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THE INHOMOGENEOUS MINIMA 

OP INDEFINITE BINARY QUADRATIC FORMS

Summary of a Thesis submitted by Jane Pitman for the Degree 
of Doctor of Philosophy of the University of Sydney, August,
1957.

Let
f(x,y) = ax2 + bxy + cy2 (D = b" - hao > 0) 

be an indefinite binary quadratic form which does not represent 
zero, and let m(f), M(f), M.p(f) be its homogeneous minimum and 
its first and second inhomogeneous minima.

Chapter 1. An introduction to problems on the inhomogeneous 
minima, some of which are investigated in this thesis.

Chapter 2. An account of the fdivided cell method1 for 
evaluating M(f), which was derived by Barnes and Swinnerton- 
Dyer pH and extended by Barnes f2j . The later chapters of 
the thesis all depend on this method.

Chapter 3. The * divided cell method1 depends on the 
correspondence between chains of divided cells (cells with 
one vertex in each quadrant) of an inhomogeneous lattice and 
chains of ^-reduced* forms. Chapter 3 is a discussion of 
the question of whether it is possible to obtain all the 
chains of I-reduced forms equivalent to f by taking all the 
chains which contain one particular form —  in fact it is 
possible to obtain all the chains by starting from at mosiP-UPmV . yOj



th ree  form s, and i f  f  i s  r a t io n a l i t  i s  p o s s ib le  to ob ta in  

a l l  the I-redu ced  forms eq u iva len t to  f  (though not a l l  chains) 

by tak in g  a l l  the forms in  chains from  ju s t one form*

Chapter h* L e t  g be the symmetric Markov form

gnU , y )  = u2n+3x 2 + v 2n+3xy -  u2n+3y 2 (n  > 1 ),

where u^, v^ , i  = 0 ,1 , . denote the F ibon acci and Lucas 

numbers, then f o r  n > 11 we have

( i )  i f  n = 0 (mod 3 ) ,  then

M(Sn) = l+u2n+3 =

( i i )  i f  n = 0 (mod 3 ) ,  then

M(g n) ~ h^ou2n+3 “  "'v 2n+3  ̂ >

M2( ®n ) = K n + 3 ‘

Chapter 5* I t  is  shown that r e s u lts  s im ila r  to  those o f  

Chapter ¿4- ho ld  f o r  the e a r ly  symmetric Markov form s; the 

inhomogeneous minimum o f  the form
p p

g (x , y )  = x + </5xy -  y

i s  obtained*

Chapter 6* L e t  K denote Davenport1s constan t:

K = sup k ; M( f ) > kA .

The re s u lts  o f  Chapter ¿4- and the methods o f  Chapter 2 are used to 

show th a t

2
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Chapter 1 is introductory. Chapter 2 is expository, 

and, apart from a certain amount of reorganization, the 

only original work in Chapter 1 is Theorem 2. 2 , the proof 

of Theorem 2.1 and 2. 10 , and Lemma 2. 10. Sections 3» 2 

and 3* 3* the whole of Chapter L, the proof of Theorem 5. 3> 

and sections 3*3» 5*U> 5*5» 6.3» 6.k, 6.5 are original. 
Whenever known results are stated, the appropriate 

references are given. Acknowledgements are made at the 
end of the Introduction (Chapter 1).



CHAPTER 1

INTRODUCTION

1»1> D e f in i t io n s  and Minkowski*s Theorem 

L e t
o p

f ( x , y )  = ax + bxy + oy (1 .1 )

be an in d e f in i t e  b inary  quadratic  form w ith  r e a l  c o e f f i c i e n t s
p

and d iscr im inant D = b -  ¿4ac > 0, and w r i t e  A = + */£>. I f  

there e x i s t  in teg e rs  x , y ,  not both zero , such that f ( x , y )  = K, 

the form f  i s  sa id  to rep resen t the number K; th is  th es is  i s  

mainly concerned w ith  forms which do not represent zero ( i .  e. 

such that f ( x , y )  /  0 f o r  a l l  in te g e r  p a ir s  ( x , y )  ^ ( 0 , 0 ) ) .

The homogeneous minimum. m ( f ) ,  o f  the form f  i s  de fin ed

by

m (f )  = in f  j j f ( x , y ) | ;  x ,y  in t e g r a l ,  ( x , y )  ^ ( 0 , 0 )J . (1 . 2 )  

I f  P = ( x o ,y Q) i s  any r e a l  p o in t ,  we d e fin e

M (f ;P )  = M (f ;  xQ,y o ) = in f  | f (x+xQ,y+yo ) | ; x ,y  in tegra lj. ( 1 .3 )

We now de fin e  the inhomogeneous minimum, M ( f ) ,  o f  the form

f  by

M (f )  = sup M ( f ;P ) ,  
P

(1.u)

where the supremum is  taken over  a l l  r e a l  po in ts  P. C le a r ly ,  

i f  P ' = ( x Q,y 0 ) and P ' = P (mod 1) ( i .  e. i f  = xQ,y o' = yQ

1



1.1 2

(mod 1 ) ) ,  then M (f;Pf ) = M(f;P).  Hence in (1.U) i t  i s  

s u f f i c i e n t  to take the supremum over any complete set o f  

incongruent points  (mod 1) (e .  g. the set jxl < i,  |y| < ¿ ) .  

Since

f(x+^, y+J) = ^ f ( 2x+1, 2y+l) ,  

i t  f o l low s  from (1 .2 )  and (1 .3 )  that

M(f; i , i )  > j jm ( f ) .

Hence

M(f) > ¿m (f ) .  (1 .5 )

I t  fo l low s  from (1 .3 )  and (1.U) that corresponding to 

any point  P = ( x »y ) and any given e > 0, there e x is t s  an 

in teger  pa ir  ( x , y )  such that

|f(x+x0 , y+y0 )| < M(f) + e.

I f  in f a c t  corresponding to any point P = ( x0 >y0 ) there 

e x i s t s  an integer  pa ir  ( x ,y )  such that

|f(x+xo , y+y0 )| < M ( f ) ,

then we shall  say that M(f) i s  an attained minimum.

We define

M2( f )  = sup [M (f jP ) ;  Pf c],

where

C = LP; M(f;P) =

Obviously

Mg( f ) < M(f) ( 1. 6)
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I f  s tric t inequality holds in (1 .6 ), we say that M(f) is

an isolated minimum and ca ll M^Cf) a second minimum. 

Similarly we define a sequence M-^(f), M^(f), . . .  , of

successive minima which is  s tr ic tly  decreasing until a 

non-isolated minimum is  reached.

We shall say that two indefinite binary quadratic 

forms f (x ,y ) ,  F(x,y) are equivalent i f  there exists an 

integral unimodular transformation

t u 
v w

where t, u, v, w are integral, and tw - uv = +1, 

such that

f (x ,y )  = F(X,Y).

I f  further
t -  ' l r  ~ i -

X t U X
I 0 — o

y ~ v w Y
°  o o

then

f(x+x0, y+yo) = F(X+Xo, Y+Yo)

(1.7)

(1.8 )

fo r a ll integral x,y, X,Y, and we shall sometimes say that

f(x+x , y+yQ) is  equivalent to P(x+Xo, y+YQ), or that f  at 

U  ,y ) is  equivalent to P at (X ,YQ). I t  is clear from 

(1.8) that in this case

M(f; x ^ o) = M(F; X0>Y0).

Thus, i f  the forms f (x ,y ) ,  P (x ,y) are equivalent, then

M(f) = M(P)
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We note th at,  t r i v i a l l y ,

M(Kf) =  |K| M(f)

fo r  any real  K.

I f the form f  i s  given by ( 1. 1 ),  then we may write

f ( x , y )  =  ( « x  +  0 y ) ( r x  +  6 y ) , ( 1 .9 )

where

| ab -  0y j  =  A. (1 .1 0 )

I f  further we write

5o =  a x Q +  3 y 0 , n 0  =  y x Q +  8 y 0> ( 1 . 1 1 )

£  =  ax +  (3y +  £ q ,  ti =  y x  +  Ôy +  î i q , ( 1 .1 2 )

then

f ( x + x 0 , y+y0 ) = ( 1 .1 3 )

so that

M(f; x Q, y o ) =  i n f  j| £ r ) | ;  x , y  in te g r a l  . (1 .H O

For any real  £q, tio> the p a ir  of l in e a r  forms £ , ti given  

hy ( 1 . 12.) i s  c a l le d  a p a ir  of inhomogeneous l in e ar  forms of  

determinant A, where A i s  given by ( 1 . 1 0 ), I f  when x , y  

undergo the in te g ral  unimodular transformation ( 1 . 7 ) ,  we 

have

£(x,y) = <x»X + (3 *Y + = £ '(X,Y),

n(x,y) = YfX + 6 »Y + tio = ri*(X,Y), 

j c t ’ ô* -  (3’ y ’ | = A ,

then we say that the p a ir  of forms £’ ,r\t , i s  equivalent to 

the p a ir  of forms £,*n. The c l a s s i c a l  r e s u lt  on p a ir s  of
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inhomogeneous linear forms was found by Minkowski [¿+2] , and 
may be expressed in several different ways:

Theorem 1.1 (Minkowski M >s ¿4-)* (i) If£,h are any 
two inhomogeneous linear forms with determinant A, then 
there exists an integer pair x,y such that

l ?T1l <
this is true with strict inequality unless the pair £,rj or 
'0,£ is equivalent to a pair of forms,

9(x + e0), *(y + T)0),
such that

|9 |̂ = 9 *̂o ̂ s (mod 1).

It follows from (1.13) that this is equivalent to:
(ii) If f(x,y) is any indefinite binary quadratic form 

with discriminant D > 0, and if A = + NfD, then for any point 
(x ,y ) there exists an integer pair x,y such that

¡f(x+xQ, y+y0)| < f-;; (1•15)
this is true with strict inequality unless f(x,y) is 
equivalent to k xy and

(xQ,yo) 5 (i»i) (mod 1).

The form (i) of the theorem led to the conjecture, 
attributed to Minkowski, that the following result holds 
for all n:

If ••• are n inhomogeneous linear forms in
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n varia b le  x  ̂ , x ^9 . . .  , x , and i f  th e ir  determinant is  A, 

then there e x is t  in tegers  x^, . . .  , xn such that

This has been proved f o r  n = 3>U, but fo r  no higher value 

o f  n, though a weaker resu lt  has been proved fo r  a l l  n 

(s e e  Hardy and Wright I 35j > § 24.9)* A very large number 

o f  p ro o fs  o f  Minkowski's theorem fo r  n = 2 have been pro­

duced (see  Koksma [l+o] , pp. 18-20) in  the hope o f  fin d in g  a 

method which would gen era lize  e a s ily  to  higher dimensions.

I t  was soon re a liz e d  that fo r  certa in  forms f  a much 

stronger resu lt than (1•15) holds, and th is  gave r ise  to 

the concept o f  the inhomogeneous minimum M(f) .  The 

form  ( i i )  o f  Minkowski’ s theorem im plies that fo r  every 

p o in t  (x Q,y 0)

f̂ hus Minkowski* s theorem may be expressed equ iva len tly  as:

( i i i )  I f  f ( x , y )  i s  any in d e fin ite  binary quadratic 

form with discrim inant D > 0, and i f  A = + VD, then

th is  is  true with s t r i c t  in eq u a lity  unless f ( x , y )  i s  

equ ivalent to k xy, when

M(f) < ( 1  • 1 6 )

M(f) = M(f ;  i , i )  =

A number o f  authors have ’’ sharpened” Minkowski's 
theorem by rep lacing  the ’’Minkowski constant” A/Ij. in  (1 .16)
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by upper bounds for M(f) in terms of the coefficients of f.
In section 3.4, I shall obtain such a bound as an obvious 
consequence of Theorem 3*3» and then I shall discuss the other 
results of the same kind which have been given by different 
authors.

1,2» Davenport1 s Theorem
Davenport [~27J has proved the following rather 

surprising result, which is complementary to Minkowski*s 
theorem:

Theorem 1.2 (Davenport ¡̂ 27j ). There exists an absolute 
constant k such that, if

2 2 f(x,y) = ax + bxy + cy

is any indefinite binary quadratic form which does not
prepresent zero and if A = + \f(b - Uac) > 0, then

M(f) > kA.

We define Davenport* s constant K by

K = sup j_k; M(f) > kAj, (1 • 17)

where the sup remum is taken over all forms f which do not 
represent zero.

In Chapter 6 I shall obtain bounds for the value of 
this constant and discuss bounds which have already been 
given. Theorem 1.2 actually holds also for forms which 
represent zero (see Cassels [_15>l6j), but this case will not 
be considered in Chapter 6.
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Davenport [28,29] has proved theorems similar to 
Theorem 1.2 for certain factorizable ternary cubic and 
quaternary quartic forms, and Gassels ¡15] has improved 
the constants in these theorems.

Clearly Theorem 1.2 is also closely related to the 
following result, which is a particular case of a theorem 
of Cassels |_19~j (see Ths. X,Xl).

There exists an absolute constant such that for
every 6 there is an a for which

|x| [ex - y - a| > riM

for all integral x,y such that x ^ 0.
Cassels [19] states that the best possible value of 
is greater than 1/45*2 and less than or equal to 1/12. 

Perhaps this best possible value may even be the same as 
that of K.

1»̂ *- The Euclidean Algorithm in Real Quadratic Fields 
A real quadratic number field k( *fm), where m is a 

square free positive integer, is said to be Euclidean if 
it has a Euclidean algorithm« that is, if, corresponding to 
every number 6 (integral or not) of the field, there is an 
integer p of the field such that

(norm (p+6)| < 1. (1.18)
It can be shown that the * fundamental theorem of arithmetic' 
on the unique factorization of integers holds for the 
integers of any real quadratic field which is Euclidean
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(s e e  Hardy and W right [35J > ^ 1 2 .8 ,  12.9, 14 .7 ).

The elements o f  a r e a l  quadratic  f i e l d  k( Vm), where 

m i s  a square f r e e  p o s i t i v e  in te g e r ,  are o f  the form

x + coy, (1 .1 9 )

where x ,y  are r a t io n a l  and

(o = 4m i f  m = 2, 3 (mod 4 ) ,

co = ¿(4m + 1) i f  m = 1 (mod 4 ).

The in teg e rs  o f  k( 4m) are numbers (1 . 19) w ith  x ,y  ra t io n a l  

in te g e rs .  Then norm (x  + coy) i s  an in d e f in i t e  b inary 

quadratic  form f m( x , y )  g iven  by

f m( x , y )  = x -  my~ 

f m = x 2 + xy -  m-1 ) y 2

i f  m = 2, 

i f  m = 1

3 (mod 4 ) ,  

(mod 4)
( 1. 20)

I f  we w r i t e  6 = x q + coy , p = x + coy, then (1 .1 8 )  i s  

eq u iva len t  to

l f m(x+ xo> y+yo } l < 1
f o r  some in t e g r a l  x ,y .  Thus k( 4m) i s  Euclidean i f  and only

i f

M (fm; P ) < 1 (1 .2 1 )

f o r  a l l  r a t io n a l  p o in ts  P. C le a r ly  a s u f f i c i e n t  con d it ion  

f o r  th is  i s

M (fm) < 1. (1 .2 2 )

For th is  reason a la rg e  pa r t  o f  the work that has been done 

on the inhomogeneous minimum has been aimed a t p rov ing  (1 .2 2 ) 

o r  at d isp rov in g  (1 •21 ) f o r  some ra t io n a l  P, in  order to
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determine whether or not the f ie ld  k(Vm) is  Euclidean fo r  

d iffe ren t values o f m. This has led  to a special in terest 

in the norm forms f  given by (1 .20) and much e f fo r t  has been 

devoted to the precise evaluation o f the inhomogeneous 

minima o f these forms. Barnes and Swinnerton-Dyer [ 9]  , § 12, 

tabulated a l l  the resu lts which were known fo r  the f i r s t  and 

second minima o f forms f  w ith m < 101 up to 1952; since 

then Barnes and Swinnerton-Dyer [ 10] , Barnes [_6j , and 

Godwin [34] have published further resu lts on the minima of 

norm forms.

Davenport [ 30J proved that

K > -L- 
*  -  128*

where K is  the constant defined by (1 .1 7 ), and further that 

i f  the form f  has rational c o e ff ic ien ts  then there ex is ts  a 

ra tion a l point P such that

M (f; P) > y§g •
2

I f  A is  the discriminant o f the norm form f  then fo r  mm

large enough A is  greater than 128; thus the number o f 

Euclidean real quadratic f ie ld s  k( \An) is  f in i t e .

The set o f Euclidean f ie ld s  k( Vm) has now been 

completely determined. Chatland and Davenport [ 22J and 

Barnes and Swinnerton-Dyer [ 9]  s e ttled  the la s t few doubt­

fu l cases, thus estab lish ing the resu lt that k(Vin) is  

Euclidean i f  and only i f  m is  one o f the numbers 

2, 3, 5, 6, 7 , 1 1 , 13, 17, 19, 2 1 , 29, 33, 37, 41, 57, 73.
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1»U. The Markov Forms
Apart from the norm forms, the group of forms whose 

inhomogeneous minima have been studied most carefully are 
the Markov forms. This is due to the special importance of 
the homogeneous minima of these forms. Markov [_i+l] proved 
the following theorem.

Theorem 1.3 (Markov ¡]U1̂ }). There exists a sequence of 
forms jF^i (i > 0) such that:

if f is any indefinite binary quadratic form with 
homogeneous minimum m(f) and discriminant D > 0, and if 
A = + tfD, then

m(f) > -|
if and only if f is equivalent to a form proportional to 

for some i.
The sequence of forms

F^Xjy) = Qix2 + P^xy + R±y 2

which satisfy Theorem 1.3 and the condition that
m(F ) = Qt

are called the Markov forms. The discriminant of the 
form F. is

1 ? p
b = 9Q7 - U. 
i 1

The sequence

is strictly decreasing and tends down to as i -> oo. 
Dickson ¡33] (Gh.VIl) and Gassels [ 19j (Gh. II) both prove
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Theorera 1.3 and give full accounts of the Markov forms.
The first few of the Markov forms are:

V 2-,y) = X 2 + X 1 << f
v>

v
*
 • m(po) = 1 = 0 0 \ 5f

F.,(x:,y) +OJXII 2xy - y2; m(F.,) = 1 = A.,/VB;

f 2(*■>y) = 5x2 Hi- Hxy - 5y2; “(P2) = 5 = Ag/^ 2 2 1);

f3(*>>y) = 13x2 + 29xy - I3y2; m(P3) = 13 = AyV(l517);

;>y) = 17x2 + 38 xy - I7y2; m(Pu) = 17 = A^/VC 2600).

Davenport [25] developed a method by which he obtained 
a denumerably infinite sequence of successive inhomogeneous 
minima of FQ, and Vamavides fj+9] used this method to obtain 
similar results for F .̂ In particular,

«(V =1 = iH V’
M(?i ) = \> ¿mCP.,).

Davenport [25j also proved that
M(F2) = £ = ^m(P2).

It was conjectured that for i > 2,
M(Pi) = ¿ m ^ ) .  (1.23)

In Chapter U I shall consider a sequence ignl of 
symmetric forms which is a subsequence of (F^J. I shall show 
that, when n is great and n £  0 (mod 3)>

M(gn) = ¿m( gn), 
but, when n = 0 (mod 3)»

M(gn) > '¿“(gn)-
Thus the conjecture (1.23) is certainly not true for all
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Markov forms F^ for whioh i > 2.
In Chapter 5 I shall discuss the inhomogeneous minima

of the forms P^ to F, and of the form o d-
g(x,y) = x 2 + «/5xy - y 2,

which may be regarded as the * limiting symmetric* Markov form.

1,5. A Method for Rational Forms and some General Results 
In order to show that M(f) = k, say, it is sufficient 

to show that
sup [li(f;P0); P0 € S ] = k, 

o

where S is the unit square |x| < |yj < i* The natural 
thing to do is to exclude from consideration a set S* of 
points PQ such that

M(f;P ) < k, (1.2U)

and then to examine carefully the values of M(f;PQ) for the 
points PQ in the region S - S*. The inequality (1.2U) holds 
if and only if there exists a pair of integers x*, y* such 
that

|f(x'+xo, y*+y0)| < k;
thus for PQ to be a point of S*, PQ must be 'covered* by a 
hyperbolic region

|f(x*+x, y*+y)| < k (1 .25)
for some integer pair (x*,y*).

If
T

t u 
V w
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is an integral unimodular linear transformation such that 
(1.7) implies

f(x,y) = f(X,Y),
then T is called an automorph of f. (If further tw - uv = +1, 
T is a proper automorph of f). If PQ = (xo ,yQ), Qq = (x0,Yo ^  
and

—  — —  — 1X
0

t u X o
yo v w Y 0

we shall write
(1.26)

Pc = t (q c).

Clearly, If T is an automorph of f, then (1.7) and (1 .26) 
imply that

f(x+x0 , y+y0) = f(X+X0, Y+Yq),
so that

M(f ;T(Q0) = M(f;Q0). (1.27)
If R is a region all of whose points satisfy (1.2U) and

the form f has an automorph T, it follows from (1.27) that 
+n

if the point T~ (Qq) lies in R for some integral n, then the
point Q also satisfies (1.2U). Thus, by starting from the

+n
region R and considering the points T~ (Qq) corresponding 
to points Qq in S - R, we can obtain a larger set of Covered* 
points 8*.

Barnes and Swinnerton-Dyer 19] (Theorem J) gave a
simple result by which it is possible to determine a
* covered1 set of points R in S without any tedious
examination of the hyperbolic regions (1 .25), Then, 
starting from the fact that, if an indefinite binary
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q u a d r a t i c  form f  h as  r a t i o n a l  c o e f f i c i e n t s  and does  not 

r e p r e s e n t  z e r o ,  then f  h as  an i n f i n i t y  o f  automorphs ( s e e  

Dickson [ 32J  ,pp .  111 -115)  , and from the i d e a s  o f  the p r e ­

c e d in g  p a r a g r a p h s ,  they  d ev e lop ed  a g e n e r a l  method f o r  

e v a l u a t i n g  the inhomogeneous minimum o f  a r a t i o n a l  form f .  

They u sed  t h i s  method to e v a l u a t e  the minima o f  c e r t a i n  

norm forms and then in  [ 1 0 } they extended i t  to  o b t a i n  

seq u en ces  o f  s u c c e s s i v e  minima o f  some o t h e r  norm forms*

By the methods o f  j j o ]  they were a b le  to e s t a b l i s h  the 

g e n e r a l  r e s u l t s  g iv en  i n  Theorem 1 . 4 ,  where we w r i t e  

f ( P )  = f ( x , y )  i f  P = ( x , y ) .

Theorem 1 . 4  (B a r n e s  and Swinnerton-Dyer JM . *Ths* L* Ivl. ) . 

I f  f ( x , y )  i s  an i n d e f i n i t e  b in a r y  q u a d r a t i c  form which h as  

r a t i o n a l  c o e f f i c i e n t s  and does  not  r e p r e s e n t  z e r o ,  then

( i )  To any p o i n t  P th ere  c o r r e sp o n d s  a p o i n t  P^ and 

an i n t e g e r  p o i n t  Q such t h a t

M (f ;P )  = and mU j P ^  = f ^ + Q ) ;

( i i )  The s e t  o f  v a l u e s  o f  M ( f ; P ) ,  a s  P v a r i e s ,  i s  

c l o s e d  ( s o  t h a t  M(f)  i s  an a t t a i n e d  minimum).

( i i i )  Given any e > 0 th e r e  i s  a  r a t i o n a l  p o i n t  P 

such t h a t  M (f ;P )  > M(f)  -  e.

B a r n e s  and Swinnerton-Dyer ¡ j o j  c o n j e c t u r e d  t h a t  i f  

f  s a t i s f i e s  the c o n d i t i o n s  o f  Theorem 1 . 4 ,  then M(f) i s  

r a t i o n a l  and i s o l a t e d ,  and th ere  i s  a t  l e a s t  one r a t i o n a l  

p o i n t  P such t h a t  M (f ;P )  = M (f ) .
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1 .6 . Inhomogeneous L a ttice s

We now consider the problem o f  the inhomogeneous 

minimum o f  a form f  which s a t is f ie s  (1 .9 )  and (1 .1 0 ) in 

terms o f  the ^ n -p la n e , where £ and *n are determined by 

(1 • 11) and (1 .1 2 ) .  I f  the set o f  p o in ts  (£,*n), where x 

and y take a l l  in teg ra l values, has no po in t on e ith er  o f  

the axes, £ = 0, *n = 0, then th is  set i s  ca lle d  an 

inhomogeneous la t t ic e  corresponding to f  and ( x0 »yQ) ,  and 

i s  denoted by L = L(£ , 1̂ ) .  ( i f  there i s  a p o in t on one o f  

the axes, then M (f;xo ,y Q) = 0 , and so from the poin t o f  

view o f  the inhomogeneous minimum o f  f  we lose  nothing by 

excluding  th is  ca se .)

I f  £' , t)' are a p a ir  o f  non-homogeneous lin e a r  forms 

equ iva len t to £, “n (see  sect. 1 . 1 ) ,  then V  , n1 determine 

the same inhomogeneous la t t ic e  as £, n, and determines

a form equivalent to f .  A lso , i f  V  = K£, V  = ^rj, then 

the p o in ts  ( £ f , “H*) form an inhomogeneous la t t ic e  correspond­

ing to f  and (x  fy ) ,  and the values o f  |£, ‘nt j co in cid e  with 

those o f  |£n|; the inhomogeneous la t t ic e  determined by the 

p o in ts  ( S , ,'n’ ) i s  said to be sim ilar to L.

I t  fo llow s  from (1.11+) that

M(f ;  xQ,y o ) = [ in f  |€n|; € L j. (1.28)

A parallelogram  whose v e r t ic e s  are la t t ic e  p o in ts  o f  L 

i s  c a l le d  a c e l l  o f  the la t t ic e  i f  i t  contains no la t t ic e  

p o in ts  other than the v e r t ic e s . The area o f  a parallelogram  

whose v e r t ic e s  are la t t i c e  p o in ts  is  not le ss  than A, and
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i t  i s  c l e a r  th a t  such a p a r a l l e l o g r a m  i s  a c e l l  i f  and on ly  

i f  i t s  a r e a  i s  A.

I f  P , Q are  l a t t i c e  p o i n t s ,  then the i n f i n i t e  s t r a i g h t  

l i n e  PQ i s  c a l l e d  a  l a t t i c e  l i n e ; and i f  the segment PQ 

c o n ta in s  no l a t t i c e  p o i n t s  e x c e p t  P and Q, then the d i r e c t e d  

segment PQ i s  c a l l e d  a  l a t t i c e  s t e p . Any two l a t t i c e  s t e p s  

which form  n e ig h b o u r in g  e d g e s  o f  a  c e l l  may be u se d  w ith  a 

p o in t  o f  the l a t t i c e  to  g e n e r a te  the whole l a t t i c e ,

A c e l l  i s  s a i d  to be d iv id e d  i f  one o f  i t s  v e r t i c e s  i s  

in  each o f  the f o u r  q u a d ra n ts .  Delauney [ 31] proved  

Theorem 1 ,5  ( Delauney j^3l) ) • Every inhomogeneous 

l a t t i c e  h as  a t  l e a s t  one d iv id e d  c e l l .

Delauney* s p r o o f  was g iv e n  by B arn es and Sw innerton- 

Dyer jjlJ, and Bambah | 5] h a s  g iv e n  a d i f f e r e n t  p r o o f .

Sawyer j U 7 j , assum ing the e x i s t e n c e  o f  a  d iv id e d  q u a d r i­

l a t e r a l  w ith  l a t t i c e  p o i n t s  a s  v e r t i c e s ,  gave a new and 

e le g a n t  p r o o f  o f  Minkowski’ s  theorem (Theorem 1 . 1 ) .

B arn e s  and Sw innerton-D yer [_1 lJ  have d ev e lop ed  a 

po w erfu l method f o r  e v a l u a t i n g  the inhomogeneous minimum o f  

an i n d e f i n i t e  b in a r y  q u a d r a t ic  form f  by c o n s t r u c t in g  c h a in s  

o f  d iv id e d  c e l l s  o f  inhomogeneous l a t t i c e s  c o rre sp o n d in g  to  

f .  A l l  the work in  t h i s  t h e s i s  depends on t h i s  method.
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1.7. Plan of the Thesis.
In Chapter 2 I shall give an account of the theory of 

the divided cell method of Barnes and Swinnerton-Dyer |ll], 
because this is the basis of the work in the later chapters. 
The chains of divided cells corresponding to a form f turn 
out to be closely related to chains of f I-reduced’ forms 
equivalent to f (see sect. 2.U). These chains are different 
from the classical chains of 1 reduced1 forms in that the 
number of chains corresponding to f is infinite, and that in 
general a form has pairs of possible right and left neighbour­
ing forms instead of unique right and left neighbouring forms. 
The question arises, whether we can obtain either all the 
chains of I-reduced forms equivalent to f, or at least chains 
containing all the I-reduced forms equivalent to f, by 
taking all the chains to which a given form belongs. In 
Chapter 3 I shall consider this question, which must be 
answered in order to use the divided cell method to find 
the inhomogeneous minima of forms for which the number of 
equivalent I-reduced forms depends on a parameter and so is 
unbounded (e.g. the forms gn of Chapter 4).

In Chapter ¿4- I shall apply the methods of Chapter 2 
and the results of Chapter 3 to find the inhomogeneous 
minima of a sequence of forms ign! which are a susequence 
of the symmetric Markov forms (see sect. 1.U). In Chapter 5 
I shall consider the early symmetric Markov forms and the 
limiting symmetric Markov form (see sect. 1.U).
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In Chapter 6 I shall use the methods of Chapter 2 

to obtain a lower bound for Davenport* s constant K 

(see sect. 1.2).

Numbers in square brackets w ill refer to the 

bibliography at the end, and whenever results are not 

original, the appropriate references w ill be given.

I wish to thank my supervisor, Dr. E. S. Barnes, 

very much for a ll his help; in particular, I am grateful 

to him for suggesting the problems I have studied and 

for suggesting the application of the divided ce ll 

method of £l l] to these problems. The work for this 

thesis was done while I held a Teaching Fellowship 

in the University of Sydney, and the computations for 

Chapters Uf 5» and 6 were done on a Brunsviga provided 

by the University.



CHAPTER 2

THE DIVIDED CELL METHOD

The r e s u l t s  o f  the l a t e r  c h a p te r s  o f  t h i s  t h e s i s  a l l  

depend on th e d iv id e d  c e l l  method f o r  e v a lu a t in g  the in ­

homogeneous minimum o f  an in d e f i n i t e  b in a ry  q u a d r a t ic  form . 

T h e r e fo r e , f o r  the sak e  o f  c o m p le te n e ss , I  g iv e  in  t h i s  

c h a p te r  a  f u l l  acco u n t o f  the th eo ry  o f  the method, which was 

d e v ise d  by B arn e s and Sw in n erton-D yer [ 1 1 ] ,  and then exten d ed  

and a p p l ie d  by B arn es [6] . I  u se  the n o ta t io n  in tro d u c e d  by 

B a rn e s  and Sw innerton-D yer [ l  1J , and, a p a r t  from  some r e ­

arran g e m en ts and e x te n s io n s ,  I fo llo w  the g e n e ra l  l i n e s  o f  

t h e i r  d i s c u s s io n .  A f t e r  the h e a d in g s  o f  theorem s and lemmas 

I l i s t  theorem s o r  lemmas o f  j 11] o r  [ 6j which c o n ta in  any o f  

the same r e s u l t s ;  where p r o o f s  a re  g iv e n  co m p le te ly  in  [11~] 

o r  [_6j I in c lu d e  on ly  th o se  p o in t s  which a re  e s s e n t i a l  to  the 

u n d e rs ta n d in g  o f  the d iv id e d  c e l l  method.

2 .1 ,  The C hain  o f  D iv id ed  C e l l s  o f  an Inhomogeneous L a t t i c e  

Throughout t h i s  c h a p te r  f  d en o te s  the in d e f in i t e  b in a ry  

q u a d r a t ic  form

f ( x , y )  = ( ax + PyXrx  + &y), (2 .1 )

where a /P , 6 /y a re  i r r a t i o n a l ,  | ad -  (3yj = A = \TD, and D > 0 

i s  the d isc r im in a n t  o f  th e fo rm ; we c o n s id e r  an inhomogeneous

20
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lattice L (see sect. 1. 6 ) corresponding to f and to the point 
(x’,y*). By Delauney's Theorem (Theorem 1*? ), L has at least 
one divided cell; and since a/(3, 6/y are irrational none of 
the lattice lines of L can be parallel to either of the axes. 
The method of Barnes and Swinnerton-Dyer depends on an algo­
rithm, based on these two facts, for constructing a doubly 
infinite chain of divided cells, iSnl(- co < n < oo).

Suppose A , B . G . D are the vertices of the divided o o o o
cell S , and are either in the first, fourth, third, andO " “ " ■ 1,1 ~
second quadrants respectively, or in the third, second, first, 
and fourth quadrants respectively, so that AqDo, BoGo inter­
sect the h-axis. Then , with vertices , B̂  , , is
the cell defined by taking A^B^ as the unique lattice step in 
the line A D which cuts the £-axis, and C,D, as the unique 
lattice step in the line BQG0 which cuts the £-axis. Thus

A, = A„ + (h + 1 )(D - A ) ,1 o o o o
B , = A^ + h (D - A )1 o ov o o'

^ where hQ is the unique integer such that rj( A^) ,r)(B̂ ) are 
opposite in sign; and

C, = C + (k + 1 )(D„ - A j  ,1 o o o o
Dj = C + k (D„ - A j  ,1 o ov o o ' 7

where kQ is the unique integer such that T)(G^),,n(D>j) are 
opposite in sign. It is clear that is again a divided 
cell, where A^C^ lie one in each of the first and third
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quadrants, and lie one in each of the second and
fourth quadrants. The unique divided cell which can thus 
be constructed from a given divided cell SQ will be called 
the successor of SQ.

Similarly, we can construct a unique divided cell S_^,
the predecessor of SQ , by taking the unique lattice steps in
the lines A0B0> G0Do which cut the h-axis; it follows from
the construction that S must then be the successor of So -1

Since there are no lattice lines parallel to the axes, 
and S ^ , Ŝ  are themselves divided cells, we can use the 
same constructions again to obtain the divided cells S_2, S^, 
and so on indefinitely. In this way, starting from SQ , we 
get a doubly infinite chain of divided cells [ S } (- oo < n < oo) 
of the lattice L; if now we apply this process to any cell 
Sn of the chain, we shall obtain exactly the same chain 
because the constructions for the successor and for the 
predecessor of a divided cell are mutually inverse. For 
each n, the vertices An , B , C , Dn of Sn lie in the first, 
fourth, third, and second quadrants respectively, or in the 
third, second, first, and fourth quadrants respectively, and 
satisfy the relations

v

* f (2.2)

J
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where hn is  the unique in te g e r  such that

are oppos ite  in  s ign , and kn is  the unique in te g e r  such that 

n(Cn+>i)> are °P P °s i 'te in  s ig n* I f  we w r ite

The chain  o f  in te g e r  p a irs  h , k and the v e r t ic e s  o fn n
the d iv id e d  c e l l s  Sn s a t is fy  the fo l lo w in g  lemmas*

Lemma 2.1. For a l l  n, h / 0, k 4 0 and h _ , k have --------------  n n n n
the same sign .

P r o o f. ri(An) , ri(Dn) have the same s ign , so that h^ ^ 0; 

s im ila r ly  kR ^  0. A lso  ri(Dn -  An) , *n(Cn -  B ) have the same 

s ign , so that hn , k have the same sign .

Lemma 2. 2 ( ¡ 1 1 ] ,  Lemma 1 ) .  Each o f  the fo l lo w in g  s ta te ­

ments i s  im possib le :

( i )  h = -  1 f o r  a l l  n > nQ o r  f o r  a l l  n < -  nQ;

( i i )  k ^ =  - 1  f o r  a l l  n > nQ o r  f o r  a l l  n < -  nQ;

we have

(2. u)

= 1 f o r  a l l  r  > 0 o r  f o r  a l l  r  < 0.

P r o o f. The p ro o f i s  g iven  f u l l y  in  | 11] . 

Lemma 2. 5 ( [ 11 j , Lemma 2 ). Each o f

|Tl(Vn)| , h (A n)| , h (B n)|, |n(Cn)| , ln(Dn)| , 

|5(V_n)|, |5(A_n)|, |S(B_n)|, |e(C_n)| , |g(D_n)l

tends to zero as n — > + 00 and tends to in f in i t y  as n — > -  oc
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Proof. In [llj , it is shown in the proof of Lemma 1 

that !V ( is strictly decreasing , and in the proof of Lemma 2 
that the inequality

( 2 . 5 )

holds for arbitrarily large positive n (though not necessarily 
for all large positive n). Hence J ri(V )| tends to zero as 
n —> + Oo . Since

I -n( vn_1 > | = h(Bn)j + h(An)| = |n(cn)| + |n(Dn)|,

it now follows that each of |7i(An)|, |'n(Bn)j, |Ti(Cn)|, ¡T|(Dn)j 
tends to zero as nr-> oo. The corresponding results for 
| « V j | ,  |£(A_n)|, |£(B_n)|, |£(G_n)|> |^(B.n)| may be proved 
similarly.

By a similar argument to that used in [j 1] , it can be
shown that (2.5) holds for arbitrarily large negative n, so
that | T»(V ) | —> oo as n —> oo .#«#11

Suppose ¡T)(An)| does not tend to infinity as n —> - oo , 
so that there exists K > 0 such that |r>(An)| < K for arbit­
rarily large negative n. Since |£(An)| — > 0 as n —> - oo , 
this means that, for arbitrârily large negative n, An lies in 
the square | £j < K, | *nj < K. This square contains only a 
finite number of lattice points, for each of which j > 0. 
Thus |£(An)| cannot tend to zero as n —> - oo , and we have a 
contradiction. Hence |TK An)| —> oo as n —> - oo .

The other results may be proved similarly.
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Theorem 2» 1 ( f 11 j , Theorem 5)* I f  L is  the inhomogeneous 

la t t ic e  corresponding to f  and to the point ( x ! , y * ) ,  then 

there is  a doubly in f in it e  chain o f divided c e lls  Sn 

( — oo < n < oo) o f L whose ve rtices  A , B , C , Dn sa tis fy  

( 2. 2 ), and

M( f  ;x* ,y f ) = inf[|£n|; ( An>Bn>cn>Dnl > -  00 <n<coj  . (2 .6 )

Theorem 2.2. I f  a chain is  1 o f divided c e lls  s a t is fie s----------------  c n'
the condition o f Theorem 2. 1, then i t  includes a l l  the 

divided c e lls  o f L.

The existence o f a chain ¡Sn5 was shown above. In [r11j, 

the proof o f Theorem 5 is  sketched; (2 .6 ) is  an immediate 

consequence o f th is  theorem. Theorem 2.2 means that every 

inhomogeneous la t t ic e  corresponding to f  has a unique chain 

o f d ivided c e l ls ;  th is resu lt is  not stated e x p lic it ly  or 

proved in  [11] or [6 j . I t  is  convenient to combine the 

proofs o f (2 .6 ) and Theorem 2.2.

Proof o f Theorems 2. 1 and 2. 2. Let [ S ] be a chain o f 

divided c e lls  o f L, and fo r  each n le t  P^, Qrj, R^, T^ be 

the vertices  o f Sn which l i e  in  the f i r s t ,  second, th ird, 

and fourth quadrants respectively . I f  P^, P  ̂ are d is tin ct 

f i r s t  quadrant vertices  o f successive c e lls ,  then one o f 

the fo llow ing  statements holds;
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(i) Tn, P , ?n+^, Qn+>| lie on one lattice line, while
T ., R ., R , Q lie on the neighbouring lattice line n+1 n+1 ii n
parallel to it and on the other side of the origin 0 (see 
fig. 1 ) ;

(ii) PR, Tn, Tn+Jj, Rn+Jj lie on one lattice line,while 
P ^9 ^n+19 ^n5 Rn on neighbouring lattice line 
parallel to it and on the other side of 0 (see fig. Z ).

By Lemma 1.3 £(Pn) tends to zero as n — » - oo and to 
infinity as n — > + oo , while *n(Pn) tends to infinity as 
n — > - oo and to zero as n — > + oo ; and it follows from 
the construction that, for all n, £(pn+-j) > ^(Pn),



2.1 27

^ Pn+1) -  ^ P ri^# Hence, i f  P i s  any f i r s t  quadrant l a t t i c e  

p o in t ,  there e x is t s  an n such that P l i e s  e i th e r  on the l in e  

0Pn o r  in  the in t e r i o r  o f  the acute angle determined by OP , 

°P n+1, where PR+1 + PR.

I t  i s  c le a r  from the f ig u r e s  tha t, whether ( i )  o r  ( i i )  

ho lds, there can be no l a t t i c e  po in t  in  the in t e r i o r  o f  the 

t r ia n g le  determined by the l in e  P^ Pr+  ̂ and the p o s i t i v e  

a x e s .* I t  now fo l lo w s  from the s t r i c t  convex ity  o f  the 

reg ion  j £t)| > K th a t ,  i f  P i s  on 0Pn, then P l i e s  in  the 

reg ion  i f  and on ly  i f  Pn does, w h ile ,  i f  P i s  in  the in t e r i o r  

o f  the acute angle determined by 0Pn, > then P l i e s  in

the reg ion  |Zvj > K i f  and on ly  i f  P , Pn+  ̂ do. Thus 

j £ri| > K f o r  a l l  f i r s t  quadrant l a t t i c e  po in ts  ( £ , ti) i f  and 

on ly  i f  |£ti] > K f o r  a l l  p o in ts  Pn. By app ly ing  the same 

argument to the o th er  quadrants, we have

in f  [| £n| ; ( £ , n ) € L ] = [ i n f  j Cvj ; (€ ,  n) € i pn>Qn>Rn>Tn l , - o o < n < o o ] ;

since A , B , C , D are a permutation o f  P , Q , R , T .n* n* n* n * n’ n ' n* nf
th is  proves (2 .6 ) .

Now suppose that P , Q, R, T are the f i r s t ,  fou rth , th ird ,  

and second quadrant v e r t i c e s  o f  a d iv id ed  c e l l  such that P ¿4 P^

Note, however, that, i f  ( i i )  ho lds, there may be l a t t i c e
p o in ts  on the l in e  P P . between P and the n -a x is ,  or betweenn n+1 n
Pn+1 ^“'ax -̂s > i t  i s  e a s i l y  shown that the set o f  a l l
such p o in ts  must co in c id e  w ith  P . ,  P 0, . . . ,  P , f o r  somen—1 n—2 n—r
r , o r  w ith  Pn+2, Fn+y » >  pn+s f o r  some s.
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f o r  a l l  n. As PQRT c o n t a i n s  no l a t t i c e  p o i n t s ,  P must l i e  i n  

th e  i n t e r i o r  o f  th e  a c u t e  a n g l e  d e te r m in e d  by OP^, OP^+>j > f o r  

some n f o r  which P R+  ̂ ^  P .

Suppose ( i )  h o l d s .  Then i f  e i t h e r  Q o r  T i s  on o r  above 

th e  l i n e  P , P n + 1 , PQRT c o n t a i n s  one o f  P n , P n+Jj . Hence Q, T 

must be  on o r  below th e  l i n e  T , so t h a t  th e  t r i a n g l e

PQT c o n t a i n s  Rn , R ^ . Thus,  i f  ( i )  h o l d s ,  PQRT c a n n o t  be 

a c e l l .

Suppose ( i i )  h o l d s ,  so t h a t  P c a n n o t  l i e  betw e en  th e  

l i n e s  P T ^ ,  QnRn* I f  P i s  on o r  above th e  l i n e  P nTn , th e n  

th e  t r i a n g l e  OPT c o n t a i n s  P , w h i l e ,  i f  P i s  on o r  below the  

l i n e  QnRn , th e  t r i a n g l e  OPQ c o n t a i n s  P n + ^. Thus, i f  ( i i )  

h o l d s ,  PQRT c a n n o t  be a d i v i d e d  c e l l .

Thus we g e t  a c o n t r a d i c t i o n  u n l e s s  P = P ^  f o r  some n.

By a p p l y i n g  the  same argument t o  the  o t h e r  q u a d r a n t s ,  we see  

t h a t  th e  s e t  o f  p o i n t s

i n c l u d e s  a l l  th e  v e r t i c e s  o f  d i v i d e d  c e l l s  o f  L.

L e t  P =  P n ^  PR + i , Q = Qm 4 Qm+i be  th e  f i r s t  and f o u r t h  

q u a d ra n t  v e r t i c e s  o f  a d i v i d e d  c e l l ,  and P T, Q* be th e  f i r s t  

and f o u r t h  qu adran t  v e r t i c e s  o f  i t s  s u c c e s s o r .  I t  f o l l o w s  

from  th e  c o n s t r u c t i o n  t h a t ,  f o r  any n ,  i f  P  ̂ 4 P n , t h e n  

e ( P n + 1 ) > e ( P n ) ,  n ( P n + 1 ) < n ( P n ) ;  s i m i l a r l y , i f  P '  /  P ,

£ ( P f ) > 5 ( P ) ,  'n(P’ ) < n ( p ) .  Suppose P ‘ 4 P .  Then, s i n c e  

P ! must c o i n c i d e  w i t h  P p f o r  some r ,  P f must be one o f  

P n + i > ^>n + 2 , ••• • The r e  can  Be no l a t t i c e  p o i n t  i n s i d e  the
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triangle determined by PP* and the positive axes, but this

triangle contains PR+1 if P* ^ Pn+1 ; hence P* = Pn+>). It is

clear from Pigs. 1 and 2 that there can be only one pair of

successive divided cells with P , P . as first quadrantn n+1
vertices, so that P = P n , P T = Pn+Jj implies Q = Qn* If 

P ! = P, then Q* / Q, and by a similar argument P = P .

Hence, if Pn £ pn+1 > Qm ^ Qm+1 are the first and fourth 
quadrant vertices of a divided cell, the cell must be one of 

S , Sm. By applying the same argument to the other quadrants, 

we see that iSn J includes all the divided cells of L.

Theorems 2.1 and 2.2 show the importance of chains of 

divided cells for the evaluation of the inhomogeneous 

minimum. In order to study the chains of divided cells 
further, we need to set up a special type of continued 
fraction, for which the necessary results will now be given.

2. 2. A Special Type of Continued Fraction

If [a }(n > 1) is a sequence of integers such that 

| a | > 2 for n > 1, we write

p _ i = °> = 1 ; o ll ’ « 0 = 0 ; p i = V  ^1 II ..'il
-J

p n+1 = a , . n+1 pn ~ pn-1 ( n > 1 ) , N

^n+1 = an+1 ^n -  ^ - 1 (n > 1 ) .

The following lemma is easily proved by induction.
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Lemma 2. k ( [ l  1 ] , Lemma 3 ) .  I f  ( p i ,  { q^l  a re  d e f in e d  

by ( 2. 7) 9 then

( i )  f o r  a l l  n > 1, -  PA . 1 = 1 ;

( i i )  f o r  a l l  n > 1,

' - ^n '  -  1 t i « -  * -  n ’

( i i i )  i f  a .  > 0 f o r  i  = 1 , 2 , . . . , n ,  then p n > 0 ,  q > 0.

I t  f o l l o w s  from Lemma 2. k t h a t ,  f o r  n > 2,

n
Ln

n-1
^n-1 I 1 n ^n " b  ’

so t h a t  the s e r i e s

i s  c o n v e r g e n t .  Hence the sequence [ Pr /q.rj<?on^verges to  a  l i m i t  

a , w hich ,  by ( i i ) ,  s a t i s f i e s  [« j > 1. T h i s  j u s t i f i e s  the 

f o l l o w i n g  d e f i n i t i o n .

D e f i n i t i o n  2 . 1 . F o r  any sequence o f  i n t e g e r s  [ a^} such 

t h a t  | a n | > 2 f o r  n > 1 ,  a = [ a ^ , a ^ , a ^ , . . . ]  i s  d e f i n e d  by

a = [ a 1 , a 2 , a 5 , . . . J  = l im  p / V  ,
J  n —> co

where Pn >(ln a re  d e f i n e d  by ( 2 . 7 )  and ¡<*| > 1 .

C l e a r l y ,

1

so t h a t  [ a ^ , a ^ , a ^ , . . .  ] i s  e a s i l y  t r an s fo rm e d  in t o  a  c l a s s i c a l  

s e m i - r e g u l a r  co n t in u ed  f r a c t i o n
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« = a, + 1 ( t̂ i = ±1 ) ,  ( 2 . 8 )

whose convergents have the same value (though the signs o f  

Pn and an may be d i f fe r e n t ) .  We sh a ll never use c la s s ic a l  

sem i-regular continued fr a c t io n  expansions o f  the type ( 2 . 8 ) ;

regu lar continued fr a c t io n  expansion o f  a, to d istin gu ish  i t  

from the simple continued fr a c t io n  expansion o f  a.

Lemma 2. 5 ( [ i i ] ,  Lemma 4 ). I f  a = [a ^ ,a 2,a^, . . . ] ,  then

( i )  j aj > 1  i f  i s  not constantly  equal to 2 or  to -2  

fo r  large  n;

( i i )  the convergents pn/a  form a s t r i c t ly  decreasing 

sequence i f  fu rth er an > 0 f o r  a l l  n.

P fro o f . A complete p roo f o f  ( i )  i s  given in  [ i i ]  ; ( i i )  

i s  an immediate consequence o f  ( i )  and ( i i i )  o f  Lemma 2.4«

In fa c t  we sh a ll consider only sem i-regu lar continued 

fra c t io n s  which s a t is fy  con d ition  ( i )  o f  Lemma 2.5* Any 

ir r a t io n a l  a has a unique expansion by the nearest in teger 

above; a = [a ^ ,a 2,a^, . . . ] ,  with a  ̂ > 2 f o r  n > 2 and 

an > 3 f o r  some a r b it r a r i ly  large n; but, on the other hand, 

i f  the a^ are r e s tr ic te d  only by the con d ition s that janj > 2 

and that a be not constantly  equal to 2 or to -2  f o r  a l l  

large n, then any ir r a t io n a l a has in f in i t e ly  many expansions.

so w ithout confusion  we may c a l l  a = [a ^ ,a 2>a-/> . ••] a semi• • •
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2 .3» The Correspondence between Chains of Divided Cells 
and Pairs of Chains of Integers.

Let [ Snl (-cx) < n < co ) be the doubly infinite chain 
of divided cells of the inhomogeneous lattice L corresponding 
to the form f and the point (x’,y’), so that, for all n, the 
vertices of. Sn, Sn+<j satisfy (2.2), (2.3), and (2.U). Let 
the -coordinates of the vertices of be given by

n n n 
Gn

+ P , v  +L n* n Y +n V ’ B = (?' n N n + a ,71’ + n* n
= (ë *, V ),N n7 n ' 9 D =n + P ,V +n' n ô ),n7 ’

n‘
(2.9)

and. define the point (x ,y ) by

V  -  cl X + P y , T)' = Y x + ô y . n n n n^n* n n n r n ( 2. 1 0)
Theorem 2. 5 ([il], Theorem 2). For all n, let

ln+1 = hn + kn’ en = hn " V

®n _ tan’an-1’an-2* ‘" b  ~ f
Then

an+1'an+29an+3 , . . . J .  ( 2 . 1 1 )

2 V

a /p = 0 ,n' n n ’ ô /y = 0 ,n7 n n* (2.12)

= (3 (e . + n  ni n-1
co
E  ( - O r

r=1
£n-r-1 \ (2.13)

6 n - 1 0 n - 2 ‘ -'9 n - i /

= Y Ie +n ni n
00
E  (-1)
r=1

£n + r  \ (2. 1U)
^n+1^n+2* * * ̂ n+r/

and f (x+x1,y+y*) is equivalent to

f (x+x ,y+y ) = (ax + 3 y  + ^f)(rx + ô y + rj1). (2.15)n' n,l/ •'n' x n rr n/v n i r  n ' v
Proof. Using (2.3), we have
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V r  = ( a r » > 0  = ( - 0 ^

so that, by ( 2. ¿4.) ,

Thus

whe re

Y r+ 1 — — a r+ lY r '  Yr-1 >

a a , a — ar+1 r+1 r r-1 9

Yr+1 = — a y r+1 r - r-1

Y r - t V V  = ( -i)r(a n — 
o^r P q. ,Y o ^ r  o

I u o >• a _ 1 =  1 ; p o = 1,  4 0 =5 0; P l :

o xr'

■̂ r+1 “ ar+1^r ^r-1

^r+1 ar+1 ̂-r ” ^r-1

(r > 1), 

(r > 1).

It is easily shown by induction that { q̂ j — > oo as r — > go ; 
and, by Lemma 2.3, Tl(V ) — >0. Hence, by Definition 2.1,

V Yo = lira P jA r  = [ a -| >a 2’ a3 ’ • • • ]  = V  r  —;> oo

Similarly, a0/&0 = eQ* Thus (2.12) holds for n = 0, and 
similarly for all n.

It follows from (2.2), (2.3), and (2.U) that, for n > 1,

An = Ao - (ho + 1) Yo - (h1 + lr —  - <hn-1 + 1> Yn-1 ’

Gn = Co + (ko + 1) Yo + <k1 + 1> Yl+ + (kn-1 + Yn-1*
Hence

n-1
A + G = A + C + V  (h - k ) V , o o n n ^  v r r' „r*r=0

so that
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2T1o + Yo + 6o = ^ Ar? + + s V l ) I‘eriY0Pp -  6oqp) . ( 2 . l 6 )r=0
By (2 .1 1 ) and D e fin it io n  2 .1 , we have, f o r  a l l  r > 1,

p  ̂ -p  .* r  r r-1=

that i s ,
0 M r - l r - 1  ’

^r-1 ^o^r-1 ~ — <*>o<̂r'̂

Thus, since pQ -  <f>Qqo = 1,

Yoi:,r ^o^-r Yo ^ r  *” ^o^r; ••• 0 (2 .1 7 )
1 2  ' r

S ince, by Lemma 2.3» 'n(A^), ri(Gn) —> 0 as n —s> qd , (2 .1 4 )

now follow s from ( 2. 16) and (2 .1 7 )  fo r  n = 0 , and sim ilarly

fo r  a l l  n; (2 .1 3 )  may be proved in a corresponding way.

The la s t  statement o f  the theorem fo llo w s  from (2 .9 )

and (2 .1 0 ) and the fa c t  that A , B , C , D are the .v e r t ice sn n n n
of a c e l l  o f  the inhomogeneous la t t ic e  corresponding to f  
and the p o in t ( x’, y ’ ) ,

Lemma 2. 6 ( [ 6 ]  , Lemmas 2.3» 2. k) • Let [a  ] ,  ( - 0 0  <n<oo ) 

be a doubly in f in it e  chain o f  in tegers  such that

( i )  | an| > 2 and a is  not con stan tly  equal to 2 or to -2 

f o r  large n o f  e ith e r  sign.

Let i e ] ( - 0 0  < n < o o ) b e  any corresponding chain o f  

in tegers  which s a t is fy  the fo llo w in g  con d ition s :

( i i )  je n| < |an+1| -2  and en has the same p a r ity  as an+1;

( i i i )  n e ith er a , + e nor a -  e i s  constan tly  equallit 1 n n+1 n
to -2  f o r  large n o f  e ith er  sign ;
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( i v )  f o r  any n, the r e l a t i o n

an+2r+1 + 6n+2r an+2r+2 "  en+2r+1 ^

does not hold  e i t h e r  f o r  a l l  r  > 0 o r  f o r  a l l  r  < 0. 

F o r  a l l  n, l e t

Sn = Lan ’ an -1  ’ an - 2 ’ ’ " >^n = t an+1 , a n+2 , a n+3 ’ “ ' h

Then the s e r i e s

, yr* / , \ r ______ n - r - 1 __n-1 + 2  ( - 1  ) e 0 0 >

n 1 r=1 n-1 n-2 n -r
oott-. /  ̂\ x’ n+r

n 2  M  ) 3 3 7773
r=1 ’ n + r n + 2 “ ’ *n+3

are  a b s o l u t e l y  convergent w ith  sums whose moduli are  l e s s  

than j©n j -  1 ,  1 * | -  1 ,  r e s p e c t i v e l y .

P r o o f , The p ro o f  i s  g iv e n  in  [6] and r e q u i r e s  a l l  the 

c o n d i t io n s  ( i )  to ( i v ) .

Theorem 2,4 ( [ 6 ]  , §2 ) .  L e t  [ aR] , i enî > 6n> <f>n  be

d e f in e d  a s  in  Lemma 2. 6 , and f o r  each n l e t
oo e .

* »  * s»  * 1 - * 2 < -> '  k :,C 7:-  <w ( 2- ’ s>
oo e

2nn  + 1 = £n + 2  ( - O r  ------- ------------------ 3------ • ( 2 . 2 0 )
r=1 ^n+1^n+2 *** ^n+r

Then the f o u r  p o in ts  An , B , Gn , D g iv e n  by 

An -  («n + 6n *  1 ’ + 1 + *n> ' Bn = <«n + + 1 > ’

G =* (C ,*n ) ,n v n ’ n ' 9 D s  ( £ + 1 , t) +<j> )n v n 9 n r n '

( 2 . 2 1 )
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are vertices of a divided cell of an inhomogeneous lattice; 

the coordinates of the vertices An+J|, B ., C ^, Dn+<, of 

the successive divided cell are of the same form:

An+1 = + 8 n+1 + D , r ( T|n+1 +

Bn+1 = <P<«n+ l + 9n + 1 ) ’ r ( n n+1 + 1 ) )

Cn + 1 = < * W Ynn +1 ) >

Dn+1 = ^ n + 1 + 0 ,  Y ( ^ +1 +
* n + 1 »

! 3 = II>-•V
©1

~ 1 / ^ n + r

+ ^n+1^ ^ J

Proof. By Lemma 2.6, we have

M 2 .  22)

2? + e + 1 < e -  1,n n 1 1 n 1 9

l 2T)n + 1 + < l * J  " 1*

from which we can immediately deduce that 

sgn = sgn (^n + 1) = - sgn 0n, 

sgn(^n + en) = sgn(^n + en + O  = sgn enJ 

sgn rin = sgn(Tiri + 1) = - sgn 0n, 

sgn(nn + <Pn ) = sgn(rin + 0R + 1) = sgn 0R.

Thus the points A , B , C , given hy (2. 21) lie one in 

each of the four quadrants and are the vertices of a divided 

cell of the lattice
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5 = S i + 6nx + ^

11 = ^n + X + ^ny
> • ( 2. 23)

By a s im i la r  argument, the p o in ts  An+J|, Bn+1, Cn+1, Dn+1

g iven  by (2 .2 2 )  are the v e r t i c e s  o f  a d iv id ed  c e l l  o f  a 

l a t t i c e .

Prom (2 .1 8 ) ,  (2 .1 9 ) > and ( 2. 20) we can deduce that

-  a ç . = ç + (k + i )e  ,n n+1 n n 7 n*

- ’V / ^ n + l  = T,n + kn + 1 ’

( 2 . 2i+)

where 2kn = an+1 -  « . I f  now we w r i t e  2h = a + en n+1 n 1

then a simple c a lc u la t io n  shows that the p o in ts  (2 .2 2 )

s a t i s f y

‘n+1 = A -n ( h + x n V Bn+1 = An -  h V n ~n

n+1

+
PS

oII (k  + v n 1) I n ’ Dn+1 = Cn + k V n „n

where Vn = -  D . Since the p o in ts  are the v e r t i c e s  o f  a

d iv id e d  c e l l ,  i t  fo l lo w s  from (2 .2 )  and (2 .3 )  that th is  c e l l

i s  the successor o f  the c e l l  determined by A , B . G , D .n n n n

Thus a p a i r  o f  chains [ a ] , Î en ! which s a t i s f y  the 

con d it ion s  o f  Lemma 2.6 determines the chain o f  d iv id ed  

c e l l s  o f  a l a t t i c e  which i s  unique apart from s im i la r i t y .  

We w r i t e



382. 1+

whe re

Then, conversely, it is clear from Lemmas 2.1, 2. 2 and 

Theorem 2.3 that a chain of divided cells whose vertices 

are given by (2.9) determines a unique pair of chains of 

integers {a l, [ e } such that the conditions of Lemma 2.6

and the relations (2.19), (2.20) are satisfied.

2. U, I-reduced Forms

We shall say that the form f is inhomogeneously reduced, 

or I-reduced, if it can be factorized in the form

It is well known (see Dickson [32] » T h ,76 ) that, corre­

sponding to any indefinite quadratic form P(x,y) which. does 

not represent zero, there is an equivalent Gauss-reduced 

form, that is a form ( 2. 25) which satisfies the more 

stringent conditions

f(x,y) = -  ygj -— r(6x + y)(x + tfy) ( 2. 25)

where

0 < - 1 , <j> > 1 .
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Hence we have

Lemma 2. 7( [6 ] , Lemma 2 , 2 ) .  I f  F ( x , y )  i s  an i n d e f i n i t e  

q u a d r a t i c  form  which does  n o t  r e p r e s e n t  z e r o ,  th ere  e x i s t s  

an I - r e d u c e d  form e q u i v a l e n t  to  i t .

S in c e  any form which d o e s  no t  r e p r e s e n t  ze ro  can be 

w r i t t e n  i n  the form (2 .  1) , Lemma 2 .7  a l s o  f o l l o w s  from 

Theorem 2 . 3 ;  f o r ,  by Lemmas 2 . 1 ,  2 . 2 ,  and 2 . 5> | en | > 1, 

j 0 [ > 1 f o r  a l l  n, so t h a t ,  by ( 2 . 1 1 ) ,  the forms f n o f  

( 2 . 1 5 )  must be I - r e d u c e d  f o r  a l l  n.

2. 5 The E v a l u a t i o n  o f  the Inhomogeneous Minimum

We now combine our  r e s u l t s  and ap p ly  them to  the 

problem  o f  e v a l u a t i n g  the inhomogeneous minimum o f  an i n ­

d e f i n i t e  b i n a r y  q u a d r a t i c  form f  g iv e n  by ( 2 . 1 ) .  The 

n o t a t i o n  o f  t h i s  s e c t i o n  w i l l  be u sed  throughout the t h e s i s .  

L e t

f 0 U , y )  = ± 1-9- ^ -  -jr(V  + y ;U  + *0y)

be any I - r e d u c e d  form e q u i v a l e n t  to f .  Then any c h a in  o f  

i n t e g e r s  [ a ^ J  ( - 0 0  < n < c o )  f o r  which c o n d i t io n  ( i )  o f  

Lernma 2 . 6  h o l d s  and f o r  which

Go = La 0 9 a - 1 9 a - 2 > • • * ] >  = [ a i > a 2> a 3> • • • ]

i s  c a l l e d  an a - c h a in  o f  f .  A c h a in  o f  e q u i v a l e n t  I - r e d u c e d  

form s [ f n } i s  d e f i n e d  by

f „ U , y )  = ± I'd /  _ . 1  (9 x + y ) ( x  + 0 y ) ,  ( 2 . 2 6 )
< n n >
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whe re

9n = l an ’ an-1 ’ an -2 ’ '  •  •  * n  = f an+1 ,a n+2,a n+3’ * * • ] »  ( 2* 27)

th e r e  i s  c l e a r l y  a  one to  one correspondence  between the 

c h a in s  ( a^} and [ f n J •

Any c h a in  o f  i n t e g e r s  ( e ] ( - 0 0  < n < c o )  which 

s a t i s f i e s  c o n d i t i o n s  ( i i ) ,  ( i i i ) ,  and ( i v )  o f  Lemma 2 .6  i s  

c a l l e d  a n  £- c h a i n  c o r r e sp o n d in g  to the a - c h a in  [ a  l ( o r ,n'
e q u i v a l e n t l y ,  to  the c h a in  o f  forms [ f n ] ) .

We w r i t e

n = V i  + -6

00

n-1 n-2 

€n+r

n - r

Tn = en + -----r ------;----- ?---- *
r=1 * n + v n + 2  * ’ n+r

( 2 . 2 8 )

( 2 . 2 9 )

and d e f in e  ft a s

I n n «
mi n

1(1+9 +cr ) ( l + 0  + V  )|, |( -1 + 0  +<r ) ( l - 0  + t )l n n /v n n /M |X n n /v n n /|J

l( -1 - V * n ) ( " 1 l( 1" W ( "1 +*n+XJ

. ( 2 . 3 0 )

We d e f i n e  ( x  >y ) ( -  oc < n < 00 ) b y

0 x  + y = ¿ (  -  1 -  0 + cr )n n ° n  n n y

x + <i> y  = ¿ ( - 1 - 0  + T )n n n  2V n n
( 2.  31)

Theorem 2. 5. I f  i a R} i s  an a - c h a i n  o f  f ,  and i en l a 

c o r r e sp o n d in g  e - c h a in ,  and i f  v/e put

M(i a n S , [ ! )  = i n f  x „ /U ,n n n ( 2. 32)
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then there exists a point P such that (for all n)

M(P) = M(f;P) = M(fn; Xn,yn) = M( ( aj , JeJ); (2.33)

and if M(f) is the inhomogeneous minimum, then

M(f) = aupM( [ an{, [ej), ( 2. 3U)

where the sup remum is taken over all the a-chains of f and 
all possible corresponding e-chains.

Proof. In Theorem 2. ¿4-,

0Y = 6 /0n/yn+1
A / < V n  ~1>

AA ° n+1* n+1 -  D

and, by (2.27) and (2.28),

2£ + 9 + 1n n
2*n + 1 + 9n n

(2. 35)

Hence, by Theorem 2. U, the set of values of ft /U,
( — oo < n < c o )  given by ( 2. 30) coincides with the set of
values

rain ¡je-n|; (5,n) £ ( V Bn’Cn'Dn}] ( - go < n < oo ),
where A ,B ,0 ,D are the vertices of the divided cell S , n7 n7 n7 n n7
and iSr] is the chain of divided cells of the inhomogeneous 
lattice which, by (2.23), ( 2.31) , and (2.35) corresponds to 
the form fn and the point (xn>yn) for any n. Since all the 
f are equivalent to f, (2.33) now follows from Theorem 2.1.

By Lemmas 2.1 and 2.2 and Theorem 2.3, the chains of 
divided cells of all possible inhomogeneous lattices
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corresponding to f  are included by taking a l l  a-chains o f  

f  with a l l  p o s s ib le  corresponding e-chains. This proves 

( 2. 3k) .

Lemma , 2,_8 ( [ 6 ]  ,§3 ) .  The poin ts  ( xn>yn)> ( xn+1,yn+1  ̂
determined by (2 .3 1 )  s a t is fy  the equations

where

A ls o , i f

then

x „ = y n+1 J n

yn+1 = "  (x n + an+1yn + 1 + kn}

2kn an+1 en

>

x ’ = y

y * = -  x -  a , .y  + k + 1  17 n+1 n
> >

( 2. 36)

(2 . 37)

f  , . ( x '  + x , y ' + y , . )  = f  ( x  + x , y + y „ ) .  n+1' n+1* ‘'n + V  nv n* ° n'

P ro o f. By ( 2. 31) and (2 .3 5 )

6 x + y =s n n °n  n

xn + ^nyn = *'n

the lemma now fo l low s  from (2 .24)*  A d e ta iled  p roo f i s  

given in  [6 ] •

C oro lla ry . I f  the chains ¡a  |, [ are both p e r io d ic ,  

then the p o in ts  ( xn»yn) are rational.

This fo l lo w s  immediately from (2 .3 6 ) .

The success o f  th is  approach to the problem o f  the
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inhomogeneous minimum depends on the rapid convergence of 
the series (2.28) and (2.29). Estimates of the error made 
in replacing these series by partial sums are given in 
Lemmas 2.9 and 2.10 below.

We here introduce the permanent notation ||x|| for a 
quantity whose modulus does not exceed |xj.

Lemma 2.9 ([6], §3). If [a } is an a-chain of f, and 
[ ( - 0 0  < n < o o )  is a chain of integers which satisfies
condition (ii) of Lemma 2.6, then

cr =  e  n n-1
n-2in-1

+ • • • + (—1) ’n-r-1
0n-1 ® n-r

9 .... 6n-1 n-r
1 -

1
6n-r-1

( 2. 38)

T = £ — ~Tn n 9
n+1
n+1

+ • • • + (—1) n+r
^ n + 1  * * * ^ n + r

1_______________h  -  1
^n+1 *"*"* ^n+r \ n+r+1

Proof. First we note that, by (2.28),

(2. 39)

t = e - -t n n <p
n+1
n+1

r
( “1) e

+ • • • + n+r
/ Nr+1 (-1) 1 n+r+1 .

^n+1 *** ^n+r ^n+1 ***^n+r+1
( 2. 1+0 )

Since j eri| < ian+ ĵ | “ 2 for all n, we have, from (2.28),
-  2

’»• S I an+1 1 - ^  2 n+r+1
( 2. U1 )
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By ( 2 . 2 7 ) ,

an+1 ^n+1>

so that

I * J  "  1 i  I an+1 1 -  1 7 ^  “  1 = 1 an+11 "  2 +
* n+1

(2.1+2)

-  1

] ? n+1

Repeated a p p lic a t io n  o f  th is  in e q u a lity  g iv e s
a _ -  2 a _ -  2

*  I -  1 > l a J  -  2 +  ^ 2 ' | + j - £ ± 4 --------- + . . .  ,
n ' "  ‘ n+11 i* r ,  + l l  K + 1 * ,n+1 n+2

( 2.1+3)

so th a t, f o r  a l l  n, by (2.1+0)

I t ! < U  I -  1.

Prom (2.1+0) and (2.1+3) we now g e t  (2 .3 9 ) ;  (2 .3 8 ) may be 

proved s im ila r ly .

Lemma 2. 10 (n o t g iven  in  [ 1 1 ] o r  [6 ]  ) .  I f  [ a ] , { e } 

are g iven  in  Leinrna 2.9> then

( i )  i f  fu r th e r  0n_ p__,j > 0 P _ 2  dii>i,er in  si&n ( i « e -  i f

an- r -i>  an-r -2  d i f f e r  in  s ig n )»  then

 ̂ o p e .^ _ F n-2 , / , n-r-1
°n "  £n-1 ” ~ 7 + * * * + <■" 1) e „ . . .  6n-1 n-1 n -r

9 4 . . .  0n-1 n -r
'1 - Tè

1
n-r-1 n-r-1 n - r - 2

; ( 2 . ¿44)
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(ii) if further ^n+r+1> 0n+r+2 differ in sign (i.e. if
a 0, a . , differ in sign), thenn+r+2* n+r+3

t = e -  ,—±l + . . .  + ( - 1 ) r  -7n n 0 ., v 0
n+r

n+1 n+1 *# * ̂ n+r

^n+1 * * * ^n+r 1 - 7'̂ n+r+11 I ̂  n+ r+1  ̂n+ r+ 2̂
Proof. If , 0n+1 differ in sign, (2.1+2) gives

(2.1+5)

^n! 1an+1' + T0n+1
so that

V  - 1 ' T?n+1 = lan+l' " 2 +
1 - 1 

'n+1'

By (2.1+0) and (2.1+3)

!t ! < | e j + '*!'■ f-t lr < | a . j 1 n< - 1 n‘ j 0n+>] | - n+1 ' - 2 + ^n+1 " 1Fn+1
Hence

S FJ - 1 “ Un+1
Applying this result to Tn+r+-j and using (2.1+0), we get 

( 2.1+5); ( 2. l+.U) may be proved similarly.

When we wish to evaluate M(f), we try first to find 
and reject those a-chains (with the corresponding chains of 
forms [fn])for which M([a i e | ) is low for any correspond­
ing e-chain, and then to examine the other chains more 
closely. At this preliminary stage, strict inequalities
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are not needed, and it is unnecessary to decide whether 

{ satisfies all the conditions of Lemma 2.6; therefore, 

it is convenient in Lemmas 2.9 and 2.10 to assume only that 

[e } satisfies condition (ii) of Lemma 2.6. It is possible 

to eliminate a large number of chains (f ] with the 

corresponding a-chains by using Lemmas 2.11, 2.12 below.

We first introduce a symbol which will be used 

repeatedly in later chapters.

Definition 2.2. For any indefinite binary quadratic 

form f, given by
2 2 f(x,y) = ax + bxy + cy ,

we define

X = X(f) = mj_n | a ± b + c| = min jf(l,±l)|.

In particular, for forms f given by (2.26),

X( f “n ) = m ln 0 ( 9n ~1 ) ^ n ~1  ̂I ’ l ( 6 n+ l ) ( V ' l ) []

Lemma 2. 11 ([6] , Lemmas 3.2, 3*3). If [fnl is a 

chain of I-reduced forms equivalent to f, and [a ] is the 

corresponding a-chain, then for every corresponding e-chain 

and for every r we have

M(f; P) = M(jan i,ien !) = M(fn ; xr,yr) < % ^ /k  < X(fr)A. 

Proof. The proof is given in [6] .
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Lemma 2. 12. In Lemma 2.11, we can have

M(f; P) = K£r)/k

if and only if conditions (i) and (ii) are both satisfied:

(i) M O  = inf MO;n
(ii) (xr,yp) = (4’i) (mod 1).

The condition (ii) implies that

(iii) the chain (a | is even, i.e. a is even for all n;

(iv) e = 0  for all n;

(v) P = (£,o) or (0,4) or (4,4) (mod 1).
Proof. It is clear from (2.32) and (2.46) that 

M(f; P) = M f p)/4 ii* and only if (i) and (ii) hold; if (ii) 
holds, then c^ = 0, which implies (iii) and ( iv) ;

(v) follows from (ii) also.

As a corollary to the two lemmas we have a simple 
inequality for M(f):

Corollary. If the form f(x,y) is I-reduced, then

M(f) < M  f )/4;
equality can occur only if M(f) = M(f; P), where 

P = (4»i) (mod 1).
It is clear that this result is closely related to the 

estimate for M(f) given in Barnes [5] • The connection 

between these two results and the relation of these results 

to others of the same type will be discussed in section 3.4.

Finally, to avoid unnecessary enumeration of cases, 

we need another lemma of [6] .
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Lemma 2. 13 ( [ 6 ]  , Lemma 3*1) .  If* i ep i i s  any  e -c h a in  

co rre sp o n d in g  to the a - c h a in  i a n l> the v a lu e  o f 

M(P) = M( [ a n l ,  [ en ]) i s  u n a lt e r e d  by any o f the fo llo w in g  

o p e r a t io n s :

( i )  r e v e r s in g  the c h a in s  i an+^K i en l about the same p o in t ;  

( i i )  ch an g in g  the s ig n s  o f a l l  e^ ;

( i i i )  ch an g in g  th e  s ig n s  o f a l l  an and o f a l t e r n a t e  

P ro o f . The p ro o f i s  g iv e n  in  [6  J •



CHAPTER 3

EQUIVALENT I-REDUCED FORMS

In order to use the method of section 2.5 for 
evaluating the inhomogeneous minimum of an indefinite 
binary quadratic form g which does not represent zero, we 
must be able to determine all the a-chains of g. In this 
chapter I consider the problem of determining all possible 
chains [f ] of I-reduced forms equivalent to g (and hence 
all possible a-chains of g).

In section 3*1 I give, as Theorem 3*1» a condition for 
a form to be I-reduced which corresponds to the condition 
for a form to be Gauss-reduced given by Inkeri [39] (see 
sect. 2. k) • Barnes [6] showed that there is only a finite 
number of I-reduced forms equivalent to a form g with 
integral coefficients; for the sake of completeness I 
include this result, which is easily derived from Theorem 3*1» 
as Theqrem 3.2.

In section 3« 2 I give some results on equivalence which 
are needed in the following section.

It follows from Theorem 3*2 that, if g is proportional 
to a form with integral coefficients, we can obtain all the

U9
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I-reduced forms equivalent to g by a finite number of 
trials. However, this method becomes laborious if the 
discriminant of g is large and of course breaks down al­
together if the number of I-reduced forms equivalent to g 
is infinite. Thus another method is needed.

The natural thing to do is to start from a particular 
I-reduced form equivalent to g, say f, where

f(x,y) = ± 1-Q-j r (0X + y)(x + 0y) (|e| > 1, ¡0| > 1),

and, by expanding 9,0 in all possible ways as semi-regular 
continued fractions, to obtain all the chains jf 5 to which 
f belongs. The questions then arise, whether we can obtain 
all the I-reduced forms equivalent to g in this way, by 
starting from just one form, and whether we can get all the 
different chains of forms in some such way. In section 3*3 
I consider these questions.

As an immediate consequence of Lemma 2.11 and 2.12 and 
of Theorem 3#3 of section 3*3> I obtain a bound for the in­
homogeneous minimum of a Gauss-reduced form f (see sect. 2. U) 

in terms of the coefficients of f which is the same as the 
bound for the inhomogeneous minimum of any indefinite binary 
quadratic form given by Barnes [5]. In section 3* U I discuss 
these results and others of the same type obtained by 
different authors.
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3.1. The Condition for a Form to be I-reduced and a Theorem
on Forms with Integral Coefficients

Theorem 3. 1 (of. Inkeri [39j>§5)* An indefinite form
2 2 f(x,y) = ax + bxy + cy

is I-reduced if and only if

jbj  > J a + o|  ( 3 . 1 )
( i. e. if and only if a + b + c, a - b + c differ in sign). 

Proof. We have

f U , y ) 2 a g 
b + A
2 a c 

~ b - A

fh + a 
 ̂ 2 c X + y)(x + b + A 

2 a y)
(x + b - A 

2 a y ) ( b - A 
2 c x + y )

K  3. 2)

pwhere A = + ^(b - 4 ac). It now follows from the
definition of an I-reduced form (see sect. 2 , k ) that

2 2 2 2 ax + bxy + cy is I-reduced if and only if ax - bxy + cy
is. Hence, without loss of generality, we may take b > 0.
In this case it is clear that f(x,y) is I-reduced if and
only if

b + A > 2 } af , b + A > 2 | cj • (3-3)

If, now, (3.1) is satisfied, then

Hence
b > j a + c| . ( 3. k )

- ac > (a + c) 2 ac = (a c) 2

so that
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A > |a -  c j .  ( 3 . 5 )

By ( 3 . 4 )  and ( 3 .  5)

b +  ̂ > j a  + cj + j a  -  cj = 2 max [_ j a| , j c[ J  .

Thus (3*3 )  h o ld s ,  and f ( x , y )  i s  I - r ed u ced .

I f ,  on the o th e r  hand, (3 *1 )  does not h o ld ,  then

b < | a  + c| ,

and by a s i m i l a r  argument we g e t

b + A < 2 max [j a| , j c j j  ,

so t h a t  ( 3* 3 ) does not  ho ld  and f ( x , y )  i s  not I - r ed u ced .

Thus f ( x , y )  i s  I - r e d u c e d  i f  and o n ly  i f  ( 3 » 1) h o ld s .

Theorem 3. 2 (B arnes  [ 6 ] ,  Lemma 2 . 1 ) .  I f  an i n d e f i n i t e

q u a d r a t i c  ITorm f ( x , y )  has  i n t e g r a l  c o e f f i c i e n t s ,  th e re  i s

o n ly  a f i n i t e  number of I - r e d u c e d  forms e q u i v a l e n t  to i t .

P ro o f . We suppose t h a t  f ( x , y )  has  d i s c r im in a n t  A and

show t h a t  t h e r e  i s  o n ly  a f i n i t e  number of I - r e d u c e d  forms
2w i t h  i n t e g r a l  c o e f f i c i e n t s  and d i s c r im in a n t  A . I f

2 2 2 ax + bxy + cy  has  d i s c r im in a n t  A and i s  I - r e d u c e d ,  then ,

by Theorem 3* 1 ,

0 < b “~ -  ( a  + c)  ̂ = (b -  a  -  c ) ( b  + a + c) = A“ -  ( a  -  c ) ‘".

Thus j a  -  c| i s  l e s s  than  A, and f o r  each  of  the f i n i t e  

number of  p o s s i b l e  i n t e g r a l  v a l u e s  of j a  -  cj t h e re  i s  o n ly  

a  f i n i t e  number o f  p o s s i b l e  i n t e g r a l  v a l u e s  of b -  a  -  c ,  

b + a + c ,  and so of a ,  b ,  c.
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3.2, Some Results on Equivalences for I-reduced Forms 

If the form F is equivalent to the form f under an 

integral unimodular linear transformation

T = t u 
v w

where t, u, v, w are integral, and tw - uv = +1

(that is, if

gives

X t u r "1 X
_y_ V w Y

f(x,y) = F(X,Y)),

then we shall write

P = fT = f t u 
v w

With this notation (fT^)Tp = f(T,|T2). If tw - uv = +1, 

the forms will be called properly equivalent; and if neither 

of the statements t = w = 0, u = v = 0  holds, the transform­

ation T will be called non-trivial.

Throughout this chapter we denote by f = (a,b,c) an 

I-reduced form which does not represent zero:

2 2 f(x,y; = ax + bxy + cy ,
pwhere D = b - 4 ac is the discriminant of the form, and 

+\/‘D = A. It follows from (3.2) that f(x,y) is I-reduced 

if and only if f(x,-y), f(y,x), and f(y,-x) are I-reduced; 

also, any chain containing one of these forms can be con­

verted into a chain containing f(x,y) by reversing the chain

ian l (ia-n! is the reverse of ian ]) 0r by replacing [a ] by
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[ -a | (its negative) or both (see Lemma 2.13). It would 
therefore be sufficient to consider only those I-reduced 
forms (a,b,c) with b > 0, |a| < [c|; here we adopt the 
convention of considering only I-reduced forms for which 
b > 0. With this convention, the I-reduced form 
f s (a,b,c) can be factorized as

f(x,y) = ax2 + bxy + cy2 = | ■ * _ ^ ( i^x + y)(x + r2y), (3.6)

whe re
- b + A _ b + A

r1 "" 2c 9 r2 “ 2a 1
> 0 , I r j  > 1, I r 2 | > 1,

and r̂  , r^ are irrational. We shall call r̂  and r2 the 
first and second roots of f respectively.

If f = (a,b,c), we shall call the form

(c,b,a) = f 0 1 
1 0.

the reverse of f.
We denote by T a non-trivial linear transformation

T = t u]
V WJ (3.7)

where t, u, v, w are integral, w > 0, and tw - uv = 1; 
and by P = (A,B,C) the I-reduced form

F(x,y) = Ax2 + Bxy + Oy2 (B > 0, B2 - i+AC = A2) 
Û

(3.8)

I'R.jRg -  1| ( R1X + y ^ x +  R2y ^

whose first and second roots are
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■p _ B + à
K1 “ 2C 9

so that

*,! > 1.

p - B + A 
*2 - 2A »

R2| > 1.

We note that if P = fT, where T is given by (3*7) then
2 2A = at + btv + ov

B = 2atu + b( tw + uv) + 2cvw y .
2 2C = au + buw + cw

Thus fT = f(—T) and there is no loss of generality in
assuming in (3.7) that w > 0.

(3 .9)

We now prove five lemmas which are needed for the 
next section.

Lemma 3.1. If P = fT, where T is given by (3.7), then

tr^ + v wr^ + u
R1 ~ ur̂  + w* R2 vr2 + t (3.10)

Proof. The relations (3.10) follow from (3.6), (3.8), 
and (3.9).

Lemma 3. 2. If P s fT, where T is given by (3.7)» and if

where

R2 = a

t1 ^  
vi w i

W1r 2 + U 1 
V  v 1p 2 + t1

t-u t 
a^v-^w v

V i  + v i
u 1r 1 + w1 “  [ a i> R1J *

then
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P roo f. The lemma fo l lo w s  immediately from the 

expression f o r  given in  (3 .1 0 ) .

Lemma 3. 3* I f  P = fT , where T i s  given by (3*7)> then 

( i )  | u| > 11| im plies w > | u | ;| v|  > 11| ;

( i i )  | vj > w implies J t| > | v[ , [ uj > w.

P roof. Prom (3 .1 0 ) we have

uR̂  -  t u u(uR^ -  t )  t  t(uR^ -  t )  ( 3.11 )

I f  jt| = 0, then |uj = jvj = 1 ,  and since T i s  n o n - t r iv ia l ,  

w > 1, so that ( i )  holds. I f  |uj > |tj > 1, then, since

Ihl > 1.
I«*, - *l > (|t| + O l^ l - |t| > (R j ;

thus | j < 1 by (3 .1 1 )  unless w > [u| , | vj > 11|. This 

proves ( i )  f o r  a l l  cases, and ( i i )  i s  proved s im ila rly .

Lemma 3. U. I f  t ,  u, v, w are in tegers  such that 

tw -  uv = 1, and i t  i s  not true that t = w = 0 o r  that 

u =s v = 0, then exactly  one o f  the fo l low in g  sets  o f  

re la tion s  holds:

<w = vl = 1. h i > h i  ; (3.12)

w > h h h i > 11| ; (3 .1 3 )

<w = ivj = 1, h i < h i  ; (3.1U)

wW < vl » h i < h i  ; (3 .1 5 )

Proof. C learly  we cannot have w = h i  > h i  = h i *
th is  contrad icts  tw -  uv = 1•
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I f  w > j v| , | u| > 11| , then 

[ tw -  uv| > ( |u |  + l ) ( | v |  + 1) -  ¡uvj = ju| + |v| + 1; 

s ince  we cannot have u = v = 0, t h i s  co n tra d ic t s  

tw -  uv = 1. S im i la r ly ,  w < | v | , | t |  < |u| le ad s  to a 

con trad ic t ion .

Thus (3 .12 )  to (3-15) cover a l l  the p o s s i b i l i t i e s ;  a s  

they are mutually ex c lu s iv e ,  t h i s  proves the lemma.

Lemma 3. 5. I f  P = fT, where T i s  given by (3*7)>  and 

i f  (3 .1 2 )  or  (3 .13 )  holds ,  then T must be one o f  the 

fo l low ing  m atr ices  (where k i s  a p o s i t iv e  in te g e r ) :

0 +1 
+1 1

1 +1 
+ ( k - l )  k

t  u 
v w

(3.16)

(k > 3 ) ,  (3 .17 )

( |u |  > | t |  > 0,  w > {v| , w > | u | ,  |v|  > | t | )

(k > 2),0 +1 
+1 k

1 + ( k - l )
+1 k

1 +1
0 1

(k > 2 ) ,

.» ( 3. 18)

(3 .19 )  

(3. 20) 

(3. 21)

Proof.  We use ( i )  o f  Lemma 3 .2 ,  and the f a c t  that

tw -  uv = 1.

I f  (3 .1 2 )  holds,  T must be given by (3 .16 )
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Now suppose that (3.13) holds, so that w > | vj ,
|u| > 111. If juj = j t| (=1), then for [ v[ > 1, T is 
given by (3.17), for [ vj = 1, T is given by (3.20) with 
k = 2, and for v = 0, T is given by (3. 21). If | u| > | t| , 
then w > | u| , | v| > 11[ ; for | v| = 11| (=1), T is then 
given by (3*20) with k > 3> and for | vj > | t} , T is given 
by (3.18) if t / 0, and by (3.19) if t = 0.

This covers all ppssibilities.

3.3. Chains of I-reduced Forms Equivalent to a given 
I-reduced Form

An a-chain [ an], (- oo < n < o o )  of F such that

â , a_̂  , a_ 2» • • * J , R2 = £â  , â , â , • •. J
will be called an a-chain from F . and the corresponding 
chain } of I-reduced forms will be described as from F.

We now turn to the problem of determining all the 
I-reduced forms equivalent to a given I-reduced form f.
We note first that there exist forms f for which it is not 
possible to obtain all the I-reduced forms equivalent to f 
by taking all the forms in all the chains from f. For 
example, in section $ we shall consider the form

g = (1 >

- r2*

3+jffi. [3, rj - [2, -2, -rj.

with roots
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The equ ivalen t form

G = g
1 1 
0 1

has ro o ts

= (1 , 2 + V5, V5)

R _ 1 ± k!h. R _ 5 + V51 2 ' 2 2
Since every form in  any chain from g has one root whose 

modulus i s

i t  i s  c le a r  th at G cannot belong to any chain o f  I-reduced  

forms which con tain s g.

In t h i s  se c tio n  we prove the fo llo w in g  theorem.

Theorem 3. 3. Let f  = ( a ,b ,c )  (b > 0) be a Gauss-reduced 

form given by (3 .6 )  (so  th a t r^ < -1 , r 2 > 1 —  see se c t. 2. U), 

and l e t  P = (A ,B,C) (B > o) be an I-reduced form which i s  

p rop erly  equ ivalen t to f  under the n o n - tr iv ia l  l in e a r  tra n s­

form ation T given by ( 3 .7 ) .  Then any chain o f I-reduced 

forms which con tain s P must con tain  a t  l e a s t  one o f the 

three forms

f = ( a ,b , c ) ,

~ 1
—■

1
f _ 0 1

mm

= ( a , 2a + b , a + b + c ) , ( 3. 22)

~ 1 0
*

f -1 1_ = ( a -  b + c , b •oat
0CM1 (3 . 23)

Since f  i s  given by (3 . 6) and i s  Gauss--reduced, we have

a > 0 , b > 0 , c > 0 , 

and so , by Theorem 3 .1 ,

a + b + c > 0 , a -  b + c < 0.



3 .3 60

Thus

2a + b + c + (2a + b) > a + b + c > 0 ,

while

2a + b + c -  ( 2a + b) = c < 0,

so that, by Theorem 3 .1 , the form (3 .2 2 ) i s  always 

I-redu ced  when f  i s  Gauss-reduced, S im ila rly , the form 

(3 .2 3 ) i s  always I-redu ced  when f  i s  Gauss-reduced.

I f  P i s  equ ivalent to  f  under a n o n -tr iv ia l  trans­

form ation
t u

_v w

fo r  which tw -  uv = -1 , then P i s  properly  equivalent to 

the reverse o f  f  under the n o n -t r iv ia l  transform ation

0  1 t u
_1 o V  w

Hence we can include the case o f  improper equivalence by 

rep lacing  ’ f* by *the reverse o f  f* in  Theorem 3.3*

Thus Theorem 3*3 means that i f  f  = ( a ,b ,c ) ( b  > 0) i s  

a Gauss-reduced form, then we can obtain  a l l  the chains o f  

I-redu ced  forms equivalent to f  by taking a l l  the chains 

from f  and from the two forms (3*22) and (3 .2 3 ) .  Since 

there i s  at le a s t  one Gauss-reduced form equivalent to any 

in d e fin ite  binary quadratic form g which does not represent 

zero , i t  fo llow s  that we can obtain  a l l  the chains o f  

I-reduced  forms equivalent to g by taking a l l  the a-chains 
from at most three forms equivalent to  g. This enables us
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to  ap p ly  the method o f  s e c t io n  2 .5  to  s e t s  o f  form s whose

c o e f f i c i e n t s  depend on a  p a ra m e te r  f o r  which the number o f

e q u iv a le n t  I - r e d u c e d  form s i s  unbounded ( e .g .  the form s g♦ n
d i s c u s s e d  in  C h .U ), a s  w e ll  a s  to  form s which have an 

i n f i n i t e  number o f  e q u iv a le n t  I - r e d u c e d  form s ( e . g. the 

form  g d i s c u s s e d  in  s e c t .  5.5 ) .

We s h a l l  say  th a t  the a -c h a in  [ a n l ( o r ,  e q u iv a le n t ly ,  

th e c o rre sp o n d in g  ch a in  o f  I - r e d u c e d  fo rm s) from  F le a d s  

fo rw a rd s  to  f  i f ,  f o r  some n ,

R2 = [ a i ’ a 2> *•* an ’ r 2] '

r 1 = [ an , a n -1 ’ • * *  » a 1 ,R l]  *

We s h a l l  say  th a t  an a - c h a in  from  P le a d s  backw ards to  f  

i f  i t  l e a d s  fo rw ard s from  f  to  P. We s h a l l  say  th a t  a l l  

a - c h a in s  from  P le a d  fo rw ard s w ith o u t c h o ic e *  to  f  i f ,  f o r  

some k > 0 , e i t h e r

r 1 = [ 2k ’ Rl]  ' R2 = [ 2k , r 2 ] ’ r 2 > ° *  

o r

r 1 = C "2k ’ Rl]  * R2 = [ -2 k , r 2] ’ r 2 < ° *  

so  th a t  must be the 1 t a i l *  o f  any s e m i- r e g u la r  co n tin u ed

*We say  1 w ith o u t c h o ic e 1 b e c au se  i t  fo l lo w s  from  
D efn. 2 .1  t h a t ,  i f  1 < a < 2 , th en  a^ = 2 f o r  ev ery  sem i­
r e g u la r  co n tin u ed  f r a c t i o n  ex p an sio n  = £ a ^ , a £ , a ^ ,...J 
o f  a .
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fra ction  expansion o f R .̂ S im ilarly , we shall say that a l l  

a-chains from F lead backwards without choice to f  i f ,  fo r  

some k > 0,

We now give a sequence o f four lemmas, from which we 

deduce the proof o f Theorem 3.3» In these lemmas we take 

f  as given by (3 .6 ) and do not assume that r  ̂ < 0 ,  > 0.

We suppose that P = fT , where P is  given by (3 .8 ) and T by 

(3 .7 ),  and that the elements o f T sa tis fy  (3 .12 ) or (3 .13) * 

so that, by Lemma 3.5> T must be one o f the matrices (3 .18) 

to (3 .21 ). We show that i f  T is  one o f the special matrices 

(3.18) or (3 .17) or i f  T is  o f the general type (3 .18) then 

any a-chain from P = fT  must lead forwards to a form fU where 

U is  e ith er  the matrix

o r one o f the matrices (3.19)> (3* 20), and (3. 21); and we 

show that i f  P = fT , where T is  given by (3 .19) or (3 .20 ), 

then any a-chain from P must lead forwards to a form fU 

where U is  one o f the matrices ( 3. 21) , (3 . 2i+) • In  the 

lemmas we prove rather more than th is because more precise 

results w i l l  be needed to prove Theorem 3.4*

1 0 
+1 1 ( 3. 21+)
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Lemma 5 . 6 . I f  F = f T ,  then

( i )  i f  T i s  the m a t r ix  ( 3 . 1 6 ) ,  then a l l  a - c h a i n s  from 

P l e a d  fo rw a rd s  w ith o u t  c h o ic e  to  fU, and a l l  a - c h a i n s  from 

fU l e a d  backwards w ith o u t  c h o ic e  to  F ,  where U i s  g iv e n  by

(3. 2k);

( i i )  i f  T i s  the m a t r ix  ( 3 . 1 7 ) ,  then a l l  a - c h a i n s  from  

P l e a d  fo r w a r d s  w ith o u t  c h o ic e  to  fU, where U i s  the m a t r i x

1 +1
+1 2 ( 3 .  25)

( i .  e.  where U i s  g iv e n  by ( 3 . 2 0 )  w ith  k = 2 ).

P r o o f . I f  T i s  g iv e n  by ( 3 . 1 6 ) ,  then by ( 3 . 1 0 )

+1 r 2 + 1
R1 = T r, + 1 » R2 = ± r ~  •

where +r^ > 0 ,  + r g < 0 ( so t h a t  | R, | > 1 ,  | R2 | > 1 ) .  Thus

R2 =  ±1 "  =
*  r 2

+2 «— - ~  ... — 
-  ' + r 2 + 1

and

^  + 1 = +2 -  ( - ^  + 1) = [ + 2 . R J .

By ( 3 . 1 0 ) ,  t h i s  p rove s ( i ) •

We note  t h a t  y = | 2 k ,x |  i f  and on ly  i f

y =
( k + 1 )x  -  k 
kx -  ( k - 1 ) (3. 26)

where k i s  any p o s i t i v e  i n t e g e r .

I f  T i s  the m atr ix  ( 3 . 1 7 ) ,  then by ( 3 . 1 0 )  and ( 3 . 2 6 )
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k r 2 + 1
R2 = +(k-1)r2 + 1 +2k-2*

2r2 ± 1 
+r2 + 1 *

By Lemmas 3.1 and 3*2, this gives (ii).

Lemma 3. 7. If F = fT, where T is the matrix (3.18),
then every a-chain from P leads forwards to a form fU,
where U is one of the matrices (3*19), (3.20).

Proof» By (3.10), we have
wr2 + u w , u , r2

K2 “ vr2 + t v v(vr2+t) t t( vr2+t)'
so that

K2 ~ v + v ” t + t
where, by (3.18), | h| < 1, | h f | < 1, and w/v is not 
integral.

By Definition 2.1, for any semi-regular continued 
fraction expansion R2 = | ,a2,a^,.. • | of R2, a^ is an 
integer such that | |  > 2  and | Rg - a^| <1. Por any 
such a^, we have

( 3. 27)

R2 =
w^ 2 + u1
v1r 2 + t 1

where
'1 u

w1 " 1
It follows from (3.27) that

a .t-u t 1
a . v-w v * 1

| w/v - a11 < 1, | u/t - ai | < 1;
and without loss of generality w^ > 0. Hence, by Lemma 3.2, 
every a-chain from P leads forwards to a form fT^, where
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and
I Sl < hi, |uj < f u| , |v.,| < |v| » w1 < w.

We use the same type of argument as in the proof of 
Lemma 3.5* Suppose first that | û  | = 11̂  | • If | | = 1,

is the matrix (3.20) with k = 2; while if | | > 1, T is
the matrix (3.17)> so that, by (ii) of Lemma 3.6, all 
a-chains from fT^ lead forwards without choice to fU, where 
U is the matrix (3.20) with k = 2. Suppose now that

IU1 I > ItiI• If IviI = ItiI> then Ti is given by (3.20); 
while if j |  > |t̂ | and t̂  = 0, then is given by (3.19). 

The only other possibility is that

If this is so, T̂  satisfies the same conditions as T, and 
we can apply the same type of argument again.

Thus we obtain a sequence of matrices

such that every a-chain from the form fT . leads forwardsr—1
either to a form fU (where U is given by (3.19) or (3.20)
or to a form fT , wherer'

K l  > I M  > 0» W1 > l ^ l ,  w1 > l u j ,  I v J  > I t J .

wr > |ur| , ur ji 0, vr ft 0,

and
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w < r w r-1*
It follows that we must eventually reach a for which

|ur| = |tr| or |vr| = |tr| or tp = 0, that is a Tp such
that fTM either is, or leads forwards without choice to, a r
form of U, where U is given by (3.19) or (3. 20).
This proves the lemma.

Lemma 3.8. If P = fT, where T is the matrix (3.19) then 
there is an a-chain from P which leads forwards to f, and 
every a-chain from P leads forwards to f or to fU, where U 
is one of the matrices (3.2h).

Proof. By (3.10) we have

+kr9 - 1 
^2 = ---- = ±k " r = [±k'r2>

If +k ^ -2 and r9 < 0, then

r 2 =
±k + 1 ’ ^ r ^

while if +k 2 and r2 > 0, then

r2 = ±k -  u

The lemma now follows from Lemma 3. 2.

Lemma 3.9» If P = fT, where T is given by (3. 20) and 
if +r2 > 0, then there is an a-chain from P which leads 
forwards to the form fU, where

1 +1 _ •
0 1

U t
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and ev e ry  a -c h a in  from  P le a d s  fo rw ard s  e i t h e r  to  fU o r  to  
fV , where

V = 1 0 
+1 1

P ro o f* By ( 3 .1 0 ) 
k r 2 + ( k - 1  )

R2 + r2 + 1 = +k -

o r
r2 = r o t 1+k + 1 f

Y T  = [±k ’ r 2 i 1]  ( ± r 2 > °>’

(+k 2, +r2 > 0 ) .

The lemma now fo llo w s  from  Lemma 3.1> 3 .2 ,  and 3 .6 ( i ) .

P ro o f  o f  Theorem 3 .3 . L e t th e  I - re d u c e d  form s f ,  P 
s a t i s f y  th e  c o n d it io n s  o f  Theorem 3*3> so t h a t  r^ < 0 , 
r 2 > 0. We f i r s t  n o te  t h a t ,  s in c e  r^ < 0 ,  r 2 > 0 , i t  
fo llo w s  from  Lemma 3.1 t h a t  none o f th e  fo l lo w in g  form s 
i s  I - re d u c e d :

"1 0 "1 -1~ 1 -1~ " 1 - ( k - 1 )
f 1 1 , t 0 1 , f - (  k -1 ) k , f -1 k

(w here k i s  an in t e g e r  g r e a t e r  th an  o n e ).
We f i r s t  suppose t h a t  e i t h e r  (3 .1 2 )  o r  (3 .1 3 )  h o ld s .

I f  we ex c lu d e  p o s s i b i l i t i e s  w hich w ould g iv e  n o n -I- re d u c e d  
fo rm s, and use  Lemmas 3 .5  to  3.9» th en  we see t h a t  e i t h e r  
any a -c h a in  from  P must le a d  fo rw ard s  to  f  o r  to  one o f th e  
form s ( 3 .2 2 ) ,  (3*23) o r  P i t s e l f  i s  one o f th e  form s ( 3 .2 2 ) ,  
(3 .2 3 ) .

By Lemma 3. U, i f  (3 .1 2 )  and (3 .1 3 )  fio n o t h o ld , th en
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(3 .1 4 ) o r (3 .1 5 ) ho lds. In th is  case the reverse  of F i s

o  1" t  u ’ o  1 u  t 0  1
r  i

W  V
p

j  °-
= f v w _1 0 = f W V = f

J  0 _u  t_

where
0 1
1 0

i s  the reverse  of f .  W ithout lo s s  of g e n e r a l i ty  we may 

take t  > 0 in s te a d  of w > 0 , so th a t e i th e r  t  = | u| = 1 ,

| v| > |w| , o r t  > |u|, } vj > ¡w j. Then, by an argument 

e x a c t ly  s im ila r  to th a t  g iven  above, i t  fo llow s th a t e ith e r  

every a -ch a in  from the reverse  of P must le ad  forwards to 

the rev e rse  of f  or to one of the forms

0 1 1 - 1" ’ 1 0 b 1"
f 1 0 0

= f _ - i _1 o _

0 i "1 o" " 1 b 1"
f 1 o _1 = f _ 0 1_ j o _

or the reverse  of P i s  i t s e l f  one of the forms (3 .2 8 ) ,  

which are  the rev e rse s  of the forms (3 .2 2 ) ,  (3*23 ). This 

i s  eq u iv a len t to say in g  th a t , i f  (3 .1 2 ) and (3 .1 3 ) do not 

ho ld , then e ith e r  every a -ch a in  from P le ad s  backwards to 

f  o r to one of the forms (3 .2 2 ) ,  (3 *2 3 ), or P i s  i t s e l f  one 

of the forms (3 .2 2 ) ,  (3 .2 3 ) .

Thus the theorem holds in  a l l  c ases .

I f  f  and P are  g iven  by (3 .6 )  and (3 .3 )  r e s p e c t iv e ly , 

then there  e x is t  in te g e r s  a^ , i  = 1, . . .  , n (| a i | > 2 ) ,  

such th a t
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R2 “  j_a 19 * • • » an' r 2J ’ 

r  .| =  |̂ a n > • • • > a «j > ®-j~j •

Hence, by Lemma 3.1» F = fT , where T i s  the m atrix

(n > 1 ), (3 .2 9 )

and p , are given by ( 2 .7 ) .

Thus, i f  there i s  an a-chain  from f  which le a d s f o r ­

wards to one o f the forms (3 . 22), ( 3 .2 3 ) ,  then f  i s  eq u i­

v a len t to f  under one o f the tran sform ation s

T, (3 .3 0 )1 1 T, 1 0
0 1 -1 1

~ S i - 1  ~^n-1

S i  pn

where T i s  given by (3 .2 9 ) . S im ila r ly , i f  there i s  an 

a-ch ain  from the form (3-22) to the form (3 .2 3 ) ,  then f  i s  

eq u ivalen t to f  under the tran sform ation

1 0 1 -1
_-1 1_ T _0 1_

where T i s  given by (3 *2 9 ) . I t  fo llo w s from (2 .7 )  

Lemma 2. U th a t , fo r  n > 1,

(3 .3 1 )

and

| pn-1 ± « n - l | i  1» | pn -  pn - l | ^  1 * K  ± 1 ’ l Pn-1 *  1*

Hence the tran sform ation s ( 3* 30) and ( 3. 31) are n o n - tr iv ia l .

I f  we denote the n egative  o f f  by f , then fo r  any 

tran sform ation

 ̂ u ( tw -  uv = 1 ),
v w

the n egative o f the form
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is the form

t u
V w

■t u
V -w

and the reverse of the form (3.32) is the form

t u 0 1" r~0 1 rw v
f v w _1 0_ = f _1 0_ _u t_

(3. 32)

By using these results and arguing as in the previous 
paragraph, we see that if there is a chain of I-reduced 

forms which contains any two of the forms f, (3« 22), (3*23), 

or their negatives, or their reverses, or the reverses of 

their negatives, then f or f reversed or f or f reversed 

is equivalent to f under a non-trivial integral unimodular 

linear transformation, that is, f has a non-trivial auto­
morph, U„ say; if U is of infinite order, then f must he 

proportional to a form with integral coefficients.

We now turn to forms with integral coefficients, for 

which we can prove a stronger result than Theorem 3.3* 

Theorem 3.U, which will be given below, really means that 

we can obtain all the I-reduced forms equivalent to a given 

integral form g by taking all the forms which belong to 

chains of I-reduced forms from any Gauss-reduced form f 

equivalent to g. However, although we can obtain all 

forms equivalent to g by starting from such a form f, we 

cannot always obtain all chains of forms {f } (or equi-
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v a le n t ly  a l l  a - c h a in s )  in  t h i s  way. F o r  exam ple, in  

C h ap ter U we s h a l l  c o n s id e r  G -auss-redueed form s gn whose 

f i r s t  and second r o o t s  a re

R1 R2 ’

R2 = P n > 2 ' - 2 ’ R2]  =

The fo  rrn

3 „ ,
5R2 + 2

n 9 2R2 + 1 [ 3n +1 ’ 2 ’ R2 + 1] ‘

gn
1 1 

0 1
(3 . 33)

h a s  f i r s t  and secon d  r o o t s

R1 R2
R1 + 1 “  R2 -  1 *  R2 + 1 *

S in c e  gn h as r o o t s  o f  o p p o s ite  s i g n s ,  i t  can n ot b e lo n g  to  

th e ch a in  o f  form s from  the form  (3 *3 3 )  determ in ed  by the 

p e r io d ic  se m i- r e g u la r  co n tin u ed  f r a c t i o n  ex p an sio n  o f  R2 + 1:

R2 + 1 = Ju , 3n , 2 , R2 + 1 ] .

F i r s t  we g iv e  a  lemma which i s  needed  to  prove 

Theorem 3»k, and then we g iv e  Theorem 3.U .

Lemma 3 ,1 0 . L e t  f  = ( a , b , c )  (b  > 0 ) be an i n t e g r a l  

G au ss-red u ced  form  g iv e n  by ( 3 . 6 ) ;  then a t  l e a s t  one a -c h a in  

from  f  l e a d s  fo rw ard s to  f .

P r o o f , S in ce  f  i s  an i n t e g r a l  form , i t  h as a n o n - t r iv ia l  

p ro p e r  automorph T ( s e e  s e c t .  1 .5  ) such th a t  f  = fT , where

»

t , u ,  v , w a re  i n t e g r a l ,  w > 0 , and tw -  uv = 1.

t u
V w
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A lso , f  = fT~^, where

,-1 w -u
- V

so that by Lemma 3»k  we may assume without loss of general­

ity  that the elements of T satisfy (3 .12) or (3 .1 3 ) .

I f  T is  the matrix (3 .1 6 ), then, by (3 .1 0 ),

+1
r 1 = +r<| + 1 r 2 =

r 2 + 1
±r 2

so that

+ r^2 + r 1 + 1  = 0 ,  + r 22 -  r 2 + 1 = 0.

This is  impossible for real r^, r2, so T cannot be given

by (3 .1 6 ) .

It  now follows from Lemmas 3*5 to 3*9 that there is at 

least one a-chain from f  which leads forwards either to f  

o r  to the form (3 .2 2 ) .

Similarly we can use the fact that
—

0 1 
1 0

= fT-1 0 1 
1 0

where the elements o f  s a t is fy  (3 .1 4 ) and (3 .1 5 ) to show 

that there is  at le a s t  one a-chain  from f  which leads back­

wards to f  o r  to the form (3 .2 3 ) .

I f  there is  an a-chain  from f  which leads backwards or 

forwards to f ,  the lemma i s  proved. I f  not, then there i s  

an a-chain  from the form ( 3. 23) which leads forwards to f ,  

and an a-chain  from f  which leads forwards to the form (3 .2 2 ). 

Then one o f  the fo llo w in g  statements must hold f o r  a set o f
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in te g e r s  a ^  i  = 1, . . .  , n (Ja^J > 2 ) :

( i )  r 2 = [ a 1> ••• ,a n , r 2 + 1]  ( a R ^ 2 ) ,

r ~ n  = [ V  ••• ' a1’r l ] ;

( i i )  r 2 = |~â > . . .  >ak , /̂’ ,I*2 **" — ^9 ^  — ^ )»
r  ̂ ^

r 1 + 1 = [ 2i ’ V  •** »a 1 , r l ] ;
I

( i i i )  rg = p k »r 2 + 1] = [ 2k »3 ' 2k-1 , r 2 + 1]  ( k 2. 1) ,

r 1 + 1 = [ 2k ’ r l]  = [ 2k -1 ,3 ,2 k ’ r lJ  ‘

I f  ( i )  h o ld s , then

r 2 + 11 r 2a . ,  . . .  , a — 1,1 9 9 n 9 - r 2 — f l j  , . . .  , a — 1 ,  — c . ,  _ i _ - 41 9 n - r 2 + 1

r 1
-1
+ 1 + 1

so th a t there i s  an a -ch a in  from f  which le ad s  forwards to 

the form (3 .2 3 ) ;  as  there  i s  an a -ch a in  from the form (3 .2 3 ) 

which le ad s  forward to f ,  t h is  means th a t there  i s  an a -ch a in  

from f  which le a d s  forwards to f .

I f  ( i i )  h o ld s , then by u s in g  ( 3. 26 ) we can show th a t

r 2 = 9 * * * 9  ̂9 **"  ̂ > **2] 9

r 1 = C'r|  ♦ '1}/ £ ,' -"I = [ _ ( / +  l ) ’ ak “ 1 * • ”  ’ V r l ] *

so th a t there  i s  a chain  from f  which le ad s  forwards to f .
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I f  ( i i i )  h o ld s  w ith  k = 1, then ( i )  h o ld s ,  and i f  

( i i i )  h o ld s  w ith  k > 1 , then ( i i )  h o ld s .  Thus in  a l l  c a s e s  

th e re  i s  an a - c h a in  from  f  which l e a d s  fo rw ard s  to  f .

Theorem 3 . h. L e t  f  = ( a , b , c )  (b  > 0) be an i n t e g r a l  

G au ss- re d u c e d  form g iv e n  by ( 3 .6 )  and l e t  P = (A ,B ,C )  (B > 0) 

be an I - r e d u c e d  form which i s  p r o p e r ly  e q u iv a le n t  to  f  un der 

a n o n - t r i v i a l  t r a n s fo r m a t io n

where t ,  u , v ,  w a re  i n t e g r a l ,  w > 0 ,  and tw -  uv = 1.

Then th e re  i s  an a - c h a in  from f  which l e a d s  e i t h e r  fo r w a r d s  

o r  backw ards to  P.

P r o o f . By Lemma 3 .1 0  th e re  e x i s t  in t e g e r s  

i  = 1, . . .  , n ( | a i | > 2 )9 such t h a t

r 2 = [ * 1 » ’ * * ' a n* » 

r 1 = [ an* * * •  ' a 1* r l ] *

t u
V w

As f  i s  G au ss-red u ced , we have r^ < 0 and th e r e fo r e  a n < 0 ,  

so  th a t  a l s o

r 2 = R j, 9 • • • , a n — 1 , _L1 r 2 + 1

*”  ̂ “  Ĵ a n  • • •  9 j  *

th u s  th e re  i s  an a - c h a in  from  the form  ( 3 .2 3 )  which l e a d s

backw ards to  f .  S i m i l a r l y ,  s in c e  r^ > 0 and t h e r e f o r e

a^  > 0 ,  th e re  i s  an a - c h a in  from the form ( 3 .2 2 )  which l e a d s

fo rw ard s  to  f
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If we exclude possibilities which give non-I-reduced 
forms and use Lemmas 3*5 to 3.9, we see (by arguing in the 
same way as in the proof of Theorem 3*3) that one of the 
following statements holds:

(i) all a-chains from P lead forwards without choice 
to the form (3.23) and all a-chains from this form lead 
backwards without choice to f (see Lemma 3*6);

(ii) all a-chains from P lead backwards without choice 
to the form (3*22) and all a-chains from this form lead 
forwards without choice to P;

(iii) there is an a-chain from P which leads forwards 
to f or to the form (3*22);

(iv) there is an a-chain from P which leads backwards 
to f or to the form (3.23).

Since there is an a-chain from the form (3*22) which 
leads forwards to f, (ii) and (iii) imply the existence of 
an a-chain from P which leads forwards to f. Similarly, 
(i) and (iv) imply the existence of an a-chain from P 
which leads backwards to f.

As with Theorem 3*3, the case of improper equivaDaices 
can easily be included by using the reverse of f.
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3A> A Bound fo r  M(f) in  Terms of the C o e ff ic ie n ts  of f  

For any in d e f in it e  b in a ry  q u ad ra tic  form f  = ( a ,b ,c )  

we defin e

f  ) = max [| a| , | cj , min | a + b + c|J

= max [| aj , |c|, X(f)J (se e  Defn. 2 .2 )

= max [ | f ( l ,0 ) | ,  | f ( 0 , l ) | ,  min |f(l,+l)|J. ( 3. 3U)

As an immediate consequence of Theorem 3*3» we have 

Theorem 3. 5. I f  f  = ( a ,b ,c )  i s  a G-au s s -reduced form 

which does not rep resen t zero , then

M(f) < n ( f ) A ;

e q u a l ity  can occur on ly when M(f) = M (f; P) and 2P 5  0 

(mod 1 ).

Proof. I f  we w r ite

Fo
0
1

»

then , by (3 .2 2 ) ,

X(Fo) = min £|c|, | Ua + 2b + c|J.

Since f  i s  Gauss-reduced, we may suppose a > 0 , b > 0 , c< 0 , 

so th a t , by Theorem 3* 1 >

|b| = b >  | a + c |.

Thus

and

Ua + 2b + 2c > 2 ( a + b  + e) > 0,

i ±a+2b + c >  -  c = |c|, 

so th a t X(Fq) = | c| • S im ila r ly ,  X(F^) = } a| •
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The result now follows from Theorem 3*3 and. Lemmas 2,11 
and 2,1 2,

It is convenient to note here the following results, 
which will be used in the next chapter:

M(f; i,0) = £ igf X(fn) < £|a|, (3.35)

where {f } is the chain of I-reduced forms corresponding to 
the even chain from the form F̂  (given by (3*2 3));

M(f; 0,i) = - 5 ^  xU n) < £|c|, (3.36)

where {f } is the chain of I-reduced forms corresponding to 
the even chain from the form FQ (given by (3*22));

M(f; ifi) = £ inf x ( f n) < £  x ( f ) ,  (3.37)

where {f ] is the chain of I-reduced forms corresponding to 
the even a-chain from f.

Theorem 3*5 is clearly a special case of the following 
theorem given by Barnes [3] :

(i) If f = (a,b,c) is any indefinite binary quadratic 
form, then

M(f) < n ( f ) / 4

equality can occur only when M(f) = M(f; P) and
2P 25 0 (mod 1). ,

Similar bounds for M(f) in terms of the coefficients 
of f had been obtained by Heinhold [36], Davenport [24] , 
and Inkeri [38J .
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In k eri [3 9 ]  proved the follow ing r e s u lt :

( i i )  I f  f= ( a ,b ,c )  i s  any in d e fin ite  b inary q uad ratic  

form, then th ere  e x is ts  a ’ reduced1 form q = (A ,B ,C ) which 

i s  eq u ivalen t to f  and f o r  which

n(<l) < 4 ( f ) .

In k eri [3 9 ]  then proved the r e s u lt  ( i )  fo r  d ed u ced 1 forms, 

and, by using ( i i ) ,  showed th a t the corresponding r e s u lts  

of Heinhold [ 36]  , Davenport [24] , In k eri [38] , and Barnes 

[ 5]  could be derived from th is .

F o r forms which do not rep resen t zero , I n k e r i '8 

1 reduced1 forms are  Gauss-reduced forms. Hence i t  follow s  

from ( i i )  th a t i f  f  does not rep resen t zero then the b est  

bound fo r  M(f) th a t can be obtained from ( i )  by con sid erin g  

forms eq uivalent to  f  can a lso  be obtained from Theorem 3*5 

by con sid erin g  only Gauss-reduced forms eq u ivalen t to  f .

In k eri [3 9 ]  showed th a t the b e st bound fo r  M(f) 

obtainable in  th is  way i s  g r e a te r  than o r equal to a/<4 aJ 5
p

(where A = + ^(b -  4 a c ) ) ,  because always

n (f )  > A/V5.

For the f i r s t  Markov form (se e  s e c t . 1*4 ) ,  f  = ( 1 , 1 , - 1 ) ,  

i t  i s  welljknown th a t

M( f ) = £ = 5  75 = 5  t*(f )*

Theorem 3*5 and ( i )  are b e s t p ossib le  in  the sense
A

th a t  th ere e x is t  many forms f o r  v/hich M(f) = jj- n ( f ) .  F o r  

example, Davenport [24] showed th a t  i f  f  = ( l , 2 k , - l ) ,  where
A

k i s  a p o s itiv e  in te g e r , then M(f) = £k = |i(f). However,
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i n  C h apter  2+ we s h a l l  c o n s i d e r  a s e t  o f  forms f  = ( a , b , c )  

f o r  many o f  which M(f) = j a|  , where | a|  i s  much s m a l l e r  

th an  n ( f ) ,  so  t h a t  f o r  th e se  form s p ( f )  does  n o t  g iv e  a 

good bound f o r  M (f) .

More r e c e n t l y ,  R ogers  [2+6] h as  g iv e n  a g e o m e t r i c a l  

p r o o f  o f  a more g e n e r a l  r e s u l t  from which ( i )  can be 

deduced:

( i i i )  I f  f ( x , y )  i s  a  co n t in u o u s  f u n c t i o n  such t h a t  

the r e g io n  | f ( x , y ) |  < K h a s  two a sy m pto te s  and s a t i s f i e s  

c e r t a i n  o t h e r  c o n d i t i o n s ,  then,  f o r  any r e a l  ( x 0 >yo )» th e r e  

e x i s t  ( x , y )  =  ( x  ,y  ) (mod 1) such t h a t

| f ( x * y ) |  < max [ | f ( * , 0 ) | ,  | min | f ( £ ,  ± J ) | ] ;

e q u a l i t y  can o cc u r  only  when

( 2 x o ,2 y Q) 5  ( 0 , 0 )  (mod 1 ) .

Bambah [2] , Chalk [2 l J  , M orde l l  [Uh] , and Bambah and 

Rogers  [U] have proved  s i m i l a r  r e s u l t s  f o r  d i f f e r e n t l y  

shaped r e g i o n s  | f ( x , y ) |  < K.

The r e s u l t s  d i s c u s s e d  by I n k e r i  [[39] were o r i g i n a l l y  

p u t  fo rw ard  a s  a t t e m p ts  to  sharpen  Minkowski*s  Theorem 

(Theorem 1 .1  ) ,  and in  f a c t  t h i s  theorem can be deduced 

from any o f  them. In  p a r t i c u l a r ,  i f  f  i s  G au ss - red u c ed ,  

then, by Theorem 3 .1»

A2 = b 2 + U | a | | c |  > b 2 > ( a  + c ) 2 ,

and

A2 > A2 -  ( a  -  c ) 2 = b 2 -  ( a  + c ) 2 > 0 ,

so t h a t
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A > j a + c | , A > j a — c| , A >  min | a + b + c | ♦

Hence

A >

and Theorem 3*5 (with ( i i ) )  im plies Minkowski’ s Theorem 

f o r  forms which do not represent zero.



CHAPTER 1+

A SEQUENCE OP SYMMETRICAL MARKOV FORMS

L. 1. In trodu ction  — D e fin it io n  o f  the Forms g and ----------------------------------------------------------------------------------“ n ■■
Statement o f  Theorem U, 1

Let ig n î (n  > 1) be the subsequence o f  the symmetric 

Markov forms (see  sect, 1. ^ ) defined  by
*

gn(x ,y )  = u2n+3x 2 + v2n+3xy -  u2n+3y 2- (n  > 1 ) ,  (¿u D

where up, r = 0 ,1 ,  . . .  , denote the F ibonacci numbers

(u 0 = 0, u1 = 1, ur+1 = ur + ur-1 f o r  r > 1 ) ,  and

v p, r = 0 ,1 ,  . . .  , denote the Lucas numbers (v  = 2, v  ̂ = 1,

v r+1 = v r + v r-1 f o r  r and l e t  M2^ n) denote
the f i r s t  and second inhomogeneous minima o f  g , and m(gn) 

the homogeneous minimum o f  gn*

In th is  chapter I prove

*The simple and sem i-regular continued fra c t io n  
expansions o f  a root o f  th is  form (see  (h#6) and ( h .1 5 ) )  are 
simply re la ted  to the number n; hence we c a l l  the form gn 
even though th is  makes the d e f in it io n  o f  gn in  terms o f  
i t s  c o e f f i c ie n t s  seem rather clumsy.

81
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Theorem lu 1. For n > 11 the following statements hold: 
(i) If n 4 0 (mod 3) > then

M(gn ) = lu2n+3 = ¿m( gn)

(ii) if n = 0 (mod 3), then

M(gn) = ¿(8u2n+3 - 3v2n+3) > ¿m(gn)f

M2(gn^ = l+u2n+3 ‘

In the next chapter I shall discuss the behaviour of 
the first few of the forms gn*

Since v 2 n + 3 = 5u2n+3 ” ^ (see Hardy 5111(1 Wright ¡33] > 

§10.114-, for properties of the Fibonacci and Lucas numbers),
pthe discriminant of the form gn is 9u2n+3 “ as we should 

expect for a Markov form. If we write

A = +</( 9u2n+3 - k),

S =
A + V2n+3 
2u2n+3

t

then the first and second roots (see (3*6) and the definition 
which follows it) of gn are

R1 = -S, R2 = S.
In section U. 2 I obtain the simple continued fraction 

expansion of S and deduce some results which are needed for 
the proof of Theorem U. 1; in the course of the discussion I 
verify that gn is in fact a Markov form with ra(gn) = u2n+3*
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In section L. 2 I discuss the semi-regular continued fraction  
expansion (see c efn. 2.1) of S and obtain some further 
results needed fo r  the proof o f Theorem !u1. Throughout 
this chapter

a =  ( ••• )
denotes the simple continued fraction  expansion o f a, while

a = l-ai >a2,a3' *'* _]
denotes a semi-regular continued fraction  expansion o f a.

The proof o f Theorem k*1 depends on the fa ct that, by 
Theorem 3.1, since gn is  Gauss-reduced, every chain of 
I-reduced forms equivalent to gn must contain at least one 
o f the forms

gn “ ^u2n+3’ v2n+3’ “U2n+3^*
1 1

g

g

nL° 1_

1 ° = ( - V
-1 1 :

= ^u2n+3’ 2u2n+3 + v2n+3’ v2n+3^’

2n+3’ 2u2n+3 + v2n+3* "^2n+3

(U. 2)

). (U.3)

I f  f  is  either o f the forms (L .2 ), (i+. 3 ), then x( f )  = u2n+3*
i t  now follow s from Lemmas 2.11 emd 2.12 that, i f  j api is  
an a-chain from one o f these forms and is  not even ( i . e. not 
a l l  a  ̂ are even), then fo r  every corresponding e-chain 

M(P) = M(gn; P) = M(iar ] , i e r ]) < ¿u2n+3.

In section U.U I shall show that i f  [ar ] is  an a-chain from 
gn fo r  which not a ll are even, then fo r  every corresponding 
e-chain

M(P) < iu
2n+3*
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This, w ith the results o f sections lu 2 and i-u3> w i l l  

complete the proof o f Theorem U. 1.

k*2. The Simple Continued Fraction Expansion o f a Root o f gn
2 2 2Since t = 3u2n+y  u = 1 sa tis fy  t -  A u = k, the

transformation
r

T =
ur( 3 u “  VOir.2n+3 2n+3

l2n+3

u2n+3 1

• 7 2 ( 3 u 0vi_ ^  +  V 0vi J_-^)2n+3 2n+3y

is  a proper automorph o f ( seePioKsonL52J^§69),Prom the

relationships between the Fibonacci and the Lucas numbers 

we obtain

v2n+3 = U2n+U + u2n+2 = u2n+3 + 2u2n+2 * (U.U)

Hence

T =
u2n+1 u2n+3

u2n+3 U2n+5

Since = S, we have, by Lemma 3*1»

s = U2n+5S * U2n+3
U2n+3S + u2n+1

(U.5)

Also we have

^  = (2 ,1 2n+2) = (2 ,1 2n,2 ) ,  ^  = ( 2 ,1 2n) .  
u2n+3 2n+1

I t  fo llow s that

s = (2 ,1 2n.2 ,S ), (U .6 )

so that g is  in fa c t a Markov form (see Dickson 33j>Ch.VII).
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Lemma U# 1. For in tegra l (x ,y )  ^ (0 ,0 )  we have

|gn( x »y)| > u2n+3;

and i f  in  a d d ition  |gn(x ,y ) j  /  u2n+3' 'tiien

! gn(x ,y )|  > 8u2n+3 -  3v2n+3.

P r o o f. I t  fo llo w s  from Lagrange’ s Theorem (Dickson 

[32] , i'h .85  ) that a l l  the values o f  |fn(x ,y )  | le s s  than 

*/2 f o r  coprime in tegers  (x ,y )  are given by the set o f  

values o f  A /z, where

z  £   ̂  ̂2n-*r, ^9 * ** = t ?n] • ( -̂U 7)

I f  a < b , then ( l , 1 , a )  < ( l , 1 , b ) ,  and i f  a > 2, then 

( l , 1 , a )  < a. Thus, i f  a > 2, we have

( 12r+2,a  ̂ < ^12 r ,a  ̂ < < < a *
and

( 0 , 1 2r+29 a  ̂ > ^ , ^2r,a ) > > (0 , a) •

Hence, f o r  n-1 > r > 0,

( 12r+1,2 ’ S) + ^0 , i 2n -2r-1 ,2 ,S ') = ^°’ 12 r ,2 ,S ) + ^12n-2r’ 2 ’

< (0,1 2n_2> 2,S ) + ( 1 , 1 , 2 , S) ;  ( 14. 8 )

and, f o r  n > r > 1,

0 2 r>2,S) + ( 0 ,1 2n_2r > 2 ,8 ) < ( 1 , 1 , 2 , 8 )  + (0 ,1 2n_2,2 ,S ) ;  (14.9) 

and

( 1 , 1 , 2 , 8 )  + ( 0 ,1 2n_2,S ) < (2,S)  + (0 ,1 2n,2 ,S ) .  (14.10)

A lso

( 2 , 8 )  + (0,1 2n, 2, S) = S + | = A/u2n+3 (U. 11)
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and

(1 ,1 ,2 ,S )  + (0,1 2n-2’ ’2,S) = (0 ,1 ,2,S) + ( l ^ ^ . S )

23 ± 1 , 2 -  S
“ 33 + 1 S - 3

-  A/(8u2n+3 -  3v2n+3) (4.12)

I t  fo llow s from (4*8 ) to (4*11) that i f  z s a t is f ie s  (4 .7 ) 

then always

This proves the lemma.

Since gn( l , 0 )  = u2n+3* we have fo llow ing

Corollary. m(gn) = u2n+3.

Lemma 4* 2. I f  n = 0 (mod 3) and x ,y  are both odd 

in tegers, then

P roo f. We note f i r s t  that gn(3 » l )  = ®u2n+3 ”  ^v2n+3’

so that equality is  possible. By Lemma 4*1, i t  is  now 

su ffic ien t to show that i f  n = 0 (mod 3)> and x ,y  are both 

odd, then |gn(x,y )|  / u2n+3* We w rite

n = 3/> x = 2X+1, y = 2Y+1, and use the facts  that ur | ups

fo r  every s, and that u , u are coprime i f  r, s are coprime.r s

! gn( x ' y ) l i  ®u2n+3 '  3v2n+3"
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By (4. U ),

v 2n+3 = Uu2n+1 + 3u2n = Uu6U1 + 3u6/; 

also, 8 = u^, so that 8|u^^. Therefore

U|v2n+3. (U.13)

From (lu k ) we have

u2n+3 = v2n+3 "  2u2n+2 = v 2n+3 "  2u6J+2‘

Since 2 = u^, +̂2; i t  fo llow s that

21 u2n+3 ’ ^ u2n+3* ( ¿U 1 ¿4-)

Now

gn( 2X+1, 2Y+1) = u2n+3 i ( 2X+1) 2 -  (2Y+1)2} + v2n+3( 2X+1) ( 2Y+1) ,

and 2|[(2X+1)2 -  (2Y+1)2}.  Hence, by (U.13) and (U.1U)

U| gn( 2X+1, 2Y+1) , so that

gn( 2X+1, 2Y+1) / ±u2n+3.

This proves the lemma.

The fo llow in g  lemma is  an immediate deduction from 

Lemmas U. 1 and lu 2 and the rela tions (3*35) and (3« 36).

Lemma L-# 3. For a l l  n

M(gn$ > ^ (gn> i ,0 )  = M(g^; 0,^-) = i[}12n+3*

and i f  n = 0 (mod 3) then

M(gn; i ,h)  = ¿ ( 8u2n+3 ~ 3v2n+3^
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U» 5. The S e m i-re g u la r  C o n tin ued  F r a c t io n  E xpansions o f a
Root o f  R .------------------° n

We have
u,

^  - [3».,.« - Cv2.-C. ^  ■ !>„•?)•
so t h a t ,  by (¿4- 5 )

S = [3 n , 2 , - 2 ,S j .  (¿U 15)
I t  fo l lo w s  from  th e  l a s t  p a ra g ra p h  o f  s e c t io n  k *  1 t h a t  

M(P) = M( i a r U e r j)  <

f o r  a l l  a - c h a in s  (and  a l l  c o rre sp o n d in g  e -c h a in s )  ex cep t 
p o s s ib ly  f o r  th o se  a -c h a in s  from  gn which do n o t le a d  
backw ards o r  fo rw a rd s  to  one o f  th e  form s (¿4-2) , (¿4* 3) > and 
w hich we s h a l l  c a l l  p e r m is s ib le . By Lemma 3*1# th e  ro o ts  
o f  th e  form s (¿4* 2 ) and (¿4- 3 ) a r e ,  r e s p e c t iv e ly ,

- S / ( - S  + 1 ) ,  S + 1, (¿4-16)
and

- ( s  + 1 ), S /( -S  + 1 ); (U. 17)
s in c e  h as  i n t e g r a l  c o e f f i c i e n t s ,  any form  w hich h as  one 
o f  th e  numbers (¿4- 1 6 ) ,  (¿4* 1 7 ) a s  a ro o t  must be one o f th e  
form s (¿4-. 2 ) ,  (¿+*3). Hence p e rm is s ib le  a - c h a in s  a re  
d e te rm in e d  by s e m i- r e g u la r  c o n tin u e d  f r a c t i o n  ex p a n s io n s  o f  

= -S , R2 = S w hich a re  n o t ,  f o r  any n , o f th e  form
I a 1 * a 2 '  • • • 9an 9^ j  >

where z i s  any o f  th e  numbers (¿4* 1 6 ) ,  (¿4- 1 7 ) ;  we s h a l l  c a l l
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such expansions o f  +S perm issib le expansions.

We note the fo llow in g  resu lts

[ -2 ,3 ]  = [ - 3 ,S / ( -S  + 1 ) ] ,  [ 2 , - 2 , S] = [3 ,2 ,S  + l]  , (1u 18)

[ 3 ,2 , - 2 , s]  = [2 , —2, —3 ,S] = [2 ,-2 ,- i+ ,S /( -S  + 1 )"] , (lu 19)

[3 ,3 ,2 , —2 ,s] = [ 2 , - 2 , - 3 , - 3 , S] = [ 2 , - 2 ,- 2 ,2 ,2 ,S + 1] . (iu20)

A lso , f o r  any z such that \ z\ > 1, we have

[3-3,z] = [2,-2 , £§-= -!] ;

and from th is  we deduce that, f o r  k > 0,

C\Jl•tCM9k+X
I______I ,s ]  = [ 2 , - 2 , —3 ^ 3 ,8 ] , (lu 21)

! “ \ + 3 , s 1 = ,2 ,3 ^ » 2 ,-2 ,s ] , (u . 2 2 )

t-^fc+3*2 ,~2 ,sj := [ 2 , - 2 ,- 2 ,2 ,3 k , 2 , - 2 , s ] . (lu 23)

We can  now prove

Lemma h. U. I f  n ji 0 (mod 3 ) , then

M(g n ; 5 . Ì )  = ^u2n+3*

P r o o f .  By ( U* 19 ) and (¿+.23), i f  n s  1 (mod 3 ) , the

even a-chain  from gR i s  determined by the expansion

S = j [ 2 , - 2 , - 2 ,2 } k ,2 , -2 , -U ,S /( -S  + l ) j ,

and so i s  not perm issib le . S im ilarly , by {lu 20) and ( iu 2 3 ), 

i f  n = 2 (mod 3) > the even a-chain  from gn is  not 

perm iss ib le . The lemma now fo llow s  from Lemma lu3• (We 

note th at, by (U*23), i f  n = 0 (mod 3)» the even a-chain
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from g^ is  perm issible, which explains why M( g : isn n
la rger in th is case. )

As there are in f in it e ly  many semi-regular continued 

fra c tion  expansions o f any given number, we need a notation 

which indicates which particu la r expansion we are using; 

therefore we w rite

a -  ( aQ>a .<i> ••• , a r , z ]>

when we mean that a -  [a  ,a^, . . .  , ap,z| and that we are 

choosing expansions o f a whose f i r s t  r + 1 p a r t ia l 

quotients are aQ,a^, . . .  , a^. We note that, i f  «  = j+2,z[ 

and |«| < 2, then a = |+2,zj and no expansion o f a can 

begin in any other way.

Lemma lu 5» Let j ar ] be an a-chain from gn which is  

not even. Then [ ar 5 (o r  i t s  negative or i t s  reverse or 

i t s  negative reversed) contains a subchain determined by 

pa irs  o f expansions o f the roots = -S, = S o f gn

which begin in one o f the fo llow ing  ways:
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( i )  - S  a r b i t r a r y ,  S =

where y =

( i i )  - S  a r b i t r a r y ,  S =

whe re y =

( i i i )  -S  = [ - 3 , - 2 , 2 , - y ]  , S =

whe re y =

( i v )  -S  = | - 2 , 2 , x ] ,  S =

where x = | 3n » —S) , y  =

(v )  -S  5 J —2 , 2 , x ] ,  S =

where x = 13n , - S j  , y  =

( v i )  -S  = [ - 2 ,2 , x ]  , S =

where x = ( 3n , - s |  , y =

[ V  2 , - 2 , y ] ,

t-"3n -k ’ S l ’ 3 < k < n ;

[ 3 ,3 ,2 , - 2 ,y ]  ,

| - 3n - 2 ’ S l Î 

[ 3 , 2 , - 2 , y ] ,

f - 3„ _ 1 . S] ;

[ 3 ,2 , - 2 ,y ]  ,

| } 2 ,  —2,  —2 , 2 1 k f  2 ,  —2 ,  - 3 , y  | »

!-~3e ,®l , 3k+i+1 = n , k > 0 ;

| 2 ,  —2,  [ - 2 ,  2 , 2 ,  —2] —2 , 2 , 3>y |  »

| 3̂  , 2 , - 2 , S ] ,  3k+i+1 = n , k > 0 .

P r o o f . By ( 4 . 1 8 ) ,  j —2 , S ) and ¡ 2 , - 2 , s ]  have no 

p e r m i s s i b l e  a l t e r n a t i v e  e x p a n s io n s ;  i t  now fo l lo w s  from 

( 4* 1 5 ) and e q u a t io n s  ( 4*  19 ) to  ( 4* 23) th a t  any p e r m i s s ib l e  

e x p a n s io n  o f  S must b e g in  in  one o f  the fo l lo w in g  ways.

S = |3̂ »2,—2,y| ,
where y = [ - 3 n - k »S] , 0 < k < n ;

i —»
S = j j > , - 2 , - 2 , 2 ] k , 3 , y | ,

where y = ¡ 3 ^ , 2 , - 2 , s | ,  3k+£+1 = n, k > 0;

s = | [2 ,-2 ,-2 , 2]k, 2 ,-2 ,-3 ,yj ,_ t)
where y = | - 3 ^ ,S ]  , 3k+.¿+1 = n, k > 0 ;
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Where

S = [2 , -2 ,y|  ,

y = r-3n_2,s ] .

(We note that the la s t  expansion includes the two previous 

ones as sp ecia l cases, and that o f  course many expansions 

which are not perm issib le may begin  in  these ways a ls o ) .

Lemma Lu 5 now fo llo w s  from the symmetry o f  gn and the fa c t  

that the a-chains are assumed not to be even.

U.k A Sequence o f  Lemmas leading to the P roof o f  Theorem Lu 1 

Theorem Lu 1 now fo llow s immediately from Lemmas Lu 3 and 

LuU and the fo llow in g  lemma.

Lemma Lu 6. I f  n > 11 and i ap! i s  a perm issib le  a-chain  

from gn which i s  not even, then f o r  every corresponding 

e-chain

In Lemmas lu 7 to Lu 15 we prove th at, i f  n > 11, then 

f o r  a-chains which contain ce rta in  subchains and f o r  certa in  

corresponding e -ch a in s, we have, f o r  some r ,

We then prove Lemma lu 6 by using Lemma Lu 5 to show that the 

a-chains and e-chains considered in  Lemmas Lu 7 to Lu15 

include a l l  perm issib le a-chains from gn which are not even, 

and a l l  corresponding e-ch a in s.

M(P) = MQar i , i e r ! )  < ¿u

< A/3 (see  (2 .3 0 ) ,  (2 .3 2 ) ,  ( 2 .3 3 ) ) ,  so that

so that
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In the proofs o f Lemmas L# 7 to ¿+«15 we use the 

notation and resu lts o f section 2. 5» We introduce the 

fo llow ing  notation: by a chain pa ir

• • •  >P 9 8 9  ̂9 • • •
• • • ,a,b,_c,d,e,f, .. .

we mean an a-chain i a r l such that = r, a2 = s, 

aD = 1» = p, . . .  , with a corresponding e-chain i er l

such that = c, = d, = b, = & » • • • •  I f  in

addition the values o f one 0 and one <t> are given, then 

Qq^ o are determined and j ap] is  an a-chain from f  which 

contains the subchain determined by the pa ir  o f expansions

®0 5 jq.»P>0_ 2|> 't’ o 3 j ,

and hence also 0 ^  9^2* * "  are determined. Sometimes,

fo r  the sake o f c la r ity ,  the values o f two 9*s or two s 

are given, though only one o f each is  needed to determine 

the subchain.

By (U. 5)»
o = U^n+5________ 1__________________

u2n+3 u2n+3('U2n+3S + U2n+1)

u2n+5________ 1_________________
u2n+3 u2n+3<' 2u2n+3 + u2n+1 ^

Hence, fo r  n > 4, we have

2.61803 < S < 2.61804.

We g ive  in Table 1 some numerical information which is  

va lid  fo r  n > k  and which is  needed fo r  the proofs o f 

Lemmas 4.7 to 4.15« As we shall want to use th is
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information fo r  obtaining in equ a lities , we adopt the 

fo llow in g  convention.

I f  a = a (x ) (where x is  given in the f i r s t  column) 

is  one o f the numbers tabulated, then the value correspond­

ing to « given in the table w i l l  be

V a1a2a3*V
where

and

-4
ao,a 1a2a3aL < a ao*ai a2a3aU +

aQ. a  ̂a?a^a^ > > ®-q* i f  ®  ̂ 0.

TABLE 1

X X 1/x 1- 2.4 1 / -2 .X ] [ 2 , - 2 . x ] V j 2 . - 2 . x j

S 2 .6 1 8 0 0 .3 8 1 9 -2 .3 8 1 9 -0.1+198 2.1+198 0.1+132

[ - 3 . 8 ] -3 .  3819 -0 .2 9 5 6 -1.701+3 -0 .5 8 6 7 2. 5867 0 .3 8 6 5

[ - 3 2 .S ] -2 .  701+3 -0 .3 6 9 7 -1 .6 3 0 2 -0 .  6131+ 2 .61 3U 0. 3826

[ - 3 3 . S ] -2 .  6302 -0 .  3801 -1 .6 1 9 8 -0 .  6173 2 .6 1 7 3 0. 3820
CO4K-d
K'v1
I __

1 -2 .6 1 9 8 -0 .  3817 -1 .6 1 8 3 -0 .6 1 7 9 2. 6179 0 .3 8 1 9

[ - 3 5 ,S j -2 .  6183 -0 .3 8 1 9 -1 .6 1 8 0 -0 .6 1 8 0 2. 6180 0 .3 8 1 9

r - 3 k , s ] -2 .  6180 -0 .3 8 1 9
( k  > 6 )

I f = f ' v a • • • ]  , th e n  - «  =  [ - a Q, - t ~ a 2 * • • • b

an d  b y  (¿ u 1 9 ) ,  ( 4 . 2 0 ) ,  and  (U .2 1 )  we h av e

* *■» 
C\J

£

= [ 2 . - 2 . - ’̂ k+m* S J (k  > 0 , m > 0 , k+m < n ) .

Hence i t  is  su ffic ien t to tabulate j 2 ,-2 ,-3^ , s ] .
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A ll  in e q u a lit ie s  given in  the course o f  the p roo fs  o f  

Lemmas 4 .7  to 4 .15 are s t r i c t  in e q u a lit ie s .

Lemma 4 .7 . I f  n > 11 , then % < A/3 f o r  the chain p a irs

••• #3 ,3 , 2 t 2 ,-2 , . . .  and
. . .  ,1 ,1 .1 ,0 ,  0, . . .  ana

.. 9 3, 3,^,2, - 2, . . .

. .  » +1 ,—1,_1 , 0 , 0 , . . .  9

where

®-2 = L~3ra.- S j ( » 1 0 ) ,  

*3 = t _3k >sl (k i  0 ) -
Proof.

Tq = 1 +
*1*2

(1  -
1 \

^ r )

For k = 0,

For k > 2,

To = 1 + jj.UiU x .U20 x .6191,.

t q = 1 + ||.3827 x .6181 x .6303,'.

(U . 2k)

For k = 1, we must have = |-3>S] as no other expansion 

of i s  perm issible, so that <p ,̂ <f>̂  are opposite in  sign , 

and,by Lemma 2 .1 0 ,
1T = 1 +O 1 *1*2

(1  -
1 2 v

* ^ T  " T * A f ;

= 1 + II. 387 x .587 x (1 -  .295 -  .295 x .762 )

= 1 + ii. 387 x .587 x .U81||. ( U. 25)
Thus fo r  a l l  k

-c0 = 1 + ||.1U91 II > .8509. (U. 26)

Also

2 .5 8 6 < 0Q< 2. 6181. (U. 27)
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Hence

1 -  <t> + * | < .7672. (U.28)

I f  = 1 , <yo < 0 , and i f  e_  ̂ = e_ 2 = 1 , th e n

°o  = 1 ~ éP  + 0 -1 -1
(1 - ■ )

Hence in  e i t h e r  c a s e ,

cr

F o r  m = 0 ,

O < 1 -  + | ^  O  -  p ^ J - ) | .

<rQ < 1 -  .295 + .296 x .6181,

2 . 70k < e0 < 2 .7 0 5 .

The re  f o r e

1-1 + 90 + <g < 2.593,

3/| 60^o “ 1| < 3/( 2 .70U x 2.586 -  1) < .501 (U. 29)

F o r  m > 2 ,

< r < 1 -  .380 + .3820 x .631

2.618 < 6 < 2. 620.O

T h e r e fo r e

| -  1 + 0O + < 2,1+82,

3/ | 0„s> -  1! < 3 / ( 2 .6 1 8  x 2 .5 8 6  -  1) < .5 2 0  (¡+ .30)

F o r  m = 1 , b y  th e  same ty p e  o f  argum ent a s  t h a t  u s e d  to  g e t

( u . 2 5 ) ,

" 1 “  ^ + 1 ^  ( 1 "  T ^ r "

<  1 -  .369 +  .370 X  .U81,

2.630 < 0O < 2.631.
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The re  f o r e

| -1 + ©o + o-0 ¡ < 2. U40

3/IVo _1l < -520
( i u 3 l )

Prom  ( L .  2 8 ) , ( L . 29 ) ,  (U .  3 0 ) , and (U . 3 1 ) , i t  now 

f o l lo w s  t h a t ,  f o r  a l l  k ,m ,

3rco/ A  < .7 6 7 2  x 1.2991 < .9 9 7  < 1.

Lemma U* 8. I f  n > 11, th e n  < a/ 3 f o r  th e  c h a in

p a i r

3 > 3 ,J5 ,2 , -2
• 1 ,1 ,1 ,0 , 0

w h ere

9-2  = -3 ] (m > 0)

*3 = C-\'S] <k i °)
P r o o f

T
-1

T0O

H e n c e , u s in g  ( L .  26) and ( L .  2 7 ) ,

^  > .5 5 5

2 .613 < < 2.6181

T h e r e f o r e

< 1.0631 ( u . 3 2 )

F o r  m > 1

°_ i = -1 + ii. 705 ¡i,
2.618 <e_.| < 2.705



4.4 98

Therefore

For m = 0,

-1 + 0 + <r I < 1.U10,

3/| - 1| < . 520, j
(U. 33)

= -1 + ,¡.6181 ¡j ,

3.3819 < < 3.3820.

Therefore

I -1  + 0_1 + <r_1 | < 2.0001,

3/|9_i^_ i -  1! < 3/(3.3819 X 2.613 -1) < .383 ,

I t  now fo llow s from (U .32), (U. 33)» and. ( Iu3h)  that

3k_1/4 < .815 < 1.

(U. 3k)

Lemma U.9. I f  n > 11, then it < a/3 ^or the chain pa ir  

( i )  

where

t it  
• • •

t 3 > 3 > 2 , -2 , -2 ,2 ,  •••
9 ^ > 0 j 0 > O^Oj . . .

e_1 = -8, = s, <t>5 = [ 3k, 2 , - 2 ,s] (k > 6 ),

and fo r  the chain pa ir

i n )

where

-1

••• 9 3,^,2,-2,-3,-3, •••
• • • > ^y0 f O f  “1 9 +1 9 . . .

= -a. = s. «5 = [-3m,s] (m > 7).
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P r o o f .  P o r  the  c h a in  p a i r  ( i ) ,

= 1 + ! T '-'J  "T ~T ~ (1 “  J J - j )

= 1 + ( . 618)^ x ( . 3 8 2 1 ) 2 = 1 +

Por  the c h a in  p a i r  ( i i ) ,

T = 1 + r-r-~
o £¡0 2^ ^iV3(1 " T?iJ

Hence in  b o th  c a s e s

T h e re fo re

A l s o ,  in  both  c a s e s

o' = +1 +o —

To > . 9 6 5

2 . 6180 < <t>Q < 2. 6 18 1 .

1 -  ^o + Toi <

1 - < 1. 6 1 8 1 ,

3.3819 < e0 < 3. 3820.

Thus

-1 + 0Q + crQ| < ¿+.0001,

3 /| V o  “  1! < 3 /(3 .3 8 1 9  X 2.6180  -

I t  now fo llo w s from (Í+.36) and (¡+.37) 

c a s e s ,

. 035 ,|. (iu 35 )

> 1

( lu  3&)

[ (U. 37)
1 ) < .382. 

t h a t ,  i n  both

3x/A < .998 < 1.
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Lemma 4. 10» I f  n > 11,then % < A/3 fo r  the chain pa ir

• •• » 3, 2 f — 2, —J>, — 2 p 2 f ...
. . .  i +1, 0 > 0» 1 y 0 p 0 f  « . .

where

0_3 = -S or [3,-sJ , *_3 = S or [3n_., ,2 ,-2 ,s ] ,

*3 = [3k .2 ,-2 ,s ] , (k  > 5  ) (see (¿+.22 ) ) .  

P roo f. As in (4*28 ), we get

|1 + *0 + *0| < .7672.

Also

(¿+.38)

<T = 
O

1 / .  1
A v 1 -  !"a < .614 X . 705,
-1 1-2«

2.586 < |0O| < 2.614.

Therefore

(U. 39)
h  + 0o + °o! < 2- 0U1

3/|9o^o -  1| < .520 (as in  (¿+.30))

I t  fo llow s from (¿+.38) and (¿+.39) that

3*0/a < .817 < 1.

Lemma ¿+.11. I f  n > 11, then % < a/3 fo r  the chain p a ir

••• . 3» 2, — 2, — 3, —,3, •••• • •  , 1 , 0 j 0 ,  1 j + 1 j . . .
where

' - u  = -S or [3 ,-S ],  ^  = S or [ 3 ^  .2 ,-2 ,s] , 

= l-3k .S] (k  >8).
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Proof.

Since

t = +1 + 1 -

2 .6 1 8 0  < U  | < 2 .6 1 8 1 ,

we have

11 + + Tq| < 3. 2362

Also

<r = 1 - 1 + |L J  . (1 -  1
9H e-2e-3 : 0- i e-2e-3 -k r>lr

Thus i f  = -S,

<ro >1 + .386 x .586 x .295 -  .387 x .587 x . 296 x. 

while if 8 , = [3, -s] ,

<rQ > 1  + .382 x .613 x .369 -  .383 x . 6lh x .370 x 

Hence in both cases

o' > 1. 0 2 2 ,o

2.613 < |eQ| < 2. 618.

Therefore ^

M + ®0 + < *596
3 / | V o  _ 1l < 3/(2.613 x 2.618 -  1) < .514 

I t  now follows from (U. ko)  and { l u k i)  that

3tc0/A < .992 < 1.

(k*kO)

619,

. 705.

( i u M )
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Lemma U. 12. I f  n >11 , then %Q < A/3 fo r  the chain

• •• 9 2 , —2 p ~3 2 y —2, .. .
• •• , 0 , 0 ,+ 1,_1_,0 , 0 > • •.

where

_8o = *Q = S, -e_3 = *3 = [-3k,s] (k

Proof. As in  ( U . 26) ,

= 1 + ||. 14911|-

Sim ilarly,

<rQ = +1 + ¡.1U91„.

Also

2.6180 < | ©o| < 2. 6181, 2.6180 < <t>Q < 2. 6181.

Thus, i f  = 1, so that <tq > 0,

|(-1 + 0O + 0-oK  -I -  *o + * 0)| < 2.7672 X .7672, 

while, i f  = -1 , so that otq < 0,

|(-1 -  0O + °-0) ( -1  -  0O + * 0)| < .7672 x 2.7672.

By (U .I4.2) ,

3/|0o^o " 1l < 3 / ( (2 .6 l8 )2 + 1) <.382.

I t  now fo llow s from (1+.U3) and (U .U4) that

3ko/A < .811 < 1.

p a ir

> 1o ).

(U .U2)

(U .U3)

(U.UJ+)
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Lemma U* 1 3. I f  n > 11 , then % < A/3 f o r  the chain

U )

whe re

• •• t 2 $ —2,Ĵ , 2 , —2, —2 , 2 , ...
... ,0, 0,J_,0, 0, 0,0, ...

-e = <f> = s,o ro 9

d-2  = [3m.-s ]  U  > 11) ,  « 5 = (k > 7 )

and f o r  the chain p a ir

( i i ) ... > 2, —2,3» 2, —2, —3>—,3» •••
... #0, 0,1,0,“1,*—1, 1̂ , ...

where
-6 = <f> = S,o o '

e-2 = Cv-c (m - 11)> *5= (k - 8)

P roo f. As in  (L .3 6 ), in  both cases we have

I1 - *0 + ■'ol < •6531

A lso , in  both cases,

cr =
o

1
( 1 - is1 t )

-2
< .3821,

2.6180 < ®0 < 2.6181.

Thus

o' o

By ( luk5)  and (iuU6)

|-1 + 0O + ff0| < U. 0002,

3/| eni n -  1| < .382 (as in (U.14+).

3*o/A < .9983 < 1.

p a ir

(U.U5)

( U* i+6)
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Lemma lu 1U. I f  n > 11,  then % < A/3 f o r  the ch a in  p a i r

( i )  , 2 , - 2 ,  ¡ 2 ,  - 2 , - 2 ,  2j 2, - 2 ,  - 3 ,  —.2,2 ,  . . .  (k  > 0)
• • •  >0, 0 ,  j o ,  0 ,  o , o ] k , 0 ,  0 ,  1, 0 , 0 ,  . . .

where

-0 -i4ic-3 = ^-4k:-3 = S’

% k _5 = f3 n ,-S ] , = [3 m,2 ,-2 ,S ] (m > 0 ) ,

and f o r  the chain  p a i r

( i i )  • • •  > 2 , - 2 ,  | 2 , - 2 , —2, 2] k> 2 , - 2 ,  - 3 , ^ >  —2 , 2 ,  . . .  ^
• • • > 0 ,  0 ,  j 0 ,  0 ,  0 , 0 | k , 0 ,  0 ,  1 , ;fc1, 0 , 0 ,

where

_6-4 k -3  "  ^ -4 k -3  "  S’

0^ _ 5 = [3 n , -S] , «3 = [3 m,2 , - 2 ,s ]  (m > 0)

P r o o f » F o r  the c h a in  p a i r  ( i )

V  < 1-

2.618O < K l  < 2.6303;
and f o r  the ch a in  p a i r  ( i i )

To = ± 1 +
1

(1 - T " )
1 2  *3

=  +1 + .382 X .6303  X  .6181 ¡ , (4 .4 7 )

2.618 < |* | < 2.620.

Hence in  b o th  c a s e s ,

|1 + ^o + T0 I < 2*769.

A lso  in  both  c a s e s ,

(4.14a)

o-0 = 1 + ll ________ 3_________  H _ .__ 1___)
9 -1 9- 2 9-4k-39-4k-4 I ®-4k-5 \

= 1 + .1+14 x .382  x ( .6 1 8 1 )3 jj = 1 + j|.038  jj, (4 .4 9 )
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2 .5 8 6  < | a | < 2 . 6 1 8 1 .

Thus
0

11 + Q0 + < 8561,

3/| e0^o “ 1 ! < ’ 520 ( a s  i n  ( U . 3 0 ) ) .  

I t  now f o l l o w s  f rom  ( lu U 8 )  and (U. 50) t h a t

3tco/A < .9U5 < 1.

(¿4*50)

Lemma h. 15. I f  n > 11 , th e n  < A/3 f o r  t h e  c h a i n  p a i r

( i )  . . .  >2, —2 , 2, —2 f | —2 , 2 , 2 ,  — 2 j , ,
. . .  , 0 ,  0 , 0 ,  o , | o ,  0 , 0 ,  0], ,

”“2 , 2 , 3  ».2» - 2 ,
0 ,0 , 1 ,0 , 0 , ( k  > 0 ) ,

where

"  * - Ü k - 5  "  S ’

9 -Uk-7 = t 3n’ - s-J * *2  = H n « s l £ 3 ).

and f o r  th e  c h a i n  p a i r

( ü )  ••• t 2, “2, 2, —2, 1 —2, 2, 2, —2 , , —2, 2, 3 » ^>2, - 2 , . . .  q \
. . .  , 0 ,  0 , 0 ,  0 , [  0 , 0 , 0 ,  <J]“ , 0 , 0 , 1 , + 1 , 0 ,  0 ,  . . .

where

- 9 -i4k-5  = ÿ -U k -5  = S ’

0-U lc-7 = ¡ A - S ]  , *3  = [ - 3m,S ] (m > 3) .

P r o o f . F o r  the  c h a i n  p a i r  ( i )

and f o r  th e  c h a i n  p a i r  ( i i ) ,  i n  a way s i m i l a r  t o  ( l u k 7)» 

we g e t

T0 = ±1 + | . 1U7 |
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In both cases,

2.6173 < * < 2.6181,

so that

| -1 + *0 + *J < 2.766. (U.51)

A lso , f o r  both chain p a irs , (U.U9) h olds, and

2. 6180 < 90 < 2.6199.

Hence ^

M - 90 + *0! < *658’ i
3 /| 9 0 -1| < 3 /(2 .6 18 0  x 2.6173 -1 ) < 513.

I t  now fo llow s from (1+.51) and. (¿4^52) that

3^q/ a < .9 33  < 1.

(U .52)

Proo f o f  Lemma h. 6. By Lemma 2.13 and the d iscu ss ion  

fo llo w in g  the statement o f  Lemma U*6, i t  i s  s u f f ic ie n t  to 

show that i f  [a^! is  a perm issib le  a-chain  which contains 

one o f  the subchains ( i )  to ( v i )  o f  Lemma and i s

a corresponding e-chain , then [a pj or i t s  negative o r  i t s  

reverse or i t s  negative reversed is  one o f  the a -chains 

considered  in  Lemmas ¿u 7 to iu15 and [ e r ] or i t s  negative i s  

one o f  the corresponding e-chains considered in  these lemmas.

The chain pa irs  o f  Lemmas U* 7 and L. 8 include a l l  the 

a-chains containing ( i )  and a l l  corresponding e-ch a in s or  

th e ir  negatives.

I f  y = |-3k,s | , then by (Lu22), any sem i-regular  

continued fraction  expansion of y must begin in one o f the
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fo l lo w in g  w ays:

y = 2 / z j  r z ~~ \ \ - y  2 ,  —2 , s] (k > 3) ;(U. 53)
y s [-3,-2,2,z] , 2 = I 2 , - 2 ,  Sj (k > U) ;(U.5U)
y s [>3,-3,z] , 2 = K - 2 . S J (k > 2). (U. 55)

Hence the ch a in  p a i r s  o f  Lemmas iu9> ¿4- .10, and U* 11 in c lu d e  

a l l  a - c h a in s  c o n ta in in g  ( i i )  and a l l  c o rre sp o n d in g  e -c h a in s  

o r  t h e i r  n e g a t iv e s .

The c h a in  p a i r s  o f  Lemma !u 12 c o n s i s t  o f  a l l  a - c h a in s  

c o n ta in in g  ( i i i )  w ith  a l l  c o rre sp o n d in g  e -c h a in s  o r  t h e i r  

n e g a t iv e s .

F o r  the su b ch a in  ( i v ) , y m ust be g iv e n  by one o f  ( !u  53) > 

(¿1*5^4-)» and ( L . 55) .  Hence the ch a in  p a i r s  o f  Lemmas U .1 0 , 

¿ 4 * 1 1 ,  and L . 1 3  in c lu d e  a l l  a - c h a in s  c o n ta in in g  ( iv )  and a l l  

c o rre sp o n d in g  e - c h a in s  o r  t h e i r  n e g a t iv e s .

F o r  the su b ch ain  ( v ) ,  y must be g iv e n  by one o f  (L . 53)» 

(L u 5h ) ,  o r  (L .  55) .  I f  y s a t i s f i e s  ( L . 5 3 )  o r  ( L . 5 U ) ,  then  a l l  

a - c h a in s  c o n ta in in g  (v )  and a l l  c o rre sp o n d in g  e - c h a in s  o r  

t h e i r  n e g a t iv e s  a r e  in c lu d e d  in  th e ch a in  p a i r s  o f  Lemma J+. 1iu 

I f  y  s a t i s f i e s  (L . 55) > then the ch a in  p a i r s  o f  Lemmas U* 7 

and U.8 in c lu d e  the r e v e r s e s  o f  the n e g a t iv e s  o f  a l l  a - c h a in s  

c o n ta in in g  (v )  and a l l  c o rre sp o n d in g  e -c h a in s  o r  t h e i r  

n e g a t iv e s .

F o r  the su b ch a in  ( v i ) ,  the s e m i- r e g u la r  co n tin u e d  

f r a c t i o n  e x p an sio n  o f  y must b e g in  in  one o f  the fo l lo w in g  

w ays ( see  (U# 21) )  :



4.4 108

y  = j 2 r —2 # z j  ,

COAIi—
I

II N (m > 0 ) , (¿u 56)

y  s [ 3 ,2 , - 2 ,z ]  , ^ =  E-3m.s] (m > 0 ) , ( U . 5 7 )

y  s f3p ,2 , - 2 , z ) , N il 1--
-- 1 (m > p > 2). ( U . 5 8 )

I f  y i s  given by (4 .5 6 ) or (4 .5 7 ) with m > 3, then a l l  

a -chains contain ing  ( v i )  and a l l  corresponding e -chains or 

th e ir  negatives are included in  the chain p a irs  o f  

Lemma 4.15* I f  y s a t is f ie s  (4 .5 6 ) or  (4 .5 7 ) w ith m = 0 ,1 ,2 , 

then i t  fo llo w s  from (L. 18 ), (^ .1 9 ) ,  and (4 .2 0 ) that every 

perm issib le  a -chain  contain ing ( v i )  must be the reverse o f  

the negative o f  an a-chain  contain ing  one o f  the subchains 

( i )  to (v ) .  I f  y s a t i s f ie s  (4 .5 8 )»  then a l l  a-chains 

con tain ing  ( v i )  and a l l  corresponding e-chains are 

included  in  the chain p a irs  o f  Lemmas 4. 7 and Lu 8.

This completes the p ro o f o f  Lemma 4 .6  and so o f  

Theorem 4.1 •



CHAPTER 5

SOME SPECIAL FORMS

In Chapter k  I considered the subsequence [gn] (n > 1) 
of the symmetric Markov forms defined by (1+.1) and obtained 
the inhomogeneous minimum of gn for n > 11. In sections 5*1 
to 5. k  of this chapter I shall discuss the first few of the 
forms gn, and then in section 5* 5 I shall discuss the form 
g = which may be regarded as the limiting
symmetric Markov form. In this chapter I shall use the 
notation and results of section 2.5 and of Chapter U.

5.1. The Early Symmetric Markov Forms
The first two Markov forms F .F, (see sect. 1.4 ) doo '  1

not belong to the sequence [gnl for n > 1 and were not
included in the general discussion of chapter 1+ because the
continued fraction expansions, both simple and semi-regular,
of their roots are rather special; however the coefficients
of F ,F„ are of the same form as those of the g , and so o' 1 °n’
we may write

g^(x,y) = x2 + xy - y2 = FQ(x,y) 

gQ(x,y) = 2x2 + Uxy - 2y2 = 2F1( x , y ) .

109
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The inhomogeneous minima o f  PQ and F̂  have been 

studied exhaustively  by Davenport | 2l+, 25] and 

Vam avides | ¿4-9] • For the sake o f  completeness I include 

the fo llow in g  two theorems.

Theorem 5« 1. For the form g_^ = ( 1 , 1 ,  —1) = FQ, we have 

M( g_1) = Tl =

P roof. (Barnes [5 ])*  C learly  m (g^ ) = 1, and so

M(g_,,) > 5m(g^) = ¿5

and by Theorem 3«5>

M( ) i  ]Jp( S .-j) =

Theorem 5* 2. For the form gQ = (2 ,U ,-2 ) = 2F̂  , we have

M(gQ) = 1,

M2(g Q) = ^ = ¿ni(go ).

P roo f. C learly  m(gQ) = 2, and, fo r  in te g ra l x ,y ,  

j gQ(2x+1, 2y+1) | = |2(2x+2y+2)( 2x-2y) + U(2x+1) ( 2y+1) | > U. 

Hence

M(gQ; i ,0 )  = M(gQ; 0,-2-) = i ,

M(gQ; £ ,? )  = 1«

The only I-reduced  form equivalent to gQ is  f  = (2,8,14-). 

Since \ ( f )  = 2, i t  fo llow s  from Lemma 2.11 that M(P) < £ 

f o r  every chain o f  I-reduced  forms contain ing f  and every 

corresponding £-ch a in . The only chain o f  I-redu ced  forms,
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e q u iv a le n t  to  gQ which d oes not c o n ta in  f  i s  th e one 

co rre sp o n d in g  to  the even a -c h a in  from  gQ f o r  which, 

by ( 3 .3 7 ) ,

The r e s u l t  now fo l lo w s .

S in ce  k  -  8x2 -  3xU, Theorems 5*1 and 5 .2  mean th a t  

Theorem i-u 1 h o ld s  f o r  n = - 1 ,0 .  In  s e c t io n s  5 .2 ,  5 *3 , and 

5. ¿4- I  s h a l l  show th a t  Theorem lu 1 h o ld s  f o r  n = 1 , 2 ,  and 3. 

T h is  s t r o n g ly  s u g g e s t s  th a t  the theorem h o ld s  a l s o  f o r  

U < n < 10 and so f o r  a l l  n > - 1 , bu t the d e t a i l s  o f  the 

p r o o f  f o r  U < n < 10 would be v ery  te d io u s .

The inhomogeneous minimum o f  the form  w as o b ta in e d  

by D avenport | 25J by a d i f f e r e n t  method.

A l l  the r e s u l t s  o f  s e c t io n s  U. 1, k* 2 , and !+• 3 e x c e p t 

Lemma U. 5 h o ld  f o r  n = 1 , 2 , 3 ;  hence, in  o r d e r  to  prove 

Theorem Lu 1 f o r  n = 1 , 2 , 3 ,  i t  i s  s u f f i c i e n t  to  show th a t  

i f  n = 1 ,2 ,3  and [ a p l i s  a p e r m is s ib le  a -c h a in  from  gn 

which i s  not even, then  f o r  ev ery  co rre sp o n d in g  e -c h a in

5 .2 .  The Form g J) = _ (5 ,1 1 ^ -5 ) = F o

Theorem 5 .3 * F o r  the form  g^ = ( 5 , 1 1 »  -5 )  = we have

M(P) = M(go ; i . J ) .

M(P) = M ( i a r l ,  [ e p] )  <



5 .2 112

P ro o f. By (U. 15)

S = | 3 > 2 ,- 2 ,s ]  .

H ence, by (L . 1 9 ) , the on ly  p e r m is s ib le  e x p a n sio n s  o f  S a re

S = [3» 2 , —2 ,S ] ,

S = [ _ 2 ,- 2 ,- 3 , s J .

I t  now fo l lo w s  from  the symmetry o f  the form  g^ , whose 

r o o t s  a re  = - S ,  R£ = S , th a t  any p e r m is s ib le  a -c h a in  

from  must be an arran gem en t o f  e i t h e r  o r  b o th  o f  the 

b lo c k s  o f  numbers

A = 3 ,2 , - 2 ,

B = 2 , - 2 , - 3 ,  o

In  Lemmas 5*1 and 5* 2 we s h a l l  show t h a t ,  i f  an a -c h a in  

c o n ta in s  BA o r  AAAA, th en , f o r  ev ery  co rre sp o n d in g  e - c h a in , 

we h ave, f o r  some r ,

M(P) < 4 " P < £•
S in c e  B i s  th e  n e g a t iv e  o f  A re v e r se d , t h i s  r e s u l t  h o ld s  

a l s o  f o r  a - c h a in s  c o n ta in in g  BBBB. An arran gem en t o f  e i t h e r  

o r  b o th  o f  A ,B which does n o t c o n ta in  AAAA o r  BBBB m ust 

c o n ta in  BA. Thus the a -c h a in s  o f  lemmas 3*1 and 5 *2  in c lu d e  

a l l  p e r m is s ib le  a - c h a in s  from  g^ o r  t h e i r  n e g a t iv e s  

r e v e r se d . Hence the p r o o f  o f  Theorem 5 *3  w i l l  fo llo w  from  

Lemmas 5* 1 and 5* 2.

F o r  the p r o o f s  o f  Lemmas 5» 1 and 5« 2 we need the

n u m erica l in fo rm a tio n  g iv e n  in  T ab le  Z , in  which the same 

co n v e n tio n s a re  u sed  a s  in  T ab le  1 .
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X X 1/x
TABLE 2

f-2,x] . 1/1-2, x]
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L 2, —2, xl 1 ¿2, —2, x] •
S 2. 5866

I
0. 3866 -2.3866 -0.U190 2.U190 0. ui 33

[-3,S] -3. 3866 -0 .2 9 5 2 -1.70J+7 -0. 5866 2. 5866 0* 3886
1 ^ 8 6 6 0 6 < a < 1U. 86607

The proofs of Lemmas 5* 1 and 5* 2 and of the other 
lemmas of this chapter follow exactly the same lines as 
those of Lemmas U* 7 to l u  15* Therefore less detail will be 
given in the computations than was given in Chapter U.

By Lemma 2*13» we can fix the sign of onee^ in a given 
e-chain without loss of generality; we do so without comment 
in the lemmas of this chapter*

Lemma 5* 1» < 5 for the chain pair

• •• 9 2, — 2 , — t 2, — 2, •••
• •• , 0 , 0, •••

where
e_3 = - s ,  « 3 = s .

Proof. We have
j . 1 0 7 1|.

| ’ I ' d  ' '
Similarly,

o-o = +1 + ||. 1 0 7 |.

Also
2.586 < < 2. 587, 2.586 < |60| < 2. 587. ( 5. 1)

= 1 + (1 = 1 +
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Thus, i f  = 1 so that o*Q > 0,

(5 .2 )
|(-1 + 0O + ff0) ( l  -  + To^l 4 2,69ij- x .694;

w h ile ,  i f  = -1 so that &Q < 0,

|(-1 - s0 + °0)(-1 -  *0 + T0)| < -69U x 2.694.

V |e0*0 -  1) < lU.867/((2.586)2 + 1) < 1.935. (5.3)

I t  fo l lo w s  from (5 *2 ) and (5 *3 ) that

kq < 3.7 < 5.

Lemma 5« 2. 7C < 5 f o r  the chain p a i r

whe re

• •• > 3 > 2 , -2 ,  3> 2 , -2 ,  J ,  2 , -2 ,  3 , 2 , - 2 ,  •••
. . .  ,+1,0, 0 ,+1 ,0 , 0 ,1 ,0 , 0 ,+1 ,0 , 0, . . .

-6  = - s ’ *6 = s*

P roo f.  We have

To = 1 +t  f 7 T  1 +
1

^ ^ W 5  (1 "

> 1 -  .068 -  .008 = .924

Since 0O>0O s a t is fy  (5 *1 )>  i t  fo l lo w s  that (5 *3 ) holds and

1 -  *o  + To! < * 663 (5 .4 )

A lso

= +-  w : 3^ - 5 +
1

( 1 --r)  ;
L r - 2 w-3~-4w-5 < -6 1

< . 174 + (• 174 x • 068) + (. 174 x • 068 x . 61 Ij) < .194
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Hence

I - 1 + 90 + °ol < 3* 781* (5.5)

11 follow s from (5. 3) > (5. U) > and. (5» 5) that

%o < 4.86 < 5.

By the argument fo llow in g  the statement o f Theorem 5*3, 

th is  completes the proof o f Theorem 5*3*

5» 3» The Form gg = (13»29,-13) = F^

Theorem 5. U. For the form g2 = (13,29,-13) = F^> we have

M(g2) = = % m (g2)‘

Proo f. By ( ¿-u 15),

S = [3 ,3 ,2 ,-2 ,s] .

Hence, by (U. 19) and. (U. 20), the only perm issible expansions 

o f S are

S = [3 ,3 ,2 ,-2 ,S ],

S = [3 ,2 ,-2 ,-3 ,S ] ,

S = f2, - 2 , - 3 , -3>S) • 

I t  now fo llow s from the symmetry o f the form g2, whose roots 

are R̂  = S, R2 = S, that any perm issible a-chain from g2 

must be an arrangement o f some or a l l  o f the three blocks 

o f numbers

A = 3 ,3 ,2 ,-2,

B = 3 ,2 ,-2 ,-3 ,

0 = 2 ,-2 ,-3 ,-3 , .
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In Lemmas 5« 3 to 5* 7 we shall show that, if an a-chain 
contains AA, BB, AC, BAB, or BCAB, then for every 
corresponding e-chain,

M(P) <

Since C is the negative of A reversed and B is its own 
negative reversed, this result holds also for a-chains 
containing CC and BOB. Any arrangement of some or all of 
A,B, and C which does not contain BB must contain A or C; 
any arrangement which contains A but none of AA, BB, AC, CC, 
must contain BAB or BCAB, and similarly any arrangement which 
contains C but none of AA, BB, AC, CC must contain BCB or 
BCAB. Thus the chains of Lemmas 5* 3 to 5» 7 include all 
permissible a-chains from g^ or their negatives reversed* 
Hence the proof of Theorem 5*̂1- will follow from Lemmas 5.3 
to 5. 7.

For the proofs of these lemmas we need the numerical 
information given in Table 3 , in which the same conventions 
are used as in Table 1 .

TABLE 3

s 2. 615+ 0 .3 8 2 6

■- y j
i ' ' ' '

-2 .  3826

1 / L J -- I
1

-0.1+197

L C _ ,  C - , A |

2. ¿+197 0.1+132

[ - 3 , 8 ] -3 .3 8 2 6 -o .  2956 -1.701+3 -0 .5 8 6 7 2. 5867 0 .3 8 6 5

I - 3 2 . sJ j -2.701+3 -0 .  3697
....... _ ........ ..J

-1 .6 3 0 2 -0 .  613U 2. 6131+ 0. 3826

38.9^868 < A < 38.9U869
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Lemma 5* 3. < 13 f o r  th e  c h a in  p a i r

where

• •• , 3, 3,2,*" 2» 3»J5, 2f — . . .
. . .  j + I j + I j O j 0  y hh ”1  ̂ 9 0   ̂ O*  . . .

- 0 s.
P ro o f . We have

1 + 4-  0  - T T

T h e re fo re

t  = o *« "  r a  '  T î m ï ï ) .

= 1 +

1

.109  > .8 9 1 ,
2r 3'

2 .586 < <t>0  < 2 .587.

I 1 "  *0 + Tol < * 696'

A lso
o* = +1 + 1 - F IT T  "

= +1 + ¡,.150 „< 1.150,

3 .3 82  < 0 Q < 3 .3 83 .
Thus

| -1 + ô0 + Gq ! < 3*533,
A / |6 o, o -  1| < 3 8 .9 U 9 /(2 .5 8 6  x 3 .3 82  -1 ) < 5 .0 3  
I t  fo llo w s  from  ( 5 .7 ) ,  ( 5 .9 ) ,  and (5 .1 0 )  t h a t

x0 < 12 .37 < 13.

( 5 . 6 )

(5 . 7)

( 5 .8 )

( 5 .9 )
(5 .1 0 )
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Lemma 5*k. ^  < 13 fo r  the chain p a ir

• • • 
• • •

, 3 ,2 , - 2 , - 2 ,3 ,2 , - 2 , - 3 ,  . . .
,+1,0 , 0 ,+1,_l ,0, 0,+1 , . . .

where

P roo f. We have
]t

T = 1 + 1 1 + „.162  |f*

S im ilarly ,

% = ±1 + II*162 li*
Also

2.613 < |60 ! < 2.614, 2.613 < < 2.614.

Thus, i f  e = 1 so that <?o > 0,

|(-1 + 0q + <tq) ( i -  <f>Q  + ^o)| < 2.776 x .776;

w hile , i f  e = -1 so that <Tq < 0,

|(-1 -  0Q + <rQ)( —1 -  *0 + T0)| < «776 x 2.776.

Also

V| V o  -  1| < U.977.

I t  fo llo w s  from (5 .1 1 ) and (5 .1 2 ) that

%o < 10 .8  < 13.

(5 .1 1 )

(5 .1 2 )
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Lemma 5« 5» %Q < 13 for the chain pair

••• » 3»̂ * 2, -2,2, -2, -3, -3» •••
• •o » ^ 1 , ^ , 0 ,  0 , 0 ,  0 , + 1 , + 1 ,  • . .

whe re
- e _1 = * 7 = s ,  t 5 = [ - 3 , - 3 , s J .

Proof. We have
t = 1 + o

= 1 +

I 1 1 2 v
*1 * 2  ■ T*?" “

.027!.

öq ,^o satisfy (5.6) and (5.8); hence (5® 10) holds, and

1 - + Tol < *6ii| (5.13)

Also

cr = +1 + o - 1 -

K 7
= +1 + 618 ii,

so that
I -1  + e o + <ro | < ¿*.001

It follows from (5» 10), (5» 13) > and (5o11+) that

(5.1U)

*  < 12. U < 13»
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Lemma 5. 6. < 13 f o r  th e  c h a i n  p a i r

( i )

where

• • # 
• • •

9 3 , 2, - 2, - 3 , 3 , ¿>2 , - 2 , 3 , 2 , - 2, - 3 , •••
, + 1 , 0 ,  0 ,  1 ,+1 , jM . ,0 ,  0 , ± 1 , 0 ,  0,±1 , . . .

-®_1 = = S. * 0 = [ 3, 2, - 2, s]  ,

and  f o r  t h e  c h a i n  p a i r

( i i )  • • •  % 3 , 2 , - 2 , - 3 » 2 , - 2 , - 3 , - 3 »  3» 2, 3 , 2 , - 2 , - 3 ,  • • •
• •• >+1>0 » 0 , - 1 , 1 ,±1 , i i , o , 0 , ± 1 , 0 , 0,±1  , • ••

where

- e_1 = *_•, = S, *0 = [3,2,-2,s].

Proof*  I f  e_ = 1, t h e n  --------- o
T a + V 2*3 ( ” T̂ T ” I W }o -  ^ ^ 2 ^ 3

> 1 -  .067 + II.067 x . 162 II > .921 ; ( 5 . 1 5 )

a l s o 9  s a t i s f y  ( 5 . 6 )  and  ( 5 . 8 ) .  Hence ( 5 . 1 0 )  h o l d s  and

I1 “ *0 + Tol < *666*
F o r  th e  c h a i n  p a i r  ( i ) ,

o* = +1 -  q-^” + g g - ( -
°  -1 ! - 1 - 2 - 3

»I

|<r | < 1 + . 3 8 3  + . 0 6 2  < 1.U1+5;

( 5 . 1 6 )

1
F 3

and  f o r  the  c h a i n  p a i r  ( i i ) ,
1 1cr a  +1 — 3—  — 3— a—  +

0 "  9 - i e - 2
.___1 ( -

-1  -2 F 3 ■)ii.

< 1 -
1
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Thus in  both cases

|-1 + 90 + °o! < 3.828. (5 .17 )

Hence, i f  e = 1, then by (5 .1 6 ) ,  (5.17), and (5 .1 0 ) ,

%o < 12.9 < 13;

i f  e = -1 # we get the same resu lt  by considering  the 

product
|(_1 + + *0)(1  -  90 + °o)| -

Lemma 5. 7« < 13 f o r  the chain p a ir

••• , 3, 2 , - 2 , - 3 ,  2 , - 2 , - 3 ,  -3 , 3» ^ » 2 , -2 ,  3 » 2 ,—2 ,—3» . . .
. . .  ,+1,0 , 0,+1,0, 0, 1, 1,±1,11,0 , 0 ,+1,0 , 0 ,+1, . . .

where

= 3 » ”®_2 = * 0 = [3 ,2 ,-2 ,S].
P roo f. The re la t ion  (5 .1 0 )  holds, since

2.586 < |e_2| < 2. 587, 3.382 < | *_2| < 3. 383.

By the same argument as was used to obtain  (5*13) 

we have
<r_2 > .921,

so that
¡1 + 0 + <r | < .666. (5 .1 8 )

Also

t _2 = 1 +
so that

1 > . 295,
1 - T ^

| 1 + <t>_2 +  t _2| < 2. 088. (5 .1 9 )
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It follows from (5*18)» (5« 19)* and (5.10) that
x_2 < 7 < 13.

By the remarks following the statement of Theorem 5.U, 
this completes the proof of Theorem 5* U

5» k» The Form g, = (34*76,-34) = 2F .̂

Theorem 5.5. For the form = (3U,76,-3U) = 2F^ we have

M(g3 ) = 11,

M2( S3) = = ¿m(g3 ).

Proof, By (U* 15)
S = [3,3,3,2,-2,S]*

Using the relations (U. 18) to (U.23) we deduce that the only 
permissible expansions of S are

S = [3,3,3,2,-2,8] ,
S = [2,-2,-3,-3,-3,S] ,
S = [3,3,2,-2,-3,S] ,
S = [3, 2, -2 , -3, -3,3] ,
S = [2,-2,-2,2,2,-2,S].

It now follows from the symmetry of the form g^, whose roots 
are R̂  = -S, R2 = S, that any permissible a-chain from g^ 
must be an arrangement of some or all of the five blocks 
of numbers:
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A — 3,3,3, 2,-2,
B = 2,-2,-3,-3,-3,
G = 3,3,2,-2,-3,
D = 3,2,-2,-3,-3,
E = 2,-2,-2,2,2,-2, .

In Lemmas 5*8 and 5*9 we shall show that if an a-chain 
from contains A, then, for every corresponding e-chain

M(P) < 4jZ;

since B is the negative of A reversed, this is true also for 
a-chains from g^ contsLning B. In Lemma 5*10 we shall show 
that the same result holds for a-chains from g^ containing 
EG or DC; and we shall deduce from Lemmas 5.10 to 5*12 that 
it holds also for a-chains from g^ containing GG. Any 
permissible a-chain from g^ which is not even and does not 
contain A or B must contain C or D (which is the negative 
of G reversed) and must therefore contain one of EG, DC, CC 
or their negatives reversed. Thus, by the remarks at the 
end of section 5*1> the proof of.Theorem 5*3 will follow 
from Lemmas 5*8 to 5*12.

The result actually proved in each lemma is that, for 
the chain-pair considered and for some r,

Since A/3 < 34, this iifaplies that M(P) < 17/2.
For the proofs of these lemmas we need the numerical

information given in Table 4, in which the same conventions 
are used as in Table 1*
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TABLE 4

X X 1A r—
i 1 (V) & 1/b-2,x!

' x
'

9
k

CVJ1•KOJ1---L 1/1.-2.x

s j 2.6173
I

0.3820 -2. 3820 -0. U198 2.1+198 0.1+1 32

[ -3 ,S] -3.3820 -0.2956 -1.701+3 -0.5867 2. 5867 0.3865

[-3 2>s3 I -2.701+3 -0.3697 -1.6302 -0.6131+ 2.6131+ 0. 3826

[-3 3,sj -2.6302 -0. 3801 -1.6198 -0.6173 2.6173 0.3820

Lemmas 5*8 and 5*9 are s im ila r  to  lemmas lu  7 and lu 8.

Lemma 5» 8. 3ftQ/A < 1 f o r  the chain p a ir s

••• »3>3 »3 >2,—2, ...
• •• » » « and • •• » 3> 3 ...

• • • * +1 0» • • •

whe re

-0 .2  = *3 «  S.

P ro o f. We have

to = 1 +
V 2

Thus

(1 > *892 - (5. 20)

<Po < 2.587. (5.21)

+ *0| < .695. (5. 22)

i f  = -1 , 0‘o < 0, and i f  = e _ 2 = 1, then

0* = 1 -
^ (1 ■ f ^ r )

<r < .888,o

2. 7014- < 00 < 2* 7° 5,

Hence in  both cases
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T h e re fo re
\

| -1  + 6o + < 2 .5 9 3 ,

►
3/ \  -  11 < . 501 j

I t  f o l l o w s  from (5» 22) and (5*  2 3 ) ,  t h a t

3 * o/A < . 9 0 3  < 1.

Lemma 5* 9 . < 1 f o r  the c h a in  p a i r

• • •  $ 3 »3 ,^2»2 ,-2 ,  . . .
• •• , *"1 , 1 , ^ , 0 ,  o , • • •

where

- 0-2  = ^3 = S.

P r o o f .

hence ,  by ( 5 . 2 0 )  and ( 5 * 2 1 ) ,

T-1 > *5 7 1 .

A l s o

so t h a t

2.613 < ^  < 2.6114-,

1 “* + T_i l  < 1* oi+3.

-2
3.382 < 0 ^  < 3.383.

=  -1 + 1 -

(5 .  23)

(5. 2k)

We have
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Hence

! - i + 9h

3
+ o- J  < 2.001,

►
-  1| < .383.

(5 .  25)

I t  fo llow s from (5 .2U) and. (5.25) that

3x /A < , 8 < 1.

Lemma 5.10. 3M(P)/A < 1 fo r  the fo llow ing  chain pairs

U ) ••• » 3 ,3 ,2 , - 2 , - 3 ,  ••• 
• •• , ” 1 ,^ ,0 ,  0, +1, •••

( i i ) . . .  , 2 , —2 ,—2 ,2 ,2 ,—2 ,3»3>2 ,—2 ,—3, 
. . .  ,0, 0, 0 ,0 ,0 ,  0 ,1 ,¿ ,0 ,  0,+1,

• • • 
• • •

( i i i ) . . .  , 3 , 2 , - 2 , - 3 , - 3 , 3 » 3 , 2 , - 2 , - 3 ,  
. . .  ,+1 ,0 ,  0, 1, —1 , ,  1 ,0, 0, +1 ,

• • • 
• • •

( i v ) . . .  , 3 , 2 , - 2 , - 3 , - 3 , 3 , 3 , 2 , - 2 , - 3 ,  
• •• ,+1,0 ,  0 , -1 ,  1,1,J,,0, 0, +1 ,

• • • 
• • •

where, in each case,

- 9_1 = *_1 = s* * 0 = [3,2,-2,-3 ,8 ] .
P roo f. For the chain pairs ( i ) ,  ( i i ) >  and ( i i i )  we have

To = 1 +
1

* 1*2
(1 - ” i v¿j ) > .890,

2.613 < * < 2 .61L. ( 5. 26)

The reforje

1 -  *o + To ‘ < - 72U- (5 .  27)

For the chain pa ir  ( i ) ,  <r < 0; fo r  the chain p a ir  ( i i i ) ,

a- = 1 + s—  +1
-1

1
F T "  Tg1'-1 i -2*

< 1;



5.4 127

and for the chain pair (ii)
o' = 1 + o 3 7 5  — — f t  —1 —2 ••« —6 ( 1 - T T }

Thus in all three cases

Hence

o\ < 1 .0 1 0 ,  o
3 .3 8 2  < eQ < 3 .3 8 3 . ( 5 . 28)

1 + eo + ° o l < 3 .3 9 3 , ( 5 . 29)

3 / I  V o  -  1 1 •

00•V ( 5 .3 0 )

It follows from (5.27), (5*29) and (5*30) that, for the 
chain pairs (i), (ii), and (iii),

3*0/ a < .95 < 1 .

Similarly, by considering the product
| ( - 1  - e_2 + o_2) ( - 1  - i_ 2 + t_2)|, 

we can show that, for the chain pair (iv),

Since 3M(P)/A < 1 for the chain pair (i), it follows
that 3M(P)/A < 1 also for the negative of its reverse:

(v) ... , J,2,-2,-3,-3, •••
• • • , ¿ L , 0 ,  0 ,  ^ ,  *1 ,  •••

where
-0 = 0 = s.o ro

Thus in Lemma 5*10 we have considered every possible 
e-chain (or its negative) corresponding to the a-chains
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o f  the p a irs  ( i i ) ,  ( i i i ) ,  and ( i v ) .

Lemma 5*11« 3^0/ Ä < 1 f o r  the chain p a ir

. . .  y 3 f y —2 f — 31 •••

. . .  > 1 > > o > . . .
whe re

-®_1 = = 8, = [ 3 ,2 , - 2 , - 3 ,8 ] .

P roo f. The re la t io n  (5 .2 6 ) holds, and
'T = i +  ̂  ̂ M -r 1... r ̂  >' 1 *
o *.,*2*3 ¡ W 3 W  ii

hence

1 - t I < . 61I4..

Also (5*28) holds and

*0 = 1 + 1 -

-1 < 1. 618;

thus (5* 30) holds and

) -1 + 0o + <r | < k. 001 .

I t  fo llow s  from ( 5* 30) , ( 5* 31) > and ( 5. 32) that

3*0A  < ♦ 95 < 1.

Lemma 5* 12. 3^0/ A < 1 f o r  the chain p a ir  

• •• 1 3» 3# 2, — 2, — 3» 3>J5> 2, — 2, — 3> ••
. . .  j 1 j 1 f 0 j  Oj 1>1>_1_>0| 0 > 1 p • •

where

-e_1 = *_-, = S, *D = [3 ,2 ,-2 ,-3 ,3]

( 5. 31 )

(5 .3 2 )
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P r o o f . The i n e q u a l i t i e s  ( 5 .2 6 )  and ( 5 .2 8 )  h o ld ,  so 

t h a t  (5 * 30) h o ld s .

We have

T0 = 1 * 1 * 2 * 3  + ij * 1 * 2 * 3  (1
< .976 .

Thus

I -1  + iP0 + *0| < 2.590. ( 5 .3 3 )

A lso

ov = 1 -
-1 9 - 19 - 2 9 - 19 -2

( 1  -
T ^ r )

> 1 .3 8 2 ;

th u s

M - 0 + o' < 1 . 0 0 1 .o o' ( 5 .  3k)

I t  f o l lo w s  from ( 5 « 3 0 ) ,  ( 5 * 3 3 ) ,  and ( 5 . 3k) t h a t

3%qA  < *993 < 1.

The e - c h a in s  o f  the ch a in  p a i r s  ( i )  and (v )  o f  

Lemma 5*10  and o f  the ch a in  p a i r s  o f  Lemma 5*11 and 5 *1 2  

in c lu d e  ev ery  p o s s i b l e  e -c h a in  ( o r  i t s  n e g a t iv e )  

c o rre sp o n d in g  to  an a - c h a in  from g^ which c o n ta in s  GG, 

where C i s  the b lo c k  o f  numbers

G = 3 , 3 , 2 , - 2 , - 3 ,  .

By the argument fo l lo w in g  the s ta tem en t  o f  Theorem 5*3> 

t h i s  co m p letes  the p r o o f  o f  the theorem.
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5« 5. Note on the L im iting; Symmetric Markov Form 

I  now consider the form
2 2 g (x , y )  = x + s/*5xy -  y .

I f  P (x , y )  i s  any symmetric Markov form, then

F (x , y )  = Qx2 + Pxy -  Qy2,

o p
where P~ = 5Q ~ -  4 (s e e  sect. 1 .4 ) ,  so that P (x , y )  i s  

p rop o r t io n a l to the form

f ( x , y )  = x 2 + */(5 -  4/Q2)xy  -  y 2.

As Q —> oo , f ( x , y )  tends to  the form g ( x , y ) .  Thus we may 

regard g (x , y )  as the l im i t  o f  forms p ro p o r t io n a l  to the 

symmetric Markov forms, and, in  p a r t ic u la r ,  as the l im i t  

as n —> oo o f  forms p rop o r t io n a l to the forms gn( x , y )  

d iscussed in  Chapter 4. The form g behaves in  some ways 

l i k e  one o f  the forms g f o r  which n = 0 (mod 3 ). This i s  

i l lu s t r a t e d  by the fo l lo w in g  lemma.

Lernma 5.13. For the form g = (1 , ^ 5 , - 1 ) ,  we have

m( g ) = 1,

M(g; i,i) = —

P ro o f . The form g has determinant 3 and f i r s t  and 

second roots  = -R, R9 = R, where

R = = (2,ioo ). (5.36)

As in  the p roo f o f  Lemma 4. 1, i t  can now be deduced from 

(5 *3 6 ) and Lagrange1s Theorem that f o r  in t e g r a l  ( x , y   ̂ (0 ,0 )

we have
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| g ( x , y ) |  > 1,

and t h a t  i f  | g ( x , y ) [  /  1, then

| g ( x , y ) [  > 8 -  3'/5.

F o r  i n t e g r a l  X,Y

g(2X+1, 2Y+1) = (2X + 1)2 -  (2Y+1)2 + ( 2X+1 )( 2Y+1 )</5 +1.

S in c e  g ( l , 0 )  = 1 and g( 3 > - l )  = 8 -  3V*5> t h i s  c o m ple te s  the 

p r o o f  o f  the lemma.

The f o l l o w i n g  theorem can he proved g e o m e t r i c a l l y ;  

however I s h a l l  prove i t  by u s i n g  the methods o f  s e c t i o n  2 .5  

and the r e s u l t s  o f  C h a p te r s  3 and U, to  i l l u s t r a t e  the f a c t  

t h a t  th e se  methods can be a p p l i e d  to forms whose c o e f f i c i e n t s  

a r e  not  r a t i o n a l .

Theorem 5. 6. F o r  the form g  = ( 1 , V 5 , - 1 )  we have

M(g) =

P r o o f . By Theorem 3.1 any c h a in  o f  I - r e d u c e d  forms 

e q u i v a l e n t  to g  must c o n t a i n  one o f  the forms

g = ( 1 . V 5 . - 1 ) ,

*1 r
g = (1 ,2 W 5 ,< /5 ) ,

^0 1. >
'1 0“

g = ( -»/ii , 2+V5 ) •
r 1 1_ _

( 5. 37 )

I f  f  i s  e i t h e r  o f  the forms ( 5 . 3 7 ) .  then M f )  = 1» 

t h e r e f o r e  i t  f o l l o w s  from Lemmas 2.11 and 2 .1 2  t h a t  i f
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i a  l i s  an a - c h a in  from  e i t h e r  o f  th e se  fo rm s , th en , f o r  

ev ery  c o r re sp o n d in g  e -c h a in ,

M(P) <

I t  f o l lo w s  from (5 *3 6 )  th a t  any ex p an sio n  o f  R must 

b e g in  in  one o f  the fo l lo w in g  ways:

( i )  R = [ 2 , - 2 , - R ]  ,

( i i )  R = [3 k , 2 , - 2 , - R |  ,

( i i i )  R = [ 3 , , , ] .

I f  ( a  ] i s  an a -c h a in  from g  such t h a t  ( i )  h o ld s ,  then 

[ a r ] l e a d s  fo rw ard s  to  the form

h = (3-2vr5 , W 5 , l ) ,

who see r o o t s  a re

[ 2 , - R ] ,  [ - 2 . - R ] .

S in c e  H h )  = 8 -  3\r5> t h i s  means t h a t ,  f o r  any c o r r e sp o n d in g  

e - c h a in ,

M(P) < .

I f  g^ i s  one o f  the form s ( i+ . l )  w ith  f i r s t  and second 

r o o t s  -S  and S , and i f  n and m a re  s u f f i c i e n t l y  g r e a t ,  then

S > [3 ra> -3] , [3m, 2 . - 2 , s ]

a r e  a r b i t r a r i l y  c lo s e  to  R. Hence i t  fo l lo w s  from 

Lemmas k*7  to  it. 13 th a t  i f  [a ^ }  i s  an a - c h a in  from  g  such 

t h a t  ( i i )  h o ld s ,  then , f o r  any c o rre sp o n d in g  e - c h a in ,

M(p) < £  3 = ¿ .

In  Lemma 5 .1 6 we show th a t  i f  ¡ a r ! i s  an a - c h a in  from g  

such th a t  ( i i i )  h o ld s ,  then, f o r  any c o r r e sp o n d in g  e -o h a in

m (p ) < --
h



5.5 133.

Lemma 5. Ma* %q < 1 f o r  the chain pa irs

( i )

( i i )

• ••> 3 ,3 »3»^>3 , 3> •••
»• •» 1 >  ̂> 1*JL>1>1> ••• *

• • • > 3, 3 ,J ,  3» • • •
. . .  , j^i ,—i,.i>,jti ,  •••

where, in each case,

eo = [ 3 k ,-R] ( k > 7 ) ,  *0 =f t .

Proof.  In both cases

2.6180  < 0o < 2. 6181 , 2.6180  < 0Q < 2.6181

3 / I V o  -  1! < - 513

I f  ( i )  holds, then
, 1 ^ 1 ̂ -  1 — —  + , , +

o 0 -j 0 ^ 2 04 01^2 - T h J

so that

Similarly

Hence

.6 72  < t < . 856. 

. 672 < <tq < .856

( -1 + eQ + <rQ)(i -  0Q + t q ) < 2.14-75 x . 9U7 < 2,

I f  ( i i )  holds,  then
t = 1 + o 1 -

Similarly,

Hence

*0 = - 1  + j .  6 19 1.

= 1 + ||.619|.

( - 1  + eo + <rQ) ( i  -  + tq) < 1 .238  x 1 .238  < 1.

(5 .38 )

3*4^ 5. 39)

533,(5.40)

I t  fo l low s  from (5 .3 8 ) ,  (5 .3 9 )  and ( 5.¿40) that in both
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cases
%Q < 1.21 < 8 -  3^5.

Theorem 5.6 now follows from Lemmas 5*13 and 5*14.



CHAPTER 6
DAVENPORT* S CONSTANT

6,1. Introduction
Davenport* s constant K is defined by

K = sup[k; M(f) > kA] ,

where the supremum is taken over all indefinite binary 
quadratic forms

P pf(x,y) = ax + bxy + cy
owhich do not represent zero, and A = + \f(b - l+ac). The 

existence of K follows from Theorem 1.2 , and in section 1.2 
I mentioned a number of results related to this theorem; 
in this chapter I discuss the value of K.

By Theorem 1+. 1, if the forms gn are defined by (1+.1), 
then, for arbitrarily large n ^ 0 (mod 3)> we have

M(gn) = ¿m(gn)-
Since m(gn) tends down to A/3 as n — > oo , this means that 
there are forms g^ with M(gn) arbitrarily close to a/1 2.
Thus we have an upper bound for the value of K:

K - TT •
Davenport ,£30] showed that K > 1/128, and 

Cassels fl5>l6] has improved this result to about 
K > 1/1+5. 2. In this chapter I use the method of

135
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Chapter 2 to obtain

By Lernina 2.11, if a chain of I-reduced forms contains 
a form f for which X(f) is small, then M(P) is small for all 
corresponding e-chains; and the examination of chain pairs 
in [6] and in Chapters 4 and 5 shows that, if [ ap] contains 
certain combinations of 2* s, 3* s, and 4* s, then M(P) is 
small for all corresponding e-chains. For any form f it is 
always possible to find a chain ifp] of I-reduced forms such 
that, for all r, X(fp) is not too small (e. g. X(fp) > A/3 
for the Hurwitz chain defined in sect. 6. 2) ; but alternative 
expansions to blocks of 2* s, 3* s, and V  s usually contain 
2* s, 3* s, and ¿4-'s again or lead to forms with small X* s.
Since the a-chains of a Markov form consist only of 2* s, 3* s, 
and V  s, this suggests that the Markov forms are among those 
with the smallest inhomogeneous minima. For all Markov forms F,

thus the existence of symmetric Markov forms gn with M(gn) 
arbitrarily close to A/12 supports the conjecture that K 
may in fact be 1/12. Apart from the symmetric Markov forms, 
the form with the smallest known inhomogeneous minimum is 
the norm form

M(P) > 4m(p)

f(x,y) = x2 - 73y2, 
for which Godwin [3H] showed that
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M (f) = = .721 • • • 9

w h ile
A12 . . 7 .2 •  •  M

( I t  can  he  shown t h a t  a l l  th e  a - c h a in s  o f  f  c o n ta in  ’b a d 1 
c o m b in a tio n s  o f  2 ’ s ,  3 f s ,  and  V  s ,  so we s h o u ld  e x p e c t  M (f) 
to  be s m a l l ) .  Thus a l l  th e  known e v id e n c e  s u p p o r ts  th e  
c o n je c tu r e  t h a t  th e  v a lu e  o f  K i s  1 /1 2 .

An a d v a n ta g e  o f  th e  m ethod o f  C h a p te r  2 i s  t h a t  i t  i s  
q u i t e  g e n e r a l ,  and so c o u ld  p e rh a p s  be u se d  e v e n tu a l l y  f o r  
th e  p r e c i s e  e v a lu a t io n  o f  K. To o b t a in  a  bound f o r  K, we 
w ould  n ee d  to  ch o o se  an  a - c h a in  o f  any g iv e n  fo rm  w h ich  i s  
n o t  to o  ’bad* (w here  a  ’bad* a - c h a in  i s  one such  t h a t  M(P) 
i s  sm a ll  f o r  a l l  c o r r e s p o n d in g  e - c h a in s )  and  th e n  to  ch o o se  
a  c o r r e s p o n d in g  e - c h a in  su ch  t h a t  i n f  %r  i s  a s  l a r g e  a s
p o s s i b l e .  B e fo re  we c o u ld  hope to  g e t  a good bound f o r  K,
we w ould  t h e r e f o r e  n eed  to  know' w hich  a - c h a in s  a r e
p a r t i c u l a r l y  b a d , and  w h ich  e - c h a in s  c o r r e s p o n d in g  to  a
g iv e n  a - c h a in  w i l l  make M(P) sm a ll  o r  l a r g e ,  i t  m ig h t be
p o s s i b l e  to  o b ta in  some in f o r m a t io n  o f  t h i s  k in d  by u s in g
a  h ig h  sp eed  co m p u ter. The m ain d i f f i c u l t y  i s  t h a t  t h i s
in f o r m a t io n  w ould  be l o c a l ,  and  an  e - c h a in  w hich  i s  ’ good*
a t  one p la c e  may be v e ry  ’ bad* a t  a n o th e r  — i t  m ig h t be
im p o s s ib le  to  o b ta in  an  e - c h a in  w hich  i s  ev e ry w h e re  ‘ g o od 1
(a n d  so m akes M(P) l a r g e )  by jo in in g  s u b c h a in s  w hich  a r e  
l o c a l l y  * g o od ’

r
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The work o f  t h i s  c h a p te r  i s  on ly  a  p r e l im in a r y  a t t a c k  

on the problem  f o r  the pu rpose  o f  showing th a t  the method of 

C h apter 2 w i l l  y i e ld  a bound f o r  K. I have n ot a ttem p te d  to  

f in d  the id e a l  a -c h a in  b u t have u sed  the H urw itz c h a in , of 

which I g iv e  an accou n t in  s e c t io n  6 .2 ;  t h i s  c h a in  was a l s o  

u se d  by D avenport [ 30] .  The Hurwitz ch a in  h as the ad van tage  

t h a t ,  f o r  every  form  f  in  th e ch a in , \(fp) > a/ 3> and a 

fu r t h e r  reaso n  f o r  u s in g  i t  i s  th a t  i t  h as sim p le  p r o p e r t ie s  

w hich make the c a l c u la t io n s  e a s ie r .  The c o rre sp o n d in g  a -c h a in  

can n ot c o n ta in  . . . , 2 , k , . . . ,  ( k  > 0 ) ;  t h i s  e x c lu d e s  lo n g  

seq u en ces o f  2* s ,  which a re  bad , bu t may exc lu d e  seq u en ces 

which a re  good ( e .  g. f o r  the form s gn of Ch. ¿4. the H urw itz 

c h a in  g iv e s  M(P) < A/12, w h ile , f o r  n = 0 (mod 3), M(f) 

i s  much g r e a te r  than A /12). The work done here on the 

H urw itz ch ain  shows which su b ch ain s a re  p a r t i c u l a r l y  bad  and 

so p ro v id e s  in fo rm atio n  which would be u s e f u l  f o r  ch o o sin g  

a b e t t e r  ch ain .

In  se c t io n  6 .3  I d e sc r ib e  a s e t  o f  r u le s  f o r  ch o o sin g  

an e -ch a in  co rre sp o n d in g  to  the Hurwitz ch a in . These r u le s  

were su g g e ste d  by e x p e r ie n c e  w ith  the sym m etric Markov form s 

i g n l ana are  d esig n ed  so th a t  w i l l  n o t o b v io u s ly  be v ery  

sm a ll f o r  any r . T h e ir  main advan tage i s  th a t  they a re  

sim ple  — they are  c e r t a in ly  n ot b e s t  p o s s i b l e .

Then in  s e c t io n s  6. k  and 6.5  I  show th a t  i f  [ a p j i s  

any Hurwitz ch ain  and ] i s  the c o rre sp o n d in g  e -c h a in  

chosen  acco rd in g  to  the r u le s  o f  s e c t io n  6 .3 »  then  f o r  a l l  r
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t t /A  > . 1025,

so th at

M(P) > • 1 jp-5 A > .0256  A > A

T h is  w i l l  prove

Theorem 6, 1 . I f
2 2 f ( x , y )  = ax + bxy + cy

i s  an i n d e f i n i t e  b in a ry  q u a d ra t ic  form w hich does  n o t
2

r e p r e s e n t  z e r o ,  and A = + ^ (b  -  ¿+ac), then

M (f) > .0 2 5 6  A > A/39.

I f  the form  f ( x , y )  has r a t io n a l  c o e f f i c i e n t s ,  then i t s  

Hurwitz ch a in  i s  p e r i o d i c  and the e -c h a in  ch osen  a c c o r d in g  

to  the r u le s  o f  s e c t i o n  6*3 i s  p e r i o d i c  a l s o  (th ou gh  i t s  

p e r i o d  may be tw ice  th at  o f  the Hurwitz ch a in )*  T h e r e fo r e ,  

by the C o r o l la r y  to  Lemma 2. 8 , we have the f o l l o w i n g

C o r o l la r y . I f  the form f  o f  Theorem 6.1  has r a t io n a l  

c o e f f i c i e n t s ,  then th ere  e x i s t s  a r a t io n a l  p o in t  ( x f , y ! ) 

such th at

M( f ;  x* , y f ) > .0256A > A / 39.

In  t h i s  ch a p te r  I ex c lu d e  from the d i s c u s s i o n  form s 

w hich re p re se n t  ze ro  becau se  I  use the methods o f  Chapter 2, 

w hich were g iv en  e x p l i c i t l y  f o r  forms whose r o o t s  are 

i r r a t i o n a l .  However, as Barnes jj3] has shown, the methods 

o f  Chapter 2 can be m o d i f ie d  to  in c lu d e  s in g ly  i n f i n i t e  o r  

f i n i t e  ch a in s  o f  d iv id e d  c e l l s ,  which co rre s p o n d  to  form s 

w ith  one o r  two r a t io n a l  r o o t s .  I t  sh ou ld  be p o s s i b l e ,  by



6 .2 1,40

these m odified  methods, to obtain  re su lts  f o r  forms which 

represent zero corresponding to those o f  th is  chapter, and 

in  p a r t icu la r  to obtain  bounds f o r  the constant 

defined  by Cassels [ 19]  (see  sect. 1.2 ) ,  which may in  fa c t  

have the same value as Davenport’ s constant K.

6. 2. The Hurwitz Chain

The Hurwitz chain is  a sp ec ia l type o f  chain o f  equ i­

valent forms which was defined and used by Hurwitz [37] ; 

as the argument in  the rest o f  th is  chapter depends on the 

p rop erties  o f  the Hurwitz chain, I now give an account o f  

them.

I t  is  convenient to represent the numbers 

by the f i r s t  few d ig its  o f  th e ir  decimal expansions:

 ̂-~2 V|̂ =* 2. 6180... ,

1 jL f f l  = 1 .6 1 8 0 ...

we note that the re c ip ro ca ls  o f  these numbers are

2 M - — 3 — _  70  ̂Q3 + >/5 ~ 2 -  O o i y , . .  ,

T~T75 = —  = -6180... .

A form f ( x ,y )  which does not represent zero i s  said  

to be Hurwitz-reduced or  H-reduced i f  i t  can be fa c to r iz e d  

in  the form

f (x ,y )  = + ij - A— -y  ( 0x + y)(x+ <hh,
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where 9 ,0  are ir r a t io n a l and

h i  > 2»

j 91 > 1 .6 1 8 .. .  i f  9 ,0  d i f f e r  in  sign , (6.1)

|9| > 2 .6 1 8 .. .  i f  9,0 have the same sign. 

E quivalently , f  is  H-reduced i f  9,0 are ir ra t io n a l and

1 . 1 . 1
1  < ?  < 2 ’

- .6 1 8 0 .. .  < $ < .3 8 1 9 .. .  i f  > 0,

- .3 8 1 9 .. .  < < .6 1 8 0 ...  i f  <t>< 0.

( 6. 2)

C lea rly  a form which is  H-reduced is  I-reduced.

For any chain o f  I-reduced  forms i f  | and f o r  any 

corresponding a-chain  { an] ( [ a I > 2) we have, f o r  

- o o  < n < oo ,

1 Af n( x ,y )  =  1 e -J _  1 1 (0nx +  y ) ( x  +  i ny ) ,  
n n •

^n ”  an+1 ~ 0n+1

0n+1 an+1 “  9n

(6. 3)

( I M > 1. h j  > l 0n+il > 1- h n+il >

I f  the form f  is  H-reduced, the Hurwitz chain o f  forms

from f  is  the chain o f  I-reduced  forms i f  ] which c o r r e s -  o n
ponds to the a-chain  ja  } determined by the expansions o f

0 9 ^  such that o o
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" 2  < T  < 2n

-.3819... <

< 3-  < . 3819.. .
i f  ® n + 1

OA

n

< < . 618 0 . . .
i f  9 n + 1

A O

( 6 . ¿4-)

(n  < - 1 ) ^ (6. 3)

The chain [a  } is  uniquely determined and is  ca lled  then
H-chain from f o. I t  is  ea s ily  deduced from (6 .2 ) and (6 .3 ) 

that, i f  f r  is  H-reduced and ( 6. U) holds fo r  n = r+1, then

(6 .5 ) holds fo r  n = r+1; s im ila rly  i f  f  is  H-reduced and

( 6. 5 ) holds fo r  n = r - 1 , then ( 6. U) holds fo r  n = r - 1 .

Thus i f  [ f  } is  the Hurwitz chain from f  , then ( 6. Lj.) and n o
( 6. 5 ) hold fo r  a l l  n, so that a l l  the forms o f the chain are

H-reduced, and the Hurwitz chain from any o f them is  i f n
I f  f  is  a Gauss-reduced form equivalent to a given form then 

e ith er f  or at leas t one o f the equivalent forms ( 3. 22) ,

(3» 23) is  H-reduced. Thus there is  at least one H-reduced 

form equivalent to any given form g, and g has at leas t one 

H-chain. ( i t  can be shown that the H-chain o f a given form g 

is  unique, apart from taking i t s  negative, but th is  resu lt 

is  not used here. )

We note that the d e fin ition  o f the Hurwitz chain given 

here is  s lig h t ly  d iffe ren t from the c la ss ica l one because we 

use the sem i-regular continued fractions given by D efin ition  

2 .1  instead o f c la ss ica l semi-regular continued fractions.

For the remainder o f th is chapter ja^} is  an H-chain 

o f any given form f .  We shall frequently use without 

comment the rela tions ( 6. 1 ) or ( 6. 2 ) and the fa c t  that,
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s i nc e  j > 2  f o r  a l l  n,  the chai n cannot c o n ta in  any o f 

the su b ch ain s:

• • •  )  “ 2  j  “ * k  f  « •  • . . .  , 2m> • • • ,-2 m> •

where k > 0 , m > 2.

6» 3* R u les f o r  Choosing the e -ch a in  co rresp o n d in g  to a 

g iv e n  H -chain

In  t h is  s e c t io n  and in  the rem ainder o f t h is  ch ap ter 

we use the n o ta tio n  and r e s u lt s  o f se c t io n  2 .5 .

G iven an H -chain  i a ] , we choose a corresp o n d in g  

e -c h a in  [e ] acco rd in g  to the fo llo w in g  r u le s :

( i )  | e^j < 1 f o r  a l l  n ;

( i i )  sgn e = sgn i f  e /  0.
n *n+1 n

By the d e f in i t io n  o f an e -ch a in  (Lemma 2. 6 , ( i i ) ,  ( i i i ) ,  

and ( i v ) ) ,  i t  fo llo w s  from ( i )  th a t :

oIIC i f  a , . n+1 i s even

n = t 1
i f  a . . n+1 i s odd.

F o r  a l l  n,

t — e 4.
( * 

i 1 . i
n+1 ”  n+1 ^ n + 2 ! '

en+2
~~ ^n+1 d> + . . .  +

*n+2

( - D r ~1

^n+2 . . .

en+r
n+r

n+2
(1 -

n+r *
J__
n+r+1
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n+1Hence, i f  eR+1 ^  0 , then sgn tR+i

en+1 = Cn+2 = • • •  = V r - 1  = °>  en+r * ° «  then 

3gn Tn+1 = sgn  i ( - D r “ % n+2^ J' • • •  * n+r ?sgn  cn+ r*

Thus i f  we f i x  the s i g n  o f  one e^ = 0 ,  then the r u le  ( i i )  

u n iq u e ly  d e term in es  the s i g n  o f  every  o th e r  non-zero  e^, 

and so ( i )  and ( i i )  u n iq u e ly  determ ine the e -c h a in .  By 

Lemma 2 .1 3  we may f i x  the s i g n  o f  one w ith o u t l o s s  o f  

g e n e r a l i t y .

Prom ( i i )  we deduce in  p a r t i c u l a r  t h a t ,  i f  e^ ^ 0 ,

e . d 0 ,  then n+1

n

( i i i )  sgn en = sgn en+1

sgn = - sg n  £n+in

*\
when an+1 > 0 , a n+2 > °>

>
when an+1 < 0 , a n+2 < 0 , j

The r u le  ( i )  i s  s a t i s f i e d  in  any c a se  by su b ch a in s  

o f  [e  ] c o rre sp o n d in g  to  most bad  su b ch a in s  o f  [ an ] , and 

was t h e r e f o r e  chosen  f o r  the sake o f  s i m p l i c i t y .  I f  ( i i i )  

d o e s  n o t h o ld ,  i s  a lw ays sm all  ( e . g .  see  the ch a in

p a i r  ( i )  o f  Lemma 5 * 1 0 ) ,  so th a t  an e -ch a in  which does not 

s a t i s f y  ( i i i )  i s  c e r t a i n l y  bad. I t  tu rn s  out t h a t ,  i f  

[ a n ] i s  an H -ch ain , then i s  l i k e l y  to  be sm a ll  i f  ! T^j 

i s  l a r g e ,  so th a t  a good e -c h a in  must ensure  t h a t  j t [ i s  

sm a l l .  S in ce
-r  i

1
t  3 e -  -r — - s  e

n n * n+1 n
1 - ! 0 . * n+1

( 6. 6)
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the ru les  ( i )  and ( i i )  mean that | t | i s  always small. 

Th is  and the fa c t  that ( i i )  im p lies  ( i i i )  were the main 

reasons f o r  the choosing the ru le ( i i ) /

From ( i )  and ( i i )  and the p ro p e r t ie s  ( 6 . 1 ) ,  ( 6 . 2 )  o f  

the Hurwitz chain we deduce the fo l lo w in g  lemmas.

Lemma 6. 1. I f  [ an? i s  an H-chain and i enl i s  the

corresponding e-chain which s a t i s f i e s  ( i ) ,  then f o r  a l l  n,

■ ^
-j- q — < 0, 6180,
' n<

P ro o f .  We have

o©
rn = en_1 + S  ( - D r " n ^ l

r=1 Sn - 1 - V r

=s en-1 0
n-2 , , e----  + . . .  + n-r-1
n-1 0 . . . .  0n-1 n -r

0 . • •. 0n-1 n -r
(1 -

*n-r-11

Hence, I f  \ Q j  > 2 .6 1 8 0 . . . ,  and | ^n_ r | > 2 .6180 ... f o r  a l l  

r  > 1, then

•prt < 2.61 So... (1 + 2.6180... + ( 2. 6180 . . . ) 2  + •**)

= 0 .6180 ...  ;

w h ile  i f  j e j  > 2 .6180... , f®n_ 11 > 2 .6 1 8 0 . . . ,  . . .  , 

i ^n—r*i — ' 0. • • t  and 1*6180... < |  ̂f < 2*6180. •• ,
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then

j r j  i  i r s r f e r r r (1 + ¿ .S is o .. :  + ••• T2V6180.;.y*■

-  2. 6180... )( 2. 6180. . .  )

< 0 . 6180 . . .  •

I f  1 .6 1 8 0 . . .  < I© I < 2 .6 1 8 0 . . .  , then | an { = 2, so that

e . = 0 and I o' I < 1 ; thus n-1 * n> '

cr
< 0 . b1 80. • • •

n

in  t h i s  case  a l s o .  This  com pletes  the p r o o f  o f  the lemma.

Lemma 6 .2 .  I f  fa  A  i s  an H -chain and f e l i s  the -----------------  n 1 n
o o fr e s p o n d in g  e -c h a in  which s a t i s f i e s  ( i )  and ( i i ) ,  then 

f o r  a l l  n ,

T I < 1 and 0
n
n

< 0. U.

P r o o f . I t  f o l l o w s  from ( i ) ,  ( i i )  and (6 .6 )  th a t  |x | < 1

f o r  a l l  n. S ince j 0 | > 2 t h i s  im p lie s  th a t

< 0 .5 .1 n*
T f Ti *n<

I f  10n | > 2 .5 ,  then

n
n

and i f  2 < I 0 I < 2 .5 ,  then e = 0  and 1 n* n
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< 0.5
2 0. 25.

Thus the lemma holds in all cases.

We shall use the following deductions from Lemmas 6.1
and 6. 2.

Lemma 6.3. If Sa l is an H-chain and je \ is the 
corresponding e-chain which satisfies (i) and (ii), then 
for all n

< rn
Tn

Proof. We have

< rn 'n-1 ~ "5"
n-1
n-1

(6. 7)

The lemma follows from Lemmas 6.1 and 6.2 by (6.6) and (6.7).

The bounds for and used in sections 6. L and 6.5

are all obtained by using (6.6), (6.7), the rules (i) and 
(ii), and the results of Lemma 6.3* To avoid too much 
computation, we shall mostly use the cruder bounds for <r 
given by

+|| 0.619
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6oU» Proof o f Theorem 6,1 — the Case when 9ft > 0 

In th is section and section 6*5 we shall prove 

Theorem 6.1 by showing that i f  i&nl is  any H-chain and 

[e ! is  the corresponding e-chain which s a t is f ie s  ( i )  and 

( i i )  o f section 6.3» then, fo r  a l l  n,

%ri/A > 0.1025;

c lea r ly  i t  is  su ffic ien t to show that always

tio/A > 0.1025.

In th is section we show that th is is  true when 0 , ft̂  haveo o
the same sign (0 Qfto > 0 ), and in section 6.5 we show that 

i t  is  true also when 0O»^O d i f fe r  in sign (0Qfto < 0 ).  As 

in both cases we shall always consider we shall w rite

% =z % Q z= Q , ft =  ft c r = c r  T =  To’ o' o' o' o'
where no confusion arises.

Without loss o f gen era lity  we may assume in this 

section that 0 > 0, ft > 0, so that, by (6 .1 ),

6 > 2.6180... , ft > 2 ; (6 .8 )

and we may also f i x  the sign o f one I f  ^ 0, we

take eo > 0, and i f  = 0, e ^ 0, we take > 0; i t
I

fo llow s from ( i )  and ( i i )  that one o f the fo llow ing  

p o s s ib il it ie s  must occur:
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A

e - 1

II 0 ll0
CO 1 ;

S - 1

0(0II II —k

V

e - 1 =  1 ,

II0
CO 0 ,  t  >  0 ;

£ - 1
=  eO

•0II

>

By (2 .3 0 ) ,  %/h i s  g iven  by

(6 .9 )

r (1 +0+<r)( 1+0+t ) j 9 j ( —1 -4 -0-her) ( i -0+x) [ ,

T* * ~ T
min

( -i -0+cr)( - 1 -0+t ) | , [ (1 -0+o*)( -1+^+t ) |

By Lemma 6. 3 | T j < 1, and by ( 2. L3)

< lei -1 , M  < U) -1.

Hence

§= ¿ 0 1-  1 mln [ (0 -1 - ° - ) (0 -1 +t )J (6 .1 0 )

(6.11)> min ( 0 -1 + 0  0 -1  - O  ( e - i - Q U - i + Q  
S  ̂ > 0 <p

In  most cases we can show that tc/A > .1025 by con s id er in g  

the products (6 .1 1 ).

I f

0 < 0 < 0, <£ < o* < <y, where o’ < 1 , cr > - 1 ,

then

9 -  1 + cr £ -1 + £
0 -  J  »

0 - 1 - c r   ̂ 0 -  1 -
6 -  f  •

These r e s u lts  were used to ob ta in  Table 5 , where, f o r  each 

range o f  va lu es o f  0 and corresponding range o f  va lu es o*, 

va lu es le s s  than ( 9 -  1 ± cr)/ e are g iven .
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The ranges o f  va lu es o f  cr were ob ta ined  by using ( 6. 1 ), 

Lemma 6.3» and the r e la t io n s  (6.6) to (6.9)* T a b l e d ,  which 

g iv e s  va lu es  le s s  than (0  -  1 + i s  s im ila r .

TABLE 6

CASE WHEN 00 > 0

0 type 0 eQ t ( 0-J-'O /0( 0-1>*-'O/0

1.1

---------- 1
2 .0  < 0 < 2. 5

-  -  - ..................... . ........................

1 0 0 < T < 0 . 1+
—

0 .3 0 .5

1 .2 0 0 - 0 . 1+ < t  < 0. 1+ 0 .3 0 . 3

2 2 .5  < 5s < 3 .5 1 ,0 1 0 .6  < t  < 1 0. 2 0 .8 4

3.1 3 .5  < *  < 4 .5 1 0 0 < T < 0 . 4 0. 6 0 . 714

3 - 1 0 0 - 0 . 1+ < 'P < 0 . 1+ 0 .6 0 .6

k 4 . 5 <  ̂ < 5. 5 1 ,0 1 0 . 6 < T < 1 0 .55 0 .9

5.1 5. 5 < 0 1 1 ,0 0 < T < 1 0 .6 3 0 .818

5 .2 0 1 ,0 - 0 . 1+ < V < 1 0 . 63 0 .745
—  - ____ — ,----T-r,_.r-. r,-r , |ir, L, , _

I t  fo l lo w s  from (6 .9 )  that i f  0 i s  o f  any o f  the types 

1.1 to  1.5 (Tab le  5 ) ,  then 0 i s  o f  one o f  the types 1.1,  2, 

3.1 , 1+, 5*1 (Tab le  6 ) ;  w h ile  i f  0 i s  o f  type 2, then 0 i s  

o f  one o f  the types 1 .2 , 2, 3.2, 1+, 5*2, and i f  0 i s  o f  type 3, 

then 0 may be o f  any type. C a lcu la t ion  o f  the products shows 

that the products (6 . 11)  are g rea te r  than 0.1023  f o r  a l l  these 

cases except when 0 i s  o f  one o f  the types 1.2, 1.3 and 0 i s  

o f  the type 1.1, o r  when 0 i s  o f  the type 1.3 and 0 i s  o f  the 

type 3.1. In  each o f  these cases

e - 1 + (t> - 1  - * )
5  ^ > 0. 1025
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so we on ly  need to show, by using more c a r e fu l  methods, that

p = > 0. 10 25 .
60 -  1

I f  9 i s  o f  type 1.2 and 0 i s  o f  type 1.1, then, by 

Tables 5 and 6 ,

p > 16 - 1

which i s  an in creas ing  fu nction  o f  9 and 0. ^ence

( 2.618 - 2. 172) .
-----------U.-236 > 0.103.

I f  0 i s  o f  type 1.3, then

9 = [3 , - 3 ,  . . . ]  > 3.276.

I f  now 0 is  o f  type 1.1, then, arguing as in  the prev ious 

paragraph, we get

„ 13.276, -  61 <0 > 0.118.
b* bb2

I f  9 i s  o f  type 1.3 and 0 i s  o f  type 3 .1 , then by a 

s im i la r  argument we ge t

(5 .276 -  2.619)2.5
p 10. U66 > 0. 156.

Hence in  a l l  cases, i f  9 ,0 have the same sign , we have

%/b > 0.1025.

( I t  i s  c le a r  that a very  much s tron ger  r e s u lt  could be 

obta ined  by more p rec ise  a n a ly s is ;  however th is  would not be
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worth w h ile  because, fo r  otir choice of [ a \ and je  1, i t  i sn n
not p o ss ib le  to ob ta in  e a s i l y  a much stro n ger r e s u lt  fo r 

the case when 0 , 0 d i f f e r  in  sign*)

6*5. Proof of Theorem 6.1 — the Case w7hen 90 < 0 

In th is  sec tio n  we show th a t

> 0 .1025 (6 . 12) 
when 0 ,0  d if f e r  in  s ign  (00 < 0 ) . In th is  c a se , by (6 .1 )  ,

| © | > 1 . 6 1 8 0 . . .  , (0 j > 2.  ( 6 . 1 3 )

By (2.43)

i°i i iei - •>. hi < hi -1-
Hence i t  fo llow s from (2 .3 0 ) th a t  %/& i s  g r e a te r  than or 

equal to

1 min £( lalP?1 +1

-  , !01»1 min I •( !el-  i* ' +1

I f  0 > 0 , M  < <r, then

h i. + 1...- .1.4 > min 1 ,
& + 1 -  cr

e| -  1 -  ! O'! . £ -  1 -  <?
■fr]------^  > -------- §--------

These r e s u lt s  were used to ob ta in  Table 7 , where, fo r each 

range of va lues of j 01 and corresponding upper bound of | o'j , 

v a lu e s  le s s  than ( | 0 | +1 -  j crj )/j 0 | are  g iven .
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TABLE ?

CASE WHEN 00 < 0

0 ty p e I e l M
10 + 1 - M I el  - 1 - 1  <r|

I ©|

V
 C

D

< >

. 1 j 1 . 6 1 8 0 . . .  < i © [ < 2

1 . 1

-

t Q 5  [ 2 , k ,  • • • ]

( k  e v e n ,  /  2)

+0 = f 2 , k , . . . 1

( k  oàd ,  3)

§ 7 S i §  < 0 , 1 7 2 1 0.275

1 . 2 < ° -  352 1 0 . 16U

1.3 £ 9 = [ 2 , 3 , k ,  . . . ' |  

1 . 61+2 < | Of

1 + 0*412 
— 2^ g - ~  < 0 , 3 9 7

1 0. 1U9

+ 0 5  £ 2 , 3 f k f  • . . J

1 + o - . ^ g
1 3.618

.... n 11 7 a 1 0 . 1 2 32. 723 < ° *
1.632 < I 0

1.5 tQ s  f > *3 , k ,  . . . ]
( k  odd)

1.6

1.7

1.8

±0 = [2,3,-2, ...J
1»7Q| < |o|

±0 = [2,3,-k, ...]
1•666 < ! 0

2. 618 < 0.382

373^1

1 + 4.

< O.i+10

< 0. ¡4-51

±9 = [2 ,3 , -k ,  . . . }
1•666 < j0 1

< 0.391

0 . 1U5

0.172

0.129

0 . 1 6 5

k d e n o t e s  a p o s i t i v e  i n t e g e r ,  k > 2.
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6 type

TABLE 7 — CONTINUED

cr
<

| 9 [ +1 -J cr • . e « «
>

0 
>

*

1 .9 +0 = [ 2 , 3 , - 3 ,  . . . ' j  

1.69U < | ©|

2 < 19 1 < 2 .6180 . . .

. . 1 .619
1 + irm

0.14-95 1

!

0 .1 1 73. 276

2 0 .619 1 0.190

3 2.6180 . . .  < |9| < 3

3.1 +9 = [ 3 , k ,  . . . J  
(k  odd)

1 1 0.235

3 .2 +9 = [ 3 , k ,  . . . ]
(k  even, /  2)

 ̂ . 0 .619  .
1 + 3ÎTT5 < 1. 172 0.931 0. 169

k
w. ... —

3 < | 91 1.619 0. 793 0.127

k denotes a p o s it iv e  in teger , k > 2.

The upper bounds fo r  [ <r[ in  Table 7 , were obtained by 

using ( i )  and ( i i )  o f  section  6.3» Lemma 6.3» and the 

re la tion s  ( 6 .1 ) ,  ( 6 .6 ) ,  ( 6 .7 ) ,  and (6 .1 3 ) . The expansions 

o f  given in  th is  table cover a l l  p o s s ib i l i t i e s  since those 

which are om itted cannot occur in  an H-chain (e . g. +0 = £ 3 , 2 , . . . ] ) .

Table 8 , which g ives values le s s  than ( ¡^ j  + 1  -  |T|)/|0|> 

is  sim ilar to Table 7 .



1566 .5

TABLE fi

CASE WHEN 00 < 0

*  type | * |  | T| ( | * | - 1 - | t | ) / | * |  ( | * } + 1 - |  * |  ) / |  * |
< > >

1 2 . 0  < | *  j < 2. 5
—
0. ¡+

r

0 . 3 1 . 2i+

2 2 . 5  < | * !  < 3 .5 1 .0 0. 2 1 . 0

3 3 . 5  < | * |  < in 5 O.u 0. 6 1 .1 3 3

k U .5 < | * | 1 .0..... J 0. 535 1 . 0

I f  (6 .13 )  holds ,  then

¡ 4 -f i  ~i >  ° *  % )

I t  fo l lo w s  from T a b le s  7 and Q and from (6 .  1i+) th a t  in  

a l l  c a s e s

l t d ( i9i * , i L - m )
+ 1 u > l  ' i i r Ì 1 > 0 . 121

Thus we now need on ly  to  show th a t

P -  <M ~ | l f  ! J |> (i>l * |)|~ h l > > 0.1025.

The r e s u l t s  g iv en  in  T ab le  9 were d e r iv e d  from T a b le s  7 

and 6 .

By c a l c u l a t i n g  p from T ab le  9 , we see  th a t

p > 0.1028

e x c e p t  when 0 i s  o f  one o f  the ty p e s  1 * k f 1 .9  and 0 i s  

o f  type 2. These c a s e s  must be c o n s id e r e d  s e p a r a t e l y .
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TABLE 9
CASE WHEN Q<f> < 0

0 type <t> type r4?*l Ie 1-1-1 °1 N| + i-h |p?| +1 Nl NI> > >

any
[ ! 
1 0. 761+ 0.117 1. 21+

1.1, 1,2, 1.3> 1.5> 1.6, 1.8 2 j 0.761+ o. 11+5 1
1.U 2 0.803 0.123 1
1.7 2 0.806 0.129 1
1.9 2 0.808 0.117 1

2,3.1, 3.2, 1+ 2 0.833 0.127 1
any 3 0.81+9 0.117 1.333
any k 0.879 0.117 1

If 0 is of type 1.U, then one of the following state­
ments holds (where k is a positive integer, k > 2):

(i) j;0 = [2,3,i+,-k, ...] ,
(ii) +0 = [2,3,U,k, ...] (k even, k / 2),
(iii) +Q = [2,3,U,k, ...j (k odd).

If (i) holds, then

o - U  -
. . 0.619 
1 + ~ ~ U

2.75 ' 0.1+20;

if (ii) holds, then

1<-

0^619 ^(jîbtsy2
2.723 ‘ 0.385;

and if (iii) holds, then it follows from rule (ii) of 
section 6. 3 that
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sgn = -sgn e__2,

so that j o' | < 1 and

l°1 = K o l < 2 ^23  < ° - 368‘

Thus if 0 is of type 1.i4, then

| o*| < 0.U20;

if now  ̂ is of type 2, it follows from Tables 7 and 5

that
1 -  O.U2OKI0! + 1 - 0

[ 90[ + 1 9

which is an increasing function of J Q | and j#!. Hence

p > (1.632 - 1.1+20)2.5 .
57oB 0. 10U3 > o. 1025.

If 0 is of type 1.9» then one of the following
statements holds (where k is a positive integer, k > 2):

(iv) +6 = [2,3,-3,k, ...],
(v) +8 = [2,3,-3,-k, ...j (k even, k / 2),

(vi) +8 = [2,3,-3 ,-k, .*.] (k odd).

If (iv) holds, then
1 + Ja £12 3

I 0"! < 37276 < °* ^ o ;
if (v) holds, then

% !  < 1 + 2. ¿18 + 2 7 5 W T ^ m  < 1 ' i+j43 ’

l°1 < 3T275 < ° 'w+3;
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and i f  (v i)  holds, then jo ^ ! < ^9 so

1 + 275TS
< < 0.U22,

3. 276

Thus i f  9 i s  of type 1.9» then

|<r| < 0.U70.

I f  now # is  of type 2, then, by an argument s im ila r  to 
that of the previous paragraph, we get

P >

This completes the proof of Theorem 6.1
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