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Abstract

Platform and springboard diving is a sport involving athletes falling or jumping
into a pool of water, usually while performing acrobatic manoeuvres. At the
highest level it challenges the physical laws of gravity as athletes try to outperform
each other by executing more sophisticated dives. With a mathematical model we
are able to assist the athletes and coaches by providing some insight into the
mechanics of diving, which hopefully gives them an edge during competition.

In this thesis we begin with an introduction to rigid body dynamics and then
extend the results to coupled rigid bodies. We generalise Euler’s equations of
motion and equations of orientation for rigid bodies to be applicable for coupled
rigid bodies. The athlete is represented as a mathematical model consisting of ten
simple geometric solids, which is used to conduct three projects within this thesis.

In the first project we look at somersaults without twists, which provides a
significant reduction as the model becomes planar. The equations of motion and
equations of orientation reduce from vector form to a single scalar differential equa-
tion for orientation, since angular momentum is conserved. We digitise footage of
an elite diver performing 107B (forward 3.5 somersault in pike) from the 3m spring-
board, and feed that data into our model for comparison between the theoretically
predicted and observed result. We show that the overall rotation obtained by the
athlete through somersault is composed of two parts, the major contribution com-
ing from the dynamic phase and a small portion from the geometric phase. We
note that by modifying the digitised dive slightly we can leave the dynamic phase
intact, but change the geometric phase to provide a small boost in overall rotation.
The technique involved in doing so is not practical for actual diving though, so
we move away from this idea and devise another way of optimising for the overall
rotation. We find that by shape changing in a particular way that takes slightly
longer than the fastest way of moving into and out of pike, the overall rotation
achieved can be improved by utilising the geometric phase.

In the second project we use the model to simulate divers performing forward
m somersaults with n twists. The formulas derived are general, but we will specif-
ically look at 5132D, 5134D, 5136D, and 5138D (forward 1.5 somersaults with 1,
2, 3, and 4 twists) dives. To keep the simulation as simple as possible we reduce
the segment count to two by restricting the athlete to only using their left arm
about the abduction-adduction plane of motion. We show how twisting somer-
saults can be achieved in this manner using this simple model with predetermined
set of motor actions. The dive mechanics consist of the athlete taking off in pure
somersaulting motion, executing a shape change mid-flight to get into twist po-
sition, perform twisting somersaults in rigid body motion, and then executing
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Abstract iii

another shape change to revert the motion back into pure somersaulting motion
to complete the dive.

In the third and final project we use our model to show how a 513XD dive
(forward 1.5 somersaults with 5 twists) is performed. This complicated dive dif-
fers from all currently performed dives in that once the diver initiates twist in
the somersaulting motion via shape change, they need to perform another ap-
propriately timed shape change to speed up the twist rather than stopping the
twist, and only then is five twists obtainable with practical parameters. Such
techniques can be found in aerial skiing where the airborne time is longer, but our
theory shows that it may also be applicable to platform and springboard diving
too. To date, no athlete has ever attempted a 513XD in competition, nor does the
International Swimming Federation (FINA) cover dives with five twists in their
degree-of-difficulty formula. Our theory shows that 513XD dive is theoretically
possible, and with extrapolation we estimate it would have a degree-of-difficulty
of 3.9.
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CHAPTER 1

Introduction

1.1 History and Reading

In platform and springboard diving, a diver will jump from either a high stationary
surface known as the platform or a springboard, which is a linear cantilever-type
flex-spring usually constructed from a single piece extrusion of aircraft grade alu-
minum. The platform and springboard are set at different heights to provide
sufficient airborne time for the diver to perform various acrobatic manoeuvres be-
fore entry into the pool. In competition, performances are judged on the following
criteria: form, execution, and degree-of-difficulty.

Platform diving debuted in the 1904 Olympic Games in St. Louis, United
States, and featured alongside one other diving event for men - the plunge for
distance [58]. The plunge for distance event was essentially a diving long jump, in
which athletes dove into the pool from a standing position and remained motion-
less underwater, using only momentum to propel themselves. The distance was
measured after either 60 seconds had elapsed or the moment the athlete’s head
broke the surface of the water - whichever occurred first. The event proved uninter-
esting and made no further appearances, instead being replaced with springboard
diving in the 1908 Olympic Games. The platform and springboard diving events
for women were subsequently introduced in the 1912 and 1920 Olympic Games,
respectively. At present, the diving heights used in the Olympic Games are set by
the International Swimming Federation (FINA), which are currently fixed at 10m
for platform and 3m for springboard. Today, with inclusion of the synchronised
diving event introduced in the 2000 Olympic Games, there are now a total of eight
diving events.

Fairbanks [19] explores the philosophy behind general teaching techniques for
diving with a focus on guiding beginner coaches to teach new athletes correct
diving techniques, such as head-first entry into the water. For more advanced
coaches and divers, Huber [27], Still and Carter [54] cover all aspects of diving,
including coaching, conditioning, and competition. Moriarty [46] discusses the
body mechanics involved in springboard diving for the main dive groups, and
Batterman [5] adds to this by teaching athletes how to correct and therefore save
dives, i.e. to rectify faults in mid-air. His book is aimed at the more advanced diver

1



2 1. Introduction

and dedicates a chapter on the judging aspect of dives. Another book aimed at
both athletes and coaches is by O’Brien [47], which includes a chapter on mental
preparation for athletes. O’Brien initially trained as a gymnast and transitioned
to diving, later becoming a coach when his athletic career ended. Over many years
of coaching he has seen divers of all skill levels, including two-time Olympic gold
medalist Greg Louganis [37].

1.2 Principles of Diving

Platform and springboard diving is a sport that challenges the physical laws of
gravity as the athletes attempt to outperform each other by executing more sophis-
ticated dives. The athletes must appear graceful while performing these acrobatic
manoeuvres, which must be completed within a limited airborne time. Although
generally not recognised as a dangerous sport, a dive from the 10m platform will
result in the athlete reaching speeds in excess of 50 km/hr before hitting the water.
This in itself poses considerable danger for the athlete, as the force upon impact is
enough to dislocate joints and break bones. Further discussion on safety concerns,
diving accidents and common injuries can be found in Appendix A.

At the Olympic Games, men and women perform six and five dives, respec-
tively. For the individual event there is no limit on the degree-of-difficulty (ex-
plained in Appendix C) for each dive, but in the synchronised event the first two
dives are assigned a degree-of-difficulty of 2.0, while the remaining dives have no
limit.

In springboard diving, men and women must perform a dive in each of five dive
groups. The sixth dive for men may be performed in any group, but no identical
dive can be repeated. The springboard groups are:

1. Forward group - starting position facing water and rotating forward.
2. Backward group - starting position with back facing water and rotating back-

ward.
3. Reverse group - starting position facing water and rotating backward.
4. Inward group - starting position with back facing water and rotating forward.
5. Twisting group - any of the above that incorporates twists.

The platform groups are the same but with the addition of the

6. Armstand group - divers stand on their hands before releasing into the water.

In platform diving, men must perform a dive in each of the six groups, while
women have a choice of which group to omit as they are only required to perform
five dives. Once airborne, the diver will adopt one of the following four flight
positions:

A. Straight - no bend in hips or knees, arms can be wherever the diver chooses.
B. Pike - body bent at hips while knees are kept straight with no gap between

upper body and legs.



1. Principles of Diving 3

C. Tuck - body bent at waist and knees, hands clasping shins.
D. Free - used exclusively in twisting dives; it is a combination of straight, pike,

and/or tuck.

There are two types of pike: open pike, where hands touch the foot or extend out
from the body, and closed pike, where hands clasp behind the calves. In all diving
positions, the legs and feet must be held together with toes pointed.

With different combinations of somersaults, dive groups and flight positions,
the diver has a large variety of acrobatic manoeuvres at their disposal. To keep
the dive description as simple and concise as possible, an alphanumeric code of
either four or five digits is used, known as the dive number. We explain how to
decipher and write down this code in Appendix B.

To earn a podium finish, athletes must achieve among the three highest total
scores across the entire diving event. The athlete’s total score is the sum of their
individual dive scores, which is the product of two elements - the judges score and
the degree-of-difficulty, both of which are explained in Appendix C. Essentially in
order to achieve a high score, athletes must not only perform dives with a high
degree-of-difficulty, but also perform them consistently well.

In dive groups where athletes perform somersaults without twist (i.e. forward,
backward, reverse, and inward) the degree-of-difficulty can be increased in two
ways - changing the flight position (e.g. from tuck to pike position) or increasing
the number of somersaults. On the other hand, twisting somersaults offer greater
scope to increase the degree-of-difficulty - athletes can change the dive type (e.g
forward twisting, backward twisting), increase the number of somersaults or twists
(or both), and also change flight position (where possible). While the majority of
twisting somersaults performed in the ‘free’ position, some are restricted to the
pike or tuck option, e.g. forward 2.5 somersault with 3 twist.

The ability to perform high degree-of-difficulty dives begins at take-off. The
number of rotations one is able to perform solely depends on the combination of
airborne time and angular momentum, which in turn depend on the vertical and
angular velocity produced by the athlete at take-off. We know that athletes diving
from both the 10m platform and 3m springboard are airborne for approximately
1.6 seconds before making contact with the water. The airborne times are similar
because the springboard allows the diver to take off with a much larger vertical
velocity, due to the conversion of stored potential energy within the board into
kinetic energy. Divers are able to directly control their airborne time and angu-
lar momentum to a certain extent by adjusting their initial vertical and angular
velocity at take-off. The relationship between the airborne time Tair and initial
vertical velocity v0 is given by

(1.1) Tair =
v0

g
+

√(
v0

g

)2

+
2h

g
,



4 1. Introduction

where we define positive v0 for the upward velocity, g is the standard gravity con-
stant, and h is the height of the springboard or platform. The angular momentum
and angular velocity relationship at the instantaneous moment of take-off is given
by

(1.2) L = IΩ,

where L is the angular momentum, I the tensor of inertia, and Ω the angular
velocity. This indicates that the angular momentum L is directly related to the
shape defined by the tensor of inertia I and the angular velocity Ω of the diver.

1.3 Literature on Diving

We now review some existing literature on platform and springboard diving. Div-
ing is considered a collision sport because of the impact between the athlete and
the water upon entry into the pool, and as with all sports it comes with safety con-
cerns. Based on the research by Bailes, Herman, Quigley et al. [4], Kewalramani
and Taylor [32], and Steinbruck and Paelslack [53], we learn that 10% to 20%
of all spinal admissions to hospital are the result of recreational diving accidents,
most of which are preventable, see Appendix A.

Greg Louganis [37] was an elite American Olympic diver (now turned coach)
who won gold medals in both the 10m platform and 3m springboard diving events
in the 1984 and 1988 Olympic games. After winning his first pair of gold medals, a
study by Miller and Munro [40] examining Greg Louganis’ forward and reverse 3m
springboard take-off revealed the most notable difference distinguishing him from
competitors was his greater range of joint motion (particularly at the knees, hips
and shoulders) and straighter arm swing. His take-off duration averaged longer
than the mean of all other competitors, allowing him more time to complete joint
flexion and extension, thereby giving him an edge in technique over his competitors.

Success in performing high degree-of-difficulty dives depends heavily on the
athlete’s ability to generate and control the vertical velocity and angular velocity at
take-off. Sprigings and Miller [52] found the optimal timing in the knee extension
and positioning of the legs relative to the torso during the contact phase in the
reverse group, which plays a critical role in determining and/or maximising the
vertical and angular velocity at take-off.

Research from Miller, George, Yeadon and Zecevic [39] suggests that the ver-
tical velocity and angular momentum requirements in performing 2.5 pike (105B,
205B, 305B or 405B) and 3.5 tuck somersaults (107C, 207C, 307C or 407C) are
comparable. If this is the case, then it is always better to perform the 3.5 tuck
over the 2.5 pike to take advantage of the higher degree-of-difficulty associated
with the dive, assuming the athlete has equal performance for both manoeuvres.
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Miller and Sprigings [42] found that keeping the number of somersaults the
same but switching between the tuck and pike position led to little difference be-
tween the centripetal forces and/or related muscular efforts on the body. However,
increasing the number of somersaults resulted in a notable increase in the result-
ing joint torques and centripetal forces on the body. These additional muscular
efforts may pose a challenge for the diver where additional strength training may
be needed to hold form while somersaulting.

Angular momentum contributions from the body segments have been inves-
tigated in springboard diving by Miller and Munro [41], and in platform diving
by Hamill, Richard, and Golden [23]. Both studies found that at least a third
of the total angular momentum contribution was due to the arms. Cheng and
Hubbard [11] explored the role of arms in springboard diving from a standing
dive, compared to the running dive of Miller and Munro [41]. The requirements
in angular momentum for different rotation amounts in springboard diving have
been examined by Miller and Sprigings [42], and Sanders and Wilson [51]. It
is a critical component in diving, and computational techniques and methods to
determine angular momentum of a human body in flight have been studied and
discussed by Dapena [14], and Hay, Wilson, and Dapena [26].

Koschorreck and Mombaur [33][34] generate dives through numerical optimi-
sation on a mathematical model consisting of coupled rigid bodies, taking into
account that the different phases of a dive are governed by different dynamics.
They show that without using prior knowledge of the exact execution of the jump,
the optimisation leads to very natural looking dives, confirming that athletes at
the elite level are already performing near-optimal dives.

Another major contributing author to diving literature is Yeadon, who has not
only written about the physics of twisting somersaults in [71], but also has a four
part series on the simulation of aerial movement [62], [63], [64] and [65]. The series
begins by capturing an athlete performing a forward somersault with 1.5 twists on
trampoline using two film cameras placed orthogonally to each other, with one at
the front and the other to the side. He then presents a method to determine the
shape and orientation angles of the athlete in [62]. The digitised results are curve
fitted and later reused as a comparison mechanism between the measured results
and his computer simulation model in [65]. Yeadon follows this with another four
part series on the biomechanics of twisting somersaults [66], [67], [68] and [69],
in which he provides a theoretical understanding of the production and removal
of twists in somersaults using both simple and complex mathematical models. He
looks at twist induced at take-off, known as contact twist in [67], and aerial twist,
which is initiated after take-off in [68]. Yeadon in [69] analysed footage of elite
athletes performing twisting somersaults and was able to partition the tilt angle
into contributions of contact techniques, symmetrical configuration changes and
asymmetrical arm, chest and hip movements. He found that aerial techniques,
particularly the asymmetrical movements, were the main contributing factor to
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the total tilt angle responsible for twist, and that less than a quarter of the total
tilt was a result of contact techniques. Although the footage used by Yeadon was
specifically from trampolining, he speculates that the same conclusion would have
been reached from twisting somersaults in other sports, such as diving. In fact,
in another study Yeadon [61] found that contact contributions accounted for no
more than one sixth of the total tilt angle and that the asymmetries in the arm
and hip were the main contributors to the tilt angle.

1.4 Mathematical Models

There are many mathematical models of athletes, with each varying in complexity
between authors. Hanavan’s model [24] is considered one of the most basic be-
cause it only uses fifteen geometrical solids to represent the main body segments
of the athlete. In his model, he uses a prolate ellipsoid for the head, a sphere
for the hands1, frustum of a right circular cone for the upper arms, forearms,
thighs, shanks, feet, and two right elliptical cylinders for the upper and lower
torso. Jensen [30] uses the idea first proposed by Weinbach [59] to construct a
sixteen segment model using the elliptical zone method. This involves stacking
thin elliptical disks (of approximately 20mm thickness) atop each other to allow
for better approximation of each segment.

Cross-sections of body segments modelled by Hanavan [24], Jensen [29], and
Hatze [25] have all been ellipses, but Yeadon [63] improves upon this by using sta-
dium cross-sections, stacking stadium solids to model the torso, hands, and feet,
where the cross-sections of the head, upper arms, forearms, thighs, and shanks
are assumed to remain circular. Yeadon’s model consists of 40 solids requiring
95 parameters comprising of 34 lengths, 41 perimeters, 17 widths and 3 depths,
although he reduced the segment count to eleven by assuming no movement at
the neck, wrists or ankles in his simulations ([64] and [65]). Hatze [25] took 242
anthropometric measurements from a subject for his seventeen segment model.
Although the geometry of each segment in Hatze’s model is complicated, the dy-
namics are no more complicated than that of a simple geometric model with the
same segment count, which applies to all models discussed above. When looking
at the dynamics, the only parameters to enter the model are the tensor of in-
ertia, location of the centre of mass, and joint locations for each body segment.
The complicated geometries are only used to determine these three parameters,
otherwise they play no role in the dynamics and thus are not considered ‘true’
parameters. For this reason, we can consider a simple model used by Frohlich [20]
when discussing different methods of initiating twisting somersaults, in which he

1When referring to spheres and other shapes, we always mean the geometric solids and never
simply the shell. A solid sphere is technically a ball, but we will continue to use sphere for
consistency with other authors.
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proposes a fourteen segment model consisting of cylinders, spheres and a cuboid.
Starting with Frohlich’s model we will assume, like Yeadon, that the wrists and
ankles joints are fixed in order to further reduce the segment count to ten. The
hands and feet are relatively light compared to the rest of the body, so motion at
these joints can be ignored.

A 10-body model consisting of the torso, head, 2× upper arm, 2× forearm with
hand attached, 2× thigh, and shank with foot attached is generally the minimum
body fragmentation accepted for a realistic simulation. We can use the mass and
dimension parameters listed by Frohlich in Table II of [20] directly, and know
that the mass parameters were determined by the mass ratios found by Dyson
[17], although rounded slightly to yield more aesthetic numbers in the tensors of
inertia. The relative masses listed are within the ranges reported by Dempster
[15], but with a higher mass percentage concentrated at the limbs and a lower
percentage at the torso. This is to be expected because Dempster’s data source
came from eight cadavers of typical middle aged and old aged men, whereas we are
modelling a typical male athlete and not a typical man. The dimension parameters
are also chosen so that if the densities were to be computed by assuming uniform
density within each segment, they will give similar results to those obtained by
Clauser [13].

We code the body segments of our 10-body model as follows: The torso is
known as the reference segment and is denoted by Bref, the head is denoted by
Bhead, and the remaining body segments are coded by a three letter subscript. The
first two letters together determine the specific limb of the body, the first being

code body segment geometric solid dimensions (cm) mass (kg)
Bref torso rectangular cuboid 18 30 60 32.400
Brup right upper arm cylinder 5 30 - 2.356
Brud right forearm + hand cylinder + sphere 4.5 28 5 1.781 + 0.523
Brlp right thigh cylinder 8 43 - 8.650
Brld right shank + foot cylinder + sphere 5.5 43 7 4.086 + 1.436
Bhd head sphere - - 11 5.575
Blup left upper arm cylinder 5 30 - 2.356
Blud left forearm + hand cylinder + sphere 4.5 28 5 1.781 + 0.523
Bllp left thigh cylinder 8 43 - 8.650
Blld left shank + foot cylinder + sphere 5.5 43 7 4.086 + 1.436

Table 1.1. Body segments, geometric descriptions and masses for
our model. The athlete is a male of 75.639 kg and 1.820 metres in
height. The torso dimensions are given in order of length, width and
height, but for every other segment the columns denote radius of the
cylinder, height of cylinder and the radius of sphere, respectively. A
hyphen is used for any field not applicable to the solid.
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either left (l) or right (r), and the second being the upper limb (u) or lower limb
(l). The third letter distinguishes between the proximal (p) (closer to the body,
e.g. upper arm) and distal (d) segment (further away from body, e.g. forearm) of
that limb. We choose to label the segments with letters instead of numeric values
for easier distinction of the body segments. The complete description of each body
segment in our model is listed in Table 1.1.

1.5 Summary

In this thesis all parameters introduced take on standard SI units unless explicitly
indicated, e.g. tensor of inertia is measured in kg · m2, angular momentum in
kg ·m2/s, etc. At the start of each chapter we will provide a detailed outline of
what is to be covered in each subsection, so only a brief summary is provided here.

In Chapter 2 we provide an overview of the fundamentals of rigid body dy-
namics, covering aspects including frames of reference, angular velocity, tensor
of inertia, and angular momentum. We also derive the equations of motion and
equations of orientation for a rigid body, and find explicit solutions for the case
when two moments of inertia are equal.

In Chapter 3 we move to a system of n coupled rigid bodies and generalise
the equations of motion and equations of orientation. We use Table 1.1 to define
the geometry of the athlete, specify how segments are connected, and provide the
technical specification of the modelled athlete. The next three chapters form the
main focus of this thesis.

In Chapter 4 we look at planar somersaults, derive the scalar variant of the
equations of motion, and analyse digitised footage of an elite athlete performing
107B dive off the 3m springboard, where consistency is demonstrated between the
model’s predicted result and the observed result from the digitised footage.

We then show that the dive with maximal overall rotation does not involve the
athlete moving into and out of pike as fast as possible, so that time spent in pike
is maximised. Instead, the optimisation shows that the athlete has asymmetrical
movement (meaning longer shape change and less time in pike) which utilises the
geometric phase to gain the additional rotation.

In Chapter 5 we use the full form of the equations of motion and equations
of orientation to simulate twisting somersaults with a 2-body model using the
following five stage dive mechanics:

pure
somersault

−→ shape
change

−→ twisting
somersault

−→ shape
change

−→ pure
somersault

The pure and twisting somersault stages are in rigid body motion and the shape
changes are predetermined. We find the parameters needed to make this dive work
numerically for realistic shape changes, but an analytical result can be obtained
when the shape changes become impulsive. Particular attention is given to dives
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consisting of forward 1.5 somersault with different number of twists, i.e. 5132D,
5134D, 5136D, and 5138D.

In Chapter 6 we extend the ideas of Chapter 5 by introducing a nine stage dive,
allowing the diver to utilise additional shape changes to enter a faster twisting
orbit, where the dive mechanics are:

pure
somersault

−→ shape
change

−→ twisting
somersault

−→ shape
changey

faster twisting
somersaulty

pure
somersault

←− shape
change

←− twisting
somersault

←− shape
change

We show with both the 2-body and 3-body models that more twists can be obtained
in this manner without any additional cost of angular momentum or airborne time,
thus allowing the diver to perform 513XD (forward twisting 1.5 somersault with 5
twists) in reality, where X is used to represent 10 to keep the diving code notation
consistent. This new dive is yet to be attempted in competition, and its degree-of-
difficulty cannot even be calculated using FINA’s degree-of-difficulty formula given
in Appendix C. Extrapolating the degree-of-difficulty for 5132D, 5134D, 5136D,
and 5138D we estimate the degree-of-difficulty of 513XD to be 3.9. We conclude by
demonstrating that it is even possible for an athlete to take-off in pure somersault
and transition into pure twist (a state where the rotation is strictly about the twist
axis and there is no somersaulting motion at all) given a large enough airborne
time, which is achieved through simply using multiple shape changes that are
appropriately timed. The theory provides useful insight into the limitations of
what athletes can achieve in the twisting somersault.



CHAPTER 2

Rigid Body Dynamics

We start by deriving and setting up the necessary foundations for rigid body dy-
namics. To describe the motion of a rigid body we need to specify its position
and orientation in space as a function of time. We do this by introducing different
frames of reference, namely the space and body frame in Chapter 2.1. The veloc-
ity of a rigid body can be decomposed into a combination of linear and angular
velocity, where the former describes translational motion and the latter rotational
motion. The total amount of rotation the body has is described by the angular
momentum, which not only takes into account the angular velocity but also the
mass and shape defined by the tensor of inertia. In Chapters 2.2 to 2.5 we define
these quantities in different frames and write down the relationship connecting the
angular momentum, tensor of inertia and angular velocity, which verifies the well
known (1.2) in the body frame.

To describe the orientation of a rigid body we review Euler angles in Chapter
2.6, and quaternions in Chapter 2.7, both of which can be used to describe the
orientation of the rigid body in 3D space. We then derive the equations of mo-
tion and solve it for the case of two moments of inertia being equal in Chapter
2.8. Rotational stability of the equilibrium solutions for angular momentum are
examined in Chapter 2.9, and we quote the general solution to the equations of
motion as given, e.g. by Landau and Lifshitz [35], Gradshteyn and Ryzhik [22],
Rauch and Lebowitz [50]. Magnus series is presented in Chapter 2.10 to provide
an exponential representation of the series solution for a n-dimensional first order
homogeneous differential equation, which is later needed in Chapter 5 when we
look at twisting somersaults. Finally, in Chapter 2.11 we derive the equations
of orientation both in terms of Euler angles and quaternions which describe the
orientation of the rigid body as a function of time.

10
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2.1 Frames of Reference

There are usually two frames of reference associated with a rigid body B of mass
m when looking at the dynamics - a coordinate system attached to the body
(referred to as the body-fixed-frame) denoted by FB, and an inertial spatial frame
FSF . The energy and angular momentum of B can be expressed as a sum of two
contributions, the motion of the centre of mass (translation) and the motion about
the centre of mass (rotation). We choose the origin of FB to coincide with the
centre of mass of B, which allows us to completely separate the translational and
rotational motions of the rigid body. Now consider a point Q on B viewed from
FB, then that same point observed from FSF will be represented as q. In general,
uppercase letters will be used to denote points and position vectors measured in
the body frame, and lowercase letters will be used for the spatial frame equivalent.
This allows us to write the relation

(2.1) q = c+RQ.

Here, R is a rotation matrix that parallelises the coordinate axes of FB with FSF ,
and c is the translation from the origin of FSF to the origin of FB, which is also
the position vector for the centre of mass of B. Now as B moves, we see that

(2.2) q̇ = ċ+ ṘQ.

Since FB moves with B the point appears motionless in the body frame, which
explains why no Q̇ term appears in (2.2). In the absence of external forces ċ is a
constant vector, so choosing the inertial spatial frame to be the one with c = 0
eliminates both c and ċ. In the presence of a constant force (e.g. gravity) we
can still temporarily ignore the centre of mass motion to work out the dynamics
without c, and then later incorporate c into the final result. The displacement of
the centre of mass c of a rigid body in a constant force is fairly simple and is

(2.3) c =
1

2
at2 + v0t+ c0,

where a is the constant acceleration, v0 the initial velocity, and c0 the initial
displacement of the rigid body. In the case where we associate the rigid body
as a diver taking off the platform or springboard with horizontal velocity vx and
vertical velocity vz, we get a = (0, 0,−g)t and v0 = (vx, 0, vz)

t, where g is the
standard gravity constant. To examine the rotational motion of the rigid body we
introduce a new frame called the space-parallel-frame, denoted by FS. This frame
is comoving but not corotating with the body, so the origin of FS moves along
with the centre of mass, but does not rotate with B, meaning that the origin of
FS coincides with the origin of FB while the coordinate axes of FS remain parallel
to FSF . This frame is non-inertial in an environment with external forces, but
only in translations and not rotations. For this reason we still refer to FS as a
spatial frame since the orientation of the coordinate axes do not change, and in
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the absence of forces we could in fact choose FS to be the same as FSF . The case
we’re interested in is for a constant force, so the translational motion we get from
(2.3) needs to be incorporated in the final result, thereby requiring the need for
all three frames FSF ,FS and FB. For a vector V the transformation formulas to
allow conversion between frames are

VSF = c+ VS VS = RVB,(2.4)

where the subscripts denote the frame in which the vector V is written in. With
the use of FS and FB without FSF , translational motion is lost within the body,
but the rotational motion is maintained. This is fine though as we have (2.3) to
describe the translational motion, so we will generally disregard FSF and only use
it to show animated dives.

2.2 Angular Velocity & Angular Momentum

The velocity of q in FSF is often separated into a combination of linear and angular
velocity. In many classical mechanics textbooks, e.g. Chow [12], Goldstein [21],
Landau and Lifshitz [35], we see the following equation

(2.5) q̇ = ċ+ ω × (q − c) = ċ+ ω ×RQ,
where ċ is the linear velocity of the centre of mass of B, ω is the angular velocity
vector of the rotating body lying along the axis of rotation, and RQ is the position
vector from the centre of mass to the point on B, all of which are viewed in FSF .

The angular momentum of B about the centre of mass in FS is given by

(2.6) l =

∫
B

ρ(q − c)× (q̇ − ċ) dQ,

where ρ is the density of B. Substituting (2.1) and (2.5) into the angular momen-
tum equation (2.6) shows that

l =

∫
B

ρRQ× (ω ×RQ) dQ(2.7)

=

∫
B

ρ ((RQ ·RQ)ω − (RQ · ω)RQ) dQ

=

∫
B

ρ(|Q|21−RQQtRt)ω dQ

= R

∫
B

ρ(|Q|21−QQt) dQ R−1ω,

where the vector identity

(2.8) a× (b× c) = (a · c)b− (a · b)c
and RR−1 = RRt = 1 were used in the simplification of (2.7).
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2.3 Tensor of Inertia

The integral that appears in (2.7) is known as the tensor of inertia of B, which
is a quantity expressing the rigid body’s tendency to resist angular acceleration,
and can be used to determine the torque needed for a desired angular acceleration
about an arbitrary axis of rotation. Specifically it is

(2.9) J =

∫
B

ρ
(
|Q|21−QQt

)
dQ

when viewed in FB and written about the centre of mass of B. If we write out the
components explicitly as

(2.10) Q =

 Qx

Qy

Qz

 and

(2.11) J =

 Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

 ,

we see that the diagonal entries of the tensor give

Jxx =

∫
B

ρ(Q2
y +Q2

z) dQ

Jyy =

∫
B

ρ(Q2
x +Q2

z) dQ

Jzz =

∫
B

ρ(Q2
x +Q2

y) dQ.

These quantities are called the moments of inertia with respect to the x, y and
z-axis, respectively. Each integrand contains the distance square to one of the
axes, so the moments of inertia are always positive. Now the non-diagonal entries
are

−Jxy = −Jyx =

∫
B

ρQxQy dQ

−Jxz = −Jzx =

∫
B

ρQxQz dQ

−Jyz = −Jzy =

∫
B

ρQyQz dQ,

and these quantities are called the products of inertia. Unlike the moments of
inertia, these terms can be positive, negative or zero, and are a measure of the
imbalance in the mass distribution relative to FB. It follows from the definition
of the products of inertia that the tensor of inertia is always symmetric, and it is
always possible to find a set of coordinate axes in which the products of inertia
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are all zero, even when there is no symmetry in the body. This means the tensor
of inertia can be made diagonal when we choose an appropriate body-fixed-frame
that results in the coordinate axes of FB being aligned with the principal axes of
inertia.

Suppose that I is a non-diagonal tensor of inertia in some other body-fixed-
frame FC (which will play an important role in coupled rigid bodies), then there
is always a transformation

(2.12) J = R−1
ξ IRξ

with some rotation matrix Rξ that makes J diagonal in FB. Finding this frame
is a characteristic value problem, where the eigenvectors of I give the direction
of the principal axes, the eigenvalues are the moments of inertia for J , and the
rotation matrix R has the orthonormalised eigenvectors of I as columns. Consider
a simpler case where

(2.13) I =

 Ixx 0 0
0 Iyy Iyz
0 Iyz Izz

 in FC .

We wish to find a rotation matrix Rξ so that J in FB is diagonal with J =
diag(Jx, Jy, Jz). This can be achieved by a rotation about the x-axis, so if we let
ξ be the angle of rotation and multiply out the transformation, this gives

Jx = Ixx

Jy = Iyy cos2 ξ + Izz sin2 ξ + Iyz sin 2ξ(2.14)

Jz = Iyy sin2 ξ + Izz cos2 ξ − Iyz sin 2ξ,

and for the non-diagonal entries to be zero we need

(2.15)
1

2
(Izz − Iyy) sin 2ξ + Iyz cos 2ξ = 0.

Choosing the smallest ξ that satisfies this equation, we find that

(2.16) ξ =
1

2
arctan

(
2Iyz

Iyy − Izz

)
.

In this example the transformation leaves the x-component of the moment of
inertia intact because both Rξ and R−1

ξ are rotations about the x-axis.

If at times we want to the know the tensor of inertia J̃ about an arbitrary point
instead of its centre of mass, it is often easiest to use the parallel axis theorem.
The theorem decomposes J̃ into the sum of two tensors, the tensor of inertia J
about the centre of mass, and a tensor in terms of the displacement vector C from
the point of interest to the centre of mass. Any point on B from the point of
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interest is now given by C +Q, so the tensor of inertia J̃ can be written as

J̃ =

∫
B

ρ
(
|C +Q|21− (C +Q)(C +Q)t

)
dQ

= J +

∫
B

ρ
(
2(C ·Q)1−CQt −QCt

)
dQ+

∫
B

ρ dQ
(
|C|21−CCt

)
(2.17)

= J +m
(
|C|21−CCt

)
,

where to simplify the result we used∫
B

ρ dQ = m

∫
B

ρQ dQ = 0.(2.18)

The left integral states that integrating the density over B gives the mass m,
while the right integral gives the weighted position of the body times mass which
is simply 0 in FB, since we picked the centre of mass to be at the origin.

2.4 Body Segment Inertias

The complete description of each body segment in our model is listed in Table 1.1.
The torso Bref is modelled as a rectangular cuboid, Bhd as a sphere, Brup , Brlp , Blup ,
and Bllp as cylinders, and Brud , Brld , Blud , and Blld as cylinders with spheres at-
tached, see Figure 2.1 for illustrations. We now use (2.9) to compute the tensor of
inertia in the principal axes frame FB for

• a rectangular cuboid of mass m, length l, width w and height h
• a cylinder of mass m, radius p and height h
• a sphere of mass m and radius r,

and if we assume uniform density for these solids we get

• Jcub = m
12

diag (w2 + h2, l2 + h2, l2 + w2)
• Jcyl = m

12
diag (3p2 + h2, 3p2 + h2, 6p2)

• Jsph = 2mr2

5
1.

The tensor of inertia for the cylinder with sphere attached (Figure 2.1D) is com-
puted using the parallel axis theorem (2.17). Note that the while density of the
combined solid may not be uniform, the individual cylinder and sphere components
by themselves are. Now let the position vectors Cc and Cs denote the position
vectors from the centre of mass (origin) to the centre of cylinder and to the centre
of sphere, respectively. Then clearly both the x and y components of Cc and Cs

are zero, and we can write Cc = (0, 0, Cc)
t,Cs = (0, 0, Cs)

t. The z components
are then obtained by solving

mcCc +msCs = 0 and

Cc − Cs =
h

2
+ r simultaneously,
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X

Y

Z

(A) Rectangular cuboid.

X

Y

Z

(B) Cylinder.

X

Y

Z

(C) Sphere.

X

Y

Z

(D) Cylinder with sphere.

Figure 2.1. The different geometric solids used in our model. The
local coordinate system FBi attached to each solid has its origin
coinciding with the centre of mass and its axes aligned with the
principal axes of inertia as shown.
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where mc is the mass component of the cylinder, ms the mass of sphere, h the
height of cylinder, and r the radius of sphere. These two equations appear from
the centre of mass constraint, with the distance between the cylinder and sphere
centres being constant. Solving for the centres yields

Cc =
ms

mc +ms

(
h

2
+ r

)
Cs = − mc

mc +ms

(
h

2
+ r

)
.(2.19)

Using the parallel axis theorem (2.17) to add the tensor of inertia together about
the overall centre of mass, we get

Jcyl+sph = Jcyl + Jsph +mc[(Cc ·Cc)1−CcC
t
c] +ms[(Cs ·Cs)1−CsC

t
s].

Specifically for our model, using the dimension parameters from Table 1.1, we find
the tensor of inertia to be:

• Jref = diag (1.215, 1.059, 0.330)
• Jrup = Jlup = diag (0.019, 0.019, 0.003)
• Jrud = Jlud = diag (0.028, 0.028, 0.002)
• Jrlp = Jllp = diag (0.147, 0.147, 0.028)
• Jrld = Jlld = diag (0.155, 0.155, 0.009)
• Jhd = diag (0.027, 0.027, 0.027).

Due to the high symmetry of the body segments, a total of twelve parameters are
needed to describe the tensors of inertia for our mathematical model.

2.5 Angular Velocity & Angular Momentum 2

The symbols used for angular momentum, tensor of inertia, and angular velocity
in different frames are shown in Table 2.1. The concepts of angular momentum
and angular velocity viewed in FS are well understood, but in other frames there
may be confusion as to what these quantities actually mean, e.g. in body frames
there are no rotations observed since the frame itself is attached to the body. As
such, we want to emphasise that vectors are actually obtained from FS and simply
rewritten in the appropriate frame.

We now show the equation (1.2) which relates the angular momentum, tensor
of inertia, and angular velocity, is true in all frames provided all quantities are

Frame
FS FB FC

angular momentum l M L
tensor of inertia IS J I
angular velocity ω W Ω

Table 2.1. Symbols for different quantities in different frames.
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written in the same frame. Substituting the tensor of inertia (2.9) into (2.7) we
find

(2.20) l = RJR−1ω,

so for (1.2) to be true in FS we need

(2.21) IS = RJR−1,

which is the same transformation seen in (2.12) for converting tensors between
frames, thus we know for a fact that IS is the tensor of inertia in FS, hence (1.2)
holds in FS.

Let R be the rotation matrix that transforms quantities from FB to FS, where
the transformation is given by (2.4). We can rewrite all quantities of (2.7) to FB
and get

(2.22) RM = RJR−1RW =⇒ M = JW,

which shows (1.2) holds in FB. Finally, let Rξ transform quantities from FB to
FC , then converting all quantities in (2.22) to FC shows (1.2). To summarise the
different transformations we have:

FS → FB FS → FC FC → FB
R−1l = M RξR

−1l = L R−1
ξ L = M

R−1ω = W RξR
−1ω = Ω R−1

ξ Ω = W

R−1IsR = J RξR
−1IsRR

−1
ξ = I R−1

ξ IRξ = J

FB → FS FC → FS FB → FC(2.23)

RM = l RR−1
ξ L = l RξM = L

RW = ω RR−1
ξ Ω = ω RξW = Ω

RJR−1 = Is RR−1
ξ IRξR

−1 = Is RξJR
−1
ξ = I.

From the angular velocity vector ω =

 ωx
ωy
ωz

, we can introduce the angular

velocity tensor ω̂ =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

. As the cross product is a linear trans-

formation, it can be represented as a matrix. The tensor ω̂ acts as if it were a ω×
operator. Comparing (2.5) with (2.2) we see that
ω ×RQ = ṘQ =⇒ ω× = ṘR−1, i.e.

(2.24) ω̂ = ṘRt.
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This shows that ω̂ can in fact be written in terms of rotation matrices. The
equivalent of (2.24) in FB is found with the transformation (2.23) and shows

(2.25) Ŵ = R−1ω̂R = R−1ṘRtR = RtṘ,

which can be rearranged to get

(2.26) Ṙ = RŴ.

The tensor Ŵ is a skew symmetric matrix just like ω̂, which can be proved simply
by considering RtR = 1. Differentiating both sides gives

ṘtR +RtṘ = 0

(RtṘ)t +RtṘ = 0 =⇒ Ŵ = −Ŵ
t
.

The result in (2.20) can be written as

(2.27) l = RJW = RM ,

which can alternatively be derived from substituting (2.1) and (2.2) into (2.6), and
then eliminating Ṙ with (2.26). With this approach we get

l =

∫
B

ρRQ× ṘQ dQ(2.28)

= R

∫
B

ρQ× ŴQ dQ

= R

∫
B

ρQ× (W×Q) dQ

= R

∫
B

ρ [(Q ·Q)W− (Q ·W)Q] dQ

= R

∫
B

ρ
(
|Q|21−QQt

)
dQ W

= RJW = RM as expected.

2.6 Euler Angles

A total of six independent coordinates are needed to fully describe the motion of
a rigid body. Three generalised coordinates are used to describe translation, i.e.
c in (2.1), and three for orientation, i.e. R in (2.1). There are different methods
of obtaining the rotation matrix R, but two common conventions are with Euler
angles or with unit quaternions. We will generally use quaternions in our study,
but under certain circumstances it may be useful to express the orientation in
terms of Euler angles instead.
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To describe an arbitrary orientation of a body in space, three elemental rota-
tions can be used. An elemental rotation is one of

Rx(ξ) =

 1 0 0
0 cos ξ − sin ξ
0 sin ξ cos ξ

 Ry(ξ) =

 cos ξ 0 sin ξ
0 1 0

− sin ξ 0 cos ξ


Rz(ξ) =

 cos ξ − sin ξ 0
sin ξ cos ξ 0

0 0 1

 .

Euler angles use three parameters (φ, θ, ψ) to form a sequence of these elemental
rotations. We may write

(2.29) R = Ra(φ)Rb(θ)Rc(ψ),

where each subscript denotes an axis of rotation about a coordinate axis that is yet
to be specified, but is either the x-axis, y-axis or z-axis. For the rotation sequence
to be non-degenerate, we also require a 6= b and b 6= c. With Euler angles the
ordering of the rotation axis is not unique, but can be subdivided into two groups,
classic-Euler angles and Tait-Bryan angles.1 There are six possible sequences for
each of the two groups, which are:

classic-Euler angles: RzRyRz, RyRxRy, RxRzRx, RzRxRz, RyRzRy, RxRyRx

Tait-Bryan angles: RzRyRx, RyRxRz, RxRzRy, RzRxRy, RxRyRz, RyRzRx

Classic-Euler angles have a rotation sequence of RaRbRa where the first and last
elemental rotations are about the same axis, which exploit the fact that rotations
in 3D space are not commutative (unless θ = 0). These angles can be interpreted
as precession, nutation and spin, respectively. On the other hand, Tait-Bryan
angles use all distinct axes of rotation (a convention more commonly associated
with aeronautical engineering), where the angles represent yaw, pitch, and roll, or
sometimes called heading, elevation, and bank instead.

The rotation sequence given in (2.29) has two interpretations, i.e., the three
elemental rotations can be executed extrinsically or intrinsically. Extrinsic rota-
tions are performed in order of ψ, θ, then φ, resulting in rotations corresponding
to c-b-a of the fixed spatial axes of FS. Intrinsic rotations, however, are performed
in inverted order of the Euler angles (i.e. φ, θ, then ψ), meaning the order of the
rotations are about a-b′-c′′ of the body frame FB, in which ′ and ′′ denote inter-
mediate body frames. In both instances, the final orientation of the body remains
the same. The ordering of extrinsic rotations is clear and given directly by (2.29),
but for intrinsic rotations we have

(2.30) R = Rc′′(ψ)Rb′(θ)Ra(φ).

1Classic-Euler angles are sometimes referred to as proper-Euler angles, and Tait-Bryan angles
are also known as Cardan angles or nautical angles.
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However, for the rotation to be performed about the b′-axis we require a coordinate
transformation given by Rb′(θ) = Ra(φ)Rb(θ)R

−1
a (φ), and similarly for the rotation

about the c′′-axis we need Rc′′(ψ) = Ra(φ)Rb(θ)Rc(ψ)R−1
b (θ)R−1

a (φ). This results
in (2.30) simplifying to (2.29), and hence extrinsic and intrinsic rotations represent
the same orientation in space, provided the Euler angles are given in inverted order.

Euler angles are more intuitive to visualise than quaternions, which explains
why they are often preferred when describing rotations and orientations of rigid
bodies in space. However, coordinate singularities occur when multiple solutions
exist for Euler angles that represent the same orientation in space, which pose a
problem as the Euler angles cannot be uniquely recovered. The singularities also
correspond to orientations in space where infinite rotational rates are required in
order to produce finite angular velocity and acceleration of the rigid body, but this
is not a physical singularity as there is no actual limitation on the rigid body itself.
For specific rotations where we encounter coordinate singularities, the problem may
be solved by switching to an alternate sequence of three elementary rotations. E.g.
using the ‘z-x-z’ convention instead of ‘y-z-y’ moves the singularities elsewhere
where they may not be encountered but will always exist. This is because Euler
angles do not provide a complete coordinate system for SO(3). The coordinate
singularities specifically occur when θ = 0 or π for classic-Euler angles, and θ = ±π

2
for Tait-Bryan angles.

We now demonstrate how Euler angles work in ‘z-x-z’ convention (where the
subscripts a and c denote the z-axis and b the x-axis in (2.29)) by initially aligning
the body frame FB with XYZ -axes to the spatial frame FS with xyz -axes, before
performing three elemental rotations to arrive at the actual orientation of the body.
We denote X ′Y ′Z ′ as the intermediate body axes after the first elemental rotation
and X ′′Y ′′Z ′′ after the second, while the third elemental rotation yields the final
orientation of the body and will take the standard XYZ -axes. We note that the
rotations we perform are active, i.e. we are physically rotating the body, and
not passive in which only the coordinate system changes. We show the extrinsic
sequence of elemental rotations in Figure 2.2, followed by the intrinsic sequence
in Figure 2.3. In both cases the rotations are performed in the clockwise direction
when viewed in the direction of the positive axis.

Let X =

 X
Y
Z

 be a vector viewed in FB, then that same vector x =

 x
y
z


written in FS is given by

(2.31) x = Rz(φ)Rx(θ)Rz(ψ)X = RX,

where in ‘z-x-z’ convention we have

(2.32) R =

 cφcψ − sφcθsψ −sφcθcψ − cφsψ sφsθ
cφcθsψ + sφcψ cφcθcψ − sφsψ −cφsθ

sθsψ sθcψ cθ

 .
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(A) Initial orientation. (B) After 1st rotation.

(C) After 2nd rotation. (D) Final orientation.

Figure 2.2. The sequence of extrinsic rotations.

To conserve space we abbreviated the sines and cosines as s and c and expressed
their arguments as subscripts.

We now consider the inverse transformation fromR to the Euler angles (φ, θ, ψ).
Start by letting

(2.33) R =

 R1,1 R1,2 R1,3

R2,1 R2,2 R2,3

R3,1 R3,2 R3,3

 ,
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(A) Initial orientation. (B) After 1st rotation.

(C) After 2nd rotation. (D) Final orientation.

Figure 2.3. The sequence of intrinsic rotations. In Figure 2.3C
the rotation is about the X ′-axis which is also known as the line-of-
nodes, it arises from the intersection between the xy and XY -plane.

if θ 6= 0 or π, then the third column and row of (2.32) tells us that

(2.34)

 φ
θ
ψ

 =

 Arg (−R2,3 + iR1,3)
arccosR3,3

Arg (R3,2 + iR3,1)

 .

It is important that θ ∈ [0, π], otherwise there would be two sets of Euler angles for
each rotation matrix. Now the problem arises when θ = 0 or π, where there is no
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information to be extracted from the third column or row, meaning the remaining
entries say

θ = 0

φ+ ψ = arccosR1,1 = arccosR2,2

= arcsin (−R2,1) = arcsinR2,1

or

θ = π

φ− ψ = arccosR1,1 = arccos (−R2,2)

= arcsinR2,1 = arcsinR2,1.

As we can see, there are infinitely many solutions for φ and ψ here, which is why
the coordinate singularities occur.

2.7 Quaternions

Coordinate singularities can be avoided by using a covering map from S3 → SO(3),
which results in a double cover. This means that there are precisely two unit
quaternions for every orientation in 3D space, and the two quaternions are in fact
negatives of each other. According to Euler’s rotation theorem, for every rotation
R there is a vector u for which Ru = u. This means the line au is the rotation
axis of R and we can specify the rotation in terms of an angle and axis, where
the axis is known as the Euler axis and is typically represented by a unit vec-
tor. Quaternions provide an elegant way to encode this angle-vector information.
Consider a clockwise rotation of ξ about the unit vector u = (ux, uy, uz)

t so that
u2
x + u2

y + u2
z = 1, then this can be represented with the unit quaternion

q = cos (ξ/2) + ux sin (ξ/2)i+ uy sin (ξ/2)j + uz sin (ξ/2)k,

where i = (1, 0, 0)t, j = (0, 1, 0)t and k = (0, 0, 1)t are treated as the standard unit
vectors. Associating the real part of this quaternion as a scalar q0 = cos (ξ/2) and
the imaginary parts as a vector ~q = ux sin (ξ/2)i+uy sin (ξ/2)j+uz sin (ξ/2)k, we
may write

(2.35) q =

(
cos (ξ/2)
u sin (ξ/2)

)
=

(
q0

~q

)
.

The conjugate of a quaternion is defined as q̄ =

(
q0

−~q

)
, and for the special case

of unit quaternions the conjugate is also equal to the inverse, but in general the

quaternion inverse is defined as q−1 =
q̄

|q|2
, where the denominator is the norm

square, i.e. the sum of squares of the components of q. Now let us introduce a
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second quaternion p =

(
p0

~p

)
, quaternion addition and multiplication is then

defined as

(2.36) p+ q =

(
p0 + q0

~p+ ~q

)
and pq =

(
p0q0 − ~p · ~q

p0~q + q0~p+ ~p× ~q

)
.

Due to the cross product term, quaternion multiplication is not commutative.

A quaternion with zero scalar component, e.g. p =

(
0
~p

)
is known as a pure

quaternion, which was first termed a vector by Hamilton in 1846 [1].
To rotate an arbitrary vector ~p by amount ξ about u, we write ~p as a pure

quaternion p and simply apply the operation qpq̄, where q is given in (2.35). The
result is a pure quaternion where(

0
~r

)
=

(
q0

~q

)(
0
~p

)(
q0

−~q

)
=

(
0

2(~p · ~q)~q + (q2
0 − ~q · ~q)~p− 2q0~p× ~q

)
.

This result is linear in ~p, so we can factorise it out to obtain

(2.37) ~r =
[
2(~q~q t + q0~̂q) + (q2

0 − ~q · ~q)1
]

︸ ︷︷ ︸
R

~p.

If we let ~q = (q1, q2, q3)t, we can write the rotation matrix R explicitly as

(2.38) R =

 q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

.
In general, Ebbinghaus [18] states and proves that for every quadruple
(κ, λ, µ, ν) ∈ R4 \ {0} the 3× 3 matrix

1

κ2 + λ2 + µ2 + ν2

 κ2 + λ2 − µ2 − ν2 2λµ− 2κν 2λν + 2κµ
2λµ+ 2κν κ2 − λ2 + µ2 − ν2 2µν − 2κλ
2λν − 2κµ 2µν + 2κλ κ2 − λ2 − µ2 + ν2


is properly orthogonal, and all properly orthogonal 3×3 matrices can be expressed
in this form. The result found in (2.38) is the simpler case of this for unit quater-
nions and reveals how to construct the rotation matrix R given the unit quaternion
q.

The inverse transformation from the rotation matrix R to the quaternion q is
obtained by comparing (2.33) with (2.38). Adding

q2
0 + q2

1 + q2
2 + q2

3 = 1

to the trace of R allows us to solve for q2
0 in terms of Ri,j, yielding two solutions

for q0. The remaining components of the quaternion are then obtained by taking
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differences in the skew-symmetric part of the off-diagonal entries. When we solve
for q we obtain

(2.39)


q0

q1

q2

q3

 =
1

2r


r2

R3,2 −R2,3

R1,3 −R3,1

R2,1 −R1,2

 ,

where r = ±
√

1 +R1,1 +R2,2 +R3,3. The ± sign shows that there are exactly
two opposite quaternions that correspond to the same rotation matrix R, which
explains why the double cover occurs.

In theory we could remove the double cover by simply disposing half of S3, such
as taking only the positive sign (or negative sign) of r in (2.39). The reasoning
against this is that whenever r = 0 we have q0 = 0, Rj+1,j − Rj,j+1 = 0, and the
remaining qi’s for i ∈ {1, 2, 3} need to be evaluated using limits. If qi 6= 0 for
i ∈ {1, 2, 3} we get one sided limits that are equal in magnitude but opposite in
sign for the two directions of approach, meaning a discontinuity occurs. So if we
want a continuous curve for the quaternion q on our chosen hemisphere of S3 we
need to consider both solutions of (2.39), and switch solutions whenever we cross
r = 0 in the trajectory q. The orientation of the body itself is of course always
continuous, and it is only the quaternion representation of the orientation that
may contain jumps if only half of S3 is used. We illustrate this with a simple
example of a rigid body rotating once about its x-axis. This is a steady rotation
represented by the rotation matrix Rx(t), where t runs from 0 to 2π. Applying

q3

q2

q1

q0

Π�2 Π 3Π�2 2Π
t

-1.0

-0.5

0.5

1.0
q

(A) With + sign of (2.40).

q3

q2

q1

q0

Π�2 Π 3Π�2 2Π
t

-1.0

-0.5

0.5

1.0
q

(B) With − sign of (2.40).

Figure 2.4. We see that there is a discontinuity for q1 at t = π
because q1 6= 0 when q0 = 0. The curve can be made continuous by
switching solutions whenever q0 = 0, as shown in Figure 2.5. Note
that in these diagrams q2 = q3 = 0 for all t.
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q3

q2

q1

q0

Π�2 Π 3Π�2 2Π
t

-1.0

-0.5

0.5

1.0
q

Figure 2.5. We take the + sign of (2.40) for t ∈ [0, π] and
the − sign for t ∈ (π, 2π] to produce a continuous q in S3.

(2.39) to Rx(t) we get

(2.40) q = ±
(

1

2

√
2 + 2 cos t,

sin t√
2 + 2 cos t

, 0, 0

)t
,

which we plot in Figure 2.4. The smooth q corresponding to Rx(t) is shown in
Figure 2.5.

2.8 Equations of Motion

Angular momentum in FS and FB are connected with the rotation matrix R as
seen in 2.23, and differentiating l = RM gives

(2.41) l̇ = ṘM +RṀ = 0.

The result is 0 because of the conservation of angular momentum in FS. Rear-
ranging this result gives

Ṁ = −RtṘM = −ŴM from (2.26)(2.42)

= M ×W,

which are the equations of motion. Since we know

(2.43) W = J−1M ,

we can also rewrite (2.42) as

(2.44) Ṁ = M × J−1M

for the rigid body case. The differential equation (2.44) has an analytical solution,
but because it is not in terms of elementary functions we will first look at a simpler
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case where two moments of inertia are equal. LetM = (Mx,My,Mz)
t and suppose

we have

(2.45) J = diag (Jy, Jy, Jz),

then writing out the components explicitly we see that Ṁx

Ṁy

Ṁz

 =

 (J−1
z − J−1

y )MzMy

−(J−1
z − J−1

y )MzMx

0

 .

The third equation clearly tells us that Mz is constant, and we can think of

(2.46) W = −(J−1
z − J−1

y )Mz

appearing in the first two parts as an angular velocity, which is constant because
Mz is constant. The first two differential equations are associated with the simple
harmonic oscillator, where the solutions are well known in terms of trigonometry
functions. We may write

(2.47)

 Ṁx

Ṁy

Ṁz

 =

 0 −W 0
W 0 0
0 0 0

 Mx

My

Mz

 ,

and since this is linear, it can be solved with the matrix exponential to give Mx

My

Mz

 = exp

 0 −Wt 0
Wt 0 0
0 0 0

 Mx(0)
My(0)
Mz(0)

(2.48)

=

 cos (Wt) − sin (Wt) 0
sin (Wt) cos (Wt) 0

0 0 1

 Mx(0)
My(0)
Mz(0)

 .

In vector notation this corresponds to

(2.49) M = Rz(Wt)M (0),

where M (0) is the initial condition. Using the formulas

sin (Wt+ α) = sinα cos (Wt) + cosα sin (Wt)

and sinα = cos (α− π/2),

we can simplify (2.48) to

(2.50)

 Mx

My

Mz

 =

 A0 cos (Wt+ α0)
A0 sin (Wt+ α0)

Mz(0)

 ,

where A0 =
√
M2

x(0) +M2
y (0) and α0 = Arg

(
Mx(0) + iMy(0)

)
. The solution is a

circle parallel to the MxMy-plane with radius A0 and height Mz(0).
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2.9 Rotational Stability

Expressing the equations of motion (2.44) in terms of angular velocity

W =

 Wx

Wy

Wz

, we get

(2.51)

 Ẇx

Ẇy

Ẇz

 =

 (Jy − Jz)J−1
x WyWz

(Jz − Jx)J−1
y WzWx

(Jx − Jy)J−1
z WxWy

 .

If we have a rotation about any of the principal axes of inertia, we clearly get steady
rotations about that axis since we are at an equilibrium. This means Ẇ = 0 and
only one of the components of W, say Wi, is non-zero. So from the FB form of
(1.2) we may write l = JiWi, since the angular momentum between FS and FB
are equal during steady rotations. We have Ji corresponding to the moment of
inertia of the axis of rotation, and is the (i, i)-component in the diagonal tensor of
inertia J . The rigid body B will therefore rotate uniformly about a principal axis
with period

(2.52) T =
2π

Wi

=
2πJi
l
,

where the subscript i indicates the axis of steady rotation.
Now suppose Jx > Jy > Jz and consider a rotation about the x-axis with a

small perturbation so that W =

 Wx + εx
εy
εz

, where εx, εy, and εz are small.

Then (2.51) becomes

(2.53)

 Ẇx + ε̇x
ε̇y
ε̇z

 =

 O(εyεz)
(Jz − Jx)J−1

y Wxεz + O(εxεz)
(Jx − Jy)J−1

z Wxεy + O(εxεy)

 ,

and if we neglect the second order perturbation terms then Wx + εx is constant.
Differentiating ε̇y and substituting in ε̇z, we find

ε̈y =
(Jz − Jx)(Jx − Jy)

JyJz
W2

xεy,

and similarly

ε̈z =
(Jz − Jx)(Jx − Jy)

JyJz
W2

xεz.

As W2
x > 0 the sign of

(Jz − Jx)(Jx − Jy)
JyJz
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determines the stability of the rotation, and since Jz − Jx < 0 the whole ex-
pression is negative. This corresponds to a linearly stable rotation because we
get oscillatory solutions for both εy and εz. Repeating the same calculation with

W =

 εx
εy

Wz + εz

 for rotations about the z-axis with a small perturbation, we

find the term of interest becomes

(Jy − Jz)(Jz − Jx)
JxJy

,

which again is negative because Jz − Jx < 0, and this results in stable rotations.
For rotations about the y-axis we get

(Jx − Jy)(Jy − Jz)
JzJx

,

and is now positive resulting in exponential solutions for εx and εz, which leads to
an unstable rotation because both εx and εz grow exponentially without bound.
This shows that rotations about the x-axis and z-axis with the largest and smallest
moments of inertia are stable, while rotations about the y-axis with the interme-
diate moment of inertia are unstable - a phenomena known as the intermediate
axis theorem.

Another way to examine this is to consider the conservation laws, where we
have conservation of energy and total angular momentum:

E =
1

2
WtJW =

1

2
JxW

2
x +

1

2
JyW

2
y +

1

2
JzW

2
z(2.54)

l2 = M ·M = M2
x +M2

y +M2
z .(2.55)

Rewriting the energy E in terms of angular momentum gives

(2.56) E =
1

2
M tJ−1M =

M2
x

2Jx
+
M2

y

2Jy
+
M2

z

2Jz
.

Notice how (2.55) defines a sphere with coordinate axes Mx,My and Mz, and
(2.56) an ellipsoid. The sphere in (2.55) only depends on l so we refer to it as the
L-sphere2, while the ellipsoid (2.56) depends on both the energy E and principal
moments of inertia J , and is therefore referred to as the energy-inertia ellipsoid.
This ellipsoid, or more commonly the one given by (2.54), is also known as Poinsot’s
ellipsoid, named after Louis Poinsot. As the energy E is homogeneous of degree 2
in M (or L) it is useful to introduce the scaled energy

(2.57) E = E/l2,

2We capitalise the l for aesthetic reasons, but it could be interpreted as L = |L|, which is
the same as l. In rigid bodies there is no reason not to align FC with FB , hence L = M .
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and scaled angular momentum

(2.58) M(t; E , J) = M (t; E , J)/l.

In general if the energy E, tensor of inertia J , and initial angular momentum
M(0) are known, then the entire (scaled) orbit M(t; E , J) is known in terms of
Jacobi elliptic functions, which we will soon see.

As both (2.55) and (2.56) must be satisfied by the rotating body, the orbit must
lay on the intersection of the L-sphere and energy-inertia ellipsoid, which is only
possible when J−1

x ≤ 2E ≤ J−1
z . The boundary cases are simple and correspond to

steady rotations that are stable, since the intersection only produces two singular
points on opposite ends. When

(2.59) J−1
x < 2E < J−1

y

the intersection forms two small closed curves around theMx-axis shown in Figure
2.6A, and if

(2.60) J−1
y < 2E < J−1

z

then the two closed curves are instead around the Mz-axis as shown in Figure
2.6C. As the second inequality is almost always true in the case of the diver (and
is always true when the diver is in twisting somersaulting motion) we shall write
down the formulas for the second inequality (2.60), but note that for the first
inequality (2.59) the formulas can be manipulated to work by simply interchanging
the x and z indices of J and M.

We begin by finding the curves of intersection between the two surfaces, which
is done by rearranging (2.55) for M2

z , substituting in (2.56), and obtaining the
expression in terms of M2

x and M2
y . Realising that this expression is an ellipse in

Mx and My, we can parametrise the scaled angular momentum as

Mx =

√
Jx

Jx − Jz

(
1− 2EJz

)
cos a

My =

√
Jy

Jy − Jz

(
1− 2EJz

)
sin a(2.61)

Mz = ±

√
1− 1− 2EJz

(Jy − Jz)(Jx − Jz)
S(a),

where S(a) = Jx(Jy − Jz) cos2 φ+ Jy(Jx − Jz) sin2 φ, and the ± sign of Mz shows
that there are in fact two disjoint closed curves on the sphere at opposite ends.
It is important to stress that these parametric equations only give the curves of
intersection between the two surfaces, and do not give the time parametrisation
of the actual solutions, which are much more complicated and must be written
in terms of Jacobi elliptic functions as Landau and Lifshitz [35] show. We will
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not provide this derivation but take their result, convert it to our notation for the
scaled angular momentum, and suppress the arguments shown in (2.58) to get

Mx = s

√
Jx(1− 2EJz)
Jx − Jz

cn (τ, k)

My =

√
Jy(1− 2EJz)
Jy − Jz

sn (τ, k)(2.62)

Mz = −s

√
Jz(2EJx − 1)

Jx − Jz
dn (τ, k),

where

τ = l

√
(Jy − Jz)(2EJx − 1)

JxJyJz
(t+ c)(2.63)

k =
(Jx − Jy)(1− 2EJz)
(Jy − Jz)(2EJx − 1)

and the two constants s (direction that is either±1) and c (phase shift) that appear
are chosen to satisfy the initial condition. It is important to note that the minus
sign in front of Mz appears because we assumed Jx > Jy > Jz, which is the case
of the diver, but had we instead assumed Jx < Jy < Jz then no minus sign would
appear. Now in (2.62) the only place l appears is in τ , so while the frequency of
M(t; E , J) changes as we vary l, the trajectory itself does not because M and E
are scaled with l. Due to the Jacobi elliptic functions being periodic with period
4K(k) in τ , where

(2.64) K(k) =

∫ π
2

0

du√
1− k sin2 u

is the complete elliptic integral of the first kind, we find that the period is

(2.65) T (E , J) =
4K
(
k(E , J)

)
l

√
JxJyJz

(Jy − Jz)(2EJx − 1)
.

Note that the formulas given by (2.61), (2.62), and (2.65) only hold true when
(2.60) is satisfied, and in the case of (2.59) the x and z indices of J and M need
to be swapped. Looking at the limiting case of (2.61), when E → 1/(2Jz) the
coefficient of the trigonometric functions in Mx and My begin to vanish, which
corresponds to the curves shrinking to points at the poles of the ellipsoid. When
E = 1/(2Jz) the scaled energy is maximal, the angular velocity vector is precisely
parallel to the smallest principal axis of inertia, and we have the scaled angular
momentum being (0, 0,±1)t, where the ± sign corresponds to the rotation being
either clockwise or counterclockwise. As the scaled energy E decreases, the points
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(A) E slightly > 1/(2Jx) (B) E = 1/(2Jy)

(C) E slightly < 1/(2Jz)

Figure 2.6. Intersection between the L-sphere and tri-axial
energy-inertia ellipsoid with different energy states. There are two
closed curves at opposite ends (although only one can be seen in
the figures) in Figure 2.6A and Figure 2.6C corresponding to orbits
near the stable equilibriums (±l, 0, 0)t and (0, 0,±l)t, respectively.
We show the separatrices given by (2.67) in Figure 2.6B, meaning or-
bits near the unstable equilibriums (0,±l, 0)t produce exponentially
unstable rotations.
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become two closed curves around theMz-axis shown in Figure 2.6C which grow in
size according to (2.61). The growing continues until E = 1/(2Jy), which results
in two plane curves that cross the poles of the ellipsoid on the My-axis shown
in Figure 2.6B. The curves seen in Figure 2.6B are rotated great circles, which
represent the separatrices with parametric vector equation

(2.66)

 Mx

My

Mz

 = Ry

(
± arctan

√
Jx(Jy − Jz)
Jz(Jx − Jy)

) 0
cos a
sin a

 .

For this specific case the time parametrised Jacobi elliptic functions reduce to
hyperbolic functions which can be found, e.g. in Ashbaugh, Chicone and Cushman
[2]. The solution becomes

Mx = s1

√
Jx(Jy − Jz)
Jy(Jx − Jz)

sech τ

My = s2 tanh τ(2.67)

Mz = −s1s2

√
Jz(Jx − Jy)
Jy(Jx − Jz)

sech τ,

where τ given by (2.63) simplifies to

τ =
l

Jy

√
(Jx − Jy)(Jy − Jz)

JxJz
(t+ c).

There are two signs s1 and s2 which correspond to the four trajectories resulting
from the intersection of the L-sphere and energy-inertia ellipsoid. The sign s2

determines whether we are on the stable or unstable manifold of the unstable
equilibrium points, and s1 determines which of the two branches of the manifold
we are on. As the scaled energy E continues to decrease, two closed curves form
around the Mx-axis as shown in Figure 2.6A. These curves then begin to shrink
until E = 1/(2Jx), at which point the curves reduce to two points laying on the
Mx-axis, where the steady rotations are about the maximal moment of inertia
axis. The formulas (2.61), (2.62), (2.66), and (2.67) have all been scaled using
(2.58), but the scaling can be undone if desired by multiplying with l.

By examining the nature of the paths near the poles of the ellipsoid we can
determine stability of the rotation. We see that closed paths near the Mx and
Mz axes lie entirely in a neighbourhood of the corresponding poles and thus these
rotations are stable. On the other hand, paths near theMy-axis travel all the way
to the other side before coming back, so these rotations are clearly unstable.

In the case where two moments of inertia are equal and in the form shown
in (2.45), we have the solution given by (2.50). A steady rotation is obtained if
M = (0, 0,±1)t or M = (cos a, sin a, 0)t for a ∈ R. In the first case a small
perturbation results in A0 6= 0 (but still small), so the oscillatory solution of
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(A) Stable rotation.

(B) Algebraically unstable rotation.

Figure 2.7. Intersection of the L-sphere with energy-inertia ellip-
soid when Jx = Jy > Jz. For the case Jx = Jz > Jy or Jy = Jz > Jx,
appropriately relabelling the coordinate axes can accommodate this
change and the diagram otherwise remains the same. However, if
the inequality sign is reversed, then the oblate ellipsoid appearing
in the diagram needs to be swapped for a prolate ellipsoid.
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(2.50) produces a small circle around the stable equilibrium point as shown in
Figure 2.7A. In the second case a small perturbation means W 6= 0, so again the
solutions are oscillatory but this time A0 is large, resulting in an algebraically
unstable equilibrium due to the oscillatory (and not hyperbolic) nature, which can
be seen in Figure 2.7B.

2.10 Magnus Series

The solution to a system of linear differential equations of the form

Ẋ = MX

where M is a constant matrix is

X = eMtX(0).

If M is no longer a constant but a time dependent matrix M(t) then the above
solution in general no longer holds. The approach by Magnus [38] is to solve this
initial value problem by expressing the solution in terms of the matrix exponential
of a certain matrix function Ω(t) so that

(2.68) X = eΩ(t)X(0),

where

(2.69) Ω(t) =
∞∑
n=1

Ωn(t)

is an infinite series, now called the Magnus series. Care must be taken not to
confuse the Magnus series Ω(t) with the angular velocity Ω.

The Magnus terms Ωn(t) can be obtained explicitly in multiple ways. Explicit
expressions for Ωn(t) are given by Bialynicki-Birula, Mielnik, and Plebański [7],
Chacon and Fomenko [10], and Iserles and Nørsett [28], although they are quite
complicated. The simplest way to obtain these terms is by computing them re-
cursively using a procedure given by Blanes et al. [8]. The recurrence relation
is

Ω1(t) =

∫ t

0

M(τ) dτ(2.70)

Ωn(t) =
n−1∑
j=1

Bj

j!

∫ t

0

Sjn(τ) dτ for n ≥ 2,

where Bj is the jth Bernoulli number and

(2.71) Sjn(τ) =
∑

i1+···+ij=n−1

[Ωi1(τ), [. . . [Ωij(τ),M(τ)] . . . ]]
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for ik ∈ N \ {0} with k ∈ {1, . . . , j}. The [., .] operator that appears in (2.71) is
the matrix commutator [A,B] = AB − BA. Now Sjn(τ) can also be computed
recursively using

S1
n(τ) = [Ωn−1(τ),M(τ)](2.72)

Sjn(τ) =

n−j∑
m=1

[Ωm(τ), Sj−1
n−m(τ)] for 2 ≤ j ≤ n− 1.

If we take Sjn from (2.71) and substitute it in (2.70) we get

Ωn(t) =
n−1∑
j=1

Bj

j!

∑
i1+···+ij=n−1

∫ t

0

adΩi1 (τ) adΩi2 (τ) . . . adΩij (τ) M(τ) dτ n ≥ 2,

where the commutator [Ω,M ] is written as the adjoint action adΩ(M) = [Ω,M ].
This is a sum of n-fold integrals of n− 1 nested commutators, an expression that
becomes more intricate as n increases. If M(t) belongs to some Lie algebra g, then
Ω(t) or any truncation of Ω(t) from the Magnus expansion also stays in g, thus
exp(Ω(t)) ∈ G where G denotes the Lie group whose corresponding Lie algebra is
g. We are interested in the case where g is the set of anti-symmetric 3×3 matrices
and G is the set of 3× 3 rotation matrices in SO(3).

Magnus [38] gave no convergence estimate for the Magnus series but did state
that the series converges for sufficiently small t. A sufficient condition for con-
vergence is given by Moan and Niesen [43], who state that the series converges
for

(2.73)

∫ t

0

‖M(τ)‖2 dτ < π,

where ‖.‖2 denotes the 2-norm. Writing out the first four terms of Ωn(t) explicitly
using (2.70) and (2.72), along with the formula

(2.74)

∫ α

0

∫ α

y

f(x, y) dx dy =

∫ α

0

∫ x

0

f(x, y) dy dx,
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we find that

Ω1(t) =

∫ t

0

M1 dt1

Ω2(t) =
1

2

∫ t

0

∫ t1

0

[M1,M2] dt2 dt1

Ω3(t) =
1

6

∫ t

0

∫ t1

0

∫ t2

0

(
[M1, [M2,M3]] + [M3, [M2,M1]]

)
dt3 dt2 dt1

Ω4(t) =
1

12

∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0

(
[[[M1,M2],M3],M4] + [M1, [[M2,M3],M4]]

+ [M1, [M2, [M3,M4]]] + [M2, [M3, [M4,M1]]]
)

dt4 dt3 dt2 dt1,

where we abbreviated Mi = M(ti). The fifth order term is simply too long to list
here, but can be found in Prato and Lamberti [48]. For the full derivation of the
first three terms, see Appendix D. The symmetry that appears in the first three
terms is misleading, because higher order terms require repeated use of (2.74) the
series becomes complicated quickly, and there is no actual symmetry.

In the scalar case Ω1(t) is the exact exponent that appears in the exponential,
but for higher dimensions this term cannot give the whole solution. If we insist on
having an exponential representation of the solution then the exponent needs to
be corrected, and the remaining terms of the Magnus series provide this correction
systematically, i.e. Ω or parts of it are in the Lie algebra of the Lie group of
evolution.

In the special case where the time dependent square matrix M(t) commutes
with itself, all the commutators that appear in each Ωn(t) for n ≥ 2 vanish and
the Magnus series reduces to Ω(t) = Ω1(t). As a consequence we get the following
result:

If M(t) is a time dependent square matrix where [M(t1),M(t2)] = 0 for any
pair of t1 and t2, then the general solution for a system of differential equations of
the form

(2.75) Ẋ = M(t)X

is precisely given by

(2.76) X = exp

(∫ t

t0

M(τ) dτ

)
X(0),

where X(0) is the initial condition.
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2.11 Equations of Orientation

2.11.1 In Euler Angles

The differential equation for rotations given in (2.26) can be written in terms of
Euler angles or in quaternions. We start with Euler angles and choose the z-x-z
convention, so that

R = Rz(φ)Rx(θ)Rz(ψ) and

Ṙ = R′z(φ)Rx(θ)Rz(ψ)φ̇+Rz(φ)R′x(θ)Rz(ψ)θ̇ +Rz(φ)Rx(θ)R
′
z(ψ)ψ̇.

Substituting these results in (2.25) yields the angular velocity tensor in FB, which
is an antisymmetric matrix, and the non-diagonal entries tell us that the angular
velocity is

(2.77) W =

 φ̇ sin(θ) sin(ψ) + θ̇ cos(ψ)

φ̇ sin(θ) cos(ψ)− θ̇ sin(ψ)

φ̇ cos(θ) + ψ̇

 .

As this is linear in the velocities, it can be rewritten as

(2.78) W =

 sin(θ) sin(ψ) cos(ψ) 0
cos(ψ) sin(θ) − sin(ψ) 0

cos(θ) 0 1


︸ ︷︷ ︸

A

 φ̇

θ̇

ψ̇

 .

Now A is almost everywhere invertible, except for the singularities which occur at

θ = nπ ∀n ∈ Z.

These points correspond to the coordinate singularities discussed earlier and as
they are not physical singularities, they can be removed by switching to an alter-

nate Euler convention. If we let φ̇ =

 φ̇

θ̇

ψ̇

 we may write

(2.79) φ̇ = A−1W,

where A−1 =

 csc θ sinψ csc θ cosψ 0
cosψ − sinψ 0

− cot θ sinψ − cot θ cosψ 1

 and W is a known function of

time. This gives the equations of orientation in terms of Euler angles and for a
rigid body we may use (2.43) to write (2.79) as

(2.80) φ̇ = A−1J−1M ,

where M is determined by the equations of motion (2.44).
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Consider the case where two moments of inertia are the same as in (2.45). If
we let the z-axis of FS point in the direction of the angular momentum vector and
initially align the x-axis of FS with X-axis of FB so that they coincide with the
line-of-nodes, then the initial condition of φ is

(2.81)

 φ(0)
θ(0)
ψ(0)

 =

 0
θ0

0

 .

With this setup the initial condition for the angular momentumM with magnitude
l becomes

(2.82)

 Mx(0)
My(0)
Mz(0)

 = l

 0
sin θ0

cos θ0

 ,

which simplifies the solution given in (2.50) to

(2.83)

 Mx

My

Mz

 = l

 − sin θ0 sin (Wt)
sin θ0 cos (Wt)

cos θ0

 .

The angular velocity is then

(2.84) W =

 Wx

Wy

Wz

 = l

 −J−1
y sin θ0 sin (Wt)

J−1
y sin θ0 cos (Wt)

J−1
z cos θ0

 ,

which shows that the component of the angular velocity perpendicular to the Z-
axis is of constant amplitude lJ−1

y sin θ0 and that it must rotate uniformly with

angular speed W . This means the spin ψ̇ can only be either W or −W , which in
turn implies ψ = Wt or ψ = −Wt, both of which have zero as the constant term
in order to satisfy the initial condition ψ(0) of (2.81). Plugging (2.84) into (2.79)

with ψ = Wt we find that ψ̇ is time t dependent, which is inconsistent with our
earlier statement of uniform spin so this is not a valid solution. Trying again with
ψ = −Wt we get

(2.85)

 φ̇

θ̇

ψ̇

 = l

 J−1
y sin θ0 csc θ

0
J−1
z cos θ0 − J−1

y sin θ0 cot θ

 ,

indicating there is no nutation meaning θ is constant and that both φ̇ and ψ̇ are
constants, which can be integrated to obtain linear functions of time. So ψ = −Wt
is the only valid solution and using the initial condition (2.81) to determine the
constants we find that the solution to (2.85) is

(2.86)

 φ
θ
ψ

 =

 lJ−1
y t
θ0

l(J−1
z − J−1

y ) cos (θ0)t

 .
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If we associate φ̇ as the somersault rate and ψ̇ as the twist rate like Yeadon in [66]
(though he labelled these quantities as Ω and p respectively), we get the relation

(2.87) ψ̇ = φ̇

(
Jy
Jz
− 1

)
cos θ0.

Now the way Yeadon defined the tilt α in [66] is equivalent to θ0 = π/2 − α for
us, so cos θ0 in (2.87) becomes sinα and this is equivalent to Yeadon’s (25) in [66],
which he later used in the study of [67], [68], and [72].

2.11.2 In Quaternions

We now derive the equations of orientation in quaternions. Starting with R from
(2.38) and computing Ṙ with the chain rule we can obtain the angular velocity

tensor Ŵ using (2.25), giving

Ŵ = 2

 q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3 q3q̇0 − q2q̇1 + q1q̇2 − q0q̇3 −q2q̇0 − q3q̇1 + q0q̇2 + q1q̇3

−q3q̇0 + q2q̇1 − q1q̇2 + q0q̇3 q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3 q1q̇0 − q0q̇1 − q3q̇2 + q2q̇3

q2q̇0 + q3q̇1 − q0q̇2 − q1q̇3 −q1q̇0 + q0q̇1 + q3q̇2 − q2q̇3 q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3


which is an antisymmetric matrix because in vector form q ·q = 1 =⇒ 2q · q̇ = 0,
making the diagonal entries vanish. Removing the hat operator and adding the
condition for unit quaternions we get

2


−q1q̇0 + q0q̇1 + q3q̇2 − q2q̇3

−q2q̇0 − q3q̇1 + q0q̇2 + q1q̇3

−q3q̇0 + q2q̇1 − q1q̇2 + q0q̇3

q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3

 =


Wx

Wy

Wz

0

 ,

and since this is linear in the velocities we can rewrite it as
q̇0

q̇1

q̇2

q̇3

 =
1

2


−q1 −q2 −q3 q0

q0 −q3 q2 q1

q3 q0 −q1 q2

−q2 q1 q0 q3




Wx

Wy

Wz

0

(2.88)

=
1

2


0 −Wx −Wy −Wz

Wx 0 Wz −Wy

Wy −Wz 0 Wx

Wz Wy −Wx 0




q0

q1

q2

q3

 ,

where these are the equations of orientation in terms of quaternions.
If we interpret the quaternion q as the angle-vector information with rotation

ξ about the unit vector u as done in (2.35), then the equations of orientation (3.2)
transform to(

−1
2

sin
(
ξ
2

)
0t

1
2
u cos

(
ξ
2

)
sin
(
ξ
2

)
1

)(
ξ̇
u̇

)
=

1

2

(
−Wtu sin

(
ξ
2

)
W cos

(
ξ
2

)
− Ŵu sin

(
ξ
2

) ) .
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The matrix on the LHS has determinant −1
2

sin4
(
ξ
2

)
, which is almost everywhere

invertible except when ξ = 2kπ for k ∈ Z. These situations correspond to the case
of no net rotation, and for every other ξ we can invert the matrix on the LHS to
obtain

(2.89)

(
ξ̇
u̇

)
=

(
ut

1
2

(
cot
(
ξ
2

)
(1− uut) + û

) )
W.

By converting the equations of orientation written in terms of quaternions into
the angle-vector representation we have once again introduced singularities, as
can be seen in (2.89) when ξ = 2kπ for k ∈ Z. These are mild singularities
like those encountered from using spherical polar coordinates, but are singularities
nonetheless, and their appearance bears some resemblance to those encountered
with the use of Euler angles.

Any result obtained in Euler angles can of course be converted into quaternions
and vice versa. For our standard Euler convention z-x-z, the transformation from
Euler angles to quaternions is given by

q0

q1

q2

q3

 =


cos (φ

2
)

0
0

sin (φ
2
)




cos ( θ
2
)

sin ( θ
2
)

0
0




cos (ψ
2
)

0
0

sin (ψ
2
)

(2.90)

=


cos
(
θ
2

)
cos
(
φ+ψ

2

)
sin
(
θ
2

)
cos
(
φ−ψ

2

)
sin
(
θ
2

)
sin
(
φ−ψ

2

)
cos
(
θ
2

)
sin
(
φ+ψ

2

)
 ,

where quaternion multiplication is used to yield the final result. The inverse is
then obtained by solving these equations to get

(2.91)

 φ
θ
ψ

 =


Arg

[
(q0 + iq3)(q1 + iq2)

]
2 arcsin

√
q2

1 + q2
2

Arg
[
(q0 + iq3)/(q1 + iq2)

]
 .
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We provide a diagram showing the relationship between rotation matrices, Euler
angles, and quaternions with their respective transformation formulas listed.

SO(3)
R

Euler
(φ, θ, ψ)

quaternion
q

(2.34) (2.38)

(2.90)

(2.32) (2.39)

(2.91)



CHAPTER 3

Coupled Rigid Bodies

In this chapter we move to a system of n coupled rigid bodies, where the orientation
is defined by the orientation of a reference segment. We begin by discussing angular
velocities, joint locations, and centre of mass in Chapter 3.1. We use Table 1.1 to
define the geometry of the athlete, specify how segments are connected together
with position vectors, and present the technical specifications of the general 10-
body model in Chapter 3.2. The equation for angular momentum is derived for
n coupled rigid bodies in Chapter 3.3, where in generalising (1.2) we find that
an additional term A appears during shape change, which we define this to be
the angular momentum shift. The equations of motion (2.42) and equations of
orientation (2.88) are then extended in Chapter 3.4, where in FC we find

L̇ = L×Ω equations of motion(3.1)

q̇ =
1

2

(
0 −Ωt

Ω −Ω̂

)
q equations of orientation(3.2)

hold true if the angular velocity vector Ω is modified to (3.24). Unlike the angular
momentum and angular velocity, we will not be referring again to the quaternion
in FB, and have therefore kept q as the symbol to represent the quaternion in FC .

In Chapter 3.5 we fix most shape angles to obtain a 2-body model, which has
simpler formulas for the geometry (given by the centre of mass vectors C1 and
C2), tensor of inertia I, and angular momentum shift A. The reduction is then
repeated for the 3-body model, and these models will be used later in Chapter 5
and Chapter 6.

44
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3.1 Velocities, Joints & Centre of Mass

The previous chapter provided the complete description of the dynamics of a single
rigid body, and this will now be extended for n coupled rigid bodies. The goal of
the next three sections is to derive the equation L = IΩ + A which generalises
L = IΩ to the case of a shape changing body. Let each rigid body Bi of mass
mi have its own local coordinate system denoted by FBi , for each i ∈ {1, 2, ..., n}.
The natural choice for each FBi is to position its origin at the centre of mass of
Bi, and to align its coordinate axes with the principle axes of inertia of Bi so that
the tensor of inertia Ii is diagonal. It therefore seems clear to define FB as the
frame with the origin located at the overall centre of mass of the coupled rigid
bodies and its coordinate axes pointing in the direction of the in general changing
principal axes of inertia of the system. However, as this is not an intuitive body
frame, we introduce the central-body-frame FC that has its origin positioned at
the overall centre of mass, but its coordinate axes aligned parallel to a reference
body segment FBref

for some ref ∈ {1, 2, ..., n}, which we pick to be the torso of
the diver. Lastly there is FS that moves with the overall centre of mass, but as
the directions of the coordinate axes are fixed we treat this as a spatial frame (one
under no external torque). The overall orientation of the coupled rigid body is
then determined by the difference in direction of the coordinate axes of FC and
FS.

Let Ri be the rotation matrix that describes the orientation of Bi in FS. We
now want to decompose Ri into two rotation matrices, such that

(3.3) Ri = RυRαi .

The rotation matrix Rυ specifies the orientation of Bref in FC with respect to FS
while each Rαi measures the relative orientation between Bi and Bref (note for
convenience we allow the index i to run through ref as well and simply set Rαref

to
be the identity matrix). This decomposition allows us to specify the orientation of
the system by Rυ, and the shape with the collection of Rαi . The geometric meaning
of using Rυ and Rαi instead of Ri directly means we first orient FBi to FC with
Rαi , then use Rυ to align FC with FS. Now the orientation Rυ is determined
by Bref , and a natural choice for Bref is the torso, but mathematically we could
have chosen any other body segment (e.g. the head), since no choice is superior to
any other. Different choices of Bref lead to different values of Rυ (and also Ri),
but if the athlete performs a sequence of shape changes that forms a closed curve
on shape space, i.e. the athlete starts and finishes with the same shape, then the
orientation change ∆Rυ is well-defined and cannot be different for different ways
of measuring Rυ and ∆Rυ. However, if the sequence of shape change leads to the
athlete having different initial and final shapes, i.e. a non-closed curve on shape
space, then ∆Rυ is not well-defined as it depends on the way Rυ is measured.
Thus we see there is freedom on how we decide to measure Rυ, which is known
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as the ‘gauge freedom’. We pick the torso to be the reference segment so that Rυ

is defined, allowing the gauge to be fixed. Quantities with physical meaning will
have to be gauge invariant, as it is not logical for a physical quantity to change
with the choice of Bref . Thus we should only look at the orientation change
when the athlete begins and ends with the same shape, i.e. only closed curves
on shape space are considered. Gauge theory is discussed further in Montgomery
[45] where it is applied to the Kane-Scher [31] cat, Littlejohn and Reinsch [36]
applies gauge theory in the n-body problem, and Putterman and Raz [49] uses it
to demonstrate gauge transformations for a simple model cat that can rotate itself
under zero angular momentum.

Going back to (3.3), if we take the time derivative we get

(3.4) Ṙi = ṘυRαi +RυṘαi .

Substituting this result along with (3.3) into (2.25) produces

Ŵi = (RυRαi)
t(RυRαi)

′

= Rt
αi
Rt
υ(ṘυRαi +RυṘαi)(3.5)

= Rt
αi

Ω̂υRαi + Ω̂αi ,

where we can interpret Ω̂υ as the angular velocity tensor of Bref in FC , and Ω̂αi as
the angular velocity tensor of Bi relative to Bref , also measured in FC . To extract
the angular velocity vector Wi in terms of Ωυ and Ωαi from (3.5), we use the fact
that

Ŵiv = (Rt
αi

Ω̂υRαi + Ω̂αi)v

= Rt
αi

(Ωυ ×Rαiv) + Ωαi × v
= Rt

αi
(RαiR

t
αi

Ωυ ×Rαiv) + Ωαi × v
= Rt

αi
Rαi(R

t
αi

Ωυ × v) + Ωαi × v
= (Rt

αi
Ωυ + Ωαi)× v

for any vector v, allowing us to see

(3.6) Wi = Rt
αi

Ωυ + Ωαi .

Now if we let Ci be the position vector in FC that goes from the overall centre of
mass to the centre of mass of Bi, then the relationships of a vector V in each of
the frames are

VS = RυVC VC = Ci +RαiVBi ,

where the subscripts of V denote the frame the vector is written in. The Ci’s are
not independent variables but depend on the shape and geometry of the system.
The shape of the system is determined by the collection of Rαi , and geometry
refers to how the n bodies are connected together, i.e. with a set of vectors Ej

i
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B1

B2

B3

E1
2

E2
1

E2
3

E2
3

C1

C2

C3

(A) Three bodies with Ci, Bi,
and Ei

j labelled.

B1

B2

B3

D1
2, D1

3

D2
2

D2
3

D3
3

J1,2

J2,3

C1

C2

C3

(B) Three bodies withCi,J i,j ,
and Di

j labelled.

Figure 3.1. Illustration of coupled rigid bodies with three body
segments given by Bi for i ∈ {1, 2, 3}. The position vectors Ci

measured in FC are from the overall centre of mass to the centre of
mass of Bi. The point where Bi connects with Bj in FC is given by
the joint position J i,j. The constant vectors Ei

j and Di
j are written

in FBj to determine the joint locations of the coupled rigid body.

written in FBi so that they are constant, which can then be used to determine the
set of joint locations J i,j specified in the overall body frame FC .

Consider a simple example with three bodies as shown in Figure 3.1. We have
the following relations

C1 +Rα1E
2
1 = C2 +Rα2E

1
2

C2 +Rα2E
3
2 = C3 +Rα3E

2
3,

which can be rewritten as

C2 = C1 +Rα1E
2
1 −Rα2E

1
2(3.7)

C3 = C1 +Rα1E
2
1 +Rα2(E3

2 −E1
2)−Rα3E

2
3.

Without loss of generality, we set Cref = C1 and express C2 and C3 in terms

of Cref , the shape with Rα2 and Rα3 , and geometry with the collection of Ej
i .

To enable formulas to be written concisely we introduce the constant vectors Di
j,
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which are only geometry dependent thereby allowing us to compactly write

(3.8) Ci = Cref +
n∑
j=1

RαjD
i
j,

and thus the collection of Di
j relates every Ci to Cref . In this example

D2
1 = D3

1 = E2
1 D2

2 = −E1
2

D3
2 = E3

2 −E1
2 D3

3 = −E2
3,

and every other unspecified vector it is Di
j = 0.

In general, we allow any number of joints on Bi for each of the n bodies, and
constrain each joint on Bi to connect with exactly one other adjacent body. So
if Bi is joined to Bj at the joint J i,j, then Ej

i is the constant vector in FBi that
connects the centre of mass of Bi (origin of FBi) to the point J i,j. The superscript

j in Ej
i also informs us that the adjacent body being attached to Bi at J i,j is in

fact Bj. So clearly there must be a corresponding vector Ei
j in FBj that connects

the centre of mass of Bj to J j,i = J i,j. These Ej
i vectors must always occur in

pairs, i.e. every Ej
i will have a corresponding Ei

j vector and together they create
the link between Bi and Bj at J i,j (or J j,i). Since the joint location can be thought
of as a position vector written in FC at any instantaneous moment in time, we
may write the identity

(3.9) J i,j := Ci +RαiE
j
i = Cj +RαjE

i
j.

Consider a rooted tree where each Bi is treated as a node with Bref being the
root (top most node). Let Bp(j) denote the node who is the parent of Bj in the tree,
and Bc(j,i) be the child of Bj who is either Bi or is the node with the direct line
to Bi, i.e. an ancestor of Bi. An ancestor of Bi is any node reachable by repeated
proceedings from child to parent, e.g. the root of the tree Bref is an ancestor to
every other node. We can now give the general definition of the constant vectors
Di

j using the idea of trees. We have Di
j = 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ n, unless

either j = i and j 6= ref , or if Bj is an ancestor of Bi in the tree. When this occurs
we have

(3.10) Di
j =


−Ep(j)

j if j = i and j 6= ref

E
c(j,i)
j=ref if j 6= i and j = ref

−Ep(j)
j +E

c(j,i)
j if j 6= i and j 6= ref .
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Now
n∑
i=1

miCi =
n∑
i=1

miCref +
n∑
i=1

(
mi

n∑
j=1

RαjD
i
j

)
(3.11)

= Cref

n∑
i=1

mi +
n∑
j=1

(
Rαj

n∑
i=1

miD
i
j

)
= 0,

the last line gives 0 because the overall centre of mass is located at the origin in
FC by definition, allowing us to rearrange (3.11) to yield

(3.12) Cref = −
n∑
j=1

(
RαjD̄j

)
,

where

D̄j =
1

M

n∑
i=1

miD
i
j and

n∑
i=1

mi = M.

The D̄j’s are interpreted as the weighted mean of the Di
j’s. Substituting (3.12)

back in (3.8) produces

(3.13) Ci =
n∑
j=1

Rαj(D
i
j − D̄j),

and in FS this is

(3.14) ci = RυCi = Rυ

n∑
j=1

Rαj(D
i
j − D̄j).

The time derivative of this gives the velocities of the centre of mass of Bi relative
to the overall centre of mass, and is

ċi = ṘυCi +RυĊi = Rυ(Ω̂υCi + Ċi),(3.15)

where

(3.16) Ċi =
n∑
j=1

RαjΩ̂αj(D
i
j − D̄j).

3.2 Geometry of the Model

We can associate a rooted tree to the model by imagining each body segment as
a node, and the edges being Cj −Ci, i.e. the centre of mass of Bi to the centre of
mass of Bj for connected segments. Then the tree for the model with 10 bodies
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has the following structure: Bref

Brup

Brud

Brlp

Brld

Bhd Blup

Blud

Blld

Blld

The directed edges are given by RυiE
j
i − RυjE

i
j found from (3.9), and we can

interpret this as the edge starting at the centre of mass of Bi, traverses to the joint
J i,j, which then continues on to the centre of mass of Bj. The Ej

i vector is written
in FBi and it gives the centre of mass of Bi to the joint J i,j. For our model we
define:

Erup
ref = (0,−0.2, 0.25)t Eref

rup = (0, 0, 0.2)t

Erud
rup = (0, 0,−0.15)t Erup

rud = (0, 0, 0.183)t

Erlp
ref = (0.08,−0.08,−0.3)t Eref

rlp = (0.08, 0, 0.215)t

Erld
rlp = (0, 0,−0.215)t Erlp

rld = (0, 0, 0.289)t

Ehd
ref = (0, 0, 0.3)t Eref

hd = (0, 0,−0.11)t

Elup
ref = (0, 0.2, 0.25)t Eref

lup = (0, 0, 0.2)t

Elud
lup = (0, 0,−0.15)t Elup

lud = (0, 0, 0.183)t

Ellp
ref = (0.08, 0.08,−0.3)t Eref

llp = (0.08, 0, 0.215)t

Elld
llp = (0, 0,−0.215)t Ellp

lld = (0, 0, 0.289)t.

These parameters are chosen based on the dimensions listed in Table 1.1, but
written in the SI unit metres instead of centimetres. The shoulder joints are
chosen to lay outside of both the torso and the upper arm segment by a small
amount determined by the radius of the upper arm. This is for aesthetic reasons
only to make the arm motions appear more pleasing and only makes a minute
difference in the dynamical behavior of the model. For the segments modelled
by a cylinder with sphere attached (i.e. the forearm with hand and shank with
foot segments) we need to first compute Cc with (2.19) before we can write down
Ej
i . This is needed because the displacement between the centre of mass of the

combined segment to the joint location is determined by Cc.
A schematic diagram specifying all the Ej

i vectors is shown in Figure 3.2 to

help us visualise the model. With the set of Ej
i vectors defined, we can compute

Di
j with (3.10), D̄j follows from (3.12), and this leads to Ci now determined as a

function of shape governed by (3.13).

3.3 Angular Momentum

We now write down the angular momentum li of Bi in FS with respect to the
overall centre of mass c for coupled rigid bodies. Let

(3.17) qi = ci +RiQi
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Eref
rup

Eref
rlp

Eref
hd

Eref
lup

Eref
llp

Erup
ref

Erup
rud

Erud
rup

Elup
ref

Elup
lud

Elud
lup

Erlp
ref

Erlp
rld

Erld
rlp

Ellp
lld

Ellp
lld

Elld
llp

Ehd
ref

Figure 3.2. A planar diagram of the anatomical neutral position
(identity shape), which is the shape when all relative rotation ma-
trices are the identity matrix. To help distinguish between the front
and back of the athlete, we designate the colour white to represent
the front of the torso, and black for the back of the torso. In this
diagram the athlete is facing towards us.
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be a point on Bi viewed from FS, where ci is the position vector from the overall
centre of mass to the centre of mass of Bi written in FS, Ri is the rotation matrix
that parallelises the coordinate axes of FBi with FS, and Qi is the position vector
written in FBi that denotes the same instantaneous point in space as qi. The
velocity of q is then

(3.18) q̇i = ċi + ṘiQi.

The angular momentum li of Bi in FS is given by

li =

∫
Bi

ρiqi × q̇i dQi

=

∫
Bi

ρi(ci +RiQi)× (ċi + ṘiQi) dQi

=

∫
Bi

ρi dQi(ci × ċi) + ci × Ṙi

∫
Bi

ρiQi dQi

+Ri

∫
Bi

ρiQi dQi × ċi +

∫
Bi

ρiRiQi × ṘiQi dQi

= mici × ċi +

∫
Bi

ρiRiQi × ṘiQi dQi from (2.18)

= mici × ċi +RiJiWi from (2.28).

where ρi is the density of Bi. Using the results of (3.3), (3.6), (3.14), (3.15) along
with the vector identity (2.8), we can write li in terms of Rυ, Rαi ,Ωυ and Ωαi ,
giving
(3.19)

li = Rυ

[(
RαiJiR

t
αi

+mi

[
|Ci|21−CiC

t
i

])
Ωυ + (miCi × Ċi +RαiJiΩαi)

]
.

This result now solely depends on the orientation Rυ, shape Rαi and combination
of shape and geometry that determines Ci for each i ∈ {1, 2, ..., n}. The total
angular momentum l of the system is the sum of all li, i.e.

(3.20) l =
n∑
i=1

li = Rυ

(
IΩυ +A

)
,

where the two essential terms are the tensor of inertia of the system I and the
angular momentum shift A generated by the shape change. They are defined as

I =
n∑
i=1

(
RαiJiR

t
αi

+mi

[
|Ci|21−CiC

t
i

] )
(3.21)

A =
n∑
i=1

(
miCi × Ċi +RαiJiΩαi

)
.(3.22)
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For I in (3.21) we use the parallel axis theorem (2.17) to sum up the tensors Ji of
each individual body segment. Since each Ji is written in FBi instead of FC , there
are additional rotation matrices Rαi and Rt

αi
used to first align the coordinate

axes of FBi with FC before the parallel axis theorem (2.17) is applied. The vector

A only appears during shape change, and as Ċi and Ωαi are linear in the shape
change velocities, A is therefore also linear in the velocities.

The total angular momentum relating FC and FS is given by the transformation
(2.4) where R refers here to Rυ, so comparing with (3.20) we have

(3.23) L = IΩυ +A.

Since A is linear in the velocities, it vanishes when there is no shape change.
In this situation the equation reduces back to the standard angular momentum
equation for a rigid body given by (1.2) as expected. From (3.23) we see that A
can be interpreted as internal angular momentum generated by the shape change.
Assuming that the geometry and masses of the model are constant, then I depends
solely on the collection of rotation matrices Rαi (which determines the shape),
while A depends on both Rαi and its derivatives.

3.4 Equations of Motion and Orientation

The angular velocity Ω in (2.43) no longer holds for coupled rigid bodies, hence
we rearrange (3.23) to get

(3.24) Ω = I−1(L−A),

which is the new angular velocity for coupled rigid bodies, where the subscript υ
will be omitted from now on. It is important to note that the old derivation of the
equations of motion (3.1) and equations of orientation (3.2) from Chapter 2 are
still valid here, even though we now have time dependent terms. Substituting Ω
from (3.24) into the equations of motion (3.1) and equations of orientation (3.2)
now produces the correct results. We may write the equations of motion (3.1) as

(3.25) L̇ = L× I−1(L−A),

where both I and A are now time dependent. This is the extension to Euler’s
equations of motion (2.44), which is now applicable to coupled rigid body dynamics
where shape change can occur. Montgomery in principal wrote down the equations
we derived, but they are hard to recognise, see his equation (2) in [45].

Since the nonlinear differential equations of (3.25) in general has no analytic
solution, we resort to numerical solutions and/or approximation methods; however,
under special assumptions the equations can be sufficiently simplified to obtain an
exact solution for L. Once obtained we can compute Ω using (3.24), substitute
it in the equations of orientation (3.2) and solve for q, which gives the spatial
orientation of the coupled rigid body as a function of time. The solution to q may
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be expressed as a Magnus series if desired, but usually this is unnecessary as we
will not have an exact L to begin with.

Treating an athlete as coupled rigid bodies in space allows the inertial parame-
ters such as the mass, dimensions, geometry and joint locations of body segments
to be measured. Since the shape is controllable by the athlete, all Ci’s (deter-
mined by the combination of shape and geometry) and Rαi ’s (governed by shape)
are known functions of time, and if given the initial orientation Rυ(0) of the ath-
lete, we can compute the orientation of the athlete Rυ as a function of time by
solving the equations of motion (3.1) and equations of orientation (3.2).

3.5 Segment Reduction

In order to simplify the model we reduce the segment count by fixing body seg-
ments. The general 10-body model is reduced to the 2-body model (which will be
used in Chapter 5 and Chapter 6) and the 3-body model (to be used in Chapter
6). Here, we find the new collection of centre of mass vectors Ci, tensor of inertia
I, and angular momentum shift A for the various reductions.

3.5.1 The 2-Body Model

To keep the twisting somersault simulation as simple as possible while still being
able to achieve the desired effect, it is enough to consider a 2-body model with
a single hinge joint, see Figure 3.3. With this setup the body segments are fixed
relative to the torso, except for one segment which we will choose to be the left

Bb
Bl

C
Cb

Cl
Eb

l El
b

Jb, l

Α

Figure 3.3. 2-body model with bodies Bb and Bl, centre of mass
at Cb and C l, and overall centre of mass at C. Taking Bb as the
reference segment we find that the joint J b,l given by (3.9) shows
the relation Cb +El

b = C l +Rx(α)Eb
l , where α is the shape angle.
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arm. The left elbow is fully extended at all times, and we further restrict the
shoulder joint to only allow motion along the abduction-adduction plane. This
means only a single angle α is required to fully describe the shape of the athlete,
and the shape space is simply a circle for the reduced 2-body model. The relative
rotation matrices are then:

R̃αi =

 1 0 0
0 1 0
0 0 1

 for i ∈ {ref , rlp, rld , llp, lld , hd}

R̃αrup = R̃αrud
=

 −1 0 0
0 1 0
0 0 −1


R̃αlup

= R̃αlud
=

 1 0 0
0 cosα − sinα
0 sinα cosα

 .

Besides the arms, every other segment has identity orientation corresponding to
the anatomical neutral position shown in Figure 3.2. Since divers typically take
off in the layout position, we choose to fix the right arm pointing straight up, and
allow the left arm free to move along the abduction-adduction range of motion.
We do not want any medial/lateral rotation of the arms in this model, so we fix
ξ ∈ R in

R̃αrup = R̃αrud
= Ry(π)Rz(ξ) =

 − cos ξ sin ξ 0
sin ξ cos ξ 0

0 0 −1


R̃αlup

= R̃αlud
= Rx(α)Rz(ξ) =

 cos ξ − sin ξ 0
cosα sin ξ cosα cos ξ − sinα
sinα sin ξ cos ξ sinα cosα

 .

As long as ξ is constant then the value itself is irrelevant. Due to the rotation
symmetry of the arm we will arrive at the same differential equations since both Ji
and Ci are independent of the parameter ξ. For simplicity we choose to set ξ = 0
to obtain the rotation matrices initially shown.

As there is no shape change between the segments except for the left arm, we
may group the appropriate body segments together as

gb = {ref , rup, rud , rlp, rld , llp, lld , hd}
gl = {lup, lud},

which allows us to relabel the body segments as

Bj =
⋃
i∈gj

B̃i
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for j ∈ {b, l}, where Bl denotes the entire left arm and Bb is the remainder of the
body. For this section we use tilde to refer to quantities in the original 10-body
model, and no tilde for the reduced two segment model. Writing down the masses
in our new notation we get

mb =
∑
i∈gb

m̃i = 70.979 ml =
∑
i∈gl

m̃i = 4.660(3.26)

M = mb +ml = 75.639,

where mb and ml are the masses of Bb and Bl respectively, and M is the total
mass. The position vectors for the centre of mass measured in FC are

(3.27) Cj =
1

mj

∑
i∈gj

m̃iC̃i.

Alternately, writing Cj using (3.13) shows that

Cb = −ml

M

(
El
b −RαE

b
l

)
C l =

mb

M

(
El
b −RαE

b
l

)
,(3.28)

where we will write Rα as Rx(α) from here on. The vector El
b is the vector from

the centre of mass of Bb to the left shoulder joint, and −RαE
b
l is the vector from

the shoulder joint to the centre of mass of Bl, where the rotation matrix Rα is
needed transform the vector to FC . We introduce

(3.29) V := El
b −RαE

b
l

as an intermediate vector to simplify our equations, meaning

Cb = −ml

M
V C l =

mb

M
V .(3.30)

Taking the difference of these vectors shows that

(3.31) C l −Cb =
mb +ml

M
V = V ,

and thus V is precisely the vector from the centre of mass of Bb to the centre of
mass of Bl. Using basic geometry we see that

El
b = (C̃ref −Cb) + Ẽ

lup

ref Eb
l = R−1

α (C̃ lup −C l) + Ẽ
ref

lup ,(3.32)

which gives the relationship between the geometry vectors in our original 10-body
model with the vectors in the reduced two segment model.

The tensor of inertia Ij in FC for j ∈ {b, l} is found with (3.21), and having
Cj as the new centre of mass of Bj we end up with

(3.33) Ij =
∑
i∈gj

[
R̃αi J̃iR̃

t
αi

+ m̃i

(
|C̃i −Cj|21− (C̃i −Cj)(C̃i −Cj)

t
)]
.
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Evaluating the calculation in (3.33) shows that both Ib and Il are of the form ∗ 0 0
0 ∗ ∗
0 ∗ ∗

 , where in particular Ib is a constant tensor, and Il is a function of

α. Now Bb is not fixed in FC but does rotate with the frame, which explains
why Ib is a constant tensor. To obtain a diagonal tensor Jj in FBj from Ij in FC ,
we use (2.12) to find the principal axes frame. This may be performed for Jl to
obtain a constant tensor, but it is actually more convenient to leave Ib alone in
the non principal frame as it is already constant. We proceed to write down the
total tensor of inertia I(α) and angular momentum shift A(α, α̇) for the 2-body
system using (3.21) and (3.22), respectively. Remembering that the inertia tensor
Ib is written in FC , and Jl is in FBl , we have

I(α) = (mb|Cb|2 +ml|C l|2)1− (mbCbC
t
b +mlC lC

t
l) + Ib +RαJlR

−1
α(3.34)

=
mbml

M

(
|V |2 1− V V t

)
+ Ib +RαJlR

−1
α

A(α, α̇) = mbCb × Ċb +mlC l × Ċ l +RαJlΩα(3.35)

=
mbml

M
V × V̇ +RαJlΩα,

where (3.26) and (3.29) are used to simplify the equations. Now by differentiating
(3.29) we see that

V̇ = −ṘαE
b
l = −RαΩ̂αE

b
l ,

and so

V × V̇ = V × (−RαΩ̂αE
b
l )(3.36)

= Rα(−Rt
αV × (Ωα ×Eb

l ))

= Rα((−Rt
αV ·Eb

l )Ωα + (Rt
αV ·Ωα)Eb

l ) using (2.8)

= Rα((−Rt
αV ·Eb

l )1+Eb
l (R

t
αV )t)Ωα

= Rα(Eb
lV

tRα − (V tRαE
b
l )1)Ωα.

As Ω̂α = Rt
αṘα =

 0 0 0
0 0 −α̇
0 α̇ 0

, we conclude that Ωα =

 α̇
0
0

.

Using this result for Ωα and (3.36), we may write (3.35) as

(3.37) A(α, α̇) = Rα

(mbml

M

(
Eb
lV

tRα − (V tRαE
b
l )1
)

+ Jl

) α̇
0
0

 .
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Let El
b =

 0
E2

E3

 and Eb
l =

 0
0
F

, where the form is known through explicit

computation using (3.32). It follows that V is of the form

 0
∗
∗

 from (3.29),

thus it can be shown that

mbml

M
RαE

b
lV

tRαΩα = 0,

which means (3.37) can be simplified. Furthermore, it is clear that

−mbml

M
V tRαE

b
l1+ Jl

is diagonal, so multiplying by Rα on the left leaves the first column and row
invariant (as Rα is just a rotation about the x-axis), and then multiplying by Ωα

on the right simply picks up the first column of that matrix with an extra factor
of α̇. Furthermore, since only the first entry of that column is non-zero, we can
write

(3.38) A(α, α̇) =

 Ax
0
0

 α̇,

where

(3.39) Ax = −mbml

M
V tRαE

b
l + Jlx ,

and Jlx is the (1, 1) entry of Jl. Now eliminating V with (3.29) we see that

Ax = −mbml

M
(El

b)
tRαE

b
l +

mbml

M
Eb
l ·Eb

l + Jlx(3.40)

= −mbml

M
E3F cosα +

mbml

M
E2F sinα +

mbml

M
F2 + Jlx

= −2ME3F cosα + 2ME2F sinα + 2MF2 + Jlx ,

where M =
mbml

2M
. We will now take a closer look at I(α) in (3.34). First let

(3.41)
mbml

M

(
|V |2 1− V V t

)
=

 V1,1 0 0
0 V2,2 V2,3

0 V2,3 V3,3

 ,
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so that direct substitution into (3.29) shows

V1,1 =
mbml

M

(
E2

2 + E2
3 + F2 − 2E3F cosα + 2E2F sinα

)
= 2M(E2

2 + E2
3 + F2)− 4ME3F cosα + 4ME2F sinα

V2,2 =
mbml

M

(
E3 − F cosα

)2

= 2ME2
3 − 4ME3F cosα + 2MF2 cos2 α

= M(2E2
3 + F2)− 4ME3F cosα + MF2 cos 2α

V3,3 =
mbml

M

(
E2 + F sinα

)2

= 2ME2
2 + 4ME2F sinα + 2MF2 sin2 α

= M(2E2
2 + F2) + 4ME2F sinα−MF2 cos 2α

V2,3 = −mbml

M

(
E3 − F cosα

)(
E2 + F sinα

)
= −2ME2E3 + 2ME2F cosα− 2ME3F sinα + MF2 sin 2α.

We will keep

(3.42) Ib =

 Ibxx 0 0
0 Ibyy Ibyz
0 Ibyz Ibzz


since computing it from (3.33) already yields a constant tensor, but

(3.43) Il =

 Ilxx 0 0
0 Ilyy Ilyz
0 Ilyz Ilzz


is a function of α, which is why we use

(3.44) Jl = diag (Jlx , Jly , Jlz)

written in FBl , where Jl and Il are related via (2.12), i.e. Il = RαJlR
−1
α . Abbrevi-

ating

I
+

=
1

2

(
Jly + Jlz

)
I
−

=
1

2

(
Jly − Jlz

)
we find that

Ilxx = Jlx Ilyy = I
+

+ I
−

cos 2α

Ilyz = I
−

sin 2α Ilzz = I
+
− I

−
cos 2α.
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So summing (3.41), (3.42) and (3.44) together gives (3.34), which is in the form of

(3.45) I(α) =

 Ixx 0 0
0 Iyy Iyz
0 Iyz Izz

 ,

where the components are

Ixx = −4ME3F cosα + 4ME2F sinα +
[
2M(E2

2 + E2
3 + F2) + Ibxx + Jlx

]
Iyy = −4ME3F cosα +

[
MF2 + I

−

]
cos 2α +

[
M(2E2

3 + F2) + Ibyy + I
+

]
Izz = 4ME2F sinα− [MF2 + I

−
] cos 2α +

[
M(2E2

2 + F2) + Ibzz + I
+

]
Iyz = 2ME2F cosα− 2ME3F sinα +

[
MF2 + I

−

]
sin 2α +

[
Ibyz − 2ME2E3

]
.

Numerically the corresponding values for (3.40) and (3.45) are

Ax = −0.736 cosα + 0.340 sinα + 0.758

and

Ixx = −1.472 cosα + 0.680 sinα + 19.847

Iyy = −1.472 cosα + 0.376 cos 2α + 18.761

Izz = 0.680 sinα− 0.376 cos 2α + 1.372

Iyz = 0.340 cosα− 0.736 sinα + 0.376 sin 2α + 0.340.

For completeness we include the numerical values of Cb, C l obtained with (3.27),
El
b, E

b
l obtained with (3.32), and the constant tensors of inertia Ib and Jl =

R−1
α IlRα, which are

Cb =

 0
−0.022 sinα− 0.013
0.022 cosα− 0.028

 El
b =

 0
0.213
0.462


C l =

 0
0.342 sinα + 0.200
−0.342 cosα + 0.433

 Eb
l =

 0
0

0.365


Ib =

 17.959 0 0
0 17.448 0.770
0 0.770 0.792

 Jl =

 0.176 0 0
0 0.176 0
0 0 0.005

 .

3.5.2 The 3-Body Model

The 3-body model is used in Chapter 6 to allow both arms to move simultaneously
during the dive. We derive the tensor of inertia I and angular momentum shift A
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for this model, but since the derivation is very similar to the 2-body model, not
all details will be presented. We begin by grouping the body segments as follows:

gl = {lup, lud} gb = {ref , rlp, rld , llp, lld , hd}
gr = {rup, rud},

and label the groups Bb, Bl, and Br for body (including legs and head), left arm,
and right arm, respectively. A diagram illustrating the segments, centre of mass,
and geometry vectors of the 3-body model is provided in Figure 3.4.

The shape corresponding to the angle of the left and right arm about the
abduction-adduction plane of motion is written as α = (ᾱl, ᾱr)

t, where ᾱl ∈ [0, π]
and ᾱr ∈ [π, 2π] for our shape change of interest. When the arms are pointing
straight up in the layout position we have ᾱl = ᾱr = π, but in order to position
the arms down by the side, the left arm must move counterclockwise while the
right arm moves clockwise, hence the different intervals of shape change. From a
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Figure 3.4. The 3-body model with legs not shown. Quantities
with tilde are from the general 10-body model of Chapter 3.2 and
are included to illustrate the relationship between the two models.
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symmetry perspective it may be better to measure the right arm in the counter-
clockwise direction starting from the arm by the side, which is achieved by setting
αl = ᾱl and αr = 2π − ᾱr so that both intervals are in the same range, meaning
α(αl, αr) ∈ [0, π]2. The mass of the bodies Bb, Bl, and Br are respectively

mb =
∑
i∈gb

m̃i = 66.319 ml =
∑
i∈gl

m̃i = 4.660(3.46)

mr =
∑
i∈gr

m̃i = 4.660 M = mb +ml +mr = 75.639.

We keep the notion of using tilde when referring to quantities in the original 10-
body model, and no tilde for the reduced three segment model. The position vector
from the origin of FC to the centre of mass of Bj is given by

(3.47) Cj =
1

mj

∑
i∈gj

m̃iC̃i for j ∈ {b, l, r},

and numerically evaluating gives

Cb =

 0
−0.022 sinαl + 0.022 sinαr

0.022 cosαl + 0.022 cosαr − 0.064


C l =

 0
0.342 sinαl + 0.022 sinαr + 0.200
−0.342 cosαl + 0.022 cosαr + 0.456


Cr =

 0
−0.022 sinαl − 0.342 sinαr − 0.200
0.022 cosαl − 0.342 cosαr + 0.456

 .

We can write down the Ej
i vectors in FBi using existing known quantities, and

looking at Figure 3.4 we see that

El
b = (C̃ref −Cb) + Ẽ

lup

ref Eb
l = R−1

αl
(C̃ lup −C l) + Ẽ

ref

lup(3.48)

Er
b = (C̃ref −Cb) + Ẽ

rup

ref Eb
r = R−1

αr (C̃rup −Cr) + Ẽ
ref

rup .

We introduce

V l := El
b −RαlE

b
l V r := Er

b −RαrE
b
r,(3.49)

so by traversing along the blue dashed vectors from Cb in Figure 3.4 we see that

C l = Cb + V l Cr = Cb + V r.(3.50)

The overall centre of mass of the three body system is defined to be at the origin
of FC like in (3.11), hence

(3.51) mbCb +mlC l +mrCr = 0.
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Using (3.50), (3.51), and M we find that

C l =
1

M

[
(mb +mr)V l −mrV r

]
Cb = − 1

M

[
mlV l +mrV r

]
(3.52)

Cr =
1

M

[
−mlV l + (mb +ml)V r

]
.

The tensor of inertia Ij for Bj written in FC is the same as (3.33), but with the
new Cj given by (3.47). The parallel axis theorem (2.17) can then be used to find
the overall tensor of inertia I of the system. As Ij is not constant in FC , we switch
to Jj in FBj giving

I(αl, αr) = (mb|Cb|2 +ml|C l|2 +mr|Cr|2)1(3.53)

− (mbCbC
t
b +mlC lC

t
l +mrCrC

t
r)

+ Jb +RαlJlR
−1
αl

+RαrJrR
−1
αr .

The angular momentum shift A follows from (3.22), and writing it out explicitly
gives

A(αl, αr, α̇l, α̇r) = mbCb × Ċb +mlC l × Ċ l +mrCr × Ċr(3.54)

+RαlJlΩαl +RαrJrΩαr .

The numerical values of Jj for j ∈ {b, l, r} are

Jb = diag (14.204, 13.867, 0.612)

Jl = Jr = diag (0.176, 0.176, 0.005).

Since Ci for i ∈ {b, l, r} have a zero x-component (due to the arms moving in the

abduction-adduction plane of motion) the cross product Ci × Ċi is non-zero only
in the x-component. As both angular velocities Ωαl and Ωαr are also only non-zero
in the x-component, then for the same reason we can write the x-component of A
from (3.54) as

(3.55) Ax(αl, αr, α̇l, α̇r) = Ax(αl, αr) · α̇ = Al(αl, αr)α̇l + Ar(αl, αr)α̇r,

where

Al(αl, αr) = b0 − b1 cosαl + b2 sinαl − b3 cos (αl + αr)(3.56)

Ar(αl, αr) = b0 − b1 cosαr + b2 sinαr − b3 cos (αl + αr),

and the constants are

b0 = 0.758 b1 = 0.774 b2 = 0.340

b3 = 0.038 b4 = 18.298.



CHAPTER 4

Planar Somersaults

The equations of motion (3.1) and equations of orientation (3.2) derived so far
describe the 3D motion of the athlete during flight, and are needed when analysing
the twisting somersault. However, before we do that we first want to look at the
simpler planar somersaults, i.e. somersaults without twists.

We begin by performing a planar reduction of the 3D model in Chapter 4.1,
which confines movement to lie within a 2D subspace. To ensure all motion remains
in the somersault plane, the limbs are restricted to move together so that the body
is always symmetric about the midsagittal plane, which bisects the body vertically
into equal left and right halves. This reduces the segment count of the athlete from
ten to six while also reducing the tensor of inertia I given by (3.21) and angular
momentum shift A given by (3.22) to their scalar equivalents. The resultant is a
scalar differential equation describing the orientation of the athlete.

In Chapter 4.2 we import data taken from digitised footage of an elite athlete
performing a 107B dive off the 3m springboard, use the data to determine the
angular momentum L of the dive, feed the initial orientation and shape angles
from the data into the differential equation and solve to obtain the orientation
as a function of time. Comparing the orientation of the athlete (determined by
the differential equation) to the observed results reveals a close match, providing
confidence in using the model to perform further computations.

Some additional assumptions are made in Chapter 4.3 to reduce the segment
count of the planar model from six to three. The dynamics are then computed
both with and without these extra assumptions for the digitised dive to establish
the difference is minimal. Next, we compute the geometric phase of the digitised
dive and demonstrate how it can be improved without affecting the dynamic phase
by simply reordering and reversing certain sections of the dive.

Finally, in Chapter 4.4 we propose a theoretical planar dive which we can
optimise for overall rotation achieved by the athlete.

A preliminary version of this chapter was presented at the 1st Symposium for
Researchers in Diving at Leipzig, Germany in 2013. The conference proceedings
can be found in [56], although the final optimisation procedure for maximising
overall rotation using the geometric phase differs to what is presented here.

64
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4.1 Planar Reduction

In the 10-body model there are 27 degrees-of-freedom specifying the shape of the
athlete. The translational degrees of freedom can be removed by choosing the spa-
tial frame whose origin moves with the centre of mass. As there are no external
forces in this frame, the orientation is determined by shape change under conser-
vation of angular momentum, thus leaving only degrees-of-freedom specifying the
shape of the athlete. Now, if the shape change is restricted about the somersault
axis and we enforce the limbs to move together so that the body is always sym-
metric about the midsagittal plane, then no tilt can ever be induced, thus the
somersaulting motion is strictly planar. This suggests we can perform a planar
reduction to obtain a simpler 2D model. As the limbs must move together, the
segment count can be reduced by combining left and right limb segments, resulting
with a six segment model consisting of: Bref , Bhd , and the new combined segments

Bup = Brup ∪Blup Blp = Brlp ∪Bllp

Bud = Brud ∪Blud Bld = Brld ∪Blld ,

see Figure 4.2. The planar model only requires five shape angles αi for i ∈
{up, ud , lp, ld , hd} to specify the shape of the athlete, which is significantly less
than the original 27 of the full 3D model. The angles are measured with respect
to the anatomical neutral position, which means

(4.1) Rαi = Ry(αi).

Let mi be the mass of Bi, and Ji the tensor of inertia of Bi aligned with the
principal axes of inertia. As the athlete is symmetric about the midsagittal plane
for the planar model, it is clear from construction that the centres of mass for each
of the six segments take the form

(4.2) Ci =

 Cix
0
Ciz

 .

The limbs are made up of the corresponding left and right segment of the original
10-body model. The centre of mass for each half is located at (Cix ,±Ciy , Ciz)t,
where + refers to the left half and − the right half. If we denote the left and right
half by subscript l and r, respectively, then the tensor of inertia can be computed
in terms of the original parameters (mi from Table 1.1, Ji given at the end of
Chapter 2.4, and Ci given by (3.13)) using the parallel axis theorem (2.17) to
obtain

Ji = Jl∪r = Jl + Jr +mlC
2
ly diag(1, 0, 1) +mrC

2
ry diag(1, 0, 1)(4.3)

= 2
(
Jl +mlC

2
ly diag(1, 0, 1)

)
,
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since ml = mr, Jl = Jr, and Ciy = Cly = −Cry . We now look at the components
which make up the tensor of inertia I given by (3.21) and angular momentum
shift A given by (3.22). Writing out the components of the tensor of inertia Ji as
diag(Jix , Jiy , Jiz) we have in the central-body-frame FC that

Ii = RαiJiR
t
αi

(4.4)

=

 Jix cos2 αi + Jiz sin2 αi 0 (Jiz − Jix) cosαi sinαi
0 Jiy 0

(Jiz − Jix) cosαi sinαi 0 Jiz cos2 αi + Jix sin2 αi

 ,

and starting with Ci given by (4.2) we find that

(4.5) mi

[
|Ci|21−CiC

t
i

]
= mi

 C2
iz 0 −CixCiz

0 C2
ix + C2

iz 0
−CixCiz 0 C2

ix

 .

So summing (4.4) and (4.5) over the six segments yields the tensor of inertia I,
which is in the form of

(4.6) I =

 Ixx 0 Ixz
0 Iyy 0
Ixz 0 Izz

 .

We will later see that the (2, 2) entry of I is the particular term of interest, and it
is

(4.7) Iyy =
∑
i

Jiy +mi(C
2
ix + C2

iz).

Differentiating Ci in (4.2) gives Ċi, and we can show that

(4.8) miCi × Ċi =

 0

mi(CizĊix − CixĊiz)
0

 .

For planar somersaults all angular velocities are orthogonal to the midsagittal
plane, i.e.

(4.9) Ωυ =

 0
υ̇
0

 and Ωαi =

 0
α̇i
0

 ,

which means

(4.10) RαiJiΩαi =

 0
Jiy α̇i

0

 ,
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and summing (4.8) and (4.10) over the six body segments gives the angular mo-
mentum shift

(4.11) A =

 Ax
Ay
Az

 =

 0∑
i

[
mi(CizĊix − CixĊiz) + Jiy α̇i

]
0

 .

From (3.13) and (3.16) we see that CizĊix−CixĊiz can be written in combinations
involving the joint location vector Dj

i , shape angle αi, and shape velocity α̇i.
More specifically this quantity is linear in the shape velocities, so we can write the
y-component of (4.11) as

Ay = Ay(α) · α̇,(4.12)

where α denotes the collection of shape angles (αup , . . . )
t. We emphasise that α,

α̇, Ay(α), and soon F (α) defined in (4.14) all have dimension 5 (corresponding
to the number of shape angles). Due to the form of I given by (4.6), A in (4.11),

and L we have L̇ = 0 in the equations of motion (3.25), hence L = (0, L, 0)t is
constant with L being the angular momentum at take-off. Substituting (4.6), (4.9),
and (4.11) into L given by (3.23) we find that only the y-component is non-zero,
and it is

(4.13) Ly = Iyy(α)υ̇ +Ay(α) · α̇.

Defining

(4.14) F (α) = −I−1
yy (α)Ay(α)

and dropping the subscripts we can rearrange this to get

(4.15) υ̇ = I−1(α)L+ F (α) · α̇,

which is similar to the differential equation Tong and Dullin [55] used in the study
of the equilateral pentagon at zero angular momentum. However, a key difference
is that we now want L 6= 0 for the diver to perform planar somersaults (unlike the
previous study where L = 0). The differential equation (4.15) is composed of two
parts - the dynamic phase given by I−1(α)L which is proportional to L, and the
geometric phase F (α)·α̇ which is independent of L. Solving (4.15) with the initial
condition υ(0) = υ0 gives the orientation of the athlete as a function of time.

During a dive the athlete goes through a sequence of shape changes that can be
represented by a curve on shape space, and provided the take-off and final shape of
the athlete are the same then this curve closes into a loop. While both the dynamic
phase and geometric phase depend on the path of the loop, the dynamic phase also
depends on the velocity with which the loop is traversed, whereas the geometric
phase is independent of the velocity. As such, traversing through the same loop
with different velocities yields different contributions to the dynamic phase, but
the same contribution in the geometric phase. In general, we expect the dynamic
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phase to be the dominating term for planar somersaults as it is proportional to L,
which is large, and the geometric phase to play a smaller role.

4.2 Digitised Data

Footage of a professional male athlete performing 107B (forward 3.5 somersaults
in pike) off the 3m springboard was captured at the New South Wales Institute of
Sport (NSWIS) using a 120 FPS camera. SkillSpector [57] was used to manually
digitise the footage, creating a total of 187 frames starting from the moment of
take-off and ending when the athlete’s hand first makes contact with the water
upon entry, spanning a total airborne time of 1.55 seconds. The digitisation of the
dive is shown in Figure 4.1. For convenience we shall refer to the initial frame as
the zeroth frame, and write α[j] = {αup [j], . . . } to denote the collection of shape
angles of the jth frame, where 0 ≤ j ≤ 186.

In each frame we locate the joint positions of the ankle, knee, hip, shoulder,
elbow, wrist, and ear (which serves as a decent approximation for the centre of
mass of the head). To reduce digitisation errors a discrete Fourier cosine transform
is applied to the data in Mathematica (FourierDCT type II), so by keeping the first
fifteen Fourier coefficients the data is smoothed when inverting the transformation.
We then compute the absolute orientation υi for each Bi in every frame by looking
at the appropriate joint positions, e.g. to determine υref [0] we look at the hip to
shoulder vector at the zeroth (initial) frame and compare it to the corresponding
vector obtained from the anatomical neutral position when standing upright in

Figure 4.1. Illustration of the digitised dive for frames: 0, 15,
30, 45, 60, 75, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180 and
186 from left to right. To avoid clutter, each illustrated frame is
shifted to the right by a small constant amount to provide better
visualisation of the dive sequence.
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the spatial frame. The spatial frame has a planar view of the xz-plane with y-axis
pointing into the page, so that clockwise is the positive direction of rotation. The
computation of υi for each i ∈ {ref , . . . } in each frame is provided in Appendix E,
and with this we can compute the shape angles using

(4.16) αi = υi − υref for i ∈ {up, ud , lp, ld , hd},
which are orientation independent. We plot the diver at take-off and entry into
the water in Figure 4.2, and the orientation and shape angles for the complete
dive are shown in Figure 4.3. We choose to define the orientation of the athlete
by looking at the orientation of the torso, which from the digitised dive is given
by υref . A method to ascertain validity of our model is to compute υ theoretically

Bhd Bup

Bud

Blp

Bld

Bref

(A) Take-off.

Bhd
Bup

Bud

Blp

Bld

Bref

(B) Entry.

Figure 4.2. The orientation and shape angles of the ath-
lete at take-off (Figure 4.2A) and entry into the water (Fig-
ure 4.2B) for the digitised dive. To help distinguish the ante-
rior and posterior ends, a thick line is used to depict the pos-
terior side of the torso. The values for take-off are: υref [0] =
0.648, α[0] = {−2.714,−2.595,−0.618,−0.288, 0.073}, and the
values for entry are: υref [186] = 21.573 ≡ 2.723, α[186] =
{−2.269,−2.545,−0.355,−0.503, 0.898}. The shape angles follow
the same ordering specified in (4.16).
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Figure 4.3. We have υref specifying the orientation of the athlete
given by the torso, and the collection of αi specifying the shape.

using (4.15) and compare the result to the observed υref from the data. If the
differences are small then this confirms our model is valid. Slight variation is
expected as the parameters used in the computation of (4.15) have been taken
from Table 1.1, and not the particular athlete captured in the footage. To complete
the comparison we need the initial orientation υref [0], and the shape angles α
from the digitised dataset which we can interpolate to obtain a continuous curve
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Figure 4.4. Plot of ∆υ = υ − υref as a function of time with
L = 122.756. From the moment of take-off until the diver hits the
water, the difference between the computed υ and observed υref is
< 0.331 radians throughout the dive with the maximum difference
occurring at t = 0.650. This peak difference appears isolated, which
is possibly due to digitisation errors in addition to discrepancies
between inertia parameters used in the model and the actual athlete.
At the moment of entry into the pool the difference ∆υ is 0.045
radians, demonstrating good comparison between the computed and
observed final orientation.

before substituting in (4.15). The angular momentum L is found by minimising
the integrated difference squared of the theoretically computed υ and observed
υref . The result is L = 122.756, which produces the minimum difference shown
in Figure 4.4. The maximal difference is 0.331 radians and the final difference is
0.045 radians, and therefore adds confidence in the model.

4.3 Geometric Phase and Segment Reduction

The discrete collection of α[i] is interpolated to produce a continuous curve α(t),
where round brackets are used to denote the interpolated result as a function of
time, and square brackets are reserved for the discrete frames. Since the take-off
and entry shapes are not identical as shown in Figure 4.2, the overall rotation ob-
tained depends on the choice of the reference segment. To eliminate this ambiguity
we add one additional frame where α[187] = α[0], so α(t) closes and the overall
rotation is well-defined. In α(t) we keep the interpolation order cubic (default in
Mathematica) for the digitised points, but use linear interpolation for the final two
points to close the curve. The additional frame adds 1/120th of a second to the
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airborne time and it is now

(4.17) Tair = 187/120,

as we have 188 frames at 120 FPS. Solving (4.15) with initial condition

υ(0) = υref [0] = 0.6478

we find that at the end of the dive the orientation is

(4.18) υ(Tair) = υdyn + υgeo + υref [0],

where the dynamic phase is given by

(4.19) υdyn = L

∫ Tair

0

I−1
(
α(t)

)
dt = (0.1713 + 0.0004)L = 0.1718L,

and geometric phase given by

(4.20) υgeo =

∫ Tair

0

F
(
α(t)

)
· α̇(t) dt = −0.0532 + 0.0970 = 0.0437.

As the shape velocities are discontinuous at t = 186/120 we split the region into
t ∈ [0, 186/120] and (186/120, Tair ] in order to evaluate the integrals. As L ≈ 120
in the digitised dive, this means the dynamic phase is the dominant term and
the geometric phase only plays a minute role in contributing towards the overall
rotation.

Looking at the graphs in Figure 4.3 we notice that the upper arms and forearms
move similarly relative to the torso, and the same is also observed for the thighs
and lower legs. Therefore it is not too unreasonable to assume that the elbows
and knees remain straight throughout the dive, particularly the knees during pike
somersaults. The head does not make a significant contribution to the dynamics
and can therefore also be set to zero for simplicity. Using the assumptions

αup = αud αlp = αld αhd = 0(4.21)

therefore allows us to reduce the segment count of the athlete and subsequently
reduce the shape space from some subset of a five dimensional torus to some subset
of a two dimensional torus. We say subset as there are shapes deemed impossible
or unrealistic for diving, e.g. the shape shown in Figure 4.5. In the reduced model
there are two shape angles that specify the shape of the athlete, which we denote
as αu for the arms and αl for the legs, and the constraint on shape space that we
impose is {αu, αl} ∈ [−π, 0]2 for the set of all possible shapes obtainable by the
athlete. One point to note is that the general theory is not dependent on the final
assumptions (4.21) used to reduce the segment count. While reverting to the more
complicated model is possible, these assumptions make it easier to grasp the main
principles behind the theory. The reduced model does possess slightly different
numerical values for the dynamic and geometric phases though, which are now

υdyn = 0.1705L υgeo = 0.0721,(4.22)
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Figure 4.5. An impossible shape configuration of the athlete. The
parameters are υ = 0.648 and α = {1.5,−2.5, 2,−2, 1}.

where the details are given in Appendix F. While the difference in υgeo may appear
large, it does not change the fundamental principles behind the theory.

From here on, we will use the reduced model for any further computations
unless otherwise indicated. We plot the moment of inertia for each individual
frame in Figure 4.6, and the shape curve on shape space in Figure 4.7.

As the geometric phase is related to the area enclosed by the loop C, it is
useful to convert the line integral

(4.23)

∫
C

F1(α) dαu + F2(α) dαl

(where F (α) = F1(α)i+ F2(α)j) into a double integral using Green’s theorem.
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Figure 4.6. The maximum I occurs at α[0] = α[187] with value
20.302, and the minimum occurs at α[144] with value 7.4427. The
last point is a jump because it is the additional frame we added to
allow α(t) to close on shape space.
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Figure 4.7. The black points are the collection of α[i], and the
black curve is α(t) interpolated from that collection of points. The
curve is shown along with the constant I(α) contours on shape space.

This gives

(4.24)

∫∫
A

∂F2(α)

∂αu
− ∂F1(α)

∂αl
dαudαl =

∫∫
A

B(α) dαu dαl

where we refer to B(α) as the magnetic field, and the region A is enclosed by the
loop C. We show the loop C (which in our case is α(t) when t runs from 0 to Tair)
on shape space for the digitised dive along with constant B(α) contours in Figure
4.8. As the loop C is self-intersecting we partition it into ten pieces denoted by
Ci for i ∈ {1, . . . , 10}, take the appropriate pieces that make up smaller loops, e.g.
the C1, C9 and C10 pieces that make up the red loop in Figure 4.8, compute the
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Figure 4.8. Loop C consisting of the partition pieces C1, C2, etc
shown along with constant B(α) contours.

geometric phase contribution in each loop, and finally sum up all the contributions
to get the total geometric phase.

As B(α) < 0 throughout the dive, loops orientated clockwise will provide a
positive contribution towards the geometric phase (and hence the overall rotation),
while loops oriented counterclockwise will provide a negative contribution. By
reversing the orientation of the red and yellow loops in Figure 4.8, we can improve
the overall rotation achieved by increasing the geometric phase to υgeo = 0.1186
(c.f. υgeo in (4.22)) without affecting the dynamic phase υdyn . While the effect
from the geometric phase is small, it is an improvement of 64.39% compared to
the original υgeo . As the changes needed for this improvement are neither realistic
nor practical in an actual dive, the details are included in Appendix G. It is
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worthwhile to note that by simply reordering and reversing certain parts of the
loop C, an increase in overall rotation can be achieved.

4.4 Optimisation of Planar Dive

From the digitised footage and moment of inertia plot shown in Figure 4.6 we
observe the following structure in the dive:

1. The athlete takes off with large moment of inertia.
2. The athlete quickly moves into pike position.
3. The athlete (roughly) holds pike where moment of inertia is small.
4. The athlete completes the dive with (roughly) the same take-off shape.

The shape changing velocities are shown in Figure 4.9, and from there we see that
the transition into and out of pike takes about a quarter second or slightly longer.

Let αmax correspond to the shape with maximum moment of inertia Imax , and
αmin correspond to the shape with minimum moment of inertia Imin . Then for
α = (αu, αl) ∈ [−π, 0]2 we find that

αmax = (−π,−0.3608) −→ Imax = 21.0647

αmin = (−0.3867,−π) −→ Imin = 5.2888,

and these shapes are illustrated in Figure 4.10. The figure shows that the shape
for Imax has a hip flexion, which is a consequence of the hip joint being placed at
the front of the two segments. If the joint were centred, like in the case of the
shoulders, then the body would be straight. However, this poses the problem of
the athlete’s legs lying within their torso while in pike. Besides being unphysical,
the moment of inertia may also be too small to accurately model the dive. We
see in Figure 4.2 that divers in reality do exhibit some hip flexion angle during
take-off and entry into the water, making the front (as opposed to the centre) a
more suitable location for the hip joint.

From Figure 4.3C it appears the arms do not move into position until at least
frame 50, however we see from Figure 4.9 that this is not the case. Instead, the arm
movement finishes at frame 32 and is supported by the forearm movement in Figure
4.3D. Any additional movement beyond this is undesired wobble, which happens to
be in the same direction as the arm movement, thus making it appear longer. The
structure observed in the digitised dive will serve as a guideline for the theoretical
dive that we will now propose. In the ideal dive we want the athlete to take off
with shape αmax and immediately start moving into pike position specified by
shape αmin . The athlete holds pike steadily without wobble, and then transitions
back into the original shape αmax where the dive is completed. If the limbs are
moving at maximum speed, we want |α̇u| = 11.0194 and |α̇l| = 11.1230 so the
transition from αmax to αmin and vice versa takes precisely a quarter second;
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(A) Shape changing velocity of arms.
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(B) Shape changing velocity of legs.

Figure 4.9. Following take-off, the athlete quickly moves into pike
position. The above plots of the digitised dive indicate that the
athlete’s arms and legs reached their necessary positions at frames
32 and 34, respectively. When leaving pike, the arms moved first
during frames 147 to 176, followed by the legs between frames 156
and 187. The transitions in and out of pike position are highlighted
by the black boxes. Between these two stages, we observe some
wobble with the limbs while the pike is held by the athlete.

this is represented by the curve shown in Figure 4.11. When the limbs move at
maximum speed into and out of pike, the time spent in pike is maximised but
without geometric phase.

The construction in Figure 4.12 involves slower leg movement when moving
into pike. After a quarter second the arms are in place while the legs are not,
corresponding to the shape αf . The legs require some additional time to move
into place, as shown by the black vertical curve. When moving out of pike the
arms move first (shown by the black horizontal line) to get into shape αb. This is
followed by subsequent arm movements at a slower speed while the legs move at
maximum speed in order to reach αmax a quarter second later to complete the dive.
This dive requires additional time in shape change indicated by the vertical and
horizontal black curve, which could have alternatively been spent in pike position.
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(A) Imax = 21.0647.
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(B) Imin = 5.2888.

Figure 4.10. The shapes with extremums of I in the domain
[−π, 0]2. Note there is also a saddle point located at αsad =
(−0.1376,−0.4037) which gives Isad = 14.8431, see Figure 4.7, but
this point is not important and thus the shape is not shown.

Although some extra time was needed in shape change and thus not spent in pike,
the gain is a positive contribution from the geometric phase due to a clockwise
oriented loop on shape space. As the geometric phase given by (4.24) involves
integrating B(α) over the region enclosed by the loop C, having the region contain
the absolute maximum of B(α) and its neighbourhood of large absolute values
provides a more efficient (in terms of geometric phase per arc length) contribution
towards the geometric phase. We now perform the optimisation to determine how
fast the arms and legs should move to maximise the overall rotation obtained.
This is done by finding the balance between the dynamic and geometric phase
contributions.

To be concise, we define sl ∈ [0, 1] to be a percentage of max speed for the
legs when moving into pike, and su ∈ [0, 1] to be a percentage of max speed for
the arms when moving out of pike. These potentially slower speeds will only be
used when moving from αmax to αf and αb to αmax , as the transition from αf to
αmin and αmin to αb will have the appropriate limb moving at max speed in order
to minimise the extra time needed in shape change. With this construction, the
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Figure 4.11. The black curve shows the fastest way to move into
and out of pike so that the transition time is a quarter second.
Constant I(α) contours are plotted which show at αmax the moment
of inertia is Imax and at αmin the moment of inertia is Imin .

extra time needed to move into pike is τE(sl), and when moving out of pike it is
τE(su), where we define the extra time as

(4.25) τE(s) = (1− s)/4.

In the dive shown in Figure 4.11 we have {sl, su} = {1, 1}, so both
τE(sl) = τE(su) = 0. We define

(4.26) v(sl, su) = 4 diag (su, sl)(αmin −αmax )

to correspond with the shape velocities written in vector form. Let Ci(t) for
i ∈ {1, 2, 3, 4} be the curve on shape space from αmax → αf , αf → αmin , αmin →
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Figure 4.12. In this dive we have {sl, su} = {0.9818, 0.3158}, so
the transition from αf = (−0.3867,−3.0910) to αmin is 0.0046 sec-
onds, and from αmin to αb = (−2.2717,−π) is 0.1711 seconds. The
loop is shown with constant B(α) contours, so the region enclosed
gives an idea of the geometric phase contribution we should expect.

αb, and αb → αmax in that order, then for each Ci(t) where t ∈ [0, τi] we have
τ1 = τ4 = 1/4, τ2 = τE(sl), τ3 = τE(su), and the total accumulated shape change
time is

(4.27) τΣ = 1/2 + τE(sl) + τE(su).

The curves themselves are defined by:

C1(t) = v(sl, su)t+αmax C3(t) = αmin − v(0, 1)t

C2(t) = C1(t1) + v(1, 0)t C4(t) = C3(t3)− v(sl, su)t,
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and we sometimes write Ci(t; sl, su) to explicitly denote the percentages of max
speed. The overall rotation obtained by traversing along the loop C = C1 ∪C2 ∪
C3 ∪C4 is then

(4.28) υ(sl, su) = υdyn(sl, su) + υgeo(sl, su),

where we solve (4.15) to find

υdyn(sl, su) = L
4∑
i=1

∫ τi

0

I−1
(
Ci(t; sl, su)

)
dt

υgeo(sl, su) =
4∑
i=1

∫ τi

0

F
(
Ci(t; sl, su)

)
· Ċi(t; sl, su) dt.

To judge how good the overall rotation obtained is, we compare υ(sl, su) in (4.28)
to the overall rotation

(4.29) υΣ(sl, su) = LI−1(αmin)τΣ

obtained by holding the pike for τΣ, the amount of time required to traverse along
the loop C. Although different loops defined by the choice of {sl, su} require dif-
ferent times to complete, using a fixed airborne time Tair (so that shorter loops
needing less shape changing time can spend more time τpike in pike) makes the com-
parison fair. The overall rotation obtained is compared for the constant airborne
time Tair = τΣ + τpike , so the result which minimises

(4.30) υΣ(sl, su)− υ(sl, su)

is the dive that yields maximal rotation. In the optimisation for L = 120 we find
that {sl, su} = {1, 0.8593} minimises (4.30), which is the loop shown in Figure
4.13.

When compared to the dive {sl, su} = {1, 1} shown in Figure 4.11 (where the
diver moves into and out of pike the fastest) the gain in overall rotation is 0.0189
radians or 1.0836◦. We see that in the optimal dive the limbs move at max speed
into pike, but when exiting the arms move slower, thus providing a geometric
phase contribution that exceeds the lost contribution from the dynamic phase by
1.0836◦. This behaviour is due to the take-off and pike shapes being αmax and
αmin , but had we chosen different shapes then the observed result may differ. The
dynamic phase benefits from being at (or close to) the minimum moment of inertia
Imin located at αmin , whereas the geometric phase prefers to enclose a region with
large magnitudes of the magnetic field B, where the absolute maximum is 0.3058
occurring at (−1.3148,−3.0043). In order to obtain maximal rotation there is
competition between B and I, and L also plays an important role due to its
proportionality to the dynamic phase. By making L smaller, the dynamic phase
is reduced while the geometric phase is unchanged, hence allowing the latter to
have a bigger impact on the overall rotation obtained by the diver. We find that
for L = 30, repeating the same optimisation yields {sl, su} = {0.9818, 0.3158},
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Figure 4.13. Loop with {sl, su} = {1, 0.8593} shown with con-
stant B(α) contours, and the point αb = (−0.7743,−π).

which is the loop shown in Figure 4.12. The gain in overall rotation over the
{sl, su} = {1, 1} dive shown in Figure 4.11 is an additional 0.2327 radians or
13.3354◦, which is more significant than the 1.0836◦ found for L = 120. This
result should be considered a proof of principle. Clearly the addition of 1◦ is
irrelevant, but the model is extremely simple, and one can hope that for more
realistic models similar ideas using an asymmetry of movement into and out of
pike may make a small but important contribution.



CHAPTER 5

m Somersaults with n Twists

In this chapter we are going to simulate divers performing m somersaults with
n twists. In real dives, m is typically a half integer and n an integer in for-
ward/inward dives, or a half integer in backward/reverse dives. The exception is
when m = 1

2
(a dive) or m = 1 (somersault), where n could also take the values

of 1
2

or 1. We will specifically look at forward twisting somersaults, in particular,
5132D, 5134D, 5136D, and 5138D, but the results can be extended to backward,
inward and reverse twisting somersaults by including an overall minus sign in the
rotational dynamics, reversing the horizontal direction of translational motion, or
a combination of the two. We use the 2-body model described in Chapter 3.5.1,
where the reduced tensor of inertia I and angular momentum shift A are respec-
tively found in (3.45) and (3.38).

In Chapter 5.1 we describe how forward twisting somersaults are performed
using a predetermined set of motor actions. In Chapter 5.2 we find numerical
results for twisting somersaults using realistic arm motions, where the parameters
needed to make the dive work are found numerically by brute force. In Chapter
5.3 we take the limiting case where the shape changes become impulsive, resorting
to fast-kicks that simplify the motor actions. This enables us to obtain analytical
results in the twisting somersault. The numerical and analytical approximation are
compared in Chapter 5.4, where we show how the generalisation of Montogomery’s
geometric phase formula due to Cabrera [9] links the two.

Every differential equation that needs to be solved numerically is computed
with Mathematica 8 using ‘NDSolve’ with ‘WorkingPrecision’ set to 25, as opposed
to standard machine precision which is ∼16. We use a slower but higher precision
because the athlete completes the dive with pure somersault in our simulation,
which is an unstable steady rotation. The use of the higher precision minimises
the emergence of errors due to the instability.

The results of this chapter have been published in ‘Twisting Somersault’ [16],
and provided inspiration for ‘The Diver With A Rotor’ [6], where the arms are
replaced with a rotor that can be switched on and off. This simplifies the dynamics
by making I constant andA piecewise constant, so that explicit analytical formulas
can be found.

83
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5.1 Dive Proposal

We begin by describing the dive procedure for the athlete performing m forward
somersaults with n twists, which is done by using a predetermined set of motor
actions. We use the reduced 2-body model described in Chapter 3.5.1 to keep the
simulation as simple as possible whilst still being able to achieve the desired effect.
The motor action is the lowering and raising of the left arm about the abduction-
adduction plane of motion as shown in Figure 5.1. The simulation consists of
five stages denoted by Sk for k ∈ {1, . . . , 5}, where the odd numbered stages are
rigid body dynamics with no shape change, and the even numbered stages are the
transition stages with shape change (i.e. the left arm moves). The procedure is as
follows:

S1 - rigid body - layout position, Figure 5.1A
S2 - transition - left arm moves down
S3 - rigid body - twist position, Figure 5.1F
S4 - transition - left arm moves up
S5 - rigid body - layout position, Figure 5.1A.

Let τk denote the time spent in stage Sk. For convenience we use a relative time
t in each individual stage that measures the time elapsed from the beginning of
Sk, and not the absolute time from the moment of take-off. A quick reminder:
The symbols denoting tensor of inertia, angular momentum, and angular veloc-
ity in the central-body-frame FC are given by I, L, and Ω, respectively, and in
the principal-axes-frame FB they are given by J , M , and W, respectively. The
angular momentum and angular velocity in either frame are always assumed to
be functions of t, but unless specifically evaluating at a certain time we will al-
ways suppress the argument. In our notation we use subscript k ∈ {1, . . . , 5} to
denote vector quantities in Sk, but when writing out the components explicitly,
e.g. L1 = (Lx, Ly, Lz)

t we use subscript {x, y, z} to distinguish the components
and omit the stage number to prevent clutter. In order to avoid confusion, we will
cover each stage separately in different subsections.

The diver uses two key shapes to perform pure and twisting somersaults, given
by the layout and twist positions, respectively. To distinguish between quantities
written in these two shapes, the superscripts s and t will be used to represent
somersault and twisting somersault. We denote the period of pure somersault as
sT , and the period of twist in the twisting somersault as tT . The tensor of inertia
I(α) given by (3.45) is a function of shape, and in the layout position we write

sI = diag (sIx,
sIy,

sIz) = I(π)(5.1)

= diag (21.3188, 20.6091, 0.9956).

During shape change the tensor of inertia I(α) is non-diagonal (because the axes
of central-body-frame FC are always aligned with the torso), so we move to the
principal-axes-frame FB where it is diagonal and denoted by J(α), see (2.12). The
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(A) α = π (B) α = 2.170 (C) α = 1.548

(D) α = 1.227 (E) α = 0.110 (F) α = 0

Figure 5.1. The athlete lowers (α : π → 0) or raises (α : 0 → π)
the left arm. A single angle α ∈ [0, π] determines the shape of the
athlete and we illustrate some examples here.

two frames can be aligned by a rotation through ξ about the x-axis. The angle
ξ given by (2.16) is shape dependent, and we plot the angle ξ as a function of α
in Figure 5.2. When the diver is in the twist position the angle ξ(0) is needed
to convert between the two frames, and since this angle is important we will for
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Figure 5.2. The difference between FB and FC is given by a rota-
tion about the x-axis by amount ξ(α) (the transformation formula
along with others is shown in (2.23)). From layout position to twist
position the shape change is α = π → 0. The critical points of ξ
occur at (0.110, 0.0409) and (2.170,−0.0465), and the roots of ξ are
at α = 1.227 and α = π. These four points correspond to shapes
shown in Figure 5.1E, Figure 5.1B, Figure 5.1D and Figure 5.1A,
respectively.

simplicity define

(5.2) P = ξ(0) = 0.0407.

This enables us to write

tJ = diag (tJx,
tJy,

tJz) = R−1
x (P)I(0)Rx(P)(5.3)

= diag (18.3745, 17.6925, 0.9679)

as the tensor of inertia in FB for the twist position.
We now describe the stages in more detail. The athlete takes off the platform or

springboard in S1 with a prescribed vertical velocity v0 and angular velocity Ω1(0)
in the layout position, see Figure 5.1A. Since the angular velocity Ω1 is about
a principal axis of inertia, this corresponds to a steady rotation with constant
angular momentum L1, and so the athlete simply somersaults without twist. The
angular momentum vector in FS is determined at take-off and remains constant
throughout the dive, so we write l = (0, l, 0)t.

The athlete performs a shape change in S2 to move into twist position, as
shown by the sequence of diagrams in Figure 5.1. The arm movement induces a
counter rotation of the rest of the body causing tilt, which initiates the twisting
somersault phase of the dive.

In S3 the athlete is in rigid body motion performing twisting somersaults. To
make the twisting somersault easier to analyse we work in FB where the tensor of
inertia tJ given by (5.3) is diagonal. The precise amount of time τ3 that the athlete
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stays in S3 plays a critical role in the entire dive, as it ensures the correct number of
twists is achieved before the athlete reverts back into pure somersaulting motion.

The athlete performs another shape change in S4 to get back into layout po-
sition, and with the correct choice of τ3 in S3 the twisting motion terminates.
Finally, in S5 the athlete is back in pure somersaulting motion and the time τ5

is determined to ensure the athlete enters the pool correctly with head-first entry
into water. In summary, we use τ3 to control the twist quantity, and τ1 + τ5 to
control the somersault quantity.

The airborne time Tair of the dive comprises the sum of the time spent in each
of the five stages, i.e.

(5.4) Tair = τ1 + τ2 + τ3 + τ4 + τ5,

where the athlete is able to control the airborne time to a certain extent by ad-
justing their vertical velocity at take-off. Suppose we are interested in divers
performing off the 10m platform, then by estimating the appropriate limits for the
take-off vertical velocity v0 we are able to find bounds so that Tmin ≤ Tair ≤ Tmax .
To get Tmin we can safely assume v0 = 0, and substituting in (1.1) gives Tmin ≈ 1.4.
The maximum v0 is more difficult to determine, so we estimate v0 in the high jump
world record instead (which is 2.45 metres set by Javier Sotomayor of Cuba on 27
July 1993 in Salamanca, Spain) and take it as the maximum for the diver. With
our model, an athlete standing in the anatomical neutral position has centre of
mass located approximately 57.66% of their natural height, so applying this per-
centage to Sotomayor (who is 1.95 metres tall) yields 1.12 metres off the ground.
Taking a rough estimate of h = 2.45− 1.12 = 1.33, where h represents the differ-
ence in height Sotomayor needs to produce in order to clear the bar successfully,
we find using standard projectile motion that v0 =

√
2gh ≈ 5.1. Plugging this in

(1.1) shows that Tmax ≈ 2, so we get the bounds

(5.5) 1.4 ≤ Tair ≤ 2.

Typically we expect Tair ≈ 1.6 as observed from past Olympic Games for the 10m
platform, but by adjusting v0 the athlete is actually able to alter the airborne time
Tair slightly, up to the bounds provided.

5.2 Numerical Simulation

We begin with the numerical simulation of the dive proposed. The equations of
motion (3.1) and equations of orientation (3.2) are non-linear, and as there are no
known analytical solutions when I and A are not constant we resort to numerical
solutions. To compute the numerics we first set the angular momentum to a
reasonable

(5.6) l = 100,
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and find the necessary parameters τk for k ∈ {1, . . . , 5} by brute force to ensure the
dive works. The computation is then repeated for every other integer l ∈ [80, 140],
and using the tabulated results we find a curve of best fit for each τk in terms of l
in order to obtain empirical formulas.

5.2.1 S1: Initiate Somersault

For simplicity we shall remove S1 altogether in the numerical simulation by setting

(5.7) τ1 = 0.

As the dynamics of S1 and S5 are the same, we concentrate on the athlete perform-
ing pure somersaults without twist in S5. Later on in the analytical approximation
using fast-kicks, we show that provided τ1 +τ5 is constant, we can distribute τ1 and
τ5 however way we like and still obtain a dive with m somersaults and n twists.

As nothing occurs in S1, the initial condition defined for S1 corresponds to the
initial condition of S2. The athlete takes off the platform or springboard vertically
in the layout position, and with our choice of FC we set

L2(0) = L1(0) = (0, 100, 0)t(5.8)

q2(0) = q1(0) = (1, 0, 0, 0)t.

5.2.2 S2: Initiate Twist

In S2 the athlete makes a transition from the layout position to twist position, see
the sequence of diagrams from Figure 5.1A to Figure 5.1F. We want the angular
velocity of the arm to be C1 (once differentiable) for the arm movement to appear
smooth. This can be achieved through the use of a cubic spline, where the velocities
at the endpoints of the time interval are zero. The shape change is then

(5.9) α2(t) =
π

τ 3
2

(τ2 − t)2 (τ2 + 2t) ,

where we select the transition time for our numerical study to be

τ2 = 0.25,(5.10)

as athletes cannot be expected to perform this arm motion any faster.
To obtain the angular momentum L2 and quaternion q2, we solve the equations

of motion (3.1) and equations of orientation (3.2) numerically by substituting α2(t)
given by (5.9) and its derivative, l given by (5.6), τ2 given by (5.10), and use the
initial conditions given by (5.8). The results are shown in Figure 5.3.
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(A) L2 = (Lx, Ly, Lz)t.
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(B) q2 = (q0, q1, q2, q3)t.

Figure 5.3. Angular momentum L2 and quaternion q2 in S2.

To obtain the kinetic energy E2 we use (2.54), and since the energy is frame
invariant we do the calculation in FC , giving

E2 =
1

2
Ωt

2I(α2)Ω2(5.11)

=
1

2

(
L2 −A(α2, α̇2)

)t
I−1(α2)

(
L2 −A(α2, α̇2)

)
.

The energy E2 is different from the rigid body case because Ω2 is given by (3.24).
Using the traditonal (2.56) instead gives

(5.12) Ẽ2 =
1

2
Lt2I

−1(α2)L2,

(A) L2 on L-sphere.
0.05 0.10 0.15 0.20 0.25

t
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400

E2

(B) E2 given by the solid curve and
Ẽ2 by the dashed curve.

Figure 5.4. The left pane shows the trajectory of L2, and the right
pane shows E2 and Ẽ2 during the shape change.
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which can be interpreted as the energy ignoring the contributions from the shape
change. Although E2 and Ẽ2 are different during shape change, they are equal at
the end points, i.e.

E1 = E2(0) = Ẽ2(0) = 242.612

E3 = E2(τ2) = Ẽ2(τ2) = 460.012(5.13)

because A(α2, α̇2) vanishes as α̇2 → 0.

5.2.3 S3: Twisting Somersault

The athlete holds twist position to remain in twisting somersaulting motion. The
initial conditions with l = 100 set in (5.6) are

L3(0) = L2(τ2) = (−97.957, 5.328,−19.393)t(5.14)

q3(0) = q2(τ2) = (0.527,−0.367, 0.499,−0.582)t.

Solving the equations of motion (3.1) and equations of orientation (3.2) numerically
gives the orbit L3 and q3, which are plotted in Figure 5.5. The intersection of
the L-sphere and energy-inertia ellipsoid is shown in Figure 5.6, where the energy-
inertia ellipsoid in S3 is different from the one in S1 because the moments of inertia,
principal axes of inertia, and energy have all changed.

The period of twist tT in the twisting somersault is determined by (2.65), so
substituting in the parameters (5.3), (5.6), and (5.13), we find

(5.15) tT = T
(
E3/l

2, tJ
)

= 0.3325.

In principle there is an analytical solution for L3 given by

(5.16) L3 = lRx(P)M(t;E3/l
2, tJ)
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(A) L3 = (Lx, Ly, Lz)t.
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(B) q3 = (q0, q1, q2, q3)t.

Figure 5.5. We only show the solution curves for n = 2 periods of
twist to avoid clutter.
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Figure 5.6. L-sphere and energy-inertia ellipsoid intersection. The
closed bold black curve is the orbit L3.

with direction s = 1 and phase shift c = 0.1638, where M(t; E , J) is defined in
(2.62). However, since the phase shift c has to be determined numerically anyways,
there is little to gain by using this analytical solution.

5.2.4 S4: Terminate Twist

The athlete now transitions back into the layout position by performing another
shape change. Because of symmetry we may set

τ4 = τ2 α4(t) = α2(τ2 − t),(5.17)

where α2(t) is given by (5.9) back in S2.
The amount of time τ3 spent in S3 needs to be just right in order for the

athlete to get back into pure somersaulting motion for S5. If the athlete executes
the shape change at the incorrect time the twisting motion will not stop because
the Lx and Lz components remain non-zero as shown in Figure 5.7A and 5.7B;
the athlete will only somersault without twist if the shape change is performed at
the right time as shown in Figure 5.7C. We find by brute force that τ3 = 0.1711
for n = 1 twist stops the twisting motion in S5, and because L3 is periodic with
time tT we can generalise the result to

τ3 = (n− 1) tT + 0.1711(5.18)

= n tT − 0.1614 for n ∈ N \ {0}.
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(A) Too early. (B) Too late. (C) Just right.

Figure 5.7. Performing the shape change in S4 after different τ3

time spent in S3.

The choice of n does not affect the initial angular momentum as L3 is periodic,
but after each twist the athlete somersaults by

(5.19) φs = 1.8448 radians,

so the orientation given by q4(0;n) will depend on the number of twists. The
initial conditions in S4 are then

L4(0) = L3(τ3) = (97.957, 5.328,−19.393)t(5.20)

q4(0;n) = q3(τ3) = pnq4(0; 1),

where q4(0;n) is computed with quaternion multiplication, see (2.36). Using (2.90)
to convert (5.19) into the quaternion equivalent gives

(5.21) p = (0.604, 0, 0.797, 0)t,

and q4(0; 1) = (−0.388,−0.642,−0.613,−0.248)t. The numerical solutions for L4

and q4(t;n) can then be found as usual by solving the equations of motion (3.1) and
equations of orientation (3.2), respectively, and we plot the results in Figure 5.8.
For n = 1 and n = 2 the initial condition can be read off Figure 5.5B by looking at
the values when t = tT and t = 2 tT , respectively. By direct comparison of Figure
5.8A and Figure 5.3A we see that

(5.22) L4(t) = diag (−1, 1, 1)L2(τ2 − t),

which we numerically checked to be accurate up to O(10−6). Since A is linear in
the shape velocity and non-zero only in the first component, we can write

(5.23) A(α4(t), α̇4(t)) = diag (−1, 1, 1)A(α2(τ2 − t), α̇2(τ2 − t)).
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(A) Initial condition L4(0) =
(97.957, 5.328,−19.393)t is inde-
pendent of n.
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(B) Initial condition q4(0; 1) =
(−0.388,−0.642,−0.613,−0.248)t.
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(C) Initial condition q4(0; 2) =
(−0.255, 0.585, 0.680,−0.362)t.
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(D) Initial condition q4(0; 3) =
(0.695,−0.065,−0.207, 0.685)t.

Figure 5.8. The solution curves for L4 and q4(t;n) for n = 1, 2, 3.

Due to the form of I−1 (which is the same as I shown in (3.45)), the −1 appearing
in the argument of diag cancels when substituting in (5.11), so we get

(5.24) E4(t) = E2(τ2 − t)

meaning the energy E4(t) is just the reverse of E2(t) shown in Figure 5.4B.

5.2.5 S5: Terminate Somersault

Due to the correct timing of the shape change in (5.18), we get a steady rotation
about the somersault axis for the athlete to complete the dive up to numerical error.
The Lx and Lz components never completely vanish in the numerical computation
though, and because this equilibrium is unstable the solution will eventually escape
from the neighbourhood of the steady rotation as shown in Figure 5.9. From the



94 5. m Somersaults with n Twists

5 10 15 20 25 30 35
t

-100

-50

50

100
L5

Lz

Ly

Lx

Figure 5.9. Eventual escape from the unstable somersaulting. The
athlete alternates between the forward and backward somersault
with a quick half-twist transition in between. The duration the
athlete remains in each motion depends on the accuracy and pertur-
bation of L5(0), and we find that with our precision (‘WorkingPreci-
sion’ set to 25 in Mathematica 8) the duration in steady somersault
before the first half-twist far exceeds and the total time of any real-
istic dive.

numerical computation the initial conditions in S5 have structure

L5(0) =
(
O(10−9), 100− O(10−11),O(10−10)

)t
q5(0;n) =

(
∗ ,O(10−11), ∗ ,O(10−12)

)t
,

where such small terms are due to numerical errors. Nevertheless, taking the
results and dropping the small terms give

L5(0) = (0, 100, 0)t q5(0;n) = pnq5(0; 1),(5.25)

where q5(0; 1) = (0.194, 0,−0.981, 0)t and p is given by (5.21). To ensure the diver
finishes the dive with head-first entry into the pool, we need to find τ5 so that

(5.26) q5(τ5;n) = (0, 0,±1, 0)t,

where there are two possible quaternions due to the double covering of quaternions
to SO(3). In the case of m somersaults with n twists, we find

τ5 = −nT tT + 1.5947 + (m− 1.5) sT(5.27)

= m sT − nT tT − 0.3476,

where

(5.28) T = 1.14339

with sT and tT given by (5.34) and (5.15), respectively. For it to be a valid dive
m and n have to be chosen so that τ5 > 0. In the case of m = 1.5 somersaults
only n = 1, 2, 3, 4 twists are valid, and we plot the results in Figure 5.10.
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(A) Solution curves for L5(t).
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(B) Solution curves for q5(t; 1).
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(C) Solution curves for q5(t; 2).
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(D) Solution curves for q5(t; 3).

Figure 5.10. The solution curves of q5(t;n) are shown for the case
of m = 1.5 somersaults with n = 1, n = 2, and n = 3 twists.
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(B) Trajectory of q.

Figure 5.11. Time evolution of the 5136D dive. The stages S2 to
S5 are separated by vertical dashed lines.
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Figure 5.12. The 5136D dive on the L-sphere. The equator is
represented by the dashed line. Three revolutions are made around
the L-sphere corresponding to the three twists.

Combining all the stages together, we show the components of L and q for a
5136D dive (forward m = 1.5 somersaults with n = 3 twists) in Figure 5.11, and
the complete trajectory of L on the L-sphere in Figure 5.12. Based on the shape
changing time of 0.25 seconds and segmental inertias chosen in the model, we were
able to obtain up to n = 4 twists. However, with different parameters (e.g. the
moments of inertia taken from an individual athlete) the n = 4 case may not be
achievable. Nevertheless, the principles and relationships derived are independent
of such particular values, which only limit the range of n.

5.2.6 Changing the Angular Momentum

So far the results for τ3 given by (5.18) and τ5 given by (5.27) have specific values
for the case l = 100. Generalising to arbitrary l they become

τ3 = n tT − Tψ τ5 = m sT − nT tT − Tφ,(5.29)

where Tψ and Tφ are functions of l, and T given by (5.28) appears to be constant.
We devise the terms ‘twist transition’ for Tψ and ‘somersault transition’ for Tφ,
as they represent the time needed to be subtracted from S3 and S5 due to the
twist and somersault obtained during the transition stages S2 and S4. The values
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(A) Twist transition.
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(B) Somersault transition.

Figure 5.13. Plot of the tabulated results for Tψ and Tφ.

for each integer l ∈ [80, 140] are found by repeating the computation in Chapter
5.2 by brute force, and we show the tabulated results in Figure 5.13. These
quantities are nearly constant as the dependence on l is small for Tφ and Tψ, so
a crude approximation is to set them equal to their mean values (specified by T̄ψ
and T̄φ, respectively) for integer l ∈ [80, 140], which in doing so we find

Tψ ≈ T̄ψ = 0.1615 Tφ ≈ T̄φ = 0.3473.(5.30)

The actual sum of Tψ + Tφ is shown in Figure 5.14, but we see that

(5.31) Tψ + Tφ ≈ T̄ψ + T̄φ = 0.5088,

so another approximation we can make is

(5.32) Tψ + Tφ ≈ τ2 + τ4 = 0.5.
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(A) Plot of Tψ + Tφ.
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(B) Zoom in of Tψ + Tφ.

Figure 5.14. The sum Tψ + Tφ evaluated directly from the tabu-
lated results shown in Figure 5.13.
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(A) The tabulated kinetic energy E3.
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(D) Tabulated E3 − 0.04619l2 fit.

Figure 5.15. As both L1 and sI are analytically known we can use
(2.56) to show E1/l

2 = 1
2
sI−1
y is constant. To obtain E3/l

2 we use the

numerically found L2(τ2), and substitute M 2(τ2) = R−1
x (P)L2(τ2)

and tJ into (2.56). We see in Figure 5.15C that E3/l
2 is nearly

constant but not quite, so enforcing a l2 fit for E3 reveals a small
difference given by ∆, which is shown in Figure 5.15D.

The analytical formula for tT given by (2.65) is precise, but sometimes a simpler
approximation that is inversely proportional to l will suffice, especially if the energy
cannot be obtained analytically to begin with (we numerically tabulate and show
the energy E3 in Figure 5.15), so forcing such a fit for tT gives

(5.33) tT ≈ 33.2218

l
.

This approximate formula is accurate to O(10−3) for any l ∈ [80, 140], which is
usually sufficient. The period of pure somersault sT in S5 is simple since it is a
steady rotation, so using (2.52) without resorting to any approximations we can
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Figure 5.16. The approximate period of twist tT in the twisting
somersault and period of pure somersault sT .

show

(5.34) sT =
2π sIy
l

=
129.490

l
.

We plot the approximate tT given by (5.33) in Figure 5.16A, and sT given by
(5.34) in Figure 5.16B. The formulas for τ3 and τ5 given by (5.29) require Tψ
and Tφ, which can be taken directly from the tabulated results for each integer
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(A) Time τ3 spent in S3.
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(B) Time τ5 spent in S5.

Figure 5.17. With m = 1.5 somersaults the number of n twists
cannot exceed 4 as that corresponds to a negative τ5, and in the case
of n = 4 twists the angular momentum l cannot exceed 124 for the
very same reason.
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τ3 tabulated Ti/analytic tT mean Ti/approximate tT
n = 1 34.2082/l − 0.1710 33.2218/l − 0.1615
n = 2 68.3680/l − 0.1800 66.4436/l − 0.1615
n = 3 102.5278/l − 0.1890 99.6654/l − 0.1615
n = 4 136.6876/l − 0.1980 132.8872/l − 0.1615

τ5 tabulated Ti/analytic tT mean Ti/approximate tT
n = 1 154.8671/l − 0.3341 156.2503/l − 0.3473
n = 2 115.8091/l − 0.3238 118.2648/l − 0.3473
n = 3 76.7511/l − 0.3135 80.2794/l − 0.3473
n = 4 37.6932/l − 0.3032 42.2940/l − 0.3473

Table 5.1. The curves listed are in the form of a/l + b with coef-
ficients a and b chosen for best fit.

l ∈ [80, 140] shown in Figure 5.13. In order to minimise any errors we may as well
also use the analytical formula for tT given by (2.65). For m = 1.5 somersaults
with arbitrary n twists, the tabulated results for τ3 and τ5 are shown in Figure
5.17. The discrete points are then fitted with a curve in the form of a/l+ b, where
the fits are given in Table 5.1 under the ‘tabulated Ti/analytic tT ’ column. For
comparison we repeat the calculation using mean T̄ψ and T̄φ given by (5.30), use
the simpler approximate formula for tT given by (5.33), and list the results under
the ‘mean Ti/approximate tT ’ column in Table 5.1. The difference between the
‘mean Ti/approximate tT ’ and ‘tabulated Ti/analytic tT ’ fitted curve is shown in
Figure 5.18.

For this dive we have τ1 = 0 set in (5.7), τ2 = τ4 = 1/4 from construction shown
in (5.10), (5.17), and τ3, τ5 given by (5.29). So we can now find the airborne time
Tair given by (5.4), using the approximation given by (5.32) we get

Tair = m sT − n(T − 1) tT − (Tψ + Tφ) + 0.5(5.35)

≈ m sT − n(T − 1) tT,

Tair
using (5.36) with

m = 1.5
using directly

tabulated τ3 and τ5

n = 1 189.4721/l 188.5473/l
n = 2 184.7085/l 183.7836/l
n = 3 179.9448/l 179.0200/l
n = 4 175.1812/l 174.2563/l

Table 5.2. The differences between the two curves are about
0.925/l, but since l is large the difference is minute.
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Figure 5.18. The plots of ‘mean Ti/approximate tT ’ minus ‘tab-
ulated Ti/analytic tT ’ fitted curves, we see that the difference is
mainly O(10−3) except for n = 4, where the difference grows to
O(10−2).

and substituting sT given by (5.34) and approximate tT given by (5.33) we produce
the nice formula

(5.36) Tair(l) =
1

l
(129.4905m− 4.7636n)

which is inversely proportional to l that links the airborne time to the number of
somersaults and twists. Alternatively, to be more precise we can use the tabulated
results for τ3 and τ5 shown in Figure 5.17 for m = 1.5 somersaults with n twists,
obtain Tair directly for each integer l ∈ [80, 140] without any fitting (as shown in
Figure 5.19), and then do an inversely proportional to l fitting afterwards. Doing
it this way leads to slightly different fitted curves highlighted in Table 5.2, but the
results do not differ by much, meaning the approximations given by (5.32) and
(5.33) were decent when used to find Tair in (5.36).

5.3 Analytical Approximation: Fast-kick Model

Suppose we have a theoretical athlete who can perform impulsive shape changes
in no time, so that τ2 = τ4 → 0+, then the angular velocity Ω given by (3.24)
becomes

(5.37) Ω(α, α̇) = −I−1(α)A(α, α̇)

during shape change, which we will refer to as a fast-kick. The reduction occurs
because α̇→∞, and since the angular momentum shift A(α, α̇) is linear in α̇, this
makes the contribution from L negligible. The equations of motion (3.25) reduce
to a system of linear differential equations where

(5.38) L̇ = I−1(α)A(α, α̇)×L,
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Figure 5.19. The tabulated results of Tair for m = 1.5 somersaults
with n twists. The bounds for Tair are found in (5.5).

and similarly, the equations of orientation (3.2) also reduce with (5.37). Both of
these differential equations can now be solved using Magnus series (see Chapter
2.10). For the one- and two-armed diver we find that only the leading term is
non-zero in the series, thus explicit analytical formulas in S2 and S4 can be ob-
tained. The pure somersault stages S1 and S5 are steady rotations and have simple
analytical solutions, which leaves only the twisting somersault stage S3. Although
an analytical solution can be obtained for distinct moments of inertia, they in-
volve non-elementary functions and are complicated (especially for the equations
of orientation (3.2)). By making the assumption that two moments of inertia are
equal we can utilise the solution provided in (2.50) for the equations of motion,
and (2.86) for the equations of orientation, meaning the entire dive can be solved
analytically in terms of elementary functions.

5.3.1 S1: Initiate Somersault

The athlete begins by pure somersaulting in layout position with angular momen-
tum l, and throughout the dive we have |Lk|2 = l2 for any k ∈ {1, . . . , 5} due to
conservation of angular momentum. The initial conditions in FC are

L1(0) = (0, l, 0)t q1(0) = (1, 0, 0, 0)t,(5.39)

and since S1 is a steady rotation they can be easily solved to give

L1 = (0, l, 0)t q1 =
(

cos (Ω1t/2), 0, sin (Ω1t/2), 0
)t
,(5.40)
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Figure 5.20. The steady rotation of L1 corresponds to the point
shown on the Ly-axis. We show the L-sphere, energy-inertia ellip-
soid, and separatrices given by the blue dashed curves.

where Ω1 = l/sIy is the angular velocity about the somersault axis. During pure
somersault the angular velocity vector Ω1 = (0,Ω1, 0)t points in the same direction
as the middle principal axis of inertia, hence Ω1 is constant and we only have a
single point on the L-sphere shown in Figure 5.20. The quaternion q1 corresponds
to a great circle on a three dimensional sphere with period 2 sT , where the period
of somersault sT is given by (5.34). The period of the great circle is twice that of
sT due to the double covering of orientations with quaternions. However, since q
and −q represent the same orientation in space, this means in reality the athlete
returns to the same orientation in space after every half period.

5.3.2 S2: Initiate Twist

After τ1 time is spent in S1 the athlete performs a fast-kick in S2 to move into
twist position, inducing a tilt of the body which we will now determine. Writing
out the components of (5.37) explicitly using I given by (3.45) and A given by
(3.38), we obtain

(5.41)

 Ωx

Ωy

Ωz

 =

 − IyyIzz−I2
yz

IxxIyyIzz−IxxI2
yz
Axα̇

0
0

 =

 −I−1
xx Axα̇

0
0

 ,
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which shows that only the first component Ωx is non-zero. Using the hat operator
denoted by ̂ , we can write

(5.42) Î−1A = Ωx

 0 0 0
0 0 1
0 −1 0


due to the cross product being a linear transformation, which can be represented
as a matrix. The only time dependent component on the RHS of (5.42) is the
scalar function Ωx, where without suppressing the arguments is Ωx

(
α(t), α̇(t)

)
.

The matrix (5.42) commutes with itself for different values of Ωx, so to solve the
reduced equations of motion (5.38) we can use the solution given by (2.76) to write

(5.43) L2 = exp

∫ t

0

Ωx

(
α(t̃), α̇(t̃)

)
dt̃

 0 0 0
0 0 1
0 −1 0

 0
l
0

 .

Performing a substitution enables us to evaluate the integral over the shape angle
α rather than time t. Although the shape α is not well-defined for t ∈ (0, τ2), it
is defined at the boundary with α(0) = π and α(τ2) = 0. As the dependence on t
is completely eliminated the effect of the fast-kick is only α dependent, so for the
fast-kick we have

X =

∫ τ2

0

Ωx

(
α(t̃), α̇(t̃)

)
dt̃ = −

∫ τ2

0

I−1
xx (α(t̃))Ax(α(t̃))α̇(t̃) dt̃(5.44)

= −
∫ α(τ2)

α(0)

I−1
xx (α)Ax(α) dα = −

∫ 0

π

I−1
xx (α)Ax(α) dα

=

∫ π

0

I−1
xx (α)Ax(α) dα.

This integral is of the form

(5.45)

∫ π

0

1

2
− a0

a1 − a2 cosα + a3 sinα
dα,

where specifically the constants are

a0 = M(E2
2 + E2

3 − F2) +
1

2
(I1xx − J2x) a2 = 4ME3F

a1 = 2M(E2
2 + E2

3 + F2) + I1xx + J2x a3 = 4ME2F.

The numerical values for these symbolic constants are found in (3.45), and evalu-
ating gives

a0 = 9.166 a1 = 19.847 a2 = 1.472 a3 = 0.680.
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The integral (5.45) can then be integrated using Weierstrass’ substitution to obtain

(5.46) X =
π

2
− 2a0√

a2
1 − a2

2 − a2
3

arctan

(√
a2

1 − a2
2 − a2

3

a3

)
= 0.1469,

where the derivation is shown in Appendix H. The change in angular momentum
as a result of the fast-kick is

(5.47) L3(0) = exp

 0 0 0
0 0 X

0 −X 0

L2(0) = Rx(−X)L2(0),

where L2(0) and L3(0) are the angular momentums before and after the fast-kick,
respectively. The equations of orientation (3.2) become

q̇2 =
1

2
Ωx

(
α(t), α̇(t)

)( R2 (π/2) 0
0 R2 (−π/2)

)
q2,(5.48)

where R2(ζ) =

(
cos ζ − sin ζ
sin ζ cos ζ

)
corresponds to the standard 2D rotation matrix.

Again, the 4× 4 matrix is constant so the solution is

q2 = exp

[
1

2

∫ t

0

Ωx

(
α(t̃), α̇(t̃)

)
dt̃

(
R2 (π/2) 0

0 R2 (−π/2)

)]
q2(0),

and after the fast-kick we have

q3(0) = exp

[
1

2
X

(
R2 (π/2) 0

0 R2 (−π/2)

)]
q2(0)(5.49)

=

(
R2 (X/2) 0

0 R2 (−X/2)

)
q2(0),

where

(5.50) q2(0) = q1(τ1) =
(

cos (Ω1τ1/2), 0, sin (Ω1τ1/2), 0
)t
.

Previously in Chapter 5.2 we set τ1 = 0 in order to run the numerical computation,
but as this simplification is not required here we will keep τ1 arbitrary.

The quaternion q3(0) in (5.49) is expressed as a transformation of the quater-
nion q2(0), but if we instead express it as a product of two quaternions then

q3(0) =


cos (Ω1τ1/2)

0
sin (Ω1τ1/2)

0


︸ ︷︷ ︸

q2(0)


cos (X/2)
sin (X/2)

0
0

 .

Using (2.38) to rewrite this in terms of rotation matrices, we have

(5.51) Rq3
(0) = Ry(Ω1τ1)Rx(X),
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which can be interpreted as the athlete somersaulting by Ω1τ1 in S1 followed by
tilting their body by X in S2. The rotation matrices are written from left to right,
as the rotations are intrinsic as explained in Chapter 2.6.

5.3.3 S3: Twisting Somersault

The athlete holds twist position in S3 to perform twisting somersaults, and due to
the asymmetry of the body we want to work in FB where the tensor of inertia tJ
given by (5.3) is diagonal. In the components we see tJx is larger than tJy by less
than 4% and tJy is over 18 times greater than tJz, so we make the assumption

(5.52) tJ = diag(tJx = tJy,
tJy,

tJz)

to reduce the solution from Jacobi elliptic functions to trigonometric functions in
the equations of motion (3.1). We have chosen to assign the two equal moments
of inertia as tJy (instead of tJx) so that it can be associated with the somersault
axis (and tJz with the twist axis). The solution to the equations of motion (3.1)
is then given by (2.50) using the initial condition M 3(0) = R−1

x (P)L3(0), where
L3(0) is given by (5.47). Evaluating gives

(5.53) M 3 = l

 − cos (P + X) sinWt
cos (P + X) cosWt
− sin (P + X)

 ,

where W given by (2.46) is

(5.54) W = −(tJ−1
z − tJ−1

y )Mz = l(tJ−1
z − tJ−1

y ) sin (P + X).

Transforming back to L3 we have

(5.55) L3 = l

 − cos (P + X) sinWt
cos P cos (P + X) cosWt+ sin P sin (P + X)
sin P cos (P + X) cosWt− cos P sin (P + X)

 ,

which is a circle with radius l cos (P + X) on the L-sphere lying on the plane normal
to the vector Rx(P)ez.

We can now compute the orientation using Euler angles as we already have
the solution given by (2.86) when tJx = tJy. However, in order to do so, we must
first setup the spatial frame so that the z-axis is pointing in the direction of the
angular momentum vector, and the x-axis is aligned with the initial X-axis of the
body frame. If we denote this spatial frame as FT , then the transformation of a
vector VS in FS to FT is given by

(5.56) VT = R−1
x (−π/2)R−1

y (Ω1τ1)VS.

We now find the Euler angles between FT and FB for the twisting somersault
phase S3. The initial condition is given by (2.81), where

(5.57) θ0 =
π

2
+ P + X.
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The angle X is generated by the fast-kick action which tilts the torso, while π/2
and P arise from switching frames and have no physical meaning. The solution to
the Euler angles are thus

φ = l tJ−1
y t θ = θ0 ψ = −Wt.(5.58)

The positive sign in the somersault rate φ̇ corresponds to a clockwise (forward)

somersault, while the negative sign in ψ̇ corresponds to a counterclockwise twist.
Ignoring the signs we have

(5.59) |ψ̇| = φ̇

(
tJy
tJz
− 1

)
sin (P + X),

which is reminiscent of (2.87) and Yeadon’s (25) in [66], although here we have
an additional contribution from P that originates from the diagonalisation of tI in
FC to tJ in FB. As ψ̇ is the twist rate, the period of twist tT is

(5.60) tT =
2π

W
=

2π

l

tJy
tJz

tJy − tJz
csc (P + X).

As the dynamics of S1 is pure somersault and S2 is a tilt, we then need n twists
in S3, hence

(5.61) τ3 = n tT =
2nπ

W
for n ∈ N,

and we can think of the case n = 0 as corresponding to the athlete performing two
consecutive fast-kicks that result in no net effect.

The rotation matrix R3 relating FS and FC in S3 is obtained by going through
two intermediate frames, which can be summarised as

(5.62) R3︸︷︷︸
FS

= Ry(Ω1τ1)Rx(−π/2)︸ ︷︷ ︸
→ FT

Rz(φ)Rx(θ)Rz(ψ)︸ ︷︷ ︸
→ FB

Rx(−P)︸ ︷︷ ︸
→FC

.

For completeness the quaternion q3 can be obtained by using (2.39) to transform
R3 into

(5.63) q3 =
1

2r


r2

−sPsθ(cν + cψ)− cP(cθ + cνcθcψ − sνsψ)
cνsψ(cθ − sP) + sν(cPsθ − sPcθcψ + cψ)
sψ(cPcν + sθ) + sν(cPcθcψ + sPsθ)

 ,

where

ν = Ω1τ1 + φ(5.64)

r = ±
√

1− sPcθ + cPsθcψ + cν(cPsθ − sPcθcψ + cψ) + sν(sPsψ − cθsψ),

and cosines and sines are abbreviated as c and s (with arguments written as
subscripts), respectively. The double cover results in two equivalent quaternions,
which as explained in Chapter 2.7 yield the same continuous rotation matrix R3.
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However, in order for q3 to be continuous on S3, we need to switch between the
two solutions whenever r crosses zero.

5.3.4 S4: Terminate Twist

The athlete finishes performing n twists after time τ3 and uses the second transition
stage to return to pure somersaulting motion. To find the initial conditions we
substitute t = τ3 from (5.61) into L3 given by (5.55) and q3 given by (5.63). The
parameters in (5.64) become

ν = l

(
τ1

sIy
+
n tT
tJy

)
r = ±2 cos (X/2) cos (ν/2),(5.65)

and by simplifying the trigonometric functions we have

L4(0) = l

 0
cos X

− sin X

 q4(0) = ±


cos (X/2) cos (ν/2)
sin (X/2) cos (ν/2)
cos (X/2) sin (ν/2)
− sin (X/2) sin (ν/2)

 ,(5.66)

noting that for convenience, we will take only the positive result for the quaternion
q4(0).

The tilt generated from the impulsive shape change α: 0→ π is in the opposite
direction to the one found in S2 for α: π → 0. Hence X→ −X in (5.47) and (5.49),
which gives

L5(0) = Rx(X)L4(0) =

 0
l
0

(5.67)

q5(0) =

(
R2 (−X/2) 0

0 R2 (X/2)

)
q4(0) =


cos (ν/2)

0
sin (ν/2)

0

 ,(5.68)

where ν is given by (5.65).

5.3.5 S5: Terminate Somersault

Prior to completing the dive, the athlete must return to pure somersaulting motion.
We now want to find τ5 to ensure the athlete enters the pool correctly with head-
first entry. Upon comparison between L5(0) and (2.35), we discover the athlete
has somersaulted by ν. With the inclusion of the pure somersault phase in S5 we
set

ν +
l
sIy
τ5 = 2mπ,
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(A) Twisting somersault time.
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(B) Pure somersault time.

Figure 5.21. Time in τ3 and τ1 + τ5 for m = 1.5 somersaults
with n twists. The lines become dashed once Tair given by (5.70)
moves outside the interval [Tmin , Tmax ] found in (5.5). Each curve
shown here is higher than its corresponding numerical simulation
counterpart in Figure 5.17 due to the absence of Tψ and Tφ terms.

where m is a half-integer for a successful dive. Rearranging and using sT given by
(5.34) we have

(5.69) τ1 + τ5 = m sT − n tT
sIy
tJy
,

where care must be taken in choosing m and n to ensure that τ1 + τ5 ≥ 0. In the
case of m = 1.5 somersaults with n twists the limit is four twists, and evaluating
(5.69) for τ1 + τ5 and (5.61) for τ3 produces the curves shown in Figure 5.21. The
airborne time of the dive is given by (5.4), but since τ2, τ4 → 0 in the fast-kick
model we have

(5.70) Tair = τ1 + τ3 + τ5.

The total time spent in pure somersault is given by τ1 + τ5, where τ3 is the time
spent in twisting somersault. It does not matter how τ1 and τ5 are distributed as
long as the sum is the same, so we can set τ1 = τ5 to distribute the somersault
time evenly. Substituting in the results of (5.61) and (5.69) for Tair gives

(5.71) Tair = m sT − n
(
sIy
tJy
− 1

)
tT,

and using the periods given by (5.34) and (5.60) we get

(5.72) Tair(l) =
2π

l

(
m sIy + n

tJz (tJy − sIy)
tJy − tJz

csc (P + X)

)
.
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Figure 5.22. Relationship between the airborne time Tair and an-
gular momentum l given by (5.72) in the case of m = 1.5 somersaults
with n = {0, 1, 2, 3, 4} twists. The bounds for airborne time Tair are
shown in (5.5). The curves shown here are slightly lower than those
shown in Figure 5.19 for the numerical simulation.

This reveals the relationship between the angular momentum and airborne time
required for a successful dive, allowing us to express Tair as a function of l and
plot the graph for m = 1.5 somersaults with n twists, as seen in Figure 5.22.

We now summarise the numerical simulation and analytical approximation
using the fast-kick model in Table 5.3. It is important to note that tT is different
in both models, unlike sT which remains the same. This is due to the different
shape change mechanics producing different orbits on the L-sphere, as well as
setting two moments of inertia equal in the fast-kick model. Hence we use left
subscript n and f to distinguish the two models and depict the difference between
the periods in Figure 5.23.

Substituting the numerical values listed in (5.1), (5.2), (5.3), and (5.46) for the
parameters in fTair(l) given by (5.72) we find

(5.73) fTair(l) =
1

l
(129.4905m− 5.6863n),
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numerical simulation fast-kick model
τ3 n t

nT − Tψ n t
fT

τ1 + τ5 m sT − nT t
nT − Tφ m sT − n

sIy
tJy

t
fT

τ2, τ4 0.25 0

Tair m sT − n(T − 1) t
nT m sT − n

(
sIy
tJy
− 1
)

t
fT

Table 5.3. The appearance of Tψ and Tφ in the numerical simu-
lation are the result of the twisting and somersaulting that occur
in the transition stages, and since τ2, τ4 → 0 in the fast-kick model
there are no such terms there.

where the difference to nTair(l) given by the numerical simulation found in (5.36)
is

(5.74) fTair(l)− nTair(l) = −0.92265n

l
,

which shows the airborne time is only slightly less with the fast-kick model, since
n is small and l is large. The discrepancy in airborne time comes from two places,
which can be seen in Table 5.3. There we see T ≈ sIy/

tJy = 1.16152, which can
be compared to the numerical value of 1.14339 found in (5.28), while the other
difference is the period of twist

(
t
nT compared to t

fT
)
. Now the fast-kick model

was setup in approximation with equal moments of inertia, and repeating the
computation with distinct moments of inertia (like in the numerical simulation)
will reduce the difference shown in Figure 5.23. However, we will instead take a
different approach that is related to the geometric phase in the next subsection.

T

T

t
f
t
n

80 90 100 110 120 130 140
l0.20
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0.30
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0.40

0.45
period

Figure 5.23. We have t
fT (l)− t

nT (l) ≈ 1.27219/l. The difference is
approximately 0.0159 when l = 80 and monotonically decreases to
0.009 when l = 140.
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It is clear that performing additional somersaults requires additional time, but
one interesting fact is that increasing the number of twists while maintaining the
same number of somersaults and angular momentum actually requires less airborne
time. While this may seem counter intuitive at first, it is in fact true because
tJy − sIy < 0, making the coefficient of n in Tair(l) given by (5.72) negative.

While the layout position has a larger angular momentum component about
the somersault axis (compared to the twist position), the athlete’s arm position
also results in a larger moment of inertia. Coincidentally, the angular velocity
about the somersault axis is smaller in the layout position for our model, which
overall results in more twists requiring less airborne time. Athletes typically take-
off and complete the dive in the layout position, and for this reason we have chosen
to adopt it in S1 and S5. Introducing additional stages to allow pure somersaults
in pike or tuck position will result in tJy − sIy > 0, giving the intuitive result that
more time is taken to perform additional somersaults and/or twists.

5.4 Cabrera: Generalised Montgomery Formula

Montgomery [44] derived the well known formula

(5.75) ∆φ =
2ET

l
− S mod 2π,

which separates the change in orientation (given by ∆φ) of a rigid body into the
dynamic phase (given by 2ET/l) and geometric phase (given by S) after one period
T of the angular momentum vector L (with magnitude l) in FC . In the formula,
E is the kinetic energy and S is a signed solid angle, which is the angle swept out
by the body’s angular momentum vector.

While Montgomery’s formula is only applicable to rigid bodies, Cabrera [9]
gives

(5.76) ∆φ = (∓)
A

l2
+

1

l

∫ T

0

I−1(α)L− I−1(α)A(α, α̇) ·L dt mod 2π

which generalises the result to self-deforming bodies, where L, α, and α̇ are all
functions of t. In the case of no shape change α is constant and α̇ = 0, meaning
A(α, 0) = 0 and I−1L · L = 2E, hence reducing (5.76) to Montgomery’s formula
(5.75). By keeping the surface area A lying to the left of the oriented curve we
enforce S > 0, thus

(5.77) S =
A

l2
.

The mod 2π appearing in (5.76) can be removed by appropriately defining the sur-
face area A, which is crucial for our application as we need to distinguish between
the different number of m somersaults, and for our purposes the diver takes off
in an upright position so that the initial orientation is always zero, allowing us to
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write φ instead of ∆φ for the orientation change. With these modifications and
using Ω given by (3.24), we can rewrite Cabrera’s formula (5.76) as

(5.78) φ = −A
l2

+
1

l

∫ T

0

L ·Ω(α, α̇) dt.

We will explain shortly that we want the surface area A to be the region bounded
between the orbit L3 and the equator, which is verified by matching the result
obtained using modified Cabrera’s formula (5.78) with our analytical result found
earlier. Any great circle can become the equator when viewed in the right frame,
and provided it does not intersect with the orbit L3 then the bounded surface area
will be the same. As L3 is tilted on the L-sphere, we will refer to the equator as
the great circle lying on the MxMy-plane.

5.4.1 Fast-kick with tJx = tJy >
tJz

We are now going to apply the modified Cabrera formula (5.78) to the fast-kick
model (from Chapter 5.3) to compute φ, justify our choice of A, and find τi, Tair

to compare with the results found in Chapter 5.3.
The angular velocity vector Ω = −IA in fast-kick transition stages only has

a non-zero x-component (verified by looking at the form of I in (3.45) and A in
(3.37)), while the x-component in L remains zero because it is initially zero, and
fast-kicks only induce a rotation about the x-axis of the body as shown in (5.47)
and (5.67), hence

(5.79)

∫ τi

0

Li ·Ωi dt = 0 for even i.

Combining the fast-kick pair forms a closed curve that encloses zero area, so the
geometric phase is also zero. Hence the transition stages play no part in the
contribution to φ in (5.78), leaving only the rigid body stages. Since Montgomery’s
formula (5.75) is applicable in rigid body dynamics we have

(5.80)

∫ τi

0

Li ·Ωi dt = 2Eiτi for odd i.

Computing the energies with (2.56), and using the angular momentums found in
(5.40) and (5.53), we find

E1 = E5 =
l2

2 sIy
E3 =

l2

2

(
cos2 (P + X)

tJy
+

sin2 (P + X)
tJz

)
.(5.81)

The athlete performs a fast-kick in S2 which tilts the torso by X, causing S3

to have the orbit L3 shown in Figure 5.24. For the solid angle S > 0, we need the
surface area to lie to the left of the oriented curve. It is clear that we expect more
geometric phase with a larger tilt and less with a smaller tilt, so in the limiting
case where there is an absence of tilt we expect no geometric phase at all, meaning
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A = 0. So to remove mod 2π appearing in Cabrera’s formula (5.76) we define A
to be the surface area lying between the equator and orbit L3.

In the case tJx = tJy the orbit L3 lies on a tilted plane with normal Rx(P)ez,
but working in FB straightens it. To compute the surface area A shown in Figure
5.24 we use spherical coordinates given by

(5.82) x = l

 sin θ̃ cos φ̃

sin θ̃ sin φ̃

cos θ̃

 ,

and use the surface integral

(5.83) A =

∫ 2π

0

∫ π−ξ

π/2

∣∣∣∣∂x∂θ̃ × ∂x

∂φ̃

∣∣∣∣ dθ̃ dφ̃ = l2
∫ 2π

0

∫ π−ξ

π/2

sin θ̃ dθ̃ dφ̃,

whereby looking at the projection shown in Figure 5.25 we see

ξ = arccos

(
|Mz|
l

)
= arccos

(
sin (P + X)

)
.

Figure 5.24. The surface area A bounded by L3 and the equator.
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Evaluating the integral in (5.83) gives

(5.84) 2A = 2πl|Mz| = 2πl2 sin (P + X),

where we use left subscript 2 to indicate that the moments of inertia are equal.
To compute φ in (5.78) for the dive consisting of n twists, we split the dynamic
phase given by the integral into the five individual stages, and as the loop in S3

traverses around the L-sphere n times multiply the surface area A by n to yield
the total geometric phase. Hence (5.78) becomes

(5.85) φ = −n 2A

l2
+

1

l

5∑
k=1

∫ τk

0

Lk ·Ωk dt,

and substituting in (5.79) and (5.80) we obtain

(5.86) φ = −n 2A

l2
+

2

l

(
E1(τ1 + τ5) + E3τ3

)
.

Since we want the athlete to complete m somersaults we set φ = 2mπ, and as τ3 is
determined by (5.61) for n twists, this leaves only τ1 + τ5, which can be rearranged
to

(5.87) τ1 + τ5 = m
πl

E1

− n

E1

[
E3

tT − 2A

2l

]
.

l
ÈMzÈ

Ξ

Figure 5.25. Projection of M 3 onto the MxMz-plane. The per-
pendicular height h from the plane to the centre is |Mz|, where
Mz < 0 is the third component of M 3 given by (5.53).
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l
ÈMzÈ

Ξ

Figure 5.26. Projection of M 3 onto the MxMz-plane; ξ is no
longer constant.

The airborne time Tair is then found by summing (5.61) and (5.87) giving

(5.88) Tair = m
πl

E1

− n

E1

[
(E3 − E1) tT − 2A

2l

]
.

By substituting the energies given by (5.81), surface area 2A given by (5.84),
and period of twist tT given by (5.60) into the formulas (5.87) and (5.88), we
find the results for τ1 + τ5 and Tair are the same as those found in (5.69) and
(5.71), respectively, as expected. Thus we have successfully removed the mod 2π
appearing in Cabrera’s original formula (5.76) and verified it works. The advantage
of doing the computation this way is that we no longer need two moments of inertia
being equal in order to obtain an analytical result. We now look at the fast-kick
model with distinct moments of inertia, followed by the more general model with
realistic arm motions.

5.4.2 Fast-kick with tJx >
tJy >

tJz

Again we work in FB to avoid the tilt P originating from the diagonalisation. With
distinct moments of inertia the orbit M 3 no longer lies on a plane, but wobbles
as shown in Figure 5.26. The curve parametrisation of M 3 is found with (2.61),
where the energy E3 needed remains unchanged from (5.81) even when tJx 6= tJy.
The surface area integral (5.83) still holds, except ξ is no longer constant but a
function of a. Rewriting the integral in terms of Cartesian coordinates we have

(5.89) A =

∫∫
D

l√
l2 − x2 − y2

dy dx,
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(B) ∆A = 3A− 2A.

Figure 5.27. Evaluating (5.84) and (5.93) for the surface areas we
find 2A = 1.1716l2 and 3A = 1.18912.

and if we find a vector field F (x) such that

(5.90) ∇× F (x) · n(x) =
l√

l2 − x2 − y2
,

then we can use Stoke’s theorem to convert the surface integral into a line integral
to make the computation easier. One such F (x) that satisfies (5.90) is

(5.91) F (x) =
lz

x2 + y2

 y
−x
0

 ,

so by applying Stoke’s theorem we get

(5.92) 3A = l

∫ 2π

0

Mz(a)

M2
x(a) +M2

y (a)

(
My(a)Ṁx(a)−Mx(a)Ṁy(a)

)
da,

where left subscript 3 is used to denote distinct moments of inertia. The analytical
solution is expressed in terms of complete elliptic integrals and is

(5.93) 3A = 4l2

√
tJy

tJxtJz(tJy − tJz)Hx

(
(tJx − tJz)Π(ñ; k̃)− tJxHzK(k̃)

)
,

where

Hx = 2E3
tJx − 1 ñ = −

tJz(
tJx − tJy)

tJx(tJy − tJz)

Hz = 1− 2E3
tJz k̃ =

(tJx − tJy)Hz

(tJy − tJz)Hx

.
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The approximation previously given for tT in (5.33) is usually sufficient, but since
we are taking an analytical approach here we include the analytic form given by
(2.65) to get

(5.94) t
3T = T (E3,

tJ) =
4K(k̃)

l

√
tJxtJytJz

(tJy − tJz)Hx

,

where again the left subscript is used to indicate distinct moments of inertia.
The formulas derived for τ3, τ1 + τ5, and Tair given by (5.61), (5.87), (5.88),

respectively, only need the slight modification of replacing 2A with 3A and tT with
t
3T to hold true.

5.4.3 Realistic Arm Motion with tJx >
tJy >

tJz

We now look at the realistic arm motion model described in Chapter 5.2. The
geometric phase is given by (5.77), where the surface area for n = 1 twist is shown
in Figure 5.28. For n twists the ‘total’ area A is

(5.95) A = n(A+ + A−)− A− = nA± − A− ,
where A+ , A− , and A± = A+ + A− can be seen in Figure 5.29.

Figure 5.28. The blue region is the surface area for n = 1 twist.
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A+A-

Figure 5.29. The larger blue region is A+ , the smaller red region
is A− , and the union of the two is denoted by A± .

To evaluate A± we can use (5.93), where only the energy E3 needs to be changed
to the one shown in Figure 5.15A (the energies are different, so to avoid confusion
we will refer to the fast-kick energy as fE3). The realistic arm motion has slightly
more energy for any l compared to the fast-kick model, as can be seen in Figure
5.30. Performing the computation for each integer l ∈ [80, 140] we obtain the
results shown in Figure 5.31A.

The boundary of A− is given by three piecewise smooth curves L2,L3 and L4,
all of which can be obtained numerically (note that there is little point in using the
analytical solution for L3 as the initial condition can only be found numerically).

80 90 100 110 120 130 140
l

5

10

15

20

25
DE3

Figure 5.30. ∆E3 = E3 − fE3.
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(A) Surface area of A± = A+ +A− .
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100

200
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700
A-

(B) Surface area of A− .

Figure 5.31. The surface area of the two components that make
up A given by (5.95).

So to obtain A− indicated by the red region in Figure 5.29, we orient the line
integral as follows

(5.96) A− = −
∫ τ2

0

F (L2) · L̇2 dt+

∫ tT

tT−Tψ
F (L3) · L̇3 dt−

∫ τ4

0

F (L4) · L̇4 dt,

where F (x) is defined in (5.91), the tabulated values of Tψ are shown in Figure
5.13A, and evaluating for each integer l ∈ [80, 140] we get result shown in Figure
5.31B.

While the integral shown in (5.80) is true, (5.79) is not, so for transition stages
we instead have∫ τk

0

Lk ·Ωk(αk, α̇k) dt =

∫ τk

0

LtkI
−1(αk)

(
Lk −A(αk, α̇k)

)
dt(5.97)

= 2Ēkτk for even i,

where Lk, αk, and α̇k are all functions of t. We interpret Ēk as the average kinetic
energy over time τk, which is obtained by evaluating the integral numerically.
Due to the symmetry of shape change shown in (5.17), we have (5.22) and hence
Ē2 = Ē4. The result for φ shown in (5.85) then becomes

(5.98) φ = −
nA± − A−

l2
+

2

l

(
E1(τ1 + τ5) + E3τ3 + 2Ē2τ2

)
.

Combining our empirically obtained result of τ3 = n tT − Tψ from (5.29), the
fact that τ2 = τ4 = 0.25, and our aim for the athlete to perform m somersaults
(meaning φ = 2mπ) lets us solve τ1 + τ5 to obtain

(5.99) τ1 + τ5 = m
πl

E1

− n φs l
2E1

− 1

E1

(
Ê − E3Tψ

)
,
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where

(5.100) Ê =
1

2

(
A−
l

+ Ē2

)
and

(5.101) φs =
2E3

tT

l
−
A±
l2

is the amount of somersault obtained after one period of twist tT . Comparing
the coefficients of (5.99) to (5.29) (recall that τ1 was set to zero in the numerical
simulation) we find

sT =
πl

E1

T =
l

2E1

φs
tT

Tφ =
1

E1

(
Ê − E3Tψ

)
.(5.102)

While the equation for sT is nothing new, the remaining two reveal new discoveries,
and unlike in (5.28) we now have a high precision equation for T. Due to φs and
tT depending on E3 (which is not exactly proportional to l2 as shown in Figure
5.15C) this means l does not cancel and T has minute dependence on l. In fact,
substituting in sT we see that

T =
φs
2π

sT
tT
,

and for l = 100 we have φs specified in (5.19) which reproduces the value of T

shown in (5.28).
The connection between Tψ and Tφ is finally linked, and by using the approxi-

mation (5.32) we can at last establish an analytical interpretation of the somersault
and twist transitions. The result has nice symmetry and is

Tψ ≈ Ĉ−1
(
Ê/E1 − τ2 − τ4

)
Tφ ≈ Ĉ−1

(
Ê/E3 − τ2 − τ4

)
,(5.103)

where

(5.104) Ĉ =
E3

E1

− 1.

For completeness the airborne time Tair defined in (5.4) becomes

Tair = m
πl

E1

− n
(
Ĉ tT −

A±
2lE1

)
− Ê

E1

+
1

2
+ ĈTψ

≈ m
πl

E1

− n
(
Ĉ tT −

A±
2lE1

)
substituting Tψ

= m sT − n(T − 1) tT substituting T,

which is precisely the result found in (5.35). In conclusion, we have discovered that
we can modify Cabrera’s formula (5.76) to obtain (5.78), which provides an elegant
means of obtaining an analytical interpretation of the numerical quantities found
in the numerical simulation, namely for T, twist transition Tψ, and somersault
transition Tφ.



CHAPTER 6

New Dive: 513XD

In this chapter we want the athlete to use the second shape change to speed up
the twisting somersault rather than stopping it, so that the diver can squeeze out
additional twists without any additional cost of angular momentum or airborne
time. This leads to the athlete performing a faster twisting somersault dive con-
sisting of nine stages rather than five, where two pairs of transition stages are used
instead of one. The formulas we derive are kept general for m somersaults and n
twists, but the focus is on the 513XD dive (forward 1.5 somersaults with 5 twists).

Let us begin by first introducing a two letter arm code describing the actions
of the athlete’s arms, or more specifically, the motion or position of the left arm
followed by the right arm. When the arm is moving, we use ‘L’ if the arm is being
lowered or ‘H’ if the arm is being raised (H for higher). When the arm is not
moving relative to the torso, we use ‘U’ for the up position (arm pointed straight
up) or ‘D’ for the down position (arm down by the side).

In Chapter 5 we saw the dynamics of the one-armed diver, which is summarised
in Figure 6.1. An important feature of that simulation was the precise timing
of the arm reversal manoeuvre required to stop the twisting. Executing that
manoeuvre arbitrarily will not stop the twisting motion, but instead leave the
athlete continuing to perform twisting somersaults in the layout position with in

UU DU UU

LU
−→

HU
−→

stage: S1 S2 S3 S4 S5

Figure 6.1. The diver takes off in pure somersault, performs a
shape change mid-flight to transition into twisting somersault, before
performing another shape change to revert into pure somersaulting
motion to complete the dive.

122
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general a new period of twist. This new period could become longer, shorter, or
even stay the same depending on the precise timing of the arm reversal manoeuvre.

In Chapter 6.1 we explore the faster twisting somersault dive using the 2-body
model described in Chapter 3.5.1 with impulsive shape changes. We examine the
effect of performing the HU fast-kick of S4 after generic time τ3 is spent in S3, and
find the optimal time τ3 which leads to S5 having the minimum period of twist in
the twisting somersault. Two more additional fast-kicks in S6 and S8 will then be
used to stop the twist and bring the athlete back into a pure somersaulting motion
to finish off the dive in S9.

In Chapter 6.2 we move to the 3-body model described in Chapter 3.5.2 that
allows the athlete to perform impulsive shape changes using both arms simulta-
neously, which we refer to as a ‘dual fast-kick’. The tilt generated from a dual
fast-kick is computed, and the results compared to the standard fast-kick of the
one-armed diver.

In Chapter 6.3 we move away from impulsive shape changes and instead use
realistic arm movements, and show how the 513XD dive (forward 1.5 somersaults
with 5 twists) works using full numerical evaluation.

Finally, in Chapter 6.4 we go back to using impulsive shape changes where two
consecutive single arm fast-kicks are compared to a dual fast-kick, and consider
a theoretical study where multiple dual fast-kicks are used to transform a diver
from a state of pure somersault into a state of pure twist, where all somersaulting
motion is completely eliminated.
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6.1 513XD - One-armed Diver

Let L− be the instantaneous angular momentum of the athlete immediately before
the fast-kick and L+ immediately after. Similarly, let q− be the instantaneous
orientation before the fast-kick and q+ immediately after. In Chapter 5 we saw
the LU fast-kick initiate twist and the HU fast-kick terminate twist, but this only
works when τ3 = n tT . In general the fast-kicks shown in Figure 6.2 induce a jump
in L(t) and q(t) governed by

L+ = Rx(−X)L−(6.1)

q+ = R(X)q−

for the LU fast-kick, and

L+ = Rx(X)L−(6.2)

q+ = R(−X)q−

for the HU fast-kick, where

R(θ) =

(
R2

(
1
2
θ
)

0
0 R2

(
−1

2
θ
) ) .

To obtain these results we use (5.47), (5.67) for L(t), and (5.49), (5.68) for q(t).
We now construct the faster twisting somersault dive using the one-armed diver

shown in Figure 6.3. The idea is to use S4 to get the diver into a faster twisting
state for S5, where the period of twist T5 is reduced so that more twists can be

Bb

Bl Br

(A) LU fast-kick
L+ = Rx(−X)L−
q+ = R(X)q−

Bb

Bl

Br

(B) HU fast-kick
L+ = Rx(X)L−
q+ = R(−X)q−

Figure 6.2. The change in angular momentum L and orientation
q resulting from a fast-kick.
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achieved within the same amount of time. The additional transition stages S6 will
be used to bring the athlete back into the standard twisting somersaulting motion,
and S8 to completely stop the twisting motion. The dive will start out the same as
the standard twisting somersault shown in Figure 6.1, but begin to deviate from
S3 onwards. The two key shapes are layout position (UU) and twist position (DU),
which have inertia tensors sI and tJ given by (5.1) and (5.3), respectively.

In S1 : Shape UU

E1 =
1

2 sIy
= 0.0243 L1(t) = (0, l, 0)t

The angular momentum is given as initial condition, and the energy is computed
with (2.56) using the scaling provided in (2.57). In S2 the athlete performs LU
fast-kick so we use (6.1) to find the same initial condition given by (5.47), which
can be rotated by R−1

x (P) to produce M 3(0). In this chapter we are using a more
explicit notation for the rigid body solution given by (2.62). The constant s is a
direction that is either ±1 in general, but in our setup where the orbit is always
below the equator we have s = 1. The constant c is a phase shift that depends
on the initial condition, and as such we will include it as a parameter and write
M(t; E , J, c). The constant s is omitted as it is always s = 1.

In S3 : Shape DU

E3 =
1

2

(
cos2 (P + X)

tJy
+

sin2 (P + X)
tJz

)
= 0.0452

T3 = T (E3,
tJ) =

33.9610

l
L3(t) = lRx(P)M(t; E3,

tJ, T3/4)

The (scaled) energy is found by substituting M 3(0) into (2.56), the period of twist
T3 computed with T (E , J) given by (2.65), and the (scaled) angular momentum in

UU DU UU DU UU

LU
−→

HU
−→

LU
−→

HU
−→

S1 S2 S3 S4 S5 S6 S7 S8 S9

Figure 6.3. Stages of the faster twisting somersault.



126 6. New Dive: 513XD

T3�4 3T3�4T3�2 T3
t

-l

-l�2

l�2

l
L3

Lz

Ly

Lx

Figure 6.4. The components of L3(t) for one period T3.

FB obtained with (2.62). The angular momentum can then be transformed into
FC by either applying the identity rotation when the shape is UU (layout position),
or Rx(P) when the shape is DU (twist position) to the angular momentum found
in FB. We show the periodic orbit L3(t) for one period T3 in Figure 6.4. At some
time τ3 during the orbit L3(t), the HU fast-kick of S4 is performed, bringing the
athlete’s shape back to UU in S5. The change in L is given by (6.2), so that the
initial angular momentum in S5 is

(6.3) L5(0; τ3) = Rx(X)L3(τ3) = lRx(P + X)M(τ3; E3,
tJ, T3/4),

which is dependent on the time τ3 spent in S3. In the case of τ3 = nT3 for n ∈ N
the diver reverts to pure somersaulting motion (which was used in Chapter 5 and
corresponds to the point where the blue dashed loop of Figure 6.5 crosses the
point L1(t)), but for any other τ3 the twisting motion will not stop because the Lz
component is non-zero. The period of twist T5 will in general be different to T3,
and the case we are interested in is the time τ3 which minimises T5, so that we get
the fastest possible twist in the twisting somersault in S5. To find this we look at
the scaled energy given by

(6.4) E5(τ3) =
1

2
MtRt

x(P + X) sI−1Rx(P + X)M,

where the arguments are M(τ3; E3,
tJ, T3/4). The time τ3 spent in S3 affects both

the initial angular momentum L5(0; τ3) and energy E5(τ3) in S5, which are plot-
ted in Figure 6.6. Since both of these quantities are periodic in τ3 with period
T3 we only plot the results for the interval τ3 ∈ [0, T3). The dashed horizontal
lines in Figure 6.6B show it is possible to pick τ3 so that E5(0) = E1 = 0.0243l2,
E5(0.2713T3) = E3 = 0.0452l2, or have the maximum of E5(T3/2) = 0.0885l2. To
find the minimum period of twist in the twisting somersault we use (2.65) with
the scaled energy given by (6.4). For the formula to be applicable we require
E5 > 1/(2 sIy), but this is always the case for the twisting somersault. Whenever
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Figure 6.5. The point shown on the Ly-axis is the steady (somer-
sault) rotation corresponding to L1(t) in S1, the black solid vertical
arc stemming from that point illustrates the LU fast-kick of S2, the
black solid loop shows the orbit L3(t) in S3, and the blue dashed
loop represents the family of initial conditions L5(0; τ3) in S5.

E5 < 1/(2 sIy) we have a different set of dynamics known as the wobbling som-
ersault, which is discussed in Appendix I. We show the period of twist T5(τ3) in
Figure 6.7, where we can see and numerically verify that

(6.5) τ3 = T3/2

yields the minimum period of twist, which is of no surprise as it corresponds to the
maximal obtainable energy in S5. This means that the second shape change that
speeds up the twisting the most occurs exactly a half twist after the first shape
change. So when we evaluate the initial angular momentum at (6.5) we get

(6.6) L5(0;T3/2) = −lRx(P + X)

 0
cos (P + X)
sin (P + X)

 = −l

 0
cos [2(P + X)]
sin [2(P + X)]

 .
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(A) Family of initial conditions
given by L5(0; τ3).
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(B) All possible values of E5(τ3).

Figure 6.6. The left pane shows the initial angular momentum
L5(0; τ3) given by (6.3), and corresponds to the blue dashed loop
of Figure 6.5. On the right pane we have the scaled energy E5(τ3)
given by (6.4), which has an additional symmetry being that it is
symmetric about T3/2 on the interval [0, T3).

In S5 : Shape UU

E5 =
1

2

(
cos2 [2(P + X)]

sIy
+

sin2 [2(P + X)]
sIz

)
= 0.0885

T5 = T (E5,
sI) =

17.8720

l
L5(t) = lM(t; E5,

sI, 3T5/4)

T3�4 3T3�4T3�2 T3
Τ3

20�l

40�l
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Figure 6.7. The period of twist in S5 when the HU fast-kick of S4

occurs after time τ3.
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Figure 6.8. The Lz component may appear constant but in fact
is not as the Jacobi elliptic function dn is oscillatory.

As the optimal τ3 has been found in (6.5), we now suppress this parameter in E5

and L5(t). We see that the period of twist T5 in S5 is nearly half the period of
twist T3 found in S3, hence the athlete has entered a faster twisting somersault
state where more twists can be performed in the same amount of time without
any additional cost. We show the angular momentum components of this orbit for
one period T5 in Figure 6.8. For n twists to be completed in the faster twisting
somersault state we require

(6.7) τ5 = nT5,

where n ∈ N before the LU fast-kick of S6 brings the athlete’s orbit back to the
standard twisting somersault state in S7. We know this is true because L5(t) is
periodic with period T5, which means L5(nT5) = L5(0), and using (6.1) we can
show

(6.8) L7(0) = L3(T3/2) = −l

 0
cos (2P + X)
sin (2P + X)

 .

In S7 : Shape DU T7 = T3 =
33.9610

l
L7(t) = L3(t+ T3/2) E7 = E3 = 0.0452

the orbit L7(t) is a continuation of L3(t). The final HU fast-kick in S8 is used to
revert the twisting somersaulting motion to pure somersaulting motion. For this
we need

(6.9) τ7 = τ3 = T3/2,
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Figure 6.9. The athlete takes off and finishes the dive in pure
somersaulting motion indicated by the point on the Ly-axis. The
upper black loop corresponds to the standard twisting somersault
comprising L3(t) and L7(t), and the lower black loop corresponds
to the faster twisting somersault given by L5(t).

since

L9(0) = Rx(X)L7(T3/2) = Rx(X)L3(T3) = Rx(X)L3(0)

= Rx(X)Rx(−X)L1 = (0, l, 0)t.

In S9 : Shape UU

E9 =E1 = 0.0243 L9(t) = L1(t)

In this dive, the diver performs a half-twist in S3, n twists in S5, and another
half-twist in S7, resulting in a total of n+ 1 twists being performed. We show the
orbit of the complete dive on the L-sphere in Figure 6.9.

Due to the nature of the fast-kick model, the transition stages Si for even i
take zero time, so to find Tair we only need to sum τi for odd i. Using (6.5), (6.7),
and (6.9) we get

(6.10) Tair = nT5 + T3 + τ1 + τ9,



6. 513XD - One-armed Diver 131

where the only parameter yet to be determined is the sum

(6.11) Tsom = τ1 + τ9,

which represents the total time spent in pure somersault. To find Tsom we use
the condition that the athlete completes the dive after performing m somersaults
with n+ 1 twists, allowing Cabrera’s formula (5.78) (with the mod 2π removed by
appropriately defining the surface area A) to work.

We showed in (5.79) that

∫ τi

0

Li · Ωi dt = 0 for all transition stages, and

grouping the fast-kick pairs together, i.e. S2 with S8 and S4 with S6, gives two
closed curves that enclose zero area. Hence the transition stages play no part in
the contribution to φ in Cabrera’s formula (5.78), thereby leaving only the rigid
body stages in which we can use (5.80) to obtain

(6.12) φ = −As + nAf
l2

+ l
[
sI−1
y Tsom + 2E3T3 + 2nE5T5

]
,

where As is the area bounded between the equator and L3(t),L7(t), and Af is the
area between the equator and L5(t), both of which can be computed with (5.93).
As we want φ = 2mπ for m somersaults, we rearrange (6.12) to get

(6.13) Tsom = sIy

[
1

l

(
2mπ +

As + nAf
l2

)
− 2
(
E3T3 + nE5T5

)]
.

Since both As and Af are quadratic in l according to (5.93), and both T3 and T5

are inversely proportional to l, this also means τ1 + τ9 is inversely proportional to
l. Evaluating the constants numerically in (6.13) gives

As/l
2 = 1.1891 E3 = 0.0452 sIy = 20.6091

Af/l
2 = 2.3088 E5 = 0.0885,

so plugging these numbers in (6.13) yields

(6.14) Tsom =
1

l

(
129.4905m− 17.5751n− 38.8309

)
.

The other rigid body stages have a twist component so we denote that total time
as Ttwi , where

(6.15) Ttwi = τ3 + τ5 + τ7 = T3 + nT5 =
1

l

(
17.8720n+ 33.9610

)
.

These equations are for a dive consisting of m somersaults and n+ 1 twists. The
airborne time Tair is given by (6.10), so substituting in all the values found we get

(6.16) Tair = Tsom + Ttwi =
1

l

(
129.4905m+ 0.2970n− 4.8699

)
.

The times Tsom , Ttwi , and Tair for the previous fast-kick dive explored in Chapter
5 can be found in (5.87), (5.61), and (5.88). To avoid confusion with the new
formulas we will explicitly write (ch 5 ) as left superscript to indicate that these
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are obtained from Chapter 5. The equations were given for the case tJx = tJy >
tJz

but hold true for the more general tJx >
tJy >

tJz, provided we use A given by
(5.93) and tT given by (5.94) instead of the original formulas. The equations
for the previous fast-kick dive are for the dive consisting of m somersaults and n
twists, so before we can make a comparison we set n→ n+ 1, tT → T3, A→ As,
E1 → l2/(2 sIy), E3 → E3l

2, and evaluating gives:

(ch 5 )Tsom =
1

l

(
129.4905m− 38.8309n− 38.8309

)
(6.17)

(ch 5 )Ttwi =
1

l

(
33.9610n+ 33.9610

)
(6.18)

(ch 5 )Tair =
1

l

(
129.4905m− 4.8699n− 4.8699

)
.(6.19)

Comparing these results to (6.14), (6.15), and (6.16) we see that for a dive consist-
ing of the same number of somersaults and twists, the new dive spends significantly
less time in motion involving twist and more time in pure somersault. In the faster
twisting somersault state there is more angular momentum about the twist axis
resulting in faster twist, which therefore also means the somersaulting motion is
slower. The airborne time required for the new dive is longer, but that is due to
the nature of the 2-body model where tJy <

sIy. With more movable segments so
that pure somersaults may be performed in pike or tuck as opposed to the layout
position, we would expect Tair to be less with the faster twisting somersault dive.

We require Tsom to be positive in (6.14) and (6.17), so with the standard
twisting somersault dive of Chapter 5 shown in Figure 6.1 the maximum number
of twists with m somersaults is b3.3347mc, while for the faster twisting somersault
dive shown in Figure 6.3 it is b7.3679m−1.2094c (recall that the formulas were for
n+ 1 twists). For m = 1.5 somersaults we find maximum number of twists for the
standard twisting somersault dive is1 5, while for the faster twisting somersault
dive it is 9. Note that these numbers are only valid for the fast-kick model, and
with realistic arm motions the numbers will be lower. We are now going to use
the 3-body model described in Chapter 3.5.2 to allow the athlete to use both
arms when performing impulsive shape changes, and later in Chapter 6.3 we will
repeat the computation using realistic arm motions to demonstrate the 513XD
dive simulation.

6.2 513XD - Two-armed Diver

So far we have covered the one-armed diver performing LU and HU fast-kicks,
where its effect is given by (6.1) and (6.2), respectively. From a symmetry per-
spective, if the diver instead uses their right arm to perform UL and UH fast-kicks,

1In Chapter 5.3 we showed this number was 4, but that is due to the assumption tJx = tJy
making the period of twist slightly longer, by about 0.5329/l.
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Bb

Bl Br

(A) UL fast-kick
L+ = Rx(X)L−
q+ = R(−X)q−

Bb

Bl

Br

(B) UH fast-kick
L+ = Rx(−X)L−
q+ = R(X)q−

Figure 6.10. Impulsive shape changes using the right arm.

then the only modifications would be X→ −X, P→ −P, and the direction of twist
would change from counterclockwise to clockwise.

We now study the dual fast-kick which involves using both arms in the impul-
sive shape change shown in Figure 6.11. To compute the tilt Y generated by the

Bb

Bl

Br

(A) LH fast-kick
L+ = Rx(−Y)L−
q+ = R(Y)q−

Bb

Bl

Br

(B) HL fast-kick
L+ = Rx(Y)L−
q+ = R(−Y)q−

Figure 6.11. Impulsive shape changes involving both arms. In
the case of the LL fast-kick and HH fast-kick, both arms move sym-
metrically resulting in no net tilt, so we are not interested in those
cases.
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dual fast-kick, we start with the reduced equations of motion given by (5.38), and
follow the same process used in (5.44) which determined X = 0.147, allowing for
comparison to be made later on. In the computation we need to use the tensor of
inertia I and angular momentum shift A derived for the 3-body model, which are
given by (3.53) and (3.54), respectively. The integrand in (5.44) then becomes

−I−1
xx (αl, αr)(Al(αl, αr)α̇l + Ar(αl, αr)α̇r),

where Al(αl, αr), Ar(αl, αr) are given in (3.56), and

Ixx(αl, αr) = b4 − 2b1(cosαl + cosαr) + 2b2(sinαl + sinαr)− 2b3 cos (αl + αr).

For our shape change of interest we can parametrise the angles as

αl = α αr = π − α for α ∈ [0, π].

In this parametrisation the DU position corresponds to α = 0, and UD position
when α = π. The parametrisation simplifies the integrand, and thus the integral
(5.44) becomes

Y = −
∫ 0

π

I−1
xx (αl, αr)(Al(αl, αr)α̇l + Ar(αl, αr)α̇r) dα

= 2

∫ π

0

b0 + b3 + b2 sinα

b4 + 2b3 + 4b2 sinα
dα(6.20)

=
π

2

(
1− b

Σ

b
R

)
− b

Σ

b
R

arctan

(
4b2

b
R

)
= 0.330,

where

b
Σ

= b4 − 2b3 − 4b0 = 15.191

b
R

=
√

(2b3 + b4)2 − 16b2
2 = 18.324.

The integral (6.20) is evaluated using Weierstrass’ substitution, and because the
derivation uses the same techniques provided in Appendix H for computing X,
we omit it here and provide the end result only. The result shows that the tilt
produced by using a dual fast-kick is more than twice the tilt generated from a
single arm, so the minimum period of twist in S5 is reduced much more compared
to the one-armed diver.

Repeating the simulation in Chapter 6.1 for the dive shown in Figure 6.12
changes the the tilt generated in the transition stages S4 and S6, which affects the
rigid body stage S5, but leaves the remaining stages intact.
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UU DU UD DU UU

LU
−→

HL
−→

LH
−→

HU
−→

S1 S2 S3 S4 S5 S6 S7 S8 S9

Figure 6.12. Stages of the faster twisting somersault using dual
fast-kicks.

In S5 : Shape UD

dE5 =
1

2
M̃

t tJ−1M̃ = 0.1835

where M̃ = Rx(P + Y)L3(T3/2)/l

dT5 = T
(
dE5,

tJ
)

=
11.3854

l
dL5(t) = lRx(−P)M(t; dE5,

tJ, 3 dT5/4)

We use left superscript d to represent quantities obtained with the dual fast-kick.
The area dAf bounded between the equator and dL5(t) is dAf = 3.5465l2, and re-
evaluating (6.13), (6.15), and (6.10) with the new parameters dE5, dT5, dAf , while
keeping everything else unchanged, we find:

dTsom =
1

l

(
129.4905m− 13.0164n− 38.8309

)
(6.21)

dTtwi =
1

l

(
11.3854n+ 33.9610

)
(6.22)

dTair =
1

l

(
129.4905m− 1.6310n− 4.8699

)
.(6.23)

When compared to (6.14) and (6.15), we see that dTsom is a little longer than Tsom ,
but dTtwi is a little shorter than Ttwi , which is expected. For m somersaults we
find the new maximum number of twists to be b9.9483m−1.9832c. So for m = 1.5
somersaults it increases the maximum number twists to 12, compared to 5 for the
dive shown in Figure 6.1, and 9 for the dive shown in Figure 6.3.
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6.3 The Realistic 513XD Dive

We now repeat the dive shown in Figure 6.12 using realistic shape changes to sim-
ulate the 513XD dive, i.e. the dive consisting of one and a half forward somersaults
with five twists. Unlike in Chapter 6.2, we will now do full numerical evaluation
with realistic arm velocities. The arm movements will take a quarter second each
to complete and follow the shape change path of a cubic spline as done in Chapter
5. So for each S2k with integer k ≥ 1 we have

(6.24) τ2k = 1/4,

since every even stage is a transition stage. In order to obtain the numerical
solutions in the 513XD dive, we choose to fix l = 100 as that is the angular
momentum used in Chapter 5.

In S1 : Shape UU

energy E1 =
1

2
l2 sI−1

y = 243.61

orbit L1(t) = (0, l, 0)t

The athlete takes off in pure somersaulting motion and remains in steady rotation
for duration τ1 before moving on to S2.

In S2 : Shape change LU

average energy Ē2 =
1

2τ2

∫ τ2

0

L2(t) ·Ω2(t) dt = 314.71

end point L2(τ2) = (−97.957, 5.328,−19.393)t

We compute L2(t) numerically by solving the equations of motion (3.25), and show
the evolution on the L-sphere in Figure 6.15B.

In S3 : Shape DU

energy E3 =
1

2
M̃

t tJ−1M̃ = 460.012

where M̃ = Rx(−P)L2(τ2)

period of twist T3 = T (E3/l
2, tJ) = 0.3325

orbit L3(t) = lRx(P)M(t;E3/l
2, tJ, 0.1638)

In order to determine how long the athlete should remain in S3, we look for the
maximal obtainable energy in S5 after the HL shape change of S4. The energy
E5(τ3) therefore depends on the time τ3 spent in S3, which we plot in Figure 6.13A
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(A) The energy depends on τ3. (B) The family of L5(0, τ3).

Figure 6.13. The left pane shows the energy where the maximum
is E5(0.0564T3) = 1801.23. The right pane shows the family of
possible initial angular momentum for S5 depending on the time τ3.

to find the optimal

(6.25) τ3 = 0.0564T3 = 0.0187.

The evolution of L3(t) is shown in Figure 6.15C, where the end point is

L3(τ3) = (−93.3061,−29.3789,−20.7569)t.

In S4 : Shape change HL

average energy Ē4 =
1

2τ4

∫ τ4

0

L4(t) ·Ω4(t) dt = 732.51

end point L4(τ4) = (−49.041, 64.607,−58.489)t

We show the evolution of L4(t) in Figure 6.15D.

In S5 : Shape UD

energy E5 =
1

2
M̃

t tJ−1M̃ = 1801.23

where M̃ = Rx(P)L4(τ4)

period of twist T5 = T (E5/l
2, tJ) = 0.1151

orbit L5(t) = lRx(−P)M(t;E5/l
2, tJ, 0.0404)
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Figure 6.14. The energy E7(τ5) in S7 when initiating the LH
shape change of S6 at arbitrary τ5 in S5. The minimum energy
is E7(0.0919 + 2T5) = 460.012 indicated by the intersection of the
two dashed lines.

The athlete is in the faster twisting somersault state and remains in S5 for nearly
three periods of twist, as a total of five loops around the L-sphere (corresponding
to the five twists) is required. In order to reach the faster twisting somersault
state from pure somersault the diver will have completed slightly more than one
twist, which can be seen in the evolution of L2(t) to L4(t) given by Figures 6.15B
to 6.15D. By symmetry, a bit more than one twist will also be required when the
athlete returns to pure somersault from here, hence τ5 is between 2T5 and 3T5. To
determine the precise time τ5 we look at the resulting energy after the LH shape
change, which we plot in Figure 6.14. The graph shows that it is possible for
the diver to obtain even more energy resulting in a shorter period of twist, which
corresponds to traversing further down towards the south pole on the L-sphere.
However, here we want the diver to return to the orbit L3(t) specified in S3 so
that the dive can be completed. To achieve this, it turns out the diver needs to
enter the state of minimum energy, which occurs at

(6.26) τ5 = τ̃5 + 2T5 = 0.0919 + 2T5 = 0.3221,

where the 2T5 phase shift is needed to enforce the number of twists to be between
two and three in S5. The evolution of L5(t) is shown in Figure 6.15E, where the
end point is

L5(τ5) = (49.0409, 64.6069,−58.4888)t.
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In S6 : Shape change LH

average energy Ē6 =
1

2τ6

∫ τ6

0

L6(t) ·Ω6(t) dt = 732.51

is the same as Ē4

end point L6(τ6) = (93.306,−29.379,−20.757)t

The evolution of L6(t) is shown in Figure 6.15F, which brings the athlete back to
the standard twisting somersaulting orbit.

In S7 : Shape DU

E7 = E3 = 460.012 T7 = T3 = 0.3325

orbit L7(t) = L3(t+ 0.1523),

which can alternatively be written as

L7 = lRx(P)M
(
t;E7/l

2, tJ, c7

)
,

where c7 = T3/2 − τ3 − c3, and c3 = 3.1390 is the constant that
appears in L3(t).

Again the athlete only stays in S7 for a brief period of time before moving onto
the last transition stage S8. By symmetry and numerical verification we can show

(6.27) τ7 = τ3,

which makes the HU shape change of S8 bring the athlete back into pure somer-
saulting motion for S9.

In S8 : Shape change HU

average energy Ē8 =
1

2τ2

∫ τ8

0

L8(t) ·Ω8(t) dt = 314.71

is the same as Ē2

end point L8(τ8) = (0, 100, 0)t

In S9 : Shape UU

energy E9 =E1 =
1

2
l2 sI−1

y = 243.61

orbit L9(t) = L1(t) = (0, 100, 0)t

The diver returns to pure somersaulting motion in S9, ready to complete the dive.
Combining the trajectories of Li(t) shown in Figures 6.15B to 6.15H we get the
complete trajectory shown in Figure 6.15I for the 513XD dive. The time τ9 spent
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(A) Evolution of
L1(t) and L9(t).

(B) Evolution of L2(t). (C) Evolution of L3(t).

(D) Evolution of L4(t). (E) Evolution of L5(t). (F) Evolution of L6(t).

(G) Evolution of L7(t). (H) Evolution of L8(t). (I) Complete 513XD dive.

Figure 6.15. The evolution of Li(t) in each stage. The pure som-
ersaulting stages S1 and S9 have the same dynamics so they are only
illustrated once, and the last figure shows the complete trajectory
on the L-sphere for the 513XD dive.



6. The Realistic 513XD Dive 141

in S9 is chosen to ensure the athlete enters the water correctly, with head-first
entry into the water. To determine the total time Tsom = τ1 + τ9 spent in pure
somersault we use Cabrera’s formula (5.78), where the result becomes

(6.28) φ = φsom +
8∑
i=2

[
1

l

∫ τi

0

Li(t) ·Ωi(t) dt− Ai
l2

]
.

We want φ = 3π for one and a half somersaults and need to find φsom , which is
the total somersault angle obtained from the pure somersaulting stages S1 and S9.
The integral yields the product of (average) energy and time, and from using the
(average) energies found we get

(6.29)
8∑
i=2

∫ τi

0

Li(t) ·Ωi(t) dt = Ē2 + Ē4 + 4E3τ3 + 2E5τ5 = 2242.07.

The total area A needed in the computation of the geometric phase is partitioned
into sub-areas denoted by Ai, where A =

∑8
i=2 Ai. Each Ai is enclosed by Li(t),

either one or two vertical arcs on the sphere, and the equator. We show the first
three sub-areas in Figure 6.16, and to compute each sub-area Ai we use the line
integral

(6.30) Ai =

∮
Ci

F (x(s)) · ẋ(s) ds,

which comes from (5.92) with F defined in (5.91). Each loop Ci will consist of
a segment from the equator, one or two vertical arcs and Li(t). Now the equator
has Lz = 0 so F = 0, hence this part of the line integral is zero. The vertical arcs

(A) A2 = 2406.62. (B) A3 = 722.037. (C) A4 = 23770.8.

Figure 6.16. Due to symmetry A6 = A4, A7 = A3, and A8 = A2.
The sub-area A5 = 97593.3 is not shown here.
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have parametric form given by (5.82), so

F (x(s)) = l

 cot θ sinφ
− cot θ cosφ

0

 and ẋ = l

 sin θ cosφ
sin θ sinφ

cos θ

 ,

hence the dot product is zero and this too yields no contribution to the line integral
(6.30). The only contribution must therefore come from the line segment Li(t),
meaning

(6.31) Ai =

∫ τi

0

F
(
Li(t)

)
· L̇i(t) dt.

Evaluating the integral yields results shown in Figure 6.16 and we therefore have

(6.32) A =
8∑
i=2

Ai = 151392.

Using this result along with (6.29) we find that (6.28) becomes

(6.33) φsom = 3π − 22.4207 + 15.1392 = 2.1433,

where φsom = 2E1Tsom/l = 2.1433, and so Tsom = 0.4417. Distributing this time
evenly between S1 and S9 for aesthetic reasons gives

(6.34) τ1 = τ9 = 0.2209.

Finally, we plot the components of L(t) and q(t) using τ1 and τ9 given by
(6.34) to ensure proper entry into the water. In Figure 6.17A we find Lx is anti-
symmetric, while Ly and Lz are symmetric about Tair/2. The athlete takes off in
pure somersault and uses shape change to get into twisting somersault orbit, so it
makes sense that the dynamics allowing the athlete to leave steady rotation are
the same dynamics which bring the athlete back, hence the symmetry. We solve
the equations of orientation (3.2) numerically and plot the result in Figure 6.17B,
which shows

q0(t) = q2(Tair − t) q1(t) = −q3(Tair − t).

This symmetry is a result of (6.34), and would not exist had any other choice of
distributing τ1 and τ9 been made.

6.4 From Pure Somersault to Pure Twist

The 513XD dive uses the concept of the athlete entering and exiting a faster twist
state by performing an additional pair of shape changes. For impulsive shape
changes, we showed that the optimal time to fast-kick is after a half period of
twist, so complexity of the dive aside, there is no reason why this procedure cannot
be repeated to enter even faster twisting somersault states. In this final section
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we are going to show it is possible to take off in pure somersault and reach a state
of pure twist using only appropriately timed fast-kicks.

So far we have used standard (slower) twisting somersault and faster twisting
somersault to distinguish between the different speeds of twist, but with additional
twist speeds it is easier to simply define the term twist-level Ti to represent the
different speeds of twist. The standard (slower) twisting somersault has twist-
level T1, and the faster twisting somersault has twist-level T2 or T3, depending on
whether one arm or two arms is used for the second fast-kick. Essentially the index
is the total number of times the arms have moved in favour of speeding up the
twist, where dual fast-kicks increment the index by two. Impulsive shape changes
that slow down the twist lower the index, and by convention the pure somersault
will have twist-level T0.

Lx
Ly
Lz

0.5 1.0 1.5
t

-100

-50

50
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L

(A) Trajectory of L.

q0
q1
q2
q3

0.5 1.0 1.5
t

-1.0

-0.5

0.5

1.0
q

(B) Trajectory of q.

Figure 6.17. The evolution of the angular momentum L(t) and
quaternion q(t) for the 513XD dive. The vertical dashed lines sep-
arate the different stages of the dive, from S1 to S9. The airborne
time for this simulation with l = 100 is 1.8 seconds.
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In the dive given by Figure 6.3 for the one-armed diver, we have S5 correspond-
ing to twist-level T2. Now if the diver instead remained in S5 for T5/2 duration
(as opposed to nT5) before executing the LU fast-kick in S6, then the diver would
reach twist-level T3 rather than revert back to twist-level T1.

Alternate S7 : Shape DU

scaled energy E7 =
1

2
M̃

t tJ−1M̃ = 0.1673

where M̃ = Rx(−P− X)L5(T5/2)

period of twist T7 = T (E7,
tJ) =

12.0281

l
orbit L7(t) = lRx(P)M(t; E7,

tJ, T7/4)

We now show how the diver can take off in pure somersault with twist-level T0, and
achieve twist-level T3 by simply using only the left arm in Figure 6.18. For such a
dive to then finish without twist, three more additional fast-kicks will be required,
raising the dive to a total of thirteen stages. When n twists are performed for the
complete dive, the twisting somersault time Ttwi accumulates to

(6.35) Ttwi = T3 + T5 + (n− 2)T7.

As we can see, a considerable amount of time and effort is needed for the athlete
to reach T3. One way to reduce Ttwi is to incorporate the use of the right arm
as shown in Figure 6.19. The reason this reduces Ttwi is because both the HU
fast-kick and UL fast-kick provide the same tilt in the same direction, and so the
two can be performed consecutively without pause. Hence the time wasted in

UU DU UU DU

LU
−→
S2

HU
−→
S4

LU
−→
S6

S1, T0 S3, T1 S5, T2 S7, T3

0.0243 0.0452 0.0885 0.1673
∞ 33.9610/l 17.8720/l 12.0281/l

Figure 6.18. Transition from twist-level T0 to twist-level T3 using
only the left arm. Underneath each diagram we list the stage, twist-
level, scaled energy, and period of twist.
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UU DU UD

LU
−→
S2

HU UL
−→ −→
S4

S1, T0 S3, T1 S5, T3

0.0243 0.0452 0.1673
∞ 33.9610/l 12.0281/l

Figure 6.19. A faster way to reach twist-level T3 by incorporating
the right arm for impulsive shape changes.

twist-level T2 can be avoided and we have

(6.36) cTtwi = T3 + (n− 1)T7.

We use left superscript c to differentiate quantities obtained with the consecutive
fast-kick dive. Comparing the two dives we have the scaled energy cE5 = E7, period
of twist cT5 = T7, and orbit

cL5(t) = Rx(−2P)L7(t+ T7/2).

The difference in orbit comes from the diver being in UD shape as opposed to DU
shape in twist-level T3.

Finally, the alternative to performing consecutive fast-kicks is to simply per-
form a dual fast-kick, which we covered in Chapter 6.2. The quantities obtained
with dual fast-kick will have left superscript d to distinguish them from the other
shape changing techniques. As we can see in S5 of Chapter 6.2 the period of twist
dT5 is even shorter, a result due to Y > 2X. So the accumulated time in twisting

UU DU UD

LU
−→
S2

HL
−→
S4

S1, T0 S3, T1 S5, T3

0.0243 0.0452 0.1835
∞ 33.9610/l 11.3854/l

Figure 6.20. Achieving T3 with dual fast-kick.
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Figure 6.21. The black, blue, and red loops correspond to L7, cL7,
and dL5, respectively.

motion is further reduced and we have

(6.37) dTtwi = T3 + (n− 1) dT5.

Comparing all three orbits L7, cL5, and dL5 in Figure 6.21, the dual fast-kick brings
the diver closest to the south pole corresponding to a state of pure twist, where all
somersaulting motion is abandoned and the diver only twists. The pure somersault
and pure twist states are shown in Figure 6.22. The energy ET is maximised in

(A) Pure somersault. (B) Pure twist.

Figure 6.22. The pure somersault and pure twist states.
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the state of pure twist, and with (2.56) we can show that

(6.38) ET =
l2

2 sIz
= 0.5022l2.

As this is a steady rotation the period of twist is

(6.39) TT =
2π sIz
l

=
6.2553

l
.

We now show how the athlete can take-off in a state of pure somersault and
reach the state of pure twist by only using appropriately timed fast-kicks. For
consistency we want the athlete to be in layout position (UU shape) for both the
pure somersault and pure twist states. In order to maximise the effects of the
impulsive shape changes we use dual fast-kicks whenever possible, and only use
single arm fast-kick when exiting or entering the pure somersault or pure twist
states. Using blue curves to denote rigid body stages with DU shape, red curves
for UD shape, and black curves for the transition stages, we get the L-sphere
projection shown in Figure 6.23 when the fast-kick timings are after half periods
of twist. The energy and period of twist from the pure somersault to the most
inner red loop shown in Figure 6.23 are

shape: UU DU UD DU UD
curve: black point outer blue outer red inner blue inner red
energy: 0.0243l2 0.0452l2 0.1835l2 0.3786l2 0.5058l2

period: - 33.9610/l 11.3854/l 7.5855/l 6.4984/l

Initially we see an increase in energy, the period of twist becomes shorter and the
diver approaches the pure twist state. However, continuing the strategy beyond
this point provides no further improvement, in fact it becomes worse, so a new
strategy needs to be adopted.

We realise there are two ways of entering the pure twist state, either the athlete
is in DU shape and performs the HU fast-kick, or the athlete is in UD shape and
performs the UH fast-kick, where both of these rigid body orbits are shown in
Figure 6.24. So the idea is to find a fast-kick that brings the athlete into one of
these two orbits. In Figure 6.23 the outer blue loop corresponds to L3(t) found in
Chapter 6.1, the outer red loop corresponds to dL5(t) found in Chapter 6.2, and
the first new loop is the inner blue loop.
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Ly

Lx

1 2

3

4

5

6

7

8

9

Figure 6.23. The athlete takes off in pure somersault state indi-
cated by the black point on the Ly axis, performs the LU fast-kick
to enter the rigid body orbit indicated by the outer blue loop, and
performs dual fast-kicks at half periods of twist in order to approach
the pure twist state indicated by the black point at the origin, which
corresponds to point (0, 0,−l) on the L-sphere. Each dual fast-
kick interchanges the arm positions between DU and UD, hence the
changes in colour. The numbers labelled help distinguish the dif-
ferent stages, as the LU fast-kick of S2 cannot be seen due to the
projection of the L-sphere.

Ly

Lx

Figure 6.24. Both of the rigid body orbits shown have a fast-
kick timing that reaches the pure twist state. The light blue orbit
corresponds to shape DU and light red shape UD.
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inner blue loop Shape DU

scaled energy dE7 =
1

2
M̃

t tJ−1M̃ = 0.3786

where M̃ = Rx(−P− Y) dL5(dT5/2)

period of twist dT7 = T (dE7,
tJ) =

7.5855

l

orbit dL7(t) = lRx(P)M(t; dE7,
tJ, dT7/4)

The goal now is to see if there exists a τ7 in S7 that lets the HL fast-kick of S8

land on a point laying on the light red loop shown in Figure 6.24.
The family of possible initial conditions of S9 is given by

(6.40) dL9(0; τ7) = Rx(Y) dL7(τ7),

so we plot this as the red dashed loop in Figure 6.25. There are two solutions for
τ7 corresponding to the two intersections shown in Figure 6.25, but the desired
solution is

(6.41) τ7 = 0.4607 dT7 = 3.4946/l,

because it allows the athlete to move into the pure twisting state earlier (the other
solution being τ7 = 0.5393 dT7 will be ignored). The orbit in S9 is then

(6.42) dL9(t) = lRx(−P)M(t; 0.4996, tJ, 4.1028),

Ly

Lx

7

9

Figure 6.25. The blue loop is the orbit dL7(t) (labelled as 7), the
light red solid loop is the desired orbit in S9 (labelled as 9) which
is one fast-kick away from the pure twist state, and the red dashed
loop is the family of initial conditions for S9 given by (6.40).
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where one last UH fast-kick after

(6.43) τ9 = 0.6228 dT9 = 4.0735/l

time in S9 brings the athlete to the state of pure twist. Thus the goal of transi-
tioning from a state of pure somersault to a state of pure twist has been obtained
through the use of five fast-kicks. The dive sequence needed in order to achieve
this is shown in Figure 6.26, and the corresponding L-sphere projection is shown in
Figure 6.27. Although the same effect can be found in Yeadon’s thesis [60] (page
323), both the model and arm movement presented here are different. Yeadon uses
three complete cycles of arm movement initiating from pretwist layout (similar to
layout position except with arms outstretched horizontally) whereas we use five
impulsive shape changes as indicated in Figure 6.26.

The minimum time required to reach the state of pure twist from take-off is
30.2413/l, so in theory the fast-kick model allows the athlete to take off in pure
somersault, reach pure twist, and return to pure somersault with sufficient time to

UU DU UD

LU
−→

HL
−→

Ei: 0.0243 0.0452 0.1835
τi: - 16.9805/l 5.6927/ly LU

DU UD DU

UH
←−

HL
←−

Ei: 0.5022 0.4996 0.3786
τi: - 4.0735/l 3.4946/l

Figure 6.26. Sequence of impulsive shape changes to transition
from a state of pure somersault to state of pure twist, where
i = 1, 2, 3 for top and 11, 9, 7 for bottom.
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Ly

Lx

1 2

3

4

5

6

7

8

9

10

11

Figure 6.27. L-sphere projection of the dive taking off in pure
somersault and transitioning into pure twist. The dive takes 10
stages to reach pure twist, where each stage is labelled accordingly.

complete the dive. However, with realistic arm motions taking a quarter second
each, this makes it impossible in Olympic diving as Tair < 2, but in sports (possibly
in for example, high diving or aerial skiing) where Tair is large enough, a realistic
version of this dive could in principle be performed.
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APPENDIX A

Diving Accidents and Common Injuries

All pools with a diving board and stand must meet the minimum water depths set
forth by the International Swimming Federation (FINA) for safety purposes. The
FINA facility rule FR 5.3.1 states that the minimum depth of water at plummet
is 3.7m for the 3m springboard and 4.5m for the 10m platform. However, these
numbers are only minimum requirements and pools may in fact have greater water
depths. Now if a diver trains in a pool with FINA’s preferred depth of 5m (instead
of the 4.5m minimum) but competes in a pool with shallower water depth, then he
or she will approach the bottom of the pool much quicker than they are accustomed
to. The reduced time may be enough to cause injury if the diver does not make
the necessary adjustments upon entry into the water.

Some of the worst diving accidents recorded involve the athlete hitting their
head at the bottom of the pool and sustaining a life changing injury of paralysis
(e.g. Dr Charles Krauthammer). It is therefore imperative for all divers (both
recreational and competitive alike) to always check the pool depth, which is either
specified on the pool deck or the side of the pool. The diver should be prepared
to readily make the necessary adjustments based on pool depth to ensure safe
diving. Although recreational diving injuries are often severe and catastrophic,
they are mostly preventable. Of all spinal cord injuries, up to 75% are due to
diving mishaps [32] and 10% to 20% of all hospital spinal cord admissions the
direct result of diving accidents [4], [32] and [53].

However, at the other end of the spectrum competitive diving is a relatively
safe sport that is rarely associated with catastrophic injury. A case study in
2004 by Badman and Rechtine [3] found that only two deaths have been reported
worldwide, both of which involved the diver hitting their head during a reverse
somersaulting platform dive.

The acrobatic manoeuvres used in diving resemble those found in gymnastics,
so it is not surprising that divers often have a gymnastics background. Most of
the athletes who transitioned from gymnastics to diving feel safer diving head-first
into water than feet-first onto a mat. Coaches generally also agree that diving is
a safer alternative to gymnastics (provided that safety precautions are taken) due
to the lower injury rate resulting from reduced stress on knee and elbow joints.
While sporting accidents are always expected (even at the elite level), some are
not actually related to diving at all, e.g. slipping on the platform stairs. However,
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the most horrific diving stories involve the athlete taking off incorrectly and hit-
ting their head on the springboard or platform. Although rare at elite levels it
does happen occasionally, e.g. at the 1988 Seoul Olympics, Greg Louganis hit his
head on the springboard after take-off, and Monique Gladding struck her head on
the diving platform during a synchronised dive at the 2011 World Cup in Penza,
Russia. Fortunately, neither athlete sustained life changing injuries. Accidents
like these occur because athletes often push the physical boundaries of what can
be achieved, increasing the number of somersaults and thus angular momentum
requirements. However, the trade off between horizontal velocity and angular
momentum at take-off means that if athletes were to generate more horizontal
velocity (to have a larger safety margin of clearing the board or platform), the re-
sulting reduction in angular momentum may prevent the athlete from successfully
completing the dive.

Diving accidents involving athletes hitting the platform or springboard after
take-off, or hitting their head at the bottom of the pool, generally occur at the
recreational level of diving and are uncommon at the competitive level. Instead,
competitive divers are typically more prone to overuse injuries and those sustained
from ‘dry land’ training, the latter of which normally incorporates weight training,
the use of spotting belts, trampolines, and/or springboards.

Common diving injuries involve the shoulder, neck, elbow, knee, wrist, and
lower back pain. Most of these injuries are due to overuse and are usually sustained
during entry into the pool, where the force of impact between the athlete and water
is exhibited.

We now briefly summarise these injuries. Shoulder injuries typically occur
when the athlete’s arms are extended overhead and get pushed back upon impact,
occasionally causing an immediate dislocation of the shoulder joint from the socket,
and can be prevented with the help of strength training exercises. A neck injury
is usually associated with repetitive extension of the neck upon entry into the
water, which can cause irritation on the neck joints. Elbow injuries are usually
sustained due to the elbow being hyperextended upon entry into the pool, but
can be prevented with proper technique. Wrist and hand injuries are the result of
overuse; each time the athlete enters the water they essentially punch a hole in the
surface with their hands open placed atop one another with palms facing down,
causing the wrist to bend backwards upon impact with the water. Doing this
repetitively causes pain, swelling, stiffness, and irritation of the wrist joint, but
can be usually managed by taping or bracing the wrist as well as rest, ice and non-
steroidal anti-inflammatory drugs. Back pain is mostly an overuse injury, usually
associated with arching or extending the back too much, and can be managed or
reduced by improving one’s flexibility, core strength and the use of a back brace.
Knee injuries often result from jumping, which puts pressure on the kneecap and
can lead to pain in the front of the knee; however, these injuries can also be
sustained from ‘dry land’ training.
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Dive Number

A dive number is an alphanumeric code that describes precisely the dive that is
to be performed by the athlete. If there is ever any doubt as to what dive is to
be executed by the diver, then the dive number will always take precedence. For
example, if an athlete specifies on the dive sheet forward 2.5 somersault in pike
for the description and 105C (forward 2.5 somersault in tuck) for the dive num-
ber, then the athlete must perform the forward 2.5 somersault in tuck or incur a
penalty. A dive number always begins with three or four numerals followed by a
letter, which will now be explained for various dives.

The first digit in a dive number describes the group of the dive and will always be:

Forward dives - 1
Back dives - 2

Reverse dives - 3
Inward dives - 4

Twisting dives - 5
Armstand dives - 6.

The dive numbers for the forward, back, reverse and inward groups always con-
tain three numerals followed by a letter, while twisting dives have four numerals
followed by a letter. The only exception is the armstand dive, which could have
either three or four numerals (depending on whether twists are present) followed
by a letter.

The second digit for the first four dive groups (forward, back, reverse and inward)
is:

Somersault - 0
Flying Somersault - 1.

155



156 B. Dive Number

Continuing on, the third digit describes the number of half somersaults, that is:

0.5 (a dive) - 1
1 Somersault - 2

1.5 Somersaults - 3
2 Somersaults - 4

2.5 Somersaults - 5
3 Somersaults - 6

3.5 Somersaults - 7
4 Somersaults - 8

4.5 Somersaults - 9.

Finally, the letter denotes flight position. The letters are:

Straight - A
Pike - B
Tuck - C
Free - D.

Note that the free (D) position can only be adopted for twisting somersaults, and
is only listed here for completeness (it does not actually appear in the first four
dive groups).

Now if the first number is either a five or six (to denote twisting or armstand
dives), then the second number describes the type of somersault. That is,

Forward somersaults - 1
Backward somersaults - 2

Reverse somersaults - 3
Inward somersaults - 4.

The third number counts the number of half somersaults, and if applicable, the
fourth number counts the number of half twists.

Here are some examples of dive numbers with their corresponding dive description:

• 105A is a forward 2.5 somersaults in straight position
• 313C is a reverse flying 1.5 somersaults in tuck position
• 5434D is an inward 1.5 somersaults with 2 twists, the D indicates the dive

is in the free position
• 631B is an armstand reverse 0.5 somersault in pike
• 6261C is an armstand backward triple somersault with 0.5 twist in tuck



APPENDIX C

Dive Score

A dive score consists of two components multiplied together - the judges score and
the degree-of-difficulty.

Judges Score

For the individual event a panel of seven judges preside over major international
events (including the Olympic Games); however, panels of five judges are usually
used in smaller competitive events. Each judge scores the dive out of 10, awarding
up to 3 points in each of the following categories: quality of take-off, execution
(flight through the air), and entry into the water. The remaining point serves as
a bonus which may be awarded in any of the three categories. It should be noted
that these points are awarded without regard for the dive’s degree-of-difficulty,
which is considered separately.

The highest and lowest scores from the judges are discarded, leaving five scores
to be added together and then multiplied by 3/5 to yield the judges score. The
system of discarding the extreme scores promotes fairness by making it difficult
for a single judge to manipulate the dive scores, while the ratio of 3/5 is used
to ensure consistent comparison with other events using a five judge panel. The
seven judge procedure was recently modified in the 2012 London Olympic Games
by discarding the two highest and lowest scores (instead of the single highest and
lowest) to leave only three scores to be summed, thereby evading the need for the
3/5 factor.

For the synchronised event the preferred number of judges is eleven, although
smaller competitions may use a panel of only seven or nine. In an eleven judge
panel, three are assigned to each diver to score the dive like the individual event,
and the remaining five judges are used to score the synchronisation. The highest
and lowest execution scores are discarded, leaving one execution score per diver.
The highest and lowest synchronisation scores are also discarded, leaving three
synchronisation scores for the duo. These five scores are then summed and multi-
plied by 3

5
to provide consistency with other events that may use the seven judge
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panel. The judges score is then multiplied by the degree-of-difficulty to obtain the
dive score, much like the individual event.

If a nine judge panel is used instead of eleven, then only two judges (instead of
three) are assigned to score each diver on execution. From a pool of four execution
scores, the highest and lowest scores are discarded to leave only two remaining
scores, while the synchronisation component remains the same. The seven judge
panel functions much like the nine judge panel but with 2 exceptions - only 3
judges score the synchronisation (instead of 3), and the 3/5 factor is not needed.

Degree-of-Difficulty

Completing a backward 3.5 somersault in pike (207B) is clearly more difficult than
a forward 2.5 somersault in tuck (105C), but the difference in difficulty is hard to
evaluate. Such problems led to the development of the degree-of-difficulty, which
helps to rank dives according to their difficulty. FINA defines degree-of-difficulty
to incorporate all the elements of a dive that influence its difficulty, such as the
number of somersaults and/or twists performed, the dive group (e.g. forward),
flight position (e.g. pike), and natural (head-first) or unnatural (feet-first) type of
entry into the pool. The formula is calculated by summing

A+B + C +D + E,

where each letter corresponds to the value given in the following tables which are
updated on a regular basis every few years. For simplicity the standard degree-
of-difficulty tables sourced from http://www.fina.org/content/diving-rules are in-
cluded for both springboard and platform diving, accurate as of 2015.



Dive Pos Height A B C D E DD
309 B 3 3.5 0.5 0.0 0.3 0.4 4.7
309 C 3 3.5 0.2 0.0 0.3 0.4 4.4
5255 B 3 2.2 0.3 1.1 0.2 0 3.8
313 C 3 1.5 0.2 0 0.3 0.2 2.2

FINA DEGREE OF DIFFICULTY - FORMULA AND COMPONENTS
SPRINGBOARD

Note: Degree of Difficulty (DD) is calculated by adding: A + B + C + D + E = DD 

A. Somersaults

Level / Somersault 0 ½ 1 1½ 2 2½ 3 3½ 4 4½
1m 0.9 1.1 1.2 1.6 2.0 2.4 2.7 3.0 3.3 3.8
3m 1.0 1.3 1.3 1.5 1.8 2.2 2.3 2.8 2.9 3.5

B. Flight Position For flying dives add fly position (E) to either (B) or (C) Position

0 - 1 Somersault 1½ - 2 Somersaults 2½ Somersaults 3 - 3½ Somersaults 4 - 4½ Somersaults
Fwd Back Rev Inw Fwd Back Rev Inw Fwd Back Rev Inw Fwd Back Rev Inw Fwd Back Rev Inw

C =Tuck 0.1 0.1 0.1 -0.3 0 0 0 0.1 0 0.1 0 0.2 0 0 0 0.3 0 0.1 0.2 0.4
B = Pike 0.2 0.2 0.2 -0.2 0.1 0.3 0.3 0.3 0.2 0.3 0.2 0.5 0.3 0.3 0.3 0.6 0.4 0.4 0.5 0.8
A = Str 0.3 0.3 0.3 0.1 0.4 0.5 0.6 0.8 0.6 0.7 0.6 - - - - - - - - -
D = Free 0.1 0.1 0.1 -0.1 0 -0.1 -0.1 0.2 0 -0.1 -0.2 0.4 0 0 0 - - - - -
E = Fly 0.2 0.1 0.1 0.4 0.2 0.2 0.2 0.5 0.3 0.3 0.3 0.7 0.4 - - - - - - -

Seven of the above components have negative values. Dashes indicate dives that currently are not possible.

C. Twists

Group

½
Twist
½ - 1
Som.

½
Twist
1 ½ - 2
Som.

½
Twist
2 ½

Som.

½
Twist
3 - 3 ½
Som.

1
Twist

1 ½
Twists
½ - 2
Som.

1 ½
Twists
2½-3½ 
Som.

2
Twists

2 ½
Twist
½ - 2
Som.

2 ½
Twists
2½-3½ 
Som.

3
Twists

3 ½
Twists

4
Twists

4 ½
Twists

Fwd. 0.4 0.4 0.4 0.4 0.6 0.8 0.8 1.0 1.2 1.2 1.5 1.6 1.9 2.0
Back 0.2 0.4 0 0 0.4 0.8 0.7 0.8 1.2 1.1 1.4 1.7 1.8 2.1
Rev. 0.2 0.4 0 0 0.4 0.8 0.6 0.8 1.2 1.0 1.4 1.8 1.8 2.1
Inw. 0.2 0.4 0.2 0.4 0.4 0.8 0.8 0.8 1.2 1.2 1.5 1.6 1.9 2.0

(1) Dives with ½ somersault and twists can only be executed in positions A, B, or C,
(2) Dives with 1 or 1 ½ somersaults and twists can only be executed in position D,
(3) Dives with 2 or more somersaults and twists can only be executed in positions B or C

D. Approach

Level Forward
½ - 3½ Som.

Forward
4 – 4 ½ Som.

Back
½ - 3 Som.

Back
3½ - 4½ Som.

Reverse
½ - 3 Som.

Reverse
3½ - 4½ Som.

Inward
½ - 1 Som.

Inward
1½ - 4½ Som.

1m 0 0.5 0.2 0.6 0.3 0.5 0.6 0.5
3m 0 0.3 0.2 0.4 0.3 0.3 0.3 0.3

E. Unnatural Entry (does not apply to twisting dives)

Group ½ Som. 1 Som. 1½ Som. 2 Som. 2½ Som. 3 Som. 3½ Som. 4 Som. 4½ Som.
Forward / Inward - 0.1 - 0.2 - 0.2 - 0.2 -
Back / Reverse 0.1 - 0.2 - 0.3 - 0.4 - 0.4

A value indicates the diver does not see the water before the entry. The component is the same at all levels.
(-) indicates the diver does see the water before the entry. The component is the same at all levels.

Examples

Dive Pos Height A B C D E DD
207 B 3 2.8 0.3 0.0 0.4 0.4 3.9
207 C 3 2.8 0.0 0.0 0.4 0.4 3.6
5253 B 3 2.2 0.3 0.7 0.2 0 3.4
5355 B 3 2.2 0.2 1.0 0.3 0 3.7

FINA DD Formula and Components



FINA DD Formula and Components 

FINA TABLE OF DEGREES OF DIFFICULTY 
SPRINGBOARD 

In the following table, a dive with (-) is not possible and dives with empty spaces have not been calculated 

SPRINGBOARD 1 METER 3 METER 
STR PIKE TUCK FREE STR PIKE TUCK FREE 

Forward Group A B C D A B C D 
101 Forward Dive 1.4 1.3 1.2 - 1.6 1.5 1.4 - 
102 Forward Somersault 1.6 1.5 1.4 - 1.7 1.6 1.5 - 
103 Forward 1½ Somersaults 2.0 1.7 1.6 - 1.9 1.6 1.5 - 
104 Forward 2 Somersaults 2.6 2.3 2.2 - 2.4 2.1 2.0 - 
105 Forward 2½ Somersaults 2.6 2.4 - 2.8 2.4 2.2 - 
106 Forward 3 Somersaults 3.2 2.9 - 2.8 2.5 - 
107 Forward 3½ Somersaults 3.3 3.0 - 3.1 2.8 - 
108 Forward 4 Somersaults 4.0 - 3.8 3.4 - 
109 Forward 4½ Somersaults 4.3 - 4.2 3.8 - 
112 Forward Flying Somersault - 1.7 1.6 - - 1.8 1.7 - 
113 Forward Flying 1½ Somersaults - 1.9 1.8 - - 1.8 1.7 - 
115 Forward Flying 2½ Somersaults - - - 2.7 2.5 - 

Back Group A B C D A B C D 
201 Back Dive 1.7 1.6 1.5 - 1.9 1.8 1.7 - 
202 Back Somersault 1.7 1.6 1.5 - 1.8 1.7 1.6 - 
203 Back 1½ Somersaults 2.5 2.3 2.0 - 2.4 2.2 1.9 - 
204 Back 2 Somersaults 2.5 2.2 - 2.5 2.3 2.0 - 
205 Back 2½ Somersaults 3.2 3.0 - 3.0 2.8 - 
206 Back 3 Somersaults 3.2 2.9 - 2.8 2.5 - 
207 Back 3½ Somersaults - 3.9 3.6 - 
208 Back 4 Somersaults - 3.7 3.4 - 
209 Back 4½ Somersaults - 4.7 4.4 - 
212 Back Flying Somersault - 1.7 1.6 - - 1.8 1.7 - 
213 Back Flying 1½ Somersaults - - - 2.4 2.1 - 
215 Back Flying 2½ Somersaults - - - 3.3 3.1 - 

Reverse Group A B C D A B C D 
301 Reverse Dive 1.8 1.7 1.6 - 2.0 1.9 1.8 - 
302 Reverse Somersault 1.8 1.7 1.6 - 1.9 1.8 1.7 - 
303 Reverse 1½ Somersaults 2.7 2.4 2.1 - 2.6 2.3 2.0 - 
304 Reverse 2 Somersaults 2.9 2.6 2.3 - 2.7 2.4 2.1 - 
305 Reverse 2½ Somersaults 3.2 3.0 - 3.4 3.0 2.8 - 
306 Reverse 3 Somersaults 3.3 3.0 - 2.9 2.6 - 
307 Reverse 3½ Somersaults - 3.8 3.5 - 
308 Reverse 4 Somersaults - 3.7 3.4 - 
309 Reverse 4½ Somersaults - 4.7 4.4 - 
312 Reverse Flying Somersault - 1.8 1.7 - - 1.9 1.8 - 
313 Reverse Flying 1½ Somersaults - 2.6 2.3 - - 2.5 2.2 - 

Inward Group A B C D A B C D 
401 Inward Dive 1.8 1.5 1.4 - 1.7 1.4 1.3 - 
402 Inward Somersault 2.0 1.7 1.6 - 1.8 1.5 1.4 - 
403 Inward 1½ Somersaults 2.4 2.2 - 2.1 1.9 - 
404 Inward 2 Somersaults 3.0 2.8 - 2.6 2.4 - 
405 Inward 2½ Somersaults 3.4 3.1 - 3.0 2.7 - 
407 Inward 3½ Somersaults - 3.7 3.4 - 
409 Inward 4½ Somersaults - 4.6 4.2 -- 
412 Inward Flying Somersault - 2.1 2.0 - - 1.9 1.8 - 
413 Inward Flying 1½ Somersaults - 2.9 2.7 - - 2.6 2.4 - 



FINA DD Formula and Components 

1 METER 3 METER 
Twisting Group A B C D A B C D 

5111 Forward Dive ½ Twist 1.8 1.7 1.6 - 2.0 1.9 1.8 - 
5112 Forward Dive 1 Twist 2.0 1.9 - 2.2 2.1 - 
5121 Forward Somersault ½ Twist - - - 1.7 - - - 1.8 
5122 Forward Somersault 1 Twist - - - 1.9 - - - 2.0 
5124 Forward Somersault 2 Twists - - - 2.3 - - - 2.4 
5126 Forward Somersault 3 Twists - - - 2.8 - - - 2.9 
5131 Forward 1½ Somersaults ½ Twist - - - 2.0 - - - 1.9 
5132 Forward 1½ Somersaults 1 Twist - - - 2.2 - - - 2.1 
5134 Forward 1½ Somersaults 2 Twists - - - 2.6 - - - 2.5 
5136 Forward 1½ Somersaults 3 Twists - - - 3.1 - - - 3.0 
5138 Forward 1½ Somersaults 4 Twists - - - 3.5 - - - 3.4 
5151 Forward 2½ Somersaults ½ Twist - 3.0 2.8 - - 2.8 2.6 - 
5152 Forward 2½ Somersaults 1 Twist - 3.2 3.0 - - 3.0 2.8 - 
5154 Forward 2½ Somersaults 2 Twists - 3.6 3.4 - - 3.4 3.2 - 
5156 Forward 2½ Somersaults 3 Twists - - - 3.9 3.7 - 
5172 Forward 3½ Somersaults 1 Twist - - - 3.7 3.4 - 

5211 Back Dive ½ Twist 1.8 1.7 1.6 - 2.0 1.9 1.8 - 
5212 Back Dive 1 Twist 2.0 - 2.2 - 
5221 Back Somersault ½ Twist - - - 1.7 - - - 1.8 
5222 Back Somersault 1 Twist - - - 1.9 - - - 2.0 
5223 Back Somersault 1½ Twists - - - 2.3 - - - 2.4 
5225 Back Somersault 2½ Twists - - - 2.7 - - - 2.8 
5227 Back Somersault 3½ Twists - - - 3.2 - - - 3.3 
5231 Back 1½ Somersaults ½ Twist - - - 2.1 - - - 2.0 
5233 Back 1½ Somersaults 1½ Twists - - - 2.5 - - - 2.4 
5235 Back 1½ Somersaults 2½ Twists - - - 2.9 - - - 2.8 
5237 Back 1½ Somersaults 3½ Twists - - - - - - - 3.3 
5239 Back 1½ Somersaults 4½ Twists - - - - - - - 3.7 
5251 Back 2½ Somersaults ½ Twist - 2.9 2.7 - - 2.7 2.5 - 
5253 Back 2½ Somersaults 1½ Twists - - - 3.4 3.2 - 
5255 Back 2½ Somersaults 2½ Twists - - - 3.8 3.6 - 

5311 Reverse Dive ½ Twist 1.9 1.8 1.7 - 2.1 2.0 1.9 - 
5312 Reverse Dive 1 Twist 2.1 - 2.3 - 
5321 Reverse Somersault ½ Twist - - - 1.8 - - - 1.9 
5322 Reverse Somersault 1Twist - - - 2.0 - - - 2.1 
5323 Reverse Somersault 1½ Twists - - - 2.4 - - - 2.5 
5325 Reverse Somersault 2½ Twists - - - 2.8 - - - 2.9 
5331 Reverse 1½ Somersaults ½ Twist - - - 2.2 - - - 2.1 
5333 Reverse 1½ Somersaults 1½ Twists - - - 2.6 - - - 2.5 
5335 Reverse 1½ Somersaults 2½ Twists - - - 3.0 - - - 2.9 
5337 Reverse 1½ Somersaults 3½ Twists - - - 3.6 - - - 3.5 
5339 Reverse 1½ Somersaults 4½ Twists - - - - - - - 3.8 
5351 Reverse 2½ Somersaults ½ Twist - 2.9 2.7 - - 2.7 2.5 - 
5353 Reverse 2½ Somersaults 1½ Twists - 3.5 3.3 - - 3.3 3.1 - 
5355 Reverse 2½ Somersaults 2½ Twists - 3.9 3.7 - - 3.7 3.5 - 
5371 Reverse 3½ Somersaults ½ Twist - - - 3.4 3.1 - 
5373 Reverse 3½ Somersaults 1½ Twists - - - 3.7 - 
5375 Reverse 3½ Somersaults 2 ½ Twists - - - 4.1 - 

5411 Inward Dive ½ Twist 2.0 1.7 1.6 - 1.9 1.6 1.5 - 
5412 Inward Dive 1 Twist 2.2 1.9 1.8 - 2.1 1.8 1.7 - 
5421 Inward Somersault ½ Twist - - - 1.9 - - - 1.7 
5422 Inward Somersault 1 Twist - - - 2.1 - - - 1.9 
5432 Inward 1½ Somersaults 1 Twist - - - 2.7 - - - 2.4 
5434 Inward 1½ Somersaults 2 Twists - - - 3.1 - - - 2.8 
5436 Inward 1½ Somersaults 3 Twists - - - - - - 3.5 



FINA DD Formula and Components 

FINA DEGREE OF DIFFICULTY - FORMULA AND COMPONENTS 
PLATFORM 

Note: Degree of Difficulty (DD) is calculated by adding: A + B + C + D + E = DD 

A. Somersaults 

Level 0 ½ 1 1½ 2 2½ 3 3½ 4 4½ 5½ 
5m 0.9 1.1 1.2 1.6 2.0 2.4 2.7 3.0 - - - 

7½m 1.0 1.3 1.3 1.5 1.8 2.2 2.3 2.8 3.5 3.5 - 
10m 1.0 1.3 1.4 1.5 1.9 2.1 2.5 2.7 3.5 3.5 4.5 

B. Flight Position For flying dives add fly position (E) to either (B) or (C) Position 

0 - 1 Somersault 1½ - 2 Somersaults 2½ Somersaults 3 - 3½ Somersaults 4 - 4½ Somersaults 5½ Som 
Fwd Back Rev Inw Arm Fwd Back Rev Inw Arm Fwd Back Rev Inw Arm Fwd Back Rev Inw Arm Fwd Back Rev Inw Arm Fwd 

C = Tuck 0.1 0.1 0.1 -0.3 0.1 0 0 0 0.1 0 0 0.1 0 0.2 0.1 0 0 0 0.3 0.2 0 0.1 0.3 0.4 0.3 0 
B = Pike 0.2 0.2 0.2 -0.2 0.3 0.1 0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.5 0 0.3 0.3 0.3 0.6 0.4 0.4 0.4 0.6 0.7 0.5 - 
A = Strait 0.3 0.3 0.3 0.1 0.4 0.4 0.5 0.6 0.8 0.5 0.6 0.7 0.6 - - - - - - - - - - - - - 
D = Free 0.1 0.1 0.1 -0.1 0 0 -0.1 -0.1 0.2 0 0 -0.1 -0.2 0.4 0 0 0 0 - - - - - - - - 
E = Fly 0.2 0.1 0.1 0.4 - 0.2 0.2 0.2 0.5 - 0.3 0.3 0.3 0.7 - 0.4 - - - - - - - - - - 
Seven of the above components have negative values. Dashes indicate dives that currently are not possible. 

C. Twists  

Group 
½ Twist 

½ - 1 
Som. 

½ Twist 
1½ - 2 
Som. 

½ Twist 
2½ 

Som. 

½ Twist 
3 - 3½ 
Som. 

 
1 

Twist 

1½ 
Twists 
½ - 2 
Som. 

1½ 
Twists 
2½ - 3½ 

Som. 

2 
Twists 

2½ 
Twists 
½ - 2 
Som. 

2½ 
Twists 
2½ - 3½ 

Som. 

3 
Twists 

3½ 
Twists 
½ - 2 
Som. 

3½ 
Twists 
2½ - 3½ 

Som. 

4 
Twists 

4½ 
Twists 
½ - 2 
Som. 

4½ 
Twists 
2½ - 3½ 

Som. 
Forward 0.4 0.4 0.4 0.4 0.6 0.8 0.8 1.0 1.2 1.2 1.5 1.6 1.6 1.9 2.0 2.0 

Back 0.2 0.4 0 0 0.4 0.8 0.6 0.8 1.2 1.0 1.4 1.7 1.5 1.8 2.1 1.9 
Reverse 0.2 0.4 0 0 0.4 0.8 0.6 0.8 1.2 1.0 1.4 1.7 1.5 1.8 2.1 1.9 
Inward 0.2 0.4 0.2 0.4 0.4 0.8 0.8 0.8 1.2 1.2 1.5 1.6 1.6 1.9 2.0 2.0 

Arm. Forw. 0.4 0.5 0.5 0.4 1.2 1.3 1.3 1.5 1.7 1.7 1.9 2.1 2.1 2.3 2.5 2.5 
Arm. Back / Rev 0.4 0.5 0.5 0.5 1.2 1.3 1.3 1.3 1.7 1.7 1.9 2.1 2.1 2.3 2.5 2.5 
(1) Dives with ½ somersault and twists can only be executed in positions A, B, or C, 
(2) Dives with 1 or 1½ somersaults and twists can only be executed in position D, 
(3) Dives with 2 or more somersaults and twists can only be executed in positions B or C, 
(4) Armstand dives with 1, 1½, or 2 somersaults and one or more twists can only be executed in position D, and 
(5) Armstand dives with 2½ or more somersaults and twist can only be executed in positions B or C 

D. Approach Forward-, Back-, Reverse-, Inward-, and Twisting Groups 

Level 
Forward 
½ - 3½ 
Soms. 

Forward 
4 - 5½ 
Soms. 

Back 
½ - 3 

Soms. 

Back 
3½ - 4½ 
Soms. 

Reverse 
½ - 2 

Soms. 

Reverse 
2½ - 3 
Soms. 

Reverse 
3½ - 4½ 
Soms. 

Inward 
½ - 1 

Soms. 

Inward 
1½ - 4½ 
Soms. 

5m 0 0.5 0.2 0.5 0.3 0.4 0.6 0.6 0.5 
7.5m 0 0.3 0.2 0.3 0.3 0.4 0.4 0.3 0.3 
10m 0 0.2 0.2 0.2 0.3 0.4 0.3 0.3 0.2 

D. Approach Armstand Group (Does not apply to armstand dives with twists) 

Level 
Armstand 

Forward with 
0 - 2 Soms. 

Armstand 
Forward with more 

than 2 Soms 

Armstand 
Back with 

0 - ½ Soms. 

Armstand 
Back with 

1 - 4 Soms. 

Armstand 
Reverse with 
0 - ½ Som. 

Armstand 
Reverse with 
1 - 4 Soms. 

5m / 7.5m / 10m 0.2 0.4 0.2 0.4 0.3 0.5 



FINA DD Formula and Components 

Dive Pos Hght A B C D E DD 
309 B 10 3.5 0.6 0.0 0.3 0.4 4.8 
309 C 10 3.5 0.3 0.0 0.3 0.4 4.5 
5371 C 10 2.7 0.0 0.0 0.3 0.0 3.0 
6247 D 10 1.9 0.0 2.1 0.0 0.0 4.0 

E. Unnatural Entry (does not apply to twisting dives) 

Group ½ Som. 1 Som. 1½ Som. 2 Som. 2½ Som. 3 Som. 3½ Som. 4 Som. 4½ Som. 5½ Som. 
Forward / Inward - 0.1 - 0.2 - 0.2 - 0.0 - - 
Back / Reverse 0.1 - 0.2 - 0.3 - 0.4 - 0.4 0.0 
Armstand Back / Reverse - 0.1 - 0.2 - 0.2 - 0.3 - - 
Armstand Forward 0.1 - 0.2 - 0.3 - 0.4 - 0.4 0.0 

A value indicates the diver does not see the water before the entry. The component is the same at all levels. 
(-) indicates the diver does see the water before the entry. The component is the same at all levels. 

Examples 

Dive Pos Hght A B C D E DD 
307 B 10 2.7 0.3 0.0 0.3 0.4 3.7 
307 C 10 2.7 0.0 0.0 0.3 0.4 3.4 
5371 B 10 2.7 0.3 0.0 0.3 0.0 3.3 
5257 B 10 2.1 0.3 1.5 0.2 0.0 4.1 



FINA DD Formula and Components 

FINA TABLE OF DEGREES OF DIFFICULTY 
PLATFORM 

In the following table, a dive with (-) is not possible and dives with empty spaces have not been calculated. 

PLATFORM 10 METER 7.5 METER 5 METER 
STR PIKE TUCK FREE STR PIKE TUCK FREE STR PIKE TUCK FREE 

Forward Group A B C D A B C D A B C D 
101 Forward Dive 1.6 1.5 1.4 - 1.6 1.5 1.4 - 1.4 1.3 1.2 - 
102 Forward 1 Somersault 1.8 1.7 1.6 - 1.7 1.6 1.5 - 1.6 1.5 1.4 - 
103 Forward 1 ½ Somersaults 1.9 1.6 1.5 - 1.9 1.6 1.5 - 2.0 1.7 1.6 - 
104 Forward 2 Somersaults 2.5 2.2 2.1 - 2.4 2.1 2.0 - 2.6 2.3 2.2 - 
105 Forward 2½ Somersaults 2.7 2.3 2.1 - 2.4 2.2 - 2.6 2.4 - 
106 Forward 3 Somersaults 3.0 2.7 - 2.8 2.5 - 3.2 2.9 - 
107 Forward 3½ Somersaults 3.0 2.7 - 3.1 2.8 - 3.0 - 
108 Forward 4 Somersaults 4.1 3.7 - - - 
109 Forward 4½ Somersaults 4.1 3.7 - - - 
1011 Forward 5½ Somersaults 4.7 - - - 
112 Forward Flying Somersaults - 1.9 1.8 - - 1.8 1.7 - - 1.7 1.6 - 
113 Forward Flying 1½ Somersaults - 1.8 1.7 - - 1.8 1.7 - - 1.9 1.8 - 
114 Forward Flying 2 Somersaults - 2.4 2.3 - - 2.3 2.2 - - 2.5 2.4 - 
115 Forward Flying 2½ Somersaults - 2.6 2.4 - - 2.5 - - - 

Back Group A B C D A B C D A B C D 
201 Back Dive 1.9 1.8 1.7 - 1.9 1.8 1.7 - 1.7 1.6 1.5 - 
202 Back 1 Somersault 1.9 1.8 1.7 - 1.8 1.7 1.6 - 1.7 1.6 1.5 - 
203 Back 1½ Somersaults 2.4 2.2 1.9 - 2.4 2.2 1.9 - 2.5 2.3 2.0 - 
204 Back 2 Soms Somersaults 2.6 2.4 2.1 - 2.5 2.3 2.0 - 2.5 2.2 - 
205 Back 2½ Somersaults 3.3 2.9 2.7 - 3.0 2.8 - 3.2 3.0 - 
206 Back 3 Somersaults 3.0 2.7 - 2.8 2.5 - 3.2 2.9 - 
207 Back 3½ Somersaults 3.6 3.3 - 3.5 - - 
208 Back 4 Somersaults 4.1 3.8 - 4.2 3.9 - 4.4 4.1 - 
209 Back 4½ Somersaults 4.5 4.2 - - - 
212 Back Flying Somersaults - 1.9 1.8 - - 1.8 1.7 - - 1.7 1.6 - 
213 Back Flying 1½ Somersaults - 2.4 2.1 - - 2.4 2.1 - - 2.5 2.2 - 
215 Back Flying 2 ½ Somersaults - 3.2 3.0 - - - - - 

Reverse Group A B C D A B C D A B C D 
301 Reverse Dive 2.0 1.9 1.8 - 2.0 1.9 1.8 - 1.8 1.7 1.6 - 
302 Reverse 1 Somersault 2.0 1.9 1.8 - 1.9 1.8 1.7 - 1.8 1.7 1.6 - 
303 Reverse 1½ Somersaults 2.6 2.3 2.0 - 2.6 2.3 2.0 - 2.7 2.4 2.1 - 
304 Reverse 2 Somersaults 2.8 2.5 2.2 - 2.7 2.4 2.1 - 2.9 2.6 2.3 - 
305 Reverse 2½ Somersaults 3.4 3.0 2.8 - 3.5 3.1 2.9 - 3.3 3.1 - 
306 Reverse 3 Somersaults 3.2 2.9 - 3.0 2.7 - 3.4 3.1 - 
307 Reverse 3½ Somersaults 3.7 3.4 - - - 
308 Reverse 4 Somersaults 4.4 4.1 - 4.5 4.2 - - 
309 Reverse 4½ Somersaults 4.8 4.5 - - - 
312 Reverse Flying Somersaults - 2.0 1.9 - - 1.9 1.8 - - 1.8 1.7 - 
313 Reverse Flying 1½ Somersaults - 2.5 2.2 - - 2.5 2.2 - - 2.6 2.3 - 

Inward Group A B C D A B C D A B C D 
401 Inward Dive 1.7 1.4 1.3 - 1.7 1.4 1.3 - 1.8 1.5 1.4 - 
402 Inward 1 Somersault 1.9 1.6 1.5 - 1.8 1.5 1.4 - 2.0 1.7 1.6 - 
403 Inward 1½ Somersault 2.0 1.8 - 2.1 1.9 - 2.4 2.2 - 



FINA DD Formula and Components 

10 METER 7.5 METER 5 METER 
Inward Group A B C D A B C D A B C D 

404 Inward 2 Somersaults 2.6 2.4 - 2.6 2.4 - 3.0 2.8 - 
405 Inward 2½ Somersaults 2.8 2.5 - 3.0 2.7 - 3.4 3.1 - 
406 Inward 3 Somersaults 3.5 3.2 - 3.4 3.1 - 4.0 3.7 - 
407 Inward 3½ Somersaults 3.5 3.2 - 3.4 - - 
408 Inward 4 Somersaults 4.4 4.1 - - - 
409 Inward 4½ Somersaults 4.4 4.1 - - - 
412 Inward Flying Somersaults - 2.0 1.9 - - 1.9 1.8 - - 2.1 2.0 - 
413 Inward Flying 1½ Somersaults - 2.5 2.3 - - 2.6 2.4 - - 2.9 2.7 - 

Twisting Group A B C D A B C D A B C D 
5111 Fwd Dive ½ Twist 2.0 1.9 1.8 - 2.0 1.9 1.8 - 1.8 1.7 1.6 - 
5112 Fwd Dive 1 Twist 2.2 2.1 - 2.2 2.1 - 2.0 1.9 - 
5121 Fwd Somersault ½ Twist - - - 1.9 - - - 1.8 - - - 1.7 
5122 Fwd Somersault 1 Twist - - - 2.1 - - - 2.0 - - - 1.9 
5124 Fwd Somersault 2 Twists - - - 2.5 - - - 2.4 - - - 2.3 
5131 Fwd 1½ Somersaults ½ Twist - - - 1.9 - - - 1.9 - - - 2.0 
5132 Fwd 1½ Somersaults 1 Twist - - - 2.1 - - - 2.1 - - - 2.2 
5134 Fwd 1½ Somersaults 2 Twists - - - 2.5 - - - 2.5 - - - 2.6 
5136 Fwd 1½ Somersaults 3 Twists - - - 3.0 - - - 3.0 - - - 3.1 
5138 Fwd 1½ Somersaults 4 Twists - - - 3.4 - - - 3.4 - - - 3.5 
5152 Fwd 2½ Somersaults 1 Twist - 2.9 2.7 - - 3.0 2.8 - - 3.2 3.0 - 
5154 Fwd 2½ Somersaults 2 Twists - 3.3 3.1 - - 3.4 3.2 - - 3.6 3.4 - 
5156 Fwd 2½ Somersaults 3 Twists - 3.8 3.6 - - - - - 
5172 Fwd 3½ Somersaults 1 Twist - 3.6 3.3 - - 3.7 3.4 - - - - - 

5211 Back Dive ½ Twist 2.0 1.9 1.8 - 2.0 1.9 1.8 - 1.8 1.7 1.6 - 
5212 Back Dive 1 Twist 2.2 - 2.2 - 2.0 - 
5221 Back Somersault ½ Twist - - - 1.9 - - - 1.8 - - - 1.7 
5222 Back Somersault 1 Twist - - - 2.1 - - - 2.0 - - - 1.9 
5223 Back Somersault 1½ Twists - - - 2.5 - - - 2.4 - - - 2.3 
5225 Back Somersault 2½ Twists - - - 2.9 - - - 2.8 - - - 2.7 
5231 Back 1½ Somersaults ½ Twist - - - 2.0 - -- - 2.0 - - - 2.1 
5233 Back 1½ Somersaults 1½ Twists - - - 2.4 - - - 2.4 - - - 2.5 
5235 Back 1½ Somersaults 2½ Twists - - - 2.8 - - - 2.8 - - - 2.9 
5237 Back 1½ Somersaults 3½ Twists - - - 3.3 - - - 3.3 - - - 3.4 
5239 Back 1½ Somersaults 4½ Twists - - - 3.7 - - - 3.7 - - - 3.8 
5251 Back 2½ Somersaults ½ Twist - 2.6 2.4 - - 2.7 2.5 - - 2.9 2.7 - 
5253 Back 2½ Somersaults 1½ Twists - 3.2 3.0 - - 3.3 3.1 - - - 
5255 Back 2½ Somersaults 2½ Twists - 3.6 3.4 - - - - - 
5257 Back 2½ Somersaults 3½ Twists - 4.1 3.9 - - - - - 
5271 Back 3½ Somersaults ½ Twist - 3.2 2.9 - - - - - 
5273 Back 3½ Somersaults 1½ Twist - 3.8 3.5 - - - - - 
5275 Back 3½ Somersaults 2½ Twist - 4.2 3.9 - - - - - 

5311 Reverse Dive ½ Twist 2.1 2.0 1.9 - 2.1 2.0 1.9 - 1.9 1.8 1.7 - 
5312 Reverse Dive 1 Twist 2.3 - 2.3 - 2.1 - 
5321 Reverse Somersault ½ Twist - - - 2.0 - - - 1.9 - - - 1.8 
5322 Reverse Somersault 1 Twist - - - 2.2 - - - 2.1 - - - 2.0 
5323 Reverse Somersault 1½ Twists - - - 2.6 - - - 2.5 - - - 2.4 
5325 Reverse Somersault 2½ Twists - - - 3.0 - - - 2.9 - - - 2.8 
5331 Reverse 1½ Soms. ½ Twists - - - 2.1 - - - 2.1 - - - 2.2 
5333 Reverse 1½ Soms. 1½ Twists - - - 2.5 - - - 2.5 - - - 2.6 
5335 Reverse 1½ Soms. 2½ Twists - - - 2.9 - - - 2.9 - - - 3.0 
5337 Reverse 1½ Soms. 3½ Twists - - - 3.4 - - - 3.4 - - - 3.5 
5339 Reverse 1½ Soms. 4½ Twists - - - 3.8 - - - 3.8 - - - - 
5351 Reverse 2½ Soms. ½ Twists - 2.7 2.5 - - 2.8 2.6 - - 3.0 2.8 - 



FINA DD Formula and Components 

10 METER 7.5 METER 5 METER 
Twisting Group A B C D A B C D A B C D 

5353 Reverse 2½ Soms. 1½ Twists - 3.3 3.1 - - 3.4 3.2 - - 3.4 - 
5355 Reverse 2½ Soms. 2½ Twists - 3.7 3.5 - - 3.8 3.6 - - 3.8 - 
5371 Reverse 3½ Soms. ½ Twists - 3.3 3.0 - - - - - 
5373 Reverse 3½ Soms. 1½ Twist - 3.6 - - - - - 
5375 Reverse 3½ Soms. 2½ Twist - 4.0 - - - - - 

5411 Inward Dive ½ Twist 1.9 1.6 1.5 - 1.9 1.6 1.5 - 2.0 1.7 1.6 - 
5412 Inward Dive 1 Twist 2.1 1.8 1.7 - 2.1 1.8 1.7 - 2.2 1.9 1.8 - 
5421 Inward Somersault ½ Twist - - - 1.8 - - - 1.7 - - - 1.9 
5422 Inward Somersault 1 Twist - - - 2.0 - - - 1.9 - - - 2.1 
5432 Inward 1½ Somersaults 1 Twist - - - 2.3 - - - 2.4 - - - 2.7 
5434 Inward 1½ Somersaults 2 Twists - - - 2.7 - - - 2.8 - - - 3.1 
5436 Inward 1½ Somersaults 3 Twists - - - 3.4 - - - - - - 

Armstand Group 
600 Armstand Dive 1.6 - - - 1.6 - - - 1.5 - - - 
611 Armstand Forward ½ Somersault 2.0 1.9 1.7 - 2.0 1.9 1.7 - 1.8 1.7 1.5 - 
612 Armstand Forward 1 Somersault 2.0 1.9 1.7 - 1.9 1.8 1.6 - 1.8 1.7 1.5 - 
614 Armstand Forward 2 Somersaults 2.4 2.1 - 2.3 2.0 - 2.5 2.2 - 
616 Armstand Forward 3 Somersaults 3.3 3.1 - - - 

621 Armstand Back ½ Somersault 1.9 1.8 1.6 - 1.9 1.8 1.6 - 1.7 1.6 1.4 - 
622 Armstand Back Somersault 2.3 2.2 2.0 - 2.2 2.1 1.9 - 2.1 2.0 1.8 - 
623 Armstand Back 1½ Somersaults 2.2 1.9 - 2.2 1.9 - 2.3 2.0 - 
624 Armstand Back 2 Somersaults 3.0 2.8 2.5 - 2.9 2.7 2.4 - 3.1 2.9 2.6 - 
626 Armstand Back 3 Somersaults 3.5 3.3 - 3.3 3.1 - 3.5 - 
628 Armstand Back 4 Somersaults 4.7 4.5 - - - 

631 Armstand Reverse ½ Somersault 2.0 1.9 1.7 - 2.0 1.9 1.7 - 1.8 1.7 1.5 - 
632 Armstand Reverse 1 Somersault 2.3 2.1 - 2.2 2.0 - 2.1 1.9 - 
633 Armstand Reverse 1½ Soms. 2.3 2.0 - 2.3 2.0 - 2.4 2.1 - 
634 Armstand Reverse 2 Soms. 2.9 2.6 - 2.8 2.5 - 3.0 2.7 - 
636 Armstand Reverse 3 Soms. 3.6 3.4 - 3.2 - - 
638 Armstand Reverse 4 Soms. 4.8 4.6 - - - 

6122 Armstand Fwd Som. 1 Twist - - - 2.6 - - - 2.5 - - - 2.4 
6124 Armstand Fwd Som. 2 Twists - - - 2.9 - - - 2.8 - - - 2.7 
6142 Armstand Fwd 2 Soms. 1 Twist - - - 3.1 - - - 3.0 - - - 3.2 
6144 Armstand Fwd 2 Soms. 2 Twists - - - 3.4 - - - 3.3 - - - 3.5 
6162 Armstand Fwd 3 Soms. 1 Twist - 3.9 - - - - - 

6221 Armstand Back Som. ½ Twist - - - 1.8 - - - 1.7 - - - 1.6 
6241 Armstand Back 2 Soms. ½ Twist - 2.7 2.4 - - 2.6 2.3 - - 2.8 2.5 - 
6243 Armstand Back 2 Soms 1½ Twists - - - 3.2 - - - 3.1 - - - 3.3 
6245 Armstand Back 2 Soms 2½ Twists - - - 3.6 - - - 3.5 - - - 3.7 
6247 Armstand Back 2 Soms 3½ Twists - - - 4.0 - - - - - - 
6261 Armstand Back 3 Soms. ½ Twist - 3.4 3.2 - - 3.2 3.0 - - 3.6 3.4 - 
6263 Armstand Back 3 Soms 1½ Twists - 4.2 4.0 - - - - - 
6265 Armstand Back 3 Soms 2½ Twists - 4.6 4.4 - - - - - 



APPENDIX D

Magnus Expansion

For a system of linear differential equations of the form

L̇ = M(t)L

the solution is

L = eΩ(t)L(0),

where

Ω(t) =
∞∑
n=1

Ωn(t).

The Magnus terms Ωn of the Magnus series Ω(t) can be generated recursively with
the matrix Sjn, defined as

S1
n(τ) = [Ωn−1(τ),M(τ)]

Sjn(τ) =

n−j∑
m=1

[Ωm(τ), Sj−1
n−m(τ)] for 2 ≤ j ≤ n− 1,

where [., .] is the matrix commutator. The Magnus terms Ωn are then

Ω1(t) =

∫ t

0

M(τ) dτ

Ωn(t) =
n−1∑
j=1

Bj

j!

∫ t

0

Sjn(τ) dτ for n ≥ 2,

where Bj is the jth Bernoulli number. We now derive the first three terms of the
Magnus expansion. Clearly,

Ω1(t) =

∫ t

0

M(t1) dt1,

167
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and

Ω2(t) =
B1

1!

∫ t

0

S1
2(t1) dt1

= −1

2

∫ t

0

[Ω1(t1),M(t1)] dt1

= −1

2

∫ t

0

[∫ t1

0

M(t2) dt2,M(t1)

]
dt1

=
1

2

∫ t

0

∫ t1

0

[M(t1),M(t2)] dt2dt1.

Now

Ω3(t) =
B1

1!

∫ t

0

S1
3(t1) dt1 +

B2

2!

∫ t

0

S2
3(t1) dt1

= −1

2

∫ t

0

[Ω2(t1),M(t1)] dt1 +
1

12

∫ t

0

[Ω1(t1), [Ω1(t1),M(t1)]] dt1,

and writing Mi to denote M(ti) for simplicity, the first integral becomes

− 1

2

∫ t

0

[Ω2(t1),M1] dt1 =
1

4

∫ t

0

∫ t1

0

∫ t2

0

[M1, [M2,M3]] dt3dt2dt1,

where we substituted in Ω2(t1) and swapped the order of the commutator.
The second integral is more complicated. Looking firstly at the integrand[

Ω1(t1), [Ω1(t1),M1)]
]

=

[∫ t1

0

M3 dt3,

[∫ t1

0

M2 dt2,M1

]]
=

∫ t1

0

∫ t1

0

[
M3, [M2,M1]

]
dt3 dt2,

we now split up the inner interval so that
∫ t1

0

∫ t1
0

=
∫ t1

0

∫ t2
0

+
∫ t1

0

∫ t1
t2

, and apply the
transformation ∫ t1

0

∫ t1

t2

f(t2, t3) dt3dt2 =

∫ t1

0

∫ t3

0

f(t2, t3) dt2dt3.

Following the transformation, we swap the dummy variables t2 ↔ t3 to obtain[
Ω1(t1), [Ω1(t1),M1]

]
=

∫ t1

0

∫ t2

0

[
M3, [M2,M1]

]
+
[
M2, [M3,M1]

]
dt3 dt2.

Substituting this result back into Ω3(t), we arrive at

Ω3(t) =

∫ t

0

∫ t1

0

∫ t2

0

(
1

4
[M1, [M2,M3]] +

1

12
[M3, [M2,M1]] +

1

12
[M2, [M3,M1]]

)
dt3dt2dt1.
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The last step is to use the Jacobi identity to show that

[M2, [M3,M1]] = −[M3, [M1,M2]]− [M1, [M2,M3]]

= [M3, [M2,M1]]− [M1, [M2,M3]],

thus we have

Ω3(t) =
1

6

∫ t

0

∫ t1

0

∫ t2

0

(
[M1, [M2,M3]]− [M3, [M2,M1]]

)
dt3dt2dt1.



APPENDIX E

Digitised Dataset

Frame υref υhd υup υud υlp υld

0 0.647832 0.720361 -2.06629 -1.94748 0.0341072 0.359781
1 0.660258 0.722664 -2.04806 -1.92977 0.0374983 0.354845
2 0.684925 0.727475 -2.01089 -1.89374 0.0441458 0.345205
3 0.721438 0.735205 -1.95339 -1.83824 0.0537881 0.331326
4 0.769137 0.746453 -1.87372 -1.76182 0.0660538 0.313898
5 0.827053 0.762001 -1.77003 -1.66313 0.0804853 0.293821
6 0.893879 0.782802 -1.64135 -1.54174 0.0965708 0.27218
7 0.96801 0.809977 -1.48896 -1.39927 0.113781 0.250198
8 1.04764 0.84481 -1.31768 -1.24025 0.131608 0.22918
9 1.13093 0.88875 -1.13599 -1.0721 0.149608 0.21045
10 1.21619 0.943391 -0.953924 -0.903405 0.167431 0.195289
11 1.30205 1.01042 -0.779847 -0.741423 0.184856 0.184884
12 1.38757 1.09151 -0.618298 -0.590325 0.201807 0.180292
13 1.47228 1.18803 -0.469959 -0.45107 0.218371 0.182428
14 1.55613 1.30071 -0.332918 -0.322296 0.234795 0.192057
15 1.63949 1.42906 -0.204007 -0.201379 0.251488 0.209802
16 1.72299 1.57094 -0.079668 -0.0851889 0.269011 0.23615
17 1.8075 1.72242 0.0436073 0.0295079 0.28806 0.271447
18 1.89406 1.87841 0.169101 0.14587 0.309455 0.315889
19 1.98378 2.0338 0.299772 0.266896 0.334114 0.369494
20 2.0778 2.18465 0.438124 0.395328 0.363037 0.432075
21 2.1772 2.32887 0.585961 0.533439 0.397279 0.503198
22 2.28288 2.46621 0.744026 0.682672 0.437913 0.58217
23 2.39544 2.59774 0.911589 0.843124 0.485984 0.668041
24 2.51499 2.72539 1.08623 1.01307 0.542448 0.759658
25 2.64107 2.85142 1.26407 1.18885 0.608074 0.855751
26 2.7725 2.97813 1.44058 1.36546 0.683327 0.955052
27 2.90752 3.10764 1.61165 1.53773 0.768237 1.05643
28 3.04399 -3.04159 1.77444 1.70162 0.862272 1.15898
29 -3.10344 -2.90219 1.92773 1.85489 0.964282 1.26211

170
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# υref υhd υup υud υlp υld

30 -2.97019 -2.75723 2.0717 1.99707 1.07255 1.36555
31 -2.84065 -2.60768 2.20746 2.12901 1.18501 1.46933
32 -2.7153 -2.45553 2.33673 2.25227 1.29951 1.57376
33 -2.59396 -2.30347 2.46142 2.36871 1.41419 1.67931
34 -2.47591 -2.15435 2.5835 2.48016 1.52771 1.78662
35 -2.36008 -2.01061 2.70489 2.58826 1.63938 1.89634
36 -2.2452 -1.87381 2.82741 2.69436 1.74914 2.00916
37 -2.12992 -1.74448 2.95274 2.79946 1.85745 2.12563
38 -2.01296 -1.6222 3.08233 2.90417 1.96514 2.24617
39 -1.89321 -1.50579 -3.0658 3.00872 2.07329 2.37094
40 -1.76985 -1.39345 -2.9245 3.11291 2.18305 2.4998
41 -1.64248 -1.28294 -2.77675 -3.06691 2.29559 2.63225
42 -1.51122 -1.17159 -2.62309 -2.96511 2.41188 2.76748
43 -1.37672 -1.05623 -2.46486 -2.86564 2.53267 2.90441
44 -1.2402 -0.933152 -2.30415 -2.76917 2.6583 3.04181
45 -1.10318 -0.797983 -2.14354 -2.67616 2.7886 -3.10471
46 -0.967331 -0.645859 -1.98569 -2.58666 2.92286 -2.96985
47 -0.834116 -0.472064 -1.83288 -2.50033 3.05988 -2.83759
48 -0.704618 -0.273743 -1.68676 -2.41638 -3.08511 -2.70843
49 -0.579395 -0.0527986 -1.54818 -2.33357 -2.94742 -2.58255
50 -0.458464 0.181595 -1.41727 -2.25028 -2.81176 -2.45989
51 -0.341368 0.414381 -1.29362 -2.16451 -2.67926 -2.34017
52 -0.227276 0.630859 -1.17638 -2.07401 -2.55053 -2.22303
53 -0.115091 0.822623 -1.06449 -1.97634 -2.42567 -2.10801
54 -0.0035469 0.988459 -0.956682 -1.86918 -2.30431 -1.99465
55 0.108713 1.13168 -0.851616 -1.75066 -2.18574 -1.88252
56 0.223058 1.25732 -0.747842 -1.62002 -2.06905 -1.77122
57 0.340783 1.37062 -0.643819 -1.47819 -1.9532 -1.66044
58 0.463011 1.47646 -0.537902 -1.32827 -1.83719 -1.5499
59 0.590552 1.57936 -0.428333 -1.17524 -1.7201 -1.4394
60 0.723748 1.68365 -0.31327 -1.02478 -1.60116 -1.32878
61 0.862316 1.79366 -0.190864 -0.881794 -1.47991 -1.21794
62 1.00525 1.9138 -0.0594543 -0.749322 -1.35617 -1.10676
63 1.15086 2.0484 0.0820959 -0.628332 -1.23011 -0.995169
64 1.29695 2.20105 0.233908 -0.518135 -1.10223 -0.883053
65 1.4412 2.37309 0.394558 -0.417017 -0.973312 -0.770292
66 1.58154 2.56178 0.560787 -0.322743 -0.844263 -0.656737
67 1.71645 2.75914 0.727803 -0.232863 -0.715984 -0.542208
68 1.84514 2.9537 0.890258 -0.144827 -0.589214 -0.426507
69 1.96749 3.13471 1.04352 -0.0559718 -0.464417 -0.309419
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# υref υhd υup υud υlp υld

70 2.08395 -2.98736 1.18457 0.036576 -0.341719 -0.190738
71 2.19542 -2.8475 1.31223 0.136067 -0.220908 -0.070278
72 2.30303 -2.72685 1.42683 0.246324 -0.101474 0.0520982
73 2.40811 -2.62188 1.52964 0.371914 0.0173191 0.176463
74 2.5121 -2.52882 1.62246 0.51813 0.136348 0.302805
75 2.61645 -2.44417 1.70725 0.690378 0.256536 0.43102
76 2.72271 -2.36494 1.78602 0.892276 0.378753 0.560914
77 2.83237 -2.28861 1.86074 1.12207 0.503714 0.692219
78 2.94694 -2.21308 1.9334 1.36913 0.631878 0.824613
79 3.06781 -2.13657 2.00598 1.61545 0.763359 0.957763
80 -3.08706 -2.05761 2.08062 1.84372 0.897878 1.09136
81 -2.95054 -1.97492 2.15966 2.04466 1.03477 1.22515
82 -2.80567 -1.88746 2.24572 2.21753 1.17305 1.35898
83 -2.65316 -1.79433 2.34182 2.36636 1.31161 1.49276
84 -2.49465 -1.69483 2.45131 2.49654 1.44937 1.62653
85 -2.33263 -1.58834 2.57768 2.61316 1.58548 1.76035
86 -2.17002 -1.47437 2.72387 2.72049 1.71947 1.89437
87 -2.0097 -1.35246 2.891 2.82197 1.8513 2.02867
88 -1.85395 -1.22211 3.07664 2.92039 1.98133 2.16334
89 -1.70415 -1.08274 -3.00948 3.01796 2.11028 2.29833
90 -1.56081 -0.933605 -2.8115 3.11647 2.23913 2.4335
91 -1.42365 -0.7738 -2.62297 -3.06589 2.36899 2.56858
92 -1.29186 -0.602403 -2.45053 -2.96181 2.50081 2.70319
93 -1.16434 -0.418769 -2.29619 -2.85402 2.63622 2.83687
94 -1.03988 -0.223064 -2.15842 -2.74266 2.77538 2.96913
95 -0.917269 -0.0169174 -2.03395 -2.62851 2.91885 3.09954
96 -0.795387 0.196108 -1.919 -2.513 3.06645 -3.05541
97 -0.673259 0.410688 -1.80989 -2.39804 -3.06578 -2.92952
98 -0.550088 0.620767 -1.70333 -2.28579 -2.91283 -2.80596
99 -0.42528 0.821048 -1.59645 -2.17835 -2.75962 -2.6845
100 -0.298452 1.00812 -1.48685 -2.07743 -2.60797 -2.56472
101 -0.169436 1.18072 -1.37259 -1.98416 -2.4595 -2.44599
102 -0.0382567 1.33937 -1.25234 -1.89905 -2.31536 -2.32753
103 0.094893 1.48566 -1.12548 -1.82197 -2.17612 -2.20842
104 0.229704 1.62175 -0.9922 -1.75224 -2.04181 -2.0876
105 0.365805 1.74995 -0.853569 -1.68867 -1.91198 -1.96395
106 0.502821 1.87259 -0.711362 -1.62964 -1.78585 -1.83632
107 0.640421 1.99192 -0.567748 -1.57302 -1.66247 -1.70363
108 0.778352 2.11012 -0.424833 -1.51612 -1.5408 -1.56496
109 0.916454 2.22934 -0.28423 -1.4556 -1.41981 -1.41972
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# υref υhd υup υud υlp υld

110 1.05465 2.35177 -0.146783 -1.38732 -1.29857 -1.26787
111 1.19293 2.47961 -0.0124966 -1.3063 -1.1763 -1.11
112 1.33133 2.61508 0.119368 -1.20704 -1.05239 -0.947527
113 1.46986 2.7603 0.250107 -1.0844 -0.926464 -0.782499
114 1.60854 2.91702 0.381367 -0.935845 -0.798363 -0.617388
115 1.74734 3.08619 0.514925 -0.764531 -0.668135 -0.454648
116 1.8862 -3.01584 0.65246 -0.581163 -0.535989 -0.296306
117 2.02503 -2.82511 0.795297 -0.400982 -0.402222 -0.143693
118 2.16371 -2.62922 0.944104 -0.236856 -0.26713 0.0026348
119 2.30216 -2.43386 1.09861 -0.0945835 -0.130923 0.142811
120 2.44035 -2.24464 1.25742 0.0265706 0.0063504 0.277494
121 2.57833 -2.06578 1.4181 0.130894 0.144834 0.407682
122 2.71621 -1.89955 1.57753 0.223821 0.284861 0.534566
123 2.85425 -1.74636 1.73262 0.310845 0.426903 0.659417
124 2.99276 -1.6054 1.88085 0.397362 0.571475 0.783506
125 3.13215 -1.47518 2.02072 0.48903 0.719009 0.908054
126 -3.0103 -1.354 2.1518 0.592456 0.869706 1.03419
127 -2.86778 -1.24019 2.27458 0.716192 1.0234 1.1629
128 -2.72304 -1.13219 2.39015 0.871883 1.17945 1.29501
129 -2.57578 -1.02864 2.50005 1.07453 1.33676 1.43108
130 -2.42584 -0.92832 2.60603 1.33775 1.49388 1.57141
131 -2.27329 -0.830146 2.70999 1.65709 1.64923 1.71595
132 -2.11842 -0.733114 2.81392 1.99218 1.80139 1.86429
133 -1.9618 -0.636262 2.9199 2.28929 1.9493 2.01568
134 -1.80422 -0.538617 3.03013 2.52469 2.09245 2.1691
135 -1.64659 -0.439145 -3.13632 2.7048 2.23087 2.32336
136 -1.48988 -0.3367 -3.01079 2.84469 2.36508 2.4773
137 -1.33496 -0.229968 -2.87437 2.95746 2.49599 2.62986
138 -1.18256 -0.117424 -2.72552 3.05244 2.62474 2.78026
139 -1.03316 0.0026958 -2.56384 3.13606 2.7526 2.92798
140 -0.887005 0.132366 -2.39071 -3.0703 2.88088 3.07279
141 -0.744107 0.273631 -2.2097 -2.99683 3.01076 -3.06846
142 -0.604278 0.428268 -2.02623 -2.92387 -3.13996 -2.9292
143 -0.467193 0.597165 -1.84635 -2.8488 -3.00424 -2.79227
144 -0.33243 0.77945 -1.67517 -2.7689 -2.86503 -2.65726
145 -0.199524 0.971683 -1.51588 -2.68106 -2.72258 -2.52373
146 -0.0680029 1.1678 -1.36956 -2.58143 -2.57765 -2.39122
147 0.0625854 1.36028 -1.23568 -2.46506 -2.4314 -2.25931
148 0.192644 1.54225 -1.11281 -2.3256 -2.28523 -2.12757
149 0.322511 1.70911 -0.999167 -2.15554 -2.14049 -1.99558
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# υref υhd υup υud υlp υld

150 0.452439 1.85906 -0.892967 -1.94802 -1.9983 -1.86295
151 0.582585 1.99246 -0.792638 -1.70195 -1.85933 -1.7293
152 0.712991 2.11099 -0.696912 -1.4293 -1.72373 -1.59426
153 0.843575 2.21685 -0.604865 -1.15559 -1.59119 -1.45753
154 0.974114 2.31236 -0.515924 -0.906592 -1.46099 -1.31884
155 1.10424 2.39968 -0.42986 -0.694767 -1.33215 -1.17803
156 1.23344 2.48079 -0.346759 -0.519406 -1.20349 -1.03512
157 1.36107 2.55748 -0.266975 -0.3739 -1.07385 -0.890272
158 1.48636 2.63138 -0.191058 -0.25097 -0.942121 -0.743918
159 1.60847 2.70398 -0.119669 -0.144605 -0.807452 -0.596709
160 1.72655 2.77672 -0.0534857 -0.0503514 -0.66935 -0.449504
161 1.83976 2.85091 0.0068923 0.0349221 -0.52781 -0.303302
162 1.94732 2.92776 0.0610157 0.113321 -0.383374 -0.159129
163 2.04858 3.00832 0.108638 0.186162 -0.237109 -0.0179223
164 2.14301 3.09329 0.149744 0.254149 -0.0904482 0.119577
165 2.23024 -3.10028 0.184548 0.317488 0.0550539 0.252897
166 2.31004 -3.00655 0.213482 0.37598 0.198021 0.381871
167 2.3823 -2.91019 0.237162 0.429096 0.3375 0.506622
168 2.44703 -2.81369 0.256351 0.476056 0.473109 0.627522
169 2.50432 -2.72037 0.271908 0.515903 0.605055 0.745136
170 2.55437 -2.63397 0.284735 0.547593 0.734057 0.860146
171 2.5974 -2.55804 0.295726 0.570093 0.861202 0.973273
172 2.63372 -2.49544 0.305714 0.58249 0.987765 1.08519
173 2.6637 -2.44804 0.31542 0.584119 1.11499 1.19641
174 2.68772 -2.41665 0.325422 0.574705 1.24384 1.30721
175 2.70626 -2.40115 0.336119 0.554517 1.37468 1.41748
176 2.71983 -2.40055 0.347721 0.524492 1.50703 1.52666
177 2.729 -2.41315 0.360249 0.486296 1.63931 1.63369
178 2.73441 -2.43658 0.373542 0.442263 1.76892 1.73706
179 2.73674 -2.46798 0.38728 0.395179 1.89248 1.83487
180 2.73668 -2.50413 0.401023 0.347966 2.00646 1.92511
181 2.73495 -2.54175 0.414246 0.303332 2.10772 2.00584
182 2.73224 -2.57778 0.426387 0.263525 2.19393 2.07534
183 2.7292 -2.6096 0.436893 0.230213 2.26361 2.13227
184 2.72638 -2.63513 0.445263 0.204512 2.31604 2.17567
185 2.72423 -2.65291 0.451087 0.187091 2.35099 2.2049
186 2.72308 -2.66202 0.454074 0.178306 2.36844 2.2196



APPENDIX F

Segment Reduction

Interlaying αup with αud in Figure F.1A we see that the arm segments overall have
similar shape angles, as do the leg segments αlp and αld as shown in Figure F.1B.
Assuming the elbows and knees are kept straight and the head is fixed relative to
the torso, we have the assumptions made in (4.21) which essentially reduce the
six segment model requiring five shape angles {αup, αud, αlp, αld, αhd} to just three
segments requiring two shape angles {αu, αl}. This reduction affects the dynamics,
but not by very much as shown in Figure F.2.

At the end of the 107B dive the dynamic phase in the reduced three segment
model is smaller by 0.0012L, but the geometric phase is greater by 0.0284, resulting
in an overall difference of 0.0284 − 0.0012L. For L = 120, this means the athlete
rotates less 0.1140 radians or 6.53◦, which is small considering the athlete performs
3.5 somersaults. Finally, we plot the evolution of the dynamic and geometric phases
during the complete dive in Figure F.3 for the reduced three segment model.
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Π�2

Π

Angle
Arms

(A) αup in blue, αud in magenta.

50 100 150
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-Π

-Π�2

0

Π�2

Π

Angle
Legs

(B) αlp in blue, αld in magenta.

Figure F.1. Plot shows the arm and leg segments move similarly
in time.
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(A) Difference in dynamic phase.
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(B) Difference in geometric phase.

Figure F.2. The differences ∆υdyn and ∆υgeo are obtained by tak-
ing the result from the reduced three segment model and subtracting
the corresponding result from the six segment model.
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(B) Geometric phase.

Figure F.3. At the end of the dive the dynamic phase is 0.1705L
and the geometric phase is 0.0721 radians.



APPENDIX G

Geometric Phase

The loop C obtained from letting α(t) run from 0 to Te is divided into ten pieces
denoted by Ci for i ∈ {1, . . . , 10}, where the intervals are specified in Table G.1.
In Figure 4.8 we labelled the longer pieces C1, C2, C8, C9 and C10, but the

ts te αu(ts) αl(ts) αu(te) αl(te)
C1 0 0.0674 −2.7141 −0.6137 −2.3571 −0.9215
C2 0.0674 0.2947 −2.3571 −0.9215 −1.2157 −2.2854
C3 0.2947 0.8811 −1.2157 −2.2854 −1.2157 −2.2854
C4 0.8811 0.9259 −1.2157 −2.2854 −1.2061 −2.3709
C5 0.9259 1.0747 −1.2061 −2.3709 −1.2061 −2.3709
C6 1.0747 1.1361 −1.2061 −2.3709 −1.5287 −2.4362
C7 1.1361 1.2907 −1.5287 −2.4362 −1.5287 −2.4362
C8 1.2907 1.4863 −1.5287 −2.4362 −2.3571 −0.9215
C9 1.4863 1.55 −2.3571 −0.9215 −2.2690 −0.3546
C10 1.55 Te −2.2690 −0.3546 −2.7141 −0.6137

Table G.1. Each Ci is extracted from α(t) by letting t run from
ts to te, and we give the shape angles at the end points.

remaining pieces around the yellow loops were either too small or hard to label
clearly, so we zoom in on this portion of the diagram in Figure G.1. There are
five smaller loops within the main loop C, which consist of the black loop made
up of C2, C4, C6 and C8, the red loop made up of C1, C9 and C10, and the
three yellow loops C3, C5 and C7. Now the yellow loop C3 contains even smaller
sub-loops, but as the orientation does not change within C3 we will not sub-divide
further. Currently the contribution towards the geometric phase from each loop
is as follows:

loop color pieces contribution
Black loop C2,C4,C6,C8 0.0953
Red loop C1,C9,C10 -0.0023

Yellow loop C3 -0.0149
Yellow loop C5 -0.0012
Yellow loop C7 -0.0048
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178 G. Geometric Phase

Figure G.1. The path of the digitised dive is from C1 to C10

in ascending order. The three yellow loops C3, C5 and C7 are
orientated counterclockwise so they provide a negative contribution
towards the geometric phase.

Now by reversing the orientation of the red and three yellow loops we can
improve the geometric phase without affecting the dynamic phase. This improve-
ment amounts to 0.0464 and brings the new result to υgeo = 0.1186. We conclude
by showing the shape angles of the original dive in Figure G.2 followed by the
modified shape angles in Figure G.3.
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Figure G.2. Shape angles of the digitised dive. The regions shaded
in blue correspond to the loops oriented in the counterclockwise
direction that needs reversing in order to optimise the geometric
phase. Towards the very end, the dashed portion of the shape angles
correspond to the linear interpolation we added to close the curve
on shape space.
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Figure G.3. The shape angles after orientating all loops in the
clockwise direction. The vertical dashed lines indicate where the
pieces are connected. The ordering now becomes −C10 → −C9 →
C2 → −C3 → C4 → −C5 → C6 → −C7 → C8 → −C1, where a
negative means we traverse along the piece in the opposite direction.



APPENDIX H

The Fast-kick Integral

The integral of the form

X =

∫ π

0

1

2
− a0

a1 − a2 cosα + a3 sinα
dα

can be evaluated using the Weierstrass substitution t = tan (α/2), and in doing so
we find that

X =

∫ π

0

1

2
dα−

∫ ∞
0

a0

a1 − a2
1−t2
1+t2

+ a3
2t

1+t2

· 2

1 + t2
dt

=
π

2
−
∫ ∞

0

2a0

a1(1 + t2)− a2(1− t2) + a3(2t)
dt

=
π

2
− 2a0

a1 + a2

∫ ∞
0

1

t2 + 2a3

a1+a2
t+ a1−a2

a1+a2

dt.

Factorising the denominator with the quadratic formula we find that

t2 +
2a3

a1 + a2

t+
a1 − a2

a1 + a2

=

(
t+

a3

a+

+
ar
a+

i

)(
t+

a3

a+

− ar
a+

i

)
,

where

ar =
√
a2

1 − a2
2 − a2

3

a+ = a1 + a2,

and by using partial fractions we obtain

(H.1) X =
π

2
− a0i

ar

∫ ∞
0

(
t+

a3

a+

+
ar
a+

i

)−1

−
(
t+

a3

a+

− ar
a+

i

)−1

dt.

This integral can now be integrated using complex logarithms, and looking solely
at the integral component we get[

ln
∣∣∣t+ a3

a+
+ ar

a+
i
∣∣∣+ iArg

(
t+ a3

a+
+ ar

a+
i
)
− ln

∣∣∣t+ a3

a+
− ar

a+
i
∣∣∣− iArg

(
t+ a3

a+
− ar

a+
i
)]∞

0

.

Notice how the logarithmic terms completely cancel due to the two moduli being
equal. The upper bound of both principal arguments are zero because t → ∞
means the imaginary components inside Arg become insignificant, and Arg of a
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positive number is zero. This means the lower bound of the principal arguments
are the only non-zero terms, which simplify to

− iArg

(
a3

a+

+
ar
a+

i

)
+ iArg

(
a3

a+

− ar
a+

i

)
= −2iArg

(
a3

a+

+
ar
a+

i

)
,

since −Arg z = Arg z̄ for any z ∈ C. Also, as the complex number a3

a+
+ ar

a+
i is in

the first quadrant of the complex plane, we can use arctan to rewrite (H.1) as

X =
π

2
− 2a0

ar
arctan

(
ar
a3

)
=
π

2
− 2a0√

a2
1 − a2

2 − a2
3

arctan

(√
a2

1 − a2
2 − a2

3

a3

)
,

which is the result shown in (5.46).



APPENDIX I

Energies and Wobbling Somersault

An additional point to note about Figure 6.6B is that the minimum (scaled) energy
does not occur at τ3 = 0 (or τ3 = T3), but instead has a slightly lower value of
E5

(
(0.5±0.434)T3

)
= 0.0242 (as opposed to E5(0) = 0.0243), as seen in Figure I.1.

In the case of E5(0.2713T3) = E3 = 0.0452, the period of twist is not the same as
T3, but is

T (E3,
sI) =

31.0595

l
< T (E3,

tJ) =
33.9610

l

(
= T3

)
.

The discrepancy is a consequence of the athlete being in different diving positions,
i.e. layout position (Figure 5.1A) in S5 compared to twist position (Figure 5.1F)
in S3, which results in different energy-inertia ellipsoids.

When E5(τ3) → 1/(2 sIy) as τ3 → (0.5 ± 0.434)T3 the dynamics approach the
separatrix given by two plane curves with scaled equation (2.66). As the diver is in
layout position for S5 we have L = M , and the tensor of inertia is sI. The orbit on
the separatrix is given by (2.67) and due to the hyperbolic functions the dynamics
slow down when approaching the unstable equilibrium points (0,±l, 0)t. On one
side of the separatrix where E5 > 1/(2 sIy), we have loops around the Lz-axis (twist
axis) that produce the familiar twisting somersaulting motion, but on the other
side where E5 < 1/(2 sIy) we instead have loops around the Lx-axis, which is the

Τ3=0.066T3

E5 s=

1

2 Iy

0 T3�50 T3�25 3T3�50 2T3�25
Τ30.02420

0.02425

0.02430

0.02435

0.02440

E5

Figure I.1. Magnification of Figure 6.6B to show when E5 < l2/(2 sIy).
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100�l 200�l 300�l 400�l
t

-l

-l�2

l�2

l
L5

Lz

Ly

Lx

(A) Twisting somersault with
initial condition L5(0) =
l(−0.3987, 0.9169,−0.0167)t.
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-l�2
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l
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Lz

Ly

Lx

(B) Wobbling somersault
with initial condition L5(0) =
l(−0.3842, 0.9231,−0.0155)t.

Figure I.2. A comparison between the dynamics of the twisting
somersault and wobbling somersault. Both initial conditions are
chosen to be close to the point l(−0.3919, 0.9199,−0.0161)t on the
separatrix, be part of the loop L5(0; τ3) given by (6.6), and have
period 400/l.

tilt axis and this produces a different type of motion. Yeadon [70] refers to this
motion as the wobbling somersault, because the body experiences an oscillating
twist motion that goes one way and then the other, which is essentially a wobble
where no twist is actually completed by the diver. We show a comparison between
the two dynamics in Figure I.2.
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