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Abstract

The pseudo-marginal Metropolis-Hastings approach is increasingly used for Bayesian
inference in statistical models where the likelihood is analytically intractable but can be
estimated unbiasedly, such as random effects models and state-space models, or for data
subsampling in big data settings. In a seminal paper, Deligiannidis et al. (2015) show
how the pseudo-marginal Metropolis-Hastings (PMMH) approach can be made much
more efficient by correlating the underlying random numbers used to form the estimate
of the likelihood at the current and proposed values of the unknown parameters. Their
proposed approach greatly speeds up the standard PMMH algorithm, as it requires a
much smaller number of particles to form the optimal likelihood estimate. We present
a closely related alternative PMMH approach that divides the underlying random num-
bers mentioned above into blocks so that the likelihood estimates for the proposed and
current values of the likelihood only differ by the random numbers in one block. Our
approach is less general than that of Deligiannidis et al. (2015), but has the following
advantages. First, it provides a more direct way to control the correlation between
the logarithms of the estimates of the likelihood at the current and proposed values of
the parameters. Second, the mathematical properties of the method are simplified and
made more transparent compared to the treatment in Deligiannidis et al. (2015). Third,
blocking is shown to be a natural way to carry out PMMH in, for example, panel data
models and subsampling problems. We obtain theory and guidelines for selecting the
optimal number of particles, and document large speed-ups in a panel data example and
a subsampling problem.
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1 Introduction

In many statistical applications the likelihood is analytically or computationally intractable,
making it difficult to carry out Bayesian inference. An example of models where the likelihood
is often intractable are generalized linear mixed models (GLMM) for longitudinal data, where
random effects are used to account for the dependence between the observations measured
on the same individual (Fitzmaurice et al., 2011; Bartolucci et al., 2012). The likelihood is
intractable because it is an integral over the random effects, but it can be easily estimated
unbiasedly using importance sampling. The second example that uses a variant of the unbi-
asedness idea, is that of unbiasedly estimating the log likelihood by subsampling, as in Quiroz
et al. (2016). Subsampling is useful when the log likelihood is a sum of terms, with each
term in the log likelihood expensive to evaluate, or when there are a very large number of
such terms. Quiroz et al. (2016) estimate the log-likelihood unbiasedly in this way and then
bias correct the resulting likelihood estimator to use within an pseudo marginal Metropolis-
Hastings algorithm. They show analytically that the resulting posterior distribution of the
parameters is a perturbation of the true target distribution, with the perturbation error being
very small. State space models are a third class of models where the likelihood is often in-
tractable but can be unbiasedly estimated using an importance sampling estimator (Shephard
and Pitt, 1997; Durbin and Koopman, 1997) or by a particle filter estimator (Del Moral, 2004;
Andrieu et al., 2010).

It is now well known in the literature that a direct way to overcome the problem of working
with an intractable likelihood is to estimate the likelihood unbiasedly and use this estimate
within an Markov chain Monte Carlo (MCMC) simulation on an expanded space that includes
the random numbers used to construct the likelihood estimator. This was first considered by
Lin et al. (2000) in the Physics literature and Beaumont (2003) in the Statistics literature; it
was formally studied in Andrieu and Roberts (2009), who called the method pseudo-marginal
Metropolis-Hastings (PMMH) and gave conditions for the chain to converge. Andrieu et al.
(2010) use MCMC for doing inference in state space models where the likelihood is estimated
unbiasedly by the particle filter. Flury and Shephard (2011) give an excellent discussion with
illustrative examples of PMMH. Pitt et al. (2012) and Doucet et al. (2015) analyse the effect
of estimating the likelihood and show that the variance of the log-likelihood estimator should
be around 1 to obtain an optimal tradeoff between the efficiency of the Markov chain and the
computational cost. See also Sherlock et al. (2015), who consider random walk proposals for
the parameters, and show that the optimal variance of the log of the likelihood estimator can
be somewhat higher in this case.

A key issue in estimating models by standard PMMH is that the variance of the log of the
estimated likelihood grows linearly with the number of observations T . Hence, to keep the
variance of the log of the estimated likelihood small and around 1 it is necessary for the number
of particles N , used in constructing the likelihood estimator, to increase in proportion to T ,
which means that PMMH requires O(T 2) operations at every MCMC iteration. In a seminal
paper, Deligiannidis et al. (2015) propose correlating the random numbers used in constructing
the estimators of the likelihood at the current and proposed values of the parameters. They
show that by inducing a high correlation between these ensembles of random numbers it
is only necessary to increase the number of particles N in proportion to T

1
2 , reducing the

PMMH algorithm to O(T 3/2) per iteration. This is a tremendous breakthrough in the ability
of PMMH to be competitive with more traditional MCMC methods. However, at this stage
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their derivations are essentially limited to panel data models.
Our article proposes an alternative approach to Deligiannidis et al. (2015) called the block-

wise PMMH that also requires a much smaller number of particles for optimal performance.
The block-wise PMMH divides the set of pseudo-random numbers into blocks and updates one
block at a time, thus reducing the variation in the Metropolis-Hastings acceptance probability.
This helps the chain to mix well even if highly variable estimates of the likelihood are used.
As a result, only a small number of particles is needed at every iteration. We obtain theory
and guidelines for selecting an optimal number of particles in the block-wise PMMH. The
block-wise PMMH is not as general as the correlated PMMH method in Deligiannidis et al.
(2015), but has a number of advantages. First, the correlation between the proposed and
current values of the log likelihood estimators is controlled directly rather than indirectly and
nonlinearly through the correlated ensembles of random numbers. Second, the theoretical
justification and optimality properties of the block-wise PMMH are more transparent and
easier to prove than the derivations in Deligiannidis et al. (2015). Third, blocking is a natural
way to carry out a dependent PMMH in many problems such as panel data models and
subsampling problems. Fourth, we show that the optimal number of particles required at
each iteration of the block-wise PMMH is also O(T 3/2).

2 Block-wise pseudo-marginal Metropolis-Hastings al-

gorithm

2.1 The PMMH algorithm

Let y be a set of observations with density p(y|θ), where θ ∈ Θ is the vector of unknown
parameters. We are interested in sampling from the posterior π(θ) ∝ p(θ)p(y|θ) in models
where the likelihood p(y|θ) is analytically or computationally intractable. We assume that
p(y|θ) can be unbiasedly estimated by p̂N(y|θ) = p̂N(y|θ, u), with u the set of independent
pseudo-random uniform or standard normal variables used to compute p̂N(y|θ); N is the
number of importance samples or total number of particles used and the dimension of u is
proportional N . Denote the density function of u by pN(u) and define a joint density of θ and
u as

πN(θ, u) := p(θ)p̂N(y|θ, u)pN(u)/p(y). (1)

Then, πN(θ,u) admits π(θ) as its marginal density because
∫
p̂N(y|θ,u)p(u)du = p(y|θ) by

unbiasedness. Therefore, we obtain samples from the posterior π(θ) by sampling from πN(θ,u).
Let q(θ|θ′) be a proposal density for θ, conditional on θ′, with θ′ the current state. Let u′

be the corresponding current set of pseudo-random numbers used to compute p̂N(y|θ′,u′). The
standard PMMH algorithm generates samples from π(θ) by generating a Markov chain with
invariant density based on πN(θ,u) using the Metropolis-Hastings algorithm with proposal
density q(θ,u|θ′,u′)=q(θ|θ′)pN(u). The proposal (θ,u) is accepted with probability

α(θ′,u′;θ,u) :=min

(
1,
πN(θ,u)

πN(θ′,u′)

q(θ′,u′|θ,u)

q(θ,u|θ′,u′)

)
=min

(
1,
p(θ)p̂N(y|θ,u)

p(θ′)p̂N(y|θ′,u′)
q(θ′|θ)
q(θ|θ′)

)
, (2)

which is computable and it is usually unnecessary to store u and u′. In the standard PMMH
scheme, a new independent set of pseudo-random numbers u is generated each time the
likelihood estimate is computed.
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For the standard PMMH algorithm, Pitt et al. (2012) and Doucet et al. (2015) show
that the variance of log p̂N(y|θ,u) should be around 1 in order to obtain an optimal tradeoff
between the computational cost and efficiency of the Markov chain in θ and u. However, in
some problems it may be prohibitively expensive to take an N large enough to ensure that
V(log p̂N(y|θ,u))≈1.

2.2 The block-wise PMMH algorithm

In our block-wise PMMH algorithm, instead of generating a completely new set u when
estimating the likelihood as previously done in the literature, we update u in blocks. Let us
divide the set of variables u into G sets u(1),...,u(G). The extended target (1) can be re-written
as

πN(θ, u(1), ..., u(G)) = p(θ)p̂N(y|θ, u(1), ..., u(G))pN(u(1), ..., u(G))/p(y). (3)

Instead of updating the full set of (θ,u) as in the standard PMMH, we propose to update θ and
a block u(K) at a time. The block index K is randomly selected from 1,...,G with P (K=k)>0
for every k= 1,...,G. Typically, P (K = k) = 1/G. This is similar to component-wise MCMC
whose convergence is well established in the literature; see, e.g., Johnson et al. (2013). The
acceptance probability (2) becomes

min

(
1,
p(θ)p̂N(y|θ, u′(1), ..., u(k), ..., u′(G))

p(θ′)p̂N(y|θ′, u′(1), ..., u′(k), ..., u′(G))

q(θ′|θ)
q(θ|θ′)

)
. (4)

Intuitively, by fixing all u(j)’s except u′(k), the variation in the ratio of the likelihood estimates
is reduced, which helps the chain to mix well.

3 Analysis of the block-wise PMMH

We now suppose that the likelihood can be written as a product of G independent terms,

p(y|θ)=
G∏
k=1

p(y(k)|θ). (5)

Example: panel data models. Consider a panel data model with T panels, which we
divide into G groups y(1),...,y(G) with approximately T/G panels in each.

Example: big data. Consider a big data set with T independent observations, which we
divide into G groups y(1),...,y(G) with T/G observations in each.

We assume that the kth likelihood term p(y(k)|θ) is estimated unbiasedly by p̂N(k)
(y(k)|θ,u(k)),

where the u(k) are independent with u(k)∼pN(k)
(·), and N(k) is the number of particles or im-

portance samples or the size of u(k). Let N :=N(1)+···N(G). An unbiased estimator of the
likelihood is

p̂N(y|θ) :=
G∏
k=1

p̂N(k)
(y(k)|θ,u(k)).
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We now follow Pitt et al. (2012) and define z(k) = z(k)(θ,u(k)) := log p̂N(k)
(y(k)|θ,u(k))−

log p(y(k)|θ) as the error in the log likelihood estimate of the kth block. Then, z= z(θ,u) :=

log p̂N(y|θ,u)−logp(y|θ)=
∑G

k=1z(k) is the error in the log-likelihood estimate. The following
result holds, whose proof is straightforward and therefore omitted.

Lemma 1. Suppose that u(1),...,u(G) are independent and generated from pNk
(u(k)) and sup-

pose that gNk
(z(k);θ) is the distribution of the corresponding z(k). Then, the distribution of

θ,z(1),...,z(G) based on (1) is

πN(θ,z(1),...,z(G))=π(θ)
G∏
k=1

exp(z(k))gN(k)
(z(k)|θ), (6)

which means that πN(k)
(z(k)|θ) = exp(z(k))gNk

(z(k)|θ) and the z(k) are independent conditional
on θ, i.e., in πN(·|θ)

We note that it is straightforward to show that the acceptance probability (2) can be
rewritten as

min

{
1,exp(z−z′) π(θ)

π(θ′)

q(θ′|θ)
q(θ|θ′)

}
(7)

where z′=z(θ′,u′). This is also the acceptance probability if we consider a Metropolis-Hastings
scheme that samples from

πN(θ,z)=π(θ)ezgN(z|θ), (8)

with gN(z|θ) the density of z. Thus, as noted in Pitt et al. (2012), the properties of the
Metropolis-Hastings scheme based on πN(θ,u) are the same as those based on πN(θ,z). As we
show below, it will be easier to work with πN(θ,z) than with πN(θ,u) because z is a scalar.

Instead of updating θ and u as in the standard PMMH, the block-wise PMMH updates
θ and a single block, u(k). The terms z and z′ in the acceptance probability (7) are z =∑G

j=1,j 6=kz(j)(θ,u(j) = u′(j))+z(k)(θ,u(k)), z
′=
∑G

j=1z(j)(θ
′,u′(j)). We use the following notation:

w∼N(a,b2) means that w has a normal distribution with mean a and variance b2, and denote
the density of w as n(w;a,b2).

We make the following assumptions.

Assumption 1. Suppose that u(1),...,u(G) are independent and generated from pN(k)
(u(k)) and,

(i) For each group k, there is a γ2(k)(θ)>0 and an Nk such that

z(k)(θ,u(k))∼N

(
−
γ2(k)(θ)

2Nk

,
γ2(k)(θ)

Nk

)
.

where Nk is not necessarily the same as N(k).

(ii) For a given σ2>0, let Nk be a function of θ, σ2 and G such that V(z(k)(θ,u(k)))=σ2/G,
i.e. Nk =Nk(θ,σ

2,G) =Gγ2(k)(θ)/σ
2. This means that z(k)(θ,u(k))∼N(−σ2/(2G),σ2/G)

for each k.
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We note that N(k) is the total number of particles used for the kth group, and will usually
be different than Nk. In panel data models, N(k) = (T/G)Nk. Assumption 1 is a stylized
set of assumptions that will hold approximately when the Nk are sufficiently large. Part (i)
is similar to the assumption made in Pitt et al. (2012) and ensures that if z(k) is normally
distributed then the expected value E(exp(z(k))) = 1 for each k; this is consistent with the
estimator p̂(y(k)|θ) being unbiased. For panel data models, part (i) is justified by Lemma 6.
Assumption 1(ii) can be enforced for most panel data models and subsampling approaches
because it is straightforward to estimate the variance of z(k) accurately for each k and θ.

We can now obtain the following lemma whose proof is straightforward and omitted.

Lemma 2. Suppose that parts (i) and (ii) of Assumption 1 hold and θ′,u′(j),j= 1,...,G come

from πN(θ′,u′(1),...,u
′
(G)). Define z′ :=

∑G
j=1z(j)(θ

′,u′(j)) and z :=
∑G

j=1,j 6=kz(j)(θ,u(j) = u′(j))+

z(k)(θ,u(k)), where u(k) is generated from pNk
(u(k)). Let ρ=1−1/G. Then,

(i)

z′∼N

(
σ2

2
,σ2

)
and z∼N

(
σ2(2ρ−1)

2
,σ2

)
.

(ii) Corr(z,z′)=ρ.

(iii)

z|z′∼N

(
−σ

2

2
(1−ρ)+ρz′,σ2(1−ρ2)

)
.

We follow Pitt et al. (2012) and also assume that the proposal for θ is perfect. That is,

Assumption 2. q(θ|θ′)=π(θ).

This assumption helps identify the effect of estimating the likelihood, as we assume a
perfect proposal, and helps to simplify the derivation of the derivation of the guidelines for
the optimal number of particles. It follows from Pitt et al. (2012) and Doucet et al. (2015)
that this assumption results in a choice of σ that may be a little too low and so the number
of particles required may be set a little too high, than optimal. However, we have found that
this conservative strategy works well in practice because it makes the empirical applications
more robust to the assumptions. Under Assumption 2, the acceptance probability (7) of the
Metropolis-Hastings scheme becomes

α(z′, z; ρ, σ) = min
(

1, ez−z
′
)
, (9)

The next lemma gives the conditional and unconditional acceptance probabilities of the
Metropolis-Hastings scheme for z and θ and is proved in Appendix A

Lemma 3. Suppose Assumptions 1 and 2 hold and ρ=1−1/G.
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(i) The acceptance probability of the Metropolis-Hastings scheme conditional on z′=z(θ′,u′)
is

P(accept|z′,ρ,σ)=exp(−x+τ 2/2)Φ
(x
τ
−τ
)

+Φ

(
−x
τ

)
with x :=

(
z′+ σ2

2

)
(1−ρ) and τ=σ

√
1−ρ2.

(ii) The unconditional acceptance probability of the Metropolis-Hastings scheme is

P(accept|ρ, σ) = 2

(
1− Φ

(σ√1− ρ√
2

))
. (10)

Suppose that we are interested in estimating π(ϕ)=
∫
ϕ(θ)π(θ)dθ for some scalar function

ϕ(θ) of θ. Let {θ[j],z[j],j = 1,...,M} be the draws obtained from the PMMH sampler after
it has converged, and let the estimator of π(ϕ) be π̂(ϕ) := 1

M

∑
ϕ(θ[j]). Then, we define the

inefficiency of the estimator π̂(ϕ) relative to an estimator based on an i.i.d. sample from π(θ)
(as in Assumption 2) as

IF(ϕ,σ,ρ) := lim
M→∞

MVPMMH(π̂(ϕ))/V(ϕ|y), (11)

where VPMMH(π̂(ϕ)) is the posterior variance of the estimator π̂(ϕ) and V(ϕ|y):=Eπ(ϕ(θ)2)−
[Eπ(ϕ(θ))]2 is the posterior variance of ϕ so that V(ϕ|y)/M is the variance of the ideal estima-

tor when θ[j]
iid∼π(θ). We obtain the following result which shows that under our assumptions

the inefficiency IF(ϕ,σ,ρ) is independent of ϕ and is a function only of σ and ρ=1−1/G. The
proof is Appendix A. We call IF(σ,ρ) the inefficiency of the PMMH algorithm, for given ρ
and σ, because under our assumptions it does not depend ϕ. From (8) and Lemma 2, we note
that the posterior density of z conditional on θ is πN(z|θ) = ezgN(z|θ) =n(z;σ2/2,σ2), which
does not depend on θ and is denoted π(z|σ).

Lemma 4. The inefficiency is given by

IF(σ,ρ)=1+2Ez′∼π(z′|σ)
(

1−k(z′|σ,ρ)

k(z′|σ,ρ)

)
, (12)

where k(z′|ρ,σ) = Pr(accept|z′,ρ,σ) is the acceptance probability of the MCMC scheme condi-
tional on the previous iterate z′ and is given by part (i) of Lemma 3.

Similarly to Pitt et al. (2012), we obtain in Appendix B the computing time of the sampler
as

CT(σ,ρ) :=
IF(σ,ρ)

σ2
(13)

which takes into account the computing time and the mixing rate of the PMMH chain.
To simplify the notation in this section we often do not show dependence on ρ as it is

assumed constant. In Section 5 we show that if we take G=O(T
1
2 ), then ρ=1−O(T−

1
2 ) and

Nk=O(T
1
2 ) are optimal.

The next lemma shows the optimal σ under our assumptions as well as the corresponding
acceptance rate. Its proof is in Appendix A.
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Lemma 5. Given that ρ= 1−1/G is close to 1, the optimal σopt that minimizes CT(σ) is

approximately σopt≈2.16/
√

1−ρ2. The unconditional acceptance rate (10) under this optimal
choice of the tuning parameters is approximately 0.28.

Our theory indicates that the efficiency of the Markov chain increases with G. Although
one could set G to its maximum value T , using a G that is too large leads to the situation
that some blocks u(k) might be not updated, and the conditions of Assumption 1 may not
be satisfied because we require Nk reasonably large. The Markov chain then depends on the
initial set of u and the PMMH may produce samples not from the correct target posterior.
Let M be the length of the generated Markov chain. The average number of times that a
block u(k) is updated is M/G. In general, G should be selected such that M/G is not too
small. In the examples in this paper, if not otherwise stated, we set G=100, as we found that
the efficiency is relatively insensitive to larger values of G.

A toy example. Suppose that we wish to sample from π(θ,z) =π(θ)ezg(z|σ) in which θ is
the parameter of interest, with π(θ)=N(0,1) and g(z|σ)=N(−σ2/2,σ2). Suppose further that

z is divided into blocks z=
∑G

k=1z(k) with z(k)
iid∼N(−σ2

G/2,σ
2
G), σ2

G=σ2/G and G=100.
First, we consider two sampling schemes, the standard PMMH and the block-wise PMMH,

to sample from π(θ,z) with σ2
G=2.34, i.e. σ2 =234. Suppose that (θ′,z′) is the current state.

The proposal (θ,z) in the standard PMMH is generated by θ ∼ π(θ) and z ∼ g(z|σ). The
proposal (θ,z) in the block-wise PMMH scheme is generated as follows. Let z′=

∑G
k=1z

′
(k) be

the current z-state and let k be an index uniformly generated from the set {1,...,G}. Sample
z(k)∼N(−σ2

G/2,σ
2
G) and let z =

∑
j 6=kz

′
(k)+z(k) be the proposal. Both schemes accept (θ,z)

with probability min(1,ez−z
′
).
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Figure 1: The samples of θ generated by the standard PMMH scheme (left) and the block-wise
PMMH scheme (right). Both chains are initialized at 3 and run for 500,000 iterations.

Figure 1 plots the θ-samples generated by the standard PMMH scheme (left panel) and
by the block-wise PMMH scheme (right panel). As expected, the standard PMMH chain is
sticky because of the big variance of z, σ2 =234.

Now, in order to study the effect of σ2 on the acceptance rate and computing time CT(σ)
of the sampler, Figure 2 shows the CT(σ) and acceptance rates for various values of σ2. The
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figure shows that CT(σ) has a minimum value of 0.0263 at σ2 = 234, where the acceptance
rate is 0.279, which confirm the theory. Among all standard PMMH schemes with different
σ2, Pitt et al. (2012) show that the optimal scheme is the one with σ2 =1. We also run this
optimal standard PMMH scheme and obtain a computing time value of CT(σ = 1) = 5.32.
Hence, the optimal block-wise PMMH is 5.32/0.0263 approximately 202 times more efficient
than the optimal standard PMMH.
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Figure 2: The left panel shows the computing time CT(σ) and the right panel shows the
acceptance rate v.s. the variance σ2. The dashed lines indicate the values w.r.t. the optimal
variance σ2

opt =234.

3.1 Guidelines for selecting the optimal number of particles for
panel data

We now consider the panel data case with the likelihood factorized as in (5). From Lemma 5,
the optimal σ2

opt=2.162/(1−ρ2), and the optimal variance of the log-likelihood estimator based
on each group is σ2

opt/G=2.162/(1+ρ) is approximately 2.34 given that G approximately 100
is large. Hence, for each group k, we propose tuning the number of particles N(k) =N(k)(θ)
such that V(z(k)|θ,N(k)) is approximately 2.34.

4 Applications

4.1 Panel data

A clinical trial is conducted to test the effectiveness of beta-carotene in preventing non-
melanoma skin cancer (Greenberg et al., 1989). Patients were randomly assigned to a control
or treatment group and biopsied once a year to ascertain the number of new skin cancers since
the last examination. The response yij is a count of the number of new skin cancers in year j
for the ith subject. Covariates include age, skin (1 if skin has burns and 0 otherwise), gender,
exposure (a count of the number of previous skin cancers), year of follow-up and treatment (1
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if the subject is in the treatment group and 0 otherwise). There are m= 1683 subjects with
complete covariate information.

Following Donohue et al. (2011) we consider the mixed Poisson model with a random
intercept

p(yij|β,αi) = Poisson(exp(ηij)),

ηij = β0+β1Agei+β2Skini+β3Genderi+β4Exposureij+αi,

where αi∼N(0,σ2), i=1,....,m=1683, j=1,...,ni=5. The likelihood is

p(y|θ) =
m∏
i=1

p(yi|θ), p(yi|θ) =

∫ ( ni∏
j=1

p(yij|β, αi)

)
p(αi|σ2)dαi

with θ=(β,σ2) the vector of model parameters to be estimated.
We run both the optimal standard PMMH and the optimal block-wise PMMH for 50,000

iterations with the first 10,000 discarded as burnins. For simplicity, each likelihood p(yi|θ)
is estimated by importance sampling with the natural importance sampler p(αi|σ2). For the
standard PMMH, the number of particles is tuned so as the variance of the log-likelihood
estimator is not bigger than 1. In the block-wise PMMH, we divide the data into G= 99
groups, so that each group has 17 data points, and the variance of log-likelihood estimator in
each group is tuned to not be bigger than 2.344. We note that the structure of the data in
this example allows us to select different number of particles Ni for each individual yi. Figure
3 plots the samples generated by the two algorithms.

As performance measures, we report the acceptance rate, the integrated autocorrelation
time (IACT), the CPU times, and the computing time (CT). For a univariate Markov chain,
the IACT is estimated by

IACT = 1 + 2
1000∑
t=1

ρ̂t,

where ρ̂t are the sample autocorrelations. The IACT for a multivariate chain is averaged over
the IACT values for the parameters. The computing time is the product of the IACT and the
CPU time.

Table 1 summarizes the acceptance rates, the IACT ratio, the CPU ratio, and the CT ratio,
with the blockwise PMMH as the baseline. As shown, the block-wise PMMH outperforms the
standard PMMH. In particular, the block-wise PMMH is around 25 times more efficient than
the standard PMMH in terms of computing time.

Methods Acceptance IACT ratio CPU ratio CT ratio

Standard PMMH 0.222 1.080 23.095 24.938
Block-wise PMMH 0.243 1 1 1

Table 1: Skin cancer example using the block-wise PMMH as the baseline

4.2 Subsampling MCMC

Quiroz et al. (2016) propose a data subsampling approach, based on the correlated PMMH
algorithm in Deligiannidis et al. (2015), to speed up MCMC. They use a Gaussian copula to
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Figure 3: Plots of the standard PMMH chain (black) and block-wise PMMH chain (green)
for the 6 parameters.

induce a high correlation between the binary vectors u′ and u at the current and proposed
draws, respectively. The ith element of u is a binary indicator determining if observation i
is included in the subsample for estimating the likelihood. We now present an alternative
subsampling approach based on block-wise PMMH.

Let
u=(u1,...,uN), ui∈{1,...,T} and independent for i=1,...,N,

where N is the subsample size and u represents a vector of observation indices rather than
selection indicators as in Quiroz et al. (2016); u is therefore of length N rather than T as in
Quiroz et al. (2016). Block-wise PMMH creates G blocks, each with N/G indices. For large
G, a high correlation in the MH log-ratio is naturally induced, since u and u′ differ only at a
small number of positions.

As in Quiroz et al. (2016), we consider the following two AR(1) processes with Student-t
iid errors εt∼ t(ν) with known degrees of freedom ν. The data generating processes are

yt =

{
β0+β1yt−1+εt ,[M1,θ=(β0 =0.3,β1 =0.6)]

µ+ρ(yt−1−µ)+εt ,[M2,θ=(µ=0.3,ρ=0.99)]
(14)

where p(εt)∝(1+ε2t/ν)−(ν+1)/2 with ν=5 and the uniform priors

p(β0,β1)
ind.
= U(−5,5)·U(0,1) and p(µ,ρ)

ind.
= U(−5,5)·U(0,1).

Define `t(θ) :=logp(yt|yt−1,θ) and rewrite the log likelihood `(θ) as

`(θ)=q(θ)+d(θ), q(θ)=
T∑
t=1

qt(θ), d(θ)=
T∑
t=1

dt(θ), with dt(θ)=`t(θ)−qt(θ),

where qt(θ) ≈ `t(θ) is a control variate. We set qt(θ) to a Taylor series approximation of
lt(θ) evaluated at the nearest centroid from a clustering in data space. This has the effect
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of reducing the complexity of computing q(θ) from O(T ) to O(C), where C is the number of
centroids (Quiroz et al., 2016). Now, an unbiased estimate of `(θ) based on a simple random
sample with replacement is

̂̀(θ)=
T

N

N∑
i=1

dui(θ)+q(θ), with Pr(ui= t)=
1

T
, t=1,...,T. (15)

The resulting likelihood estimate is p̂N(y|θ,u) = exp
(̂̀(θ)−σ̂2(θ)/2

)
, where σ̂2(θ) is an unbi-

ased estimate of the variance of (15). Quiroz et al. (2016) show that carrying out MCMC
with this slightly biased likelihood estimator samples from a perturbed posterior that is very
close to the correct posterior if N is sufficiently large in relation to σ2(θ).

We generate T=100,000 observations from the models in (14) and run both the correlated
PMMH and the block-wise PMMH for 55,000 iterations from which we discard the first 5,000
draws as burn-in. Using the same σ2(θ) as in Quiroz et al. (2016) results in sample sizes
N approximately 1300 and N approximately 2600 for models M1 and M2, respectively. For
the block-wise PMMH we use G= 100 so that each block has ≈ 13 observations for M1 and
and ≈26 observations for M2. Also, following Quiroz et al. (2016), the persistence parameter
in the correlated PMMH is set to φ= 0.9999, and we use a random walk proposal which is
adapted during the burn-in phase to target α≈0.15 (Sherlock et al., 2015).

Table 2 summarizes the performance measures introduced in Section 4.1. It is evident
that the block-wise PMMH dramatically outperforms the correlated PMMH on the speed
measures. This is because, as discussed above, the correlated PMMH requires T operations
for generating the vector u. The block-wise PMMH moves only one block at a time, so that
the update of the vector u requires T/G operations. Finally, Figure 4 plots the kernel density
estimates of the block-wise PMMH and correlated PMMH vs the true posterior (obtained by
standard MH) and shows that the estimates from both PMMH schemes are close to those
from the MCMC.

Methods Acceptance IACT ratio CPU ratio CT ratio

M1 M2 M1 M2 M1 M2 M1 M2

Correlated PMMH 0.149 0.140 1.110 1.124 62.893 38.610 69.444 43.478
Block-wise PMMH 0.160 0.151 1 1 1 1 1 1

Table 2: Data subsampling example using block-wise PMMH as a baselin e.

5 Large sample in T analysis for panel data

In this section we discuss properties of the block-wise PMMH for large T for the panel data
model discussed in Sections 3 and 4.1 and show that the total number of particles required
per MCMC iteration is O(T 3/2) rather than O(T 2) as in the standard PMMH. This result
parallels that of Deligiannidis et al. (2015). We also justify part (i) of Assumption 1

Consider now the panel data model, with the panels in the kth group denoted by Gk, and
suppose that we use Nk particles for all panels i∈ Gk. Let p(yi|θ) be the likelihood of the
ith panel, and let p̂Ni

(yi|θ,ui) be the unbiased estimate of p(yi|θ). We make the following
assumption which will hold for most importance sampling estimates of the likelihood.

12



M1 M2

Figure 4: Kernel density estimates for correlated PMMH and blocking PMMH. The standard
MH represents the true posterior

Assumption 3. For each i∈Gk and parameter value θ, there exists a Ai(θ)
2 such that for

Nk→∞

N
1
2
k

(
p̂Ni

(yi;θ,ui)−p(yi|θ)
)

d⇒N(0,Ai(θ)
2) (16)

Let γi(θ)
2 =Ai(θ)

2/p(yi|θ)2 and define zi(θ,ui) :=log

(
p̂Ni

(yi;θ,ui)/p(yi|θ)
)

. The following

result holds. Its proof is straightforward and is omitted.

Lemma 6. Suppose that Assumption 3 holds. Then, for i∈Gk, as Nk→∞,

N
1
2
k

(
zi(θ,ui)+

γ2i (θ)

2Nk

)
d⇒N(0,γ2i (θ))

or, more informally,

zi(θ,ui)≈N

(
− γ

2
i (θ)

2Nk

,
γ2i (θ)

Nk

)
The next corollary formalizes the results of this section. Its proof follows from the discus-

sion immediately above and Lemma 6.

Corollary 1. Define γ2(k)(θ) :=
∑

i∈Gkγ
2
i (θ). Suppose that we take GT = O(T

1
2 ), where the

subscript T , here and below, indicates dependence on T . Then,
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(i) The number of elements in each group is |Gk|=O(T/GT )=O(T
1
2 ), γ2(k)(θ)=O(T/GT )=

O(T
1
2 ), and

ρT =1−O(T−
1
2 ), σ2

T =O(T
1
2 ) and Nk,T (θ,τ 2)=O(T

1
2 ).

(ii) The total number of particles used to estimate the likelihood is
∑G

k=1Nk,T (θ)×(T/G) =
O(T 3/2).

(iii) Part (i) of Assumption 1 holds.

6 Conclusion

We have presented an efficient block-wise PMMH algorithm for Bayesian inference for models
where the likelihood is a product as in panel data models and can be estimated unbiasedly
or for big data problems where the log likelihood is a sum with many terms which can be
estimated unbiasedly. The proposed algorithm divides the set of random numbers used to
estimate the likelihood into blocks, and then updates the parameters of interest and each block
at a time. The block-wise PMMH approach requires a much smaller number of particles in the
likelihood estimation than the standard PMMH. Applications to panel data and subsampling
MCMC strongly confirm the usefulness of the proposed methodology.
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Appendix A Proofs

Proof of Lemma 3. To obtain the conditional acceptance probability, we use the following
results, ∫ A

−∞
exp(z)n(z;a,b2)dz=exp(a+b2/2)Φ

(
A−a−b2

b

)
(17)∫ ∞

A

n(z;a,b2)dz=Φ

(
a−A
b

)
. (18)

Now, as in Lemma 2, let a(z′) =E(z|z′) =−σ2/2G+ρz′ and τ 2 =V(z|z′) =σ2(1−ρ2), so that
the conditional density of z given z′ is n(z;a(z′),τ 2), and using (17) and (18), the conditional
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probability of acceptance is∫
min(1,exp(z−z′))n(z;a(z′),τ 2)dz=

∫ z′

−∞
exp(z−z′)n(z;a(z′),τ 2)dz+

∫ ∞
z′

n(z;a(z′),τ 2)dz

=exp

(
a(z′)−z′+τ 2/2

)
Φ

(
z′−a(z′)−τ 2

τ

)
+Φ

(
a(z′)−z′

τ

)
=exp

(
−y+τ 2/2

)
Φ

(
y−τ 2

τ

)
+Φ

(
−y
τ

)
,

where y := z′−a(z′) = (1−ρ)(z′+σ2/2). To obtain the unconditional acceptance probability,
we need to take the expectation of the conditional probability with respect to z′. We note

that y∼N

(
σ2

2G
, σ

2

G2

)
. Hence, the unconditional probability of acceptance is∫

exp

(
−y+τ 2/2

)
Φ

(
y−τ 2

τ

)
n(y;σ2/(2G),σ2/G2)dy+

∫
Φ

(
−y
τ

)
n(y;σ2/(2G),σ2/G2)dy

(19)

To proceed further we use the following elementary results,

exp(−y)n(y;a,b2)=exp(b2/2−a)n(y;a−b2,b2) (20)

Φ

(
−a−c√
b2+d2

)
=

∫
Φ

(
−y−a
b

)
n(y;c,d2)dy (21)

Φ

(
−a+c√
b2+d2

)
=

∫
Φ

(
y−a
b

)
n(y;c,d2)dy. (22)

Hence,

exp

(
−y+τ 2/2

)
n(y;σ2/G,σ2/G2)=exp(τ 2/2+σ2/2G2−σ2/G)n(y;σ2/G−σ2/G2,σ2/G2)

=n(y;ρσ2/G,σ2/G2)∫
Φ

(
y−τ 2

τ

)
n(y;ρσ2/G,σ2/G2)dy=Φ

(
ρσ2/G−σ2(1−ρ2)√
σ2/G2+σ2(1−ρ2)

)
=Φ

(
−σ
√

1−ρ√
2

)
∫

Φ

(
−y
τ

)
n(y;σ2/G,σ2/G2)dy=Φ

(
−σ
√

1−ρ√
2

)
.

Proof of Lemma 4. For notational simplicity, we write the proposal density q(z|z′;ρ,σ) as
q(z|z′), the acceptance probability in (9) as α(z′,z;ρ,σ) as α(z′,z) and the acceptance probabil-
ity k(z′|σ,ρ), conditional on the previous iterate, as k(z′). Let {(θj,zj),j=1,...,M} be iterates,
after convergence, for the Markov chain produced by the PMMH sampling scheme. Then, the
Markov transition distribution from (θ′,z′) to (θ,z) is

p(θ′, z′; dθ, dz) = α(z′, z)π(θ)q(z|z′)dθdz +

(
1−

∫
α(z′, z∗)π(θ∗)q(z∗|z′)dθ∗dz∗

)
δ(θ′,z′)(θ, z)

= α(z′, z)π(θ)q(z|z′)dθdz + (1− k(z′|σ, ρ)) δ(θ′,z′)(dθ, dz),
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δθ′,z′(dθ,dz) is the probability measure concentrated at (θ′,z′).
Consider now the space of functions

F=

{
ϕ̃ : Θ̃=Θ⊗R 7→R,ϕ̃=ϕ(θ)ψ(z),π(ϕ) :=Eθ∼π(θ)(ϕ)=0,π(ϕ2) :=Eθ∼π(θ)(ϕ2)<∞,

π(ψ2) :=Ez∼π(z)(ψ)2<∞
}
.

We define the operator P :F 7→F as

(Pϕ̃)(θ,z) :=

∫
ϕ̃(θ∗,z∗)p(θ,z;θ∗,z∗)dθ∗dz∗

=π(ϕ)

∫
ψ(z)α(z,z∗)q(z∗|z)dz∗+ϕ̃(θ)(1−k(z))

=ϕ(θ)ψ(z)(1−k(z)).

as π(ϕ)=0 by assumption. It is straightforward to check that (P jϕ̃)(θ,z)=ϕ(θ)ψ(z)(1−k(z))j

and that (Pϕ̃)(θj−1,zj−1)=E(ϕ̃(θj,zj)|θj−1,zj−1). Hence, (P jϕ)(θ0,θ0)= ϕ̃(θ0,z0)(1−k(z0))
j.

We now consider ϕ̃(θ,z)=ϕ(θ)ψ(z) with ψ(z)≡1 so that ϕ̃∈F; suppose also that (θ0,z0)∼
π̃N . Define cj :=Cov(ϕ̃(θj,zj),ϕ̃(θ0,z0))=Cov(ϕ(θj),ϕ(θ0)). Then,

cj =E
(
ϕ̃(θj,zj)ϕ̃(θ0,z0)

)
=E(θ0,z0)∼π̃N

(
E(ϕ̃(θj,zj)|θ0,z0)ϕ̃(θ0,z0)

)
=E(θ0,z0)∼π̃N

(
(1−k(z0))

jϕ̃(θ0,z0)
2
)

=Ez0∼π̃N (z)

(
(1−k(z0))

j)Eθ0∼π(ϕ(θ0)
2
)

because z0 only depends on σ by construction

=Ez0∼π̃N (z)

(
(1−k(z0))

j
)
c0.

The inefficiency IF is defined as

IF=(c0+2
∞∑
j=1

cj)/c0 =1+2
∞∑
j=1

Ez∼π̃N (z)

((
1−k(z)

)j)
=1+2Ez∼π̃N (z)

(
1−k(z)

k(z)

)
as required.

Proof of Lemma 5. From Lemma 2, π(z′|σ)=n(z′;σ2/2,σ2). Let ω :=[(1−ρ)(z′+σ2/2)−τ 2]/τ .
Then,

ω∼N

(
− ρτ

1+ρ
,
1−ρ
1+ρ

)
,

and we note that the variance of ω just depends on ρ. For ρ close to 1, the variance of ω
is approximately 1/2G, which is very small. Thus, ω will be concentrated close to its mean
ω∗ :=−ρτ/(1+ρ). Define p∗(ω|τ) :=1−k(z′|ρ,σ)=Φ(ω+τ)+exp(−ωτ−τ 2/2)Φ(ω). Then,

IF(σ,ρ)=

∫
1+p∗(ω|τ)

1−p∗(ω|τ)
n(ω;− ρτ

1+ρ
,
1−ρ
1+ρ

))dω;

17



it is convenient to write as IF(σ,ρ) as IF(τ |ρ), which as we will optimize the computing time
over τ keeping ρ fixed. Let,

f(ω;τ) :=
1+p∗(ω|τ)

1−p∗(ω|τ)

Using the 4th order Taylor series expansion of f(w;τ) at ω=ω∗, the inefficiency factor can
be approximated by

IFapprox(τ |ρ) = f(ω∗|τ) +
1

2

1− ρ
1 + ρ

f (2)(ω∗|τ) +
1

8

(
1− ρ
1 + ρ

)2

f (4)(ω∗|τ),

which is considered as a function of τ with ρ fixed. This approximation will be very good
because, as noted, the variance of ω is very small for G large. So the computing time CT(σ,ρ)=
IF(σ,ρ)/σ2, is approximated by

CTapprox(τ |ρ)=1−ρ2)IFapprox(τ |ρ)

τ 2
∝ IFapprox(τ |ρ)

τ 2

Minimizing this term over τ 2, for ρ close to 1, we find that CT(τ) is minimized at τ ≈ 2.16.
So the optimal σopt≈2.16/

√
1−ρ2.

Then the unconditional acceptance rate (10) is

P (accept|ρ, σopt) = 2

(
1− Φ

(σopt√1− ρ√
2

))
= 2

(
1− Φ

(σopt√1− ρ2√
2(1 + ρ)

))

≈ 2

(
1− Φ

(2.16

2

))
≈ 0.28.

Appendix B Derivation of the expression (13) for Com-

puting Time

The average computing time required to give the same accuracy in terms of variance as M
iterates θ1,...,θM from an iid sampler from π(θ) is

1

M

M∑
i=1

G∑
k=1

Nk(θi)IF(σ,ρ)=
1

M

M∑
i=1

G∑
k=1

Gγ2(k)(θi)

σ2
IF(σ,ρ)→

(
G

G∑
k=1

γ2(k)

)
IF(σ,ρ)

σ2

as M →∞, where γ2(k) = Eθ∼π(γj(θ)). Hence the computing time is proportional to CT =
IF(σ,ρ)
σ2 .
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