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Abstract

The names of people, locations, and organisations play a central role in

language, and named entity recognition (NER) has been widely studied, and

successfully incorporated, into natural language processing (NLP) applications.

The most common variant of NER involves identifying and classifying proper

noun mentions of these and miscellaneous entities as linear spans in text.

Unfortunately, this version of NER is no closer to a detailed treatment of

named entities than chunking is to a full syntactic analysis. NER, so con-

strued, reflects neither the syntactic nor semantic structure of NE mentions, and

provides insufficient categorical distinctions to represent that structure.

Representing this nested structure, where a mention may contain mention(s)

of other entities, is critical for applications such as coreference resolution. The

lack of this structure creates spurious ambiguity in the linear approximation.

Research in NER has been shaped by the size and detail of the available

annotated corpora. The existing structured named entity corpora are either

small, in specialist domains, or in languages other than English.

This thesis presents our Nested Named Entity (NNE) corpus of named entities

and numerical and temporal expressions, taken from the WSJ portion of the

Penn Treebank (PTB, Marcus et al., 1993). We use the BBN Pronoun Coreference

and Entity Type Corpus (Weischedel and Brunstein, 2005a) as our basis, manu-

ally annotating it with a principled, fine-grained, nested annotation scheme

and detailed annotation guidelines. The corpus comprises over 279,000 entities

over 49,211 sentences (1,173,000 words), including 118,495 top-level entities.

Our annotations were designed using twelve high-level principles that

guided the development of the annotation scheme and difficult decisions for

annotators. We also monitored the semantic grammar that was being induced

during annotation, seeking to identify and reinforce common patterns to main-

tain consistent, parsimonious annotations.
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The result is a scheme of 118 hierarchical fine-grained entity types and

nesting rules, covering all capitalised mentions of entities, and numerical and

temporal expressions. Unlike many corpora, we have developed detailed

guidelines, including extensive discussion of the edge cases, in an ongoing dia-

logue with our annotators which is critical for consistency and reproducibility.

We annotated independently from the PTB bracketing, allowing annotators

to choose spans which were inconsistent with the PTB conventions and errors,

and only refer back to it to resolve genuine ambiguity consistently.

We merged our NNE with the PTB, requiring some systematic and one-off

changes to both annotations. This allows the NNE corpus to complement other

PTB resources, such as PropBank, and inform PTB-derived corpora for other

formalisms, such as CCG and HPSG. We compare this corpus against BBN.

We consider several approaches to integrating the PTB and NNE annotations,

which affect the sparsity of grammar rules and visibility of syntactic and NE

structure. We explore their impact on parsing the NNE and merged variants

using the Berkeley parser (Petrov et al., 2006), which performs surprisingly well

without specialised NER features.

We experiment with flattening the NNE annotations into linear NER variants

with stacked categories, and explore the ability of a maximum entropy and a

CRF NER system to reproduce them. The CRF performs substantially better,

but is infeasible to train on the enormous stacked category sets. The flattened

output of the Berkeley parser are almost competitive with the CRF.

Our results demonstrate that the NNE corpus is feasible for statistical models

to reproduce. We invite researchers to explore new, richer models of (joint)

parsing and NER on this complex and challenging task.

Our nested named entity corpus will improve a wide range of NLP tasks,

such as coreference resolution and question answering, allowing automated

systems to understand and exploit the true structure of named entities.
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1 Introduction

What’s Montague? it is nor hand, nor foot,

Nor arm, nor face, nor any other part,

Belonging to a man. O! be some other name:

What’s in a name?

William Shakespeare

The goal of natural language processing (NLP) is to develop computational

systems for the interpretation, storage and manipulation of natural language.

People, locations, organisations and other named entities play central roles in

our lives, and their mentions are central in language. Therefore, named entity

recognition (NER) has been a focus for NLP research, especially with statistical

methods, and is a core component of many NLP applications, including search

engines, question answering and machine translation.

The standard named entity recognition task involves identifying proper noun

mentions of entities and classifying them according to a pre-defined category

scheme. In most schemes, a contiguous sequence of tokens is identified and

annotated with a single course-grained category. These linear spans are mutually

exclusive — they cannot be nested within or overlap each other.

General domain NER includes identifying people (PER), locations (LOC),

organisations (ORG) entities, and sometimes includes a catch-all category for

miscellaneous (MISC) entities. This coarse-grained task has been extended by

splitting these categories into finer-grained distinctions in an entity hierarchy.

2
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It can also include numerical (NUMEX) and temporal (TIMEX) expressions,

which may or may not be proper noun mentions, but are often distinguished

by a small number of lexical patterns.

Unfortunately, this linear approximation of NER takes us no closer to a

detailed semantic interpretation of named entities than chunking is to a full

syntactic analysis. NER, so construed, reflects neither the syntactic nor se-

mantic structure of NE mentions, and typically provides insufficient categorical

distinctions to represent that structure.

Representing this nested structure, where a mention contains mention(s) of

other entities, is critical for applications such as coreference resolution, and the

lack of this structure creates spurious ambiguity in the linear annotations.

Research in NER, as with most NLP tasks, has been shaped by the quantity

and quality of the available annotated corpora. As we discuss in Chapter 2, the

existing structured named entity corpora are either small, in specialist domains,

or in languages other than English. As such, they are unsuitable for our use, and

we instead build on the unstructured BBN (Weischedel and Brunstein, 2005a)

entity scheme and annotations, adding structural and finer-grained categories.

This thesis addresses this deficiency, presenting the Nested Named Entity

(NNE) corpus, the first large-scale corpus of manually-annotated, structured,

fine-grained named entities for English newswire, taken from the WSJ portion

of the Penn Treebank (PTB, Marcus et al., 1993). We explore how well existing

phrase structure parsers and NER systems perform on this complex nested

named entity task, and demonstrate that it is feasible to learn.
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1.1 Motivating nested entity structure

A named entity can contain mentions of other entities: [Twinings of [London]loc]CORP

and [[Cambridge]loc University]EDU both contain a nested mention of a CITY:

London and Cambridge.1 These nested mentions are extremely common.

In the linear approximation of NER, all tokens in the span boundaries are

labelled with the category of this larger span, so London and Cambridge would be

labelled as a corporation (CORP) and educational institution (EDU) respectively,

when they both function semantically as a mention of a city.

This introduces a type of spurious ambiguity into linear NER. Even in the case

where the single token Cambridge (without University) refers to the university,

the analysis should similarly be [[Cambridge]city]EDU, since the metonymy is

simply due to the elision of University.

The lack of corpora annotated with nested named entities has limited pro-

gress on the structured task, and the most influential resources that have direc-

ted research effort (e.g. the CoNLL shared task corpora) lack this information.

This has resulted in the vast majority of general domain NER research (espe-

cially in English) focused on annotations without internal structure, meaning

spurious ambiguity is forced onto the analysis of each token.

The lack of nested structure in entities also impacts downstream applications.

Consider the task of question answering, for example In which city’s stock

exchange did Nike, Inc. first list? A system may identify that Nike listed on the

New York Stock Exchange, but without knowledge of how to unpack that entity

(e.g. [[New York]city Stock Exchange]CORP) and identify the CITY nested within

it, further processing would be required.

1In this thesis, we annotate examples with square brackets and subscripts, and abbreviate
unambiguous categories, e.g. we often drop the ORG prefix on ORG subtypes. We use colour to
differentiate coarse-grained entity types (PER, ORG, LOC, FACILITY, MISC, NUMEX, TIMEX).
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Similarly, in question answering information must often be combined from

several sources to answer a question. How many days are there between Christmas

in 2014 and Easter in 2015? Finding the dates of those two events may be

straightforward, but finding a sentence that has already done that calculation is

less likely. In this case, we must interpret the two dates as points on a timeline

and calculate the difference, which requires an understanding of the internal

structure of temporal expressions.

Understanding the internal structure of numerical expressions is also critical.

For example, one to two hundred people is a single numerical reference (100-200

people), while rooms can accommodate bookings of one hundred and sixty people

respectively refers to two different numbers (not 160).

Learning the structure of an entity also gives us more evidence for tasks such

as coreference resolution and relation extraction, for example, understanding

that people’s names are constructed of first names (FIRST, e.g. [Bill]FIRST) and

family names (NAME e.g. [Gates]NAME) helps us identify that [Mr Gates]PER,

[Bill Gates]PER and [Bill]PER all refer to the same person, one of the founders of

the [Bill and Melinda Gates Foundation]ORG.

Bill and Melinda Gates Foundation

first first name

first

name

orgcorp

A better representation of the internal structure of a named entity can help in

identifying its boundaries, a particularly difficult part of NER. This is especially

true of entities containing prepositions (the [Bank of [England]country]corp or

conjunctions ([[[Proctor]name & [Gamble]name]name]corp).2 Syntax can also offer

further information for making NER decisions. Consider that I told Lucy Ester

couldn’t lose, does not refer to a [Lucy Ester]PER. Similarly I gave Oprah Spiderbait

2The NAME nesting structure is explained in Chapter 3.
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’s new album, can use syntactic clues to separate those entities, and to add

information that Oprah is likely to be an animate entity.

By better learning the structure of entities, and combining this knowledge

with syntactic and semantic information from a wider context we can hope to

correctly analyse even very difficult entities, such as this CORP from sentence

WSJ1249_34 of the PTB:

Outplacement firm Challenger , Gray & Christmas finds . . .

name name name

name

orgcorp

1.2 Motivation for fine-grained entities

Most NER tasks involves the broad categories PER, LOC and ORG, with some

tasks also including a miscellaneous category (MISC), and temporal (TIMEX)

and numerical (NUMEX) expressions.

In many real-world applications such as relation extraction, named entity

linking, and question answering, these very coarse-grained categories are insuf-

ficient and while NER is used in the NLP pipeline, further post-processing and

classification into fine-grained categories is required.

Sekine et al. (2002) introduce a detailed category hierarchy, consisting of

more than 200 categories. This category hierarchy has been used by Hashimoto

et al. (2008) to annotate a Japanese corpus of 8,500 newspaper articles and 400

white papers, though it has not yet been used to annotate a large-scale English

corpus. Finer category distinctions are more common in domain-specific NER.

For example, the GENIA corpus in the biomedical domain contains 36 different

categories with finer-grained distinctions (and shallow nested structures). In

general domain, English corpora, the most widely used corpora: MUC-6 (Sund-
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heim, 1995), MUC-7 (Chinchor, 1998), and CoNLL 2003 (Tjong Kim Sang and

De Meulder, 2003), are not annotated with fine-grained categories.

A fine-grained category hierarchy also allows for clearer signals in machine

learning. Consider the MISC category, a particularly heterogeneous collection

of entities, ranging from works of art to nationalities, products and laws. These

are all quite different types of entities, and their surface forms show substantial

variation. The names of laws or works of art often contain numerical or temporal

references (e.g. [Proposition [13]cd]LAW, or [[1984]year]BOOK), while the names

of religions or nationalities rarely do. By distinguishing between these types,

we can allow for a much clearer signal for each type of entity.

The clearer signal for fine-grained categories is most evident when combined

with syntactic information, such as verb sub-categorisation restrictions, since

fine-grained categories behave differently and are used in different syntactic

structures in text. A person can attend an educational organisation, such as a

school or university, but cannot attend a corporate organisation. Similarly, in

coreference resolution, [Mr [Vinken]name]PER is a much more likely reference

than [Mr [Pierre]first]PER. These distinctions are important in order to learn

high-accuracy models of entity types.

While some English corpora do exist with fine-grained entity annotations,

such as BBN (Weischedel and Brunstein, 2005a) which is annotated with 64

types of named entity, numerical and time expression, it has not been widely

used, and the CoNLL 2003 data set and the four-category NER task (PER, LOC,

ORG, MISC) remains the de-facto standard.

In this work, we build on the BBN (Weischedel and Brunstein, 2005a) entity

scheme and annotations, adapting the scheme with the addition of structural

and finer-grained categories including some from Sekine et al. (2002). Using

the existing BBN annotations allows us to create our nested corpus much more
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rapidly, both in terms of annotation speed and the ability to find instances of

specific types for designing our schema.

1.3 Contributions

In this thesis, we present the Nested Named Entity (NNE) corpus, the first

corpus of nested named entity structure in English newswire text. It comprises

nearly 50,000 sentences of fine-grained, structured entity annotations over the

Wall Street Journal portion of the Penn Treebank. We use the BBN Pronoun

Coreference and Entity Type Corpus (Weischedel and Brunstein, 2005a) as

the starting point for our highest layer of entity annotation, and add in nes-

ted structures using a hierarchical classification scheme based on the existing

annotations (Brunstein, 2002). The NNE corpus has high inter-annotator agree-

ment, achieving a Fleiss’ kappa of 0.834. We perform substantial consistency

analysis to ensure a high quality corpus.

We define twelve high-level principles that guided the development of

the annotation scheme and guidelines, and resolved difficult decisions for

annotators. We also monitored the induced semantic grammar as it evolved

during the annotation process, seeking to identify and document common

patterns, such as FIRST + NAME → PER, to maintain consistency between

annotators and attempt to minimise rule proliferation.

We present a set of highly detailed NNE annotation guidelines, covering 118

named entities, and numerical and temporal expressions at a fine-grained level.

The guidelines are a separate document, and this thesis contains an abridged

version. These guidelines bring fine-grained, structural named entities to the

same level of detail as the bracketing and part of speech annotation guidelines

for the Penn Treebank.
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We developed annotation tools that allow annotators to easily see previous

annotation decisions within this document and in the entire corpus, and enables

annotators to make decisions on a per-document and entire corpus level. This,

combined with our detailed annotation guidelines and annotation principles,

and with substantial consistency checking, has ensured a highly consistent

corpus of structured named entities.

We merged our NNE with the PTB, requiring some systematic and one-off

changes to both annotations. This allows the NNE corpus to complement other

PTB resources, such as PropBank (Kingsbury and Palmer, 2002; Palmer et al.,

2005) and NomBank (Meyers et al., 2004), and inform PTB-derived corpora for

other formalisms, such as Combinatory Categorial Grammar (Hockenmaier,

2003) and LFG (Cahill et al., 2002). We compare this merged corpus against the

original BBN annotations.

1.3.1 Learning nested named entities

We approach the task of learning nested named entities from a parsing perspect-

ive, presenting the first results of learning nested entities in English newswire

text, and demonstrating that statistical methods can recover them with reason-

able accuracy.

We consider several approaches to integrating the PTB and NNE annotations,

which affect the sparsity of grammar rules and visibility of syntactic and NE

structure. We explore their impact on parsing the NNE and merged variants

using the Berkeley parser (Petrov et al., 2006), which performs surprisingly well

without specialised NER features. We perform extensive error analysis on these

different approaches.

We experiment with flattening the NNE annotations into linear NER variants

with either top-most, bottom-most and stacked categories, and explore the

ability of a maximum entropy and a CRF NER system to reproduce them. The
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state-of-the-art CRF performs substantially better, but is infeasible to train on

the enormous stacked category sets.

We compare the results of two NER systems to the performance of our

parsing models on these semi-structural projections, finding that flattened

output of the Berkeley parser are almost competitive with the CRF.

1.3.2 Analysing nested named entities

We present an analysis of the nested entities in the NNE corpus we create,

finding a high number of structural entities with multiple layers of annotation.

We discuss the analyses of the internal structure that form these nested named

entities.

After merging our nested named entities with the syntactic structure of the

PTB, we present a novel analysis of the effects of different merging algorithms

on both parsing and named entity recognition. We also perform substantial

error analysis in both the subtasks of parsing and named entity recognition.

1.4 Outline

We begin by reviewing the main tasks involved in learning the structure of

named entities — parsing and named entity recognition — and by investigating

the available corpora for both tasks in Chapter 2. We compare various annota-

tion schemes used in NER corpora, and describe the importance of the Penn

Treebank (PTB) in both parsing and the wider NLP field.

Chapter 3 describes the entity scheme used to annotate the corpus, outlining

the annotation principles developed to ensure a detailed, consistent and useful

corpus. We summarise the detailed entity guidelines used in the creation of

the thesis, which bring the same level of detail as the syntactic PTB guidelines

to the task of nested NER. We further describe why we elected to augment
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the Wall Street Journal section of the Penn Treebank with nested named entity

information, and outline the benefits from starting from existing, flat NER

annotations from the BBN corpus.

In Chapter 4 we document the creation of the NNE corpus. We outline

various pre- and post-processing steps we apply, as well as a custom annotation

tool, designed to ensure the creation of an accurate and consistent corpus. We

analyse the inter-annotator agreement of our annotators, conduct substantial

error analysis, and analyse the resulting final NNE corpus.

Chapter 5 describes the process of merging our NNE annotations with the

PTB constituency structure, to ensure a compatible corpus, which is necessary

for parsing experiments. We outline the changes we make to both our NNE

annotations and the syntactic constituents of the PTB, and evaluate the impact

on consistence of both corpora that these changes have had.

In Chapter 6 we describe a number of ways of combining our NNE annota-

tions and the syntactic constituents of the PTB into one corpus, and perform

the first analysis of the impact of different methods of combining syntactic and

NE semantic labels in a single constituency tree on the task of parsing. We use

the Berkeley Parser (Petrov et al., 2006) to learn these combined structures, and

report the first results of combined parsing and nested named entity recogni-

tion. We also analyse the effects of the changes made to the PTB in the merging

process of Chapter 5, and demonstrate the utility of that syntactic structure in

predicting nested named entity structure.

In Chapter 7 we evaluate how well existing NER systems, LIBSCHWA NER

(Dawborn, 2015) and C&C NER tagger (Curran and Clark, 2003b), can learn

structured NER by devising different projections of structured entities into flat

individual labels. We compare the results of these NER systems to the results of

the parsers trained in Chapter 6, and analyse the different types of errors made

by the different systems.
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Finally, Chapter 8 discusses avenues for future work, both in the specific task

of NER and in various wider NLP tasks, and summarises the core contributions

of this thesis.

This thesis contributes a significant new corpus for nested named entity recog-

nition, the results of a number of novel experiments and sets the benchmark

for the task of fine-grained, structured named entity recognition. In addition to

this, it opens the field for further research, allowing nested named entities to be

leveraged by systems in a wide range of NLP applications.



2 Background

It is important that we know where we come from,

because if you do not know where you come from,

then you don’t know where you are, and if you

don’t know where you are, you don’t know where

you’re going. And if you don’t know where you’re

going, you’re probably going wrong.

Terry Pratchett

The primary contribution of this thesis is a corpus of nested named entity

structure. In this chapter, we outline how the definition of a named entity

has developed as new datasets are released. The Message Understanding

Conferences (MUC, Chinchor, 1998) originally defined named entities with the

broad categories of people, locations and organisations, as well as temporal

and numerical expressions. Since then, the largest developments have been

the inclusion of a Miscellaneous (MISC) category, and the introduction of fine-

grained category hierarchies. Nesting in NEs has always been posited as a

logical area for future development, though limitations in the available corpora

annotated with nested entity structures have restricted this in standard NER

tasks. This thesis addresses this shortfall, providing an accurate, fine-grained

and nested named entity corpus.

Since the task of predicting the nested structure of named entities is relat-

ively new, there is no single well-established way to learn the task, nor, more

13
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importantly a generally accepted and comparable way to evaluate how well

such a learnt model can apply to unseen text. In this thesis, we propose using

methods from syntactic parsing to model structured named entity recogni-

tion. We consider both the subtasks of constituency parsing and named entity

recognition for evaluation.

In this chapter, we therefore discuss both constituency parsing and named

entity recognition, both of which will be further discussed in their respective

chapters (Section 6.1 and 7.1). We outline the development of constituency

parsing, highlighting the important role that the Penn Treebank (PTB, Marcus

et al., 1993) has had in allowing for the development of statistical models,

and providing the mechanism on which those models are evaluated. We then

discuss NER before reviewing related work on nested named entities primarily

in Biomedical NLP.

2.1 Overview of tasks

In this section, we introduce the main tasks involved in learning the structure

of named entities: parsing and named entity recognition. In particular we focus

on the formalisms that will be important for understanding the methods used.

2.1.1 Parsing

Parsing, the process of determining the syntactic structure of a sentence, is an

important natural language processing (NLP) task. Accurately parsing text

is a vital step in many automatic language processing tasks, such as question

answering (QA).

The most common type of syntactic representation of a parse is shown in

Figure 2.1, which shows the first sentence of the Penn Treebank, a large-scale

corpus annotated with gold-standard parse trees. In a constituency grammar, a
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Figure 2.1: Constituent structure for the first sentence of the Penn Treebank (Marcus
et al., 1993).

sentence is recursively decomposed into smaller sequences of words that are

each labelled based on their internal structure. Different phrase labels relate

to the dominant head word in the phrase. Phrase structures are induced by

context-free grammars and are used in a variety of grammatical frameworks

including Lexical Functional Grammar (LFG) (Kaplan and Bresnan, 1982), Tree

Adjoining Grammar (TAG) (Joshi and Schabes, 1992), and Head-driven Phrase

Structure Grammar (HPSG) (Pollard and Sag, 1994). In this thesis, we assume

constituent structures as the representation of syntactic elements.

The PTB is not only a useful standalone resource of its own right, but has

also enabled a large number of corpora in different grammatical formalisms to

be created. The combination of both phrase labels and Trace elements in the

PTB has enabled it to be used as the basis for statistical models used to generate

treebanks in other grammars, such as CCG (Hockenmaier, 2003; Hockenmaier

and Steedman, 2007), HPSG (Miyao et al., 2004), and LFG (Cahill et al., 2002).

Thus, an advantage of adding additional annotations to the PTB is that this

layer of information can be transferred through to all derivative resources in

different formalisms.
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2.1.2 Named Entity Recognition

Named entity recognition (NER) is the task of automatically identifying proper

names, numerical and temporal expressions in text and classifying them accord-

ing to a pre-defined set of categories. General domain NER includes identifying

the names of people (PER), locations (LOC) and organisations (ORG). This

has been extended in different ways, both by splitting existing categories into

finer-grained distinctions with or without an explicit hierarchy, and by the

inclusion of additional categories beyond the scope of people, locations and

organisations.

[Nicky Ringland]per attends the [University of Sydney]org.

Finer grained categories are often grouped in a hierarchical structure (Sekine

et al., 2002; Li and Roth, 2002; Sekine and Nobata, 2004; Sekine, 2008; Ling and

Weld, 2012) whereby, for instance, multiple types of organisation (CORPORATE,

EDUCATIONAL, GOVERNMENT, etc.) sitting under an ORGANISATION cat-

egory. Hierarchical ontologies allow for consistent labeling in certain cases of

ambiguity. For instance the soccer team Red Bull Brasil may have surface form

Red Bull, and in context it may be unclear whether this refers to the ORGANIZ-

ATION:CORPORATE or SPORTSTEAM. The parent label (ORGANIZATION)

can be used instead. Other categorisation schemes may not allow parent cat-

egories to be used as labels, but instead have an category for cases such as this,

or for other specific types of organisations not specified by individual categories.

Fine grained classification hierarchies are further discussed in Section 2.4.8.

Extended named entity categorisations grow the scope of entities of interest.

They usually include a miscellaneous category (MISC) which can include works

of art, languages and product names. MISC also frequently includes entities

which are not nouns, in certain adjectival forms, sometimes known as NORP,

standing for NATIONALITY, OTHER, RELIGION and POLITICAL.
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Temporal and Numerical expressions are also occasionally included in the

NER task. Orthographically, their form is very different from other NEs, and

semantically they also differ in that they lack a real-world referent. NUMEX ex-

pressions are lowercase, and are relatively detectable based on being primarily

composed of numbers and a small set of words. TIMEX expressions are a mix

of both proper (Sunday) and common noun (next week) phrases, and the scope

of the category varies between annotation guidelines. NUMEX and TIMEX

expressions can be quite complex, yet mostly regular. Unlike other categories

in the NER task, a large number of NUMEX and TIMEX expressions can be

captured with simple regular expressions.

Annotation categories and corpora vary based on the specific application for

NER. In the biomedical domain, corpora are annotated with entities including

genes, proteins and chemical substances. For pragmatic reasons, and the low

number of instances of these entity types, these entities are rarely annotated in

general domain or newswire NER corpora. Similarly, specific properties of the

biomedical domain have resulted in nesting of entities being annotated in some

biomedical corpora, further discussed in Section 2.4.1.

The area of NER developed from the field of information extraction (IE) in

the Message Understanding Conferences (MUC) held in the 1990s (Chinchor,

1998). At the time, MUC was primarily focused on IE tasks where structured

information, such as a company or financial ‘event’, is extracted from unstruc-

tured text such as newspaper articles.

NER has since evolved into a distinct task which is an essential pre-processing

step in various NLP pipelines including question answering, information re-

trieval, coreference resolution and slot filling.

Due to the lack of appropriate resources, most NER work has assumed a flat

NE structure. This has meant that entities such as [The University of Sydney]ORG

and the [Sydney Swans]ORG are analysed as ORG, in effect forcing spurious
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ambiguity onto the token [Sydney]CITY, which is acting as CITY in both cases. It

also means that we have been unable to utilise structural information in entities

such as the [Bill and Melinda Gates Foundation]ORG, from which we should be

able to derive both [Melinda Gates]PER and [Bill Gates]PER, which would be

especially useful for coreference tasks when co-located with [Mr. Gates]PER.

The dependence of machine learning approaches on large annotated training

corpora has proven to be a bottleneck in this.

2.2 The Penn Treebank corpus

The development of syntactically annotated corpora revolutionised computa-

tional linguistics, allowing the field to develop from predominantly rule-based

to statistical methods.

The Penn Treebank (Marcus et al., 1993) has been hugely influential in

statistical methods for learning syntactic parse structures in English. Developed

between 1989 and 1996, the Penn Treebank was the first large-scale corpus to be

manually annotated with gold-standard constituency trees.

The Treebank has labelled brackets describing the syntactic structure of

each constituent in the sentence and part of speech (POS) tags labelling each

word. These phrase brackets and POS tags are summarised in Table 2.1, and

an example of their use is given in Figure 2.2, where [Cotton Inc.]CORP is an NP

composed of two proper nouns (NNP).

The release of the Penn Treebank allowed for supervised, statistical exper-

iments in parsing, and it remains the canonical parsing dataset for English.

However, the Penn Treebank does have certain known limitations, both with re-

spect to the grammatical structures with which it is annotated, and the presence

of errors in the data.
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The Penn Treebank I was released in 1991 (Marcus and Santorini, 1991),

followed by the Penn Treebank II in 1993 (Marcus et al., 1993). The re-release of

the corpus updated the bracketing guidelines, modifying the way trace elements

are handled, and adding a set of functional markers used to indicate semantic

structure. These enabled the modeling of grammatical relations (Marcus et al.,

1994). In Figures 2.1 and 2.2, SBJ marks the subject NP, while LOC and TMP

mark locative and temporal elements respectively. The annotation of these

semantic elements proved difficult (see Marcus et al., 1994), and the resulting

functional markers are used inconsistently throughout the corpus.

The handling of various types of NE are also captured in Figures 2.2 and 2.3.

Some NEs, e.g. (NP (NNP Cotton)(NNP Inc.)) and (NP (NNP Albert)(NNP M.)(NNP

Kligman)), form constituent NPs, though only each individual token is identified

as a proper noun, not the larger constituent span. The analysis of Thanksgiving

Day in Figure 2.2 shows an example of inconsistent treatment of a constituent

due to proper nouns being analysed with flat structure. The first instance forms

its own constituent NP, while the second forms part of a larger NP: Macy ’s

Thanksgiving Day Parade and does not have its own constituent. This is further

explored and a solution proposed in Chapter 5.

In Figure 2.3, the analysis for [University of Pennsylvania School of Medicine]ORG

is even more problematic, with the substructure (NP (NP the University of

Pennsylvania School)(PP of Medicine)) splitting the mention School of Medicine.

We further examine these inconsistencies and solve the problem in Chapter 5.

2.2.1 Adding Noun Phrase Structure to the PTB

The original Penn Treebank annotation guidelines did not include extensive

noun phrase structure, electing instead to simplify the annotation task and

speed up bracketing decisions by avoiding adding any structure for nominal

modifiers as far as possible (Marcus et al., 1993).
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( (S
(NP-SBJ-1 (NNP Cotton) (NNP Inc.) )
(VP (MD will)

(VP (VB spend)
(NP

(QP (RB nearly) ($ $) (CD 2) (CD million) )
(-NONE- *U*) )

(PP-CLR (IN on)
(NP (NN broadcasting) ))

(PP-TMP (IN on)
(NP

(NP (NNP Thanksgiving) (NNP Day) )
(ADVP (RB alone) )))

(, ,)
(S-ADV

(NP-SBJ (-NONE- *-1) )
(VP (VBG advertising)

(PP-LOC (IN on)
(NP

(NP (JJ such) (NNS programs) )
(PP (IN as)

(NP (‘‘ ‘‘)
(NP (JJ Good) (NN Morning) (NNP America) )
(, ,) (’’ ’’) (‘‘ ‘‘)
(NP

*(NP (NNP Macy) (POS ’s) )
(NNP Thanksgiving) (NNP Day) (NNP Parade) )

(’’ ’’)
(CC and)
(NP (DT the) (NNP NFL) (NN holiday) (NN game) )))))))))

(. .) ))

Figure 2.2: An example sentence (WSJ0295_53) from the Penn Treebank (Marcus et al.,
1993), with named entities marked in blue.
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ADJP Adjective Phrase PRN Parenthetical
ADVP Adverb Phrase PRT Particle
CONJP Conjunction Phrase QP Quantifier Phrase; used within NP
FRAG Fragment RRC Reduced Relative Clause
INTJ Interjection UCP Unlike Coordinated Phrase
JJP Adjectival Phrase* VP Verb Phrase
LST List marker WHADJP Wh-adjective Phrase
NAC Not a Constituent WHAVP Wh-adverb Phrase
NML Nominal Phrase* WHNP Wh-noun Phrase
NP Noun Phrase WHPP Wh-prepositional Phrase
NX Head of complex NP
PP Prepositional Phrase X Unknown or unbracketable
CC Coordinating conj. TO infinitival to
CD Cardinal number UH Interjection
DT Determiner VB Verb, base form
EX Existential there VBD Verb, past tense
FW Foreign word VBG Verb, gerund/present participle
IN Preposition VBN Verb, past participle
JJ Adjective VBP Verb, non-3rd ps. sg. present
JJR Adjective, comparative VBZ Verb, 3rd ps. sg. present
JJS Adjective, superlative WDT Wh-determiner
LS List item marker WP Wh-pronoun
MD Modal WP$ Possessive wh-pronoun
NN Noun, singular or mass WRB Wh-adverb
NNS Noun, plural # Pound sign
NNP Proper noun, singular $ Dollar sign
NNPS Proper noun, plural . Sentence-final punctuation
PDT Predeterminer , Comma
POS Possessive ending : Colon, semi-colon
PRP Personal pronoun ( Left bracket character
PP$ Possessive pronoun ) Right bracket character
RB Adverb " Straight double quote
RBR Adverb, comparative ‘ Left open single quote
RBS Adverb, superlative “ Left open double quote
RP Particle ’ Right close single quote
SYM Symbol ” Right close double quote

Table 2.1: The Penn Treebank phrase level bracket labels and part of speech (POS)
tagset. *NML and JJP were introduced by Vadas and Curran (2007) and Vadas (2007)
for noun phrase structure.
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( (S
(PP-TMP (IN In)

(NP (NNP May)))
(, ,)
(NP-SBJ (NNP University) (NNP Patents) )
(VP (VBD filed)

(NP
(NP (DT a) (NN suit) )
(PP (-NONE- *ICH*-1) ))

(PP-LOC (IN in)
(NP (JJ federal) (NN court) ))

(PP-LOC (IN in)
(NP (NNP Philadelphia) ))

(PP-1 (IN against)
(NP

(NP (NNP Albert) (NNP M.) (NNP Kligman) )
(, ,)
(NP

(NP (DT a) (NN researcher)
(CC and) (NN professor) )

(PP-LOC (IN at)
(NP

(NP (DT the)
(NAC (NNP University)

(PP (IN of)
(NP (NNP Pennsylvania) )))

(NNP School) )
(PP (IN of)

(NP (NNP Medicine) ))))
(SBAR

(WHNP-182 (WP who) )
(S

(NP-SBJ-2 (-NONE- *T*-182) )
(VP (VBD developed)

(NP (NNP Retin-A) )
(PP-TMP (IN in)

(NP (DT the) (CD 1960s) ))
(S-PRP

(NP-SBJ (-NONE- *-2) )
(VP (TO to)

(VP (VB combat)
(NP (NN acne) )))))))))))

(. .) ))

Figure 2.3: An example sentence (WSJ0081_2) from the Penn Treebank (Marcus et al.,
1993), with named entities marked in colour. The named entity in red has incorrect
substructure.
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Figure 2.4: CCG derivation from Hockenmaier (2003)

Vadas and Curran (2007) and Vadas (2010) extend the existing Treebank

annotations by adding the internal structure of noun phrases. They motivate the

task of identifying noun phrase structure in base-NPs, citing their importance

in NLP systems (NPs as factoid answers for Question Answering systems), as

well as other annotated data derived from the Penn Treebank.

CCGbank (Hockenmaier, 2003; Hockenmaier and Steedman, 2007), for ex-

ample, was created by semi-automatically converting the Treebank phrase

structures to Combinatory Categorial Grammar (CCG Steedman, 1996, 2000), a

grammatical formalism which is binary branching and, as such, cannot directly

represent the flat structures of Penn Treebank noun phrases. The conversion

process, in the absence of structural NP information, constructed strictly right-

branching trees for all base-NPs, an example of which is shown in Figure 2.4.

The annotation guidelines used by Vadas and Curran (2007) build on those

for annotating full sub-NP structures from the biomedical domain (Kulick

et al., 2004), which add nominal (NML) nodes to add internal NP structure.

Vadas and Curran add NML or Adjectival phrase (JJP) nodes for structures that

are left-branching, and leave right-branching structures flat. All potentially

ambiguous NPs, defined as NPs with three or more contiguous children that
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(NP
(NML (JJ Good) (NN Morning) )
(NNP America) )

(NP
(NP (NNP Macy) (POS ’s) )

(NML (NNP Thanksgiving) (NNP Day) )
(NNP Parade) )

Figure 2.5: Changes from sentence (WSJ0295_53) following addition of noun phrase
structure (Vadas and Curran, 2007). Note the inclusion of NML node labels.

are either single words or other NPs, in the PTB were annotated. Some common

structures, such as an NP of three words starting with a determiner were filtered

out as unambiguous.

Vadas and Curran drew structural suggestions from the boundaries of

named entities from the BBN corpus (Weischedel and Brunstein (2005a), see

Section 2.3.4), as well as from previous bracketings of the same words. Post-

processing checks were carried out to ensure annotation consistency. 22851

NPs of a total of 60959 ambiguous NPs (37.49%) were found to be non right-

branching, and had brackets inserted.

Vadas and Curran (2007) used Bikel’s (2004) implementation of Collins’

parser (Collins, 1999) to evaluate the addition of NP structure to the PTB, find-

ing that the additional brackets make parsing marginally more difficult (88.46

F1-score, down from 88.92). They further evaluate on only the NML and JJP

brackets which were inserted, achieving an F1-score of 69.63, and correspond-

ingly evaluate excluding the NML and JJP brackets which were inserted, achiev-

ing an F1-score of 88.89. These results show the difficulty of correctly bracketing

NPs, while also demonstrating that the performance of other phrases is not

badly affected by the new NP brackets that were inserted.
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2.2.2 Other resources built on the PTB

In addition to enabling the automatic creation of corpora in other grammatical

formalisms, such as CCG (Hockenmaier, 2003) and LFG (Cahill et al., 2002), the

PTB has also served as the basis of a number of other linguistic resources such

as PropBank (Kingsbury and Palmer, 2002; Palmer et al., 2005) and NomBank

(Meyers et al., 2004), meaning that these resources are able to be mapped

back and through to the derivative treebanks in other grammatical formalisms.

PropBank specifies the predicate argument relationships between verbs and the

arguments of those verbs. NomBank provides argument structure for instances

of common nouns in the PTB corpus.

The goal of the PropBank and NomBank projects is to lead to the creation of

better tools for the automatic analysis of text. Meyers et al. (2004) suggest that

the standardisation which is imposed by the annotated data will ensure that

more researchers will work within the same set of frameworks, and as such,

each individual’s research will be more directly applicable to the larger research

community.

Additionally, as the same set of data is annotated with additional layers of

annotation, new forms of multistage processing become possible. Consider

an information extraction task where acquisitions are of interest. A system

using PropBank and NomBank could generalise over patterns involving the

verb acquire, learning that [Sony Corp.]CORP acquired [Columbia Pictures]CORP

from both surface forms Sony Corp. acquired Columbia Pictures, Columbia Pictures

is being acquired by Sony Corp., Sony’s recent acquisition of Columbia Pictures . . .

etc. When combined with the fine-grained NE corpus presented in this thesis,

the system could additionally learn that both the first and second argument of

acquire are often CORP companies.



Chapter 2. Background 26

Unfortunately, if these corpora which offer additional annotation layers do

not align properly with the Treebank, the utility of the resource is impacted.

PropBank and NomBank do not modify the PTB annotations, even in cases

of incompatible alignment. By electing to leave the PTB unmodified, some

arguments span over incompatible syntactic spans, which is problematic for

systems parsing this information, such as those which use parsers for the task

of semantic role labelling. These systems essentially incur a penalty, since they

are unable to produce the correct PropBank span.

OntoNotes (Hovy et al., 2006; Weischedel et al., 2010, 2013) combines mul-

tiple layers of annotation, including the PTB, PropBank and NomBank, as well

as additional layers of semantic annotation. Babko-Malaya et al. (2004) describe

the merging the English Treebank and PropBank, detailing the changes that

were necessary to make to both corpora to address the conflicting annotations.

OntoNotes further adds to these annotation layers with resolving word sense

ambiguity (linking each to the Omega ontology Philpot et al., 2005), and annot-

ating coreference. The OntoNotes project further grew to include named entity

annotation in later releases.

The OntoNotes project has been developing in parallel to the work presented

in this thesis, and the extension of this work to the OntoNotes corpus would be

a natural progression, which we suggest as future work.

2.2.3 Tokenisation in the Penn Treebank

The preprocessing task of tokenisation, that is, splitting a sentence up into

discrete tokens, is important for all NLP tasks. In most cases, this is considered

a preprocessing step that has already been solved, and the tokens that for a

sentence are considered independent lexemes and punctuation marks. Many

phenomena complicate tokenisation, including abbreviations (e.g. USPS, the

United States Postal Service), date or number expressions (e.g. the 1980s), and
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certain adjectival forms (e.g. London-based). Many of these tokenisation issues

are of particular interest to the combined task of parsing and NER, however

substantial tokenisation changes are rarely made to an existing, establish corpus

such as the Penn Treebank. In this thesis, we accept this limitation, but note the

issues that are compounded based on tokenisation decisions.

2.2.4 Summary

The PTB is one of the most influential resource in NLP, alongside other resources

such as WordNet (Pedersen et al., 2004). It has had an enormous impact, both

directly on the task of parsing, and in the wider field of NLP. Over time, various

deficiencies (such as NP bracketing for NP structure) have been rectified, and

additional resources have been built both from it (CCGbank) and on top of it

(PropBank, NomBank) that make it an even richer resource. This thesis builds

on top of the PTB and enriches the full ecosystem of resources and systems that

stem from it.

2.3 Named Entity Corpora

As with parsing, the dominant methods in current named entity recognition

use data-driven statistical approaches. The costs associated with procuring the

data are high. For English NER training, corpora originating from conference

evaluations of named entity technology (MUC, IEER, ACE and CoNLL) are

most widely used, in both general and specific domains such as biomedicine.

This can affect the usefulness of the corpora since they are, to a large extent,

only annotated with the specific labels that are of interest to that particular

conference or shared task.
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The BBN Pronoun Coreference and Entity Type Corpus (BBN) did not origin-

ate from a conference or competition. It contains a wide variety of fine-grained

entities, but has not been widely utilised by the research community.

Corpora with annotated named entities are essential for developing and

evaluating named entity recognition (NER) systems. NER systems can only

be as reliable as their training sources and world knowledge, and can only be

as detailed as the training data and annotation schemas. Machine learning

approaches to NER require training corpora with gold-standard annotations

which can be analysed statistically to produce a predictive model. Since training

texts are traditionally annotated manually by linguistic experts, they are costly

to produce and generally small in size – up to 1.2 million tokens in BBN’s

annotation of Wall Street Journal text (Weischedel and Brunstein, 2005b). More

recent work has explored a distant supervision approach using Wikipedia to

generate corpora automatically (Richman and Schone, 2008; Nothman et al.,

2013), however, these large corpora are not extensively used for training or

evaluation of NER systems. The domain of the corpus is also important, as

performance is considerably lower when NER systems are trained on out of

domain corpora. This has led to the creation of domain specific corpora, such

as Liu et al. (2011), who have annotated named entities in Tweets.

An overview of the size, domain, number of tags and presence of nested

entities in commonly used named entity corpora is shown in Table 2.2.

2.3.1 MUC 6 and 7 and MET

The Message Understanding Conferences (MUC) which ran from 1987 to 1997

were designed to encourage the development of information extraction meth-

ods. These competitions involved both the creation of substantial amounts

of data and new standards for evaluation. The MUC-6 (Sundheim, 1995) and

MUC-7 (Chinchor, 1998) shared tasks compartmentalised named entity recogni-
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Corpus # tags # tokens Nesting Domain

MUC-6 7 23,773∗ no Newswire

MUC-7 7 149,249∗ no Newswire

CoNLL 2003 4 301,418 no Newswire

ACE 2004 43 189,620 some Newswire, Broadcast & Web

BBN 64 1,173,766 no Newswire

OntoNotes 18 450,000† yes Newswire

ACE 2008 31 245,000‡ some Newswire, Broadcast & Web

GENIA 36 436,967 yes Biomedical

AnCora 6 n/a yes Non-English Newswire

Table 2.2: Statistics of various English NER datasets. Note that ‘# tags’ includes named

entity, TIMEX and NUMEX categories. *Approximate numbers based on untokenised

text. †The ACE 2008 token numbers are unavailable for evaluation data; reported is

tokens in training and development data. ‡Number of tokens in English documents

annotated with named entity information, of a total of 1,631,995 English tokens.

tion from information extraction, and involved participants identifying named

entities in text, and categorising them into seven subcategories split over three

groups: entity expressions (ENAMEX, which includes LOCATION, ORGAN-

ISATION and PERSON), temporal expressions (TIMEX, which includes DATE

and TIME), and numerical expressions (NUMEX, which includes MONEY and

PERCENT). The MUC-6 and MUC-7 datasets are in English, sourced from the

MUC-6 Text Collection and North American News Text Corpora respectively.

2.3.2 CoNLL

Following from the success of the MUC competitions, in 2002, the Conference on

Natural Language Learning (CoNLL) shared task continued with NER. CoNLL

added a new category to the MUC NER task: Miscellaneous (MISC), a hard
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category covering a diverse range of entities including works of art, nationalities,

languages, religions and products. CoNLL also added a multilingual dimension

to the competition in order to encourage more statistically driven techniques in

NER. This was partly in response to the primarily rule-based systems which

dominated the MUC tasks, and the difficulty of building rule-based systems

which work across languages. It was also an effort to encourage feature based

systems in which more general features were implemented. Due to its focus

on machine learning, CoNLL introduced a larger dataset than any previously

available.

The CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003) shared task

refocused on German and English, the corpus for the latter being a subset

of the Reuters 1996 news corpus (Rose et al., 2002). Following on promising

results for NUMEX and TIMEX expressions using rule-based methods in MUC

and MET, CoNLL focused on ENAMEX, with a view of encouraging systems

that could learn to model NER language-independently. Both CoNLL shared

tasks required participants to identify four categories of NEs: LOCATION,

ORGANIZATION, PERSON and the new category of MISCELLANEOUS. Both

the training and the development datasets are news feeds from August 1996,

while the test set is drawn from news feeds from December 1996. Since the

development set was drawn from the same time period as the training set,

systems achieve substantially higher performance on the development set

than the test set. Since its development, despite the identification of various

tokenisation issues and resulting in consequent sentence boundary mistakes,

the CoNLL 2003 English dataset has become the canonical evaluation dataset

for English NER.
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2.3.3 ACE 2004 and ACE 2008

The Automatic Content Extraction (ACE) program started in 1999 with the aim

of developing technology to automatically infer entities, relations and events

from human language. Over the course of several tasks, the focus shifted to

entity resolution (the task of identifying, disambiguating and linking different

mentions of real-world entities) as a goal, rather than purely identification and

classification.

The ACE 2004 corpus (Doddington et al., 2004) includes all references to an

entity, including names, descriptions and pronouns, that are then collected into

equivalence classes based on reference to the same entity. As such, the ACE task

involved both entity recognition and coreference resolution. ACE 2004 built

from the CoNLL annotation schema, specifically introducing GEOPOLITICAL

ENTITY (GPE) as a category for evaluation. This distinction dealt with the

ambiguity of entities, such as countries and states, that have both organisational

and locative properties.

2.3.3.1 Nested entities in ACE

The Entity Detection and Tracking (EDT) task of ACE 2004 included identify-

ing seven entity types (with further subtypes): PERSON (no subtypes), OR-

GANIZATION (5 subtypes), LOCATION (10 subtypes), FACILITY (8 subtypes),

WEAPON (9 subtypes), VEHICLE (5 subtypes) and GEO-POLITICAL ENTITY

(GPEs) (6 subtypes). Nested mentions of entities are also captured, includ-

ing both direct named entity mentions and nominal (both prenominal and

pronominal) mentions.

The named entity component was framed in terms of nominal modification,

and as such does not address full entity nesting. Nested mentions are only

annotated in nominal mentions, not inside other named entity mentions. Fig-
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Indonesia ′s war− torn Aceh province

GPEnam GPEnam

GPEnom

Figure 2.6: Example of nesting of named entities in nominal phrase in ACE 2004 data.

“The summit , which is being sponsored by [GPE
nam the European

Union], is meant to show [GPE
nom the [GPE

nam Balkan] states] that [GPE
nam the

EU] is preparing to welcome [GPE
pro them] into [GPE

nom the [GPE
pre European]

family].”

Figure 2.7: Sentence from ACE 2004 data demonstrating the nesting of European when

in nominal phrases, but not inside other entities (European Union).

ure 2.6 shows Aceh marked as a GPE embedded within a nominal span, but the

larger span Aceh province is not annotated. In Figure 2.7, the token European is

marked as a GPE when used as a prenominal modifier (the European family), but

not marked as part of the named entity (the European Union).

The most recent ACE shared task, (Strassel et al., 2008), involved participants

identifying 31 categories of NEs (see Table 2.3) as subtypes of PERSON, LOCA-

TION, ORGANIZATION, FACILITY and GEO-POLITICAL ENTITY in English

and Arabic text from a variety of domains, including newswire, weblogs, Usenet

newsgroups and bulletin boards, and transcripts of broadcast news, talk shows

and conversational speech.

The ACE 2008 corpus includes some nested entities, including nested region

names. For example, [BORDEAUX , [France]] where Bordeaux , France, the city,

and France, the country, are both locations which should be marked, since, as a

series of nested region names, it evokes one entity for each region. However,

despite metonymy being identified as a particular problem case, nested entities

are not included in metonymous entity instances. For example, in the sentence

Miami is growing rapidly, Miami is marked as a geo-political entity (GPE) named

Miami, while in the sentence Miami defeated Atlanta 28 to 3, Miami is a metonymic
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Type Subtype
Facility Airport, Building-Grounds, Path, Plant, Subarea-

Facility
Geo-Political Entity Continent, County-or-District, GPE-Cluster, Nation,

Population-Center, Special, State-or-Province
Location Address, Boundary, Celestial, Land-Region-Natural,

Region-General, Region-International, Water-Body
Organization Commercial, Educational, Entertainment, Government,

Media, Medical-Science, NonGovernmental, Religious,
Sports

Person Group, Indeterminate, Individual

Table 2.3: Types and Subtypes of entities in the ACE 2008 English corpus.

mention of a sports organisation entity called the Miami Dolphins, and as such is

distinct from the Miami GPE (NIST-ACE, 2008). However, non-location multi-

token entities such as The New York Times are considered atomic, and are not be

annotated with nested structures (for instance, embedded GPE: New York).

The adjective Russian, as in Russian grandmothers, evokes the GPE Russia, and

is therefore be marked as GPE, though the noun, grandmothers, is not annotated.

However, when Russian is used as a noun, e.g. Several Russians recently. . . , it

confusingly is not marked as a GPE, but is left unannotated.

Further consider The White House, which is considered an organisation when

it is taking action (e.g. The White House vetoed the bill .), and a facility when the

physical building itself is referred to (e.g. A spokesperson from The White House

said. . . ).

2.3.3.2 HAPNIS

Although the ACE 2004 data did not include annotations for the internal struc-

ture of Person entities, Hal Daume III manually annotated a small subset of the

data (totalling 220 names) and developed the High Accuracy Parsing of Name

Internal Structure (HAPNIS) script1. The script annotates the internal structure

of people’s names with tags: surname, forename, middle, link (e.g. hyphen

1The data and script are both available at http://www.umiacs.umd.edu/~hal/HAPNIS/

http://www.umiacs.umd.edu/~hal/HAPNIS/
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between double barrel surnames), role (Ms., Dr., etc.), suffix (Jr., III, etc.), and

continue (for use when forenames are separated by a space, e.g. Lee Ann). The

simple Perl script uses a series of heuristics in making classification decisions

based on information such as the position of tokens in a name, the total number

of tokens, the presence of punctuation such as periods and dashes, as well as

a small gazetteer of common first name. Although tested on a small set (120

instances), and slightly biased towards calling single-word entries surnames

rather than first names, as a consequence of being trained on mostly newswire,

the script achieves very high precision.

2.3.4 BBN

The BBN Pronoun Coreference and Entity Type Corpus (BBN) was created in

2005 (Weischedel and Brunstein, 2005b), contributing additional annotation

layers to the one million word Penn Treebank corpus of Wall Street Journal

texts (see Section 2.2). The entity annotations are split into 12 named entity

types (PERSON, FACILITY, ORGANIZATION, GPE, LOCATION, NATIONAL-

ITY, PRODUCT, EVENT, WORK OF ART, LAW, LANGUAGE, and CONTACT-

INFO), ten DESCRIPTOR (nominal) entity types (PERSON, FACILITY, OR-

GANIZATION, GPE, PRODUCT, PLANT, ANIMAL, SUBSTANCE, DISEASE

and GAME), and 7 numeric and temporal types (DATE, TIME, PERCENT,

MONEY, QUANTITY, ORDINAL and CARDINAL). Several of these types

are further divided into subtypes. For example, Organization is split into 11

different subcategories, seen in Table 2.4. The BBN corpus contains a total of

64 subcategories of named entities, with 156,780 entity instances, making it

both substantially larger than other manually annotated English language NER

corpora, and of much finer-grained annotations.

BBN also annotates nominal in addition to named entity phrases, and calls

these descriptor types. For example, the PERSON NE category has a correspond-
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ORGANIZATION subcategory number of instances
CORPORATION 23,441
GOVERNMENT 4,629
POLITICAL 413
EDUCATIONAL 366
HOTEL 60
RELIGIOUS 44
HOSPITAL 23
MUSEUM 14
CITY 2
STATE_PROVINCE 1
OTHER 1,255

Table 2.4: Number of instances of subtypes of ORG in the BBN corpus.

ing PERSON DESCRIPTOR category, with which any head words of common

nouns referring to a person or group of people should be marked. This includes

occupational titles in modifier positions, such as President in the phrase President

Bush. In this descriptor class, however, honorific titles (Mr, Sir etc.), are not

annotated.

The annotation guidelines2 for the BBN corpus are not very detailed, and

there is no discussion of inter-annotator agreement, or how the annotations

were made. The extents of descriptor annotation spans are particularly unclear.

[executive]PER_DESC occurs more than 400 times in the corpus. The annotation

span is only grown a few times to [senior executive], [ex-chief executive], [chief

executive], [finance executive] or [deputy chief executive]. However, the annota-

tion [chief executive officer]PER_DESC occurs more than 200 times in the corpus.

This inconsistency is not explained in the annotation guidelines, where [Chief

Executive] Sir Christopher Hogg is given as an example of the category.

The BBN corpus does not include nested named entity annotations, but does

provide one of the most fine-grained approaches to general domain NER. The

corpus is described in more detail in Section 3.

2https://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html

https://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html
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2.3.5 OntoNotes

The OntoNotes corpus (Hovy et al., 2006; Weischedel et al., 2010) is a large,

multilingual corpus developed in collaboration between BBN Technologies, the

University of Colorado, the University of Pennsylvania and the University of

Southern California’s Information Sciences Institute. The OntoNotes corpus

contains multiple layers of annotations, including both structural information

(syntax and predicate argument structure) and shallow semantics (word sense

linked to an ontology and coreference). The corpus contains sections in Eng-

lish, Arabic and Chinese, and is drawn from various domains including news,

conversational telephone speech, weblogs, Usenet newsgroups, broadcasts and

talk shows.

The syntactic annotation layer of OntoNotes follows the Penn Treebank

syntactic guidelines, making it a useful parsing resource. The full OntoNotes

corpus contains 15,710 documents, of which 13,109 are in English. However,

only 3,637 of these English documents are annotated with named entity inform-

ation.

OntoNotes entity annotations are split into 11 types of named entity (PERSON,

ORGANIZATION, LOCATION, FACILITY, GPE, NORP (NATIONALITY or

RELIGIOUS, POLITICAL or OTHER groups), PRODUCT, EVENT, WORK OF

ART, LAW, LANGUAGE), and 7 numerical and temporal entity types (DATE,

TIME, PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL) (Weischedel

et al., 2013). Entities that do not fall into these specific categories are not annot-

ated, and nested entities are not annotated.

The particular utility of the OntoNotes corpus comes from the multiple an-

notation layers. The corpus is annotated with syntactic constituency spans, and

a number of additional semantic annotation layers, including named entities.

However, these named entity spans were not annotated within constituency
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boundaries, nor were they later adjusted to be compatible with them. There are

over 5000 instances where the entity span does not match the closest syntactic

constituency span. Many of these would be relatively straightforward to solve,

such as the majority of instances where a person’s role is included in the NP

with their name, as is the case with entity Bill Clinton, where the closest constitu-

ent span was President Bill Clinton. Other cases would be more problematic to

resolve, including incompatibilities with prepositional phrases in entities (entity

bounds: War of Resistance against Japan, syntactic constituent: China ’s War of

Resistance against Japan) as well as numerical expressions (entity bounds: tens of

millions of dollars, syntactic constituent: tens of millions of dollars in tax payments to

the Palestinian Authority). Other common span mismatches included qualifying

tokens or phrases found (entity bounds: six months, syntactic constituent: over

six months, entity bounds: 17 %, syntactic constituent: no less than 17 %). Resolv-

ing these span mismatches into compatible annotations would be necessary to

enable both datasets to be used to their full potential, and especially to allow, for

example, NE information to be pushed on to syntactic constituents and beyond.

2.4 NE Corpora containing Nested Structures

In addition to the corpora discussed above, some of which contain some limited

degree of nested structures, a number of other corpora contain fully-nested con-

structions allowing for any embedded references to named entities, consistently

across entity types.

2.4.1 GENIA

The GENIA corpus (Kim et al., 2003), a semantically annotated corpus for

bio-text mining, was created to evaluate information extraction for molecular

biology literature. The biomedical domain’s specialised terminology and com-
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plex naming conventions have resulted in a situation where entities of interest,

such as genes, proteins or disease names, often nest. In order to capture these

entities, a nested annotation structure is needed. The GENIA corpus contains

nested entities such as <RNA><DNA>CIITA</DNA> mRNA</RNA>, referring to the RNA

entity: CIITA mRNA and the embedded DNA entity: CIITA. Some of these nested

entity layers occur on a sub-token level.

The GENIA corpus contains nested embedding of multiple layers, up to

four embedded nested layers. Approximately 17% of all entities in the corpus

are embedded within another entity. Three types of nesting are identified by

Alex et al. (2007): entities containing nested entities (as in the above example);

entities which themselves are multiple entity types (e.g. p21ras is both DNA

and a protein; this is similar to cases of metonymy in newswire text); and

coordinated entities (e.g. human interleukin-2 and -4 referring to both human

interleukin-2 and human interleukin-4’).

The GENIA scheme is biochemistry specific and none of the nested struc-

tures in GENIA occur in the WSJ corpus. Further, there is little discussion about

nested named entity schemes and their relationship with syntax for the GENIA

corpus for us to base our work on.

2.4.2 AnCora

The AnCora corpus (Carreras et al., 2003) contains both Spanish and Catalan

language text. It consists of both a Catalan corpus (AnCora-CA) and a Spanish

corpus (AnCora-ES), each of which containing 500,000 words of newswire text.

The corpora have been annotated to include a number of layers of annotation, in-

cluding named entities, syntactic constituents and argument structure. Nesting

occurs with strong entities being embedded in weak entities (corresponding to

phrase level constituents), with nearly half of all entities are embedded (Finkel

and Manning, 2009c) (see Figure 2.8).
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WEAK-DATE

grup.nom.ms

STRONG-DATE

10_de_maig

aq0msp

passat

da0ms0

el

Figure 2.8: Example of nesting from AnCora (Borrega et al., 2007), ‘on the 10th of May’.

The named entities annotated in the AnCora corpora are split into ‘strong’

and ‘weak’ NEs (Borrega et al., 2007). Strong entities correspond to a linguistic

unit with a part of speech tag, and are “a word, a number, a date, or a string

of words that refer to a single individual entity in the real world.” Strong NEs

are split into 8 categories: PERSON, ORGANIZATION, LOCATION, OTHER,

ALPHANUMERICAL (NUMBERS), ALPHANUMERICAL (COINS), ALPHA-

NUMERICAL (PERCENTAGES), DATE. Strong entities were analysed as a

single element, even if the entity contained multiple tokens.

Weak entities are phrase level syntactic nodes which either contain a strong

NE or are a noun phrases which becomes a weak NE due to syntactic, semantic

or pragmatic reasons. These weak entities are split into 6 categories: PERSON,

ORGANIZATION, LOCATION, OTHER, NUMBERS, DATE.

The decision to mark the prepositional phrases, e.g. on the 10th of May in 2.8,

seems inconsistently applied, even within the annotation guidelines described

in Borrega et al. (2007). Other prepositional phrases, ‘between <location> and

<location>’ or ‘[corresponding] to the number 22’ are not marked as weak NEs.

Other embedding relationships are lost by the decision to concatenate strong

NEs together into one token. For example, the ship named the ‘Yellow Pages

Endeavour’ is tokenised as a single word, losing the reference to the organisa-

tion after which it is named. Similarly, ‘Premi_dels_Escriptors_Catalans_2003’

(‘Catalan Writer’s Prize, 2003’) is not annotated with information about the
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.

grup.nom.fs

grup.nom

Fz

’

.

Yellow_Pages_Endeavour

Fz

’

grup.a.fs

francesa

ncfs000

embarcació

da0cs0

l’

Figure 2.9: Example of nesting from AnCora (Borrega et al., 2007), ‘the French ship
‘Yellow Pages Endeavour’’.

language or the year. This seems like a missed opportunity when other nested

references are included. Indeed, the Yellow Pages Endeavour is given in a wider

context, as shown in Figure 2.9, where it itself is an embedded entity.

2.4.3 ESTER

The ESTER corpus Galliano et al. (2006) contains 100 hours (approx. 1.2 mil-

lion words) of orthographically transcribed news broadcast from six French

Radio stations, recorded between 1998 and 2004. The corpus also includes an

additional 1,677 hours of non-transcribed audio material. Direct mentions of

8 classes of named entities were annotated: AMOUNT, FACILITY, GPE, LOC-

ALIZATION (e.g. geographical areas, addresses), ORGANIZATION, PERSON,

PRODUCT (also known as Human Production), TIME, and UNKNOWN (for

terms which are supposed to be named entities, but are difficult to classify in one

of the other categories). These are further split into a total of 32 sub-categories.

Galibert et al. (2011) built on this work for ESTER II, electing to extend

the coverage of the named entities.They added new types of entities (such

as FUNCTION and TIME) and present an extended model of named entities

which are both hierarchical and compositional Grouin et al. (2011), shown in

Table 2.5. The taxonomy is composed of 7 main types, and 32 subtypes, the

latter of which adds quantity information (singular vs collective) or precision.
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Type (Detail) Subtype
Person pers.ind (individual person), pers.coll (col-

lectivity of persons)
Location Administrative loc.adm.town, loc.adm.reg, loc.adm.nat,

loc.adm.sup
Location Physical loc.phys.geo, loc.phys.hydro, loc.phys.astro
Organization org.ent (services), org.adm (administration)
Amount quantity (with unit or general object), dura-

tion
Time date time.date.abs (absolute date), time.date.rel

(relative to discourse)
Time hour time.hour.abs (absolute hour), time.hour.rel

(relative to discourse)
Production prod.object (manufactured), prod.art,

prod.media, prod.fin (financial), prod.soft
(software), prod.award, prod.serv (trans-
portation route), prod.doctr (doctrine),
prod.rule (law)

Functions func.ind (individual functions), func.coll
(collectivity of functions)

Table 2.5: Types and Subtypes of entities in the ESTER II corpus.

Additionally, each type also included an ‘other’ subtype, for those that did not

fit into the proposed existing subtypes, and an ‘unknown’ subtype.

Entities can contain ‘components’, which are defined as clues that help the

annotator make an annotation decision (for example, a first name is a clue

that the entity type should be pers.ind). Components are considered internal

only elements, and cannot be used outside the scope of a type or subtype

element. Galibert et al. (2011) separate components into two types, ‘transverse’

components, which can be used in different types of entities, and ‘specific’

components, which can only be used in one type of element.

Entities can be therefore be nested or compositional, for three reasons: (i)

a type contains a component; (ii) a type includes another type, used as a

component; or (iii) in cases of metonymy.

For types (i) and (ii), consider the phrase ‘nouveau ministre du Budget , François

Baroin’, shown in Figure 2.10. This is considered two separate entities, one a
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nouveau ministre du Budget , François Baroin
new minister of Budget , François Baroin

qualifier kind name name.first name.last

org.adm pers.ind

func.ind

Figure 2.10: Example of Person entity nesting, separate from a function ‘role’ annota-

tion, in the ESTER II corpus (Galibert et al., 2011).

Lionel et Sylviane Jospin

name.first name.first name.last

pers.ind pers.ind

Figure 2.11: Example of coordination not combining separate Person entities in the

ESTER II corpus (Galibert et al., 2011).

person, the other a function, with embedded organisational (administrative)

entity, which in turn is marked with a component ‘name’. All labels closest to

the token are components, and additional labels are types.

In this example, the annotation decision to separate func from other types

such as pers is emphasised. The reasons for keeping func as a separate type

are not widely explained, and it is not clear if all such references to roles

are annotated as func, even if not immediately followed by a pers. Galibert

et al. (2011) mention that in future work they may consider folding func into a

component, which will nest under pers.

The boundaries and scope of some entities is also complicated by a decision

to exclude relative clauses, subordinate clauses and interpolated clauses; that is,

entities must end before these clauses start, or the entity must be split. Similarly,

entities are split over coordinated structures, shown in Figure 2.11, thereby

unfortunately losing information that could be captured by nested annotations.

Metonymy is also marked explicitly, for example ‘la Russie’ (Russia) is an-

notated as org.adm when acting as the administration of the country (see Fig-

ure 2.12). Recursive cases of embedding can also occur when a subtype includes

another named entity annotated with the same subtype. In cases of metonymy,



Chapter 2. Background 43

la Russie
name

loc.adm.nat

org.adm

Figure 2.12: Example of metonymy, Russia acting as the organisation, in the ESTER II

corpus (Galibert et al., 2011).

the inside label should correspond to the intrinsic type of the entity, and the

outer should be the type that corresponds to the result of the metonymy.

2.4.4 Polish National Corpus

The National Corpus of Polish (Przepiórkowski et al., 2010) is an ambitious

project aiming to manually annotate 1-million words with various layers of

annotation, including named entities, together with a 1 billion word automat-

ically annotated corpus. Named entities are annotated (Savary and Piskorski,

2010) into the categories of PERSON (including subcategories FORENAME,

SURNAME, ADDNAME), ORGANIZATION, DATE and TIME are annotated,

as well as two distinct types of LOCATION: GEOGNAME and PLACENAME,

the latter of which is subcategorised into DISTRICT, SETTLEMENT, REGION,

COUNTRY and BLOC. Events, quantities, measures, products and other entities

that would fall into a MISCELLANEOUS category, such as Works of Art, are

not annotated.

Maria Sklodowska − Curie

forename surname surname

persName

Figure 2.13: Example of Person entity nesting from in the National Corpus of Poland

(Savary and Piskorski, 2011).

The decision to split the surname in Figure 2.13 into two separate surnames,

thereby essentially annotating on a sub-token level, is unusual. This tokenisa-



Chapter 2. Background 44

湛江市 惠珍 联合 医院
loc per

org

索非亚 大 教堂
per

loc

纽约 联合国 总部
loc org

loc
loc

Figure 2.14: Examples of nesting in the PKU Chinese corpus (Fu and Luke, 2005):

Huizhen Zhanjiang United Christian Hospital, Saint Sophia Cathedral, United Nations

Headquarters in New York

tion decision was perhaps influenced in part by the lemmatisation of Polish

compound names which poses an additional challenge in the task.

2.4.5 PKU Chinese Corpus

The Peking University Chinese corpus (PKU, Fu and Luke, 2005), contains

one month of news texts from the People’s Daily, a Chinese language news-

paper, manually annotated with 14 types, defined in the IEER-99 Mandarin

named entity task: PERSON, CHINESE PERSONAL NAMES, TRANSLITER-

ATED PERSONAL NAMES, LOCATION, ORGANIZATION, OTHER NAMES,

DATE, TIME, DURATION, MONEY, MEASURE, PERCENT, CARDINAL, and

OTHER NUMBERS. Embedded entities are also annotated, with roughly 18%

of entities in the corpus having at least two levels of structure; 2.4% of entit-

ies having at least three, and 0.1% of entities having four layers of structure.

The PKU corpus contains a total of 106,430 named entities, though in further

work by Fu and Luke, they focus on only person names, location names and

organisation names, reducing this set to 41,988 entities (additionally excluding

a further 1,129 entities which had three or four layers of nesting).
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Edinburgh University Library

PLACE

ORG

ORG

Figure 2.15: Example of nesting in Byrne’s Historical Archive Corpus.

2.4.6 Historical Archive Corpus

A subset of the RCAHMS3 historical archive database has been annotated with

entities and relations, as described in Byrne (2007). The annotated corpus is

composed of 1,546 documents, drawn from the much larger complete corpus.

These documents contain 9,768 text fragments, most of which are in note form,

with around 30% estimated to be grammatical English sentences.

The corpus has been annotated with both relation and named entity inform-

ation, the latter of which is split into 11 classes: ORG, [tgPERSNAME, ROLE,

SITETYPE, ARTEFACT, PLACE, SITENAME, ADDRESS, PERIOD, DATE and

EVENT. Further subclasses are defined in SITETYPE, ARTEFACT and EVENT.

This categorisation grew from a more restrictive earlier set of categories; for

example, Location was reanalysed into the finer-grained categories PLACE,

SITENAME, and ADDRESS to better accommodate the goal of producing a

data querying application for non-specialists in local history.

Up to three levels of nesting are annotated in the corpus, and 9.4% of

approximately 27,500 entities were found to have nesting. Unfortunately, the

historical archive domain is too specific to be useful for the WSJ newswire text.

2.4.7 KBP EDL 2014

The Entity Discovery and Linking tasks in the Knowledge Base Population track

at TAC 2014 (Ji et al., 2014) included an end-to-end English entity discovery

3The Royal Commission on the Ancient and Historical Monuments of Scotland
http://www.rcahms.gov.uk/.

http://www.rcahms.gov.uk/.
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and linking task, an extension on the previous year’s task of linking a given

named entity mention to an existing Knowledge Base. The subtask of Entity

Discovery & Linking (EDL) involves systems extracting all entity mentions

in a document collection, and identifying whether or not those entities are

included in a Knowledge Base. For this task, a corpus of 138 documents from

a variety of sources, including newswire, discussion forum threads and web

documents, with full document entity annotation was created (Ellis et al., 2014).

The documents were a subset of those included in the TAC 2014 KBP English

Source Corpus (LDC2014E13). Three types of entities were identified: Person,

Organization and Geopolitical Entities. Only locations that have a government,

a physical location, and a population were considered Geopolitical Entities,

and other locations are not marked. Miscellaneous, temporal or numerical

expressions were not annotated.

Embedded entities, referred to as ‘overlapping mentions’ in the annotation

guidelines, were annotated only if their boundaries were different, and one

was contained completely within the other (Ellis and Getman, 2015). That is,

metonymous entities with the same span were not included. Four percent

of entity mentions annotated included nesting, for example: [[Kentucky] Fried

Chicken] and [[Kurdistan] Freedom Fighters].

The annotation contains some idiosyncrasies, most of which stem from the

specific requirements of the entity linking task. All top-level governments of

GPEs should also be categorized as GPEs, not as ORGs, regardless of their actual

use in the text. Regions such as the southeast US should not be classified as GPEs

because, though they have both physical location and population qualities,

they do not have their own government. Thus, given the text southeast Texas,

only Texas could be annotated as GPE, as southeast Texas has neither its own

government nor a defined location. Additionally, while adjectival mentions of

GPEs are marked as named mentions of GPEs (for instance, Canadian from the
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string Canadian Hockey League), demonyms are not considered named mentions

of their respective GPEs. For instance, Americans is not a mention of the United

States. It is unclear from the guidelines how instances of metonymy are handled.

A further quirk of the data is that all quoted text found in web documents

or forum threads should be left unannotated. This is perhaps to avoid the

repetition of entities that could happen if a specific post is quoted multiple times

in the same thread. Nevertheless, the decision to keep some text unannotated

seems at odds with the rest of the annotation guidelines, and the general

principle of annotating all instances of entities in data.

2.4.8 Further NER corpora annotation schemas

As seen in Section 2.2, the set of categories with which corpora are annotated

varies widely. In addition to the various annotation schemas outlined above,

which range from around 7 to 64 categories, other entity schemes and hierarch-

ies have been developed. Some of these are born of necessity (when annotating

biomedical data, the entities of interest are substantially different to when

annotating newswire text), while others are founded on different annotation

principles or goals.

Fine-grained entity types allow for more useful categories when used in end

tasks such as question answering, summarisation or other information retrieval

systems. Fine grained annotation schemas also have benefits with respect

to having greater control over the data at a later stage. A corpus annotated

with fine-grained categories is then able to be down-mapped to fit in with

other entity categorisation schemes. For instance, specific types of facilities

may be treated as Location, Organization or even Miscellaneous entities by

different evaluation schemes. Delaying this broader categorisation decision

both simplifies annotation decisions (should a hotel be considered a location or

organisation), and allows data to be more useful in a variety of different tasks.
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2.4.8.1 Sekine’s Extended Named Entities

Sekine et al. (2002) outlines a detailed hierarchy of fine-grained entities that

were developed to meet the increasing need for a wider range of NE types. The

hierarchy originates from the first named entity set defined by MUC, substan-

tially extending the categories to over 200 NE types. The top two hierarchy tiers

are outlined in Table 2.6.

The Extended Named Entity hierarchy was developed by combining three

initial, separate hierarchies:

• manually-annotated capitalised words from newspaper articles;

• the top-level hierarchies in WordNet and Roget Thesaurus; and

• existing systems and task definitions, especially the TREC-QA4 task.

These were combined in consultation with some of the designers of each

initial hierarchy, and the resulting combination was then refined.

Sekine’s hierarchy does not include any nesting or structure, which has

resulted in entity boundaries that are not always clearly defined. For example,

Elizabeth II of the United Kingdom is listed as a single PERSON entity in the online

guidelines5. The hierarchy includes some categories which are very specific

(e.g. CABINET for political cabinets such as Thatcher’s Cabinet, SPA for hot

spring resorts), and other categories which seem to contain a mix of common

nouns and proper nouns (e.g. PRODUCT:FOOD OTHER includes Coca Cola

and Guinness beer as well as water, rice and pork).

While Sekine’s annotation guidelines contain examples for each category,

these examples are all typical, recognisable entity examples, such that they can

be understood out of context. More ambiguous examples, including edge cases

that can only be understood with context, are particularly valuable in practical

4http://trec.nist.gov/data/qa.html
5http://nlp.cs.nyu.edu/ene/version7_1_0Beng.html

http://trec.nist.gov/data/qa.html
http://nlp.cs.nyu.edu/ene/version7_1_0Beng.html
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annotation guidelines, but these are not provided. Sekine’s extended hierarchy

guidelines do provide other valuable data, such as a list of attributes for each

entity type.

Although no English corpus has been annotated with Sekine’s Extended

Named Entity hierarchy, Hashimoto et al. (2008) have done so with a Japanese

language corpus consisting of 8584 articles (31 days) of Mainichi newspaper,

and 400 government white papers. The Mainichi newspaper section contains a

total of 252,763 entities (79,632 unique) and the white paper section contains a

total of 74,203 entities (23,857 unique). As yet, no NER results on this corpus

have been published.

2.4.8.2 TIMEBANK and TimeML

TIMEBANK (Pustejovsky et al., 2003) is a corpus of 68,555 tokens which is

annotated with 7571 events, 1423 times, and 2212 signal relations holding between

events and times. TimeML, the annotation scheme used to annotate the corpus,

defines times as either points, intervals or durations which may be referred

to by fully specified temporal expressions (e.g. June 11, 1989), underspecified

temporal expressions (e.g. Monday), intentionally specified expressions (e.g. last

week) and duration expressions (e.g. three months).

The time entities in TIMEBANK are further annotated with a function in doc-

ument attribute, which provides a temporal anchor (e.g. the date of a newspaper

article), the type of entity (either date, time or duration), and the value of the

temporal expression, (e.g. June 11, 1989 would contain value="1989-06-11").

TIMEBANK also annotates temporal relations and the linking of events and

temporal expressions.

The annotations are not nested or structured. However, related spans of

time and signal do interact to further specify the events and time entities. For
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Person -
God -
Organization International Organization

Show Organization
Family
Ethnic Group
Sports Organization
Corporation
Political Organization
Other

Location Spa
Geo-Political Entity (GPE)
Region
Geological Region
Astral Body
Address
Other

Facility Facility Part
Archaeological Place
Geological and Organizational Entity (GOE)
Line
Other

Product Material
Clothing
Money Form
Drug
Weapon
Stock
Award
Decoration
Offence
Service
Class
Character
ID Number
Vehicle
Food
Art
Printing
Doctrine Method
Rule
Title
Language
Unit
Other

Event Occasion
Incident
Natural Phenomenon
Other

Natural Object Element
Compound
Mineral
Living Thing
Living Thing Part
Other

Disease Animal Disease
Other

Color Nature Color
Other

Other -

Table 2.6: Top two levels of Sekine’s Extended Named Entity hierarchy.
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example, a minute and a half is annotated as a DURATION, and linked to adjacent

token later, which is marked as a signal conveying after as a relation.

2.4.9 NER corpora summary

Although there are a variety of corpora annotated with embedded entities, no

English language corpora exist which have detailed, extensive annotation of the

internal structures of nested entities of interest in standard newswire text. The

differences in annotation schemas across all corpora, from very coarse-grained

entities to detailed subtypes further complicate the overall picture of available

resources.

The analysis of coordinated named entities, for example, shows shortcom-

ings in annotation schemas, where information about entities is lost. A good

analysis of entities such as ‘Bill and Melinda Gates’ should result in capturing

both ‘Bill Gates’ and ‘Melinda Gates’, identifying both as Person entities. Similarly,

analysing references to entities only nested in nominal forms, rather than inside

all entities, does not apply a consistent approach to what is an important task

warranting further research efforts. Syntactic elements are affected by, and

affect semantic components of text. This thesis addresses the shortcomings in

current named entity corpora by creating a detailed and thorough analysis of

both the semantic and syntactic structures of named entities.

2.5 Summary

There is little doubt that linguistically competent people make inferences from

NE structure. They infer the type of an entity from its structure, but they also

infer things about an entity’s history or nature from the entities embedded in

its name. Occasionally, these assumptions are false, only historically true, or
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ambiguous, as with etymology. Nevertheless, NLP systems may be able to

benefit from understanding the embedding structure of names.

In the context of GENIA and biomedical tasks, the motivation for the ana-

lysis of nested named entities is clear: nested NE annotations are used in broader

information extraction annotations and tasks in which embedded entities ap-

pear to be referential and have semantic roles.

Wide interest in the concept of nested named entities in newswire text has

resulted in a number of disjointed attempts at their analysis and annotation.

These piecemeal attempts at capturing the structure of named entities have

not resulted in either a canonical system or large, useful corpus with extensive

annotations of nested named entities across entity types. This thesis addresses

these shortcomings by formalising the definition and evaluation of nested

named entities in English newswire text, investigating the effects of including

named entity structures in a standard parsing task, offers novel methods of

modifying the representation of nested named entity structure for learning and

evaluation using existing NER systems, and offers the first results of combined

nested named entity recognition and parsing in English newswire text.



3 Nested Entity Annotation Scheme

“Data is a precious thing and will last longer than

the systems themselves."

Tim Berners-Lee

The work in this thesis is motivated by shortcomings in the available cor-

pora with respect to nested named entity annotations in the newswire domain.

This lack of available English-language corpora annotated with nested named

entity structure and syntactic structure in a compatible form has substantially

constrained the development of the field, preventing considerable research in

nested named entity recognition, as well as research in joint learning methods.

This chapter describes the process of creating a corpus annotated with gold-

standard nested named entities. This data will be used throughout the thesis, in

merged variants with the Penn Treebank in Chapter 5, in parsing experiments

in Chapter 6 and in named entity recognition experiments in Chapter 7.

We chose to augment the Wall Street Journal (WSJ) section of the Penn Tree-

bank with nested named entity information, building on Vadas and Curran’s

(2007) addition of noun phrase structure. We chose to add additional annota-

tions to the WSJ since it is most widely-used corpus in the field of parsing

English text.

We also decided to make use of the BBN annotation (see Section 2.3.4)

thereof. While the BBN annotations are not nested, and while some categories

53
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are problematic, we can use the annotations as a valuable starting point for our

own annotations.

Starting with a set of existing annotations has a number of benefits. We

were able to leverage the existing annotations in the corpus and automatically

introduce structure in the form of pre-annotation, described in Section 4.1.2.

This allowed us to, for example, add highly consistent PERSON structure heur-

istically (i.e. first, middle and family names as well as initials on the basis of

ordering and surface form) knowing that most of the time the labels would

be correct. All sentences were manually annotated later, allowing annotators

to verify and tweak these entities if necessary. Having the structure of very

predictable entity types already annotated, however, makes the annotation

process much faster and more reliable.

The existing top-level annotations also allowed us to calculate statistics on

the numbers and types of entities in the corpus, and identify examples before

we committed to an annotation scheme. This was particularly valuable for

rarer categories, as it was a straightforward process of identifying examples,

rather than an low-recall and time consuming process of finding them. Having

an existing top-level annotation scheme for the corpus also allowed us the

advantage of having BBN’s final decisions about category distinctions, which

informed our entity scheme.

3.1 Annotation Principles

For syntax, a large body of work has been done on devising detailed annotation

schemes and corresponding annotation guidelines, such as the PTB annotation

scheme. For NEs, however, even though there has been considerable work on

the development of detailed schemes (Sekine et al., 2002), there has not been
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substantial work on a detailed set of annotation guidelines to support those

schemes, and associated annotation principles.

We use the following general principles when annotating nested named

entities in the corpus.

Principle 1: Annotate all named entities, TIMEX and NUMEX entities We

aim to annotate all non-sentence initial words in title or upper case. We also

annotate instances of proper noun mentions that are not capitalised, and lower-

case numerical and temporal expressions. In the case of entities that sit on the

border of proper versus common noun, e.g. chemical names, we are guided by

their capitalisation across the corpus.

Principle 2: Annotate all nested structures This principle is the core of the

thesis: named entities have nested internal structure and we add annotation

layers for these structural elements of entities. These elements could be other

entities, [San Francisco]CITY in [[San Francisco]city International Airport]AIRPORT,

or structural components such as UNIT or CARDINAL substructures in [[$]unit

[[3]cd [million]mult]cd]MONEY. This also includes internal structure induced by

syntactic elements, such as coordination (see below).

Principle 3: Add consistent substructure to avoid spurious ambiguity Pre-

vious, flat annotation tasks have discarded entity structure, forcing a case of

false ambiguity on a token level whereby a token in some situations is labelled

a CITY, and at other times may be labelled as an ORG:EDU or SPORTS-TEAM.

We add layers of annotation to allow each token to be annotated as con-

sistently as possible. For example, [Tokyo]CITY is a CITY even in the entity

[[Tokyo]city Giants]TEAM, and [four]CARD is a CARDINAL even in [[Four]card

Seasons]HOTEL. This removes the false ambiguity forced onto tokens which

occur in different types of entities.
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University of Toronto

city

org:edu

Toronto Blue Jays

city

sports-team

Principle 4: Unary stacking principle – metonymy We use the principle of

unary stacking to capture metonymy while maintaining the Add consistent

substructure principle. That is, even in cases where there are no other words

forming part of the entity, we maintain the stacking principle, nesting one entity

label inside another.

In some of these instances, the ambiguity is caused by elided words that

would otherwise disambiguate the ambiguous mention. For instance, in He

smoked [[Toronto]city]team in the playoffs. . . and Share prices closed sharply higher

in [[New York]city]corp and [[Toronto]city]corp. . . , Toronto would be completely

disambiguated within the full name of the sports team or the stock exchange.

In other instances, such as The [[White House]building]gov said. . . , the men-

tion and the metonymy is complete. In both types, only the broader context

is available to determine both the literal and metonymic interpretation of the

mention.

Principle 5: Underspecify to avoid arbitrary decisions In cases where an

entity is genuinely ambiguous and difficult for annotators to resolve in the

majority of case, we use deliberately underspecified categories to capture this

ambiguity, as with the categories CITY-STATE and MEDIA.

Consider Singapore, which is both country and city at the same time – it is

extremely difficult to distinguish between the uses in many cases. Preferring

one by default implies a greater confidence than the annotators have in practice.

Similarly, the names of media artefacts, such as a newspaper or broadcasting

channel, are often shared with the name of the organisation that runs it. These

are also often difficult to distinguish.
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Rather than attempt to resolve these ambiguities and resorting to arbit-

rary decisions, we have deliberately created underspecified MEDIA and CITY-

STATE categories.

Principle 6: Overspecify to avoid category confusion Some entities are easy

to identify, but difficult to categorise consistently. For instance, a hotel (and any

business at a fixed location) has both organisational and locative qualities, or is

at least treated metonymously as a location.

Rather than requiring annotators to remember an ambiguous categorisation

decision, that may not actually fit the given context, we elect to add addi-

tional categories to simplify the individual annotation decision: annotating the

[Westin]HOTEL correctly is a simpler task than remembering if HOTEL should

be categorised as an CORP, BUILDING, or some sort of LOCATION.

The principle is related to underspecifying to avoid arbitrary decisions.

Principle 7: Pragmatic annotation Many annotation decisions are ambiguous

and difficult – especially the internal structure. To correctly identify and classify

all entities would require substantial research and be prohibitively expensive.

For instance, knowing that [The [Boeing]name Company]CORP was named after

founder [[William]first [E.]ini [Boeing]name]PER would potentially allow us to

annotate [The [Boeing]per Company]CORP with an embedded PERSON entity.

The [Sony Corporation]CORP, on the other hand, was not named after a founder,

an imagined [[Mr.]hon [Sony]name]PER, though this is not evident from surface

form alone.

To determine the correct etymology of every organisation, substantial re-

search would be required, and in some cases, due to organisations or records no

longer existing, this might be impossible. We therefore elect to label all tokens

that seem to be the names of people as NAME, regardless of whether they are
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actually a person’s name, and without doing the requisite and prohibitively

expensive research.

The broader principle is that annotation decisions should be made without

reference to external documents or research, except perhaps to learn about

the structure of a whole class of entities. The NAME category allows us to

identify some internal structure in organisations without the expense of having

to commit to their type.

Principle 8: Defer to Penn Treebank bracketing Since we will be using the

resulting annotations with the syntactic annotation of the Penn Treebank, we

follow the general policy of avoiding altering the original Penn Treebank an-

notations as far as possible, without being constrained by them when necessary.

Therefore, when faced with ambiguous bracketing decisions, for instance

the bracketing of two weeks of June as either ((two weeks) of June) or (two (weeks

of June)), we favour the analysis that does not conflict with the PTB.

Principle 9: Annotate what cannot be automated We follow the principle

of annotating things which cannot be automated later. By adding additional

information that can be easily changed or collapsed later, we ensure the corpus

is as robust to multiple uses as possible. Similar to the underspecify to avoid

arbitrary decisions principle, we add categories for differences which are not

necessarily intended as robust categories, but which reflect differences which

require manual annotation. Consider FIRST and MIDDLE names, a distinction

which from surface form alone, is questionable. Some people have multiple

first names, others have multiple middle names. Collapsing these categories

together would be far easier than attempting to separate them.

Similarly, while the distinction between CITY and STATE may not be critical

for all downstream tasks, we distinguish between the two. With some mentions,

a post-process dictionary lookup (or similar) could determine that London is
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a CITY and Texas is a STATE, but with other cases, such as Washington or New

York, the distinction requires contextual understanding.

Principle 10: Monitor the evolving semantic grammar We identify common

patterns that capture a semantic grammar of our nested entities. This grammar

indicates how the mentions interact to generate one type of entity from another.

For example, FIRST + NAME→ PER is a common template, as is NUMDAY +

MONTH + YEAR→ DATE.

We use these rules or templates as guides throughout the annotation process.

Try to keep the semantic grammar as small and tight as possible, so that when

we have edge cases, we try to fall within one of the frequent rules we have in

the semantic grammar. We actively inspect the grammar as we annotate, and as

much as possible try to satisfy the existing grammar when we come across an

unusual construction.

Principle 11: Coordination principle We join coordinated substructures un-

der a larger span of the same type to correctly capture dependencies. For

example, we want to be able to resolve both [[Bill]first [Gates]name]PER and

[[Melinda]first [Gates]name]PER from the first entity below, and [[Mr]hon [Bush]name]PER

and [[Mrs]hon [Bush]name]PER from the latter.

Bill and Melinda Gates

first first name

first

per

Mr and Mrs Bush

hon hon name

hon

per

In coordination cases such as these, there is an implied plural that isn’t

specifically marked. That is, over the larger FIRST or HON span above in each

example, we really are capturing that this now refers to a plural entity. We

do not, however, make the category itself plural, although this is achievable

programmatically, since it can be derived from the structure and presence of

conjunctions.
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The ambiguity of conjunctions in entities is a particularly difficult area of

NER (Dale and Mazur, 2007). By explicitly annotating coordinated substruc-

tures of entities, we aim to better capture both cases of Name Internal Conjunction

(e.g. Proctor & Gamble) and Copying Separators (e.g. Bill and Melinda Gates).

Principle 12: GRP tags to cover ad hoc groups We introduce a new type of

category, the group (GRP) category, with subtypes GRP:ORG, GRP:LOC and

GRP:PER, which capture the semantics of a group of similar entities. These

groups are not officially organised, but are known as one collective entity,

for example [[Wall Street]street]grp:org traders, [[Third]ordinal World]grp:loc

countries, and the [[Rothschilds]name]grp:per.

3.2 Annotation Scheme

Creating a nested named entity annotation scheme is one of the major contribu-

tions of this thesis. We start with the BBN annotations, which we treat as a base

layer of outer most annotations. We augment these with some finer-grained cat-

egories, and additional structural elements of entities. The underlying annota-

tions, changes to them, and additional elements of the annotation guidelines

are discussed below.

3.2.1 Comparison to OntoNotes

Figure 3.1 compares sentences from a sample document with OntoNotes entity

annotations to our own entity annotation scheme (outlined in Chapter 3) of the

same sample. Note that although this sample occurs in the OntoNotes Release

5.0 annotation guidelines (Weischedel et al., 2010), it is missing a number of

annotations that do exist in the actual data release.
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3.2.2 Comparison to Sekine’s Extended Named Entity Hierarchy

We considered using Sekine’s Extended Named Entity hierarchy as a basis

for our annotation scheme. One option would have been to map the BBN

categories, which already exist as annotations on the WSJ corpus. However,

this would have required substantial manual checking as the target category

would be ambiguous in many cases. Another option would have been to

train an NER system on a corpus annotated with Sekine’s hierarchy to provide

new underlying annotations. However, this was not possible, as no such

English language corpus exists. Instead, we use the BBN categories as our

basis, and add a number of new categories to them, drawing inspiration from

Sekine’s hierarchy (the provenance of categories in our final annotation scheme

is discussed in Table 3.4).

3.2.3 Underlying BBN annotations

We use the BBN Entity Annotations for Question Answering (see Section 2.3.4,

Brunstein, 2002) as the starting point for our annotations. Tables 3.2 and 3.3

show the 30 most frequently occurring non-DESCRIPTOR entities and 10 DESC-

RIPTOR entity tags in the corpus, which contains a total of 167,263 entities.

These tables also show the three most frequent examples of each category.

As outlined in Section 2.3.4, the annotation of the DESCRIPTOR categories

label nominal phrases. The head words of NPs that correspond to entity types

are annotated with the appropriate Descriptor label. The DESCRIPTOR annota-

tions were added with tasks such as coreference resolution in mind, and, on

the whole, are not directly applicable to the task of named entity recognition.

Further, the boundaries on these entities are inconsistent, and we elect to re-

move them from our starting annotations. Similarly, the ANIMAL annotations,

which refer almost exclusively to common nouns, were also removed. The
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SUBSTANCE annotations were a mix of predominantly common nouns (drug,

corn, sugar) as well as the names of elements (copper, gold) and the names of

some products (RU-486, AZT, Red Delicious). Since the substantial majority of

these were common nouns, SUBSTANCE labels were also removed.

We used BBN as the basis for our annotation scheme, but had to modify

it for a number of reasons. Firstly, we needed to add structural elements to

the existing BBN categories, such as FIRST or JARGON. While some of these

structural elements are straightforward and sit nicely under existing top-level

entities, other structural elements interact directly with the annotations that

are there, going inside, outside and across existing annotations. These complex

nesting elements require substantial changes to the annotation scheme.

Further, the BBN annotation scheme1 does not have a high level of detail,

and especially lacks context detail for entities. The examples that are given

are typical, easy cases that can be readily understood without context. These

examples do not address how to annotate ambiguous edge cases. These an-

notation guidelines provide a not dissimilar level of detail to Sekine’s Extended

Named Entity hierarchy, described in Section 2.4.8.1.

In cases where the existing BBN scheme does not satisfy our set of annota-

tion principles, we have added the categories to avoid arbitrary decision. For

example, the CITY-STATE and MEDIA categories were added to address the

Underspecify ambiguous categories principle principle. By augmenting the BBN

annotation scheme with our own categories, including those derived from

Sekine’s hierarchy, we are able to develop a robust annotation scheme, and

in performing the annotation for this, we were also able to improve the data

quality of the underlying BBN annotations. In places, the annotation quality of

the BBN corpus is not consistently high, and in the process of adding inner and

outer layers, we were able to correct issues as we went. We also removed certain

1documented only online: https://catalog.ldc.upenn.edu/docs/LDC2005T33/
BBN-Types-Subtypes.html

https://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html
https://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html
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category types that are not named entities as we wanted a stricter definition of

NEs.

In addition, using the existing BBN annotations allows us to create our

nested corpus much more rapidly, both in terms of annotation speed and the

ability to find instances of specific types for designing our schema.

3.2.4 Categories added to underlying BBN annotations

In designing our annotation hierarchy, we add fine-grained entity categor-

ies from previous work we have conducted annotating Entities in Wikipedia

(Nothman et al., 2013). We extended the category set for four main reasons:

1) Following the Annotate all nested structures principle, we include structural

categories for annotation. These categories are designed to nest inside

other top-level categories.

2) In many cases, categorisation, rather than identification, of entities is

problematic. Should the Paris Hilton hotel be marked as an ORG or a LOC,

since it can both be found on a map, and have an organisational structure

of ownership? Is Glebe Point Road a type of FACILITY or LOC, since it is

has a location, but is constructed? Should the New America High Income

Fund be considered an ORG or a PRODUCT, since it has an organisational

structure in charge of its direction, but is something intangible, that can

be invested in. In most cases, ambiguities stem from entities which to a

certain extent could fit into multiple categories. Following the Overspecify

ambiguous categories principle, and marking the above examples as HOTEL,

STREET and FUND respectively simplifies the immediate annotation task,

and allows us to defer, and even modify and experiment on categorisation

decisions at a later date.
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Tag % Examples
ORG:CORPORATION 14.01% UAL, New York Stock Exchange, Big Board
DATE:DATE 9.64% yesterday, Friday, this year
PERSON 8.22% Bush, Noriega, Reagan
MONEY 6.63% $ 1 million, $ 1 billion, $ 1,000
CARDINAL 6.17% one, two, three
PERCENT 3.57% 10 %, 15 %, 50 %
GPE:CITY 3.35% New York, London, San Francisco
GPE:COUNTRY 3.04% U.S., Japan, China
ORG:GOVERNMENT 2.77% Treasury, Congress, Senate
NORP:NATIONALITY 1.94% Japanese, British, American
DATE:DURATION 1.88% years, 30-year, six months
GPE:STATE_PROVINCE 1.61% California, Texas, Calif.
ORG:OTHER 0.75% OPEC, Merc, Giants
ORDINAL 0.66% first, second, third
TIME 0.64% morning, afternoon, night
SUBSTANCE:FOOD 0.53% corn, food, sugar
SUBSTANCE:OTHER 0.51% oil, gas, steel
DATE:OTHER 0.47% annual, daily, quarterly
NORP:POLITICAL 0.40% D., Democrats, Democratic
DATE:AGE 0.37% 45, 52 years old, 44
SUBSTANCE:CHEMICAL 0.32% gold, chemicals, copper
LOCATION:REGION 0.31% Bay Area, Midwest, Eastern Europe
PRODUCT:OTHER 0.31% 486, Cray-3, West Texas Intermediate
WORK_OF_ART:OTHER 0.31% D.T., Batman, Batibot
SUBSTANCE:DRUG 0.26% drug, drugs, psyllium
ORG:POLITICAL 0.25% ANC, GOP, Communist Party
ANIMAL 0.24% cattle, animals, worm
PRODUCT:VEHICLE 0.23% Galileo, Atlantis, Scorpio
LAW 0.23% Chapter 11, RICO, Gramm-Rudman
ORG:EDUCATIONAL 0.22% Harvard, Yale, Massachusetts Institute of Tech-

nology

Table 3.2: The 30 most frequent non-DESCRIPTOR labels in the Wall Street Journal
BBN corpus, the percentage of each tag’s occurrences, and the three most frequent
examples.
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Tag % Examples
PER_DESC 15.75% people, investors, president
ORG_DESC:CORPORATION 9.08% company, companies, unit
ORG_DESC:GOVERNMENT 1.50% government, court, administration
FAC_DESC:BUILDING 1.08% plant, plants, building
PRODUCT_DESC:VEHICLE 0.73% cars, car, auto
ORG_DESC:OTHER 0.71% group, union, groups
GPE_DESC:COUNTRY 0.59% country, nation, countries
FAC_DESC:OTHER 0.26% mine, mines, facilities
GPE_DESC:STATE_PROVINCE 0.24% state, states, province
GPE_DESC:CITY 0.23% city, cities, town

Table 3.3: The 10 most frequent DESCRIPTOR labels in the Wall Street Journal BBN
corpus, the percentage of each tag’s occurrences, and the three most frequent examples.

3) Although the text we are annotating for this corpus is not particularly

recent, we want to update the entity scheme for use on modern text as

well. In this respect, we draw heavily on our previous work annotating

Wikipedia. In practice, this means the addition of categories such as

SPORTS-TEAM, SPORTS-SEASON, ALBUM and BAND.

4) A fine-grained, hierarchical category set ensures the corpus is flexible for

future uses, allowing for specific categorisation decisions to be changed

or downmapped in the future.

Additional structural categories were added to PER to capture the first,

middle, last names (FIRST, MIDDLE, NAME), initials (INI), nicknames (NICK-

NAME), name modifiers (NAMEMOD) such as Jr. or III and honorific titles

(HON) such as Ms. or Sir. An additional category, ROLE, was introduced to

capture nominal modifiers that encapsulate vocational titles, such as Professor,

Rabbi, or President.

The location category was extended to include the categories of SPACE,

SUBURB and CITY-STATE, the latter of which was added based on the Un-

derspecify ambiguous categories principle to address legitimate ambiguity when

considering entities such as Hong Kong and Singapore. Additionally, some of
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the location related entities in the underlying BBN annotations were removed.

Specifically, the intended distinction between the common GPE:CITY and relat-

ively infrequent LOCATION:CITY and ORGANIZATION:CITY was unclear, so

these categories were amalgamated into one CITY tag. Similarly, ORGANIZA-

TION:STATE_PROVINCE was removed as a category. None of these categories

are mentioned in the BBN annotation guidelines.

The ORG category was extended by ARMY, BAND and SPORTS-TEAM,

as well as MEDIA (Time, Wall Street Journal). The JARGON (Corp., Inc.) was

also added to capture common elements to organisation names that are often

elided from the surface form, for instance, [Sony [Corporation]jargon]CORP is

often referred to as [Sony]CORP. As examples of particularly difficult entities to

classify, specific categories were added for indexes (INDEX Dow Jones Industrial

Average, Nasdaq Financial Index), and funds (FUND Zenith Income Fund).

The Work of Art (WOA) category was expanded, with the addition of

ALBUM, AWARD, FILM, and TV-SHOW. CONCERT, SPORTS-EVENT and

NATURAL-DISASTER were added to the existing types of events. NATURAL-

DISASTER was specifically added to accommodate events similar to hurricanes,

which existed as a category in BBN. The FACILITY category was similarly

extended to include STADIUM and STATION. ELECTRONICS (e.g. 80486)

and CHANNEL (e.g. The Discovery Channel) were added as specific types of

PRODUCT, and SCINAME was added as a category to label scientific names,

some of which were capitalised (e.g. Homo sapiens, Bordetella pertussis). The BBN

PRODCUT:OTHER[sic] category was also discarded as an error.

ANIMAL was removed, and ANIMATE added in its place to label all an-

imate entities that are not PER. A separate GOD category is created, which

mostly contains the tokens God and Messiah. This distinct GOD category is

an example of a case where it is not always clear which broader category the

entity should be labelled with (idiomatic expressions found in the corpus, such
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as Oh my God. . . or act of God illustrate this). By creating a separate entity,

albeit one with relatively few occurrences in the corpus, categorisation, rather

than classification, decisions can be deferred until later, and easily changed

according to the application of the annotations.

The NUMEX and TIMEX categories were extended to capture the struc-

ture of temporal and numerical expressions. DAY, MONTH, NUMDAY (18th),

SEASON (autumn), YEAR and PERIODIC (annual) as well as SPORTS-SEASON

were added for temporal expressions. SPORTS-SEASON was specifically ad-

ded based on our previous experience annotating Wikipedia, which contained

frequent mentions such as 1993 New York Yankees season. The category was

not frequently used in the PTB, however, but is retained and can be remapped

to other applicable categories, such as DURATION. The TIMEX category was

extended with MULT (billions), UNIT ($, %, tons), FOLD (double), and RATE (five

cents a share). IPOINTS (190-point) was also added as a specific category to

combat confusion about index points. REL, which grounds an entity relative to

another date (last, next), and QUAL which modifies a numerical value (about,

more than) were also added as structural elements.

To follow the Ad hoc groups principle, and capture unorganised groups of

entities, specifically locations, organisations and people, Group categories were

added: GRP:LOC (Third World), GRP:ORG (Wall Street, Ivy League), GRP:PER

(Rothschilds, Old Guard).

Table 3.4 outlines the final annotation scheme, including the number of

instances of each category in the corpus, and the provenance of each category.

Some of the categories added, marked as new cat in provenance in Table 3.4,

were inspired by categories from our own previous Wikipedia work, which

in turn was inspired by both the BBN and Sekine Extended Named Entity

hierarchy schemes. Other categories we added based on inconsistencies in an

existing scheme. For example, ANIMATE and MEDIA address deficiencies in
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the BBN scheme, described further below. We also added specific categories

to follow our annotation principles, for example, CITY-STATE to maintain

ambiguity with a specific issue, and the novel GROUP categories. Additionally,

new categories designed to capture the structure of entities are marked as struct.



Chapter 3. Nested Entity Annotation Scheme 70

Category Frequency Provenance Category Frequency Provenance
PER 14926 struct NATIONALITY 5194 BBN
FIRST 6796 struct NORP:POLITICAL 731 BBN
INI 1445 struct RELIGION 99 BBN
NAME 28540 struct NORP:OTH 1247 BBN
MIDDLE 313 struct SPORTS-EVENT 100 new cat
NAMEMOD 155 struct CONCERT 2 new cat
NICKNAME 96 struct HURRICANE 107 BBN
HON 5524 struct NATURAL-DISASTER 2 new cat
ROLE 2215 struct WAR 51 BBN
ANIMATE 29 BBN fix SPORTS-SEASON 8 new cat
CORP 23347 BBN EVENT:OTH 265 BBN
ORG:EDU 411 BBN LANGUAGE 92 BBN
ORG:POLITICAL 434 BBN LAW 419 BBN
ORG:RELIGIOUS 35 BBN AWARD 37 new cat
GOVERNMENT 4671 BBN ELECTRONICS 167 new cat
ARMY 139 new cat PRODUCT:DRUG 116 BBN
BAND 10 new cat PRODUCT:FOOD 80 BBN
SPORTS-TEAM 166 new cat VEHICLE 432 BBN
MEDIA 1712 BBN fix WEAPON 23 BBN
INDEX 657 new cat DISEASE 246 BBN
FUND 54 new cat GOD 29 new cat
HOTEL 55 BBN SCINAME 7 new cat
HOSPITAL 25 BBN PROD:OTH 656 BBN
MUSEUM 17 BBN GRP:ORG 437 principle
ORG:OTH 1095 BBN GRP:LOC 63 principle
JARGON 5561 struct GRP:PER 154 principle
AIRPORT 32 BBN CARDINAL 43807 BBN
ATTRACTION 24 BBN FOLD 313 struct
BRIDGE 44 BBN ENERGY 17 BBN
BUILDING 346 BBN IPOINTS 2399 new cat
STADIUM 37 new cat MONEY 12659 BBN
STATION 1 new cat MULT 7852 struct
STREET 475 BBN ORDINAL 2590 BBN
FACILITY:OTH 129 BBN PERCENT 6541 BBN
CITY 6723 BBN QUANTITY:1D 221 BBN
SUBURB 78 new cat QUANTITY:2D 81 BBN
STATE 3245 BBN QUANTITY:3D 156 BBN
GPE 334 BBN QUANTITY:OTH 55 BBN
COUNTRY 4046 BBN RATE 2147 struct
CITY-STATE 220 principle SPEED 14 BBN
CONTINENT 354 BBN TEMPERATURE 2 BBN
OCEAN 291 BBN WEIGHT 293 BBN
REGION 865 BBN QUAL 3904 struct
RIVER 52 BBN DATE 17476 BBN
SPACE 53 new cat DURATION 13742 new cat
LOCATION:OTH 261 BBN PERIODIC 1066 new cat
ALBUM 3 new cat AGE 661 BBN
BOOK 148 BBN DAY 1631 struct
FILM 89 new cat MONTH 3386 struct
PAINTING 13 BBN NUMDAY 1495 struct
PLAY 42 BBN REL 6170 struct
SONG 54 BBN SEASON 337 BBN
TV-SHOW 172 new cat TIME 296 BBN
WOA 207 BBN YEAR 3421 new cat

DATE:OTH 164 BBN

Table 3.4: Category overview of annotation scheme, including number of instances in the final
annotated corpus, and provenance of the category. Ordering in this table follows the hierarchy
used in the annotation guidelines which follow.
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3.3 Annotation Guidelines Summary

This section includes an overview of the schema used in annotation. The full

annotation guidelines include further details on edge-cases and problem cases.

The choice of label name for each category was influenced by an attempt to

select a short and unambiguous prefix for the annotation tool.

3.3.1 PER

PERSON entities can be referred to in a variety of ways. In addition to reducing

token-level ambiguity, the intention of marking the substructures of PERSON

entities is to aid in coreference resolution. In newswire, initial mentions of

people frequently include both their first and last names, with subsequent

mentions only referring to their last names.

Following the Pragmatic annotation principle, due to the difficulty in distin-

guishing between last names and invented names, especially in the names

of organisations, we mark all things that look like names as NAME. See the

discussion in Section 3.3.2.4.

William H. Hudnut III

first ini name namemod

per

PERSON We mark up all instances of people, fictional characters, first names,

last names, nicknames (if referential).

FIRST People’s first names, e.g. Sophia, Nicky, Sam, Hugo, Kellie. Note, it is

often difficult to distinguish first from middle names (e.g. Mary Beth Smith may

use Mary Beth as her first name). Unless clear from the context that both should

be considered FIRST, mark the second name up as a MIDDLE.
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INITIALS R., M.J., T.S. INITIALS should be marked whether they occur in

what would usually be a FIRST or MIDDLE name position.

NAME The NAME tag is used to annotate last names.

Smith, Jones, Di Marco, Gelber Note: with naming conventions of other cultures,

apply first/last according to use. E.g., if a Chinese name is written with the

family name first, then mark them as:

Mao Zedong

name first

per

such that we can give the correct markup given the tokens:

Chairman Mao Zedong

role name first

per

per

Mr Mao

hon name

per

For further discussion of NAME, especially in ORG entities, see Section 3.3.2.1.

MIDDLE This category contains the same type of tokens as FIRST. We elected

to annotate these as MIDDLE names, rather than as additional FIRST names,

to approach prevailing English naming conventions. FIRST and MIDDLE can

be mapped to the same category, but separating them from a single category

is not as straightforward, and impossible without manual annotation. We

therefore follow the Manual annotation principle, and annotate the two categories

separately. For cases where it is unclear whether a name is part of a double

barrel first name (Mary Lou) or a middle name, it is marked as a middle name.

NAMEMOD Name Modifiers such as Jr., Senior, III are marked up.

NICKNAME Nicknames are annotated, excluding any quotations surround-

ing the nickname, if present. Bobby, The Baboon, Ruddbot, Little Tramp
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HON In this category we annotate honorific titles including Mr , Mrs, Ms, Miss,

Messrs.,, Sir, Madam, Saint, Lord, Lady. These honorific titles differ from ROLE in

that they do not offer any information as to the profession job or other role of

the person.

ROLE A person’s ROLE is often used as part of the entity span referring

to them. In the ROLE category, we annotate titles based on vocation, and

embed them in the larger PER span. Only tokens that are capitalised should be

annotated, for instance, do not mark up president in president Smith of Company

Name.

ROLE includes professions (Dr, Professor, Prof., President, Prime Minister,

Secretary of State, Attorney General, Foreign Ministers etc., Senator, Representative,

Judge ), religious titles (Father, Rabbi), military titles (Admiral), and government

titles (the Honorable, His/Her Royal Highness, Prince, Princess).

President Bush

role name

per

per

Many ROLE structures are quite complex, with organisations embedded

within them. To match the Treebank annotation and preserve linguistically

motivated constituent spans, we annotate these structures as one larger entity,

rather than two disjoint ones:

New England Patriots Coach Raymond “ Rev. Ray ′′ Berry

region role first role first name

sports-team nickname

role per

per

Courtaulds Chairman and Chief Executive Sir Christopher Hogg

name role role hon first name

role per

orgcorp role

role

per
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International Names We try to follow international naming conventions

where possible. For example, Colombian family names traditionally are double

barrel, taking one ‘last name’ from each parent.

Carlos Salinas de Gortari

first name name

name

per

Carlos Salinas de Gortari is referred to a few sentences later as Mr Salinas.

Mr Salinas

hon name

per

ANIMATE This is a category for other animate, non-human entities, including

racehorses, pets and fictional animals, e.g. Bugs Bunny, Phar Lap.

Dumbo

nickname

animate

Mickey Mouse

first

animate

Skippy the Kangaroo

nickname

animate

tv-show

Note that the names of racehorses can be particularly unusual constructions:

Karnak on the Nile

name river

animate

3.3.2 ORG

Organisations have interesting structures, often including embedded references

to people and locations, as well as having structural elements denoting specific

legal organisational meanings (Pty Ltd., Corp.).

ORG:CORP Corporate organisations: companies authorised to act as a single

entity. Corporations can be simple flat structures, including multi-word entities,

and their abbreviated forms. CORP is used to refer to ORG:CORP in this thesis.
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Tandem

orgcorp

IBM

orgcorp

Delta Air Lines

name

orgcorp

Corporation names frequently refer to their founders; these nested names

are marked with the NAME tag. In the following examples, Monsanto is named

after founder John Queeny’s wife, Olga Mendez Monsanto, and Boeing is named

after William E. Boeing.

Monsanto

name

orgcorp

Boeing Co.

name jargon

orgcorp

Organisations frequently have embedded references to locations, including

CITY and COUNTRY, and NATIONALITY.

Bank of Tokyo

city

orgcorp

American Airlines

nationality

orgcorp

America West Airlines

country

orgcorp

Organisations can also include references to other organisations, as occurs

frequently in the case of parent-subsidiary relationships:

General Motors Acceptance Corp.

orgcorp jargon

orgcorp

Stock Exchanges Stock exchanges are often referred to by the city in which

they are located. For example, the [New York Stock Exchange] is implied by the

words In New York trading. In order to both maintain a consistent ‘per token’

level analysis and follow the Add consistent substructure principle, these should

be marked as LOC nested within the actual CORP meaning of the words in this

context.

New York Stock Exchange

city

orgcorp

in New York trading

city

orgcorp
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ORG:EDU Schools, universities and other educational organisations are marked

as ORG:EDU. A particularly common template for these entities includes the

CITY in which the ORG:EDU is located:

University of Miami

city

org:edu

Boston University

city

org:edu

Harvard University

name

org:edu

Universities, as large educational organisations, frequently have smaller

educational organisations within them, such as schools and faculties, and this

structure is reflected in the structure of the entity itself.

University of Virginia Law School

state

org:edu

org:edu

ORG:POLITICAL The names of political parties, which themselves often

include an adjectival (NORP) reference to the political party itself.

Communist Party

norp:political

org:political

Khmer Rouge

norp:other

org:political

African National Congress

norp:other

org:political

Christian Democratic Union

religion norp:political

org:political

ORG:RELIGIOUS The names of religious organisations which, for example,

run places of worship or schools. Note that adjectival forms of religious organ-

isations, e.g. Christian or Muslim, are a type of NORP, and should be marked as

RELIGION.

Unification Church

org:religious

Church of England

country

org:religious

St. Mary ′s Church

hon first

name

org:religious

ORG:RELIGIOUS, ORG:POLITICAL AND ORG:EDU maintain the ORG

prefix to easily distinguish between similarly named categories (e.g. RELIGION,

NORP:POLITICAL).
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GOVERNMENT These are non-political organisational units within countries,

excluding ARMY, down to small county, council and municipal levels. This

includes non-generic governmental entity names such as Congress or ‘Chamber

of Deputies. Also mark up entities that are government controlled, such as NASA.

Treasury Department

government

State Commission on Judicial Conduct

government

South Australian Treasury

norp:other

government

White House Office of Management and Budget

building

government

government

ARMY The names of any military (including army, navy, airforce etc.) unit.

These should be annotated with full structure of LOC, NATIONALITY etc.

Air Force

army

Navy

army

U.S. Air Force

nationality

army

BAND The name of a musical group. Note: when referring to individual

artists, e.g.: Jimi Hendrix, these entities should be marked as PER.

Beatles

band

Pet Shop Boys

band

SPORTS-TEAM Mentions of a sports team. SPORTS-TEAM entities should

be marked up with embedded entities, most frequent of which are CITY and

other LOC entities.

San Francisco Giants

city

sports-team

Giants

sports-team

Toronto Blue Jays

city

sports-team

Toronto

city

sports-team

Note in the above examples, [‘Toronto’], as well as making up part of the

‘[Toronto] [Blue Jays]’ is also used as a stand-alone mention of a SPORTS-TEAM.
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MEDIA The MEDIA tag covers entities that are news sources such as news-

papers and broadcasters, for which the distinction between the product and the

company is often particularly difficult to make.

Organisations that write or run a particular newspaper are frequently named

after that newspaper, and similar situations are common for other media pro-

viders such as radio stations or TV channels. Further, the distinctions between

products and the opinions of people producing those products (which should

be treated as the organisation itself) are even harder to separate, as publications

often function agentively as organisations.

To capture this ambiguity, we mark instances up as MEDIA, following the

Underspecify ambiguous categories principle. This category does not attempt to

resolve the entity in question to either the physical product (for example, a

physical copy of a newspaper, or a radio broadcaster) or the organisation to

which it could refer.

the Journal asked . . . a random sample of business owners

media

several industry analysts told the Professional Investor Report they believed

media

We can further use nested structures to identify instances where a MEDIA

entity is completely unambiguously referring to the organisation which runs

it. For instance, when a MEDIA entity is referred to in the same way as other

CORP entities are, such as when discussing the finances of the company, or a

recent board election we can nest the MEDIA tag inside a larger CORP span:

said Robert F. Erburu , Times Mirror ′s chairman and chief executive

first ini name media

per orgcorp

former CBS News President

media

orgcorp
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That is, MEDIA entities should only be nested in CORP spans when they

are being reported on just as any other company would be reporting on. In

the following example, the two entities refer to CORP and MEDIA respectively,

evident from their contexts:

American Health Partners , publisher of American Health magazine ,

nationality nationality

media media

orgcorp

INDEX The name of a particular stock index. Indexes such as the Nikkei Index

which contain references to CORPS should be marked up as INDEX, and have

the embedded structure of CORP (and others as appropriate) added.

Dow Jones

name name

name

media

index

Nikkei index

name

orgcorp

index

FUND The name of a particular money fund.

Windsor Fund

name

fund

United Nations Population Fund

org:other

org:other

HOTEL The name of a hotel, hostel, or other accommodation provider.

Grand Kempinski

name

hotel

Hyatt Regency

name

hotel

Vagabond Hotels

hotel

HOSPITAL The name of a hospital, health clinic, or medical facility of any

sort.

Massachusetts General Hospital

state

hospital

New York University Medical Center

state

org:edu

hospital



Chapter 3. Nested Entity Annotation Scheme 80

MUSEUM The name of a museum, gallery etc.

Asian Art Museum

norp:other

museum

Leipzig Museum of Fine Arts

city

museum

Smithsonian Institute

norp:other

museum

Princeton Art Museum

gpe

org:edu

museum

ORG:OTHER This category includes other organisations that are not oth-

erwise covered above, including: libraries, unions, environmental agencies,

professional associations, health associations. It also includes governing or-

ganisations that sit at a higher level than GOVERNMENT, such as the UN or

European Commission, with those at a country level and below covered by GOV-

ERNMENT.

U.N.

org:other

National Association of Antique Dealers

org:other

UNESCO

org:other

U.S. Cycling Federation

nationality

org:other

Red Cross

org:other

Royal Shakespeare Company

name

org:other

3.3.2.1 Structural elements common in ORG

JARGON The intention of marking up JARGON (and NAME) is to help core-

ference resolution. Corporate modifiers, such as Corp., Co. LTD., etc. simply

modify the name of the organisation, and are not always used. Thus, it is useful

to signify that Fujitsu Ltd is referring to the same entity as Fujitsu.

Since we are annotating NAME within ORGs, the distinction between JAR-

GON and words that are not a NAME is an important differentiation.

E.g., when analysing entities such as:

Hughes Aircraft Co.

name jargon

orgcorp
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it may be useful to have individual potential alias spans of Hughes, Hughes

Aircraft and Hughes Aircraft Co. However, adding embedded CORP spans within

an CORP, as in this derivation:

∗ Hughes Aircraft Co.

name jargon

orgcorp

orgcorp

would also imply there is an embedded company reference, which is incorrect.

Thus, we resolve only to add internal CORP when a separate entity is being

referenced, not denoting potential alias spans.

NAME We use NAME to mark internal structure and nested references to

entities that behave as references to people.

Common types of NAME:

• family names: Edison, Gates, Foley, Babcock, Brown

• Specific references to people in an organisation name: Bill and Melinda

Gates Foundation, Thomas Edison Corp.

Chrysler Corp.

name jargon

orgcorp

Bill and Melinda Gates Foundation

first first name

first

name

orgcorp

NAME is discussed in more detail below, and with reference to PER entities

in Section 3.3.1.

3.3.2.2 NAME in ORG entities

Ideally, we would be able to mark up all embedded references to entities, that

is, mark up [Walt Disney] as a PER within the ORG entity [Walt Disney Corp.]

This is, however, sometimes not feasible.
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In some cases, it is not immediately clear what type an embedded entity

is without requiring substantial research. We can identify [Walt Disney] as a

person easily, due to his fame.

Familiarity with an organisation does not always ensure an embedded

entity’s type is widely know, however. Compare [R.P. Scherer Co.], [Boeing

Corp.], [Alleghany Corp.] and [Univest Corp.]. Here, [R.P. Scherer Co.] is clearly

recognisable as the name of a person, in this case [Robert Pauli Scherer], the

company’s founder. In the organisation [Boeing Corp.], the name [Boeing]NAME

also refers to its founder, [William E. Boeing].

The organisation [Alleghany Corp.] could seemingly have been named after

a founder, but was founded by railroad entrepreneurs Oris and Mantis Van

Sweringen. The name, seemingly, is not a reference to a specific entity, but

simply a chosen name. In the case of [Univest Corp.], it seems clearer that the

company name does not refer to a person, but instead has to do, perhaps,

with banking or investment. Indeed, Univest Corporation is an American

corporation offering banking, insurance and investments.

Thus, it is not always clear which elements of an organisation name refer to

other embedded entities, and without substantial research into each individual

organisation, many of which no loner exist, it is not possible to accurately

determine these.

For example, consider Boeing Co.. If we knew with certainty that this com-

pany was named for a person with the last name Boeing, we may want to

annotate the company in the following way:

∗ Boeing Co.

last jargon

per

orgcorp

However, for many companies, we cannot determine this with great cer-

tainty, especially without a prohibitive amount of research.
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On the other hand, other elements of an embedded entity are easier to dis-

tinguish, including initials and first names. We follow the Pragmatic annotation

principle, and take the strategy of marking up all mentions that seem to be

reasonably likely to be references to people, marking each likely reference as

NAME, with additional structural layers added as necessary for first names and

initials.

Boeing Co.

name jargon

orgcorp

The largest span that refers to the same entity should be marked as a single

NAME. If it is not clear whether an embedded reference is referring to one or

more entities, we err on the side of caution, marking them as separate entities.

Mary Washington College

first name

name

org:edu

R. P. Scherer Co.

ini name jargon

name

orgcorp

T. Rowe Price Associates Inc.

ini middle name jargon

name

orgcorp

In this way, we can build up standardised structures in organisation names.

Consider that the following entities all have structure NAME + JARGON →
CORP:

Rothschild Inc.

name jargon

orgcorp

Westinghouse Electric Corp.

name jargon

orgcorp

R. P. Scherer Co.

ini name jargon

name

orgcorp

Chrysler Corp.

name jargon

orgcorp

We can expand on these regular patterns in the structure of entities by

introducing the concept of syntactic coordination into our analysis.



Chapter 3. Nested Entity Annotation Scheme 84

Johnson & Johnson Corp.

name name jargon

name

orgcorp

Here, the ‘&’ is acting as a conjunction, combining the two names Johnson

and Johnson to act as a single name, following the Coordination principle.

3.3.2.3 Company history through name coordinations

Company names often go through substantial changes as companies grow and

merge. For example, the [Goldman Corp.] merged with [Sachs Co.] to produce

[Goldman and Sachs Co.], now better known as [Goldman Sachs Co.]

Even in the final [Goldman Sachs Co], an elided conjunction is being used

to combine the two originally separate company names into one NAME span.

Thus, the structural pattern of NAME + JARGON→ CORP still holds.

Goldman and Sachs Co.

name name jargon

name

orgcorp

Goldman Sachs Co.

name name jargon

name

orgcorp

Similarly, mark up three plus coordinated entities like this:

Goldman , Sachs and Smith Co.

name name name jargon

name

orgcorp

By annotating embedded structures inside NAME, we can also coordinate

on other elements inside the name. For instance:

Bill and Melinda Gates Foundation

first first name

first

name

orgcorp

Through the merging of companies, organisation names often grow quite

complicated. Take the finance company [Morgan Stanley Smith Barney] as an
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example. [Charles D. Barney & Co.] and [Edward B. Smith & Co.], both named

after their founders, merged in 1938 to form [Smith Barney & Co.]

[Smith Barney, Harris Upham & Co.] was, formed in 1975 when [Smith Barney]

merged with [Harris, Upham & Co.]. The company continued to acquire other

businesses, including [Shearson], and for a time was known as [Travelers Group

Inc.], although some part of the business continued to operate under the [Smith

Barney] brand. In 1997, [Travelers] acquired [Saloman Inc.], creating [Salomon

Smith Barney], before selling to [Morgan Stanley], to become [Morgan Stanley Smith

Barney]. Thus, in some cases, the surface structure of an organisation’s name

often represents part of its history, but names can come and go.

We take the following as a starting point, including the NAME of the

founders of the now merged companies.

Smith Barney , Harris Upham & Co.

name name name name jargon

orgcorp

We also consider the NAME coordination between Smith and Barney, and Har-

ris and Upham from a syntactic perspective, respecting the comma boundaries,

and coordinate to the following structure.

Smith Barney , Harris Upham & Co.

name name name name jargon

name name

orgcorp

These comma boundaries often act as hints of the historical structure of the

company. We then coordinate over the comma to join the distinct NAME labels:

Smith Barney , Harris Upham & Co.

name name name name jargon

name name

name

orgcorp

This structure now adheres to the standard template of

NAME + JARGON→ CORP.
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Commas in NAME often designate historical mergers and acquisitions, and

this structure is reflected our bracketing. However, commas are unreliable, and

are often removed, especially as the name of an organisation becomes more

widely known. Where commas exist, we trust that bracketing. In entities that

do not have commas, we do not guess at or look up structure.

Lord Day & Lord , Barrett Smith

name name name name name

name name

name

orgcorp

3.3.2.4 Why NAME and not LAST?

To avoid marking up names that are not surnames as LAST, but also avoid

enormous effort researching every organisation named in the corpus, we con-

sidered a number of options. We follow the Pragmatic annotation principle, and

use NAME as an underspecified and general tag, which when contextualised,

can take on a more specific meaning.

For our analysis, we want to have as much of the same structure as possible

for each word. That is, that Smith should be marked consistently wherever it

appears, just as Melbourne is consistently marked as a CITY.

Melbourne

city

University of Melbourne

city

org:edu

Melbourne Knights FC

city

sports-team

Mr Smith

hon name

per

Smith Family

name

orgcorp

Flat annotation structures force an ambiguous analysis onto words that are

not inherently ambiguous. Forcing flat annotations on the examples above

would result in the word Melbourne marked as CITY, ORG:EDU and SPORTS-

TEAM respectively, when all cases are clearly referring to the CITY. Similarly

with names, ‘Smith’ would otherwise be marked up both as PER and CORP.
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NAME as an annotation tag can also contain more than just single names,

for instance, when used in CORP, NAME can contain other elements:

W.R. Grace

ini name

name

orgcorp

T. Rowe Price

ini middle name

name

orgcorp

3.3.2.5 What’s in a NAME?

How ‘namey’ should a word be in order for it to be considered NAME? The

decision to annotate this entity structure as NAME and not LAST is reflective

of the greater leniency with which we will annotate these structures. To avoid

prohibitively lengthy research for each organisation appearing in the corpus,

we adhere to the general policy of marking up tokens which conceivably are

last names as NAME. Taken to an extreme, we annotate ‘name-like’ tokens

in the structure of organisations that are not also common words likely to be

associated with the business.

For instance, even though [Sony]ORG is not, in fact, named after a founder

with the same last name, we still mark this up as NAME.

Sony

name

orgcorp

Similarly, [Boeing]CORP is marked up as NAME, without requiring extensive

research to identify that it was, in fact, founded by [William Boeing]PER.

In the case of common nouns being used as part of an organisation name, use

common sense to mark Walker & Sons as NAME and not to mark Walker up in an

organisation such as Baby Walker Co. In an organisation such as Walker Designs,

again following the Pragmatic annotation principle principle, we do annotate

Walker as NAME. In cases where it is unclear, we default to adding NAME as a

label.
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Walker & Sons

name

orgcorp

Baby Walker Co.

orgcorp

Walker Designs

name

orgcorp

3.3.2.6 Edge cases in NAME

Inevitably, some CORP examples will not be able to be correctly analysed. In

this case, we try to do the best we can. Take the name H.N. & Frances C. Berger

Foundation:

H. N. & Frances C. Berger Foundation

ini first ini name

name name

name

name

orgcorp

In order to correctly coordinate on the two people, there must be a span of

a single given label that is on both sides of the &. For this, the best answer is

to use NAME, even if this means that we have a resulting rule of NAME plus

NAME combining to make a NAME.

3.3.3 FACILITY

Facilities exhibit both organisation and location qualities. For instance, a hotel

may have both a CEO and an address. It can be bought and sold, or opened

and closed. As such, facilities should be annotated with embedded entities

following roughly the same pattern as ORG and LOC.

We follow the Overspecify ambiguous categories principle; it is easier to mark

an entity as a HOTEL or MUSEUM rather than trying to remember whether it

should be categorised as an ORG or FACILITY. These coarse-grained categor-

isation decisions can be put off to a later time to ensure annotation consistency.

AIRPORT Heathrow Airport, Schiphol, Charles de Gaulle, Kingsford Smith
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McCarran International Airport

name

airport

San Francisco International Airport

city

airport

ATTRACTION The name of an attraction, including theme parks, monu-

ments, etc. Note that not all ATTRACTION entities are run by CORP entities.

See the discussion of FACILITY edge cases below. Wet ’n Wild, Memorial

Coliseum, Statue of Liberty

Indianapolis Motor Speedway

city

attraction

BRIDGE The name of a bridge. Note, Locations should be marked up as

embedded. Golden Gate Bridge, [G Street]street Bridge, [San Mateo]city Bridge

Sydney Harbour Bridge

city

location:other

bridge

BUILDING The name of a building. Chifley Tower, Eureka Tower, Taj Mahal,

Hundertwasserhaus

Rockerfeller Center

name

building

We follow the Unary stacking principle in cases of metonymy, which are com-

mon with the names of buildings. For example, the names of buildings which

are also used as the name of the government body housed within should have

be nested in a government entity when its use as a building is synonymous

with the government. For example, when The White House, Parliament House

or The Pentagon is used in a way that does not refer to the buildings them-

selves, but rather the organisations they represent, they should be nested in a

GOVERNMENT entity.
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the White House said yesterday

building

government

Pentagon

building

government

STADIUM The name of a stadium. Note, references to locations etc should

also be marked up. Superdome, Candlestick Park

Dodger Stadium

sports-team

stadium

STATION The name of a station. Town Hall, Central, Lilyfield Station

Grand Central Terminal

station

STREET The name of a street, road or highway. STREET as a category has

more in common with locations than organisations. It clearly fits with the BBN

description of Facilities:

Names of man-made structures, including infrastructure, buildings,
monuments, etc.

so we elect to keep it categorised under FACILITY. However, streets should be

considered with a more ‘location’ centered strategy. As such, we do not mark

up embedded NAME references in STREET entities.

Smith Street

street

Highway 101

cardinal

street

FACILITY:OTHER Other types of facilities not expressly covered by other

categories, e.g. factories, sewage treatment plants etc. Kimbriki Resource

Recovery Centre

Hubble Space Telescope

name

facility

Kennedy Space Center

name

facility

Berlin Wall

city

facility

Pilgrim Nuclear Power Station

name

facility
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FACILITY edge case Facilities, having both ORG and LOC characteristics,

often are involved in tricky edge cases. In the following excerpt, it is not

the actual Euro Disneyland theme park that is being discussed, but rather the

company which owns and runs it.

Traders credited Euro Disney’s share performance to . . .

Since this article is discussing the finances of the organisation, rather than

the theme park for which it is named, it should be marked as CORP, with an

embedded ATTRACTION.

Euro Disney

norp:other name

attraction

orgcorp

3.3.4 LOCATION

As a category, LOCATION spans both physical (e.g. rivers, oceans, mountains)

and geo-political entities (e.g. cities, suburbs, countries), both on Earth and

beyond. The naming conventions of locations are complex, and deeply rooted

in history, with the origin of many place names now forgotten. Many locations

are named after people, and many people are named after locations. It would

be prohibitively time consuming to check the history and naming origin of

every location.

Take, for instance, the University of Melbourne. We annotate this as:

University of Melbourne

city

org:edu

In 1873, the settlement now known as Melbourne was named after the then

British Prime Minister, William Lamb, 2nd Viscount Melbourne, whose seat was

Melbourne Hall in the market town of Melbourne, Derbyshire. Even with this his-

tory, it is unclear whether Melbourne could be considered to have an embedded
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reference to an entity, and if so, it is not clear whether this should refer to a

person (e.g. his father, Viscount Melbourne), his own title as the 2nd Viscount

Melbourne, the market town, or his parliamentary seat.

Researching and correctly representing these relationships would be pro-

hibitively time consuming for annotation. We therefore follow the Pragmatic

annotation principle principle, and take the policy not annotating potential em-

bedded NAME referents in LOC entities, but continue to annotate other nesting

structures.

San Francisco Bay

city

location:other

French Alps

nationality location:other

location:other

San Francisco Bay Area

city

location:other

region

U S West Inc.

country jargon

region

orgcorp

CITY Mentions of cities, towns and villages should be marked as CITY. Tokyo,

New York, Chicago, Warsaw, Ho Chi Minh City, Mudgee

When a city is mentioned as the reduced form of the name of an organisation

(e.g., In Tokyo, stocks fell. . . , referring to the Tokyo Stock Exchange), it should be

marked as an organisation with embedded CITY.

This is also the case for capital cities, which can be used as a kind of spokes-

person for the government of that country. Yesterday, Washington released new

findings on... In this case, Washington should be marked as a CITY embedded in

a GOVERNMENT.

SUBURB A smaller region within a CITY. Glebe, Beverly Hills, Croydon

STATE The largest internal administrative region in a country, including

provinces of China (e.g. Shandong), prefectures of Japan (e.g. Nara Prefecture)

etc.

New Hampshire, Indiana, N.J., Mass, Massachusetts
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GPE This category captures geo-political entities that are larger than cities,

that do not qualify as STATE, and that have fixed administrative boundaries.

Even if a country (e.g. the U.K.) does not have states, mark small administrative

regions (e.g. Bedfordshire County as GPE, not STATE. For example, Brooklyn (a

borough) and Greenville County.

Brooklyn

gpe

Manhattan

gpe

Oakland

gpe

Puerto Rico

gpe

San Andreas Fault

gpe

location:other

U.S. Virgin Islands

nationality

gpe

COUNTRY Mark up mentions of countries such as Australia and France. The

definite article the in countries such as the [Netherlands]COUNTRY is not marked.

France

country

the Phillipines

country

West Germany

country

Viet Nam

country

CITY-STATE Locations such as Singapore, Hong Kong, Luxembourg and Monaco

should be marked as CITY-STATE. Mentions of these entities represent genuine

ambiguity between STATE and COUNTRY. Following the Underspecify ambigu-

ous categories principle principle, we use this category to capture this ambiguity.

For example, in this sentence, the PTB derivation coordinates between crown

prince and grand duke, though one can be crown prince of a country but duke of

a city, meaning that Luxembourg must be interpreted as both concurrently.

( (S
(NP-SBJ (NNP PRINCE) (NNP HENRI) )
(VP (VBZ is)

(NP-PRD
(NP (DT the)

(NX
(NX (NN crown) (NN prince) )
(CC and)
(NX (JJ hereditary) (JJ grand) (NN duke) )))

(PP (IN of)
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(NP (NNP Luxembourg) ))))
(. .) ))

CONTINENT Mark up the name of continents. Africa, Australia

OCEAN Mark up the names of bodies of water other than RIVER, including

oceans, seas and lakes. Pacific Ocean, Caribbean Sea, Atlantic Ocean

REGION REGION entities are named areas, usually larger than a city. Regions

are contiguous areas for which the precise boundary may be not clearly defined,

or may be disputed. Unlike GPE entities, which have clear legal distinctions,

REGION entities often have fuzzier boundary distinctions.

Bay Area

region

Midwest

region

East Bloc

region

Far East

region

Latin America

region

Eastern Europe

continent

region

RIVER The names of rivers and river deltas. Orange River, Hudson, River

Danube, Mississippi

SPACE Any celestial body. Saturn, Milky Way, Andromeda, Titan

LOCATION:OTHER This category captures locations that don’t fit into other

location categories, for instance mountains, plateaus, plains. Mt Everest

A note on locations names with multiple possible referents In cases such

as New York or Washington, which can be either a city or another location such

as state, country or geopolitical entity, entities should be marked up as ac-

curately as possible based on how they are used in context. For instance, if

discussing a state-wide competition, the location should be marked as STATE.

Many examples are more ambiguous, but general principles apply, for instance,
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organisations usually discuss their offices being located in cities, not countries.

If context is insufficient to determine which location is intended, we default to

the larger geographic entity.

3.3.5 NORP: Nationality, Other, Religion, Political

NORP refers to the adjectival forms of entities.

“This type is named after its subtypes, nationality, other, religion,
political. The distinction between NORP and other types is morpho-
logical. American and Americans is a nationality, while America
and US are GPEs, regardless of context.”2

We take this definition, but disagree with the last point, that US should be

marked as a GPE “regardless of context”. While the distinction is difficult to

make in cases where the adjectival and nominal form have the same surface

realisation, such as U.S. in the phrase the U.S. National Anthem, it does never-

theless constitute a real distinction, and is marked as NATIONALITY in this

context.

NATIONALITY Adjectival forms of or references to countries. American, Aus-

tralian, U.S., French

NORP:POLITICAL Adjectival forms of political affiliations. Democratic, Lib-

eral

NORP:POLITICAL only applies to references to a specific political party.

For instance, if someone is described as ‘conservative’, this would usually

be considered a general political view, and not a specific political party. To

complicate matters, however, ‘Conservative’ is a specific political party in the

U.K., compared to a set of any parties that are right of centre in the U.S.

2Annotation guidelines for Answer Types, BBN Technologies, Ada Brunstein http://catalog.
ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html

http://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html
http://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html
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RELIGION Adjectival forms of religions. Muslim, Muslims, Jewish, Christian,

Catholic, Jews

NORP:OTHER Other adjectival forms, including GPE names and locations.

NATIONALITY, RELIGION and NORP:POLITICAL refer to adjectival forms

for which there is a corresponding noun. All others should be marked as

NORP:OTHER.

Western European

norp:other

norp:other

Moorish Science Temple of America

norp:other country

org:religious

NORP:OTHER contains a variety of adjectival forms, relating to background,

cultural or otherwise (Arab, Hispanic, Palestinian, Persian, Inuit, Western, African-

American) to linguistic (Semitic, Alexandrine), historical (Victorian), theory or

policy related (Darwinian, Thatcherite), and more esoteric (SONGsters, Jovian, New

Environmentalism).

3.3.6 EVENT

The EVENT tag covers references to specific events including sports events,

wars, natural disasters and named stock market crashes. Just as FACILITY as

a category combines aspects of ORG and LOC, EVENT combines aspects of

TIMEX and other named entities.

The types of TIMEX entities associated with EVENT entities is varied, ran-

ging from a one-off natural disaster to a recurring festival. Some events are so

connected with a specific date that they can be used as that date. For instance,

We will see them on Christmas Day. or I’ll be leaving on April Fools’ Day. Since

events and dates are so intrinsically linked, we use EVENT as another type of

top-level TIMEX entity, which can also be embedded in TIMEX expressions, and

have them embedded in it.
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Named Events that are also Dates For entities like Christmas or Anzac Day,

which convey both date and event information, the event is considered the

innermost, intrinsic layer. For example, Christmas should be marked up first as

an EVENT, then as a DATE.

Christmas

event

Anzac Day

army duration

event

date

Christmas Eve

event

date

Christmas season

event duration

date

every Christmas

event

periodic

SPORTS-EVENT Tag the names of sports events, including chess games,

motor sports, lawn bowls, etc. the Pan-American Games, the Ashes

the 2000 Sydney Olympics

year city

sports-event

CONCERT Named concerts. Live Aid, Wave Aid, Big Day Out, Rock Am Ring

HURRICANE The names of hurricanes, cyclones and other named tropical

storms. The naming convention for tropical cyclones dates back to World War

II, with first names being used to identify storms throughout their lifetimes. We

keep the category name HURRICANE but expand its definition to include other

tropical storms that follow the same naming convention: e.g. Hurricane Hugo,

Cyclone Tracy. Since the naming pattern of these storms is clearly defined as

including first names, HURRICANE should be embedded with FIRST entities,

rather than NAME.

Hurricane Hugo

first

hurricane
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NATURAL-DISASTER The name of a natural disaster. This category cap-

tures natural disasters which do not share the naming conventions of tropical

storms (HURRICANE). 2004 Boxing Day Tsunami, 2011 Tohoku Earthquake and

Tsunami, 1971 San Fernando Earthquake, 1976 Tangshan earthquake.

WAR The name of a war The Second World War, WWI, Hundred Year War

Korean War

nationality

war

World War II

cardinal

war

SPORTS-SEASON References to a particular sports season:

the 1989 Toronto Blue Jays season

1989 Series

year

sports-season

EVENT:OTHER Types of event that are not captured in other specific event

categories.

Albuquerque International Balloon Fiesta

city

event:other

Black Monday

day

event:other

3.3.7 WORK OF ART

Works of art (WOA), generally considered a subcategory of MISC, and here

separated for clarity, are annotated in a variety of subcategories. The names of

WOA entities are often quite complicated, infrequently following patterns or

naming conventions, and often including embedded mentions of other entities.

They can have almost any internal syntactic structure.

ALBUM The name of an album. Back in Black

1

cardinal

album

Born in the U.S.A.

country

album

The Dark Side of the Moon

space

album
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BOOK Book titles. Pride and Prejudice, War and Peace

1984

year

book

FILM The titles of films and movies: Batman, Gorillas in the Mist, When

[Harry]first met [Sally]first

PAINTING The names of paintings, for example: [Abraham]first and [Sarah]first

in the Wilderness, Starry Night, Lighthouse [II]cardinal

PLAY Twelfth Night, Death of a Salesman

Rosencrantz and Guildenstern Are Dead

name name

name

play

SONG The names of songs and musical pieces, for example: Somewhere over

the Rainbow, Violin Concerto in G Minor, When [Irish]nationality Eyes are Smiling

Messa per Rossini

name

song

TV-SHOW The names of TV show series. For example, A Current Affair,

[Sesame Street]street, [Miami]city Vice.

Good Morning America

country

tv-show

60 Minutes

cardinal duration

duration

tv-show

WOA Other types of works of art including sculptures (e.g. The Impossibility of

Death in the Mind of Someone Living) newspaper articles Rural Enterprise : Tough

Row To Hoe, dance performances etc.
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3.3.8 MISC

MISC entities are the names of other named entities that do not directly fit into

other categories outlined.

LANGUAGE The name of a language, officially recognised or otherwise.

French, English, Yimas

Russian

language

Streetspeak

language

LAW The name of a law or constitutional amendment, act of parliament or

constitution etc. The Kerrigan Decision, [Americans]nationality With Disabilities

Act, [Fifth]ordinal Amendment

Roe v. Wade

name name

law

Section 89

cardinal

law

Clean Air Act

law

Johnson Act

name

law

RICO

law

1974 Budget “ Reform ′′ Act

year

date

law

AWARD The name of an award. The Oscars, Luce Fellowship

the Oscars

award

Luce Fellowship

name

award

ELECTRONICS The name of a type, brand or product of (generally consumer)

electronics. Walkman, HyperCard, Cray-3, GameBoy

80486

cardinal

electronics

Apple II

orgcorp cardinal

electronics

Intel 286

orgcorp cardinal

electronics

PRODUCT:DRUG The name of a drug (product), e.g. Viagra.

Proleukin

product:drug

Retin−A

product:drug

AZT

product:drug
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PRODUCT:FOOD The brand/product name of a food, e.g. Coco Pops, Weetabits,

Vegemite.

Fuji

product:food

Frosted Flakes

product:food

VEHICLE The name of a type of vehicle, e.g. Hummer, Jeep Cherokee, as well

as the names of individual boat and planes, e.g. Airforce [One]cardinal.

Ford trucks

name

orgcorp

Jeep Cherokee

orgcorp norp:other

vehicle

WEAPON The name of a weapon AK47

DISEASE The name of a disease, including mentions of diseases not starting

with a capital letter.

Parkinson′s
name

disease

Parkinson′s disease

name

disease

AIDS

disease

retinoblastoma

disease

GOD The name of a deity, or reference to a god. God, Zeus

SCINAME The name of a specific scientific name such as genus.

Homo sapiens, Nymphicus hollandicus, Ailurus fulgens

Nymphicus hollandicus

sciname

PRODUCT:OTHER The name of other products, including both tangible

and intangible products. This also includes the names of documents such as

standardised tests. Birkenstocks, SATs

Cheer with Color Guard

product:other

Personal Retirement Account

product:other

Tide with Bleach

product:other

Dalkon Shield

name

orgcorp

product:other
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3.3.9 GROUP

GROUP as a category captures unorganised groupings of entities.

GRP:ORG GRP:ORG is for not officially organised groups of organisations.

Wall Street Here Wall Street is referring to a group of corporations in the finance

industry. They are not officially organised, and are known by this term. Not

all members of Wall Street need, in fact, have an office on Wall Street. Similarly,

other organisations have offices on Wall Street, but do not belong to the finance

industry, and therefore to the group to which Wall Street refers.

Wall Street

street

grp:org

GRP:LOC Groups of locations that are not regions. These do not necessarily

need to be contiguous, but instead are groupings based on things in common,

for example financial situation or language spoken. PIIGS, First World

If the grouping were due to geographical location, they would instead be

marked as REGION.

GRP:PER Unorganised (or unofficially organised) groups of people, including

families.

Wall Street Old Guard

street

grp:org

grp:per

the Kennedys

name

grp:per

the Kennedy Family

name

grp:per

3.3.10 NUMEX

The structure of numerical expressions (NUMEX) is of particular interest when

considering resolving these expressions into one canonical form.
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CARDINAL CARDINAL includes all mentions of counting and fractional

numbers, both in and outside other entities. We mark up all cardinals, both as

stand-alone entities and embedded in other entities. We also mark up several

and few as cardinals, as they do convey cardinality, albeit underspecified.

99 Dresses

cardinal

orgcorp

two to three million dollars

cardinal cardinal mult unit

cardinal

cardinal

money

FOLD The FOLD tag is similar to the MULT in use, covering cases such as

fivefold, 10 times as much, twice etc. FOLD indicates the multiplication factor

of a number.

twice

fold

500 times

cardinal

fold

more than 50 times

qual cardinal

cardinal

fold

ENERGY Annotate mentions of energy

55−megawatt

energy

about 500 megawatts

qual cardinal unit

cardinal

energy

IPOINTS Short for Index points, we mark up mentions of index points, taking

care not to mark up percentages. Although technically unitless from a science

perspective, IPOINTS are treated as a unit in finance newswire, so we annotate

these accordingly.

55 points

cardinal unit

ipoints

about a quarter of a point

qual cardinal unit

cardinal

ipoints

MONEY Any mention of an amount of money.
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C$ 9.625

unit cardinal

money

37.5 Canadian cents

cardinal nationality unit

unit

money

up to 2.1 million Singapore dollars

qual cardinal mult

cardinal nationality unit

cardinal unit

money

MULT A ‘multiplier’ marker - e.g. million, billion, trillion. This is used to mark

up structure of numbers, especial in MONEY.

10 million

cardinal mult

cardinal

$ 32.82 billion

unit cardinal mult

cardinal

money

This additional MULT layer is useful in cases of an extended description

of an amount, where the amount is referenced later with just a CARDINAL,

excluding the MULT. For instance: The total number is expected to be [[3]cd

[million]mult]cd, “but that might go as high as [4]cd”, says. . . In this case, the

extra MULT (referring to 4 million) has been elided. This added structure will

therefore assist in future coordination tasks.

dozens

mult

cardinal

tens of thousands

mult mult

mult

cardinal

several hundred million dollars

cardinal mult mult unit

cardinal

money

ORDINAL Ordinals are numbers defining a position in a series, such as

first, second, third, or last. Ordinal numbers are used as adjectives, nouns, and

pronouns.

We also annotate ORDINAL tokens inside ORG entities even in cases where

it is not clear that this semantic concept has been retained.

First Boston Corp.

ordinal city jargon

orgcorp

First Interstate of California

ordinal state

orgcorp
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PERCENT The PERCENT category captures references to percentages and

percentage points, including nested structural elements such as the token per-

centage as a UNIT.

8.45 %

cardinal unit

percent

Thirty − five percent

cardinal unit

percent

about a quarter of a percent

qual cardinal unit

cardinal

percent

0.25 percentage point

cardinal unit

percent

QUANTITY Quantities are usually used with nested CARDINAL and UNIT

of some sort, and are often found within RATE structures. We only look at

QUANTITY measures that have defined units, for instance, we would mark

up 3 teaspoons but not 3 spoons. Similarly, we do not annotate non-standard

measures such as 10 men or 20 chickens.

QUANTITY:1D One dimensional quantities include measures of distance.

The SI base unit for QUANTITY:1D is meter.

20 feet

cardinal unit

quantity:1d

QUANTITY:2D Two dimensional quantities include measures of size, such

as feet, acres, square kilometers etc. QUANTITY:2D measurements are of the

same form as SI derived unit square meter.

3, 350 acres

cardinal unit

quantity:2d

QUANTITY:3D Three dimensional quantities include measures of volume,

the SI derived unit for which is cubic meter.
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1.2 billion cubic feet

cardinal mult unit

cardinal

quantity:3d

at least another 500, 000 barrels

qual cardinal unit

cardinal

quantity:3d

QUANTITY:OTHER Some quantities that do not fit into either the QUANT-

ITY:1D, QUANTITY:2D or QUANTITY:3D categories, which we classify as

QUANTITY:OTHER. These include measures of computational size and de-

grees, i.e. not spatial measurements.

360 degrees

cardinal

quantity:other

40−megabyte

quantity:other

RATE The RATE category covers all rates: measures, quantities or frequen-

cies measured against some other quantity or measure (usually time). RATE

includes measures such as dollars an hour, dollars an ounce, beats per minute.

100 barrels a day

cardinal unit duration

quantity:3d

rate

up to $ 15, 000 a month

qual unit cardinal duration

money

money

rate

about 11, 000 barrels a day

qual cardinal unit duration

cardinal

quantity:3d

rate

SPEED SPEED is a measure of QUANTITY:1D per DURATION, the SI unit

for which is meter per second. We distinguish between SPEED and other types

of RATE due to the frequency of SPEED mentions in text.

In cases of ambiguous potential structural bracketing, as seen below, we

follow the Defer to PTB principle, and mark the bracketing which does not

conflict with the PTB structure.

((80 miles) per hour)

(80 (miles per hour))
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80 mph

cardinal unit

speed

80 miles per hour

cardinal unit duration

quantity:1d

speed

TEMPERATURE Annotate instances of TEMPERATURE, marking up cardin-

ality and units.

minus 321 degrees Fahrenheit

qual cardinal unit

cardinal

temperature

20 below zero

cardinal cardinal

qual

cardinal

temperature

UNIT A specific unit of measurement that is not a RATE (e.g. beats per

minute). For example, $, cents, yen, dollars, US$, pounds, C$, Canadian dol-

lars, hours, acres, miles, ounces, square feet, barrels. The type of the unit is resolved

by the outer layer of annotation.

Units mentioned without a CARDINAL should still be marked as UNIT. For

example, . . . against the [dollar]unit and the [[West German]nationality mark.]unit

Canadian dollars

nationality unit

unit

more than one billion Canadian dollars

qual cardinal mult nationality unit

cardinal unit

cardinal

money

WEIGHT Annotate instances of weights, also marking up embedded CD and

UNIT.

15 pounds

cardinal unit

weight

about 300, 000 tons

qual cardinal unit

cardinal

weight

from about $ 1.24 million to $ 4.4 million and up

qual unit qual

cardinal cardinal

money money

money money

money
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(decline) to $ 367 from $ 429 per ounce

unit cardinal unit cardinal unit

money money

money

rate

Qualifiers QUAL changes the meaning of a NUMEX or TIMEX expression,

usually by adjusting one of the limits of a particular (usually numerical) amount.

Common QUAL expressions include almost, around, nearly, more than, up to, at

least. We attach QUAL entities as closely to the CARDINAL span (or largest

CARDINAL span if applicable, which produces essentially the same semantics)

as possible, and produces a larger span of the same type to which it joined.

QUAL + X → X

QUAL spans change the meaning of an amount, but can also often express

editorial content. For example, in the clause ’could be released as early as next

year’, the words as early as are marking a point of view, specifically, that next

year would be early. Making a distinction between editorial comment and the

equivalent meaning of at or before is nuanced, and is beyond the scope of this

annotation task. We follow the Pragmatic annotation principle, and therefore

mark up all instances that could be interpreted as changing the meaning of an

amount as QUAL.

more than five inches

qual cardinal unit

cardinal

quantity:1d

about 11, 000 barrels a day

qual cardinal unit

cardinal

quantity:3d duration

rate

The policy of attaching QUAL spans as closely to the CARDINAL span as
possible is consistent with the PTB analysis, where these phrases are (generally)
included within the larger QP span.

(NP -SBJ -92 (DT the) (NN roof) )
(VP (MD could) (RB n’t)

(VP (VB be)
(VP (VBN depressed)
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(NP (-NONE - *-92) )
(NP -EXT

(QP (RBR more) (IN than) (CD five) )
(NNS inches) ))))

(. .) ))

3.3.11 TIMEX

We consider TIMEX entities to cover expressions of time, both points in time

and longer periods of time.

Most TIMEX expressions fall into either the DATE, DURATION or PERI-

ODIC category. These three are the main top-level types of TIMEX, with more

detailed sub-types building up internal structure.

We define DATE expressions as any time expressions which can have one

or more ends placed on a timeline. This includes specific punctual instances

(15:00) and longer spans of time, where one or both ends is specific (January

2012). All dates and times are, at some resolution, temporal spans. Further, we

assume that the date of publication, or today is known, and therefore treat dates

such as last week or yesterday as dates which can be placed on the timeline.

last week
beginning end

days

DURATION covers spans of time for which neither end can be identified

and placed on a timeline. For instance, for two weeks should be marked up as

a DURATION, since neither end is specified, but the length of the span on the

timeline is fixed.

She visited for two weeks

beginning end

weeks
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PERIODIC expressions are recurring time events, usually repeating in a

regular pattern, such as annual, fortnightly or each Monday at 5pm. They may or

may not be fixable on the timeline.

every second day

days

DATE:OTHER covers any times which do not fit into this categorisation.

There are four main ‘template’ rules for TIMEX structures:

CARDINAL + DURATION → DURATION

DURATION + REL(+DATE)→ DATE

REL + DATE → DATE

DURATION + DATE → DATE

Temporal expressions are particularly complex and productive, and follow-

ing the Monitoring grammar principle has been particularly useful in trying to

maintain a parsimonious annotation scheme that still captures the syntactic and

semantic structure of temporal expressions.

DATE DATE should be annotated with inner structure, predominantly using

the categories following in this TIMEX section. For instance, the names of days

or months, date and year structures should all be marked up. Additionally,

other aspects of the date including REL markers (see Section 3.3.11), such as

early should be marked up.

January 1988

month year

date

the first Tuesday of June

ordinal day month

date

date

Date entities can also have only one date which is pinned down. Common

examples of these include in recent years and for the last few weeks.
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last few weeks
beginning end

weeks

recent years

rel duration

duration

DURATION A DURATION is a time period that has neither end anchored to

a time line, but the length of the line is fixed.

She visited for two weeks

beginning end

weeks

She stayed for two weeks

cardinal duration

duration

another day or two

duration cardinal

duration

duration

A common pattern inside TIMEX entities is the combination of a DURA-

TION, a time span which, by itself, cannot be pinned down to a specific start

or finish time, and a REL span, which pins the DURATION to the timeline,

forming a DATE span.

last week

rel duration

date

A note on Financial Quarters Financial quarters should be marked as quarter

years, with embedded CD:

quarter

cardinal

duration

A quarter as a token implies a duration, specifically a quarter of a year.

When combined with an ordinal or other date structure, e.g. first quarter 1980,
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it resolves to a DATE. Though the dates for quarters vary between countries,

from context, we can identify the bounds of the fiscal first quarter, or the last

quarter of the year.

PERIODIC The PERIODIC tag is for recurring DATE entities, usually a set of

DATE entities. This includes mentions such as annual, weekly, fortnightly, every

Tuesday etc.

We only mark up these as PERIODIC if they are specifically acting as re-

curring, periodic markers. For instance, the example Tuesday does not always

convey PERIODIC and so should not be marked as such except for instances

such as:

On a Tuesday, like clockwork, Thomas goes swimming.

Similarly, On the weekend should be marked as periodic if it refers to a

recurring time, but not if it refers to a one-time event:

On the weekend , Thomas goes swimming.

periodic

On the weekend , Thomas will go swimming.

date

Meetings are every Wednesday .

day

periodic

. . . supplies programs on Saturdays , Sundays and Mondays .

periodic periodic periodic

AGE The AGE tag marks up ages.

12 years old

cardinal duration

age

under 45 years of age

qual cardinal duration

age
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DAY Mark up the names of the days of the week: Monday, Tuesday, Wednesday

etc.

When found without other TIMEX constructions, DAY is embedded in a

DATE tag, taking extra specification from context. That is, because newswire

generally discusses the recent past or obvious close future, we assume that the

larger context is clear from the sentence or article.

on Tuesday , she was elected . . .

day

date

DAY can also occur within larger DATE constructions, where it combines

with them immediately with other elements, usually MONTH, NUMDAY or

YEAR, to add specificity to the larger DATE structure:

Tuesday , October 10 , 1989

day month numday year

date

MONTH Annotate the names of months of the year: January, February, March

etc.

August 1985

month year

date

NUMDAY This is for references to days using numbers, ie., the 12th. It is

always embedded in a DATE. 15th, 1st, . . .

Nov. 21

month numday

date

REL Certain expressions show the relationship between another TIMEX ex-

pression and the current day. These should be marked as REL.

Common REL expressions are next, ago, last, this, past, end, ended, ending,

previous, early, after, following, later, before and most recent.



Chapter 3. Nested Entity Annotation Scheme 114

REL spans are frequently combined with DURATION to form a larger DATE

span, effectively pinning a duration to a fixed date, for example, next week, last

month etc. REL + DURATION → DATE

We use this Monitoring grammar principle with patterns like this when making

complex nesting decisions.

two recent months

cardinal rel duration

date

a year earlier

duration rel

date

the rest of the century

rel duration

date

date

the end of the month

rel duration

date

date

The analysis of some phrases are ambiguous with respect to bracketing. For

example, consider the next couple of years. This could be analysed as either next

(couple of years) or (next couple) of years. Since they are semantically equivalent,

following the Defer to PTB principle, in order to avoid conflicting with the PTB

bracketing, we elect to leave such ambiguous structures as flat as possible.

next couple of years

rel cardinal duration

date

SEASON We use the Overspecify ambiguous categories principle and mark the

temporal seasons of the year, summer, autumn, winter, spring, as SEASON.

spring

season

date

TIME The distinction between DATE and TIME is difficult to identify with our

definition of DATE as any time expression which can be placed on a timeline,

as TIME expressions such as 2pm Tuesday also satisfy this constraint.

10 a.m.

cardinal

time

midday

time
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YEAR Years should be marked YEAR. Just as we would mark up plurals of

other entities as the entity in question, we also mark up YEAR spans, such as

1983-1988 as YEAR.

between 1998 and 2000

year year

date date

qual date

date

October 1987

month year

date

We do not have a specific Decade category, but instead mark up mentions of

decades, such as the 1950s, directly as a DATE.

in the early 1950s

rel date

date

Further discussion of DATE and EVENT Black Monday in this corpus refers

to a stock market crash in 1987. It is used to refer to the event itself, but also

frequently used in references to the date of the event.

Black Monday

day

event:other

months following Black Monday 1987

duration rel day year

event

date

days following the June 4 massacre in Beijing

duration rel month numday city

date

event

date

Flat TIMEX entities with structural ambiguity In many TIMEX entities, mul-

tiple possible spans are potentially valid interpretations. Consider: the first half

of the year We annotate this as a flat structure, leaving both of the following

phrasings possible:

[first half] of the year

first [half of the year]
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If there is no DURATION specified, we can follow this interpretation:

during the first half

ordinal cardinal

duration

duration

Note that the following analysis is problematic for the same reason as TIMEX

expressions such as two weeks of June or NUMEX expressions similar to three

barrels of oil in that it is unclear where attachment should happen. Both first half

and half of the year are equally valid options, and as such, we elect to keep the

structures as flat as possible, allowing the process of merging the PTB corpus

and our NNE corpus, to be discussed in Chapter 5, to determine the bracketing.

3.4 Summary

In this chapter, we introduced the annotation principles governing entity spans,

their nesting, and the granularity of the category inventory – collectively, the

annotation scheme. We summarised the annotation guidelines for each entity

type, and described the use of the BBN corpus as underlying entities for our

nested entity annotation process. For further details, with many more edge cases

discussed, please see the full Nested Named Entity Corpus Annotation Guidelines

that will be published along with the corpus.

Many existing NER corpora have minimal annotation guidelines, with poor

coverage of edge cases. The well-defined annotation principles and detailed

guidelines presented as part of this thesis allow for the creation of a consistent

corpus of nested entities. These guidelines bring the same level of detail to the

task of NER as the annotation guidelines for the Penn Treebank do to syntactic

parsing.



4 Annotating the NNE corpus

If we have data, let’s look at data. If all we have are

opinions, let’s go with mine.

Jim Barksdale

Now that we have a robust set of annotation principles and a highly detailed

set of annotation guidelines, the next step is to annotate the corpus. This chapter

will describe the process of manually annotating structured named entities in

our corpus, the Wall Street Journal section of the Penn Treebank. The resulting

NNE corpus will be used throughout the rest of this thesis, being merged

with the constituent structure of the PTB in Chapter 5 for subsequent parsing

experiments (Chapter 6) and NER experiments (Chapter 7).

4.1 Annotation Process

The first step in the annotation process was to align BBN to the PTB, so that

the underlying BBN annotations are compatible with the target corpus. Once

the corpus with underlying BBN annotations was created, we then applied

a number of pre-annotations to add specific particularly regular structures

automatically which would be checked by the annotators in the next step,

when they worked through the corpus, adding in the bulk of entity structure.

Following that, the corpus was post-processed to improve consistency and fix

117
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both changes to the annotation guidelines that occurred during (and on the

basis of experience) annotating, and annotation errors.

4.1.1 Aligning BBN and PTB

Missing data A small subset of sentences in the PTB were missing from BBN.

These were manually added and annotated for inclusion in the corpus.

Sentence Boundary issues The BBN corpus tokenisation differs from that of

the PTB.

Since we want the resulting corpus to be as compatible with the Penn

Treebank as possible, we first align the BBN corpus to it, correcting various

sentences with invalid XML, sentence boundary problems and modifying the

tokenisation, which differs between BBN and the PTB. For example, BBN

includes 1958 hyphenated compound tokens, where at least one section is an

entity (e.g. [London]city-based, [three]cardinal-run). Since our aim is to create

nested named entity annotations that are compatible with the PTB corpus, we

extend the entity boundary to cover the whole token ( [London-based]city).

Most of the alignment errors were caused due to tokenisation discrepancies

between the two corpora. One example of this is full stops. When periods

occurred within entities, the algorithm used by BBN to detect sentence bound-

aries seems to have incorrectly identified any periods followed by a capital

letter as a sentence boundary. This is due to periods not being repeated when

occurring consecutively for different reasons. One does not see, for instance,

this punctuation: I watched Monsters Inc.. where the sentence is ended with two

full stops. For instance, the entity [Cie . Financiere de Paribas]CORP was split into

two sentences:

. . . by [Cie .

Financiere de Paribas]corp at . . .
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causing invalid XML in both sentence fragments. These errors were identified

and corrected.

Invalid XML Additional cases of invalid XML, such as an entity starting with

a TIMEX label but being closed by NUMEX tag were manually corrected.

<TIMEX TYPE="TIME">more than 4,000 hours</NUMEX>

Tokenisation issues A number of tokenisation issues were corrected, most

notably that BBN included sub-token level annotations.

[Washington]city-based→ [Washington-based]CITY

pre-[Communist]norp:political→ [pre-Communist]NORP:POLITICAL

[U.S.]nationality-[Japanese]nationality→ [U.S.-Japanese]NATIONALITY

The changes exemplified above were changed automatically, with more

complex changes, such as the examples below, made manually.

[capitalist-exploiters-greedy-American-consumers-global]nationality

a [[[$]unit [3-a-person]cardinal]money]rate tax

4.1.2 Annotation Pre-process

The structure of certain types of named entities follows regular patterns. We

exploit this by performing a pre-annotation processing step, adding expec-

ted structure to PER, ORG, NUMEX and TIMEX entities that match particular

linguistic patterns.

PER entities that are only a single token have NAME added as an additional

structural layer, inside the PER annotation. PER entities of two tokens are annot-

ated with either FIRST and NAME respectively, or INI instead of FIRST if the

first token is an initial. PER entities of more than two tokens are annotated with

FIRST, INI if present, and NAME, but not further annotated with additional
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labels, since distinguishing between double barrel first names, MIDDLE names

and double barrel surnames is beyond the scope of this preprocessing task.

PER entities preceded by a predetermined set of honorifics (HON) and

roles (ROLE) had them marked up, and the PER span grown to incorporate

them. Before the annotation process started, the distinction between HON and

ROLE had not been made, and all were marked as HON. Once the category

was split into two separate entity tags, existing annotations, including these

pre-annotations, were changed programmatically.

CARDINAL and MULT entities were added to TIMEX and NUMEX entities,

as well as the UNIT tag being added to a number of frequent money entities

(e.g. ’$’, ’dollars’, ’$US’, yen ’C$’ etc.) and other common units.

The days of the week, and months of the year, as well as common contrac-

tions thereof, were annotated with DAY and MONTH respectively. Four-digit

words starting with 19 that occurred within TIMEX entities were marked as

YEAR, and numbers less than 32 occurring in TIMEX entities were marked

as NUMDAY. While we know that this will occasionally be inaccurate, for

example, if an age of less than 32 is given it should not be marked as NUM-

DAY, but adding these structures everywhere, and occasionally correcting them

substantially reduced the amount of annotation time spent on each sentence.

Common JARGON words (e.g. Co., Corp, Corp., Inc., Ltd, Ltd., Co, PLC, Inc,

Inc.) were added, as were a number of QUAL words (e.g. about, last, roughly,

almost, fewer than, at least,less than, more than, well over).

4.1.2.1 Automatic Nested Annotation Suggestions

In addition to pre-annotating the corpus with common structures, we also

develop an annotation suggestion system that will allow annotators to easily

add consistent structure for the same entity where applicable. As an annotator

adds entity spans, these are added to their personalised annotation suggestion
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system. When the user is looking to annotate an entity span, a number of

suggestions, ranked on frequency, will appear for tokens or token spans within

the entity that have been previously annotated.

In addition to previous annotations, this list is seeded with frequent entities.

The most frequent 1000 entities occurring in the BBN corpus were manually

annotated and added to each annotator’s suggestion list.

4.1.3 Annotation Tool

A custom annotation tool was built that allows the annotation of nested struc-

tures. While some existing annotation tools do allow nested structures to be

annotated (e.g. Brat1, MMAX22), building a custom tool allowed us to create

a clear, simple, and fast way to let annotators quickly and easily add layers of

named entity annotations, and reuse existing annotations for the same span

(see below).

Using the annotations from BBN as underlying annotations, further en-

hanced by our pre-annotation step, the annotator is shown a screen with the

target sentence. The previous and next sentences, if any, are shown discretely

in small font above and below the current sentence. In Figure 4.1, the next

sentence is visible at the bottom of the page, and in Figure 4.2, that sentence is

seen at the top of the page. This helps the annotator with contextual cues, and

a view of the whole article is also possible for particularly ambiguous entities.

The annotation tool also allows annotators to flag difficult sentences for further

discussion, allowing them to delay particularly difficult annotation decisions or

edge cases.

When an annotator selects a span, they are prompted with suggestions based

on their own previous annotations, and common entities (see Section 4.1.2.1),

1brat rapid annotation tool, http://brat.nlplab.org/
2http://mmax2.sourceforge.net/

http://brat.nlplab.org/
http://mmax2.sourceforge.net/
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Figure 4.1: Annotation tool showing pre-annotation of sentence WSJ0001_0.

seen in Figure 4.2. In this example, the first suggestion of adding a NAME

span over Elsevier and the second suggestion of adding JARGON over N.V. are

both combined in the third suggestion, which is the correct nested structure

for the entity. The annotator can simply press the 1, 2 or 3 number key to have

this annotation span added. As more entities are annotated, these suggestions

improve.

Some entities are repeated frequently in an article, or over many articles

in the corpus. As shown in Figure 4.3, the annotation tool allowed a user to

add a specified annotation to all strings matching those token(s) in the same

article, or in all articles. The current analysis of those tokens is also shown. This

allowed annotators to easily maintain consistency over their own annotations,

and reduced the chance of typos causing annotation errors.

4.1.4 Annotation Time and Process

Four annotators, each with a background in linguistics and/or computational

linguistics were selected and briefed on the annotation task and purpose. Each

annotator started with a subset of section 00 as annotation training, and was



Chapter 4. Annotating the NNE corpus 123

Figure 4.2: Annotation tool showing suggestions for Elsevier N.V. in WSJ0001_1. Sug-

gestions, discussed in Section 4.1.2.1, are shown below in red when a span is selected.

Figure 4.3: Annotation tool showing annotation of a particular entity, Norwest Corp.,

over all sentences in the corpus. From this page, a user is able to add that particular

annotation structure to all sentences from the origin article, or all sentences in the

corpus.
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Figure 4.4: The comparison mode of the annotation tool, showing the annotations

of two separate annotators. This is used for adjudication between doubly annotated

sections 00 and 23, and section 02 which was annotated by all annotators.

given feedback before moving on to other sections. Weekly meetings were held

with all annotators to discuss ambiguities in the guidelines, gaps in the annota-

tion categories, edge cases and ambiguous entities and to resolve discrepancies.

Total annotation time for the corpus was 270 hours, split between the four

annotators. After the initial training annotation of a subset of section 00, an-

notators averaged between 4,100 and 6,500 words per hour. Sections 00 and 23

were doubly annotated, and section 02 was annotated by all four annotators. An

additional 17 hours was used for adjudicating these doubly annotated sections.

4.1.5 Inter-annotator agreement

To measure both how clearly the annotation guidelines delineated each category,

and how reliable our annotations are, inter-annotator agreement was calculated.

All annotators annotated section 02, and all four annotators’ data was used

to create a gold-standard adjudicated version. The adjudicated version was

created by deciding a correct existing sentence from within the four possibilities,

or by adjusting one of them on a token level. Annotator 2 performed the
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Pierre Vinken

FIRST NAME

PER

Figure 4.5: Example derivation showing tag stack used for inter-annotator agreement.

Highlighted here is the composition of the label: FIRST_PER for the token Pierre.

adjudication, using the annotation tool comparison feature, shown in Figure 4.4

(depicted comparing two annotations). The tool showed all four annotators’

sentences, with Annotator 1’s annotations at the top. The comparison tool skips

all sentences where all annotators’ decisions were identical, instead progressing

to the next sentence where at least one annotator differed in one decision.

For the purposes of inter-annotator agreement, a tag stack was calculated

for each word, essentially flattening each tokens’ nested annotation struc-

ture into one label. For instance, Figure 4.5 shows the entity [[Pierre]first

[Vinken]name]PER, which would count as two separate tokens: Pierre with label:

FIRST_PER and Vinken with label NAME_PER. Using the tag stack as a form

of analysis allows us to capture all annotation layers, however it does make

this a particularly harsh analysis, given that there are over 600 unique tag stack

categories in section 02.

The four annotators’ agreement, in the form of precision, recall and F1-score

to the adjudicated gold standard for section 02 is seen in Table 4.1. These results

are very promising, given that an error in any level of annotation would result

in that token being marked as an incorrect label. On the other hand, the inter-

annotator agreement achieved is also boosted by starting with identical base

annotations from the BBN corpus. Additionally, Annotator 1’s F1-score of 90.6%

was also potentially affected by its prominence in the adjudication tool.
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Annotator Precision Recall F1-score

Annotator 1 90.4 90.9 90.6

Annotator 2 84.5 83.5 84.0

Annotator 3 82.2 81.8 82.0

Annotator 4 84.3 83.7 84.0

Table 4.1: Inter-annotator agreement for each of the four annotators, calculated on a

tag stack, on section 02 against final adjudicated annotations.

To investigate this further, we analysed the inter-annotator agreement

between annotator pairs, shown in Table 4.2. This total micro-averaged score

shows especially high agreement between Annotators 1, 2 and 4.

Annotator Annotator Precision Recall F1-score

Annotator 1 Annotator 2 86.9 85.4 86.1

Annotator 1 Annotator 3 83.8 82.9 83.4

Annotator 1 Annotator 4 85.9 84.8 85.4

Annotator 2 Annotator 3 84.3 84.9 84.6

Annotator 2 Annotator 4 86.1 86.5 86.4

Annotator 3 Annotator 4 84.7 84.5 84.6

Table 4.2: Inter-annotator agreement between each pair of annotators, calculated on

the innermost tag only, on section 02.

Fleiss’ kappa, a measure for assessing the reliability of agreement between a

fixed number of raters, was also calculated, and found to be 0.834. Fleiss’ kappa

is similar to Cohen’s kappa, which only works when assessing the agreement

between two raters. Fleiss’ kappa can be interpreted as the extent to which the

observed agreement between annotators exceeds what would be expected if all

annotators made their decisions randomly.
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Fleiss’ kappa can be defined as

κ =
P̄− P̄e

1− P̄e
(4.1)

with factor 1− P̄e giving the degree of agreement that is above chance, and

P̄− P̄e giving the degree of agreement achieved above chance.

Fleiss’ kappa was calculated on the annotations in section 02, amounting to

a total of 679 different categories over the 48,134 tokens.

To calculate Fleiss’ kappa, let N be the total number of tokens that are

annotated (48,134), and n be the number of ratings per subject (in our case,

we have 4 annotations for each token). Let k be the number of categories

(in this case, 679 tag stacks that form the categories). Tokens are indexed by

i = 1, . . . , N and categories indexed by j = 1, . . . , k. Let nij represent the number

of annotators who assigned the i-th token to the j-th category.

We first calculate pj, the proportion of all annotations which were made to

the j-th category:

pj =
1

Nn

N

∑
i=1

nij (4.2)

We next calculate Pi, the extent to which the annotators agree for the i-th

token:

Pi =
1

n(n− 1)

k

∑
j=1

nij(nij − 1) (4.3)

=
1

n(n− 1)
[(

k

∑
j=1

n2
ij)− (n)] (4.4)

We can then compute P̄, the mean of the Pis, and P̄e:

P̄ =
1
N

N

∑
i=1

Pi (4.5)

P̄e =
k

∑
j=1

p2
j (4.6)

Consider the following partially worked example, using the second row in

(partially filled) Table 4.3. In this example, the token Vinken has been correctly



Chapter 4. Annotating the NNE corpus 128

labelled with tags that resolve to tag stack NAME_PER by three annotators, and

labelled with tags resolving to FIRST_PER by another annotator. For a fully

worked example, see Wikipedia.3

Taking the first column, FIRST_PER in Table 4.3, the sum of all instances that

category has been chosen, divided by the total number of annotation decisions:

p1 =
4 + 1 + 0 + . . . + 0

48134× 4
(4.7)

Taking the second row:

P2 =
1

4(4− 1)
(12 + 32 + 02 + . . .− 4) (4.8)

We do this for each row and column, and can then calculate the sum of Pi to

in turn calculate P̄.

nij 1 (FIRST_PER) 2 (NAME_PER) 3 (INI_PER) . . . 679 Pi

1 (Pierre) 4 0 0 . . . 1.0

2 (Vinken) 1 3 0 . . . . . .

3 (,) 0 0 0 . . . . . .

. . . . . . . . . . . . . . . . . .

48,134 0 0 0 . . . . . .

pj . . .

Table 4.3: Table of values for computing Fleiss’ kappa

According to Landis and Koch (1977), a Fleiss’ kappa of between 0.60 and

0.79 shows “substantial agreement”, and of 0.80 and above shows “almost

perfect agreement”. However, this metric is not without contention, and the

metric is both the number of categories and the number of subjects, meaning

a universal rating of ‘good’ agreement poses substantial problems. A smaller

number of categories will result in a higher kappa value, so the kappa value

3https://en.wikipedia.org/wiki/Fleiss%27_kappa

https://en.wikipedia.org/wiki/Fleiss%27_kappa
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achieved (0.834) for a very large number of categories shows particularly good

inter-annotator agreement between the four annotators.

4.2 Annotation inconsistencies

In any annotation task, it is inevitable that annotation errors will occur. These

typically arise for different reasons; partly, annotators’ levels of interest or

fatigue may affect specific annotation decisions, or ambiguities or gaps in the

annotation guidelines may make a particular decisions difficult. Annotation

meetings to discuss and address these issues do mitigate annotation errors, but

some be unavoidable.

4.2.1 Annotation Errors

As with any large annotation task, there are bound to be simple annotation

errors, caused by annotators accidentally entering an incorrect label. In this

task, these have predominantly been caused by typing in an incorrect tag name,

often starting with similar letters to the intended tag.

For example, here MONEY has been selected, probably due to hitting the

‘M’ key instead of ‘N’ for NAME: [[Mitsubishi]money Estate]CORP In another ex-

ample, CITY has been selected instead of the intended CARDINAL: [[8 716]city

[%]unit]PERCENT

Consistency checking was performed, identifying anomalous structural

patterns on identical token strings. These errors were corrected as far as possible.

For one particularly problematic category, LANGUAGE, all instances were

checked.
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4.2.1.1 Errors identified in PER

In the PER category, the most problematic distinction was found to be caused

by non-anglicised names, and by cases of double-barrel names not joined by

hyphens. Both occur in the following example, Prime Minister Lee Kuan Yew,

which was annotated in four different ways by the annotators.

[[Prime Minister]role [Lee]name [Kuan]first [Yew]middle]PER

[[Prime Minister]role [Lee]name [Kuan Yew]first]PER

[[Prime Minister]role [Lee]first [Kuan]middle [Yew]name]PER

[[Prime Minister]role [Lee Kuan]first [Yew]name]PER

Names occurring frequently in the corpus were manually checked for con-

sistency.

4.2.1.2 Errors identified in LOC

Errors in the LOC category were dominated by cases of ambiguity in deciding

between different entities with the same name (e.g. New York city or state). For

example, given the following sentence: Average of top rates paid by major [New

York]loc banks it is not immediately clear whether CITY or STATE should be

used to annotate the span of New York. These errors are corrected, described in

Section 4.2.2.

In much the same way, in this sentence, Singapore could be referring to either

the COUNTRY, GPE or CITY of Singapore. Further, in the sentence, it is acting

adjectivally, even if is not in the usual adjectival form (Singaporean). . . . gives the

[Singapore]loc company more than. . . These were all reinspected and changed to

CITY-STATE, described in Section 4.2.2.
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4.2.1.3 Errors identified in ORG and FACILITY

The main discrepancy within the ORG category is in the structural marking of

NAME mentions. Over the course of annotating, and based on discussions with

the annotators, we modified the guidelines with respect to how to annotate

these structures. For instance, marking separate NAME entities first, before

coordinating over comma boundaries, as described in Section 3.3.2.3, was

inconsistently done. All cases of ‘NAME NAME’ structure combinations were

programmatically corrected and manually checked.

The other main error in the ORG category was caused by difficulty distin-

guishing between FACILITY and CORP. Indeed, in many cases the distinction

between ORG and FACILITY is open to interpretation. Take, for instance, the

following sentence:

Critics say Mitsubishi Estate ’s decision to buy into Rockefeller reflects the degree

to which. . .

Annotators for this disagreed on whether Rockefeller here was acting as

CORP or BUILDING, or both. It is only clear from reading and retaining the

42 sentence article that in this sentence the CORP should be referenced. An

earlier sentence in the same article, however, discussed the purchase of the Exxon

Building , part of Rockefeller Center. These nuanced errors are very difficult to

detect without doubly annotating the entire corpus. For sections where we have

multiple annotations, any identified discrepancies such as this were adjudicated.

However, it is likely that other errors still remain in the corpus.

4.2.1.4 Errors identified in MISC

Much like the earlier example of Rockefeller, MISC entities are frequently difficult

to annotate. Take the sentence: Under the program , dubbed Chivas Class , customers

who. . .
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In this case, it is clear that Chivas Class is a program, but not immediately clear

how it should be annotated. Chivas is the name of an alcohol, (which presents

ambiguity between PRODUCT:DRUG and PRODUCT:FOOD), and should be

marked with an embedded NAME entity. The larger entity span, the program,

could conceivably be a WOA, a PRODUCT:OTHER or perhaps an ORG:OTHER,

leading to possible annotations, of varying accuracy, including:

Chivas Class

name

product:drug

woa

Chivas Class

name

product:food

product:other

Chivas Class

name

product:other

woa

More complicated MISC entities also posed difficulties with complex struc-

tures, for example Macy ’s Thanksgiving Day Parade, which was annotated as a

WOA by one annotator, an EVENT by another, as a TV-SHOW by the third, and

an EVENT nested in a TV-SHOW by the remaining annotator. In many respects,

all four of these annotations are correct, as the televised event is quite a spec-

tacle. In this case, most of the internal structure was consistent (Thanksgiving Day

marked as a DATE and EVENT, and Macy ’s marked as an CORP with nested

NAME). Such inconsistencies are difficult to identify without multiple annota-

tions. For entities with complex structure which occur frequently, their structure

was checked and if necessary, corrected, using the structural comparison tool

shown in Figure 4.3.

4.2.1.5 Annotation inconsistencies in TIMEX and NUMEX

Annotators had particularly high agreement in TIMEX and NUMEX categories.

The main disagreements in TIMEX had to do with when a temporal expression

should be considered a DATE or a DURATION, for instance the phrase later in

the day.

In NUMEX, the RATE category proved comparatively problematic. Com-

pared to other NUMEX expressions, these phrases are particularly complicated,
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so the scope for a single error to affect the larger entity is higher. In one ex-

ample from section 02, one annotator analysed cubic feet as [cubic [feet]unit]UNIT,

nesting one UNIT inside the other.

The other discrepancy between annotators within the NUMEX category

is the inclusion of a CARDINAL span over adjacent CARDINAL and MULT

entities. That is, that [500]CARDINAL [million]MULT should be combined to make

one larger CARDINAL span. The decision to add this span came only after

annotation had started, so this annotation span was programmatically added

to any entities in which it was missing.

4.2.2 Annotation Post-Process

In order to increase the reliability and consistency of the corpus, a number of

post-processing steps have been conducted on the annotated corpus. In addi-

tion to the errors identified in the multiple-annotated section 02, one hundred

sentences were randomly sampled from the annotated corpus, and the accur-

acy of entities therein was checked. Of these 100 sentences, 17 contained no

entities, a further 63 contained only correctly annotated entities. The remaining

20 sentences contained a total of 33 annotation errors. Some of these errors

were caused by changes to the annotation guidelines that had not yet been

systematically applied (e.g. as early as being considered a QUAL, Group being

incorrectly labelled as JARGON), while others were annotation errors (Fallon

being labelled as REL instead of NAME).

While checking these sentences gave an overall feel for the consistency of

the annotations, they did not include examples of each annotation category.

Therefore, for categories for which consistency checking coverage was inad-

equate (fewer than 5 instances were checked), supplementary sentences which

contained that category’s tag were randomly selected. The results of this survey

can be seen in Table 4.4.
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Category Correct Incorrect Category Correct Incorrect
AGE 1 0 NAMEMOD 3 0
AIRPORT 3 0 NATIONALITY 8 1
ALBUM 3 0 NATURAL-DISASTER 2 0
ANIMATE 3 0 NICKNAME 2 1
ARMY 3 1 NORP:OTHER 3 4
ATTRACTION 2 1 NORP:POLITICAL 4 0
AWARD 2 1 NUMDAY 5 0
BAND 3 0 OCEAN 3 0
BOOK 3 0 ORDINAL 6 0
BRIDGE 4 0 CORP 37 0
BUILDING 3 0 ORG:EDU 3 1
CARDINAL 50 1 ORG:OTHER 5 2
CITY 11 1 ORG:POLITICAL 2 2
CONCERT 2 0 ORG:RELIGIOUS 2 2
CONTINENT 3 0 PAINTING 3 0
JARGON 8 1 PERCENT 11 0
COUNTRY 6 0 PERIODIC 5 1
DATE 40 4 PERSON 25 1
DATE:OTHER 3 0 PLAY 3 0
DAY 4 0 PRODUCT:DRUG 2 1
DISEASE 2 1 PRODUCT:FOOD 3 0
DURATION 22 1 PRODUCT:OTHER 1 2
ELECTRONICS 3 0 QUAL 19 3
ENERGY 3 0 QUANTITY 2 1
EVENT 6 0 RATE 2 1
FACILITY 3 0 REGION 3 0
FILM 3 0 REL 8 3
FIRST 14 1 RELIGION 3 0
FOLD 2 1 RIVER 3 0
FUND 3 1 ROLE 3 0
GOD 3 0 SCINAME 3 0
GOVERNMENT 12 2 SEASON 3 0
GPE 3 0 SONG 3 0
GRP:LOC 2 1 SPACE 3 0
GRP:ORG 3 0 SPEED 3 0
GRP:PER 2 1 SPORTS-SEASON 2 1
HON 13 0 SPORTS-EVENT 2 1
HOSPITAL 3 0 SPORTS-TEAM 4 0
HOTEL 3 1 STADIUM 3 0
HURRICANE 4 0 STATE 3 1
INDEX 3 0 STATION 1 0
INITIALS 3 0 STREET 4 0
IPOINTS 2 1 SUBURB 3 0
LANGUAGE 3 0 TEMPERATURE 2 0
LAW 2 1 TIME 2 1
LOCATION:OTHER 3 1 TV-SHOW 3 0
MEDIA 4 0 UNIT 24 2
MIDDLE 2 1 VEHICLE 4 0
MONEY 14 0 WAR 3 0
MONTH 7 0 WEAPON 3 0
MULT 8 0 WEIGHT 3 1
MUSEUM 2 1 WOA 2 1
NAME 37 4 YEAR 12 0

Total 632 63

Table 4.4: Per category results of consistency checking in the corpus.
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In total, around 700 entities were checked, with 640 entities being found

to be correct, and 66 instances of errors detected. Note that these errors are,

in many cases, double counted. That is, if an entity is incorrectly labelled, it

counts as both an error for the incorrect label (much like a false positive) and an

incorrect annotation for the absent label (false negative).

In this analysis, we identified categories and rules that had high levels of

inconsistency, either due to underspecification in the annotation guidelines or

genuine linguistic ambiguity on an entity level. A combination of manual and

automatic corrections were applied, covering both annotation spec changes and

annotation mistakes. Illustrative examples of these errors and fixes are given

below.

Addition of CITY-STATE tag Locations such as Hong Kong, Singapore, and

Monaco present challenges to human readers and are often used not just am-

biguously but in a sense that conveys both their city and country properties.

Given the inconsistencies in annotation of these named entities, we elect to

add a new category: CITY-STATE which encompasses both these senses and

removes the need for the annotator to make an arbitrary classification decision.

CITY GPE confusion Similar to the previous discussion are cases of CITY and

GPE that share the same name (e.g. New York, Honolulu). Sometimes it is clear

whether or not the CITY or STATE is being referred to. In cases of ambiguity,

we elect to label the token(s) as the larger of the entities. All occurrences of New

York, Honolulu and Washington were manually checked.

In certain rare cases, a correct analysis is not possible. For example, the

coordination of GPE types in the phrase City and County of Honolulu (WSJ0704_10)

means we cannot correctly capture both concurrent meanings.

Sentences where D.C. refers to Washington D.C. are further checked and

analysed following to the principle that D.C. is referring to the GPE, which
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itself is standing in for the CITY. Further complicating this analysis are cases

where the CITY is acting as a spokesperson for its GOVERNMENT, e.g. Sen-

tence WSJ1256_6: The FBI ’s role is to complement the D.C. initiative through. . . . In

such cases, entity nesting is used to represent this, e.g. the [[[D.C.]gpe]city]gov

initiative.

GOVERNMENT should be within country only Some occurrences of large

multi-national named entities, such as the United Nations and the European

Commission were inconsistently labelled as ORG:OTHER or GOVERNMENT.

We decided that GOVERNMENT should only refer to (at most) COUNTRY

level entities, and should not span multiple countries. These entities should

instead be labelled as ORG:OTHER. The guidelines were clarified, and all

instances of the United Nations and the European Commission were corrected.

Cardinal directions referring to elided LOC Instances of cardinal directions,

often used embedded in the names of organisations. In these cases, they refer to

an elided LOC (usually REGION) and act adjectivally. Therefore, they should

be labelled as NORP:OTHER. They were found to be inconsistently annotated.

All instances of north western, northwest, norwest, northeastern, northeast, north-

ern, north, southern, southwestern, southwest, southeast, southeastern, midwest,

midwestern, eastern, east, western, west in the corpus were manually corrected.

Cities analysed as CORP for stock exchanges Stock exchanges are frequently

referred to by the name of the city in which they are located. In these cases,

the token(s) should be marked as CITY embedded within CORP. This was

found to be inconsistently annotated and all instances of major cities with stock

exchanges4 were manually corrected.

4including Brussels, Sydney, Singapore, Wellington, Hong Kong, Manila, Seoul, Taipei,
Jakarta, Bangkok, Milan, Stockholm, Frankfurt, Madrid, Amsterdam, Paris, Zurich, London,
Tokyo, Osaka, Chicago, New York and Toronto
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Named Entities with complex structures Additionally, a number of named

entities which have complex structural composition, (e.g. the [[[Wall Street]street]grp:org

Journal]media ) were manually checked for consistency across sentences.

Certain Named Entities that occurred numerous times and which were

non-trivial to annotate were identified. These entities were either identified by

annotators as problematic during the annotation process or were found to be

inconsistently annotated during corpus evaluation and analysis. An additional

pass was made over sentences which contained these entities to ensure these

cases were consistently annotated. Particular care was taken with entities which

are homonymous, such as the state and city of New York , and U.S. acting as a

country or nationality.

4.2.3 Effect of post-processing corpus

In order to gauge the scale of the consistency improvements outlined in the

above sections, we calculate the agreement between these two versions of

the corpus before and after performing these changes using standard CoNLL

evaluation. This is seen in Table 4.5, showing a 10% and 11% difference in recall

and precision between the versions, which demonstrates this considerable

post-processing effort was worthwhile.

Precision Recall F1-score

Agreement with corpus before fixes 90.2 89.0 89.6

Table 4.5: A measure of inter-annotator agreement between the original corpus and

the finished corpus, with error and consistency fixes.
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4.3 Corpus analysis

The resulting NNE corpus includes a large number of entities of substantial

depth, with more than half of all entity annotations occurring inside another

entity. The numbers of annotations occurring at each entity depth is shown in

Table 4.6, and is found to be considerably large. In the GENIA corpus (Alex

et al., 2007), around 17% of entities are embedded inside another entity, 18%

of entities having at least one layer of nesting in the PKU Chinese corpus (Fu

and Luke, 2005), and 9.4% of entities found to have nesting in the Historical

Archive Corpus (Byrne, 2007).

Of the 118495 top-level entities, only 46949 (39.6%) did not have any nested

structure embedded. The remaining 71546 entities contain 161265 entity an-

notations, averaging 2.25 structural entities per each of these top-layer entities.

Interestingly, comparing the raw numbers of annotations that occur as top-level

entities or at a depth of 1, we can see that more annotations occur at one layer

of nesting than in total at the top level. Considering the three most frequent

types of top-level entities, CORP, DATE and PER, and their frequent template

structural composition, discussed more in Section 4.3.2, (for example, NAME +

JARGON→ CORP, REL + DURATION→ DATE, HON + NAME→ PER), this

is not unsurprising.

Figure 4.6 shows the two deepest entity annotations, UNIT and CITY-STATE,

and demonstrates how easily very complex substructures can manifest. In this

example, a number of common templates can be seen, including: UNIT +

CARDINAL → MONEY, QUAL + MONEY → MONEY, MONEY + a or per +

DURATION→ RATE. The unrestricted nesting principles have allowed us to

capture a complex entity using straightforward rules.
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Depth Number % 3 most frequent categories

1 118495 42.4% CORP (22687), DATE (15963), PER (13451)

2 119661 42.8% NAME (21359), CARDINAL (21198), UNIT (14732)

3 36762 13.1% CARDINAL (12782), NAME (6407), MULT (5939)

4 4486 1.6% CARDINAL (1715), MULT (1075), NAME (723)

5 354 0.1% CARDINAL (165), MULT (100), UNIT (62)

6 2 0.0% UNIT (1), CITY-STATE (1)

Table 4.6: Number of entities at each layer of nesting, with the most frequent three

categories occurring at each nesting layer.

between 2, 000 Hong Kong dollars −LRB− US$ 256.18 −RRB− and HK$ 6, 499 a month

qual cardinal city-state unit unit cardinal unit cardinal duration

unit money money

money

money

money

rate

Figure 4.6: Example of an entity with 6 layers of nested entity annotation, with tokens

Hong Kong and dollars at the sixth layer of nesting.

4.3.1 Entity Exemplars

Table 4.7 shows that 40 most frequent entity categories, the percentage of all

entities that they represent, and the three most frequent examples of those

entities. The most frequent entity annotation is CARDINAL, which we have

seen from Table 4.6 occurs very frequently within other entities. Similarly,

NAME occurs frequently within other entities, with the three most frequent

tokens labelled NAME being Bush ([[Mr]hon [Bush]name]PER), Dow and Jones

(from the [[[[Dow]name [Jones]name]name]media Industrial Average]INDEX). It is

only after CARDINAL and NAME that we get to CORP, the most frequent of
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top-level entities, accounting for 19.1% of all top-level entities, but only 8.4% of

all entity annotations at any level of nesting.

4.3.2 Template analysis

To get an overview of common types of entity nesting, the corpus was analysed,

and the types of entities with embedded entities, a concept introduced earlier

in this section as templates, were captured. Table 4.8 shows the most frequent

47 of these template rules, amounting to all such rules which occur more than

200 times in the corpus. Each entity span, or non-entity span (shown as an

o) can consist of multiple tokens, and may themselves contain nesting. The

table shows the rule, for example MONEY being formed by a UNIT and a

CARDINAL entity (e.g. [[$]unit [10]cardinal]MONEY) , how many times this

template rule occurs in the corpus, and how many entities of parent (in this

case, MONEY) type occur overall. The final two columns show the percentage

of all template rules this particular rule makes up, and a cumulative running

tally. We can see that these 47 rules make up more than 80% of all nesting rules

in the corpus, and 50% are made up by the most frequent 10 alone, meaning

that the majority of entity nestings are a small group of frequent templates.

There is also a very long tail of templates, with a total of 1935 rules in total

generated from the corpus.
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Tag % Examples
CARDINAL 15.66 one, two, quarter
NAME 10.20 Bush, Dow, Jones
CORP 8.35 UAL, [New York]city Stock Exchange, Big Board
UNIT 6.90 $, %, cents
DATE 6.25 yesterday, [this]rel [year]duration, [Friday]day
PER 5.33 [Bush]name, [Mr.]hon [Bush]name, [President]role

[Bush]name
DURATION 4.91 year, years, [quarter]cardinal
MONEY 4.52 [$]unit [[1]cardinal [billion]mult]cardinal, [$]unit

[[100]cardinal [million]mult]cardinal, [$]unit
[[200]cardinal [million]mult]cardinal

MULT 2.81 million, billion, thousands
FIRST 2.43 John, Robert, James
CITY 2.40 New York, Chicago, London
PERCENT 2.34 [10]cardinal [%]unit, [15]cardinal [%]unit,

[20]cardinal [%]unit
REL 2.21 last, this, next
JARGON 1.99 Corp., Inc., Co.
HON 1.97 Mr., Ms., Mrs.
NATIONALITY 1.86 U.S., American, Japanese
GOVERNMENT 1.67 Treasury, Congress, Senate
COUNTRY 1.45 U.S., Japan, China
QUAL 1.40 about, more than, at least
YEAR 1.22 1988, 1987, 1989
MONTH 1.21 Oct., September, August
STATE 1.16 California, Texas, Calif.
ORDINAL 0.93 first, third, First
IPOINTS 0.86 [1]cardinal, [1 14]cardinal, [78]cardinal
ROLE 0.79 President, Chairman, Sen.
RATE 0.77 [[five]cardinal [cents]unit]money a share, [$]unit 300-a-

share, [[10]cardinal [cents]unit]money a share
MEDIA 0.61 [[Dow]name [Jones]name]name, CBS, Time
DAY 0.58 Friday, Monday, Tuesday
NUMDAY 0.53 30, 1, 31
INI 0.52 J., A., E.
NORP:OTHER 0.45 European, Western, Eastern
ORG:OTHER 0.39 EC, [European]norp:other Community, OPEC
PERIODIC 0.38 annual, daily, quarterly
REGION 0.31 West, New England, Northeast
NORP:POLITICAL 0.26 D., Democrats, Democratic
AGE 0.24 [44]cardinal, [45]cardinal, [65]cardinal
INDEX 0.23 [[[Dow]name [Jones]name]name]media Industrial Average,

[S&P]corp [500]cardinal, [[Dow]name]media
PRODUCT:OTHER 0.23 Class A, Series [[1989]year]date, CDs
STREET 0.17 Wall Street, [Wall]name Street, [Fifth]ordinal Avenue
GRP:ORG 0.16 [Wall Street]street, [Hollywood]suburb, [[Wall]name

Street]street

Table 4.7: The 40 most frequent entity labels in our Wall Street Journal NNE corpus,
the percentage of each label’s occurrences, and the three most frequent examples, with
substructure marked.
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Template Rule Children Count of % Total Cumul’ve
MONEY → UNIT + CARDINAL 9021 12580 9.73% 9.73%
CARDINAL → CARDINAL + MULT 7470 10103 8.06% 17.79%
PERCENT → CARDINAL + UNIT 6038 6510 6.51% 24.30%
PER → HON + NAME 5367 14911 5.79% 30.09%
CORP → NAME 5001 14664 5.39% 35.48%
PER → FIRST + NAME 4572 14911 4.93% 40.41%
DATE → REL + DURATION 3261 14977 3.52% 43.93%
DURATION → CARDINAL + DURATION 2532 4081 2.73% 46.66%
DATE → YEAR 2190 14977 2.36% 49.02%
CORP → o + JARGON 2002 14664 2.16% 51.18%
CARDINAL → QUAL + CARDINAL 1939 10103 2.09% 53.27%
MONEY → CARDINAL + UNIT 1880 12580 2.03% 55.30%
IPOINTS → CARDINAL 1863 2221 2.01% 57.31%
PER → NAME 1686 14911 1.82% 59.13%
RATE → MONEY + o 1410 2107 1.52% 60.65%
PER → ROLE + PER 1391 14911 1.50% 62.15%
DATE → MONTH 1281 14977 1.38% 63.53%
CORP → NAME + o 1219 14664 1.31% 64.84%
DATE → DAY 1144 14977 1.23% 66.08%
NAME → NAME + NAME 1144 2600 1.23% 67.31%
CORP → NAME + o + JARGON 1139 14664 1.23% 68.54%
DATE → DURATION + REL 1070 14977 1.15% 69.69%
DURATION → CARDINAL 1068 4081 1.15% 70.84%
MONEY → QUAL + MONEY 1014 12580 1.09% 71.94%
DATE → MONTH + NUMDAY 953 14977 1.03% 72.97%
CORP → NAME + JARGON 909 14664 0.98% 73.95%
PER → FIRST + INI + NAME 839 14911 0.90% 74.85%
DATE → ORDINAL + DURATION 509 14977 0.55% 75.40%
DATE → DURATION 507 14977 0.55% 75.95%
DATE → REL + DATE 499 14977 0.54% 76.48%
NAME → NAME + o + NAME 489 2600 0.53% 77.01%
CORP → CITY 482 14664 0.52% 77.53%
CORP → CITY + o 465 14664 0.50% 78.03%
CORP → NATIONALITY + o 371 14664 0.40% 78.43%
DATE → MONTH + NUMDAY + o + YEAR 344 14977 0.37% 78.80%
GRP:ORG → STREET 340 401 0.37% 79.17%
IPOINTS → CARDINAL + UNIT 315 2221 0.34% 79.51%
DATE → MONTH + YEAR 314 14977 0.34% 79.85%
MEDIA → NAME 290 661 0.31% 80.16%
CARDINAL → CARDINAL + o + CARDINAL 284 10103 0.31% 80.47%
NAME → FIRST + NAME 280 2600 0.30% 80.77%
CORP → MEDIA 274 14664 0.30% 81.07%
PER → FIRST 239 14911 0.26% 81.32%
GOVERNMENT → BUILDING 233 837 0.25% 81.58%
AGE → CARDINAL 228 438 0.25% 81.82%
CARDINAL → MULT 224 10103 0.24% 82.06%
NAME → NAME + NAME + NAME 216 2600 0.23% 82.30%
DATE → REL + MONTH 208 14977 0.22% 82.52%

Table 4.8: Template rules occurring more than 200 times in the corpus, showing the
number of times each occurred, the number of entities of that (parent) type in the corpus,
the percentage of all embedding rules that this contributed to, and the cumulative total
of all such template rules.
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4.4 Comparison to BBN corpus

To assess the quantity and type of changes between the underlying BBN annota-

tions and our final NNE corpus, we analyse the differences between the spans

in the two corpora.

In Table 4.9 we compare the number of entities in BBN and NNE which

use the BBN label as a top-level category in NNE, (Same label), which use the

BBN label as a nested label within the entity (Same label in stack) or which use

a different category label (Different label) and do not contain the BBN label in

the nested stack. This analysis is further split between entities in BBN and NNE

which have the same span, and entities which have tokens included or excluded

from the entity span (Larger span in BBN and Smaller span in BBN respectively).

From Table 4.9 we can see that a large number of entities in NNE share the

same token span and top-level category as BBN. Of the 119280 non-Descriptor

entities in BBN, 72% occur in the aligned NNE corpus, with the same entity

bounds and same label. Many of these have had also internal structure added.

4294 entities which are not Descriptors occur in BBN, and for which a match-

ing entity in NNE was not found. Of these, 2484 (more than 50%) were of

a subtype of SUBSTANCE, either OTHER, FOOD, CHEMICAL or DRUG. A

further 560 (13%) were either of type ANIMAL or PLANT. 309 DATE:DATE

entities were not found, which include phrases now, season and a holiday. 130

DISEASE entities were also not included in the final NNE corpus, including

diseases, illness and nausea.

The 20 most frequent mismatches between BBN and NNE categories, where

the BBN category is not found anywhere in the NNE stack, for entities with

exact matching spans are shown in Table 4.10. The most common discrepancy

is of entities analysed as GPE:COUNTRY in BBN and NATIONALITY in NNE.
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Span match Same label Label in stack Different label Total

Exact span 85617 3428 6397 95442

Larger span in NNE 10377 4003 1302 15682

Smaller span in NNE 3102 344 416 3862

Total 99096 7775 8115 114986

Table 4.9: Analysis of matching entities in BBN and our final aligned NNE corpus.

4294 entities occurred in BBN which did not occur in NNE (with a further 51017 DESC

entities excluded). 8464 entity spans were found in NNE that do not exist in BBN

entities occurred in NNE which did not occur in BBN. In total, BBN has 170297 entities,

and NNE has 117242 top-level entities.

This is due to BBN not distinguishing between adjectival and nominal forms of

words such as U.S.. The BBN guidelines5 state:

“The distinction between NORP and other types is morphological.
American and Americans is a nationality, while America and US are
GPEs, regardless of context.”

We, however, have analysed these according to their use in context, making

a distinction between whether U.S. is used as a NATIONALITY (i.e. meaning

American) or as a country (America).

A number of category differences are caused by the introduction of new

categories, including MEDIA from ORG:CORP, TV-SHOW and FILM from

WORK_OF_ART:OTHER, ARMY from ORG:GOVERNMENT, SPORTS-TEAM

from ORG:OTHER and ELECTRONICS from PRODUCT:OTHER. Some of

these, such as TV-SHOW, FILM and ELECTRONICS, were added as a distinc-

tion from existing OTHER categories; that is, they represent a specific subtype

of a larger category that was previously not separated out. Other categories

have been included because they are often used in a different way from the

other category type. For instance, entities that belong to the MEDIA category

5https://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html

https://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html
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have viewers in addition to stakeholders. The SPORTS-TEAM category was

separated from ORG:OTHER because the names of sports teams are often quite

different from the names of other organisations, often including location ele-

ments (Los Angeles Dodgers) which are occasionally used metonymously (for

example, Oakland won last night’s game against the 49ers). Still other categories,

such as ARMY or STADIUM being split from FAC:BUILDING, were split to

enable simpler annotation decisions.

Other clarifications to our guidelines resulted in shifts between the BBN

and our categories. ORG:GOVERNMENT in the BBN scheme includes entit-

ies which exist above the government level, such as the European Union. We

instead classify these separately as ORG:OTHER, allowing us to better cap-

ture idiosyncratic metonymous references to GOVERNMENT (e.g. The [[White

House]building]gov, [[Washington]city]gov announced. . . ).

Another example of a clarification to guidelines resulting in a discrepancy is

the ORG:GOVERNMENT CORP change, caused by entities such as Freddie Mac

(The Federal Home Loan Mortgage Corporation), which is a public government-

sponsored enterprise. Although it is linked to the U.S. government, it is also a

publicly traded company so is classified as an CORP.

A number of changes are within the TIMEX categories. The TIME category

in BBN included:

Any time ending with A.M. or P.M. The a.m. and p.m. must be
tagged along with the numbers. Other times of day (units smaller
than a day) and time durations may be marked: morning, noon,
night, 3 hours.

The distinction between time durations of less than 24 hours and those greater

than 24 hours, which are labelled as DURATION, seems arbitrary.

Duration: answers the question “how long” and includes a period
of time (2 years, centuries, 16 weeks, less than 2 years, 6 months,
52-week).
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We therefore keep the TIME category for only specific mentions of a time, and

label all durations as DURATION.

We define a new TIMEX category, PERIODIC, split from DATE:OTHER. We

also fix a number of inconsistencies between the BBN categories DATE:DATE

and DATE:DURATION caused by incorrect category choice.

We also introduce a new category type: GRP, denoting group in a cat-

egory. GRP:ORG, GRP:LOC and GRP:PER denote groups of entities of the

same type, which though not officially organised, are recognised. For example,

[Hollywood]GRP:ORG, when not referring to the suburb, refers to a group of

film and movie related organisations. The [Carolinas]GRP:LOC are annotated as

GRP:LOC, rather than GPE:STATE_PROVINCE in BBN, which does not cap-

ture the fact that both [North Carolina]STATE and [South Carolina]STATE are being

referenced.
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A further nearly 3500 entities share the same span in BBN and NNE, have a

different top-level category, but contain the expected (BBN) category within the

nested structure of NNE category labels. Table 4.11 shows the most frequent

entity confusions for the most frequent of these cases. The majority of these

instances are cases of metonymy, for example [[Washington]city]GOV acting

as the US Government, or elided context, for example [[100]cardinal]MONEY

from a larger phrase The price rose from [[50]cardinal [dollars]unit]money to

[[100]cardinal]money.

Two cases that are slightly different are those of PERSON/GRP:PER and

DATE:DATE/DATE:OTHER. The former stems from the introduction of the

GRP:PER category, which captures unofficial groups of people, in many cases

family groups. These have nested PERSON entities. The latter DATE:DATE /

DATE:OTHER confusion is caused by our nesting being able to capture with

more precision the specific tokens which carry temporal meaning. For example,

BBN analysed recent months as DATE:DURATION, but we split those tokens,

keeping the DURATION label only on the [months]DURATION token: [[recent]rel

[months]duration]DATE.

4.4.1 Entity spans that do not match

To analyse bounds that had changed slightly, we also looked at spans that were

off by one token, that is included one more or one fewer tokens at either the

beginning or end of the entity. The main reasons for entities having either

a larger or smaller span in NNE as compared to BBN are due to differences

caused by nesting entities, and tokenisation issues.
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Count BBN NNE Example

1826 CARDINAL IPOINTS 85

578 GPE:CITY CORP Tokyo, Chicago

170 DATE:DURATION DATE recent months

151 GPE:CITY GOVERNMENT Washington

132 CARDINAL MONEY millions, 100

97 DATE:DATE DATE:OTHER today, those days

70 PERSON GRP:PER Lehmans, Rothschilds

69 MONEY RATE 37.5 cents

Table 4.11: Analysis of entity confusions occurring more than 50 times with the same

spans and correct span embedded within the nested NNE span.

Count BBN NNE E.g. BBN E.g. NNE

7083 PERSON PER Bush [Mr.] [[Bush]]

1874 MONEY RATE five cents [[five] [cents]] a share

614 DATE:DATE DATE yesterday [yesterday] [morning]

601 CARDINAL CARDINAL one one-time

450 CARDINAL IPOINTS 190 [190] points†

319 GPE:CITY CITY New York New York-based

298 ORG:GOV GOV Senate House-Senate

242 ORG:CORP CORP Cray [Cray]NAME Research

209 PERCENT PERCENT 50 % below [[50] [%]]

200 MONEY MONEY $ 10,000 [[$] [10,000]] to [[$] [[1] [million]]]

Table 4.12: Most common confusion matrix (those occurring more than 200 times) of

entities with larger spans in NNE than BBN. †Occasionally, the embedded CARDINAL

tag was missing, as an annotation error.
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NNE span is larger than BBN span Looking at the entity spans which have

grown in NNE from the original spans in BBN, the most frequent types of which

are shown in Table 4.12, by far the largest cause for change is the inclusion

of ROLE and HON spans inside larger PER spans. That is, entities such as

[[Mr.]hon [Vinken]name]PER, which in BBN are analysed as Mr. [Vinken]per, with

Mr. left unannotated. In total, 7084 of these cases are of type PER, amounting

for more than 68% of spans that are larger in NNE than in BBN.

The impact of nesting entities is seen in other categories, especially NUMEX.

BBN spans such as [less than one]cardinal in [two]cardinal or [one]cardinal in

[four]cardinal have had the CARDINAL span expanded out to capture the actual

number: [less than [one]cardinal in [two]cardinal]CARDINAL and [[one]cardinal in

[four]cardinal]CARDINAL respectively. Similarly, words which affect the cardinal

are included inside the larger CARDINAL span: below [50 %]percent is analysed

as [[below]qual [[50]cardinal [%]unit]percent]PERCENT.

The second most common cause of larger spans in NNE is tokenisation

issues. Differences in hyphenation alone amount for a further 1358 (13%) of

larger span issues. For example, what is analysed in BBN as [New York]city-

based, when analysed with tokenisation consistent with the WSJ is analysed [New

York-based]CITY. Similarly, [second]ordinal-largest and [second-largest]ORDINAL.

Other tokenisation differences also impact this category, such as sentence

final full stops being removed from entities in BBN [Ariz]state ., compared to

our analysis: [Ariz.]STATE which is consistent with WSJ tokenisation.

Another 574 spans where NNE is larger than BBN are caused by including

the determiner the in the span, to be able to match syntactic structure. This

necessity is further discussed in Section 5.3.2.1.

Of the entities which are larger in NNE than in BBN and in which the cat-

egories to not match, 133 are caused by TIME DATE distinction, where the

BBN span is morning, and the NNE span has been expanded to [[yesterday]date
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[morning]duration]DATE. The names of INDEX, such as [[[[Dow] [Jones]]name]media

industrials]INDEX, also occur frequently (72 instances of ORG:CORP / INDEX

confusion), due to the inclusion of a new INDEX category, and an annotation

decision to include lower case words in instances of INDEX.

NNE span is smaller than BBN span 3862 entities were identified that have

decreased in size from BBN to the NNE corpus. The most frequent types of

these entities are shown in Table 4.13. The majority of these are again due to

differences in tokenisation, and the inclusion or exclusion of determiners, the

treatment of which is inconsistent in BBN. Take the determiner the and TIMEX

entities alone, the precedes 1060 TIMEX entities, and is included in the TIMEX

entity 3185 times. The NNE annotations are also inconsistent with the inclusion

or exclusion of determiners, but this is a consequence of combining the entities

with syntactic constituents, discussed in Section 5.3.2.1, whereas BBN does not

guarantee such reconciliation with syntactic structure.

A common tokenisation difference is the inclusion of sentence final full stops

in BBN entities. These full stops act as both sentence ending marker and as part

of the last token in the sentence (e.g. Inc. or Calif.). Including the sentence final

full stop causes problems when combining it with a syntactic constituent, as

further described in Section 5.3.2.7, so we elect to not include these in the entity

span.



Chapter 4. Annotating the NNE corpus 152

Count BBN NNE E.g. BBN E.g. NNE

1732 DATE:DATE DATE the third quarter [third] [[quarter]]

536 ORG:CORP CORP Telerate Systems Inc . Telerate Systems [Inc]

346 DATE:DUR DATE the weekend weekend

243 DATE:DUR DURATION the nine months [nine] [months]

226 CARDINAL CARDINAL only one one

178 DATE:DATE DURATION the day day

114 GPE:STATE STATE Calif . Calif

109 MONEY MONEY some $ 100 million [$] [[100] [million]]

Table 4.13: Most common entities (those occurring more than 100 times) with smaller

spans in NNE than BBN. Of these, some are labelled with the same category, and some,

especially TIMEX entities, are labelled with different categories.

NNE span doesn’t exist in BBN In addition to the 4294 entities from BBN for

which no equivalent span was found in NNE, 8464 top-level entities which exist

in NNE were not found in BBN. The most frequent types of these are given in

Table 4.14. Many of these are due to differences in annotation guidelines, espe-

cially with respect to new categories, for instance RATE, which often includes

what was a MONEY or CARDINAL span in BBN. The nested entity structure

allows us to capture that BBN layer, but also larger entities. Many other entities

missing in BBN are due to differences in what should be included as an entity,

especially in NUMEX and TIMEX types (e.g. the inclusion of one or several as

cardinals).
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Count Category Example

1977 RATE 57 cents a share

1272 CARDINAL one, several, few

648 PER Senate Majority Leader George Mitchell

533 UNIT dollar, pound

530 INDEX Dow Jones Industrial Average

431 DATE yesterday, last night

Table 4.14: Most frequent types of entities which are in NNE but do not exist in BBN.

4.5 Summary

This chapter has outlined the creation of the NNE corpus, including annotation,

consistency checking and analysis. The results of this chapter demonstrate that

the consistent annotation of named entity structure has been achieved. The

quality of our annotations has been demonstrated by measuring inter-annotator

agreement in various ways, and by methodically conducting post-processing

consistency checks.

The principled approach we applied while creating this corpus enabled the

construction of a large-scale, highly consistent nested named entity corpus.

The annotation process used, combining an innovative annotation tool, very

detailed annotation guidelines, frequent meetings between annotators, and

an extensive analysis and fixing of annotation errors has resulted in a high-

quality corpus, with high inter-annotator agreement. This corpus enables all

of the experiments in the following chapters, and we are now ready to begin

experimenting with the Penn Treebank.



5 Merging Nested Named Entities

into the Penn Treebank

In the previous chapter, we described the creation of the NNE corpus, a useful

resource for investigating the structure of named entities. The value of this

resource, however, is not just limited to the NER domain. The corpus we

annotated is the same as used in the PTB, and by merging our annotations with

the PTB annotations, we can combine both semantic and syntactic annotations.

Further, having an aligned corpus with both annotations allows the NNE corpus

to complement and be projected onto other PTB resources, such as PropBank

(Kingsbury and Palmer, 2002; Palmer et al., 2005) and NomBank (Meyers et al.,

2004), and also PTB-derived corpora for other formalisms, such as Combinatory

Categorial Grammar (Hockenmaier, 2003) and LFG (Cahill et al., 2002). Thus,

merging our NNE corpus and PTB annotations is an important next step.

The newswire for the NNE corpus we developed in the previous chapters

is the Wall Street Journal portion of the Penn Treebank. While we use the

same tokenisation and disambiguate difficult cases using the Treebank, the

annotation structures are not necessarily compatible with the PTB’s syntactic

structures.

In order to use our NNE corpus for full syntactic and named entity parsing

experiments, and to enable the annotation information to build on other PTB

154
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aligned resources, such as NomBank and PropBank, we must merge or align the

two sets of annotations, mapping NNE structure onto syntactic structure.

5.1 Merging process overview

The scope of this merging process is to align our nested named entity struc-

tures with syntactic structures, mapping NNE labels onto syntactic nodes. The

desired output is a PTB style tree, enhanced with additional NNE node labels.

We follow the following process for applying labels to nodes in the PTB

derivations. The process begins at the leaf (i.e. token) layer of the NNE, and

works its way up breadth first.
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1) If a node, p, exists that covers the required tokens and no others:

(i) If p does not already have an NNE label, add the required NNE label

to p. (See Figure 5.1.)

For all nodes pi where pi is a unary parent or ancestor of node p,

repeat (i).

(ii) Else, add a new node, n, as a parent of p, and label n with the required

NNE label.

2) Else if a node, p, exists which has direct children including all the required

tokens and additional tokens, create a new node, n, as a child of p, and

attach p’s children such that n covers only the required tokens. Add the

required NNE label to n. (See Figure 5.3.)

3) Else, apply rules for tree restructuring as described in Section 5.3.

5.2 Straightforward Cases

The majority of entity annotation spans are compatible with syntactic constitu-

ents, and the process of combining the two labels is straightforward.

5.2.1 Span match

The most common case is where an existing node in the syntactic tree fits the

required tokens in an annotation span perfectly.

Consider the entities [Pierre]FIRST, [Vinken]NAME and the larger span [[Pierre]first

[Vinken]name]PER. Each of these entity spans will be mapped to a node in the

syntactic tree from PTB, as shown in Figures 5.1 and 5.2.

NP-SBJ

NNP

Vinken

NNP

Pierre

PER

NAME

Vinken

FIRST

Pierre
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NP
PER

NNP
NAME

Vinken

NNP
FIRST

Pierre

Figure 5.1: An example of a perfect match between syntactic and named entity struc-
ture.

NP

NNP

Vinken

NNP

Pierre

PER

NAMEFIRST

Figure 5.2: Phrase demonstrating mapping of NNE and PTB syntactic information

5.2.2 Span mismatch

If a node does not exist that spans only the required tokens, we attempt to add

one. Consider the phrase the [[European]norp:other Common Market]org:other

approach with entity annotations NORP:OTHER and ORG:OTHER.

To merge this with the syntactic tree, shown in Figure 5.3 we work from the

innermost entity annotation: [European]NORP:OTHER. As seen in Figure 5.3, this

entity span can be applied directly to a leaf node of the tree.

NP

NN

approach

NNP

Market

NNP

Common

NNP
NORP:OTHER

European

DT

the

Figure 5.3: Phrase demonstrating addition of NORP:OTHER onto an existing token
node.

Consider first the label over the token European, which can be added into

the existing NNP node, following the steps outlined earlier.
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The next entity span to add is ORG:OTHER, which should cover the tokens

European Common Market. However, no node exists in the tree that covers only

those tokens. We can insert a node covering the required tokens, labelling it an

NML1 syntactic node, with NNE label ORG:OTHER, as shown in Figure 5.4.

NP

NN

approach

NML
ORG:OTHER

NNP

Market

NNP

Common

NNP
NORP:OTHER

European

DT

the

Figure 5.4: Phrase demonstrating addition of a NML node with NNE label
ORG:OTHER within a subtree.

5.3 Special Cases

In other cases, inserting a node to cover only the required tokens is more

problematic, as the tokens required may be in separate branches of a tree. The

majority of these cases stem from discordance between our and the original

PTB analyses of various structures, especially prepositional phrases. Another

common source of discrepancy stems from inconsistencies in the analysis of QP

phrases in the original PTB annotations or mismatches with Vadas and Curran

(2007)’s added Noun Phrase Structure.

For some types of mismatches, we grow our labels to span the additional

tokens required, for instance, the inclusion of certain determiners (see Sec-

tion 5.3.2.1)

We categorise a number of different types of changes. Some are expansions

to our NNE annotation spans to incorporate additional tokens which belong,

syntactically, within structures; others are corrections to inconsistently annot-

1See Section 2.2.1 for a discussion of NML nodes.
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ated structures already present in the PTB (such as QPs including QUALs); and

others are changes to the analysis of certain structures, especially PPs, in order

to create constituent spans for NNE spans.

5.3.1 Making changes to PTB syntax and NNE bounds

When our annotations and the PTB labels do not match, we must modify

one or both of the corpora. To decide which corpus to modify, we must con-

sider to what extent we should remodel PTB analyses to better capture the NE

boundaries, or to what extent we should break our NE boundaries to maintain

consistency with the PTB.

Our goal is to make as few modifications to each as possible, but for each

modification to be linguistically sound. Where these two concerns conflict, we

opt towards minimal change to the PTB corpus, since it is a standard dataset

and the annotations in each in both corpora are decisions made by humans, and

thus should at least implicitly reflect linguistic principles.

To a certain extent, more practical concerns short-circuit our linguistic con-

cerns. We are constrained by the limitation of not making a large number

of manual changes, and so seek to make as many linguistically motivated

programmatic modifications as possible.

A further consideration is to ensure that any syntactic changes we make

with respect to NEs do not contradict the grammar used outside of them, since

making structural changes in only a subset of environments would lead to an

inconsistent corpus. Nevertheless, we do in some cases make changes to the

PTB structure only within the bounds of an entity.

We can consider NEs as noun phrases which take arbitrary grammatical

structure internally. For some cases, such as people’s names, noun phrases

have their own idiosyncratic internal grammar. From this perspective, limiting

restructuring changes to only occur within entities is a sound principle.
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However, for other entities such as works of art or the names of bands,

the structure more closely represents general English grammar, and does not

conform to a specific, substantially different grammar. Because of this, one

could consider that if we modify the PP structure inside entities, we should also

make that same PP attachment change to all sentences in the PTB.

We elect to only modify structures inside named entity boundaries, rather

than making changes to other parts of the Penn Treebank.

NP

PP

NP

NP

PP

NP

NNPS

Rights

NNP

Human

IN

of

NP

NNP

Declaration

NNP

Universal

“

“

PRP$

its

CC

and

NP

NN

revolution

JJ

French

DT

the

IN

of

NP

NN

bicentennial

DT

the

Figure 5.5: Original PTB analysis for sentence WSJ0723_21.

Take, for example, the Universal Declaration of Human Rights, the PTB deriva-

tion for which is seen in Figure 5.5. From a linguistic, named entity perspective,

the span Universal Declaration of Human Rights should form a single constituent.

However, due to the PRP$ attaching as part of the NP, and the PP attaching

higher up to the NP, this analysis is impossible without restructuring the tree.

One possible solution to this problem is to adopt the inclusion of an addi-

tional layer to which determiners attach, as we see in some other grammar

formalisms such as LFG. That is, the addition of an N layer to which determ-

iners attach in order to make an NP would simplify PRP$ issues, and allow for

PPs to be inside that N layer, unless they have explicit scope over the quantified

noun phrase. While linguistically sound, adding these N layer or nbar nodes

throughout the Penn Treebank would be a substantial change, and introducing
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them only in cases with Named Entities would cause inconsistency in analysis

of syntactic structures.

Another possibility for cases such as these would be to split the entity into

two separate halves, and annotate each half as an entity. For instance, Universal

Declaration be one marked as entity, and Human Rights be another. This doesn’t

capture the whole entity, but it does go some way to capturing it.

The solution which we elect to take is to modify the bounds of the NNE span

to include the PRP$, growing the WOA span to cover [its “ Universal Declaration

of Human Rights]WOA.

5.3.2 Include / Exclude rules for NNE spans

We use three rules to determine whether an NNE span should be changed, either

expanded or constricted, in order to be compatible with the PTB constituent

analysis.

5.3.2.1 Include DT in NNE span

In certain structures of NNE spans, the DT occurs within an NP which forms

part of the NNE. In these cases, where the only difference between the target

span and the found span is a DT, we grow the NNE span to include the DT.

This occurs frequently in NNE spans which include a PP, as in Figure 5.6

and Figure 5.7, end with a JJ or RB, as in Figure 5.8, or include a POS, as in

Figure 5.9.

Occasionally, the DT span is grown in order to accommodate idiomatic ex-

pressions, such as the inclusion of the determiner when referring to a reverend,

as seen in Figure 5.10.

5.3.2.1.1 Why not include the determiner in all NNE spans? Ideally, we

would like to apply this more generally. However, we find determiners are not
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The [National Association of Diaper Services]org:other , [Philadelphia]city , says
that . . .

NP
ORG:OTHER

PP

NP

NNPS

Services

NNP

Diaper

IN

of

NP

NNP

Association

NNP

National

DT

The

Figure 5.6: Phrase demonstrating the inclusion of DT the in WSJ0120_43, forced by PP
attachment.

NP
ORG:OTHER

PP

NP

PP

NP

NNP

Paranormal

DT

the

IN

of

NP

NNP

Investigation

NNP

Scientific

DT

the

IN

for

NP

NNP

Committee

DT

the

Figure 5.7: Phrase demonstrating DT inclusion in WSJ0413_9.

ADVP
DATE

RB
REL

earlier

NP

NN
DURATION

year

DT

a

Figure 5.8: Phrase demonstrating DT inclusion in WSJ0232_0.

NP
ORG:OTHER

NNP

Association

NP

POS

’

NML

NNPS

Dealers

NNP

Automobile

NNP
COUNTRY

Japan

DT

the

Figure 5.9: Phrase demonstrating DT inclusion in WSJ0016_0.
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NP
PER

NML
PER

NNP
NAME

Trabold

NNP
FIRST

Alphonsus

NML

NNP
ROLE

Rev.

DT

The

Figure 5.10: Phrase demonstrating DT inclusion in WSJ0413_56.

(NP (QP more than a ) (NN year) )
(a) Original PTB and NNE annotations

NP
DURATION

NN
DURATION

year

QP

DT

a

NML
QUAL

IN

than

RBR

more
(b) Incompatible DURATION
span when DT included

Figure 5.11: Phrase demonstrating problems associated with including every DT in
spans, from WSJ1374_10.

always included into NNE spans, as this would cause spanning issues in other

cases. Take for example, the common QP bracketing in Figure 5.11, and the

NNE span: [[more than]qual a [year]duration]DURATION. The DURATION span

over year is problematic in this instance. The PTB bracketing would not allow

us to include the preceding DT into a larger NNE span: [a year]DURATION.

Adding preceding determiners in all cases would also create semantic-

ally incorrect spans. For example, while researchers from [the National Cancer

Institute]edu is valid, [the Dutch]nationality publishing group, director of [this Brit-

ish]nationality industrial conglomerate, smokers of [the Kent]name cigarettes and

workers at [the West Groton]city , Mass. , paper factory are all not correct spans.

Similarly, although the larger span in TIMEX mention in [the late 1950s]duration

is a semantically valid DURATION, in more complex constructions such as in

[[the late 1950s]duration and 1960s]duration, the inclusion of the determiner is

more problematic.
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We therefore elect to only grow the NE span when necessary due to the

syntactic structure of an entity.

5.3.2.2 QUAL like tokens inside required phrase

Following our annotation guidelines, we only mark up adjectival or adverbial

tokens as QUAL if they change the meaning of the CARDINAL to which they

attach. That is, following the principle that QUALs attach as close to the CAR-

DINAL as possible, we correctly add in spans such as [[[about]qual 0.5]cd

%]PERCENT , but have spanning issues with spans such as only [[0.5]cd %]percent

since the % attaches more closely than only in our NNE annotations, but not in

the PTB annotations.

We allow our NNE spans to include these QUAL-like words (that is, words

which act in the same way as QUALs do, but do not affect the cardinality of

larger QP phrases or CDs) but do not label them explicitly. Tokens include: only,

a mere, just, fully, somewhere, anywhere, further, possibly, perhaps, an additional,

maybe another. This distinction of whether qualification is meaningful is then

reflected in whether the token is assigned an NNE label.

NP
PERCENT

NN
UNIT

%

QP
CARDINAL

CD
CARDINAL

15

RB

only

(a) WSJ0095_3

NP
PERCENT

NN
UNIT

%

QP
CARDINAL

NML
CARDINAL

CD
CARDINAL

0.5

RB
QUAL

about

RB

only

(b) WSJ1528_15

Figure 5.12: Phrase demonstrating expansion of PERCENT label to incorporate QUAL-

like word only.
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Various adjectives and adverbs which do not affect the cardinality of a

phrase are nevertheless attached in the PTB analysis to the CARDINAL, or to

an associated QUAL. We agree with these derivations, and allow these tokens

to be included in our NNE spans, but do not explicitly mark them up.

NP
CARDINAL

NN
CARDINAL

dozen

QP

DT

a

RB
QUAL

about

RB

only

(a) Growth of CARDINAL

NP
DURATION

NNS
DURATION

minutes

QP

CD
CARDINAL

30

RB

barely

(b) Growth of DURATION

Figure 5.13: Adjectives and adverbs are allowed to grow NNE spans, but are not
explicitely marked up.

30 minutes

cardinal duration

duration

(a) Original NNE annota-
tion

barely 30 minutes

cardinal duration

duration

(b) Expanded DURATION span

Figure 5.14: Resulting named entity span incorporating adverbial barely in WSJ0239_53.

5.3.2.3 Include adjectives in NNE span

In addition to the QUAL-like tokens described above, other tokens also often

occur within the required span. A frequent subset of adjectives, and occasional

adverbs, to be included occur inside PER and ROLE spans. Examples are given

below:
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np
per

nnp
name

Ramirez

nn
ini

A.

nnp
first

Raul

nml
role

nnp
role

Judge

jj

federal

np
per

nml
per

nnp
name

Backe

nnp
first

John

nml
role

nml
role

nnp

President

nml
media

nnp
jargon

Inc.

nnp
media

CBS

jj

former

Figure 5.15: Phrases demonstrating the expansion of NNE PER spans to include addi-
tional tokens and spans.

NP
PER

NML
PER

NNP
NAME

Inouye

NNP
FIRST

Daniel

NML
ROLE

NNP
ROLE

Sen.

NML

NNP
NORP:POLITICAL

Democrat

NNP
NORP:OTHER

Hawaii

JJ

powerful

DT

the

Figure 5.16: Phrase from WSJ0101_14 demonstrating expansion of NNE PER to include
NML

NP
PER

NML
PER

NNP
NAME

Major

NNP
FIRST

John

NML
ROLE

NAC
ROLE

PP

NP

NNP
GOVERNMENT

Exchequer

DT

the

IN

of

NNP
ROLE

Chancellor

JJ

new

Figure 5.17: Phrase from WSJ0231_41 demonstrating expansion of NNE PER to include
NML

5.3.2.4 Include post-positional QUAL in NNE span

Following the annotation guidelines in attaching QUALs as close to the CAR-

DINAL as possible, post-positional QUAL spans in our NNE annotations are
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joined to the CARDINAL as early as possible. This, however, causes issues

with the PTB analysis of MONEY structures, which binds the UNIT to the

CARDINAL as early as possible. We follow the PTB analysis, and elect not to

annotate the problematic larger CARDINAL span from our annotations.

$ 1 million and more

unit qual

cardinal

money

(a) Original NNE annotation

NP

QLP
QUAL

NP

JJR

more

CC

and

NP

NONE

*U*

QP

NML
CARDINAL

CD
MULT

million

CD
CARDINAL

1

$
UNIT

$

(b) Incompatible larger CARDINAL span

Figure 5.18: Phrase demonstrating post-positional QUAL in WSJ0219_14

5.3.2.5 Between in RATE construction

The principle in our annotation guidelines of QUALs attaching as close to the

CARDINAL as possible does not fit with the PTB analysis of phrases such as

between $ 1.10 and $ 1.12 a pound. Specifically, our analysis of between as a QUAL

which joins to CARDINAL (or MONEY spans) as closely as possible conflicts

with the PTB analysis of such phrases.

We are unable to add in these larger NNE spans without substantially re-

structuring these trees, and instead remove the spans.
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between $ 1.10 and $ 1.12 a pound

qual unit cardinal unit cardinal unit

money money weight

money

money

rate

(a) NNE analysis

PP
RATE

NP

NP

NML
WEIGHT

NN
UNIT

pound

DT

a

NP

NONE

*U*

QP
MONEY

NML
MONEY

CD
CARDINAL

1.12

$
UNIT

$

CC

and

NML
MONEY

CD
CARDINAL

1.10

$
UNIT

$

IN
QUAL

between

(b) PTB derivation

Figure 5.19: Structured entity derivation and constituent tree for a RATE containing

between, from WSJ0664_51. (a) NNE structure (b) Corresponding joint derivation with

PTB analysis, showing lack of valid node for largest MONEY NNE span.

PP

NP

NNS

feet

QP
CARDINAL

CD
CARDINAL

18,000

CC

and

CD
CARDINAL

9,000

IN
QUAL

between

Figure 5.20: Phrase demonstrating no valid node for a larger CARDINAL span in
WSJ0550_11.

5.3.2.6 Durations inside DATE constructions

Phrases of the form ordinal cardinal duration of duration, for example, first two

weeks of June, have ambiguous bracketings possible.



Chapter 5. Merging Nested Named Entities into the Penn Treebank 169

( (first (two weeks) ) of June)

( (first ( two (weeks of June) ) )

We therefore elect to leave these structures as flat as possible. This check

ensures that additional spans are not incorrectly added over either two weeks or

weeks of June.

NP
DATE

PP

NP

CD
YEAR

1989

IN

of

NP

NNS
DURATION

months

CD
CARDINAL

seven

JJ
ORDINAL

first

DT

the

Figure 5.21: Phrase demonstrating correct flat structure of weeks of June style phrase in
WSJ0640_1.

In our initial annotation, the smallest valid span capturing an NNE was

annotated. Similar to expanding our NNE spans to incorporate determiners

where required, we also include prepositions. These usually occur in TIMEX

and NUMEX spans.

S

VP

PP
DATE

PP

NP

CD
YEAR

1988

TO

to

PP

NP

CD
YEAR

1986

IN

from

NP

NN

president

PRP$

its

VBD

was

NP

PRP

he

Figure 5.22: Phrase demonstrating preposition into DATE span in WSJ0509_11.
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PP
DATE

ADVP
DATE

RB
REL

later

NP

NN
DURATION

year

DT

a

PP

NP

NNP
MONTH

July

IN

In

Figure 5.23: Phrase demonstrating inclusion of preposition into DATE span in
WSJ1634_98.

UCP
DATE

NML
QUAL

ADVP

IN

beyond

CC

and

PP

NP

NNS
DATE

1990s

DT

the

IN

into

Figure 5.24: Phrase demonstrating inclusion of both determiner and preposition into
DATE span in WSJ1566_34.

PP
RATE

NP

NN
QUANTITY 3D

bottle

DT

a

PP

NP

NP

NONE

*RNR*-1

NP
MONEY

NONE

*U*

CD
CARDINAL

125

$
UNIT

$

TO

to

PP

NP

NP

NONE

*RNR*-1

NP
MONEY

NONE

*U*

CD
CARDINAL

40

$
UNIT

$

IN

from

Figure 5.25: Phrase demonstrating addition of preposition from to RATE span in
WSJ0071_7.

5.3.2.7 Exclude full stop in NNE span

In sentences where an entity ending in a full stop occurs at the end of a sentence

which would also end in a full stop, only one full stop is used. This usually af-

fects CORP annotations since JARGON terms such as Co. are usually mentioned
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in abbreviated form. In some of these cases, our annotations inconsistently in-

cluded the sentence final full stop as part of the entity. In these cases, we shrink

the NNE span to exclude the sentence-final full stop, as shown in Figure 5.26,

since including it in the NNE span would require substantial modifications to

the syntactic tree, as sentence final full stops attach at the S level.

.

.

NP

PP

NP

NNP
JARGON

Inc

NML
NAME

NNP
NAME

Hutton

NNP
NAME

Lehman

NNP
NAME

Shearson

IN

of

NP
PER

NNP
NAME

Barakat

NNP
FIRST

Nauman

(a) Incorrect span including full stop

.

.

NP

PP

NP
CORP

NNP
JARGON

Inc

NML
NAME

NNP
NAME

Hutton

NNP
NAME

Lehman

NNP
NAME

Shearson

IN

of

NP
PER

NNP
NAME

Barakat

NNP
FIRST

Nauman

(b) Corrected span

Figure 5.26: Phrase demonstrating full stop annotation error in WSJ1932_15

Conversely, in two instances (WSJ2007_22 and WSJ2211_1, seen in Figure 5.27),

full stops that have been tokenised as separate tokens are nevertheless included

in the bracketing of an entity. In these cases, in order to minimise changes to

the PTB, we adjust the NNE spans to include these full stops.
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Figure 5.28: Phrase demonstrating PP attachment breaking NNP span in WSJ0745_12
and required restructuring.
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Figure 5.29: Phrase demonstrating PP attachment breaking NNP span in WSJ0910_12
and required restructuring.

( (NP ( (NP
(NML (NNP J.P.) (NNP Morgan) ) (NML (NNP Eli) (NNP Lilly) )
(CC &) (CC &)
(NML (NNP Co) (. .) ))) (NML (NNP Co) (. .) )))

Figure 5.27: Full stop PTB annotation inside NP bracket in WSJ2007_22 and WSJ2211_1.

5.3.3 Tree Restructure Rules

5.3.3.1 Modified names with internal PPs

NNPs that include PPs and are preceded by JJs, POSs or other preceding ter-

minals from the same parent node as the starting token(s) of the NNE span in

the PTB are split across separate branches. We restructure these derivations,

moving the PP and NNE-span initial NNP or NNPs into a new NML node, as

shown in Figures 5.28, 5.29 and 5.30.
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Figure 5.30: Phrase demonstrating restructuring PP attachment for NNP in WSJ1688_1.
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(a) Original PTB bracketing
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(b) Restructured larger MULT span

Figure 5.31: Phrase demonstrating original bracketing in WSJ0317_33 and restructuring

to allow for a larger MULT span.

5.3.3.2 TIMEX/ NUMEX with internal PPs

We restructure trees with stacking MULT expressions such that they form one

constituent. The larger MULT node now acts as one substitutable span.

5.3.3.3 As x as y

Phrases such as as much as and as early as are inconsistently annotated in the

Treebank, sometimes occurring as part of a QP, and other times split into an NP

and PP, structured in a fashion consistent with comparatives. Table 5.1 shows
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Figure 5.32: Phrase demonstrating MULT rebracketing in WSJ0118_10.

the comparative frequencies in the PTB for various bracketings with tokens as

x as.

(NP (NP (QP as much as 15) %) (NP (NP as much)
(PP of (PP as

(NP Jaguar shares))) (NP 15 %))
(PP of

(NP Jaguar shares)))

Indeed, the PTB guidelines describe this second analysis as an irregularity:

There may be occasional irregularities in the treatment of as much
as, where it appears with the bracketing shown below, which is
consistent with the usual structure for comparatives but inconsistent
with just about everything else. (Bies et al., 1995)

We restructure all phrases of the pattern as x as (e.g. as much as, as late

as) that occur within TIMEX or NUMEX entities to align with the intended QP

analysis, which allows for a QUAL span over the as x as tokens.

Structure frequency

(QP as X as Y) 23

(? as X) (? as (NP Y)) 64

(? as X) (? as (? Y)) 168

Table 5.1: Table showing comparative frequency for as x as constructions.
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Figure 5.33: Phrase demonstrating as x as restructuring in WSJ0451_15.
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Figure 5.34: Phrase demonstrating as x as restructuring in WSJ0688_0.

This merge option requires us to add a new syntactic label, QLP, onto the

node inserted for the QUAL NNE span. Additionally, we change ADVP with

function -CLR (denoting closely related) to NP to label the phrase which is now

correctly headed by a noun, and acting as an NP.

ADVP-CLR

PP

NP

NN

week

JJ

next

IN
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RB

early

RB

as

NP
DATE

NML
DATE

NN
DURATION
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IN
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RB

early

RB

as

Figure 5.35: Phrase demonstrating as x as restructuring in WSJ0142_55

5.3.3.4 More than / less than

Similar to as x as, phrases such as more than and less than are analysed in an

inconsistent fashion in the PTB. The guidelines give the following examples:

(NP (QP more than one)
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person)

(NP (QP more than three in five))

(NP (QP no more than 8)
characters)

However, the following structure is frequently found, as in WSJ0203_15:

(NP
(NP (JJR more) )
(PP (IN than)

(NP (DT a) (NN third) )))

We restructure all such cases which occur with phrases: bigger than, less than,

order of, higher than, no more than, little more than, up to, much of, most of, greater

than, more than, significantly lower than, longer than, slightly less than. This analysis

is also much closer to the analysis of phrases like over 11 %, and brings it into

line with other QUAL spans, with QUAL attaching as close to the CARDINAL

as possible.

As with as much as spans, we use the new syntactic label, QLP, to span the

node inserted for a QUAL NNE span label.

NP

PP

NP

NN

third

DT

a

IN

than

NP

JJR

more

NP

NN

third

QP

DT

a

QLP
QUAL

IN

than

JJR

more

Figure 5.36: Phrase demonstrating more than restructuring in WSJ0203_15.
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Figure 5.37: Phrase demonstrating more than restructuring in WSJ0461_7.

NP

PP

NP

NN

%

CD

11

IN

than

NP

JJR

more

RB

slightly

NP

NN

%

QP

CD

11

QLP
QUAL

IN

than

JJR

more

RB

slightly

Figure 5.38: Phrase demonstrating more than restructuring in WSJ0774_7.

5.4 Remaining Cases

5.4.1 Manual fixes

In some cases, our NE analysis offers a linguistically motivated representation

which more closely reflects the sentence’s semantics than the analysis allowed

by the restrictions of the PTB guidelines. In other cases, similar phrases had

differing syntactic structures in different sentences. In applying our NE annota-

tions, many of these sentences were identified, since they often caused node

‘mismatches’. Structures were corrected and normalised as far as possible.

Consider the phrase 5 % to 10 %. Both structures in Figure 5.39 are found in

the PTB.
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Figure 5.39: Suboptimal tree structures, (a) and (b), found in the PTB.
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(a) NNE annotation

NML
PERCENT

NML
PERCENT

NN
UNIT

%

CD
CARDINAL

10

TO

to

NML
PERCENT

NN
UNIT

%

CD
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5

(b) Proposed joint derivation

Figure 5.40: Proposed entity coordination in WSJ0666_28.

Our NE annotation includes two separate spans over each percentage, that

are then coordinated to one larger span. This is inconsistent with some struc-

tures seen in the PTB for this phrase. We correct the syntactic derivation as

shown in figure 5.40.

5.4.2 Cases where no merge is possible

In a small number of cases, we cannot accurately capture both NE semantic

spans and syntactic spans correctly in the same tree. For example, we cannot

get a clean span over the larger DATE span between 1983 and 1987 in Figure 5.41.
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...
(PP -TMP (IN between)

(NP
(NP (CD 1983) )
(CC and)
(NP

(NP (CD 1987) )
(, ,)
(NP

(NP (DT the) (JJ last) (NN year) )
(SBAR

(WHPP -1 (IN for)
(WHNP (WDT which) ))

(S
(NP -SBJ (NNS figures) )
(VP (VBP are)

(ADJP -PRD (JJ available)
(PP (-NONE - *T*-1) ))))))))))

(. .) ))

Figure 5.41: Fragment from sentence WSJ1556_22 demonstrating incompatible syntactic

and semantic structure for DATE between 1983 and 1987.

In these cases, we annotate all smaller spans, (e.g. 1983 and 1987 both as

DATE individually), and discard our larger, incompatible NE annotation.

5.4.2.1 Part of Speech tag and Label annotation errors

Some part of speech errors in the PTB cause anomalous syntactic structures.

For example, the token No. (meaning number) is labelled with four differ-

ent POS tags: NN 62 times, NNP 5 times, JJ twice and VB once. The par-

ticularly strange choice of VB, in sentence WSJ0678_21, forms the constitu-

ent structure: [South [Texas]state Project]CORP [Units [No. [[1]cardinal and

[2]cardinal]cardinal]ordinal]FACILITY

(NP

(NP

(NML (NNP South) (NNP Texas) )
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(NNP Project) (NNP Units) )

(ADJP (VB No.) (CD 1)

(CC and) (CD 2) ))

When an incorrect POS is causing incorrect syntactic structures that inter-

fere with our NE structure, we manually correct both the POS and syntactic

bracketing.

5.5 Adding syntactic labels to additional nodes

Once we have our combined tree, we need to add syntactic labels onto newly

inserted nodes. If all of our NE labels applied directly to an existing node, no

further action is required. If, however, our NE labels required the addition of a

new node into the tree, for instance, in the case of a unary NE transformation,

we need to add a syntactic label to that node.

We use the following rules for adding syntactic labels to nodes:

1) if NNE label is QUAL, add the syntactic label of QLP to the node.

2) else if first child is a PP, and the NNE label is DATE, add the syntactic

label of PP. Examples of this can be seen in Figure 5.42

3) else, add a NML syntactic label to the node.

PP
DATE

NP

NN
DATE

yesterday

PP

NP

JJ
DURATION

mid-afternoon

IN

at

(a) PP added to DATE node

PP
DURATION

PP

NP
DATE

NNP
DAY

Wednesday

JJ
REL

last

TO

to

PP

NP
DATE

CD
NUMDAY

31

NNP
MONTH

Aug.

IN

from

(b) PP added to DURATION node

Figure 5.42: Examples of adding syntactic label of PP to DATE entities.
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5.6 Discussion

In total, just over 700 constituency trees were modified as a result of the merging

process, and the boundaries of 2276 entities were adjusted. A summary of the

frequency of these adjustments is shown in Table 5.2.

In the process of combining the nested named entity spans and syntactic

constituents of the PTB, though we have tried to minimise changes to both

corpora, some changes are necessary. The changes outlined in this chapter

represent a compromise between the integrity of the annotation spans and the

constituency structure from the PTB.

An advantage of the merging process is that by checking for compatibility

with constituency spans, a small number of annotation errors were identified

and corrected. Thus, the consistency of annotations in the corpus, even in the

version of the corpus not merged with the PTB, has been improved by syntactic

validating performed using the PTB.

When considering the numbers of inconsistencies reported in this table, it is

worth keeping in mind that in cases of genuine ambiguity in possible annotation

spans, such as (first (two weeks) of June) or ((first two) weeks of June)), where we

were unsure of the bracketing to use, we referred to the PTB and selected an

analysis that was compatible with the syntactic bracketing.

5.6.1 Impact on NNE annotations

The most frequent change was a modification of the NNE boundary to include

a determiner, accounting for two thirds of all changes. The majority of these

included the determiner the, amounting to 1377 of the 2000 total determiner

changes, followed by a further 688 cases involving a. The remaining issues

involved tokens such as some, an, another, but these were comparatively infre-

quent. These determiner changes were most frequently needed for DATE (1324
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Rule Frequency
Modify NNE annotation bounds
Include DT in NNE span 2096
Include quasi-QUAL in NNE span 321
Include adjective in NNE span 116
Post-positional QUAL 41
Exclude full stop in NNE span 22
Durations inside DATE constructions 12
Between in RATE construction 11
Tree Restructure Rules
TIMEX/ NUMEX with internal PPs 113
Modified names with internal PPs 100
As x as y 48
More than / less than 31
Remaining manual decisions 76
Total count of span mis-matches 2995

Table 5.2: Table showing frequency of changes made to fit NNE annotations to PTB.
Note that the sum of specific rule applications is more than the total number of nodes
with mismatches, as multiple rules can apply on one span.

instances) entities, and ORGs (around 500, primarily of type GOVERNMENT,

CORP and ORG:EDU).

While including determiners into the annotation span in only these cases

does introduce inconsistency in their analysis as an NE, the other alternative

of modifying the PTB analysis of determiners is a large task, and outside the

scope of this work.

The other frequent change to NNE boundaries is the inclusion of quasi-

QUALs in the NNE span. The most frequent of these are only (around half of

all instances), and just (around a quarter of instances), with the most common

entities affected being PERCENT, and MONEY. We expect the inclusion of

these spans inside the NNE boundary to be less problematic than other changes,

since the distinction on which adjectives should be included as a QUAL and

those that shouldn’t, namely if the adjective affects the numerical value or only

offers a journalistic comment, was already quite subtle, and therefore likely to be

problematic for parsers to learn already.
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5.6.2 Impact on PTB annotations

Most of the changes we make to form a single, compatible corpus involve

changes to the NNE annotations. In some cases, however, we believe the NNE

annotation span to be a higher fidelity analysis, especially in the case that our

NNE spans identify inconsistencies in PTB analyses. In these cases, we modify

the constituency structure of the PTB. The majority of changes to the syntactic

constituents concern prepositional phrases. These bulk of these changes are

from the rules dealing with TIMEX and NUMEX with internal PPs, (often MULT

issues) and modified named entities which include internal PPs, such as Britain

’s House of Commons.

While we have endeavoured to keep the number of changes to PTB struc-

tures to a minimum, some were deemed necessary. The total changes to PTB

structure due to rules and manual decisions amounts to around 300, compared

to some 2500 changes.

5.6.3 Consistency in PTB after merging process

These changes made to the PTB and to NNE, while necessary in order to create

a compatible corpus, introduce inconsistencies into the corpus.

Any modifications to the structures in the PTB will render results on parsing

this new PTB version incompatible with results on the standard PTB. However,

we found it necessary to ensure compatibility between the constituency struc-

ture and our named entity annotations, and to ensure the integrity of our NNE

annotations..

The largest concern is the changes made to PPs in the PTB. Of specific

concern is the fact that these changes affect only those PPs affected by our NNE

spans; that is, only PPs in or containing NEs. Adding this inconsistency in the

analysis of PPs is not ideal. The alternative would be a consistent reanalysis of
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all PPs in the PTB, changing the level of attachment to the noun level, rather

than the noun phrase level. While possible, this would be a huge process, and

is outside the scope of this thesis.

Additionally, we believe that the internal constituents of these PPs are suf-

ficiently distinct such that, if a parser is equipped with grandparent or other

features that allow it to look inside one level of the children or the parent

node, it should be able to learn to distinguish between these PPs and those not

changed by our process. Features such as these are very common in state of the

art parsers, and while we do acknowledge that these PP changes we introduce

do constitute an inconsistency, it is an inconsistency we expect parsers to be

able to predict reasonably well.

Further, we believe that the analysis we suggest is a higher fidelity analysis

with respect to NE spans. The attachment of PPs at the N or NP level is the

source of ongoing debate. This attachment level can be used to introduce an

additional semantic distinction. For instance, Honnibal et al. (2010) modified

a resource derived from the PTB, moving prepositional phrases and relative

clauses to the N level by default.

Fundamentally, we believe that NEs should correspond to constituents in

the phrase structure grammar. Not adjusting these constituent spans would

result in an inconsistency in the NE scheme, which is the core contribution of

this thesis. If, however, the original PP analysis would preferable for a specific

task, it is a simple, mechanical transformation which can be reversed, and the

original attachments recovered.

5.7 Summary

In this chapter we have described the key changes made both to the NNE spans

and to the PTB constituents in order to form a single, compatible corpus of
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syntax and NNE semantics. This process involved aligning the two corpora,

identifying or creating nodes which shared both syntactic and NNE spans, or

modifying the NNE span or PTB analysis such that a common node existed.

The majority of changes made were to the boundaries of NNE annotations,

with the largest group being that of including determiners (some 2000 of a

total 3000 changes). While the introduction of these inconsistencies, both to

NNE annotations and the PTB, were necessary, we are also conscious of the

difficulties they will pose in further analyses. Specifically, we see the inclusion

or exclusion of determiners in entity spans likely to be a problem case for NER

systems, due in large part to the inconsistency introduced by this merging

phase. The necessary modification to the PTB also poses issues for comparing

results with those reported by others.

Nevertheless, ensuring the compatibility of annotation spans between the

PTB and NNE spans is key both for the work done in the remainder of this thesis

and for the wider use of the corpus in general. It will allow the NNE corpus to

be used not just directly in PTB parsing, but also in all corpora derived from

the PTB, such as different grammar formalisms (e.g. CCGbank) and semantic

resources (e.g. NomBank and PropBank).

Now that we have completed this corpus, we are ready to train an existing

near state of the art Penn Treebank parser to benchmark the difficulty of this

combined syntactic and semantic corpus.



6 Parsing Nested Named Entities

In the previous chapter, we described the augmentation of the Penn Treebank

with NNE structure. We will now use this extended corpus as the dataset for

parsing experiments.

We would like to use our corpus as training data for a system to label

NNE structures on unseen text. We anticipate that the best way to do this is

to adapt an existing parser to encapsulate both standard syntactic structure

and our newly constructed nested named entity structures. We expect that

a constituency parser will be quite robust to learning various complex NNE

sub-structures, mostly within noun and prepositional phrases.

To evaluate this system, we first need to determine the best way to represent

NNE structures as node labels for the parser.

6.1 Parsing Background

High quality parsing has been achieved in a large number of languages, do-

mains and formalisms. In English, the creation of the Penn Treebank corpus

(Marcus et al., 1993) was instrumental in facilitating the development of high

quality statistical parsing models in the newswire domain, reflected in the

corpus being the de facto standard parsing corpus for English.

The parsing of named entities in English newswire text has not been the

focus of research efforts, primarily due to the absence of a large corpus with

186
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the requisite nested named entity annotations. The annotation of internal NP

structure, absent in the original Penn Treebank, was added by Vadas and Curran

(2007). This did not extend to the internal structure of named entities, however.

As such, parsers trained on the Penn Treebank are not able to recover nested

named entity structure.

6.1.1 Hand-written Grammars

Before the release of a large corpus of gold-standard constituency parses such

as the Penn Treebank, parsers were constructed using hand-written grammars

based on rules specified by grammarians.

Parser development [was] generally viewed as a primarily linguistic
enterprise. A grammarian examines sentences, skillfully extracts the
linguistic generalizations evident in the data, and writes grammar
rules which cover the language. The grammarian then evaluates the
performance of the grammar, and upon analysis of the errors made
by the grammar-based parser, carefully refines the rules, repeating
this process, typically over a period of several years. (Jelinek et al.,
1994)

Hand writing these grammars proved expensive and time-consuming, and

the resulting grammars generalised poorly.

6.1.2 Penn Treebank Parsing

Parsing models (e.g. Magerman (1994), described below) trained on the Penn

Treebank demonstrated the power of training with statistical models, albeit with

some initial linguistic input, showing that a decision tree parser can significantly

outperform a grammar-based parser developed by a grammarian over a ten-

year period.

While the final Penn Treebank was still in development, Black et al. (1992) in-

troduced the key innovation of head annotations. Namely, for each constituent,

a specific subconstituent is deemed representative of the node. This head of each
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phrasal node is determined by recursively selecting head subconstituents until

a leaf node is reached. By using history-based modeling with the chain rule

this head information can be percolated up through each individual probability

decision.

Jelinek et al. (1994) and Magerman (1994) improved on the work of Black

et al.’s (1992) work by removing the reliance on handwritten grammars. Mager-

man’s model builds a candidate parse tree and uses breadth-first search to

prune partial parses if their probability is less than the probability of the best

found so far. The model works from the leaf nodes up, with leaf probabilities

being used to calculate the probabilities of further potential parses. Parameters

were estimated using decision trees with relative-frequency estimates at the

leaves, with the probability of the final parse tree being the product of each of

the probabilities assigned by the decision tree. Magerman’s model achieved

78% accuracy rate (on sentences of 25 words or fewer) on Section 23 of the Penn

Treebank, the section which has since become the standard test set.

Collins (1996) implemented a statistical generative model that estimated

probabilities using relative frequency counts in the Penn Treebank. The model

contains both rules for the probability of individual base NPs, and the prob-

ability of dependencies between constituents. The specific NP modelling rule

is to account for base noun phrases, which are the most common constituent

in the treebank, and allows the NPs to be represented by a single head when

calculating further external probabilities. Constituents are generated by the

model top-down, with the first inference producing the head constituent, and

subsequent inferences generating the sibling constituents. The parse tree is built

bottom-up, using the CKY chart parsing algorithm (Kasami, 1965), which has

since been used in a number of other parsers.

Collins incorporates a lexicalised Probabilistic Context Free Grammar (PCFG)

in a second generative model, which addresses data sparsity issues by making
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independence assumptions. All modifiers are conditioned only on the head,

not other additional modifiers, and the inclusion of modelling the comple-

ment/adjunct distinction and subcategorisation frames further improves the

efficiency and accuracy of this model. In a third model, Collins further extends

the parser to incorporate traces and wh-movement. Collins’ best performing

model achieves 88.6% precision and 88.1% recall on sentences in section 23 with

fewer than 40 words.

Charniak (1997) proposed a probabilistic model that uses a chart to build

candidate trees, using the probability of the head and the probability of the

grammar rule being applied. Charniak (2000) builds on this with improvements

to generating the lexical head’s pre-terminal node before the head itself. At

a similar time, Collins (2000) also improved on his previous result by using

reranking information from a second model that included additional features.

Both these models performed strongly, achieving slightly over 90% for precision

and recall.

Building on work demonstrating that high quality PCFGs can be learned

from a treebank by manual annotation (Klein and Manning, 2003) or automatic

state splitting (Matsuzaki et al., 2005), Petrov et al. (2006) introduced a hierarch-

ically split PCFG that could exceed the accuracy of lexicalised PCFGs. Starting

with a simple Xbar grammar, Petrov et al. (2006) learn a new grammar whose

nonterminals are sub-symbols of the original non-terminals.

More recent research efforts have refocused on reformulations of the parsing

problem, such as dependency parsing (Yamada and Matsumoto, 2003) or spe-

cific issues, such as domain adaptation (Roark and Bacchiani, 2003; McClosky

et al., 2006), or the parsing of NPs (Vadas and Curran, 2007), described further

in Section 2.2.1.
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6.1.3 Parser evaluation

The release of the Penn Treebank also heralded a substantial improvement in

the evaluation of parsers. Treebanks allowed competing parsers to be trained

and evaluated under identical conditions. Black et al. (1991) proposed the

PARSEVAL metrics for evaluating consistency parsers, based on the number of

constituents in a system’s proposed parse that match the gold-standard parse

tree in the Treebank. These measures are labelled precision, labelled recall and

labelled F1-score.

Evaluation of parser output is conducted by comparing the brackets pro-

duced by a parser, which delimit constituent boundaries, to those prescribed in

the gold-standard bracket data. The most widely used evaluation measures for

constituency parsers are the PARSEVAL metrics (Black et al., 1991; Grishman

et al., 1992). For a sentence or subsentence to be correct, each set of brackets

should begin and end at the same token as in the gold standard, and share the

same label. Matched bracket evaluation can then determine the precision, recall

and F1-score.

Precision (P) shows what percentage of the predicted brackets are correct:

precision =
true positives

true positives + false positives
(6.1)

Recall (R) reflects what proportion of gold brackets were correctly identified:

recall =
true positives

true positives + false negatives
(6.2)

The F1-score is the harmonic mean of precision and recall:

F1 =
2PR

P + R
(6.3)

Parser development often involves an iterative training-evaluation cycle.

Evaluation data is usually split between a development and test set. The de-

velopment (dev) set is used in many cases for model optimisation and model

selection, while the held-out test set is used for model assessment.
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6.2 Variants of merging nested named entity Struc-

ture into the Penn Treebank

We find ourselves with a single tree containing the annotations from our two

original corpora, one being the PTB with syntactic bracketing, and the other

being the nested named entity annotations described in Chapter 4.
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Figure 6.1: Underlying sentence WSJ0001_0 with PTB and NNE annotations.

We present six alternative strategies which vary in the surface forms pro-

duced in combining the syntactic and NNE labels. These experiments will

demonstrate both the difficulty of the combined parsing NER task, and to what

extent a parser can learn a combined model. Further, the different variants

of combined syntactic and NNE annotations will explore to what extent the

existing syntactic structures already capture the NNE structure, or conversely,

how easily the syntactic structures can be expanded to do so.

6.2.1 ‘Joint’ variant: concatenated POS and NNE label

The simplest combination is achieved by concatenating the POS tags or syn-

tactic node labels with the nested named entity structure. Thus, each node is

annotated with a combination of each token’s POS tag or syntactic label and

the entity span that the token or node belongs to.
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Figure 6.2: Sentence WSJ0001_0 with JOINT variant annotations.

The JOINT variant has the benefit of being very straightforward to produce.

NE labels fit semantically directly onto existing nodes in the tree, and their

combined structure is directly preserved. However, due to the labels being pro-

duced by combining the existing syntactic labels with our new NE annotations,

this variant has a substantially larger number of labels, more sparsely applied

over the corpus.

The JOINT variant results in a total of 872 unique labels over sections 00,

02-21, and 23 of the WSJ. Furthermore, some labels occur in the development

and testing sections of the corpus that do not occur in the training section.

Specifically, two labels occurred in section 00 that did not occur in the training

data: NN _QUANTITY:3D and JJ _WEAPON (see Figure 6.3), and a further

13 labels occurred in section 23 that did not occur in the training data. These

cannot be correctly predicted, since they never occur in the training data.

NP

NN _QUANTITY:3D

bottle

DT

a
(a)

NP

NNS

arms

JJ _WEAPON

Uzi-model

PRP$

their
(b)

Figure 6.3: Two examples of labels occurring in section 00 that do not occur in the
training data.
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6.2.2 HIGH variant

The HIGH variant inserts additional nodes into the syntactic tree above the

existing POS or syntactic node label. That is, NE labels are added above the

corresponding syntactic label as a unary parent which covers the required

tokens.

In this variant, all NE nodes occur as nodes with a single child of a syntactic

label.
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Figure 6.4: Sentence WSJ0001_0 with HIGH variant annotations.

The HIGH variant resulted in a total of 211 unique labels used over the

train/test/dev sections. Due to the reduced size of the tagset, all tags in test

and dev occur in the training data. The smaller number of unique labels shifts

much of the difficulty of the task from having very sparse data to learn from, to

resulting in more complex nesting structure.

We expect the HIGH variant to suffer from difficulty in reproducing the

NNE structure using a standard constituent parser due to the distance between

the tokens and our first level of NE annotation. If the constituency parsers does

not include grandparent or grandchild features, it would not be able to see

tokens when making decisions on even the first layer of named entity structure.
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6.2.3 LOW variant

The LOW variant adds nodes with NE labels into the tree below the correspond-

ing nodes with syntactic labels. All NE nodes have a single parent, which is a

syntactic label. Token level NE tags apply directly to the token, with the POS

tags attaching to the direct parent node.
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Figure 6.5: Sentence WSJ0001_0 with LOW variant annotations.

As with the HIGH variant, the LOW variant resulted in a total of 211 unique

labels used over the train/test/dev sections, with all tags in test and dev

occurring in the training data.

6.2.4 POSLOW variant

The POSLOW variant is similar to the LOW variant, with the exception that

POS tags are kept at token level. That is, POS tags apply directly to tokens in

the tree, and all NEs occur either as a direct parent of a POS or as an only child

of a syntactic label.
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Figure 6.7: Phrase from sentence WSJ0001_0 with combined PTB and NNE annotations,
and corresponding phrase with SUB variant annotations.
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Figure 6.6: Sentence WSJ0001_0 with POSLOW variant annotations.

As with the HIGH and LOW variants, the POSLOW variant resulted in a

total of 211 unique labels used over the train/test/dev sections.

6.2.5 ‘Substitution’ (SUB) variant

The SUB variant takes the highest node with an NE label, and for all nodes

below it, uses the NE label if it exists. For example, consider the branch in figure

6.7. The root node of this example, with labels ADJP and AGE, has both NE and

syntactic label. In the SUB variant, only the NE label (AGE) is used. Similarly,

for its first child, which has syntactic label NP and NE label DURATION, we

use DURATION to label the node. The other child of our example’s root only

has a syntactic label (JJ) so we use that label for that node.
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Figure 6.8: Sentence WSJ0001_0 with SUB variant annotations.

The SUB variant resulted in a total of 209 unique labels used over the

train/test/dev sections, with all tags in test and dev occurring in the train-

ing data.

The performance of the SUB variant will be of particular interest because

it best encapsulates the linguistic principles behind the inclusion of nested

NER into syntactic structure. Specifically, it is important to see how well our

constituent parser can learn the large number of NP subcategorisations required

to capture our NE types. The SUB variant is the most direct method of including

more semantic information directly into the grammatical structures without

creating additional layers of syntactic obfuscation. As such, we are particularly

interested in the performance of models trained on this variant.

6.2.6 ‘Substitution’ under parent label (SUB LAYER) variant

The SUB LAYER variant is similar to the SUB variant (6.2.5) where nodes which

have both syntactic and NE annotations in the underlying combined tree are

expressed as only the NE annotations. In this variant, however, the topmost

node of each entity (or nested entity structure) has its syntactic label added as a

direct parent. That is, the AGE node, being the top-most entity in that branch,

has as parent its syntactic label, ADJP.
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Figure 6.9: Phrase from sentence WSJ0001_0 with PTB and NNE annotations, and
corresponding phrase with SUB variant annotations.
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Figure 6.10: Sentence WSJ0001_0 with SUB LAYER variant annotations.

The SUB LAYER variant resulted in a total of 210 unique labels used over the

train/test/dev sections, with all tags in test and dev occurring in the training

data.
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Variant No. labels

Pure PTB 62

JOINT 872

HIGH 211

LOW 211

POSLOW 211

SUB 209

SUB LAYER 210

Table 6.1: Number of unique labels in each variant.
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6.3 Parsing syntactic and nested named entity struc-
ture with the Berkeley Parser

In selecting a parser, we elected to use a constituency parser that was widely

used on the Penn Treebank. The Berkeley Parser (Petrov et al., 2006) satisfied

these constraints as well as being likely to be robust to the large number of

noun subcategories used in our variants to capture NNE structure.

The Berkeley parser performs split-merge cycles on our training data and

automatically induces a PCFG with optimised syntactic categories. The split-

and-merge approach allocates subsymbols adaptively where they are most

effective. Expectation-maximasation (EM) is used to learn a set of rule probab-

ilities on latent annotations that maximise the likelihood of the training trees.

In the training phases, each label is split in two, trained, and then the loss in

likelihood incurred when it is removed is measured. If this is only a small loss,

the new annotation does not represent an important distinction carrying useful

information, so that split label is removed. The split-merge cycle allows the

parser to progressively increase the complexity of the grammar, prioritising the

most useful category extensions.

It is interesting to note the similarities between some automatically learnt

subsymbols, or subcategories, of POS tags, especially NNP, as described in

Petrov et al. (2006). Specifically, when analysing the three most frequent word

in each subcategory of the POS tags reported, many align closely with our

proposed NE categories. For example, NNP-2 contains initials (INI) J., E., L.;

NNP-12 contains first names (FIRST) John, Robert, James; NNP-13 contains

honorifics and roles (HON, ROLE) Mr., Ms., President; NNP-9 contains months

(MONTH) September, August, and days of the week (DAY) Friday; while NNP-14

contains abbreviated month names, Oct., Nov., Sept.. Other POS subcategories
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also align closely to our own NE categories, including CD-11, which contains

MULT tokens such as million, billion and trillion.

Other NNP subcategories have a less well delineated set of contents. NNP-5

contains tokens we would annotate as JARGON (Inc., Corp., Co.), but these

overlap considerably with NNP-7 (Corp., Inc., Group). Our approach entails com-

bining the semantic information and linguistic intuition into the grammar, and

using the split-merge approach, with a view to mitigate some of the increased

complexity of the task.

6.3.1 Learning combined syntax and NNE structure is difficult

As training data we used sections 02 to 21 from the Wall Street Journal (WSJ) of

the Penn Treebank, augmented with our NNE structures.

Sentences Bracketing Tagging

Variant Valid P R F Accuracy

Pure PTB 1916 90.86 90.36 90.61 96.89

syntax only 1918 86.00 89.47 87.70 96.80

HIGH 1915 85.08 84.71 84.89 96.72

LOW 1914 87.21 87.68 87.45 95.59

POSLOW 1918 84.59 84.95 84.77 96.67

JOINT 1918 83.52 87.16 85.30 94.93

SUB 1915 84.23 87.87 86.01 95.46

SUB LAYER 1918 85.38 87.47 86.41 95.73

Table 6.2: Eval-B Analysis of the 1920 sentences in section 00 for each of the variants.

Shown are number of valid sentences parsed, Precision, Recall, F1-score and Tagging

Accuracy.

To gauge the difficulty of learning each of the variants described in this

section, the Berkeley Parser (Petrov et al., 2006) was trained on each variant,
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as well as the original Noun Phrase augmented version of the Penn Treebank

(Vadas and Curran, 2007).

Since EVAL-B is calculated based on the number of correct constituency

claims, the results shown in Table 6.2, are not directly comparable, as each

variant results in a different number of brackets and labels. For the purpose

of ensuring the task has not become substantially harder with the additional

nested named entity nodes, we do compare performance, since it offers us

assurance of the similar overall complexity of the task. We find that learning the

more complex annotations does seem to be more difficult, but not substantially

so.

Furthermore, since the number of unique labels is approximately steady

between variants (other than JOINT), we cannot draw any conclusions about

the impact of label sparsity on parser performance.

To judge the added complexity of the syntactic changes introduced into the

corpus discussed in Section 5, a merged corpus was created (using the LOW

variant), then stripped of all NE labels, thereby creating a corpus that only

included syntactic labels. This too was trained and tested using the Berkeley

Parser.

We expect to see a difference between the HIGH and LOW variants with

respect to whether the syntactic structure or nested named entity structure is

able to be learnt better. Notably, the absence of grandparent features in the

Berkeley Parser means that the addition of intermediate nodes between the NE

labels and tokens in the HIGH variant, and between the syntactic node labels

and tokens in the LOW variant, would make NNE and syntax difficult to learn,

respectively.

The LOW variant appears to be a good strategy for learning the combined

NNE and syntactic structures. It offers a good balance between maintaining

a small label set and ensuring that difficult NE label decisions are made with
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direct token features visible. It is interesting to note the difference between

the LOW and POSLOW variant performance, even though the numbers are

not directly comparable. The performance discrepancy between LOW and

POSLOW gives credence to the expectation that the token itself, rather than the

POS, is vital in making correct NE decisions.

The tagging accuracy of JOINT is lower than the other variants, but perform-

ance is still comparable, which is of particular interest if a more straightforward

implementation is desirable.

6.3.2 How well does a combined model learn syntax?

In order to test the effects of different variants on learning the syntactic structure

only, and thereby obtain directly comparable numbers, we conducted the same

experiments from Section 6.3.1 again, recalculated using only the syntactic or

nested named entity labels. These experiments were run to test only the model’s

results on the syntactic or nested named entity component of our combined

corpus.

In one experiment, all NE labels were removed from the resulting dev and

test data, and results when only considering the remaining syntactic structure

were calculated. These are seen in Table 6.3.

These ‘syntax only’ results were straightforward to obtain for the HIGH,

LOW, POSLOW and JOINT variants, as the entity labels could simply be ex-

cluded. The SUB and SUB LAYER variants, however, had already substituted

out some of these syntactic labels for the named entity ones. For each NE label

in these variants, instead of removing that node, we use the most common

syntactic label for that combination of token, NE label and parent’s label, or

purely NE as a backoff.

The process for reinserting these NE labels has quite good coverage over

the tokens needed in the dev and test set, but there are some ambiguous or
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Variant Valid Sent. P R F

pure ptb 1916 90.39 89.86 90.12

syntax only 1917 90.27 88.98 89.62

HIGH 1915 89.95 88.74 89.34

LOW 1914 90.63 89.29 89.96

POSLOW 1918 89.41 88.88 89.14

JOINT 1918 89.26 88.82 89.04

SUB 1915 89.40 88.89 89.14

SUB LAYER 1918 90.00 88.78 89.38

Table 6.3: Eval-B Analysis of the 1920 sentences in section 00 for each of the variants

when evaluated only on syntactic components of their output.

unknown nodes for which we cannot recover a correct label. Between the dev

and test sets, there were 160 unique tokens which were found to be ambiguous

given their NE and parent context. Slightly more than half of these (82) were

found to be only rarely ambiguous. That is, they either occur fewer than 3 times

in total, or more than 90% of occurrences in a given context are predictable.

These cases represent a combination of annotation errors in syntactic labels, or

infrequent occurrences that would not substantially reduce our performance.

The remaining 78 tokens were found to be genuinely ambiguous and frequently

occurring, and thus will affect the performance in this syntactic metric, though

not in the actual combined parsing task. Examples of these ambiguous tokens

include three, which is consistently annotated as a CARDINAL, but has am-

biguous syntactic labels CD (48 times) and NNP (11 times). Similarly, yen is

consistently annotated as UNIT, but should have syntactic labels NN (173 times)

or NNS (196 times). later is labelled REL, but should be given syntactic label RB,

JJ, RBR or JJR . Adding additional parent information does not disambiguate

the instances; when occurring with a parent with label DATE, the node should
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have as POS: RB (70 times), RBR (17 times), JJ (5 times), and JJR (1 time). Unfor-

tunately, there is no way to correctly make these decisions given only the output

of the SUB or SUB LAYER variant trained model, and so we must consider the

results of syntax only analysis with the knowledge that they do not represent

how well the SUB and SUB LAYER models have learnt the structure. They do,

however, offer a lower bound on performance that can be directly compared to

other variants’ models.

A parsing model was also trained on a syntactic-only version of the LOW

variant. The difference between this result and our other syntax only results

demonstrates the additional difficulty involved in learning a variant with both

syntactic and nested named entity labels.

Looking at the LOW and POSLOW variants in more detail, we see that on

the syntactic component only, POSLOW outperforms the model trained on

LOW. This is in line with our prediction that by not deciding on NE labels with

token information visible, the models cannot predict NE labels and structure

accurately. This would, however, not affect the syntactic component specifically,

and indeed we see that the syntactic component of POSLOW is higher than

LOW.

The results for the SUB variant are lower than the syntax only variant and

the HIGH variant, reflecting the fact that these model did not learn the syntactic

equivalent of the NE substructure, since it had been substituted out by NE

labels. As expected, the SUB LAYER model performed slightly stronger, due

in part to the fact that more of the original syntactic labels, (e.g. NP layers) are

preserved and learnt by models trained on this variant.

To investigate to what extent the bracketing changes in our merged corpus,

specifically changes to PP attachment, make the corpus more difficult to learn,

we trained and tested the syntactic only component of a version of the LOW

variant which excluded any PP changes, the results of which are in Table 6.4.
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We found that recall and precision improved only a small amount, and scores

were still below pure PTB scores though higher than the syntax only variant. It

is, therefore, not the potential inconsistency in changing the analysis of PPs that

include nested named entities, but not changing other PPs that is impacting

on our performance, but rather, that the combined task of NNE and syntactic

parsing is a more challenging task.

Variant Valid P R F

pure PTB 1916 90.86 90.36 90.61

syntax only 1917 90.27 88.98 89.62

JOINT 1918 89.26 88.82 89.04

JOINT no PP 1918 90.29 89.46 89.87

Table 6.4: Eval-B Analysis of Syntax only versions from JOINT in Section 00 for a

model trained only on syntactic output of the JOINT variant, a model trained on JOINT

and evaluated only on the syntactic component of the output, and a model trained

and tested only on the syntactic component of the JOINT variant that excludes all PP

changes.

6.3.3 How well does a combined model learn nested named

entity structure?

Similar to the ‘syntax only’ analysis in Table 6.3, in order to assess how well

the models learn the nested named entity structure, we also evaluate only over

these labels by removing all syntactic structure. We ran two sets of experiments

here, one where all syntactic labels and POS tags were removed from the test

data, replacing all POS tags with the label ‘O’. These results are shown in the

first three columns of Table 6.5
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Variant
‘O’ and Entities POS and Entities

P R F Tag Acc P R F Tag Acc

Entity only 91.48 77.50 83.91 96.84 91.35 77.62 83.93 93.38

HIGH 78.85 70.86 74.64 96.82 78.90 70.88 74.68 93.87

LOW 90.56 79.73 84.80 98.38 90.57 79.74 84.81 95.59

POSLOW 79.44 73.72 76.47 96.61 79.45 73.72 76.48 93.67

JOINT 89.83 86.47 88.12 98.25 89.85 86.47 88.13 95.38

SUB 89.56 86.83 88.17 98.24 89.59 86.88 88.21 95.46

SUB LAYER 89.51 84.53 86.95 98.44 89.54 84.53 86.96 95.73

Table 6.5: Eval-B Analysis (Precision, Recall and F1-score) and Tagging Accuracy of

Entities only over section 00 using the label ‘O’ all for non-entities, or using POS tags

for non-entities, and tagging accuracy for each model.

The other experiment had a similar setup, with all syntactic labels other

than POS tags being removed. The results for this nested named entity and

POS analysis are shown in the last three columns of Table 6.5.

6.3.4 Discussion

When considering the results outlined in Section 6.3, it is important to keep in

mind what can and cannot be directly compared. In many respects, the Gold

Standard of each variant is a moving target. The HIGH and LOW variants have,

as a raw count, many more nodes than the SUB variant.

The results of these experiments remain largely inconclusive when con-

sidered in the context of selecting one substantially superior variant. They

do, however, validate our hypothesis that the HIGH variant will perform bet-

ter that LOW on a purely syntactic evaluation, and that the LOW variant will

outperform HIGH when evaluating on NNEs.
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As expected, the HIGH variant outperforms the LOW variant when eval-

uating purely on syntactic structure. By adding NNE structure between the

token and its POS, or additional syntactic label structure, we are making those

syntactic decisions more difficult.

Likewise, the HIGH variant does not perform well when evaluated only

on the NE structure. In this variant, the POS and syntactic labels interleave

between the token and the NE layer to be labelled. Since the parser used has no

‘grandparent features’, this interleaving means that the token itself cannot be

seen when making a named entity label decision.

Corroborating this hypothesis is the performance of our POSLOW variant,

which outperforms the LOW variant on syntactic evaluation but is beaten by

HIGH, and which similarly outperforms HIGH on NNE only evaluation but is

beaten by LOW.

Of particular note are the substantial improvement in NNE only evaluation

in our JOINT, SUB and SUB LAYER variants when compared to the HIGH,

LOW and POSLOW. These imply that these variants, which either replace POS

tags or augment them, learn a much more accurate model of the structure of

the nested named entities.

6.3.5 Error Analysis: a more meaningful metric

Although F1-score is the standard metric through which parser performance

is measured, it does not offer much insight into the linguistic nature of parser

errors. Further, as discussed in Section 6.3.1, the different numbers of brackets

in the gold standards for each of our variants mean we cannot directly compare

F1-score results. A more useful metric for our experiments is a detailed analysis

of errors.

We follow the error analysis of Kummerfeld et al. (2012), who propose

specific classifications of linguistically meaningful types of errors. This error
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analysis method uses tree transformations to classify different linguistic types

of parser errors. The system identifies the shortest path from the system output

to the gold-standard tree using individual tree transformations as each step.

The resulting metric is a measure of the amount of subtree movement, node

creation and node deletion that is required to fix each parse tree error. These

transformations are then classified into one of several specific error types.

This analysis allows us to further analyse the causes of the drop in perform-

ance in our models, and allow us to compare errors caused by each different

variant. This error analysis augments the precision, recall and F1-score statist-

ics in Tables 6.2, 6.3 and 6.5, which do not provide linguistically meaningful

intuition for the source of the errors.

Much like the analysis in Table 6.3, in order to evaluate only on comparable

output, we train our models (HIGH, LOW, POSLOW, JOINT, SUB, SUB LAYER)

and then remove all non-syntactic nodes and labels from our data, leaving only

POS tags and syntactic node labels. We follow the same process described

in Section 6.3.2 to create a syntax only version of the SUB and SUB LAYER

variants. We compare these to two base variants: one trained and tested directly

on the Penn Treebank, (‘pure PTB’), and another trained on only the syntactic

component of output from our LOW merged variant.

Kummerfeld et al. (2012) split the errors into the following categories, and

report both the number of individual errors of each type as well as the number

of nodes affected by each type of error.

PP Attachment in which the transformation involved in correcting an error

included moving a Prepositional Phrase, or the incorrect bracket is a PP.

NP Attachment in which NPs had to be moved to correct an error.
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Figure 6.11: Error type breakdown over section 00 for pure PTB, a model trained only

on the syntactic output of the LOW variant, and each of our variants. The most frequent

error types are discussed below.

Modifier Attachment in which adjectives and adverbs are incorrectly placed.

This also includes errors corrected by subtree movement or by creation of

a node.

Clause Attachment in which an S node must be moved.

Unary in which unary productions are not linked to a nearby error such as a

matching additional node, or a missing node.

Coordination in which a conjunction is an immediate sibling of a node that is

moved, or is the left- or rightmost node that is moved.

NP Internal Structure in which NP internals such as ADJP, NX, NAC or QP is

incorrect, or our nested named entity structure, including added NML.
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Figure 6.12: Total number of nodes affected by errors, by type, in section 00, for pure

PTB, a model trained only on the syntactic output of the LOW variant, and each of our

variants.

Different label in which a node has the correct span of children, but the incor-

rect label.

This prevents having this label error classed as two separate errors: one

extra label and one missing label. Note that Different label applies to cases

where a non-terminal span exists in both the gold and parsed data, but

with different labels, and as such, does not include POS errors.

Figures 6.11 and 6.12 show the numbers of errors of different types in each

of our models. Comparing to a model trained directly on the PTB, (‘pure PTB’

in figures 6.11 and 6.12), our models do have more errors, but not unexpectedly

or disproportionately so. We further found that, overall, our models are more or

less comparable to one another, with no single model performing substantially

worse than others.

In Figure 6.11, comparing the pure PTB variant to a model trained and tested

only on the syntactic component of our merged LOW variant, we can see that

more errors occur in our processed model, especially errors of a Different Label,
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Single Word Phrases and Unary rule types (317 vs. 399, 439 vs. 580, and 360 vs.

449 respectively).

When looking to minimise errors, the LOW variant outperforms our other

variants, including the ‘syntax only’ variant, producing more than 200 fewer

errors compared to the other models trained with nested named entity informa-

tion. The SUB variant also performs strongly, but is hampered by a substantial

increase in labelling errors. This is in large part due to the fact that we are not

evaluating directly on the produced labels, since in creating the SUB and SUB

LAYER variants we substitute our NE labels over the syntactic node labels, and

these are statistically regenerated for this evaluation, as described in 6.3.2.

np
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Figure 6.13: Process for evaluating SUB and SUB LAYER variants.

Specifically, when adding syntactic node labels back into the tree for evalu-

ation, the only information that we have to make these decisions is the nested

named entity label that the original label was substituted by. That means that

all PER nodes are replaced, for example, with NP nodes. In more complicated

structures however, for example TIMEX or NUMEX structures, the substitution

isn’t always as clear cut. Take the example of DATE, which is frequently applied

to nodes with label PP (e.g. ‘from 1986 to 1988’), ADVP (e.g. ‘a year earlier’),

NP (e.g. ‘the first week of March’) and NML. All of these would be given the

syntactic category that was most frequent in the training corpus. With this in

mind, the larger numbers of error on Different Label is quite understandable,
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and does not necessarily represent a decrease in label quality in the combined

syntactic NNE model.

We also look in more detail at POS and syntactic label confusion in each

model, the results of which can be seen in Figure 6.14. The chart shows the

number of POS or syntactic label confusion for each of the models. The 30

most frequently occurring types of confusion occurring in the ‘pure PTB’ model

are shown, as well as the ‘long tail’ of errors, amalgamated into one ‘Other’

category.
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Figure 6.14: POS and phrase label error confusion for each model in section 00. Shows

the individual 30 most frequent incorrect (gold to ‘found’) POS or phrase label errors

in section 00, and ‘other’ category showing length of long tail.

Interestingly, despite the additional step of adding POS and syntactic labels

back into the SUB and SUB LAYER variants, they outperform all other variants,

and the ‘pure PTB’, in minimising label errors. Overall, the specific category

results are not particularly surprising. SUB and SUB LAYER reduce the num-

bers of errors in most categories by a small margin, with more substantial

improvements in correctly labelling nodes as RB rather than IN or JJ . Some of
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Sentences Bracketing Compl. Avg No 2 or less Tagging

Len Valid P R F Match cross. cross. cross. accuracy

SUB 2415 83.73 87.84 85.73 0.00 0.95 64.60 87.12 95.64

Table 6.6: Eval-B Analysis of SUB LAYER variant over 2415 sentences in Section 23.

these specific category differences can, however, be explained in part by the

frequency-based method used to reinsert missing syntactic labels and POS tags.

For instance, the SUB variant makes far fewer errors of NN incorrectly labelled

as NNP than other models. It does, however, make a considerable number of

errors where NNP is mislabelled as NN . That is, it is favouring NN over NNP

in a number of cases, which reduces some but increases other errors.

We conclude that the SUB variant best encapsulates the data. It offers the

best balance of strong performance both on syntactic and nested named entity

evaluation. From a linguistic point of view, the SUB variant best represents

the underlying grammar of named entities. Specifically, named entities, in

many cases especially NUMEX and TIMEX expressions, do not always follow

standard grammatical rules, but instead have different, systematic and regular

structures. By encoding these entity specific grammars directly into the one

grammatical model, we can improve the linguistic integrity of our data without

facing a large penalty on performance.

The results of the SUB variant on section 23 can be seen in Table 6.6.

6.4 Summary

This chapter introduced a number of different ways to combine compatible

nested named entity annotations to syntactic constituents, and evaluated the

impacts of each of these variants on the task of parsing. We used the Berkeley

Parser (Petrov et al., 2006), a standard syntactic parser, to learn the combined
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task of syntactic and semantic named entity parsing, without the introduction

of any specialised NER features, and found very promising results.

While we found that the changes made to the syntactic constituents as part

of the merging procedure described in Chapter 5 did increase the difficulty of

the corpus, as did the introduction of these additional NER nodes, the Berkeley

parser was able to reliably learn these models. By evaluating further on only

the syntactic or NER component of the joint model, we found that the syntactic

structure improved the accuracy of predicting named entity structure, show-

ing that syntax is useful in NER. Further error analysis explored the impact

different variants had on both learning NER components and various syntactic

components, and we found that a number of different variants perform well on

both subtasks.

We have thus shown that combined syntactic constituents and named en-

tity structure can be reliably learnt using existing systems. The next concept

to explore is how well NER systems, with features specific to named entity

recognition, perform on the task of structured named entity recognition.



7 Recognising Nested Entities

In the previous chapter, we explored how well a standard constituency parser

can learn nested named entity structures, finding that these structures can be

reliably learnt. In this chapter, we consider the inverse proposition: how well

can a standard named entity recognition system learn structured entities. To do

this, we must first devise a number of different projections of these structured

entities into flat individual labels.

7.1 NER background

We first give a background of NER methods used to learn nested NE structure

from our dataset, with specific note of evaluation metrics, and methods used

by the C&C NER tagger (Curran and Clark, 2003b) and the state of the art

LIBSCHWA NER system (Dawborn, 2015) which we use in our experiments.

Extensive literature on the subject of NER exists (see Sekine and Ranchhod

(2009); Nadeau and Sekine (2007); Tjong Kim Sang (2002); Chinchor (1998) for

a review). The main approaches fall into three categories: hand-crafted, ma-

chine learning and hybrid systems. Hand-crafted approaches involve manually

created rules, and use gazetteers. These approaches are very labour intensive,

requiring experts in the target domain. Machine learning methods predomin-

antly train supervised models on annotated training corpora to infer the lexical,

orthographic, syntactic and contextual features associated with named entities.

216
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For English, a number of datasets exist which can be used for this purpose,

discussed in Section 2.3.

Particularly challenging aspects of the task include semantic ambiguities

such as abbreviations, nicknames and nested expressions. These can be allevi-

ated by world knowledge sources such as gazetteers, but these are prohibitively

expensive to continually update to ensure coverage.

Various methods of detecting named entities have been developed, includ-

ing semantic, syntactic and statistical approaches. McDonald (1996) first intro-

duced the concept of internal evidence (word-level features such as InitialCaps,

or “Ltd." within an ORG entity) and external evidence (evidence gathered from

context, e.g. titles such as “Dr.” or “Mrs.” before a PER element), and various

early systems utilised these linguistic cues in manually-constructed rules. As

the area developed, particularly with the release of large annotated corpora,

statistical machine learning tools gained more popularity. In these approaches, a

system learns patterns from an annotated training corpus, allowing it to predict

the most likely NE in a given context. Given appropriate training texts, a single

machine-learning system may easily be applied to varying languages, domains

and classification schemes.

In 1999, Bikel et al. suggested that each entity class can be described by its

own language, and constructed an NER system using class-specific Hidden

Markov Models, which are dependent on having previously seen patterns.

7.1.1 Machine Learning Approaches to NER

By CoNLL 2002 and 2003, the focus of NER was shifting to cross-domain

modelling which required more complex detection than manually-constructed

pattern-matching could allow for. Various machine learning techniques were

applied, such as AdaBoost (Carreras et al., 2003), Maximum Entropy Modelling

(Tjong Kim Sang and De Meulder, 2003) and Conditional Random Fields (CRFs)
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(McCallum and Li, 2003). The most successful ensemble learner at CoNLL-

2003 combined the classification decisions of a number of machine learning

techniques (robust linear classifier, maximum entropy, transformation-based

learning and Hidden Markov Model). Florian et al. (2003), attained strong

performance without using gazetteers or other additional training resources,

reporting 91.6% F-score on the development set (no result reported for test).

The results of the CoNLL 2002 shared task showed that whilst choosing

an appropriate machine learning technique affected performance, “the choice

of features is at least as important." (Tjong Kim Sang, 2002) It became clear

that the success of machine learning for NER was not simply dependent on

the strategy used, but rather, on the training data and feature sets which were

incorporated into system design. The most common features that each NE sys-

tem in CoNLL 2003 used were the creation of neighbouring n-grams, POS-tags,

affixes, capitalisation patterns and gazetteers (Tjong Kim Sang and De Meulder,

2003). More contextual features were also used, including using features such

as capitalisation patterns, possible expansions of acronyms and NE classes

assigned to previous occurrences of terms seen elsewhere in the training data.

One high-scoring system distinguished itself by using character-based as well

as lexical models (Klein et al., 2003); another utilised the global context of the

document as well as local features of a particular word (Chieu and Ng, 2003).

The overall results of the task showed that a number of systems could achieve

good results (see Table 7.1).

Curran and Clark (2003b) introduced a maximum entropy NER tagger.

The NER tagger is built on previous work from Curran and Clark (2003a) on

training CCG supertaggers, adding specific NER features. The system uses a

large variety of features, and uses Gaussian smoothing, which allows a large

number of sparse but informative features to be used without overfitting.
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statistic English German

baseline 59.6 30.3

median 84.2 67.9

maximum 88.8 72.4

Table 7.1: Baseline, median and maximum F1-score for the 16 entrants in the CoNLL

2003 shared tasks in English and German (Tjong Kim Sang and De Meulder, 2003).

The near state of the art results of Collobert et al. (2011) suggest that deep

learning approaches such as semi-supervised representation learning can help

remove the need for extensive feature engineering.

7.1.2 State of the Art performance in English NER

Three main publicly available NER systems are currently state of the art: the

Stanford NER system (Finkel et al., 2005), the University of Illinois’ Named

Entity Tagger (Ratinov and Roth, 2009), and the LIBSCHWA NER system (Daw-

born and Curran, 2014; Dawborn, 2015) from the University of Sydney. The

performance of these three systems on the OntoNotes 5 corpus is shown in

Table 7.2.

The Stanford NER system (Finkel et al., 2005), also known as CRFClassifier,

is distributed as part of the CoreNLP suite of NLP tools. It uses a conditional ran-

dom field with L-BFGS (Nocedal and Wright, 1999) for numerical optimisation.

The Illinois Named Entity Tagger (Ratinov and Roth, 2009) uses regularised

averaged perceptron (Freund and Schapire, 1999) and beam search for decoding.

The libschwa NER system utilises document structure annotations using

DOCREP (Dawborn, 2015). Similar to the Stanford NER system, it also uses a

linear chain CRF and L-BFGS (Nocedal and Wright, 1999) for numerical optim-

isation. The libschwa NER system is discussed in more detail in Chapter 7.4.1.
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System dev test
Illinois 2.8.2 82.32 84.00
Stanford 2015-01-30 81.93 84.51
LIBSCHWA 84.12 85.98

Table 7.2: Performance of NER systems outlined in Section 7.1.2 on the OntoNotes 5
English splits proposed by Passos et al. (2014). LIBSCHWA NER numbers from Daw-
born (2015).

7.1.3 Unsupervised and Distantly Supervised Approaches

Rössler (2004) uses a form of lexical bootstrapping, statistically deriving words

to be used as cues from a small annotated corpus. They describe three levels for

detecting NEs.

Firstly, on the local level they observe a single occurrence of a word form in

context and the semantic label assigned to it. The deliberate meaning of a word

form (i.e. the semantic label) is unambiguous, excluding intended ambiguity

aiming at comedic or poetic effect. Some of the word forms occur in predictive

contexts and can be tagged with NE labels with high reliability.

Secondly, on the discourse level all occurrences of a word form with a

text unit are observed, along with the semantic labels assigned to them (Gale

et al., 1992). A word sense located on the discourse level can be seen to have

a strong one-sense-per-discourse tendency whereby various occurrences of a

polysemous word will tend to belong to the same semantic class within one

discourse. Rössler found that in the complete CoNLL 2003 the ‘one-sense-

per-discourse’ was accurate on 93.5% of the data. They further found that

word forms tagged with different labels within the single discourse were most

often found to consist partially of locations (e.g. “Deutsche Bank"), people (e.g.

“Phillip Morris") or regular nouns (e.g. “Sport Factory"), indicating that this

token level ambiguity would potentially constitute a considerable source of

error. This is strong evidence for the importance of nested named entities.



Chapter 7. Recognising Nested Entities 221

Thirdly, on the corpus level all the occurrences of a word form within all

the texts available for the application were observed. The larger the corpus,

the more likely a particular word form was seen as a member of two or more

semantic classes.

Another unsupervised approach by Etzioni et al. (2005) combines NE lists

with disambiguation rules. An advanced system of generating lists of named

entities for a class ‘X’ searches the web for phrases like “X , such as [ Y ]” and

attempts to find lists of items ‘Y’. Nadeau et al. (2006) use similar automatically-

acquired lists for marking entities in texts, along with unsupervised means

of disambiguating entity-noun ambiguity, entity-entity ambiguity, and entity

boundaries. Using only their web-derived lists and some language-independent

algorithms, their system outperformed the MUC-7 baseline, but could not

compete with its top entrants.

Chiticariu et al. (2013) and others continue to argue in support of rule-based

approaches, in large part due to precision, introspection and the fast selective

adaptation of rules for new domains and types. While rule-based information

extraction systems are widely regarded as dead-end technology by academia,

they remain used in the commercial world. Chiticariu et al. (2013) argue that

this disconnect stems from the discrepancy between how the two communities

measure the benefits and costs of IE, as well as academia’s perception that

rulebased IE is ‘devoid of research challenges’.

7.1.4 Gazetteers

External resources such as gazetteers have been used extensively in NER sys-

tems to varying extents (Tjong Kim Sang, 2002; Florian et al., 2003; Tjong

Kim Sang and De Meulder, 2003), specifically aiming to provide robustness

against unseen entities. Gazetteers are, however, costly to produce and main-

tain, and many quickly become obsolete.
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Krupka and Hausman (1998) show that there is very little performance

loss when reducing 25,000 gazetteer entries to 9,000, and conversely show a

dramatic improvement with a selection of 42. Mikheev et al.’s (1999) system

was also tested with and without supplementary gazetteers, finding that not

using the gazetteer gave only a small reduction in ORG and PER class accuracy,

but significantly worsened performance for LOC (from 6% to 40%). Mikheev

et al. (1999) argue against the necessity of gazetteers, pointing out that using list-

lookup techniques require gazetteers to be enormous and constantly updated

to cover naming variations, and cannot avoid ambiguity with common nouns

and between entities. These issues with the use of gazetteers seem to stem from

two main problems: gazetteer coverage and entity-entity ambiguity.

Rössler (2004) avoid limitations associated with the use of gazetteers and

other handcrafted rules by using a knowledge-poor approach, refraining from

using any additional linguistic tools such as a morphological analyser or POS-

tagger, any handcrafted linguistic resources such as dictionaries, or any hand-

crafted knowledge providing lists, such as gazetteers, lists of NEs or lists of

trigger words. They use a second order Markov model trained on a compar-

atively small annotated corpus (100,000 tokens annotated by a single student)

and statistically generate a list of words providing evidence for NNEs.

More recently, Lin and Wu (2009) and Tkachenko and Simanovsky (2012)

explored the use of word and phrase clusters as a substitute for a gazetteer.

7.1.5 Evaluating NER

Evaluating various NER methods in detail poses various problems. Many cat-

egories of ambiguity make it difficult to establish an appropriate evaluation

metric (Nadeau and Sekine, 2007). The output of NER methods may differ

from the annotation of various corpora it can be tested against in several crucial

aspects including granularity, extent and markup, making it difficult to com-
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pare different methods. Firstly, the use of different classes of named entities,

or different granularities (e.g., organisation is often split into ‘company’, ‘uni-

versity’, ‘government’ etc.) can effect results. Different annotations schemes

may mark-up the extent of a NE differently: e.g., a person name may or may

not include a function and a title (‘President George Bush’ vs. ‘George Bush’).

Furthermore, the markup of the corpus may be textually oriented (e.g., as

XML tags) while the output of other grammars may be in the form of semantic

structures. Differences such as these often arise because existing corpora and

annotation schemes are developed for different purposes and are re-used, or

the output structure of the grammar may be changed after corpora have been

annotated. These differences pose various challenges for testing and evaluating

NER methods with respect to a corpus, since a NE may be recognised correctly

according to the intentions of one grammar, but may be annotated differently

in the corpus.

Some NER evaluation metrics convert entities into a sequence tagging prob-

lem, using a specific encoding. BIO encoding, Ramshaw and Marcus (1995),

adds a label to each tag that indicates whether it is at the beginning (B), inside (I)

or outside (O) of an entity. In this way, consecutive entities of the same type are

identified as separate entities. Other encodings exist, such as BMEWO (begin-

ning, middle, end, single word, outside). Sang and Veenstra (1999) experiment

with using various different encodings within the NE tagger.

MUC (Chinchor, 1998) equally awarded achieving a match on TYPE, where

an entity’s class is identified with at least one boundary matching, and TEXT,

where an entity’s boundaries are precisely delimited, irrespective of the classi-

fication assigned. This equal weighting is unrealistic, as some boundary errors

are highly significant, while others are relatively arbitrary.

CoNLL 2003 only awarded exact phrasal matches, ignoring boundary is-

sues entirely. Manning (2006) claims that this evaluation method is biased
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towards systems which leave entries with ambiguous boundaries untagged,

since boundary errors amount to both false positives (where an entity is tagged

which is not marked up in the gold-standard annotation) and false negatives

(where an entity tagged in the gold-standard data is not matched).

Tsai et al. (2006) explore a number of approaches to evaluating NER, includ-

ing relaxing entity boundary requirements by matching only the left or right

boundary, having any tag overlap, or incorporating a more semantically based

matching method or per-token measures.

In 2003, Bering et al. developed a diagnostic and evaluation tool (jTaCo)

which allows user-defined mappings between different NE classes, for con-

trolled partial overlap between recognised and annotated NEs, and supports

user-defined mappings between text-based and semantically-based annota-

tions and output structures. This is not widely used however, due to various

limitations and low up-take.

The difficulties in evaluating NER are unresolved, and results reported

using different evaluation methods are incomparable. In order to evaluate

NER accurately, annotation schemes must be closely evaluated and, in many

instances, remapped for recall, precision and F1-score.

7.2 Nested Named Entity Recognition

An extensive body of work exists on named entity recognition, but comparat-

ively little of it focuses on nested structures. This is primarily due to the relative

scarcity of corpora annotated with nested NE structure, limiting most work in

the field to the biomedical domain (GENIA), or languages other than English

(Carreras et al. (2003) in Spanish and Catalan, and Fu and Fu (2012) in Chinese).

Section 2.4 outlined a number of corpora which contain nested structures,

work on which will be discussed below.
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7.2.1 Nested NER in non-English, and other domains

In the biomedical domain, early work on the GENIA corpus only focused on

the innermost entities, rather than the full nested structures. In 2004, Zhang

et al. (2004) and Zhou et al. (2004) developed methods of capturing the nested,

or ‘cascading’, structure of GENIA entities. Zhou et al. (2004) develop a pattern-

based post-processing for cascaded entity name resolution, identifying six

patterns, extracted from the cascaded entity names in the GENIA training data.

The pattern-based post-processing was found to be successful for identifying

cascaded entities, improving overall F1-score by 3.9 %.

Zhang et al. (2004) build on this post-processing rule-based cascading re-

cognition approach, comparing it to a a Hidden Markov Models (HMM) with

back-off modeling and cascaded recognition, which used one HMM to identify

short, embedded entities, and another HMM model to iteratively extend these

short entities, capturing the nesting. They found the post-processing rule-based

approach performed slightly better than the HMM-based approach, achieving

66.5% F1-score, compared to 64.2% F1-score.

Gu (2006) approach the task of recognising nested named entities as a binary

classification problem, and solve it using Support Vector Machines (SVM).

Though the PKU corpus (Fu and Luke, 2005) (see Section 2.4.5) contains entities

with up to four layers of nesting, Gu elect to simplify the task to only consider

a single level of nested entities. This allows them to reformulate the task as a

dual-layer cascaded chunking task on a sequence of words. For each token in a

nested NE, two schemes are used for classification. For the outer layer of entities,

they use what they describe as the “traditional BIO tagset”, though expand

on this with explanation that ‘B’ indicates the token is at the beginning of a

multi-token entity, ‘I’ denoting the middle or the end of a multi-token named

entity, and ‘O’ denoting “that the token is an independent NE by itself”, which
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is inconsistent with the more commonly used ‘O’ being outside an entity. They

also present a new encoding method for embedded entities: BIO-E, adding ‘E’

for the end of a multi-token embedded NE, ‘M’ for the middle of a multi-token

NE and modifying ‘I’ to indicate the second token of a multi-token embedded

entity. Gu (2006) report separate P, R and F1-score for the outer layer of entities

and the single layer of embedded entities.

Alex et al. (2007) develop a variety of techniques for identifying nested

NEs on the GENIA corpus, comparing a layering conditional random field

(CRF) approach, a cascading approach and a joined label tagging approach,

with all approaches aiming to reduce the nested NER problem down to one

or more flat ‘BIO’ problems that can be solved with existing NER tools. The

layering method involves each level of nesting being modelled as a separate

BIO problem, and the output being combined. This can work either with an

inside-out or outside-in direction of layering, with the former identifying the

innermost entities, then second-level entities, and so on. For outside-in layering,

the outermost entities would be identified by the first CRF, with subsequent

layers identifying increasingly embedded entities.

The joined labeling approach reduced the nested labels to one tagging prob-

lem by concatenating all BIO tags of all levels of nesting. This method involves

a substantially expanded label set, which led to data sparsity issues. The cascad-

ing method similarly splits the task into several BIO problems, specifically by

grouping entity types and training separate models for each group. Each CRF

is applied in a specific order, allowing each to use features from the previously

identified entities. One limitation of the cascading method is that it cannot

capture nested entities of the same type since each entity-specific model is run

only once, and these nested entities of the same type are not an infrequent

occurrence in the data. Nevertheless, the cascading method performed most

strongly on the data. A Dual-layer CRF approach has more recently been used
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in Chinese nested named entity recognition (Fu and Fu, 2012) with promising

results.

Byrne (2007) investigate nested named entities in historical archive text,

drawing from a dataset of 9,768 written notes, of which approximately 30%

are grammatical English sentences (see Section 2.4.6). 9.4% of approximately

27,500 entities were found to have nesting. The method proposed in Byrne

(2007) uses a specific length of token window, and concatenates tokens such

that each nested entity string has its own separate label. That is, given the

example when Edinburgh University Library was ..., each individual token would

be considered, in addition to concatenations of consecutive tokens of length two

(when_Edinburgh, Edinburgh_University ...), three (when_Edinburgh_University, Ed-

inburgh_University_was, ...) and so on, up to a maximum entity length, decided

in advance. This presents a novel way of representing structured data without

needing to expand the tagset, though it does substantially increases the number

of tokens, thereby increasing the time taken for training the classifier, and also

removes the ability to capture entities of more than a specific length. (In the

experiments, token length of 6 was chosen, which captured 97.1% of entities

in the data.) The now-flattened data was trained with the C&C NER tagger

(Curran and Clark, 2003c).

The SemEval 2007 Task 9, (Màrquez et al., 2007), Multilevel Semantic An-

notation of Catalan and Spanish, included a nested NER subtask in addition

to noun sense disambiguation and semantic role labeling, using data from

AnCora. Only two teams participated, one of which did not specifically attempt

the nested NER task, ignoring all weak entities, which are those that would

have contained nesting. The other team, Màrquez et al. (2007), presented a

system that used a pipeline of two classifiers trained with a multiclass Ad-

aBoost algorithm, running the second over phrases of the parse tree which,
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syntactically, could be an entity, thus identifying a maximum of only two levels

of nesting.

Finkel and Manning (2009a) present a method of parsing nested named

entities using a discriminative constituency parser. By including the nested

structure of embedded entities, their model allows entities to be influenced not

just by the labels of surrounding tokens, as in a standard CRF, but additionally

by embedded entities. They represent each sentence as a constituency tree

where named entities correspond to a phrase level node, all joined by an S node

which joins the sentence components. Finkel and Manning also include POS

tags as preterminal nodes, and the tokens themselves as leaf nodes, though no

other syntactic structure is included. Each node is labelled with both its parent

and grandparent labels, allowing the learnt model to capture the structural

nesting of entities. Trees are binarised in a right-branching manner before

features are generated, which has the disadvantage of removing the distinction

between genuinely right-branching structures and actual flat structures, similar

to that discussed in Section 2.2.1.

Building on the technique outlined in Finkel et al. (2008), Finkel and Man-

ning (2009a) train the nested NER model using a discriminatively trained,

conditional random field-based, CRF-CFG parser, similar to a chart-based

PCFG parser. They add local named entity features (e.g. word, label, shape

combinations), pairwise named entity features (over labels for adjacent words),

embedded named entity features, as well as whole entity, local POS and joint

NE and POS features. Their model outperformed a flat semi-CRF parser on

both top-level entities and all entities over the GENIA corpus. They also run

similar experiments on the AnCora corpora, achieving promising results, and

finding that modeling nested entities does not, on average, reduce performance

when evaluating solely on outermost entities.
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7.2.2 Joint parsing and Named Entity Recognition

More recently, research efforts have been directed at the task of joint parsing

and named entity recognition.

For named entities, the joint model should help with boundaries.
The internal structure of the named entity, and the structural context
in which it appears, can also help with determining the type of entity.
Finding the best parse for a sentence can be helped by the named
entity information in similar ways. Because named entities should
correspond to phrases, information about them should lead to better
bracketing. Also, knowing that a phrase is a named entity, and the
type of entity, may help in getting the structural context, and internal
structure, of that entity correct. (Finkel and Manning, 2009b)

Finkel and Manning (2009b) present a joint, discriminative model of parsing

and named entity recognition, using a feature-based CRF-CFG parser operat-

ing over tree structures augmented with NER information. This joint model of

parsing and NER achieves small gains on parser performance and moderate

gains on named entity performance when compared with single-task models

trained on the same data. The joint representation allows for information from

named entities to inform constituency decisions, and conversely, parse informa-

tion to improve NER decisions. In experiments on the OntoNotes corpus (Hovy

et al., 2006), (see Section 2.3.5), they report improvements of up to up to 1.36%

F1-score for parsing, and up to 9.0% F1-score for named entity recognition, over

4 entity types (Person, Organization, GPE and Misc, reduced from the original

18 categories in OntoNotes). They note, however, the small comparative size

of the OntoNotes corpus (200,000 annotated English words) compared to the

Penn Treebank. Specifically, the performance of their model trained using the

OntoNotes corpus, fell short of separate parsing and named entity models

trained on larger corpora annotated with only one type of information (Finkel

and Manning, 2010).
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Finkel and Manning (2010) builds on Finkel and Manning (2009b), which

trains on only jointly-annotated data, to incorporate larger amounts of single-

task annotated data, in order to produce a hierarchical joint model. This pro-

duces substantial gains over a joint model trained on only the jointly annotated

data. A hierarchical prior is used to link feature weights for shared features in

both single-task models and the joint model. By ensuring that the joint model

has features in common with each single-task model, even if it has additional

features which are only present in the joint model, the single-task models and

the joint model are able to influence one another via a hierarchical prior.

The hierarchical model performed better than the joint model overall, over

various sections of the OntoNotes corpus. Experiments on the smaller corpora

show the largest gains, with performance improving up to about 8% F1-score.

Other sections saw a 1% gain on both subtasks, while one section saw an

improvement in the parsing subtask, but a small performance decrease in the

NER subtask. As a general trend, they note that the hierarchical model helps

smaller datasets more than the large ones, which they credit both to lower

baselines being easier to improve upon, and due to the experiment setup, the

fact that the larger corpora had comparatively less additional singly-annotated

data to provide improvements, since that additional data was the remaining,

smaller sections of OntoNotes.

7.2.3 Evaluation of Nested Named Entity Recognition

Nested named entity recognition has been evaluated, to various extents, in

a number of different ways. Some coreference-like tasks have required the

identification of referential units at the nested named entity level, including the

KBP EDL task (Section 2.4.7), though this evaluation did not explicitly model

nested NEs and their types.
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As outlined in Section 7.2.1, many approaches to nested NER evaluation

rely on separating the evaluation into two tasks: one on the outermost entities,

and a second evaluation on embedded entities. This places an artificial limit

on the number of layers entities can be annotated with, and also impacts the

evaluation of these entities. If a system only finds the nested named entity, and

not the corresponding outermost entity, it is counted as a mistake twice - once

for a top-level entity which does not appear in the ‘correct’ top level entities,

and again for missing an embedded entity.

A better approach is for scoring to not be limited to a particular layer of

entities (e.g. only outermost layer), but to include all levels of nesting. During

scoring, all entities and their start/end offsets from the system output are

analysed. If an entity is correct, it should match the type and start/end offset

in the gold-standard data. From there, precision, recall and F1-score can be

calculated in the standard fashion, along with the numbers of true positives and

false negatives. The parsing results from the previous chapter use essentially

this approach, with the EVAL-B metric scoring each layer. In this chapter, we

use the standard CoNLL NER evaluation because we are deliberately treating it

as a flattened NER task.

7.3 Mapping structured named entities into flat tags

We explore a number of different variants of representing nested named entity

structure as a flat label. These variants capture the structure of entities to

different degrees, from only learning a flat model of either the top (TOP) or

bottom (BOTTOM) layer of annotations, to a complete full structure (STACK)

similar to the labels used in calculating inter-annotator agreement (see Figure 4.5

in Section 4.1.5). The variants are outlined below, and then evaluated using
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both a state of the art NER system (LIBSCHWA NER and DOCREP) introduced

in Section 7.1.2, and a faster system, the C&C (Curran and Clark, 2003b).

7.3.1 TOP

The TOP variant uses the highest NE label for all tokens under that node. In

Figure 7.1, Pierre and Vinken are both labelled PER, and 61, years and old are all

labelled as AGE.
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name

Vinken
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first

Pierre
per

Figure 7.1: Figure showing TOP variant of NER labels

The TOP variant has fewer entities than other variants, as shown in Table 7.3,

having some 60,000 fewer entities than any other variant. Since in the TOP

variant, all tokens below the topmost entity are included in that entity, it has

both fewer entities in total and fewer entity types. For instance, MULT or INI

do not occur in the TOP variant, since they are always contained within larger

entities.

Figure 7.1 results in two entities: [Pierre Vinken]PER and [61 years old]AGE.

The TOP variant follows a similar motivation to the standard NER task,

although in this case using fine-grained NER categories. It also differs from the

standard NER task in that many of the nesting decisions described in Chapter 3

have resulted in different spans. The largest PER span, for instance, includes

ROLE and HON tokens that are not usually included in PER entities.
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7.3.2 TOP2

We introduce the TOP2 as a compromise between the standard NER task, and

that of learning the full structure of an entity. TOP2 is one step towards full

modeling of the structure of an entity.

In the TOP2 variant, the topmost two labels (or one, if only one exists) are

projected down on each token. Pierre and Vinken are analysed as in the STACK

variant, since only two layers of entities exist between the token and the sentence

root. For the other tokens, both 61 and years have the same analysis, as shown

in Figure 7.2. They therefore end up with the same label, DURATION_AGE,

and are combined to form one entity. Since old only has one entity layer above

it, it keeps the label AGE.
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Figure 7.2: Figure showing TOP2 variant of NER labels

The TOP2 variant, therefore, has four separate entities for the example

sentence fragment: [Pierre]FIRST_PER [Vinken]NAME_PER [61 years]DURATION_AGE

[old]AGE

We expect the TOP2 variant to perform slightly worse than the TOP variant,

since the number of categories, 906, is substantially higher than the 109 cat-

egories in the TOP model. Nevertheless, it represents a step towards learning

the complete nested structure, and we anticipate it will offer a good balance of

information learnt, performance and training time.
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7.3.3 BOTTOM

The BOTTOM variant uses the closest NE labels to the token to label each token.

In Figure 7.3, we can see that Pierre is marked as FIRST, and Vinken is labelled

NAME. Similarly, 61 is marked as a CARDINAL, years is a DURATION and

old, which forms part of the larger AGE span, is marked directly as AGE. In

total, the BOTTOM variant has five separate entities for the sentence fragment

in Figure 7.3: [Pierre]FIRST [Vinken]NAME [61]CARDINAL [years]DURATION [old]AGE
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Figure 7.3: Figure showing BOTTOM variant of NER labels

BOTTOM does not capture nesting information, and consequently has very

high level of token consistency. We consequently expect the BOTTOM variant

to be the easiest to learn, since the high token consistency also reduces the issue

of span determination.

Consider the annotation:

During the [[[quarter]cardinal]duration]date, [[Delta]name]corp issued. . . .

In the BOTTOM variant, the two entities would be [quarter]CARDINAL and [Delta]NAME,

which does not capture TIMEX or CORP information, but instead follows a very

token-consistent model where any referential spans or metonymy are lost.
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7.3.4 BOTTOM2

The BOTTOM2 variant is similar to the TOP2 variant, with the distinction

whereby nested entity labels are chosen from those closes to the token, rather

than furthest away. Figure 7.4 demonstrates this, specifically the tokens 61 and

years.
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Figure 7.4: Figure showing BOTTOM2 variant of NER labels

The BOTTOM2 variant has five separate entities for the example sentence

fragment: [Pierre]FIRST_PER [Vinken]NAME_PER [61]CARDINAL_DURATION [years]DURATION_DURATION

[old]AGE

As with the TOP2 variant, we expect the BOTTOM2 variant to be harder to

learn than the BOTTOM, but will offer one step towards full modelling of the

nested structure of entities.

7.3.5 TOP_BOTTOM

The TOP_BOTTOM variant acts as a compromise between the benefits of top-

down approaches, which limit the number of separate entities, and bottom-up

approaches, which we postulate to better represent the token. In this variant, we

use the topmost and bottommost labels for each token, as shown in Figure 7.5.
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Figure 7.5: Figure showing TOP_BOTTOM variant of NER labels

The TOP_BOTTOM variant has five separate entities for the example sen-

tence fragment: [Pierre]FIRST_PER [Vinken]NAME_PER [61]CARDINAL_AGE [years]DURATION_AGE

[old]AGE

7.3.6 STACK

The STACK variant creates a new NE label that is a concatenation of all labels

above each token. For example, Pierre has a NAME and a PER label above it,

and is labelled as FIRST_PER. Similarly, 61 is under a CARDINAL label, nested

in a DURATION label, in turn nested in an AGE label, so its STACK label is

CARDINAL_DURATION_AGE.
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Figure 7.6: Figure showing STACK variant of NER labels
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The STACK variant for the sentence fragment shown in figure 7.6 results

in five entities: [Pierre]FIRST_PER [Vinken]NAME_PER [61]CARDINAL_DURATION_AGE

[years]DURATION_DURATION_AGE [old]AGE

The STACK variant is similar in form and motivation to the category tags

used for interannotator agreement. It is most faithful to the nested named entity

task, but is also the most difficult task, with a total of 1738 categories, resulting

in very sparse data.

We consider the STACK variant to be similar to supertagger categories in

CCG, where each category gives information on how it participates in a larger

span. Though the STACK categories do not give direct information on which

other categories it collects, it does specify how the token will contribute in the

larger entity span.

While we do not expect very strong performance on the STACK variant dir-

ectly, it is nevertheless an interesting variant to consider. Because the accuracy

of supertagging is not very high, many supertaggers supply multiple categories

with an adaptive beam approach, or similar, to counteract this and allow for

good performance in the CCG parsing task. So too could a larger number of

STACK categories be supplied for a bespoke nested NER tool.

7.3.7 COMPRESS

The COMPRESS variant is similar to the STACK variant, with the modification

that if two adjacent labels are identical, only one is included in the concatenated

tag. Consider years, which in STACK has the label DURATION_DURATION_AGE.

In the COMPRESS variant, since DURATION is adjacent (in the label, and nested

directly, in the tree structure) to another DURATION label, it is omitted, and the

final label is DURATION_AGE. Thus, the five entities from the COMPRESS vari-

ant for the example sentence fragment are: [Pierre]FIRST_PER [Vinken]NAME_PER

[61]CARDINAL_DURATION_AGE [years]DURATION_AGE [old]AGE
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The COMPRESS variant acts as a compromise between the structural com-

plexity of STACK and the smaller category tagsets of other variants. With a total

of 1314 categories, roughly 400 more than TOP2, BOTTOM2 and TOP_BOTTOM,

and 400 fewer than STACK, we expect the COMPRESS to train faster than the

STACK model, but still substantially slower than the less sparse variants.

7.3.8 Variant Discussion

Due to the differences in how adjacent tokens are analysed, each variant has

a different number of entities, calculated by adjacent non-matched labels, as

shown in Table 7.3. Notably, the TOP variant has substantially fewer entities

(around 111,000 compared to 170,000 - 190,000), since adjacent tokens under the

same entity node all form part of the same entity. Compare this to the BOTTOM

variant, where the bounds of each entity are determined by the closes entity

labels to the tokens.

The different numbers of entities and entity bounds complicates evaluation,

since we cannot directly compare between variants. We can, however, compare

different NER methods, and compare them to the output of a parser.

# Entities
NE Variant # Categories Train Test Total
TOP 109 100,523 10,646 111,169
BOTTOM 113 169,811 17,874 187,685
TOP2 906 155,752 16,467 172,219
BOTTOM2 909 172,392 18,171 190,563
TOP_BOT 967 170,319 17,937 188,256
COMPRESS 1314 169,787 17,867 187,654
STACK 1738 172,840 18,213 191,053

Table 7.3: Number of categories and entities across different NE variants.

In the NER task, we expect the best performance on BOTTOM, due to token

level consistency. We expect the STACK variant to have the lowest performance,

as it is the hardest of the tasks, with the most categories.
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# Categories with Frequency
NE Variant All >1 % >5 % >10 %
TOP 109 109 (100%) 101 (93%) 97 (89%)
BOTTOM 113 113 (100%) 106 (94%) 105 (93%)
TOP2 906 707 (78%) 416 (46%) 327 (36%)
BOTTOM2 909 668 (74%) 406 (45%) 323 (36%)
TOP_BOT 967 711 (74%) 424 (44%) 340 (35%)
COMPRESS 1314 868 (66%) 451 (41%) 345 (26%)
STACK 1738 1161 (67%) 605 (35%) 453 (26%)

Table 7.4: Number of categories in each NE variant occurring more than 1, 5 and 10

times, and the percentage of the total categories for that variant.

With the substantially increased number of categories in our more complex

variants, shown in Table 7.4, we also introduce data sparsity issues. Table 7.4

also shows the numbers of categories if we impose thresholds of each category

appearing more than 1, 5 and 10 times, respectively. We can see that the number

of categories which occur only once across the 2+ variants is quite high. In

the TOP2 variant, 199 categories occur only once. That number increases to

240 for the BOTTOM2 variant, and 255 for TOP_BOTTOM. In the COMPRESS

variant, the number of category tags occurring only once further increases to

445 (34% of a total 1314 categories), and in the STACK variant, 576 of the 1738

categories (33%) occur only once, and a further 285 categories (16%) occur only

twice, creating an exceptionally long tail of categories.

When we look at the numbers of categories for each variant which occur

more than 5 and 10 times, we see the gap between COMPRESS and the two

variants (TOP2, BOTTOM2 and TOP_BOTTOM) virtually disappears. The num-

ber of categories in the STACK variant, however, remains higher even when

considering only categories which occur more than 10 times.

Table 7.5 shows the 10 most frequent entity labels for each of the NE variants,

and the number of entities of that type in each variant. In the TOP variant, we

see that CORP, DATE and PER are the three most frequent entities, compared
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to CD, NAME and CORP for the BOTTOM variant. Since NAME is always

embedded in another entity, it does not occur in the TOP variant. Similarly, PER

does not occur in the BOTTOM variant.

We can see that CORP occurs frequently across all variants. In the 2+ vari-

ants (the TOP2, BOTTOM2, TOP_BOTTOM, STACK and COMPRESS variants,

which combine the labels on two or more nodes to form categories), we see

that CORP exists frequently both with and without nested structure. In all

2+ variants, the category NAME_CORP occurs frequently, as do the combina-

tions NAME_PER and UNIT_MONEY. MULT_CD_MONEY is a combination of

three layers of nesting, and occurs in the 10 most frequent categories in both the

COMPRESS and STACK variants, further supporting the premise that multiple

layers of nesting are prevalent throughout the corpus.
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Variant NE only NE POS JOINT HIGH LOW P’LOW SUB SUB L

TOP 66.19 66.02 83.20 70.18 79.87 74.79 82.63 80.87

BOTTOM 75.99 75.56 85.44 72.74 85.66 72.75 85.37 83.58

TOP2 61.78 61.57 78.37 62.97 74.06 66.49 77.22 74.97

BOTTOM2 66.20 65.44 79.93 64.84 75.97 67.69 78.50 76.32

TOP_BOT 63.73 63.19 80.13 64.87 76.36 68.03 78.40 76.49

STACK 60.13 59.99 77.01 61.42 72.23 64.43 75.63 73.29

COMPRESS 63.44 62.88 79.80 64.33 75.87 67.63 78.10 76.29

Table 7.6: Result of parsing models in NER; P’LOW stands for POSLOW variant; SUB

L stands for SUB LAYER variant

We expect the NER models to outperform our parsing models on the TOP

and BOTTOM variants, since we are comparing a state of the art NER system

to a standard parser with no additional NER features. We also expect the NER

models to be highly competitive on the TOP2, BOTTOM2 and TOP_BOTTOM

variants, though the LIBSCHWA NER system has not been evaluated on a

category set of this size before, so we predict that training time will be substan-

tially slower for these models than for those trained on the TOP and BOTTOM

variants.

We expect that training time will be a much greater concern with the STACK

and COMPRESS variants. Due to the complexity with respect to tagset size in

these variants, training time is a substantial concern. We therefore also train

the C&C NER tagger (Curran and Clark, 2003b) (see Section 7.4.2) which uses a

maximum entropy tagger, and is designed to train CCG supertagger models,

which have a much larger category set, and sparser data, than standard NER.
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7.3.9 Using Parsing Models for NER Variant Experiments

In order to compare the results of the LIBSCHWA NER system and the C&C

output to our parsing models, we take the output of our parsing experiments

from Chapter 6 and convert them into the output expected for each of the

variants. That is, we reformat each output tree from the output of our parsing

models, and output the resultant parse tree in each variant, which we then

evaluate using the standard CoNLL script. The F1-scores of each of these

experiments are shown in Section 7.6.

We found that although the SUB and SUB LAYER parsing variants per-

formed strongly on the combined parsing task evaluations, the JOINT variant

outperformed it in all NER variants, indicating that the parser was robust to

the larger node label space of the JOINT model, and that it learnt better repres-

entation of the structure of these entities with access to syntactic structure. The

performance of models trained without syntactic information also adds further

support to this. The comparatively low performance of the NE only and NE

POS variants indicate that syntactic structure is useful in learning NER structure.

Further, almost all of the models trained with variants which included syntactic

structure also outperformed these NE only versions when evaluating only on

BOTTOM, with the strongest achieving 10F1-score higher than these models,

indicating that syntactic structure improves the learning of even the closest NE

to the token.

We also see that the model trained on the HIGH variant does not perform

well on any NE variant, indicating that although we found that syntax us useful

for learning NE structure, it should be as close to the token as possible, and not

act as an intervening node between the token and NE layer.

Interestingly, the model trained on the JOINT variant performed strongest

across all variants with the exception of BOTTOM, for which the LOW parsing
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variant outperformed it by a small amount. This indicates that the model

trained on LOW had the best model for labels closest to the token. When we

compare this to the model trained from the POSLOW variant, which has these

NE labels interleaved with POS tags, we see a sharp decrease in performance,

indicating that having the labels only immediately above the token (which

also occurs in SUB and SUB LAYER) results in the best performance when

evaluating only on the closest NE labels to each token, as occurs in BOTTOM.

We will use the parsing model trained on the JOINT variant for all future

experiments other than BOTTOM, for which we will use LOW.

Our parsing models which were trained on NE only, or on only NE and

POS tags were also strongly outperformed by other variants which indicates

that syntactic information helps in learning NE representations. Interestingly,

this difference is seen both in our more complex NER variants which combine

multiple layers of NE as well as the flat NER variants of TOP and BOTTOM.

7.4 Experimental Setup

We compare the state of the art, fast NER with the parsing results from Chapter 6.

The goal of this comparison is to identify which is the best way to learn repres-

entations of fine-grained nested NER.

7.4.1 LIBSCHWA NER

We use the LIBSCHWA NER system, a state of the art NER system which

utilises document structure information provided by DOCREP (Dawborn and

Curran, 2014; Dawborn, 2015). The system utilises a linear chain CRF backed

by CRFsuite (Okazaki, 2007) and L-BFGS for numerical optimisation.
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Preprocessing As a preprocessing step, LIBSCHWA NER attempts to perform

truecasing (Lita et al., 2003) on sentences which appear in all-caps using capital-

isation frequencies from both in- and out of document. All digits and ordinals

are normalised to 9 and 9th respectively, which reduces the sparsity of numerical

quantities.

Morphosyntactic features of NER system The system uses various morpho-

syntactic features including prefix (of length 2 to 5), suffix (of length 2 to 5),

word shape, and boolean features indicating whether the word contains a digit,

hyphen, uppercase letter, roman numeral, or whether it looks like an acronym.

Capitalisation pattern for a window of 1 token around the current token, and

another with a window of 2 tokens around the current token are also used.

Brown cluster path (Ratinov and Roth, 2009), Clark cluster generated from the

Reuters 1 corpus1 and HLBL word embedding features (Mnih and Hinton, 2009)

are also used.

Contextual features of NER system As a contextual feature, LIBSCHWA NER

uses multi-word gazetteer matching using the gazetteers distributed with the

Illinois tagger (Ratinov and Roth, 2009). It also uses extended prediction history

(Ratinov and Roth, 2009) with memory restricted to the current document,

rather than the previous 1000 tokens.

Document level features Block-ordered iteration enables the LIBSCHWA

NER system to annotate sentences which occur in paragraphs before annotating

tokens in headings or lists. This allows the system to make initial classification

decisions with more context before classifying entities in headings, which are

often hard to classify without first reading the document.

1http://www.cs.rhul.ac.uk/home/alexc/

http://www.cs.rhul.ac.uk/home/alexc/
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7.4.1.1 Tuning LIBSCHWA NER

In our experiments we use sections 02 to 22 as training data, and sections 00

and 23 as test, utilising the same split as our parsing experiments. To establish

the best configuration for the LIBSCHWA NER system, we evaluated the effect

of different CRF smoothing parameters (see Table 7.7) on the BOTTOM variant,

finding a small decrease in performance with a smoothing parameter of 0, but

no significant difference between 0.2 and 1.0. A very small decrease was also

seen between 1.0 and 2.0, alongside a large decrease in training time.

The BOTTOM and TOP variants have substantially fewer categories than

other variants, on the order of 100, compared to 900 to 1700 (see Table 7.3),

so have the least sparse label space, and train the fastest. We use BOTTOM to

tune training parameters from a practical standpoint, given that other variants

take upwards of two months to train, even using conservative feature sets and

training parameters.

Smoothing Precision Recall F1-score Accuracy Training time

0.0 88.88 88.00 88.44 97.09 4 days, 7h 37m

0.2 91.20 89.86 90.53 97.52 3 days, 10h 48m

0.4 91.27 89.81 90.53 97.54 2 days, 14h 32m

0.6 91.40 89.82 90.60 97.55 2 days, 12h 58m

0.8 91.47 89.80 90.63 97.54 2 days, 9h 33m

1.0 91.49 89.70 90.59 97.54 2 days, 5h 21m

1.5 91.38 89.43 90.39 97.50 20h 37m

2.0 91.36 89.25 90.29 97.45 20h 48m

Table 7.7: Results of training with various CRF values.

We elect to use the BMEWO encoding, which was found to be the best on

the standard NER task (Dawborn, 2015). We verify this setting by analysing
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the different entity encodings during training (see Table 7.8), finding negligible

difference between BIO1, BIO2 and BMEWO when training with the BOTTOM

variant.

Precision Recall F1-score Accuracy

BIO1 91.11 89.21 90.15 97.48

BIO2 91.45 89.77 90.60 97.55

BMEWO 91.27 89.81 90.53 97.54

Table 7.8: Results of varying the encoding during training.

7.4.2 C&C NER Tagger

We also use the C&C NER system (Curran and Clark, 2003b) as a comparison

point. The system uses a maximum entropy tagger employing Gaussian smooth-

ing, which allows a large number of sparse but informative features to be used.

We use the default orthographic, contextual, in-document and personal name

gazetteer features. The C&C NER system has not been actively developed for

over 10 years, and it is not competitive with state of the art. It does, however,

provide a powerful model, capable of learning from very sparse data. We

therefore use it as both a comparison to LIBSCHWA NER and especially as a

fallback for very sparse data variants.

7.4.3 Results of LIBSCHWA NER, C&C, Parsing

In Table 7.9, we compare the results of each variant trained using the LIB-

SCHWA NER system, the C&C NER tagger, and the JOINT or LOW Parsing

models. As expected, we find that when evaluating on the two variants which

use a small set of categories, TOP and BOTTOM, the LIBSCHWA NER DOCREP

model outperforms both C&C and our parsing models. That is, the state of the
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LIBSCHWA NER C&C Parsing

#NE # cats P R F P R F P R F

TOP 109 100,523 85.7 84.6 85.1 73.8 68.1 70.8 84.8 81.7 83.2

BOTTOM 113 169,811 91.4 89.4 90.4 83.9 80.0 81.9 86.4† 85.0† 85.7†

TOP2 906 155,752 85.8 83.8 84.8 65.5 61.8 63.6 79.8 77.0 78.4

BOTTOM2 909 172,392 88.0 85.2 86.6 70.8 67.1 68.9 81.4 78.5 79.9

TOP_BOT 967 170,319 88.1 85.6 86.8 68.8 64.5 66.6 81.6 78.7 80.1

STACK 1738 172,840 −* −* −* 63.8 60.2 62.0 78.5 75.6 77.0

COMPRESS 1314 169,787 −* −* −* 70.5 66.7 68.6 81.3 78.4 79.8

Table 7.9: Comparison of NER results on different NE variants with CRF 1.5, using LIB-

SCHWA NER, C&C and our parsing models. *DOCREP STACK and COMPRESS did not

finish within a reasonable timeframe using these settings, with estimated experiment length

was over 40 days.†Note these were LOW parse variant, rather than JOINT, which is used for

all other parsing numbers.
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art LIBSCHWA NER model better learned the variants which involved on the

order of 100 categories, and which did not have a structural component.

LIBSCHWA NER also outperformed both C&C and our Parsing models on

the combine two variants: TOP2, BOTTOM2 and TOP_BOTTOM. This indicates

that LIBSCHWA NER can still learn highly accurate models with particularly

sparse labels (on the order of 900 categories). However, these models were

slow to train, as discussed more in Table 7.10. The combine two variants TOP2,

BOTTOM2 and TOP_BOTTOM proved substantially harder for the C&C models

to learn, performing around 20F1-score lower than the corresponding DOCREP

models for the same tasks, - compared to around 9 and 15 F1-score lower for

the BOTTOM and TOP variants respectively.

As expected, the BOTTOM variant proved easier to learn than any other

variant, due to the very high consistency of labels per token. Interestingly,

while the Parsing model trained on the TOP variant did not outperform the

corresponding LIBSCHWA NER model, the performance difference between

the two (1.9F1-score) is substantially lower than the performance difference for

the BOTTOM variant (4.7F1-score), indicating that the Parsing model learnt this

harder task quite well.

Our initial experiments used the parameters that performed strongest on the

standard NER task on CoNLL data, that is, a CRF smoothing parameter of 0.4,

no minimum count for a feature to be included in training, and a maximum of

500 iterations. The BOTTOM2 model achieved an F1-score of 86.6, substantially

outperforming the C&C F1-score of 68.9 and our Parsing F1-score of 79.9. How-

ever, it took 31 days, 12 hours and 52 minutes to train. The BOTTOM2 model

was still trained on data that was substantially less sparse than the STACK and

COMPRESS variants, which took substantially longer to train.

The STACK and COMPRESS variants have an even larger and more sparse

category space, and the training time of the LIBSCHWA NER models increases
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further. Using those settings, the COMPRESS variant finished training after

64 days, 21 hours and 40 minutes, achieving 88.1 precision, 86.2 recall and an

F1-score of 87.1. This is significantly higher than the F1-score of the parsing

model (79.8) or of the C&C model (68.6), though its training was more than 100

and 1000 times faster respectively.

In another configuration which limited the number of iterations to 25, the

STACK model trained in 8 days and 4 hours and 48 minutes, and achieved an

F1-score of 74.4, performing slightly behind the Parsing model which achieved

77.0 F1-score in 12 hours and 39 minutes. Using the same configuration, the

COMPRESS achieved an F1-score of 79.2, again, slightly behind the Parsing

F1-score of 79.8. It trained in 6 days, 4 hours and 58 minutes.

Given an extremely large amount of training time, the LIBSCHWA NER

models perform very strongly. In a different configuration, we ran the COM-

PRESS variant for 500 iterations. This ran for 64 days, 21 hours and 39 minutes,

and achieved an F1-score of 87.2, significantly outperforming all other results

for the COMPRESS variant. It is clear that the LIBSCHWA NER model is highly

accurate, and such high performance on a very complex task is promising, but

such a long training time is not always practical; indeed a number of other

experiments were abandoned due to machine failures or forced restarts.

Given the results of these experiments, it seems the best combination of

variant and system to use depends highly on the specific task, and whether

training time is a limiting factor.

7.4.4 Training Time Comparison of LIBSCHWA NER, Parsing

The performance of the LIBSCHWA NER models is very strong, but this comes

with a substantially longer training time than the C&C and Parsing models, as

shown in Table 7.10. It is clear that the C&C models are the fastest to train, with
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even the most complex and sparse model finishing training in just over two

hours, some 9 hours faster than any other LIBSCHWA NER or Parsing model.

The Parsing model is trained on the JOINT variant of NE Parsing, or the

LOW variant for the BOTTOM NER variant. Those models took 12:39 and 11:03

hours to train, respectively, making them slower than the C&C models, but

substantially faster than the LIBSCHWA NER models. These Parsing models

do, however, have additional time for testing, with the annotation of sections 00

and 23 taking an additional 13 hours and 21 minutes, meaning that the overall

time taken to train and test TOP and BOTTOM for the Parsing and LIBSCHWA

NER models were comparable. This additional testing time is, however, linear

with the amount of data to be tagged, and the increased time is dwarfed by

the substantial increase in training time used by LIBSCHWA NER for the more

sparse and complex models. Though the LIBSCHWA NER models do represent

a gain in performance and accuracy, in many situations the training time would

result in these models being impractical.
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LIBSCHWA NER C&C Parsing

F Training F Training F Training

TOP 85.1 20h 37m 70.8 10m 83.2 12h 39m

BOTTOM 90.4 20h 37m 81.9 7m 85.7§ 11h 03m

TOP2 84.8 12d 22h 35m 63.6 1h 2m 78.4 12h 39m

BOTTOM2 86.6 16d 12h 19m 68.9 1h 0m 79.9 12h 39m

TOP_BOT 86.8 19d 11h 8m 66.6 1h 24m 80.1 12h 39m

STACK 74.4* 8d 4h 48m 62.0 2h 3m 77.0 12h 39m

COMPRESS 79.2* 6d 4h 58m 68.6 1h 25m 79.8 12h 39m

Table 7.10: Comparison of F1-score and training times for different NE variants with

CRF 1.5, using LIBSCHWA NER, C&C and our Parsing models. These models were

trained using multiple runs of LIBSCHWA NER, as outlined in subsection 7.4.6. * Note

that when DOCREP STACK and DOCREP COMPRESS were restricted to 25 iterations,

they achieved these F1-score. § Note this result uses the LOW parse variant, rather than

JOINT, which is used for all other parsing numbers.

7.4.5 Error analysis across models and variants

To get a sense of what types of errors the systems were making with each

model and each variant, we conducted some manual error analysis. The five

most frequent misclassifications for each system are shown in Table 7.11 for the

TOP, BOTTOM, TOP2, BOTTOM2 and TOP_BOTTOM variants. We can see that

across each variant, the LIBSCHWA NER models consistently overpredict CORP

entities, particularly PRODUCT:OTHER (e.g. Comprehensive Test of Basic Skills)

and NAME (e.g. Bozell from Bozell Inc.). We can see this more clearly in the TOP2,

BOTTOM2 and TOP_BOTTOM variants, with NAMEs within CORP entities

(i.e. NAME_CORP) being mislabelled as CORP frequently in each. The MEDIA

CORP confusion in LIBSCHWA NER was boosted by CNN being misclassified.
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The CARDINAL O confusion in LIBSCHWA NER is caused predominantly by

several, few and hyphenated tokens (e.g. nine-member).

The overclassification of CORP appears to also happen in the Parsing models,

but comparatively less frequently in the C&C models, which are instead spread

more widely between categories. The Parsing models trained on each variant

show similar errors to that of the LIBSCHWA NER models, but also appear to

learn the GOVERNMENT CORP distinction less clearly than LIBSCHWA NER

models, predicting entities such as the Department of Health and Human Services

substantially in favour of CORP. This GOVERNMENT CORP error is seen in

each variant.

The DATE O confusion across all three systems and all variants is primarily

due to determiners and prepositions being included in the entity span, with

tokens the, of, in, its, this, and over being frequently missed. The C&C TOP

variant was particularly bad at determining this, with this and the each being

incorrectly excluded from the DATE span more than 150 times.

Not shown in Table 7.11 are the confusion matrices for COMPRESS and

STACK for the C&C and Parsing models. Other than having a substantially

longer tail to the errors, they are similar to other variants, with NAME_CORP,

CORP and DATE errors featuring prominently.
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7.4.6 Sparse model vs. multiple CRF

We also compare the impact of sparse training data compared to running mul-

tiple LIBSCHWA NER models each trained for a distinct level of NER category

labels. To do this, we modify the LIBSCHWA NER model to accept NE labels

as a feature, and run two separate models sequentially. The first model is a

standard model, trained on the BOTTOM variant to predict the lowest layer

of NE labels. We then train a model to predict the additional layer of NEs,

either the second bottom layer or the top layer, to match the BOTTOM2 and

TOP_BOTTOM variants, respectively. This model is trained on gold-standard

NE tags, and tested using the NE labels from the output of the BOTTOM model.

Ideally we would perform jackknifing during training, but the length of training

time for each of the models that would be required for this was prohibitive.

The results of these multi-run LIBSCHWA stack experiments, and the com-

parable LIBSCHWA NER experiment, along with training times, are shown in

Table 7.12. The performance of the multi-run LIBSCHWA stack experiments is

promising. While the LIBSCHWA NER models still outperform these multi-run

classifiers, they in turn outperform the Parsing and C&C models for the same

tasks. The multi-run stack models are substantially faster to train than the

LIBSCHWA NER models, with the total training time for both the BOTTOM

and the required second stack model layer taking less than two days. While

this is still slower than training times for both the C&C models and the Parsing

models, it does offer a balance between training time and performance.
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LIBSCHWA NER Multi-run LIBSCHWA stack

P R F Train P R F Train

BOTTOM2 88.0 85.2 86.6 16d 12m 19 86.3 82.2 84.2 1d 5h 32m

TOP_BOT 88.1 85.6 86.8 19d 11h 8m 85.0 81.2 82.1 1d 10h 11m

Table 7.12: Comparison of label sparsity vs. multiple taggers for BOTTOM2 and

TOP_BOTTOM variants.

7.5 NER Summary

In this chapter we have explored the question of how well existing NER systems

can learn structured entities. We have presented a number of NER variants,

and compare these across systems, and reinterpret our parsing results from

Chapter 6 on these variants.

We have defined seven NER variants which capture differing extents of the

nested structure of entities in the NNE corpus. Each variant yields a different

number of categories, ranging from 109 to 1738, enabling downstream systems

to control the degree of nested structure they make use of. The TOP variant is

the closest to current general domain NER, and STACK captures the full nested

structure of each entity.

We have evaluated these projections for two NER systems and reevaluated

parser results for direct comparison. We found that, in general, the performance

of all evaluated systems degraded as the degree of nesting represented in each

variant increased. We also found that the TOP2 variant was particularly hard to

learn, and suggested that this is in part due to the comparative ease of predicting

the BOTTOM layer (a component of all non-TOP variants), because of the high

level of token consistency which is a result of nested named entities.

In this chapter, we have evaluated three different alternatives for NER.

When training the state of the art LIBSCHWA NER system, we achieved the
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highest performance, but also found that these models were the slowest to train,

especially on more complex variants. This potentially precludes application

downstream. In cases where only a few layers of nesting are required, a multi-

run setup provides a good compromise between performance and training

time, but would be increasingly impractical for capturing the extensive layers

of nesting in the NNE corpus.

The other two systems discussed in this chapter (C&C and Parsing) represent

further options. We find that the C&C NER system is the fastest of systems we

evaluated, and had fair performance. The performance of the parser, in both

training time and accuracy, was encouraging. Specifically, the Parsing model for

the TOP variant performs only 1.9% F1-score below LIBSCHWA NER and trains

in just half the time. Furthermore, the parser performance is strong despite

having no NER specific features. We therefore see a move towards a parsing

framework for NER as promising, and that the introduction of NER specific

features has strong potential to substantially boost performance.



8 Conclusion

One never notices what has been done; one can only

see what remains to be done.

Marie Curie

In this thesis, we have addressed the two key shortcomings of the current

NER task: coarse granularity and non-structured entities. In particular, we

have addressed the task of identifying and classifying structured, fine-grained

named entities, numerical and temporal expressions. In so doing, we have

presented a thorough examination of nested named entities.

The core contribution of this work is a corpus of nested named entities

that brings the same level of detailed semantic analysis to the structure of

named entities in the Penn Treebank, that has previously only been available

for syntactic analysis. We have presented the first results exploring how well

existing parsers and NER systems perform on this complex, nested named

entity corpus. The promising results in both parsing and NER indicate that this

corpus is feasible to learn, but indicate that substantial progress will be made

by combining the best of both approaches in the future.

8.1 Future Work

We have presented the first large-scale, fine-grained, nested named entity corpus

of English newswire text, annotating the full Wall Street Journal section of the

258
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Penn Treebank. Our results, both for parsing the combined syntactic and nested

named entity structure, and for the NER task on flat projections of the NNE

corpus, have set the benchmark on how much can be achieved with existing

parsers and NER systems. We have demonstrated that these structures can

be learnt reasonably well with supervised methods, even without modifying

existing parsing and NER systems. The key limitation of current NER systems

is training time, and this could be addressed in a number of ways. However,

there are many avenues for future work beyond NER itself that are also now

possible.

8.1.1 Extend annotation for use in other corpora

OntoNotes (Hovy et al., 2006; Weischedel et al., 2010, 2013) is a recent annotation

effort which combines multiple layers of annotation, including syntactic annota-

tions, PropBank and NomBank. While OntoNotes does include named entity

information over a subset of its articles, it does not annotate nested structure.

Since 590 articles used in OntoNotes are from the Wall Street Journal section

of the Penn Treebank, we can use the same sections of our NNE corpus directly

and add structured named entity information to those sentences. The obvious

next step would be to extend our NE annotations to a larger set of OntoNotes

articles, using the detailed annotation guidelines produced as part of this thesis.

8.1.2 Modify systems for better structured NER learning

Our preliminary results of training a parser to predict nested named entities

have proven successful even without modifications to the parser. However,

we should expect substantial performance improvements for approaches that

model and/or represent the specific properties of this task.
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A starting point would be to take the existing work of Finkel and Manning

(2009c), whose joint parser and named entity recognition system achieved

good performance on nested named entities in biomedical and newspaper

text, using NER sections of AnCora Taulé et al. (2008) in Spanish and Catalan.

Another modification of interest would be adapting a parser to take in both POS

tags and NE suggestions, using an NER model trained from the BOTTOM or

STACK variant. These NE labels could act in a similar way to supertags, adding

information as to how the token will be used in the larger context.

The other logical extension to this work is to modify NER models to make

them better suited to learning nested named entities. The strong performance

of parsers that do not have any NER specific features indicates that we should

be moving away from flat NER models. The Berkeley parser (Petrov et al.,

2006), with no NER modifications and no attempt to account for the substantial

splitting of the NP category, achieved an F1-score of 83.2, outperformed by only

1.9 F1-score by the state of the art LIBSCHWA NER system, which achieved

85.1 on the TOP variant, the closest to the more standard 4 category NER

task. This strongly suggests that parsing these nested NER structures is worth

further research. This is likely to further inflate training time so simultaneous

improvements to engineering are also needed, particularly optimising the

algorithm for many categories.

8.1.3 Extend the new NNE resource onto other resources

Linguistically rich formalisms

Another direction now made possible is the application of our NNE resource

onto linguistically rich formalisms which are derived from the PTB, such as

CCG, HPSG, or LFG. Many of these formalisms provide a theory of the relation-

ship between syntax and semantics. With the NNE corpus, we are providing
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both more syntactic and semantic information about NEs than was previously

available. We hope this flows through to those formalism specific corpora.

Just like the work in Chapter 5, where we discuss different ways of merging

NEs and the syntactic information, there are also a range of ways that these

formalisms could encode what we have identified as semantic grammar rules.

We have a particular interest in how NNE categories would work in CCG,

either directly subdividing the atomic N or NP categories, as features on N and

NP categories, or as a form of hat categories, as introduced in Honnibal and

Curran (2009).

In some sense, the STACK projection of NNE variants is already quite sim-

ilar to the supertags used in CCG and other lexicalised grammar formalisms,

because the stack describes all of the nested entities a token is expected to

fall within – and the result is a similar number of stack categories and CCG

supertags.

the University of Sydney

np/org org (org\org)/loc loc
>

org\org
<

org
>

np

the University of Sydney

np/[np]org [np]org ([np]x\[np]x /[np]loc [np]loc
>

([np]x\[np]x)
<

[np]org
>

np

In this example, University of behaves as a function that collects LOCs, or

NPs with LOC as an annotation, and turns them into ORGs, and we can couple

the syntactic and semantic behaviour of University of. In the second example,

the CCG category for of further abstracts its semantics, taking any entity type

and returning a larger entity with a locative modifier.
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Other aligned resources: PropBank and NomBank

The NNE annotations are also valuable additions to other linguistic resources

built on the same text as the PTB, including NomBank and PropBank, and can

be used in downstream applications such as coreference resolution and relation

extraction. Many entities, including those nested in other entities, can form part

of a relation. Until now, we haven’t been able to model the relationship of the

entities within nested entity structure. We will now be better able to identify

both that [William Boeing]PER is the likely founder of the [Boeing Company]ORG

and that both [Bill Gates]PER and [Melinda Gates]PER are founders of the Bill and

Melinda Gates Foundation.

We are also now able to analyse metonymy coercions when they exist. Until

now, when using semantic compatibility tests, one has been forced to assume

only the information that we have access to from the top layer of NE structure.

For example, consider the arguments of the ditransitive verb buy. If we know,

from PropBank, that the first argument should be an agent, but find an example

where that argument is marked as a LOC, this is likely to be problematic. If, on

the other hand, we find not a LOC, but a CITY embedded within a SPORTS-

TEAM as the agent, perhaps [[Toronto]city]team bought star pitcher. . . , we have

satisfied the semantic compatibility constraints.

8.1.4 Analysis in a practical task, and error analysis

A further avenue of research has to do with the number of categories in our

entity scheme. Our motivation was to produce all annotations, not all of which

would be required for all tasks. It is not clear what level of detail of each of the

broader NER categories are needed for real-world applications is needed. On a

similar track, it would be interesting to see the effects of downmapping some of
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our 118 entities to the broader categories, and whether this would substantially

impact performance.

More detailed error analysis of the NER task would also be a productive

avenue for further work. Notably, facilitating the more linguistically motivated

error analysis that Kummerfeld et al. (2012) allow us to perform for the task of

syntactic parsing would be of use for better analysis at how systems compare,

and what the particular challenges of fine-grained, nested named entities are.

8.1.5 Corpus improvements

Over the course of the annotation of nested named entities and their subsequent

merging with the syntactic structures of the PTB, we identified some analyses

that proved problematic. The Penn Treebank has now had three versions, with

additional modifications in the form of NP structure (Vadas and Curran, 2007),

yet some open questions remain.

The analysis of prepositional phrases is one such area. We have taken a

fairly lean approach, changing only the analysis of PPs that interact with NEs,

but a more consistent approach would be far more beneficial. The analysis of

determiners and their relationship with NEs has also caused issues in our work.

A large component of errors uncovered in our error analysis for the NER task

were caused by the incorrect inclusion or exclusion of determiners.

In this work, we have taken a conservative approach to the distinction

between proper and common nouns. The analysis of common nouns and NPs

which contain NEs is a promising avenue for further corpus extension; for

example, [U.S.]country allies could qualify as a GRP:LOC.

Despite taking great care to maintain consistency across annotators and the

use of a sophisticated annotation tool that showed likely structural analyses

from previously annotated entities, there are still areas of inconsistencies in

the corpus that another annotation pass would substantially improve, both in
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individual annotations and in granularity distinctions of the annotation scheme.

Ideally, we would like to see a mechanism whereby if other researchers come

across an annotation error, they can suggest corrections. In this way, we can

iteratively improve the corpus. The usefulness of this is not limited to our NNE

corpus, but would also be a valuable tool in reducing errors in all corpora.

8.2 Conclusion

This thesis contributes a substantial body of work on fine-grained nested named

entities, the core contribution of which is a corpus that brings detailed semantic

analysis to the structure of named entities. NNE is the first corpus of nested

named entity structure in English newswire text. It comprises 50,000 sentences

annotated with over 279,000 fine-grained, structured entity annotations over

the Wall Street Journal section of the Penn Treebank. Additionally, we have

addressed the question of the feasibility of this more complex task, with strong

evidence indicating that it is.

In Chapter 3 we introduced a robust set of annotation principles governing

the annotation task. This includes the addition of substructures to avoid spuri-

ous ambiguity on a per-token level ([Toronto]CITY should still be labelled a CITY

in the [[Toronto]city Blue Jays]TEAM), unary stacking principles to capture met-

onymy (The [[White House]building]gov said . . . ), the embedding of structural

sub elements such as numerical MULT tokens combining with CARDINAL

tokens to form larger CARDINAL spans ([[180]cd [million]mult]CD), and the ad-

dition of new categories to improve difficult annotation categorisation decisions

(the name of a hotel is easy to identify as a HOTEL, but harder to classify into

either CORP or FACILITY, as it displays both organisational and locational qual-

ities). Other principles govern annotation boundaries and nesting structures,

and could be applied to other annotation tasks.
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Toronto Blue Jays

city

sports-team

Bank of Tokyo

city

orgcorp

New England Patriots Coach Raymond “ Rev. Ray ′′ Berry

region role first role first name

sports-team nickname

role per

per

175 million to 180 million Canadian dollars

cardinal mult cardinal mult nationality unit

cardinal cardinal unit

cardinal

money

In Chapter 3 we summarised the detailed nested named entity annotation

scheme developed, including 118 fine-grained entity types, arranged in a hier-

archy of 10 broad entity types: PER, LOC, ORG, FACILITY, NORP, EVENT,

WOA, MISC, TIMEX and NUMEX Ṫhese guidelines have high coverage of edge

cases, and were continuously updated during the annotation process to reflect

additional edge case decisions, resulting in a valuable annotation reference.

This level of detail in annotation guidelines is important both for the quality

of annotation and its reproducibility, in the case of extending the corpus, or

annotating other corpora with the same scheme. These extensive annotation

guidelines bring fine-grained, structural named entities to the same level of

detail as the annotation guidelines for the Penn Treebank.

As described in Chapter 4, we present an annotation tool that displays previ-

ous annotation decisions within this document, and in the entire corpus, to the

annotator, and allows annotators to make decisions on a per-document and cor-

pus level. In the tool, annotators are shown their previous annotation decisions

for entities and sub-structures that match a currently selected span, prompting

the annotator and allowing them to easily apply consistent annotations. This

aided in the creation of a highly consistent corpus. The annotation tool will be

open sourced for use in the research community.
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Our annotation principles, highly detailed annotation guidelines and innov-

ative annotation tool allowed for a highly consistent annotation process. The

nested named entity corpus has high inter-annotator agreement, achieving a

Fleiss’ kappa of 0.834. This high level of agreement on such a complex task is

encouraging in that it suggests the task is feasible.

We present an empirical analysis of named entities in the WSJ PTB corpus,

finding a high number of structural entities with multiple layers of annotation.

We find that more than half of all entities form a structural part of an entity,

with entities having up to 6 layers of nesting. This means that substantially

more layers exist that are not possible to capture in a flat annotation scheme.

We find consistency in structural components that form these nested struc-

tures. For example, MONEY is frequently constructed by an adjacent UNIT and

CARDINAL span. We find that 47 rules make up more than 80% of all nesting

rules in the corpus. This further suggests the feasibility of learning the task.

We align this NNE corpus to the syntactic constituents of the WSJ Penn

Treebank, which allows this resource to be used with all other resources which

build from it, including PropBank, NomBank and syntactic corpora in other

grammatical formalisms such a CCGbank (Section 2.2.2), enabling rich semantic

modelling across annotation layers.

We find the majority of discrepancies between NNE and PTB were caused

by tokenisation issues caused by full stops, and prepositional phrases, the PTB

analysis for which is often incorrect. We use 4 rules which modify the bounds of

our NNE annotations, 6 rules which modify PTB tree structure, and a number

of specific, per-sentence fixes to ensure consistency with the PTB.

In Chapters 6 and 7, we explore the feasibility of the task empirically, by

presenting present a novel analysis of combining syntactic and named entity

information into a consistent structure, and present an analysis of the effect of

different merging algorithms on both parsing and named entity recognition.
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We present the first results of recovering nested named entity structure in

English newswire text. We analyse the performance of models which have learnt

combined syntax and NER, evaluating their performance on both the combined

task and each individual component: syntactic parsing and structured named

entity recognition.

We experiment with a range of methods for merging syntactic and named

entity annotations into formats suitable for parsers and NER systems. We

find, while the variants aren’t directly comparable, there appear to be highly

substantial differences in how well models can be learnt.

In particular, in Chapter 6, we use the Berkeley parser to learn combined

constituent structure and named entity structure. We found that when we learnt

a combined NE and syntactic structure, using the LOW variant, we achieve an

F1-score of 89.96 when evaluating on syntactic component alone (compared to

90.12 when learning the syntactic information only). We achieve an F1-score of

88.17 when using the SUB variant learning combined NE and syntactic structure

and evaluating on NE structure alone. Error analysis on these models finds the

LOW model indeed minimises the total number of errors and nodes affected by

errors, indicating that it would be better for certain applications requiring high

precision.

We have experimented with two different NER systems, and in Chapter 7,

present the first results semi-structured named entity recognition, by projecting

the full structure of nested named entities into a flat label. We compare the

results of a state of the art NER system to the performance of both a highly

scalable NER system, and the parsing models we developed in Chapter 6 on

these semi-structural projections.

The LIBSCHWA NER model performs strongly on the fine-grained NE cor-

pus, but data sparsity substantially affects training time. LIBSCHWA NER

models learn variants which capture partial structure with high accuracy, but
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take several weeks, and are unable to learn reliable representations of the full

structure in a reasonable time frame. The Parsing models perform strongly,

trailing the LIBSCHWA NER performance by 2 to 5% F1-score in the least sparse

variants, and achieving an F1-score of around 77.0 and 79.8 for the STACK and

COMPRESS respectively.

8.3 Summary

The primary contribution of this thesis is the Nested Named Entity corpus – the

principled annotation of fine-grained, nested named entities over the WSJ por-

tion of the Penn Treebank, its merged version with the PTB syntactic analyses,

and detailed annotation guidelines that documents the annotation scheme.

With this NNE corpus, we have eliminated the spurious ambiguity of linear

NER and found a way to represent metonymous mentions consistently. Using

this corpus, we have answered the question of how well existing parsers and

NER systems perform with more complex structural named entities, and es-

tablished that the more complex task is feasible to learn. We have examined

performance on the straight tasks of NER and parsing, and the combination of

the two, but the use and applicability of this NNE corpus is far more extensive,

and we look forward to its utilisation in many future NLP tasks.
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