimator

to be explored. Further, an adaptive Bayesian MCMC algorithm is developed. To

evaluate the performance of the proposed Re-CARE models, employing the range

and various realized measures as inputs, the accuracy of VaR and ES forecasts

will be assessed and compared with competitors such as the CARE, GARCH and

Re-GARCH models.

The CARE model includes a nuisance parameter, currently not estimable by stan-

dard methods, for which Taylor (2008) employed a grid search estimator. A

quadratic approximation method, followed by a refined grid search, is proposed

as an alternative, substantially reducing the computing time in estimating this

parameter, whilst maintaining an equivalent level of accuracy.

This chapter is organized as follows: Section 3.2 reviews some realized measures.

Expectile and their connection with existing CARE type models, as well as a

review of Re-GARCH type models comprises Section 3.3. Section 3.4 proposes

the Realized CARE type models. The associated likelihood and the adaptive

Bayesian MCMC algorithm for parameter estimation are presented in Section 3.5.

The simulation and empirical studies are discussed in Section 3.6 and Section 3.7

respectively. Section 3.8 concludes the chapter and discusses future work.

3.2 Realized measures

The motivation and calculation details of different volatility estimators have been

presented and discussed in Section 2.2, thus we only briefly review them in this

section.

The most commonly used daily log return rt is calculated as Equation (2.1). The

high-low (squared) range (Equation (2.3)), proposed by Parkinson (1980), proved

to be a much more efficient volatility estimator than r2
t , based on the range dis-

tribution theory (see e.g. Feller, 1951). 4log(2) scales Ra to be an approximately

unbiased volatility estimator. Several other range-based estimators, e.g. Garman

and Klass (1980); Rogers and Satchell (1991); Yang and Zhang (2000) were sub-

sequently proposed; see Molnár (2012) for a full review regarding their properties.
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The range allowing for overnight price jumps (Equation (2.4)) is proposed in Ger-

lach and Chen (2016), where again the associated volatility estimator squares Raot,

then divides by 4log(2).

If each day t is divided into N equally sized intervals of length ∆, several high

frequency volatility measures can be calculated. Then RV is proposed by Andersen

and Bollerslev (1998) as presented in Equation (2.5). Martens and van Dijk (2007)

and Christensen and Podolskij (2007) developed the Realized Range, which sums

the squared intra-period ranges (Equation(2.6)).

Through theoretical derivation and simulation, Martijns and van Dijk (2007)

showed that RR is a competitive, and sometimes more efficient, volatility estima-

tor than RV under some micro-structure conditions and levels. Gerlach and Wang

(2016) confirm that RR can provide extra efficiency in empirical tail risk fore-

casting, when employed as the measurement equation variable in an Re-GARCH

model. To further reduce the effect of microstructure noise, Martens and van Dijk

(2007) presented a scaling process, as in Equations (2.7) and (2.8). This scaling

process is inspired by the fact that the daily squared return and range are each less

affected by micro-structure noise than their high frequency counterparts, thus can

be used to scale and smooth RV and RR, creating less micro-structure sensitive

measures.

Further, a sub-sampled process is proposed by Zhang, Mykland and Aı̈t-Sahalia

(2005), also to deal with micro-structure effects. The sub-sampled RV and sub-

sampled RR are calculated with Equations (2.9) and (2.11) respectively.

3.3 Expectile and CARE type models

3.3.1 Expectile

The τ level expectile µτ , defined by Aigner, Amemiya and Poirier (1976), can be

estimated through minimising the following expectation:

E(|τ − I(Y < µτ )|(Y − µτ )2)

where Y is a continuous r.v., τ ∈ [0, 1], I(Y < µτ ) equals 1 when Y < µτ and 0

otherwise. If Y = y1, y2, ...yn, the following asymmetric sum of squares equation
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is employed for µτ estimation in Taylor (2008):

n∑
t=1

(|τ − I(yt < µτ )|(yt − µτ )2) , (3.1)

minimising this equation results in the Asymmetric Leaste Squares (ALS) estima-

tor. No distributional assumption is required to estimate µτ here.

Figure 3.1 plots the α level quantiles and unconditional τ level expectiles versus

α and τ , respectively. As can be seen, when the unconditional α quantile and τ

expectile are identical, the value of τ is more extreme than the value of α. Further,

we would like to emphasize that α, τ and the estimated µτ all have one-to-one

relationship as presented in Figure 3.1 and Equation (3.1).
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Figure 3.1: α level quantile and τ level expectile versus corresponding α and
τ .

As discussed in Section 1.6, ES is defined as ESα = E(Y |Y < Qα), which stands

for the expected value of Y conditional on the set of Y that is more extreme than

Qα. Newey and Powell (1987) found a relationship between the expectile and ES:
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If E(Y ) = 0, Taylor (2008) showed this relationship can be formulated as:

ESα = (1 +
τ

(1− 2τ)ατ
)µτ , (3.2)

where µτ = Qα. Thus, µτ can be used to estimate the α level quantile Qα, and

scaled to estimate the associated ES.

3.3.2 CARE type models and Realized GARCH

Taylor (2008) proposed the CARE type models that have the similar form as the

CAViaR type models (Engle and Manganelli 2004), i.e. symmetric absolute value

(SAV), asymmetric (AS) and indirect GARCH (IG). The CARE type models were

extended into fully nonlinear family in Gerlach, Chen and Lin (2012). Here we

only present the CARE-SAV model:

CARE-SAV:

µt = β1 + β2µt−1 + β3|rt|

where rt is the day t return, and µt is the τ level expectile for day t, while τ is

removed from the notation for the reason of brevity. Further, Gerlach and Chen

(2016) employed the Range in the CARE framework, and the Ra-CARE type

models demonstrated superiority compared to the CARE using return in the tail

risk forecasting. The Range-CARE-SAV is specified as:

Range-CARE-SAV

rt = µt + εt (3.3)

µt = β1 + β2µt−1 + β3Rat−1

εt∼AG(τ, 0, σ)

where AG is the Asymmetric Gaussian distribution. Both the CARE-SAV and

Range-CARE-SAV can be estimated by ALS, or by maximum likelihood (ML)

assuming the AG error distribution: these estimators are mathematically equiva-

lent. Thus, the AG is only employed so as to construct a likelihood function that

subsequently allows a Bayesian estimator as in Gerlach, Chen, and Lin (2012) and

Gerlach and Chen (2016).
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These models can all produce one-step-ahead forecasts of µt (expectiles), which

can be directly used as the VaR estimates. Then, Equation (3.2) can be employed

to produce forecasts of ES simultaneously.

An innovative Realized GARCH framework was developed in Hansen et al. (2011).

Comparing to the conventional GARCH model, Re-GARCH employed a measure-

ment equation which captures the contemporaneous connection between unob-

served volatility and the realized variance. The superiority of Re-GARCH com-

pared to GARCH has been demonstrated by several authors, including Hansen et

al. (2011) and Watanabe (2012).

Re-GARCH

rt = σtzt, (3.4)

σ2
t = ω + βσ2

t−1 + γxt−1,

xt = ξ + ϕσ2
t + τ1zt + τ2(z2

t − 1) + σεεt

where the 3rd equation is the measurement equation. Here zt
i.i.d.∼ D1(0, 1) and

εt
i.i.d.∼ D2(0, 1); Hansen et al. (2011) suggested xt = RVt and D1(0, 1) = D2(0, 1) ≡

N(0, 1). Watanabe (2012), Contino and Gerlach (2014) further extended the model

through incorporating the Student-t or skewed-t (Hansen, 1994) for either or both

D1, D2. Gerlach and Wang (2016) also allowed xt = RRt, Ra
2
t .

3.4 Model proposed

Inspired by the CARE type models and the Re-GARCH framework, the Realized-

CARE-SAV is proposed, as follows:

Realized-CARE-SAV (Re-CARE-SAV)

rt = µt + εt (3.5)

µt = β1 + β2µt−1 + β3xt−1

xt = ξ + φ|µt|+ ut
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where rt = [log(Ct) − log(Ct−1)] × 100 is the percentage log-return for day t,

εt
i.i.d.∼ AG(τ, 0, σ), ut

i.i.d.∼ N(0, σ2
u). The three equations in the Realized CARE are

named as: the return equation, the CARE equation and the measurement equation,

respectively. The measurement equation here captures the contemporaneous de-

pendence between the expectile µt and realized measure xt, analogous to capturing

that between unobserved volatility and the realized measure in the Re-GARCH

framework.

Through choosing xt asRat,
√
RVt and

√
RRt respectively, we propose the Realized-

CARE-SAV-Range (Re-CARE-SAV-Ra), Realized-CARE-SAV-Realized Variance

(Re-CARE-SAV-RV) and Realized-CARE-SAV-Realized Range (Re-CARE-SAV-

RR) models.

The Re-CARE framework can be easily extended into the asymmetric, indirect

GARCH and other nonlinear CARE versions (Engle and Manganelli, 2004; Taylor,

2008; Gerlach, Chen and Lin, 2012; Gerlach and Chen, 2016), though we focus

solely on the Re-CARE-SAV in this chapter. For example, the Re-CARE with

indirect GARCH specification can be written:

Realized-CARE-IG (Re-CARE-IG)

rt = µt + εt

µt = −
√
β1 + β2µ2

t−1 + β3x2
t−1

x2
t = ξ + φµ2

t + ut

εt
i.i.d.∼ AG(τ, 0, σ), ut

i.i.d.∼ N(0, σ2
u)

xt = Rat,
√
RVt,

√
RRt,

β1 > 0, β2 > 0, β3 > 0

In order to guarantee that the µt does not diverge, it is logical that a necessary

condition for Re-CARE-SAV type models is β2 + β3φ < 1. This can be derived

through substituting the measurement equation into the CARE equation in Model

(3.5). The CARE equation in Re-CARE framework can produce one-step-ahead

expectile forecasts (VaR), which can be mapped to ES forecasts directly through

employing Equation (3.2).
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In this chapter, the Realized GARCH (Hansen et.al, 2011) is also adapted by

setting the volatility equation as an absolute value GARCH specification (Taylor

(1986); Schwert (1989)), as follows:

Realized-GARCH-Abs (Re-GARCH-Abs)

rt = σtε
∗
t

σt = β∗1 + β∗2σt−1 + β∗3xt−1

xt = ξ∗ + φ∗σt + u∗t

ε∗t
i.i.d.∼ D1(0, 1), u∗t

i.i.d.∼ D2(0, σ2
u∗)

xt = Rt,
√
RVt,

√
RRt,

This model allows us to simulate from the Re-CARE-SAV model for the purpose

of comparing the likelihood and Bayesian estimators for that model.

3.5 Likelihood and Bayesian estimation

3.5.1 CARE likelihood function with AG

With r = (r1, r2, ..., rn)′, the ALS as specified in Equation (3.6) is employed by

Taylor (2008) to estimate µτ , after the expectile level τ is estimated through a

grid search: τ is chosen to make the violation rate (VRate) of µτ closest to the

quantile level α.
n∑
t=1

(|τ − I(rt < µτ )|(rt − µτ )2) (3.6)

Gerlach, Chen, and Lin (2012), Gerlach and Chen (2016) developed an asym-

metric Gaussian (AG) distribution and included it as the error distribution in an

observation equation for a CARE model, i.e. εt∼AG(τ, 0, σ) in (3.3). This makes

the construction of a likelihood function feasible. The scale factor σ is a nuisance

parameter and can be integrated out, with a Jeffreys prior. Gerlach, Chen, and

Lin (2012) showed that maximizing the resulting integrated likelihood function

produces identical estimation results to the ALS approach. However, the likeli-

hood formulation allows access to powerful computational Bayesian approaches,

such as adaptive MCMC algorithms, for estimation.
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The CARE likelihood in this setting is:

L(r; θ) =
( n∑
t=1

|τ − I(rt < µt(β)|(rt − µt(β))2
)−n/2

(3.7)

3.5.2 Realized CARE log-likelihood

Because the Re-CARE framework has a measurement equation, with ut
i.i.d.∼ N(0, σ2

u),

the full log-likelihood function for Re-CARE (as in Model (3.5)) is the sum of

the log-likelihood `(r; θ) for the CARE equation and the log-likelihood `(x|r; θ)

from the measurement equation. In Re-GARCH framework, the measurement

equation variable contributes to volatility estimation, thus the GARCH equation

in-sample and predictive log-likelihood values are improved compared to the tra-

ditional GARCH. Thus, we expect the measurement equation in the Re-CARE to

also facilitate an improved estimate τ and of µτ .

`(r,x; θ) = `(r; θ) + `(x|r; θ)

= (−n/2)log
( n∑
t=1

|τ − I(rt < µt(β)|(rt − µt(β))2
)

︸ ︷︷ ︸
`(r;θ)

−1

2

n∑
t=1

(
log(2π) + log(σ2

u) + u2
t/σ

2
u

)
︸ ︷︷ ︸

`(x|r;θ)

where u is the measurement equation residual series, e.g. in the Re-CARE-SAV

ut = xt− ξ−φ|µt|, t = 1, . . . , n. Further, as discussed in Section 3.3, α, τ and the

estimated µτ all have one-to-one relationship. Therefore, incorporating one grid

searched τ (corresponding to α) and estimated µτ into the CARE or Re-CARE

likelihood will generate unique solution to the maximum likelihood estimation and

produce a unique corresponding set of estimated parameters.

For the Re-GARCH model framework, Hansen et.al (2011) studied the asymptotic

properties of the quasi-maximum likelihood estimator, conjecturing a central limit

theorem. Yao and Tong (1996) considered the asymptotics of ALS estimation for

expectile regression and showed consistency of the estimator. Results from both
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these papers allow us to conjecture the consistency and asymptotic normality of

the ML estimator obtained by numerically maximising the log-likelihood function

above. We leave the proofs for future work.

3.5.3 Bayesian Estimation

Given a likelihood function, Bayesian algorithms can be employed to estimate

the parameters of an Re-CARE model. A two-step adaptive Bayesian MCMC

method, extended from that in Contino and Gerlach (2014) is employed. First, the

parameters are dived into two blocks: θ1 = (β1, β2, β3, φ)
′

and θ2 = (ξ, σ)
′
, where

groupings are chosen to maximise within group correlation of MCMC iterates;

e.g. here the stationarity constraint β2 + β3φ < 1 induces some correlation among

these parameters, whilst in GARCH models the equivalent of β1, β2 are known to

be highly correlated.

Priors are chosen to be uninformative over the possible stationarity (and positivity,

where relevant) regions, e.g. π(θ) ∝ I(A), which is a flat prior for θ over the region

A.

An adaptive MCMC algorithm, adapted from that in Contino and Gerlach (2014)

and based on Chen and So (2006), employs a random walk Metropolis (RW-

M) for the burn-in period, and independent kernel Metropolis-Hastings (IK-MH)

algorithm (Metropolis et al., 1953; Hastings, 1970) for the sampling period. The

burn-in period uses a Gaussian proposal distribution for the random walk process

of each parameter group. The covariance matrix of the proposal distribution in

each block is tuned towards a target accept ratio of 23.4% (Roberts, Gelman and

Gilks, 1997). Then the IK-MH sampling period incorporates a mixture of three

Gaussian proposal distributions. The sample mean of last 10% of the burn-in

period samples are used as the proposal mean vector, while the sample variance-

covariance matrix Σ is employed so that the three Gaussian proposal var-cov

matrices are: Σ, 10Σ, 100Σ respectively, where Σ is calculated as the covariance

of the last 10% of the burn-in period samples, for each block.
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3.5.4 Quadratic fitting for the expectile level search

As discussed, the estimation of CARE type models relies on a full grid search of

the optimal expectile level τ , e.g employing M equally spaced trial values of τ

on [0, α]. Our investigations discovered that the relationship between τ and the

corresponding violation rate of µτ , i.e. α̂ = VRate is close to monotonic and linear,

while the relationship between τ and |VRate−α| is close to a V-shape; see top and

bottom plots of Figure 3.2. To assist in finding a smaller and more refined region

than [0, α] on which to do a grid-search, a quadratic is fit to a small number of

points in this V-shaped curve and the area close to the estimated minimum value of

the quadratic is employed as the refined search area. Thus, the following two-step

quadratic fitting approach is proposed to accelerate the grid search process.
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Figure 3.2: Expectile grid search VRate plot.

Step 1: Choose 4 equally spaced values for τ , generated in [0.0001, α/1.5], e.g.

0.0001, 0.0023, 0.0045, 0.0067, when α = 0.01. This region is used because the

empirical study shows τ̂ is always inside it. Employing |VRate−α| as the objective

function, a quadratic function is fit to the 4 calculated points, as in Figure 3.3.

Then the minimum, stationary point c is calculated, e.g. say c = 0.0025.

Step 2:
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Figure 3.3: Expectile quadratic grid search step one results.

A focused, refined grid search around the minimum c is then conducted. Using a

grid search step size of 0.0002, 8 equally spaced points on either side of c are used

(as in Table 3.1 below) and then the final τ̂ (say 0.0021) is selected as that value

minimising |VRate− α|.

Table 3.1: Step 2 τ trial values of the quadratic fitting of τ grid search.

0.0009 0.0011 0.0013 0.0015 0.0017 0.0019 0.0021 0.0023 0.0025
0.0027 0.0029 0.0031 0.0033 0.0035 0.0037 0.0039 0.0041

This approach makes savings on the original grid search time of approximately

50% to 60%, while producing estimates τ̂ that have the same properties as those

from the full grid search, and in fact usually producing the exact same estimated

value; confirmed in both our simulation and empirical studies, and highlighted in

Table 3.2.

In order to study the validity of the proposed quadratic target grid search, it was

examined together with the full grid search method for 5000 simulated datasets

of sample size 1500. The simulated data are generated from Model (3.8) in the

subsequent Section 3.6 in which we also explain how to derive the 1% true value

of expectile level as τ = 0.001452 for that model. The targeted grid search and
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full grid search methods are employed on each dataset, generating 5000 estimated

expectile levels in each case. The full grid search incorporates 50 equally dis-

tributed steps between 0.0001 and α = 1%, with grid search step size 0.0002. The

experiments are implemented on a standard PC with Inter(R) Core(TM) i5-3470

@ 3.20 GHz CPU and 8 GB memory. For the targeted and full grid search, their

mean, median and standard deviation (Std) of computation time t on 5000 repli-

cated data sets, and mean & RMSE of the 5000 estimated τ values are calculated

and presented in Table 3.2. Clearly the targeted search generated estimates with

almost exactly the same properties as the full grid search, but in significantly less

time, e.g. saving around 62.5% computation time on average.

Table 3.2: Quadratic target grid search and full grid search comparison with
5000 simulated datasets (time in seconds).

Target Grid Search Full Grid Search
t Mean 30.18 80.65
t Median 30.50 79.65
t Std 5.21 8.23
τ Est 0.001303 0.001304
τ RMSE 0.000398 0.000397
τ True 0.001452 0.001452

3.6 Simulation study

A simulation study is conducted to compare the properties and performance of

the MCMC and ML estimation approaches for the Re-CARE model, with respect

to parameter estimation and one-step-ahead VaR and ES forecasting accuracy.

Both the mean and Root Mean Square Error (RMSE) values are calculated for

the MCMC and ML estimates to illustrate their respective bias and precision.

N = 5000 simulated datasets were generated from the Re-GARCH-Abs model,

specified as Model (3.8). The Re-CARE-SAV model was fit to each data set, once

using ML and once using MCMC. Two sample sizes for the simulated data sets

are employed: n=1500 and n=3000 respectively.

Data replications are simulated from:
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rt = σtε
∗
t (3.8)

σt = 0.02 + 0.75σt−1 + 0.25xt−1

xt = 0.1 + 0.9σt + ut

ε∗t
i.i.d.∼ N(0, 1), ut

i.i.d.∼ N(0, 0.32)

In order to calculate the corresponding Re-CARE-SAV true values, a parameter

mapping between from the Re-GARCH-Abs to the Re-CARE-SAV is required.

With VaRt = µt = σtΦ
−1(α), then σt = µt

Φ−1(α)
= VaRt

Φ−1(α)
, where Φ−1(α) is the stan-

dard Normal inverse cdf at α quantile level. Substituting back into the GARCH

and measurement equations of Model (3.8), the corresponding Re-CARE-SAV

specification can be written:

µt = 0.02Φ−1(α) + 0.75µt−1 + 0.25Φ−1(α)xt−1 (3.9)

xt = 0.1− 0.9

Φ−1(α)
|µt|+ ut

allowing true parameter values to be read off.

In each model the true one-step-ahead α level VaR forecast is then VaRn+1 =

σn+1Φ−1(α), and the true one-step-ahead α level ES forecast is ESn+1 = σn+1Φ−1(δα),

where δα is the quantile level that ES occurs at for the standard normal distribu-

tion (Gerlach and Chen, 2016). Following Basel II and Basel III risk management

guidelines, the 1% quantile level is employed (corresponding δα = 0.38% with the

standard normal distribution), then the true value of VaRn+1 and ESn+1 can be

calculated for each dataset; the averages of these, over the 5000 datasets, are given

in the ”True” column of Table 3.3. Through the one-to-one relationship between

VaR and ES (Equation (3.2)), the true value of τ is 0.001452 for this model. In

addition, the quadratic fitting targeted grid search of τ is incorporated in the

MCMC process, while there is no target search for τ before the ML estimation, to

testify the accuracy of target search. In addition, we would like to point out that

the expectile level τ would be time varying with the real data sets. However, τ is
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assumed to be fixed in our study. An assumption that is also appeared in many

parametric time series models with fixed parameters.

The Re-CARE-SAV model is fit to the 5000 datasets generated, once using the

MCMC method and once using the ML estimator (the ‘fmincon’ constrained opti-

misation routine in Matlab software is employed). The MCMC sampler has 10000

iterations for each data set, with a burn-in of 5000 iterations. All iterations in the

independent MH sampling period are used to calculate the posterior estimates.

Estimation results are summarised in Tables 3.3. Boxes indicate the preferred

measure comparing MCMC and ML for both bias (Mean) and precision (RMSE).

Regarding the simulation results with n = 1500, both methods generate close to

unbiased and quite reasonably precise parameter estimates and VaR and ES fore-

casts. The bias results slightly favour the ML method, for 4 out of 7 parameter

estimates and the ES forecasts. However, the precision clearly favors the MCMC

method in 7 out of 9 parameter estimates and both VaR and ES forecasts. Ex-

tending the sample size to 3000, first it can be seen that both MCMC and ML

show improved bias and precision in estimation. Second, the results are even more

in favour of the MCMC method compared to n = 1500. Again both methods

generate close to unbiased and quite reasonably precise parameter estimates and

tail risk forecasts. The bias results favor the MCMC approach in 6 out of 9 pa-

rameter estimates and VaR& ES forecasts, whilst the precision is clearly lower

for the MCMC method for 7 parameters and both tail risk forecasts. Finally,

the estimation results for τ highlight the validity of the quadratic fitting targeted

search approach. Note that the estimation of τ is neither MCMC nor ML, but the

targeted procedure was only used for the MCMC results. Lastly, in order to study

the convergence and efficiency performance of the employed MCMC algorithm for

the simulated (and real word) data set, in this chapter we also implemented the

Gelman-Rubin diagnostic and effective sample size test as discussed in Sections

1.5.4 and 2.5, with the data set simulated from Re-CARE-SAV model (also 1st in-

sample S&P 500 data set). We still observe quite good convergence and efficiency

results, which is not surprising since the Re-CARE-SAV framework is analogous
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Table 3.3: Summary statistics for the two estimators of the Re-CARE-SAV
model, with data simulated from model (3.8).

n = 1500 MCMC-Target Search ML
Parameter True Mean RMSE Mean RMSE

β1 -0.0465 -0.0544 0.1923 -0.0709 0.3258

β2 0.7500 0.7335 0.0417 0.7378 0.0393

β3 -0.5816 -0.6238 0.1485 -0.6045 0.2048

ξ 0.1000 0.0839 0.2830 0.1018 0.7508

ϕ 0.3869 0.3879 0.0723 0.3852 0.1734

σu 0.3000 0.03010 0.0057 0.3005 0.0056

τ 0.001452 0.001304 0.0004 0.001303 0.0004

1% VaRn+1 -4.1872 -4.2392 0.2920 -4.2416 0.3241

1% ESn+1 -4.7970 -4.7911 0.3241 -4.7935 0.3608
n = 3000 True Mean RMSE Mean RMSE

β1 -0.0465 -0.0499 0.1287 -0.0577 0.2059

β2 0.7500 0.7422 0.0272 0.7411 0.0257

β3 -0.5816 -0.6014 0.0976 -0.5925 0.1328

ξ 0.1000 0.0919 0.1947 0.0880 0.4542

ϕ 0.3869 0.3876 0.0503 0.3891 0.1066

σu 0.3000 0.3005 0.0040 0.3002 0.0039

τ 0.001452 0.001378 0.0003 0.001378 0.0003

1% VaRn+1 -4.1784 -4.1970 0.1965 -4.1969 0.2103

1% ESn+1 -4.7869 -4.7759 0.2255 -4.7759 0.2411

Note:A box indicates the favored estimators, based on mean and RMSE.

to Re-GARCH, thus the results are not shown here.

3.7 Data and empirical study

3.7.1 Data description

Daily and high frequency data, observed at 1-minute and 5-minute frequency, in-

cluding open, high, low and closing prices, are downloaded from Thomson Reuters

Tick History. Data are collected for 6 market indices: S&P500, NASDAQ (both

US), Hang Seng (Hong Kong), FTSE 100 (UK), DAX (Germany) and SMI (Swiss),

with time range Jan 2000 to Sep 2014; as well as for 3 individual assets: IBM, GE

(both US) and BHP (AU), with time range Jan 2000 to Dec 2014. The starting

data collection time for BHP is July 2001 since it had a 2 : 1 Stock Split in June

2001 and the starting time for GE is May 2000, for a similar reason.
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The data are used to calculate the daily return, daily range and daily range consid-

ering overnight price jump. Further, the 5-minute data are employed to calculate

the daily RV and RR measures, while both 5 and 1-minute data are employed to

produce daily scaled and sub-sampled versions of these measures, as in Section

3.2; q = 66 is employed for the scaling process, i.e. around 3 months. Thus, the

final starting time is 3 months from the starting time of data collection.

The full data period is divided into an estimation sample: April 6, 2000 to De-

cember 31, 2007, of ≈ n = 1900 days (the starting dates for IBM, GE and BHP

are different); and a forecast sample: approximately m = 1660 trading days from

January 1, 2008 to Sept 18, 2014. The forecasting period includes most, if not all,

of the effects of the global financial crisis (GFC) on each market.There are small

differences in forecast sample sizes and end-dates occurred across markets, due to

market-specific non-trading days. Table 3.5 presents the exact in-sample sizes n

and forecast sample sizes m.

3.7.2 In-sample parameters estimation results

Further, with the 1st S&P 500 in-sample data set (first 1960 observations) and

MCMC, the estimated parameters of 8 different Re-CARE-SAV type models are

presented in Table 3.4.

Similar to the observation in Table 2.5, we can clearly see the much smaller esti-

mated σu with Re-CARE-SAV-RR compared to Re-CARE-SAV-RV. As discussed

in Martins and van Dijk (2007), Christensen and Podolskij (2007), RR has much

lower mean squared error than RV which might provide RR with higher accu-

racy and efficiency in volatility estimation and forecasting. Through looking at

the σu values estimated from Re-CARE-SAV employing scaled and sub-sampled

realized measures, the Re-CARE-SAV-SSRV provides smaller σu compared to Re-

CARE-SAV-RV, and Re-CARE-SAV-SSRR has similar σu as Re-CARE-SAV-RR.

However, we see slightly increased σu through incorporating scaled RV or RR.

3.7.3 Tail risk forecasting

Both daily Value-at-Risk (VaR) and Expected Shortfall (ES) are estimated for

the 6 indices and the 3 asset series, as recommended in Basel II and III Capital
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Table 3.4: In-sample parameters estimation for 8 models with S&P 500.

Models β1 β2 β3 ξ φ σu
RC-Ra -0.0855 0.7508 -0.4296 -0.0299 0.5176 0.6025
RC-RaO -0.0707 0.7598 -0.4152 -0.0109 0.5192 0.6140
RC-RV -0.0564 0.6774 -0.8516 0.0072 0.3496 0.2912
RC-RR -0.0015 0.6483 -1.4320 0.0408 0.2293 0.1720
RC-ScRV -0.0743 0.6837 -0.7437 -0.0158 0.3922 0.3258
RC-ScRR -0.0931 0.6507 -0.9177 -0.0427 0.3573 0.2364
RC-SSRV -0.0793 0.6298 -1.0767 -0.0100 0.3190 0.2308
RC-SSRR -0.0294 0.6098 -1.4335 0.0275 0.2536 0.1798

Note: RC represents the Re-CARE-SAV type models.

Accord. As discussed in Section 3.3, in the CARE setting the VaR, which is the

α level quantile, can be estimated by the corresponding τ level expectile. Then

through employing the one-to-one relationship between expectile and ES (as in

Equation (3.2)), ES can subsequently be calculated.

A rolling window with fixed size in-sample data is employed for estimation to

produce each one-step-ahead forecast, the in-sample size n is given in Table 3.5

for each series. In order to see the performance during the GFC period, the initial

date of the forecast sample is chosen as the beginning of 2008. On average, 1684

VaR and ES forecasts are generated with the proposed Re-CARE type models

(estimated with MCMC) with different input measures of volatility: including

range, range considering overnight jump, RV & RR, scaled RV & RR and sub-

sampled RV & RR. The conventional GARCH with Student-t distribution, CARE-

SAV and Re-GARCH with Gaussian or Student-t as the error distributions for its

volatility equation (estimated with ML), are also included, for the purpose of

comparison. The actual forecast sample sizes m are given in Table 3.5. Figure 3.4

visualises m = 1621 estimated τ values for each forecasting step with S&P 500,

for exposition.

The VaR violation rate (VRate) and ES violation rate (ESRate) are employed to

evaluate the VaR and ES forecasting accuracy. VRate and ESRate are simply the

proportion of returns that exceed the forecasted VaR or ES level in the forecast-

ing period (Equations (3.10) and (3.11)). Models with VRate closest to nominal

quantile level α = 1% are preferred.

In addition, Gerlach and Chen (2016) presented the quantile levels where the

1% ES is estimated to fall at over many different distributional choices. For the
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Figure 3.4: 1621 estimated expectile levels with S&P 500.

Gaussian this is 0.38%. For other distributions estimated in GARCH models for

dailr return data, the 1% ES quantile is estimated in 0.35% to 0.37%, for a range of

non-Gaussian distributions. As such, following Gerlach and Chen (2016), 0.36% is

chosen as the approximate nominal expected ESRate for the ES forecasting study

for CARE-type models.

VRate =
1

m

n+m∑
t=n+1

I(rt < VaRt), (3.10)

ESRate =
1

m

n+m∑
t=n+1

I(rt < ESt), (3.11)

where n is the in-sample size and m is the forecasting sample size.

However, having a VRate or ESRate close to the expected level is necessary but

not sufficient to guarantee an accurate forecasting model. Thus several standard

quantile accuracy and independence tests are employed: e.g. the unconditional

coverage (UC) and conditional coverage (CC) tests of Kupiec (1995) and Christof-

fersen (1998) respectively, as well as the dynamic quantile (DQ) test of Engle and
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Manganelli (2004) and the VQR test of Gaglianone et al. (2011). With the ap-

proach of Gerlach and Chen (2016), the derived expected ES level can be used

so as to treat ES forecasts as quantile forecasts at appropriate quantile levels and

these same tests can be applied; in addition the standard bootstrap t-test that

the ES residuals for VaR violations have mean 0 is applied for each model’s ES

forecast series.

3.7.3.1 Value-at-Risk

Table 3.5 presents the VRate at the 1% quantile for each model for 9 market or

assets (also mean and median of the 9 VRates for each model). The estimation

period sample size for each forecast is denoted as n, and the forecast sample size is

represented with m, in each market. Box indicates the model in each market that

has a violation rate (VRate) closest to 1%, while bold indicates the model with

VRate furthest away from expected. G-t, CARE-SAVE, Re-GARCH-GG with

RV and Re-GARCH-tG with RV are estimated with ML, and the Realized CARE

type models are estimated with MCMC incorporating the quadratic fitting target

search. The VRate in Table 3.8 is plot in Figiure 3.5 as well, with a reference line

drawn at 1%.

Chang et al. (2011) and McAleer et al. (2013) proposed using forecast combina-

tions of the VaR series from different models, potentially as a robust combined

VaR forecast to the GFC . This approach is also employed in our empirical study

since our forecasting period includes the GFC. Specifically, the mean, median,

minimum and maximum of each of the VaR forecasts from the 12 models in Table

3.5 are considered. We consider the lower tail VaR forecasts in this chapter, so

”Min” is the most extreme of the 12 forecasts (i.e. furthest from 0) and ”Max” is

the least extreme. The violation rate for ”Mean”, ”Median”, ”Min” and ”Max”,

series are also presented in Table 3.5.

Clearly, Re-CARE-SAV employing sub-sampled RR has VRate that is the closest

to the 1% quantile level based on the mean of VRates on 9 time series studied,

and Re-CARE-RR has the closest to the expected VRate with the median. In

addition, we can apparently observe the generally improved performance of Re-

CARE compared to GARCH, Re-GARCH or CARE-SAV, while Re-GARCH-GG

had the VRate that is furthest from that expected, which is not surprising since

it is the only parametric model employing the Gaussian error. Further, regarding
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the combination approach, the ”Min” approach is too conservative in each series,

while the ”Max” series produce anti-conservative VaR forecasts that generate far

too many violations. The ”Mean” and ”Median” of the 12 models produced series

that generated competitive violation rates.

G-t C RG-GG RG-tG Ra RaO RV RR ScRV ScRR SSRV SSRR Mean Med Min Max
0
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Figure 3.5: 1% VaR Forecasting VRates.

Several tests are employed to statistically assess the forecast accuracy and inde-

pendence of violations from each VaR model. Table 3.6 shows the number of return

series (out of 9) in which each 1% VaR forecast model is rejected for each test,

conducted at a 5% significance level. The Re-CARE type models are generally

less likely to be rejected by these various back tests compared to other models,

while the Re-CARE with RaO achieved the least number of rejections, following

by the Re-CARE-RR, Re-CARE-ScRV, Re-CARE-ScRR and ”Mean” combina-

tion approach (rejected 3 times in total respectively). The ”Min” and ”Max”

combinations are rejected in all 9 series, and G-t and Re-GARCH-GG models are

rejected 8 times respectively.

3.7.3.2 Expected Shortfall

One-step-ahead daily ES forecasts are generated for the same 12 models and 9

series during the forecast sample periods. Regarding the expected level of ESRate
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Table 3.5: 1% VaR Forecasting VRate with different models on 6 indices and 3 assets.

Model S&P 500 NASDAQ HK FTSE DAX SMI IBM GE BHP Mean Median
G-t 1.67% 1.91% 1.59% 1.53% 1.42% 1.62% 1.07% 1.09% 1.19% 1.454% 1.532%
CARE 1.42% 1.61% 0.98% 1.12% 1.24% 1.38% 1.07% 1.60% 0.97% 1.267% 1.242%
RG-RV-GG 2.28% 2.15% 3.00% 1.41% 2.01% 1.86% 1.37% 1.55% 1.36% 1.888% 1.861%
RG-RV-tG 1.60% 1.56% 2.15% 1.18% 1.66% 1.26% 0.66% 0.97% 1.25% 1.366% 1.261%
RC-Ra 1.23% 1.61% 1.10% 1.00% 1.48% 1.62% 0.90% 1.49% 0.80% 1.248% 1.234%
RC-RaO 1.05% 1.79% 1.23% 1.00% 1.42% 1.44% 0.84% 1.43% 0.97% 1.241% 1.226%
RC-RV 1.42% 1.67% 2.39% 1.06% 1.18% 1.38% 0.84% 1.43% 1.02% 1.377% 1.381%

RC-RR 1.17% 1.56% 1.10% 0.88% 1.06% 1.62% 0.72% 1.20% 0.91% 1.136% 1.104%
RC-ScRV 1.30% 1.61% 1.23% 1.12% 1.42% 1.32% 0.90% 1.43% 1.08% 1.268% 1.295%
RC-ScRR 1.48% 1.85% 0.92% 1.00% 1.36% 1.38% 0.72% 1.37% 0.97% 1.228% 1.360%
RC-SSV 1.60% 1.73% 1.04% 0.94% 1.54% 1.32% 0.72% 1.60% 0.85% 1.260% 1.321%

RC-SSRR 1.23% 1.50% 1.10% 0.71% 1.12% 1.50% 0.72% 1.49% 0.74% 1.123% 1.124%
Mean 1.36% 1.73% 1.35% 1.12% 1.30% 1.32% 0.78% 0.92% 0.85% 1.192% 1.301%
Median 1.42% 1.67% 1.23% 1.12% 1.36% 1.32% 0.66% 1.20% 0.85% 1.204% 1.226%
Min 0.56% 0.48% 0.31% 0.41% 0.47% 0.48% 0.48% 0.34% 0.45% 0.442% 0.473%
Max 2.84% 3.11% 3.37% 2.06% 2.66% 2.76% 1.73% 3.21% 1.93% 2.631% 2.761%
m 1621 1672 1631 1697 1691 1666 1675 1746 1760 1684.33 1675
n 1960 1892 1890 1944 1936 1930 1916 1839 1569 1875.11 1916

Note:A box indicates the favored individual model based on mean or median VRate, whilst bold indicates the least favoured model. m is the
out-of-sample size, and n is in-sample size. SAV stands for the CARE-SAV model, RG stands for the Realized GARCH type models, and RC
represents the Re-CARE-SAV type models.
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Table 3.6: Counts of 1% VaR rejections with UC, CC, DQ and VQR tests
for different models on 6 indices and 3 assets.

Model UC CC DQ4 VQR Total
G-t 5 3 7 3 8
CARE 2 1 6 0 6
RG-RV-GG 6 5 5 6 8
RG-RV-tG 4 2 2 4 5
RC-Ra 2 2 4 1 4

RC-RaO 1 1 2 1 2
RC-RV 2 2 3 2 5
RC-RR 2 1 3 1 3
RC-ScRV 1 2 2 0 3
RC-ScRR 1 2 3 0 3
RC-SSRV 4 2 4 1 6
RC-SSRR 0 1 3 1 4
Mean 1 2 3 2 3
Median 1 2 2 3 4
Min 9 4 2 5 9
Max 9 9 9 8 9

Note:A box indicates the individual model with least number of rejections, whilst bold
indicates that with the highest number os rejections. All tests are conducted at 5%
significance level.

for different models and distributions, Chen, Gerlach and Lu (2012) discussed

how to treat ES forecasts from parametric models as quantile forecasts, where the

quantile level that ES falls at can be deduced exactly (e.g. 0.38% for a Gaus-

sian). Gerlach and Chen (2016) illustrate that the quantile level that the 1% ES

is estimated to fall at is between 0.35% and 0.37%. Specifically, they present the

expected violation rate of ES as exactly 0.38% for models with Gaussian errors,

estimated by the quantile level dependent on the degrees of freedom estimated for

models with Student-t errors (≈ 0.36% for the time series considered here), and

≈ 0.36% for non-parametric models. With this approach, we can then treat ES

forecasts as quantile forecasts and employ the UC, CC, DQ and VQR tests with

corresponding ES nominal level to test the ES forecasting accuracy and indepen-

dence of violations.

Table 3.8 presents the ESRate in the forecast period at the 1% quantile for each

model in 9 time series. Similar to the VaR study, box indicates the model in each

market that has an ES violation rate closest to that desired, and bold indicates

the model with ESRate furthest from the corresponding nominal level. Figure 3.6

visualises the ESRate in Table 3.8, with a reference line drawn at 0.36%.
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Clearly, the Re-CARE-RR and Re-CARE-SSRV generate ES forecasts with ES-

Rates closest to that expected for the 1% ES across the 6 markets and 3 assets.

Their overall ESRate is also marginally lower than the 0.36% nominal level, i.e.

the ES forecasts from these two models are marginally conservative, which could

be a plus from a risk management point of view. Further, the Re-CARE type

models have clearly better performance at 1% ES forecasting than the GARCH,

Re-GARCH and CARE-SAV models. The mean, median, min and max of the 12

models’ 1% ES forecasts are again calculated and their ES violations are also shown

in Table 3.8. The ”Mean” and ”Median” approaches are again optimal among the

four combination methods, and competitive overall, though their ESRates are still

somewhat above nominal overall and thus anti-conservative.

Furthermore, Figure 3.7 demonstrates the extra efficiency that can be gained by

employing the Re-CARE framework with RR. Specifically, the ESRate of the Gt,

CARE-SAV and Re-CARE-RR are 0.68%, 0.37% and 0.31% respectively for this

series. These violation rates mean Gt generated anti-conservative ES forecasts that

produced too many violations, while CARE-SAV is more conservative and close

to nominal level ESRate and the Re-CARE-RR is conservative here. Through

close inspection of Figure 3.7, e.g. the close to end of the forecasting period,

CARE-SAV has an obviously lower (i.e. more extreme in the negative direction)

level of ES forecasts than Gt, in order to be conservative, but this also means the

capital set aside by financial institutions to cover extreme losses, based on such ES

forecasts, is more with the CARE-SAV than with Gt, as expected. However, we

can clearly observe the Re-CARE-RR produces ES forecasts that are less extreme

than both the CARE-SAV and Gt models here, meaning that lower amounts of

capital are needed to protect against market risk, while simultaneously producing

fewer ES violations. This suggests a higher level of efficiency of the Re-CARE-

RR model, in that this model can produce ES forecasts that have far fewer and

close to expected violations, but are simultaneously less extreme than those of

the traditional GARCH and CARE-SAV model. Since the capital set aside by

financial institutions should be directly proportional to the ES forecast, the Re-

CARE-RR model is saving the company money, by giving more accurate and

often less extreme ES forecasts, and this extra efficiency is also often observed for

Re-CARE type models in the other markets/assets.

Further, at times of GFC when there is a persistence of extreme returns, close

inspection of Figure 3.7 reveals that the Re-CARE-RR ES forecasts ”recover” the
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fastest among the 3 models presented, in terms of being marginally the fastest to

produce forecasts that again follow the tail of the data. GARCH models tend to

over-react to extreme events and to be subsequently very slow to recover, due to

their oft-estimated very high level of persistence.

Back testing is conducted on all the ES forecasts and results are shown in Table

3.7. The UC, CC, DQ and VQR quantile accuracy tests are applied to the ES

violations from each model, using that model’s nominal 1% ES quantile level. In

addition, the averages of the 1% ES forecast residuals, standardised by the 1%

VaR forecasts are also calculated. Given an accurate 1% ES forecast model should

produce standardised residuals that average approximately 0, a bootstrap test on

whether these averages differ from 0 is also performed and presented in Table 3.7.

As can be seen, models with least number of rejections are Re-CARE-RaO and

Re-CARE-RV, only rejected 2 out 9 time series. They are followed by Re-GARCH-

tG, Re-CARE-Ra, Re-CARE-ScRV, Re-CARE-ScRR, Re-CARE-SubRV, ”Mean”,

”Median” and ”Min” approaches (rejected 3 times in total respectively).

G-t C RG-GG RG-tG Ra RaO RV RR ScRV ScRR SSRV SSRR Mean Med Min Max
0

0.005

0.01

0.015

0.02

0.025

SP500
Nasdaq
Hang Seng
FTSE
DAX
SMI
IBM
GE
BHP
Mean
Median

Figure 3.6: 1% ES forecasting ESRates.
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Table 3.7: Counts of 1% ES rejections with UC, CC, DQ, VQR and bootstrap
tests for different models on 6 indices and 3 assets.

Model UC CC DQ4 VQR Bootstrap Total
GARCH-t 3 3 6 3 2 7
CARE 2 1 4 1 0 5
RG-RV-GG 6 6 6 2 2 8
RG-RV-tG 2 1 2 1 0 3
RC-Ra 1 1 3 0 0 3

RC-RaO 0 0 2 0 0 2

RC-RV 1 1 2 1 1 2
RC-RR 2 0 2 1 1 4
RC-ScRV 0 0 3 0 0 3
RC-ScRR 1 0 2 0 0 3
RC-SSRV 0 0 2 0 1 3
RC-SSRR 1 0 2 0 1 4
Mean 0 0 3 0 0 3
Median 0 0 3 0 0 3
Min 2 1 0 1 2 3
Max 9 9 8 6 3 9

Note:A box indicates the individual model with least number of rejections, whilst bold
indicates that with the highest number os rejections. All tests are conducted at 5%
significance level.
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Figure 3.7: S&P 500 1% ES Forecasts with Gt, CARE-SAV and Re-CARE-RR.
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Table 3.8: 1% ES Forecasting ESRates with different models on 6 indices and 3 assets.

Model S&P 500 NASDAQ HK FTSE DAX SMI IBM GE BHP Mean Median
G-t 0.68% 0.48% 0.49% 0.77% 0.53% 0.96% 0.42% 0.34% 0.80% 0.608% 0.532%
CARE 0.37% 0.78% 0.49% 0.53% 0.30% 0.60% 0.36% 0.40% 0.68% 0.501% 0.490%
RG-RV-GG 1.30% 1.14% 1.96% 0.77% 0.95% 1.02% 0.66% 0.57% 0.57% 0.993% 0.946%
RG-RV-tG 0.37% 0.54% 0.98% 0.41% 0.47% 0.36% 0.30% 0.11% 0.57% 0.457% 0.412%
RC-Ra 0.37% 0.24% 0.49% 0.29% 0.47% 0.90% 0.24% 0.29% 0.40% 0.410% 0.370%
RC-RaO 0.25% 0.36% 0.37% 0.29% 0.35% 0.66% 0.24% 0.23% 0.57% 0.369% 0.355%
RC-RV 0.43% 0.54% 0.86% 0.35% 0.35% 0.60% 0.24% 0.17% 0.40% 0.438% 0.398%

RC-RR 0.31% 0.24% 0.49% 0.12% 0.35% 0.72% 0.36% 0.11% 0.51% 0.357% 0.355%
RC-ScRV 0.56% 0.48% 0.49% 0.29% 0.41% 0.60% 0.24% 0.23% 0.40% 0.411% 0.414%
RC-ScRR 0.49% 0.42% 0.43% 0.35% 0.41% 0.60% 0.36% 0.11% 0.57% 0.416% 0.419%

RC-SSRV 0.43% 0.36% 0.37% 0.35% 0.35% 0.60% 0.24% 0.23% 0.45% 0.376% 0.359%
RC-SSRR 0.43% 0.18% 0.43% 0.18% 0.24% 0.66% 0.24% 0.11% 0.45% 0.324% 0.239%
Mean 0.37% 0.36% 0.55% 0.41% 0.30% 0.54% 0.24% 0.23% 0.57% 0.396% 0.370%
Median 0.43% 0.36% 0.43% 0.41% 0.35% 0.60% 0.24% 0.17% 0.57% 0.396% 0.412%
Min 0.12% 0.18% 0.12% 0.12% 0.18% 0.12% 0.24% 0.11% 0.06% 0.139% 0.123%
max 1.54% 1.56% 2.15% 1.12% 1.06% 1.50% 0.78% 0.80% 0.97% 1.275% 1.120%

Note:A box indicates the favored individual model based on mean or median ESRate, whilst bold indicates the least favoured model.
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3.7.3.3 Loss function

Quantiles are elicitable, in the sense defined by Gneiting and Ranjan (2012), since

the standard quantile loss function is strictly consistent, i.e. the expected loss is a

minimum at the true quantile series. Thus, the most accurate quantile forecasting

model should minimise the quantile loss function, given as:

n+m∑
t=n+1

(α− I(yt < qt))(yt − qt) , (3.12)

where qn+1, . . . , qn+m is a series of quantile forecasts at level α for the observa-

tions yn+1, . . . , yn+m. Each model in this study produced both a series of quantile

forecasts and ES forecasts. Table 3.9 gives the calculated quantile loss function

values for each return series and each model’s VaR forecasts. Table 3.10 gives the

loss function values for each model’s ES forecasts, using the appropriate quantile

level, e.g. α = 0.36%. Both tables are in order from highest to lowest in terms of

average loss across the nine return series.

From Table 3.9, Re-CARE type models’ 1% VaR forecast series have the lowest

loss in 8 of the 9 series, excepting IBM where the ”Median” combined series had

the lowest loss. On average and by median, over the 9 return series, the Re-CARE

model employing sub-sampled RR had the lowest loss function values; marginally

ahead of the ”Mean” and ”Median” forecast combination series. Table 3.5 shows

that this is also the most accurate model in terms of average VRate. Table 3.10

shows that an Re-CARE model’s 1% ES forecast series again has the lowest loss

in 8 of the 9 series, excepting BHP where the CARE model’s ES forecast series

had the lowest loss. On average the lowest loss was for the ”Median” combined

series, marginally ahead of the Re-CARE model employing sub-sampled RR, which

had the lowest median loss across the 9 series. In both tables, Re-CARE models

clearly had consistently lower loss than all other models considered and were at

least highly competitive with the forecast combined series ”Mean” and ”Median”.

3.8 Chapter summary

In this chapter, the Realized CARE, a new model framework to estimate and

forecast financial tail risk, is proposed. Through incorporating intra-day and high

frequency volatility measures, e.g. Ra, RaO, RV, RR, Scaled RV, Scaled RR, Sub-

sampled RV and Sub-sampled RR, significant improvements in the out-of-sample
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Table 3.9: Quantile loss function values for the VaR forecast series at α = 1% over different models on the 6 indices and 3 assets.

Model S&P 500 NASDAQ HK FTSE DAX SMI IBM GE BHP Mean Median
Max 72.66 85.53 103.35 67.50 80.19 71.09 83.04 127.35 113.92 89.40 83.04
CARE 70.19 81.55 75.13 65.85 75.55 69.39 82.89 127.94 100.44 83.21 75.55
GARCH-t 67.88 78.05 79.09 64.73 75.90 67.51 82.74 114.38 100.66 81.22 78.05
RG-RV-GG 65.89 73.56 101.21 61.69 74.63 62.42 78.42 102.37 102.60 80.31 74.63
Min 62.83 71.22 77.03 62.09 75.14 64.95 83.16 109.38 101.14 78.55 75.14
RG-RV-tG 63.40 71.67 92.56 61.39 73.19 60.93 78.63 99.90 103.10 78.31 73.19
RC-Ra 60.82 71.25 75.26 60.55 75.85 67.77 78.47 106.14 102.49 77.62 75.26
RC-RV 60.55 73.11 86.34 61.20 73.41 61.87 77.30 105.54 94.72 77.12 73.41
RC-ScRV 61.44 73.39 76.79 61.75 75.41 63.67 78.85 107.26 95.30 77.10 75.41
RC-RaO 60.94 72.73 72.59 60.44 72.95 64.54 77.66 104.41 101.33 76.40 72.73
RC-ScRR 61.66 72.61 74.44 61.20 73.24 62.54 77.39 99.55 102.81 76.16 73.24
RC-RR 59.46 69.77 79.06 61.17 71.78 61.36 78.81 98.52 103.88 75.98 71.78
RC-SSRV 59.95 71.66 72.53 59.47 73.25 60.92 78.30 102.95 103.46 75.83 72.53
Median 60.96 71.56 74.78 60.62 72.55 61.84 77.14 100.71 98.36 75.39 72.55
Mean 61.07 71.33 75.86 60.26 72.04 62.14 77.29 100.45 97.92 75.37 72.04

RC-SSRR 59.72 69.66 75.94 59.79 71.29 61.11 78.05 101.65 100.89 75.35 71.29

Note:A box indicates the favored model based on mean or median minimum loss, whilst bold indicates the least favoured model.
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Table 3.10: Quantile loss function values for the ES forecasts, at α = 0.36% over different models on the 6 indices and 3 assets.

Model S&P 500 NASDAQ HK FTSE DAX SMI IBM GE BHP Mean Median
Max 30.48 38.69 54.47 29.54 33.40 32.58 41.13 53.00 55.17 40.94 38.69
RG-RV-GG 28.90 32.65 55.02 27.68 33.51 29.28 41.39 47.22 49.57 38.36 33.51
CARE 30.75 39.19 30.24 28.34 33.37 28.84 39.20 58.91 39.04 36.43 33.37
GARCH-t 29.29 34.75 32.97 27.14 34.16 29.64 40.37 54.22 40.62 35.91 34.16
Min 27.56 32.71 32.29 25.25 33.63 26.78 40.89 52.75 41.28 34.79 32.71
RG-RV-tG 25.26 29.93 40.03 25.98 31.10 25.54 39.31 46.37 48.40 34.66 31.10
RC-ScRV 25.36 32.78 31.24 24.98 32.80 27.45 37.93 50.38 40.45 33.71 32.78
RC-RV 24.53 32.19 34.98 24.95 31.80 26.53 38.01 47.84 40.53 33.48 32.19
RC-Ra 25.14 31.28 31.45 24.38 31.57 29.20 38.59 45.78 42.25 33.29 31.45
RC-RR 24.31 30.98 32.93 24.56 30.52 24.62 39.11 45.04 43.80 32.87 30.98
RC-ScRR 24.80 32.05 31.07 24.60 31.08 24.99 38.36 45.30 43.55 32.87 31.08
RC-SSRV 24.79 30.72 29.54 23.87 31.48 24.01 38.62 47.48 44.59 32.79 30.72
RC-RaO 25.07 31.86 28.86 24.39 31.32 26.82 38.41 45.65 40.07 32.49 31.32
Mean 24.85 31.33 30.42 24.55 31.08 25.01 38.28 46.50 39.85 32.43 31.08

RC-SSRR 24.49 30.70 30.97 24.19 30.33 23.86 38.44 45.14 43.23 32.37 30.70

Median 24.71 31.29 30.39 24.39 31.11 25.19 38.35 45.70 39.99 32.35 31.11

Note:A box indicates the favored model based on mean or median minimum loss, whilst bold indicates the least favoured model.
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forecasting of tail risk measures is observed, compared to Re-GARCH models em-

ploying realized volatility, and traditional GARCH and CARE models, as well as

forecast combinations of these models. Specifically, Re-CARE models with RR

and Sub-sampled RR generate the most accurate VaR forecasts, while Re-CARE

models employing RR, SubRV, RaO are the most accurate for ES forecasting in

the empirical study of nine financial return series. Regarding back testing, the

Re-CARE type models are also less likely to be rejected than their counterparts:

Re-CARE with RaO is rejected the least for VaR forecasting, and Re-CARE mod-

els with RaO and RV are rejected the least for ES forecasting. With respect to

the quantile loss function, Re-CARE type models’ VaR and ES forecasts consis-

tently have lower loss than all other models considered and were at least highly

competitive with the forecast combined series ”Mean” and ”Median”. In addi-

tion to being more accurate, the Re-CARE models generated less extreme tail

risk forecasts, regularly allowing smaller amounts of capital allocation without

leading to unexpected violations. The Re-CARE type models with RaO, RR and

SSRR should be considered for financial applications when forecasting tail risk, and

should allow financial institutions to more accurately allocate capital under the

Basel Capital Accord, to protect their investments from extreme market move-

ments. This work could be extended by developing asymmetric and non-linear

Re-CARE specifications, and using alternative frequencies of observation for the

realized measures.



Chapter 4

Signed range: a new volatility

estimator and its application on

tail-risk forecasting

4.1 Introduction

As discussed in Section 1.2, since the introduction of Value-at-Risk (VaR) and

Expected Shortfall (ES), more and more worldwide financial institutions and cor-

porations started to employ VaR and ES to assist their decision making on cap-

ital allocation and risk management, while accurate volatility estimation plays a

crucial role in the parametric VaR and ES calculation. Among the volatility es-

timation models, the Autoregressive Conditional Heteroskedasticity (ARCH) and

Generalized ARCH (GARCH) models gained high popularity in the recent years,

proposed by Engle (1982) and Bollerslev (1986) respectively. Numerous GARCH

types models had been developed during the past decades. Especially, EGARCH

(Nelson, 1991) and GJR-GARCH (Glosten et al., 1993) were introduced to capture

and describe the well known leverage effect of volatility (Black, 1976). In addition,

since the well-known fact that the conditional return distribution is heavy-tailed,

voluminous literature considers the error distribution in GARCH type models in

order to improve the volatility estimation, see Bollerslev (1987), Chen et al. (2012),

Chen and Gerlach (2013), Gerlach et al. (2013).

The standard GARCH type models only employ daily log returns for the volatility

estimation. In recent years, various volatility estimators were proposed and applied

91
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to improve the volatility estimation, such as range and realized measures. High-

low range has been proven to be a much more efficient and less noisy volatility

estimator compared to return, see Parkinson (1980), Garman and Klass (1980),

Andersen and Bollerslev (1998), and Alizadeh, Brandt, and Diebold (2002). The

Conditional Autoregressive Range model (CARR) was introduced to describe the

evolution of conditional range (Chou, 2005). The CARR(1,1) is specified as Model

(4.1). However, since range only has positive values, it can not directly consider

the leverage effect compared to return. Different asymmetric range type models

are proposed in recent years, such as range-based EGARCH model (REGARCH,

Brandt and Jones (2006)), range-based threshold conditional autoregressive model

(TARR, Chen et al. (2008)), asymmetric smooth transition dynamic range model

(Lin et al., 2012). See Chou et al. (2010) for a review of range type models and

their applications.

Rat = λRa,tεt (4.1)

λRa,t = α0 + α1Rat−1 + β1λRa,t−1,

where λRa,t is the conditional mean of the range. εt is assumed to be distributed

with a density function with a unit mean, e.g. Exponential, Weibull distributions.

As discussed, range demonstrates its advantages compared with return, since it

includes the intra-day price moving process instead of only the closing price. How-

ever, the high-low range only has positive value so it can not directly reflect the

leverage effect of volatility, while return can consider this aspect (Nelson, 1991;

Glosten et al., 1993). In addition, the intra day range only calculates the differ-

ence between the high and low prices of the day, while it can not distinguish the

”good” days and ”bad” days, e.g. day (a) and day (b) in Figure 4.1. Therefore, we

proposed a new volatility estimator, named Singed Range (SR), that can consider

more intra day information than both return and range. The proposed SR has

the ability of considering both the intra-day price process and the leverage effect,

and that is why we anticipate the signed range will lead to improved volatility

estimation results compared with return and range.

The chapter is structured as follows: Section 4.2 defines the calculation rule of
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signed range, and also briefly introduces the return and range. Through high fre-

quency simulation, Section 4.3 presents the relationship between signed range and

return volatility, and also discusses the impact of micro-structure noise on various

volatility estimator. The symmetric and asymmetric Conditional Autoregressive

Signed Range (CARSR) models are proposed in Section 4.4. Section 4.5 discusses

the Quasi Maximum Log-Likelihood approach for the parameter estimation, fol-

lowed by the Adaptive MCMC discussion in Section 4.6. The simulation study is

conducted in Section 4.7, which compares the ML and MCMC estimators. Section

4.8 describes the data sets used in the empirical study, and presents the 1% VaR

and ES forecasting results. Section 4.9 concludes the chapter and discusses about

the future work.

4.2 Signed range

In this section, we propose the calculation rule of signed range. First, as discussed

in Section 2.2, for day t, the most commonly used daily log return is calculated in

Equation (2.1). Then assuming the mean of return is zero, the variance of return

is presented in Equation (2.2).

Based on the distribution of high-low range derived by Feller(1951), Parkinson

(1980) proposed range with scaling factor 1√
4log(2)

as an unbiased estimator for

the return volatility, refer to Equation (2.3) for the calculation details.

We propose a new volatility estimator named signed-range as:

srt = (logHt − logOt)− (logOt − logLt).

Now we discuss in detail about the motivation of devising signed range. Range

demonstrates its advantages compared with return as it considers the intra-day

process instead of only closing price. However, range only has positive value so it

can not directly reflect the leverage effect of volatility. Figure 4.1 presents the open,

high, low and close prices for two days with completely different characteristics. As

is shown Figure 4.1, starting from the opening price, panel (a) has more “decrease”

(logOt − logLt) than “increase” (logHt − logOt) during the day, and panel (b)

displays an opposite scenario. But for each panel, the range provides us with

almost same values while the signed range has totally opposite values. Based on
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the return values and from a stock market point of view, day (b) is definitely a

better day than day (a) which will cause higher volatility. However, the range

cannot distinguish the difference between day (a) and day (b). Compared with

return and range, the signed range has the ability of considering both the intra-day

price process and the leverage effect, that is why we anticipate the signed range will

lead to significantly improved volatility estimation results compared with return

and range.1

Figure 4.1: Motivation of proposing signed range.

4.3 Signed range and return volatility relationship

Parkinson (1980) derived the high-low range and return volatility (σr,t) relation-

ship, which is Ra2
t ≈ 4log2σ2

r,t, based on the property of Brownian motion and

distribution of range (Feller, 1951). Similarly, as we are interested in forecasting

return volatility using the signed range, the relationship between signed range

volatility and return volatility is needed to be quantified. Afterwards, we can con-

struct signed range type models to estimate the signed range volatility, and trans-

form it into return volatility with this relationship. Here we have E(r2
t ) = σ2

r,t,

E(sr2
t ) = σ2

sr,t and E(R2
t ) = σ2

R,t ≈ 4log2σ2
r,t.

The relationship between signed range and return volatility is analyzed through

high frequency intra-day simulation, following the Brownian simulation approach

1As Figure 4.1 is used for the demonstration purpose, we do not use the log prices when
calculating return, range and signed range, and return is calculated as the close to open return.
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of Alizadeh, Brandt, and Diebold (2002), which employs a driftless Brownian

motion process. The intra-day prices can be simulated by the Gaussian random

walk:

st,i = st,i−1 + zt,i, t = 1, 2, . . . T ; i = 1, 2, . . . N

where zt
i.i.d.∼ N(0, σ2

z). For each day, different intra-day frequencies were imple-

mented in our simulation study, including 1-second (N = 21, 600 observations per

day), 5-second, 30-second, 1-minute, 1.25-minute and 5-minute, given 360 minutes

per trading day. We set σz =
√

1/N so that the daily true volatility (TV) equals

to 1. This one day process is replicated for T = 10, 000 times in order to calculate

the relationship between true volatility and expected values of return, range and

signed range respectively. Then we can derive the ratio between return volatil-

ity and signed range, and also testify the return volatility and range relationship

(σ2
r,t = 1

4log2
E(R2

t ) = 0.3607E(R2
t )). Figure 4.2 describes one simulated intra-day

price movement process (21, 600 observations) with Brownian motion, and 100

such simulated series are presented in Figure 4.3.
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Figure 4.2: One simulated intra-day prices movement with Brownian motion.
Without bid-ask price.

Without any micro-structure noise, the simulation results between the true volatil-

ity (TV) and daily return, range and signed range are summarized in Table 4.1.

E(r2
t ), E(R2

t ) and E(sr2
t ) stand for the expected values of return square, range

square and signed range square for the T replications. Through taking the average
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Figure 4.3: 100 simulated intra-day prices movement with Brownian motion.
Without bid-ask price.

value of different frequencies, we can get that E(r2
t )/E(sr2

t ) = σ2
r,t/σ

2
sr,t ≈ 0.811.

As can be seen in Table 4.1, TV 2/E(r2
t ) and TV 2/E(sr2

t ) stay stably around 1 and

0.81 respectively with various trading frequencies. However, TV 2/E(R2
t ) can be

seriously affected by the intra-day trading frequency. This ratio is close the the-

oretical value (0.3607) at 1-second frequency, but increases to 0.4256 at 5-minute

frequency. Thus return and signed range demonstrate their advantages compared

with range from this perspective.

Furthermore, the MSE and MAE (Equations (4.2) and (4.3) between various mea-

sured variances (MV , which equals to r2
t , 0.3607R2

t and 0.811sr2
t respectively) and

true volatility square (TV 2 = 1) are presented in Table 4.2. The MSE results

from return and range is consistent with the theoretical value, which shows that

the variance of squared return is five times larger than that of range square. The

MSE value from signed range is smaller than that from return, but is around 4

times larger than that from range. Therefore, range demonstrates its superiority

in this experiment and has higher efficiency compared with return or proposed

signed range. Employing range as an exogenous variable in volatility modelling

could potentially improve the volatility estimation accuracy, e.g. CARE-SAV-

Range (Gerlach and Chen, 2016). However, if range were directly employed in the
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volatility modelling, such as the CARR model, the scaling factor issue as presented

in Table 4.1 could affect the estimation accuracy, which will be discussed in the

empirical study section.

Based on the high frequency simulations, signed range displays more stable ex-

pected values compared with range, and it has less MSE and MAE compared with

return. In addition, as we discussed in Section 4.2, signed range has the ability to

consider both the leverage effect and intra-day process. Thus all these simulation

results and hypothesis demonstrate the potential of signed range.

MSE = T−1

T∑
t=1

(MVt − TV 2
t )2 (4.2)

MAE = T−1

T∑
t=1

|MVt − TV 2
t |. (4.3)

Table 4.1: The ratios between true variance and expected values of return
square, range square and signed range square, without bid-ask price.

Trading Frequency TV 2/E(r2
t ) TV 2/E(R2

t ) TV 2/E(sr2
t )

1-second 0.9976 0.3598 0.8029
5-second 1.0001 0.3676 0.8122
30-second 0.9948 0.3788 0.8217
1-minute 0.9926 0.3858 0.8147
1.25-minute 1.0111 0.3918 0.8152
5-minute 1.0237 0.4265 0.8153

Furthermore, in order to study the impact of micro-structure noise on the high

frequency simulation results of various volatility estimates, the bid-ask price is

added into the previous simulations. In the experiments, we select the ticksize

as $0.01, and implement the bid price as Bt = st − ticksize, and ask price as

At = st + ticksize. The observed price is Sobst = Atqt + Bt(1 − qt), where qt =

Bernoulli(0.5) .

Figure 4.4 visualizes one simulated intra-day prices movement process with Brow-

nian motion, including the bid-ask price. We present the difference between one

simulated intra-day prices movement process with and without bid-ask price in

Figure 4.5 (only first 1000 observations out of 21,600), through which we can
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Table 4.2: MSE and MAE between various MVs and TV with simulated data
sets, without bid-ask price.

MSE

Trading Frequency MV = r2 MV = 0.3607R2 MV = 0.811sr2

1-second 1.9905 0.4105 1.6340
5-second 2.0422 0.4151 1.6155
30-second 2.0597 0.3929 1.5570
1-minute 1.9104 0.3746 1.5206
1.25-minute 1.9247 0.3842 1.5815
5-minute 1.9572 0.3765 1.5320

MAE

Trading Frequency MV = r2 MV = 0.3607R2 MV = 0.811sr2

1-second 0.9663 0.4680 0.9032
5-second 0.9800 0.4704 0.9011
30-second 0.9709 0.4684 0.8896
1-minute 0.9668 0.4684 0.8876
1.25-minute 0.9530 0.4698 0.8954
5-minute 0.9513 0.4819 0.8774

clearly see the observed price fluctuates randomly between the bid and the ask

prices.

The results with simulated intra-day prices including bid-ask jump are shown

in Table 4.3 and 4.4. Overall, we get quite similar observations between the

simulations with and without bid-ask price. Finally, we also implement these

simulations for realized variance and realized range, and the results are consistent

with that of Martens and van Dijk (2007) and are not presented in this thesis.

Table 4.3: The ratios between true volatility and expected values of return,
range and signed range, with bid-ask price.

Trading Frequency TV 2/E(r2
t ) TV 2/E(R2

t ) TV 2/E(sr2
t )

1-second 1.0105 0.3571 0.8130
5-second 0.9917 0.3621 0.7993
30-second 0.9835 0.3751 0.8011
1-minute 1.0015 0.3875 0.8124
1.25-minute 1.0060 0.3899 0.8301
5-minute 1.0269 0.4230 0.8214



Chapter 4. Signed Range 99

×104
0 0.5 1 1.5 2 2.5

23.8

24

24.2

24.4

24.6

24.8

25

25.2

25.4

25.6

Figure 4.4: One simulated intra-day prices movement process with Brownian
motion. With bid-ask price.
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Figure 4.5: Difference between one simulated intra-day prices movement
process with and without bid-ask price. First 1000 observations.
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Table 4.4: MSE and MAE between various MVs and TV with simulated data
sets, with bid-ask price.

MSE

Trading Frequency MV = r2 MV = 0.3607R2 MV = 0.811sr2

1-second 1.9196 0.4047 1.5703
5-second 2.0426 0.4044 1.6371
30-second 1.9886 0.3874 1.5733
1-minute 1.9778 0.3850 1.5662
1.25-minute 1.9646 0.3820 1.5348
5-minute 1.9317 0.3711 1.5362

MAE

Trading Frequency MV = r2 MV = 0.3607R2 MV = 0.811sr2

1-second 0.9616 0.4667 0.8975
5-second 0.9772 0.4646 0.9098
30-second 0.9682 0.4647 0.8909
1-minute 0.9686 0.4675 0.8923
1.25-minute 0.9660 0.4672 0.8891
5-minute 0.9559 0.4798 0.8842

4.4 Model proposed

Firstly, since signed range can be used as a return volatility estimator, we com-

pleted autocorrelation and partial autocorrelation studies for signed range square

and return square, to justify whether we could propose a signed range autore-

gressive framework that is analogous to GARCH. As can be seen in Figures 4.6

and 4.7, S&P 500 signed range square and return display similar results regarding

the autocorrelation and partial autocorrelation. Therefore, we propose an innova-

tive Conditional Autoregressive Signed Range (1,1) (CARSR) model (analogous

to GARCH) with the specification as (4.4):

srt = µ+ σsr,tεt = µ+ at, (4.4)

σ2
sr,t = α0 + α1a

2
t−1 + β1σ

2
sr,t−1,

where srt = [(logHt − logOt)− (logOt − logLt)] × 100 is percentage signed range

for day t, εt
i.i.d.∼ N(0, 1) or εt

i.i.d.∼ Student-t. Basically, the model follows the

structure of GARCH(1,1) and is able to estimate the conditional signed range

volatility through this dynamic structure. The parameters are constrained by:
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Figure 4.6: Autocorrelation plots of signed range square and return square.
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Figure 4.7: Partial autocorrelation plots of signed range square and return
square.
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α0 > 0, α1 > 0, β1 > 0 and α1 + β1 < 1, in order to ensure the positivity of

σsr,t equation and satisfy the stationary condition. Further, through combining

the least squares (LS) estimating function and the least absolute deviation (LAD)

estimating function, Ghahramani and Thavaneswaran (2009) developed a process

to identify the error distribution of the GARCH model. In the future, we could

develop an similar identification procedure of the error distribution for CARSR

type models, instead of directly assuming εt
i.i.d.∼ N(0, 1) or εt

i.i.d.∼ Student-t.

We can easily extend the model into the CARSR (p,q) structure. In addition, as

a key feature of signed range is its ability to describe the leverage effect, we can

have the following ECARSR(1,1) model:

srt = µ+ σsr,tεt = µ+ at, (4.5)

logσ2
sr,t = ω + α[|εt−1| − E(|εt−1|)] + γεt−1 + βlogσ2

sr,t−1.

In addition, the following Conditional Autoregressive Signed Range Square (CARSR2)

model is proposed and estimated in this chapter, in order to compare its perfor-

mance with CARR (Model (4.1), Chou 2005).

sr2
t = λsr2,tεt (4.6)

λsr2,t = α0 + α1sr
2
t−1 + β1λsr2,t−1,

where εt
i.i.d.∼ Exponential(1). The parameter constraints of CARSR2 are the same

as CARSR. Thus we can estimate the conditional mean of signed range square

through CARSR2, and have E(sr2
t ) = λsr2,t = σ2

sr,t. The conditional mean of

range is estimated with CARR, and E(Rt) = λR,t = σR,t.

4.5 Parameters estimation with quasi-maximum log-likelihood

The log-likelihood function of CARSR with Normal distribution is shown in Equa-

tion (4.7). Its specification is identical to the log-likelihood of GARCH with Gaus-

sian distribution.

`(sr; θ) = −1

2

n∑
t=1

[
log(2π) + log(σ2

sr,t) + (srt − µ)2/σ2
sr,t

]
. (4.7)
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Engle and Russell (1998) proved that quasi-maximum likelihood estimate (QMLE)

method can give a consistent estimation of the parameters for Autoregressive Con-

ditional Duration (ACD) model with unit mean Exponential distribution. Since

CARR and CARSR2 models have analogous specification compared to ACD, Chou

(2005) pointed out that QLME can generate a consistent estimation of parameters

in CARR (CARSR2 as well), and the log-likelihood of CARR with Exponential

distribution is identical to the log-likelihood of GARCH with Gaussian distribu-

tion, but without the conditional mean. Log-likelihood of CARSR2 is presented

in Equation (4.8). Thus we can estimated CARR or CARSR2 simply with a

GARCH specification without the conditional mean term in the mean equation,

with signed range or square root of range as input respectively. Furthermore,

CARR and CARSR2 possess all the asymptotic properties of GARCH.

`(sr2; θ) = −1

2

n∑
t=1

[
log(λsr2,t) + sr2

t /λsr2,t
]
. (4.8)

4.6 Bayesian estimation

After the construction of the log-likelihood function, now we are developing the

Bayesian algorithm to estimate the parameters of GARCH/CARSR type mod-

els. As discussed in Section 1.5.3, a two-step adaptive Bayesian method that is

adapted from Chen and So (2006) is employed. To begin with, all 4 parameters

are estimated simultaneously in one group: θ = (µ, α0, α1, β1)
′
. Further, uninfor-

mative priors are chosen over the possible stationarity and positivity region, with

one exception. A Jeffreys-type prior is used for α0, i.e.:

π(θ) ∝ I(A)
1

α0

,

where region A is defined by α0 > 0, α1 > 0, β1 > 0 and α1 + β1 < 1.

The adaptive MCMC algorithm employs random walk Metropolis (RW-M) for

burn-in period, and independent kernel Metropolis-Hastings (IK-MH) algorithm

(Metropolis et al., 1953; Hastings, 1970) for the sampling period. During the

burn-in period, a Gaussian proposal distribution is incorporated for the mean

vector random walk process. The covariance matrix of the proposal distribution

for parameter block θ is tuned towards a target accept ratio of 23.4% (Roberts,

Gelman and Gilks, 1997). Then the IK-MH sampling period is commenced after
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the burn-in process, incorporating a mixture of three Gaussian proposal distribu-

tions. The average of last 10% of the burn-in period samples is calculated as the

input of the IMH period, and the varaice-covariance matrices of three Gaussian

proposal distribution are Σ, 10Σ, 100Σ respectively, where Σ is calculated as the

covariance of the last 10% of the burn-in period samples for θ. All iterations in

the independent MH are used to calculate the posterior mean estimate.

4.7 Simulation Study

In order to the test the performance of the proposed MCMC estimator, a sim-

ulation study is conducted. Firstly, N = 5000 simulated datasets with sample

size n = 3000 were generated from Model (4.9). The Bayesian and ML estimation

approaches are then employed to estimate the parameters with the 5000 simulated

datasets. Therefore, 5000 sets of estimated parameters are respectively collected

for MCMC and ML, and both the mean and Root Mean Square Error (RMSE)

values are calculated. The Matlab garch and related functions in the econometrics

toolbox are employed as the ML estimator. For MCMC, the starting values of

RWM is randomly chosen as (0.5, 0.5, 0.5, 0.5), and the number of iterations for

the RWM and IMH are both set as 10000.

srt = 0.05 + σsr,tεt = 0.05 + at, (4.9)

σ2
sr,t = 0.01 + 0.04a2

t−1 + 0.94σ2
sr,t−1,

Figure 4.8 and 4.9 visualize the 10000 RWM and IMH iterates respectively, for 1

simulated dataset. As can be seen from Figure 4.8, starting from (0.5, 0.5, 0.5, 0.5),

µ, α0, α1, β1 converge to values that are close to their true values after about 2000

iterations, and the accept rate for this RWM step is 19.07%, which is quite close

to the target accept rate of 23.4% and proves the validity of the covariance matrix

tuning process. Then with the mean vector and mixture of three Gaussian proposal

distributions calculated with the RWM estimates, Figure 4.9 presents 10000 IMH

iterations (acceptance rate 46.09%).

Estimation results are summarised in Tables 4.5, boxes indicate the preferred

measure comparing MCMC and ML for both bias (Mean) and precision (root
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Figure 4.8: RWM iterations plot with the simulated data from CARSR-
Gaussian. Acceptance rate: 19.07 %.
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Figure 4.9: IMH iterations plot with the simulated data from CARSR-
Gaussian. Acceptance rate: 46.09%.
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mean square error, RMSE). Overall, both methods generate close to unbiased and

quite reasonably precise parameter estimates. Although the bias results slightly

favour the ML method for 3 out of 4 parameter estimates, the MCMC approach

is favoured by the precision results in 3 out of 4 parameter estimates.

Table 4.5: Summary statistics for the two estimators of the CARSR type
model with Gaussian Error, with data simulated from Model (4.9).

n = 3000 MCMC ML
Parameter True Mean RMSE Mean RMSE

µ 0.05 0.0489 0.0126 0.0488 0.0127

α0 0.01 0.0136 0.0076 0.0119 0.0087

α1 0.04 0.0439 0.0092 0.0405 0.0083

β1 0.94 0.9291 0.0214 0.9358 0.0219

Note:A box indicates the favored estimators, based on mean and RMSE.

As we discussed in Sections 1.5.4 and 2.5, Gelman-Rubin diagnostic and effective

sample size test are employed here as well to evaluate the convergence and effi-

ciency performance of the adapted MCMC method on the CARSR frame work. 5

IMH chains each with size n1 = 10000 with simulated data set are used to calcu-

lated the R̂ and n̂eff , which are shown in Table 4.6. Apparently, both the R̂ and

n̂eff results are quite satisfiable, meaning good convergence and efficiency results.

Table 4.6: Summary statistics of the Gelman-Rubin diagnostic and effective
sample size with CARSR type model with Gaussian Error and simulated data

set.

n = 1500

Parameter R̂ Total n̂eff Average n̂eff
n = 3000
µ 1.00268 4577 915
α0 1.00070 3240 648
α1 1.00047 4292 858
β1 1.00039 3188 638
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4.8 Data and empirical study

4.8.1 Data description

Daily open, high, low and closing prices are downloaded from Oxford-Man Institute

of Quantitative Finance Realized Library (http://realized.oxford-man.ox.ac.uk/),

from Jan 2000 to Nov 2013. Indices from various countries are considered in our

experiments, including S&P500, AORD, FTSE, Hang Seng and DAX. The sum-

mary statistics for return, range and signed range on these 5 indices is presented in

Table 4.7. Among all 3 volatility estimator, signed range has the smallest kurtosis,

but is still heavy-tailed. In the future work, it will be interesting to derive the

distribution of signed range and signed range square. Figure 4.10 visualizes the

S&P500 return, range and signed range.

Table 4.7: Summary statistics of return, range and signed range from Jan
2000 to Nov 2013 for 5 data sets.

Data set Estimator Obs. Mean Min Max Std Skewness Kurtosis
Return 3456 0.0062 -9.3511 10.2202 1.2651 -0.1467 10.0200

SP500 Range 3456 1.4711 0.2474 10.9041 1.0769 3.0601 18.6004
Signed Range 3456 -0.0583 -9.5522 9.8199 1.3837 -0.3926 8.8353

Return 3475 -0.0007 -6.4383 3.8912 0.8163 -0.5426 7.5828
AORD Range 3475 0.9609 0.1396 7.3281 0.6416 2.6217 14.6854

Signed Range 3475 -0.0027 -7.3281 5.6035 0.9942 -0.4312 6.4520
Return 3476 -0.0386 -5.7603 7.0441 1.0017 -0.1396 6.9341

FTSE100 Range 3476 1.3492 0.1859 9.1958 0.9215 2.3270 11.8651
Signed Range 3476 -0.0730 -7.6855 6.1263 1.1641 -0.3110 6.4433

Return 3147 -0.0403 -11.6162 12.1553 1.0550 0.0957 16.1510
Hang Seng Range 3147 1.3809 0.2851 17.6474 0.8969 4.5629 53.9500

Signed Range 3147 -0.1318 -11.8468 11.9702 1.1671 -0.1362 12.0645
Return 3510 -0.0373 -9.4122 9.9934 1.3833 -0.0792 7.7542

DAX Range 3510 1.8363 0.2171 11.9869 1.2450 2.2276 10.8840
Signed Range 3510 -0.0987 -8.3142 10.6839 1.5681 -0.0923 6.5962

In addition, with the 1st S&P 500 in-sample data set and MCMC, we also imple-

ment the Gelman-Rubin diagnostic and effective sample size test, and the results

are shown in Table 4.8, similar as the results in the previous chapters, R̂ is quite

close to 1, and the average n̂eff values are around 1500 for α0, α1 and β1 which

confirm the high level of efficiency of the MCMC algorithm on CARSR estimation.
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Table 4.8: Summary statistics of the Gelman-Rubin diagnostic and effective
sample size with CARSR type model with Gaussian Error and S&P 500.

n = 1500

Parameter R̂ Total n̂eff Average n̂eff
n = 3000
µ 1.00107 3749 750
α0 1.00020 7031 1406
α1 1.00105 7474 1495
β1 1.00064 7105 1421
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Figure 4.10: SP500 return, range and signed range.

4.8.2 VaR and ES forecasting with symmetric type models

The α = 1% VaR and ES forecasting results with symmetric type models (GARCH,

CARSR, CARR and CARSR2) are presented in this section. In order to include

the 2008 global financial crisis period in the forecasting experiments, m = 1500

one-step-ahead volatility or conditional mean forecasts are calculated based on the

4 different models on 5 data sets, with fixed-size rolling sample n. Thus we have
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n = N − m, given the size data set is N (number of obs. in Table 4.7). With

CARSR model, we can estimate the signed range volatility σsr,t, then transform

it into an estimator of return volatility with σ̂r,t =
√

0.811σsr,t. As to the CARR

and CARSR2 models, we can transform the conditional mean of range and signed

range square into return volatility estimates, with σ̂r,t = 0.6006σR,t = 0.6006λR,t

and σ̂r,t =
√

0.811σsr,t =
√

0.811λsr2,t. These volatility or conditional mean fore-

casts are employed to calculate VaR and ES.

To evaluate the performance of VaR and ES forecasts through different models,

we employ the VaR violation rate (VRate) and ES violation rate (ESRate), which

are presented in Equations (3.10) and (3.11).

As we discussed in Section 4.5, four models (GARCH-Gaussian, CARSR-Gaussian,

CARR-Exponential and CARSR2-Exponential) are on equal comparison ground,

and they are employed in the 1% VaR and ES forecasting study, in order to see

how the signed range type models work in the empirical study. Table 4.9 presents

the VRate, for each model (estimated with ML and MCMC respectively) in each

market. The expected VRate should be 1%: boxes represent the model in each

market that has a VRate closest to that; bold indicates the model with VRate

furthest away from expected.

To begin with, all the VRate values in Table 4.9 is clearly higher than 1%, because

of the error distribution selection. Nevertheless, the VRate results already demon-

strate the superiority of CARSR-G and CARSR2-Exp compared to GARCH-G

and CARR-Exp, while results generated from ML and MCMC are quite close to

each other, which is expected based on the simulation study. The mean VRate

favours the CARSR2 model, and CARSR and CARSR2 both produced 1.67 %

VRate considering the median of violations of 5 VaR forecasting series.

Furthermore, the ES tail risk forecasting results are shown in Table 4.10. As

presented before, Gerlach and Chen (2016) illustrated that the quantile level that

the 1% ES was estimated to fall was between 0.34% and 0.38%, depending on

the error distribution selection. Still, we observe all the ESRate values are clearly

higher than the expected violation rate. However, CARSR and CARSR2 generates

the ES forecasts that have the ESRate closest to the nominal level among the 4

models, based on mean or median of violations of 5 ES forecasting series.

Lastly, 1500 ES forecasts by GARCH-G and CARSR-G for SP500 are plotted in

Figure 4.12, which shows that ES forecasts from CARSR-G recovers faster than
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that of GARCH-G during the 2008 GFC time period, meaning the extra efficiency

can be gained with SR compared to return. In addition, Figure 4.12 presents the

1500 one-step-ahead ES forecasts by CARR-Exp and CARSR2-Exp with S&P500.

It is shown that CARR estimates too low risk level, and leads to high VRate/α

ratio. This can be related to the simulation results that we observed in Section

4.3. The expected value of range is affected by the trading frequency. At 5-

min frequency, we have σ2
r,t = 0.4265σ2

R,t. Therefore, the theoretical coefficient

1/4log2 = 0.3607 might be too small in real-world data sets, thus provides much

reduced risk level. However, the expected value of signed range is quite robust

to the different trading frequencies, and it also considers the intra-day process

compared to return. Therefore, CARSR type models provide the most satisfiable

VaR and ES forecasting results, compared to that of GARCH or CARR type

models.

Table 4.9: VRate for 5 data sets with 4 symmetric models estimated with
ML and MCMC.

Data sets S&P 500 AORD DAX FTSE Hang Seng Mean Median
GARCH-G-ML 2.67% 2.13% 2.07% 2.20% 1.47% 2.11% 2.13%
GARCH-G-MCMC 2.67% 2.13% 2.07% 2.27% 1.53% 2.13% 2.13%

CARSR-G-ML 2.67% 1.33% 1.67% 1.73% 1.47% 1.77% 1.67%

CARSR-G-MCMC 2.67% 1.40% 1.67% 1.87% 1.53% 1.83% 1.67%
CARR-Exp-ML 4.27% 4.20% 2.87% 2.73% 2.93% 3.40% 2.93%
CARR-Exp-MCMC 4.20% 4.40% 3.20% 3.00% 3.27% 3.61% 3.27%

CARSR2-Exp-ML 2.40% 1.13% 1.67% 1.87% 1.53% 1.72% 1.67%

CARSR2-Exp-MCMC 2.33% 1.20% 1.67% 1.87% 1.53% 1.72% 1.67%

Note:A box indicates the favored model based on mean or median VRate, whilst bold
indicates the least favoured model.

Table 4.10: ESRate for 5 data sets with 4 symmetric models employing ML
and MCMC.

Data sets S&P 500 AORD DAX FTSE Hang Seng Mean Median
GARCH-G-ML 1.27% 1.20% 1.20% 1.27% 0.93% 1.17% 1.20%
GARCH-G-MCMC 1.27% 1.13% 1.13% 1.33% 1.00% 1.17% 1.13%

CARSR-G-ML 1.33% 0.67% 1.07% 0.93% 0.87% 0.97% 0.93%
CARSR-G-MCMC 1.33% 0.67% 1.13% 1.00% 1.00% 1.03% 1.00%
CARR-Exp-ML 3.00% 2.53% 1.33% 1.47% 1.87% 2.04% 1.87%
CARR-Exp-MCMC 3.13% 2.40% 1.47% 1.33% 1.93% 2.05% 1.93%
CARSR2-Exp-ML 1.33% 0.60% 1.07% 1.00% 1.00% 1.00% 1.00%

CARSR2-Exp-MCMC 1.27% 0.60% 1.07% 1.00% 1.00% 0.99% 1.00%

Note:A box indicates the favored model based on mean or median ESRate, whilst bold
indicates the least favoured model.
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Figure 4.11: 1500 S&P500 ES forecasts with GARCH-G-ML and CARSR-
Exp-MCMC.
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Figure 4.12: 1500 SP500 ES forecasts with CARR-Exp-ML and CARSR2-
Exp-MCMC.
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4.8.3 VaR and ES forecasting with asymmetric type models

As is presented in Section 4.8.1, the shape of signed range is also heavy-tailed.

Thus the exponential CARSR with Student-t distribution is implemented to cap-

ture the leverage effect and the fat-tail, anticipating much improved volatility and

VaR & ES forecasting results compared to the symmetric type models with Gaus-

sian distribution. Using Student-t distribution, VaR and ES can be calculated as

Equations (1.12) and (1.14) respectively.

Employing EGARCH-t and ECARSR-t, the VRate are presented in Table 4.11,

for 1500 one-step-ahead VaR forecasts. However, we have not implemented the

asymmetric CARR (REGARCH) and CARSR2 type models yet, e.g. REGARCH

(Brandt and Jones, 2006); TARR (Chen et al., 2008), which should be incorporated

in the future work. Firstly, comparing Table 4.9 and Table 4.11, much improved

VRate ratios are observed with the asymmetric type models with Student-t dis-

tribution, and proof our assumptions at the beginning of this section. In addition,

based on Table 4.11, VaR forecasting results from 4 data sets, including mean and

median VRate, favor the ECARSR-t.

The ESRate mean and median results actually favor the EGARCH-t model. How-

ever, through close inspection of ES forecasts with different data sets, we observe

that the ECARSR-t model can over estimate ES level in empirical study, thus

this highlights the potential extra efficiency that can be gained by employing an

ECARSR-t model. For example, although EGARCH-t and ECARSR-t present

quite close ESRate ratio for S&P500 in Table 4.12, Figure 4.13 demonstrates that

EGARCH-t has the tendency to over estimate the risk level, especially during

the high volatility time period, e.g. times of GFC when there is a persistence of

extreme returns.

Table 4.11: VRate for 5 data sets with 2 asymmetric models estimated with
ML.

Data sets S&P 500 AORD DAX FTSE Hang Seng Mean Median
EGARCH-t-ML 2.27% 1.53% 1.67% 1.80% 1.13% 1.68% 1.67%
ECARSR-t-ML 1.93% 1.00% 1.80% 1.27% 1.13% 1.43% 1.27%
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Table 4.12: ESRate for 5 data sets with 2 asymmetric models estimated with
ML.

Data sets S&P 500 AORD DAX FTSE Hang Seng Mean Median
EGARCH-t-ML 0.87% 0.60% 0.53% 0.73% 0.47% 0.64% 0.60%
ECARSR-t-ML 0.80% 0.67% 0.87% 0.73% 0.47% 0.71% 0.73%
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Figure 4.13: SP500 ES forecasts with EGARCH-t and ECARSR-t.

4.9 Chapter summary

A new volatility estimator named signed range is proposed in this chapter, which

combines the advantages of both return and range. High frequency intra-day

price simulations are implemented with or without micro-structure noise, in order

quantify the relationship between signed range volatility estimator and return

volatility. The simulation results prove that the expected value of signed range

is quite robust to the high frequency trading and micro-structure noise, while

range is not. In addition, the simulations also demonstrate signed range is more

efficient than return. Symmetric and asymmetric signed range type models are

proposed and tested with Normal and Student-t distribution. Experimental results
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demonstrate the superiority of signed range type models when forecasting the VaR

and ES.

The signed range work can be extended in a number of ways. Firstly, we get

signed range and return volatility relationship through high frequency intra-day

simulation. It will be interesting to have further study on the distribution of signed

range and derive this relationship theoretically.

Further, the CARR & CARSR2 model employing Weibull distribution and asym-

metric Range type model should be incorporated in the empirical study. Also,

we could develop an identification procedure of the error distribution for CARSR

type models.

Finally, since nowadays the high frequency tick-by-tick data are widely available,

the signed range can be extended into the high frequency framework so that we

can have the realized signed range. The realized signed range can be employed in

the Realized GARCH or Realized CARE frame work as discussed in Chapter 2

and 3.



Chapter 5

Conclusion & Future Works

5.1 Conclusion

This thesis proposes a series of parametric and semi-parametric dynamic tail risk

models for financial tail-risk forecasting, incorporating intra-day and high fre-

quency volatility measures. An adaptive MCMC process is employed for parameter

estimation and demonstrates its superiority compared to the frequentist approach

for the realized GARCH and proposed realized CARE framework. All the pro-

posed models are tested with VaR and ES forecasting and are compared with a

range of famous volatility models.

Chapter 1 discusses the financial tail risk management and measurement, volatil-

ity modelling, various volatility measures, parameter estimation techniques, and

emphasises the importance of accurate volatility forecasting for various market

activities of financial organizations.

Chapter 2 extends the Realized GARCH framework to incorporate the realized

range, and the intra-day range, as potentially more efficient series of information

than realized variance or daily returns, for the purpose of volatility and tail risk

forecasting in a financial time series. Furthermore, we propose an innovative sub-

sampled realized range and also adopt an existing scaling scheme, in order to

deal with the micro-structure noise of the high frequency volatility measures. A

Bayesian adaptive Markov Chain Monte Carlo method is developed and employed

for estimation and forecasting. Compared to a range of well known parametric

GARCH and Realized GARCH models, predictive log-likelihood results across five

market index return series clearly favor the realized GARCH models incorporating

115
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the realized range and sub-sampled realized range, over a six year period that

includes the global financial crisis. Further, these same models, when combined

with Student-t errors, also compare favourably for tail risk forecasting, both during

and after the crisis period.

In Chapter 3, a new framework named Realized Conditional Autoregressive Ex-

pectile (Realized CARE) is proposed, through incorporating a measurement equa-

tion into the conventional CARE model, in a framework analogous to Realized

GARCH. The range and realized measures (realized variance and realized range)

are employed as the dependent variables of the measurement equation, since they

were proved to be more efficient than return for volatility estimation. The de-

pendence between range & realized measures and expectile can be modelled with

this measurement equation. The grid search accuracy of the expectile level will

be potentially improved with introducing this measurement equation. In addition,

through employing a quadratic fitting targeted search, the speed of grid search is

significantly improved. Bayesian adaptive Markov Chain Monte Carlo is used for

estimation, and demonstrates its superiority compared to maximum likelihood in

a simulation study. Compared to the CARE, the parametric GARCH and the Re-

alized GARCH models, Value-at-Risk and Expected Shortfall forecasting results of

6 indices and 3 assets series favor the proposed Realized CARE model, especially

the Realized CARE model with realized Rrange and sub-sampled realized range.

In Chapter 4, we propose a new intra-day volatility estimator named signed range.

Through incorporating open, high and low prices, the proposed signed range pos-

sesses the characteristics of both return and high-low range. Hence the key features

of signed range are its ability to consider both the leverage effect and intra-day

process. We implement the high frequency intra-day simulation with and without

bid-ask price respectively to simulate signed range, return, and range, in order to

quantify the relationship between signed range and return volatility and analyze

how the micro-structure noise can affect the efficiency of these 3 volatility esti-

mators. Then the symmetric and asymmetric Conditional Autoregressive Signed

Range (CARSR) type models are proposed. An adaptive MCMC is developed for

the parameter estimation and is compared with the frequentist through simula-

tion study. Finally, based on 5 data sets across various markets, the out-of-sample

VaR and ES forecasting results demonstrate the superiority of CARSR type models

compared to Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

and Conditional Autoregressive Range (CARR) models.
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5.2 Future Works

The projects in this thesis work can be extended in the following suggested direc-

tions:

a. The asymmetric and non-linear Realized CARE type should be implemented

and tested in the future research, to see their performance compared to the Re-

CARE-SAV studied in this thesis;

b. The realized CARE framework can be extended to a multivariate specification

or regime switching specification. Once a multivariate framework is established,

it would be interesting to investigate how to develop an efficient expectile level

targeted grid search algorithm on a 2 or more dimensions space;

c. It would be interesting to conduct study on the distribution of signed range, so

that it can be better utilized in the volatility estimation and forecasting;

d. More error distributions and model specifications should be considered for the

future works of Chapter 4. For example, the Weibull distribution can be employed

for the CARR and CARSR2 models, which could potentially improve their VaR

and ES forecasting performance. In addition, the asymmetric Range type models,

e.g. REGARCH and TARR, should be incorporated in the empirical study;

e. The realized signed range should be tested and compared with realized variance

and realized range, and it can be employed in the Realized GARCH or Realized

CARE frameworks to forecast tail risk in the future work.
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