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1 Introduction

Consider an m-variate random variable Y with joint pdf h(y1, . . . , ym). Let f1(y1), . . . , fm(ym)

denote the corresponding marginal pdf’s. Assume that the marginals are known up to a

parameter vector β, where β collects all the distinct parameters in the marginals. The de-

pendence structure between the marginals is not parameterized. We observe an i.i.d. sample

{yi}Ni=1 = {y1i, . . . , ymi}Ni=1 and we are interested in estimating β efficiently without assuming

anything about the joint distribution except for the marginals.

As an example consider the setting of a standard panel (small T , large N). We have

a well specified marginal for each of T cross sections (e.g., logit models, duration models,

stochastic frontier models, etc.) and we are interested in efficient estimation of the parameters

in the marginal distributions with no apriori knowledge of the form or strength of dependence

between them. This or similar setting is often encountered in microeconomic and actuarial

applications (see, e.g, Winkelmann, 2012; Amsler et al., 2014; Frees and Valdez, 1998). In

finance, a similar setting arises in the so called SCOMDY models and in other multivarariate

GARCH-type models, where interest is in estimation of univariate conditional distribution

parameters while the error terms are allowed to have arbitrary dependence (Chen and Fan,

2006a,b; Hafner and Reznikova, 2010).

However, recent literature on semiparametric copula models has focused on the case when

the marginals are specified nonparametrically and the copula function is given a parametric

form (see, e.g., Chen et al., 2006; Segers et al., 2008), which is an appropriate setting for

many financial applications where it is important to parameterize dependence. In our setting,

dependence is used solely to provide more precision in estimation of marginal parameters so
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we study the converse problem.

We will use the well known representation of log-joint-density in terms of log-marginal-

densities and the log-copula-density:

lnh(y1, . . . , ym; β) =
m∑
j=1

ln fj(yj; β) + ln c(F1(y1; β), . . . , Fm(ym; β)), (1)

where c(· · · ) is a copula density and Fi(·) denotes the corresponding marginal cdf. This

decomposition is due to Sklar’s (1959) theorem which states that any continuous joint distri-

bution can be represented by a unique copula function of the marginal cdf’s.

It is well understood that the parameters of the marginals can be consistently estimated

by maximizing the likelihood under the assumption of independence between the marginals

– this is the so called quasi maximum likelihood estimator, or QMLE. The copula term in

(1) is zero in this case because the independence copula density is equal to one. However,

QMLE is not efficient if marginals are not independent and for highly dependent marginals,

the efficiency loss relative to the correctly specified full likelihood MLE is quite large. Joe

(2005), for instance, reports up to 93% improvements in relative efficiency over QMLE in

simulations when the full likelihood is correctly specified.

The situation when using copula terms in the likelihood does not improve asymptotic

efficiency over QMLE is known as copula redundancy. Prokhorov and Schmidt (2009) derived

a necessary and sufficient condition for copula redundancy and showed that such situations are

very rare. Essentially, a parametric copula is redundant for estimation of parameters in the

marginals if and only if the copula score with respect to these parameters can be written as a
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linear combination of the marginal scores – a condition generally violated for most commonly

used parametric copula families and marginal distributions. As a result, significant efficiency

gains remain unexploited.

An alternative that is more efficient asymptotically is a fully parametric estimation of

the entire multivariate distribution by full MLE. This means assuming a parametric copula

specification in addition to the marginal distributions. It is now well understood that, unlike

QMLE, FMLE is generally not robust to copula misspecification. That is, the efficiency gains

will come at the expense of an asymptotic bias if the joint density is misspecified. Prokhorov

and Schmidt (2009) point out that there are robust parametric copulas, for which the pseudo

MLE (PMLE) using an incorrectly specified copula family leads to a consistent estimation.

However, copula robustness is problem specific and some robust copulas are robust because

they are redundant. So finding a general class of robust non-redundant copulas remains an

unresolved problem.

In this paper we address this problem using a semiparametric approach. That is, we

investigate whether we can obtain a consistent estimator of β, which is relatively more efficient

than QMLE, by modelling the copula term nonparametrically. We use sieve MLE (SMLE) to

do that. The questions we ask are whether a sieve-based copula approximator is the robust

non-redundant alternative to QMLE and PMLE and what is the semiparametric efficiency

bound for the SMLE of β. So our paper relates to the literature on sieve estimation (see, e.g.,

Ai and Chen, 2003; Newey and Powell, 2003; Bierens, 2014) and on semiparametric efficiency

bounds (see, e.g., Severini and Tripathi, 2001; Newey, 1990).

The paper is organized as follows. In Section 2 we define our estimator and prove con-
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sistency, asymptotic normality and semiparametric efficiency. Section 3 contains simulation

results, confirming the significant efficiency gains permitted by SMLE. Section 4 presents an

insurance application. Section 5 contains concluding remarks.

2 Sieve MLE

Denote the true copula density by co(u), u = (u1, . . . , um), and denote the true parameter

vector by βo. Let βo belong to finite dimensional space B ⊂ Rp and co(u) belong to an infinite-

dimensional space Γ = {c(u) : [0, 1]m → [0, 1],
∫

[0,1]m
c(u)du = 1,

∫
[0,1]m−1 cJN (u-`)du-` = 1,∀`},

where u-` excludes u`. These conditions reflect that any copula is a joint probability distri-

bution on the unit cube [0, 1]m with uniform marginals. Given a finite amount of data,

optimization over the infinite-dimensional space Γ is not feasible. The method of sieves is

useful for overcoming this problem. Compared to other nonparametric methods such as ker-

nels, local linear estimators, etc., the method of linear sieves is also quite simple – the infinite

dimensional optimization is reduced to a regular parametric MLE.

Define a sequence of approximating spaces ΓN , called sieves, such that
⋃
N ΓN is dense

in Γ. Optimization is then restricted to the sieve space. Grenander (1981) is credited for

observing that the MLE optimization, which is infeasible over an infinite dimensional space,

is remedied if we optimize over a subset of the parameter space, known as the sieve space,

and then allow the subset to grow with the sample size (see, e.g., Chen, 2007, for a survey of

sieve methods).

There is a large number of convenient finite dimensional linear sieves known to work well
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for approximating univariate functions on [0, 1]. To generalize them for multivariate copula

setting, we can write them in a tensor product form as follows:

ΓN =

cJN (u) =

J
(1)
N∑

k1=1

· · ·
J
(m)
N∑

km=1

ak1,...,kmAk1(u1)× . . .× Akm(um) ,

u ∈ [0, 1]m,

∫
[0,1]m

cJN (u)du = 1,

∫
[0,1]m−1

cJN (u-`)du-` = 1, ∀`
}
,

J
(`)
N →∞,

J
(`)
N

N
→ 0, l = 1, . . . ,m

where {Ak`} are known univariate basis functions, {J (`)
N } is the number of basis elements in

each direction ` and {ak1,...,km} are unknown sieve coefficients. Commonly used examples of

basis functions Ak(u) include power series, trigonometric polynomials, Fourier series, Cheby-

shev polynomials, splines, wavelets, neural networks and many others (see, e.g., Chen, 2007).

The number of sieve elements in the tensor sieve J
(1)
N × · · · × J

(m)
N can be viewed as the

smoothing parameter analogous to the bandwidth in a kernel estimation.

One of the challenges with the tensor product sieve is ensuring that the resulting sieve

is the proper copula pdf, that is, it is non-negative, integrates to one and the marginals are

uniform. Exponential or quadratic transformations are used often to ensure positivity and

division by a normalizing constant is used to ensure that the sieve integrates to one (see, e.g.,

Chen et al., 2006). However, it is difficult to find an appropriate normalisation to ensure that

all marginals are uniform. Moreover, the properties of the normalised objects, namely, the

rates of convergence, may differ from the original sieve and may not be easy to derive. An

alternative which does not require any transformation to satisfy the proper copula conditions

is the Bernstein-Kantorovich polynomial (see, e.g., Sancetta and Satchell, 2004). In addition
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to this, the parameters of the Bernstein-Kantorovich sieve have a meaningful interpretation.

2.1 Bernstein-Kantorovich Sieve

The Bernstein-Kantorovich sieve is a tensor product sieve which uses β-densities as basis

functions; it can be written as follows:

cJN (u) = (JN)m
JN−1∑
v1=0

· · ·
JN−1∑
vm=0

ωv

m∏
l=1

 JN − 1

vl

uvll (1− ul)JN−vl−1, (2)

where ωv denotes parameters of the polynomial indexed by multi-index v = (v1, . . . , vm)

such that 0 ≤ ωv ≤ 1 and
∑JN−1

v1=0 · · ·
∑JN−1

vm=0 ωv = 1. These restrictions ensure that the

above equation is a proper density. The interpretation of the coefficients ωv is that they are

probability masses on an JN × · · · × JN grid (see, e.g., Zheng, 2011; Burda and Prokhorov,

2014).1 In order to ensure that cJmN (u) is a copula density, i.e. that its marginals are uniform,

we further require that
∑

v-`
ωv = 1/(JN)m−1, where multiple summations

∑
v-`

are performed

over all elements of v except v`, ` = 1 . . .m.

The weights ωv can be viewed as a multivariate empirical copula density estimator, ωv =

1
N

∑N
i=1 I(ui ∈ Hv), where ui = (ui1, . . . , uim) ∈ [0, 1]m, I(·) is the indicator function and

Hv =

[
v1

JN
,
v1 + 1

JN

]
× · · · ×

[
vm
JN

,
vm + 1

JN

]
. (3)

So the Bernstein-Kantorovich polynomial sieve has the interpretation of a smoothed copula

histogram where smoothing is done by the product of β-densities. Alternatively, it can be

1For simplicity we assume that JN is the same for every dimension `, but this assumption can be easily
relaxed in cases where such asymmetry is required.
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viewed as a mixture of the product of β-densities in u.

Sancetta (2007) derives the rates of convergence of the Bernstein-Kantorovich copula to

the true copula. Petrone and Wasserman (2002) and Burda and Prokhorov (2014) established

consistency of the Bernstein-Kantorovich polynomial when used as a prior on the space of den-

sities on [0, 1]m in a Bayesian framework. Ghosal (2001) and references therein discuss the rate

of convergence of the sieve MLE based on the Bernstein polynomial (only for one-dimensional

densities). Uniform approximation results for the univariate and bivariate Bernstein density

estimator can be also found in Vitale (1975) and Tenbusch (1994). As JN → ∞, cJN (u) is

known to converge to the probability limit of the empirical copula estimator at every point

on [0, 1]m where the limit exists, and if it is continuous and bounded then the convergence is

uniform (see, e.g., Lorentz, 1986).

This sieve is particularly attractive in our multivariate settings because of the uniform rate

of convergence results available for cJN and because of the empirical copula interpretation of

ωv. The former ensures a relatively fast convergence compared to other tensor product sieves,

which we observe in simulations, while the latter permits natural adaptive dimension reduction

based on dropping ωv’s which correspond to sparsely populated grid cells.

2.2 Asymptotic Properties

We can now write the sieve for Θ = B × Γ as ΘN = B × ΓN , where ΓN contains a generic

vector of copula parameters γ. For the special case of the Bernstein-Kantorovich copula,
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γ = ωv. Let θ = (β′, c), then the sieve MLE (SMLE) can be written as follows

θ̂ = arg max
θ∈ΘN

N∑
i=1

lnh(yi; θ) (4)

In essence, an infinite-dimensional problem over a space of functions is reduced to a finite-

dimensional problem over a sieve of that space. As pointed out in sieve MLE literature (see,

e.g., Chen, 2007), this estimator is very easy to implement in practice – it is a standard finite

dimensional parametric MLE once we decide on the number of sieve copula coefficients, and,

as we discuss later, a consistent estimator of the SMLE asymptotic covariance matrix can be

obtained in some cases using standard MLE.

The initial θ vector is infinite dimensional because it contains the nonparametric part,

ln c, along with β. So the asymptotic distribution of β̂ – the first p elements of θ̂ – depends

on the behavior of θ̂ as its dimension grows. By the Gramér-Wold device, this distribution is

normal if, for any λ ∈ Rp, ‖λ‖ 6= 0, the distribution of the linear combination λ′β̂ is normal.

Note that λ′β is a functional of θ, call it ρ(θ). Given a sieve estimate θ̂, the asymptotic

distribution of ρ(θ̂) depends on smoothness of the functional and on the convergence rate of

the nonparametric part of θ̂ (see, e.g., Shen, 1997). In our setting, the functional is simple

and smooth. But the rate of convergence of the nonparametric part of θ̂ may be quite slow

especially if m is large. It is a well established result in univariate settings that in such cases

the smoothness of ρ(β) compensates for this and a
√
N -convergence can be achieved for β̂

(see, e.g., Bierens, 2014). We obtain a similar result in multivariate settings.

In establishing consistency and asymptotic normality we follow the standard route (see,
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e.g., Ai and Chen, 2003; Chen et al., 2006; Chen and Pouzo, 2009). First, we show smoothness

of λ′β and then employ the Riesz representation theorem to show normality of
√
Nλ′(β̂− β).

In showing semiparametric efficiency of β̂ we follow the standard method of looking for the

least favorable parametric submodel. A simplified version of this approach can be found in

Severini and Tripathi (2001). (In the proof of semiparametric efficiency in the Appendix we

provide reference to that approach for readers more familiar with it.)

We now list identification and smoothness assumptions. Versions of these are commonly

used in sieve estimation literature (see, e.g., Shen, 1997; Ai and Chen, 2003; Chen et al., 2006;

Chen, 2007; Bierens, 2014).

Assumptions

A1 (identification) βo ∈int(B) ⊂ Rp, B is compact and there exists a unique θo which maxi-

mizes E[lnh(Yi; θ)] over Θ = B × Γ.

A2 (smoothness) Γ = {c = exp(g) : g ∈ Λr([0, 1]m),
∫
c(u)du = 1,

∫
[0,1]m−1 cJN (u-`)du-` = 1, ∀`},

where Λr([0, 1]m) denotes the Hölder class of r-smooth functions on [0, 1]m, r > 1/2, and

ln fj(yj; β), j = 1, . . . ,m, are twice continuously differentiable w.r.t. β.

The smoothness condition restricts log-copula-densities to the class of real-valued, contin-

uously differentiable functions whose J-th order derivative satisfies Hölder’s condition

|DJg(x)−DJg(y)| ≤ K|x− y|r−JE , for all x, y ∈ [0, 1]m and some r ∈ (J, J + 1]

where Dα = ∂α

∂x
α1
1 ...∂xαmm

is the derivative operator, α = α1 + . . . + αm, |x|E = (x′x)1/2 is the

Euclidean norm and K is a positive constant. All commonly used densities, including copulas,
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belong to this class, and various linear sieves, as well as the Bernstein-Kantorovich polynomial

sieve, are known to approximate such functions well. In fact, commonly used copulas satisfy

the stronger property of Lipschitz continuity (see, e.g., Siburg and Stoimenov, 2008). But

we use the more general smoothness property because it is common to nonparametric density

estimation.

Let l̇(θo)[ν] denote the directional derivative, evaluated at θo, of the log-likelihood in

direction ν = (ν ′β, νγ)
′ ∈ V , where V is the linear span of Θ− {θo}. Then,

l̇(θo)[ν] ≡ limt→0
lnh(y,θ+tν)−lnh(y,θ)

t

∣∣∣
θ=θo

= ∂ lnh(y,θo)
∂θ′

[ν]

=
∑m

j=1

{
∂ ln fj(yj ,βo)

∂β′
+
(

1
c(u1,...,um)

∂c(u1,...,um)
∂uj

)∣∣∣
uk=Fk(yk,βo)

∂Fj(yj ,βo)

∂β′

}
νβ

+ 1
c(F1(y1,βo),...,Fm(ym,βo))

νγ(u1, . . . , um)
∣∣∣
uk=Fk(yk,βo)

,

where the last equation follows from (1). Similarly, define ρ̇(θo)[ν] as follows:

ρ̇(θo)[ν] ≡ limt→0
ρ(θ+tν)−ρ(θ)

t

∣∣∣
θ=θo

= λ′νβ

= ρ(ν)

Let 〈·, ·〉 denote the inner product based on the Fisher information metric on V and let

|| · || denote the Fisher information norm on V . Then, 〈ν1, ν2〉 ≡ E
[
l̇(θo)[ν1]l̇(θo)[ν2]

]
and

||ν|| ≡
√
〈ν, ν〉, where expectation is with respect to the true density h. The closed linear

span of Θ− {θo} and the Fisher information metric form a Hilbert space, call it (V̄ , || · ||).
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Since ρ(θ) = λ′β is linear on V̄ , in order to show smoothness of ρ(θ), we only need to

establish that it is bounded on V̄ , i.e. that sup06=θ−θo∈V̄
|ρ(θ)−ρ(θ0)|
||θ−θo|| <∞. Also, by the results in

Shen (1997), boundedness of ρ(θ) = λ′β is necessary for ρ(θ) = λ′β to be estimable at the
√
N -

rate. Boundedness of ρ(θ) will imply that ρ(θ) is continuous. Moreover, since ρ̇(θo)[ν] = ρ(ν),

boundedness of the directional derivative of ρ(θ) is equivalent to boundedness of ρ(θ) itself,

i.e. it is equivalent to sup06=ν∈V̄
|ρ̇(θo)[ν]|
||ν|| <∞. Because ρ(ν) = λ′νβ, this is the case if and only

if supν 6=0,ν∈V̄
|λ′νβ |2
||ν||2 <∞. So we now show when this condition holds.

We follow Ai and Chen (2003) and Chen et al. (2006) and look for the minimal com-

ponentwise Fisher information metric for β. This minimization problem can be written as

follows:

inf
gq
E

[
m∑
j=1

{
∂ ln fj(yj, βo)

∂βq
+

(
1

c(u)

∂c(u)

∂uj

)∣∣∣∣
uk=Fk(yk,βo)

∂Fj(yj, βo)

∂βq

}
(5)

+

(
1

c(u)
gq(u1, . . . , um)

)∣∣∣∣
uk=Fk(yk,βo)

]2

,

where E
[

1
c(u)

gq(u)
]

= 0. Let g∗q denote the solution of (5), q = 1, . . . , p, and let g∗ =

(g∗1, . . . , g
∗
p).

We can now find the sup by writing

supν 6=0,ν∈V̄
|λ′νβ |2
||ν||2 = supν 6=0,ν∈V̄

{
|λ′νβ|2

(
E
[
l̇(θo)[ν]2

])−1
}

= λ′
(
ESβS

′
β

)−1
λ,

(6)
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where

S ′β =
∑m

j=1

{
∂ ln fj(yj ,βo)

∂β′
+
(

1
c(u)

∂c(u1,...,um)
∂uj

)∣∣∣
uk=Fk(yk,βo)

∂Fj(yj ,βo)

∂β′

}
+
(

1
c(u)

g∗(u1, . . . , um)
)∣∣∣

uk=Fk(yk,βo)

g∗ = (g∗1, . . . , g
∗
p) and E

[
1

c(u)
g∗q (u)

]
= 0.

(7)

So ρ(θ) = λ′β in bounded if and only if ESβS
′
β in (6) is a finite and positive definite matrix.

Assumption A3 (nonsingular information) Assume that ESβS
′
β is finite and positive definite.

Having established smoothness of ρ(θ) we can use the Riesz representation theorem (see,

e.g., Kosorok, 2008, p. 328) to derive the asymptotic distribution of λ′β. Basically, the theorem

states that for any continuous linear functional L(ν) on a Hilbert space there exists a vector

ν∗ (the Riesz representer of that functional) such that, for any ν

L(ν) = 〈ν, ν∗〉,

and the norm of the functional defined as

||L||∗ ≡ sup
||ν||≤1

||L(ν)||

is equal to ||ν∗||. The representer will be used in the derivation of asymptotic normality and

semiparametric efficiency of the sieve MLE.

The Riesz representation theorem, when applied to ρ̇(θo)[ν] = ρ(ν), suggests that there

exists a Riesz representer ν∗ ∈ V̄ of ρ(ν), for which λ′(β̂ − βo) = 〈θ̂ − θo, ν
∗〉 and ||ν∗|| =
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sup||ν||≤1 ||ρ(ν)||. The first claim implies that the distributions of β̂−βo and of 〈θ̂− θo, ν∗〉 are

identical, which is useful for proving asymptotic normality of
√
N(β̂ − βo). The second claim

is used in the proof of semiparametric efficiency. Both of these claims are useful for deriving

the explicit form of the representer.

It turns out we have already found ν∗ when we showed smoothness of ρ(θ) by find-

ing supν 6=0,ν∈V̄
|λ′νβ |2
||ν||2 . Since supν 6=0,ν∈V̄

|λ′νβ |2
||ν||2 = sup||ν||=1 ||ρ(ν)||2, the representer for our

problem is a vector whose squared Fisher information norm is equal to supν 6=0,ν∈V̄
|λ′νβ |2
||ν||2 =

λ′
(
ESβS

′
β

)−1
λ. It is straightforward to show that this vector can be written as follows

ν∗ =
(
I, g∗

′
)′ (

ESβS
′
β

)−1
λ (8)

As a check we can see that the squared Fisher information norm of ν∗ can be written as

follows

||ν∗||2 = E
[
l̇(θo)[ν

∗]l̇(θo)[ν
∗]
]

= λ′
(
ESβS

′
β

)−1
λ.

The last assumption required for asymptotic normality of
√
N(β̂−βo) is an assumption on

the rate of convergence for the sieve MLE estimator of the unknown copula function. As in

other sieve literature, we allow the sieve estimator to converge arbitrary slowly – smoothness

of ρ(θ) compensates for that and the parametric part of the estimator is still
√
N -estimable.

We also impose a boundedness condition on the second order term in the Taylor expansion

of the sieve log-likelihood function. This technical condition will usually follow from the
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smoothness assumption A2 but we state it explicitly to simplify the proof.

Assumption A4 (convergence of sieve MLE and smoothness of higher order term in Taylor

expansion) Assume (A) that ||θ̂−θo|| = OP (δN) for (δN)w = o(N−1/2), w > 1 and there exists

ΠNν
∗ ∈ VN −{θo} such that δN ||ΠNν

∗− ν∗|| = o(N−1/2) and (B) that, for any θ : ||θ− θo|| =

Op(δN), the expected directional derivative E d l̇(θ)[ν]
dθ′

[ν] ≤ ||ν||2.

A discussion of convergence rates of different sieves is provided by Chen (2007) and in

references therein; general results on convergence rates of sieve MLE can be found in Wong

and Severini (1991); Shen and Wong (1994). Basically, Assumption A4 covers all commonly

encountered sieves. For example, for the trigonometric sieve, Shen (1997) shows that ||θ̂ −

θo|| = Op(N
−r/(2r+1)), where r is the Hölder exponent; Ghosal (2001) provides results on

convergence rates of the Bernstein-Kantorovich sieve but using the Hellinger distance.

We can now state our main consistency and asymptotic efficiency results.

Theorem 1 Under A1-A4,
√
N(β̂ − βo)⇒ N(0, (E[SβS

′
β])−1).

Proof. See Appendix for all proofs.

Theorem 2 Under A1-A4, ||ν∗||2 is the lower bound for semiparametric estimation of λ′β,

i.e. β̂ is semiparametrically efficient.

In practice, one needs to estimate the asymptotic variance in order to conduct inference on

β. The matrix E[SβS
′
β] can be estimated consistently as a sample average of SβS

′
β, once we

obtain β̂, ĉ, ĝ∗q ’s. Parameter estimates β̂ and ĉ are obtained in the sieve MLE but estimation
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of g∗q requires a separate sieve minimization problem. We obtain consistent estimators g∗q as

solutions to the following problem

arg min
gq∈AN

[
N∑
i=1

m∑
j=1

{
∂ ln fj(yji, β̂)

∂βq
+

(
1

ĉ(ûi)

∂ĉ(û1i, . . . , ûmi)

∂uj

)∣∣∣∣
ûki=Fk(yki,β̂)

∂Fj(yji, β̂)

∂βq

}
(9)

+
N∑
i=1

1

ĉ(F1(y1i, β̂), . . . , Fm(ymi, β̂))
gq(û1i, . . . , ûmi)

∣∣∣∣∣
ûki=Fk(yki,β̂)

2

, q = 1, . . . , p

where AN is one of the sieve spaces discussed above and β̂ and ĉ are consistent estimates of

β and c and
∫
gq(u)/ĉ(u)du = 0.

An alternative estimator of E[SβS
′
β]−1 was proposed by Ackerberg et al. (2012, 2014).

It proceeds as follows. Using β̂ and ĉ we first evaluate the covariance matrix of all model

parameters (both parameters in the marginal and in the copula) using the expected outer-

product of the score. This is a large square matrix of dimension p+ JmN . Then, we calculate

the upper left p × p block of its inverse. Such estimator would be part of a standard MLE

output. However, this method assumes that the likelihood is separable in β and c, which is

not the case in our settings. This causes the estimate to be numerically unstable and so we

use the sieve-based estimate above.

3 Simulations

Given the substantial advantage of Bernstein-Kantorovich polynomials in our setting we focus

on sieves based on these polynomials.2. For Bernstein-Kantorovich sieves we observed robust

2Our experimentations with linear tensor sieves, including splines, polynomials, and trigonometric poly-
nomials, showed that these sieves are computationally intensive and exhibit slow convergence so they are not
reported. However, a general matlab module implementing the Bernstein-Kantorovich and other sieves used
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Figure 1: Asymptotic relative efficiency of SMLE and FMLE.

convergence within reasonable time.

One of the practical problems we face is the choice of the degree of polynomial JN in finite

samples. While some asymptotic results on the rate of convergence and its dependence on

JN are available, they are not informative in the finite sample situation. The literature on

sieves suggests using typical model selection techniques, such as BIC and AIC or data driven

methods such as cross-validation, so we use these methods.

The DGPs we use in the simulations are similar to those used by Joe (2005) who studies

in this and next sections is available at http://research.economics.unsw.edu.au/vpanchenko/software/
scopula.zip
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the asymptotic relative efficiency (ARE) of copula based MLE, i.e. the ratio of the asymptotic

variance of FMLE to that of QMLE. Joe (2005) shows that ARE depends on the specifica-

tion of marginals and copula as well as on the strength of dependence. Moreover, for some

asymmetric marginal distributions, e.g., exponential, he finds that ARE for strongly nega-

tively dependent data is much larger than for positively dependent with the same dependence

strength. Fig. 1 panel (a) reports the AREs as a function of dependence strength measured

by Spearman’s ρ for commonly used copulae, i.e., Gaussian, Clayton, Plackett, Frank. We

report Spearman’s ρ in the range from -0.9 to 0.9 as we experienced numerical instability in

the region close to perfect negative or positive dependence for some copulae. Note that the

Frank copula can accommodate only positive dependence. These plots confirm that there is

a scope for improvement over the QMLE and that the largest gains can be expected in the

case of strong negative dependence.

In our simulations we focus on a bivariate DGP with exponential marginals and the Plack-

ett copula, which is comprehensive in the sense that it can accommodate the entire range of

dependence captured by such measures as Kendall’s τ or Spearman’s ρ. The marginal dis-

tribution parameters (distribution means µ) are set at 0.5. The copula parameter takes 25

values in the range between 0.001 (Spearman’s ρ near -1) and 1,000 (Spearman’s ρ near +1).

Fig. 1 panel (b) reports the ARE for SMLE and FMLE as a function of Spearman’s ρ

when the data comes from the Plackett copula. The SMLE asymptotic variance is estimated

using Eq. (9) for a sample of 200,000 observations, where we use the tensor product sieve with

cosine basis functions without the intercept to approximate gq. The number of sieve elements

is 25× 25 = 625.
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Several observations are interesting in Fig. 1. First, as expected the AREs of both FMLE

and SMLE are near one (subject to some estimation noise) in the case of independence, when

we expect no gains over QMLE. Second, we observe the lowest ARE, that is the biggest

efficiency gains, when Spearman’s ρ approaches -1. This corresponds to extreme negative

dependence and agrees with observations made by Joe (2005). In fact, the ARE of Plack-

ett FMLE with copula parameter at 0.001 is 0.035 suggesting a 96.5% improvement over

QMLE; the ARE of SMLE for the same strength of dependence is 0.051 suggesting a 94.9%

improvement. Third, if we have strong positive dependence then FMLE does not show much

efficiency gain over QMLE, which also agrees with Joe (2005). Interestingly, we observe a

similar pattern for SMLE.

Joe (2005) provides an explanation for the asymmetry in ARE with respect to ρ. He

observes that the upper and lower limits of dependence correspond to the Fréchet upper and

lower bounds and he derives the constraints on the functional relationship between the two

random variables implied by those bounds. Then, efficiency gains of FMLE over QMLE could

be obtained only if the parameters of the marginals can be identified from these constraints.

It turns out that for the bivariate distribution with exponential marginals under the Fréchet

lower bound the parameters are identified and the ARE goes to zero in the limiting case of

strong negative dependence. On the contrary, under the Fréchet upper bound the parameters

of the marginals are not identified and the ARE is approaching one in the limiting case

of positive dependence. The simulations summarized in Fig. 1 panel (b) show that similar

arguments hold for SMLE.

Additionally, we ran the same analysis for different values of µ and non-exponential

19



marginals (not reported here). Interestingly, changing the true values of µ did not affect

the ARE comparisons. This suggests that relative efficiency in estimation of parameters in

exponential marginals depends only on the strength of dependence and not on the parameters

in the marginals themselves. This isolates the effect of dependence on the ARE and makes

exponential marginals particularly attractive for simulation purposes. For non-exponential

marginals, the ARE denerally depends on both parameters in the marginals and the depen-

dence parameter.

Naturally, the efficiency gains reported in Fig. (1b) using FMLE are higher than those

obtained using SMLE. However, in regions close to extreme negative dependence and to

independence the gap between the two estimators is diminishing. Also, it is perhaps surprising

how close the semiparametric estimator is to a fully parametric one in terms of asymptotic

precision. We stress that these results do not depend on the values of parameters in the

marginals (other than that they must be identified).

Next we consider the performance of SMLE, FMLE and QMLE for a fixed value of Spear-

man’s ρ. We keep exponential marginals and the Plackett copula as the DGP and set the

true parameter value in the marginals at µ1 = µ2 = 0.5 and in the copula at γ = 0.05,

which implies moderate negative dependence with Spearman’s ρ of −0.77. The sample size

is N = 1, 000 and the number of simulations is R = 1, 000.

Table 1 contains the simulation results. We report the mean value of the estimates for each

marginal as well as various versions of the variance estimator and the MSE. Under Var, we

report sample variance estimates while under AVar, we report estimates of the asymptotic vari-

ance obtained using a solution to (9). The number of elements in the Bernstein-Kantorovich
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Table 1: Simulated mean and variance for QMLE, SMLE, Plackett
copula based FMLE

Parameter µ1 Parameter µ2

FMLE SMLE QMLE FMLE SMLE QMLE

Mean 0.5004 0.4987 0.5001 0.4996 0.4976 0.4995
N× Var 0.1720 0.1919 0.2640 0.1740 0.1882 0.2590
N× MSE 0.1721 0.1937 0.2640 0.1741 0.1939 0.2592
N× AVar 0.1580 0.1860 0.2500 0.1580 0.1860 0.2500

Table 2: Optimal number of sieve elements in SMLE

Jn Mean 1 Mean 2 Var 1 Var 2 MSE 1 MSE 2 CV crit LogL AIC BIC

6 0.4968 0.4958 0.2012 0.2055 0.2116 0.2234 -640.46 188.33 448.65 625.33
7 0.4976 0.4965 0.1945 0.2005 0.2001 0.2126 -640.39 167.73 433.46 673.94
8 0.4982 0.4970 0.1918 0.1944 0.1952 0.2033 -640.00 152.15 432.30 746.40
9 0.4985 0.4974 0.1900 0.1908 0.1923 0.1976 -640.00 140.61 443.21 840.74
10 0.4987 0.4976 0.1919 0.1882 0.1937 0.1939 -639.96 131.76 463.52 954.30
11 0.4989 0.4977 0.1908 0.1904 0.1921 0.1958 -639.99 124.73 491.46 1085.30
12 0.4989 0.4977 0.1902 0.1907 0.1915 0.1961 -640.19 119.05 526.09 1232.81
13 0.4985 0.4977 0.1944 0.1938 0.1968 0.1992 -640.07 114.34 566.69 1396.10
14 0.4985 0.4975 0.1985 0.1962 0.2008 0.2022 -640.46 110.38 612.77 1574.69

sieve is 10× 10 = 100. This number is picked by cross-validation. A key feature of the table

is that SMLE shows substantial improvement over QMLE. The sample variance is close to

the asymptotic variance.

Next we look at how the SMLE bias and variance change with the number of sieve el-

ements. Table 2 reports means, variances and MSEs for the two estimates as well as the

value of log-likelihood and three popular model selection criteria: leave-one-out likelihood

cross-validation, AIC and BIC. The value of log-likelihood LogL decreases as sieve complex-

ity grows as expected, while the information criteria AIC and BIC (especially BIC) seem to

select an underparameterized model.
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4 Application from insurance

We demonstrate the use of SMLE with an insurance application. We have data on 1,500

insurance claims. For each claim, we have the amount of claim payment, or loss, (Y1) and

the amount of claim-related expenses (Y2). The claim-related expenses known as ALAE

(allocated loss adjustment expense) include the insurance company expenses attributable to

an individual claim, e.g. the lawyers’ fees and claim investigation expenses. The claim amount

variable is censored – there is a dummy variable, d, which is equal to one if a given claim has

surpassed the policy limit and zero if not. For details of the data set, see Frees and Valdez

(1998).

The claim amount and ALAE are assumed to be distributed according to the Pareto

distribution with parameters (λ1, θ1) and (λ2, θ2), respectively:

Fj(Yj) = 1−
(
λj + Yj
λj

)−θj
, j = 1, 2. (10)

Interest lies in efficient estimation of the marginal distribution parameters (λ1, θ1, λ2, θ2),

making efficient use of the strong dependence between the claim amount and ALAE. Addi-

tional complications arise due to censoring of Y1. The likelihood contributions for censored

observations will not be the same as for the uncensored ones and we need to account for that.

Define the marginal pdfs fj(yj), j = 1, 2. The QMLE log-likelihood contribution of an

uncensored observation is ln fj(yj), j = 1, 2. For a censored observation, the contribution is

ln(1 − F1(y1)) = θ1(ln(λ1) − ln(λ1 + y1)). So for QMLE, the log-likelihood contribution of
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claim i is

lQi = (1− di) ln f1(y1i) + di ln(1− F1(y1i)) + ln f2(y2i).

Now consider the joint likelihood. Define the joint cdf H(y1, y2) and joint pdf h(y1, y2).

The FMLE contribution of an uncensored observation is lnh(y1, y2) = ln f1(y1) + ln f2(y2) +

ln c(F1(y1), F2(y2)). To derive the contribution of a censored observation we follow Frees and

Valdez (1998) in observing that Prob(Y1 ≥ y1, Y2 ≤ y2) = F2(y2) − H(y1, y2). So the log-

likelihood contribution of a censored observation is f2(y2) − H2(y1, y2), where H2(y1, y2) =

∂H(y1,y2)
∂y2

. But H(y1, y2) = C(F1(y1), F2(y2)) so H2(y1, y2) = C2(F1(y1), F2(y2)) f2(y2), where

C2(u1, u2) = ∂C(u1,u2)
∂u2

. Therefore the full log-likelihood contribution for observation i can be

written as

lFi = (1− di)[ln f1(y1) + ln f2(y2) + ln c(F1(y1), F2(y2))]

+di[ln f2(y2) + ln(1− C2(F1(y1), F2(y2)))].

The main difficulty imposed by censoring is that we need to evaluate an additional term

involving a copula derivative. For the SMLE, the term is approximated along with ln c.

For the FMLE, the term can be derived analytically for a given copula family or evaluated

numerically.

The extra term will carry over to the variance problem (5) and a consistent estimate of
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Table 3: QMLE, SMLE, and FMLE for insurance claims and related expenses
QML Est. Frank FML Est. G-H FML Est. SML Est.

(Rob.St.Er.) (St.Er.) (St.Er.)

λ1 14,443.15 14,562.02 14,040.61 14,631.90
(1,515.09) (1,498.47) (1,351.15) (1,492.36)

θ1 1.135 1.115 1.122 1.137
(0.076) (0.073) (0.067) (0.073)

λ2 15,133.28 16,708.37 14,223.42 15,421.69
( 1,744.96) (1,900.49) (1,405.75) (1,663.83)

θ2 2.223 2.312 2.119 2.233
(0.183) (0.190) (0.143) (0.172)

α - 3.158 -0.791 -
(0.171) (0.035)

LogL -31,951 -31,778 -31,749 -31,731

the SMLE variance, V̂ , will now be

arg min
gq∈AN

[
N∑
i=1

(1− di)

{
2∑
j=1

(
∂ ln fj(yji, β̂)

∂βq
+

1

ĉ(ûi)

∂ĉ(ûi)

∂uj

∂Fj(yji, β̂)

∂βq

)
+

1

ĉ(û1i, û2i)
gq(û1i, û2i)

}

+
N∑
i=1

di

{
∂ ln f2(y2i, β̂)

∂βq
− 1

1− Ĉ2(û1i, û2i)

(
2∑
j=1

∂Ĉ2(ûi)

∂uj

∂Fj(yji, β̂)

∂βq
+

∫ 1

0

gq(s, û2i) ds

)}]2

,

where β = (λ1, θ1, λ2, θ2)′, ûki = Fk(yki, β̂) and q = 1, . . . , 4. We will need to evaluate both gq

and its integral over u1.

The three estimators, QMLE, FMLE and SMLE, and their standard errors are given

in Table 3. The QMLE is known to be robust in the sense that it is consistent even if

independence is a false assumption but to obtain the correct standard errors a “sandwich”

formula for variance is needed.

The FMLE estimator is based on a fully specified parametric joint likelihood. We follow

Frees and Valdez (1998) and assume the Frank and Gumbel-Hougaard copulas with depen-

dence parameter denoted by α, which along with the Pareto marginals completely param-
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eterize the model. Consistency of this estimator, sometimes called Pseudo-MLE, relies on

correctness of the assumed copula family. If Frank or Gumbel-Hougaard are incorrect copula

families then the FMLE will be biased.

The SMLE estimator is robust in the sense that it does not rely on a correctly specified

parametric copula family. But it is not as efficient as any fully parametric model. So we should

expect SMLE to be close to QMLE in terms of the estimates and to be between FMLE and

QMLE in terms of standard errors. To obtain the SMLE, we use the Bernstein-Kantorovich

sieve with JN = 10 and to obtain the SMLE standard errors we use the cosine sieve with 9

parameters. The choice of the number of parameters in the Bernstein-Kantorovich sieve is

based on cross-validation.

Estimation results support the above intuition. Our FMLE estimates using the Frank and

Gumbel-Hougaard copula (which turn out virtually identical to those in Frees and Valdez,

1998) provide evidence of an estimation bias that is not present in QMLE and SMLE, both

of which are very close. This supports the robustness (to copula misspecification) argument.

The FMLE standard errors are usually smaller than those of QMLE. This indicates higher

relative efficiency – a compensation for the lack of robustness. The point we wish to stress is

that the SMLE standard errors are smaller than those of QMLE and this gain comes at no

robustness cost (but at some computational cost).
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5 Concluding Remarks

We have proposed an efficient semiparametric estimator of marginal distribution parameters.

This is a sieve maximum likelihood estimator based on a finite-dimensional approximation of

the unspecified part of the joint distribution. As such, the estimator inherits the costs and

benefits of the multivariate sieve MLE. A major benefit is the increased precision compared to

quasi-MLE, permitted by the use of dependence information. Simulations show that potential

efficiency gains are huge. The efficiency bound is determined by the dependence strength and

we show that our estimator reaches that bound.

The gains come at an increased computational expense. The convergence is slow for the

traditional sieves we considered. We found that the Bernstein-Kantorovich polynomial is

preferred to other sieves. The running times are greater than the full MLE assuming an

“off-the-shelf” parametric copula family but far from being prohibitive (at least for the two

dimensional problem we consider). Moreover, simulations reveal a small downward bias in

SMLE, which seems to be caused by the sieve approximation error – it decreases as the number

of sieve elements increases.

A simple alternative to the proposed method is a fully parametric ML estimation problem.

Although simpler computationally, it imposes an assumption on the dependence structure,

which, if violated, renders the ML estimates inconsistent. Moreover, robust parametric cop-

ulas are often robust because they are redundant. So the proposed estimator seems to offer a

unique way of constructing a copula that is robust and generally non-redundant.

Methods to improve computational efficiency of SMLE focus on reducing the effective

number of sieve parameters. Such methods involve penalized and restricted estimation and
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are particularly appealing for the Bernstein-Kantorovich polynomial where the sparse portions

of the sieve parameter space correspond to histogram cells with little or no mass. We leave

development of such methods for future work.
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6 Appendix

Proof of Theorem 1: Let li(θ) = lnh(yi; θ), l(θ) = 1
N

∑N
i=1 li(θ) and 0 < εN = o(N−1/2). We follow

Chen et al. (2006) and consider a continuous path θ(t) = θ̂ ± tεNΠNν
∗, t ∈ [0, 1], such that θ(0) = θ̂ and

θ(1) = θ̂ ± εNΠNν
∗.

Under Assumption A2, l(θ) is twice continuously differentiable w.r.t. t and

d l(θ(t))
dt

∣∣∣
t=τ

= 1
N

∑N
i=1

d li(θ(t))
dt

∣∣∣
t=τ

= 1
N

∑N
i=1

d li(θ(τ))
dθ′ [±εNΠNν

∗]

d2 l(θ(t))
dt2

∣∣∣
t=τ

= 1
N

∑N
i=1

d2 li(θ(τ))
dθ′dθ [±εNΠNν

∗,±εNΠNν
∗]
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By the definition of θ̂ in (4) and the Taylor expansion,

0 ≤ l(θ̂)− l(θ̂ ± εNΠNν
∗) = l(θ(0))− l(θ(1)) = − ∂l(θ(t))

∂t

∣∣∣
t=0
− 1

2
∂2l(θ(t))
∂t2

∣∣∣
t=s

, for some s ∈ [0, 1]

= ±εN 1
N

∑N
i=1

dli(θ̂)
dθ′ [ΠNν

∗] + 1
2

1
N

∑N
i=1

d2 li(θ(s))
dθ′dθ [±εNΠNν

∗,±εNΠNν
∗]

= ±εN 1
N

∑N
i=1

dli(θ̂)
dθ′ [ΠNν

∗] + 1
2E

d2 li(θ(s))
dθ′dθ [±εNΠNν

∗,±εNΠNν
∗]

+ 1
2

{
1
N

∑N
i=1

d2 li(θ(s))
dθ′dθ [±εNΠNν

∗,±εNΠNν
∗]− E d2 li(θ(s))

dθ′dθ [±εNΠNν
∗,±εNΠNν

∗]
}

We follow Chen et al. (2006) and show that

1

N

N∑
i=1

dli(θo)

dθ′
[ΠNν

∗ − ν∗] = op(N
−1/2) (11)

and that, uniformly over θ(s) in a neighborhood of θo with ||θ(s)− θo|| = O(δN ),

E
d2 li(θ(s))

dθ′dθ
[±εNΠNν

∗,±εNΠNν
∗] = ±εN 〈θ̂ − θo, ν∗〉 ± εN op(N−1/2) (12)

and

1

N

N∑
i=1

d2 li(θ(s))

dθ′dθ
[±εNΠNν

∗,±εNΠNν
∗]−E d2 li(θ(s))

dθ′dθ
[±εNΠNν

∗,±εNΠNν
∗] = εN op(N

−1/2) (13)

It will then follow that

0 ≤ l(θ̂)− l(θ̂ ± εNΠNν
∗) = ±εN 1

N

∑N
i=1

dli(θo)
dθ′ [ν∗]± εN 〈θ̂ − θo, ν∗〉 ± εN op(N−1/2)

And, since εN = o(N−1/2) > 0, we have

√
N〈θ̂ − θo, ν∗〉 = 1√

N

(∑N
i=1

dli(θo)
dθ′ [ν∗]− E dli(θo)

dθ′ [ν∗]
)

+ oP (1)

⇒ N(0, ||ν∗||2),

where E
(
dli(θo)
dθ′ [ν∗]

)
= 0 and ||ν∗||2 = V ar

(
dli(θo)
dθ′ [ν∗]

)
. Now, since λ′(β̂− βo) = 〈θ̂− θo, ν∗〉, the conclusion
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of the theorem follows by the Cramér-Wold device. What remains is to show (11)-(13).

Equation (11) holds by Assumption A4(A), since ||ΠNν
∗ − ν∗|| = o(1). To show (12), note that, under

Assumption A4(B), uniformly over θ(s) in a neighborhood of θo with ||θ(s)− θo|| = O(δN ),

E
d2 li(θ(s))

dθ′dθ
[±εNΠNν

∗,±εNΠNν
∗] ≤ 〈θ̂ − θo,±εNΠNν

∗〉 = ±εN 〈θ̂ − θo,ΠNν
∗〉

But, by Assumption A4(A), 〈θ̂− θo,ΠNν
∗− ν∗〉 = op(N

−1/2). Thus, ±εN 〈θ̂− θo,ΠNν
∗〉 = ±εN 〈θ̂− θo, ν∗〉±

εNop(N
−1/2). For showing (13), recall that

d2 li(θ(s))

dθ′dθ
[±εNΠNν

∗,±εNΠNν
∗] = li(θ̂ ± εNΠNν

∗)− li(θ̂)± εN
dli(θ̂)

dθ′
[ΠNν

∗]

Now, for some θ(τ) between θ̂ and θ̂± εΠNν
∗, write li(θ̂± εNΠNν

∗)− li(θ̂) = ±εN dli(θ(τ))
dθ′ [ΠNν

∗]. Then, the

left hand side of (13) can be written as

±εN

{
1

N

N∑
i=1

d li(θ(τ))

dθ′
[ΠNν

∗]− Ed li(θ(τ))

dθ′
[ΠNν

∗]

}
± εN

{
1

N

N∑
i=1

d li(θ̂)

dθ′
[ΠNν

∗]− Ed li(θ̂)
dθ′

[ΠNν
∗]

}
,

which is ±εNop(N−1/2).

Proof of Theorem 2: We apply the method of Severini and Tripathi (2001). To make it easier to follow

for those who know their method, we use their notation and also specify our equivalents of their objects.

For some to > 0 let θ(t) denote a curve from [0, to] into Θ such that θ(0) = θo. The curve we consider is

θ(t) = θo + tν, for any ν ∈ V . Let θ̇ denote the slope of θ(t) at t = 0, i.e. θ̇ is tangent to the set Θ at θo. For

our case, θ̇ = ν. Let T (Θ, θo) denote the collection of all such tangents θ̇′s and let T̄ (Θ, θo) denote the linear

closure of T (Θ, θo), i.e. the tangent space. In our case, T̄ (Θ, θo) = V̄ .

The objective is to obtain the efficiency bound for estimating ρ(θo) = λ′βo. Stein (1956) is often credited

for being first to suggest that the efficiency bound can be viewed as the upper bound on the asymptotic variance

for estimating any one-dimensional subproblem of the original problem. Our one-dimensional subproblem is

estimation of t, whose true value is zero. The score for estimating t = 0 is si = dli(θt)
dt

∣∣∣
t=0

= d lnh(yi;θt)
dt

∣∣∣
t=0

=
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d lnh(yi;θo)
dθ [θ̇]. In our notation, this is just the directional derivative l̇(θo)[ν] for obsevation i, call it l̇i(θo)[ν].

Then, the Fisher information for estimating t = 0 is given by ||ν||2 = Es2
i .

We now look at those one-parameter subproblems that are informative about the feature of interest

ρ(θo), specifically, we focus on those curves θ(t) that satisfy the restriction ρ(θ(t)) = t. This means choosing

among only those θ̇′s that satisfy dρ(θ(t))
dt

∣∣∣
t=0

= 1, or equivalently, only those ν′s for which ρ̇(θo)[ν] = 1. A

simplification that applies in our case is that ρ̇(θo)[ν] = ρ(ν) = λ′νβ . Then, for any consistent estimator t̂,

AV
{√

N
[
ρ(θ(t̂))− ρ(θo)

]}
= AV (

√
Nt̂) ≥ ||ν||−2. Now to obtain the semiparametric lower bound (SPLB)

for estimating ρ(θo), we look for a ν that maximizes ||ν||−2. As discussed in Severini and Tripathi (2001,

p. 28), the maximization problem can be equivalently written as

SPLB = sup
ν∈V̄ :ν 6=0,λ′νβ=1

||ν||−2 = sup
ν∈V̄ :ν 6=0

∣∣∣∣∣∣∣∣ ν

λ′νβ

∣∣∣∣∣∣∣∣−2

= sup
06=ν∈V̄

|λ′νβ |2

||ν||2
= sup
||ν||=1

|λ′νβ |2 = ||ρ̇(θo)[ν]||2∗,

where ||L(ν)||∗ is the norm of a continuous linear functional L(ν) on the tangent space.

Calculating the norm is usually easier by appealing to the Riesz representation theorem as done in the

main text. Basically, instead we look for the representer of the functional. The Riesz representation theorem

says that ||ρ̇(θo)[ν]||∗ = ||ν∗||, where ν∗ as defined in (8). Thus, SPLB = ||ν∗||2.

33


	Introduction
	Sieve MLE
	Bernstein-Kantorovich Sieve
	Asymptotic Properties

	Simulations
	Application from insurance
	Concluding Remarks
	Appendix

