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'ervaluating m(e), which was derived by Barnes and Swinnerton-

. Dyer {{} and extended by Barnes {g},' The later chanters of

‘thejthesis'ali depeh&‘onfthie‘method.

| THE INHOMOGENEOUS MINIMA
 OF INDEFINITE BINARY QUADRATIC FORLS

‘ Summery efge Thesie submﬁttedkby ane,Pitman‘for the Degree

,_of Doctor of PhllOSODhJ of the University of Sydnev, August,

1957.,

fLet SonlE
2 .. 2

rf(x,y),= ax S+ XY + oy (D = 2 - Lac > 0)

f,,'be an 1ndef1n1te blnary quadratic form whlch does not represent

zero, and 1et m(f) ‘f(f), Mz(f) ve. lto nomogeneou minimum and

its first and secondvlnhomogeneous minima.

:Chanter 1. An 1nuroduct10n to problems on the 1nhomoneneous

'minima, some of whlch are 1nvest1gatod in thls thesis.

éhanter o An?account‘of'the 'divided céll method' for

-‘rChantereﬁ..The 'divided cell methodf depends on the

corre eondence between'chains of divided cells (cells with

fone vertex 1n each quadrant) of an- 1nhomo~eneous 1attlce and

L chalns whlcn contaln one partlcular form — in faet it is

| chﬁins of 'I—reauced' forms. Chapter 3 1s & discussion of

cna;ns of I—reahced Torms equlvalent to £ bv taklna all the

the questlon of \hether 1t is DOSSlble to obtaln q11 the

e posszble to obta1n~all thekchalns by starting from at mosﬁgj;




thfee forms, and if f is rational it is possiblé to obtain
 &11‘the'I-redﬁ§éd forms équivalent to £ (though not all chains)
fbyrtaking all'the'fofms in chains from just one form.
~ Chapter L. Let g be the symetric Markov form

| 2 | 2

By(xy) = 2n+3X * Vone3 = Vg (n21),
iwhe?e~ui, Vi i = 0,1, ... denote the Fibonacci and Lucas
rnumbers; then7for’n > 11 we have

(1) if n = 0 (mod 3), then .

M(g,) = 42n+3 ﬁm(gn)'

1

(i1) if n = 0 (mod 3) ,' then

M2(g ) Eu2n+3

Chégter’ﬁ. It is ghown that résults similar to those of
Chapter L hold for thereafly-symmetric Markov forms; the
:inhbmogeneous minimﬁm of the form '

‘ ' glx,y) =x% + 5xy - 2

is obtained.
Chapter 6. Let K denote Davenport's constant:

vK,= sup k; M(£) > xA ,

‘The results of Chapter h and the methods of Chapter 2 are used to
show that . '
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Chapter 1 is introductory. Chapter 2 is expository,
and, apart from a certain amount of reorganization, the
only original work in Chapter 4 is Theorem 2.2, the proof
of Theorem 2,41 and 2.10, and Lemma 2.10. Sections 3.2
and 3.3, the whole of Chapter L, the proof of Theorem 5.3,
and sections 5.3, 5.4, 5.5, 6.3, 6.4, 6.5 are original,
Whenever known résults are stated, the appropriate
references are given. Acknowledgements are made at the

end of the Introduction (Chapter 1).



CHAPTER 1
INTRODUCTION

1,4, Definitions and Minkowski's Theorem

Let ‘
_ 2 2

f(x,y) = ax® + bxy + cy (1.1)
be an indefinite binary quadratic form with real coefficients
and discriminent D = b2 - hac > 0, and write 4 = + #D. If
there exist integers x,y, not both zero, such that f(x,y) = K,
the form f is said to represent the number K; this thesis is
mainly concerned with forms which do not represent zero (i.e,

such that £(x,y) # O for all integer pairs (x,y) # (0,0)).

The homogeneous minimum, m(f), of the form f is defined

by

m( £)

int | 2(x,)] 5 %,y intearal, (x,5) # (0,0)].(1,2)

If P (xo,yo) is any real point, we. define

M(£3P) = M(T; xo,yo) = infﬂ%(x+xo,y+yo)[;x,y integrai} (1.3)

Yie now define the inhomogeneous minimum, M(f), of the form

£ by

M(f) = sup M(f;P), (1e4)
P

where the supremum is taken over alllreal points P. Clearly,

| ?
if P! = (xo,yo ) and P' = P (mod 1) (i.e. if xé = X Vg = Vo

1
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(mod 1)), then M(f;P') = M(f;P). Hence in (4.4) it is
sufficient to take the supremum over any complete set of
1

incongruent points (mod 1) (e.g. the set |x| < &, |y] < ¥).

Since

£(x+L, y+i) = %f(2x+1, 2y+1),
it follows from (4.2) and (1.3) that

M(e; 5,%) > ﬁm(f).

Hence

M(£) > ﬁm(f). (1.5)

It follows from (1.3) and (4.4) that corresponding to
any point P = (xo,yo) and any given € > 0, there exists an

integer pair (x,y) such that

| }f(x+xo, y+yo)] < M(f) + e,
If in fact corresponding to any point P = (xo,yo) there

exists an integer pair (x,y) such that

]f(x+xo, y+y0)] < M(T),
then we shall say that M(f) is an attained minimum.

Vie define
Mz(f) = sup [ﬁ(f;P); PE€ C],

where

C = [P; M(£;P) = m(f)]. -
Obviously '

Mz(f) < M(£). (1.6)
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If strict inequality holds in (1.6), we say that M(f) is

an isolated minimum and call Mz(f) a second minimum.

Similarly we define a sequence Mj(f), Mh(f)’ ees 5, OF
successive minima which is strictly decreasing until a
non-isolated minimum is reached.

Vle shall say that two indefinite binary guadratic

forms P(x,y), F(x,y) are eguivalent if there exists an

integral unimodular transformation

[j {z vj m , (1.7)

where t, u, v, W are integral, and tw - uv = +1,

such that

(x,y) = F(X,Y).
If further »

{Xo ~ i% u? Xo

- ’

l_yo‘ [’r v ifo

then
f(x+xo, y+y0) = F(X+XO, Y+YO)‘ (1.8)

for all integral x,y, X,Y, and we shall sometimes say that
f(x+xo, y+yo) is equivalent to F(X+Xo, y%Yo), or that f at
(xo,yo) is equivalent to F at (XO,YO). It is clear from
(1.8) that in this case

M(f; xo.yo) = M(F; XO,YO).
Thus, if the forms f(x,y), F(x,y) are equivalent, then

M(P) = M(F).
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Ve note thaﬁ, trivially,
M(Kf) = |K| M(f)
for any real K,

If the form f is given by (1.1), then we may write

£(x,y) = (ox + By)(vx + 8y), (1.9)

where _
las - By| = 4. (1.10)
If further Wé write

B, = ax, +-BY_, M, =YXy + 8y, (1-11)
E = ax + By + Eyp M= oYX 4 dy + Ny (1.12)
then
f(x+xo,'y+y°) = E&m, (1.13)
so that
M(f; xo,yo) = inf [f€n|; X,y integrai]. (1.14)

For sny real Eo, Mo? the palr of linear forms E,n given

by (1.12) is called a pair of inhomogeneous linear forms of

determinant 4, where 4 is given by (1.10). If when x,y
undergo the integral unimodular transformation (1. 7:), Wwe

have

E(x,y) = o'X + B'Y + B = E'(X,Y),

n(z,y) = v'X + 8'Y + m_ = n'(X,Y),
!atsl - B'Y'} =4,

then we say that the pair of forms £',n', is eguivalent to

the palr of forms £,m. The classical result on pairs of
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inhomogeneous linear forms was found by Minkowski [u2}, and
may be expressed in several different ways:

Theorem 1.1 (Minkowski [ué1,§ e (i) IfE,m are any

two inhomogeneous linear forms with determinant 4, then
there exists an integer pair x,y such that

len] < g5
vthis is true with strict inequality unless the pair &,m or

n,& 1s equivalent to a pair of forms,

o(x + £)), ¢(y + 1)),

such that

leg] =8, (E,,m) = (&,%) (mod 1).

It follows from (4,13 ) that this is equivalent to:
(1i) If f(x,y) is any indefinite binary quadratic form
with discriminant D > O, and if A = + «#D, then for any point

(xo,yo) there exists an integer pair x,y such that

A
| £(x+x, vy )] < s (1.15)
this is true with strict inequality unless f(x,y) is
equivalent to k xy and

) (XO’yO) = ('2"”2’) (mOd 1)’

The form (i) of the theorem led to the conjecture,
attributed to Minkowski, that the following result holds
for all ns

Ir €1, 52, cos En are n inhomogeneous linear forms in
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n variable X4y Xp3 ese 5 X and if their determinant is A,

n’
then there exist integers Xys eeo 5 X such that

o]

,g1'§2 LR 2R J g

ol <

"y e

This has been proved for n = 3,4, but for no higher value
~of n, though a weaker result has been proved for all n
(see Hardy and Viright [35],§ 24,9). A very large number
of proofs of Minkowski's theorem for n = 2 have been pro-
duced (see Koksma [ud}, pp. 18-20) in the hope of finding a

method which would generalize easily to higher dimensions.

It was soor realized that for certain forms f 'a much
stronger result than (4.15) holds, and this gave rise to
the concept of the inhomogeneous minimum M(f). The
form (ii) of Minkowski's theorem implies that for every
point (xo,yo)

M(£; xo,yo) < ﬁ .
Thus Minkowski's theorem may be expressed equivalently as:

(iii) If £(x,y) is any indefinite binary guadratic
form with discriminant D > 0, and if 4 = + VD, then
M(E) < s - (1.16)
this is true With strict inequality unless f(x,y) is
equivalent to k xy, when
M) = u(f; £,%) = g

A number of authors have "sharpened" Minkowski's

theorem by replacing the "Minkowski constant" 4/4 in (4.16)



by uoper bounds for M(f) in terms of the coefficients of f.

In section 3.1, I shall obtain such a bound as an obvious
consequence of Theorem 3.3, and then I shall discuss the other
results of the same kind which have been given by different

aunthors.

1. 2. Davenvort's Theorem

Davenport [273 has proved the following rather
surprising result, which is complementary to Minkowski's
theorem:

Theorem 1.2 (Davenvort [27}). There exists an absolute

constant k such that, if
f(x,y) = ax® & bxy + cy2

is any indefinite binary guadratic form which does not

represent zero and if A = + J(bQ - Liac) > 0, then
M(£) > ka.

Vie define Davenvort's constant X by

X = sup [k; M(£) > ko], (1.17)

where the supremum is taken over all forms £ which do not
represent zero,

In Chapﬁer 6 I shall obtain bounds for the value of
this constant and discuss bounds which have already been
given. Theorem 1.2 actually holds also for forms which

represent zero (see Cassels [15,163} but this case will not

be considered in Chapter 6.



103 8

Davenport {28,2?] has proved theorems similar to
Theorem 1.2 for certain factorizasble ternary cubic aﬁd
guaternary guartic forms, and Cassels [15] has 1lmproved
the constants in these theorems.

Clearly Theorem 1.2 is also closely related to the
following result, which is a particular case of & theorem
of Cassels [19] (see Ths. X,XI).

There exists an absolute constant T such that for

121
every © there is an « for which

%] Jox =y - a] 5T,

for all integral x,y such that x # O.

| Cassels {15] states that the best possible value of
P1,1 is greater than 1/45.2 and less than or equal to 1/12.
Perhaps this best possible value may even be the same as

that of K.

1.3+ __The Fuclidean Algorithm in Real Ouadratie Fields

A real quadratic number field k(+/m), where m is a
square free positive integer, is said to be Buclidean if

it has a Buclidean alocorithm, that is, if, corresponding to

every nunber 8 (integral or not) of the field, there is an
integer p of the field such that

|norm (p+8)| < 1. (1.18)
It can be shown that the 'fﬁndamental theorem of arithmetic'
on the unique factorization of integers holds for the

integers of any real quadratic field which is Euclidean
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(see Hardy and Wright [35], $812.8, 12,9, 1L.7).
The elements of a real quadratic field:k(dm), where
m is a square free positi&e integer, aré of the form
X + Wy, - ' (1.19)

where X,y are rational and |

®w = ¥m ifm= 2, 3 (moa bh),

@=F(dm+ 1) if m=1 (mod k).
The integers of k(+m) are numbers (1.19) with x,y rational
integers. Then norm (X + wy) is an indefinite binary
cuadratic form~fm(x,y) giveﬁ by

%2 - my?  ifm=2, 3 (mod k),

e

03 (1.20)
2

£ (x,y) = x° + xy --ﬁ(nr1)y2 ifmz1 (mod L)

If we write § = X + wy_ , p = X + wy, then (1.18) is

equivalent to
}fm(x+xo, y+yo)f < 1
for some integral x,y. Thus k(#m) is Buclidean if and only
it
M(f; P) < 1 (1.21)

for all rational points P. Clearly a sufficient condition

for this is

M(fm) <'1; (1.22)

For this reason a large part of the work that has been done
on the inhomogeneous minimum has been aimed at proving (1. 22)

or at disproving (1.21) for some rational P, in order to
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determine whether or not the field k(+m) is Buclidean for

different values of me This has led to a special interest

in the porm forms f_ given by (1.20) and much effort has been
devoted to the precise evaluation of the inhomogeneous
minima of these forms. Barnes and Swinnerton-Dyer {Q},§ 12,
tabulated all the results which were known for the first and
second minima of forms fm with m < 101 up to 1952; since

then Barnes and Swinnerton-Dyer [ﬁd}, Barnes [6], and

Godwin [3@] have published further results on the minima of
norm forms.

Davenport [30] proved that

A
X2 338

where K is the constant defined by (1.17), and further that
if the form f has rational coefficients then there exists a

rational point P such that

M(£; P) > 737 -

Ir A 2

is the discriminant of the norm form fm then for m
large enough A is greater than 128; thus the number of
Euclidean real guadratic fields k(#m) is finite.

The set of Buclidean fields k(#m) has now been
completely determined. Chatland and Davenport [22] and
Barnes and Swinnerton-Dyer [9] settled the last few doubt-
ful cases, thus establishing the result that k(~m) is

Buclidean if and only if m is one of the numbers

2) 3’ 5’ 6’ 7’ 11, 13’ 17: 19) 21’ 29; 33’ 37,'14-19 57: 73-
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1. 4. The Markov Forms

Apart from the norm forms, the group of forms whose
inhomogenecus minima have been studied most carefully are
the Markov forms. This is due to the special importance of
the homogeneous minima of these forms. Markov [A{} proved

the following theorem.

Theorem 1.3 (Markov [41]). There exists a sequence of

forms {F,;} (1 > 0) such that:
if £ is any indefinite binary quadratic form with
homogeneous minimum m(f) and discriminant D > 0, and if
A = + 4D, then
m(f) > %
if and only if f is equivalent to a form proportional to

Fi for some i.

The sequence of forms

2 2

Fi(x,y) = QX% + PyXy + Ry¥

wWhich satisfy Theorem 1.3 and the condition that
m(F. ) = Q4
i

are called the Markov forms. The discriminant of the

form M. is
+ 2 2
A =9Qi"’4~-
i

-y

is strictly decreasing and tends down to % as i —> 0.

The sequence

Dickson [33] (Ch.VII) and Cassels [19] (Ch.II) both prove
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Theorem 4.3 and give full accounts of the Markov forms.

The first few of the Markov forms are:
2 2

F (x,y) = x° + xy = 5%; | m(F ) = 1 = 8 /v5;
F1(x,y) = x°% + 2xy - y2; m(F1) =1 = 8,/V8;
Fz(x,y) = 5x° + 11Xy - 5y2; m(Fz) =5 = Az/d(221);
Ps(x,5) = 135° + 207y - 13y°; m(F3) = 13 = 85/(1517) ;5
F)(%,5) = 17x% + 38xy - 175%; n(®,) = 17 = 4,,/¥(2600).

Davenport [25} developed a method by which he obtained
a denumerably infinite sequence of successive inhomogeneous
minima of Fo’ and Varnavides [ps] used this method to obtain

similar results for F1, In particular,
M(F ) = ﬁ = ﬁm(Fo),
% > &m(F1).
Davenport [25} also proved that
M(F,) = ¢ = gn(F,).
It was conjectured that for i > 2,

M(F,) = -&m(Fi). (1. 23)

{1

M(F1)

In Chapter 4 I shall consider a sequence {gnl of

symmetric forms which is a subsequence of {Fil. I shall show
that, when n is great and n £ 0 (mod 3),
4
M(g,) = gmig,),
but, when n = 0 (mod 3),

M(g,) > ﬁm( g,)e

Thus the conjecture (1.23) is certainly not true for all
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Markov forms F, for which i > 2.
In Chapter 5 I shall discuss the inhomogeneous minima
of the forms Fo to Fh and of the form
g(x,y) = x° + f5xy - ¥°,

which may be regarded as the 'limiting symmetric' Markov form.

1« 5. A Method for Rational Forms and some General Results

In order to show that M(f) = k, say, it is sufficient
to show that |

sup [M(f;Po); P_€ s].—. k,
P
Y

where S is the unit square |x| < %, |y| < 4. The natural
thing to do is to exclude from consideration a set 8% of

points Po such that

M(£3P ) < Kk, (1.20L)

and then to examine carefully the values of M(f;P_) for the
points P_ in the region S - S*. The inequality (1.2L) holds
if and only if there exists a pair of integers x', y' such
that

| £(x"+x_, ¥y )l < k;
thus for Po to be a point of S¥, P, must be 'covered' by a
hyperbolic region

[£(x'+x, y'+y)] < k (1. 25)

for some integer pair (x',y').

Ir
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is an integral unimodular linear transformation such that
(1.7) implies

f(x,y) = f(X’Y) ’
then T is called an automorph of £, (If further tw - uv = +1,
T is a proper automorph of f£). If Py = (xo,yo), Qg = (Xo’Yo)’

and
= ~ r
Xo t u X0 ( 6)
= , 1¢ 2
yQ— v v 'Yo
we shall write ‘ -
P, =-T(Q°).

Clearly, if T is an automorph of f, then (1.7) and (1.26)

imply that

i

f(x+xo, y+yo) f(X+Xo, Y+Yo),

so that

M(f;T(QO) M(f;Qo)- (1.27)
If R is a region all of whose points satisfy (1.24) and
the form f has an automorph T, it follows from (1,27) that
if the point Ttn(Qo) lies in R for some integral n, then the
point Q_ also satisfies (1.24). Thus;nby starting from the
region R and considering the points T~ (Qo) corresponding
to points Q, in § - R, We can obtain a larger set of 'covered'

points s¥,

Barnes and Swinnerton-Dyer [9] (Theorem J) gave a
simple result by which it is possible to determine a
'covered'_set of points R in 8 without any tedious

examination of the hypérbolic regions (1.25). Then,
starting from the fact that, if an indefinite binary
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aquadratic form f has rational coefficients and doés not
represent zero, then f has an infinity of automorphs (see
Dickson [3?],pp.111-115), and from the ideas of the pre-
ceding paragraphs, they developed a general method for
evaluating the inhomogeneous minimum of a rational form f.
They used this method to evaluate the minima of certain
norm forms and then in [10] they extended it to obtain
sequences of successive minima of some other norm forms.
By the methods of [1@] they weré able to establish the
general results given in Theorem 1.4, Wwhere we write

£(P) = £(x,y) if P = (x,¥y).

Theorem 1.U4 (Barnes and Swinnerton-Dyer [10],Ths. L,M. ).

If f(x,y) is an indefinite binary guadratic form which has

rational coefficients and does not represent zero, then

(i) To any point P there corresponds a point P1 and
an integer point Q such that
M(F3P) = M(f;P1) and M(f;P1) = f(P1+Q);
(ii) The set of values of M(f;P), as P varies, is
cloesed (so that M(f) is an attained minimum),
(1ii) Given any € > O there is a rational point P
such that M(f;P) > M(f) - e,
Barnes and Swinnerton-Dyer [1@] conjectured that if
" f satisfies the conditions of Theorem 1.4, then M(f) is
rational and isolated, and there is at least one rational

point P such that M(£;P) = M(f).
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1s 6. _ Inhomogeneous Lattices

wWwe now consider the problem of the inhomogeneous
minimum of a form f which satisfies (1.9) and (1.10) in
terms of the &,M-plane, where & and m are determined by
(1.41) and (1.12). 1If the set of points (E&,n), where x
and y take all integral values, has no pdint on either of
the axes, &€ = 0, m = O, then this set is called an

inhomogeneous lattice corresponding to £ and (xo,yo), and

is denoted by L = L(€O,no). (If there is a point on one of
the axes, then M(f;xo,yo) = 0, and so from the point of
view of the inhomogeneous minimum of f we lose nothing by
excluding this dase.)

If &', ' are a pair of non-homogeneous linear forms
equivalent to &, M (see sect. 1.1), then &', m' determine
the same inhomogeneous lattice as &, mn, and £&'7' determines
a form equivalent to f. Also, if &' = K&, ' = %ﬂ, then
the points (&', m') form an inhomogeneous lattice correspond-
ing to f and (xo,yo), and the values of ]E'n'] coincide with
those of |En|; the inhomogeneous lattice determined by the
voints (&',n') is said to be similar to L.

It follows from (41.1L4) that

M(f; xo,yo) =[inf leml; (E,m) e L]. (1.28)

A parallelogram whose vertices are lattice points of L
is called a cell of the lattice if it contains no lattice
points other than the vertices. The area of a parallelogram

whose vertices are lattice points is not less than 4, and
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it is clear that such a parallelogram is a cell if and only
if its area is A,
If P, Q are lattice points, then the infinite straight

line PQ is called a lattice line; and if the segment PQ

contains no lattice points except P and Q, then the directed

segment PQ is called a lattice sten. Any two lattice steps

which form neighbouring edges of a cell may be used with a
point of the lattice to generate the whole lattice.

A cell is said to be divided if one of its vertices is
in each of the four quadrants. Delauney [3{] proved

Theorem 1.5 (Delaunev LB{I). Bvery inhomogeneous

lattice has at least one divided cell.

Delauney's proof was given by Barnes and Swinnerton-

Dyer [1f], and Bambah [j} has given a different proof.
Sawyer [L7], assuming the existence of a divided quadri-

'lateral with lattice points as vertices, gave a new and
elegant proof of Minkowski's theorem (Theorem 1.1).

Barnes and Swinnerton-Dyer [ﬁ{] have develoved a
powerful method for evaluating the inhomogeneous minimum of
an indefinite binary quadratic form £ by constructing chains
of divided cells of inhomogeneous lattices corresponding to

f. All the work in this thesis depends on this method.
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1¢ 7« Plan of the Thesis.

In Chapter 2 I shall give an account of the theory of
the divided cell method of Barnes.and Swinnerton-Dyer [1{},
because this is the basis of the work in the later chapters.
The chains of divided cells corresponding to a form £ turn
out to be closely related to chains of 'I-reduced' forms
equivalent to f (see sect. 2.4). These chains are different
from the classical chains of 'reduced' forms in that the
number of chains corresponding to f is infinite, and that in
general a form has pairs of possible right and left neighbour-
ing forms instead of unigque right and left neighbouring forms.
The question arises, whether we can obtain either all the
chains of I—redﬁced.forms equivalent to f, or at least chains
containing all the I-reduced forms equivalent to f, by
taking all the chains to wWhich a given form belongs. In
Chapter 3 I shall consider-this question, which must be
answWwered in order to use the divided cell method to find
the inhomogeneous minima of forms for which the number Qf
equivalent I-reduced forms depends on a parameter and so is
unbounded (e.g. the forms g, of Chapter b).

In Chapter L4 I shall apply the methods of Chapter 2
and the results of Chapter 3 to find the inhomogeneous
minima of a sequence of forms {gh} which are a susequence
of the symmetric Markov forms ( see sect. 1.4). In Chapter 5
I shall consider the early symmetric Markov forms and the

limiting symmetric Markov form (see sect. 1.4).
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In Chapter 6 I shall use the methods of Chapter 2
to obtain a lower bound for Davenport's constant X

(see sect. 1.2).

Numbers in sguare brackets will refer to the
bibliography at the end, and whenever results are not

original, the appropriate references will be given.

I wish to thank my supervisor, Dr. E. S. Barnes,
very much for all his help; in particular, I am grateful
to him for suggesting the problems I have studied and
for suggesting the application of the divided cell
method of [1{] to these probléms. The work for this
thesis was done while I held a Teaching Fellowship
in the University of Sydney, and the computations for
Chapters 4, 5, and 6 were done on a Brunsviga provided

by the University.
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CHAPTER 2
THE DIVIDED CELL METHOD

The results of the later chapters of this thesis all
depend on the divided cell method for evaluating the in-
homogeneous minimum of an indefinite binary guadratic form.
Therefore, for the sake of completeness, I give in this
chapter a full account of the theory of the method, which was
devised by Barnes and Swinnerton-Dyer [11], and then extended
and applied by Barnes [6]. I use the notation introduced by
Barnes and Swinnerton-Dyer [j1], and, apart from some re-
arrangements and extensions, I follow the general lines of
their discussion. After the headings of theorems and lemmas
I list theorems or lemmas of [11] or [6] which contain any of
the same results; where proofs are given completely in [11]
or [6} I include only those points ﬁhich are essential to the

understanding of the divided cell method.

2¢1.___The Chain of Divided Cells of an Inhomogeneous Lattice

Throughout this chapter f denotes the indefinite binary
gquadratic form
2(x,y) = (ax + By)(¥yx + 8y), (2.1)
where @/B, 8/y are irrational, |ad - By| = 4 = D, and D > O

is the discriminant of the form; we consider an inhomogeneous

20,
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lattice L (see sect. 1.6 ) corresponding to f and to the point
(x',y'). By Delauney's Theorem (Theorem 1.5 ), L has at least
one divided cell; and since a/B, 8/v are irrational none of
the lattice lines of L cén be parallel to either of the axes.
The method of Barnes and Swinnerton-Dyer depends on an algo=-
rithm, based on these two facts, for constructing a doubly

infinite chain of divided cells, isn}_(- 00 < n < 00)e

Suppose AO, Bo’ Go’ Do are the vertices of the divided
cell SO, and are either in the first, fourth, third, and
second guadrants respectively, or in the third, second, first,
and fourth gquadrants respectively, so that AODO, BOGO inter-
sect the nM-axis. Then 81, with vertices A1, B1, 01, D1, is
the cell defined by taking A B1 as the unique lattice step in

1

the line A D, which cuts the g-axis, and C,D, as the unique

lattice step in the line BOCo which cuts the g-axis. Thus

Ay = A+ (h0 + 1)(Do -—AO),

B

i

g = Ay 7 ho(Do - Ao)
where h_ is the uniQﬁe integer such that n(A1),n(B1) are

opposite in sign; and

C

C, + (k, + 1)(D, - A)),

4
Dy

]

C, + k (D, = A,
where k_ is the unique integer such that n(01),n(D1) are

opposite in sign. It is clear that 81 is again a divided

cell, where Aﬂp1 lie one in each of the first and third
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quadrants, and B1, D1 lie one in each of the second and
fourth quadrants. The unique divided cell which can thus
be constructed from a given divided cell So will be called
the successor of So.

Similarly, we can construct a unique divided cell 8_1,
the predecessor of So’ by taking the unigue lattice steps in

the lines AOBO, CODo which cut the m-axis; it follows from
the construction that So must then be the successor of S~1.
Since there are no lattice lines parallel to the axes,

and S S, are themselves divided cells, we can use the

-17 71

same constructions again to obtain the divided cells S_z, 82,
and so on indefinitely. In this way, starting from So, ve
get a doubly infinite chain of divided cells {S_} (-oco<n< o)
of the lattice Lj; if now we apply this process to any cell
Sn of' the chain, we shall obtain exactly the same chain
because the constructions for the successor and for the
predecessor of a divided cell are mutually inverse., For
gach n, the vertices An’ Bn’ Cn, Dn of Sn lie in the first,
fourth, third, and second quadrants respectively, or in the
third, second, first, and fourth quadrants respectively, and

satisfy the relations

Ay =4A + (hn + 1)(1)n -An)
Bn+1 = An + b (Dn - An)
Py (2.2)
Coeq =Cp + (kn + 1)(Bn - cn)
Dpyq =6, +k (D, -4A) )
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where h is the unique integer such that n(An+1), "(Bn+1)
are opposite in sign, and kn is the unigue integer such that

“(Cn+1)’ “(Dn+1) are opposite in sign. If we write

Yn An n Bn Gn Bn+'l An+1 Cn+1 Dn+1’ (2'3)
we have
Ve = = (By +3) Vi =V g (2.1)

The chain of integer pairs hn’ kn and the vertices of
the divided cells Sn satisfy the following lemmas. .

Lemma 2.1. For all n, h # 0, K # 0 and h , k have
the same sign.

Proof. n(An), n(Dn) have the same sign, so that h # 0;

1 - -

similarly k  # O. Also n(Dn An), n(Cn Bn) have the same
sign, so that hn’ kn have the same sign.

Lemma 2,2 ([11], Lemma 1). Each of the following state-
ments is impossible:

(1) h, = =1 for alln > n_ or for all n ¢ - n_;

(o} - o’
(ii) ko= -1 fqr all n > nj or for all n ¢ - nj;
(iii) hn°+2P = kno+2r+1 =1 for all r > C or for all r < O.

Proof. The proof is given fully in [11].
Lemma 2.3 ([11], Lemma 2). Each of
In(v 1, [aap ], In@)1, In(e)], ()],

[8(V_ D1, 18a_), 18(B_)], [&(c_)], [&(D_)]

tends to zero as n —> + o and tends to infinity as n —> -« cc,
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Proof. In [11], it is shown in the proof of Lemma 1

that }Vn) is strictly decreasing , and in the proof of Lemmna 2

that the lnequality

In(v )] < 2 (v, )] (2.5)
holds for arbitrarily large positive n (though not necessarily
for all large positive n). Hence In(Yn): tends to zero as
n—->+00. 8ince

| (Vo = [ + [n(a)] = [n(c)] + [n(D)],
it now follows thatleéch of ]n(An)}, fn(Bn)[, {n(cn)], }n(Dn)f
tends to zero as n—>co. The corresponding results for
Fe(V_ )1, [8a_)D], J&(B_D], [&(c_)|, |&D_,)| may be proved
similarly. '

By a similar argument to that used in [ﬁf}, it can be
shown that (2.5) holds for arbitrarily large negative n, so
that lﬂ(Yﬁ)[-—>oa as n —> 0.

Suppose ]n(An)} does not tend to infinity as n ~> —-o0 ,
so that there exists K > O such that }n(An)} < K for arbit-
rarily large negative n. Since IE(An)} ~> 0 as n —> =00 ,
this means that, for arbitrarily large negative n, An lies in
the square |&| < K, |n| < K. This square contains only a
finite number of lattice points, for each of which |&| > O.
Thus }E(An)} cannot tend to zero as n —> ~ 00, and We have a
contradiction. Hence }n(An)} ~> 0 as n —=> =00 .

The other results may be proved similarly.
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Theorem 2,1 ([11], Theorem 5). If L is the inhomogeneous

lattice corresponding to £ and to the point (x',y'), then
there is a doubly infinite chain of divided cells Sn
(-00 < n< o) of I whose vertices Ay, B, Cn; D satisfy

(2.2), and
M(fix')Y') = inf[}%n}; (gyﬂ)eiAn,Bn,Cn,Dnl,-OO <nf:aﬂ .(2.6)

Theorem 2.2, If a chain {Sn§ of divided cells satisfies

the condition of Theorem 2,1, then it includes all the
divided cells of L.

The existence of a chain {S_} was shown above. In [11],
the proof of Theorem 5 is sketched; (2.6) is an immediate
consequénce of this theorem, Theorem 2.2 means that every
inhomogeneous lattice corresponding to £ has a unique chain
of divided cells; this result is not stated explicitly or
proved in [11] or [6] . It is convenient to combine the

proofs of (2.6) and Theorem 2, 2.

Proof of Theorems 2,1 and 2,2. Let isn} be a chain of

divided cells of L, and for each n let Pn’ Qn, R be

n"Tn
the vertices of Sn which lie in the first, second, third,

and fourth gquadrants respectively., IT Pn, P are distinct

n+1
first guadrant vertices of successive cellsg, then one of

the following statements holds:
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(1) T, P, P

n+d? Qn+1 lie on one lattice line, while

T R

n+1? Baeq? Rn’ Qn lie on the neighbouring lattice line

parallel to it and on the other side of the origin O (see
fige 1)

(ii) P.» T» T 4> Ry,q lie on one lattice line,vwhile
Pn+1’ Qn+1’ Qn?Rn lie on the neighbour;ng lattice line
parallel to it and on the other side of O (see fig. 2 ).

n /i
X | -
0 \
AQHNE E
rx..\\
Q\
Fig. 1. Case (i) Fig, 2. Case (ii)

By Lemma 1.3 E(Pn) tends to zero as n —» <~ 00 and to
infinity as n -—>+ ®, while n(Pn) tends to infinity as
n - =00 and to zero as n —» + o ; and it follows from

the construction that, for all n, E(Pn+1) > E(Pn),

26
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TKPn+1) < n(Pn). Hence, if P is any first guadrant lattice
point, there exists an n such that P lies either on the line
OPn or in the interior of the acute angle determined by OPn’
OP_,,» Where P ., # P_.

It is clear from the figures that, whether (i) or (ii)
holds, there can be no lattice point in the interior of the

triangle determined by the line Pn Pn and the positive

+1
axes.$ It now follows from the strict convexity of the
region |En| > K that, if P is on OP_, then P lies in the
region if and only if P does, while, if P is in the interior

of the acute angle determined by OPn, 0] then P lies in

n+1’?

the region |&n| > K if and only if P, P, do. Thus

+1
|En] > X for all first quadrant lattice points (&,n) if and
only if IEn! > K for all points P+ By applying the same

argurient to the other quadrants, we have

inf D gn| ;(g,n) € LJ:[inf [&n];(E,n)e iPn,Qn,Rn,Tn}, -00 <n < oo};

since An’ Bn’ Cn’ Dn are a permutation of Pn’ Qn, Rn’ Tn’
this proves (2.6).
Now suppose that P, Q, R, T are the first, fourth, third,

and second quadrant vertices of a divided cell such that P # Pn

*Note, however, that, if (ii) holds, there may be lattice
points on the line Pn?n+1 between Pn and the m-axis, or between

Pn+1 and the E-axis; it is easily shown that the set of all

such points must coincide with Pn-1’ Pn—2”"’ P
r, or with P

n=-r’ for some

n40? Pn+3""’ Pn+s for some s.



2.1 28

Tor all n. As PQRT contains no lattice points, P must lie in

the interior of the acute angle determined by OPn, OPn for

+1°

- 3 4
some n for which Pn+1 # Pn.

Suppose (i) holds. Then if either @ or T is on or above

the line Pn’ Pn+1, PQRT contains one of Pn’ P . Hence Q, T

n+1

must be on or below the line T Qn’ so that the triangle

n+1
PQT contains R, R ,,. Thus, if (i) holds, PQRT cannot be
a cell,

Suppose (ii) holds, so that P cannot lie between the

lines PnTn’ Qan. If P is on or gbove the line PnTn, then

the triangle OPT contains Pn, while, if P is on or below the

line QR , the triangle OPQ contains P_ Thus, if (ii)

+1*
holds, PQRT cannot be a divided cell.

Thus we get a contradiction unless P = Pn for some n.
By applying the same argument to the other gquadrants, we see

that the set of points
{_an’Qn)Rn:Tn}’ - o< n < (D] = }_iAn’Bn’Cn:Dn}: - <n <°°]

includes all the vertices of divided cells of L.

— L = L ; :
Let P = Pn.f Pn+1’ & =Q_ Qm+1 be the first and fourth

Il

quadrant'Vertices of a divided cell, and P', Q' be the first
and fourth guadrant vertices of its successor. It follovs

from the construction . that, for any n, if P # P then

n+1 n’
a(Pn+1) > E(Pn), WP, ,) < ﬂ(Pn); similarly, if P' # P,

n+1
g(p') > &(P), n(P') < n(P). Suppose P' # P, Then, since

P' must coincide with Pr for some r, P' must be ocne of

P There can be no lattice point inside the

nt1? Tne2? ot
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triangle determined by PP' and the positive axes, but this

triangle contains P, if P' £P hence P' = P . It is

n+1? 1°

clear from Figs. 1 and 2 that there can be only one pair of

-+

successive divided cells with Pn’ Pn+ as first quadrant

1

3 a = f = . i i =
vertices, so»that P Pn, P Pn+1 implies Q Qn‘ If
P' = P, then Q' # Q, and by a similar argument P = P e

s g £ Z .
Hence, if Pn 7~ Pn+1’ Qm # Qm+1 are the first and fourth

guadrant vertices of a divided cell, the cell must be one of

S Sm‘ By applying the same argument to the other quadrants,

n’
ve see that iSn} includes all the divided cells of L.
Theorems 2.4 and 2,2 show the importance of chains of
divided cells for the evaluation of the inhomogeneous
minimum. In order to study the chairsof divided cells

further, we need to set up a special type of continued

fraction, for which the necessary results will now be given.

2+ 2. A Special Type of Continued Fraction

If iani(n 1) is a sequence of integers such that

\wv

]an] > 2 forn > 1, we write
Py =0, a,4=152,=1, 9, =05 py =8y, ¢4 =13
Pnt1 T 841 Pn T Pnog 1), (2.7)

Uupt = Fppq I = Guog (B2 1) \

(n

tv

The following lemma is easily proved by induction.
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Lemma 2.4 ([11], Lemma 3). 1If {Dni, iqni are defined
by (2.7), then
(i) for all n

v

Ty Py ~ P = 15
(ii) for all n > 1,

ool 201, Jqpf 20 Z 21+ 4
(iii) if &, > O for i = 1,2,...,n, thenp > 0, g > O.

It follows from Lemma 2.4 that, for n > 2,

n Pr—

n B Q-1

" so that the series
z(_p_g _ pn_1)
N dn qn-1

is cbnvergent. Hence the seguence ipn/qﬁﬁonwerges to a limit

o

Q

- 1 < 1
Ta'nqn—1] = aln-1) ’

@, which, by (ii), satisfies Ia} > 1. This justifies the

following definition.

Definition 2.1. For any sequence of integers {anl such

that [an} > 2 forn>1, = [a1,a2,a3,...] is defined by

x = [a1 36.2,8.3,...] = n}imm D /Q.n’

where p_,q are defined by (2.7) and |a] > 1.

Clearly,

- 1 4
1 a2" a?).—...

QX = g ’

so that [a1,a2,a3,...] is easily transformed into a classical

semi-regular continued fraction
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M o
2 ]
a = +
T Tagl+ Tegl+ e

(b, = £1),  (2.8)

whose convergents have the same value (though the signs of
p, and g may be different). Vie shall never use classical
semi-regular continued fraction expansions of the type (2.8);
so without confusion we may call a = [a1,a2,a3; ees] @ semi-
regular continued fraction expansion of a, to distinguish it

from the simple continued fraction expansion of a.

Lemma 2.5 ([11], Lemma L), If « = [2,s85,85, «.0], then
(1) je| > 1 ir a, is not constantly equal to 2 or to =2
for large n;
(ii) the convergents pn/qn Porm a strictly decreasing
sequence if further a, > 0 for all n.
Proof. A complete proof of (i) is given in [11]; (ii)

is an immediate consequence of (i) and (iii) of Lemma 2,l.

In fact we shall consider only semi-regular continued
fractions which satisfy condition (i) of Lemma 2,5. Any
irrational @ has a unique expansion by the nearest inﬁegér
above; & = [a1,a2,a3, eee], With a ) > 2 forn> 2and
&, 2 5 for some arbiﬁrarily large n; but, on the other hand,
if the a, are restricted only by the conditions that |a_|

nt
and that a, be not constantly equal to 2 or to -2 for all

> 2

large n, then any irrational a has infinitely many expansions.
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2¢ 3. The Correspondence between Chains of Divided Cells

and Pairs of Chains of Interers.

Let ESn} (- ® < n< ®) be the doubly infinite chain
of divided cells of the inhomogeneous lattice L corresponding
to the form f and the point (x',y'), so that, for all n, the

vertices of. 8 ; S satisfy (2.2), (2.3), and (2.4). Let

n+1

the &,n-coordinates of the vertices of Sn be given by
t — ! '

+ Bn’nn L Y 6n)’ B, = (gn T Opeip Yn)’

n n’

= (8!
An - (gn + 8
— t 1 — B t
Cn = (gn’nn), Dn = (gn + Bnynn + §n)’ (2.9)
and define the point (xn,yn) by
Fodl SR
n = %p*n t Py

t
n* 'n = ¥n*n 6nyn‘ (2.10)

Theorem 2,3 ([11], Theorem 2). For all n, let

n-+1 n

Gn = [an,an_1,an_2, ,.,], ¢n = [an+1,an+2,an+3, ...]. (2.11)

Then
@ /Bo=0, O /v =9, (2.12)
. = r *n—r—1 '
2E! +a + B =P (& + 2 (1) —== , (2.13)
n n n S W *n-1%n-2***%n-r

£

1 § ( )I’ vl”l'l".'(‘ ( )
2n! +y_ + 0 Yy (¢ + - , (2,14
n n n nyn r=1 <'6n+1’5n+2“‘¢n+1‘

and £ (x+x',y+y') is equivalent to
~r — !  §
£o(xx ,y+y ) = (e x + By + E)(v x + 8 y + ) (2.15)

Proof., Using (2.3), we have
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Ve = (arvy) = (_Br+1’—yr+1)’
so that, by (2.4),

-V

Tpeq = 7 BV = Vg

' == = 8 [ A 1 4
r+1 r+1 r r-1?

- Y

r+1 = 7 Zpi1¥p

r-1
Thus
Ve = (epyy) = (“1)P(aopr = Py YoPr —'éoqr)’
where
p_, =0, a,=1;p,=1, a9, =0;Dp, =28, q =1;
Pppq = 8ppqPp = Pry (r>1),
Lppq = ar+1qf = Ly (r 2 1),

It is easily shown by induction that }qr] —> 00 as I —> O ;
and, by Lemma 2,3, ﬂ(VP) —>0. Hence, by Definition 2,1,

6 /Y = lim p q - [a ,a ,a ’ '..] = Sb .

o/ o r —> 00 r/ r 1272273 o)
Similarly, aO/BO = 0 _. Thus (2.12) holds for n = 0, and
similarly for all n.

It follows from (2.2), (2.3), and (2.4) that, for n > 1,

>
f

A - (ho + 1) v, - (h1 + 1) V= eee - (h

n n-1 =12
Op = Cp + (kg + 1) Voo (g + 1) Wyt v o+ (g + 1) Ve
Hence
’ n-1
Ao+ Cy =48, +C ¥ EE% (h, - k) vV,

so that
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n=-1
en! 4y + 0 = n(a ) + n(C,) +;§%(—1)PGP(YOPP - 6,0,).(2.16)

By (2.141) and Definition 2.1, we have, for all r > 1,
pr¢r_pr-1

¢ = = ’
°  LPplpg
that is, '
Prot 7 P0% 1 = ¢r(pr - Poqr)'
Thus, since Py - ¢oqo = 1,
6 ; Yo
YoPp = 6% = Yo(Pr - Qoqr) = ¢1¢2 cee P, y (2.17)

Since, by Lemmna 2.3, ﬂ(An), ﬂ(Cn)~9 Oasn ~>w, (2.14)
now follows from (2.16) and (2.17) for n = 0, and similarly
for all n; (2.13) may be vroved in a corresponding way.

The last statement of the theorem follows from (2.9)
and (2,10) and the fact that Ay B, Cn; D are the vertices
of a cell of the inhomogeneous lattice corresponding to T

and the voint (xhy').

Lemma 2,6 ([6] , Lemmas 2,3, 2.4). Let {an}, (=00 <n<w )
be a doubly infinite chain of integers such that
(1) |a

for large n of either sign.

n} > 2 and a_ is not constantly equal to 2 or to -2

Let i€n§ (=00 < n <o) be any corresponding chain of
integers which satisfy the following conditions:

(ii) }snf < fan+1l -2 and € has the same parity as a_,;

(iii) neither a + ¢ nor a - ¢ is constantly equal

‘ n+1 n+1
to =2 for large n of either sign;
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(iv) for any n, the relation

= a

nsoret T Eptop n+2r+2 = fneorsl T

does not hold either for all r > O or for all r < O.

For all n, let

1
en = [an,an_1,an_2,...] ,¢n = [an+1,an+2’-a.n+3, ooojo (2018)

Then the series

[e 9] € .
r n—r-1
’31"‘2("1)5 ) ’
r=1

n-—- co

n=1 n—2 en—r
o0 e
r +1
°n T 2 (=1) ) o = ¢
r=1 n+1 n+2* " Tn+3

are absolutely convergent with sums whose moduli are less

than fen} -1, i¢n§ - 1, respectively.

Proof. The proof is given in [6] and requires all the

[ iy

conditions (i) to (iv).

Theorem 2, L ([6] ,§2). - Let E&niy ien}, 0. ¢, be

n’
defined as in Lemma 2,6, and for each n let

. (89] e
: r n-r-1
28 4 0+ =E Lo+ Egl (-1)" 57— 5—,(2.19)

n-i n=2 *°** “np
> S ()T ey (2. 20)
7 +1+¢ = & -+ —1 n T . 2.20
n n n oo ¢n+19 P

‘n+2 *°° Tn+r

Then the lour points An, Bn’ Cn’ Dn given by
A, = (g + 0+ 1, m + 1+ ¢h), B, = (gn + 0 ,m + 1),0(2.21)
Cn = (a‘:’n’ﬂn)’ Dn = (?Zn + 1,11n +q’)n)



are vertices of a divided cell of an inhomogeneous lattice;

the coordinates of the vertices An+1’ Bn+1’ Cn+1’ Dn+1 of
the guccessive divided cell are of the same form:
j
%w1=(maw1+em4+1)’ﬁnm4+1’*%wﬂh
Brat = (BlEneq # Ongq)s ¥(0py + 10D,
> (2, 22)
Cper = (BE by YMeq)s
Dn+1 = (B(Qn+1 1), Y(nn+1 + ¢n+1))’
5 p,
where 8 = -0 , v = -1/¢n+1.

Proof., By Lemma 2,6, we have

| 28 +'en+ 1) < fe ] -1,

fem, + 1+ ¢ b <o | -1,

n

from which we can immediately deduce that

3
sgn & = sgn (En 4+ 1) = = sgn ® s
>
sgn(é_’,n + 81’1) = sgn(é;,n + en + 1) = B£N en;
sgn M, = sgn(nn + 1) = - sgn ¢ A
| ’
sgn(ﬂn + ¢n) = sgn(nn + 9+ 1) = sgn $ o

o

Thus the points A , B, C_, D given by (2.21) 1lie one in

I’l’
each of the four quadrants and are the vertices of a divided

cell of the lattice
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N
[}

En + an +y

. (2, 23)

=3
U

n, tx+ ¢ny

By a similar argument, the points A B

n+1’ “n+1’ Cn+1’ Dn+1
given by (2.22) are the vertices of a divided cell of a
lattice.

From (2.18), (2.19), and (2.20) we can deduce that

- : = & k
6n€n+1 gn + ( n +1)6n’
(2.24)
—nn+1/¢n+1 =My v E, v
where dkn = a4 - Sn. If now we write 2hn = a4 + €,
then a simple calculation shows that the points (2.22)
satisfy
Anpr =48, - (hn + 1) Var  Braq = Ay By Vi
cn+1 = Cn + (kn + 1) Yn’ Dn+1 = Cn + kn Yn’
where Vn = An - Dn‘ Since the points are the vertices of a

divided cell, it follows from (2,2) and (2.3) that this cell

is the successor of the cell determined by An’ Bn, Cn’ Dﬁ.

Thus a pair of chains Zani, Een} which satisfy the
conditions of Lemma 2.6 determines fhe chain of divided

cells of a lattice which 1s unique apart from similarity.

We write
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+ K - - n = €
hn Lm &ne1? hn lf*n n®
v . v
E = Bn&n, n = Y
where
o

Pp¥n = (0.9, -1 °

Then, conversely, it is clear from Lemmas 2.1, 2.2 and
Theorem 2,3 that a chain of divided cells whose vertices .
are glven by (2.9) determines a unique pair of chains of

integers iani s ieni such that the conditions of Lemma 2,6

and the relations (2.19), (2.20) are satisfied.

2.4, I-reduced Forms

Ve shall say that the form f is inhomogeneously reduced,

or I-reduced, if it can be factorized in the form

£(x,) = T qgrey(ex + )Gx + py), (2. 25)
where
o] > 1. 8] > 1.

It is well known (see Dickson [32_] y, Th.76 ) that, corre-
sponding to any indefinite quadratic form F(x,y)' which does

not represent zero, there is an equivalent Gauss-—reduced

form, that is a form (2,25) which satisfies the wmore
stringent conditions

e<""1, §5>1.
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Hence we have

Lemma 2.7([6] , Lemma 2.2)., If F(x,y) is an indefinite
quadratic form which does not represent zero, there exists
an I-reduced form equivalent to it.

Since any form which does not represent zero can be
written in the form (2.1), Lemma 2,7 also follows from
Theorem 2.3; for, by Lemmas 2.1, 2.2, and 2.5, }Bn} > 1,
]¢n[ > 1 for all n, so that, by (2.11), the forms r, of
(2.415) must be I-reduced for all n.

2. 5 The Ivaluation of the Inhomogencous lMinimum

We now combine our results and apply them to the
problem of evaluating the inhomogeneous minimum of an in-
definite binary quadratic form f given by (2.1). The
notation of this section will be used throughout the thesis.

Let
A

£ (x,y) = = 3. =] (0 x + yilx +9_y)

be any I-reduced form equivalent to £f. Then any chain of
integers {an} (- ® < n< o) for which condition (i) of

Lemma 2,6 holds and for which
60 = [ao’a_1,a_2’ .0']’ ¢O = [8.1,8.2,8.3, 000]

is called an a-chain of f. A chain of equivalent I-reduced
forms ifn} is defined by

A
f vy = i !
n(y 57) ien¢n

=T (o + 7)(x + ¢,5),  (2.26)



2.5 Lo

where
en = [all’an‘1,an—2’ o.o], ‘ﬁn = [an+1,an+2,an+3, o.o]; (2.27)

there is clearly a one to one correspondence between the
chains {an} and §fnl.

Any chain of integers isn} (= 0 < n< o) which
satisfies conditions (ii), (iii), and (iv) of Lemma 2.6 is

called 'an €=chain corresponding to the a-chain {anl (or,

equivalently, to the chain of forms {fni).

Vie virite
o0 €
o =6 .+ S(-1)TF ore (2. 28)
- 3] 5] ’ ¢
o n=1 = n=1 n-2 *°° en-—r
r €n+r
T = &+ Z(-']) 3 (2.29)
n n r=1 ’5n+1¢n+2 tee ¢n+r’

and define R, &8s
. (140 +0 Y146 47 Oy [(=140_+0 ) (16 +7 ),
"5—-‘-'———'11111”1 , . (2.30)
[(=1=6 +o ) (=1=p +7 ), K18 _+0 )(=14$_+7 )|

Vie define (xn,yn) (-0 <n<ow) by

-1 -0

0 x +
nn yn

. (2.31)
(-1 - ¢

b
n ¢ nyn n n

Theorem 2.5. If ian} is an a-chain of f, and Esniv a

corresponding €-chain, and if we put

i([z,)s Lo ]) = ine (2.32)

n
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then there exists a point P such that (for all n).

W(P) = u(£;P) = H(r; x,y,) = Wla}, e

and if M(f) is the inhomogeneous minimum, then

TR

b, le 1); (2.33)

u(£) = supli(iayl, e 1), (2.34)

n

where the supremum is taken over all the a-chains of f and
2ll possible corresponding €-chains.

Proof. In Theorem 2.L,
a/€8 ¢ -1)

By =08 /¢ =
ntl T A8 ey - 1)

n

and, by (2.27) and (2.28),

[¢2
n

il

2€n + Gn + 1

(2.35)

T
n

1l

21 + 1 + ¢
n n

-

Hence, by Theorem 2.L, the set of values of wq/u,
4
(- w< n<w) given by (2.30) coincides with the set of

values

min ﬁ&',n); (g,m) € {An,Bn,Cn,Dn}] (= <n<ow),

where An,Bn,Cn,Dn are the vertices of the divided cell Sn,

and iSn§ is the chain of daivided cells of the inhomogeneous
lattice which, by (2.23), (2.31), and (2.35) corresponds to
the form £ and the point (Xn,yn) for any n. Since all the
fn are equivalent to £, (2.33) now follows from Theorem 2,1.

By Lemmas 2.1 and 2.2 and Theorem 2,3, the chains of

divided cells of all possible inhomogeneous lattices
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corresponding to £ are included by taking all a-chains of

£ with all possible corresponding

(2.34).

€-chains. This proves

Lemma 2.8 ([6] ,83). The points (xn,yn), (Xn+1’yn+1)
determined by (2.31) satisfy the equations
xn+1 = yn
’ (2.36)
In+d = 7 (Xn Ty T kn)
Wwhere
2k = 8pq T Gy
Also,if
x' =y .
. ’ (2.37)
Y o= o= X - an+1y + kn + 1 ]
then

e ' t 1 - . -
fn‘i-“l(X X ¥t yn+1) - fn(x X YV OF yn)°'

Proof. By (2.31) and (2.35)

& x .+ ¥y
#n T In

Xn * Pn¥n

the lemma now follows from (2.24),

given in [6].

n

A detailed proof is

Corollary. If the chains {a_}, iani are both periodic,

then the points (xn,yn) are rational.

This follows immediately from (2.36).

The success of this approach

to the problem of the



2.5 | L3

inhomogeneous minimum depends on the rapid convergence of
the series (2.28) and (2,29). Estimates of the error made
in replacing these series by partial sums are givén in
Lemmas 2.9 and 2,10 below.

e here introduce the permanent notation [[x]] for a

13
quantity whose modulus does not exceed [X|.

Lemma 2.9 ([6)},83). If {a_] is an a-chain of £, and

n
§8n§ (=00 < n< 00 ) is a chain of integers which satisfies

condition (ii) of Lemma 2,6, then

£ hep r € n=r—1
o = & - - + eee T ("'1) el
— e
n n-1 n—1 en_,‘ s e en_r
1 1
+ 1 - (2.38)
3 .s l ! ’
“ n-1 * 6n-—r < _ en-r—{)
T = € o+l + ( 1)r “nir
n n wn+1 "neq o ¢n+r

o+

1 ("’T;r—i—-i> . (2.39)
n+l *°° "n+r n+r+1[

Proof. First we note that, by (2.28),

( )r
8’ o] £
T = E —Eliﬂ‘i-."-*.# .

P

n+1

f+1
nte (-1) ]

* s 0 (Pn+r Q ...95

* (2. 40)

n+1 n+r+4+

Since ;en[ gfan+1{

- 2 for all n, we have, from (2.28),
! |

00 a | - 2
! n+r+i !
‘an-H*I -2+ 2

T
| 2 TR,

H
i
I

[ WA

. (2.44)
n n+r+1I
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By (2.27),

so that

|- ! - ———r - = - —}'_——r‘“

Repeated application of this inequality gives

la -2 a } -2
n Pl [Pn+1¥n+2
so that, for all n, by (2.L0)
] L1 -
{Tn} i I‘I)n{ - 1. (2°LL.D)

From (2.40) and (2.43) we now get (2.329); (2.38) may be

proved similarly.

Lemma 2,10 (not given in [11] or [6] ). If {ang, ianl

are given in Lemma 2.9, then

(1) if further © differ in sign (i.e. if

n—r-1? en—r-2

& _pq2 8, _n._o Giffer in sign), then
€ €
. n-2 r n—-r-1
Gn—cn-1 -6 *oeen +(—1> e * e 0
n-4 n-1 n-r

1 1 2 \
+ 1 - T - ? (20"-‘14')
_en—1 *e en—r( 'en-r—11 enrr—1en—r-2yu’

[e—
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(ii) if further ¢ ) differ in sign (i.e. if

n+r+1? "n+r+?2

., differ in sign then
fner+2? Fntr+3 gn), 1

“n+1 r “ntr
T = & - 7 + see +(-1) 94) (;)
n i Y n+d n+1 *°° "'n+r
+ 3 ! ) 1 =73 L ro- (¢ 2¢ ? . (2.45)
Yn+1 't Tn+r (Pnarel n+7+1 n+r+2/
Proof. If ¢ , ¢ ., differ in sign, (2.42) gives
0] = 1ol + T3 5
n n n+1
so that
! ' 2 } I ¥¢n+1z T
([J) "1 - : = a ,—2'*‘ .
| o ,¢n+1} e+ :¢n+1l
By (2,40) and (2..43)
b ¢ b g
ERR NS L PN IR Ty
o Il, n+1 n i n+1

Hence

Affnf < I¢?} -1 - Tgii;T .

Applying this result to T and using (2.40), we get

n+r+1

(2.45); (2.44) may be proved similarly.

Vihen we wish to evaluate M(f), we try first to find
and reject those a-chains (with the corresoonding chains of
formsv{fn})for which M({an}; ani) is low for any correspond-
ing €=-chain, and then tQ examine the other chains more

closely. At this preliminary stage, strict inequalities
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are not needed, and it is unnecessary to decide whether
{8n§ satisfies all the conditions of Lemma 2.6; therefore,
it is convenient in Lemmas 2.9 and 2.10 to assume only that
§€n§ satisfies condition (ii) of Lemma 2.6. It is possible
to eliminate a large number of chains {fnl with the

corresponding a-chains by using Lemmas 2.11, 2.12 below,

{ie first introduce a symbol which will be used

repeatedly in later chapters.

Definition 2.2. For any indefinite binary quadratic
form £, given by
f(x,y) = ax? + bxy + cy2,

we define
M= M) =min |a b + c¢] = min |£(1,41)].

In particular, for forms £ given by (2.26),

ME) = T‘;"‘;”'A—:‘TT min [] (0 -1 (s, -], [ (0 +1)(3,+1)]] + (2.16)

nn

Lemma 2,11 ([6] , Lemmas 3.2, 3.3). If ifn} is a

chain of I-reduced forms equivalent to £, and {an} is the

corresponding a-chain, then for every corresponding €-chain

and for every r we have
(e P) = m(la d,le 3) = M(2 5 x,y) ¢ = /0 < MEL) /e

Proof. The proof is given in [6].
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Lemma 2,12, In Lemma 2,11, wWe can have
M(f; P) = x(fr)/u
if and only if conditions (i) and (ii) are both satisfied:
(1) Mz£,) = ing AT s
(i1) (Xr’yr) = (%%) (moa 1).
The condition (ii) implies that
(iii) the chain {ani is gven, i.e. a  is even for all nj
(iv) e =0 for all nj
(v) P = (%4,0) or (0,%) or (4,%4) (moa 1).
FProof. It is clear from (2.32) and (2.46) that
M(r; P) = M£,)/b if and only if (i) and (ii) hold; if (ii)
holds, then ¢ = 7 = 0, which implies (iii) and (iv);

r
(v) follows from (ii) also.

As a corollary to the two lemmas we have a simple-
inequality for M(f):

Corollary. If the form f(x,y) is I-reduced, then

H(r) < M)/

eguality can occur only if M(f) = M(f; P), where
P = (&%) (moa 1).

It is clear that this result is closely related to the
estimate for M(f) given in Barnes [5}. The connection
between these two results and the relation of these results

to others of the same type will be discussed in section 3.l.

Finally, to avoid unnecessary enumeration of cases,

we need another lemma of [6} .
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Lemma 2.13 ({6] , Lemma 3.1). If {8n§ is any &=-chain

corresponding to the a-chain {an}, the value of

M(P) = 1(fa_}, ien})is unaltered by any of the following

n
operations:

(i) reversing the chains {an+1§, §8n§ about the same point;
(ii) changing the signs of all e ;

(iii) changing the signs of all a, and of alternate en'

Proof. The proof is given in [6].



CHAPTER 3
EQUIVALENT I-REDUCED FORMS

In order to use the method of section 2.5 for
evaluating the inhomogeneous minimumn of an indefinite
binary gquadratic form g which does not represent zefo, we
must be able to determine all the a-chains of g. In this
chapter I consider the problem of determining all possible
chains %fni of I-reduced forms equivalent to g (and hence
all possible a-chains of g).

In section 3.1 I give, as Theorem 3.1, a condition for
a Torm to be I-reduced which corresponds to the condition
for a form to be Gauss-reduced given by Inkeri [59] ( see
sect. 2.U4)., Barnes [6] showed that there is only a finite
number of I-reduced forms equivalent to a form g with
integral coefficients; for the sake of completeness I
include this result, which is easily derived from Theorem 3.1,
as 'Theqrem 3, 2.

In section 3,2 I give some results on equivalence which
are needed in the following section.

It follows from Theorem 3.2 that, if g is proportional

to a Torm with integral coefficients, we can obtain all the

L9
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I-reduced forms equivalent to g by a finite number of
trials. However, this method becomes laborious if the
discriminant of g is large and of course breaks down al-~
together if the number of I-reduced forms equivalent to g
is infinite. Thus another‘method is needed,

The natural thing to do is to start from a particular

I-reduced form equivalent to g, say £, Where

£(x,y) = & TWEiEfTT (0x + y)(= + 9y) (o] > 1, |¢] > 1),

and, by expanding 6,¢ in all possible ways as semi-regular
continued fractions, to obtain all the chains ifn} to which
£ belongs. The questions then arise, whether we can obtain
all the I-reduced forms’eQuivalent to g in this way, by
starting from just one form, and whether we can get all the
different chains of forms in some such way. In section 3.3
I consider these gquestions.

As an immediate consequence of Lenmma 2,11 and 2.12 and
of Theorem 3,3 of section %5, I obtain a bound for the in-
Thomogeneous minimum of a Gauss-—reduced form T (see sect.2.l4)
in terms of the coefficients of £ which is the same. as the
bound for the inhomogeneous minimum of any indefinite binary
quadratic form given by Barnes {5]. In section 3.4 I discuss
these results and others of the same type obtained by

different authors.
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%« 1. The Condition for a IForm to be I-reduced and a Theorem

on Forms vith Integral Coefficients

‘Theorem %.1 (ef. Inkeri [39 ],§5). An indefinite form

£(x,y) = ax® + bxy + cy

2
is I-reduced if and only if

bl > Ja + ¢f (3.1)

(i.e. if and only if a + b + ¢, a = b + ¢ differ in sign).

Proof. Ve have
. _2ac b+ . Db+
J.(X,:Y) =% ¥ 4 ( 2 o X + y)(‘* + 2 a y) (3 2)
_2ac b -4 b =4
=t % (x + 5= )55 x +y)

where 4 = + d(bz - Lt ac). It now follows from the
definition of an I-reduced form (see sect. 2..4) that

ax2 + bRy + cy2 is I-reduced if and only if ax2 - bxXy + cy2
is. Hence, without loss of generality, we may take b > O.
In this case it is clear that £(x,y) is I-reduced if and

only if

b +4>2]al, b+as>2jecl. (3.3)
If, now, (3.1) is satisfied, then

b > |a + cf. (3.4)

Hence

2% = p° - L ac > (a + 0)2 -4 ac = (a - 0)2,

so that
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s> |a-cj. (3.5)
By (3.4) and (3.5) '
b+ o> la+cl +]a-c|l=2mx/[]lal, [¢]].

Thus (3.3) holds, and f(x,y) is I-reduced.

If, on the other hand, (3.1) does not hold, then
b g_]a + cr;
and by a similar argument we get
b + & < 2 max [}al, {cﬂ ,

so that (3. 3) does not hold and f(x,y) is not I-reduced.

Thus £(x,y) is I-reduced if and only if (3.1) holds.

Theorem 3.2 (Barnes [6], Lemma 2.1). If an indefinite
quadratic form £(x,y) has integral coefficients, there is
only a finite number of I-reduced forms equivalent to it.

Proof. Ve suppose that £(x,y) has discriminant A2 and
show that there is only a finite number of I-reduced forms
with integral coefficients and discriminant A2. If

axz 4 bXy + cy2 has discriminant AZ and is I-reduced, then,

by Theorem 3.1,
0 < b2 - (a + 0)2 =(b-a-c¢c)(b+a+c)= 82 - (a - 0)2.

Thus [a - c¢| is less than A, and for each of the finite
nuriber of possible integral values of |a - cf there is only
a finite number of possible integral values of b — a - c,

b+ a+c, and so of a, b, C.
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%e 2. S3ome Regults on Eguivalences for I-reduced Forms

If the form I is equivalent to the form £ under an

integral unimodular linear transformation

_Jtu
T"[} %]’

where t, u, v, W are integral, and tw - uv = +1

BRI

(that is, if

gives

then we shall write

o= P o= f[?%ﬂ.

Jith this notation (fT1)T2 = 7 T1T2). IP tw - uv = +1,

the Torms will be called properly eguivalent; and if neither

of the statements t = w = 0, u = v = 0 holds, the transform-

ation T will be called non-trivial,

Throughout this chapter we denote by £ = (a,b,c) an

I-reduced form which does not represent zero:

f(x,y) = ax? + bxy + cy2,

vhere D = b2 - Il ac is the discriminant of the form, and
b4

+/D = A, It follows from (3.2) that £(x,y) is I-reduced
if and only if f(x,-y), f(y,x), and f(y,=x) are I-reduced; °
also, any chain containing one of these forms can be con-

verted into a chain containing £(x,y) by reversing the chain

ianz (ia_n% is the reverse of éang) or by replacing iang by



{—an} (its negative) or both (see Lemma 2.%13). It would
- therefore be sufficient to consider only those I-reduced
forms (a,b,c) with b > O, lal < |cl; here we adopt the
convention of considering oﬁly I-reduced forms for which
b > 0. VWith this convention, the I-reduced form

f = (a,b,c) can be factorized as

2 a

2 '. -
£(x,y) = ax” + bxy + oy =W(r1x + y)(x + ryy), (3.6)
where
_ b+ A b _+ A
155+ T2 Tz ¢

b >0, |r| >4, |z, >4,

and Ty r2 are irrational. We shall call r1 and r2 the

first and second roots of f respectively.

iIf £ = (a,b,c), we shall call the form

(e,b,a) = f[? 2)]

the reverse of f.

We denote by T a non-trivial linear transformation
| t ul
I (3.7)

where t, u, v, w are integral, w > O, and tw - uv = 1;

and by F = (A,B,C) the I-reduced form .

~

(B > 0, B2 - 1ac = 82) | (3.8)

A &
= TEE, =] (Ryx + ¥)(x + Ryy)

2 2

Ax™ + Bxy + Cy

M x,y) ‘

whose first and second roots are
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so that
IR,] > 1, Ry > 1.

We note that if F = fT, where T is given by (3.7) then
” ) .

A= at®™ + btv + ov
B = 2atu + b(tw + uv) + 2cvw b, (3.9)
C = au2 4+ buw + cw2

Thus fT = £(~T) and there is no loss of generality in
assuning in (3.7) that w > O.

Ve now prove five lemmas which are needed for the
next section.

Lemma 3.1. If F = fT, where T is given by (3.7), then

tr, + v Wr2 + u
R, = —t " R === .
17 ur, + W’ 27 vr, + (3.10)

Proof., The relations (3.10) follow from (3.6), (3.8),
and (309). ‘

Lemma 3,2, If F = fT, where T is given by (3.7), and if

w,r, + 1

1°2 1
R:a ————— - ————
2 [ 1? VT, + t1}’

. t1 u, _ a1t-u t
=" Wy - ayv=u vV ’

t1r1

where

then
+ vy
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Proof. The lemma follows immediately from the

expression for R, given in (3.10).

Lemma 3.3. If F = £T, where T is given by (3.7), then
(1) Ju] > |t| implies w > |u]|;]|v] > |t];
(11) ]v] > w implies [t] > |v], |u] 2w
_Proof. From (3.10) we have

r =M=T‘E_ 1 =X _ %1 (311)
1 uR1 - % u u(uR1 - t) t t(uR1 - t) *
If |t| = 0, then |u] = |v] =1, and since T is non-trivial,

W > 1, so that (i) holds. If |u| > |t] > 1, then, since
]R1} > 1,

’uR1 - t] > (]t] + 1)IR1I -1t > ’R1l3
thus |r,] < 1 by (3.11) unless W-Z lu], |v] > |t]. This

proves (i) for all cases, and (ii) is proved similarly.

Lemma 3.4. If t, u, v, W are integers such that
tw —uv = 4, and it is not true that t = w = O or that
u = v =0, then exactly one of the following sets of

relations holds:

{w'= |v] =1, |u] > |t]; (3.12)

L > Iv|, |a] > |t]; (3.13)
{w = |v] =1, |u] < ]t]; (3.14)
w < |v], lu] < |t]; (3.15)

Proof. Clearly we cannot have w = |v|, |u] = |t],

as this contradicts twl- uv = 1.
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If w > ]y}, [u] > |t], then
|tw = av] 2 (Ju] + D(|v] + 1) = |uv] = |u] + |v] +1;
since we cannot have uw = v = 0, this contradicts v
tw - uv = 1. Similarly, w < |v|, |t] < |u| leads to a
contradiction. |
Thus (3.12) to (3.15) cover all the possibilities; as

they are matually exclusive, this proves the lemma.

Lerma 3.5. If F = £T, where T is given by (3.7), and
if (3.12) er.(3.13) holds, then T must be one of the

following matrices (where k is a positive integer):

57

1

1 +1
+(k=1) k (x > 3), (3.17)

t u]
v W s (3.18)
(Ju] > |t] >0, w> |v], w > |uf, Iv] > |t])]
]:0 ﬂ (k>2),  (3.19)
Jtox

[1 i(k"”} (x > 2), ( 3. 20)
+

+1 k

0 1

Proof. We use (i) of Lemma 3.2, and the fact that
tw - uv = 1,

If (3.12) holds, T nmust be given by (3.16).



Now suppose that (3.13) holds, so that w > |v]|,
u] > |t]. If Ju] =]t} (=1), then for |v] > 1, T is
given by (3.17), for |v] =1, T is given by (3.20) with
k = 2, and for v = 0, T is given by (3.21). 1If |u] > |t],
then w > |u|, |v] > |t]; for |v] = |t] (=1), T is then
given by (3.20) with k > 3, and for |v] > |t|, T is given
by (3.18) if t # 0, and by (3.19) if t = O,

This covers all ppssibilities.

%e 3 Chainsg of I-reduced Forms Equivalent to a given

T-reduced Form

An a-chain {ani, (=00 < n<oo) of P such that

R& = [éo? a_yr B_ps ...]; R, = [a1, 855 8z ...]

will be called an a—-chain from F, and the corresponding

chain {f_} of I-reduced forms will be described as from F.
We now turn to the problem of determining all the

I-reduced forms equivalent to a given I-reduced form f.

We note first that there exist forms f for which it is not

possible to obtain all the I-reduced forms equivalent té iy

by taking all the forms in all the chains from f. For

example, in section 5.5 we shall consider the form
g = (1, ¥5,-1)

with roots

- rz’

r, = éiz—"ri- = [3, r?] = [2, -2, —ra‘l..

e
i
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The equivalent form

14
G=81po 4=

(1, 2 + ¥5, v5)
has roots
R_i.iiﬁ R..i_i'._‘f.ﬁ
1~ 2 ’ 2 - 2 ¢

Since every form in any chain from g has one root whose

modulus is

52 (= 1),

it is clear that G cannot belong to any chain of I-reduced

forms which contains g.

In this section we prove the following theorem.

Theorem 3.3. Let £ = (a,b,c) (b > 0) be a Gauss-reduced
form given by (3.6) (so that r, < =1, r, > 1 — see sect.2.4),
and let F = (4,B,C) (B > 0) be an I-reduced form which is
properly equivalent to f under the non-trivial linear trans—
formation T given by (3.7). Then any chain of I-reduced
forms which contains F must contain at least one of the

three forms

£ = (a,b,c),

R

£l o 1]: (a, 2a + b, a + b + ¢), (3.22)
1 0 .

£ J: (a =b +e¢, b - 2c, c) (3. 23)

Since f is given by (3.6) and is Gauss-reduced, We have

a>0,Db>0,c?>0,
and so, by Theorem 3.1,

a+b+c¢c >0, a-b+c < 0.
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Thus
2a + b+ ¢ + (22 +b) >a +b+c >0,
while

2a+b+c¢c =(2a +b) =c¢c < 0,

so that, by Theorem 3.1, the form (3.22) is always
I-reduced when f is Gauss-reduced. Similarly,vthe form
(3.23) is always I-reduced when f is Gauss-reduced.

If F is equivalent to £ under a non-trivial trans-

M

for which tw - uv = -1, then F is properly equivalent to

formation

the reverse of f under the non-trivial transformation

[+ ol ol

Hence we can include the case of improper equivalence by
replacing 'f' by "the reverse of £' in Theorem 3. 3.

Thus Theorem 3.3 means that if f = (a,b,c)(b > 0) is
a Gauss-reduced form, then we can obtain all thé chains of"
I-reduced forms equivalent to £ by taking all the chains
from £ and from the two forms (3.22) and (3.23). Since
there is at least one Gauss—reduced form equivalent to any
indefinite binafy guadratic formvg which does not represent
zero, it follows that we can obtain all the chains of
I-reduced forms equivalent to g by ﬁaking all the.a—chains

from at most three forms equivalent to g. This enables us
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to apply the method of section 2.5 to sets of fofms whose
coefficients depend on a parameter for which the number of
equivalent I-reduced forms is unbounded (e.g.‘the forms g
discussed in Ch.4), as well as to forms which have an
infinite number of equivalent I-reduced forms (e.g. the

form g discussed in sect. 5.5 ).

We shall say that the a-chain {an} (or, equivalently,
the corresponding chain of I-reduced forms) from F leads

forwards to £ if, for some n,
R2 = [9.1,32’ see an’r2] ’
I‘1 = [an’an_1, soe 3 a1,R1] .

Wie shall say that an a-chain from F leads backwards to f

if it leads forwards from f to F. We shall say that all

a-chains from F lead forwards without choice® to £ if, for

gome kK > O, either

T = [21{,31] » R, = [2k,r2], r, > 0,

or
r, = [-2k,R1], R, = [-2k,r2], r, < 0,

so that R, must be the 'tail' of any semi-regular continued

*ie say 'without choice' because it follows from
Defn, 2.1 that, if 1 < « < 2, then a, = 2 for gvery semi-

regular continued fraction expansion a = [a1,a2,a3;...}
of «,
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fraction expansion of R2. Similarly, we shall say that all

a—-chains from F lead backwards without choice to £ if, for

some k > O,

Ry = [(tz)k,r{] y Ty = [(iz)k’Ré]’ tr, > O.

Ve now give a sequence of four lemmas, from which we
deduce the proof of Theorem 3.3. In these lemmas we take
£ as given by (3.6) and do not assume that r, < 0, r, > 0,
We suppose that F = f£T, where F is given by (3.8) and T by
(3.7), and that the elements of T satisfy (3.12) or (3.13),
so that, by Lemma 3.5, T must be one of the matrices (3.16)
to (3.21). We show that if T is one of the special matrices
(3.16) or (3.17) or if T is of the general type (3.18) then

any a-=chain from F = £fT mast lead forwards to a form fﬁ where

1 0
[+t 1 (3. 24)

or one of the matrices (3.19), (3.20), and (3.21); and we

U is either the matrix

show that if F = £T, where T is given by (3.19) or (3.20),
then any a-chain from F must lead forwards to a form fU
where U is one of the matrices (3.21), (3.24). 1In the
lemmas we prove rather more than this because more precise

results will be needed to prove Theorem 3, L.
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Lemma 3%.6. If F = fT, then

(1) if T is the matrix (3.16), then all a-chains from
F lead forwards without choice to fU, and all a-chains from
£U lead backwards without choice to F, where U is given by
(3.24);

(ii) if T is the matrix (3.17), then all a-chains from
F lead forwards without choice to fU, where U is the matrix

1+
® 2| | (3.25)

(i.e. where U is given by (3.20) with k = 2. ),
Proof. If T is given by (3.16), then by (3.10)

+1 r, + 1
R, =—=——— R. = -2
1 ¥r1 + 1? 2 +r, ’

where +r, > Q, +r, < 0 (so that |R,| > 1, |Ry] > 1). Thus

i, 1. _2__
Bp =l =%, = [ﬁz’ 3T, {]
and

ryt1=42-(-r, +1) = [iZ,R{}.

By (3.10), this proves (1).
We note that y = ]Zk,x} if and only if

 (k#1)x = k
y = %E‘:;(E:TT (3. 26)

where k is any positive integer.
If T is the matrix (3.17), then by (3.10) and (3.26)
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kr, + 1 2r, + 1
R. = 2 -~ = | 42 ....__2__‘:....
2 7 #(k=1)r, + 1 =k-2> +r, + 1|°

By Lemmas 3.4 and 3.2, this gives (ii).

Lemma 3.7. If F = £fT, where T is the matrix (3.18),
then every a-chain from F leads forwards to a form fU,
where U is one of the matrices (3.19), (3.20).

Proof. By (3.10), we have

so that
u , h!
t (3.27)
where, by (3.48), |h] < 1, |n'| < 4, and w/v is not
integral.

By Definition 2.1, for any semi-regular continued
fraction expansion R, = ]a1,a2,a3,...[ of Ry, 2, is an
integer such that_’a1' > 2 and }Rz - a1’ < 1. PFor any
such 84y WO have

‘ W,r, + U
172 1
R = 8, ’
2 .[ 1 v1r2 + t1

. t1 u1 _ a1t-u t )
- v1 w1»> a1v—w v

It follows from (3.27) that

where

|w/v - a1} <1, |u/t - a1} < 1;
and without loss of generality W1 > 0., Hence, by Lemma 3.2,

every a-chain from F leads forwards to a form fT,, where

1
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t1 uy
T, = .
17 |vy W, @%W1 - u1v1=1),

]u1} > }t1[, W, > [v1), W, > }u1{, u, £ 0, v, # 0,
and
leal < 1els Jugl < Juls Doyl <)o), wy < w
Vie use the same type of argument as in the proof of
Lemma 3.5. Suppose first that ’u1[ = 't1}. Ir fv1} =1,

T, is the matrix (3.20) with k = 2; while if [v1[ >1, T is

1
the matrix (3.17), so that, by (ii) of Lemma 3,6, all
a-chains from fT1 lead forwards without choice to fU, where
U is the matrix (3,20) with k = 2, Suppose now that
|uy] > |ty]l. I |vy] =]t,], then T, is given by (3.20);
while if |w,| > |t,| and t, = O, then T, is given by (3.19).
The only other possibility is that
gl > 1yl >0, wy > o], wy > Jul, vyl > [ ty].
If this is so, T1 satisfies the same conditions as T, and
we can apply the same type of argument again.
Thus we obtain a sequence of matrices
-l
r r

such that every a-chain from the form fTr_ leads forwards

1
either to a form fU (where U is given by (3.19) or (3.20)

or to a form fTr, where

}ur} > 'tr” W, > vl s W, > }ur], u, #0, v, #0,

and

65
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'trf < !tr-‘l}’ [ur! < 'ur_‘]" lvr’ < !vr.#[" Wr < wr-—1'
It follows that we must eventually reach a Tr for which
lu] = |t or|v,] =]t or t, =0, that is a T, such
that fTr either is, or leads forwards without choice to, a
form of U, where U is given by (3.19) or (3.20).

This proves the lemma.

Lemma 3,8. If F = £T, where T is the matrix (3.19) then
there is an a—-chain from F which leads forwards to £, and
every a-=chain from F leads forwards to f or to fU, where U
is one of the matrices (3.24).

Proof. By (3.10) we have

+kr, - 1

If #k # -2 and 1, < O, then
| -
- L e L
while if +k # 2 and r, > 0, then

T2
Ry =itk = 1, -r, + 1|*

The lemma now follows from Lemma 3, 2.

Lemma 3,9. If F = £T, where T is given by (3.20) and
if grz > 0, then there is an a-chain from F which leads

forwvards to the form fU, where
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and every a-chain from F leads forwards either to fU or to

1 O
V=:1 10

fV, where

Proof. By (3.10)

xr, + (k=-1)
. = -
R, = Tr, 7 = +k T " [ik,rz + {] (xr, > 0),
or
_ r, * 1
R, = |+k ¥ 1, ¥r, (+k # 2, +r, > 0).

The lemma now follows from Lemma 3.4, 3.2, and 3.6(i).

Proof of Theorem 3. 3. Let the I-réduced forms £, P

satisfy the conditions of Theorem 3.3, s0 that r, < 0,
r, > 0. We first note that, since r1’< o, r, > 0, it
follows from Lemma 3.1 that none of the following forms

is I-reduced:

1 0] 1 - 1 -1 1 ~(x-1)]

fL 1]’ fL>1}' f[%kﬂ)k} f[4 k]
(where k is an integer greater than one).

We first suppose that either (3.12) or (3.13) holds.
If we exclude possibilities which would give non-I-reduced
forms, and use Lemmas 3.5 to 3.9, then we see that either
any a-chain from F mustklead forwards to £ or to one of thg
forms (3.22), (3.23) or F itself is one of the forms (3.22),
(3. 23). | |

By Lemma 3.4, if (3.12) and (3.413) @ not hold, then
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(3.14) or (3.415) holds. In this case the reverse of F is

S I M | I I G

where
0O 1}
£y o

is the reverse of f. Without loss of generality we may
take t > O instead of W > O, so that either t = |u| = 1,
lv] > |w], or £ > |u], |v] > |w]. Then, by an argument
exactly similar to that given above, it follows that either
every a—chain from the reverse of F must lead forwards to

the reverse of £ or to one of the forms

0 4|1 -1] [ 1 offo 1]
T4 oo 1= F[-1 4]l1 o]’

_ - T - (3 28)
o 11 o© 1 1]{o 1
T of{1 =% o 1[4 of*

or the reverse of F is itself one of the forms (3.28),
which are the revefses of the forms (3.22), (3.23). This
is equivalent to saying that, if (3.12) and (3.13) do not
hold, then either every a-chain from F leads backwards to
f or to one of the forms (3.22), (3.23), or F is itself one
of the forms (3.22),. (3.23).

Thus.the theorem holds in all cases.

If £ and F are given by (3.6) and (3.8) respectively,

then there exist integers a;

32 is= 1, ese n('ai' Z 2),

such that
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R2 = [%1, see o an,ré],
r, = [an, cee s a1,R£].
Hence, by Lemma 3.1, F = f£T, where T is the matrix
["9n-1 ~Pp—
in Pn

and p_, g are given by (2.7).

(n > 1), (3.29)

Thus, if there is an a=-chain from f which leads for-
wards to one of the forms (3.22), (3.23), then f is equi-

valent to f under one of the transformations

[1 1}’1‘, '[1 OJ‘T, (3.30)
o 1 -1 1

where T is given by (3.29). Similarly, if there is an
a—chain from the form (3.22) to the form (3.23), then f is

equivalent to £ under the transformation

1 0] |1 -
[—1 JT[O J", (3.31)

where T is given by (3.29). It follows from (2.7) and
Lemma 2.4 that, for n > 1,

|Pnog £ 4|21 [Py £ 2p|2 1 [an t ang2 15 |Pp]2
Hence the transformations (3.30) and (3.31) are non-trivial.
If we denote the negative of £ by ?, then for any

transformation

[%' é} (tw - uv = 1),

v W

the negative of the form
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t u
fL J | (3. 32)

7o)

and the reverse of the form (3.32) is the form

CIE | |

By using these results and arguing as in the previous

is the form

“we

paragraphy we see that if there is a chain of I-reduced
forms which contains any two of the forms £, (3.22), (3.23),
or their negatives, or their reverses, or the reverses of
their negatives, then or f reversed or f or T reversed

is equivalent to £ under a non-trivial integral unimodular
linear transformation, that is, f has a non-trivial auto-
morph, U, say; if U is of infinite order, then £ must be

proportional to a form with integral coefficients.

We now turn to forms with integral coefficients, for
which we can prove a stronger result than Theorem 3, 3.
Theorem 3.4, which will be given below, really means that
we can obtain all the I-reduced forms equivalent to a given
integral form g by taking all the forms which belong to
chains of I-reduced forms from any Gauss-reduced form f
equivalent to g. However, although we can obtain all
forms equivalent to g by starting from such a form £, we

cannot always obtain all chains of forms {fn} (or equi-
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valently all a-chains) in this way. For example, in
Chapter 4 we shall consider Gauss-reduced forms g, whose

first and second roots are

R, = - R

1 27
5R2 + 2 '
 Ro= 352 <2 Ryl =130 o 57| = [Bnerr 2 By 1]
The form

11
gn[o ;l (3.33)

R2 + 1.

Since g, has roots of opposite signs, it cannot belong to
the chain of forms from the form (3.33) determined by the

periodic semi-regular continued fraction expansion of R2 + 13

R2+1=[I4, 3.0 2, R2+1].

First we give a lemma which is needed to prove
Theorem 3.4, and then we give Theorem 3.l.

Lemma 3.,10. Let £ = (a,b,c) (b > 0) be an integral

Gauss-reduced form given by (3.6); then at least one a-chain
from £ leads forwards to f.
Proof. Since f is an integral form, it has a non-trivial

proper automorph T (see sect. 1.5 ) such that £ = fT, where

P= |t 0 ,
v ow

tyu, v, W are integral, w > 0, and tw - uv = 1.



3¢ 3

Also, T = fT-1, where

T-1 - W =-u ,
=V t

so that by Lemma 3.4 we méy assume without loss of general-
ity that the elements of T satisfy (3.12) or (3.13).
If T is the matrix (3.16), then, by (3.10),

+1 r, + 1
ry = - r, = —%;——-,
+r1 + 1 -2
so that
Fr - 1 =0, + 1.2 - r~+1 =0
1 1 =Y T T 2z 1=

This is impossible for real Tys Tpy 8O T cannot be given
by (3.16).

It now follows from Lemmas 3.5 to 3.9 that there is at
least one a-chain from f which leads forwards either to f
or to the form (3.22). |

Similarly we can use the fact that

£ o 1 _ ep~10 1 ,

1 0 1 O

1 satisfy (3.14) and (3.15) to show

where the elements of T
that there is at least one a-chain from f which leads back-
wards to £ or to the form (3.23).

If there is an a-chain from f which leads backwards or
forwards to f, the lemma is proved. If not, then there is

an a-chain from the form (3,23) which leads forwards to f,

72

and an a-chain from f which leads forwards to the form (3.22).

Then one of the following statements must hold for a set of
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integers a;, 1 = 1, «¢es , 1 (}ail > 2):

(1) | r, = [a1, cee ',an,r‘2 + 1] (an £ 2),

£y
—IT;--!-—'I = [an, cee ,a,‘,rﬂ;

(11) ry = [Bgs een 232y 11 (21, £21),
Ty - (ag#2)
';.";"_';"'{ = [Zj’ak’ see ’9-19r1];
(i11) r, = [2k,r2 + 1] = [2k,3,2k_1,r2 + 1] (x > 1),
1‘1 )
T = [t = [Fer 320
If (i) holds, then

r 1 T
- 2 |- -4, -0, —=
I‘2 —%1,‘ see ’an - 1, _r2 = a1’ eee ,an 1’ 2’ __I.2 + ;J)

1 ][ Yy
Ty =1 =[-2’ Foua bl e e ‘]’

- L.

so that there 1s an a-chain from f which leads forwards to
the form (3.23); as there is an a-chain from thé form (3. 23)
which leads forward to f, this means that there is an a-chain
from £ which leads forwards to f.

If (ii) holds, then by using (3. 26) we can show that

T, = [a1, cee sEy =1, - (£ + 1):1‘2]:

= 1 — = [ -

so that there is a chain from £ which leads forwards to f.
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- If (iii) holds with k = 1, then : (i) holds, and if
(1ii) holds with k > 1, then (ii) holds. Thus in all cases

there is an a-chain from f-whiqh leads forwards teo f.

Theorem 3.l. Let f = (a,b,c) (b > 0) be an integral

Gauss-reduced form given by (3.6) and let F = (A,B,C) (B > 0)
be an I-reduced form which is properly eguivalent to £ under

a non-trivial transformation

T u
T=1iy w| >

where t, u, v, W are integral, W > O, and tW - uv = 1,
Then there is an a-chain from £ which leads either forwards
or backwards to F. |

Proof. By Lemma 3,10 there exist integers

8.

g2 1 =1, «ee , n (]ai} > 2), such that

r, = [ﬁ1, cre s By ré],
ry = E%,..., ays ra.

As £ is Gauss-reduced, we have r, < O and therefore a, < o,

so that also

T2
Py = |Bys eee 5 B = 1, :;E-;—T ’

ry, -1= [an =1y eee , ay, ri:};
thus there is an a-chain from the form (3.23) which leads
backwards to f, Similarly, since.r2 > O and therefore
ay > 0, there is an a-chain from the form (3 22) which leads

forwards to f.
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If we exclude possibilities which give non-I-reduced
forms and use Lemmas 3.5 to 3.9, we see (by arguing in the
same Way as in the proof of Theorem 3.3) that one of the

following statements holds:

(i) all a-chains from F lead forwards without choice
to the form (3.23) and all a-chains from this form lead
béckwards‘without choice to f (see Lemma 3.6);

(ii) all a-chains from F lead backwards without choice
to the form (3.22) and all a-chains from this form lead
forwerds without choice to F;

(iii) there is an a-chain from F which leads forwards
to £ or to the form (3.22);
(iv) there is an a-chain from F which leads backwards

to £ or to the form (3.23).

Since there is an a-chain from the form (3.22) which
leads forwards to £, (ii) and (iii) imply the existence of
an a-chain from F which leads forwards to f. Similarly,
(i) and (iv) imply the existence of an a-chain from F

which leads backwards to f.

As with Theorem 3.3, the case of improper equivaknces

can easily be included by using the reverse of f.

75
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3.4, A Bound for M(f) in Terms of the Coefficients of f

For any indefinite binary quadratic form £ = (a,b,c)

we -define
k() = max [|a), |e], min |a + b + ¢]]
= max [|a], |e|, M£)] (see Defn. 2.2)
= max [|£(1,0)], |£(0,1)|, min |£(1,+1)|]. (3.3L)

As an immediate consequence of Theorem 3.3, we have

Theorem 3, 5. If £ = (a,b,c) is a Gauss-reduced form

which does not represent zero, then

| M(£) < w(£)/b;
equality can occur only when M(f) = M(f; P) and 2P =0
(mod 1). |

Proof. If we write

1 1 1 0O
P =71 P, =7

then, by (3.22),
MF,) = min [|e|, Jha + 2b + c|].
Since f is Gauss-reducéd, we may suppose a > O, b > 0, ¢< b,
so that, by Theorem ~3.1,
Ib] =b > |a + c].
Thus

ha + 2b + 2¢ > 2(a + b +c) >0,

ba + 2b + ¢ > -c¢ = |¢|,
so that MF)) = le|]. Similarly, MFy) = lal.
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The result now follows from Theorem 3.3 and Lemmas 2,11

and 2.12.

It is convenient to note here the following results,

which will be used in the next chapter:
u(t; $,0) = £ igf M£) < tlal, (3.35)

where ifni is the chain of I-~reduced forms corresponding to

the even chain from the form F, (given by (3.23));
M(£; 0,%) =+ inf M£.) < le], 3. 36
(25 0,2) = & 1nf Mz,) ¢ fel (3.36)

where {fn} is the chain of I-reduced forms corresponding to
the even chain from the form F, (given by (3.22));

u(e; 3,4) = g inf Mg < § M), (3.37)

where {fh} is the chain of I-reduced forms corresponding to

the even a-chain from f.

Theorem'3.5 is clearly a special case of the following
theorem given by Barnes [5]:

(i) If £ = (a,b,c) is any indefinite binary quadratic
form, then l

M(£) < u(£)/b 3
equality can occur only when M(f) = M(f; P) and
2P =0 (mod 1). -

Similar bounds for M(f) in terms of the coefficients
of £ had been obtained by Heinhold [36 ], Davenport [24],
and Inkeri [38].
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Inkeri [39] proved the following result:

(ii) If f= (a,b,c) is any indefinite binary quadratic
form, then there exists a 'reduced' form q = (A4,B,C) which
is equivalent to £ and for which

w(a) < u(e).
Inkeri [39] then proved the result (i) for 'reduced' forms,
and, by using (ii); showed that the corresponding results
of Heinhold [36], Davenport [24], Inkeri [38] , and Barnes
[5] could be derived from this.

For forms which do not represent zero, Inkeri's
'reduced' forms are Gauss-reduced forms. Hénce it follows
from (ii) that if f does not represent zero then the best
bound for M(f) that can be obtained from (i) by considering
forms equivalent to £ can also be obtained from Theorem 3.5
by considering only Gauss-—reduced forms equivalent to f.

Inkeri [39] showed that the best bound for M(f)
obtainable in this way is greater than or equal to A/Mmﬁf
(where 4 = + VKb2- Lac)), because always

r(£) > 4/V5,
For the first Markov form (see sect. 1.4 ), £ = (1,1,-1),
it is wellknown that

1 _1 4 1
M(f) =1 —ETE =4 P(f).
Theorem 3.5 and (1) are best possible in the sense
that there exist many forms for which M(f) = % u(f). For

example, Davenport [24] showed that if f = (1,2k,-1), Where

k is a positive integer, then M(f) = ik = & p(f). However,



in Chapter 4 we shall consider a set of forms f = (a,b,c)
for many of which M(f) = % |a], where |a| is much smaller
than p(f), so that for these forms p(f) does not give a
good bound for M(f).

More recéntly, Rogers [u6] has given a geometrical
proof of a more géneral result from which (i) can be
deduceds |

(iii) If f£(x,y) is a continuous function such that
the region |£(x,y)| < K has two asymptotés and satisfies
cértain other conditions, then, for any real (xo,yo),there
exist (x,y) = (xo,yo) (mod 1) such that

l£(x,y)] ¢ max []£(%,0)], |2(0,8)], min |£(%, +2)]];
equality can occur only when '

(2x°,2yo) = (0,0) (mod 1).
Bambah [2], Chalk [21], Mordell [u4], and Bambah and
Rogers [4] have proved similar results for differently:
shaped regions |f£(x,y)| < K.

The results discussed by Inkeri [39] were originally
put forward as attempts to sharpen Minkowski's Theorem
(Theorem 1.1 ), and in fact this theorem can be deduced
frdm any of them. In particular, if f is Gauss-reduced,
then, by Theorem 3.1,

22 = b2 & Llalle} > v2 > (a + ¢)2,
and
2% > 8% - (a - 0)2 = b2 - (a + 0)2 >0,
so that
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a5 >la+c], 4>]a-c], 4>minjatb+c|.
Hence
s> u(r),
and Theorem 3,5 (with (ii)) implies Minkowski's Theorem

for forms which do not represent zero.
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CHAPTER 4

A SEQUENCE OF SYMMETRICAL MARKOV FORMS

be1. Introduction — Definition of the Forms g, and
Statement of Theorem U, 1

Let {gn} (n > 1) be the subsequence of the symmetric
Markov forms (see sect, 1.4 ) defined by
*

2 2. .
gn(x’y) = u2n+3x .' + V2n+3xy - u2n+3y ' (n 2 1)’ (24—-1)

where W,y = 0,1, «+«¢ , denote the Fibonacci numbers

(u0 =0, u, =1, u =u_+ u

r+1 r r—q for T 2 1), and

Ve T =0,1, «o. , denote the Lucas nunbers (vo =2, vy =.1,
Vppq = Vp + Vg forr > 1); and let M(gh), M2(gh) denote
the first and second inhomogeneous minima of g, and m(gn)
the homogeneous minimum of gy

In this chapter I prove

*The simple and semi-regular continued fraction
expansions of a root of this form (see (L 6) and (4. 15)) are
simply related to the number n; hence we call the form g,
even though this makes the definition of g, in terms of
its coefficients seem rather clumsy.
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Theorem LU.1. For n > 11 the following statements hold:

(1) If n £ 0 (mod 3), then
u(g,) = nuzm; = fn(g,)
(ii) if n = O (mod 3), then
u(g,) = 721(8“2n+3 - 30,3 > Tn(g,)s

M(g,) = E“2n+3

In the next chapter I shall discuss the behaviour of
the first few of the forms g

Since v§n+3 5u2n+3 L (see Hardy and Wright [35],

§1o.1u, for properties of the Fibonacci and Lucas nunbers),
' 2
the discriminant of the form g, is 9u2n+3 - I4, as we should

expect for a Markov form. If we write

A+ Von+

S =
2u2n+3

then the first and second roots (see (3.6)‘and the definition
which follows it) of g, are
R, = -8, R, = 8.

In section 4.2 I obtain the simple continued fraction
expansion of S and deduce some results which are needed for
the proof of Theorem L.41; in the course of the discussion I

verify that g is in fact a Markov form with m{(g.) = u,_. =
n n 2n+3
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In section L.2 I discuss the semi-regular continued fraction
expansion (see Defn. 2.1) of S and obtain some further
results needed for the proof of Theorem L,1. Throughout
this chapter
a = (a1,a2,a3, cee )
denotes the simple continued fraction expansion of a, while
@ = [a1,a2,a3, e ]
denotes a semi-regular continued fraction expansion of «,
The proof of Theorem 4.1 depends on the fact that, by
Theorem 3.1, since gh is Gauss-reduced, every chain of

I-reduced forms equivalent to 8, mast contain at least one

of the forms

n T (u2n+3’ Von+3? ‘u2n+3)’

e e

11

8o 1] = (Mapezs Ropyz + Vopuss Yop,s)s (L 2)
1 0] (=v 2u + v -1 ) (Le 3)

€n 11 - 2n+3’ 2n+3 2n+3’ 2n+3’° .

If £ is either of the forms (4 2), (4.3), then X(f) = u, .3

it now follows from Lemmas 2,11 and 2,12 that, if {a } is
an a-chain from one of these forms and is not even (i.e. not

all a, are even), then for every corresponding e-chain

M(P) = M(g,; P) = M({a,},{e }) < §22n+3o

In section L.4 I shall show that if {ar} is an a-chain from

g, for which not all a,, are even, then for every corresponding

€~chain

M(P) < 4
(?) T on+3*
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This, with the results of sections 4.2 and L. 3, will

complete the proof of Theorem L.1.

L4, 2. The Simple Continued Fraction Expansion of a Root of gh

e _ 2 _ A2 _
Since t = 3u2n+3, u =1 satisfy t AT9® = L4, the
transformation 4
?%(Bu -V ) u ?
[ © 2n+3 2n+3 2n+3% !
T = :
R
Yon+3 2305043 * Vopes) i

is a proper automorph of g (see DicksonBZJ,§é9).From ‘the
relationshipsbetween the Fibonacci and the Lucas numbers

we obtain

Vont3 = UYontn * Yons2 T Yonss * Zops2c (L. 1)
Hence
T - iu2n+1 u2n+3—§ .
Lu2n+3 u2n+5j
Since R2 = 8, we have, by Lemma 3.1,
5 = oznts T Vents C(L.5)
2n+3 2n+1
Also we have
Zemts L (4. Y = (2,1,.,2), =223 (5.4 ).
u2n+3 2n+2 2n Yo 2n
It follows .that
8 =(2,1,,,2,8), (L. 6)

so that g, is in fact a Markov form (see Dicksoniﬁ3},0h.VII).
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Lemma U.1. For integral (x,y) # (0,0) we have
len(xs3)] 2 ugp, s

and if in addition ]gﬁ(x,y)} £ u , then

2n¥3
lea(x3)] 2 Bugpyz = 3vop,se
Proof. It follows from Lagrange's Theorem (Dickson
[32], Th.85 ) that all the values of }fﬁ(x,y) | less than
4/2 for coprime integers (x,y) are given by the set of

values of 4/z, where
z € [(1,,2,8) + (0,1, _»2,8); © = 0,1, «ve ,2n]c (La7)

If a < b, then (1,41,a) < (1,1,b), and if a > 2, then
(1,1,a) < a, Thus, if a > 2, we have

(12H2,&) < (12P,a) < LI 4 < (1,1,&) < a,

and
(0,15p4008) > (0,1,,8) > «00x(0,1,1,a) > (0,a).
Hence, for n-1 > r > O,
(150p4422:8) + (0,1, 5. 422,8) = (0,15.,2,8) + (1,5, _5.,2,8)
< (0,1, 5:2,8) + (1,1,2,8); (U48)

and, forn > r > 1,
(1502,8) + (0,1, 5.b2,8) < (1,1,2,8) + (0,1, _5,2,8); (L9)
and

(1,1,2,8) + (0,1, _5,8) < (2,8) + (0,1,,,2,8).  (110)

Also

1

(2,8) + (0,1,,,2,8) =8 + 3= fuy s (he 11)



and
(1,1,2,8) + (0,1, _5,2,8) = (0,1,2,8) + (1,,_4,2,8)

&S+ 1, 2=-98
33 +1 S-3

8/(8uyy, 3 = 3Von,a)  (L12)

It follows from (4.8) to (L.11) that if z satisfies (L 7)
then always

z < Az
and from (L4.412) that if z # A/h2n+3’ then

z < 8/(8uy s = 3Vy,3)

This proves the lemma,

nce g ’ = s We have e following
Si n(1 0) h the followi

u2n+3

Corollary. m(gn) = Upp .30

Lemma 4. 2. If n = 0 (mod 3) and X,y are both odd
integers, then
!gn(x’y)! 2_ 8u2n+3 - 3v2n+3.

Proof. We note first that gn(3,1) = 8u2n+3 = 3Vone3s

so that equality is possible. By Lemma L.1, it is now
sufficient to show that if n =0 (mod 3), and X,y are both
odd, then 1gn(x,y)} # Upn 430 We write

n=3%4 x=2%+1, y = 2¥+1, and use the facts that urlurs

for every s, and that u, ug are coprime if r,s are coprime.

S
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By (L.k),
Vones = Wlppy + 3y, = bugy 4+ Sug s
also, 8 = ug, so that 8[u6£. Therefore
u,v2n+3' (Le13)

From (L.4) we have

- 2u

Yon+3 = Vont3 on+2 = Von+3 = g o0

Since 2 = uy, 2fugp, ,; it follows that

2’ u2n+3, Ll-}/uzn_‘_Bo (Lk‘”-i-)

Now

g, (2K+1,2741) = w5 (212 = (2041)2] + v, S(2XH1)(241),

2n+3

and 2| {(2x+1)2 - (2r+1)2}. Hence, by (Le13) and (L. 1k)
L] g (2X+1,2Y+1), so that

g(2K41,2041) # #0520

This proves the lemma.

The following lemmsa is an immediate deduction from
Lemmas 4«1 and L. 2 and the relations (3, 35) and (3.36).
Lemma 4.,3. For all n

=
~
x
jo]
-se
N
O
S
]
=
~
o
o
-
Nj-
e’
il
=l
[vd

2n+3?

and if n = 0 (mod 3) then

e, s 2,%) = %(8u2n+3 = 3Vone3)e



Le 3,  The Semi-regular Continued Fraction Expansions of a

Root of gh

Ve have

u
2n+
'—2'n—+§ = [31‘14'1’2] [3 29"2] I_Bn’z__}

so that, by (L4e5)
S = [3n,2,-2,§]. (L4e 15)
It follows from the last paragraph of section 4.1 that

M(P) = M({a,d,le ) < ﬁv2n+3

for all a-chains (and all corresponding &-chains) except
possibly for those a-chains from g, which dovnot lead
backwards or forwards to one of the forms (?4.2):(1&- 3), and

which we shall call permissible. By Lemma 3.1, the roots

of the forms (U.2) and (L4.3) are, respectively,

-s/(-8 + 1), S +1, (4e 16)
and

~(s + 1), s/(-8+1); (L4e17)

since g, has integral coefficients, any form which has one

of the numbers (lL.16), (L17) as a root must be one of the

forms (4. 2), (4s3). Hence permissible a-chains are

determined by semi-regular continued fraction expansions of

R1 = <3, R2 a S which are not, for any n, of the form
[é1,a2, eos ,an,é],

where z is any of the nunbers (L.16), (h.17); we shall call



such expansions of +S permissible expansions.

Vle note the following results
[-2,8] = [—3,8/(-8 + 1], [2,-2,8] = [3,2,8 + 1], (L.18)
[3,2,-2,8] = [2,-2,-3,§] = [2‘,-2,-u,s/(-s + 1)), (L19)
[3,3,2,-2,8] = [2,-2,-3,-3,8] = [2,-2,-2,2,2,5 + 1]. (L.20)
Also, for any z such that fz! > 1, we have
[3,3:4] = |22 2]

and from this we deduce that, for k > O,

[3p43020-2,8] = [2,-2,=3, 5,9], (k. 21)
[-3¢.5:8] = [-2,2,3,,2,-2,8], (4. 22)
[3k+3’2:"238] = [2"2"2’2’3k’29‘2’sjt (L4 23)

Vle can now prove

Lemma .4, If n £ O (mod 3), then
Mgy £,8) = puigy, s

Proof. By (4e19) and (L.23), if n= 1 (mod 3), the

even a-~chain from 8y is determined by the expansion
s = [[2,-2,-2,8],,2,-2,4,8/(-8 + 1)],

and so is not permissible. Similarly, by (L, 20) and (L. 23),
if n=2 (mod 3), the even a-chain from g, is not
permissible. The lemma now follows from Lemma U, 3. (We

note that, by (L4.23), if n = 0 (mod 3), the even a-chain



from g  is permissible, which explains why M(g,; %,%) is

larger in this case.)

As there are infinitely many semi-regular continued
fraction expansions of any given number, we need a notation
which indicates which particular expansion we are using;

therefore we write

a = I_‘ao,a“, s 00 ’ar’Z]’

when we mean that.a = [ao,a1, sos ,ar,é] and that we are
choosing expansions of & whose first r + 1 partial
quotients are Bg98 s coe 8. We note that, if « = [tZ,é]
and |a|] < 2, then @ = [+2,2] and no expansion of & can

begin in any other way.

Lemma L, 5. Let {ar} be an a-chain from g which is
not even. Then {ar} (or its negative or its reverse or
its negative reversed) contains a subchain determined by

pairs of expansions of the roots R1 = -3, R2 = S of g,

vhich begin in one of the following ways:

. 90



(1) =S arbitrary, S = [3k,2,-2,y],
where y = [-Bn_k,é], 3 <k <mn;
(11) -8 arbitrary, 8 = [3,3,2,-2,¥],
where ‘ y = [- n—2’§];
(ii1) -8 = |-3,-2,2,~y], 8 = [3,2,-2,5],
where ‘ vy = [;3n_1:513
(iv) =8 = [-2,2,%], S = [3,2,-2,5],
where x = [3n,-S], Ly = [-Bn_1,$];
(v) -8 = [-2,2,%], S = L[iz,-z,-z,g]k,z,-z,-3,yj,
where x = [3n,—S], vy = [—éc,é], 3k+f+1 = n, k > 0;
(vi) -8 = ["2:2,}(] ’ S = L29"‘2’[‘2:2’2’“2]k’”292039YJ;
where x = [3,-§], v = |3,,2,-2,8], 3k+f+1 = n, k 3 O.

Proof. By (4.18), |-2,S] and [2,-2,8] have no
permissible alternative expansions; it now follows from
(4« 15) and equations (L4.19) to (4e23) that any permissible
expansion of 8 must begin in one of the following ways.

5 = [3,,2,-2,5],
[;Bn_k,é], 0 < k < n;

|

where y

S = -[2"2’-2’231{’3’57_}’

Iy
where v [_3_5,2,-2,s:}, 3k+L+1 = n, k > O;

—~

S = [2,-2,—2,2__}k,2,-2,-3,ﬂ ’

["3’8,8] ’ 3K+,L’+1 =n, kK > 0;

-Where

e
It



[2,"2y3’] ’
Where y = [-Bn_z,é].‘

S

i

(We note that the last expansion includes the two previous
ones as speclal cases, and that of course many expansions
which are not permissible may begin in these vays also).

Lemma L4 5 now follows from the symmetry of g, and the fact

that the a-chains are assumed not to be even.

L, A Sequence of Lemmas leading to the Proof of Theorem 4.1
Theorem L.41 now follows immediately from Lemmas L.3 and
Lol and the following lemma. |
Lemma L.6. If n > 11 and iar} is a permissible a-chain
from g, which is not even, then for every corresponding

€~chain

u(P) = u(fa,l,le,}) < fuy, =

In Lemmas Le7 to 4.15 we prove that, if n > 11, then
for a-chains which contain certain subchains and for certain

corresponding €-chains, we have, for soms r,

x, < b/3 (see (2.30), (2.32), (2.33)), so that
so that

M(P) < 'Ei"r < 2—:% = %&f(ugn+3 - 1'9-‘) < ﬁu2n+3.

We then prove Lemma l4.6 by using Lemme L.5 to show that the
a-chains and e-chains considered in Lemmas 4.7 to L.15
include all permissible a-chains from g, which are not even,

and all corresponding e-chains.



In the proofs of Lemmas L.7 to L.45 we use the
notation and results of section 2.5. We introduce the

following notation: by a chain pair

* s e ,P,Q_,E,S,t,u, L X N J
eee 5@,0,8,d,8,L, +0e

we mean an a-chain {ar}'such that a, = r, a, = 5,

8, = Qy 84 =D, ++s , With a corresponding e-chain {er}
such that eo = C, 81 = d, 8_1 = b, 8_2 = dy ses o If in
addition the values of one © and one ¢ are given, then

90,¢o are determined and {a is an a-chain from fo which

o}
contains the subchain determined by the pair of expansions

80 = LQ’P)G_Q] ’ ¢O = tr’s’t9u’¢'u] »

and hence also 0_1,6_2,¢1,¢2, ees are determined. Sometimes,
for the sake of clarity, the values of two 6's or two ¢'s
are gliven, though only oﬁe of each is needed to determine

the subchain.

By (Lh 5) ’
S = u2n¢5 _ 4
o3  Uopy3(Upn,3S + Upp,y)
Yon+ 1
> 1 T u (2u + U )
2n+3 2n+3 2n+3 2n+1

Hence, for n > 4, we have
2.61803 < 8 < 2,61804L.
We give in Table 1 some numerical information which is

valid for n > 4 and which is needed for the proofs of

Lemmas L.7 to L.15. As we shall want to use this



information for obtaining inequalities, we adopt the

following convention.

If «a

= a(x) (where x is given in the first column)

94

is one of the numbers tabulated, then the value correspond-

ing to @ given in the table will be

aofa1a2a3au;

where
Be848,858) < @ < Ae8y8,858) + 10 if a > 0,
and
8ge 2485838 > * > 8g0 8480838 = 107 1r « < 0.
TABLE 1
x x 1/x [-2,x] 1/~2,x] [2,-2,x] 1/2,-2,x]
S | 2.6180 0.3819 | -2.3819 -0.4198 | 2.4198  0.14132
[-3,8] |=3.3819 =0.2956 | =1.7043 =0.5867 | 2.5867 0.3865
[~35,8] |-2.7043 -0.3697 | =1.6302 -0.6434 | 2,6134 0.3826
[—33,8:] | 206302 -0.3801 | -1.6198 =-0.6173 2.6173  0.3820
[-3,,8] | -2.6198 -0.3817 | -1.6183 =-0.6179 | 2.6179 0.3819
[-35,@ -2,6183 -0.3849 | -1.6180 -0.6180 | 2.6180 0.3819
[-3,,5] | -2.6180 =0.3819
(k > 6)

e At A A TS et 8 15 4 % e v

If a = [ao,a1,a2, eee ], then =2 = ["aoy"a.‘y"az’ coe ];

and by (4e19), (L.20), and (L. 21) we have

[3k’2}-2”3m’§] = [2’"2"3k+m’§}

Hence it is sufficient to tabulate [2,-2,—3k,$].

(k > 0, m > 0, k+m < n).



All inequalities given in the course of the proofs of

Lemmas b.7 to 4415 are strict inequalities.

Lemma 4. 7. If n > 11, then Ty < A/3 for the chain pairs

e ’3,3,§’2,"’2, 3% X 3 and sse 9 3’3,‘592,"2, seoe

cee 3151,2,0, O, wee cee 3H1,4,1,0, 0, oos
where
0_, = [3-8] (m30),
95 = [-3,,8] (x> 0).
Proof.
T, =1+ Ezj%z (1 —-ngr)é.
For k = O,
T,o= 1 + (o1l x 120 x .69, (Lo 244)
For k > 2,

Ty o= 1+ [[+3827 x L6181 x .6303].

(¢]

For kK = 1, we must have ¢3 = [-3,§] as no other expansion
of ¢3 is permissible, so that ¢3, ¢h are opposite in sign,

and,by Lemma 2,10,

1 1

it i

= R - - i

st |5l O Ty T
=1 + 4387 x +587 x (1 = 295 = 295 x .762) |

!

1 4+ §.387 x +587 x .L81}. (L4 25)
Thus for all k

=1 + 1491 [ > .8509. (L 26)
Also
2,586 < ¢ < 2,6181. (L. 27)



4.4 96

Hence
[1 -8, + 7] < .7672 (k. 28)
" If e_, =1, 0 <0, and if &_, = €_, = 1, then
; 4
0"=1--—+’,—"“"(1"
5 5
° -l

Hence in either case,

1 1 1
T <1 - + (1 - I
o< t-w e (el
Fog m= 0,

o-o < {1 - 0295 4 0296 X 06181’
2. 704 < eO < 2.705.

Therefore’

|=1 + 8 + 7] < 2.593,
3/19.8, = 1] < 3/(2.704 x 2,586 - 1) < 501 | (L4 29)

For m > 2;

2.618 < eo < 2.620.
Therefore

,_ 1 + eo + Go' < 2,482,
3/]0,8, = 1] < 3/(2.618 x 2.586 - 1) < «520 | (L. 30)

For m = 1, by the same type of argument as that used to get
(e 25),

1 1 1 2
ot l 5_, (1 - I }

<1 = 0369 + .370 X 0)481’
2.630 < 60 < 2.6310

o_o<1""e




Therefore N

| =1 + 6, + 0'0} < 2,440
3/]8,¢, =1 < +520 )

From (4.28), (4.29), (L.320), and (4e«31), it now

follows that, for all k,m,

37:0/A < 07672 b4 102991 < 0997 < 1.

Lemma L4.8. If n > 11, then T_y < A/3 for the chain

pair
ees 393:..3.:29"2’ s
ee "‘1’1’1,0, 0, oo
where
6_2 = l—_Bm"'S] (m 2 0),
¢3 = [_Bli’s] (k _>_ O)o
Proof.
= A

Hence, using (L. 26)and (L. 27),

2,613 < ¢_, < 2,6181.
Therefore
|1 = ¢_y + T_y] < 1.0631,

if

i 1
- i [0 5T
Form > 1,
oy = =1 + 705,

-1
2,618 <6_, < 2,705,

o7

(Le 31)

(L4 32)



Therefore
: 3
| -1 + O, + 6;1} < 1.410, |
, ; (Le 33)
Form = O,
3. 3819 < 6_1 < 3,3820.
Therefore | \
’._..1 + e'_1 + 0'_1} < 2,0001, ;
‘ 7 (L 34)

3/16_49_y = 1] < 3/(3.3819 x 2.613 =1) < .383]

It now follows from (bs32), (L.33), and (4.3L) that
37‘_1/A < .815 < 1.

Lemma L.9. If n > 11, then x_ < 4/3 for the chain pair

(i) se0 3,2,2""2"’2,2, [
eee ,1+1,1,0, 0, 0,0, ...
where
6_1 = =3, 4 1= S, 955 = {31{129"2’8-} (x 2 6)s
and for the chain pair
(i1) , cve 3 3352,=2,=3,=3, ees

LN ] ,fl,_’l,O, O,"1’i1, e e
where



Proof. For the chain pair (1),

T 1y
=1+ igzaa (1 - )
° i 1%273% 2

=1 + }(.61853x (.3821)2% =1+ [.035,

i

For the chain pair (ii),

T =1 +

4 1
’ o,y |- ('1 - >

Hence in both cases
T, > « 965

2, 6180 < g < 2. 6181,
Therefore

|1 = ¢, + 7] < .6531.
Also, in both cases , \

T = %1 + %1 - T@%;TE < 1.6181,

3. 3819 < 60 < 3.3820.

Thus

-1+ 8, + o] < 4 0001,

e

3/]10.8, = 1| < 3/(3.3819 x 2.6180 - 1) < .382j

99

(L 35)

(L 36)

(e 37)

It now follows from (4. 36) and (L4.37) that, in both

cases,

3§/A < .998 < 1.
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Lemma U.10. If n > 14,then Ro < 4/3 for the chain pair

sse 3;2"’2""59"21‘2) LR
L R 2 "_".1’0, 0, 1’ 0,0, LA 4

where
o_; = -8 or [3,-9], $_3 =8 or [3, _,,2,-2,5],
95 = [3#,2,-2,8] ,(k >5) (see (L 22)).

Proof. As in (L. 28), we get

|1 + ¢, + 'ro[ < 7672, (Le 38)
Also
1 1
o = |m— (1 - ) < 061}-‘- X 0705,
O e e
2.586 < ]601 < 2.61L.
Therefore

|1 + 08, + 0] <2047 1

(Le 39
3/]19,%, = 1] < +520 (as in (u.30)>j )

It follows from (4.38) and (L. 39) that
37:0/A < .817 < 1.

Lemma 4,11, If n > 11, then = < a/3 for the chain pair

L ,3,2,-2,—3,";’ [ 3]
se 0 ’1’0’ O, 1,:1’ L

where

0, =-Sor[3-8, ¢, =8 or[3_,,2-2§,
¢, = [-3.,8] (x »8).



4.4 101

Proof.
Since
' 1i}
T =4+ + i1 - :
e T = T TR
2.6180 < |¢$ ] < 2.6181,
we have
1+ ¢+ 7] < 3.2362 (L. 4O)
Also
1

0-0 > 1 + 0386 X .586 X .295 - 0387 X 0587 X 0296 Xo619’

while if o_ = [3,-§],

0‘6 > 1 + 9382 X 0613 bd 0369 - .383 X .61“— X Q370 X o705.

Hence in both cases

o > 1.022,
2.613 < |6,] < 2,618,

Therefore \

1 +6_ + 0] < .59 5
[t 0+ %ol | r(lal1)
3/]08, - 1] < 3/(2.613 x 2.618 = 1) < 514 =

o

It now follows from (L.40) and (L. 41) that

BWC/A < .992 < 1.
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Lemma U.12. If n > 11,then = < &/3 for the

[ XX} ,2,"2,"‘3,.‘3_,2,"'2, ce e
oe ’O’ O,t1,1’0, o, ese

where

Q-eo = ¢O = 8, —3_3 = ¢3 = [—BK,S]

Proof. As in (l. 26), v
T =1+ %}.1&9151-

O
Similarly,

o = 1 + [ 1L91.
Also

102

chain pair

(x

> 10).

2.6180 < {eo; < 2,6181, 2.6180 < Bo < 2,64181. (L.h2)

Thus, if 6_1 = 1, so that %, > o,

[(=1 + o, + cb)(1 -8y * co){ < 2,7672 x 7672,

0

\

?(uﬁuz)

[(=t =0, + 0 )(-1 ~-¢_ + T )] < . 7672 x 2.7672.

By (L.L42),
37188, -1| < 3/((2.618)% + 1) <.382.

It now follows from (L.L3) and (lL.ulL) that
37:0/A < .811 < 1,

-/

(Lo Lily)
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4.4
Lemma 4s13%. If n > 11, then Ty < A/3 for the chain pair
(i) 'YX ,2)-2,5’2,-2,-2’2’ s e
ees 30, 0,1,0, 0, 0,0, ...
where

e—2 = [3m’—sl (m 2 1), ¢5 = [3k’2’-2’$] (x 277).

and for the chain pair -

(ii) *s0 92)’293p2,'2"3v751 es e
boco ,O, 0,1’0’-1"‘1’:1’ eece

where

8, = [3-8] (m211), ¢5=[-3,8 (k 28).

Proof. As in (U4.36), in both cases we have

|1 - ¢, + 7] < .6531 (L 45)

Also, in both cases,

5y = | = (1 - 15 ) < . 3821,
o | ¥4 [T |

2, 6180 < GO < 2,6181.

Thus ' ]
]-1 + 0 + Go’ < 44,0002,

3/leo¢o f 1] < .382 (as in (u,uu).j

By (Lel45) and (L. L46)
3m /b < 9983 < 1.

L (u6)
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Lemma U, 14. If n > 14, then Ty < A/3 for the chain pair

(i) LI ,2,"2, [2,-2,—2,2_‘]1{, 2,-2’-3’—_2_’2} L3 (k Z_ o)’
L IR N J ,O, O, [_O’ O’ 0,0]k’ O’ O’ 1’ 9,0’ L I J

where
-3 = g3 = S
® ks = [3p0-8], ¢, =[3p2,-2,8] (m > 0),
and for the chain pair
(11) eee 52,-2, [2,-2,-2,é}k, 2y =2, =3,=3,=2,2, vu. (x > 0),
e+ ,0, 0, [0, 0, 0,0];, O, O, 1,%1, 0,0, +.. -

where

-e-‘LLk-3 = ¢—Lﬂv{—3 = 9
6_”1{_5 = }:31,1, "S] ’ 953 = [Bm,Q,—Z,S] (m > O)o

- Prcof. For the chain pair (i)
ITOI <1,

2.6180 < |g_| < 2.6303;
and for the chein pair (ii)

l

T = 4 +“¢11 1 (4 - _.)i = +1 + l .382 x 6303 x .6181;,(u.u7)

2.618 < ¢ ] < 2,620,

Hence in both cases,

1+ ¢, + 7] < 2.769. (4o L8)

Also in both cases,
] 1 1 1
° 1 1 %2030 85" |

]

it i v .
1+ jobak x 2382 x (.6181)7 = 1 + [.038 ], (L.19)
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2.586 < |6 | < 2,618,
Thus

1+ o, + Gb, < 6561,

SRS

- | . ‘ (Le 50)
3/10 ¢, =1] <'.520 (as in (u.3o)).j

It now follows from (L. 48) and (L.50) that

3xo/A < J945 < 1,
Lemma Le15. If n > 14, then Ry < A/3 for the chain pair

(i) L ,2,-2,2,"2,’;‘;2,2,2,-2}k, —2)293’_2,"'2’ s oo (k > 0)’

sss ,0, 0,0, 0,|0, 0,0, O k? 0 ,0,1,0, Oy «se

where

= x5 = $opes = S

O =7 = PBpr=sls  ¢p = [-3,,8] (m2 3).

and for the chain pair

(ii) oo 2’—2,2"‘2’ -2’2’2’-2 ? ‘.2’2’3’ é,2,-2, oo e
-+« 40, 0,0, 0,[ 0,0,0, 0], 0,0,1,47,0, 0, +.. (E20),

where
ks = s = S
O k-7 = 381, $5=[-3,8] (m>3).
Proof. For the chain pair (i)
7ol < 1,

and for the chain pair (ii), in a way similar to (L.L7),

we get

TO = t1 +;l01)—|-7j:0
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In both cases,
2.6173 < ¢° < 2.6181,
so that
| ~1+ ¢, + 5] < 2.766. - (La 51)

Also, for both dain pairs, (L.49) holds, and

2, 6180 < 60 < 2,6199.
Hence _ )

{1 - o, + col < .658,

(L. 52)
3/10.$, 1] < 3/(2.6180 x 2.6173 ~1) < 513.

It now follows from (lL.51) and (L.52) that
3x. /8 < 933 < 1.

Proof of Lemma 4.6, By Lemma 2,13 and the discussion

following the statement of Lemma L4.6, it is sufficient to
show that if {ari is a permissible a-chain which contains

one of the subchains (i) to (vi) of Lemma 4.5, and fe_} is

o
a corresponding €-chain, then {ar} or its negative or its
reverse or its negative reversed is one of the a-chains
considered in Lemmas 4.7 to L4e 15 and {er} or its negative is
one of the corresponding €-chains considered in these lemmas.

The chain pairs of Lemmas L. 7 and 4.8 include all the
a-chains containing (i) and all corresponding &-chains or
their negatives.

If v = [—Bk,é], then by (L. 22), any semi-regular

continued fraction expansion of y must begin in one of the
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following ways:

y = [-2’2’2-] ’ z = "[31{-3’ 2"2’3] (k > 3)3()40 53)
J = [-Sy-zyzyz] ’ VANES [Bk-h-, 2,-2,8] (k 2 Ll-);(u-o 5&-)
y = I:-B’ —3,2] ’ 4 = [-31{_2'8] (k Z 2).(}40 55)

Hence the chain pairs of Lemmas 4.9, L.10, and L4.11 include
all a-chains containing (ii) and all corresponding e-chains
or their negatives.

The chain pairs of Lemma 4.12 consist of all a-chains
containing (iii) with all corresponding €-chains or their
negatives.

For the subchain (iv), y must be given by one of (L4.53),
(4 5L4), and (u.55); Hence the chain pairs of Lemmas 4. 10,

L. 11, and 4413 include all a-chains containing (iv) and all
corresponding €-chains or their negatives.

For the subchain (v), y must be given by one of (lL.53),
(La5L), or (L4.55). If y satisfies (L.53) or (L.54), then all
a=-chains containing (v) and all corresponding €-~chains or
their negatives are included in the chain pairs of Lemma L. 1L
If y satisfies (L. 55), then the chain pairs of Lemmas L.7
and 4.8 include the reverses of the negatives of all a-chains
containing (v) and all corresponding es-chains or their
negatives.

For the subchain (vi), the semi-regular continued
fraction expansion of y must begin in one of the following

ways (see (U4.21)):
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y = [2,-2,7], z = [-3,8] (m>0), (L 56)
y = [3,2,-2,z], z=[-3,5] (m20), (U57)
y = [3p’2’-2’z] ’ z2 = ['Bm’S] (m 2 Db 2 2). (L4 58)

If y is given by (L.56) or (L.57) with m > 3, then all
a-chains containing (vi) and all corresponding £-chains or
their negatives are included in the chain pairs of
Lemma 4,415, If y satisfies (L.56) or (4.57) with m = 0,1,2,
then it follows from (L.18), (4.19), and (L.20) that every
permissible a=-chain containing (vi) must be the reverse of
the negative of an a-chain containing one of the subchains
(i) to (v)e If y satisfies (4.58), then all a-chains
containing (vi) and all corresponding e-chains are
included in the chain pairs of Lemmas 4.7 and L. 8.

This completes the proof of Lemma L. 6 and so of
Theorem L. 1. |



CHAPTER 5
SOME SPECIAL FORMS

In Chapter 4 I considered the subsequence{gni (n>1)
of the symmetric Markov forms defined by (Le.1) and obtained
the inhomogeneous minimum of g, forn > 11, In sections 5.1
to 5.4 of this chapter I shall discuss the first few of the
forms g, and then iﬁ section 5.5 I shall discuss the form
g = (1,/5,-1), which may be regarded as the limiting
symmetric Markov form. In this chapter I shall use the

notation and results of section 2.5 and of Chapter L,

Be1e The Early Symmetric Markov Forms

The first two Markov forms F_,F, (see sect. 1.4 ) do
not belong to the sequence {gni for n > 1 and were not
included in the general discussion of éhapter L4 because the
continued fraction expansions, both simple and semi-regular,
of their roots are rather special; however the coefficients
of FO,F1 are of the same form as those of the 8 and so

we may vwrite

g8_y(x,y) = x° + xy = y° = F (x,5)

2

g(X,¥) = 2x° + lxy - 2y° = 2F,(x,¥).

109
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The inhomogeneous minima of Fo and F1 have been
studied exhaustively by Davenport |2L,25] and
Varnavides [49]. For the sake of completeness I include

the foliowing two theorems.

Theorem 5.1. For the form g_, = (1,1,~1) = P, we have

M(g_y) = f; = ﬁm( g_q)

Proof. (Barnes [5]). Clearly m(g_1) = 1, and so

M(g_y) 2 ﬁm( g_y) = s
and by Theorem 3.5,

u(e_y) < paley) = 1

Theorem 5.2. For the form g = (2,4,=2) = 2F1, we have

=
—~
Q
~
]

1,
_1_4
My(g,) =3 = guley).

Proof. Clearly m(go) = 2, and, for integral X,y,

g (2x+1,2y+1)| = |2(2x+2y+2)(2x-2y) + U(2x+1)(2y+1)]| > L.
Hence
M(g,s %,0) = M(gy; 0,%) = 4,
M(go? k) = 1.
The only I-reduced form equivalent to g  is f = (2,8,4).
Since AM(f) = 2, it follows from Lemma 2,11 that M(P) < %

for every chain of I-reduced forms containing £ and eﬁeny

corresponding €-chain. The only chain of I-reduced forms,
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squivalent to Zs which does not contain f is the one
corresponding to the even a-chain from 8o for which,
by (3.37),

M(P) = M(gy; &%)

The result now follows.

Since 4 = 8x2 - 3xl, Theorems 5.1 and 5.2 mean that
Theorem 4.4 holds for n = -1,0. In sections 5.2, 5.3, and
5.4 I shall show that Theorem L.1 holds for n = 4,2, and 3.
This strongly suggests that the theorem holds alsoc for
Lt < n < 10 and so for all n > -1, but the details of the
proof for L4 < n < 10 would be very tedious.

The inhomogeneous minimum of the form g4 was obtained
by Davenport [25] by a different method.

All the results of sections L.1, L.2, and 4.3 except
Lemma L4e5 hold for n = 1,2,3; hence, in order to prove
Theorem 4,1 forn = 1,2,3, it is sufficient to show that
if n=1,2,3 and {a_} is a permissible a-chain‘from g,

r
which is not even, then for every corresponding €-chain

u(P) = u(faLl, (=) < fuy, =

5.2. The Form g, = (5,11,=5) = F,
Theorem 5.3. For the form g, = (5,11,=5) = F, we have

M(g1) = g = '&m(g.’)'
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Proof. By (L4.15)
s = |3,2,-2,9].
Hence, by (4.19), the only permissible expansions of S are
[3,2,-2,5],
[2,-2,-3,8].
It now follows from the symmetry of the form 8y whose

S

i

S

roots are R1 = —S,'R2 = 8, that any permissible a-chain
from g4 mist be an arrangement of either or both of the
blocks of numbers

A= 3,2,-2,
2,=2,=3, »

In Lemmas 5,1 and 5.2 we shall show that, if an a-chain
contains BA or AAAA, then, for every corresponding &€-chain,
ve have, for some r,
M(P) < ﬁnr < g

Since B is the negative of A reversed, this result holds
also for a-chains containing BBBB. An arrangement of either
or both of A,B which does not contain AAAA or BBBB must
contain BA., Thus the a-chaingof Lemmas 5.1 and 5.2 .include
all permissible s—-chains from g, or their negatives
reversed, Hence the proof of Theorem 5,3 will follow from
Lemmas 5.1 and 5.2.

For the proofs of Lemmas 5.1 and 5.2 we need the
numerical information given in Table 2, in which the same

conventions are used as in Table 1 .
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TABLE 2
x x 1/x [-2,x] 1/A2,x] [2,-2,x] 1/2,-2,x].
20 5866 O. 3866 -'20 3866 "’0. L‘-"I 90 20 L‘-1 90 Oo )4-1 33

S

[

; S

-3, 3866 -0,2952 | -1,7047 -0,5866 2.5866 0, 3866
14, 86606 < & < 1L,86607

The proofs of Lemmas 5.1 and 5.2 and of the other
lemmas of this chapter follow exactly the same lines as
those of Lemmas 4.7 to L.15. Therefore less detail will be
given in the computations than was given in Chapter L.

By Lemma 2,13, we can fix the sign of onee., in a given
¢=chain without loss of generality; we do so without comment
in tﬁe lemmas of this.chapter. -

Lemma 5. 1. T < 5 fbr the chain pair

L ,2,-2,-3,3,2"'2, LN
LA 4 ,0, O’ﬁ“,l,o’ O’ s o0

where
6 = e ('{ = .
-3 3, yj 8
Proof. Ve have
4 1 i
T o= 1+ (1 - Yi=1 +
o ¢ Sé2 EF

Similarly,

Q
[}

+1 + 1,107,

Also
2,586 < ¢_ < 2,587, 2.586 < |6 ] < 2.587. (541)
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Thus, if ¢ 4 = 4 so that ¢_ > O,
— o ~
| (-1 + 8, + 60)(1 -9, + TO)} < 2,694 x .694;
(5. 2)
while, if €4 = -1 so that Go < 0, /

(-1 =8, + 0 )(=1 = ¢ + 7 )| < .69L x 2.69L,

J
8/10 9, = 1] < 14.867/((2.586)° + 1) < 1.935,  (5.3)

It follows from (5.2) and (5.3) that

Ty < 3¢7 < 5.

Lemma 5. 2. Ty < 5 for the chain pair

L 2R 2N 4

2392,=2, 3,29"2:.§y2:"‘2, 3525=25 aee
,1'1,0, O,i“,o, 0,1’0, O,'_*:“,O, O’ LA

L 2K J

where

6“6 :» -3, ‘;56 = 8,
Proof. We have
5+ o g (1 - ) é
1717273%L75 6l " i

> 1 - 0068 - 0008 = .92&-

T =1

1
+ +

Since 8 ,¢  satisfy (5.1), it follows that (5.3) holds and

}1 = <}So + Tol < ‘663 (50”)

1
g = + +
o -8_46_2 - 6_16_26_36_)46-5

i
1 +,

) 8166 (1"16_‘1}’)?
| =1°=2"=3" -1 =5 -61" |
<7l + (170 x .068) + (. 17h x 068 x .61L) < . 19L
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Hence

)_1 + 60 + co{ < 3.781. (5.5)

It follows from (5.3),(5.4), and (5.5) that
%y < 186 < 5. ‘

By the argument following the statement of Theorem 5.3,

this completes the.proof of Theorem 5. 3.

5¢3. The Form g, = (13,29,-13) = Fx

Theorem 5.U4. For the form g, = (13,29,=-13) = F5, We have

-&m( 85)s

ey = 42 =
Proof. By (L.15),
| S = [333,2’-2yS]'

Hence, by (4.19) and (4.20), the only permissible expansions

of S are
s = [3,3,2,-2,5],
s = [3,2,-2,-3,8}],
s = [2,-2,-3,-3,8].

It now follows from the symmetry of the form go9 whose roots
are R1 = 3, R2 = 8, that any permissible a-chain from g5
muast be an arrangement of some or all of the three blocks
of numbers

A= 3,3,2,-2,

B = 3,2,=-2,-3,

2’“2"5"39 .
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In Lemmas 5,3 to 5.7 we shall show that, if an a-chain

contains AA, BB, AC, BAB, or BCAB, then for every

M(P) < 3&5 .

Since C is the negative of A reversed and B 1s its own

corresponding €-chain,

negative reversed, this result holds also for a-chains
containing CC and BCB., Any arrangement of some or all of
A,B, and C which does not contain BB must contain A or C;
any arrengement which contains A but none of AA, BB, AC, CC,
must contain BAB or BCAB, and similarly any arrangement which
contains C but noﬁe of AA, BB, AC, CC must contain BCB or
BCAB. Thus the chains of Lemmas 5.3 to 5.7 include all -
permissible a~chains from g, or their negatives reversed,
Hence the proof of Theorem 5.4 will follow from Lemmas 5.3
10 5e 7.

For the proofs of these lemmas We need the numerical
information given in Table 3, in which the same conventions

are used as in Table 1,

TABLE 3
x x 1/% [-2,x] 1/2,x] - T2,-2,x] 1/2,-2,x].
S | 2.6134 0.3826 | =2,3826 -0.4197 | 2.4197 0.4132

[-3,8] | -3.3826 -0.2956 | -1.7043 -0.5867 | 2.5867  0.3865
[=3558] | -2.7043 -0.3697 | -1.6302 ~0.6134 | 2.6134 0.3826
38.94868 < A < 38.9L4869.




Lemma 5. 3. To < 413 for the chain pair

s 39.‘3929‘2, 3:2»29'2’ sos
e ’i",i“,O, 0,t1,1,0’ 0’ LR N

where
-e = — [ 3
-5 = $3 =8
Proof. Ve have
i 1 2 !
T =1+ (1 - - )
) i1¢1 [¢5] ,¢2¢3' |
=1+ [l.109 |> .891,
2,586 < $, < 2 587.
Therefore
11 - $o * To' < 696,
Also ' »
! i
H 1 2 it
c. = +1 + ji1 - - 5
o - | [0 _41 16-16-2T k
= 41 + |l.150 < 1.150,
2.382 < 60 < 3,383,
Thus

| =1 +8, +07] < 3.533,
A/|eo¢o ~ 1] < 38.949/(2,586 x 3.382 -1) < 5.03
It follows from (5.7), (5.9), and (5.10) that

Ty < 12 37 < 135,
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(546)

(5.7)

(5.8)

(5.9)

(5.10)
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Lemma 5. 4. o < 13 for the chain psair

cese 3 3,2,-2,-2’5,2,_2"‘3’ s e
e s ,_'(:1,0, O’i1,1,0’ O’i", L R 4

where

Proof. Vle have

! 1 2 ! ;
T =1 + !31 — - =1 + {;0162}‘4
° [ E2] B ETA
Similarly,
o =+ + [.162].

Also
2,613 < |6 ] < 261k, 2,613 < $, < 2614

N\
Thus, if €y = 1 so that Ty > o, '

[(—1 + 0, + 0 )1 =8, + T )| < 2776 x 7765 | (5.11)
while, if 8_1 = =1 so that Go < 0,

!(_1 -6+ ao)(_1 -+ To)] < +776 x 2.776.

o

Also

/)8 8y = 1] < L.977. (5.12)

It follows from (5.41) and (5.12) that

Ty < 10,8 < 13,
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Lemma 5 5 Ro < 13 for the chain pair

see 3,;5’2,"2’2”2,"3:"3’ ese
*e0 ’i“’i,O’ O’O’ O,t1’i1’ LN 4
where

-_y =$,=8, ¢;5=][-3,-3,.

Proof, Ve have

it 'i
T o= 4 e (4 - w2
=1 + ﬂ.oz7§.

0,8, satisfy (5.6) and (5.8); hence (5,10) holds, and

11 - $o *+ To, < 614 (5.13)
Also
i f , .
oy = 1+ i "]‘1"r§§= +1 + .68,
50 that
|-1 + 8o * Gof < L.oo1 (5¢ 1)

It follows from (5.10), (5.13), and (5.14) that

T < 12.4 < 13,
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5.3
Lemma_5. 6. %, < 13 for the chain pair
(1) ees 3 352y,=2,=3, 3, 3,2,=2, 3,2,=2,=3, ee’
se ,"_t1,0, 0’ 1,'!;1,5:_1.,0, O’*“,o’ O’*1’ es e
where 4

~6_, =¢_, =8, ¢ = [3,2,-2,5],
and for the chain pair

(ii) see 3,29’2:‘3,2"2’-39'3’ 3 5’2”2: 332,=2;=35 eoe
eee »#1,0, 0,%1,0, 0,-1, 1,+1,%1,0, 0,%1,0, 0,1, ...

where

©_,=9_,=8 ¢ = [3,2,-2,8].

Proof. If €y = 1, then
~ - 1 b1 1 2y,

= + + 5 ( - - )|
O " = P4fpPz T | 94%295 0 [l 19957

> 1 = 4,067 + .067 x <162l > .921; (5.15)

T

alsof ,$  satisfy (5.6) and (5.8). Hence (5.10) holds and
[1 - ¢, + 7] < .666. (5.16)

For the chain pair (i),

~ 1.1 1y
PR L oo |

o s
,Go' < 1 + +383 + ,062 < 1.4k45;

.

§
i
¥

and for the chain pair (ii),
fi I
1 1 i 1 1 b
o = 41 - - + g ( -'Tg—-r)ﬁ,
° - 6-1 6--16--2 |‘6-1 =2 -3 ”

‘o'ol <1"Fj.:o
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Thus in both cases

|-1 +0_ + o} < 3828, (5.17)

Hence, if & = 1, then by (5.46), (547), and (5.10),

o < 12,9 < 13;

if 80 = -1, we get the same result by considering the

product
(=1 + 6, + 7)1 =98 + )],
Lemma 5. 7. R_o < 13 for the chain pair

sse 3 3,2,"2;"3,2;‘2y"3,"3’ 3’ }_92"‘29 3921‘2’_3, ee e
LR N ,i1,0, O,i1,0’ O, 1’ 1,'_"_1,;_1,0’ O’:t1,0, O’t1, [N B J

where
9 _,=9_,=8 B ,=9¢ = [3,2,-2,8].
Proof. The relation (5.10) holds, since
2.586 < |0_,] < 2,587, 3.382 < |9_,| < 3.383

By the same argument as was used to obtain (5.15)

ve have
T_5 > 921,
so that
1 +06_, + 0_,] < .666. (5.18)
Also
i 1]
T =1 + {1 - 1> 0295
=2 TR ’
so that

1+ ¢_, +v_,| < 2,088, (5.19)
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It follows from (5.18), (5.49), and (5.10) that

T_o <7 < 135

By the remarks following the statement of Theorem 5.4,

this completes the proof of Theorem 5.4

5ol The Form g, = (34,76,=34) = 2F.

Theorem 5, 5. For the form gz = (34,76,=-34) = 2F) We have

M(gB) = 11,
My(gs) = 352 = f;m( g3)-
Proof. By (L. 15)
S =[3,3,3,2,-2,5]

Using the relations (4.18) to (4. 23) we deduce that the only

vermissible expansions of S are

s = [3,3,3,2,-2,8,

s = [2,-2,-3,-3,-3,8],
s = [3,3,2,-2,-3,9]

s = [3,2,-2,-3,-3,5],
s = [2,-2,-2,2,2,-2,8].

It nov follows from the symmetry of the form gz, whose roots
are R1 = =3, R2 = 8, that any permissible a-chain from g3
must be an arrangement of some or all of the five blocks

of numbers:
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A= 3,3,3,2,=-2,

B = 2,=2,-3,=3,=3,

C = 3,3,2,=2,=3,

D= 3,2,-2,-3,-3,

E = 2,-2,-2,2,2,-2, .

In Lermmas 5.8 and 5.9 we shall show that if an a-chain

from g3 contains A, then, for every corresponding €-chain

M(P) < %};

since B is the negative of A reversed, this is true also for
a=chains from g3 contdning B In Lemma 5,10 we shall show
that the same result holds for a=-chains from g3 containing
EC or DC; and we shall deduce from Lemmas 5.10 to 5.412 that
it holds also for a-chains from g3 containing CC. Any
rermissible a-chain from g3 which is not even and does not
contain A or B must contain C or D (which is the negative
of C reversed) and must therefore contain one of EC, DC, CC
or their negatives revérsed. Thus, by the remarks at the
end of section 5.1, the proof of Theorem 5.5 will follow
from Lemmas 5.8 to 5.12.

The result actually proved in each lemma is that, for
the chain-pair considered and for some r,

A
'Kr < 3 ®

Since 4/3 < 344, this implies that M(P) < 17/2.
For the proofs of these lenmas we need the numerical

information given in Table ¥, in which the same conventions

are used as in Table 1,
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TABLE 4
x x 1/x [-2,x] 1/A2,x]  [2,-2,x] 1/2,-2,x].
S | 2.6173 0.3820 | -2,3820 -0.L198 | 2.4198  0.L132

[-3,8] | =3.3820 -0.2956 | —1.7043 -0.5867 | 2.5867  0.3865
[-3,,8] | -2.7043 -0.3697 | -1.6302 -0.613L | 2.6134 0.3826
["'33’ S:]]

§ -2.6302 -0,3801 | -1.6198 —=0.6173 2,6173  0.3820

Lemmas 5.8 and 5.9 are similar to Lemmas L.7 and L.8.

Lemma 5, 8. 3xo/A < 1 for the chain pairs

ese ,3,3,2,2,"'2, e e d csese 3, 3,_5,2,"‘2, so e

so e ,1’1,1,0’ o, see an L ) ,‘!’:‘,“1,1,0, O’ sese
where
—6-2 = ¢3 = S.
Proof. Ve have
| = 1 +}‘_1__ (1 = 74 )§*> .892 (54 20)
o 3.9 (6] | ’
| $1%2 30
2.586 < ¢ < 2,587, (5.21)
Thus
|1 = ¢, + 7 | < .695. (5. 22)
Ir 8_1 = -1, Go < 0, and if 8_1 = 8_2 = 4, then

1
3.
3
H

T I 1
O = 1 = + i (1 - )
o 9_1 iie-1 !e_gl

Hence in both cases

z
e
i

Gb < .888,
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Therefore
-1 + 6, + 0| < 2,593,
(5423)

3/]0.85 = 1] < +501 J

It follows from (5.22) and (5.23),that

BWO/A < .903 < 1.

37 1/A'< 1 for the chain pair

Lemma 5e 9.
LI ] 3 3,3,é,2,"‘2’ LI
see 35-1,1,1,0, O, «ee
where
-6“2 = ¢3 = So
Proof.
- ..
7_1 = 4 - ¢o TO’
hence, by (5.20) and (5.21),
?-1 > «571.
Also
| 2,613 < $_, < 2,614,
so that
|1 = ¢_, +7_, < 1.0L3
We have X
1 : i
1. 1< - 382,

o, == + 1 = ;
ol | [0 |

i

3.382 < 6_, < 3.383.

(5. 24)
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Hence
AN

-1 + o_, + o_4| < 2,001, L

; (5.25)
3/10_48_4 = 1| < .383 J

It follows from (5.24) and (5.25) that
3xo/A < .8 < 1.

Lemma 5.10. 3M(P)/4 < 1 for the following chain pairs

(i) sse 3’:292;"2:"39 soo
L ’-1"1’0’ O’i“, so 0

(ii) seoo ’2,-2"‘2’2’2""‘2:3)5;2!"2"’3) LR
LR ’O’ O, 0,0’0, 0,1’1’0, O,'_t1, L

(iii) see o 3,2"‘2}-3,-39293’2)—2’-3! soo
. eoe ,t1,0, 0’ 1’_1!1!1}01 O’i1’ LA

(iV) coes 3}2)-2’-3’_3’3)‘3.,2’-2"-3’ LA 4
ees +1,0, 0,-1, 1,1,1,0, O,+1, «ee

where, in each case,

—9_1 = ¢-1 = 3, ¢

Proof. For the chain pairs (1), (11), and (1ii) we have

¢=1+l (1 - y | > .890,
o ¢ ¢2 !¢3] }¢3¢uf J
2,613 < g < 2, 61, (5. 26)
Therefore
[1 =0, + 7] < .72 (5.27)

For the chain pair (i), o, < 0; for the chain pair (i11),

i1 1 |
o =1 + + (1 - i< 13
il Ll L O
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and for the chain pair (ii)
g 1 1\
C =1+ : (1 “'T@“T)%o
° i 6—16"2 se e e"‘6 "7 !
Thus in all three cases
Ob < 1.010,
3.382 < 6_ < 3.383. (5.28)
Hence
|-t + 6, + o] < 3.393, (5.29)
3/]6,85 = 1] < +383. (5.30)

It follows from (5.27), (5.29) and (5.30) that, for the
chain pairs (i), (ii), and (iii),
3n,/8 < 495 < 1.

Similarly, by considering the product
[(=1 = 0_p + 0_)(=1 = ¢_, + 3_5)|,
we can show that, for the chain pair (iv),

3r_o/8 < 1.

Since 3M(P)/4 < 4 for the chain pair (i), it follows
that 3M(P)/A < 1 also for the negative of its reverse:

(V) se0 3 5,2’-2,,"'5,—3, ce
s o0 ’&1’0’ 0! 1’ .1, soe

where

Thus in Lemma 5.10 we have considered every possible

e~chain (or its negative) corresponding to the a-chains
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of the pairs (ii), (iii), and (iv).
Lemma 5. 11. 3WO/A < 1 for the chain pair
o0 ’3,2,2,-2,-3’ LN 2
cee 91’1’0’ O""1’ vee
where
—6-1 = 95_1 = S,. ‘350 = [3’2s"2;"3’S]'
Proof. The relation (5.26) holds, and
1 F__1 1\
T =1 + + i (4 - )‘;>'1'
hence
[1 =8, + 7] < .64 (5.31)
Also (5.28) holds and
i1 ]
= IR N
%o =TT TTET < 1.618;
thus (5e30) holds and
1 -1 + 60 + Gbl < u.001. (5'32)

It follows from (5.30),(5.31), and (5.32) that
37:0/A < 95 < 1.

Lemma 5. 12, BWO/A < 4 for the chain pair

e s e ’3,3,2,-2,*3,3,;,2,-2,‘3, oo
ooo,1,1ﬂ% 0,1’1,1ﬂh 0’ 1,00'

where

%, =¢_4=8 ¢ = [3,2,-2,-3,8].
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Proof. The inequalities (5.26) and (5.28) hold, so
that (5.30) holds. '
We have
1 11 1]
=1 mgg t g (1 --T-—T).?< . 976.
Thus »
|-1 + ¢, + 7] < 2.590. (5. 33)
Also
1 1 1 1y
o, =1 = + + i (1 - ) !
o 6, T e_6_ 36_16_2 TE:;T i
> 1:382;
thus
1 -6, + o ] < 1,001, (5. 34)

It follows from (5.30), (5.33), and (5.34) that

3 /A < 4993 < 1.

The €-chains of the chain pairs (i) and (v) of
Lemma 5,10 and of the chain pairs of Lemma 5.11 and 5,12
include every possible e€=-chain (or its negative)

corresponding to an a-chain from g3 which contains CC,

where C is the block of numbers
C = 35353525 =2,=3,

By the argument following the statement of Theorem 5.5,

this completes the proof of the theorem.
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5e 5,  Note on the Limiting Symmetric Markov Form

I now consider the form

o o
g(x,y) = x° + ¥5xy - y%.

If F(x,y) is any symmetric Markov form, then

2
P(x,y) = Qx> + Pxy - Qy°,

D
where P2 = 59° - U (see sect. 1.4), so that F(x,y) is

proportional to the form
(x,y) = %2 & (5 - M/Qg)xy - y2

As Q => ®, f(x,y) tends to the form g(x,y). Thus we may
regard g(x,y) as the limit of forms proportional to the
symmetric Markov forms, and, in particular, as the limit
as n —=> o of forms proportional to the forms gn(x,y)
discussed in Chapter 4. The form g behaves in some ways
like one of the forms g for vhich n = O (mod 3). This is
illustrated by the following lemma.

Lemma 5.13%. For the form g = (1,J5,-1), we have

m(g) =1,
8 = Zufl
Mes fd) = 2

Proof. The form g has determinant 3 and first and

second roots R1 = =R, R2 = R, where

=222 (2,10, (5.36)

As in the proof of Lemma L,1, it can now be deduced from
(5.36) and Lagrange's Theorem that for integral (x,y # (0,0)

we have
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la(x,y)] > 1,
and that if |g(x,y)] # 1, then
|e(x,y)] > 8 - 35,
For integral X,Y ,
g(2%+1, 2¥#1) = (2X+1)2 = (2v+1)2 4 (2X+1)(2041) 75 # +1.

Since g(1,0) = 1 and g(3,-1) = 8 - 3/5, this completes the

proof of the lemma,

The following theorem can be proved geometrically;
however I shall prove it by using the methods of section 2.5
and the results of Chapters 3 and L4, to illustrate the fact
that these methods can be appiied to Torms whoszse coefficients
are not rational,

Theorem 5, 6. For the form g = (1,45,-1) we have

- Bf

.

Proof. By Theorem 3.1 any chain of I-reduced forms

equivalent to g must contain one of the forms

g = (11‘[59"1>,

3
11
g [: ’ = ('1;2'*'“['5:'!'5)’
o ‘ (5.37)
1 O]
g [-1 \1 = (=/5,2+/5,4).

If £ is either of the forms (5.37), then A(f) = 1;

therefore it followe from Lemmas 2,11 and 2,12 that if
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iari is an a-chain from either of these forms, then, for
every corregponding £-chain,

(P) < 7_11

It follows from (5.36) that any expansion of R must
begin in one of the following ways:
(i) R = [2,-2,-R],
(i1) R = |3,,2,-2,-8],
(i11) R = [3,].
if iar§ is an a-chain from g such that (1) holds, then
{ar} leads forwards to the form
h = (3-2/5,4-75,1),
whose roots are
T2,-r], [-2,-®].
Since Mh) = 8 - 3/5, this means that, for any corresvonding
€-chain,

If g, is one of the forms (4se 1) with first and second
roots -8 and S, and if n and m are sufficiently great, then
Sy EBm’_g]’ EBm’2’~2’é]

are arbitrarily close to R, Hence it follows from
Lemmas 4,7 to L.413 that if iari is an a-chain from g such

that (ii) holds, then, for any corresponding €=-chain,

MP) < &% = ﬁ:

In Lemma 5,16 we show that if iari is an a=-chain from g

such that (iii) holds, then, for any corresponding &-chain
8 = 55

M(P) < m .
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Lemma 5,14L. =, < 1 for the chain pairs

(1) soes 3,333,353, wes
oo e 9 1,1,1,1’1,1’ s 0o

(li) LR B ] 3) 3,‘2’ 3, s e
”"t1’_1’j—’i1’ L ) ’

where, in each case,

0, = [3R’] (x27), ¢, =4

Proof. In both cases

2.6180 < 8_ < 2,6181, 2.6180 < ¢_ < 2.6181,

3/10,85 = 1] < +513 (5. 38)

If (i) holds, then
' PR 1

R P I P ¢:¢2 (1 ‘T;}T)”’
so that |
.672 < T < ,856.
Similarly 672 < T_ < ,856
Hence

(=1 + 0+ 0 )(1 =g + 7)) < 2475 x .9U7 < 2. 3Uf5. 39)
If (ii) holds, then

SRR H1 - T%Ti[= 1 4 [+619].

Similarly,
O‘O = "‘1 + ﬂo619"o
Hence

(=1 + 0+ 0 )1 = ¢, + 7)) < 1,238 x 1,238 < 1.533,(5.40)

It follows from (5.38), (5.39) and (5.L40) that in both
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cases

Ty < 1e21 < 8 - 3v/5.

Theorem 5,6 now follows from Lemmas 5.13 and 5. 14.



CHAPTER 6
DAVENPORT'S CONSTANT

6.1. Introduction

Davenport's constant K is defined by
K = sup[k; M(£) > ké],

where the supremum is taken over all indefinite binary
quadratic forms

2 + bXy + cy2

£(x,y) = ax
which do not represent zero, and 4 = + V(bz ~ liac). The
existence of K follows from Theorem 1.2 , and in section 1.2
I mentioned a number of results related to this theorem;
in this chapter I discuss the value of K.
By Theorem L.1, if the forms g are defined by (e 1),

then, for arbitrarily large n £ O (mod 3), we have
Wg,) = fmlg,).
Since m(gn) tends down to 4/3 as n —> w, this means that

>

there are forms g With M(gn) arbitrarily c¢lose to A/12.

Thus we have an upper bound for the value of K:

L
K <55 o

Davenport.[30] showed that XK > 1/128, and
Cassels [15,16] has improved this result to about

K > 1/45.2. 1In this chapter I use the method of

138
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Chapter 2 to obtain

K > .0256 >39

By Lemma 2,11, if a chaln of I-reduced forms contains
a form £ for which AMf) is small, then M(P) is small for all
corresponding €-chains; and the examination of chain pairé
in [6] and in Chapters U4 and 5 shows that, if iar} contains
certain combinations of 2's, 3's, and L4's, then M(P) is
small for all corresponding €-chains. For any form £ it is
always possible to find a chain {fri of I-reduced forms such
that, for all r, M£,) is not too small (e.g.'x(fr) > 0/3
for the Hurwitz chain defined in sect. 6.2); but alternative
expansions to blocks of 2's, 3's, and L's usually confain
2's, 3's, and 4's again or lead to forms with small A's.
Since the a=-chains of a Markov form consist only of 2's, 3'8,
and I4's, this suggests that the Markov fbrms are among those
with the smallest inhomogeneous minima. For all Markov'forms F,

M(F) > m(F) > =53

thus the existeﬁce of symmetric Markov forms g, With M(gn)
arbitrarily close to 4/42 supports the conjecture that K
may in fact be 1/12. Apart from the symmetric Markov forms,
the form with the smallest known inhomogeneous minimum is
the norm form

£(x,y) = x% - 735,
for which Godwin [j{]showed that
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M(e) = %?%% = .72/

e s ey
while

=2 =z,

(It can be shown that all the a-chains of f contain ‘bad’
combinations of 2's, 3's, and L's, so we should expect M(f)
to be small)., Thus all the known evidence supports the
conjecture that the value of K is 1/12.

An advantage of the method of Chapter 2 is that it is
quite general, and so could perhaps be used eventually for
the precise evaluation of K. To obtain a bound for K, we
would need to choose an a-chain of any given form which is
not too 'bad' (where a 'bad' a~chain is one such that M{(P)
is small for all corresponding e-chains) and then to choose

a corresponding e=-chain such that inf =, is as large as

T r

possible, Before we Sould hope to get a good bound for XK,
we would therefore need to know which a-chains are
particularly bad, and which €-chains corrésponding to a
given a=-chain will make M(P) small or large. It might be
possible to obtain some information of this kind by using
a high speed computer., The main difficulty is that this
information would be local, and an €-chain which is 'good!
at one place may be very 'bad' at another — it might be
impossible to obtain an €-chain which is everywhere 'good!

(and so makes M(P) large) by joining subchains which are
locally 'googd! '
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The work of this chapter is only a preliminary attack
on the vroblem for the purpose of showing that the method of
Chapter 2 will yield a bound for X. I have not attempted to
f£ind the ideal a-chain but have used the Hurwitz chain, of
which I give an account in section 6.2; this chain was also
used by Davenport [3@]. The Hurwitz chaih has the advantage
that, for every form £, in the chain, k(fr) > &/3, and a
Turther reason for using it is that it has simplé properties
which make the calculations easier. The corresponding a-=chain
cannot contain eee,2,K50ee, (k > 0); this excludes long
sequences of 2's, which are bad, but may exclude sequences
which are good (é.g. for the forms g, of Ch.L the Hurwitz
chain gives M(P) < 4/12, while, for n = O (mod 3), M(Tf)
is muech greater than A/121 The work done here on the
Hurwitz chain shows which subchains are particularly bad and
so provides information which would be useful for choosing
a better chain,

In section 6.3 I describe a set of rules for choosing
an €-chain corresponding to the Hurwitz chain. These rules
vere suggested by experience with the symmetric Markov forms
ign} and are designed so that R will not 6bviously be very
small for any re Their main advantage. is that they are
simple — they are certainly not best possible.

Then in sections 6.4 and 6,5 I show that if {a_} is

o}
any Hurwitz chain and Eer ! is the corresponding &-chain

chosen according to the rules of section 6.3, then for all r
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ﬂr/A > .1025,

so that
M(P) > =1222 A 5 L0056 4 > é%

This will prove
Theorem 6,1, If

f(x,y) = ax? + bxXy + cy2
is an indefinite binary quadratic form which does not

represent zero, and A = + d(bz - Lac), then
M(£) > .0256 &4 > 4/39,

If the form £(X,y) has rational coefficients, then its
Hurwitz chain is periodic and the &-chain éhosen according
to the rules of section 6,3 is periodic also (though its
period may be twice that of the Hurwitz chain)., Therefore,
by the Corollary to Lemma 2,8, we have the following

Corollary. If the form f of Theorem 6.1 has rational
coefficients, then there exists & rational point (xt,y")

guch that

M(f; x',y') > 02564 > A/39.

In this chapter I\exclude from the discussion forms
which represent zero because I use the methods of Chapter 2,
which were given explicitly for forms whose roots are
irrational. However, as Barnes [8] has shown, the methods
of Chapter 2 can be modified to include singly infinite or
finite chains of divided cells; which correspond to forms

with one or two rational rootse It should be possible, by
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these modified methods, to obtaih results for forms which
represent zero corresponding to those of this chapter, and

in particular to obtain bounds for the constant 1‘1,1

defined by Cassels [15] (see sect.1.2 ), which may in fact

have the same value as Davenport's constant K.

6. 2. The Hurwitz Chain

The Hurwitz chain is a special type of chain of equi-
valent forms which was defined and used by Hurwitz [37];
as the argument in the rest of this chapter depends on the
properties of fhe Hurwitz chain, I now give an account of
them,

It is convenient to represent the numbers é%iﬁ, 1%#5,

by the first few digits of their decimal expansions:

M = 2.6180000

’

AI'
1+ 40 - 1,6180...

we note that the reciprocals of these numbers are

2 _ 3 =45 _

3 + J5 ° 2 = 03819 ..
2 _ N5 =1 _

1 + fs - 2 — .6180.00 L]

A form £(x,y) which does not represent zero is said
to be Hurwitz-reduced or H-reduced if it can be factorized

in the form

2x,y) = & ooy (O + ) (xe B,
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where 9,¢ are irrational and
9] > 2,

|8] > 1.618... if 0,4 differ in sien, ; (6.1)

|8] > 2.648... if 0,¢ have the same sign.
J

Bquivalently, f is H-reduced if 6,¢ are irrational and

1.1 1
3 <% <o

< +3819... if ¢ > 0, ¢ (6.2)

ol

e 6180.00 <

¢6180se.  if ¢< 0.

Lo s RS
A

-'3819000 i J

Clearly a form which is H-reduced is I-reduced.
¥Yor any chain of I-reduced forms {fn} and for any
corresponding a-chain ian} (Zan§ > 2) we have, for

ta
£ (x,y) = To g =] (6, x + y)(x + ¢_v),

"
- _ 4
?n = Zned ® 1 , ' (6.3)
Onet = Bnaq ~ g; J
(ol > 1, Jel > 1, o] > 1 I8, > 1.

If the form fo is H-reduced, the Hurwitz chain of forms

from f_ is the chain of I-reduced forms {fn§ which corres-
ponds to the a-~chain {an} determined by the expansions of

¢o’ 50 such that



-3 <3 <3 (nz), (6011)
n ~

= 618040y < o= < +3819.., if O
n

(n ¢ =1)p(6.5)

oi—s

< .6180... if 0n+1 < O.

n | J

The chain iani is uniquely determined and is called the

“e 3819.00 i

H-chain from f_. It is easily deduced from (6.2) and (6,3)
that, if £, is H-reduced and (6.4) holds for n = r+1, then
(6e5) holds for n = r+1; similarly if £, is H-reduced and
(6.5) holds for n = r-1, then (6.4) holds for n = r-1.

Thus if {fn} is the Hurwitz chain from f_, then (6.14) and
(6¢5) hold for all n, so that all the forms of the chain are
H-reduced, and the Hurwitz chain from any of them is {fn}.
If £ is a Gauss-reduced form equivalent to a given form then
either f or at least one of the equivalent forms (3.22),

(3. 23) is H-reduced. Thus there is at least one H-reduced
form equivalent to any given form g, and g has at least one
H=chain. (It can be shown that the H—éhain of & given form g
is unique, apart from taking its negative, but this result
is not used here,)

We note that the definition of the Hurwitz chain given
here is slightly different from the classical one because we
use the semi-regular continued fractions given by Definition
21 instead of classiéal semi-regular continued fractions.

For the remainder of this chapter {an§ is an H-chain
of any given form f. Vle shall frequently use without

comment the relations (6.1) or (6.2) and the fact that,



since }¢n[ > 2 for all n, the chain cannot contain any of
the subchains:

009,2,1{’... 3 oco,-zy"k:,oo- » ooi’zm’OOQ » ocoy“zmgooo [

where k > O, m > 2,

6. 3« Rules for Choosing the €-chain corresmonding to a

given H-chgin

In this section and in the remainder of this chapter
we use the notation and results of section 2.5.

Given an H-chain {an§, we choose a corresponding
€ -chain {en} according to the following rules:

(1) ]Enl <1 for all n;

. . 4 .
(ii) sen e_ = sgn ==X ir e # O,
n Sbn-i-‘l n

By the definition of an e-chain (Lemma 2.6,(ii), (iii),

and (iv)), it follows from (i) that:

E =0 if a

e
n A is even,

n +1 irf an+1 is odd.

®
]

For sl1ll n,

~
v

n+9

1
[y
o}
+
-
+
.
|
.
o I S
¥
N

€ (_1)P-1€n+r

i
o
l

n+2 * 00 ¢I‘l-"I'

1

N+2 eee N+T n+r+1!
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PPN £ -
Hence, if £n+1 # 0, then sgn Tn+1 = 8gn € .45 and if
_ - - = W,
€n+1 - 6n+2 T oeee = Cppat T O, Cner 7 0, then
sgn T = sgn {(~-1)T"g ¢ . 3sgn e
> n+1 i n+2 **°* “n+p’S n+r*

Thus if we fix the sign of one € = O, then the rule (i1)
uniguely determines the sign of every other non-zero €
and so (i) and (ii) uniquely determine the e-chain. By
Lemma 2,13 we may £ix the sign of one €, without loss of
generality.

From (ii) we deduce in particular that, if sn'# o

€ aq # 0, then

1ii) spn € = £ when a > >
(iii) sgn L = sen e, hen a ., > 0, a ., > 0,
€ = —gon & W » < - <
sgn €, sgn & .4 vhen I 0, 240 O.

The rule (i) 1s satisfied in any case by subchains
of {€n§ corresponding to most bad subchains of {ani, and
was therefore chosen for the sake of simplicity. If (iii)
does not hold, (N is always small (e,g. see the chain

pair (1) of Lemma 5.410), so that an e-chain which does not

satisfy (iii) is certainly bad. It turns out that, if
ian§ is an H-chain, then n, is likely to be small if [rnl

is large, so that a good e-chain must ensure that frhi is

small. Since

T h ~ _
T =e - Bl o ¢ +11 - 1 ’” (6.6)
n no 4 noj f¢n+1li
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the rules (i) and (ii) mean that }Tn] is always small,
This and the fact that (ii) implies (iii) were the main

reasons for the choosing the rule (ii)y

Prom (i) and (ii) and the properties (6.1), (6.2) of
the Hurwitz chain we deduce the following lemmas.
Lemma 6.1. If iani is an H-chain and {eni is the

corresponding €-chain which satisfies (i), then for all n,

N -
'r'e—:gh'r -<_ Ou 6180.00 .
tn

Proof. Vie have

o r €
C = & + > (=1) n-r-1
n n-4 r= )
n=-1*** "‘n-r
= En_1 - en-2 <+ s e ’_t En—r"1
n"'1 e o0 e 6
n--1 n-r

; f

1

| (1= 5——)
| en—1 vee en—r en—r-1

Hence, if |8 | > 2.6180..., and |6 __ | > 2.6180... for all

{ e

!

r > 1, then

< (l (1 + ‘ .00)
}6 { o 2.6'600‘. 8 (2'6'8(:.‘.)

= 0061800-0 ;

while if [8 | > 2,6180... , |8 .| > 2.6180.00, +u. ,

’

lon-rl 2 2.6180... , enda 1.6180... < Jo__ .| < 2,6180...
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then
| o l
i < 1 (1 + ! + : L y
[e, = 2.6180..., 2.6180... © *** T(2.6180...)1
? 1 1 | q
+ 1 - )
i (2,6180...)r( 206180000 f

.<_ 006180000 *
If 1,6180... < |0 | < 2,6180... , then |a | = 2, so that

€& 4 =0 and ldhl < 1; thus

o
552 < 006180000
l

o]

in this case alsc. This completes the proof of the lemma,

Lerms 6, 2. If iani is an H-chain and {Sn} is the

corrésponding €-chain which satisfies (i) and (ii), then

for all n,

T
n

P

n

< O,L,

}Tnf < 1 and
Proof, It follows from (i), (ii) and (6.6)that }Tp’ <1

for all n. Since !¢nf > 2 this implies that

%—EL < 0.5.
ni
If 3¢nf > 2.5, then

lﬁ—% < O.

and if 2 < |4 | < 2.5, then ¢ = 0 and
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'Thus the leunma holds in all cases.

VWie shall use the following deductions from Lemmas 6.f

and 60 2

Lemma 6. 3. If iani is an H-chain and {en} is the
corresponding €-chain which satisfies (i) and (ii), then
for all n

1t
! J
H i

g = & +I[ 0.6180000

n- n=1 I
i f
’Tn“—‘- en '§',; O.L}»;’y
;Tnz < 1.
Proof, We have
o‘n 1
c = & -zl (6.7)
n n-1 01 o

The lemma follows from Lemmas 6.1 and 6.2 by (6.6) and (6.7).

The bounds for dn and T used in sections 6.4 and 6.5

are all obtained by using (6.6), (6.7), the rules (i) and
(ii), and the results of Lemma 6,3 To avoid too much
computation, we shall mostly use the cruder bounds for Gn
given by

i

ST €y +u O.619k
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6olte Proor of Theorem 6,4 — the Case when 8¢ > O

In this section and section 6,5 we shall prove
Theorem 6.1 by showing that if ian} is any H=chain and
§8n§ is the corresponding e-chain which satisfies (i) and
(ii) of section 6.3, then, for all n,

® /A > 0,1025;

clearly it is sufficient to show that always

In this section we show that this is true when 60, ¢0 have

the same sign (60¢0 > 0), and in section 6.5 we show that

it is true also when 60,¢o differ in sign (eo¢o <0 ). As

in both cases we shall always consider (O we shall write

where no confusion arises.
Without loss of generality we may assume in this

section that © > 0, ¢ > 0, so that, by (6.1),
6 Z 2061800.. ’ ¢ > 2; (6‘8)

and We may also fix the sign of one & . If & # 0, we

take € > 0, and if ¢ =0, &_, # 0, we take e_y > 0; it

follows from (i) and (ii) that one of the following

rossibilities must occur:
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\
6_1 = O, 80 = 1,
£ = €& = 14
- ’
© ’ (6.9)
c_1 =1, €, = 0, T > 03
8_1 = 80 = Q. )

By (2.30), /A is given by

L

. [ (14840) (14647) |, | (~148+0) (1=g47) ],
[o¢ - 1] ™n | .
LI(-1-6+6)(~1-¢+T)I, | (1-8+40)(=1+¢+7)]
By Lemma 6.3 |%| < 1, and by (2.&3)
lof < 1ol =1, | < [¢] -1

Hence

3= ggl:fT'min [(e—1+¢)(¢-1—T), (9-1—6)(¢-1+T)] (6.10)

> min [_(6—8{-‘7) (¢-;—'tl, (6_3-6)(¢-;+le} . (6011)

In most cases we can show that =/4 > 41025 by considering
the products (6.11).
Ir

0<8¢69, g

1A
Q
A
2

where &< 1, o> -1,

then

<D
{v
-

joof
*

¢) 2

These results were used to obtain Table 5, where, for each
range of values of 6 and corresvonding range of values o,

values less than (8 -1 £ 9)/8 are given.



160

6.4

2 < Iy ‘asfequt oAT3ISOd B $070USD I

LS 0 190 | 619°L > o > 6L9°0- | 0%} 03> *ce0glg ¢

2G50 2660 6L9°0 > 0 > 619°0- | O *+e0gloty > g > 10849 °¢ 2
8L *L > 0 > 919°0 Azm>m ) W

. . . w—\ o—\ ._ — co 0 - - w [

602 *0 Lg°0 mmﬂwﬁd?vub ! [sor a-C]=0>¢ Gl
2ae*t > 0 > 8N9°0 (¢~ # ‘pro )

. . p Q°* . | vos = H :
9120 | 8870 xmuwm\m J# v =0 b [eor o=fc] =g 5¢ e
[zL*0 | 6L°0 6L9°L > 0 > 1§E°0 b Loer ‘c-cl=o>¢ g

W Sl > o > @20 : “ AN # ‘usns xv, -_,5:W5;§21

. . : L9 ° | M $ = H :
694 *0 €60 wm.mnﬂwl.mwlvvn L [ ¢ 2 ¢ A

o s i+ s ireres g 43 n et

e et v A e e £

EEEEY

mmm oo @Nn no P. W o > _\@m..oo v N.A.o-o «Mmq\;.. = 0 —~o—s
: _ i
I b tt08L9tC > 9> *tr08L9 T m )
< < -
o/(o-t=0) ¢/(o+i-0) 0 3 0 odfy ¢

0 < ¢o NTHI HESVD
$ W19V



o
IS

161

The ranges of values of ¢ were obtained by using (6.1),
Lemma 6.3, and the relations (6.6) to (6.9). Teble ©, which

gives values less than (¢ - 1 * 7)/¢ is similar,

TABLE 6
CASE WHEN 06¢ > O
$ type b s, &, T (¢-—;—r)/¢§(¢-1;m>/¢

Y ( ;
1,11 2,0 < 9 < 2,5 1 0 0 < T < 0L 0.3 ¢ 0.5

1.2 o o %-o.u<w<o.u 0.3 | 0.3

é, F. .2..,”5, .< . ¢ <,A,3:,.5, ,t. :1.’,(). .- ;. ‘1. . ”i e ,O.. ,ém..z., ..:c‘...,...<:.» - 1 s e .‘.v,,o,.;v._év,....m,..é .,O 824-

R s

3.1 3.5 <

A
B
A

s 1o
52 0 o oh<rcon 06 06

A
L

”%Tbiééwwgmo 5

’g;fﬂlé:éméwémm kR ; 0.63 | 0.818
N T SR A :
5.2 0 i1,

b5 < ¢ < 5.5 1' o 1 o6

IN
JEN

1,0 0< 7
o 10,63 | 0,705

0.l < T

i N
L
_\2

It follows from (6.,9) that if 6 is of any of the types
1¢1 to 1.5 (Table 5 ), then ¢ is of one of the types 1.1, 2,
3e1, 4, 5.1 (Table 6 ); while if 0 is of iype 2, then ¢ is
of one of the types 1.2, 2, 3.2, L, 5.2, and if 0 is of type 3,
then ¢ may be of any type. Calculation of the products shows
that the products (6.1]) are greater than 0.1025 for all these
cases except when © is of one of the types 1.2, 1.3 and ¢ is
of the type 1.1, or when 6 is of the type 1.3 and ¢ is of the
type 3.1, In each of these cases

6 =1+ ) (g =1-1)
0 é

> 0.1025,
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so we only need to show, by using more careful methods, that

(=1 =290 =157, 5 4025,
09 - 1

Y

If 0 is of type 1.2 and ¢ is of type 1.1, then, by
Tables 5 and 6 ,
o {8 ~ 1 - 1.172)(¢ = 1)
D Bp = 1 ’

which is an increasing function of 6 and ¢. Hence

b > L2.618u:2§é172) > 0. 103

If 6 is of type 1.3, then
6 = [3,-3, «..] > 3.276.
If now ¢ is of type 1.1, then, arguing as in the previous

paragraph, we get

(%.276 - 2.619)
p > STEs > 0.118.

If © is of type 1.3 and ¢ is of type 3.1, then by a

similar argument we get

(3'27? = 26619)2L5 > 0.156.

r >

Hence in all cases, if ©€,¢ have the same sign, we have

x/8 > 0,1025.

(It is clear that a very much stronger result could be

obtained by more precise analysis; however this would not be
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worth while because, for onr ehoieg of ian'§ and {enl, it is
not nossible to obtain easily a much stronger result for

the case when 0,¢ differ in sign.)

6e5. Proof of Theorem 6,1 — the Case when 6¢ < O

In this section we show that
x/4 > 0,1025 (6.12)
when 9,9 differ in sign (6¢ < 0). In this case, by (6.1) ,
8] > 1.6180... , |¢] > 2 (6.13)
By (2 43)
lel < 18] =15 I=] < ]¢] -1
Hence it follows from (2,30) that /4 is greater than or

egqual to
rotrer ma [(1o]s1-1oD el -], (o] -1} o])(]s]+1-]7])]

_ e (lels1=lo]) Uel=a=lz]) (Jo]=1=}s]) (Igl+1=lz])
- Thothe mon [Qelpgrlel) Qslpgpial), Uolgled Uslogelel)

If |6] > 8, |o] < o, then

1e] ?e? =lel min‘[1, g_i___:;f]

1
8

o] =g =lel ,e=1-08,

These results were used to obtain Table 7 , where, for each

range of values of [6} and corresponding upper bound of ]G},

values less than (|6} + 1 - |o])/]8] are given.
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8 type

TABLE 7

CASE WHEN 8¢ < O

8]

| <]

<

154

lo]+1-lo] |ol-1-]0]
) )

1e1

Te3

1.4

15

1.6

1.7

1.8

1e 2

1-6,_180s,--,,,<,_.l.ef_. <2

= [2,k, oos]

g? even, # 2)

mL‘z k " ]

?k oé

= [2, 3,k, o o]

?.%% < 0.172 |

o tesh2 < o]

=
-

[2:3sky s

= [2,3,K, o04]

(x oaa)

< 0,431

1.632 < |6]

< 0O.410

< 0. 4u51

< 0. 391

g o

< 0.397 1

0. 382

1 0. 275

-1 0. 164

0. 149

1 0,123
1 0. 145

1 0.172

1 0. 129

h

RO NUTUTORIEN SOV

k denotes a positive integer, k > 2.
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TABLE 7 -~~~ CONTINUED
o lo] +1-)o] l6]-1-]d]

T Tl

0 type !e;

1, 64
1+ 2.61% |
) i 1. 69u < '6} ! f

2 2<|8] < 2.6180 ... 0.619 1 0,190

ngM? T ;.;_< }9f . B;MWMHWMWW‘WMUVMMNHNwwaunﬁp

m3;1§ +e _ [3 k, ..;] o e
' (k oﬂd)

520 40 = [3,5 o] f1 + 3:%13 < 1.172] 0,931 | 0,169
(k even, # 2)

: . % . ) lef

10619 0.793 | 0.427

k denotes a positive integer, k > 2.

The upper bounds for [G} in Table 7 , wers obtained by
using (i) and (ii) of section 6.3, Lemma 6.3, and the
relations (6.1), (6.6), (6.7), a2nd (6.13). The expansions
of te given in this table cover all possibilities since those
which are omitted cannot occur in an H-chain (e.g. +6 = [3,2,...]){
Table 8 , which gives values less than (|¢| ¥ 1 - |7])/]¢],

is similar to Table 7 .
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TABLE 8
CASE WHEN 6¢ < O

5 type ¢] =l (Usl=1=1=D/18] (ela-]])/] 9]
< > . >
1 2,0 < |¢] < 2.5 0.4 0.3 ? 1. 244
2 | 2.5< |$] < 35| 1.0 0.2 1o
3 | 3.5< 9] <5l ol 0.6 1133
i 5 < |¢) 1.0 0. 555 | 1.0

If (6.13%) holds, then

o |
ok ¢+ = > 0.76L (64 115)

It follows from Tables 7?7 and 8 and from (6,14) that in

all cases

el - el = Lel) (¢] == 1D 5 6,421

1

Thus we now need only to show that

p = 19;?¢L peLY = Lol (14] +}%,' l=1) 5 6. 1025.

The results given in Table 2 were derived from Tables 7
and 8 .
By calculating p from Table ? , we see that
p > 0.1028
except when ¢ is of one of the types 1.4, 1.9 and ¢ is

of type 2. These cases must be considered separately.
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TABLE 9
CASE WHEN 64 < O

) o] =1— -
8 type ¢ m@elehiu 18] g}c}!¢]+;§¢}
>
] T ‘
any 1 0.76L4 | 0.117 1. 24
1.1, 1.2, 13, 1.5, 1.6, 1.8 2 0. 764 § 0. 145 1
1.4 2 0.803 | 0.123 1
1.7 2 0.806 | 0.429 1
1.9 2 110.808 | 0,117 | A
2,31, 3.2, L 2 0.833 | 0.127 1
any 3 | 0.849 | 0.117 | 1.333
any i by 0. 879 0. 117 1
e 1 e 8 A e e 2er 5w o tn e e meen e 1 R

£ 8 ig of type 1.L, then one of the following state-
ments holds (where k is a positive integer, k > 2):
(1) +0 = [2,3,4,-k, +ee],
= [2,3,u,k, ...] (k even, k £ 2),
(111) 40 = [2,3,,%, ...] (% odd).
If (i) holds, then

os]
1

(ii) +

0. 619

o=

0.,619
’ <1 + (3. 185'2
o

! , 2. 723

< 0.L20;

if (ii) holds, then

< 0.385;

and if (iii) holds, then it follows from rule (ii) of

section 6.3 that



fc} - )Go} < < 0.368.

—1__
2. 723
Thus if © is of type 1.4, then

o] < 0.L420;
if now ¢ is of type 2, it follows from Tables 7 and 8

that

! -1 = -
b > (le] -1 125?22)SL¢1 + 1 =1)

which is an increasing function of |@] and |¢]. Hence

p > (1,632 5,35%20)2”5 > 0.1043 > 0.1025.

If 0 is of type 1.9, then one of the following

statements holds (where k is a positive integer, k > 2):

(iV) '_te = [2’3’-3’1{, 0;0] ?
Av) 40 = [2,3,—3;k, ...] (x even, k # 2),
(Vi) ie = [—2,3)—3,—1{, .oo] (k' Odd).

If (iv) holds, then

fo‘] < 37376 < 0.470;
if (v) holds, then

1 0. 619

Lol <1+ 5538 + 57578 s 75 < 1. 448,

-t 1

1.418

lol < 359

< 0.ub43;

158
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and if (vi) holds, then 16_2] < 1, so that

1+ 5578
!0" < -———3——;:;5— < 0.,L22,

Thus if © is of type 1.9, then

le] < o.u70.
If now $ is of type 2, then, by an argument similar to
that of the previous paragraph, we get

o > (1.69u5-2;%u70)2¢5 > 0,106 > 0.1025.

This completes the proof of Theorem 6,1,
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