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Abstract
Román Marchant Matus Doctor of Philosophy
The University of Sydney March 2016

Bayesian Optimisation for Planning
in Dynamic Environments

This thesis addresses the problem of trajectory planning for monitoring extreme val-
ues of an environmental phenomenon that changes in space and time. The most
relevant case study corresponds to environmental monitoring using an autonomous
mobile robot for air, water and land pollution monitoring. Since the dynamics of
the phenomenon are initially unknown, the planning algorithm needs to satisfy two
objectives simultaneously: 1) Learn and predict spatial-temporal patterns and, 2)
find areas of interest (e.g. high pollution), addressing the exploration-exploitation
trade-off. Consequently, the thesis brings the following contributions:

Firstly, it applies and formulates Bayesian Optimisation (BO) to planning in robotics.
By maintaining a Gaussian Process (GP) model of the environmental phenomenon
the planning algorithms are able to learn the spatial and temporal patterns. A new
family of acquisition functions which consider the position of the robot is proposed,
allowing an efficient trajectory planning.

Secondly, BO is generalised for optimisation over continuous paths, not only determ-
ining where and when to sample, but also how to get there. Under these new cir-
cumstances, the optimisation of the acquisition function for each iteration of the BO
algorithm becomes costly, thus a second layer of BO is included in order to effectively
reduce the number of iterations.

Finally, this thesis presents Sequential Bayesian Optimisation (SBO), which is a gen-
eralisation of the plain BO algorithm with the goal of achieving non-myopic trajectory
planning. SBO is formulated under a Partially Observable Markov Decision Process
(POMDP) framework, which can find the optimal decision for a sequence of actions
with their respective outcomes. An online solution of the POMDP based on Monte
Carlo Tree Search (MCTS) allows an efficient search of the optimal action for multi-
step lookahead.

The proposed planning algorithms are evaluated under different scenarios. Experi-
ments on large scale ozone pollution monitoring and indoor light intensity monitor-
ing are conducted for simulated and real robots. The results show the advantages
of planning over continuous paths and also demonstrate the benefit of deeper search
strategies using SBO.
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Chapter 1

Introduction

1.1 Motivation

Environmental concerns have topped the agenda in the past decades. Problems such

as water and air pollution, climate change and resource depletion are recognised by the

scientific community as major challenges. Meanwhile, machine learning and robotics

research have seen significant developments to take on problems with vast quantities

of data, expanding their potential to address real-world problems. These advances

in technology create great opportunities to tackle fundamental environmental issues

[14]. The motivation behind this thesis is to allow autonomous robots to plan their

movements in order to simultaneously learn and find interesting areas of a spatial-

temporal phenomenon.

The most relevant case of study is Environmental Monitoring (EM). Climate change;

air, water, land and acoustic pollution; solar power intensity; tidal wave behaviour

among many others are highly complex processes that have a noticeable impact on hu-

man well-being. Scientists have shown a great deal of interest in understanding these

phenomena, specially in the areas of health, mining, energy generation, agriculture,

forestry and many more. However, deterministic differential equations representing

the dynamics of these processes are difficult to devise, further considering that large

quantities of data distributed over space and time are required. EM is typically
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performed using sensor networks that collect measurements in pre-defined static loc-

ations. The possibility of having an autonomous robot to perform this task brings

flexibility and reduces the number of necessary sensor nodes to cover the same area.

Deploying an autonomous robot for the sampling procedure is both cost-effective and

convenient as,

1. Robots can build statistical models of the environment and choose sampling

locations intelligently;

2. Robots can move to more informative sensing locations adding flexibility over

static sensor networks;

3. Robots can automate the sampling procedure reducing human supervision;

4. Robots can access areas that are dangerous for humans.

The use of autonomous robots for environment monitoring has expanded massively

over the past decade. Hardware capabilities have increased noticeably, giving robots

the power of traversing over a wide range of environments and monitoring several

phenomena. However, a variety of problems arise when making use of autonomous

moving robots for EM. The main challenges are how to learn an accurate spatial-

temporal model while simultaneously choosing locations for finding the interesting

areas of the phenomenon (e.g. where is the maximum level of pollution).

A plausible long-term aspiration is having a group of robots capable of monitoring the

environment and maintain it suitable for humans. However, this goal is far from being

completed and the first challenge to be solved is Intelligent Environmental Monitoring

(IEM), i.e. a robot operates autonomously and decides where to gather observations

from a natural phenomenon to best model it. For instance, an environmental monit-

oring challenge would be to supervise the quality of the water in a lake used as water

reservoir for a big city. This task requires building a model of the concentration of

pollutants over the whole lake based on previously sampled areas. Measurements can

be the concentration of chemicals or other relevant variables such as temperature or
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ambient light. Other examples are monitoring air pollution in cities, tracking ozone

concentration, studying vegetation growth in problematic areas, monitor active bush-

fires and study coral reef depletion (Figure 1.1). The planning algorithms proposed

in this thesis can be applied to any of these situations.

Information gathering techniques have also seen interesting developments. However,

the problem of where and when to gather the most informative samples in an efficient

manner is still an open question.

1.2 Overview on Informative Planning

Informative planning corresponds to the problem of decision making for acquiring

useful data from a certain phenomenon. In the context of environmental monitoring,

informative planning has been addressed using uncertainty reduction techniques to

better predict the studied phenomenon. The most popular uncertainty-reduction

informative planning research, conducted by Golovin and Krause [20], Krause and

Guestrin [31], Singh et al. [66] and Singh and Krause [65], make use of submodular

function optimisation theorems. Submodular functions are non decreasing functions

that follow the property of diminishing returns where the increment over the function

decreases as the size of the input set increases. However, in most applications, we

are interested in finding areas of extreme values of a particular phenomenon, such as

high pollutant concentration, low temperature, high humidity etc. Considering the

actual value of the phenomenon removes the submodularity property, making existing

methods not suitable for the required tasks.

The view of informative planning in this thesis considers a generic task to be achieved.

The robot has to simultaneously learn from the environment and find areas of interest.

Essentially, the chosen plan will help the robot to gather useful data and find the

extreme values over the studied phenomenon. In order to find these extreme values

the robot not only needs to reduce uncertainty but also focus on the actual predicted

values of the phenomenon.
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Figure 1.1 – Examples of environmental monitoring situations and their associated
robotic platforms. Top row shows algae growth in a lake. Middle row shows coral
reef depletion. Bottom row shows a bush fire. Source: Australian Centre for Field

Robotics (ACFR)

The phenomena studied in this thesis may change with space and time. Therefore, the

planning algorithms need to asses the quality and usefulness of information gathered

at a specific location at a particular point in time. Basically, this creates two optim-

isation problems to be solved: The first and most important is to optimise over the

spatial temporal phenomenon, i.e. find its maximum/ minimum over space and time.

The second optimisation is conducted for every decision and corresponds to finding

the optimal plan, i.e., which decision will provide the most useful information.
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Figure 1.2 – Block Diagram

1.3 Method Overview

The proposed algorithms aim to find paths over space and time to be followed by

robots in order to learn the dynamics of an unknown process and successfully complete

a desired task. Figure 1.2 presents a block diagram of the proposed methodology. This

diagram represents a robot immersed in a dynamic environment. The environment

contains static objects that can be used to build a map and localise in it1. An

interesting phenomenon from the environment is associated with the task the robot

is assigned to, and is assumed to be known a priori, for example finding areas of

higher ozone concentration or high temperature.

In Figure 1.2, the robot is represented as a grey rectangle which shows a separation

between hardware and software components. In terms of hardware, we assume a fully
1The Self Localisation And Mapping (SLAM) [21] problem is considered as solved for the purposes

of this thesis. The required precision in localisation depends on the scale of the environment and
the speed of the robot.
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functional mobile robot with the necessary actuators and sensing capabilities and

do not restrict the proposed algorithms to any robotic platform in particular. The

proposed planning algorithms can be used in aerial, terrestrial or aquatic situations.

More important in the context of this thesis is the description of the relevant blocks

in the software section of the block diagram:

Preprocessing: This first step filters unwanted data, mainly eliminating outliers

and removing excessive noise from the sensing equipment. Digital filtering or anomaly

detection techniques can be used to detect abnormal values.

Localisation and Mapping: Localise the robot while building a map of the sur-

roundings.

Environment Space-Time Model: Uses the localisation to reference observations

from the environment sensors and places a probability distribution over the spatial-

temporal phenomenon.

Planning and Decision Making: The most important block of the system. It uses

the statistics from the environment model and the known task-to-accomplish to find

the optimal decision.

The two upper blocks in Figure 1.2 represent the core of the work conducted in

this thesis. The first important component, Space-Time Model, builds a reliable

space-time model of the environment. The second important block, Decision Making,

tackles the planning component of the problem, guiding the robot towards interesting

areas of the studied phenomenon.

To fully describe the method we present a real-world example: Ozone concentration

monitoring. The concentration of ozone O
3

can be considered a pollutant at low

altitudes. The dynamic environment represents an area of the Earth with its changing

atmospheric conditions (wind, pressure, temperature, humidity) and unknown sources

of contaminant at ground level. An autonomous Unmanned Aerial Vehicle (UAV),

equipped with an ozone sensor, has the task of finding the areas where ozone pollution

reaches its maximum levels. With this information, experts may be able to identify

the sources of pollution and take action towards pollution reduction in the area. The
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task is to find the areas of high pollution, which correspond to high concentrations of

O
3

. The environment model uses GPS referenced observations of ozone concentration

and build an statistical model of the distribution of ozone over space and time. The

path planning algorithm maximises over the possible paths the UAV can follow and

finds the optimal one in order to learn the distribution and patterns of O
3

in space

and time. Simultaneously, the UAV samples over areas where ozone is higher in order

to find the maximum pollution levels, including when and where they occur.

1.4 Problem Statement

The problem addressed in this thesis corresponds to the following research question:

Where should a robot sense an environmental phenomenon

in order to best model its extreme values?

Properly solving this question requires addressing two main problems. The first is

assuring the robot can properly model the phenomenon in the environment. In order

to achieve this, it needs to identify patterns over space and time which allow it to

generalise over the entire domain. The challenge for this problem is learning the

model of the phenomenon using limited, noisy and sparse data.

The second part of the problem, which is the core of this thesis, is deciding where the

robot should go next. These decisions have to be aligned with the goal of the monit-

oring task (pollution search, temperature rise surveillance, etc). Each decision corres-

ponds to a plan, geometrically understood as discrete waypoints or even a continuous

path representation. Since the environmental phenomenon is initially unknown, the

complexity of the planning algorithms is high as it involves solving the exploration-

exploitation trade off problem. When should the robot plan towards exploration?

When should it plan towards completing the task?
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1.5 Contributions

The contributions of this thesis are the following:

1. Formulation of Bayesian Optimisation (BO) to planning in robotics.

BO is a widely known technique for optimising unknown, noisy and costly to

evaluate functions. In this thesis, we apply BO to solve a path planning problem

in the robotics context. Essentially, this extends the use of BO for using a

mobile robot to optimise functions which are the realisation of an environmental

phenomenon.

2. A new family of acquisition functions for BO which consider side

state. Because in the existing BO theory there is no real agent conducting the

sampling, there is no need to consider its state for evaluating candidate sampling

locations. In fact, existing acquisition functions, further discussed in Chapter

2, do not take into account previously sampled locations or the sequence of

them. However, since we introduced an autonomous robot as the sampling

agent, we present a new family of acquisition functions, which we call state-

aware acquisition functions. This awareness allows an acquisition function to

favour sampling locations closer to the current location of the robot, favouring

safer paths to avoid collisions or reduce energy consumption.

3. Generalisation of BO for optimisation over continuous paths. The

decisions for the plain BO algorithm correspond to discrete locations over the

input space. In the robotics context, it makes sense to optimise along continuous

paths instead of discrete locations. Continuous paths are characterised by a set

of parameters. At each step, the acquisition function is no longer evaluated

with respect to a discrete location, but the value corresponds to the integral

along the path candidate. The optimal set of path parameters is then found for

each iteration of the BO algorithm.

4. Layered BO for planning in spatial-temporal monitoring. Usually, the

optimisation of the acquisition function is conducted using gradient-based, local
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search optimisers. However, for planning along continuous paths the search

space is no longer a location in the input space of the function, but becomes a

search in the parameter space of a path. Depending on the parametrisation and

dynamics of the spatial-temporal phenomenon, optimising over the acquisition

function can become increasingly difficult. In this thesis, we present a layered

BO approach, where the acquisition function is maximised with another BO

layer. This means that a Gaussian Process (GP) prior is also placed over the

acquisition function itself and samples from it are guided using the second-layer

acquisition function.

5. Evaluation of planning algorithms in large scale experiments and on

real robots. The algorithms proposed in this thesis have been evaluated us-

ing large scale datasets and real robots. Ozone pollution is characterised and

monitored using a simulated Unmanned Air Vehicle (UAV). Light intensity

is used as an analogue to pollution to evaluate the planning algorithms us-

ing an autonomous mobile robot. The different techniques for decision-making

are quantitatively and qualitatively compared under control scenarios where

ground-truth is available.

6. Sequential Bayesian Optimisation (SBO). Plain BO can be readily applied

to scenarios where the objective function does not vary in time and sampling

locations can be chosen freely within the input domain. For the application

studied in this thesis, functions vary with time and the sampling platform de-

termines the reachable space for gathering the next samples. Combining these

two issues creates an imperative need for extending the common BO algorithm

to a sequential setting. SBO considers a reward for each decision in a sequence

and finds the best decision in terms of the cumulative reward for the whole

sequence.

7. Develop a unifying formulation for Partially Observed Markov De-

cision Process (POMDP) and SBO. POMDPs are a framework for non

myopic decision making under uncertainty. We formulate SBO as a POMDP
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model, assigning the state of the POMDP to a tuple which groups the goal

function and the pose of the robot. The contribution is on identifying the com-

ponents that make solving the SBO problem the same as solving its POMDP

analog.

8. A SBO solution using the POMDP formulation. By combining Monte

Carlo Tree Search (MCTS) and Upper Confidence Bound for Trees (UCT), we

solve the POMDP analog of SBO for the case of continuous state and obser-

vations. This solution is convenient for systems where robots are monitoring a

dynamic process, since it can be computed using limited resources and provides

a multiple-step lookahead solution.

1.6 Thesis Outline

An overview of the following chapters presented in this thesis is presented below:

Chapter 2: Theoretical Background

Reviews the concepts behind regression and optimisation of noisy functions. It focuses

on Gaussian Processes (GPs) and Bayesian Optimisation (BO), which are the two

main theoretical components used for developing the proposed algorithms in this

thesis.

Chapter 3: Planning over Waypoints

This chapter presents a planning algorithm for monitoring spatial temporal phenom-

ena. It first shows how to build an statistical model of an space-time function using

noisy samples. Then it proposes a planning algorithm based on an adapted version of

BO to choose sampling locations, where the next-best location to sample corresponds

to a waypoint in the environment. A new family of acquisition functions, which is

state-aware, is presented. This new kind of acquisition functions is particularly in-

teresting for tackling real-world applications of BO, where the sampling is performed

by a real robotic agent. Experiments demonstrate the advantages of the planning
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algorithms over naive sampling techniques such as random sampling and information

gain.

Chapter 4: Planning over Continuous Paths

A planning algorithm for optimal sampling over continuous paths is presented in

Chapter 4. This chapter begins by presenting spatial-temporal GPs and the advant-

ages of using separable covariance functions for spatial and temporal components. It

generalises the discrete-planning algorithm proposed in the previous chapter to op-

timise over continuous paths. It also proposes a layered BO approach for solving the

continuous planning problem. Experiments demonstrate the benefits of the approach,

comparing continuous and discrete sampling strategies.

Chapter 5: Sequential Continuous Planning

A solution for the optimal sampling problem that considers a sequence of decisions

is developed in Chapter 5. Firstly, it presents the formulation of Sequential Bayesian

Optimisation (SBO), which takes into account the whole sequence of decisions in

order to select the next sampling locations. The non-myopic version of BO, SBO,

is then formulated under a Partially Observed Markov Decision Process (POMDP)

framework. The POMDP analogue of SBO is then solved using an online POMDP

solver that can accommodate continuous observations.

Chapter 6: Conclusions and Future Work

Conclusion of this thesis is presented in Chapter 6. The first part of this chapter

draws some conclusions and summarises the contributions from previous chapters.

It then provides directions for future work that can naturally extend the planning

algorithms proposed in this thesis.



Chapter 2

Theoretical Background

2.1 Introduction

This chapter presents the necessary background in which the planning algorithms

proposed in this thesis are built on. As stated in the previous chapter, the goal

is to maximise an unknown objective function that changes with space and time.

The main application addressed in this thesis is oriented towards optimal sensing for

environmental monitoring using an autonomous robot where the realisation of the

objective function corresponds to a phenomenon in the environment.

The proposed solution for autonomous optimal sensing of spatial-temporal phenom-

ena consists of two parts. Firstly, the robot needs to model the initially unknown

environmental phenomenon using noisy samples. The challenge is to learn spatial

and temporal patterns that allow the robot to generalise over the un-sampled domain

and predict the state of the environment in the future. In order to tackle this difficult

task, Section 2.2 presents regression techniques, particularly focusing on Gaussian

Process (GP) regression, which is a popular statistical method used in machine learn-

ing for pattern recognition.

Secondly, the robot needs to take decisions in order to learn and find the extreme

values in the environmental phenomenon. These decisions correspond to a plan, es-
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sentially answering the question of where to sample next. The planning algorithms

proposed in this thesis are based on Bayesian Optimisation (BO), which is an optim-

isation routine for unknown and costly to evaluate functions. Section 2.3 describes

the BO algorithm including details on how it chooses sampling locations.

Finally, we consider the case of long-term planning, where decisions are taken based

on a sequence of decisions. Section 2.4 presents Partially Observed Markov Decision

Processes (POMDPs), a non-myopic decision making framework. In Chapter 5 we

use POMDPs combined with BO and GPs to generate multi-step lookahead plans.

2.2 Gaussian Process Regression

Regression corresponds to an area of supervised learning where the goal is to gener-

alise an unknown function and predict its value over a continuous domain. Although

there are several ways of achieving regression, a Gaussian Process (GP) is an el-

egant solution for achieving regression from noisy observations as it is a powerful,

non-parametric tool for non-linear regression. They are particularly useful for the

planning algorithms developed in this thesis since they provide a posterior Probability

Density Function (PDF) over the unknown function values. GPs have been widely

used for modelling spatially and temporally correlated data. Consequently, they are

extensively used in all the chapters of this thesis. This section reviews GP theory

for regression. For deeper insights and a more extensive theoretical description, the

reader can refer to Rasmussen and Williams [58].

To model a function f , a GP places a multivariate Gaussian distribution over the

space of functions mapping the input to the output. The model is completely defined

by a mean function m(x|✓
m

) and a covariance function k(x,x0|✓
c

), i.e.,

f(x) ⇠ GP(m(x|✓
m

), k(x,x0|✓
c

)) , (2.1)

where ✓
m

and ✓
c

are the mean and covariance function hyper-parameters respectively.
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Using supervised learning to build a GP model involves gathering a set of observations

S = {x
i

, y
i

}N
i=1

from f , where x

i

2 RD are the N sampling locations (inputs) in

a D dimensional space, and y
i

2 R are the corresponding noise outputs. These

noisy samples are used to tune the hyper-parameter set ✓ = {✓
m

,✓
c

} to match the

behaviour of f (detailed on Section 2.2.2). The learnt GP model can be used to

predict a Gaussian distribution over f(x?

) at any new sampling location x

?, which is

later referred as f ?.

Samples from the real process are assumed to be noisy, i.e., y = f (x) + ✏, where ✏

follows a normal distribution ✏ ⇠ N (0, �2

n

). The joint distribution of the observed

target values y = {y
i

}N
i=1

, at locations X, and the predicted values f

?

= {f ?

i

}M
i=1

, at

X?, is given by

2

4 y

f

?

3

5 ⇠ N
0

@
0,

2

4 K(X,X) + �2

n

I K(X,X?

)

K(X?, X) K(X?, X?

)

3

5

1

A , (2.2)

where K(·, ·) is the covariance matrix, defined in a component-wise fashion as

K(X 0, X 00
)

(i,j)

= k(x0
i

, x00
j

) , with x0
i

2 X 0 and x00
j

2 X 00 . (2.3)

X, X? are the groups of training and testing locations respectively. Given the training

locations, the predictive distribution over the values at the test locations is given by

f

?|X,y, X? ⇠ N (

¯

f

?, cov(f?)) , (2.4)

with,

¯

f

?

= E[f?|X,y, X?

] = K(X?, X)

⇥
K(X,X) + �2

n

I
⇤�1

(y �M(X)) (2.5)

cov(f?) = K(X?, X?

)�K(X?, X)

⇥
K(X,X) + �2

n

I
⇤�1

K(X,X?

) , (2.6)

where M(·) is a mean vector, which contains an evaluation of the mean function in

each element: M(X)

(i)

= m(x
i

) with x
i

2 X.

For the specific case when there is only one query location x

?, the predictive distri-
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bution over f ? is given by:

f ?|X,y,x? ⇠ N (E[f ?

],V[f ?

]) , (2.7)

with,

E[f ?

] = K(x

?, X)K�1

X

(y �M(X)) (2.8)

V[f ?

] = k(x?,x?

)�K(x

?, X)K�1

X

K(X,x?

) , (2.9)

where K
X

= K(X,X) + �2

n

I.

The output PDF, which represents the predictions over f

?, depends strongly on the

hyper-parameter set ✓. The mean and covariance functions both affect the predicted

value of f at the un-sampled locations. Generally, it is assumed that the data has

a zero mean, i.e., m(x) = 0. This is a common choice, unless a more complex mean

function, such as a polynomial, can represent the mean of the function more accur-

ately. There are several families of covariance functions, each with their corresponding

set of hyper-parameters. The covariance functions relevant for this thesis are listed

in the following section.

2.2.1 Covariance Functions

The choice of the covariance function is relevant as it influences the GP’s behaviour

directly. Covariance functions are also known as Mercer kernels and encode the

degree of correlation between two locations in the input space of a function. Given

two inputs x

0 and x

00, the covariance function evaluated over both inputs is k(x0,x00
)

and represents the covariance between the values of f at those locations.

Covariance functions can be mainly classified into stationary and non-stationary.

Stationary covariance functions may be expressed only in terms of the distance, d,

between the inputs. They are therefore invariant to the input location. To achieve a
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Table 2.1 – Typical Covariance Functions.

Name Expression k (x0,x00
) Hyper-Parameters

Linear �2

f

(�2

0

+ x

0 TLx00
) ✓

c

= {�
f

, �
0

, L}

Matern 3 �2

f

⇣
1 +

p
3d

⌘
exp

⇣
�
p
3d

⌘
✓
c

= {�
f

, L}

Matern 5 �2

f

✓
1 +

p
5d+

5d

3

◆
exp

⇣
�
p
5d

⌘
✓
c

= {�
f

, L}

Polynomial �2

f

(�2

0

+ x

0 TLx00
)

p ✓
c

= {�
f

, �
0

, L, p}

Rational Quadratic �2

f

✓
1 +

d

2↵

◆�↵

✓
c

= {�
f

, L,↵}

Squared Exponential �2

f

exp

✓
�d

2

◆
✓
c

= {�
f

, L}

Periodic Exponential �2

f

exp

0

@�
2sin2

⇣
⇡T
p
d

⌘

⇢2

1

A ✓
c

= {�
f

, L, T, ⇢}

generic representation of distance in each dimension, d is defined as:

d = (x

0 � x

00
)

> L (x

0 � x

00
) (2.10)

where L is a diagonal matrix of size D and contains a length-scale parameter on each

element of its diagonal,

L
(i,i)

=

1

`2
i

. (2.11)

There are several covariance functions studied in the literature such as Squared Expo-

nential, Matérn, Neural Networks and many more. A list of the covariance functions

relevant to this thesis is presented in Table 2.1. Each row of Table 2.1 contains

the name of the covariance function, its mathematical expression and the set of its

hyper-parameters ✓
c

.
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2.2.2 Model Selection

Model selection corresponds to the problem of adapting the structure of the GP

components: selection of a mean and covariance function and tuning of their hyper-

parameters.

The full set of hyper-parameters of a GP is given by ✓ = {✓
m

,✓
c

, �
n

}. Training a

GP corresponds to the process of finding the optimal set of parameters ✓⇤ that best

represent f . One of the ways for finding ✓⇤ is by maximising a goal function (GF)

which depends on the training data (samples from f) and the hyper-parameter set ✓.

✓⇤
= argmax

✓
GF(y, X,✓) , (2.12)

The most popular goal function is the the log marginal likelihood (LML),

LML(y, X,✓) = �1

2

(y �M(X))

T K�1

X

(y �M(X))� 1

2

log|K
X

|� n

2

log2⇡ , (2.13)

where K
X

= K(X,X) + �
n

I.

This procedure reflects the actual learning in the GP framework. The optimisation of

the hyper-parameters adapts the structure of the GP to achieve a valid representation

of the sampled data. Other techniques for training a GP include fully bayesian ap-

proaches, where a prior distribution is placed over the hyper-parameters and inference

is achieved using Markov Chain Monte Carlo (MCMC).

2.2.3 Addressing Large Datasets

GP regression can become prohibitive for large datasets (more than 10,000 observed

values). The most expensive operation is the inversion of the covariance matrix which

needs to be calculated for Equation 2.5, Equation 2.6 and Equation 2.13. Matrix

inversion scales as O(N3

), where N is the number of data-points.

The simplest approach corresponds to selecting a subset of the data-points. This

selection can be made randomly or using entropy reduction techniques as shown by
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Lawrence [36]. If the new set is of size Q ⌧ N , then the cost for the covariance

matrix inversion would be O(Q3

). Even though there is an efficient reduction of

computational costs, the variance computation which reflects the uncertainty, is far

from the exact one. For example, uncertainty might seem high at a certain location

because no data is found close to it. However, the real uncertainty should be much

lower since the whole dataset contains samples which are close to that location and

have been discarded.

Quiñonero-Candela and Rasmussen [57] present a review of GP approximation tech-

niques, including Subset of Regressors (SoR). These techniques make use of inducing

points, which are a small set of locations over the input space. The complete data-

set is then projected into the inducing points, reducing the order to O(Q2N) with

Q⌧ N being the number of inducing points.

Alternatively, work by Vasudevan et al. [75] and Shen et al. [63] have shown that

nearest neighbourhood selection for training can result in tractable regression. Here,

they make use of KD-Trees to organise data and query the GP only with the data

which is closest to the query location. Recently, Hensman et al. [23] show how

stochastic variational inference can be used to approximate GP inference for millions

of points.

2.3 Bayesian Optimisation

Bayesian Optimisation (BO) is an optimisation algorithm used for finding the extreme

of unknown and costly-to-evaluate functions. A detailed theoretical description can

be found in [3, 25, 40, 53, 61].

The goal of Bayesian optimisation is to find the maximum of an unknown function f ,

f(x) : RD ! R , (2.14)
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i.e., to find

x

?

= argmax

x 2 RD

f(x) . (2.15)

If a particular problem requires finding the minimum, BO can maximise the additive

inverse of the original function. The use of BO is particularly suitable when f is a

black-box function with no gradient information and when evaluations from it are

resource consuming, hence the need for evaluating f as few times as possible. Even

if f is non-convex and has multiple local optima, BO is likely to find the true global

optimum. The only assumption over f is that it is Lipschitz-continuous, i.e.,

9 C 2 R | kf(x
1

)� f(x
2

)k  Ckx
1

� x

2

k 8x
1

,x
2

2 RD. (2.16)

BO is an iterative algorithm for optimisation that makes use of Bayes’ theorem at

each iteration i to combine prior belief over f , b
i

(f), with acquired data, X
1:i

=

{x
1:i

, f(x
1:i

)}, to produce a new estimation of f , called updated belief b
i+1

(f),

b
i+1

(f |X) / p(X
1:i

|f)b
i

(f) . (2.17)

In this thesis the belief over f is represented by a GP. The expected value of f has

an associated variance which captures the level of uncertainty in the prediction, as

described by Equation 2.4.

The key for the success of BO is the smart selection of evaluation points. At each

iteration the next sampling location is the one that maximises a expected utility. The

function that encodes the utility of sampling at one location over another is called

acquisition function, h, and its general form will be discussed in Section 2.3.1. In

brief, BO uses a quantitative measure given by the acquisition function for making

informed decisions and choose the most promessing locations to sample from the

unknown function over its domain.

The BO algorithm pseudo code is shown in Algorithm 1. Line 2 is the optimisation

of the acquisition function. It can be noted that the problem of maximising f has

now been moved to finding the maximum of h in each iteration, another non-convex
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Algorithm 1 Bayesian Optimisation
Inputs: f , h, GP-prior
Outputs: x

max

, y
max

1: while i < i
max

do
2: x

?  argmax

x

h(x)
3: Gather sample y? = f(x?

)

4: Augment X and y with {x?, y?}
5: if y? > y

max

then
6: y

max

 y?

7: x

max

 x

?

8: end if
9: i i+ 1

10: Update GP posterior
11: end while

optimisation. However, considering an appropriate acquisition function, optimising

in the domain of the acquisition function is easier than the original problem. In fact,

optimising h is a much simpler problem since it has derivative information and is

fast to evaluate. This inner optimisation procedure can be implemented with any

optimisation technique, most commonly gradient based optimisers.

A one-dimensional example of the BO algorithm using a dummy acquisition function

is illustrated in Figure 2.1. It is possible to see how the mean of the GP regression

model quickly converges to the unknown function and the variance is reduced near

sampling locations. The shape of the acquisition function changes after each iter-

ation1. Initially when the variance is high the sampled locations are automatically

chosen by the algorithm to get an initial approximation of f , spreading samples across

the domain. In the long term, samples concentrate near higher values of f , eventually

getting a better estimate of the locations of the optimum.

2.3.1 Acquisition Functions for BO

Acquisition functions are a fundamental part of the BO algorithm since they guide the

search for the optimum in every iteration. They should reflect the expected utility of
1A video showing all iterations is available at http://www.it.usyd.edu.au/~rmar5258/

IROS2012/1d_example.html
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Figure 2.1 – One dimension example of active sampling based on Bayesian optim-
isation. The continuous blue line and shade represent the GP mean an variance
respectively. The dashed red line is the unknown function, and noisy samples from
this function are shown as red crosses. The dash-dot green line is the acquisition
function, with a circular mark at its maximum. This function is scaled and with
an offset for visualisation purposes.

sampling at each location in the domain. Therefore, higher values of the acquisition

function should correspond to a greater probability of finding higher values of f .

The combination of an appropriate acquisition function and a GP allows an elegant

trade off between exploration and exploitation while searching for the optimum. To

simplify notation in this section, the expressions for the expected value and standard

deviation for f(x) are defined as:

µ(x) , E[f(x)] (2.18)

�(x) ,
p

V[f(x)] , (2.19)
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where E[f(x)] and V[f(x)] are defined in Equations 2.8 and 2.9 respectively. The

most popular acquisition functions are Information Gain, Probability of Improvement,

Expected Improvement and Upper Confidence Bound. These are defined as follows,

Information Gain

An often used approach is to sample in areas where there is not a good understanding

of the function by maximising the Information Gain (IG). The IG is defined as the

differential entropy when adding a new point to the training set,

IG(x) , argmax

x

(H[X]�H[X [ x]) , (2.20)

where H[X] is the entropy over the entire domain using X as training set. IG is

a monotonic function that has its maximum located where the variance is highest.

The IG approach would then correspond to an acquisition function that is equivalent

to the variance of the prediction over the domain. This acquisition function is not

suitable for most optimisation problems as it corresponds to a purely explorative

approach.

Probability of Improvement

Studied by Kushner [32] and Jones [29], this acquisition function calculates the prob-

ability of improvement over the best value of the goal function, f(x+

), found in the

current sample set X, where

x

+

= argmax

x

i

2X
f(x

i

) . (2.21)

Mathematically,

PI(x) , p(f(x)  f(x+

) + ⇠) (2.22)

= �

✓
µ(x)� f(x+

)� ⇠

�(x)

◆
(2.23)
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where � is the cumulative Gaussian distribution and ⇠  0 is an exploration-exploitation

trade-off parameter. Larger values of ⇠ determine a more explorative behaviour of

the resulting algorithm, whereas ⇠ ! 0 results in pure exploitation.

Expected Improvement

The Expected Improvement (EI) [29, 50] is an acquisition function that measures the

amount of improvement when choosing a new location. The improvement function

I(x) , max
�
0, f(x)� f(x+

)

 
(2.24)

is always positive, or zero when no improvement is obtained by evaluating at x i.e.

f(x)  f(x+

).

Assuming a GP prior for f , the expected improvement is given by

EI(x) , E [I(x)]

= E
⇥
max

�
0, f(x)� f(x+

)

 ⇤

=

Z 1

f(x

+

)

�
f(x)� f(x+

)

�
�

✓
µ(x)� f(x)

�(x)

◆
df(x) , (2.25)

where � denotes the PDF of the standard normal distribution. The first term in

the integrand of equation 2.25 is the amount of improvement and the second term

represents the probability of that improvement. After calculating the integral of

equation 2.25 using integration by parts, the expected improvement can be defined

as

EI(x) = �(x) [Z�(Z) + �(Z)] , (2.26)

where

Z =

µ(x)� f(x+

)

�(x)
, (2.27)

and � denotes the Cumulative Density Function (CDF) of the standard normal dis-

tribution.

Similarly to the Probability of Improvement acquisition function, the EI may tend to
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over exploit, by picking locations near sampled points with high value. According to

Lizotte [40], this can be solved by introducing the factor ⇠, resulting in,

Z =

µ(x)� f(x+

)� ⇠

�(x)
. (2.28)

Upper Confidence Bound

The UCB acquisition function, studied by Cox and John [9], considers the mean and

variance at a particular location. Evaluated at x it takes the form:

UCB(x) , µ(x) +  · �(x) . (2.29)

The parameter  is related to the exploration-exploitation trade off. While high

values of  lead to an explorative behaviour of the algorithm, lower values of  favour

exploitation near known sampled locations.

It is relevant to mention that none of the previously described acquisition functions

consider the distance between the sample locations, which is a fundamental compon-

ent of the proposed methods in the following chapter.

2.4 Partially Observable Markov Decision Processes

(POMDPs)

In the following chapters, a solution for a complex BO formulation is solved using

POMDPs. Therefore, the goal of this section is presenting the theory behind POM-

DPs. Firstly, this section defines a Markov Decision Process (MDP), which is the

building block for POMDPs.
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2.4.1 Markov Decision Process (MDP)

The MDP framework is a popular technique for planning and decision making. It uses

a basic model from the world which is represented by the tuple hS,A, T,Ri, where:

• S : Set of states {s
1

, s
2

, . . . , s
n

}.

• A : Set of actions {a
1

, a
2

, . . . , a
n

}.

• T : S ⇥ A ⇥ S ! [0, 1] is a transition function that represents the probability

of transition between states s and s0 when executing action a, i.e. T (s, a, s0) =

p(s0|s, a).

• R : S⇥A! R is a reward function that encodes the reward of executing action

a on state s, i.e. R(s, a).

Decisions are encoded by the action space A. For every time-step, the dynamics of a

MDP is given by the state of world s and selected action a. As a consequence, the

agent receives a reward R(s, a) and the world state changes to s0. A MDP is said

to be Markovian since the resulting state only depends on the current state and the

executed action.

A policy, ⇡, that maps from the state space to the action space:

⇡ : S ! A , (2.30)

is used to determine what action a to execute given a particular state s. A policy can

deliver different levels of reward over time. The objective is to take the best decisions,

i.e. the ones that accumulate most reward. The optimal policy, ⇡?, can be found by

solving

⇡?

= argmax

⇡

E

"
nX

t=0

�tR(s, ⇡(s))

#
, (2.31)

where n is the planning horizon (which can be infinite) and � 2 [0, 1) is the discount

factor that encodes the present value of future reward. The state s evolves according

to the transition function T .
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There are several algorithms for finding the optimal policy: Value Iteration, Policy

Iteration and Linear Programming. These are not particularly relevant for the con-

tents of this chapter and further details on how to find an optimal policy for an MDP

can be found in Sutton and Barto [72].

2.4.2 Partial Observability

POMDPs are a unified framework for sequential decision making under uncertainty

when the state is not directly observable and the agent only has access to noisy

observations. Observations depend on the state s, therefore sequences of observations

can be used to infer the state. A discrete-state and discrete-action POMDP is defined

in terms of a MDP (Section 2.4.1) and includes a new observation set and observation

function. A POMDP is fully represented by the tuple hS,A, T,R, Z,Oi, where S, A,

T and R are the same as for MDPs, and Z, O are given by:

• Z : Finite set of observations {z
1

, z
2

, . . . , z
n

}.

• O : Z ⇥A⇥S ! [0, 1] is a observation function that represents the probability

of observing z if action a is executed with resulting state s, i.e. O(z, a, s) =

p(z|a, s).

As was mentioned earlier, the main assumption of POMDPs is that the state is

only partially observable. To quantify the uncertainty in observing the true state, a

probability function over the state space is defined as belief, b(s). For discrete state

spaces the belief b(s) represents the probability of the state being s and satisfies

8s 2 S, b(s) 2 [0, 1] ^
X

s2S

b(s) = 1 . (2.32)

The belief can be updated for every action-observation pair:

ba,z
t

(s0) =
O(z, a, s0)

P
s2S T (s, a, s

0
)b

t�1

(s)

p(z|b, a) , (2.33)
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where

p(z|b, a) =
X

s2S

b(s)
X

s

02S

T (s, a, s0)O(z, a, s0) . (2.34)

The optimal policy ⇡? for a POMDP, which maps from belief states to actions, is

given by

⇡?

= argmax

⇡2⇧
E

"
nX

t=0

�t

X

s2S

b
t

(s)
X

a2A

R(s, a)⇡(b
t

, a)|b
0

#
, (2.35)

where ⇡(b
t

, a) represents the probability of executing a in belief b
t

according to ⇡

and b
0

represents a probability distribution over the initial state, which is a uniform

distribution in the cases where no prior knowledge is available.

A discrete-state POMDP can be formulated as a belief-space MDP with continuous

state space, where the state is the belief. The reward becomes R
B

and depends on

the belief b:

R
B

(b, a) =
X

s2S

b(s)R(s, a) (2.36)

and the transition function over beliefs, ⌧ :

⌧(b, a, b0) =
X

z2Z

p(z|b, a) (b0 = ba,z) . (2.37)

Note that ⌧ differs from T , since ⌧ is defined over the belief space. Using this analogy,

the optimal policy for a discrete-state POMDP can be found using MDP solvers. The

main limitation here is the sum over the observation set, which for this thesis can be

considerably large or even continuous.

Continuous State Spaces

In this thesis, the state space is continuous, which brings considerable analytical

complexity to the previously described theory. The continuous version of the belief

update from Equation 2.33 can be reformulated as:

b
t

(s0) / O(z, a, s0)

Z
b
t�1

(s)T (s, a, s0)ds. (2.38)
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Similarly, all expressions that include sums over states can be replaced with integrals.

For the case of POMDPs with continuous state, the belief space is continuous but

infinite dimensional. Although existing work by Porta et al. [56] and Deisenroth et al.

[12] have presented solutions for finding the optimal policy, they are limited to very

simple problems.

Online vs Offline POMDP Solution

Finding the optimal policy corresponds to the full solution of a POMDP, which is also

called offline solution, since it is precomputed and can determine which is the best

action given any belief state. For real problems such as those addressed in this thesis,

finding the exact solution can be prohibitively slow and consume excessive computer

resources as shown by Ross et al. [59].

For the large POMDPs addressed in this thesis, it makes sense to find an online

solution. An online solution is a better alternative since it finds a local policy for the

current belief state. The search space becomes smaller since the optimal action only

needs to be determined for the reachable belief states. Section 5.4 will introduce the

online technique used in this thesis.

2.5 Summary

This chapter provided the necessary background used as foundation for developing the

planning algorithms in this thesis. GP regression is a complex regression technique

based on bayesian inference, which is used predict the value of an unknown function

using noisy values from it. By learning the model hyper-parameters, a GP provides

an accurate probabilistic representation of any function. GPs will be used in the

following chapters to model real world environmental phenomena.

Bayesian Optimisation (BO) is used for finding the maximum of unknown functions.

By maintaining a probabilistic model of the goal function, the method can quantify
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uncertainty and deal with the exploration exploitation trade-off in a principle manner.

BO evaluates an acquisition function at each iteration to guide the search of the

optimum.

The theory of decision making under uncertainty, framed as a POMDP, has been

presented. A POMDP defines world components and finds the optimal action to

maximise the cumulative reward over a set of actions. POMDPs will be used in

Chapter 5 to achieve non-myopic trajectory planning.



Chapter 3

Planning over Waypoints

3.1 Introduction

This chapter presents a waypoint approach towards planning for maximising an ob-

jective which is initially unknown. It shows how Bayesian Optimisation (BO) can

be used as an optimisation routine for planning. The BO algorithm selects which

locations need to be sampled at a specific time to achieve an optimal sampling of the

phenomenon to be monitored. Part of this chapter has been previously published at

IROS1.

Over the last decade, a vast amount of research effort has been dedicated to field

robotics. In particular, environmental monitoring using mobile robots is gaining pop-

ularity among a wide range of applications [14, 67, 69]. The motivation behind the

proposed algorithms is to allow autonomous robots plan their movements in order to

simultaneously learn and monitor efficiently a spatial-temporal phenomenon. Solving

this problem properly requires creating a reliable spatial-temporal model of the phe-

nomenon and finding the sample locations that maximise the robot’s understanding

of it.

1Roman Marchant and Fabio Ramos. Bayesian Optimisation for Intelligent Environmental Mon-
itoring. In IEEE International Conference on Intelligent Robots and Systems (IROS), 2012
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The first part of this chapter shows how to create a statistical representation of

a phenomenon in the environment. The second part presents a decision making

algorithm that determines where to acquire next measurements in order to improve

the current model.

The outcome of the planning algorithm is a series of ordered waypoints that represent

a path in a discrete manner. The main contributions presented in this chapter are

the extension of the BO framework to planning in the mobile robotics context and

presenting a new family of acquisition functions for the BO algorithm that considers

the distance between sampling locations. This last innovation is beneficial for ro-

botic systems as it reflects the cost of moving in the environment, mainly determined

by power consumption. The proposed methodology is tested in simulation and in a

real environment. Compared to existing strategies, the proposed approach exhibits

slightly better accuracy in terms of Root Mean Squared Error (RMSE) over the pre-

dicted values of the phenomena and considerably reduces the total distance travelled

by the robot.

The remainder of this chapter is structured as follows. Section 3.2 details the theory

for spatial-temporal models. Section 3.3 explores the use BO for determining sampling

locations. Experimental setup, results and analysis are shown in Section 3.4. Finally,

Section 3.6 summarises the contents of the chapter.

3.2 Spatial Temporal Modelling

Spatial-temporal modelling corresponds to the problem of inferring the state of the

environment at a spatial location for a specific point in time given previously collected

data.

If the spatial temporal phenomenon in the environment is considered as a function

f , the full representation of f is given by

f(s, t) : RD ⇥ R! R , (3.1)
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where s 2 RD is the spatial coordinate in a D-dimensional space and t is a real

number that represents time. In this chapter, the domain of f is simplified to a single

input variable x = (s, t) 2 RD+1. Therefore f is defined as

f(x) : RD+1 ! R

x! y = f(x) , (3.2)

where x is the spatial coordinate augmented with a temporal component and repres-

ents a spatial temporal location.

The function f that represents the environment is unknown and only noisy samples

from it are available. A sample y from f at a spatial-temporal location x is given

by y = f(x) + ✏, where ✏ represents the noise introduced when sampling from f and

follows a normal distribution, ✏ ⇠ N (0, �2

n

), with standard deviation �
n

.

A model of f provides an estimation of f ? at a new location x

?. Determining f ? given

a set of N noisy samples from f , S = {x
i

, y
i

}N
i=1

, is a regression problem, which in

principle could be tackled using any regression technique. However, not all regression

techniques are suitable for the decision making algorithms presented in this thesis.

These algorithms need a measure of uncertainty, which is encoded in the variance of a

probability distribution. Thus, only the regression techniques that provide a posterior

probability distribution over f , sometimes called predictive distribution, are useful.

The posterior Probability Density Function (PDF) is given by

p(f ?|x?, S) . (3.3)

A predictive distribution is useful because it provides not only an expectation of the

predicted value, E[f ?

], but also delivers an idea of uncertainty, which is encoded in

its variance V[f ?

]. Both the expected predicted value and the uncertainty will be a

fundamental piece in designing algorithms for monitoring initially unknown functions

that vary with space and time.

The presence of noise in measurements and limitations in the maximum complexity
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of the model introduce uncertainty in the prediction. Considering this, using statist-

ical/probabilistic models seems a reasonable alternative. A very popular regression

technique that provides posterior PDFs is Gaussian Process Regression (GPR), which

was detailed in Section 2.2. We use a Gaussian Process (GP) as a regression tool

for predicting f ?, i.e. a GP is used as a statistical model or representation of an

environmental phenomenon f ,

f (x) ⇠ GP (m (x|✓
m

) , k (x,x0|✓
c

) ) . (3.4)

Here, m (x|✓
m

) represents the mean function parametrised by a set ✓
m

and k (x,x0|✓
c

)

represents the covariance function parametrised by ✓
c

.

As it was detailed in Section 2.2, GP regression provides a posterior PDF for f ?

=

f(x?

). It uses a set of noisy observations from f , S = {x
i

, y
i

}N
i=1

. Each sample is

modelled by y = f(x) + ✏, where ✏ ⇠ N (0, �2

n

) with �
n

being the noise standard

deviation. This value adapts to different noise levels in the sampling process from f

and is part of the hyper-parameters set ✓.

The posterior PDF is gaussian f ? ⇠ N (E[f ?

],V[f ?

]). The mean E[f ?

] and variance

V[f ?

] are given by

E[f ?

] = K(x

?, X)K�1

X

(y �M(X)) ,

V[f ?

] = k(x?,x?

)�K(x

?, X)K�1

X

K(X,x?

) ,
(3.5)

where X is the set of training locations; K
X

= K(X,X)+�2

n

I with K(·, ·) being the

covariance matrix, defined component wise as

K(X 0, X 00
)

(i,j)

= k(x0
i

, x00
j

) , with x0
i

2 X 0 and x00
j

2 X 00
; (3.6)

and M(X)

(i)

= m(x
i

) with x
i

2 X.

The posterior PDF depends on the set of sampled locations X, the set of outcome

values corresponding to each location and the selection of the mean function m and

covariance function k with its respective hyperparameters ✓
m

and ✓
c

. Without loss of
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generality, it is assumed that the mean function is a constant m (x) = ⌘, i.e. ✓
m

= {⌘}.
The covariance function encodes a degree of relationship between input locations. k

corresponds to any covariance function or a combination of them, as described in

Section 2.2. The main intuition here is that samples that are close in space and

in time will expose statistic dependence. However, given the compact model for f ,

defined in Equation 3.2, the same covariance function is applied to all dimensions in

the input, which is not ideal for capturing time or spatial specific behaviour. This

limitation will be relaxed and further detailed in the following chapter that introduces

more complex spatial temporal models.

3.3 Waypoint Planning

A Gaussian Process (GP) provides a model for the spatial temporal phenomenon.

It is necessary to choose sensing locations wisely to build a high-quality model of

the phenomenon at each time step. The algorithm presented in this section is a

generalisation of the plain Bayesian Optimisation (BO) algorithm described in Section

2.3 to select locations based on the posterior PDF provided by the GP model of the

environment.

Existing approaches choose the path of one or more robots based only on the ex-

isting uncertainty of the expected value over the entire domain. However, in most

environmental monitoring applications, the places of interest for sampling are associ-

ated with extreme values of the sampled variable. For example, areas of high ozone

concentration at lower altitude, or areas of high pollutant concentration. Therefore,

this problem can be addressed as an optimisation problem where the objective func-

tion is not known a priori. However, not every optimisation strategy is useful, since

the main goal is to find parts of the function that exhibit extreme values (maximum

or minimum), requiring an exploration of the domain to understand what happens

across the studied area. This is a non trivial problem considering that we are dealing

with an unknown and complex function modelling a time dependent process.

Given all the above, the use of the BO framework fits logically because it can optimise
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initially unknown noisy functions and collects more samples in the higher or lower

regions of the domain. A complete and extensive theoretical treatment of the general

BO algorithm can be found in Section 2.3. In order to use BO for a real-world

function, there are some adaptations that need to be performed:

1. The costly-to-evaluate goal function is the dynamic phenomenon present in the

environment.

2. The smart selection of evaluation locations in the BO algorithm corresponds to

planning in the real-world domain.

3. Plain BO as presented in Section 2.3 assumes one can sample any point in the

domain of f . However, given the restrictions of the robot, this is not possible.

4. The maximisation of the acquisition function h is translated into maximising a

reward function r, which is equivalent to making decisions.

The type of planning presented in this section defines decisions as locations in space

and time, i.e. for each iteration of the algorithm, a spatial–temporal goal x? is determ-

ined as the best location to sample. This is the discrete nature of the algorithm, where

a set of discrete locations determine where the following samples will be gathered.

Although this is a simple approach for planning, the following chapters propose more

complex solutions over continuous paths and address the problem as a sequential

decision making problem.

From the robotics point of view, it is useful to get as much information as possible

from the environment while sampling at a small number of locations. If these locations

are placed and ordered intelligently, the robot will save energy while constructing a

reliable spatial-temporal model of the phenomenon. The reward function is defined

in terms of an acquisition function h, described in Section 2.3.1, which also considers

the cost of travelling in the environment, taking into account the current pose of the

robot. The reward for sampling at x given the current pose p of the robot is:

r(x|p) = h(x)� � d(x,p) . (3.7)
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Algorithm 2 BO-Discrete-Planning
Inputs: f , r, GP-prior, p

init

Outputs: GP-posterior, p
1: p current pose of robot.
2: p p

init

3: while t < t
max

do
4: x

?  argmax

x

r(x|p)
5: while p is far from x

? do
6: Move towards x

?

7: Gather samples from f
8: Update p

9: end while
10: Augment X and y with new samples.
11: Update the GP model
12: end while

Here d(·, ·) is a distance metric between the current pose of the robot and the goal

location considering only spatial components. � is a parameter that determines the

cost for travelling in the environment which depends on the platform. This improved

reward function combines a regular acquisition function and a penalty based on the

distance to the current location of the sensor, defining a new family of acquisition

functions that are state aware. The intuition behind this new reward function is to

prioritise sampling locations closer to the current pose of the robot that carries the

sensing equipment. This penalty can be generalised depending on the application to

consider energy consumption, smoothness of trajectory or any other function that

depends on the state of the robot. Another state-aware acquisition function has

been proposed recently by Contal et al. [8], however it is limited only to Mutual

Information.

Algorithm 2 presents the pseudo–code for efficiently monitoring a spatial-temporal

phenomenon with a robot. As it was mentioned earlier, this algorithm is an adaptation

of the plain BO optimisation algorithm (Algorithm 1) introduced in Section 2.3. The

main modifications are the following:

Inputs: The inputs of the plain BO algorithm are f , h and the GP-prior. For the

proposed algorithm, the acquisition function h has been replaced by a reward function
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r, which considers the state of the robot.

Outputs: Since the goal of the plain BO algorithm is to find the optimum, it provides

as outputs the location and optimum value found. However, the goal of the proposed

planning algorithm is to model f while focusing on areas of extreme values of it. The

output of the algorithm is the model of f and the trajectory of the robot.

Optimisation of the Acquisition Function: Line 4 of Algorithm 2 determines

the next best location to gather a sample from f by maximising the reward function

r. This maximisation can be conducted with any type of inexpensive optimisation

routine, including gradient based optimisers. Even if the selected location corresponds

to a local optima of the acquisition function, the variance of the GP model will reduce

after that observation is included, leading the optimisation outside that local optima

in the next iteration. In contrast to the plain BO algorithm, this optimisation step

considers the current pose p of the robot.

Sample Collection: In the plain BO algorithm a sample is collected at every itera-

tion and the GP model is updated using every observation. However, in the proposed

algorithm a set of samples is collected while the robot travels towards the goal location

x

? and the GP posterior is updated once the goal is reached. Line 5 is the beginning

of a loop, which collects samples while the robot is traversing a path towards x

⇤.

Effectively, the sample collection for each iteration will cease when the pose of the

robot is close to the goal location, where the mathematical interpretation of close will

depend on the scale of the environment.

3.4 Experiments

The proposed decision making algorithm was evaluated under three different scen-

arios. The first one is an illustrative example of the method under a 1D goal function.

The second simulates a robot monitoring ozone concentration over a real dataset ob-

tained across the entire US territory. The last experiment shows a real-world scenario,

using an autonomous mobile robot to model ambient light conditions in an indoor
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environment.

3.4.1 1D Illustrative Example

In this simple case of a one dimensional function the goal is to identify the effect

of using a distance aware reward function. It is expected that consecutive samples

are chosen by the algorithm closer to the previous sample depending on the distance

penalty.

The goal function f is unknown to the algorithm. For simplicity it does not depend

on time and is given by

f(x) : [0, 1]! R

x! y = 0.5
⇥
sin (17(x+ 0.3)) · (x+ 0.3)0.5 � 0.7 cos (30x)

⇤
. (3.8)

A plot of f is shown in Figure 3.1. The complexity of the expression of f is chosen

in such a way that presents several local maximum. In particular, it presents five

locally maximum location-value pairs {x, y}: {0.12, 0.56}, {0.30, 0.05}, {0.53, 0.82},
{0.75,�0.12}, {0.93, 0.82}. The characteristics of this function allow the analysis of

the effects of varying the reward function and their parameters.

For this example, the reward function is built using h = UCB as the acquisition

function, previously presented in Section 2.3.1. The expression of the reward function

is given by

r(x|p) = µ(x) + �(x)� � d(x,p) , (3.9)

where  and � are parameters that will affect the locations being chosen as new

sample locations. A greater value for  encourages exploration and a larger value of

� penalises the distance between consecutive samples.

According to Algorithm 2, all that remains is to define the GP model. The mean

function is selected to be a stationary constant m (x) = ⌘, i.e. ✓
m

= {⌘}, and the

selected covariance function is the 1D version of the Squared Exponential expression
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Figure 3.1 – Goal function f .

presented in Table 2.1, given by:

k(x, x0
) = �2

f

exp

✓
�(x� x0

)

2

2�
l

◆
. (3.10)

In the above, ✓
c

= {�
f

, �
l

}, where �
f

is the signal variance and �
l

is known as the

length-scale hyper-parameter.

The optimisation of the hyper-parameter set ✓?

= {⌘, �
f

, �
l

, �
n

}, with �
n

being the

standard deviation of the noise in observing f , is conducted using a gradient based

optimiser and the LML goal function, as described in Section 2.2.2. The resulting

hyper-parameters found were:

✓?

= {0.0945, 0.6922, 0.0789, 0.0486} . (3.11)

These hyper-parameters are used in the GP model of f and are kept constant. The

dataset used to train the hyper-parameters corresponds to random sampling of the

function. This is analogous to random movement of a robot with the goal of learning



3.4 Experiments 40

the type of function to be optimised and select an appropriate prior. There is no

decision making involved in this in this process.

Figure 3.2 presents the optimisation procedure with  = 28.6 and � = 0.72. It is

possible to see how the mean of the GP regression model quickly converges to the

unknown function and the variance is reduced near sampling locations. The behaviour

of the acquisition function changes through time2. Initially, when the variance is high,

the sampled locations are automatically chosen by the algorithm to get an initial

approximation of the unknown function. In the long term, samples concentrate near

higher values of the unknown function. The effect of the distance-penalty in the

reward function is clear, as the next sampled location (circle) is chosen to be close to

the last sampled location (vertical line).

3.4.2 Large-Scale Pollution Monitoring

The goal of this experiment is to simulate a robot sampling from a known phenomenon

where ground truth is available so as to compare different approaches. In order to

build the ground truth, this experiment uses part of a real-world environment dataset,

made available by the United States Environmental Protection Agency3. This is a

considerably large dataset, covering the United States territory with hourly samples

dating back to 1987, including meteorological variables such as temperature, humidity,

solar radiation and ozone concentration among many others.

The environmental phenomenon to be monitored in this experiment is the ozone

concentration in parts per billion (ppb) with raw data provided by N = 103 static

monitoring stations across the US territory for the 1st of August 2009. The ground

truth of the phenomenon is built using a spatial- temporal GP described in Section 3.2.

The GP is trained with timestamped ozone concentration data, and uses a Squared

Exponential covariance function (Table 2.1), whose optimal hyper-parameters were

2A video showing the iterations is available at http://www.it.usyd.edu.au/~rmar5258/
IROS2012/1d_example.html

3Dataset web access: http://java.epa.gov/castnet/reportPage.do

http://www.it.usyd.edu.au/~rmar5258/IROS2012/1d_example.html
http://www.it.usyd.edu.au/~rmar5258/IROS2012/1d_example.html
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Figure 3.2 – One dimension example of active sampling based on BO. The continuous
blue line and shade represent the GP mean and variance respectively. The dashed
red line is the unknown function, and noisy samples from this function are shown as
red crosses. The dotted green line is the reward function, with a circular mark on
its maximum. This function is scaled and with an offset for visualisation purposes.
The last sampling location for each iteration is shown with a vertical dash-dot line.

found by maximising the log marginal likelihood,
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An isotropic restriction of having the same value for both spatial length scales is

enforced during the optimisation process (`
lat

= `
long

), because of the known iso-

tropic behaviour of gas concentration in space. The mean of this GP (µ
gt

), which

follows Equation 3.5, is shown in Figure 3.3 for a specific timestamp. µ
gt

is used as

ground truth for the entire spatial temporal domain. Higher concentration of ozone
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(a) Ground Truth

Figure 3.3 – Mean of the ground truth GP of ozone concentration [ppb] for t =
0.62[day]

is observed in the west region of the United States of America (USA), whereas lower

concentration of ozone is found in the south east area of Florida.

The sampling performed by a mobile robot is simulated by noisy measurements from

the ground- truth GP mean µ
gt

, with �
n

= 2. The BO-Discrete-Planning algorithm

(Algorithm 2) is ran over the entire temporal domain, i.e. 24 hours, for the reward

function from Equation 3.9 under three different configurations that affect import-

antly the behaviour of the robot:

I. Information Gain (IG), which corresponds to a very large, but finite, value

of ,  = 10

10, and � = 0. This is a reward function oriented towards pure

exploration, as all attention is focused on reducing the uncertainty in the model.

II. Upper Confidence Bound (UCB), with manually tuned values  = 8 and � = 0,

considers the predicted value and the uncertainty in the model, disregarding the

distance between sampling locations.

III. Distance-based Upper Confidence Bound (DUCB), with  = 8 and � = 7, is the

more complete reward function, that considers the predicted value, the uncer-

tainty associated to it and the distance between sampling locations.

The same starting point x

0

= (Long,Lat, t) = (�95, 40, 0) was selected for all three

experiments. The simulation process considers a hypothetical Unmanned Air Vehicle
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(UAV) that travels at a speed of 600km/h. Given the short length scale in the time

dimension, high speed helps dealing with the large distances that need to be covered

by the robot in a small amount of time. This may seem unrealistic in practice.

However, the results are equally valid for lower scale problems where the size of the

domain and speed are reduced proportionally.

Qualitative Results

An iterative process is executed for the 24 hours of simulated data4. In each itera-

tion, a robot moves towards the last selected goal. Each robot uses its own reward

function for selecting a new goal after reaching the previous one. The concentration

of ozone gas particles is sampled every 10 minutes while the robot moves towards

the goal. This ensures that robots take a similar number of samples over the exper-

iment, the sole difference being the places where measurements are taken, allowing

a proper comparison of the three different algorithms. The estimated GP model of

the phenomenon is recalculated after a new sample is acquired. Figure 3.4 shows the

estimated mean of the GP model at an arbitrary time step (t = 0.62 days) of the

simulation for the three sampling strategies. The trajectories followed by each of the

robots during the 24 hours sampling window are shown in Figure 3.5.

A visual inspection of the IG results (Figure 3.4b) shows that it matches the ground

truth data poorly. The IG strategy exhibits poor fit to the overall space, not showing

any preference for higher or lower ozone concentrations. This is expected, given that

the reward function does not take into account the predicted value of ozone itself,

only the uncertainty in its predictions. The Bayesian Optimisation (BO) planning

approach with UCB (Figure 3.4c) and with DUCB (Figure 3.4d) present a better fit

to the data. Both of them model correctly the highest spike in ozone concentration

in the west of the USA. However, using the DUCB seems to capture in a better way

the two high concentration areas in the west of the USA.

The trajectories followed by each robot during the 24 hours of simulation are shown

4A video showing the ground truth, mean estimation, the acquisition function and the trajectory
for each approach can be found at http://www.it.usyd.edu.au/~rmar5258/IROS2012/results.
html

http://www.it.usyd.edu.au/~rmar5258/IROS2012/results.html
http://www.it.usyd.edu.au/~rmar5258/IROS2012/results.html
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(a) Ground Truth (b) Information Gain (IG)

(c) Upper Confidence Bound (UCB) (d) Distance-based Upper Confidence

Bound (DUCB)

Figure 3.4 – Estimated mean of a GP model of ozone concentration ppb. Colour-scale
showed in (a) and instant of prediction (t = 0.62 days) is the same for all figures.

in Figure 3.5. It can be seen that the IG sampling strategy selects locations far away

from each other and usually correspond to the extremes of the territory. A similar

behaviour is observed for the strategy using the UCB reward function, although the

sampling locations tend to concentrate in the south west of the U.S. territory. This is

because the mean of the ozone concentration is higher in that area over the whole day.

Finally the approach using DUCB as a reward function provides better results, where

each sampling point is near to the last one. This strategy distributes measurements

over the whole domain, while sampling more often in high ozone concentration areas.

Quantitative Results

The three different reward function are quantitatively compared using two different

performance indicators, that make reference to the error between the ground truth

and the model after each time step. The performance indicators are calculated over

the whole domain, using a fine grid resolution with M samples. The first one is the
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(a) Information Gain (b) BO with UCB

(c) BO with DUCB

Figure 3.5 – Trajectories followed by robots. Observations are only collected inside
the US territory.

Root Mean Squared Error (RMSE) that reflects the error in estimation independent of

the predicted value. This means that RMSE indicator gives the same importance to

the error where the ozone concentration is low, than where the ozone concentration

is high. Therefore RSME is not the best indicator for environmental monitoring

applications but shown here as a reference. The second performance indicator is the

Weighted Root Mean Squared Error (WRMSE),

WRMSE =
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WRMSE is essentially identical to RMSE but the error is multiplied by a factor

that depends on the mean of the predicted value, normalised between the minimum

and the maximum over the entire domain. This performance indicator gives more

importance to the error in areas with higher values of the studied phenomenon, a
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Table 3.1 – Results for Simulated Experiment, Mean and Std are in ppm

Indicator Method Mean Std Distance 10

3km

RMSE IG 13.78 2.31 717.38
RMSE UCB 13.04 2.26 718.25
RMSE DUCB 12.33 3.47 639.06

WRMSE IG 8.21 1.78 717.38
WRMSE UCB 7.10 1.65 718.25
WRMSE DUCB 6.51 1.21 639.06

logical assumption if we are interested in potentially dangerous areas for humans.

WRMSE is a suitable performance indicator for this particular application where

ozone is a serious pollutant at ground level.

Table 3.1 presents the results for each sampling method using the two different in-

dicators. For each method, we calculate the mean and standard deviation of the

indicator through time and the total distance the robot travelled.

Overall, it can be seen that the DUCB method has the smallest error in RMSE

and in WRMSE. The standard deviation of DUCB for the RMSE indicator is higher

than the other strategies because DUCB avoids sampling in areas where the ozone

concentration is known to be low. Therefore, it presents small error in high ozone

concentration areas and larger error in lower ozone concentration areas, increasing the

standard deviation of the RMSE. The IG approach has the bigger error but smaller

standard deviation because it distributes measurements uniformly over the entire

domain. Regarding WRMSE, the DUCB method has the best results in terms of

mean and standard deviation because the error in lower ozone concentration areas is

less relevant (Equation 3.13). The distance travelled by the DUCB sampling strategy

is 11% smaller than the other approaches due to the distance penalty in the acquisition

function. This means that our proposed DUCB acquisition function results in lower

error and at the same time reduces energy consumption.
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Figure 3.6 – Mobile robot used for indoor experiment.

3.4.3 Luminosity Monitoring

The last experiments consist on testing the planning algorithm in a real environment

using an autonomous robot. The robot, shown in Figure 3.6, is equipped with a laser

scanner, odometry, and an ambient light sensor. It uses a laptop running the Ro-

bot Operating System (ROS)5 as main software infrastructure. The built-in packages

in ROS deal with localisation and mapping using the laser scanner and odometry.

Therefore, the robot is assumed to be properly localised during the whole measure-

ment process, using a localisation algorithm developed by Fox [16].

The monitored phenomenon is the ambient light distribution in an indoor office envir-

onment. The intensity of the ambient light was kept constant during the execution of

the experiment to allow repeatability (no variation of the process with time). Figure

3.8a shows the map built autonomously by the robot, where the shaded area repres-

ents the selected area for modelling the phenomenon. To create the ground truth of

5http://www.ros.org

http://www.ros.org
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the intensity of light, the robot was driven manually over the whole domain taking a

considerable amount of measurements. These were used to learn a Gaussian Process

(GP) as the ground truth (shown in Figure 3.7a), with optimal hyper-parameters

✓?
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} = {40.01, 0.7, 0.7, 6.02} . (3.14)

The ground truth GP allows evaluating each algorithm’s modelling performance.

The three different approaches in 3.4.2 are compared in the described real environ-

ment using the autonomous robot. Each sensing strategy was tested for 10 minutes,

acquiring one measurement per second. The final model built by each policy is dis-

played in Figure 3.7 where higher light intensity is equivalent to high values in the plot

(the luminosity scale and absolute values could not be provided due to the nature of

the sensor). The three models preformed very similar because in this experiment the

process did not vary in time, i.e., it is expected that all policies produce an accurate

model if they have visited the entire domain.

Figure 3.8 shows the trajectories followed by the robot using the three sampling

strategies. It can be seen that the resulting trajectories of the IG and UCB ap-

proaches are spread over the whole domain. This is because after reaching a goal,

the next selected sensing location is very far from the last one. A slight difference

can be observed when using the UCB strategy (Figure 3.8c), because sensing loca-

tions are more concentrated in areas with higher luminosity values. The trajectory

followed by the robot using our proposed acquisition function DUCB (Figure 3.8d) is

clearly more concentrated in areas of higher ambient light. In contrast, areas of lower

ambient light are only visited once during the experiment, which is enough for the

underlying phenomenon in this experiment. Comparing against a distance penalised

information gain criterium (DIG) may be possible; however, this acquisition function

is not suitable as it does not consider the mean of predictions.

Table 3.2 details the error of prediction for each sensing method, using the RMSE

and WRMSE over the whole spatial domain (no mean and standard deviation of

the indicators are provided as the process does not vary with time). It can be seen
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(a) Selected Area for Experiment

(b) Information Gain

(c) BO with UCB

(d) BO with DUCB

Figure 3.7 – Estimated mean of a GP fitted to training data of each sensing strategy.
Light intensity with no international unit scale. Axis show distance in metres.

that the RMSE is similar for all three different strategies. However, our proposed

strategy using distance penalty reduces the travelled distance almost to half of the

other strategies, while building a similar model. Having said that, it is clear that our

sensing strategy produces a more efficient sampling methodology.
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(a) Selected Area for Experiment

(b) Information Gain

(c) BO with UCB

(d) BO with DUCB

Figure 3.8 – The trajectories followed by the robot. Samples are only taken inside the
allowed area defined by (a). Axis show distance in meters.

3.5 Related Work

3.5.1 Spatial-Temporal Modelling

The idea of predicting the value of a process in a confined space based on a set of ex-

amples is not new and has been widely studied. Matheron [48] pioneered this concept

in geo-statistics in the 1970’s. His work tackles the problem of estimating the value of
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Table 3.2 – Results for Real Experiment

Indicator Method Value Distance m

RMSE IG 16.44 157.01
RMSE UCB 17.16 217.45
RMSE DUCB 16.91 98.08

WRMSE IG 5.41 157.01
WRMSE UCB 4.60 217.45
WRMSE DUCB 4.70 98.086

an unknown function z in a restricted domain considering a set of known values ẑ in

specific locations. Applied to geo-statistics, the solution of this problem is known un-

der the name of universal kriging and is related to intrinsic random functions. Gaetan

and Guyon [17] present an updated theoretic description of universal kriging in page

43. Daley [11, chap. 2] explores the function fitting problem from the point of view

of atmospheric data analysis. His research addresses a general problem called global

fitting, were K samples are operated in pairs using basis functions and generate a

Gram matrix. This matrix is then used to predict the value of the variable of interest

at a particular position.

Le and Zidek [37] provide an statistical framework for modelling space-time pro-

cesses. Initially, they analyse the typical approaches for modelling spatial correlated

data, similarly to Matheron [48] and Gaetan and Guyon [17]. They explicitly con-

sider relations in space-time domain and show a Bayesian kriging approach where a

prior distribution is assigned to the hyper-parameters. Le and Zidek [37] present a

theoretic analysis of various aspects of spatial temporal modelling, for example on

how to determine suitable covariance functions, analysing separability and station-

arity. Kyriakidis and Journel [33] categorise and review the existing geo-statistical

space-time models.

Due to their successful results on modelling spatially correlated data in the past,

kernel methods deserve particular attention. Schöolkopf and Smola [62] define ker-

nels and present a brief analysis on Bayesian non-parametric methods for regression
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and classification, particularly Gaussian Processes (GPs). In fact, Schöolkopf and

Smola [62, page 480] state that it is natural to assume correlation between spatially-

referenced samples, depending on their sampled location.

Furthermore, GPs have been used successfully for modelling spatially correlated data.

Some examples are terrain modelling [75], wireless signal strength [15], occupancy

maps [52] and gas concentration [69]. Temporal phenomena and time series have also

been modelled using GPs, such as in the case of breathing patterns [2], neural firing

rate [10] and atmospheric CO
2

concentration [58, 76]. GPs for temporal prediction

have demonstrated capabilities for pattern discovery [76]. Existing applications of

GP-based spatial-temporal models include sea surface temperature [41], precipitation

[60], ozone concentration [44] and luminosity [44].

Another strategy involving GPs for learning a spatial model is presented by [74] and

[69]. Tresp [74] presents the idea of combining GPs as building blocks of a more

complex structure. Stachniss et al. [69] use a Gassian Process Mixture (GPM) that

allows representing a smooth signal with impulsive peaks in particular locations, ex-

plicitly distinguishing different components. They claim that the use of this approach

improves the prediction accuracy. However, it involves learning a complex mixture

model from the data. Tresp [74] uses Expectation Maximisation to estimate the

probability of correspondence between each data point and a GPM component, learn

the hyperparameters of each GP of the mixture, and estimate a gating function for

combining GP components on each new test point. Given the increasing number of

parameters to be learned, GPMs may result in over-fitting.

Higdon [24] shows that space-time GP modelling can be viewed from another point

of view. Although the correlation between spatial locations is usually modelled with

the covariance function, Higdon suggests modelling it using the convolution between

a basis function and a white noise process (latent process). He postulates that differ-

ent choices of the smoothing basis function and the latent process lead to attractive

approaches, such as modelling non-Gaussian distribution processes, space time de-

pendence and non-stationary spatial correlations among others. Similarly to [74] and

[69], Higdon [24] proposes adding different-scale component convolution processes to
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boost the performance of the model, exploiting multi-resolution and allowing each

component to model details in diverse scales. Gaetan and Guyon in [17] present a

detailed theoretical approach for continuous and discrete process convolutions in the

spatial modelling context.

The algorithms presented in this thesis are not strictly tied to any spatial-temporal

model in particular. However, they do require that the model provides a posterior

probability distribution over the environment state space.

3.5.2 Planning and Decision Making

It is generally believed that the accuracy of a model and its generalisation capabil-

ity are highly dependent on how the natural phenomenon is sensed. Le and Zidek

[37, page 36] state that the first step is to select the location and time to conduct

measurements. Intuitively, sensing at a large number of places will increase the ac-

curacy of the model. However, Delmelle [13, page 183] points out that although

processing large amount of observations may result in a complete understanding of

the phenomenon, extensive sensing is not possible due to excessive sensing cost and

limited resources. Le and Zidek [37, page 35] state that measuring the complete phe-

nomenon without error would reduce uncertainty but will consume infinite resources.

For example, in an environmental monitoring application of a highly dynamic envir-

onment, the robot has a limited speed that places an upper bound on the number

of sensing positions per interval of time. Therefore, wisely selecting sensing positions

may improve significantly the overall performance of the model and result in higher

prediction accuracy.

A usual approach for sensing is to sense where the uncertainty of the variable of

interest is the highest (Javdani et al. [28]). From the information theory point of view

(Mackay [42]), this corresponds to the most entropic locations. Le and Zidek [37, chap.

11] describe a strategy for placing a network of sensors based on maximising entropy.

Because the entropy criteria focuses on edges of the environment, Guestrin et al. [22]

suggest a new optimisation criterion based on mutual information. They address
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the problem of placing several static sensors in optimal positions by maximising the

mutual information between the sampling positions and the remaining un-sampled

space. They prove that this is a NP-complete problem. As a consequence, they use

an approximation algorithm to obtain near optimal results.

Krause and Guestrin [31] recognise mutual information as a submodular function

that has interesting properties. They use a recursive greedy algorithm for walks,

proposed by Chekuri and Pal [6], that chooses the next destination that maximises a

submodular function. They consider path constraints for a mobile robot and generate

a sequence of visiting locations for more than one robot.

Singh et al. [66] argues that the path planning problem is fundamental for environ-

mental monitoring. They seek the optimal path that collects the most information

of the phenomenon considering the displacement cost of each robot in a multi-robot

system. Their approach is very similar to [31], but they added branch and bound and

spatial decomposition to the path planning algorithm. The experiments conducted

by Singh et al. [66] show that choosing different start locations for each robot yields

the best approximation of the phenomenon as it obtains lower RMSE.

The decision making algorithms proposed in this thesis are related to the work in

the active mapping community, where the goal is to efficiently build maps of initially

unknown environments. The work by Kollar and Roy [30] provides useful ideas for

path parametrisation. They solve the planning problem for active localisation and

mapping using policy search, which shares the cumulative reward idea exploited in

following chapters. Similarly, Le Ny and Pappas [38], Martinez-Cantin et al. [46] also

apply uncertainty reduction towards active SLAM. The main difference between active

SLAM and the problems addressed in this thesis is time variation, which introduces

considerable complexity to the problem.

Stranders et al. [70] develop the first on-line, decentralised multi-agent coordination

for environmental monitoring. They make use of GP regression, and sequentially

choose the next sensing location of each robot that maximises the entropy of the

visited positions. At every time step, the observations are sent to all robots and used

to update the GP model distributively. Stransders et al. show simulated experimental
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results of the same scenario studied in [22] to show the improvement obtained by

mobile sensors against fixed ones. However, the work lacks a complete analysis. They

cite Singh et al. [66] but fail to provide a comparison with the mutual information

criterion and the pre-calculated paths.

Singh and Krause [65] extend the work developed in [31, 66]. They propose a new

adaptive algorithm for solving submodular function optimisation. The new algorithm

is adaptive since it considers the exploration-exploitation problem given starting and

ending locations. The experiments section compares previously developed greedy

algorithms and proves the expected improvement. However, they still recognise sub-

optimal performance of the monitoring system.

Apart from the explicit time consideration and covariance function design, Singh et al.

[67] modify the existing path planning algorithm. The novelty of their algorithm is

that it considers a continuous domain and not discrete-space sensing locations as

studied in [66], [31] and [65]. It uses the mutual information criteria to choose the

next sensing location, and updates the covariance matrix of the process on every new

sensed position.

3.6 Summary

This chapter presents a new planning strategy for monitoring time varying processes.

The main contributions are:

1. Extension of the Bayesian Optimisation (BO) framework to choosing sensing

locations in environmental monitoring applications. This allows mobile robots

to take informed decisions based on the spatial-temporal GP model of the phe-

nomena, getting as much relevant information as possible.

2. A new family of acquisition functions, called Distance based reward function.

These reward function are state-aware and are energy efficient since they reduces

the total distance travelled by the robot, considering distance between sample

locations.



3.6 Summary 56

The proposed methodology was evaluated using simulation and with a real mobile

robot. The results show a notable improvement in terms of error when monitoring

extreme areas of time varying processes (ozone concentration experiment). A con-

siderably important result is that our proposed distance-aware reward function helps

reducing travel distances to achieve comparable results to other methods. This can

be appreciated in simulated and in real experiments where the travelled distance was

reduced by 40%.

The contributions made in this chapter enable an intelligent autonomous robot to

efficiently monitor the state of an environmental phenomenon. We believe that using

BO and designing new reward functions can help dealing with the difficulties when

sampling complicated environmental processes.



Chapter 4

Planning over Continuous Paths

4.1 Introduction

This chapter presents a strategy for planning in continuous spaces for information

gathering. It builds on the previous chapter and generalises the proposed planning

algorithm from waypoint planning to continuous paths that can take any paramet-

risation. Briefly, the proposed algorithm uses two layers of Bayesian Optimisation

(BO) to find the optimal parameters that define the best path a robot should follow

in order to gather useful information from a spatial-temporal phenomenon. Part of

the contents of this chapter have been previously published in ICRA1.

The core of this chapter is to propose a solution for the spatial-temporal monitor-

ing problem by finding informative paths in continuous domain, solving not only the

question of where and when to sample, but how to get there. The developed decision

making algorithm aims to identify areas of interest of an initially unknown environ-

mental phenomenon, i.e. learn and monitor a spatial-temporal phenomenon. The

decisions are based on an incremental spatial-temporal model of the phenomenon us-

ing a Gaussian Process (GP) prior, detailed in Section 2.2, which places a prior over

the function space modelling a phenomenon over time. The algorithm is an extension
1Roman Marchant and Fabio Ramos. Bayesian Optimisation for Informative Continuous Path

Planning. In IEEE International Conference on Robotics and Automation (ICRA), 2014
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of Bayesian Optimisation (BO), studied in Section 2.3, which can naturally deal with

the exploration-exploitation trade off. Each decision is chosen by evaluating a reward

function that is maximised with respect to the parameters of an unknown path. An-

other layer of BO is used to solve this maximisation step. This helps finding the best

set of parameters that determine a continuous path where the robot travels on while

taking samples. The proposed algorithm is validated on a large-scale environment

for monitoring ozone concentration in the United States of America (USA), and on a

mobile robot that monitors the dynamics of luminosity changes.

This chapter presents the following contributions:

1. Generalisation of the BO-Discrete-Planning algorithm (Algorithm 2) to optimise

along continuous trajectories.

2. A layered BO approach for informative path planning in spatial–temporal en-

vironmental monitoring.

The remaining of this chapter are structured as follows. Section 4.2 presents GP

regression for spatial–temporal modelling using a more complex model than in the

previous chapter. Section 4.3 presents the theory for planning under continuous

paths, which addresses path parametrisation and the decision making algorithm for

finding the optimal path.Section 4.4 shows an experimental evaluation of the proposed

algorithm, in a simulated environment and using a real robot. Finally, Section 4.6

presents a summary of the contributions and future work.

4.2 Spatial Temporal Modelling

A mathematical model of a phenomenon is very important for making correct policy

decisions. Scientists have established physical and chemical laws that describe how

environment phenomena behave and how relevant variables relate to each other. Al-

though this deterministic approaches may be valid for controlled situations, they
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might not be useful for most local environmental monitoring applications. For ex-

ample, the spatial-temporal distribution of air- pollutant concentration in a city de-

pends on traffic, temperature, humidity, wind speed, air pressure and building con-

figuration among many other factors. There is no exact model that can capture the

cross dependencies between all of these variables to achieve an accurate prediction

of what the concentration will be in any given location. Also, air pollution does not

only have spatial variations but also exhibits complex temporal patterns. Being able

to model these patterns is of great importance to accurately predict the behaviour of

the studied phenomenon.

In order to monitor spatial-temporal phenomena, it is necessary to learn a model

of the unknown process to be monitored. A simple approach for modelling space-

time dependent stochastic processes has been presented in Section 3.2, which has

spatial and temporal dimensions coupled together. This model’s main limitation is

the capacity of capturing space and temporal specific patterns. This section presents

a more complex approach for Gaussian Process (GP) spatial temporal modelling,

where space and time components can be treated independently in the covariance

function definition.

A latent noisy function f (s; t) representing the realisation of a spatial–temporal envir-

onmental phenomenon is modelled as y = f (s; t)+✏, where s 2 RD are the coordinates

in a spatial D-dimentional space, t > 0 2 R+ represents time and ✏ ⇠ N (0, �2

n

) is the

noise associated to each independent observation such that,

f(s, t) : RD ⇥ R! R . (4.1)

A GP is a nonparametric Bayesian technique that places a prior distribution over

the space of functions mapping inputs to outputs. In this chapter, the GP is fully

determined by a spatial-temporal mean function m (s; t) and a positive semi-definite

spatial-temporal covariance function k
�
(s; t) , (s; t)0

�
, i.e.,

f (s; t) ⇠ GP �m (s; t) , k
�
(s; t) , (s; t)0

� �
. (4.2)
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The main advantage with respect to the approach taken in Section 3.2 is that the

mean and covariance functions can treat the spatial and temporal components inde-

pendently. This allows individual covariance function assignment for the temporal

and spatial component.

Denoting the set of the spatial temporal training sample locations from f as X =

{(s; t)
i

}N
i=1

and its corresponding noisy outputs y = {y
i

}N
i=1

, the predictive distri-

bution for a new query input (s; t)? is Gaussian, f ?

= f((s, t)?) ⇠ N (E[f ?

],V[f ?

]),

where the mean and variance are given by:

E[f ?

] = K((s; t)?, X)K�1

X

(y �M(X)) ,

V[f ?

] = K((s; t)?, (s; t)?)�K((s; t)?, X)K�1

X

K(X, (s; t)?) .
(4.3)

Here, K(·, ·) is the covariance matrix between all observations where each element

(i, j) is k ((s; t)
i

, (s; t)
j

), M(·) is defined component wise, with M(X)

(i)

= m((s; t)
i

)

with (s; t)
i

2 X and K
X

= K(X,X) + �
n

I. The main difference with the GP

formulation presented in Section 2.2, is that input locations change from x to (s; t).

The mean function, m (s; t), depends on a set of hyper-parameters ✓
m

and the covari-

ance function k
�
(s; t) , (s; t)0

�
depends on another set of hyper-parameters ✓

c

. A GP

can adapt to any function f at two levels: The first level is choosing the expressions

for m and k. The second level of adaptation is optimising the hyper-parameter set

✓ = {✓
m

,✓
c

, �
n

}, which corresponds to the learning component.

For simplicity but without loss of generality, we assume that the mean function is

constant, m (s; t) = ⌘, i.e. ✓
m

= {⌘}. An important decision is selecting the expres-

sion for the covariance function k, since there are several covariance functions in the

literature with different characteristics. Selecting the covariance function is problem

dependent, i.e. for a specific spatial-temporal phenomenon, certain expressions for k

might be a better fit than others.

How to select the appropriate expression for the covariance function k? In the spatial-

temporal domain, the first decision that has to be made is if space and time have

independent behaviour or if they are coupled.
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Independent behaviour means that the variation of f with time is independent of

the spatial location, which is convenient because the full covariance function can be

factorised into a spatial and temporal component. This kind of covariance functions,

presented by Singh et al. [67], are defined as spatial-temporal separable covariance

functions,

k
sep

((s; t), (s; t)0|✓
c

) = k
space

(s, s0|✓
space

) k
time

(t, t0|✓
time

). (4.4)

The advantage of using separable covariance functions is that the expressions for the

spatial and temporal components can be selected independently. For example, the

spatial factor, k
space

, might capture spatial dependency rate decay while the temporal

factor, k
time

, can capture a different covariance decay, not only with a different length-

scale, but with a completely different covariance function expression that can include

time-specific periodic behaviour.

Coupled space-time dependency means that the covariance structure for the tem-

poral dimension depends on the spatial location or vice versa. In this case, the

covariance function cannot be factorised into spatial and temporal specific compon-

ents. Although this non-separable covariance functions can capture more complex

dependencies, optimising their hyper-parameters becomes more challenging. The

hyper-parameters of the covariance function are considered to be fixed over time.

The examples and experiments in this thesis use separable covariance functions by

combining the covariance functions from Section 2.2.1. However, it is not restricted

to any other kind of covariance function, such as non-stationary or non-separable. In

addition, the planning algorithms can use any spatial-temporal regression technique,

as long as it provides a posterior probability distribution.

4.3 Continuous Path Planning

This section shows how to plan for continuous paths. It builds on Section 3.3, and

generalises the planning algorithm into a continuous path optimisation problem in-

stead of waypoints. The proposed algorithm is a Bayesian Optimisation (BO) based
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planner that uses the posterior Probability Density Function (PDF) provided by the

spatial-temporal model to decide which is the best path to traverse in order accumu-

late most reward.

Firstly, we enumerate a possible path parametrisation, to later present the details of

the layered BO planner that finds the near optimal path to travel.

4.3.1 Path Parametrisation

A path is a continuous curve C that is mathematically defined as a continuous function

that maps from u 2 R to (s, t) 2 RD+1.

C(u|�) : R! RD+1 (4.5)

where the output has D+1 dimensions with D dimensional spatial component s and

time t. For example, when the dimension of the output space is two, i.e. D = 2, the

paths are defined over a plane and C is parametrised by u. Different parametrisation

functions can achieve the representation of a different family of curves by modifying

the expression of C. The output of C also depends on a set of curve parameters

�, where each parameter vector � represents a unique curve in the spatial-temporal

output space. Border conditions may also apply when the initial or final poses are

known, ultimately fixing some components of the parameter vector �.

There are many different kinds of curve parametrisations, the most popular being

piecewise polynomial parametrised by u 2 [0, 1] in each dimension of the output,

which are called Splines. The order of the polynomials determines the type of spline.

This thesis shows detailed expressions cubic splines, which are used in the exper-

imental section. However, not that our planning algorithms are not limited to a

specific parametrisation.
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Cubic Splines

A cubic spline consists of third order polynomials for each spatial dimension. Con-

sidering D = 2, cubic splines are defined as:

C(u|�) : [0, 1]!R3

u! s
1

(u) = a
1

u3

+ b
1

u2

+ c
1

u+ d
1

(4.6)

s
2

(u) = a
2

u3

+ b
2

u2

+ c
2

u+ d
2

(4.7)

t(u) =
1

v
l

Z
u

0

ds , (4.8)

where the parameter vector is � = {a
1

, b
1

, c
1

, d
1

, a
2

, b
2

, c
2

, d
2

, v
l

}. Here a
i

, b
i

, c
i

and

d
i

control the shape of the spline while v
l

is the linear speed, which determines the

temporal component.

Known border conditions for the spline, such as initial position or pose, reduce the

number of free parameters by fixing certain components in the parameter vector �.

Consider the following scenarios:

1. Known initial position;

Useful when the starting location of the spline is fixed. A known initial position,

(s
1

(0), s
2

(0)), translates into

s
1

(0) = d
1

(4.9)

s
2

(0) = d
2

, (4.10)

leaving seven free parameters, � = {a
1

, b
1

, c
1

, a
2

, b
2

, c
2

, v
l

}.

2. Known initial pose;

When the initial position, (s
1

(0), s
2

(0)), and the angle, ↵, of the spline are
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known:

s
1

(0) = d
1

(4.11)

s
2

(0) = d
2

(4.12)
@s

2

/@u

@s
1

/@u

����
u=0

=

c
2

c
1

= tan↵ , (4.13)

leaving six free parameters, � = {a
1

, b
1

, c
1

, a
2

, b
2

, v
l

}.

4.3.2 Continuous Path Planning

This section presents a planning algorithm for optimising paths to be traversed for

monitoring a spatial-temporal phenomenon. The goal of the planning algorithm is

to monitor efficiently a spatial-temporal phenomenon. Particularly, understanding

more accurately the areas of interest. In the environmental monitoring case, this

corresponds to areas of extreme values of the studied phenomenon. Thus, the problem

can be framed as an optimisation problem, where the goal function is the phenomenon

itself. Bayesian Optimisation (BO) can be used to solve the optimisation because it

assumes an initially unknown goal function, quantifies uncertainty and guides the

search of the optimum based its understanding of the phenomenon.

The pseudo-code of the continuous path planning algorithm (BO-Continuous-Planning)

is presented in Algorithm 3. In general terms, this algorithm is essentially an adapta-

tion of the BO algorithm, shown in Algorithm 1. It builds on Algorithm 2 proposed in

Section 3.3 and generalises the approach to find continuous paths instead of discrete

locations. It is an iterative algorithm, where each iteration produces a decision of

where to go next. The decisions are taken based on the posterior Probability Distri-

bution Function (PDF) provided by the Gaussian Process regression over f . For the

case of continuous path planning, a decision corresponds to a set of curve parameters

� that defines the curve a robot follows.

The BO-Continuous-Planning algorithm is an improvement over the previously pro-

posed discrete planning algorithm (BO-Discrete-Planning) shown in Algorithm 2.
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Algorithm 3 BO-Continuous-Planning
Inputs: f , h, GP-prior, p

init

Outputs: GP-posterior, p
1: p current pose of robot.
2: p p

init

3: while t < t
max

do
4: �?  argmax� r(C(u,�)|h)
5: while p is far from C(1,�?

) do
6: Move along C
7: Gather samples from f
8: Update p

9: end while
10: Augment X and y with new samples.
11: Update the GP model
12: end while

The main similarities and differences are the following:

Inputs: The inputs are the same as for the discrete version. f represents the phe-

nomenon to be monitored. h(·) is the acquisition function that quantifies the

benefit for sampling at a particular location (Section 2.3.1). The GP-prior is

the statistical model used to represent f .

Outputs: Since the goal of the BO-Continuous-Planning algorithm is to monitor f ,

the output is a predictive model of f .

Reward Function: The reward function is associated with a decision. In Algorithm

2, the reward is evaluated at a particular location. Here, the reward function en-

codes the reward of travelling along a continuous path. Therefore its expression

corresponds to the integral of the acquisition function h(·) over the path,

r(C(u,�)|h) =
Z

C(u,�)
h(v)dv. (4.14)

Sample Collection: Similar to Algorithm 2, a set of samples is collected while the

robot travels along the selected curve C and the GP posterior is updated once

the goal has been reached and a new path needs to be found.
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For each iteration, the reward function is evaluated over multiple paths and depends

on the acquisition function. For example, considering h(v) = UCB (Equation 2.29),

the reward function takes the following expression,

r(C(u,�)|h) =
Z

C(u,�)
h(v)dv , (4.15)

=

Z
1

0

UCB(C(u,�))kC 0
(u,�)kdu , (4.16)

=

Z
1

0

[µ(C(u,�)) + �(C(u,�))] kC 0
(u,�)kdu. (4.17)

Where k · k is the magnitude of the derivative of the curve. This integral may not

have an analytical solution depending on the definition of the acquisition and cov-

ariance functions. In this thesis the integral is approximated using a rectangle rule

quadrature-based approximation [18], which generally results in accurate approxim-

ations for the one dimensional case (since the integral is over a 1-D variable, u).

The critical component of the Algorithm 3 is Line 4. Here, the optimal path parameter

vector �? is found by maximising the reward with respect to all possible paths. The

path C(u,�?

) is the one that cumulatively delivers the best reward by integrating

over the acquisition function,

�?
= argmax

�
r(C(u,�)|h) = argmax

�

Z

C(u,�)
h(v)dv . (4.18)

This maximisation step can be solved with any optimisation technique. In fact, for the

plain BO algorithm and for the BO-Discrete-Planning algorithm shown in Algorithm 2

this optimisation step can be conducted using gradient-based local search optimisers.

However, a global optimiser would greatly accelerate the convergence of the optimiser.

Alternatively, Equation 4.18 can be solved using another layer of BO. Since the action

space � is at least five dimensional and the function r is highly non-convex and

expensive to evaluate, BO provides a natural solution. The pseudo-code for finding

the most informative path using double layered BO is presented in Algorithm 4. This

means placing another GP prior over r and using a second acquisition function q to
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Algorithm 4 Layered-BO-Continuous-Planning
Inputs: f , h, q, GP-prior, p

init

Outputs: GP-posterior, p
1: p starting pose of robot.
2: p p

init

3: while t < t
max

do
4: �?  BO(r(h), q) // Algorithm 1
5: while p is far from C(1,�?

) do
6: Move along C
7: Gather samples from f
8: Update p

9: end while
10: Augment X and y with new samples.
11: Update GP model
12: end while

decide which path parameters � to evaluate over r(h). This second layer of BO (Line

4 in Algorithm 4) follows the plain BO Algorithm 1. Note this step is fast to evaluate

because it does not require the robot to move and gather training samples as it uses

the existing GP model of the phenomenon.

4.4 Experiments

In this section the proposed method is tested in two scenarios: a large-scale experi-

ment for ozone monitoring in the US, and real-time monitoring of illumination with

a mobile robot.

4.4.1 Large-scale Pollution Monitoring

The first experiment simulates an Unmanned Air Vehicle (UAV) monitoring ozone

concentration; considered a pollutant at ground level. To simulate the environment we

use real data provided by the US Environment Protection Agency2. A large number

of ozone concentration measurements, dating back to 1987, are available with one

2http://java.epa.gov/castnet/reportPage.do
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(a) t = 0 days (12am) (b) t = 0.25 days (6am) (c) t = 0.5 days (12pm)

(d) t = 0.75 days (6pm) (e) t = 1 days (12am)

Figure 4.1 – Ground-truth for ozone concentration across the USA, state limits shown
in black. Area corresponds to Kentucky and Tennessee states. Axis are measured
in 106 metres and corresponding to UTM coordinates for section 16F.

hour period for static sensing locations across the US. The UAV is forced to stay

within the region specified in Figure 4.2.

The discrete data S from the database is used to create a simulated environment

using GP regression, called Ground Truth GP (GTGP). A robot samples from the

mean µ
gt

of this continuous process in space and time. The GTGP uses a separable

covariance function with an isotropic Matérn3 component for space and the sum of

a Matérn5 and a Periodic component for time (See Table 2.1). The set of optimal

hyper-parameters was found by maximising equation 2.13 using a gradient descent

method. The optimal values found by the optimiser are: �
fm3

= 1.862, l
m3

= 1.195,

�
fm5

= 0.201, l
m5

= 5.84, �
fper

= 0.94 and � = 5.75. In order to deal with limited

computational resources, the approximation parameter m, described in Section 2.2.3,

is set to 300 for all experiments. The concentration of ozone changes periodically
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Figure 4.2 – Area for the experiment (16F in UTM coordinates)

with a period of one day (known a priori), and the time is measured in days. Figure

4.1 shows a GTGP regression over space for five timestamps within one day. It can

be noted that two peaks appear around mid-day with values that can reach up to

100ppb. The pattern is repeated every-day with slight variations in amplitude due to

unknown environmental factors.

Ideally, the robot should accurately capture changes in the areas where pollution is

more densely concentrated. We compare six different techniques for planning the

motion of the UAV while monitoring the environment:

1. Random Discrete Sampling (RD): Randomly pick discrete goal locations within

the environment.

2. Entropy Discrete Sampling (ED): Pick discrete locations for sampling using the

maximum variance (entropy) criterium [22].

3. UCB Discrete Sampling (UCBD): Pick discrete locations using UCB [43].

4. Random Continuous Sampling (RC): Select random paths using an uniform

distribution over �.

5. Entropy Continuous Sampling (EC): Find paths that maximise entropy reduc-

tion.
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6. UCB Continuous Sampling (UCBC): Choose paths that maximise UCB acquis-

ition function.

The proposed method is indicated in 6). UCBC and UCBD use the upper confidence

bound acquisition function, with parameter  = 0.1 manually tuned to balance the

exploration-exploitation trade off. Although UCB was chosen due to its particular

exploring behaviour [3], other acquisition functions can be used. Future work can

compare different acquisition functions and learn the parameters of the acquisition

function within the optimisation procedure. To include realistic sampling from the

GTGP, random noise with �
n

= 5 is added to every sample independently. The

experiment takes place for 30 days and assumes the vehicle moves at an average

speed of 60km/h. A sample of ozone concentration is collected every minute for

all strategies, assuring that each method collects the same number of samples for

predicting the values of the phenomenon. Given that all methods will acquire the

same number of samples, the differences in error will only depend on the locations

where the samples were acquired. The inner optimisation for maximising among

paths (Line 4 of Algorithm 4) uses q = UCB as acquisition function for strategies

EC and UCBC. The GP model of the inner optimisation uses a Matérn3 (Table 2.1)

covariance function whose hyper-parameters are optimised on each iteration using

gradient decent.

Figure 4.3 shows the paths travelled by the robot for each case. A quick visual

inspection shows that all methods were able to cover the region of interest and explore

the entire environment. Random sampling strategies (RD and RC) do not present

any interesting patterns and move chaotically across the studied area. Entropy based

techniques (ED and EC) cover the region uniformly, reducing the uncertainty of the

whole area. Finally, UCBD and UCBC concentrate their samples towards the areas

of higher pollution.

A very important difference is the shape of paths for discrete and continuous sampling

strategies. Even though  has the same value for the acquisition function of UCBC

and UCBD, the trajectories are much more concentrated over the high pollution areas

for the continuous optimisation case (UCBC). The main reason is that this method
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Figure 4.3 – Paths for different methods. Axis are measured in 106m.

takes into account the value of the acquisition function over the entire path that is

being traversed. One way of seeing this is that if a method only takes into account

a discrete goal location it will not necessarily collect useful information on its way to

the target location. However, if the method does take into account the information

gathered while reaching the target location, then the informativeness of gathered

samples will increase noticeably.

We use four different error measures at M locations to evaluate the performance

quantitatively:

1. Root Mean Squared Error (RMSE): Error without taking into account the value

of the predicted variance.
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2. Weighted Root Mean Squared Error (WRMSE): Places weights depending on

the magnitude of the ground truth output, giving more importance to errors in

higher pollution areas [43].

3. Mean Log Loss (MLL): Evaluates the negative log probability of the ground

truth data point under the model. Takes into account not only the prediction

error but also the associated uncertainty.

MLL =

P
M

i=1

(

� log p(µ

gt

(x

?

i

)|S,x?

i

)

)

M

P
M

i=1

✓
1

2

log (2⇡�

2

(x

?

i

))+

(µ
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(x
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.

(4.19)

4. Weighted Mean Log Loss (WMLL): Similar to WRMSE, but weighted over the

mean log loss. Gives more importance to error in high pollution areas, taking

into account the variance of the predictive model.

MLL =

P
M

i=1

(

� log p(µ

gt

(x

?

i

)|S,x

?

i

)

)(

µ

gt

(x

⇤
)�minµ

gt

(x)

)

maxµ

gt

(x)�minµ

gt

(x)

M

(4.20)

with x = (s; t) for the space-time case.

Table 4.1 shows the error for each method evaluated w.r.t. the ground truth on a

grid over space and time for the entire duration of the experiment. It can be seen

that the proposed method (UCBC) delivers the best performance for all indicators.

UCBC favours areas of high pollutant concentration, achieving more accuracy over

the areas that account for the most relevant component of error. The difference in

performance between strategies is remarkable for the weighted errors WRMSE and

WMLL. The main reason for this is the extra importance to model areas with high

pollution (exploitative behaviour). For this experiment, UCBC also presents lower

error for non weighted metrics, expected when the areas of interest account for the

most important component of error. Therefore, when UCBC focuses on sampling

from areas of higher concentration it will achieve lower error overall, compared to EC

or RC that will model better areas that do not reduce the overall error importantly

(because the output variable has lower values for non relevant areas).



4.4 Experiments 73

Table 4.1 – Results for US Ozone Monitoring

Method RMSE WRMSE LogLoss WLogLoss

RD 7.3574 2.2324 3.4149 0.0956
ED 7.5225 2.2570 3.4332 0.0957

UCBD 7.1579 1.9764 3.3999 0.0937
RC 7.2238 2.0698 3.3951 0.0935
EC 7.1103 2.2958 3.3907 0.0956

UCBC 6.7971 1.4981 3.3537 0.0863

It is also noticeable the difference between continuous and discrete sampling strategies.

An improvement is revealed for all strategies as we are optimising over continuous

paths rather than choosing discrete locations.

4.4.2 Luminosity Monitoring

A small, wheeled mobile robot was used to monitor dynamic illumination changes in

an indoor environment. The goal of this experiment is to compare different techniques

for path planning and their impact on the abilities of the robot to learn the space-time

patterns of a dynamic phenomenon. The idea is to create a real-world phenomenon

under a controlled environment where the dynamics can be adjusted accordingly. Two

light sources with variable intensity are dimmed electronically to expose patters with

a periodic component and amplitude changes through time.

The robot is equipped with an on-board CPU running ROS3, an environmental sens-

ing electronic board, shown in Figure 4.4b, and a laser scanner for localisation in an

previously built map. Samples from the phenomenon are gathered every one second.

Ground truth is obtained by placing static sensor boards in five static locations,

shown in Figure 4.4d. Figure 4.5 shows an interpolation of the measurements in these

locations over space for five time stamps within a period. Figure 4.6 shows the inter-

polation over time for one source of light located at (x, y) = (1.12, 2.39). Variations

3Robot Operating System http://www.ros.org

http://www.ros.org
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(a) Mobile robot used in the experiments.

(b) Sensing Board.
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(d) Position of sensing
nodes for ground truth.

Figure 4.4 – Sensing board, map of the area and location of ground truth measure-
ments. Axis in metres.

in amplitude are noticeable over time and similar to many natural phenomena. Even

though the light sources are easily distinguishable for a human observer, the prob-

lem is much more complex for a robot that gathers noisy samples from the unknown

time-changing phenomenon. The problem becomes even more interesting when the

robot needs to decide where to take next samples based on past experience and future

reward.
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(a) t = 0 s (b) t = 7.5 s (c) t = 15 s

(d) t = 22.5 s (e) t = 30 s

Figure 4.5 – Spatially distributed light intensity variations. Axis in metres.

Table 4.2 – Hyper-parameters For Luminosity Monitoring

�
n

⌘ �
f1

l
1

�
f2

l
2

�
f3

� �
f4

l
4

12.0 85.0 0.59 29 11.9 8.2 11.2 298 7.6 2

The same path-planning strategies in section 4.4.1 are compared in experimental

trials that last for ten minutes. The robot used the following covariance function for

building the GP model of the phenomenon:

k
sep

((s; t), (s; t)0|✓) = k1
mat3

(s, s0|✓
1

)·
[(k2

mat3

(t, t0|✓
2

)) · k3
p

(t, t0|✓
3

)) + k4
mat3

(t, t0|✓
4

)] ,
(4.21)

where the estimated hyper-parameters ✓ are shown in Table 4.2.

Figure 4.7 shows the paths travelled by the robot using each technique. Results are

similar to the experiment in the previous section. While random sampling strategies,

RD and RC, derive paths mostly concentrated at the centre of the studied region,
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Figure 4.6 – Light intensity oscillation at location (x, y) = (1.12, 2.39). Horizontal axis
represents time in seconds and vertical axis represents intensity with no SI units.
The mean of prediction for UCBC and EC is shown according to the legend.

paths for entropy based strategies, ED and EC, are distributed more homogeneously

over space. In constrast, UCB paths focus on areas with high luminosity while at the

same time exploring the environment for unknown sources of light.

Table 4.3 shows numerical results for the evaluation of the performance indicators

described in section 4.4.1. Random policies perform close to entropy techniques for

this obstacle-free environment. In a case of extremely low CPU availability it can be

considered as a viable alternative; however, in real complex environments it is not a

promising candidate. UCBC delivers the lowest error and weighted error for all the

indicators. It is also shown that sampling over continuous domains results in smaller

error for the case of UCB acquisition function. UCB strategies have the smallest error,

demonstrating a central advantage in monitoring dynamic phenomena: monitoring

areas of higher pollution more intensively results on lower overall error.

The developed method runs close to real-time in a standard CPU (i5 processor). Each

iteration for finding the next optimal path takes 4.8s in average and can be computed

before the execution of the current path is finished, avoiding unwanted pause between

consecutive paths.
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Figure 4.7 – Resulting paths for six different path planning techniques, axis are in
metres.

4.5 Related Work

Decision making under uncertainty has seen significant developments as well. In-

formation gain strategies for placing static sensors were studied in Guestrin et al.

[22]. Mobile sensing agents can use active learning to choose where to sample from

the environment. For this purpose, Markov Decision Processes and Reinforcement

Learning approaches have been used by Bush et al. [5] and Chung et al. [7]. Bush

et al. [5] uses belief-state MDPs for selecting observations that minimise uncertainty
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Table 4.3 – Results for Luminosity Monitoring

Method RMSE WRMSE LogLoss WLogLoss

RD 39.598 28.061 8.949 2.327
ED 38.389 25.106 10.013 2.779

UCBD 38.210 23.715 9.685 2.672
RC 43.390 27.045 10.197 2.754
EC 48.873 38.433 11.980 3.443

UCBC 30.121 21.422 8.098 2.145

and Chung et al. [7] uses GPs for modelling the state-action value function. The main

limitation of these approaches is the limited action space and tractability to deal with

real scenarios. Uncertainty-driven planning was also explored by Hollinger et al. [27]

using the travel salesman problem and RRTs LaValle [35] to find paths. RRTs are

also explored by Lan and Schwager [34], where a record the minimum cost cycle is

considered to find cyclic trajectories. Hollinger and Sukhatme [26] combines Rapidly

Exploring Random Graphs (RRGs) and Branch and Bound optimisation techniques

to find informative paths. An optimisation approach has been explored by Witt and

Dunbabin [77], that uses simulated annealing and swarm optimisation for planning

energy-optimal paths for an AUV under strong currents. The main drawback of this

work is that uncertainty is not estimated by the model used to derive decisions. An-

other cost aware path planner was presented in Suh and Oh [71]. It assumes an

already known cost map and is not useful for exploration purposes.

Recent decision making algorithms make use of submodularity properties for planning

non-myopic, long-term way points for uncertainty reduction [1, 22, 31, 65]. These

methods provide convergence guarantees and error bounds based on an exploration-

only behaviour. While minimising the overall uncertainty of the model is important

in some applications, for most of pollution monitoring tasks this is not sufficient. In

such cases, it is desirable to be more accurate in areas of high pollution than in areas

of low pollution. This introduces extra terms in the objective function (such as the

mean of the predicted pollution concentration) making the submodularity assumption
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invalid.

The proposed method has the following advantages over the previous techniques:

i) It is not a waypoint greedy solution to acquiring new observations as it takes

into account measurements obtained along a path with predictions propagated

over time.

ii) It considers a continuous action space.

iii) It uses both the mean and the variance to define paths and addresses the exploration-

exploitation trade off in a principled Bayesian framework.

4.6 Summary

This chapter proposed a new technique for informative path planning over continuous

paths for environmental monitoring. The main contribution is the derivation of a

continuous action space strategy by integrating over an acquisition function in a

principled Bayesian optimisation framework. This chapter presents a model for space-

time phenomena using Gaussian processes which enables a robot to learn periodic

patterns while preserving spatial correlations between observations. A first layer of

BO is used to predict regions of high concentration. Then, a second layer of BO is used

to estimate the curve parameters defining the best path to collect new observations.

The proposed method was evaluated in two experimental settings: on a large-scale

autonomous monitoring problem for ozone concentration in the US, and for real-time

monitoring of changes in luminosity indoors. In both cases, the mobile robot was

able to learn a space-time model of the dynamic phenomena. Comparisons were

performed between existing techniques for informative path planning indicating that

the proposed algorithm captures more accurately the dynamics of areas where the

monitored quantity has higher concentration. This ultimately results in an overall

more accurate model with lower weighted error. Additionally, our technique can even
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reduce the total RMSE if the areas of interest account for a significant proportion of

the error, as is the case for the two studied situations.

We believe that optimising over curves for path planning can produce more inform-

ative decisions achieving longer term rewards. The method explained in this chapter

can significantly improve the decision making process for efficiently monitoring a wide

variety of environmental phenomena. In the next chapter we address the long-term

or infinite horizon planning with continuous POMDPs and derive a joint procedure

possessing the advantages of both Bayesian optimisation and POMDPs.



Chapter 5

Sequential Continuous Planning

5.1 Introduction

Thus far, the proposed algorithms for planning have focused on one step lookahead

decisions. The approaches focused on myopic decisions without giving special con-

sideration to the sampling sequence, or the costs or constraints associated with that

sequence. However, in real-world sequential decision problems such as in robotics, the

order in which samples are gathered is paramount, especially when the robot needs

to optimise a temporally non-stationary objective function. Additionally, the state

of the environment and sensing platform determine the type and cost of samples

that can be gathered. To address these issues, we formulate Sequential Bayesian

Optimisation (SBO) with side-state information within a Partially Observed Markov

Decision Process (POMDP) framework that can accommodate discrete and continu-

ous observations. The proposed solution involves Monte-Carlo Tree Search (MCTS)

and Upper Confidence bound for Trees (UCT) for POMDPs and is extended to work

with continuous state and observation domains. Through a series of experiments

on monitoring a spatial-temporal process with a mobile robot, the results show that

the proposed UCT-based SBO POMDP optimisation outperforms myopic and non-
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myopic alternatives. This work has been previously published at UAI1.

Bayesian Optimisation (BO); described in Section 2.3; is a global optimisation tech-

nique that has recently gained popularity in the machine learning community. BO

possesses major advantages when used to find the maximum of partially observed ob-

jective functions that are costly to evaluate, lack gradient information, and can only

be inferred indirectly from noisy observations. BO is robust to this setting because it

builds a statistical model over the objective. More specifically, it places a prior over

the space of functions and combines it with noisy samples to produce an incremental

prediction for the unknown function. The prior usually takes the form of a Gaussian

Process (GP), which has proved successful in modelling spatial-temporal data. The

key component for the effectiveness of BO is the use of an Acquisition Function (AF)

that guides the search for the optimum by selecting the locations where samples are

gathered based on the posterior in each iteration.

BO can be readily applied to scenarios where the objective function does not vary

in time and sampling locations can be chosen freely within the input domain. In

real-world robotics applications, functions are likely to change with time indicating

that when to sample is as important as where to sample. Another important aspect

in realistic settings is that the state of the environment and sampling platform de-

termines the reachable space for gathering the next sample. Combined, these issues

create an imperative for finding optimal sequences of sampling locations.

The algorithms proposed in previous chapters focus on myopic decision-making by

evaluating one-step lookahead for objective sampling. Non-myopic solutions have

been proposed in [19, 54], but the authors acknowledge they are considerably expens-

ive to evaluate and do not account for possible side-state presence due to external

conditions. Lim et al. [39] propose solving the informative path planning problem

using policy trees, however, they do not take into account time changing phenomena

or continuous paths, decreasing the complexity of the problem. An optimal solution

to non-myopic decision-making with side- state can be formalised in the Partially Ob-

1Roman Marchant, Fabio Ramos, and Scott Sanner. Sequential Bayesian Optimisation for
Spatial-Temporal Monitoring. In Conference on Uncertainty in Artificial Intelligence (UAI), 2014
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served Markov Decision Process (POMDP) framework. The key here is to consider

the state as a tuple, consisting of the unknown function and the state of a sensing

robot. However, this leaves open the question of how one can efficiently solve the

resulting POMDP.

This chapter presents the following contributions:

1. Defines Sequential Bayesian Optimisation (SBO), which considers a sequence

of generic decisions (discrete or continuous action space).

2. Formulates SBO under the POMDP framework.

3. Develops Monte-Carlo Tree Search (MCTS) and Upper Confidence bound for

Trees (UCT) to solve the POMDP version of SBO.

The remaining of this chapter is structured as follows. Section 5.2 defines SBO, which

is formulated under the POMDP framework in Section 5.3. Section 5.4 proposes a

way to find an online solution for the multi-step lookahead SBO that aims to provide

an optimal sequence of sampling locations. Section 5.5 evaluates the proposed model

for spatial-temporal monitoring problems that clearly demonstrate the benefits of our

UCT algorithm for non-myopic SBO optimisation.

5.2 Sequential Bayesian Optimisation

With the definitions above we can now extend BO to a sequential setting. In order to

apply BO to more realistic problems we expand the existing theory to a more generic

framework and include the notion of state in the definition of the problem. The main

modification is that the acquisition function is replaced by a generic reward function,

r. This reward depends on the state x

i

of a mobile robotic sensor and the expected

value of the objective function f(x
i

), which using simplified notation, is noted as f
i

.

In the general case, because gathering each sample has an associated reward, the

order in which they are gathered has a direct influence over the total accumulated
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Figure 5.1 – Bayesian network representation for SBO.

reward for a specific lookahead. We call this kind of optimisation technique Sequential

Bayesian Optimisation (SBO).

Sampling locations and their associated observations are grouped in D, which contains

all the history of samples {x
i

, f
i

} and is built incrementally as shown in Figure 5.1.

Using a similar treatment to plain BO, the myopic expectation of the reward r (ER),

can be obtained by marginalising out all unknown outcomes,

ER(x

?|D
0

) = E
f

?

[r(x?, f ?|D
0

)] (5.1)

=

Z
r(x?, f ?|D

0

)p(f ?|x?,D
0

)df ? . (5.2)

This expression represents the first section of the Bayesian network shown in Figure

5.1. It represents the expected reward only based on the immediate reward r?. The

n-step lookahead expression considers the whole reward sequence, from r? to r
n

and

is given by
ER

n

(x

?|D
0

)

=

Z
· · ·
Z  

r(x?, f ?|D
0

) +

nX

i=2

(r(x
i

, f
i

|D
i�1

))

!

p(f ?|x?,D
0

)⇥
nY

i=2

p(f
i

|x
i

)p(x
i

|D
i�1

)

df ?df
2

· · · df
n

dx
2

· · · dx
n

,

(5.3)

where we are marginalising out all future outcomes (f ?, f
2

. . . f
n

) and locations (x
2

. . .x
n

).
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This expression has been derived by Osborne et al. [54], however, it is modified here

to consider the whole sequence of locations for the reward calculation, not just the

expected improvement for the last observation. It is important to note that within the

BO algorithm, ER can be seen as the acquisition function h(x) for selecting sampling

locations. ER needs to be maximised w.r.t. x

? in each iteration of the algorithm.

In real robotic deployments, decisions {x
i

} can be represented as continuous paths

followed by the robot. We represent these paths as parametrised curves, C, over

the input space, with each curve characterised by a set of parameters � (See Section

4.3.1). The following expression shows the expected reward for traversing a path with

parameters �?, and looking ahead for n steps, i.e. considering n paths in the future

and integrating all possible rewards,

ER
n

(�?,D
0

)

=

Z

f

?

Z

f

2

...

Z

f

n

Z

�
2

...

Z

�
n 

r(C�? |D
N�1

) +

nX

i=2

r(C�
i

|D
i�1

)

!

p(f ?|�?,D
N�1

)

nY

i=2

p(f
i

|�
i

,D
i�1

)p(�
i

|D
i�1

)

df ?df
2

· · · df
n

d�
2

· · · d�
n

.

(5.4)

In this expression we are marginalising out all possible objective function expectations

and paths for n steps. Unfortunately, given the infinite number of possible paths, this

integral does not have an analytical solution and can only be approximated. In the

following section we illustrate how SBO can be represented in a POMDP formulation

and solved using online decision making POMDP solvers.

5.3 SBO as Online POMDPs

Our SBO formulation is state-aware, i.e. it considers the state of a mobile robot for

decision making. This problem can be formulated as a POMDP problem in a similar

manner as described by Toussaint [73] for regular BO. The main idea is to include
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the objective function, which is partially observable, together with the state of the

robot, into the state definition. We assume the robot’s pose is fully observable and

part of the state as side information p. The decision of where to sample f is encoded

by the action space, which is limited by the possible actions that can be performed by

the robot. In the discrete case, an action is represented by moving to a specific cell.

For the continuous case an action means travelling along a continuous path. More

formally, the elements of the POMDP definition for side-state SBO are:

• S : The state, which is a tuple {f,p}, where f is a latent (not directly observ-

able) function defined over space and time representing the unknown spatial-

temporal process. Additionally, we include the state of the sensing robot, p,

which is fully observable, as the side information.

• A : The parametrised action space a (�). The actions can be described as move

according to parameters � and gather samples from f in the process. In the

continuous case, � are the parameters of a continuous curve defined over the

domain of f .

• T : The transition function which is defined over the entire state {f,p}.
T ({f,p}, a (�) , {f 0,p0}) is the transition probability of resulting in state {f 0,p0}
given that action a (�) was taken at state {f,p}. Assuming that the robot does

not affect or change the objective function, the joint transition probability can

be decomposed into the product of two independent transition functions:

T ({f,p}, a(�), {f 0,p0})
= T

f

(f, a(�), f 0
)T

p

(p, a(�),p0
) .

(5.5)

Since f is not affected by the actions in A, the transition function T
f

is the

identity,

T
f

(f, a(�), f 0
) = (f 0 � f) , (5.6)

i.e. equal to one only when f 0
= f . The transition function T

p

depends on the

definition of the action space, and can often be modelled deterministically since
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robots can navigate with accurate positioning and path following controllers in

many large-scale outdoor monitoring applications. When the action space is

defined as a location, the action parameters � represent a location, and T
p

can

be calculated using,

T
p

(p, a(�),p0
) = �(p0 � �) . (5.7)

• R : If the objective function f is sampled at a discrete location � then the

expected reward in an SBO POMDP belief state is the reward value w.r.t. beliefs

b(f) minus any application-specific action cost(p,�) associated with movement

according to �:

ER({f,p}, a(�)) = E
b(f)

[r(�)] + cost(p, a(�)) , (5.8)

where r is the generic reward which corresponds to the acquisition function

in plain BO. When the action space is parametrised by curves, the reward

associated with an action is given by the sum of the rewards along the curve C:

ER({f,p}, C(�)) =
X

x

i

2C(�)

ER({f,p},x
i

) , (5.9)

where the sum can be replaced by an integral when the sensing device allows

continuous sampling along the curve.

• Z : In SBO, objective observations z 2 R are simply noisy observations of f(�)

as defined next.

• O : The observation function is defined according to the action space paramet-

risation. When the action space is defined as a sampling location �, f can be

evaluated directly on �,

O(z, a(�), {f,p}) = p(z|f(�)) . (5.10)

We observe that for GPs, we can generate z by sampling from a GP posterior

for f at location �. When the action space is a curve C, f is evaluated at a
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number of sample locations within C. The observation function for this set of

observations {z
i

} is

O({z
i

}, C(�), {f,p}) =
Y

x

i

2C(�)

p(z
i

|f(x
i

)) . (5.11)

The belief is then the probability distribution over the space of functions f and

updated as described in Equation 2.38. If the model for f is a GP, the belief update

for an action-observation pair can be computed directly. The action component can

be ignored for purposes of updating a belief in f , since as stated earlier, the robot’s

physical state does not affect or change the objective function; it only restricts the

observations that can be made regarding f . Therefore, the belief update over f is

simply computed by adding new location-observation pairs to the GP training data

set.

While Martinez-Cantin et al. [47] use BO to find the policy parameters, we present

a methodology to solve this POMDP by sampling a subset of action primitives that

the robot can execute in the environment. Action primitives and maximum likelihood

observation selection are the key points to approximate Equation 5.4.

5.4 MCTS and UCT for solving SBO

Monte Carlo Tree Search (MCTS) is a popular technique for solving large POMDPs

[4, 64]. This method can turn a exhaustive search in decision trees into an efficient

approximation using Monte-Carlo samples from the tree. MCTS efficiently searches

reachable beliefs from a given initial belief state and is useful for real-time online

planning.

Silver and Veness [64] have shown how MCTS can reach impressive scalability through

the use of Upper Confidence Bound for Trees (UCT), which they call POMCP. In

this work we conserve their idea of efficient tree search. However, we consider the

case where the belief update is a GP update for f and use the maximum likelihood
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Figure 5.2 – Example of a tree with depth 2, partially expanded from a set of two
action primitives.

observation, as in Platt et al. [55] and Martinez-Cantin et al. [47]. The maximum-

likelihood observation assumption helps reducing the branching factor of the tree,

which would grow uncontrollably when sampling observations.

For the SBO problem, each node in the tree consists of a belief representation for f

and a side-state p. We define the ith node by v
i

. For each action-observation pair,

the belief representation b(f) and side state p are updated easily since b(f) is a GP

prior and side-state transitions are deterministic and observable. Every new action-

observation simulation creates a new node with the updated belief and side-state.

The action space is discretised into a fixed set of action primitives. The tree is built

incrementally starting with an initial node v
0

. Figure 5.2 shows an example of a

small tree that has been expanded partially with two action primitives. Each ellipse

represents a node, that consists of a belief over f , b(f), and side-state p. A node is

expanded by simulating the outcomes of executing an action. The outcomes (noisy

observations of f) are the maximum- likelihood observations. The branching factor

of the tree will be the number of action primitives. When a node is expanded, a new

node is created using the updated belief and new side state.

The first step in each iteration is to find a leaf node candidate for expansion/evalu-
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Algorithm 5 Monte Carlo Tree Search for SBO
function a? = MCTS(b(f),p, depth

max

)
v
0

= NewNode(b(f),p, reward
min

)

i 0

while i < {Max MCTS iterations} do
v
l

 TreePolicy(v
0

)
r  DefaultPolicy(v

l

)
Backup(v

l

, r)
end while
return a? = BestChild(v

0

)
end function
function v

l

= TreePolicy(a)
v  v

0

while Depth(v)  depth
max

do
if v has untried actions then

Choose a from untried actions
r  Simulate a . Simulate Reward
Update b(f) and p.
return v

l

=NewNode(b(f),p, r)
else

v = BestChild(v)
end if

end while
return v

end function

ation, which is done inside of the function TreePolicy. This search is guided by

the function BestChild, which uses the statistics stored for each node (accumulated

reward and number of visits) to select the most promising child. Starting from the

chosen leaf node, a random action selection is conducted until the maximum depth

is reached, executed within DefaultPolicy. The total accumulated reward is then

backed up in function BackUp, that updates the statistics on all the nodes visited

during the current iteration. Each iteration of the search algorithm simulates a se-

quence of up to n actions, where n is the maximum depth. When the iteration loop

is completed, the best action is determined by picking the best child from the parent

node v
0

. Algorithm 5 shows the full procedure for building a tree and returning the

best immediate action.
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Algorithm 6 Monte Carlo Tree Search for SBO Part 2
function r = DefaultPolicy(v

l

)
r  Get reward accumulated until v

l

d Depth(v
l

)

while d  depth
max

do
Select a randomly
Update b(f) and p.
r
a

 Simulate a
r  r + r

a

d d+ 1

end while
end function
function Backup(v

l

, r)
v  v

l

while v 6= v
0

do
Increase visited counter for v
Increase accumulated reward for v
v  Parent(v)

end while
end function
function v

c

= BestChild(v
p

)
V  Children of v

p

for v
i

2 V do
N

p

 Visited counter of v
p

N
i

 Visited counter of v
i

R
i

 Accumulated reward

g(i) =
R

i

N
i

+ 
MC

s
2ln(N

p

)

N
i

end for
v
c

 argmax

v

i

2V
g(i)

end function

5.5 Experiments

In this section we present experiments where a robot attempts to learn the behaviour

of a spatial-temporal process by choosing actions that maximise the expected reward.

We show comparisons for two different problems, including one with time dependent

behaviour.
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Figure 5.3 – Motion primitives for a mobile robot.
Axes in kilometers.

For illustrative purposes we simulate 2D functions in space that can change with

time, such that,

f : R3 ! R

(x
1

, x
2

, t)! y . (5.12)

In these experiments, the pose p = (x
1r

, x
2r

, ✓
r

) of a robot is the side-state for the

SBO formulation and f is the unknown function to be estimated. The belief b(f) is

represented by a GP using a separable space-time covariance function [67]. The struc-

ture of the GP’s covariance function can capture periodicity in f from the training

data.

Since the robot travels at a certain speed ˙

p, the reachable area for sampling f depends

on the side-state p.

The action space A is determined by a set of motion primitives parametrised as 2D

cubic splines (Section 4.3.1). With appropriate parametrisation, the curves generate

ten primitives A = {C
i

}
i=1...10

shown in Figure 5.3 for p = p

0

= (0, 0, 0). For values

of p = (x
1r

, x
2r

, ✓
r

), the curves are rotated and translated using translation and

rotation matrices. We define a transition function T
p

(p, C
i

,p0
) = 1 for a cubic spline
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Before an action (curve) is selected for execution, the robot computes the optimal

action using the MCTS algorithm (Algorithm 5). The robot gathers noisy samples

from f along C while the action is being executed.

5.5.1 Static Function

In the first example, we simulate a static function, with expression

y = f(x
1

, x
2

, t) = e�(x

1

�4)

2

e�(x

2

�1)

2

+0.8e�(x

1

�1)

2

e�(
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2

�4
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)

2

+4e�(
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1

�10

5

)
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e�(
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2

�10

5

)

2

,

(5.14)

where x
1

2 [0, 5], x
2

2 [0, 5], and t 2 [0,1]. Figure 5.4 shows a plot for this function,

where it is easy to distinguish two main peaks with different amplitudes. The robot

is initially located at pose p = (0.5, 0.5, 0) and travels at a fixed speed of 0.2m/s,

gathering a sample every 5 minutes.

We first want to evaluate how the definition of the reward function R within the

POMDP context impacts the action selection properties of the algorithm. We com-

pare four different reward functions based on the UCB acquisition function, r(x) =

µ(x) + 
i

�(x), where 
i

2 {1.0⇥ 10

6, 200, 20, 10}. It is a well known fact that the

value of  affects the exploration-exploitation trade off and this is clearly reflected in

the resulting paths followed by each robot, as shown in Figure 5.5. The most explorat-

ive path sequence corresponds to  = 1.0⇥ 10

6 (Figure 5.5a) and the least explorative

is  = 10 (Figure 5.5d). Between these two extremes there are intermediate solutions

where exploitation is favoured more strongly for lower values of .

In the next experiment we focus on the depth of the action selection search, i.e. the

number n of lookahead steps for decision making. This corresponds to the maximum



5.5 Experiments 94

Figure 5.4 – Static goal function. Axes in kilometers.

Table 5.1 – Experiment for Depth and Algorithm Type Comparison

Id Algorithm Max Depth Iterations

1 FT 1 10
2 FT 2 110
3 FT 3 1110
4 MCTS 3 100
5 MCTS 4 150
6 MCTS 5 400

depth allowed in the search tree. We first evaluate the entire decision tree, which

means simulating all the possible combinations of actions. This approach, which we

call Full Tree (FT) strategy, will need |A|n simulations which becomes impractical

quickly. In fact, in this thesis we only consider FT strategies with n  3. We

compare the performance of FT against MCTS (Algorithm 5) where the number of

simulations is a parameter. Clearly, for the same depth, MCTS is bounded by FT,

however MCTS can find near-optimal solutions much faster. For this reason we were

able to experiment with depths up to n  5. We compare six different combinations

of depth and algorithm type as indicated in Table 5.1.

The reward function used for these simulations was r(x) = µ(x) + 1.0⇥ 10

6�(x) for

all cases. Therefore, the only difference in action selection is due to the number of
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Figure 5.5 – Comparison of followed paths using Full Tree and UCB reward function
with different values of . Axes in kilometers. Colour scale represents the value of
sampled values.

lookahead steps. Figure 5.6 shows the paths followed by the robot at t = 2.3 days,

when it had already gathered 616 samples from f . This figure does not show all

cases, only the four most relevant ones. It is interesting to observe that the search

with FT Depth 1 (Figure 5.6a) has not achieved a full coverage of the area and is

highly susceptible to get trapped and collide into the edges of the domain, which is

clearly sub-optimal from an exploration point of view. On the other hand, the FT

Depth 2 shows increased coverage capability, which is improved further for deeper

search strategies. FT Depth 3 and MCTS Depth 3 show similar result, with the clear
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Figure 5.6 – Comparison of paths for purely exploration behaviour using FT and
MCTS-UCT. Axes in kilometers. Colour scale represents the value of samples.

advantage that MCTS requires only 10% of the number of simulations of FT.

We also compare the accumulated reward over time for each case in Figure 5.7. This

illustrates the advantage of using a multi-step lookahead strategy in increasing the

total accumulated reward. However, it is not clear the advantage of using higher

depths than two, as they do not show a clear improvement in accumulated reward.

The main reason behind this is that f does not change over time, thus making the

problem simple enough such that any strategy with depth greater than 1 would be
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Figure 5.7 – Accumulated reward for static goal function.

very close to the optimal solution.

5.5.2 Dynamic Function

In this second experiment we use a more complex function that changes over time,

y = f(x
1

, x
2

, t) = e
�
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x
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⌘
2

e
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, (5.15)

with f
1

(t) = 1.5 sin(2⇡t), f
2

(t) = 1.5 cos(2⇡t), x
1

2 [0, 5], x
2

2 [0, 5], and t 2 [0,1].

This expression generates a function where the peak moves over time. The peak

circles clockwise around (x
1

, x
2

) = (2, 2) periodically, with a period of 1 day. The

motivation for this example comes from air pollution monitoring tasks where we are

interested in following peaks of pollution through time while learning how the entire

process evolves in space and time. Figure 5.8 shows the goal function for 6 time steps

within one period.

Similarly to the previous experiment, the robot is initially located at pose p =

(0.5, 0.5, 0), travels at a fixed speed of 0.12m/s and gathers a sample every 15 minutes.

The goal in this experiment is to find and follow the maximum of f over time. There-
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Figure 5.8 – Dynamic goal function within one period. Axes in kilometers.

fore, we select the reward function r(x) = µ(x) + 10�(x), which according to Figure

5.5, should generate paths concentrated over the maximum values of f . Ideally, the

robot should learn to follow the peak through time which would be possible for speeds

greater than 0.109m/s. We try the same set of depth-algorithm pairs as in Section

5.5.1 and detailed in Table 5.1. We only show results for the extreme cases with the

purpose of avoiding clutter in the figures.

Figure 5.9 illustrates the advantages of using multi-step lookahead strategies. The

first row shows paths for FT Depth 1, where it can be seen that the robot does not

learn how to follow the peak around a circle within 15 days. The second row, MCTS

Depth 2, which only does 15 more simulations per iteration than FT Depth 1, the

robot is already able to learn the circular pattern at t = 12 days. With deeper search

strategies, the time required to learn the pattern decreases significantly indicating a
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Figure 5.9 – Comparison of followed paths for FT and MCTS-UCT in a dynamic
function. First row shows the paths for FT, Depth 1; Second row shows the paths
for MCTS, Depth 2; Third row shows the paths for MCTS, Depth 5. Colour scale
represents the value of samples.

better exploration and exploitation solution. In fact, for MCTS Depth 5 the pattern

is learnt in t = 8 days.

Figure 5.10 shows the benefits of using non-myopic strategies for action selection.

The cumulative reward is clearly larger for multi-step lookahead decision making

algorithms. The best solution is MCTS Depth 5, that is clearly superior for the
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entire duration of the simulation. A steeper slope for accumulated reward indicates

that a method has learnt how to follow the peak. Then from this plot it is also clear

that FT Depth 1 is not able to capture space-time dependencies properly.
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Figure 5.10 – Accumulated reward for dynamic goal function.

It is important also to compare FT Depth 2 with MCTS Depth 2. The fact that

FT is an upper bound for MCTS Depth 2 can be confirmed from Figure 5.10. In

addition, it can be seen that both strategies accumulate similar rewards, which is a

good indication that MCTS will approximate the FT solution, even with only 25%

of the total tree.

Finally, Figure 5.11 shows how MCTS prioritises the search over promising paths.

The pose of the robot at this instant is p = (1.5, 3, 0). Red paths are the result of the

function DefaultPolicy that did not get further explored and blue paths are the

paths present in the tree. It can be seen how the tree automatically grows towards

potentially informative areas, i.e. where the reward is higher. The green curve is the

best branch of the tree.

5.6 Summary

In this chapter we proposed formulating the sequential BO problem as a POMDP.

Our main contribution was to determine a non-myopic decision making solution that
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maximises reward and takes into account the belief of an unknown space time process

and the state of a mobile robot acting as a sensor. We formulated the solution for the

POMDP analogue of SBO using a modified version of the UCT algorithm for MCTS,

which is a scalable and efficient way of finding asymptotically optimal decisions. We

demonstrate empirically the advantage of using non-myopic planning solutions, which

becomes especially important when the objective function dynamically changes over

time.

Even though long-term decision-making under uncertainty is a very complex prob-

lem, we solved it using a scalable method that works for realistic scenarios with

state-dependent restrictions and time variation. We believe that using multi-step

lookahead path planning is a convenient and practical way for solving many robotic

problems requiring the accurate representation of real space-time phenomena, such

as environment monitoring.



Chapter 6

Conclusions And Future Work

This thesis has addressed the problem of planning in dynamic environments. The

planning problem is related to optimal sensing of a environmental phenomenon that

changes with space and time. The planning algorithms proposed in this thesis solved

the optimal sensing problem simultaneously satisfying two important objectives. The

first challenge is learning the spatial and temporal patterns of the phenomenon, and

the second challenge is to find the areas of interest (e.g. high pollution). Consequently,

the proposed algorithms can naturally deal with the exploration-exploitation trade-

off.

Three different kind of planning algorithms were proposed in the thesis, each with

a higher level of complexity. The first one plans over waypoints, which is a simple

but efficient solution. The second algorithm allows planning over continuous paths,

solving not only the question of where and when to sample, but how to get there.

Finally, the third planning algorithm is non myopic as it considers a sequence of

decisions. It ensures that the next decision is the best, taking into account future

actions and their corresponding outcomes.

The remaining of this chapter is organised as follows. Section 6.1 provides a sum-

mary of the contributions and draws conclusions of the developed theory and results

obtained in previous chapters. Finally, Section 6.2 presents directions for future re-

search, enumerating open challenges and interesting research opportunities.
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6.1 Summary of Contributions

Bayesian Optimisation (BO) for trajectory planning in robotics

BO is an optimisation technique which is useful for optimising unknown, noisy and

costly to evaluate functions. While it can be readily applied to cases where sampling

locations can be chosen freely over the input domain, this is not the case for the real

robotic problems addressed in this thesis. All the proposed planning algorithms of

this thesis extended the BO framework to work under real robotic deployments. The

goal function to be optimised corresponds to the realisation of a real environmental

phenomenon that changes with space and time. Chapters 3, 4 and 5 extended the

plain BO algorithm to decision-making in a robotics context. These algorithms where

implemented on real platforms and compared accordingly. The results show that the

proposed algorithms are able to simultaneously learn and monitor interesting areas

of an environmental phenomenon.

New family of acquisition functions for BO, which considers side state

The case of study addressed in this thesis, spatial-temporal monitoring, involves the

use of an autonomous robot to perform sampling over the initially unknown environ-

mental phenomenon. The state of the moving robot was used as extra information

for the proposed algorithms, i.e., are defined as side state. Chapter 3 presented a

new family of acquisition functions, which are state aware. The discrete planning al-

gorithm used the side state information to select the next sampling location relatively

close to the current position of the robot. Results show that incorporating side state

can help reduce excessive displacement over the input space, while maintaining the

accuracy of the spatial-temporal model.

Generalisation of BO for planning over continuous paths

The plain BO algorithm conducts an internal optimisation procedure, the maximisa-

tion of the acquisition function, which determines the next best location to sample.

The algorithms in Chapters 4 and 5 showed extensions of the original BO algorithm
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to optimise over continuous paths. The inner optimisation of the acquisition function

was no longer conducted over discrete locations. It was adapted to optimise the ac-

quisition function over the space of paths. Thus, the path planning techniques, which

are not restricted to any path parametrisation in particular, evaluated the cumulative

reward along a continuous path rather than a discrete location. Experimental eval-

uation shows the advantages of planning over continuous paths rather than discrete

locations.

Layered BO for planning in spatial-temporal monitoring

The inner optimisation routine of the plain BO algorithm (Line 2 in Algorithm 1) was

modified to optimise over the parameter space of a path. The reward function is no

longer a cheap to evaluate function with derivative information; it now corresponds

to a costly to evaluate function that involves integrating along a path. Chapter 4

showed how to stack two layers of BO, with the first one optimising over the goal

function f and the second to optimise the acquisition function. This resulted in a

more efficient search for the optimal path parameter set, which took much longer and

resulted in local optimum values for standard optimisation routines.

Sequential Bayesian Optimisation (SBO)

A non-myopic extension of the BO algorithm was formulated in Chapter 5. Defined

as SBO, this new optimisation routine takes into account a number of future decisions

to accumulate reward. The expected reward, which is shortsighted for existing BO

literature, was generalised to a sequential formulation that evaluates the collective

reward for a set of discrete locations or paths. The next best decision is now chosen

based on all possible future decisions including their associated outcomes weighted

by their probability of occurrence.

SBO as a Partially Observed Markov Decision Process (POMDP)

Chapter 5 showed how SBO can be formulated under the POMDP framework. All the

elements of a POMDP were extracted from the SBO problem, including the definition
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of state, action space, transition function and reward function. The POMDP analogue

of SBO was solved using an online solver based on Monte Carlo Tree Search (MCTS)

and Upper Confidence Bound for Trees (UCT). The experiments show the advant-

ages of using deeper search strategies for decision-making. Increasing the number of

lookahead decisions improves the overall performance of the planning algorithm.

6.2 Future Research

Although the proposed planning algorithms presented a valid solution for monitor-

ing dynamic phenomena, there are several ways in which they can be extended and

improved. This section presents some directions for future work.

Localisation Uncertainty in Spatial Temporal Model

The spatial-temporal models of environmental phenomena used in this thesis assume

that samples from the phenomenon are referenced perfectly over the input domain.

While there is a reasonable accuracy for most GPS and laser-based localisation sys-

tems, this is not always the case for more complex scenarios. For example, underwater

in the absence of visual features, the uncertainty in localisation cannot be neglected.

Using previous work by McHutchon and Rasmussen [49], it is posible to account for

localisation errors and propagate uncertainties into the predictive probability density

function of the phenomenon.

Integration of Observations Along Continuous Paths

Even though the developed algorithms can find optimal paths defined over a con-

tinuous domain, they only integrate observations at discrete locations. A clear im-

provement would be to use previous research by O’Callaghan and Ramos [51] and use

integral kernels to include observations along continuous paths. This can be partic-

ularly useful when sensors have high latency, i.e. when observations actually occur

over a path while the robot is moving and not at a discrete location.



6.2 Future Research 106

Finding the Full Policy for the POMDP Analogue of SBO

The current solution for the POMDP analogue of SBO can only determine the next

best decision based on the reachable belief state. Theoretically speaking there is a

full solution to the POMDP, which corresponds to finding the optimal policy. This

optimal policy could be calculated offline and provide the optimal action under any

belief state.
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