
Copyright and use of this thesis

This thesis must be used in accordance with the 
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright 
may be an infringement of copyright and 
copyright owners may be entitled to take 
legal action against persons who infringe their 
copyright.

Section 51 (2) of the Copyright Act permits 
an authorized officer of a university library or 
archives to provide a copy (by communication 
or otherwise) of an unpublished thesis kept in 
the library or archives, to a person who satisfies 
the authorized officer that he or she requires 
the reproduction for the purposes of research 
or study. 

The Copyright Act grants the creator of a work 
a number of moral rights, specifically the right of 
attribution, the right against false attribution and 
the right of integrity. 

You may infringe the author’s moral rights if you:

-  fail to acknowledge the author of this thesis if 
you quote sections from the work 

- attribute this thesis to another author 

-  subject this thesis to derogatory treatment 
which may prejudice the author’s reputation

For further information contact the 
University’s Copyright Service.

sydney.edu.au/copyright



 

Modelling uncertainty in  

population monitoring data 

 

 

 

Vuong Nguyen 

 

 

 

 

A thesis submitted for the Degree of Doctor of Philosophy 

School of Biological Sciences 

The University of Sydney, Australia 

February 2016 



 

 

 

 

  



Declaration of originality 

I hereby declare that the work contained in this thesis is my own and contains the results of 

an original investigation, except where otherwise referenced or acknowledged. This work 

was carried out while I was enrolled as a student for the degree of Doctor of Philosophy in 

the School of Biological Sciences, The University of Sydney. This thesis has not been 

previously submitted for examination at this, or any other university. 

 

 

 

Vuong Nguyen 

July 2015 

  



  



Statement of author contributions (Chapter 2) 

Vuong Nguyen and Glenda Wardle conceived the study. Vuong's contribution to this study 

was substantial, and included conducting the literature search to update the database of 

population matrix models and identify relevant information to be used in subsequent 

simulations and writing the scripts to reconstruct models and conduct simulations. The 

original database of matrix models upon which new models were added was constructed by 

the Vegetation Function Working Group. Vuong Nguyen wrote the manuscript, with 

additional comments provided by Yvonne Buckley, Rob Salguero-Gómez and Glenda 

Wardle.  

 

 

As co-authors of this manuscript, we concur with the statements above outlining each 

author's contributions. 

                             
         Glenda Wardle                        Rob Salguero-Gómez                Yvonne Buckley 

  



Statement of author contributions (Chapter 3) 

Vuong Nguyen and Glenda Wardle conceived the study. It is based on a novel design for 

analysing the existing long-term datasets to address new questions not already part of 

previous data collection efforts. Vuong performed considerable work in designing and 

writing the scripts for the data manipulation, analysis and models. Vuong Nguyen wrote the 

manuscript, with additional comments provided by Aaron Greenville, Chris Dickman and 

Glenda Wardle. 

Chris Dickman, Glenda Wardle and Aaron Greenville collected the long-term data used in 

this study, with assistance from members of the Desert Ecology Research Group and 

volunteers. The original experimental designs for the vegetation surveys were conceived by 

Glenda Wardle. Funding was provided from grants obtained by Chris Dickman and Glenda 

Wardle. 

 

As co-authors of this manuscript, we concur with the statements above outlining each 

author's contributions. 

                                      
         Glenda Wardle                             Chris Dickman                    Aaron Greenville 

  



Statement of author contributions (Chapter 4) 

Vuong Nguyen and Glenda Wardle conceived the study. It is based on a novel design for 

analysing the existing long-term datasets to address new questions not already part of 

previous data collection efforts. Vuong performed considerable work in cleaning up the data, 

writing new scripts to ingest the data into an interogatable database, and designing and 

writing the scripts for the data analysis and models. Aaron Greenville contributed the data 

manipulation and modelling for the wide-view dataset. Vuong Nguyen wrote the manuscript, 

with additional comments provided by Aaron Greenville, Chris Dickman and Glenda Wardle. 

Chris Dickman, Glenda Wardle and Aaron Greenville collected the long-term data used in 

this study, with assistance from members of the Desert Ecology Research Group and 

volunteers. The original experimental designs for the vegetation surveys were conceived by 

Chris Dickman (wide view dataset) and Glenda Wardle (high resolution dataset). Funding 

was provided from grants obtained by Chris Dickman and Glenda Wardle. 

 

As co-authors of this manuscript, we concur with the statements above outlining each 

author's contributions. 

                                      
         Glenda Wardle                              Chris Dickman                    Aaron Greenville 

 

 

 

 



  



Table of contents 

i 

 

Contents 

List of figures .............................................................................................................................. i 

List of tables ............................................................................................................................. iii 

Acknowledgements ................................................................................................................... vi 

Thesis abstract ........................................................................................................................ viii 

Preface.................................................................................................................................... xiii 

Chapter 1 - Overview of common sources of uncertainty in ecological data ............................ 1 

The rise of ecological data ...................................................................................... 4 

Towards open-access data ............................................................................. 4 

Long-term research ........................................................................................ 5 

Role of technology ........................................................................................ 6 

Current challenges ......................................................................................... 7 

Uncertainty in ecological data ................................................................................ 9 

Estimation of demographic parameters and vital rates .................................. 9 

Cryptic life stages ........................................................................................ 11 

Missing values and uneven sampling intervals ........................................... 13 

Observation error ......................................................................................... 14 

Visual cover estimation ............................................................................... 16 

Monitoring trade-offs .................................................................................. 17 

Overview of thesis ................................................................................................ 19 

References ............................................................................................................ 23 

Chapter 2 - Consequences of continuing to exclude cryptic life stages from demographic 

models ................................................................................................................... 34 

Summary ............................................................................................................... 35 

Introduction .......................................................................................................... 37 

Materials and Methods ......................................................................................... 40 

Database of population matrix models ........................................................ 40 

Addition and removal of seed bank stages .................................................. 41 

Analyses ...................................................................................................... 46 

Results .................................................................................................................. 48 

Addition of the seed bank and demographic uncertainty ............................ 49 

Removal of the seed bank and uncertainty in seed bank presence .............. 55 



Table of contents 

ii 

 

Extinction risks ............................................................................................ 58 

Discussion ............................................................................................................. 58 

Dealing with the seed bank when its presence is unknown or uncertain .... 59 

Uncertainty in the seed bank and its effect on model outcomes ................. 62 

Conclusions ................................................................................................. 65 

Acknowledgements .............................................................................................. 66 

References ............................................................................................................ 67 

Chapter 3 - How to apply multivariate autoregressive state-space models to time series   

count data to improve population monitoring ...................................................... 71 

Abstract ................................................................................................................. 72 

Introduction .......................................................................................................... 73 

Methods ................................................................................................................ 76 

Study species, site and covariates ................................................................ 76 

Model specification ..................................................................................... 78 

Covariate model ........................................................................................... 81 

Wildfire models ........................................................................................... 81 

Regional models .......................................................................................... 83 

Model selection ........................................................................................... 83 

Results .................................................................................................................. 84 

Covariates .................................................................................................... 84 

Wildfire models ........................................................................................... 84 

Regional models .......................................................................................... 89 

State estimates, life history and parameter comparisons ............................. 89 

Discussion ............................................................................................................. 93 

Conclusions ................................................................................................. 96 

Acknowledgements .............................................................................................. 97 

References ............................................................................................................ 98 

Chapter 4 - On the validity of visual cover estimates for time series analyses: a case study    

of hummock grasslands ...................................................................................... 104 

Abstract ............................................................................................................... 105 

Introduction ........................................................................................................ 106 

Methods .............................................................................................................. 109 

Study region ............................................................................................... 109 

Wide view dataset ...................................................................................... 112 



Table of contents 

iii 

 

High resolution dataset .............................................................................. 113 

Model description ...................................................................................... 114 

Results ................................................................................................................ 116 

Spatial hypotheses and state predictions ................................................... 116 

Comparison of maximum likelihood parameter estimates ........................ 121 

Discussion ........................................................................................................... 123 

Acknowledgements ............................................................................................ 128 

References .......................................................................................................... 129 

Chapter 5 - Life form explains consistent temporal trends across species: the application        

of dynamic factor analysis .................................................................................. 134 

Abstract ............................................................................................................... 135 

Introduction ........................................................................................................ 136 

Methods .............................................................................................................. 139 

Study site ................................................................................................... 139 

Data collection ........................................................................................... 140 

Dynamic factor analysis ............................................................................ 142 

Results ................................................................................................................ 145 

Discussion ........................................................................................................... 158 

Final thoughts ..................................................................................................... 162 

Acknowledgements ............................................................................................ 163 

References .......................................................................................................... 164 

Chapter 6 - General discussion and conclusions .................................................................... 171 

Overview ............................................................................................................ 172 

Key findings ....................................................................................................... 174 

Limitations and future research .......................................................................... 178 

Concluding remarks ............................................................................................ 181 

Acknowledgements ............................................................................................ 181 

References .......................................................................................................... 182 

Appendices 185 

Appendix 1 ......................................................................................................... 186 

Appendix 2 ......................................................................................................... 212 

Appendix 3 ......................................................................................................... 218 

Appendix 4 ......................................................................................................... 234 

 



List of figures 

i 

 

List of figures 

Fig. 2-1. Life cycle graphs corresponding to A) a plant consisting of two life stages: the 

seedlings, Se, and the adults, Ad, B) a plant consisting of seeds that have remained in the 

seed bank for 1 year, S1, up to n years, Sn (Eq. 1), and C) a plant with an unstructured seed 

bank, SB, (Eq. 2). The transition rate fSe,Ad gives the fecundity into the seedling stage while 

fS1,Ad and fSB,Ad gives the fecundity into the seed bank. D) Details of the derivation of Eq. 1 in 

which the variables are contained in boxes. Tracking the variables required to reach the 

seedling stage from the adult stage either directly or via the seed bank demonstrates how each 

term in Equation 1 was derived. .............................................................................................. 43 

Fig. 2-2. Plot comparing population growth rates between models with and without the seed 

bank. Growth rates and error bars for models where the seed bank was added were taken 

from Monte Carlo simulations with germination prior guided by the literature. Points above 

the one-to-one line indicate the seed bank has a positive effect on λ while points below 

indicate a negative effect. Points occupying the red section are declining populations (λ < 1) 

while those occupying the green section are increasing populations (λ > 1). .......................... 52 

Fig. 2-3. Distribution of population growth rates for Atriplex acanthocarpa from A) 1996-

1997, B) 1997-1998 and C) 1998-1999 based on 10,000 Monte Carlo simulations when using 

an uninformed prior on germination (uniform distribution) and an informed prior on 

germination (beta distribution with mode equal to germination rate obtained from the 

literature). Red dashed lines indicate the mean growth rate as reported in Table 2-2. ............ 53 

Fig. 2-4. Population growth rate (λ) as a function of germination rate from the seed bank for 

A) Atriplex acanthocarpa, B) Atriplex canescens, C) Illicium anisatum and D) Geonoma 

schottiana. Population growth rates were calculated at seed viability probabilities of 1 (black 

line), 0.5 (grey line) and 0.1 (light grey line) for germination rates between 0 and 1 at 

intervals of 0.01. Note that for G. schottiana, germination rate was restricted between 0 and 

0.69 so as not to exceed the total seed survival estimate obtained from the literature. ........... 54 

Fig. 2-5. Flow chart describing the different approaches for dealing with a potential seed 

bank when modelling plant population dynamics. Unjustified exclusion results in the highest 

possible uncertainty whereas justified exclusion by either proving it does not exist or showing 

it is unimportant via simulations gives the highest level of certainty in the model outcomes. 

Including the seed bank, either by using the literature or data obtained in the field would 

unavoidably result in some amount of uncertainty from estimating the vital rates, but is 

preferable to unjustified exclusion. .......................................................................................... 60 

Fig. 3-1. State estimates of monthly rainfall based on regional models from both the MARSS-

KFEM (black line) and MARSS-MCMC (red line) models for each study site in the Simpson 

Desert, central Australia (Main Camp, Field River, Carlo Shitty and South Site). With the 

exception of the initial period in 1995, state predictions from both algorithms are identical. 

Black points indicate weather station measurements............................................................... 87 

Fig. 3-2. Wildfire models showing predicted log state abundances for Trachymene glaucifolia 

at each of four study sites in the Simpson Desert, central Australia. Points indicate census 

observations averaged over 15 plots at each site, model-predicted state estimates are given by 



List of figures 

ii 

 

the solid line, and their 95% confidence intervals by the shaded areas. Seed bank trajectories 

are brown and above-ground plant trajectories are green. ....................................................... 92 

Fig. 4-1. Location of study sites across Carlo Station, Tobermorey Station, Cravens Park and 

Ethabuka Reserve, Simpson Desert, central Australia. Circles indicate sites that belong to the 

wide view dataset, the square indicates a site belonging to the high resolution dataset and 

triangles belong to both. Red fills are sites that were retrospectively labelled as burnt for the 

wide view dataset and indicate sites that experienced a fire over the summer of 2001-2002 

and are designated as burnt sites for the duration of the time series (1995-2013), while blue 

indicates unburnt sites. Since Carlo Shitty was not part of the wide view dataset, it was not 

retrospectively labelled as burnt or unburnt. .......................................................................... 111 

Fig. 4-2. State predictions (solid line) and their 95% confidence intervals (dashed lines) for 

cover of spinifex from the best fitting model (wildfire) for the wide view dataset obtained 

from nine sites in the Simpson Desert, central Australia. Filled points indicate actual 

observations. Red represents state predictions and observations from burnt sites, while blue 

represents those from unburnt populations. ........................................................................... 119 

Fig. 4-3. State predictions (solid lines) with their 95% confidence intervals (dashed lines) for 

cover of spinifex from the best fitting model (wildfire) for the high resolution dataset 

obtained from four sites in the Simpson Desert, central Australia. Small circles indicate 

observations from each of 15 replicate plots, while large filled points indicate the means of 

these plots. Each of the four sites contains state predictions and observations from burnt (red) 

and unburnt (blue) populations. ............................................................................................. 120 

Fig. 4-4. Comparison of state predictions (solid lines) averaged across sites and 95% 

confidence intervals (dashed lines) for cover of spinifex derived from wildfire models for the 

wide view dataset and the high resolution dataset obtained from multiple sites in the Simpson 

Desert, central Australia. The wildfire model for the wide view dataset was constructed using 

only data from 2004 onward to allow comparison with the high resolution dataset, thus 

assuming that data collection for both datasets began at the same time. Observations (points) 

for the high resolution dataset are presented as site means. Red represents mean state 

predictions and observations for the burnt, while blue represents those from unburnt 

populations. ............................................................................................................................ 121 

Fig. 5-1. Location of the three study sites (Main Camp, Field River and Carlo Shitty) across 

Ethabuka Reserve and Carlo Station...................................................................................... 140 

Fig. 5-2. Plot of A) presence/absence and B) relative frequency of species present for a single 

grid in Main Camp divided by life form. Species in black are forbs, red are grasses, blue are 

shrubs and green are subshrubs. Red cells indicate presence, white indicates absence while 

gray indicates a missing value when a census was not conducted. ....................................... 146 

Fig. 5-3. Plots of common trends and rainfall (both standardised) from the best fitting model 

for Main Camp, Field River and Carlo Shitty. Trends have been re-arranged to be sequential 

with respect to their maximum value. .................................................................................... 150 



List of tables 

 

iii 

 

List of tables 

Table 1-1. Four categories describing the level of uncertainty along two axes: information 

and awareness. ........................................................................................................................... 3 

Table 2-1. Comparison of studies from the MPM2008-2011 database with a previous review 

by (Doak et al., 2002) examining the inclusion of the seed bank in plant population models. 

Studies were classified as justified exclusion if a valid reason was provided for not including 

the seed bank (e.g. the authors found no evidence of a seed bank) and unjustified exclusion if 

the possibility of a seed bank was not explored or mentioned. Studies from COMPADRE 

were not analysed to determine whether exclusion of the seed bank was justified. ................ 39 

Table 2-2. Comparison of population growth rates (λ) following the addition of a seed bank. 

Pop. refers to populations of the same species in the same study. Avg. represents the 

population growth rate of the mean matrix for each population. Stoch. represents the mean 

stochastic growth rate from populations projected over 10,000 years. SB denotes single point 

estimates from models with germination and viability equal to that obtained from the 

literature. Growth rates from Monte Carlo simulations were obtained from the mean of 

10,000 simulations with parameters for germination, viability, seed survival and seedling 

survival drawn from uniform distributions when priors are uninformed, while germination 

and viability were drawn from beta distributions when priors were informed. 95% confidence 

intervals for Monte Carlo simulations and stochastic growth rates are displayed in brackets.50 

Table 2-3. Comparison of population growth rates following removal of the seed bank. 

Studies are classified on the basis of variability in transition elements that was reported or 

number of time periods that were provided. Pop. refers to different populations of the same 

species in the same study.  Avg. represents the population growth rate of the mean matrix. 

Stoch. gives the mean stochastic growth rate from populations projected over 10,000 years. 

Confidence intervals for stochastic simulations when the seed bank was removed are shown 

in brackets. ............................................................................................................................... 56 

Table 3-1. Model selection criterion and parameter estimates for MARSS-KFEM models 

(AICb) and MARSS-MCMC models (DIC and predictive loss, D) for monthly rainfall from 

1995-2012 in the Simpson Desert, central Australia. While the regional rainfall model has 

only a single state, separate observation errors (R) for each of the four sites were still 

estimated. 95% confidence intervals are shown in brackets. The smallest AICb, DIC or 

predictive loss score gives the best fit model and is indicated in bold. ................................... 86 

Table 3-2. Model selection criterion for MARSS-KFEM (AICb) and MARSS-MCMC (DIC 

and predictive loss, D) models comparing wildfire hypotheses. Best fit models for each site 

are given by the lowest AICb, DIC or predictive loss score and are highlighted in bold. 

MARSS-KFEM models which were unstable and did not converge are left blank. ............... 88 

Table 3-3. Model selection criterion for MARSS-KFEM models (AICb) and MARSS-

MCMC models (DIC and predictive loss, D) for Trachymene glaucifolia populations over the 

entire study region in the Simpson Desert, central Australia. The smallest AICb, DIC and 

predictive loss score gives the best fitting model and is highlighted in bold. ......................... 89 



List of tables 

 

iv 

 

Table 3-4. Parameter estimates for the process error, Q, observation error, R, and trend 

parameter, U, from the best fitting models for Trachymene glaucifolia populations at each 

individual site in the Simpson Desert, central Australia, for MARSS-KFEM and MARSS-

MCMC models. 95% confidence (or credible) intervals are shown in brackets. .................... 91 

Table 4-1.  Comparison of the main features of the wide view and high resolution datasets of 

spinifex cover obtained from sampling at multiple sites in the Simpson Desert, central 

Australia. ................................................................................................................................ 113 

Table 4-2.  Comparison of model performance investigating subpopulation structure of 

spinifex at sites in the Simpson Desert, central Australia, using wide view, truncated wide 

view (from 2004 onward) and high resolution datasets of spinifex cover (see Methods for 

description of hypotheses), with the best fitting model given by the lowest AICc. .............. 118 

In both the wide view and high resolution datasets, the observation error made up a larger 

component of the error term compared to process error, Q (Table 4-3). Observation errors 

were also found to be spatially variable, differing across and within sites. For example, the 

high resolution dataset showed that the Main Camp site had substantially higher observation 

error terms compared to the other sites. In addition, both datasets suggested that observation 

error in unburnt sites was larger relative to that in burnt sites. In contrast, while both datasets 

suggested positive spinifex growth (μ) in burnt and unburnt populations, the relative growth 

rates differed between burnt and unburnt populations. Spinifex growth in burnt sites was 

estimated to be substantially higher compared to unburnt sites for the wide view dataset, 

while the reverse was true for the high resolution dataset. However, confidence intervals in 

both cases were overlapping zero suggesting that this growth is non-significant. In general, 

confidence intervals for the wide view dataset were much larger when compared to the high 

resolution dataset, despite the longer time-series. ................................................................. 121 

Table 4-3.  Maximum likelihood parameter estimates from the best fitting models using wide 

view and high resolution datasets on spinifex cover sampled at multiple sites in the Simpson 

Desert, central Australia. The effect of a wildfire in 2001-2002 is given by the C parameter 

and is estimated only for the wide view dataset as it covered the time period in which it 

occurred. Observation error (R) was estimated for each grid in the high resolution dataset, 

while only a single, shared observation error term was estimated for the wide view dataset 

due to convergence issues. Bootstrapped 95% confidence intervals are given in parentheses.

................................................................................................................................................ 122 

Table 5-1. Comparison of model selection criteria for dynamic factor analysis models of 

temporal trends in plant abundance for each of three sites. Each model included up to five 

common trends, and for each of these model types, separate models were run with or without 

rainfall. Best fitting models with the lowest AICc values are highlighted in bold. I note that 

while the model with five trends and no rainfall covariate was the best fit for Carlo Shitty, 

state predictions were extremely poor thus the five trend model with rainfall was used instead 

(see Appendix 4-1 for more details). ..................................................................................... 148 

Table 5-2. Strength of factor loadings as indicated by colour* for the best fitting model for 

A) Main Camp, B) Field River and C) Carlo Shitty for each species divided by life form. 

Each trend is divided into four columns to indicate factor loadings for the four grids. Grids 



List of tables 

 

v 

 

affected by the 2001-2002 wildfire appear to the right of the dashed line (Main Camp: grid 4, 

Field River: grids 3 and 4, Carlo Shitty: grids 2,3 and 4). ..................................................... 152 

Table 5-3. Mean state predictions for the best fitting models from 2004-2013 across grids for 

each species and site. State predictions are calculated as a linear function of their factor 

loadings multiplied by the corresponding common trends. Since data were standardised prior 

to model construction, all state predictions are unitless. ....................................................... 156 

Table 6-1. Summary of the sources of uncertainty addressed in this thesis and the key 

findings .................................................................................................................................. 174 

 



Acknowledgements 

 

vi 

 

Acknowledgements 

I am most grateful to my supervisor Glenda Wardle, who I have been working with now for 

almost five years and got me started on the path of population modelling what seems like an 

age ago during my undergraduate course that has subsequently led me to where I am today.  

Special thanks to the Desert Ecology Research Group and the countless volunteers whose 

efforts in the field and the lab cannot be understated and without which there would not exist 

such a valuable dataset to work with. Having been on one of the field trips, I can appreciate 

the hard work they put in to collect the data. Special thanks to Bobby Tamayo, David Nelson 

and Chin-Liang Beh. Thanks to Aaron Greenville, Marianna Ferreria and Rob Salguero-

Gomez for several helpful discussions on population modelling and population dynamics. 

Special thanks to Aaron Greenville for involving me in his research and for providing 

valuable assistance in my own research, and sharing the frustrations of trying to get a script 

or a model to work. Special thanks to Chris Dickman who provided valuable comments on 

several chapters of this thesis.  

Thanks to my good friends Arunna, Andy, Vu, Danny, Annie, Jacqueline and Christine for 

helping me retain my sanity for so long. Thanks to my family, particularly my parents, for 

supporting my decision to pursue a PhD even if it is not the type of “doctor” they were 

hoping me to be.



 

vii 

 



Thesis abstract 

 

viii 

 

Thesis abstract 

Uncertainties in ecology are pervasive, and therefore, communicating the level of uncertainty 

for any inference derived from scientific research is key to sound decision-making and 

management of species and ecosystems. Characterising uncertainty is part of converting 

information into knowledge and has the added benefit of identifying fruitful avenues of 

further investigation. Without such care in accounting for uncertainties, we risk making 

misleading conclusions and inappropriate management decisions. In this thesis, it is argued 

strongly that rather than being something to avoid discussing, reducing uncertainty is 

fundamental to good ecological science. Uncertainty can come from a number of sources. 

Parameter estimation for demographic studies has inherently high uncertainty due to 

substantial variation between individuals, years, and spatial locations thus requiring 

considerable resources to obtain accurate estimates for survival, reproduction and growth. In 

some cases, certain life stages may be unseen during sampling procedures, such as seeds in 

the soil seed bank, or if non-breeding components of the population are not present in the 

selected sampling sites. While the potential sources of uncertainty are diverse, I attempted to 

cover a range of key areas of uncertainties relevant to ecologists over the course of this thesis. 

Specific areas of uncertainty were targeted using case studies to provide examples to 

demonstrate how these uncertainties can be addressed and how they can be used to aid 

inferences and provide recommendations for future data collection procedures.  

First, I highlighted the prevalence of authors excluding a cryptic but important life stage, the 

dormant seed bank, from their data collection procedures and population models (Chapter 2). 

The evolution of seed banks acts as a bet hedging strategy, improving the persistence of plant 

populations in variable environments, thus it is crucial that we are able to address this 

potential knowledge gap to avoid misleading conclusions. The consequences of this exclusion 
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on model parameters such as population growth rates and extinction risks were explored 

using a joint empirical and simulation approach, combining information from the published 

literature with Monte Carlo simulations. These simulations explored a range of assumptions 

that need to be considered when including a seed bank into the model, such as seed longevity, 

viability and germination rates. A key result of these simulations is that our perspective 

regarding the importance of the seed bank can differ, further depending on the species and the 

type of demographic year. For example, inclusion of the seed bank and demographic 

uncertainty in seed bank parameters were found to have little effect for stable populations 

with high post-seedling survival. In such cases, the seed bank can be excluded, however this 

should be accompanied by appropriate justification either through literature confirmation that 

dormancy is not existent or demonstrated via simulations that it is of little consequence. 

Conversely, seed banks had a more demonstrable impact on growth and extinction rates for 

variable populations, particularly when populations experience poor demographic years. The 

use of simulations and published literature can thus be an effective means to explore 

uncertainties resulting from the presence of cryptic life stages. 

Second, I explored and demonstrated the use of multivariate auto-regressive state-space 

(MARSS) models as a versatile framework for capturing and addressing several sources of 

uncertainty including observation errors, and show how these models can be used to update 

and improve monitoring design (Chapter 3). MARSS models were constructed for a common, 

ephemeral plant using a 9 year time series dataset from multiple study sites within the 

Simpson Desert to explain trends over time and space. Modelling multi-dimensional time 

series data allowed the identification of spatial sub-population structure with respect to 

location and fire history, and the incorporation of population structure making use of count 

data for above ground plants and the seed bank. Model results suggested population dynamics 

to be driven primarily by geographical location possibly reflecting differences in soil 
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conditions, local competition and local microclimate, overshadowing variation caused by fire 

history. The seed bank was also found to be characterised by high observation error with low 

environmental variability, while the converse was true for the above ground population 

estimates. Knowledge regarding the relative uncertainty of the above and below ground 

abundance estimates and the spatial distribution of population dynamics can then be used to 

provide guidelines for future monitoring efforts. For example, it may be more strategic to 

sample the seed bank less frequently as it less variable over time, and instead focus on 

obtaining more accurate counts when it is sampled to offset the high observation error. 

Additionally, the level of spatial heterogeneity in the Simpson Desert provides some 

justification for expanding spatial replication. 

Third, the validity of using visual cover estimates as a means of monitoring vegetation and 

environmental changes was assessed. Visual cover estimates are particularly susceptible to 

observation error, and previous studies on the repeatability and reliability of such 

measurements have raised concerns over their value in ecological monitoring and decision 

making. I made use of two primary long-term monitoring datasets on spinifex grasslands, 

each obtained with different motivations, methods of data collection, and varying degrees of 

spatial and temporal coverage to assess the consistency of spatial and temporal trends 

between these datasets. Thus it could be determined whether the different sampling strategies 

and observation errors produced inconsistent and conflicting results. Observation errors were 

found to be quite large, often exceeding variation due to environmental changes. However, 

when these errors are accounted for, trends in the spatial dynamics of spinifex cover were 

consistent between the datasets, with population dynamics being driven primarily by time 

since last fire. Models also showed similar population traces over time, reflecting the effects 

of major temporal drivers such as rainfall and fire history. These findings vindicate visual 
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cover estimates as a useful source of information provided that uncertainties in the 

measurements are appropriately addressed.  

Finally, I shift the focus from single species analyses and apply dynamic factor analysis 

(DFA) to a large, multispecies database of abundances over time, which reduces the temporal 

dynamics of a large number of species to a small number of common trends. In producing 

these trends, interpretation of large multispecies data is greatly simplified. Furthermore, the 

common trends groups species with similar temporal responses, thus revealing where there is 

potential to borrow strength across species to supplement those that are less well sampled. 

Five common trends were identified for each site, and crucially, these trends were strongly 

associated with life form which showed distinctive signatures in the shape of their trends. 

Forbs and grasses for example demonstrated high levels of synchrony in their responses to 

rain events, although the signal for shrubs and subshrubs was weaker. These responses were 

also found to differ over relatively large (>20km) spatial scales. Thus plant life form is a 

reasonable predictor of changes in abundance over time and offers some justification for 

borrowing information to supplement data from poorly sampled species, provided the data 

are within the same locality.  

The results of this thesis underpin the value of acknowledging, measuring and managing 

uncertainties, and that these uncertainties can be used advantageously to guide inferences, 

extract value from datasets thought to be unreliable, provide justification for sourcing 

additional sources of information or excluding others, and inform future data collection 

protocols. Several methods for addressing uncertainty are highlighted, such as the use of 

simulations when data are unavailable, powerful state-space modelling techniques to account 

for observation error, and identifying opportunities for supplementing data from the 

literature, similar sites or species with similar dynamics. There are several more options 

available for reducing and managing uncertainty, and it is ultimately up to the researcher to 
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first recognise where uncertainties are likely to exist, explore their options, and decide how 

such uncertainties are to be addressed. 



Preface 

 

xiii 

 

Preface 

This thesis is set out as a series of papers, an option available at The University of Sydney. 

The papers have been submitted or accepted to appropriate peer-reviewed scientific journals 
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Introduction 

 “There are known knowns; there are things we know we know. We also know there are 

known unknowns; that is to say we know there are some things we do not know. But there are 

also unknown unknowns - the ones we don't know we don't know.” 

Donald Rumsfeld, Former United States Secretary of Defence, 2002 

Although the context of this statement was in relation to national defence, the idea of 

“unknown unknowns” is profound in many areas of uncertainty, risk analysis, and indeed 

understanding ecological systems and making management decisions. This concept can be 

captured in terms of two axes describing the level of uncertainty (Table 1-1). The first axis of 

uncertainty can be thought of as describing awareness – are we aware of a problem that 

requires addressing, a question that needs answering, or an issue that requires investigating. 

An unknown along this axis for example may include the scenario in which nobody has 

thought to ask the question in the first place. The second axis of uncertainty then describes 

the level of information or data that are available to address these questions. Combining these 

two axes results in the classification presented in Table 1-1, with an additional category, the 

“unknown knowns” describing opportunities in which two possible scenarios are identified. 

In the first scenario, data may have been previously collected which would be of interest to a 

researcher answering a particular question, but may be unaware of its existence or data has 

not been made publicly available. In the second scenario, the researcher is aware of the data 

but has not yet realised its full potential, or is simply overwhelmed by the sheer amount of 

data (termed the ‘data smog’) and is unable to extract the relevant pieces creating further 

confusion and uncertainty rather than knowledge (Shenk, 1998). 
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Table 1-1. Four categories describing the level of uncertainty along two axes: 

information and awareness. 
A

W
A

R
E

N
E

S
S

 

   INFORMATION 

 Known   Unknown 

K
n

o
w

n
 

 

Knowledge 

Information is available and is 

being used to answer relevant 

questions 

 

e.g. Researchers are certain about 

the presence/absence of a dormant 

seed bank, and have data to 

estimate vital rates 

 

Gaps 

Information is unavailable but the 

need for such data is acknowledged 

 

e.g. Researchers acknowledge the 

possibility of a dormant seed bank but 

there is no data available 

U
n

k
n

o
w

n
 

 

 

Opportunities 

Information is available but is 

inaccessible or its relevance and 

potential not fully realised 

 

e.g. Researchers have not 

considered the possibility of a 

dormant seed bank, however there 

are data available from previous 

studies/experiments 

 

 

 

Uncertainty and risk 

Information is unavailable and there is 

no acknowledgement that such data 

are needed or important 

 

e.g. Researchers have not considered 

the possibility of a dormant seed bank 

and there is no data available 

 

 

The category describing opportunities is arguably of greatest interest as it captures the largest 

potential reduction in uncertainty for the least amount of effort. The advent of the information 

technology age and globalisation has been instrumental in improving data availability, 

storage, collection, management and analysis in all fields of scientific research. This new age 

of data availability and accessibility provides many opportunities to make use of pre-existing 

datasets and infrastructure to produce new knowledge. In the next section, I will discuss some 

of these improvements in ecological data and the opportunities they provide. 
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The rise of ecological data 

“The coming century is surely the century of data” David Donoho, 2000 

 

Towards open-access data 

Over the past few decades, ecologists have collected a wealth of extremely rich datasets that 

up until recently were difficult to share, resulting in lost opportunities to test general 

ecological theories and large-scale spatial and temporal patterns (Inchausti and Halley, 2001; 

Hampton et al., 2013) and many of these valuable datasets would go on to become 

unavailable. A study investigating the availability of ecology data found several barriers to 

data availability, particularly for older datasets, including data being stored on now obsolete 

technologies such as floppy disks, defunct e-mail addresses preventing contact with the 

authors or simply being misplaced amongst their personal collection (Vines et al., 2014). Key 

journals such as The American Naturalist, Journal of Ecology and PloS One have recognised 

the importance of data retention and sharing to scientific progress and now employ strict 

guidelines requiring that data (and in some cases programming code to reproduce analyses) 

are archived via public repositories or risk rejection (Whitlock et al., 2010). Online archiving 

and cloud storage technologies also provide a much safer option for data preservation 

particularly as storage hardware can quickly become obsolete and are susceptible to failures 

(Borer et al., 2009). Online storage also has the capacity for storing and extracting relevant 

information from extremely large datasets that would otherwise be inaccessible from a 

personal computer (Whitlock, 2011; Marx, 2013). Specialised central repositories such as 

GenBank (http://www.ncbi.nlm.nih.gov/genbank/) and the Global Population Dynamics 

Database (http://www3.imperial.ac.uk/cpb/databases/gpdd/) have now made it much simpler 

for researchers to upload, share and search for data (Whitlock, 2011). The new open-source 

http://www.ncbi.nlm.nih.gov/genbank/
http://www3.imperial.ac.uk/cpb/databases/gpdd/
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repository COMPADRE has uploaded thousands of plant matrix population models 

summarising demographic and life history traits that were previously inaccessible for 

synthetic analysis with a similar repository for animals to be released (Salguero-Gómez et al., 

2015). This push towards data accessibility also benefits authors, allowing researchers to get 

credit for their data through citations and encouraging its reuse (Whitlock, 2011; Kenall et 

al., 2014). Indeed, studies have shown that articles connected to a publicly available dataset 

are associated with an increased citation rate (Piwowar et al., 2007; Piwowar and Vision, 

2013). These datasets may then go on to be used to answer novel questions previously not 

considered by the original authors without the need for additional data collection (Whitlock, 

2011), thus bridging the gap between opportunities and knowledge and accelerating the 

advance of ecological research (Reichman et al., 2011). 

 

Long-term research 

There is widespread agreement within the ecological community highlighting the need for 

long-term ecological research to address important questions about ecosystem, community 

and population dynamics (Beissinger and Westphal, 1998; Menges, 2000; Lindenmayer et 

al., 2012; Lindenmayer et al., 2014). However, the acquisition of long-term data remains a 

significant challenge for ecologists as they exceed the length of government administrations 

and funding cycles, and growing pressure on researchers to produce publications favouring 

short-term studies and modelling research (Lindenmayer and Likens, 2011; Lindenmayer et 

al., 2012). The need to support funding and infrastructure for long-term monitoring and 

research has driven several international collaborations to establish extensive long-term 

monitoring networks. The Terrestrial Ecosystem Research Network (TERN) in Australia is a 

relatively recent data collection, storage and sharing infrastructure network for Australian 
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ecosystem science. One of the core components of TERN is the Long-Term Ecological 

Research Network (LTERN) built on new and pre-existing long-term terrestrial plot networks 

with data ranging from several years to decades, in a variety of habitats (Burns et al., 2014). 

Other national and international networks supporting long-term data collection include the 

Amazon Forest Inventory Network (RAINFOR; Malhi et al., 2002), the Landsat archives 

(Wulder et al., 2012), the National Ecological Observatory Network (NEON; Keller et al., 

2008), and the International Long Term Ecological Research Network (ILTER) supporting 

regional networks in Asia/Pacific, Europe, Africa , North America and Central/South 

America. These programs have extraordinary potential for establishing rich, global datasets 

for current and future generations (Kim, 2006). 

 

Role of technology 

Innovations in computational power and digital advances in technology have allowed 

researchers to produce and analyse unprecedented amounts of data (Hernandez et al., 2012). 

Remote sensing technologies can vastly expand data availability with large spatial coverage 

to investigate changes occurring over regional or global scales that may not be feasible using 

field-based methods (Booth and Tueller, 2003; Kerr and Ostrovsky, 2003). These sensor 

networks have allowed ecologists to engage in intensive, convenient and unobtrusive 

sampling facilitating the collection of high quality, real-time data (Porter et al., 2005; Benson 

et al., 2009). The Landsat series of satellite missions for example provides an archive of 

imagery dating back to 1972 and the decision to make this information open access is a 

promising step towards encouraging international collaboration to address global issues 

(Wulder et al., 2012). The use of camera traps for studying terrestrial wildlife has become 

increasingly mainstream in recent times with improvements in camera technology and 
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decreasing costs, providing more opportunities for animal sightings, particularly for elusive 

species (Rowcliffe and Carbone, 2008; Tobler et al., 2008). The widespread use of 

smartphones has led to the development of applications linking the process of ecological data 

collection in the field with online data submission, with the added benefits of providing real 

time GPS co-ordinates and providing more opportunities for the recruitment of ‘citizen 

scientists’ to bolster data collection (Aanensen et al., 2009; Kwok, 2009). 

At the same time, improved computing and processing power has encouraged the 

development of more sophisticated tools to store, analyse and perform more rigorous 

statistical tests on these larger datasets (Brownstone and Valletta, 2001; Marx, 2013). 

Reduced costs and increased availability in computing power has also permitted the use of 

sophisticated techniques and models to analyse smaller, but problematic ecological datasets 

often containing missing values, unbalanced statistical designs, high variability between 

individuals, sites and time, and high dimensional multivariate data involving several species, 

interactions and covariates (Andersen et al., 2009; Evans et al., 2012). In addition, these 

statistical tools are also being made more accessible with the advent of free, open-source 

programs and packages for statistical analysis (R Core Team, 2014). The provision of 

programming code for open source software is another important step towards advancement 

of scientific discoveries, allowing results to be independently verified and reproduced and 

provides useful examples to follow for researchers wishing to employ these techniques 

(Gentleman and Lang, 2007).  

 

Current challenges  

While advances in ecological data are occurring at an increasingly rapid pace, there are still 

many challenges to be addressed. International collaborative efforts to address the need for 
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long-term datasets are encouraging, but many have only been proposed or established 

relatively recently and may take several more years or decades for their full potential to be 

realised. While the availability of long-term ecological data has also increased, openly 

accessible long-term datasets are the exceptions and remain quite rare (Lindenmayer et al., 

2012). In addition, despite the push towards open-access data, there has yet to be a substantial 

shift in the culture of ecologists towards data sharing and data transparency, particularly 

when compared to fields such as genomics and meteorology (Hampton et al., 2013; Kenall et 

al., 2014; Soranno et al., 2015). Ecologists are collectively producing vast amounts of data, 

however traditional ecological data tends to come from relatively small projects with high 

levels of effort and involvement from the direct investigator, resulting in a strong sense of 

data ownership and concern of having future planned analyses scooped by other researchers 

(Zimmerman, 2003; Piwowar and Vision, 2013). Furthermore, the lack of any standardised 

methodology results in large heterogeneity in data characteristics that makes it incredibly 

difficult to aggregate studies in a meaningful way (Aronova et al., 2010; Borgman, 2012). 

There is also concern that publicly available data may be misused and that without proper 

context and specialised knowledge of the study system, ecological data can be difficult to 

understand (Reichman et al., 2011; Hampton et al., 2013). Optimal use of data produced by 

remote technologies for example requires field-based methods to provide context and obtain 

additional measurements that are relevant but cannot be obtained remotely (Lathrop Jr et al., 

2014). However, traditional ecological data produced by field-based methods tends to have a 

large inherent uncertainty due to the challenges of data collection in the field and the 

difficulty of attempting to estimate certain parameters (Salski, 1992). For the remainder of 

this chapter, I will briefly discuss the various common sources of uncertainty in ecological 

data and the methods used to address these issues.  
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Uncertainty in ecological data 

Substantive questions in ecological research often involve uncertainty in central ways, and 

these uncertainties go on to influence important decisions such as the design of conservation 

programs, management of populations and risk assessment in the face of human and 

environmental perturbations (Tuljapurkar, 1989). Uncertainty in data and modelling is 

pervasive and unavoidable – the central issue therefore is not that uncertainty exists, but in 

failing to account for uncertainty in the data and models which can lead to misleading 

conclusions and inappropriate management decisions (Regan et al., 2005). An awareness of 

the sources of these uncertainties and their potential impact is therefore crucial to avoid these 

consequences and aid decision making (Regan et al., 2002). I now go through some of the 

more prevalent sources of uncertainty that can be found in ecological data.  

 

Estimation of demographic parameters and vital rates 

Estimates of demographic parameters using field data tends to have an inherently high 

uncertainty associated with them as they are highly variable between individuals, populations 

and over time (Ludwig, 1999; McCarthy et al., 2001; McCarthy et al., 2003). Broadly, 

uncertainty in the estimation of demographic parameters can be thought of as the result of 

two main sources. Firstly, there is sampling uncertainty arising due to sampling methodology 

and variation across individuals. Secondly, there is variation across space and time such that 

demographic parameters are not expected to remain constant at different times or locations. 

While sampling uncertainty can be addressed statistically, spatial and temporal uncertainty 

can only be dealt with through long-term and spatially expansive data collection. Obtaining 

accurate estimates for important vital rates such as survival, reproduction and growth is 

therefore logistically challenging as it would require intensive demographic sampling 
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tracking individuals over a number of time periods and spatial locations (Beissinger and 

Westphal, 1998; Bierzychudek, 1999). This is particularly problematic for rare species which 

are often the target of conservation interest but have unavoidably small sample sizes and 

limited distributions (Bierzychudek, 1999).  

Intensive demographic sampling is unlikely to occur over long time periods, resulting in an 

overabundance of short-term studies (Menges, 2000; Coulson et al., 2001; Salguero-Gómez 

et al., 2015). Short-term datasets are inadequate for assessing long-term viability of many 

populations, failing to account for year-to-year variability in the environment which is likely 

to influence vital rates, and the potentially devastating impact of rare events such as fire 

(Bierzychudek, 1999; Ellner et al., 2002). This limits the potential to conduct stochastic 

analyses that can account for variation in vital rates, instead of asymptotic analyses which 

naively assume conditions remain constant over time (Tuljapurkar and Lee, 1997; 

Tuljapurkar et al., 2003). These short-term studies are also unlikely to capture the entire life-

cycle of a long-lived species and mortality rates can be difficult to estimate correctly (Elderd 

et al., 2003).  

Resampling procedures such as bootstrapping can do much to alleviate uncertainty in vital 

rates and subsequent model predictions (Efron and Tibshirani, 1986; McPeek and Kalisz, 

1993). Alternative demographic modelling techniques can also provide opportunities to use 

data more effectively. Currently, matrix models are the dominant method for demographic 

modelling (Caswell, 2001; Crone et al., 2011), however this approach divides individuals into 

stage classes (e.g. juveniles, adults) which exacerbates the issue of insufficient sampling as 

vital rates need to be estimated for each class. Integral projection models on the other hand 

model vital rates over a continuous variable such as size rather than grouping them by life 

stages (Easterling et al., 2000; Merow et al., 2014), producing better estimates when sample 

sizes are small as the regressions make use of all individuals (Ramula et al., 2009b). 
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However, life stages may not be sufficiently represented depending on the sampling 

procedures, particularly if some of these life stages are cryptic. 

 

Cryptic life stages 

Tracking individuals from all stages in a species’ life cycle, including cryptic or less 

accessible stages, is crucial for estimating vital rates and obtaining an accurate assessment of 

the size and survival of a population. The seeds of many plant species for example can 

remain dormant in the soil seed bank for many years before germinating, and in some cases 

can form the largest component of a plant population (Harper, 1977; Macdonald and 

Watkinson, 1981). In extreme cases, the observable plant population may disappear for one 

or several breeding seasons, but still exist in the seed bank. However, estimating abundances 

and vital rates (germination, viability and seed survival) for the seed bank requires destructive 

sampling of established plots, or external germination experiments in the laboratory (Kalisz, 

1991; Kalisz and McPeek, 1992) which may differ to vital rates obtained from the field 

(Gross and Mackay, 2014). Other forms of dormancy, such as vegetative dormancy in adult 

plants, can be equally problematic as they can be easily assumed dead, thus resulting in 

inflated mortality rates (Lesica and Steele, 1994). Seed and vegetative dormancy form crucial 

life history strategies to improve the persistence of plant populations in stochastic 

environments, and ignoring these stages can be detrimental to efforts in conserving rare 

species or preventing the spread of invasive species (Adams et al., 2005; Regan et al., 2011). 

Therefore a complete assessment on the viability and demographic implications on plant 

populations requires relevant data on these life stages (Moriuchi et al., 2000; Doak et al., 

2002; Shefferson, 2009; Salguero-Gómez and Casper, 2010).  
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For animal species, life stages may be cryptic if they are not present in sampled locations, or 

occupy unknown or inaccessible locations. Population estimates of threatened raptors for 

example are often based on observations of the breeding sites and ignore the non-breeding 

component of the population leading to inaccuracies in demographic models (Katzner et al., 

2011). Conversely, abundances and population trends from the Breeding Bird Survey, 

obtained mostly by citizen scientist volunteers, are reported with the caveat that some species 

counts contain a high proportion of birds away from breeding sites, and monitors nocturnal 

species poorly (Harris et al., 2014). The study and management of green turtles was hindered 

as the location of the hatchlings after leaving their nesting beach was unknown, and required 

the use of stable isotopes to locate the missing juveniles (Reich et al., 2007). In addition, 

many taxonomic groups undergo metamorphic changes during their lifetime, and often one or 

more of these stages are cryptic such as insect eggs and larvae, or long-lived cysts of aquatic 

crustaceans (Lamy et al., 2013). 

Collecting data on these life stages will always be the more desirable option when faced with 

cryptic life stages, although this may not always be possible. In such cases, simulations and 

statistical models can provide a cost-effective alternative to account for these stages. 

Multistate occupancy models allow estimation of transition probabilities of patch occupancy 

between more than two states (MacKenzie et al., 2009), but can also be implemented to 

model cryptic stages as demonstrated by Lamy et al., (2013) for aestivating freshwater snails. 

Transition rates for colonisation and extinction rates were estimated by conditioning on 

environmental variables as cryptic life stages are frequently associated with habitat features 

such as dry sites for resistant eggs (Lamy et al., 2013). An alternative approach implemented 

a hidden Markov model to infer parameters for plant populations with a seed bank without 

the need for environmental variables as seeds need not necessarily emerge when conditions 

are favourable and can co-exist with above ground life stages (Fréville et al., 2013). 
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Simulations exploring a range of plausible vital rates as inferred by previous studies can also 

help reduce uncertainty and determine whether lack of data on a cryptic life stage are only of 

minor consequence (Garcia et al., 2011). However, many studies have opted to exclude these 

cryptic life stages owing to the immense difficulty in terms of time, effort and funding to 

collect relevant data to parameter estimates. Indeed, funding and logistical issues may impede 

the collection of field data without the added complexity of addressing cryptic life stages, 

resulting in missing values and uneven sampling intervals.  

 

Missing values and uneven sampling intervals 

Ecological time series often contain uneven sampling intervals, arising from missing 

observations in the data due to financial, logistical and personnel constraints (Humbert et al., 

2009). For example, the funding cycle for many research projects can make it difficult to 

commit to regular long term monitoring resulting in sparse datasets with only occasional 

sampling opportunities. Furthermore, factors that cannot be controlled such as extreme 

weather conditions may prevent access to a study site (Ter Braak et al., 1994). Analysis of 

data from multiple sites can have several missing values at the start of a time series if 

additional sites were included during the middle of a project that were previously unplanned, 

and sampling strategies or priorities may change over time to address new research questions 

(e.g. Dickman et al., 2014). Spreading resources out over several sites also reduces the 

likelihood that all sites will be sampled during each census. 

These missing values can be problematic as many of the traditional time series analysis 

techniques such as auto-regressive integrated moving average (ARIMA) models can have 

strict data requirements i.e. relatively long, stationary, evenly spaced, no missing values 

(Erzini et al., 2005). Numerous statistical methods have been developed to deal with missing 
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values. A common technique involves multiple imputations, in which a statistical model is 

used to compute multiple estimates for the missing values to produce multiple alternative 

datasets (Honaker and King, 2010; Nakagawa and Freckleton, 2011). The Expectation-

Maximisation algorithm is often used to estimate maximum likelihood estimates for these 

missing values (Shumway and Stoffer, 1982; Shumway and Stoffer, 2006; Nakagawa and 

Freckleton, 2011; Holmes et al., 2012). However the uncertainty in any subsequent analysis 

is necessarily greater than if the data were complete. The two most commonly used methods 

accommodating unequal sampling intervals are the log-linear regression of counts against 

time, and the other describes logarithmic abundance by Brownian motion diffusion process 

with constant drift rate (Dennis et al., 1991; Humbert et al., 2009). Unfortunately, these 

methods are unable to simultaneously account for and distinguish between variation due to 

observation error during data collection and variation due to environmental stochasticity. 

 

Observation error 

Observation error refers to any deviation from an observed value and its true value (Staples et 

al., 2004). This includes traditional sampling error obtained from only sampling a portion of 

the population, and measurement error resulting from sampling methods or incorrect 

measurements within a chosen sampling unit (Staples et al., 2004; Flesch, 2014). True 

abundances of populations are rarely known and are often estimated rather than censused, 

producing variability in observed abundances, which is distinct from variation due to process 

error that includes all non-observation error such as environmental stochasticity. Observation 

error arising from imperfect detection is a common issue particularly if a species is rare, 

small, nocturnal or otherwise elusive. Species with a predisposition towards non-detection 

may produce observed estimates of zero abundance thereby implying absence from a study 



Chapter 1: Uncertainty in ecological data 

 

15 

 

site, which may not necessarily be true. Mistakes and disagreement in abundance estimates 

between field workers are also common and can be exacerbated by factors that cannot be 

controlled for such as weather conditions, a lack of trained personnel, or simply too many 

individuals to be counted accurately. These errors can also be present in covariate data 

including those obtained using technology such as weather machines, and those obtained via 

human meaurements such as soil readings or trait-based measurements.  

Failing to account for observation error can have serious consequences for ecological 

inferences such as strength of density dependence, population trends, and extinction risks 

(Shenk et al., 1998; Dennis et al., 2006; Freckleton et al., 2006; Dennis et al., 2010). 

Statistical models, and their resulting parameter estimates, can be severely biased and 

environmental variability overestimated if observation error is not properly accounted for 

(Ludwig, 1999; Dennis et al., 2006; Linden and Knape, 2009). Incorporating observation 

errors into time series models is not a simple task, generally requiring sufficiently long time 

series data, and there are many statistical issues to be dealt with (Clark, 2003; Dennis et al., 

2010). The diffusion approximation method developed for univariate time series by Holmes, 

(2001) for example produces estimates of process variation that can be biased high or low 

with unknown magnitude of direction (Staples et al., 2004). The restricted maximum 

likelihood (REML)-based method developed by Staples et al., (2004) on the other hand has 

the strict requirement that data come from even sampling intervals with no missing values. 

State-space models, prevalent in engineering, economics and more recently the fisheries 

literature, which partitions the model into one for the observations and another for the 

unobserved true state have proven a useful tool for modelling both errors (Holmes and Fagan, 

2002; De Valpine, 2003; Clark and Bjørnstad, 2004; Humbert et al., 2009). These models and 

the algorithms implemented to estimate the parameters can become unstable when data are 

limited, though this can be reduced by taking replicate samples (Dennis et al., 2010). 
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Additionally, steps can be taken to reduce the size of observer errors during data collection, 

for example by taking mean values of multiple observations, implementing mark-recapture 

methods to estimate abundance or increasing sampling time and effort (Klimeš, 2003; 

Burgman et al., 2011; Herrick and Fox, 2013). Researchers must acknowledge the presence 

of observation error and while many studies have not accounted for this error (Freckleton et 

al., 2006), more attention has been paid recently to modelling, measuring and reducing 

observation error. In recent times, the size and prevalence of observation errors in visual 

estimates of vegetation cover has led to some major concerns over it use to guide 

management practices.  

 

Visual cover estimation  

Estimation of vegetation cover by visual inspection of fixed plots provides a quick, simple 

means of carrying out much needed long-term monitoring and is used widespread across a 

range of study systems including heathlands (Webb, 1990), woodlands (Eckhardt et al., 2000) 

and grasslands (Henderson et al., 1988). Changes in vegetation cover are strongly linked to 

important ecological and environmental processes, and effective management of ecosystems 

therefore requires reliable field estimates of vegetation cover (Eyre et al., 2011). However, 

such estimates are prone to large observation errors, drawing criticism with regards to the 

reliability and repeatability of such data (Helm and Mead, 2004; Wintle et al., 2013). As with 

any other study requiring researchers to take measurements, observer specific biases and 

errors are present, but visual cover estimates have been demonstrated to be particularly 

susceptible, with no relationship between experience of the observer and their estimates 

(Cheal, 2008).  
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Methods to reduce observation errors such as taking mean values of multiple observers are 

also applicable to visual estimates. In addition, new technologies such as remote sensing and 

computer-image analysis can be used to remove observer specific biases associated with field 

estimates (Bennett et al., 2000; Booth and Tueller, 2003). However, this potentially 

introduces errors of other kinds, including the choice of post-processing algorithm (Kennedy 

et al., 2014), and does not eliminate the need for effective field-based measurements (Lathrop 

Jr et al., 2014). Visual estimates can be improved through a process of active calibration 

feedback with observers evaluating their own performance but such practices are not 

commonly afforded to monitoring programs (Wintle et al., 2013). In general, reducing 

observation errors within the limited funding and personnel constraints may not always be 

feasible resulting in several trade-offs that must be appropriately balanced.  

 

Monitoring trade-offs 

While reduction of observation errors is desirable to ensure high quality data, taking repeated 

measures for example would necessarily draw resources away from improving spatial and 

temporal coverage and it is up to the researcher to determine whether the improvement in 

information is worth the cost. (Dennis et al., 2006). Therefore, in monitoring programs there 

exists a difficult trade-off between greater accuracy in the data and therefore power to detect 

small scale changes, and greater spatial and temporal coverage to improve overall 

understanding of a study system (Morris et al., 1999). Obtaining sufficient spatial and 

temporal coverage is crucial, as quite often addressing interesting ecological questions 

requires sufficient data across both these scales.  

Space-for-time substitutions can be used to compensate for inadequate temporal data (Pickett, 

1989). However, spatial variation between populations can be quite high, sometimes 
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exceeding variation over time, resulting in a mismatch between temporal and spatial variation 

and renders such substitutions inappropriate (Jongejans and de Kroon, 2005; Ramula et al., 

2009a). Information for a particular species may instead be bolstered by using data from 

another species or population. Phylogenetically related organisms for example show a 

tendency to resemble each other with regards to their phenotype, however support for the use 

of phylogenetic signals to explain observed population dynamics is weak (Blomberg et al., 

2003; Buckley et al., 2010). Alternatively, life form can be a crude proxy for functional types 

whereby species within the same life form group often share common ecological properties 

and have been demonstrated to respond similarly to shared environmental drivers (Lavorel et 

al., 1997; Pausas and Austin, 2001; Verheyen et al., 2003; Wang et al., 2003; Broennimann 

et al., 2006). Similarly, while populations are often variable across space, they can also act in 

synchrony if populations are interconnected or if environmental drivers are large and 

widespread resulting in shared population dynamics between sites (e.g. Ward et al., 2010). 

Identifying such spatial structure can reduce the number of parameters needing to be 

estimated, and allow information from multiple sites to help inform parameter estimation.  

Strategic sampling designs and efficient allocation of resources can also prove beneficial. For 

example, missing values in time series data may be permitted in exchange for improved 

accuracy for the remaining sampling periods, or extending the time series length (Humbert et 

al., 2009). Such a strategy places more emphasis on obtaining fewer but higher quality data, 

in contrast to many monitoring programs which prioritises regular, frequent intervals even if 

the data are poor (Hauser et al., 2006). Censusing of study sites may also be staggered such 

that every site need not be visited every field trip, thus more sites can be visited for the 

duration of the study period (Morris et al., 1999). Some sampling designs may already 

incorporate a degree of replication but data have inadvertently been aggregated to produce a 

single estimate – in such cases, it may be desirable to instead disaggregate these observations 
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as independent replicates to improve model performance (Dennis et al., 2010). One can also 

perform initially intensive demographic sampling (say, over a period of two or three years) 

which can subsequently inform less intensive monitoring strategies (Morris et al., 1999). For 

example, it may be sufficient to census a single, informative life history stage to assess 

population viability and problematic, cryptic life stages may only need to be censused 

occasionally or not at all. Identifying the extent of spatial heterogeneity is also an important 

goal that can be examined early on to determine whether populations are independent with 

differing population dynamics, or are correlated with shared drivers and thus are more 

susceptible to extinction (Morris et al., 1999; Warton and Wardle, 2003; Ward et al., 2010). 

Populations with unique, independent dynamics may require more spatial replication to 

properly manage and understand the dynamics governing each population, whereas a 

correlated population might need more emphasis on temporal replication since rare, 

catastrophic events will impact all populations.  

 

Overview of thesis 

This chapter (Chapter 1) provides a general introduction to some key concepts regarding 

ecological data and the uncertainties affecting such datasets. The potential sources of 

uncertainty listed in this chapter covers a range of issues faced by ecologists but it is by no 

means exhaustive. Other sources of uncertainty for example may include modelling 

uncertainty, in both the choice of model and in the modelling of demographic parameters as a 

function of predictors. The potential sources of uncertainty is extensive - to keep the focus of 

the thesis tight, the remaining chapters of this thesis will be restricted to discuss and 

demonstrate techniques only for reducing particular aspects of uncertainty described in this 

chapter. The results are then related back to the data used to produce them and used to guide 
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future data collection procedures. Chapter 2 will focus on uncertainty related to cryptic life 

stages. While cryptic life stages emcompass a wide diversity of forms across different 

taxanomic groups, one of the more common and well studied examples of such a stage is the 

dormant seed bank. I therefore focus on the seed bank to provide a useful foundation upon 

which to discuss the impact of uncertainty related tocryptic life stages. First, I give a review 

of the prevalence of plant population models that fail to take into account this potentially 

important life stage. Then I demonstrate how this uncertainty in the population models can be 

quantified and visualised using a combined empirical and simulation based approach, 

incorporating published demographic models, information on dormancy and germination 

from the literature and simulations investigating a number of plausible scenarios and 

assumptions. Chapter 3 will investigate the use of multivariate auto-regressive state space 

(MARSS) models for time series analysis when data are missing and sampling intervals are 

uneven. These models are also able to provide estimates for both observation and process 

error through a combination of the recursive Kalman filter and Expectation-Maximisation 

(EM) algorithm. Importantly, it is shown how the results from these models can be used to 

iteratively provide future recommendations for improving long-term monitoring programs. 

The MARSS framework is demonstrated using a relatively long-term (≈ 9 years) time series 

of abundances for a highly stochastic plant population from the Simpson Desert, an 

environment of extreme boom-bust dynamics. This case study is fairly typical of the 

challenges and difficulties of collecting ecological data whilst attempting to manage limited 

resources and practical concerns such as safety and access to study sites. Chapter 4 will 

investigate the validity of visual cover estimates as a legitimate means of assessing 

environmental changes in the face of heavy criticism with regards to repeatability and 

reliability of measurements. Making use of two primary independent long-term datasets of 

visual cover estimates of hummock grasslands, I evaluate whether these datasets produce 
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consistent trends, or whether different sampling strategies and observer errors are driving the 

results. Chapter 5 demonstrates the use of dynamic factor analysis (DFA) to a large, 

multispecies dataset of abundances over time to summarise the temporal dynamics of a large 

number of species to a small number of common trends. This is analogous to a principal 

component analysis but the common trends (axes) preserve the temporal sequence of the 

observations. Thus, interpretation of the large multispecies data is greatly simplified and a 

more meaningful description of the study system is provided compared to a single species 

analysis. Furthermore, by clustering species with similar temporal dynamics into these 

common trends, it is possible to identify which species are suitable for borrowing information 

for species that are not as well sampled. Finally, Chapter 6 will summarise the general 

conclusions and key findings of the previous chapters. 

The specific aims of this thesis and the chapters they are addressed in are as follows: 

1. To quantify the amount and effect of uncertainty created by excluding cryptic life 

stages from demographic models (Chapter 2) 

2. To demonstrate the application of multivariate state-space models to account for 

missing values, uneven sampling intervals, potential spatial heterogeneity and 

observation error and highlight how addressing these uncertainties can be used 

advantageously (Chapter 3) 

3. To investigate the utility of visual cover estimates for detecting environmental 

changes and trends despite high errors and low reproducibility (Chapter 4) 

4. To identify the potential to borrow information from multiple species by 

identifying species with similar temporal trends and to provide a holistic 

description of key temporal dynamics within a study system by taking a 

multispecies approach to time series analysis (Chapter 5) 



Chapter 1: Uncertainty in ecological data 

 

22 

 

These aims are addressed by using a series of case studies, combined with a variety of 

analytical tools appropriate for estimating uncertainty and accounting for spatial and temporal 

variation. The material may be read on several levels. First as a roadmap for how typical 

monitoring data collected in field surveys can be analysed to interpret differences across 

space and time. Secondly, as a series of vignettes that apply modern analytical tools to real-

world data on plant populations and communities, and explicitly account for uncertainty. 

Finally, the issues addressed in the studies presented here demonstrate the practical 

advantages of managing uncertainty for decision makers to help guide future protocols for 

data collection and tracking ecosystem changes.  
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Chapter 2 - Consequences of continuing to exclude cryptic life 

stages from demographic models 

 

High resolution images of seeds sampled from the Simpson Desert, Australia.  

Clockwise from top left: Trachymene glaucifolia, Crotalaria cunninghamii,  

Triodia basedowii and Acacia dictyophleba. Photographs by David Nelson. 

 

A version of this chapter has been submitted and is currently under review in Methods in 

Ecology and Evolution as Nguyen, V., Buckley, Y.M., Salguero-Gómez R. and Wardle, G.M. 

(2015) Consequences of continuing to exclude cryptic life stages from demographic models. 

Submitted 4th June 2015.  

My contribution was very substantial, including conceptualisation of ideas, reconstruction 

and analysis of models, conducting simulations, and writing and editing all drafts in 

consultation with my co-authors.  
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Summary 

1. Estimates of population abundance, viability and invasibility based on population 

models with incomplete life cycles are likely to be misleading. Thus information on 

individuals from all stages in the life cycle is crucial to explore the ecology, evolution 

and conservation biology of any organism. However, the life cycles of many species 

contain cryptic life stages that are difficult to detect and track over time and these 

individuals are therefore omitted from demographic models. One example is the 

dormant seed bank, an evolutionary bet hedging mechanism that buffers plant 

populations in variable environments. 

2. To evaluate this methodological oversight, simulations based on plausible values for 

seed bank vital rates explored the extent and effect of seed bank parameter 

uncertainties on demographic outputs such as the deterministic population growth rate 

(λ), stochastic population growth rate (λS), and local extinction risk of 12 plant 

species. The simulations included seed bank parameters from both uninformed and 

informed priors based on literature estimates, which were used to reconstruct 

previously published models in which the seed banks were excluded without 

justification. 

3. Inclusion of a seed bank and demographic uncertainty in seed bank parameters had 

little impact for stable populations (λ ≈ 1) with high post-seedling survival, but it 

played a greater role in populations with high temporal demographic variation. 

4. By exploring underlying assumptions regarding population model structure and seed 

bank vital rates, I found that our perspective on the importance of the seed bank is 

context-specific, depending on the species and the type of environmental cues in the 

period under consideration. While estimates of germination rates obtained from the 
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literature cannot accurately reflect those obtained in the field, they provide data to 

evaluate plausible scenarios and thus assess the relative important of a seed bank. The 

seed bank can be excluded in certain cases, provided that it is justified either through 

literature confirmation that dormancy is non-existent, greenhouse tests, or through 

simulations. Overlooking the seed bank stage, or any cryptic stage such as vegetative 

dormancy, will continue to hinder management efforts of threatened populations and 

undermines actions to control invasive species.  
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Introduction 

Demographers have long recognised that individuals in a population span across different 

stages of their life cycle, from propagules up to reproductive adults, and that these stages 

contribute to its persistence in different ways – failing to account for all these stages can 

therefore be misleading (Caswell, 2001). However, the life cycles of many species contain 

cryptic life stages that may be difficult to detect or sample. These cryptic life stages occur 

over a range of taxonomic groups, and may include hibernating or dormant individuals, 

clonal individuals, eggs, mobile propagules, or simply stages occupying inaccessible 

locations (Tanner, 2001; Geiser, 2004; Shefferson, 2009; Katzner et al., 2011). The dormant 

seed bank is perhaps one of the most common examples of a cryptic life stage whereby seeds 

enter prolonged dormancy (>1 year) within the soil, and even make up a significant portion 

of the population (Harper, 1977; Baskin and Baskin, 2014). By spreading germination 

through time, seed dormancy acts as a bet-hedging mechanism mitigating the effects of 

unfavourable years in exchange for reduced proliferation during favourable years (Venable, 

2007; Gremer et al., 2012). In extreme cases, seed banks can prevent local extinctions when 

above-ground populations are killed off entirely (Stöcklin and Fischer, 1999). Seed dormancy 

has also been shown to promote species co-existence in variable environments (Warner and 

Chesson, 1985) and act as a temporal reservoir for genetic diversity (Vitalis et al., 2004).  

With such substantial consequences for population dynamics, it would be a major oversight 

to exclude the seed bank, or any cryptic life stage, from population estimates and 

demographic analyses. This argument is indeed not new: the need to incorporate the seed 

bank into demographic models has been recognised for decades (Harper, 1977; Kalisz and 

McPeek, 1992). Matrix population models, which divide individuals into their respective 

stage classes, are currently the most common tool for modelling plant populations – the 
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online database of plant matrix models, COMPADRE, currently contains 5,621 published 

matrices for 598 species (Salguero-Gómez et al., 2015). These models have a long history in 

the management of threatened and invasive species (Crone et al., 2011). Yet, a previous 

review of 70 published matrix population models found almost half (43%) had excluded the 

seed bank stage without justification (Doak et al., 2002). Shockingly, I have found that this 

proportion has remained unchanged in the last decade (47%; Table 2-1). It should be 

acknowledged that including the seed bank is not straightforward as estimation of vital rates 

such as survival and germination generally rely on additional laboratory experiments (Crone 

et al., 2011), and even these would inflate actual in situ estimates (Gross and Mackay, 2014). 

Furthermore, unless such experiments are rigorous enough to include age-specific vital rates 

(Kalisz and McPeek, 1992), the seed bank is generally assumed to be unstructured. Indeed, 

population data for the seed rain, seed banks, and seedlings tend to be inadequate and are 

often studied for only a year or less (Clark et al., 1999). Excluding the seed bank may be 

justified if it is discovered the species, or population, does not possess dormant seeds (see 

Baskin and Baskin, 2014 for review on the presence of seed dormancy), however, these cases 

are the minority compared to those that do not provide justification (Doak et al., 2002; Table 

2-1). Unjustified exclusion can have real-world consequences if for example the seed bank of 

an invasive species recolonises after the adult individuals have been eliminated (Regan et al., 

2011) or the population size and persistence of threatened species is underestimated (Doak et 

al., 2002). 

The practical issues of including a seed bank and its exclusion from demographic models 

raise two important questions. Firstly, how can we bridge the gap in our understanding of 

whether a seed bank is necessary to adequately model the population dynamics in the absence 

of field data? Secondly, how does uncertainty in the presence of a seed stage and its transition 

rates translate into uncertainty in the model? Addressing these questions using a simulation 
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based approach can be useful for investigating a range of scenarios and assumptions but may 

not be biologically meaningful without application to real world examples. An empirical  

Table 2-1. Comparison of studies from the MPM2008-2011 database with a previous 

review by (Doak et al., 2002) examining the inclusion of the seed bank in plant 

population models. Studies were classified as justified exclusion if a valid reason was 

provided for not including the seed bank (e.g. the authors found no evidence of a seed 

bank) and unjustified exclusion if the possibility of a seed bank was not explored or 

mentioned. Studies from COMPADRE were not analysed to determine whether 

exclusion of the seed bank was justified. 

Population models and seed 

banks 

Doak et al. 

(2002) 

MPM2008-

2011  

COMPADRE 

v.3.1.0 

Included 34 (48.6%) 16 (29.1%) 160 (34.2%) 

Justified exclusion 6 (9.6%) 13 (23.6%) 
308 (65.8%) 

Unjustified exclusion 30 (42.9%) 26 (47.3%) 

Total studies 70 55 468 

 

based approach, on the other hand, may be limited in its scope if it were to focus on a single 

case study, as there are clear difficulties in obtaining individual level records for published 

models. Using published matrix models that have excluded the seed bank without 

justification and information on dormancy and germination rates from the literature, I 

implement a combination of these approaches and perform a comparative analysis across a 

range of species and life forms (12 species including eight trees, three shrubs and one herb). I 

conduct Monte Carlo simulations on these published models using uninformed and informed 

priors (based on literature estimates) for seed bank vital rates to gauge the level of uncertainty 

when the seed bank presence and parameters are unknown. Although many seed banks are 

known to respond to triggers such as fire or rainfall, these environmental cues were either not 

present or would need to be inferred based on the published matrices. Thus, the present 
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simulations will only be distinguishing between good and poor demographic years based on 

the population growth rates. 

I make a number of predictions based on the evolutionary advantages of seed dormancy. 

First, we might expect the relative importance of seed banks to be greater in species where 

greater environmental variance is observed and variable post-seedling survival compared to 

stable populations of long-lived species with consistently high adult survival (Venable, 

2007). Furthermore, the deterministic growth rate (λ), which assumes vital rates remain 

constant, should improve population persistence during poor demographic years (λ < 1) and 

slow population increases during productive years (λ > 1) to reflect the function of the seed 

bank as a bet hedging mechanism against unfavourable years (Kalisz and McPeek, 1992; 

Gremer et al., 2012). Similarly, elasticities (the relative influence of each demographic 

process to the population growth rate; de Kroon et al., 2000) for seed bank transition rates 

should be greater during poor years. There should also be an observed increase in times to 

local extinction and stochastic growth rates,(λs), which incorporate temporal variation in vital 

rates. Using both an empirical and simulation based approach, I provide more robust 

projections of the demographic fates of populations and help to motivate the inclusion of the 

seed bank into demographic models.  

 

Materials and Methods 

Database of population matrix models 

At the time this study was initially conducted, the COMPADRE Plant Matrix Database had 

not become open access online (Salguero-Gómez et al., 2015), with the most recent update 

consisting of 204 terrestrial plant species up to 2007, hereafter referred to as the “MPM2007” 
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database constructed by the Vegetation Function Working Group (see Burns et al., 2010 for 

further information). I used the ISI Web of Science to identify published plant matrix 

population models from 2008-2011, hereafter referred to as the “MPM2008-2011” database, 

which would later go on to be added to COMPADRE. Examples of search terms used include 

“matrix model*”, “transition matrix”, “demographic model*”, “population model*”, 

“population viability analysis”, “population growth rate” and “population dynamics”. In total,  

55 studies with matrix models for 77 terrestrial plant species were found, including 38 trees, 

27 herbs, 8 shrubs and 4 succulents.  

Addition and removal of seed bank stages 

Using Baskin and Baskin, (2014) and the species name as a search term in ISI Web of 

Science, I verified whether a seed bank was reported for species in which seed bank 

exclusion was unjustified (possibility of a seed bank was not mentioned; Table 2-1). While 

each population may not necessarily possess a seed bank, it is still worth determining the 

impact of its potential presence on model outcomes. In total, new matrix population models 

were constructed for 12 plant species for which published germination data on either the 

species or the genus was available and the original matrices were provided. 

Adding, removing or excluding stages without justification alters the dimensionality of the 

model and this will affect the demographic parameter estimates. Merging or further dividing 

up stage classes directly alters vital rates for each class being affected and the speed of the 

life cycle, with lower dimensions reducing the number of stages to progress through the life 

cycle (Salguero-Gómez and Plotkin, 2010). As the seed bank functions as a bet hedging 

mechanism, delayed movement through the life cycle is to be expected and this is reflected in 

the hypotheses outlined in the previous section. Since the seed bank is a separate, discrete 

stage class that involves no splitting or merging, transition probabilities for the other classes 
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should remain unaffected by its inclusion. However, seedling fecundity would need to be 

lowered accordingly to account for observed seedlings emerging from the seed bank to avoid 

overestimating fecundity. Seedling counts were used to estimate for fecundity in all models 

where the seed bank was excluded without justification. Thus, I assumed the seedlings 

observed consisted of two components: individuals that germinated immediately between 

year t and t + 1 and individuals that germinated from the unobserved seed bank. This can be 

described by the following equation:  

              fi,j = Fj,tvgs + Fj,t-1v(1-g)(1-d)gb1 + Fj,t-2v(1-g)(1-gb1)(1-d)
2
gb2…  (1) 

where the first term on the right hand side represents immediate germinants, the second 

represents germination of seeds from the seed bank produced in the previous time period and 

the third term represents germination of seeds from the seed bank produced two time periods 

ago. 

fi,j = per-capita fecundity into stage class i by stage class j in one time step 

Fj,t = total fecundity by stage class j at time t 

v = seed viability rate during the period t to t + 1 

g = probability of germinating during the period t to t + 1 

gb = probability of germinating from the seed bank within the period t to t + 1 

s = probability of seedling survival until the next census 

d = seed bank mortality 

(See Fig. 2-1 for more information). To simplify the inclusion of the seed bank stage using 

limited information, the following assumptions were made. First, the probability of a seed 

surviving to germinate in the period t to t + 1 and be alive in the next census t + 1 (s), was 

equal to the probability of surviving in the seed bank (1 - d). Second, I conducted simulations 

focusing on the contribution of the seed bank from t - 1. This unstructured model captures the 
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predominant seed bank contribution since the contribution of seeds from previous years will 

diminish exponentially with each year, assuming vital rates are not seed age dependent.   

Fig. 2-1. Life cycle graphs corresponding to A) a plant consisting of two life stages: the 

seedlings, Se, and the adults, Ad, B) a plant consisting of seeds that have remained in the 

seed bank for 1 year, S1, up to n years, Sn (Eq. 1), and C) a plant with an unstructured seed 

bank, SB, (Eq. 2). The transition rate fSe,Ad gives the fecundity into the seedling stage while 

fS1,Ad and fSB,Ad gives the fecundity into the seed bank. D) Details of the derivation of Eq. 1 in 

which the variables are contained in boxes. Tracking the variables required to reach the 

seedling stage from the adult stage either directly or via the seed bank demonstrates how each 

term in Equation 1 was derived.  
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Alternative age-structured formulations are explored below. Additionally, the fecundity from 

the previous year was assumed to equal the fecundity in the current year, i.e. Fj,t = Fj,t-1, 

hereafter denoted by Fj. Finally, the probability of germinating within the census year was 

equal to the probability of germinating from the seed bank, i.e. g = gb (Kalisz and McPeek, 

1992). Using the published information on germination, eq. 1 is simplified to: 

                                                   fi,j = Fjvgs + Fjv(1-g)(1-d)g (2) 

where the first term on the right hand side represents the number of seedlings germinating 

immediately between t and t + 1, and the second term corresponds to the number of seedlings 

germinating from the seed bank. Seed viability (v), seedling survival (s) and seed survival (1 - 

d) were subject to different values depending on the analysis performed. Taking the observed 

fi,j from the original matrix, I solved for Fj and calculated the per-capita fertility contributions 

to seedlings and seed bank (See Appendix 1-1 for an example). Following the same approach, 

I also explored alternative model formulations and the effect of different assumptions but 

only performed Monte Carlo simulations for the unstructured scenario, which is the simplest 

and most common approach to including the seed bank. These alternatives include the 

addition of an age-structured seed bank distinguishing seeds from t - 2 and t - 3 and more 

conservative estimates on the effect of the seed bank by further assuming the seeds do not 

survive beyond the first, second or third year (See Appendix 1-1 and Appendix 1-2 for 

alternative formulations and population growth rates for all models). 

Excluding the seed bank from a model makes the implicit assumption that it is not present in 

the population, thus the seed bank was intentionally removed from selected models to explore 

the implications of this assumption. Given the large number of potential models to choose 

from, I decided to focus on cases in which the seed bank was known to be important 

(elasticities of λ to seed survival, germination or fecundity > 0.1) to demonstrate the worst 
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case scenario that might be possible when the seed bank is ignored. Six such species were 

identified from the MPM2007 and MPM2008-2011 databases that fulfilled this criteria whilst 

retaining ergodicity, the condition that it is possible to transition from each stage to all other 

stages (Caswell, 2001). Information on seed viability, seedling survival, and seed survival 

were used if provided, but were otherwise set to 1 and it is no longer assumed that g = gb, 

since gb can be obtained from the original matrix. The probability of seeds germinating 

within the studied period, g, was then estimated based on partitioning the total reproductive 

output (eqs. 1 and 2) to recalculate only the fecundity into the seedling stage. To further 

ensure that no artefacts from changes to reproduction or mortality were introduced, the 

removal protocol was the reverse of the addition protocol and a check of the recovery of the 

initial matrix after these manipulations was performed (See Appendix 1-3 for an example).  

 

Analyses 

Population growth rates (λ), elasticities and stochastic simulations were conducted for case 

studies involving addition or removal of the seed bank stage. Monte Carlo simulations were 

conducted only for the addition of the seed stage. All analyses were performed using R (v 

3.1.1; The R Foundation for Statistical Computing; see Appendix 1-4 for code to perform 

Monte Carlo simulations).  

Initial Monte Carlo simulations used an uninformed prior for germination, viability, seedling 

survival and seed survival and thus were drawn from a uniform distribution. Although we 

might expect covariance among vital rates for the below and above-ground individuals 

(Morris and Doak, 2002), introducing this structure is complicated particularly when dealing 

with the seed bank. Models that do include the seed bank for example generally estimate seed 

bank vital rates through separate germination experiments such that the covariance between 
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the seed bank and the above-ground population is lost in the process. While the impact of this 

covariance structure on the model outcomes would be of interest, the focus here is on the 

issue of exclusion of the seed bank from demographic models, leaving investigations 

regarding correlation structure for future research. 

I performed 10,000 simulations, reconstructing the matrix for each set of parameters that was 

drawn and then calculated the population growth rate. I report the mean growth rates with 

confidence intervals obtained by the 2.5% and 97.5% quantiles (See Appendix 1-5 for graphs 

of population growth rates with simulation sizes ranging from 1 to 20000). I then repeated 

this process using informed priors obtained via literature estimates for germination, and 

occasionally viability when available, and again, calculated the population growth rate for 

each set of parameters drawn. Publications on germination often contain multiple treatments 

and an estimated mean germination rate for each treatment. The prior distributions were 

specified depending on the type of demographic year to reflect the function of the seed bank 

as a bet hedging mechanism (the highest germination rate available when λ > 1 and the lowest 

when λ < 1; Kalisz and McPeek, 1992; Gremer et al., 2012). However, if only one 

germination rate was provided, this value was used for all population matrix models 

regardless of the demographic year. If only the mean matrix was provided (the element-by-

element arithmetic mean matrix across all years and sites), the average germination over all 

treatments was used. Both germination and viability were modelled using the beta 

distribution as it is bounded between 0 and 1, with the mode of the distribution equal to the 

germination rate.  

Population growth rates were also calculated using fixed values of germination (0.01-1 by 

increments of 0.01) and viability (0.1, 0.5, and 1) to capture the complete range of possible 

values when only these parameters are allowed to vary. The matrices in which the 
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germination rate was set to that obtained from the literature were used to calculate single 

point estimates of λ, elasticity matrices, λS and calculate extinction risks, with viability, seed 

survival and seedling survival set to 1 if no information was available. The initial population 

for all stochastic and extinction risk calculations hereafter consisted of 1,000 individuals at 

stable stage distribution, calculated as the right eigenvector (Caswell, 2001) of the mean 

matrix. Stochastic growth rates were calculated via matrix selection (Kaye and Pyke, 2003). 

Briefly, when populations had multiple years of matrices available, at each time step, each 

matrix had an equal probability of being selected. The initial population was projected over 

10,000 time steps with the first 2,000 omitted to remove transient dynamics (Morris and 

Doak, 2002; Kaye and Pyke, 2003). The mean and variance of the growth rates were used to 

obtain an estimate for λS and 95% confidence intervals.  

Extinction risks between models with and without seed banks were also compared. Times to 

extinction (defined as population size ≤ 100 individuals) were calculated for matrices 

predicting population decline. An initial population was projected for individual matrices 

over 100 years and compared the difference in times to extinction with and without the seed 

bank to quantify the effect of the seed bank on population persistence. Stochastic simulations 

were conducted to calculate the cumulative probability of quasi-extinction (Morris and Doak, 

2002). An initial population was simulated over 100 years with a quasi-extinction threshold 

set to 100 individuals (i.e. one tenth of the initial population size). I performed 100 runs, with 

5000 iterations per run, and calculated the mean fraction of projections that fell below the 

quasi-extinction threshold during or before year t was used to calculate the cumulative 

probability of quasi-extinction (Morris and Doak, 2002).  

 

Results 
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Addition of the seed bank and demographic uncertainty 

Inclusion of an unstructured seed bank showed fairly small differences in λ for most species 

regardless of the assumptions made (See Table 2-2 and Fig 2-2 for comparison of growth 

rates). However, the potential range of growth rates when demographic parameters are 

uncertain can be large depending on the species and the amount of temporal variation 

observed. The 8 tree species for example had stable populations (λ ≈ 1), and variation in seed 

bank parameters had little influence in the overall models with the exception of Illicium 

anisatum (Schisandraceae). Subsequently, using informed priors for these species had little 

impact on the distribution of possible growth rates. In contrast, the shorter lived shrub species 

Atriplex acanthocarpa (Amaranthaceae) and Sambucus racemosa (Adoxaceae) were more 

sensitive to the introduction of a seed bank and demographic uncertainty in its vital rates. 

Here, using a high germination prior led to a reduced distribution of possible growth rates for 

the A. acanthocarpa 1996-1997 matrix when the population was extremely productive (Fig. 

2-3). Conversely, the use of lower germination rates (or assumed higher levels of dormancy) 

during the poorer 1997-1999 years appeared to increase the spread of possible growth rates. 

Despite this, poor years tended to have a smaller distribution of possible growth rates and 

were therefore less sensitive to changes in demographic parameters compared to good years 

(Figs. 2-3 and 2-4). Generally, distributions of growth rates were skewed, with peaks being 

concentrated when germination rates were high and greater variation in λ when germination 

is low (Figs. 2-3 and 2-4). However, these simulations only investigated the unstructured seed 

bank scenario. Further uncertainties exist with regards to the longevity and structure of the 

seed bank, both of which were only briefly explored in this study (Appendix 1-2). 
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Table 2-2. Comparison of population growth rates (λ) following the addition of a seed bank. Pop. refers to populations of the same 

species in the same study. Avg. represents the population growth rate of the mean matrix for each population. Stoch. represents the mean 

stochastic growth rate from populations projected over 10,000 years. SB denotes single point estimates from models with germination and 

viability equal to that obtained from the literature. Growth rates from Monte Carlo simulations were obtained from the mean of 10,000 

simulations with parameters for germination, viability, seed survival and seedling survival drawn from uniform distributions when priors 

are uninformed, while germination and viability were drawn from beta distributions when priors were informed. 95% confidence intervals 

for Monte Carlo simulations and stochastic growth rates are displayed in brackets.  

 

Study 

Life 

Form 

 

Pop 

 

Period 

 

No SB 

 

SB  

Monte Carlo sim. 

uninformed prior 

Monte Carlo sim. 

informed prior 

Single time period        

Chien et al., (2008) 

Calocedrus macrolepus 

Parashorea chinensis 

Pinus kwangtungensis 

 

Tree 

Tree 

Tree 

 

1 

1 

1 

 

1 

1 

1 

 

0.9683 

0.9948 

0.9776 

 

0.9715 

0.9955 

0.9786 

 

0.9700 (0.9683,0.9785) 

0.9963 (0.9948,1.0040) 

0.9786 (0.9776,0.9834) 

 

 

0.9699 (0.9683,0.9752) 

0.9954 (0.9948,0.9978) 

0.9782 (0.9776,0.9799) 

Kisanuki et al., (2008) 

Illicium anisatum 

 

 

Tree 

 

1 

2 

 

1 

1 

 

1.1271 

1.1864 

 

1.1647 

1.2276 

 

1.1344 (1.1258,1.1765) 

1.1931 (1.1828,1.2363) 

 

1.1408 (1.1263,1.1778) 

1.2008 (1.1840,1.2416) 

Abe et al., (2008) 

Sambucus racemosa 

 

Shrub 

 

1 

2 

3 

 

1 

1 

1 

 

1.1696 

1.0007 

2.2227 

 

1.1690 

1.0012 

2.2031 

 

1.1789 (1.1661,1.2355) 

1.0109 (1.0007,1.0622) 

2.1588 (2.0468,2.2210) 

 

 

1.1951 (1.1674,1.2639) 

1.0255 (1.0008,1.0963) 

2.1459 (2.0551,2.2125) 

Kouassi et al., (2008) 

Eremospatha macrocarpa 

Laccosperma secundiflorum 

 

Tree 

Tree 

 

1 

1 

 

1 

1 

 

0.9792 

0.9606 

 

0.9811 

0.9661 

 

0.9806 (0.9792,0.9887) 

0.9638 (0.9607,0.9815) 

 

0.9805 (0.9792,0.9842) 

0.9621 (0.9607,0.9658) 
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* Population growth rates (λ) between matrix models with and without seed bank were significantly different according to the 95% confidence 

interval. Statistically different population growth rates are also shown in bold font.   

Multiple time periods        

Mondragon, (2009) 

Guarianthe aurantiaca 

 

 

Herb 

 

1 

1 

 

1 

2 

Avg. 

Stoch. 

 

0.9851 

0.9895 

0.9869 

0.9869 

 

0.9881 

0.9908 

0.9891 

 0.9891* (0.9891,0.9892) 

 

0.9917 (0.9851,1.0253) 

0.9929 (0.9895,1.0107) 

- 

- 

 

0.9872 (0.9851,0.9929) 

0.9905 (0.9895,0.9931) 

- 

- 

Quitete Portela et al., (2010) 

Astrocaryum aculeatissimum 

 

 

Geonoma schottiana 

 

Tree 

 

 

 

Tree 

 

1 

1 

 

 

1 

1 

 

1 

2 

Avg. 

Stoch. 

1 

2 

Avg. 

Stoch. 

 

1.0093 

0.9964 

0.9998 

0.9998 

1.0043 

0.9823 

0.9949 

0.9949 

 

1.0106 

0.9968 

1.0085   

1.0000* (0.9999,1.0001) 

1.0240 

1.0002 

1.0150 

1.0147* (1.0142,1.0152) 

 

1.0111 (1.0093,1.0209) 

0.9971 (0.9964,1.0001) 

- 

- 

1.0114 (1.0050,1.0442) 

1.0115 (1.0050,1.0453) 

- 

- 

 

1.0100 (1.0093,1.0112) 

0.9966 (0.9964,0.9972) 

- 

- 

1.0213 (1.0050,1.0712) 

1.0216 (1.0050,1.0721) 

- 

- 

Verhulst et al., (2008) 

Atriplex acanthocarpa 

 

 

 

 

Atriplex canescens 

 

Shrub 

 

 

 

 

Shrub 

 

1 

1 

1 

 

 

1 

1 

1 

 

1 

2 

3 

Avg. 

Stoch. 

1 

2 

3 

Avg. 

Stoch. 

 

2.4526 

0.7301 

0.7436 

1.3461 

1.1434 

1.7211 

0.9451 

0.8805 

1.1346 

1.0776 

 

2.3455 

0.8305 

0.8862 

1.3351   

1.1784* (1.1726,1.1841) 

1.7012 

0.9451 

0.8835 

1.1648  

1.1168* (1.1031,1.1308) 

 

2.3016 (2.0678,2.4476) 

0.7418 (0.7302,0.8288) 

0.7712 (0.7438,0.8951) 

- 

- 

1.6883 (1.6184,1.7315) 

0.9451 (0.9451,0.9453) 

0.8810 (0.8805,0.8823) 

- 

- 

 

2.3541 (2.0759,2.4489) 

0.7508 (0.7303,0.8362) 

0.7924 (0.7444,0.9051) 

- 

- 

1.6791 (1.6160,1.7175) 

0.9451 (0.9451,0.9451) 

0.8805 (0.8805,0.8807) 

- 

- 
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Fig. 2-2. Plot comparing population growth rates between models with and without the seed 

bank. Growth rates and error bars for models where the seed bank was added were taken 

from Monte Carlo simulations with germination prior guided by the literature. Points above 

the one-to-one line indicate the seed bank has a positive effect on λ while points below 

indicate a negative effect. Points occupying the red section are declining populations (λ < 1) 

while those occupying the green section are increasing populations (λ > 1).
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Fig. 2-3. Distribution of population growth rates for Atriplex acanthocarpa from A) 1996-

1997, B) 1997-1998 and C) 1998-1999 based on 10,000 Monte Carlo simulations when using 

an uninformed prior on germination (uniform distribution) and an informed prior on 

germination (beta distribution with mode equal to germination rate obtained from the 

literature). Red dashed lines indicate the mean growth rate as reported in Table 2-2.   
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Fig. 2-4. Population growth rate (λ) as a function of germination rate from the seed bank for 

A) Atriplex acanthocarpa, B) Atriplex canescens, C) Illicium anisatum and D) Geonoma 

schottiana. Population growth rates were calculated at seed viability probabilities of 1 (black 

line), 0.5 (grey line) and 0.1 (light grey line) for germination rates between 0 and 1 at 

intervals of 0.01. Note that for G. schottiana, germination rate was restricted between 0 and 

0.69 so as not to exceed the total seed survival estimate obtained from the literature. 
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Elasticity analyses in most plant species, particularly the trees, revealed survival of the adult 

or late juvenile stages as the most important demographic process affecting λ. The addition of 

the seed bank did not change this pattern except in the case of A. acanthocarpa during 1997-

98 and 1998-99 when the populations were declining (Appendix 1-6). In the 1997-98 period, 

the elasticity of stasis of the third adult stage was drastically reduced (0.5759 to 0.0647) 

following inclusion of the seed bank, whereas the elasticity of λ to stasis in the seed bank was 

high (0.7919). Similarly, elasticity of λ to stasis in the first adult stage during the 1998-99 

period, was reduced from 0.3983 to 0.12 after seed bank addition, while elasticity of λ to 

survival in the seed bank was high (0.5039).  

 

Removal of the seed bank and uncertainty in seed bank presence 

Removal of the seed bank led to further population increase when λ > 1 since germination 

was no longer delayed, and reduced population persistence when λ < 1 since the buffering 

effect was no longer present (Table 2-3). A notable exception was the wetland herb Helenium 

virginicum (Asteraceae), which experienced a comparatively high decrease in λ (1.1145 to 

0.6985) when the seed bank was removed even though the population was increasing. This 

unusual response likely resulted from a combination of extremely high fecundity into the 

seed bank and probability of stasis within the seed bank (1025 and 0.987 respectively), and 

the comparatively low fecundity and survival of the smallest stage (0.0075 and 0.199 

respectively). Decreases in λ were also particularly substantial for Carduus nutans 

(Asteraceae) and Digitalis purpurea (Plantaginaceae), but were much smaller or unchanged 

for the remaining species when the seed bank was removed during poor years.  
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Table 2-3. Comparison of population growth rates following removal of the seed bank. Studies are classified on the basis of 

variability in transition elements that was reported or number of time periods that were provided. Pop. refers to different 

populations of the same species in the same study.  Avg. represents the population growth rate of the mean matrix. Stoch. gives 

the mean stochastic growth rate from populations projected over 10,000 years . Confidence intervals for stochastic simulations 

when the seed bank was removed are shown in brackets.  

Study Life Form Pop. Period SB No SB 

No variability reported      

Adams et al., (2005) 

Helenium virginicum 

 

Herb 

 

1 

 

1 

 

1.1145 

 

0.6985 

de Kroon et al., (1987) 

Hypochaeris radicata 

 

Herb 

 

1 

 

1 

 

0.2973 

 

0.2154 

Variability, single time period      

Jongejans et al., (2006) 

Carduus nutans 

 

Herb 

 

1 

2 

3 

 

1 

1 

1 

 

0.4680 

0.6270 

0.6020 

 

0.3894 

0.3771 

0.5524 

Multiple time periods      

Angert, (2006) 

Mimulus lewisii 

 

Herb 

 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

3 

 

1 

2 

3 

Avg. 

Stoch. 

1 

2 

3 

Avg. 

Stoch. 

1 

 

0.7778 

0.6863 

0.9959 

0.8541 

0.8431 

1.0154 

0.6978 

1.3203 

1.0158 

0.9789 

1.1052 

 

0.7778 

0.6815 

0.9943 

0.8332 

  0.8221* (0.8182, 0.8260) 

1.0053 

0.6917 

1.3746 

1.0410 

  0.8694* (0.8592, 0.8797) 

1.1094 



Chapter 2: Cryptic life stages 

57 

 

3 

3 

3 

3 

4 

4 

4 

4 

4 

2 

3 

Avg. 

Stoch. 

1 

2 

3 

Avg. 

Stoch. 

1.1197 

0.9523 

1.0510 

1.0482 

1.5841 

1.0459 

1.1227 

1.3112 

1.2916 

1.1450 

0.9507 

1.0583 

  1.0539* (1.0493, 1.0586) 

1.6704 

1.0470 

1.3083 

1.3448 

  1.3211* (1.3166, 1.3256) 

Parker, (2000) 

Cytisus scoparius 

 

 

Herb 

 

1 

1 

1 

1 

2 

2 

2 

2 

3 

3 

3 

3 

 

1 

2 

Avg. 

Stoch. 

1 

2 

Avg. 

Stoch. 

1 

2 

Avg. 

Stoch. 

 

2.1963 

2.2629 

2.5019 

2.4908 

1.7097 

1.2542 

1.5681 

1.5495 

1.0040 

0.9295 

0.9748 

0.9739 

 

2.3331 

2.3858 

2.7128 

  2.6876* (2.6464, 2.7293) 

1.7407 

1.2406 

1.5552 

  1.5317* (1.5260, 1.5374) 

1.0040 

0.9287 

0.9746 

0.9736 (0.9473, 1.0006) 

Sletvold and Rydgren, (2007) 

Digitalis purpurea 

 

 

 

 

 

 

Herb 

 

 

 

 

 

 

 

 

1 

1 

1 

1 

2 

2 

2 

2 

 

1 

2 

Avg. 

Stoch. 

1 

2 

Avg. 

Stoch. 

 

0.7533 

0.7831 

0.7715 

0.7711 

0.6831 

1.0198 

0.8565 

0.8377 

 

0.3174 

0.5536 

0.5071 

  0.4738* (0.4709, 0.4767) 

0.2983 

0.9379 

0.6701 

  0.5788* (0.5735, 0.5841) 

* Population growth rates between seed bank and no seed bank models are significantly different according to the 95% confidence 

interval.  Statistically different growth rates are also shown in bold font.
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Extinction risks 

Inclusion of the seed bank using point estimates for germination generally resulted in longer 

times to local extinction (Appendix 1-7). Extinction times for A. acanthocarpa for the 1997-

98 and 1998-99 periods received relatively high increases in extinction times (> 25 years). In 

addition, certain populations of A. canescens and the perennial herb D. purpurea were no 

longer predicted to go extinct in the next 100 years. The populations of the short-lived herb 

C. nutans received comparatively smaller increases in extinction times. In one population 

however, including the seed bank doubled the time to extinction from 8 to 16 years, which is 

relatively high when compared to its life expectancy (ηE ≅ 2-3 years, based on the 

fundamental matrix estimation; Caswell, 2001).  

The seed bank improved the outlook of stochastic projections of extinction probability, but 

patterns varied across species (Appendix 1-8). The cumulative probability of extinction at 

100 years decreased drastically for A. acanthocarpa from 0.19 to 0.01. The extinction 

probability for A. canescens showed an interesting pattern where the matrix model with the 

seed bank initially had a higher extinction probability than the original in the first 38 years 

and ended with a lower extinction probability, but otherwise the seed bank had little effect on 

the absolute extinction probability. Both populations of D. purpurea were predicted to go 

extinct within 100 years. One population received a modest increase in extinction time (16 to 

30 years) while the increase was comparatively smaller for the other (four to nine years). 

 

Discussion 

The presence of cryptic life stages and their exclusion from demographic models continues to 

be an impediment to understand and project population dynamics. These cryptic stages are 
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diverse, ranging from clonality, vegetative dormancy, hibernation, diapause, aestivation, etc., 

as is their potential impact on population dynamics and model outcomes. Using the seed bank 

as a well known example of a cryptic life stage, I demonstrate the use of simulations as a 

means to reduce uncertainty in seed bank dynamics and determining the relative importance 

of the seed bank and its effect on model outcomes. Ignoring the seed bank in a population 

increases uncertainty in estimates of population growth rates and extinction risks, and this 

uncertainty will vary by species and the amount of observed temporal variation in 

demographic parameters. Furthermore, the potential impact of the seed bank can be 

influenced by the assumptions being made and the accuracy of the vital rates that are 

obtained.  

 

Dealing with the seed bank when its presence is unknown or uncertain 

Variation in the effects of seed demographic uncertainty across species, populations and time 

will make it difficult to predict the species for which the seed bank will be an important 

factor. A protocol outlining the different approaches one can take when conducting a plant 

population study is provided in Fig. 2-5. Determining the possible presence of a seed bank 

can be achieved through a literature search (Baskin and Baskin, 2014, is of particular note), 

but not all populations of a given study species would necessarily have one. If a seed bank in 

the population is confirmed, the best option would be to obtain field data over the study 

period to provide estimates for seed bank vital rates. Without this field data, characterising 

the potential role of the seed bank becomes exceptionally difficult and assumptions regarding 

fecundity, seed survival, viability and longevity need to be made. Prior knowledge from the 

literature can narrow down these possibilities, though vital rates in the literature may not 

reflect those obtained in the field and must be interpreted with caution (Gross and Mackay, 
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2014). Simulations can be used to complement these literature estimates to efficiently 

investigate the numerous possible assumptions regarding seed bank vital rates and determine 

plausible effects of a potential seed bank. Garcia et al., (2010) for example performed 

simulations covering feasible information obtained in the field or from other publications for 

the long-lived orchid Cypripedium calceolus (Orchidaceae) to justify excluding the seed bank 

from their models. Likewise, for many of the species in this study, without the benefit of 

greater observed temporal variation, ignoring the seed bank would appear to have been of 

minimal consequence for the original study but it is still crucial that an investigation is 

performed to provide this justification. 

 

 

 

 

 

 

 

 

Fig. 2-5. Flow chart describing the different approaches for dealing with a potential seed 

bank when modelling plant population dynamics. Unjustified exclusion results in the highest 

possible uncertainty whereas justified exclusion by either proving it does not exist or showing 

it is unimportant via simulations gives the highest level of certainty in the model outcomes. 

Including the seed bank, either by using the literature or data obtained in the field would 

unavoidably result in some amount of uncertainty from estimating the vital rates, but is 

preferable to unjustified exclusion. 
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Uncertainty in the seed bank and its effect on model outcomes 

By exploring a range of possible values for seed bank vital rates, and testing underlying 

assumptions regarding seed longevity and age-structure, it can be shown that conclusions will 

be dependent on the model structure. Demographic uncertainty in the estimation of vital rates 

appears to be the major driver in influencing the model predictions but varies by species. The 

Atriplex shrub species for example had much more variation in their growth rates when 

germination and viability were altered compared to long-lived tree species which were 

virtually unaffected by both the inclusion of the seed bank, and variation in their 

demographic parameters. This is not entirely surprising as high adult survival and reduced 

mortality when environmental conditions are poor can be an alternative strategy to improve 

long-term fitness (Clauss and Venable, 2000). However, while we might expect the seed bank 

to have a relatively low impact for species with high post-seedling survival and stable 

populations, this does not necessarily mean the seed bank will be unimportant if for example 

the population were to experience a large disturbance. The lack of temporally replicated data 

can make it difficult to accurately discern the influence of environmental stochasticity and the 

importance of the seed bank for long-term persistence, a fact occasionally acknowledged by 

the authors themselves (Quitete Portela et al., 2010). This is also reflected in the miniscule 

confidence intervals obtained for the stochastic growth rate in many species. Furthermore, the 

seed bank and seedling stages for long-lived species tend to have much greater variability in 

their transition rates compared to their adult counterparts (Clark et al., 1999). Thus most 

comparisons of λS were not as useful as they could be, and only hint at the potential 

importance of the seed bank for λS. When sufficient environmental variation is captured, the 

contribution of the seed bank is more visible as is evident for A. acanthocarpa where 

previously high elasticities for juvenile and adult survival were shifted towards survival in the 

seed bank during poor demographic years (Appendix 1-6).  
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Temporal variation and the type of demographic year is also a factor when considering the 

effect of demographic uncertainty. While altering germination and viability rates for example 

can have demonstrable effects on λ, this was not the case for the Atriplex species during poor 

demographic years (Fig. 2-4). Large reproductive failures during these years would have 

resulted in low seed bank and seedling input, reducing the impact of varying seed bank vital 

rates on λ. However, this only applies when analysing deterministic growth rates, and it 

would be expected that variations in germination and viability rates during poor years would 

have a much larger impact when considering long-term persistence. Nonetheless, with the 

inclusion of prior information from the literature, the distribution of growth rates during these 

poor demographic years shifts towards one (Fig. 2-3). I note however that this is assuming 

dormancy is higher (low germination) during poor demographic years and lower during 

productive years (Kalisz and McPeek, 1992), but seed dormancy need not necessarily be 

correlated with fitness. Interestingly, contrary to initial predictions, the use of literature did 

not necessarily reduce uncertainty in the range of possible growth rates and in fact becomes 

more variable when dormancy is high (Fig. 2-3). Thus, if literature estimates suggest 

potentially high levels of dormancy, uncertainty in λ resulting from the seed bank may 

actually increase. This can be particularly concerning if we do indeed expect species to have 

reduced germination and greater dormancy during poor demographic years and should act as 

further incentive to collect raw field data. 

In addition to variations in demographic parameters, changes to how the seed bank is 

included can impact the model structure and outcomes. Uncertainty simulations performed in 

this study investigate only the unstructured scenario with no age structure although this is the 

most common structure for including a seed stage. Indeed, estimating demographic rates for 

an age-structured seed bank makes the task of including a seed stage even more difficult and 

is therefore extremely rare in plant population models (but see Kalizs, 1991; Yates et al., 
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2007 for examples). Thus, our understanding of the impact of age structure, and variation in 

seed vital rates in general across time and space, is quite limited. Simulations involving the 

inclusion of various age-structures found that while single point estimates of λ under the 

unstructured scenario showed minor increases compared to the original models, this gradually 

reduces when additional age classes are introduced (See Appendix 1-2 for comparison of 

growth rates). This is likely because a higher proportion of emergents are now assumed to 

have germinated from seeds produced in previous years, thus compounding the effect of 

delayed germination. Similarly, if it is assumed that seeds do not survive beyond the first, 

second or third year, the effect of the seed bank is almost negligible (See Appendix 1-2). 

However, such estimates are overly conservative and most models that do include the seed 

bank do not make this assumption. Another interesting scenario that can be tested is that of 

no seed bank, and simulations in which the seed bank was removed provides insights into the 

worst case scenarios when the seed bank is ignored despite being crucial to persistence (as 

indicated by high elasticities in seed bank transitions). As expected, the implications of 

ignoring the seed bank in these cases were generally much more evident, with decreases in λ 

of up to 0.4. The assumption of fecundity being equal to that of the previous year (Fj,t = Fj,t-1) 

was necessary due to lack of information, however, interannual variation is likely to play an 

important role for many species. When variance in the fecundity is high, the contribution of 

the seed bank would be overestimated in good demographic years and underestimated in bad 

demographic years. This would likely have similar consequences on any changes in λ thus we 

might expect the benefit of having a seed bank during poor years to also be underestimated.  

Analysis of extinction risks over shorter time periods can provide additional insights not 

considered under asymptotic analyses. Comparing the difference in extinction times and 

cumulative extinction probabilities between models with and without the seed bank can 

provide an empirical measure of the uncertainty in population persistence when the seed bank 
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is ignored, which can vary substantially between years and species. Although increases in 

extinction times can appear trivial, they must also be considered in context of the life 

expectancy. The seed bank had little effect on the times to extinction for the populations of C. 

nutans for example. However, given the short life expectancy of this species, even a small 

increase in extinction time may prove crucial.  

Conclusions 

There is a substantial gap in our knowledge about the role of seed banks in plant population 

dynamics and this study only scratches the surface of how uncertainty in the seed bank can 

influence demographic models. It is strongly recommended that plant demographers tackle 

the seed bank stage and where possible undertake data collection to improve their model 

structure. In general, potentially important life stages are commonly excluded from 

demographic analyses if the data are too difficult to obtain, as is often the case in cryptic life 

stages, or are simply assumed not to matter without the appropriate justification (Clark et al., 

1999). Despite the increasingly sophisticated methods available for demographic modelling 

(e.g. Chandler and Clark, 2014; Robinson et al., 2014) authors must be mindful to consider 

the entire life cycle of a species when performing demographic research. 

In summary, while there is still much progress to be made with regards to the seed bank, it is 

but one of many cryptic life stages with the potential to create biases in our model outputs. 

Adult plants, for example, can undergo vegetative dormancy, whereby individuals do not 

sprout above ground for one or more growing seasons, resulting in overestimated mortality 

rates and incorrect assignment of false birth events to re-emerging individuals (Shefferson, 

2009). Some animal species are also capable of dormancy, characterised by a reduction in 

metabolic rates and prolonged periods of inactivity, performing a similar function to that of 

the seed bank (Geiser, 2004). Research by Lamy et al., (2013) on snails found that ignoring 
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individuals remaining dormant in the ground to avoid dry periods can result in the 

overestimation of extinction and colonisation rates. Demographic studies on animals can be 

additionally problematic as certain stages of the life cycle may occupy inaccessible locations 

or be absent from sampling designs. Katzner et al., (2011) found raptor populations to be 

drastically underestimated as monitoring programs historically focused only on the breeding 

portion of the population and non-invasive genetic analyses on feather samples were required 

to estimate the non-breeding component (Schwartz  et al., 2007). The extent of exclusion of 

cryptic life stages in demographic models for animals is not as well characterised as for 

plants. However, the upcoming release of the COMADRE Animal Matrix Database 

(Salguero-Gómez et al., in prep.) may provide valuable opportunies for future research into 

this area.  
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Chapter 3 - How to apply multivariate autoregressive state-space 

models to time series count data to improve population 

monitoring 

 

 

Umbel of the ephemeral plant Trachymene glaucifolia. Photograph by Glenda Wardle 

 

A version of this chapter has been submitted and is currently under review in Ecological 

Applications as Nguyen, V., Greenville, A.G., Dickman, C.R.  and Wardle, G.M. (2015) How 

to apply multivariate autoregressive state-space models to time series count data to improve 

population monitoring. Submitted 16th July 2015.  

My contribution was very substantial, including conceptualisation of ideas, data 

manipulation, construction and analysis of models, and writing and editing all drafts in 

consultation with my co-authors.  
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Abstract 

Ecological time series data, such as counts of individuals over time, are valuable for scientific 

research, monitoring and ecosystem management. Effective monitoring programs need to be 

well-designed to ensure that limited resources are used efficiently to produce high quality, 

long-term data. However, such data are still subject to inherent uncertainties that arise from 

observation errors due to sampling and measurement errors, as well as process errors due to 

the effects of demographic and environmental stochasticity. Here, I apply multivariate 

autoregressive state space (MARSS) models as a versatile framework to quantify these 

sources of uncertainty in monitoring data whilst iteratively providing recommendations to 

improve monitoring design. A common but ephemeral plant in a highly stochastic 

environment is used as a case study to illustrate how this approach would apply to any plot-

based monitoring study, and use site-based environmental data to explain trends over time 

and space. Modelling multi-dimensional time series data allowed the identification of spatial 

sub-population structure with respect to location and fire history, and population structure to 

be accounted for, using above ground and seed bank abundances to improve parameter and 

true state estimates for both life stages. MARSS models showed plant populations to be 

highly variable, with local variation determined by wildfire history; however, on a regional 

scale, this variation was overshadowed by geographical differences that provide justification 

for spatial replication. Using a hierarchical, state-space approach also allowed us to separate 

observation and process errors. The seed bank was characterised by lower process than 

observation errors, while the converse was true for above-ground plants. Thus, the seed bank 

is more robust to gaps in the time series, making it more strategic to obtain less frequent, but 

more accurate counts of seeds to offset the higher observational errors. Overall, MARSS 

models provide a sound framework for assessing spatial and temporal trends in populations, 

and help to guide updates and improvements in current monitoring programs.   
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Introduction 

Effective monitoring programs provide important insights into ecological processes and are 

crucial in the management of ecosystems and populations, with time series data of population 

abundances being particularly useful for managers (Morris et al., 1999; Lindenmayer and 

Likens, 2009). In contrast to more detailed demographic data on growth, survival and 

reproduction (e.g. Caswell, 2001), census counts are relatively cheap and easy to collect, thus 

increasing the scope for monitoring programs to extend over relatively long periods and large 

spatial scales. However, it is crucial to acknowledge that observed time series of abundances 

cannot usually be equated with true abundances – indeed, direct inference based on raw 

observations can be highly misleading, resulting in biased estimates of parameters such as 

extinction risk and population abundance (Schmidt, 2005; Kéry et al., 2009; Kéry and 

Schaub, 2012). For example, increases in observed abundances over time may simply be a 

reflection of changes in the observation process; that is, increased observer experience in 

identifying species, or changes in visibility and detectability. Thus it is useful to adopt a 

hierarchical, or state-space framework when analysing such data, as this allows the teasing 

apart of the true ecological state (true abundances) from the observation process (de Valpine 

and Hastings, 2002; Clark and Bjørnstad, 2004; Humbert et al., 2009; Kéry and Schaub, 

2012). By decoupling these two processes, one can obtain explicit estimates of both the 

observation error, which includes measurement and sampling error, and process error, which 

includes variation resulting from demographic and environmental stochasticity (Staples et al., 

2004). Estimates of observation errors can then be used adaptively to inform and improve 

future monitoring strategies to make more efficient use of resources and produce higher 

quality data.  



Chapter 3: Application of MARSS models 

74 

 

The state-space modelling framework also has the advantage of being able to model 

imperfect data sets such as those with missing values or uneven sampling intervals that are 

common in ecological time series (Clark and Bjørnstad, 2004). This is an important feature as 

traditional approaches to modelling time series data with missing values, such as log-linear 

regressions of counts against time and the diffusion approximation, do not explicitly account 

for both the true ecological and observation processes (Gerrodette, 1987; Dennis et al., 1991; 

Humbert et al., 2009). The ability to model data with missing values also allows more 

flexibility in the design of a monitoring program. For example, missing values in the data 

may be permitted and resources could instead be allocated towards collecting fewer, albeit 

higher quality data through replicated sampling or extending the duration of monitoring 

(Morris et al., 1999; Humbert et al., 2009; Dennis et al., 2010). Producing higher quality 

datasets through replicated sampling and obtaining longer time series can then produce more 

accurate estimates of trends and reduce computational issues commonly associated with 

attempting to model both the process and observation errors (Dennis et al., 2006; Humbert et 

al., 2009; Dennis et al., 2010). 

Multivariate autoregressive state-space (MARSS) models based on stochastic Gompertz 

models for population growth are an extension of state-space models that allow modelling of 

multi-dimensional time series data (Hinrichsen and Holmes, 2009; Ward et al., 2010; Holmes 

et al., 2012b). Thus, time series sourced from replicated samples, multiple life stages (e.g. 

juvenile and adult counts which may be separate time series), and from multiple sites can be 

modelled concurrently to improve parameter estimates and determine the spatial organisation 

and environmental drivers that lead to sub-populations (Ward et al., 2010; Holmes et al., 

2012a). Identifying the level of spatial heterogeneity and spatial structure of sub-populations 

is critical from a conservation and management perspective since not all populations can be 

expected to behave equally (Warton and Wardle, 2003; Buckley et al., 2010). Thus, the 
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MARSS models provide a versatile framework that can conveniently address several sources 

of uncertainty that are pervasive in ecological data: the need to decouple true ecological 

processes and observation processes, missing values or uneven sampling intervals, and 

identification of spatial sub-population structure. 

In this study, an ecological dataset gathered from a plot-based monitoring study is used to 

demonstrate the use of the MARSS framework in addressing common issues in modelling 

ecological data, and model results cross-checked by creating MARSS models using two 

algorithms – the recursive Kalman Filter/Expectation Maximisation algorithms (Shumway 

and Stoffer, 1982; Shumway and Stoffer, 2006) and Monte Carlo Markov Chains 

implemented within a traditional Bayesian framework (Plummer, 2003; Plummer, 2015). I 

further illustrate how these model outputs can be used iteratively to improve monitoring 

studies. Specifically, it is shown that explicitly estimating the relative contributions of the 

process and observation errors can be used to help inform future monitoring strategies. The 

MARSS framework is also used to highlight the advantages and potential reduction in 

uncertainty that can be achieved by replicating sampling in short-term studies, distinguishing 

between life history stages and identifying the spatial sub-population structure and the drivers 

behind these different structures. The case study dataset is typical of ecological time series, 

containing uneven sampling times and missing values, is relatively long term (≈ 9 years), and 

has high spatial coverage and replication in an extreme stochastic environment. The 

consequences of excluding life stages from demographic models, with particular emphasis to 

the seed bank, were revealed in the previous chapter (Chapter 2). Here, the importance of 

obtaining data on cryptic life stages is reinforced by constructing population models with 

time series data on a plant species with two life stages: the dormant seed bank and above-

ground plants. These models are used to determine the plant’s sub-population structure in 

relation to fire history, rainfall and spatial location. Finally, I comment on the utility of the 
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MARSS models in describing the overall biology of the modelled plant species and 

estimating spatial and temporal trends. Overall, the application of MARSS models in this 

study makes several original contributions, namely in the use of model output to inform 

future monitoring strategies, introducing life stage structure, and is one of few applications of 

this model outside of the fisheries context (but see Flesch, 2014). 

 

Methods 

Study species, site and covariates 

The case study species for evaluating the multivariate autoregressive state-space (MARSS) 

approach was the desert herb Trachymene glaucifolia (F.Muell.) Benth. (Araliaceae), or wild 

parsnip (Nicolas and Plunkett, 2009), an erect, ephemeral and typically annual plant of the 

inland deserts of Australia, often occurring on deep red sand on dunes and plains (Moore, 

2005). Stems rise to 70 cm from a taproot, that may sometimes be perennial, and leaves are 2-

5 cm long, mostly forming a basal crown with 3-5 lobes (Cunningham et al., 1992; Moore, 

2005). Brown semicircular fruits 4.5-5.5 mm long consist of a single papillate mericarp (Hart 

and Henwood, 2006). Seeds of T. glaucifolia have potential for long-term dormancy, building 

a reserve in the seed bank. While T. glaucifolia has the potential to persist beyond a year 

above-ground, for 17 years of observations it has only exhibited only an annual life cycle in 

the study site (GM Wardle, pers. obs), and its presence and abundance are more related to the 

occurrence of rare rainfall events than to a regular growing season. Thus, populations can 

persist at a site for consecutive seasons only in the seed bank, with above ground plants 

occurring in sudden and abundant but short-lived population spikes. 
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Sampling was carried out in the Simpson Desert, central Australia by the Desert Ecology 

Research Group at the University of Sydney (Wardle and Dickman, unpublished data). The 

desert is characterised by dunefields, which comprise 73% of the region, with smaller areas 

of clay pan, rocky outcrop and gibber flat (Shephard, 1999). Vegetation in the interdune 

swales and dune sides is predominantly hummock grassland dominated by hard spinifex 

(Triodia basedowii E.Pritz.), although vegetation structure can be drastically altered by 

natural events such as heavy rainfall and wildfire (Dickman et al., 2014). For example, after 

heavy rain, the build-up of seeds in the soil seed bank allows T. glaucifolia and other short-

lived plants to respond quickly and dominate the landscape during what is known as a pulse 

or boom event (Ludwig et al., 1997). 

Data were collected from four sites (Main Camp, Field River South, Carlo Shitty and South 

Site) on Carlo Station and Ethabuka Reserve, covering ~4400 km
2
 of the study region 

(Appendix 3-1). Carlo is grazed by beef cattle, but all cattle were removed from Ethabuka in 

2004 (Frank et al., 2013). Two grids were set up at each site (total = 8 grids), with each grid 

occupying 1 ha and consisting of 15 5 × 5 m plots. Five plots were spaced randomly, but with 

a minimum separation of 5 m, on 100 m parallel transects along the crest, middle and swale 

of the dunes, with 100 m separating the crest and the swale transects. Surveys recording 

counts of individual plants within plots were conducted 4 times a year from 2004-2006 and 1-

2 times a year from 2007-2013 in response to available resources. In addition, to quantify the 

seed bank, soil samples were collected adjacent to each plot using a metal frame 2 cm deep 

covering a 20 × 20 cm area. Seeds within the samples were later sieved, identified and 

counted to estimate the size of the seed bank within each plot. Soil samples were not always 

collected nor all sites sampled on each trip due to time or access constraints, resulting in a 

mismatch in the time series across sites and life history stages. Note that because the seed 

bank and the plants were sampled using different methods, the transition rates between seeds 
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and plants in a matrix model would not match up with fecundity, but will be scaled according 

to the differences in sampling intensities for plants and seeds. Additionally, these different 

sampling strategies naturally lends itself to producing distinct estimates for observation error 

for these two life stages. Over the course of the study, across all plots, more than 100,000 

above-ground T. glaucifolia plants and more than 5000 seeds were counted.  

Wildfires in 2001-2002 burnt more than 2500 km
2
 of the study region, stripping large areas of 

spinifex grassland (Greenville et al., 2009). Vegetation assemblages following the fire 

differed between burnt and unburnt sites, with burnt sites containing mostly annual species 

with T. basedowii the main perennial (Strong et al., 2010). To discern whether populations of 

T. glaucifolia differed between burnt and unburnt habitats, one grid at each site was set up in 

an area burnt in the 2001-2002 wildfires and another in an unburnt area.  

Daily rainfall data were obtained from automated weather stations (Environdata, Warwick, 

Queensland) located at each site, and monthly aggregates were calculated from May 1995 to 

September 2012. Weather stations experienced periods of downtime due to malfunctions, 

resulting in occasional gaps in the data. Unless the weather station was fully operational for 

the entire month, the data point for that month was discarded – these gaps in the rainfall data 

for each site did not necessarily coincide.  

 

Model specification 

The MARSS model is a stochastic exponential growth model in which there is a model that 

describes changes in the true abundances in log-space, and a model that describes the 

observation process which introduces an additional source of variation to account for 

observation error. Following the notation used by Holmes et al., (2012a), n is used to denote 
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the number of discrete survey sites and m to denote the number of hypothesised sub-

populations. Note that n need not necessarily equal m. The MARSS model is given by 

Xt = BXt-1 + u + Cct + wt;  wt ~ MVN(0,Q)      (1) 

Yt = ZXt + a + vt;   vt ~ MVN(0, R)      (2) 

where Eq. (1) represents the model for the true states in log-space, Xt represents the m 

logarithmic true states at time t (usually log-abundance but can be used for other unobserved 

measurements), B is an m × m matrix in which the diagonal entries represent mean-reversion 

(the tendency for a fluctuating time series to revert back to a mean value; this may also be 

interpreted as density-dependence) where Bii = 1 indicates no mean-reversion in sub-

population i and Bii < 1 indicates sub-population i is mean-reverting, u is the trend parameter 

for the m subpopulations, C represents covariate effects, ct is the value of the covariate at 

time t, and wt is the process error assumed to be from a multivariate normal (MVN) 

distribution with mean zero and variance-covariance matrix Q (Holmes et al., 2007). The off-

diagonal elements, Qij, allow for possible correlated dynamics between sub-populations (Qij = 

0 indicates sub-populations i and j are independent). Equation (2) represents the observation 

model, where Yt is the logarithm of the observed states at the n surveyed sites at time t which 

may differ from the number of hypothesised sub-populations m, Z is an n × m matrix of 0s 

and 1s denoting population structure, pairing up each of the n observations to one of the m 

hypothesised sub-populations, a is the mean linear difference between surveyed sites 

measuring the same sub-population with respect to the first site, and vt is the observation 

error assumed to be MVN with mean zero and variance-covariance matrix R. Conceptually, 

the MARSS model is simply a variation of traditional demographic models (such as 

population matrix models used in Chapter 2), containing several familiar elements such as the 

autoregressive abundance component, sampling uncertainty, and covariates.  
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There are a number of methods in which MARSS models may be constructed. The MARSS 

package (Holmes et al., 2012a; Holmes et al., 2012b) implemented in R (R 2.15.3; The R 

foundation for Statistical Computing 2004-2008) uses a combination of the Kalman filter and 

smoothers (Shumway and Stoffer, 2006) and the Expectation-Maximisation (EM) algorithm 

(Shumway and Stoffer, 1982) to estimate model parameters. Models may also be constructed 

within a traditional Bayesian framework using Monte Carlo Markov Chain (MCMC) 

algorithms implemented in JAGS 3.4.0 (Plummer, 2003) via the R2jags 0.05-03 (Su and 

Yajima, 2015) and rjags 3-14 packages (Plummer, 2015). Models were constructed using 

both methods to ensure results were valid and robust to the choice of algorithm used. I did not 

conduct a formal comparison of these two methods as this is outside the scope of this study. 

Henceforth, MARSS models created using the MARSS package will be referred to as 

MARSS-KFEM, and those created in JAGS as MARSS-MCMC in relation to the algorithms 

used to estimate parameters and true abundances. The use of JAGS to create MARSS models 

offers more flexibility, with the option to accommodate alternative observation error 

structures such as that from a Poisson or negative binomial distribution, which the MARSS 

package currently does not allow. Although an overdispersed Poisson or negative binomial 

distribution is generally more appropriate for count data (Link and Sauer, 2002; Kéry and 

Schaub, 2012), these were found to provide an inadequate description of the data and resulted 

in poor model fits (see Appendix 3-2 for comparison of model parameters and selection 

criterion for Main Camp). MARSS-MCMC models were fitted with three independent chains 

for 20 000 iterations after an initial burn-in of 5000 iterations and a thinning rate of 10. 

Inspection of Gelman-Rubin statistics, in which values close to 1 indicate convergence 

(Brooks and Gelman, 1998), gave values < 1.1 suggesting model convergence (Gelman and 

Hill, 2007). Model formulation for the hypotheses described below and example JAGS code 

are provided in Appendix 3-3.  
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Covariate model 

From equation 1, covariates can be fitted into the model using the c matrix; however, this 

does not allow for missing covariate values using the MARSS package. There are two 

solutions to this problem: incorporate the covariate into the population model as a separate 

state (i.e. into the X matrix) or fit a covariate model separately and add the completed state 

estimates into the c matrix (Holmes et al., 2012a). A separate model was fitted first as this 

allows spatial hypotheses regarding the spatial extent of rainfall events to also be examined. 

Additionally, modelling the covariate and the population data simultaneously would result in 

estimates that are non-independent (i.e. the covariate state estimates would be affected by the 

population data). 

Two rainfall models were constructed to determine the spatial extent of rainfall events in the 

study region: a local rainfall model in which each site has its own unique rainfall trajectories 

(m = 4; Main Camp, Field River South, Carlo Shitty and South Site), and a regional rainfall 

model in which rainfall events are large enough to act over the entire study region (m = 1). In 

the regional model, all sites are independent observations of the same trajectory. Models for 

the observation and state process follow equations 1 and 2, excluding the mean-reverting 

matrix B, observation bias vector a, and covariate effects C and ct.  

 

Wildfire models 

To test the effects of wildfire, three separate MARSS models were constructed for each site: a 

wildfire model in which fire history results in distinct sub-populations (m = 4; X1,t and X2,t 

are the true states for above-ground plants and the seed bank in burnt grids, X3,t and X4,t are 
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the true states in the unburnt grids), a whole site model in which fire history has no effect 

and the burnt and unburnt patches are part of the same sub-population (m = 2; X1,t are the true 

states for all above-ground plants using observed abundances from both burnt and unburnt 

grids. Similarly, X2,t are the true states for the entire seed bank using observed abundances 

from both burnt and unburnt grids). An unstructured life-history model in which there is no 

distinction between plants and seed banks (m = 1) was also constructed to confirm that the 

MARSS approach can distinguish the seed bank and plants as different life stages.   

Often, estimated population trends that inform conservation plans are based on averaged (or 

aggregated) abundances over sites within a region, and methods have been developed to 

address inconsistencies in sampling times across time series (Johnson and Fritz, 2014). As 

fire history treatments and spatial hypotheses were tested at the grid level, Counts were not 

aggregated at the site level, therefore each individual plot (15 plots per grid) was treated as 

independent replicates of their corresponding hypothesised sub-population, improving both 

spatial replication (n = 60) and model parameter estimates. Although plots are likely to be 

spatially correlated, potentially resulting in spuriously high accuracy (Dennis et al., 2010), 

this is partially accounted for in the observation model through the observation bias, a, 

parameter. In addition, aggregation of abundance estimates can result in considerable loss of 

information with regards to model parameters, particularly process and observation errors 

(Dennis et al., 2010). Models for the observation and state process errors follow equations 1 

and 2 with 3 months cumulative rainfall added as a covariate as this generally had the highest 

Pearson correlation with T. glaucifolia across sites. In all models, the process error 

covariance matrix Q was modelled as unconstrained with estimates for the off-diagonal 

elements Qij. The observation error matrix R was modelled as strictly diagonal (Rij = 0 for i ≠ 

j) with four separate errors (two fire histories × two life stages).  
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Regional models 

To investigate the extent of spatial variation amongst populations, regional models consisting 

of all sites were constructed: the independent site model in which each site represents an 

independent sub-population (m = 8; plants and seed bank in each of the four study sites), the 

regional fire model in which populations that share fire history are similar to each other (m 

= 4; plants and seed bank for both burnt and unburnt areas across the study region), and the 

overall regional model in which sub-populations are not distinguished by space or fire 

history (m = 2). Models for the observation and state processes followed equations 1 and 2, 

with covariates added once the best fitting model was found. As before, individual plots were 

treated as independent measurements of their corresponding hypothesised sub-population (n 

= 240). Q was modelled as unconstrained with estimates for the off-diagonal elements Qij, 

and R was modelled as strictly diagonal with 16 separate errors (four sites × two fire histories 

× two life stages). 

 

Model selection 

Akaike’s Information Criterion (AIC) is often used to select the best fitting model from a 

model set, with the modification AICc adjusting for small-sample bias (Hurvich and Tsai, 

1989). However, the AICc tends to underestimates the complexity penalty for MARSS 

models (Cavanaugh and Shumway, 1997; Ward et al., 2010). Thus, for the MARSS-KFEM 

models, the parametric bootstrapped variant (AICb), which is unbiased for short time series 

and, unlike its non-parametric counterpart, allows for missing data (Cavanaugh and 

Shumway, 1997; Holmes et al., 2012a) was used to select the best fitting model. Lower 

values of AICb indicate greater model support. Models with an AICb value eight points 

greater than another model are considered weakly supported compared to the competing 
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model (Burnham and Anderson, 2002). For the MARSS-MCMC models, both the deviance 

information criterion (DIC), the Bayesian analogue of the AIC (Spiegelhalter et al., 2002), 

and the posterior predictive loss (D), a measure of the predictive ability of each model 

penalised for model complexity (Gelfand and Ghosh, 1998) were used to identify the model 

with the greatest support. Models with a DIC value between three and seven points of the 

lowest DIC score are weakly supported, while those seven points greater than the best fitting 

model are considered substantially inferior (Spiegelhalter et al., 2002).  

 

Results 

Covariates 

The regional rainfall model had greater support than the local model for both the MARSS-

KFEM and MARSS-MCMC models (Table 3-1), suggesting that rainfall events had a similar 

trajectory across all study sites. State predictions from both algorithms were nearly identical, 

with the only observable difference at the beginning of the time series in 1995 (Fig. 3-1). As 

plant population censuses were only conducted from 2004 onwards, for practical purposes, 

there was no difference between the state predictions, and the MARSS-KFEM values were 

used in subsequent population models. Trend parameters for both rainfall models in all sites 

were zero regardless of the algorithm used, indicating no change in rainfall patterns over time 

(Table 3-1). Observation error for the Field River site was higher than for the other sites, 

whilst having a lower process error.  

 

Wildfire models 
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In three of the four sites, the wildfire models had greatest support as given by the AICb’s, 

DIC’s and predictive loss values (Table 3-2), suggesting that fire history drives unique sub-

population trajectories. However, for South Site, the best fitting model was inconclusive, with 

the wildfire model being supported by the AICb’s and the predictive loss while the whole site 

model was supported by the DIC. Differences in AICb’s and DIC’s between the wildfire and 

whole site model were small (ΔAICb = 4, ΔDIC = 5), suggesting no substantial difference 

between the two models.  
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Table 3-1. Model selection criterion and parameter estimates for MARSS-KFEM models (AICb) and MARSS-MCMC models 

(DIC and predictive loss, D) for monthly rainfall from 1995-2012 in the Simpson Desert, central Australia. While the regional 

rainfall model has only a single state, separate observation errors (R) for each of the four sites were still estimated. 95% 

confidence intervals are shown in brackets. The smallest AICb, DIC or predictive loss score gives the best fit model and is 

indicated in bold.  

 

 KFEM MCMC KFEM MCMC KFEM MCMC    

Model* Q R U AICb DIC D 

Local          

MC 2.76 (2.15, 3.32) 2.43 (1.74, 3.22) 0.35 (0.20, 0.50) 0.76 (0.64, 0.89) 0.00 (-0.21, 0.21) -0.01 (-0.22, 0.20) 

2191 6014 1228  
FR 1.69 (1.27, 2.06) 1.93 (1.34, 2.67) 0.92 (0.70, 1.21) 0.85 (0.68, 1.01) 0.00 (-0.18, 0.18) -0.01 (-0.19, 0.17) 

CS 2.35 (1.81, 2.85) 3.19 (2.34, 4.14) 0.60 (0.44, 0.77) 0.47 (0.21, 0.66) 0.00 (-0.23, 0.23) -0.01 (-0.24, 0.23) 

SS 2.58 (1.98, 3.12) 2.82 (2.07, 3.71) 0.43 (0.28, 0.60) 0.58 (0.43, 0.74) 0.00 (-0.22, 0.22) -0.01 (-0.23, 0.21) 

Regional           

MC 

2.25 (1.72, 2.77) 1.51 (1.33, 1.71) 

0.46 (0.31, 0.64) 0.84 (0.72, 0.96) 

-0.00 (-0.21, 0.19) 0.00 (-0.20, 0.21) 2090 2326 783 
FR 1.19 (0.92, 1.54) 1.11 (0.98, 1.27) 

CS 0.69 (0.51, 0.90) 0.68 (0.55, 0.82) 

SS 0.52 (0.35, 0.70) 0.72 (0.60, 0.86) 

*MC = Main Camp, FR = Field River, CS = Carlo-Shitty, SS = South Site. 
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Fig. 3-1. State estimates of monthly rainfall based on regional models from both the MARSS-

KFEM (black line) and MARSS-MCMC (red line) models for each study site in the Simpson 

Desert, central Australia (Main Camp, Field River, Carlo Shitty and South Site). With the 

exception of the initial period in 1995, state predictions from both algorithms are identical. Black 

points indicate weather station measurements.  
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Table 3-2. Model selection criterion for MARSS-KFEM (AICb) and MARSS-MCMC (DIC 

and predictive loss, D) models comparing wildfire hypotheses. Best fit models for each site 

are given by the lowest AICb, DIC or predictive loss score and are highlighted in bold. 

MARSS-KFEM models which were unstable and did not converge are left blank. 

Model States (m) AICb DIC Predictive Loss (D) 

Main Camp     

Wildfire 4 3299 3277 24409 

Whole site 2 3327 3324 27382 

Unstructured 1 3308 3602 51466 

Field River     

Wildfire 4 2804 2673 22379 

Whole site 2 3193 3099 27681 

Unstructured 1  3164 37929 

Carlo Shitty     

Wildfire 4 2470 2937 20321 

Whole site 2 2522 3073 24959 

Unstructured 1 2562 3185 35534 

South Site     

Wildfire 4 3689 3650 25961 

Whole site 2 3693 3645 26084 

Unstructured 1  3765 34346 
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Regional models 

The independent site model received the greatest support, followed by the regional fire model 

with the overall regional model performing worst (Table 3-3). Thus, distinct sub-populations of 

T. glaucifolia exist across the four sites. Taken with the wildfire models, which suggested further 

subdivisions based on fire history, MARSS models found high spatial variation in the population 

dynamics of T. glaucifolia. The regional model results also hinted that spatial location may be a 

better indicator of population dynamics than fire history as the independent site model performed 

substantially better than the regional fire model.  

Table 3-3. Model selection criterion for MARSS-KFEM models (AICb) and MARSS-

MCMC models (DIC and predictive loss, D) for Trachymene glaucifolia populations over 

the entire study region in the Simpson Desert, central Australia. The smallest AICb, DIC 

and predictive loss score gives the best fitting model and is highlighted in bold.  

Model States (m) AICb DIC Predictive Loss (D) 

Individual site  8 12067 13164 106099 

Regional wildfire  4 12590 14079 112291 

Overall regional 2 12637 14084 112102 

 

State estimates, life history and parameter comparisons 

Differences in parameter estimates between the MARSS-KFEM and the MARSS-MCMC 

models were potentially quite large, particularly for estimates of the observation errors (Table 3-

4). Observation errors for the seed bank, for example, were estimated to be much larger in the 

MARSS-FKEM models compared to their MARSS-MCMC counterparts and lay outside of the 

95% confidence intervals. Regardless of these differences, the relative sizes of the parameters 

remained consistent and patterns in parameter estimates between life history stages could be 
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identified. For example, in both MARSS-KFEM and MARSS-MCMC models, growth rates for 

the plant stage class were not significantly different from zero except in the Field River unburnt 

site, where observations and state predictions showed relatively more pulses in plant abundance. 

The seed bank showed positive growth rates in all sites except Carlo Shitty, although MARSS-

MCMC estimates were more conservative here and were not significantly different from zero. 

The seed bank was also characterised by higher observation errors relative to their process errors, 

while the reverse was true for the above-ground plants.  

While there were observable patterns between life history stages, this was not true when 

parameters for fire history were compared across sites. For example, process errors (Q) for Main 

Camp and Carlo Shitty were higher in burnt sites, but for Field River and South Site the process 

error was higher in unburnt sites. Similarly, observation errors were higher in unburnt sites for 

Main Camp, Field River and South Site, but not for Carlo Shitty (Table 3-4).  

The state predictions from only the MARSS-KFEM models are presented (Fig. 3-2; see 

Appendix 3-4 for state predictions from the MARSS-MCMC models). The seed bank generally 

had greater confidence in its state estimates and fewer fluctuations in its population abundance 

(Fig. 3-2) despite having fewer data points. As expected, confidence intervals (credible intervals 

for MARSS-MCMC models) calculated during periods with missing values were wider than for 

periods with well defined data points, indicating greater uncertainty when data are missing. 

Interestingly, having data on plant abundance gave greater confidence and reduced uncertainty in 

the state estimates for the seed bank when it was not measured, particularly in the Field River 

site.  
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Table 3-4. Parameter estimates for the process error, Q, observation error, R, and trend parameter, U, from the best fitting models for 

Trachymene glaucifolia populations at each individual site in the Simpson Desert, central Australia,  for MARSS-KFEM and MARSS-

MCMC models. 95% confidence (or credible) intervals are shown in brackets.  

  KFEM MCMC KFEM MCMC KFEM MCMC 

Site* Stage  Q R U 

MC-B Seed bank 0.89 (0.00, 2.33) 1.26 (0.30, 3.67) 9.07 (6.93, 10.96) 2.78 (2.45, 3.14) 2.54 (1.91, 3.16) 1.10 (-0.35, 2.49) 

 Plants 3.66 (1.08, 5.53) 4.94 (2.31, 10.10) 2.22 (1.80, 2.58) 1.46 (1.33, 1.59) 0.45 (-0.25, 1.15) 0.24 (-1.00, 1.49) 

MC-U Seed bank 0.84 (0.00, 2.30) 1.31 (0.26, 4.33) 12.46 (9.09, 15.06) 3.53 (3.12, 4.03) 2.09 (1.46, 2.71) 0.65 (-0.99, 2.20) 

 Plants 2.79 (0.81, 4.25) 3.65 (1.75, 7.51) 0.93 (0.77, 1.09) 0.96 (0.87, 1.05) 0.38 (-0.22, 0.97) -0.00 (-1.13, 1.11) 

        

FR-B Seed bank 0.06 (0.01, 0.90) 0.65 (0.13, 2.20) 8.76 (6.51, 10.79) 2.83 (2.50, 3.21) 1.60 (1.29, 1.91) 1.15 (-0.18, 2.39) 

 Plants 0.72 (0.23, 1.16) 1.14 (0.52, 2.39) 0.32 (0.26, 0.38) 0.55 (0.50, 0.60) -0.07 (-0.35, 0.21) 0.10 (-0.64, 0.89) 

FR-U Seed bank 2.16 (0.02, 4.83) 4.30 (1.26, 10.68) 12.79 (9.62, 15.55) 3.46 (3.04, 3.95) 2.84 (2.32, 3.37) 0.97 (-0.54, 2.43) 

 Plants 3.87 (1.21, 6.26) 6.46 (3.09, 13.04) 0.87 (0.73, 1.02) 0.90 (0.82, 0.98) 1.14 (0.39, 1.90) 0.78 (-0.60, 2.15) 

        

CS-B Seed bank 0.02 (0.00, 0.97) 0.77 (0.14, 2.52) 14.06 (10.52, 16.98) 3.22 (2.85, 3.64) -0.99 (-1.29, -0.70) 0.00 (-1.29, 1.61) 

 Plants 3.19 (0.85, 4.89) 3.73 (1.73, 7.85) 0.56 (0.46, 0.65) 0.71 (0.64, 0.78) 0.26 (-0.34, 0.86) 0.00 (-1.09, 1.24) 

CS-U Seed bank 0.01 (0.0, 0.50) 0.43 (0.11, 1.31) 6.12 (4.58, 7.48) 2.71 (2.42, 3.05) -0.00 (-0.32, 0.31) -0.21 (-1.19, 0.83) 

 Plants 1.73 (0.49, 2.71) 2.11 (0.99, 4.39) 0.33 (0.27, 0.39) 0.57 (0.52, 0.62) 0.24 (-0.20, 0.67) 0.21 (-0.67, 1.08) 

        

SS-B Seed bank 0.67 (0.00, 3.22) 2.01 (0.47, 5.37) 11.44 (8.95, 13.83) 3.24 (2.90, 3.64) 2.39 (2.04, 2.74) 0.78 (-0.55, 2.14) 

 Plants 1.90 (0.55, 2.93) 2.97 (1.36, 6.17) 0.79 (0.64, 0.92) 0.91 (0.83, 1.00) 0.43 (-0.11, 0.97) 0.38 (-0.66, 1.42) 

SS-U Seed bank 0.93 (0.00, 3.22) 1.47 (0.23, 4.67) 12.06 (9.66, 15.05) 3.56 (3.19, 3.97) 4.25 (3.68, 4.81) 0.69 (-0.79, 2.22) 

 Plants 2.57 (0.75, 3.85) 3.52 (1.53, 7.42) 1.32 (1.10, 1.57) 1.10 (1.00, 1.22) 0.46 (-0.14, 1.06) 0.54 (-0.61, 1.67) 

*MC = Main Camp, FR = Field River, CS = Carlo-Shitty, SS = South Site; B = burnt, U = unburnt.



Chapter 3: Application of MARSS models 

92 

 

 

Fig. 3-2. Wildfire models showing predicted log state abundances for Trachymene glaucifolia 

at each of four study sites in the Simpson Desert, central Australia. Points indicate census 

observations averaged over 15 plots at each site, model-predicted state estimates are given by 

the solid line, and their 95% confidence intervals by the shaded areas. Seed bank trajectories 

are brown and above-ground plant trajectories are green.  
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Discussion 

I set out to demonstrate how multivariate autoregressive state-space (MARSS) models can be 

used to help reduce uncertainties and interpret spatial and temporal trends in time series data, 

and thus aid in improving data quality and developing more strategic monitoring. These 

improvements are largely driven by the ability of state-space models to decouple true 

abundances and the observations used to estimate these abundances, thereby providing a 

more accurate portrayal of species' true biology rather than reflecting patterns in observation 

processes (Clark and Bjørnstad, 2004; Kéry and Schaub, 2012). Furthermore, the use of prior 

information to span missing values allows greater flexibility in the design of monitoring 

programs and enables ‘gaps’ in surveys to be planned (Morris et al., 1999; Humbert et al., 

2009; Dennis et al., 2010). The results from this case study, consisting of abundance 

estimates for both the dormant seed bank and above-ground individuals of an ephemeral 

plant, show distinctive patterns that can be used to produce general guidelines for how 

monitoring could be conducted in future. For example, the seed bank was found to be 

characterised by higher observation errors and lower process errors, so that observed 

variation in abundances in the seed bank over time could be attributed mostly to the 

observation process. Because stochastic fluctuations in seed bank abundance are relatively 

stable, monitoring should then be more effective if it seeks to obtain fewer, but more accurate 

counts of the seed bank.  

Accounting for all the life stages of a species is another important feature of an effective 

monitoring design to improve the inferences that it can yield (Chapter 2; Nguyen et al., 2015a 

in review). A potential weak point of many monitoring studies is the potential presence of 

cryptic life stages, those that are difficult to sample, or are absent from sampling designs. For 

example, raptor populations have been drastically underestimated in monitoring programs 
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designed to observe only breeding birds (Katzner et al., 2011). Similarly, estimating the size 

of the seed bank presents several challenges from a monitoring and demographic perspective 

as seed-sampling and sorting are time consuming, both in the field and the laboratory, and 

counts thus are more difficult to make than for adult plants (Kalisz and McPeek, 1992; 

Adams et al., 2005). Information on cryptic stages can also be gained experimentally, as 

shown for a related species, Trachymene incisa (Wardle, 2003) that exhibited different 

responses across cohorts. However, the information gained from monitoring and modelling 

multiple life stages (such as the seed bank and plants) together within the MARSS framework 

provides valuable information and can be well worth the additional effort. For example, the 

size of the seed bank can be an indication of the potential size of the above-ground plant 

population when pulse events occur (Ludwig et al., 1997). Likewise, the difficulty and 

uncertainty in obtaining estimates for cryptic stages such as the seed bank can be alleviated 

by using information from more accessible stages. It is encouraging that, at least for this 

particular case study, the MARSS models suggest the seed bank need not be measured every 

census period - planned gaps can reduce the burden of resource allocation (Morris et al., 

1999), while estimates of the above-ground plants can be used to assist state predictions for 

the seed bank during the gaps.  

One of the key aims of monitoring programs is to detect spatial and temporal trends, with an 

emphasis on providing guidance for well informed, evidence-based policy management 

(Yoccoz et al., 2001; Eyre et al., 2011). In this sense, the MARSS framework proved useful 

for assessing trends on both scales, allowing tests for various spatial sub-population 

structures, whether driven by environmental or geographical factors, to be carried out (Ward 

et al., 2010). This case study, for example, reveals wildfire history to be an important driver 

of population dynamics on the local scale (Greenville et al., 2009). However, when examined 

on a regional scale, the spatial location appears to be the dominant factor, potentially 
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associated with factors such as soil quality or local competition. Identification of sub-

population structure and overall spatial heterogeneity is a worthwhile goal, as populations 

with shared environmental drivers are more susceptible to extinction (Morris et al., 1999; 

Warton and Wardle, 2003; Ward et al., 2010). Here, spatial replication may be justified to 

properly understand and manage the dynamics governing each sub-population (Emery et al., 

2015). On the other hand, if sub-populations are found to be spatially homogeneous with 

shared drivers, more emphasis on temporal replication may be needed since rare, catastrophic 

events will influence all populations similarly.  

Much of the MARSS output appears to be robust to the choice of algorithms used to estimate 

the parameters and tests for spatial sub-population structure. However, although a formal 

comparison between the Kalman filter/Expectation-Maximisation algorithms employed in the 

MARSS package (Holmes et al., 2012a; Holmes et al., 2012b) and the Monte Carlo Markov 

Chain algorithms used in JAGS (Plummer, 2003) was beyond the scope of this study, there 

were some discrepancies that are worth noting. For example, outputs from the MARSS-

MCMC models are generally more conservative in their 95% credible intervals for both the 

parameters and state predictions (Table 3-4, Appendix 3-4). Another advantage of 

implementing the MARSS framework within JAGS is that it can accommodate a variety of 

error structures to the observations, such as the Poisson distribution, although future updates 

to the MARSS package may yet provide this option. Here, the error structure for the 

observations was assumed to come from a multivariate normal distribution. However, a 

Poisson error structure with random effects to account for overdispersion or a negative 

binomial is appropriate for most count data (Kéry and Schaub, 2012); neither distribution was 

found to produce good model fits (see Appendix 3-2).  

Observation error was also assumed to remain constant over time, although the observation 

process can be subject to temporal change. This can be particularly relevant if the observation 
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process includes detection probabilities, as even standardised field protocols can result in 

changes in detection probability over time (Schmidt, 2005; Kéry et al., 2009). However, this 

would not be expected to influence the results as the data come from plot-based sampling for 

a common species, and the methodology and core observers remained constant throughout 

the census period. The MARSS framework does allow for time-varying parameters, including 

observation errors, provided sufficient data are available to estimate these additional 

parameters (Holmes et al., 2012a). The ability to include time-varying parameters is crucial if 

long-term monitoring programs are able to capture significant changes in the environmental 

state (e.g. Chapter 4; Dickman et al., 2014; Nguyen et al., 2015b), or if the monitoring 

program evolves over time (Lindenmayer and Likens, 2009). Alternatively, factors known to 

affect the observation process (e.g. change in observer) can be included as a covariate factor, 

thus breaking down the observation error into its known components (Holmes et al., 2012a).  

 

Conclusions 

Monitoring programs are often criticised as being wasteful and unscientific (Lovett et al., 

2007). The data produced may be perceived as being coarse or of poor quality and therefore 

inadequate for identifying and understanding population trends - especially declines - 

compared to more detailed data on survival and fecundity that are required for demographic 

models (e.g. Caswell, 2001). However, well designed monitoring programs are essential for 

the detection of long-term trends, advancement of ecological knowledge and development of 

effective policies for managing ecosystems at comparatively low cost (Lovett et al., 2007; 

Lindenmayer and Likens, 2009; Dickman and Wardle, 2012; Lindenmayer et al., 2012). I 

have demonstrated how such data can be modelled effectively to assess spatial and temporal 

trends using the MARSS framework, and how adopting a hierarchical view of the data can 
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produce outputs that can be used iteratively to improve monitoring programs and the data 

they produce. An effective modelling framework can therefore guide the process of sampling 

and data collection towards designing an increasingly effective, cost-efficient monitoring 

program. This will produce higher quality data and improve model outputs, and in turn 

improve the ability of managers to track real trends in populations and to intervene, if needed, 

to set them on desired trajectories. 
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Chapter 4 - On the validity of visual cover estimates for time 

series analyses: a case study of hummock grasslands 

 

Clump of Triodia basedowii (spinifex) forming its distinct ring shape with dieback in the 

centre as it ages. Photograph by Glenda Wardle. 

 

 

A version of this chapter is published as Nguyen, V., Greenville, A.C., Dickman, C.R. and 

Wardle, G.M. (2015) On the validity of visual cover estimates for time series analyses: a case 

study of hummock grasslands. Plant Ecology, 216, 975-988. 

My contribution was very substantial, including conceptualization of ideas, data 

manipulation, construction and analysis of models, and writing and editing all drafts in 

consultation with my co-authors. 
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Abstract 

Changes in vegetation cover are strongly linked to important ecological and environmental 

drivers such as fire, herbivory, temperature, water availability and altered land use. Reliable 

means of estimating vegetation cover are therefore essential for detecting and effectively 

managing ecosystem changes, and visual estimation methods are often used to achieve this. 

However, the repeatability and reliability of such monitoring is uncertain due to biases and 

errors in the measurements collected by observers. Here, two primary long-term monitoring 

datasets on spinifex grasslands, each established with different motivations and methods of 

data collection, are used to assess the validity of visual estimates in detecting meaningful 

trends. The first dataset is characterised by high spatial and temporal coverage but has limited 

detail and resolution, while the second is characterised by more intensive sampling but at 

fewer sites and over a shorter time. Using multivariate auto-regressive state-space models, I 

assess consistency between these datasets to analyse long-term temporal and spatial trends in 

spinifex cover whilst accounting for observation error. The relative sizes of these observation 

errors generally outweighed process, or non-observational errors, which included 

environmental stochasticity. Despite this, trends in the spatial dynamics of spinifex cover 

were consistent between the two datasets, with population dynamics being driven primarily 

by time since last fire rather than spatial location. Models based on these two datasets also 

showed clear and consistent population traces. Thus, visual cover estimates, in spite of their 

potential uncertainty, can be reliable provided that observation errors are accounted for. 
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Introduction 

Monitoring programs that measure changes in vegetation cover provide important 

information needed to assess the status, trends and dynamics of any study system, and are 

therefore crucial for evidence-based policy management (Eyre et al., 2011; Dickman and 

Wardle, 2012; Dickman et al., 2014). Vegetation cover has been demonstrated to have strong 

relationships with global environmental drivers such as atmospheric CO2 and global 

temperatures (Braswell et al., 1997; Zeng et al., 1999), water balance and availability (Joffre 

and Rambal, 1993), changes in land management practices (Vicente-Serrano et al., 2004) and 

fire return intervals and fire intensity (Eckhardt et al., 2000). Increased vegetation cover in 

Australian desert systems, for example, provides the necessary ground fuel required for large 

wildfires to establish and spread (Gill, 1975; Greenville et al., 2009; Nano et al., 2012).  

Monitoring of grasslands often relies on visual inspection of fixed plots to estimate cover (i.e. 

cover as a percentage of the total plot area), and is a quick and non-intensive method to use 

(e.g. Tischler et al., 2013; Dickman et al., 2014). However, visual methods are highly 

susceptible to observation error, raising concerns about the reliability and repeatability of 

visual estimates (Helm and Mead, 2004; Wintle et al., 2013). Observation errors include 

traditional sampling error resulting from differences between the sampled population and the 

overall population, and measurement error resulting from differences between observed 

estimates and true values (Chapter 3; Staples et al., 2004; Flesch, 2014). These errors are less 

problematic when sampling designs are standardised as differences in sampling across sites 

or changes in sampling procedures over the duration of the study can result in variable 

observation errors over space and time. Process error on the other hand encompasses all non-

observational error and includes variation resulting from demographic and environmental 

stochasticity. Observation errors in grasslands monitoring might arise due to the fine texture 
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of grasses and potentially large areas over which cover is estimated, causing difficulty in 

obtaining accurate visual estimates and creating errors that are large, unknown or observer-

specific (Sykes et al., 1983; Bennett et al., 2000). Cover estimates in spinifex grasslands 

(Triodia spp.) may be potentially more robust, as the hummocks of spinifex are discrete and 

constitute the dominant life-form over large areas so that estimates can focus on this species 

rather than on overall vegetative cover, although observation error will still be present. Cheal, 

(2008), for example, found large discrepancies in estimates of spinifex cover from 16 

experienced observers, ranging from 20-60% on a 10% point scale, with no relationship 

between general ecological experience of the observer (rather than task-specific experience) 

and cover estimates. In addition to the lack of observer agreement in visual estimates, factors 

contributing to observation errors can include plot size, plant morphology, distribution and 

incorrect identification (Kennedy and Addison, 1987; Klimeš, 2003). 

Addressing observer biases would vastly improve the quality of visual estimates, but may not 

always be possible when working within the constraints of project costs, and requires careful 

consideration of the trade-offs involved. Errors may be reduced by taking group averages 

rather than relying on a single expert (Klimeš, 2003; Burgman et al., 2011), or by making 

replicated observations (Dennis et al., 2010; Knape et al., 2011), but this can be costly and 

draw resources away from improving spatial or temporal coverage. Thus, in monitoring, a 

choice will usually occur between sampling a few sites with high accuracy and therefore 

gaining statistical power to detect small-scale dynamical changes, and sampling with more 

extensive temporal and spatial coverage to improve overall knowledge of populations in the 

study system (Morris et al., 1999). Similarly, trade-offs in sampling can occur when 

determining appropriate spatial and temporal coverage. Long-term studies are crucial for 

understanding ecological processes and are necessary to capture rare disturbance events such 

as fires that drive many ecosystems (Turner et al., 2003; Lindenmayer et al., 2012). 
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Monitoring populations from multiple sites is also important to identify whether populations 

are independent, with different population dynamics, or are correlated and have shared 

environmental drivers and thus are more susceptible to extinction (Chapter 3; Morris et al., 

1999; Warton and Wardle, 2003; Ward et al., 2010). Populations that exhibit unique, 

independent dynamics may require more spatial replication to properly manage and 

understand the dynamics governing each population, whereas a correlated population might 

need more emphasis on temporal replication since rare, catastrophic events will impact all 

populations similarly. A careful balance is therefore required to ensure that adequate 

replication occurs on both scales to detect meaningful changes in population abundances.  

While many studies have investigated the repeatability and reliability of visual cover 

estimates and quantified observation errors (Sykes et al., 1983; Klimeš, 2003; Helm and 

Mead, 2004; Gray and Azuma, 2005), I instead wish to comment on the usefulness of such 

data for discerning real trends and processes. This study makes use of two primary long-term 

datasets on the coverage of Triodia basedowii obtained from the Simpson Desert, central 

Australia, which were set up with different motivations and methods of data collection, and 

ran for different lengths of time. The first places greater emphasis on spatial and temporal 

coverage at the expense of accuracy and detail (Dickman et al., 2014). The other begins with 

highly intensive sampling and investigates fewer sites over a relatively shorter period, but has 

greater resolution at each site (Chapter 3; Wardle and Dickman, unpublished data). Using a 

multivariate auto-regressive state-space (MARSS) approach to account for observation error, 

I compare and assess the utility of monitoring data for making informed decisions by first 

analysing long-term trends in spinifex cover and whether the two independent datasets 

produce similar results. By comparing the changes in cover over time revealed by each 

dataset, the robustness of visual cover estimates to different sampling strategies can be 

assessed.  
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Using the MARSS models, several hypotheses regarding spatial relationships in T. basedowii 

populations are examined. Re-establishment of spinifex cover post-fire will vary depending 

on the amount of rainfall (Griffin et al., 1983; Nano et al., 2012; Nano and Pavey, 2013); a 

diverse community of herbs and grasses can emerge during the recovery period, supplying 

more palatable food sources for livestock grazing compared to persistent stands of long-

unburnt spinifex (Dickman et al., 2014). The post-fire recovery period might therefore 

produce distinct spinifex population dynamics and responses to rainfall depending on the 

time since last fire. Additionally, this rainfall can be spatially restricted, producing isolated 

pockets of productivity (Letnic and Dickman, 2005; Letnic and Dickman, 2006), such that 

population dynamics depend more on the study location rather than fire history. The 

interaction between the post-fire recovery and rainfall could further distinguish spinifex 

population dynamics such that study sites impacted by the same fire may have different 

population dynamics due to spatially variable rainfall regimes. Finally, the relative sizes of 

observation and process errors as estimated by the MARSS models are compared. By using 

two independent datasets, I aim to determine whether visual cover estimates are capable of 

detecting meaningful trends despite concerns regarding their reliability, or whether 

observation error is sufficiently large to result in misleading and contradictory conclusions. 

 

Methods 

Study region 

Two long-term datasets (hereafter referred to as the ‘wide view’ dataset, and the ‘high 

resolution’ dataset; Table 4-1) were obtained by the Desert Ecology Research Group based at 

the University of Sydney (Wardle and Dickman, unpublished data). Sampling was conducted 

across four pastoral stations in the Simpson Desert, central Australia: Carlo Station, 
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Tobermorey Station, Cravens Peak and Ethabuka Reserves (Fig. 4-1), covering a combined 

area of 8000 km
2
. The study region is mostly comprised of dune fields, with remaining areas 

consisting of clay pans, rocky outcrops and gibber flats (Dickman et al., 2014). Vegetation is 

dominated by lobed spinifex (T. basedowii) with occasional small stands of gidgee trees 

(Acacia georginae), other Acacia shrubs and mallee eucalypts (Frank et al., 2012; Tischler et 

al., 2013; Wardle et al., 2015). Long-term annual rainfall for this part of the desert averages 

ca. 250 mm, with decreasing gradients in annual rainfall occurring from north to south and 

east to west that partition the study region into three broad geographical areas (Greenville et 

al., 2012). 

  



Chapter 4: Validity of visual cover estimates 

 

111 

 

 

 

 

Fig. 4-1. Location of study sites across Carlo Station, Tobermorey Station, Cravens Park and 

Ethabuka Reserve, Simpson Desert, central Australia. Circles indicate sites that belong to the 

wide view dataset, the square indicates a site belonging to the high resolution dataset and 

triangles belong to both. Red fills are sites that were retrospectively labelled as burnt for the 

wide view dataset and indicate sites that experienced a fire over the summer of 2001-2002 

and are designated as burnt sites for the duration of the time series (1995-2013), while blue 

indicates unburnt sites. Since Carlo Shitty was not part of the wide view dataset, it was not 

retrospectively labelled as burnt or unburnt. 
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Wide view dataset 

The wide view dataset was initially created to track small mammal and lizard populations 

with the intention of long-term monitoring to capture important boom-bust dynamics 

associated with sporadic, heavy rainfall, and responses to major fire events (Dickman et al., 

1999; Letnic and Dickman, 2005; Dickman et al., 2010; Dickman et al., 2011; Greenville et 

al., 2012). Spinifex cover and seeding were estimated visually as additional covariates as they 

are important components of the habitat and diet of small mammals (Dickman et al., 2011). 

Live-trapping and wide view data sampling were carried out from 1990-2013 at one site and 

at eight other sites from 1995-2013 (Fig. 4-1), each site containing 2-12 grids spaced 0.5-2 

km apart in randomly chosen positions along access tracks (Table 4-1). Sampling was 

conducted at irregular intervals from 2-6 times a year and missing values were included in the 

time series when sites were not sampled. As sampling did not begin at most sites (8 of 9) 

until 1995, I use data from 1995 onward. Models using data only from 2004 onwards 

(‘truncated wide view’ dataset) were also constructed to match the temporal scale of the high 

resolution dataset (see below), allowing comparisons of state predictions and temporal trends  

in spinifex cover assuming that data collection for both datasets began at the same time. 

Spinifex cover was measured visually as percentage cover (5% point scale) in a 2.5 m radius 

around six points on each sampling grid (Table 4-1). Due to the irregularity of sampling 

intervals and the need to reflect divergent response times, data were aggregated by year to 

account for the time needed for spinifex growth to respond to rainfall whilst simplifying 

model construction and subsequent comparisons with the high resolution dataset. Fire 

treatment allocation was ad hoc and done retrospectively, whereby a site was labelled as 

burnt if most sampling grids experienced a fire during the study period (six of nine sites). In 

such cases, grids that were unaffected by fire for that site were discarded for analyses. 

Likewise, for sites labelled as unburnt, grids that did experience a fire were discarded.  
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Table 4-1.  Comparison of the main features of the wide view and high resolution 

datasets of spinifex cover obtained from sampling at multiple sites in the Simpson 

Desert, central Australia.  

Design Feature Wide View Dataset High Resolution Dataset 

Time series length Long (1995-2013) Medium (2004-2013) 

Spatial coverage High Medium 

Number of sites 9 4 

Blocks/grids 2-12 2 

Accuracy/detail Low High 

Plots 6 per grid, circular 2.5 m radius 15 per grid, square, 5×5 m 

Spinifex estimation 

method 

Percentage cover, 5% point scale Area cover, 0.5 m
2
 point 

scale 

Number of observers High (>10, with varying 

experience) 

Low (four trained 

personnel) 

Data analysis Aggregated by site and year Not aggregated 

Fire treatment Site level, ad hoc assignment Grids within sites 

 

High resolution dataset 

The high resolution dataset was created to monitor vegetation abundance and diversity with a 

particular focus on the effects of a wildfire that spread through the Simpson Desert in 

2001-2002 (Greenville et al., 2009). Subsequently, fire treatment was incorporated into a 

stratified design, whereby each site consisted of two 1-ha grids with one grid positioned in an 

area burnt during the 2001-2002 wildfire while the other was placed in an unburnt area. 

Vegetation surveys were carried out from 2004-2013 at four sites (Fig. 4-1). Within each 

grid, 15 5×5 m plots were placed in a 3×5 arrangement where the five plots on each row were 

placed on the swale, the middle, and the crest of the linear dunes and spaced randomly with a 

minimum separation of 5 m along a 100 m transect, giving a total of 120 plots across the 

eight grids (Table 4-1). Data were not previously aggregated and each plot was treated as a 
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replicate sample of its corresponding grid (Chapter 3; Dennis et al., 2010). Intensive 

sampling was carried out in the first three years of data collection (2004-2006), with surveys 

being conducted quarterly. However, from 2007 onwards, surveys were only conducted 1-2 

times a year at unequal time intervals due to funding and logistical constraints. As with the 

wide view dataset, missing values were included when sites were not sampled. Spinifex cover 

was measured in m
2
 rather than as a percentage, and models for both datasets are presented as 

estimates of cover area.  

 

Model description 

Data were analysed using multivariate auto-regressive state-space (MARSS) models (Holmes 

et al., 2012a; Holmes et al., 2012b). These models were used to calculate true state estimates 

for spinifex cover accounting for process and observation error, estimate missing values, and 

to investigate various spatial hypotheses. Maximum likelihood parameters and state estimates 

for these models are achieved via recursive Kalman-Filter and Expectation-Maximisation 

algorithms until the models reach convergence (Shumway and Stoffer, 2006). Conceptually, 

the state-space model partitions population models into observed (data) and unobserved (true 

state) components. Let n denote the number of discrete survey sites and m denote the number 

of hypothesised populations. The MARSS model is then denoted by 

Xt = Xt-1 + u + Cct + wt;  wt ~ MVN(0, Q)     (1) 

Yt = ZXt + a + vt;    vt ~ MVN(0, R)     (2) 

where Eq. (1) represents the model for the true states, Xt is the m true states at time t, u is the 

trend parameter, C is the covariate effect, ct is the covariate value at time t, and wt is the 

process error assumed to be from a multivariate normal (MVN) distribution with mean zero 
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and variance-covariance matrix Q (Holmes et al., 2007; Hinrichsen and Holmes, 2009). 

Equation (2) represents the model for the observed states, where Yt is the n observed 

estimates at time t, Z is a n × m matrix of 0’s and 1’s denoting population structure, pairing 

up each of the n observations to one of the m hypothesised states, and is used to explore 

various spatial hypotheses, a is the mean linear difference between survey sites measuring the 

same sub-population with respect to the first site, and vt is the observation error assumed to 

be MVN with mean zero and variance-covariance matrix R.  

For the wide view dataset, the following hypotheses were tested: 1) Individual site model (9 

states): Each of the nine sampling sites act as independent, uncorrelated populations (Z is a 9 

x 9 diagonal matrix, whereby each site is paired up with its own corresponding state); 2) 

Geographical region model (3 states): Sites can be grouped by geographical area into 

northern, southern and western populations partitioned by rainfall (Z is a 9 x 3 matrix 

whereby for each row, a 1 in the first, second or third column pairs that observation with the 

northern, southern or western population respectively); 3) Wildfire model (2 states): Sites can 

be grouped into burnt and unburnt populations based on their time since last fire, with 

particular reference to the 2001-2002 wildfires (Z is a 9 x 2 matrix whereby for each row, a 1 

in the first or second column pairs that observation with the burnt or unburnt population 

respectively). The Cct parameters were used to model the immediate effect of the 2001-2002 

wildfires, whereby ct was set to 1 for 2002 and 0 for the remaining years: 4) Complete 

homogeneity (1 state): Populations from all nine sites act as a single population following the 

same trajectory with shared model parameters (Z is a 9 x 1 column vector of 1’s). For the 

high resolution dataset, similar hypotheses were set up with slight variations due to the 

different design: 1) Complete heterogeneity (8 states): Each of the grids acts as independent, 

uncorrelated populations. This can be likened to an interaction effect between fire history and 

site; 2) Individual site model (4 states): Each of the four sites acts as an independent 
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population with no significant effect of fire history on the trajectory or parameters; 3) 

Wildfire model (2 states): Populations on burnt grids follow the same trajectory with shared 

parameters regardless of site and similarly for unburnt grids; 4) Complete homogeneity: There 

is no effect of site or fire history, and all grids in the study area follow the same trajectory 

with shared parameters. For each of the hypotheses, a unique trend parameter u was estimated 

for each hypothesised state. The variance-covariance matrix Q for the process errors was 

modelled as unconstrained (i.e. non-zero covariances) for all hypotheses except the 

“Individual site model” for the wide view dataset, in which Q was modelled as a diagonal 

matrix due to convergence issues. These convergence issues resulted in degenerate variance 

estimates and is generally caused by a lack of data relative to the number of parameters being 

estimated (Holmes et al., 2012b). A unique observation error was estimated for each site in 

the high resolution dataset, while only a single error term was estimated for the wide view 

dataset due to similar issues. For both datasets, the variance-covariance matrix R was 

modelled with zero covariance. The best fitting model was identified as having the lowest 

Akaike Information Criterion adjusted for small sample sizes (AICc), whereby ΔAICc < 2 

points suggests no substantial difference between models, and ΔAICc > 8 points is 

considered weakly supported (Burnham and Anderson, 2002). 

 

Results 

Spatial hypotheses and state predictions 

Multivariate autoregressive state-space (MARSS) models for the wide view and truncated 

wide view datasets show the wildfire model to have the greatest support (ΔAICc > 8 

compared to the next lowest AICc values), with the individual site model having the least 

support (Table 4-2). MARSS models for the high resolution dataset show similar results, with 
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the wildfire model having the greatest support despite a shorter time series which did not 

include the 2001-2002 wildfires (Table 4-2). Thus, there is agreement between both datasets 

and T. basedowii can be grouped reliably into burnt and unburnt populations, with trends in 

spinifex population dynamics better explained by time since last fire than by spatial location. 

True state estimates produced by the wildfire model for the wide view dataset indicate 

gradually increasing cover from 1995 onwards across all sites until the 2001-2002 wildfires, 

creating a distinct division between the burnt and unburnt populations (Fig. 4-2). Following 

the fire, state estimates for both datasets show similar temporal trends in spinifex cover in 

which burnt populations remained low throughout the remainder of the monitoring period, 

with only a slight hint of a recovery by the end of the monitoring period (Figs 4-2 and 4-3). 

Meanwhile, spinifex cover in unburnt populations decreased gradually, dipping to a 

minimum in 2008 as a result of an extended drought period, followed by a relatively rapid 

recovery that followed heavy rains in 2010 and led to an outpacing of growth compared to 

that in the burnt populations. While truncating the wide view dataset to match the high 

resolution dataset in terms of time series length still retains the population structure results 

(Table 4-2), this model was unable to disentangle observation error from the process error, 

resulting in poor state estimates for the burnt population (Fig. 4-4). 
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Table 4-2.  Comparison of model performance investigating subpopulation structure of 

spinifex at sites in the Simpson Desert, central Australia, using wide view, truncated 

wide view (from 2004 onward) and high resolution datasets of spinifex cover (see 

Methods for description of hypotheses), with the best fitting model given by the lowest 

AICc. 

 States AICc 

Wide view dataset   

Wildfire 2 449.1845 

Complete homogeneity 1 487.8002 

Geographical region 3 511.8400 

Independent site 9 539.2734 

Truncated wide view dataset   

Wildfire 2 195.6980 

Complete homogeneity 1 206.0595 

Geographical region 3 222.0316 

Independent site 9 245.1594 

High resolution dataset   

Wildfire 2 6672.06 

Complete homogeneity 1 6688.90 

Independent site 4 6923.79 

Complete heterogeneity  8 7171.68 
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Fig. 4-2. State predictions (solid line) and their 95% confidence intervals (dashed lines) for 

cover of spinifex from the best fitting model (wildfire) for the wide view dataset obtained 

from nine sites in the Simpson Desert, central Australia. Filled points indicate actual 

observations. Red represents state predictions and observations from burnt sites, while blue 

represents those from unburnt populations. 
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Fig. 4-3. State predictions (solid lines) with their 95% confidence intervals (dashed lines) for 

cover of spinifex from the best fitting model (wildfire) for the high resolution dataset 

obtained from four sites in the Simpson Desert, central Australia. Small circles indicate 

observations from each of 15 replicate plots, while large filled points indicate the means of 

these plots. Each of the four sites contains state predictions and observations from burnt (red) 

and unburnt (blue) populations. 
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Fig. 4-4. Comparison of state predictions (solid lines) averaged across sites and 95% 

confidence intervals (dashed lines) for cover of spinifex derived from wildfire models for the 

wide view dataset and the high resolution dataset obtained from multiple sites in the Simpson 

Desert, central Australia. The wildfire model for the wide view dataset was constructed using 

only data from 2004 onward to allow comparison with the high resolution dataset, thus 

assuming that data collection for both datasets began at the same time. Observations (points) 

for the high resolution dataset are presented as site means. Red represents mean state 

predictions and observations for the burnt, while blue represents those from unburnt 

populations. 

 

Comparison of maximum likelihood parameter estimates 

In both the wide view and high resolution datasets, the observation error made up a 

larger component of the error term compared to process error, Q (Table 4-3). 

Observation errors were also found to be spatially variable, differing across and within 

sites. For example, the high resolution dataset showed that the Main Camp site had 
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substantially higher observation error terms compared to the other sites. In addition, both 

datasets suggested that observation error in unburnt sites was larger relative to that in 

burnt sites. In contrast, while both datasets suggested positive spinifex growth (μ) in 

burnt and unburnt populations, the relative growth rates differed between burnt and 

unburnt populations. Spinifex growth in burnt sites was estimated to be substantially 

higher compared to unburnt sites for the wide view dataset, while the reverse was true 

for the high resolution dataset. However, confidence intervals in both cases were 

overlapping zero suggesting that this growth is non-significant. In general, confidence 

intervals for the wide view dataset were much larger when compared to the high 

resolution dataset, despite the longer time-series.  

Table 4-3.  Maximum likelihood parameter estimates from the best fitting models using 

wide view and high resolution datasets on spinifex cover sampled at multiple sites in the 

Simpson Desert, central Australia. The effect of a wildfire in 2001-2002 is given by the 

C parameter and is estimated only for the wide view dataset as it covered the time period 

in which it occurred. Observation error (R) was estimated for each grid in the high 

resolution dataset, while only a single, shared observation error term was estimated for 

the wide view dataset due to convergence issues. Bootstrapped 95% confidence intervals 

are given in parentheses.  

 Wide view High resolution 

 Parameter Burnt Unburnt Burnt Unburnt 

Growth rate (μ) 0.169 (-0.056,0.360) 0.056 (-0.469,0.604) 0.059 (-0.001,0.119) 0.086 (-0.102,0.273) 

Effect of fire (C) -5.645 (-7.267,-4.039) - - 

Process error (Q) 0.119 (0.000,0.302) 0.907 (0.001,2.063) 0.032 (0.004,0.059) 0.265 (0.035,0.495) 

Observation error (R)     

All 1.467 (1.051,1.883) - - 

Main Camp - - 2.635 (2.187,3.083) 2.795 (2.285,3.304) 

Field River - - 0.570 (0.469,0.670) 0.613 (0.499,0.727) 

Carlo Shitty - - 0.865 (0.717,1.013) 1.460 (1.204,1.716) 

South Site - - 0.328 (0.269,0.386) 1.262 (1.040,1.484) 
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Discussion 

Ecological monitoring programs are critical for understanding ecological processes, provision 

of long-term data, supporting evidence-based decision making, and adaptive conservation 

management (Spellerberg, 2005; Wintle et al., 2010; Eyre et al., 2011; Lindenmayer et al., 

2012; Lindenmayer et al., 2014). Visual cover estimates are cheap, rapid and are prevalent in 

monitoring programs of vegetation cover. That these cover estimates in forests (Helm and 

Mead, 2004) have previously been shown to be non-reproducible and highly susceptible to 

error is therefore a serious issue, and has implications for management decisions based upon 

such inputs. More positively, the use of feedback and calibration of observer results does 

improve reliability of visual estimation (Wintle et al., 2013). Despite these widely 

acknowledged concerns, this study demonstrates through the use of two empirical datasets 

that monitoring data can still uncover conclusive trends. Although the wide view and high 

resolution datasets began with different motivations, and subsequently employed varying 

study designs and collection methods, monitoring data from these datasets were mostly 

consistent in terms of population structure and temporal trends. Models constructed from 

both datasets, for example, suggested that population dynamics for spinifex can be grouped 

by time since last fire into distinct burnt and unburnt populations, and there was generally 

little support for models suggesting site by site differences in the response to fire. Thus, the 

impact of the major 2001-2002 wildfire, and the subsequent temporal dynamics driven by 

rainfall events and periods of drought, were so extreme as to obscure any potential spatial 

heterogeneity that might have existed, for example, as a result of spatially variable rainfall 

regimes or pre-fire vegetation composition (Wardle et al., 2013). Trends such as the 

relatively slow post-fire recovery in the burnt populations following the 2001-2002 wildfires 

and the impact of the drought on the unburnt populations are also consistent and reasonably 

identifiable between the two datasets. A comparison of the relative growth rates between 



Chapter 4: Validity of visual cover estimates 

 

124 

 

burnt and unburnt sites showed conflicting results, however this was likely because 

estimation for the high resolution dataset only captures the period following the 2001-2002 

wildfires in which the population experiences comparatively slow recovery, resulting in 

lower growth estimate compared to the wide view dataset. Thus, monitoring data in both 

cases had enough power to detect these large environmental drivers despite the substantial 

observation errors.  

Concerns regarding observer bias and errors when making visual cover estimates are not 

without good reason as errors can be potentially quite large (Helm and Mead, 2004; Cheal, 

2008; Vittoz et al., 2010). These errors can be so large as to exceed actual year to year 

variation in cover (Klimeš, 2003), and error estimates for spinifex cover seem to confirm this, 

albeit over the period of least change in cover post-fire rather than including the fire itself. 

While one might expect that such substantial errors would provide unreliable and misleading 

results (Kennedy and Addison, 1987), these errors did not appear to prevent the models from 

discerning consistent trends for the two datasets. Having replicate observations in the high 

resolution dataset vastly improved the model’s capacity to disentangle both process and 

observation error, and additionally allowed estimates of observation error to be calculated for 

each sampling location (Chapter 3). This was not possible when the high resolution data were 

aggregated, as the models encountered convergence issues in the algorithms, a common 

problem when data are insufficient (Dennis et al., 2006; Holmes et al., 2012a). Similar issues 

occurred with the wide view dataset despite the longer time series, particularly as there were 

more sites for which observation error needed to be estimated and many missing values for 

some sites. Consequently, only a single observation error term was calculated for the nine 

sites. However, the high resolution dataset suggests it may not be appropriate to assume that 

all sites have equal observation errors as they can differ substantially both between and 

within sites. For example, observation errors were larger in unburnt sites, likely due to greater 
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variation in cover between plots, higher overall cover and higher process error resulting in 

bigger changes over time. Combined with the higher frequency of large, mature hummocks 

of spinifex which vary greatly in shape and distribution in unburnt sites, and increased 

likelihood of overhanging the plot, these factors all add to the difficulty of providing reliable 

estimates of cover.  

In contrast, spinifex cover at burnt sites remained low throughout the study and consisted 

mostly of small, re-establishing seedlings post-fire (Rice and Westoby, 1999), resulting in 

lower estimates for observation error at burnt sites. Kennedy and Addison, (1987) compared 

observation errors between species and found larger errors for those with low cover, but this 

result was driven by detection errors where small, infrequently distributed species were seen 

in one sampling unit but not the next. Conversely, Sykes et al., (1983) suggested that 

observation errors are less likely to occur at the lower and higher extremities and most likely 

to occur in between, and the results of this study seem to follow this pattern. Variation in the 

distribution and amount of cover between sites can therefore lead to some sites being more 

difficult to estimate cover than others. Thus, observation error can be better accounted for by 

focusing on fewer sites with greater replication than with the approach taken in the wide view 

dataset that emphasised greater spatial and temporal coverage (Dennis et al., 2010). In 

addition, the potential size of observation errors might sometimes be anticipated; for 

example, if a site is known to have consistently lower cover or species diversity, monitoring 

resources could be distributed more efficiently. Higher diversity sites can complicate visual 

estimates as there is more heterogeneity in the possible sources of error, and cover estimates 

for individual plant species are more susceptible to errors than overall estimates of vegetation 

cover (Klimeš, 2003). In contrast, study systems dominated by a single species, as is the case 

in this study, would be less vulnerable to complications associated with estimating cover for 

multiple, low abundance species, and estimating cover for only the dominant life form can be 
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quite informative of the study system. Thus, visual estimates may be more appropriate for 

grassland study systems compared to other environments such as woodlands where species 

diversity may be higher.  

Investigating the extent of spatial heterogeneity and determining whether populations exhibit 

unique population trajectories can be particularly informative (Chapter 3; Ward et al., 2010). 

Since spinifex population dynamics were shared across sites and driven predominantly by 

time since last fire, the increased spatial coverage observed in the wide view dataset may not 

have been necessary if one is purely interested in monitoring spinifex cover. However, the 

longer time series provided this monitoring program with an ad hoc opportunity to observe 

the impacts of a major wildfire. Wildfires are known to be a major driver of Australian desert 

ecosystems (Gill, 1975; Griffin et al., 1983), and though fire cannot occur without 

consecutive seasons of high rainfall that promote plant growth and hence ground fuel, such 

events remain difficult to anticipate, with fire return intervals ranging from 20 to 50 years 

(Greenville et al., 2009; Nano et al., 2012). While it cannot be known exactly when wildfire 

events might occur, identifying potentially important drivers a priori is the key to a well 

designed monitoring program (Wintle et al., 2010). In contrast, while the targeted monitoring 

approach of the high resolution dataset is expected to have more power to detect meaningful 

trends relating to time since last fire, the actual event itself may not always be captured, and 

is a testament to the value of long-term monitoring (Franklin, 1989; Dickman and Wardle, 

2012; Lindenmayer et al., 2012). Interestingly, even when the wide view dataset was 

truncated to be of similar length to the high resolution dataset but without the additional 

sampling intensity, the fire signal was still strong enough to be detected despite not being 

incorporated into the study design. However, this shortened time series had insufficient data 

from each site to properly disentangle process and observation errors, and resulted in poor 

state estimates for the burnt population. If funding uncertainties result in researchers being 
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unable to commit to long-term monitoring programs, it may therefore be prudent to ensure 

that short-time series are of high quality, either through achieving sufficient replication over 

short periods to estimate observation errors, or through use of solutions that reduce impact 

such as taking mean values (Klimeš, 2003; Wintle et al., 2013).  

Visual cover estimates are by no means perfect, but are rapid, cheap, non-destructive, and 

commonly available, and therefore realistically are more likely to be carried out over long 

time periods and over large spatial scales than intensive repeat sampling. The use of remote 

sensing technologies and computer-image analysis provide an attractive alternative for 

reducing observation error (Bennett et al., 2000; Booth and Tueller, 2003) but will introduce 

observation errors of other kinds, including the choice of post-process algorithms (Kennedy 

et al., 2014). Furthermore, this does not reduce the need for field based approaches to assist 

with image interpretation and obtain other important measurements to provide a complete 

picture of the study system (Lathrop Jr et al., 2014). While it is important to acknowledge the 

presence of errors and biases, visual estimates can generally be relied upon to detect 

meaningful changes (Vanha‐Majamaa et al., 2000; Irvine and Rodhouse, 2010), and this 

study provide some vindication for their continued use in management and monitoring 

studies. However, this conclusion depends on observer error being accounted for. There are 

several options for reducing observation error such as taking group averages rather than 

relying on a single expert (Klimeš, 2003; Burgman et al., 2011), bias correction factors 

(Sykes et al., 1983), or active calibration feedback to evaluate performance (Wintle et al., 

2013), and how one wishes to address this issue should be considered before deciding to 

implement sampling based on visual cover estimates.  
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Chapter 5 - Life form explains consistent temporal trends across 

species: the application of dynamic factor analysis  

 

Four main life forms were identified in study sites within the Simpson Desert. 

Clockwise from top left: Trachymene glaucifolia (forb), Eriachne aristidea (grass), 

Grevillea stenobotrya (shrub) and Newcastelia spodiotricha (subshrub).   
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Abstract 

Long-term survey data are important for detecting trends and guiding management decisions, 

however in practice, such data are scarce. Thus, to improve ecological inferences an 

appealing option is to borrow information about population trends and parameters from 

multiple data sources, including other species. If species respond similarly across space or 

time, then it is possible to understand trajectories at the aggregate level and manage 

accordingly. However, it is crucial to first establish the extent of heterogeneity in these 

responses across temporal and spatial scales to determine if such aggregations are indeed 

appropriate. Dynamic factor analysis (DFA) is a multivariate time series technique well 

suited for identifying such similarities as it reduces the temporal dynamics of a large number 

of species to a small number of common trends whilst retaining the temporal order of the 

observations. Thus, interpretation of large multispecies data is simplified, and these common 

trends can be used to reveal where there is potential to share information across species that 

are less well sampled. Here I apply DFA to a multispecies (27-30) time series dataset (9 

years) obtained from multiple sites (3) in arid central Australia and search for the existence of 

common trends, and any patterns in how species are clustered. Five common trends were 

identified for each site, and they were strongly associated with life form. Forbs and grasses in 

particular showed high levels of synchrony in their responses to rain events with life-form 

distinctive signatures in the shape of their trends, although this was less pronounced for 

shrubs and subshrubs. However, these responses differed over relatively large (>20km) 

spatial scales. I conclude that plant life form reasonably predicts changes in abundance over 

time, albeit only for local scales, offering some justification for borrowing strength to 

supplement data for poorly sampled species.  
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Introduction 

The availability of long-term ecological data is an essential ingredient for quantifying 

ecological responses to environmental stochasticity, detecting trends such as population 

decline, and for supporting evidence-based policies for management (Coulson et al., 2001; 

Ellner et al., 2002; Eyre et al., 2011; Lindenmayer et al., 2012). However, funding 

uncertainty, limited resources and a lack of recognition for monitoring programs amongst 

funding bodies has made it difficult to obtain this data (Lovett et al., 2007; Lindenmayer et 

al., 2012). Furthermore, monitoring programs may struggle to sample sufficient individuals 

for rare species that occur at low densities over large spatial scales, or are locally abundant 

but not widely distributed (Rabinowitz, 1981; Thompson, 2004) making it difficult to 

estimate population parameters and extinction risks. In practice, long-term datasets are quite 

rare (Magurran and Henderson, 2010) and analyses based on insufficient information can 

result in misleading conclusions and flawed conservation strategies (Coulson et al., 2001). 

Thus an attractive option for improving ecological inferences is to borrow or aggregate 

information about population parameters from multiple data sources (MacKenzie et al., 2005; 

Hui et al., 2013).  

Monitoring data are often obtained from multiple sites (e.g. Dickman et al., 2014), however 

before such data can be aggregated, it is necessary to first identify the extent of spatial 

heterogeneity to determine which sites can be aggregated whilst estimating the smallest 

number of parameters possible (Burnham and Anderson, 2002; MacKenzie et al., 2005). 

When spatial heterogeneity is sufficiently large, separate trends and parameter estimates may 

be required for each sampled location (Warton and Wardle, 2003; Jongejans and de Kroon, 

2005; Peek and Forseth, 2009). Alternatively, population dynamics in sampled locations may 

be similar enough such that a single trend and set of parameter estimates can sufficiently 
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describe the dynamics of multiple sites (Chapters 3 and 4; Ward et al., 2010; Nguyen et al., 

2015). Shared trends and parameter estimates within a species over space may result naturally 

if populations display congruent dependence on an exogenous factor such as temperature or 

rainfall (Liebhold et al., 2004).  

Ecological monitoring programs focused on ecosystem and biodiversity management 

generally obtain information for multiple species (Nichols and Williams, 2006; Watson et al., 

2007), thus presenting opportunities for borrowing strength across species (MacKenzie et al., 

2005). The use of data from multiple species obtained from monitoring programs is appealing 

– analysis of multispecies data within a multivariate framework (in contrast to separate 

analysis of individual species) can provide greater insights into the ecology of a system and 

recognises that species can show covariation in their responses (Dunstan et al., 2013; 

McGarigal et al., 2013). I have previously used multivariate methods focusing on a single 

species, taking advantage of multiple life stages, replicates and sites to help parameterise 

models and identify important spatial and temporal trends (Chapters 3 and 4; Nguyen et al., 

2015). For large multi-species datasets however, it is inefficient to analyse each species 

separately and any similarities or covariation between species in their responses is not 

exploited (Dunstan et al., 2013; Hui et al., 2013). While the multivariate autoregressive state-

space (MARSS) models (Chapters 3 and 4) can theoretically produce high level analysis for 

multiple species, high dimensionality and parameter estimates can become an issue for large 

numbers of species.  

There are many alternative methods for modelling high dimensional multivariate data 

involving several species. These techniques have previously focused on measuring changes in 

biodiversity metrics such as α and β diversity (e.g. Magurran and Henderson, 2010; Legendre 

and De Cáceres, 2013; Dornelas et al., 2014), or testing for changes in community structure 

over time or space as demonstrated via time lag analysis (Collins et al., 2000) and the 



Chapter 5: Life form explains common temporal trends 

138 

 

mvabund R package (Wang et al., 2012). However, measures of biodiversity and community 

structure do not maintain species’ identity and are not suited for assessing and utilising the 

strength of similarities in species’ responses as demonstrated by Hui et al., (2013) for species 

distribution modelling. Traditional dimension reduction techniques for multivariate data such 

as ordination and principal component analysis (PCA) can be useful for identifying such 

similarities (McCune et al., 2002; McGarigal et al., 2013). However, these techniques do not 

explicitly account for time and are therefore inappropriate for identifying shared temporal 

responses in time series data (Zuur et al., 2003a). Dynamic factor analysis (DFA) on the other 

hand is ideal as it retains the temporal order of the observations, and produces similar output 

analogous to the principal components in PCA in the form of common trends (Zuur et al., 

2003a; Zuur et al., 2003b). Thus the temporal dynamics of a large number of species is 

reduced to a smaller number of easily interpretable trends. By clustering species with similar 

temporal dynamics into these common trends, we can also identify which species are suitable 

for borrowing strength.  

Here, I demonstrate the use of DFA on a multispecies time series dataset across multiple sites 

(9 years, 3 sites) to assess the suitability of borrowing strength across species and sites for 

estimating trends. The study system is an arid hummock grassland that is well-suited for the 

purpose as it experiences strong environmental drivers that might be expected to influence 

species in similar ways (Wardle et al., 2013; Dickman et al., 2014). In addition, by 

examining the trends of multiple species simultaneously rather, than a single species 

(Chapters 3 and 4), a broader description of the study system is provided. First, DFA will be 

used to determine whether any common trends exist, and if so, how many of these common 

trends are required to describe the temporal dynamics for the pool of species. If no such 

trends exist, then each species is acting idiosyncratically in response to environmental drivers 

and borrowing strength across species is unfeasible. If trends do exist however, then 
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similarities between species can be exploited and patterns may be identified as to which 

species have shared temporal dynamics and why. Species that share common ecological 

properties such as those within the same life form group have been demonstrated to respond 

similarly to a shared environmental driver (Lavorel et al., 1997; Lavorel and Garnier, 2002; 

Verheyen et al., 2003; Broennimann et al., 2006) and might therefore provide an explanation 

for the presence of common trends. DFA will also be used to assess the extent of spatial 

heterogeneity in species’ responses on both a local (within sites) and regional (across sites) 

scales. Species’ responses can differ by site (Warton and Wardle, 2003) or have similar 

dynamics due to shared external drivers such as environmental factors or geography 

(Hinrichsen and Holmes, 2009; Ward et al., 2010). By identifying patterns across species and 

space, recommendations are provided regarding the suitability of borrowing strength across 

species and sites.  

 

Methods 

Study site 

The study was conducted across Ethabuka Reserve and Carlo Station covering ~4400 km
2
 

within the Simpson Desert, central Australia (Fig. 5-1). The study region is mostly comprised 

of dune fields, with remaining areas consisting of clay pans, rocky outcrops and gibber flats 

(Dickman et al., 2014). The climate is hot and dry, with daily temperatures regularly 

exceeding 40°C in the summer and falling below 5°C during the winter. Average annual 

rainfall is about 150mm with large rainfall pulses falling disproportionately in the summer 

however they can occur throughout the year (Nano and Pavey, 2013). Vegetation is 

dominated by lobed spinifex (Triodia basedowii E.Pritz.) with occasional small stands of 

gidgee trees (Acacia georginae; Wardle et al., 2015), other woody Acacia shrubs and mallee 
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eucalypts (Frank et al., 2012; Tischler et al., 2013). Short-lived grasses and forbs are diverse 

and abundant following rainfall and persist in the dormant seed bank during dry periods.  

 

 

Fig. 5-1. Location of the three study sites (Main Camp, Field River and Carlo Shitty) across 

Ethabuka Reserve and Carlo Station.  

 

Data collection 

Vegetation surveys recording plant species’ abundances were conducted from 2004-2013 by 

the Desert Ecology Research Group at the University of Sydney (Wardle and Dickman 

unpublished data). Each site consisted of four 1-ha grids made up of 15 5 × 5 m plots placed 

in a 3 × 5 arrangement in which five plots on each row were placed along the swale, the 

middle and the crest of the dunes. Plots were spaced randomly with a minimum of 5m along a 
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100m transect. It should also be noted that the relatively small size of these plots is generally 

more suited for sampling grasses and other small species rather than large woody species 

such as the Acacias and Grevilleas (Gregoire and Valentine, 2007), thus capturing changes in 

abundances for woody species would be difficult. Sampling was conducted four times a year 

from 2004-2006 to ensure the entire life cycle for the ephemeral species was captured. 

However, due to funding and logistical constraints, sampling could only be conducted 1-2 

times a year from 2007 onwards at unequal time intervals. Additionally, not all grids were 

sampled every trip resulting in missing values in the time series.  

The placement of the grids was originally intended to focus on the effects of a wildfire that 

spread through the Simpson Desert in 2001-2002, incorporating both a local, stratified design 

where a site contained both a burnt and unburnt grid, and a regional design in which both 

grids were burnt or unburnt (Chapters 3 and 4; Greenville et al., 2009). Three study sites 

were incorporated into both the local and regional designs and therefore had four grids 

instead of two, with at least one burnt grid: Main Camp and Field River located on Ethabuka 

Reserve, and Carlo Shitty located on Carlo Station (Fig. 5-1). For the current analysis, I use 

data only for these three sites (total 12 grids and 180 plots) as those with two grids are 

unlikely to be sufficient to determine the extent of within-site spatial heterogeneity in 

species’ abundances. Fire history is likely to be an important factor in determining species 

abundances (Wright and Clarke, 2009; Dickman et al., 2014) and a potential cause of spatial 

heterogeneity on a local scale (Chapter 3). I do not conduct any formal examination of the 

effects of fire history in this analysis, however burnt and unburnt grids are distinguished 

when presenting the results of the DFA below.  

Daily rainfall data were obtained from automated weather stations (Environdata, Warwick, 

Queensland) located at each site and 3 month seasonal aggregates (Dec-Feb, Mar-May, Jun-
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Aug, Sep-Nov) were calculated and lined up with the census dates were calculated from May 

1995 onwards.  

 

Dynamic factor analysis 

Dynamic factor analysis (DFA) is a dimension reduction technique that models multivariate 

time-series data as a linear combination of common trends representing the dominant 

common temporal patterns, explanatory variables and noise (Zuur et al., 2003a; Zuur et al., 

2003b; Zuur and Pierce, 2004). Structurally, these models are very similar to the state-space 

models used in Chapters 3 and 4, albeit the different states are now species rather than spatial 

locations. The goal of these models is to find the smallest number of common trends, m, 

required to sufficiently describe the data (Zuur et al., 2003a). The DFA is distinguished from 

factor analysis in that the dynamic factor model assumes the common trends (axes) are 

correlated through time, whereas factor analysis does not (Zuur et al., 2003b). These models 

have been applied to a wide range of fields including psychology (Molenaar, 1985; Ferrer 

and Nesselroade, 2003), economics (Stock and Watson, 2012), health sciences (Hasson and 

Heffernan, 2011), hydrology (Muñoz-Carpena et al., 2005), but its application to ecology is 

mostly focused on marine ecology and fisheries literature (Erzini, 2005; Erzini et al., 2005; 

Andrews et al., 2014; Baudron et al., 2014). Following the notation of Holmes et al., (2012a), 

the mathematical formulation for the DFA model is: 

 xt = xt-1 + wt  where wt ~ MVN(0, Q)  (1) 

 yt = Zxt + Ddt + vt  where vt ~ MVN(0, R) (2) 

Equation 1 models the trends, whereby the m × 1 column vector xt represents the values of 

the m common trends at time t and Q is a diagonal error covariance matrix set equal to the 

identity matrix (Zuur et al., 2003b). Equation 2 relates the n observed time series to the m 



Chapter 5: Life form explains common temporal trends 

143 

 

common trends, whereby the n × m matrix Z consists of factor loadings indicating the 

strength of the relationship between an observed time series and each of the common trends, 

D indicates effects of explanatory variables, dt contains the value of the explanatory variable 

at time t, and the covariance matrix R represents the noise component. The error structure for 

both equations are assumed to come from a multivariate normal distribution. While a Poisson 

or negative binomial distribution may be more appropriate for count data, implementing these 

distributions would require extensive modifications to the estimation procedure used in Zuur 

et al, 2003b, and is outside the scope of this study.  

Separate DFA models were constructed for each site on the standardised abundances for 

species that were included and the resulting common trends used to describe the different 

types of responses and life-history strategies present in the plant community. Factor loadings 

obtained from the DFA were used to link species with the common trends and compare 

loadings across species to determine whether plant species exhibit any patterns in their 

groupings based on their life form. Four life form groups were identified from the data: forbs, 

grasses, subshrubs and shrubs. Subshrubs are defined here as short shrubs that are typically 

only woody at the base, while shrubs consist of woody species that are typically over 1m in 

height. Species sharing high, positive factor loadings for a particular trend are highly 

associated and can be described as acting in synchrony. In contrast, species with negative 

factor loadings for that same trend would suggest a negative correlation, and thus can be 

considered to act antagonistically to species with positive loadings. In addition, factor 

loadings were compared across grids to assess whether species behaviour and groupings are 

consistent within sites. Given the high number of factor loading parameters estimated for 

each species, grid, and trend, factor loadings are presented as a colour coded table instead of 

traditional factor loadings plots such as those in Zuur et al., (2003a) to facilitate identification 

of patterns across species. Finally, models including rainfall were used to identify 
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relationships between species groups or common trends and patterns relating to rainfall. For 

each site, species that were spatially or temporally sparse (i.e. only observed in a single 

census, plot or grid) and therefore had insufficient observations for estimation of spatial and 

temporal trends were not considered for this analysis (See Appendix 4-1 for full list of 

species for each site). For Main Camp, the total species pool was reduced from 70 to 27 

species (14 forbs, 5 grasses, 5 subshrubs and 2 shrubs), 65 to 28 species for Field River (15 

forbs, 5 grasses, 5 subshrubs and 3 shrubs), and 52 to 30 species for Carlo Shitty (16 forbs, 5 

grasses, 5 subshrubs and 4 shrubs).  

Dynamic factor models containing 1-5 common trends were constructed for each site with 

and without rainfall. The error covariance matrix, R, was modelled as diagonal. While a 

symmetric positive-definite matrix with non-zero off-diagonal elements can be used, the 

number of parameters increases drastically, particularly given the dimensionality of the 

covariance matrix (Zuur et al., 2003a). Models were compared using Akaike’s information 

criterion corrected for small sample sizes (AICc) in which the model with the lowest score 

provides the best fit (Burnham and Anderson, 2002). Estimated state predictions were also 

checked to determine appropriateness of the model. To ease comparisons of factor loadings, 

covariate coefficients and trends in abundance estimates between species (which can range 

from <10 to >1000 individuals for a single census), all data including rainfall were 

standardised by deducting the mean and dividing by the standard deviation (Zuur et al., 

2003a; Zuur et al., 2003b). Dynamic factor models were constructed via the Kalman Filter 

and Expectation-Maximisation algorithms implemented by the MARSS package (Holmes et 

al., 2012a; Holmes et al., 2012b) in R (R 3.1.2; The R foundation for Statistical Computing; 

see Appendix 4-2 for custom functions used in DFA models). Following construction of the 

dynamic factor models, factor loadings were transformed using the varimax rotation, which 

produces an equivalent solution for Eqs. 1 and 2, but creates larger differences in loadings 
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between trends thereby reducing ambiguity and simplifying interpretations of factor loadings 

(Holmes et al., 2012a; Thorson et al., 2015).  

 

 

 

Results 

The presence/absence and relative abundances over time of species for one grid in Main 

Camp are shown in Fig. 5-2 (see Appendix 4-3 for remaining grids). A number of species 

experienced peak abundance concurrently during the winter/spring seasons of 2005, but were 

present in comparatively lower abundances throughout the rest of the census period. The 

unpredictability in occurrence for the shorter lived species, namely the forbs and grasses, 

highlighted the difficulty in attempting to extrapolate species persistence from one season to 

the next where missing values are present.   

The results of dynamic factor analysis suggested that for each of the three sites, the model 

with five common trends provided the best fit; although the inclusion of the rainfall covariate 

did not necessarily provide the best model for all sites. (Table 5-1). The best model for Main 

Camp included rainfall whereas the best models for Field River and Carlo Shitty did not. 

However, the state predictions for Carlo Shitty without rainfall were a poor fit and thus the 

model with rainfall included is presented instead (see Appendix 4-4 for details).  

 

 



Chapter 5: Life form explains common temporal trends 

146 

 

 

 

 

Fig. 5-2. Plot of A) presence/absence and B) relative frequency of species present for a single 

grid in Main Camp divided by life form. Species in black are forbs, red are grasses, blue are 

shrubs and green are subshrubs. Red cells indicate presence, white indicates absence while 

gray indicates a missing value when a census was not conducted. 
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Table 5-1. Comparison of model selection criteria for dynamic factor analysis models of 

temporal trends in plant abundance for each of three sites. Each model included up to 

five common trends, and for each of these model types, separate models were run with or 

without rainfall. Best fitting models with the lowest AICc values are highlighted in bold. 

I note that while the model with five trends and no rainfall covariate was the best fit for 

Carlo Shitty, state predictions were extremely poor thus the five trend model with 

rainfall was used instead (see Appendix 4-1 for more details).  

  AICc values for each model 

 Number of 

common trends  

Inclusion of covariate 

Site No Rainfall Rainfall 

Main Camp 

1 5421.708 5310.029 

2 5338.202 5252.031 

3 5295.429 5255.762 

4 5229.903 5195.189 

5 5222.686 5125.651 

Field River 

1 5820.614 5711.964 

2 5217.596 5130.007 

3 5184.068 5154.563 

4 5154.660 5180.860 

5 5082.698 5188.875 

Carlo Shitty 

1 5864.093 5685.216 

2 5424.609 5344.75 

3 5320.715 5327.155 

4 5199.496 5276.44 

5 5124.69 5162.35 
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The estimated common trends and standardised rainfall data for all sites are presented in Fig. 

5-3. The DFA does not order the common trends by their relative importance (Zuur et al., 

2003b). Thus to simplify comparisons, rather than present common trends in the default order 

provided by DFA, trends were re-arranged to be sequential in time with respect to their 

maximum value. The first common trend for all sites was characterised by a short-term 

maximum in abundance in winter 2005, with a dip through 2009-2011 in Main Camp and 

Carlo Shitty, likely to account for species associated with this trend that did not respond to 

the heavy rainfall that fell during this period. Since the trends for Field River did not contain 

rainfall, this decline was not observed. The second trend showed a brief peak in abundance in 

spring 2005 for all sites, with an additional increase in abundance through 2010-2012 for 

Main Camp. The third trend for Main Camp and Field River was characterised by a brief 

peak in abundance in winter 2006, while the third trend for Carlo Shitty showed a steady 

increase in abundance until autumn 2008 at which point it drops and levels off. Together, the 

first and second trends for all sites and the third for Main Camp and Field River appeared to 

reflect behaviour of an opportunistic, ephemeral species albeit appearing at different times. 

The fourth trend for Main Camp described a sudden increase in abundance from winter 2007 

through to spring 2008, followed by a second peak in abundance in winter 2010. In Field 

River and Carlo Shitty, trend four showed an increase in abundance beginning in winter 2009 

reaching a maximum in winter 2010 and dropping off quickly thereafter. This trend suggested 

a more sustained increase in abundance over the course of at least a year in contrast to the 

short-lived seasonal increases in abundances of the previous trends. The final trend indicated 

steady increase in abundance, likely resembling the life history of a perennial species rather 

than a short-lived annual. These steady increases in abundance begin in winter 2008 for Main 

Camp and Field River, and autumn 2006 for Carlo Shitty.  
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Fig. 5-3. Plots of common trends and rainfall (both standardised) from the best fitting model 

for Main Camp, Field River and Carlo Shitty. Trends have been re-arranged to be sequential 

with respect to their maximum value.  
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Comparison of factor loadings across life forms indicated the forbs were highly associated 

with the first common trend in most grids for Main Camp, Field River and to a lesser extent 

Carlo Shitty (Table 5-2). This suggested a collective response by the forbs across sites in 

winter 2005, likely in response to the relatively minor rainfall event during this time. The 

grasses, with the exception of the perennial hard spinifex Triodia basedowii, showed strong 

associations with trend four in all grids for each site across a majority of the grids suggesting 

high levels of synchrony in species responses amongst the grasses. Subshrubs were somewhat 

synchronous in their response, although the shape and timing of their responses differed by 

site. In Main Camp, subshrubs were associated with trends one and two, responding in 

tandem with the forbs in winter and spring of 2005. Subshrubs in Field River were mostly 

associated with trend four along with the grasses and many forb species, while the responses 

of subshrubs in Carlo Shitty were diverse, being spread across trends one, two, four and five. 

Shrubs in general did not appear to have any consistent associations with any of the trends 

within their life form or across grids, although Grevillea stenobotrya was weakly associated 

with trend five across grids and sites. None of the common trends or their corresponding 

factor loadings suggested any long term decline for any of the species present.  
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Table 5-2. Strength of factor loadings as indicated by colour* for the best fitting model for A) Main Camp, B) Field River and C) Carlo 

Shitty for each species divided by life form. Each trend is sub-divided into four columns to indicate factor loadings for the four grids. 

Grids affected by the 2001-2002 wildfire appear to the right of the dashed line (Main Camp: grid 4, Field River: grids 3 and 4, Carlo 

Shitty: grids 2,3 and 4). 

A) 
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Life form Species 
     

Forbs 

Blennodia canescens                     

Calandrinia balonensis                     

Calocephalus platycephalus                     

Calotis hispidula                     

Euphorbia drummondii                     

Euphorbia tannensis                     

Goodenia cycloptera                     

Haloragis gossei                     

Helipterum floribundum                     

Othonna gregorii                     

Salsola kali                     

Trachymene glaucifolia                     

Trianthema pilosa                     

Triumfetta winneckeana                     

Grasses 

Aristida contorta                     

Eriachne aristidea                     

Paractaenum refractum                     

Triodia basedowii                     

Yakirra australiensis                     
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Subshrubs 

Dicrastylis costelloi                     

Newcastelia spodiotricha                     

Scaevola depauperata                     

Sida fibulifera                     

Tephrosia rosea                     

Shrubs 
Acacia ligulata                     

Grevillia stenobotrya                     

 

 

B) 

F
IE
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Life form Species 
     

Forbs 

Brunonia australis                     

Calandrinia balonensis                     

Calotis hispidula                     

Euphorbia drummondii                     

Goodenia cycloptera                     

Halgania cyanea                     

Haloragis gossei                     

Helipterum muelli                     

Lepidium phlebopetalum                     

Oldenlandia pterospora                     

Othonna gregorii                     

Salsola kali                     

Swainsona microphylla                     

Trachymene glaucifolia                     

Trianthema pilosa                     
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Grasses 

Aristida contorta                     

Eriachne aristidea                     

Paractaenum refractum                     

Triodia basedowii                     

Yakirra australiensis                     

Subshrubs 

Newcastelia spodiotricha                     

Scaevola depauperata                     

Sida fibulifera                     

Sida trichopoda                     

Tephrosia rosea                     

Shrubs 

Acacia dictyophleba                     

Acacia ligulata                     

Grevillea stenobotrya                     

 

C) 

C
A

R
L

O
 S
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Life form Species 
     

Forbs 

Blennodia canescens                     

Brunonia australis                     

Calandrinia balonensis                     

Calocephalus platycephalus                     

Calotis erinacea                     

Euphorbia drummondii                     

Euphorbia tannensis                     

Goodenia cycloptera                     

Haloragis gossei                     

Helipterum floribundum                     
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Oldenlandia pterospora                     

Ptilotus latifolius                     

Salsola kali                     

Swainsona microphylla                     

Trachymene glaucifolia                     

Trianthema pilosa                     

Grasses 

Aristida contorta                     

Eriachne aristidea                     

Paractaenum refractum                     

Triodia basedowii                     

Yakirra australiensis                     

Subshrubs 

Abutilon otocarpum                     

Scaevola depauperata                     

Senna pleurocarpa                     

Sida fibulifera                     

Tephrosia rosea                     

Shrubs 

Acacia ligulata                     

Acacia stenophylla                     

Grevillea stenobotrya                     

Grevillea striata                     

* Trend key 

Dark blue Strong positive Z > 0.6 

Blue  Moderate positive 0.4 < Z < 0.6 

Light blue  Weak positive  0.2 < Z < 0.4 

White  Neutral  -0.2 < Z < 0.2 

Light red Weak negative  -0.4 < Z < -0.2 

Red  Moderate negative -0.6 < Z < -0.4 
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Examination of state predictions averaged within sites highlighted clear patterns in time 

series abundance across life forms and reinforced the results of the factor loadings (Table 5-

3). State predictions for individual species’ generally conformed to that of their life form with 

some exceptions. For example, the forb species Brunonia australis, Euphorbia drummondii, 

Oldenlandia pterospora, Swainsona microphylla and Trianthema pilosa showed trajectories 

either resembling that of the grasses or a combination of the forbs and grasses. The shrubs 

(with the exception of Acacia ligulata) and the perennial grass T. basedowii followed a 

trajectory resembling persistent growth despite weak factor loadings for trend five. While life 

form categories exhibited consistent trends within sites, comparisons between sites revealed 

variable responses, particularly for the subshrubs. For example, the subshrubs at the Main 

Camp site had multiple peaks in abundance throughout the census period, but peaks appeared 

only intermittently in Field River and Carlo Shitty. Similarly, the grasses at the Main Camp 

site increased in abundance much sooner than at the Field River or Carlo Shitty sites, despite 

similar rainfall patterns across the three sites.  

 

 

 

 

 

 

 

 

 

 

Figure 5-4. Mean state predictions for the best fitting models from 2004-2013 across 

grids for each species and site. State predictions are calculated as a linear function of 

their factor loadings multiplied by the corresponding common trends. Since data were 

standardised prior to model construction, all state predictions are unitless.   
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Life form Species Main Camp Field River Carlo Shitty 

Forbs 

Blennodia canescens  
 

 

Brunonia australis  
  

Calandrinia balonensis 
   

Calocephalus platycephalus 
 

 
 

Calotis erinacea   
 

Calotis hispidula 
  

 

Euphorbia drummondii 
   

Euphorbia tannensis  
 

 

Goodenia cycloptera 
   

Halganea cyanea  
 

 

Haloragis gossei 
   

Helipterum floribundum 
  

 

Helipterum muelli  
 

 

Lepidium phlebopetalum  
 

 

Oldenlandia pterospora  
  

Othonna gregorii 
  

 

Ptilotus latifolius   
 

Salsola kali 
   

Swainsona microphylla  
  

Trachymene glaucifolia 
   

Trianthema pilosa 
   

Triumfetta winneckeana  
  

Grasses 

Aristida contorta    

Eriachne aristidea 
   

Paractaenum refractum 
   

Triodia basedowii 
   

Yakirra australiensis    

Subshrubs 

Abutilon otocarpum   
 

Dicrastylis costelloi 
 

  

Newcastelia spodiotricha 
  

 

Scaevola depauperata 
   

Senna pleurocarpa   
 

Sida fibulifera    

Sida trichopoda  
 

 

Tephrosia rosea    



Chapter 5: Life form explains common temporal trends 

158 

 

Shrubs 

Acacia dictyophleba  
 

 

Acacia ligulata 
   

Acacia stenophylla   
 

Grevillea stenobotrya    

Grevillea striata   
 

 

Discussion 

In this study, dynamic factor analysis was applied to multivariate time series abundance data 

to identify possibilities for borrowing strength across species with similar temporal trends. 

Achieving this would help to improve ecological inferences as the common trends could then 

be applied to species with scarce data. While many multivariate techniques measure changes 

in overall community structure (Collins et al., 2000; Wang et al., 2012) or biodiversity 

metrics (Magurran and Henderson, 2010; Legendre and De Cáceres, 2013; Dornelas et al., 

2014), DFA focuses on temporal changes at the species level making it particularly well 

suited for this task. By linking the temporal dynamics of a large number of species into a 

small set of common trends, species with similar responses over time are clustered, 

demonstrating the species and spatial locations, for which borrowing strength across species 

is possible. Another advantage of DFA is that the common trends provide a neat visualisation 

of the dynamics for a large number of species that might otherwise by difficult to interpret or 

analyse if species were studied individually (Zuur et al., 2003a; Zuur et al., 2003b). Finding 

ways to identify patterns in large multivariate datasets produced by monitoring programs is 

important. Simple techniques such as graphing the raw data are an informative, albeit an 

under-used tool for analysing multivariate abundance data (Warton, 2008). Here, combined 

tabulation of presence-absence information and relative abundance time series plots (Fig. 5-2) 

revealed important patterns of response and also exposed the loss of information when large 
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gaps are present in the data. Patterns emerged in the timing of pulse events where numerous 

species were suddenly in abundance producing concurrent peaks indicating similar responses 

to environmental drivers. While factor loadings are usually presented as a plot with vertical 

lines indicating the strength of the factor loading (e.g. Zuur and Pierce, 2004; Erzini, 2005), 

here they are presented as a colour coded gridded table to help identify within site 

heterogeneity (Table 5-2). This visualisation, combined with plots of the state predictions for 

each species (Table 5-3), revealed important spatial and temporal patterns across species.  

A key result of this study was that life form is a strong predictor of temporal responses across 

species. Forbs and grasses in particular showed high levels of synchrony in response of rain 

events, but this was less pronounced for shrubs and subshrubs. Life form can be a crude 

proxy for functional types, often sharing key functional and life-history traits that affect plant 

responses to biotic and abiotic factors (Lavorel et al., 1997; Lavorel and Garnier, 2002). 

Previous research has demonstrated similar responses to shared environmental drivers 

amongst species within the same life form group (e.g. Pausas and Austin, 2001; Verheyen et 

al., 2003; Wang et al., 2003; Broennimann et al., 2006), and the results of this study affirm 

this shared response. This has several implications for management - life form can be viewed 

as a reasonable criterion for selecting species to borrow strength from to supplement data for 

poorly sampled species (MacKenzie et al., 2005). However, the unique responses of each life 

form highlight the need for a diversity of sampling across each life form. Monitoring of arid 

zones for example is often focused only on perennial or woody vegetation (Watson et al., 

2007) and is therefore unlikely to be representative of the full range of responses to 

environmental drivers. Shorter lived species with rapid life-cycles and high environmental 

stochasticity may require more frequent sampling and smaller gaps between censuses 

(Chapter 3), however large woody long-lived species may be sampled less frequently 

provided the time scales are long enough to capture any changes. The current dataset used in 
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this study was only of moderate length and the relatively small plot sizes meant shrubs were 

not as well represented (Gregoire and Valentine, 2007). Furthermore, shrubs are not likely to 

show much change in abundance over time in the absence of major environmental drivers 

such as wildfires. Despite this setback, DFA was still able to detect a common trend 

describing these species (Fig 5-3, Trend 5) although factor loadings for shrubs were quite 

low.  

While life form was found to be an important predictor of temporal trends in this study, there 

are several limitations that need to be considered. Firstly, the temporal and spatial scale 

across which these shared responses needs to be taken into account. For example, the spatial 

heterogeneity in species' responses was found to be quite large such that borrowing strength 

may only be applicable at local spatial scales. This spatial heterogeneity may be driven by a 

number of factors including soil properties (Peek and Forseth, 2009), distribution of rainfall 

(Greenville et al., 2012), and wildfire history (Greenville et al., 2009; Peek and Forseth, 

2009; Greenville et al., 2012). I had previously shown that for the ephemeral plant 

Trachymene glaucifolia, differences between sites were large enough to require separate 

trends and parameter estimates (Chapter 3). In contrast, population dynamics for the 

perennial grass Triodia basedowii were driven primarily by fire history rather than study site 

(e.g. Chapter 4; Nguyen et al., 2015). Indeed, some species appear to show more spatial 

variation in their dynamics than others. It is therefore plausible that short-lived plants may be 

more sensitive to differences in resources across space, while long-lived perennials only 

show substantial differences in dynamics when impacted by sufficiently large disturbances 

such as wildfire. Furthermore, while species can respond similarly in the short term to major 

stochastic events such as heavy rainfall and wildfires, population dynamics across species 

would be less likely to be synchronous over longer temporal scales. This is consistent with 
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the need to account for scale in tracking changes over space or time (Peters and Havstad, 

2006; Wardle et al., 2013).  

The common trends produced by the DFA models also provided a useful description of the 

overall study system. The five trends produced in this case study for example suggest no 

long-term decline over the duration of the census period. The trends also described well-

recognised population dynamics characteristic of arid zone ecosystems. Several of the 

common trends showed brief surges in abundance, indicating pulse events whereby heavy 

rain and the build-up of seeds in the soil seed bank permitted short-lived plants to quickly 

dominate the landscape (Ludwig et al., 1997). However, not all species were responding to 

every pulse event suggesting variation in the timing and ability of species to respond to 

rainfall events (Nano and Pavey, 2013). The remaining common trends reflect species that 

responded with more sustained increases in abundance over time likely requiring more 

continuous rainfall, and or those that experienced gradual increases in abundance, such as the 

woody shrubs and perennial grass T. basedowii.  

A more accurate description of the study system, common trends and factor loadings would 

have been possible had the covariance matrix R been modelled as symmetric rather than 

strictly diagonal (Zuur et al., 2003a). However, the burden of estimating additional 

parameters, could potentially cause instabilities in the algorithm if the number of time series 

were too large, and would greatly increase computing time (Zuur et al., 2003a). Such an error 

structure might also be expected to favour fewer trends during the model selection process as 

the number of parameter estimates can increase substantially with every additional time series 

added. Furthermore, to prevent instabilities in the algorithm and facilitate estimation of 

trends, species with insufficient observations to discern any temporal and spatial dynamics 

were removed from this analysis (see Appendix 4-1 for full list of species). The 
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appropriateness of borrowing strength based on life form for these insufficiently sampled 

species may differ based on the type of rarity being displayed. For example, there may be 

potential to borrow strength species that are locally abundant but not widely distributed, as 

life form patterns seem to hold at a local scale. On the other hand, if a species is rare because 

it consistently occurs at low densities even though it is widely distributed (Rabinowitz, 1981), 

then borrowing strength may be limited as it is not as responsive to environmental drivers. 

Although beyond the scope of this study, in future work, modelled predictions based on 

borrowing strength for species with varying patterns of rarity could by tested with new field 

data by intensifying the surveys to ensure that adequate information is available for each 

species. 

Finally, DFA results would be more informative if the model were extended to include non-

normal distributions for the error structure such as Poisson or negative binomial distributions 

which are more suited to count data (Kéry and Schaub, 2012). However, implementation of 

these distributions would require extensive modifications to the parameter estimation 

procedure used in (Zuur et al., 2003b), and to date incorporation of a non-normal error 

structure has yet to be applied to DFA. While I am confident the results and patterns of the 

current study are robust, it would be well worth further developing the DFA models and 

conducting simulations studies on data with known error structures to examine the impact of 

the normality assumption on trend estimation.  

 

Final thoughts 

While the availability of long-term ecological data is on the rise, high quality data continue to 

be a scarce commodity (Chapter 1; Lindenmayer et al., 2012), thus any opportunities to 
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supplement deficient datasets by sourcing information from multiple sources can be valuable 

(MacKenzie et al., 2005). Based on the results of the DFA models, it is proposed to managers 

that life form is a reasonably strong predictor of temporal responses but with the necessary 

caution that extending inferences across species applies only to local spatial scales. 

Furthermore, if monitoring programs are able to produce multispecies abundance data, 

analysis of such data within a multivariate framework will provide several advantages over 

single species analysis (Dunstan et al., 2013; Hui et al., 2013), and DFA is a useful addition 

to the numerous multivariate techniques currently available.  Currently, DFA has been 

applied mostly in the context of fisheries and marine biology (e.g. Erzini, 2005; Tulp et al., 

2008; Nye et al., 2010; Maurer et al., 2014), however this study has demonstrated this 

technique to be just as applicable to terrestrial ecological data, particularly those obtained 

from long-term monitoring programs.  
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Chapter 6 - Summary and conclusions 

 

 

Raw data measurements, while containing many uncertainties, form the backbone of 

ecological research. Photograph by Glenda Wardle.  



Chapter 6: General discussion and conclusions 

172 

 

Overview 

“It is in the admission of ignorance and the admission of uncertainty that there is hope for 

the continuous motion of human beings in some direction that doesn’t get confined, 

permanently blocked, as it has so many times before in various periods in the history of man” 

Richard Feynman, 1999 

Uncertainty is a pervasive concept; complete certainty can be an illusion, potentially more 

damaging and misleading than recognising that every data set, conclusion or inference will 

exhibit some uncertainty (Tukey, 1969). Importantly, uncertainty can be measured and by 

doing so, the current state of knowledge is clearer and new directions for progress 

illuminated. In chapter 1, I introduced a table (Table 1-1) producing four broad categories 

describing different levels of uncertainty (knowledge, gaps, opportunities, and uncertainty 

and risk) along two axes. The first axis described the level of information available (known or 

unknown) and the second axis categorised the awareness of the need or availability of such 

information, also known or unknown. The most interesting category, arguably, is the one 

referred to as “opportunities”, in which a simple shift in awareness from unknown to known 

can produce the most knowledge for the least amount of effort. Indeed, successful companies 

are those that are well prepared to deal with future uncertainties by investing in preparation 

and innovation, and viewing uncertainty as an opportunity to gain an advantage over their 

competitors (von Oetinger, 2004). Reducing uncertainty is a noble goal, however successfully 

addressing ecological uncertainty also requires that we acknowledge it cannot be eliminated 

entirely. By embracing this simple reality we will be more prepared for managing 

uncertainties and thus avoid drawing inappropriate conclusions. On the practical side moving 

towards methodologies that incorporate measures of uncertainty directly will help guide 

directions for profitable future research and inspire new data collection protocols.  



Chapter 6: General discussion and conclusions 

173 

 

The research outlined in this thesis was designed around a framework of structured 

population models and multi-species models to illustrate these points. A number of sources of 

uncertainty have been explored using a series of case studies to demonstrate the impact of 

common sources of uncertainties, in detecting individuals, measuring observations, or 

identifying the underlying causal processes for differences from place-to-place or over time. 

To bring this all together, Table 6-1 summarises the links between the ideas and how they are 

addressed in each of the thesis chapters. I compare the areas of uncertainty covered, the type 

of data in the case study, the analytical techniques used and the key findings. Following that, 

I discuss the key findings of this thesis in relation to the key areas of uncertainty, any 

limitations in what can be inferred from the current analyses and how that highlights areas for 

future research.  
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Table 6-1. Summary of the sources of uncertainty addressed in this thesis and the key 

findings 

Chapter Areas of 

uncertainty 

Case study Techniques used Key findings 

2 Demographic 

parameters 

Cryptic life stages 

Addition of seed 

bank for 12 

species and 

removal for 6 

species 

Monte Carlo 

simulations 

External literature 

Quantification of  

uncertainty in 

demographic 

models resulting 

from exclusion of 

seed bank stage 

3 Cryptic life stages 

Observation error 

Missing values 

Ephemeral plant 

and seed bank 

across four sites 

Multivariate state-

space modelling 

Contrasting 

patterns in error 

terms between  

seed bank and 

plants 

4 Observation error 

Visual cover 

estimates 

Two long term 

monitoring 

datasets covering 

nine sites 

Multivariate state-

space modelling 

Justified validity 

of visual cover 

estimates 

5 Monitoring trade-

offs 

Plant communities 

of up to 30 species 

in three sites 

Dynamic factor 

analysis 

Species responses 

strongly associated 

with life form but 

not over space 

 

Key findings 

A key message of this thesis is that it confirms the importance of acknowledging and 

incorporating uncertainty into our modelling, statistical design and data collection 

procedures. Before data collection can even begin, one must make a careful evaluation of the 

potential sources of uncertainty and plan strategically to either reduce these errors or assess 
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how they can be accounted for. It is of some concern that many authors (approximately 47%; 

Appendix 1-1) had not even considered the possibility of a seed bank stage despite it being an 

important life history strategy in stochastic environments (Chapter 2; Evans et al., 2007; 

Venable, 2007). It is contingent on researchers to be aware of the full life cycle of their study 

organisms, and whether cryptic life stages, such as a seed bank or vegetative dormancy, are 

likely to exist. Once the life cycle has been established, it is then up to the researcher to 

determine how they wish to address potentially cryptic life stages and uncertainty in their 

demographic parameters. Using a combination of the pre-existing literature and computer 

simulations can be a cost-effective method to reduce and quantify uncertainty in demographic 

output, particularly if obtaining field estimates is unfeasible, and in some cases justify the 

exclusion of the seed bank altogether (Chapter 2; Fig 2-5; Garcia et al., 2010). Field estimates 

of vital rates and abundance will always be preferable, however, as literature estimates from 

germination experiments may not necessarily reflect those in the field (Torang et al., 2010; 

Gross and Mackay, 2014). Indeed, obtaining information on the seed bank or other cryptic 

life stages, even if this information is crude, may also help inform and reduce uncertainty of 

estimates for other life stages and the overall population (Chapter 3). 

Researchers allocating resources in monitoring programs may wish to consider the sources 

and likely sizes of observation and process errors, relative to each other and across sites, as 

these are influenced by a number of factors that can be predetermined such as life history 

(long or short-lived, abundant or rare), level of vegetation cover (high or sparse) and 

biodiversity (many species or single dominate species; Chapters 3 and 4). Some data such as 

visual cover estimates will be more susceptible to errors and uncertainty (Helm and Mead, 

2004), emphasising the need to account for such errors prior to, or during, analysis (Wintle et 

al., 2013). Importantly, if statistical models are able to incorporate and quantify observation 

errors, even datasets with substantial observation errors such as those obtained via visual 
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estimation methods can still produce conclusive and meaningful trends (Chapter 4). Adopting 

a hierarchical modelling framework when analysing ecological data is therefore highly 

beneficial, as this explicitly separates the observation and the true ecological processes 

(Chapter 3; Kéry and Schaub, 2012). Parameter estimation for observation and process errors 

can also be drastically improved through taking replicated samples, particularly when 

temporal coverage is limited (Chapters 3 and 4; Dennis et al., 2010). Once these errors are 

quantified, this knowledge can be further applied to develop better strategies and 

prioritisation for data collection, for example if it is discovered that a population or study site 

is more susceptible to observation error whilst having little intrinsic variation (Chapter 3). In 

such cases, it may be strategic to allow for missing values by omitting surveys and instead 

focus on obtaining more accurate measurements to reduce observation errors, or expand 

sampling to more sites.  

Throughout the thesis, I also highlighted the advantages of modelling times series abundance 

data within a multivariate framework such that both spatial data, and data across species, are 

modelled in a joint manner to extract all relevant information and exploit any similarities in 

dynamics that may exist (Dunstan et al., 2013; Hui et al., 2013). This is particularly 

important where data are scarce or limited, as information from other sites or species can 

provide valuable opportunities for borrowing strength to improve ecological inferences 

(MacKenzie et al., 2005). If population dynamics and trends in abundance between study 

sites are similar and act in synchrony in response to a shared environmental driver, data 

across multiple sites can be aggregated and fewer trends and parameters will need to be 

estimated (MacKenzie et al., 2005; Ward et al., 2010). Using a novel statistical technique, 

multivariate auto-regressive state-space (MARSS) modelling (Holmes et al., 2012a; Holmes 

et al., 2012b), I was able to assess the spatial structure for select species whilst 

simultaneously accounting for missing values and observation error. The results from these 
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models suggested that the trends in abundance for the short lived ephemeral herb Trachymene 

glaucifolia were site-specific (Chapter 3) while for the perennial grass Triodia basedowii 

population dynamics were driven primarily by time-since-last fire, regardless of study site 

(Chapter 4). Another useful multivariate time series technique, dynamic factor analysis (Zuur 

et al., 2003a; Zuur et al., 2003b), was able to further explore these spatial and temporal trends 

but for multiple species simultaneously. By taking a more holistic, multispecies approach, I 

found some species to show more spatial variation in their dynamics than others. Short-lived 

plants for example may be more sensitive to geographical differences while populations of 

long-lived perennials may only show substantial differences in dynamics when impacted by 

sufficiently large disturbances such as wildfire (Chapter 5). Thus, for short-lived species in 

particular, quantifying the level of spatial heterogeneity is crucial in order to justify 

aggregating data across sites.  

Another key result produced by DFA was the identification of life form as a powerful 

predictor of temporal responses across species (Chapter 5). While this is not entirely new, 

given the long tradition of using life form in plant ecology, the division of species by life 

form group such as forbs, grasses and shrubs, can be particularly useful as they often share 

ecological properties and therefore have similar responses to shared responses over time 

(Pausas and Austin, 2001; Verheyen et al., 2003; Wang et al., 2003; Broennimann et al., 

2006). This thesis provides some justification for these shared temporal responses within life 

form groups to borrow strength across species where data is scarce. Thus, just as information 

from multiple life stages (Chapters 2 and 3), sites (Chapters 3 and 4) or datasets (Chapter 4) 

can improve inferences for a species of interest, so too, aggregated information from multiple 

species can inform the dynamics across species (Chapter 5). 
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Limitations and future research 

It is crucial to consider the entire life cycle of a study species to provide more accurate 

estimates of population abundance, viability and invasibility. This thesis focused specifically 

on the seed bank (Chapters 2 and 3), although there exists many other examples of cryptic 

life stages for both plants and animals that are likewise neglected during data collection. 

Dormancy can also be found in adult plants, in which individuals do not sprout above ground 

for one or more growing seasons (Shefferson, 2009). Similarly, some animal species undergo 

periods of dormancy, performing a similar function to that of the seed bank (Geiser, 2004). 

Capturing the entire life cycle for animal species can be additionally problematic as certain 

individuals may occupy inaccessible locations, or be absent from sampling designs. 

Monitoring of raptor populations for example failed to take into account the non-breeding 

component of the population resulting in severely underestimated population sizes (Katzner 

et al., 2011). A systematic approach towards investigating the prevalence and impact of 

models that exclude other cryptic life stages is difficult given the diversity of life forms and 

life history strategies that potentially involve individuals that are difficult to detect. While 

there is a breadth of resources available to investigate dormancy and germination rates in 

relation to the seed bank (e.g. Baskin and Baskin, 1998), this may not be the case for other 

cryptic life stages. However, the upcoming release of the COMADRE Animal Matrix 

Database (Salguero-Gómez et al., in prep.) may provide a useful starting point for future 

research into this area. In the absence of direct observations of cryptic life stages, multistate 

occupancy models and the recently developed hidden Markov models are able to use time 

series of presence-absence data to infer the presence or absence of a species below ground, or 

indeed any unobservable or cryptic stage class (MacKenzie et al., 2009; Fréville et al., 2013). 

These techniques are promising in their application however their prevalence in modelling 

cryptic life stages using real data is as yet quite limited (but see Lamy et al., 2013). 
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The MARSS framework is quite powerful for modelling multivariate time series data and 

accounting for observation error, although the models can be data intensive given the 

difficulty in partitioning observation and process variance (Dennis et al., 2010; Holmes et al., 

2012b; Appendix 3). Estimating both observation and process error becomes increasingly 

problematic in general when sampling intervals are uneven or there are missing values in the 

data, as this restricts the usage of more simpler and perhaps less data intensive modelling 

techniques and necessarily complicates parameter estimation (Dennis et al., 2010; Dennis and 

Ponciano, 2014). The state-space model based on the Ornstein-Uhlenbeck process (OUSS), a 

continuous time model of a stochastic process at equilibrium, provides a simple alternative 

using maximum likelihood methods that still accounts for uneven intervals, process and 

observation errors, and the option to include density dependence (Dennis and Ponciano, 

2014). This method is less data intensive than the MARSS framework, but there is the 

additional restriction having no zeroes in the time series which is quite rare in ecological 

count data (Damgaard, 2009).  

Implementation of the MARSS models within R (R 2.15.3; The R foundation for Statistical 

Computing 2004-2008) via the MARSS package (Holmes et al., 2012a; Holmes et al., 2012b)  

assume the error structure for the observations come from multivariate normal distributions, 

however an overdispersed Poisson or negative binomial distribution may be more appropriate 

for count data (Link and Sauer, 2002; Kéry and Schaub, 2012). Implementing the state-space 

models within a Bayesian framework which makes use of Markov chain Monte Carlo 

(MCMC) simulations (e.g. Clark and Bjørnstad, 2004; Chaloupka and Balazs, 2007; Lele et 

al., 2007; Shelton et al., 2013) provides more flexibility and can accommodate complex 

model structures when parameters come from non-normal distributions. In this thesis, the 

overdispersed Poisson and negative binomial distributions produced poor model fits 

compared to the multivariate normal (Chapter 3; Appendix 3-2). Furthermore, while 
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constructing MARSS models via MCMC algorithms can accommodate non-normal error 

structures (compared to the Kalman-Filter/Expectation Maximisation algorithms used in the 

MARSS package), the results of this thesis did not suggest any reason to favour one algorithm 

over the other (Chapter 3). However, there were some discrepancies in the results worth 

taking note of, and although a formal comparison between these two methods was beyond the 

scope of this thesis, this may be an interesting avenue for future research. One advantage of 

using the MARSS package is its ease of implementation, whereas MCMC calculations are 

more computationally demanding and requires considerable expertise in statistical theory and 

programming (Dennis and Ponciano, 2014) involving third party software such as JAGS or 

WINBUGS, and can become particularly complicated when dealing with large multivariate 

time series with alternative spatial hypotheses and error structures. Ideally, multivariate time 

series techniques that account for missing values and observation errors should be accessible 

for the layman ecologist (MARSS package and OUSS), but flexible enough to incorporate 

data from non-normal distributions (MCMC algorithms). As the availability of high quality 

long-term time series data become more prominent, it is expected data requirements will 

become less of an issue, opening up the possibility of the MARSS framework to be used 

more prominently in the terrestrial ecological literature. 

The incorporation of alternative error structures also presents an interesting challenge when 

conducting DFA. To date, implementation of non-normal error structures has yet to be 

applied to DFA, but would require substantial modifications to the parameter estimation 

procedure currently employed (Zuur et al., 2003b). As before, an overdispersed Poisson or 

negative binomial distributions may yield more accurate results, and a simulation study 

investigating data with known error structures to examine the impact of assuming normality 

can be an important and fruitful area for future research.  
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Concluding remarks 

Ecological research has experienced an enormous surge in the availability, quantity and 

quality of data (Chapter 1). The push towards open-access data and establishment of 

international long-term research programs will provide exciting opportunities for ecological 

research in the years to come (Kim, 2006; Whitlock, 2011). Regardless, the one constant that 

remains in this new age of data is the presence of uncertainty. Throughout this thesis, I have 

attempted to link together several key aspects of uncertainty affecting ecological data and 

demonstrate how these uncertainties can be managed and used advantageously to guide 

inferences and future data collection protocols. It is imperative that we not only acknowledge 

and accept uncertainty, but that we learn from it. Thus, rather than view uncertainty in a 

negative light, I stress that there is much opportunity and knowledge to be gained in 

addressing this uncertainty.  
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Appendix 1 

Consequences of continuing to exclude  

cryptic life stages from demographic models 

 

Appendix 1-1: Methods for alternative formulations that include the seed bank 

Model with unstructured seed bank 

The inclusion of the seed bank using estimates for germination from the literature to inform 

the prior distribution is demonstrated. For the uninformed case, germination rates were taken 

from a uniform distribution.  

The following transition matrix was taken from Verhulst et al. (2008) for a population of 

Atriplex acanthocarpa in 1996: 

 
J1 J2 A1 A2 A3 

J1 0.045 0.002 0.86 4.468 17.82 

J2 0.093 0.041 0 0 0 

A1 0.16 0.102 0.119 0.062 0.012 

A2 0.14 0.204 0.309 0.175 0.093 

A3 0.142 0.347 0.257 0.5 0.538 

where J1 and J2 represent juvenile stages, A1, A2 and A3 are reproductive adult stages and 

values in bold indicate fecundity. 

Germination trials were performed by Gaylord and Egan (2006). This is an increasing 

population (λ > 1), thus the treatment with the highest mean germination rate was used to 

narrow our distribution. This yielded a germination rate, g = 0.86 and the probability of 
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remaining in the seed bank was 1-g = 0.14. For our simulations, germination rates were 

drawn from a beta distribution with mode equal to g, and parameters α and β calculated by: 

     α = mode × (n – 2) + 1 

     β = (1 – mode) × (n – 2) + 1 

where n is the sample size for the treatment from which the germination study derived its 

estimates. In this case, n = 40, so we have g ~ beta(33.68, 6.32) which gives the following 

distribution: 

 

When the sample size is small, the spread of the distribution increases allowing for greater 

uncertainty in our priors. For example, if n = 10, then we have g ~ beta(7.88, 2.12): 
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Drawing from this distribution, the seed bank is added to the original matrix. The germination 

rates obtained from the literature will be used in this example, giving the following matrix: 

 
SB J1 J2 A1 A2 A3 

SB 0.3 0 0 ? ? ? 

J1 0.7 0.045 0.002 0.86 4.468 17.82 

J2 0 0.093 0.041 0 0 0 

A1 0 0.16 0.102 0.119 0.062 0.012 

A2 0 0.14 0.204 0.309 0.175 0.093 

A3 0 0.142 0.347 0.257 0.5 0.538 

 

Fecundity into the J1 stage was originally calculated by dividing the number of new seedlings 

observed by the proportional contribution of the adult life stages (Verhulst et al. 2008). All 

new seedlings observed were assumed to result from a combination of individuals that 

germinated within the census year and individuals that germinated from the persistent seed 

bank. Thus the fecundity of the adult stages into the juvenile stages should be lowered by 

some unknown amount representing germination from the seedbank. The following formula 

derived in the methods is used to solve for Fj, the total fecundity of stage class j:   

 fi,j = Fjvgs + Fjv(1-g)(1-d)g  
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 Fj = fi,j ÷ [vg(s+(1-g)(1-d)] (1) 

For example, the number of new seedlings produced by the A3 stage, f1,6 as observed by the 

author is 17.82. Occasionally, viability (v) was also estimated in the study from which the 

germination rate was obtained, and was subsequently treated the same i.e. drawn from a beta 

distribution with mode equal to v. The unknown parameters seedling survival (s) or seed 

survival (1-d) and sometimes viability were drawn from uniform distributions. For simplicity, 

we set these equal to 1 in this example. Then, substituting f1,6 and the estimates for 

germination obtained from the literature into equation 1, we solve for F6. 

17.82 = [F6×1×0.7×1] + [F6×1×0.3×1×0.7] 

F6 = 17.82 ÷ (0.7+0.21) = 19.58 

Now we allocate this fecundity into the J1 and SB stages: 

Fecundity into J1 f2,6 = Fjvgs = 19.58 × 1 × 0.7 × 1 = 13.71 

Fecundity into SB f1,6 = Fjv(1-g)(1-d) = 19.58 × 1 × 0.3 × 1 = 5.87 

This conserves the number of seedlings as observed by the authors. 

Germinants from previous year’s seed bank = Fjv(1-g)(1-d)g = 19.58 × 1 × 0.3 × 1 × 0.7 = 

4.11 

Number of observed seedlings = immediate germinants + germinants from seed bank  

  = 13.71 + 4.11 

  = 17.82 

This process is repeated for the other reproductive stages to obtain the new transition matrix: 

 
SB J1 J2 A1 A2 A3 

SB 0.3 0 0 0.28 1.47 5.87 

J1 0.7 0.045 0.002 0.66 3.44 13.71 

J2 0 0.093 0.041 0 0 0 

A1 0 0.16 0.102 0.119 0.062 0.012 
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A2 0 0.14 0.204 0.309 0.175 0.093 

A3 0 0.142 0.347 0.257 0.5 0.538 

 

 

Model with age structured seed bank up to 2 years 

I start again with the original model for Atriplex acanthocarpa in 1996: 

 
J1 J2 A1 A2 A3 

J1 0.045 0.002 0.86 4.468 17.82 

J2 0.093 0.041 0 0 0 

A1 0.16 0.102 0.119 0.062 0.012 

A2 0.14 0.204 0.309 0.175 0.093 

A3 0.142 0.347 0.257 0.5 0.538 

 

As before, germination experiments from Gaylord and Egan (2006) yielded a germination 

rate, g = 0.7 and the probability of remaining in the seed bank was 1-g = 0.3. This time, we 

incorporate age structure into our seed bank. I make an additional assumption that the 

probability of remaining in the seed bank and germinating in the seed bank remains constant 

in time. 

 SB 1 

Year 

SB 2+ 

Years J1 J2 A1 A2 A3 

SB 1 Year 0 0 0 0 ? ? ? 

SB 2+ Years 0.3 0.3 0 0 0 0 0 

J1 0.7 0.7 0.045 0.002 0.86 4.468 17.82 

J2 0 0 0.093 0.041 0 0 0 

A1 0 0 0.16 0.102 0.119 0.062 0.012 

A2 0 0 0.14 0.204 0.309 0.175 0.093 

A3 0 0 0.142 0.347 0.257 0.5 0.538 
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The formula used to solve for Fj, the total fecundity of stage class j taking into account seed 

bank contributions from t-1 and t-2 is:   

fi,j = Fjvgs + Fjv(1-g)(1-d)g + Fjv(1-g)
2
(1-d)

2
g 

                                               Fj = fi,j  ÷ {vg[s+(1-g)(1-d) + (1-g)
2
(1-d)

2
]} (3) 

For example, the number of new seedlings produced by the A3 stage, f1,6 as observed by the 

author is 17.82. Again we set viability (v), seedling survival (s) or seed survival (1-d) equal to 

1. Then, substituting f1,6 and the estimates for germination obtained from the literature into 

equation 1, I solve for F6. 

17.82 = [F6×1×0.7×1] + [F6×1×0.3×1×0.7] + [F6×1×(0.3)
2
×(1)

2
×0.7] 

F6 = 17.82 ÷ (0.7+0.21+0.063) = 18.3145 

Now this fecundity is allocated into the J1 and SB stages: 

Fecundity into J1 f6,2 = Fjvgs = 18.3145 × 1 × 0.7 × 1 = 12.8201 

Fecundity into SB f6,1 = Fjv(1-g)(1-d) = 18.3145 × 1 × 0.3 × 1 = 5.4943 

This conserves the number of seedlings as observed by the authors. 

Germinants from seed bank from t-1 and t-2 = Fjv(1-g)(1-d)g + Fjv(1-g)
2
(1-d)

2
g 

= [18.3145 × 1 × 0.3 × 1 × 0.7] + [18.3145 × 1 × (0.3)
2
 × (1)

2
 × 0.7] = 4.9999 

Number of observed seedlings = immediate germinants + germinants from seed bank  

  = 12.8201 + 4.9999 

  = 17.82 

This process is repeated for the other reproductive stages to obtain the new transition matrix: 

 SB 1 

Year 

SB 2+ 

Years J1 J2 A1 A2 A3 

SB 1 Year 0 0 0 0 0.2652 1.3776 5.4943 

SB 2+ Years 0.3 0.3 0 0 0 0 0 

J1 0.7 0.7 0.045 0.002 0.6187 3.2144 12.8201 
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J2 0 0 0.093 0.041 0 0 0 

A1 0 0 0.16 0.102 0.119 0.062 0.012 

A2 0 0 0.14 0.204 0.309 0.175 0.093 

A3 0 0 0.142 0.347 0.257 0.5 0.538 

 

Model with seed bank lasting no longer than 1 year 

I start with the unstructured model obtained previously. 

 
SB J1 J2 A1 A2 A3 

SB 0.3 0 0 0.28 1.47 5.87 

J1 0.7 0.045 0.002 0.66 3.44 13.71 

J2 0 0.093 0.041 0 0 0 

A1 0 0.16 0.102 0.119 0.062 0.012 

A2 0 0.14 0.204 0.309 0.175 0.093 

A3 0 0.142 0.347 0.257 0.5 0.538 

 

Now it is assumed that if seeds do not germinate within the first year, they die, thus their 

survival is set to 0. The new model is then given by the following with the altered transition 

rate coloured in red: 

 
SB J1 J2 A1 A2 A3 

SB 0 0 0 0.28 1.47 5.87 

J1 0.7 0.045 0.002 0.66 3.44 13.71 

J2 0 0.093 0.041 0 0 0 

A1 0 0.16 0.102 0.119 0.062 0.012 

A2 0 0.14 0.204 0.309 0.175 0.093 

A3 0 0.142 0.347 0.257 0.5 0.538 

 

The same procedure is then used for the models with age structure. For example, the 

following shows seeds that do not survive beyond the second year: 
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 SB 1 

Year 

SB 2 

Years J1 J2 A1 A2 A3 

SB 1 Year 0 0 0 0 0.2652 1.3776 5.4943 

SB 2 Years 0.3 0 0 0 0 0 0 

J1 0.7 0.7 0.045 0.002 0.6187 3.2144 12.8201 

J2 0 0 0.093 0.041 0 0 0 

A1 0 0 0.16 0.102 0.119 0.062 0.012 

A2 0 0 0.14 0.204 0.309 0.175 0.093 

A3 0 0 0.142 0.347 0.257 0.5 0.538 
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Appendix 1-2: Comparison of population growth rates using alternative model formulations that include the seed bank. SB denotes point 

estimates from models with an unstructured seed bank and germination rate equal to that obtained from the literature. SB MC Uniform 

represents the mean of 10,000 simulations with parameters for germination, viability, seed survival and seedling survival drawn from uniform 

distributions, while SB MC Beta has germination rates drawn from a beta distribution with α and β generated from the mode and sample size as 

determined by the external literature. SB2 and SB3 represent models with an age structured seed bank distinguishing seeds from t – 2 and t – 3 

respectively. SB1, 2 and 3 Max represent models in which the seeds do not survive beyond the first, second and third years respectively. Studies 

were divided depending whether multiple time periods were provided. Avg. represents the population growth rate of the mean matrix. Stoch. 

gives the mean stochastic growth rate from populations projected over 10,000 years. 

 

Study 

 

Pop 

 

Period 

 

No SB 

 

SB 

SB MC 

Uniform 

SB MC 

Beta 

SB1 

Max 

 

SB2 

SB2 

Max 

 

SB3 

SB3 

Max 

Single time period            

Chien et al. 2008 

Calocedrus macrolepus 

Parashorea chinensis 

Pinus kwangtungensis 

 

1 

1 

1 

 

1 

1 

1 

 

0.9683 

0.9948 

0.9776 

 

0.9715 

0.9955 

0.9786 

 

0.9700 

0.9963 

0.9786 

 

0.9699 

0.9954 

0.9782 

 

 

0.9684 

0.9948 

0.9776 

 

0.9701 

0.9955 

0.9780 

 

 

0.9684 

0.9948 

0.9776 

 

0.9694 

0.9950 

0.9778 

 

0.9685 

0.9948 

0.9776 

Kisanuki et al. 2008 

Illicium anisatum 

 

 

1 

2 

 

1 

1 

 

1.1271 

1.1864 

 

1.1647 

1.2276 

 

1.1344 

1.1931 

 

1.1408 

1.2008 

 

1.1241 

1.1807 

 

1.1462 

1.2032 

 

1.1216 

1.1761 

 

1.1354 

1.1892 

 

1.1195 

1.1723 

Abe et al. 2008 

Sambucus racemosa 

 

1 

2 

3 

 

1 

1 

1 

 

1.1696 

1.0007 

2.2227 

 

1.1690 

1.0012 

2.2031 

 

1.1789 

1.0109 

2.1588* 

 

1.1955 

1.0249* 

2.1480* 

 

1.1683 

1.0007 

2.2023 

 

1.1681 

1.0008 

2.1996 

 

1.1680 

1.0007 

2.1996 

 

1.1680 

1.0007 

2.1992 

 

1.1680 

1.0007 

2.1992 

Kouassi et al. 2008 

Eremospatha macrocarpa 

Laccosperma secundiflorum 

 

1 

1 

 

1 

1 

 

0.9792 

0.9606 

 

0.9811 

0.9661 

 

0.9806 

0.9638* 

 

0.9805 

0.9621* 

 

0.9792 

0.9608 

 

0.9802 

0.9637 

 

0.9793 

0.9609 

 

0.9797 

0.9625 

 

0.9793 

0.9680 

Multiple time periods            

Mondragon 2009            
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* Population growth rates compared to the no seed bank models are significantly different according to the 95% confidence interval.  

Statistically different growth rates are also shown in bold font. 

Guarianthe aurantiaca 

 

1 

1 

1 

2 

Avg. 

Stoch. 

0.9851 

0.9895 

0.9869 

0.9869 

0.9881 

0.9908 

0.9891 

0.9891* 

0.9881 

0.9908 

- 

- 

0.9872 

0.9904 

- 

- 

 

0.9851 

0.9895 

0.9869 

0.9869 

0.9861 

0.9900 

0.9877      

0.9877* 

0.9852 

0.9896 

0.9870 

0.9870 

0.9855 

0.9897 

0.9872  

0.9872* 

0.9852 

0.9896 

0.9870 

0.9870 

Quitete Portela et al. 2010 

Astrocaryum aculeatissimum 

 

 

 

Geonoma schottiana 

 

1 

1 

 

 

1 

1 

 

1 

2 

Avg. 

Stoch. 

1 

2 

Avg. 

Stoch. 

 

1.0093 

0.9964 

0.9998 

0.9998 

1.0043 

0.9823 

0.9949 

0.9949 

 

1.0106 

0.9968 

1.0085 

1.0000* 

1.0240 

1.0002 

1.0150 

1.0147* 

 

1.0111 

0.9971 

- 

- 

1.0114* 

1.0115* 

- 

- 

 

1.0100 

0.9966 

- 

- 

1.0220* 

1.0217* 

- 

- 

 

1.0093 

0.9964 

0.9998 

0.9998 

1.0050 

0.9827 

0.9950 

0.9950 

 

1.0095 

0.9965 

0.9999 

0.9999 

1.0157 

0.9942 

1.0006  

1.0064* 

 

1.0091 

0.9964 

0.9997 

0.9998 

1.0049 

0.9829 

0.9950 

0.9950 

 

1.0009 

0.9965 

0.9965 

0.9999 

1.0114 

0.9901 

1.0002  

1.0019* 

 

1.0089 

0.9965 

0.9997 

0.9998 

1.0049 

0.9830 

0.9950 

0.9950 

Verhulst et al. 2008 

Atriplex acanthocarpa 

 

 

 

 

Atriplex canescens 

 

1 

1 

1 

 

 

1 

1 

1 

 

1 

2 

3 

Avg. 

Stoch. 

1 

2 

3 

Avg. 

Stoch. 

 

2.4526 

0.7301 

0.7436 

1.3461 

1.1434 

1.7211 

0.9451 

0.8805 

1.1346 

1.0776 

 

2.3455 

0.8305 

0.8862 

1.3351  

1.1784* 
1.7012 

0.9451 

0.8835 

1.1648  

1.1168* 

 

2.3016* 

0.7418* 

0.7712* 

- 

- 

1.6883 

0.9451 

0.8810 

- 

- 

 

2.3522* 

0.7509* 

0.7914* 

- 

- 

1.6790* 

0.9451 

0.8805 

- 

- 

 

2.3367 

0.7318 

0.7506 

1.2977 

1.1284 

1.6423 

0.9451 

0.8805 

1.1273 

1.1128* 

 

2.3735 

0.8242 

0.8722 

1.3280 

1.1583*   

1.6381 

0.9451 

0.8805 

1.1406 

1.0938* 

 

2.3733 

0.7337 

0.7580 

1.3217 

1.1305 

1.6247 

0.9451 

0.8805 

1.1418 

1.0843 

 

2.3714 

0.8208 

0.8637 

1.3258 

1.1481 

1.6093 

0.9451 

0.8805 

1.1319 

1.0858 

 

2.3714 

0.7357 

0.7647 

1.3232 

1.1337 

1.6047 

0.9451 

0.8805 

1.1338 

1.0821 
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Appendix 1-3: Example of removing the seed bank stage from a matrix model 

The following transition matrix was taken from Sletvold and Rydgren (2007) for a population 

of Digitalis purpurea in a disturbed habitat 

 Seed 

bank 

Tiny 

rosettes 

Small 

rosettes 

Medium 

rosettes 

Large 

rosettes 

Flowering 

rosettes 

Seed bank 0.67 0 0 0 0 30.5 

Tiny rosettes 0.0871 0.00424 0.0385 0.00911 0 3.41 

Small rosettes 0.0165 0.0127 0.0315 0.0478 0 0.646 

Medium 

rosettes 0.00261 0.00847 0.0175 0.164 0.0313 0.102 

Large rosettes 0 0 0 0.0387 0.121 0 

Flowering 

rosettes 0 0 0 0.00911 0.383 0 

 

To simplify the estimation for the seedling fecundity, we first collapse the matrix so 

fecundity only goes into the seed bank and one merged seedling stage. Once an estimate for 

seedling fecundity is obtained, we can redistribute this proportionally amongst the tiny, small 

and medium rosette classes.  

 Seed bank Seedlings Large rosettes Flowering rosettes 

Seed bank 0.67 0 0 30.5 

Seedlings 0.10621 0.33382 0.0313 4.158 

Large rosettes 0 0.0387 0.121 0 

Flowering rosettes 0 0.00911 0.383 0 

 

Since we no longer assume germinating within the census year is equal to germination from 

the seed bank, the formula for estimating seedling fecundity is 

                                                   fi,j = Fjvgs + Fjv(1-g)(1-d)gb (2) 
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Sletvold and Rydgren (2007) also provide a value for seed survival in the seed bank, (1-d) = 

0.75 We furthermore assume that the probability of surviving in the seed bank is equal to the 

probability of seedling survival s (see Methods).We have the following information available: 

Fi = 30.5+4.158 = 34.66 

gb = 0.10621 

1-d = 0.75 

s = 0.75 

v = 1 (no mention of viability probability in original paper) 

g = ?  

fi,j = ? 

To estimate g, the proportion of seedlings germinating during the study period t to t + 1, we 

know Fjvgs = # of seedlings germinating within the census year and surviving = 4.158. 

Solving for g gives 

g = 4.158 ÷ (34.66 × 0.75) = 0.15995 

Now we have all the necessary parameters to estimate fi,j from equation 3.  

Fecundity into seedling stage = 4.158 + 34.66 × 1 × (1-0.15995) × 0.75 × 0.10621 

    = 6.4773 

Note that this is higher than the original seedling fecundity of 4.158 since individuals that 

actually germinated from the seed bank are perceived to have germinated immediately 

instead. Using 6.4773 as our new estimate for the fecundity into the seedling stage and 

removing the seed bank stage gives the following matrix 

 seedlings large rosettes flowering rosettes 

seedling 0.33382 0.0313 6.4773 

large rosettes 0.0387 0.121 0 

flowering rosettes 0.0091 0.383 0 
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This is not the final matrix as we still need to redistribute the seedling fecundity 

proportionally amongst the tiny, small and medium rosette stage classes.  

Fecundity into tiny rosette = (3.41 ÷ 4.158) × 6.4773 = 5.31209 

Fecundity into small rosette = (0.646 ÷ 4.158) × 6.5876 = 1.00633 

Fecundity into medium rosette = (0.102 ÷ 4.158) × 6.5876 = 0.15890 

The final matrix with the seed bank removed used to calculated new growth rates is now 

 

tiny 

rosettes 

small 

rosettes 

medium 

rosettes 

large 

rosettes 

flowering 

rosettes 

tiny rosettes 0.00424 0.0385 0.00911 0 5.31209 

small rosettes 0.0127 0.0315 0.0478 0 1.00633 

medium rosettes 0.00847 0.0175 0.164 0.0313 0.15890 

large rosettes 0 0 0.0387 0.121 0 

flowering rosettes 0 0 0.00911 0.383 0 
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Appendix 1-4: R script for reading matrices and conducting Monte Carlo simulations to 

include the seed bank. 

Part I: Helper functions 

Part II: Monte Carlo simulations 

 

# PART I: HELPER FUNCTIONS 
 

##################################### 

####  MATRICES 

##################################### 

 
# See Appendix 1-4 for list of references  

 

all.matrices = function() { 

   

  #-------------------------- 

  # 1) Astrocaryum 

   

  Astrocaryum.2006 = matrix(c(0.6939,  0.0085,  0.0000, 0.0000, 0.4340, 

                              0.1360, 0.9700, 0.0304, 0.0000, 0.0000, 

                              0.0034, 0.0112, 0.9325, 0.0000, 0.0000, 

                              0.0000, 0.0000, 0.0180, 0.9053, 0.0000, 

                              0.0000, 0.0000, 0.0010, 0.0888, 0.9937), 

                            nrow = 5, byrow = T) 

   

  Astrocaryum.2007 = matrix(c(0.7131,  0.0075,  0.0000, 0.0000, 0.3123, 

                              0.1562, 0.9419, 0.4128, 0.0000, 0.0000, 

                              0.0028, 0.0176, 0.5696, 0.0000, 0.0000, 

                              0.0000, 0.0000, 0.0114, 0.8538, 0.0000, 

                              0.0000, 0.0000, 0.0000, 0.1345, 0.9940), 

                            nrow = 5, byrow = T)   

 

  #-------------------------- 

  # 2) Atriplex acanthocarpa 

   

  Acanthocarpa.1996 = matrix(c(0.045,  0.002,  0.86, 4.468, 17.82, 

                               0.093, 0.041, 0, 0, 0, 

                               0.16, 0.102, 0.119, 0.062, 0.012, 

                               0.14, 0.204, 0.309, 0.175, 0.093, 

                               0.142, 0.347, 0.257, 0.5, 0.538), 

                             nrow = 5, byrow = T) 

   

  Acanthocarpa.1997 = matrix(c(0.321,  0,  0.002, 0.011, 0.035, 

                               0.147, 0.05, 0, 0, 0, 

                               0.042, 0.177, 0.245, 0.112, 0.033, 

                               0.011, 0.311, 0.196, 0.266, 0.124, 

                               0.006, 0.21, 0.082, 0.319, 0.599), 

                             nrow = 5, byrow = T) 

   

  Acanthocarpa.1998 = matrix(c(0.461, 0.045, 0.028, 0.088, 0.223, 

                               0.042, 0.061, 0, 0, 0, 

                               0.226, 0.595, 0.566, 0.204, 0.071, 

                               0.002, 0.156, 0.131, 0.298, 0.155, 

                               0, 0.034, 0.021, 0.123, 0.353), 
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                             nrow = 5, byrow = T) 

     

  #-------------------------- 

  # 3) Atriplex Canescens 

   

  Canescens.1996 = matrix(c(0.361,  0.056, 0.15, 0.477, 5.489, 

                            0.177, 0.191, 0, 0, 0, 

                            0.13, 0.145, 0.481, 0.163, 0.013, 

                            0.044, 0.193, 0.342, 0.418, 0.044, 

                            0.109, 0.344, 0.051, 0.397, 0.9), 

                          nrow = 5, byrow = T) 

   

  Canescens.1997 = matrix(c(0.546,  0.043, 0, 0, 0.001, 

                            0.027, 0.362, 0, 0, 0, 

                            0.005, 0.052, 0.469, 0.132, 0.011, 

                            0.003, 0.147, 0.259, 0.395, 0.066, 

                            0.002, 0.267, 0.074, 0.38, 0.883), 

                          nrow = 5, byrow = T) 

   

  Canescens.1998 = matrix(c(0.02,  0.01, 0.001, 0.002, 0.007, 

                            0.043, 0.361, 0, 0, 0, 

                            0.012, 0.103, 0.556, 0.222, 0.049, 

                            0.004, 0.124, 0.099, 0.403, 0.088, 

                            0.001, 0.237, 0.062, 0.255, 0.796), 

                          nrow = 5, byrow = T) 

   

  #-------------------------- 

  # 4) Calocedrus 

   

  Calocedrus = matrix(c(0.683,  0, 0, 0, 0, 0, 1.38, 2.7, 3.78, 4.3,

 4.53, 4.53, 4.51, 4.51, 

                        0.091, 0.691, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 

                        0, 0.11, 0.768, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 

                        0, 0, 0.07, 0.808, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 

                        0, 0, 0, 0.0742, 0.898, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 

                        0, 0, 0, 0, 0.015, 0.93, 0, 0, 0, 0, 0, 0,

 0, 0, 

                        0, 0, 0, 0, 0, 0.028, 0.917, 0, 0, 0, 0, 0,

 0, 0, 

                        0, 0, 0, 0, 0, 0, 0.042, 0.906, 0, 0, 0, 0,

 0, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0.052, 0.898, 0, 0, 0,

 0, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0, 0.06, 0.8929, 0, 0,

 0, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0654, 0.924, 0,

 0, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.034,

 0.925, 0, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0.033, 0.923, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0.03, 0.953), 

                      nrow = 14, byrow = T) 

   

  #-------------------------- 
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  # 5) Eremospatha 

   

  Eremospatha = matrix(c(0.866,  0.062, 0, 0.096, 

                         0.057, 0.804, 0, 0.011, 

                         0, 0.017, 0.587, 0.09, 

                         0, 0, 0.397, 0.881), 

                       nrow = 4, byrow = T) 

   

  #-------------------------- 

  # 6) Geonoma 

   

  Geonoma.2006 = matrix(c(0.26843796,  0.012032048, 0, 0, 4.5344, 

                          0.017029285, 0.643425, 0.072044286, 0.002362243, 0, 

                          0, 0.136727813, 0.696018464, 0.011808379, 0, 

                          0.001621188, 0.077747188, 0.15943725, 0.768736678, 0, 

                          0.000811567, 0, 0, 0.1263927, 0.9683), 

                        nrow = 5, byrow = T) 

   

  Geonoma.2007 = matrix(c(0.26843796,  0.012032048, 0, 0, 4.5344, 

                          0.017029285, 0.643425, 0.072044286, 0.002362243, 0, 

                          0, 0.136727813, 0.696018464, 0.011808379, 0, 

                          0.001621188, 0.077747188, 0.15943725, 0.768736678, 0, 

                          0.000811567, 0, 0, 0.1263927, 0.9683), 

                        nrow = 5, byrow = T) 

   

  #-------------------------- 

  # 7) Guarianthe 

   

  Guarianthe.2005 = matrix(c(0.512,  0, 0, 0.007, 0.121, 

                             0.381, 0.326, 0.05, 0, 0, 

                             0, 0.512, 0.669, 0.016, 0, 

                             0, 0, 0.187, 0.629, 0.1, 

                             0, 0, 0, 0.306, 0.85), 

                           nrow = 5, byrow = T) 

   

  Guarianthe.2006 = matrix(c(0.6,  0, 0, 0.009, 0.096, 

                             0.233, 0.188, 0.024, 0, 0, 

                             0, 0.688, 0.78, 0.21, 0, 

                             0, 0, 0.159, 0.645, 0.123, 

                             0, 0, 0, 0.129, 0.86), 

                           nrow = 5, byrow = T) 

   

  #-------------------------- 

  # 8) Illicium 

   

  Illicium.pop1 = matrix(c(0.898,  0, 1.61, 

                           0.087, 0.942, 0, 

                           0, 0.043, 0.985), 

                         nrow = 3, byrow = T) 

   

  Illicium.pop2 = matrix(c(0.898,  0, 3.67, 

                           0.084, 0.925, 0, 

                           0, 0.048, 0.99), 

                         nrow = 3, byrow = T) 

   

  #-------------------------- 

  # 9) Laccosperma 

   

  Laccosperma = matrix(c(0.863,  0.031, 0, 2.139, 

                         0.064, 0.919, 0.19, 0, 
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                         0, 0.011, 0.619, 0, 

                         0, 0, 0.071, 0.75), 

                       nrow = 4, byrow = T) 

   

  #-------------------------- 

  # 10) Parashorea 

   

  Parashorea = matrix(c(0.7,  0, 0, 0, 0, 0, 0.78, 1.17, 1.64, 2.13,

 2.58, 2.94, 3.28, 3.5, 3.57, 

                        0.101, 0.704, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 

                        0, 0.136, 0.793, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 

                        0, 0, 0.096, 0.819, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 

                        0, 0, 0, 0.118, 0.901, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 

                        0, 0, 0, 0, 0.019, 0.922, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 

                        0, 0, 0, 0, 0, 0.039, 0.946, 0, 0, 0, 0, 0,

 0, 0, 0, 

                        0, 0, 0, 0, 0, 0, 0.037, 0.93, 0, 0, 0, 0,

 0, 0, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0.0527, 0.9238, 0, 0, 0,

 0, 0, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0, 0.0594, 0.924, 0, 0,

 0, 0, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0.059, 0.929, 0,

 0, 0, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.055,

 0.935, 0, 0, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0.048, 0.964, 0, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0.019, 0.97, 0, 

                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0.014, 0.983), 

                      nrow = 15, byrow = T) 

   

  #-------------------------- 

  # 11) Pinus 

   

  Pinus = matrix(c(0.54,  0, 0, 0, 0, 0, 0, 0.21, 0.28, 0.33, 0.37,

 0.39, 0.4, 0.41, 0.41, 0.41, 0.4, 

                   0.106, 0.636, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 

                   0, 0.171, 0.787, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 

                   0, 0, 0.123, 0.801, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 

                   0, 0, 0, 0.119, 0.911, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 

                   0, 0, 0, 0, 0.009, 0.935, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 

                   0, 0, 0, 0, 0, 0.025, 0.935, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 

                   0, 0, 0, 0, 0, 0, 0.045, 0.925, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 

                   0, 0, 0, 0, 0, 0, 0, 0.062, 0.915, 0, 0, 0,

 0, 0, 0, 0, 0, 
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                   0, 0, 0, 0, 0, 0, 0, 0, 0.073, 0.91, 0, 0,

 0, 0, 0, 0, 0, 

                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0.077, 0.911, 0,

 0, 0, 0, 0, 0, 

                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.076,

 0.916, 0, 0, 0, 0, 0, 

                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0.071, 0.9227, 0, 0, 0, 0, 

                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0.0647, 0.93, 0, 0, 0, 

                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0.0574, 0.937, 0, 0, 

                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0.05, 0.937, 0, 

                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0.043, 0.96), 

                 nrow = 17, byrow = T) 

   

  #-------------------------- 

  # 12) Sambucus 

   

  Sambucus.pop1 = matrix(c(0,  0, 0, 398, 

                           0.088, 0.716, 0.355, 0, 

                           0, 0.228, 0.579, 0.125, 

                           0, 0, 0.008, 0.875), 

                         nrow = 4, byrow = T) 

   

  Sambucus.pop2 = matrix(c(0,  0, 0, 102, 

                           0.088, 0.694, 0.373, 0, 

                           0, 0.239, 0.567, 0.321, 

                           0, 0, 0.007, 0.643), 

                         nrow = 4, byrow = T) 

   

  Sambucus.pop3 = matrix(c(0,  0, 0, 528, 

                           0.416, 0.52, 0.104, 0, 

                           0, 0.28, 0.729, 0.167, 

                           0, 0, 0.125, 0.833), 

                         nrow = 4, byrow = T) 

   

  #-------------------------- 

  # List of matrices 

  #-------------------------- 

 

  num.matrices = c(2,3,3,1,1,2,2,2,1,1,1,3) 

   

  all_matrices = list("Astrocaryum.2006" = Astrocaryum.2006, "Astrocaryum.2007" = Astrocaryum.2007, 

                      "Acanthocarpa.1996" = Acanthocarpa.1996, "Acanthocarpa.1997" = Acanthocarpa.1997, 

"Acanthocarpa.1998" = Acanthocarpa.1998, 

                      "Canescens.1996" = Canescens.1996, "Canescens.1997" = Canescens.1997, "Canescens.1998" = 

Canescens.1998, 

                      "Calocedrus" = Calocedrus, "Eremospatha" = Eremospatha,  

                      "Geonoma.2006" = Geonoma.2006, "Geonoma.2007" = Geonoma.2007, 

                      "Guarianthe.2005" = Guarianthe.2005, "Guarianthe.2006" = Guarianthe.2006, 

                      "Illicium.pop1" = Illicium.pop1, "Illicium.pop2" = Illicium.pop2, 

                      "Laccosperma" = Laccosperma, "Parashorea" = Parashorea, "Pinus" = Pinus, 

                      "Sambucus.pop1" = Sambucus.pop1, "Sambucus.pop2" = Sambucus.pop2, "Sambucus.pop3" = 

Sambucus.pop3) 

   

 

  #-------------------------- 
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  # Fecundity entries 

  #-------------------------- 

 

  Astrocaryum.fecundity = matrix(c(1,5), ncol = 2) 

  Acanthocarpa.fecundity = matrix(c(1,1,1,1,2,3,4,5), ncol = 2) 

  Canescens.fecundity = matrix(c(1,1,1,1,2,3,4,5), ncol = 2) 

  Calocedrus.fecundity = matrix(c(1,1,1,1,1,1,1,1,7,8,9,10,11,12,13,14), ncol = 2) 

  Eremospatha.fecundity = matrix(c(1,4), ncol = 2) 

  Geonoma.fecundity = matrix(c(1,5), ncol = 2) 

  Guarianthe.fecundity = matrix(c(1,1,4,5), ncol = 2) 

  Illicium.fecundity = matrix(c(1,3), ncol = 2) 

  Laccosperma.fecundity = matrix(c(1,4), ncol = 2) 

  Parashorea.fecundity = matrix(c(1,1,1,1,1,1,1,1,1,7,8,9,10,11,12,13,14,15), ncol = 2) 

  Pinus.fecundity = matrix(c(1,1,1,1,1,1,1,1,1,1,8,9,10,11,12,13,14,15,16,17), ncol = 2) 

  Sambucus.fecundity = matrix(c(1,4), ncol = 2) 

   

  # List of fecundity entries 

   

  fecundity_entries = c(lapply(seq_len(num.matrices[1]), function(X) Astrocaryum.fecundity), 

                        lapply(seq_len(num.matrices[2]), function(X) Acanthocarpa.fecundity), 

                        lapply(seq_len(num.matrices[3]), function(X) Canescens.fecundity), 

                        lapply(seq_len(num.matrices[4]), function(X) Calocedrus.fecundity), 

                        lapply(seq_len(num.matrices[5]), function(X) Eremospatha.fecundity), 

                        lapply(seq_len(num.matrices[6]), function(X) Geonoma.fecundity), 

                        lapply(seq_len(num.matrices[7]), function(X) Guarianthe.fecundity), 

                        lapply(seq_len(num.matrices[8]), function(X) Illicium.fecundity), 

                        lapply(seq_len(num.matrices[9]), function(X) Laccosperma.fecundity), 

                        lapply(seq_len(num.matrices[10]), function(X) Parashorea.fecundity), 

                        lapply(seq_len(num.matrices[11]), function(X) Pinus.fecundity), 

                        lapply(seq_len(num.matrices[12]), function(X) Sambucus.fecundity)) 

   

  names(fecundity_entries) = names(all_matrices) 

   

  # ------------------------------------------------ 

  # List of germination rate priors and sample sizes 

  #------------------------------------------------- 

 

  Astrocaryum.germ = matrix(c(0.64, 100), ncol = 2) 

  Acanthocarpa.1996.germ = matrix(c(0.86, 40), ncol = 2) 

  Acanthocarpa.1997.germ = matrix(c(0.2, 40), ncol = 2) 

  Canescens.germ = matrix(c(0.55, 100), ncol = 2) 

  Calocedrus.germ = matrix(c(0.41, 10), ncol = 2) 

  Eremospatha.germ = matrix(c(0.36, 75), ncol = 2) 

  Geonoma.germ = matrix(c(0.01, 10), ncol = 2) 

  Guarianthe.germ = matrix(c(0.68, 300), ncol = 2) 

  Illicium.germ = matrix(c(0.2, 40), ncol = 2) 

  Laccosperma.germ = matrix(c(0.58, 150), ncol = 2) 

  Parashorea.germ = matrix(c(0.689, 10), ncol = 2) 

  Pinus.germ = matrix(c(0.556, 24), ncol = 2) 

  Sambucus.germ = matrix(c(0.019, 10), ncol = 2) 

   

  germ_par = c(lapply(seq_len(num.matrices[1]), function(X) Astrocaryum.germ), 

               lapply(1, function(X) Acanthocarpa.1996.germ), 

               lapply(1:2, function(X) Acanthocarpa.1997.germ), 

               lapply(seq_len(num.matrices[3]), function(X) Canescens.germ), 

               lapply(seq_len(num.matrices[4]), function(X) Calocedrus.germ), 

               lapply(seq_len(num.matrices[5]), function(X) Eremospatha.germ), 

               lapply(seq_len(num.matrices[6]), function(X) Geonoma.germ), 

               lapply(seq_len(num.matrices[7]), function(X) Guarianthe.germ), 

               lapply(seq_len(num.matrices[8]), function(X) Illicium.germ), 
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               lapply(seq_len(num.matrices[9]), function(X) Laccosperma.germ), 

               lapply(seq_len(num.matrices[10]), function(X) Parashorea.germ), 

               lapply(seq_len(num.matrices[11]), function(X) Pinus.germ), 

               lapply(seq_len(num.matrices[12]), function(X) Sambucus.germ)) 

   

  names(germ_par) = names(all_matrices) 

  return(list(all_matrices, fecundity_entries, germ_par)) 

} 

 

##################################### 

####  ESTIMATE BETA PARAMETERS 

##################################### 

 

beta.par = function(sample_mode_mean = 0.5, n_var = 2, type = "mode") { 

  # sample_mode_mean    -  sample mode (type = mode) or mean (type = mean) 

  # n_var               -  sample size (type = mode) or variance (type = mean)  

  # type                -  select from c("mode", "mean") to determine parameters 

   

  if(type == "mode") { 

    alpha = sample_mode_mean * (n_var-2) +  1 

    beta = (1-sample_mode_mean) * (n_var-2) + 1 

    return(c(alpha, beta)) 

  } else if(type == "mean") { 

    alpha = ((1 - sample_mode_mean) / n_var - 1 / sample_mode_mean) * sample_mode_mean ^ 2 

    beta = alpha * ((1/sample_mode_mean)-1) 

    return(c(alpha, beta)) 

  } 

} 

 

##################################### 

####  ADD SEED BANK TO MATRIX 

##################################### 

 

create.seed.matrix = function(pop.matrix, fecundity.entries, germ, viability, seedling.surv, seed.surv) { 

   

  Seedling.fec = Seed.fec = numeric(nrow(fecundity.entries))   

  Seed.matrix = pop.matrix 

  Seed.row = numeric(nrow(pop.matrix)) 

  Seed.col = numeric(nrow(pop.matrix)+1) 

   

  for (j in 1:nrow(fecundity.entries)) {       

    # Calculate total seed fecundity for class j 

    f.ij = pop.matrix[ fecundity.entries[j,1], fecundity.entries[j,2] ] 

    Total.fec.j = f.ij / (viability * germ * seedling.surv + viability*germ*(1-germ)*seed.surv) 

     

    # Calculate seedling fecundity for class j 

    Seedling.fec[j] = Total.fec.j * viability * germ * seedling.surv 

     

    # Calculate seed bank fecundity for class j 

    Seed.fec[j] = Total.fec.j * viability * (1-germ) * seed.surv 

     

    # Create new row/column for seed bank 

    Seed.matrix[ fecundity.entries[j,1], fecundity.entries[j,2]] = Seedling.fec[j] 

    Seed.row[fecundity.entries[j,2]] = Seed.fec[j] 

  }    

  # Create new seed bank matrix 

  Seed.col[1] = (1-germ)*seed.surv; Seed.col[2] = germ 

   

  Seed.matrix = rbind(Seed.row, Seed.matrix) 

  Seed.matrix = cbind(Seed.col, Seed.matrix) 
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  return(Seed.matrix) 

} 

 

##################################### 

####  MONTE CARLO FUNCTION 

##################################### 

 

seed.monte.carlo = function(pop.matrix, fecundity.entries, germ.par = c(germ_mode = 0.5, sample_size = 2), 

viab.par = c(1,1), n = 1000, elasticity = F, density.pop = FALSE, density.germ = FALSE) { 

   

  # pop.matrix        -     original nxn matrix of transition rates without seed bank 

  # fecundity.entries -     matrix coordinates of fecundity entries: 1st col = row, 2nd col = col 

  # germ.par          -     sample germination rates from beta distribution: germ.par = c(alpha, beta) 

  # viab.par          -     sample viability rates from beta distribution: viab.par = c(alpha, beta) 

  # n                 -     number of matrices/iterations 

  # density.pop       -     plot densities of growth rates if TRUE 

  # density.germ      -     plot densities of germination rates if TRUE 

    

  # Sample germination rates from beta distribution 

  alpha.beta = beta.par(germ.par[1], germ.par[2]) 

  germ = rbeta(n, alpha.beta[1], alpha.beta[2]) 

   

  # Sample viability from beta distribution 

  viability = rbeta(n, viab.par[1], viab.par[2]) 

   

  # Sample Seedling survival from uniform distribution 

  seedling.surv = runif(n) 

   

  # Sample Seed survival from uniform distribution 

  seed.surv = runif(n) 

   

  # Vector for storing growth rates 

  pop.growth = numeric(n) 

   

  for (i in 1:n) { 

    Seed.matrix = create.seed.matrix(pop.matrix, fecundity.entries, germ[i],  

                                     viability[i], seedling.surv[i], seed.surv[i]) 

     

    # Calculate population growth rates 

    pop.growth[i] = Re(eigen(Seed.matrix)$values[1]) 

  } 

   

  # Mean and 95% CI's of growth rates 

  pop.mean = mean(pop.growth) 

  CI = c(sort(pop.growth)[0.025*n], sort(pop.growth)[0.975*n]) 

   

  if (density.germ) { 

    plot(density(germ), xlab = "Germination rate", main = "Density of germination rates") 

  } 

   

  if (density.pop) { 

    plot(density(pop.growth), xlab = "Population growth rate", main = "Density of growth rates") 

    abline(v = pop.mean, lty = 2, col = 2, lwd = 2)  

  } 

   

  return(list("Lambda" = pop.mean, "CI" = CI)) 

} 
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# PART II: MONTE CARLO SIMULATIONS 
 

source("Helper functions.R") 

 

# Read matrices/fecundity/germination priors 

all_matrices = all.matrices()[[1]] 

fecundity_entries = all.matrices()[[2]] 

germ_par = all.matrices()[[3]] 

 

# -------------------------------------------------- 

# Uninformed priors on germination/viability 

# -------------------------------------------------- 

set.seed(length(all_matrices)) 

 

Results = rep(list(0), length(all_matrices)) 

 

for (i in 1:length(all_matrices)) { 

    Results[[i]] = seed.monte.carlo(all_matrices[[i]], fecundity_entries[[i]], n = 10000) 

} 

 

names(Results) = names(all_matrices) 

Results 

 

# --------------------------------------------------- 

# Informed priors on germination 

# --------------------------------------------------- 

set.seed(length(all_matrices)) 

 

Informed.Results = rep(list(0), length(all_matrices)) 

 

for (i in 1:length(all_matrices)) { 

  Informed.Results[[i]] = seed.monte.carlo(all_matrices[[i]], fecundity_entries[[i]], germ_par[[i]], n = 10000) 

} 

 

names(Informed.Results) = names(all_matrices) 

Informed.Results 

 

# --------------------------------------------------- 

# Plot density of growth rates 

# --------------------------------------------------- 

 

Acanthocarpa.matrices = all_matrices[3:5] 

Acanthocarpa.fecundity = fecundity_entries[3:5] 

Acanthocarpa.germ = germ_par[3:5] 

 

par(mfrow = c(3,2), mar = c(4.1, 4.1, 3.1, 2.1)) 

set.seed(length(all_matrices)) 

for (i in 1:3) { 

  seed.monte.carlo(Acanthocarpa.matrices[[i]], Acanthocarpa.fecundity[[i]], density.pop = T, n = 10000) 

  seed.monte.carlo(Acanthocarpa.matrices[[i]], Acanthocarpa.fecundity[[i]], Acanthocarpa.germ[[i]], 

density.pop = T, n = 10000) 

} 
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Appendix 1-5. Graph showing the mean growth rates resulting from Monte Carlo 

simulations for sample sizes ranging from 1 to 20000 for Atriplex acanthocarpa for 1996.  
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Appendix 1-5. Elasticity matrices for the 1997 and 1998 the desert shrub Atriplex acanthocarpa populations (Verhulst et al., 2008) without 

(left) and with (right) the seed bank (SB). Values in bold indicate elasticities > 0.1. The original matrices consist of 2 non-reproductive juvenile 

stages (J1 and J2) and 3 reproductive adult stages (A1, A2 and A3). 

Elasticities of original model (no seed bank)  Elasticities of model with seed bank 

1997         SB J1 J2 A1 A2 A3 

  J1 J2 A1 A2 A3  SB 0.7919 0 0 0.0003 0.0028 0.0173 

 J1 0.0112 0 0.0001 0.0014 0.012  J1 0.0204 0.0125 0 0 0.0001 0.0004 

 J2 0.0110 0.0008 0 0 0  J2 0 0.0158 0.001 0 0 0 

 A1 0.0019 0.0018 0.0195 0.0190 0.0159  A1 0 0.0028 0.0021 0.0033 0.0023 0.0013 

 A2 0.0008 0.0051 0.0255 0.0255 0.0974  A2 0 0.0014 0.0069 0.005 0.0101 0.0093 

 A3 0.0006 0.0042 0.0130 0.0130 0.5759  A3 0 0.0011 0.0068 0.003 0.0175 0.0647 

               

1998         SB J1 J2 A1 A2 A3 

  J1 J2 A1 A2 A3  SB 0.5039 0 0 0.0218 0.0178 0.0174 

 J1 0.1118 0.0007 0.0194 0.0221 0.0263  J1 0.057 0.0655 0.0003 0.002 0.0016 0.0016 

 J2 0.0125 0.0011 0 0 0  J2 0 0.0104 0.0008 0 0 0 

 A1 0.0555 0.0090 0.3983 0.0520 0.0085  A1 0 0.0516 0.0068 0.12 0.0113 0.0015 

 A2 0.0005 0.0023 0.0889 0.0732 0.0178  A2 0 0.0006 0.0024 0.0378 0.0224 0.0045 

 A3 0 0.0006 0.0167 0.0353 0.0475  A3 0 0 0.0008 0.0096 0.0146 0.016 
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Appendix 1-6: Log population size projections for A) Atriplex acanthocarpa, B) Atriplex 

canescens, C) Carduus nutans and D) Digitalis purpurea with an initial population of 1000 

individuals at stable stage distribution. Populations crossing the horizontal black line indicate 

it has gone extinct.  
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Appendix 1-7: Cumulative extinction probability of quasi-extinction for A) Atriplex 

acanthocarpa, B) Atriplex canescens, C) Digitalis purpurea population 1 and D) Digitalis 

purpurea population 2 with an initial population of 1000 individuals at stable stage 

distribution. Solid lines indicate models without the seed bank and dotted lines indicate 

models with the seed bank. Quasi-extinction threshold was set to 100 individuals. 
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Appendix 2 

Exploratory MARSS models 

Appendix 2-1: Exploratory models investigating the frequency of zero values and missing 

values on model convergence 

Zeroes 

Sample parameter estimates for R, Q, U and B were obtained from MARSS models for 

Trachymene glaucifolia abundances from the unburnt grid MCA, Main Camp. This model 

yielded the following values; R = 4.489685, Q = 0.3579777, μ = 1.177214 and B = 

0.3472462. Using these values, 100 sample datasets of length t = 200 were created simulating 

the univariate state-space model: 

Xt = BXt-1 + μ + wt; w ~ N(0, Q) 

Yt = Xt + vt; v ~ N(0, R) 

The initial state value, X1, was set to equal the initial observed value of grid MCA from 

which the parameters were estimated from. Years were then randomly sampled and their 

values set to 0 to investigate the impact of the frequency of zero values on model 

convergence. Datasets with no zeroes, 25% zeroes, 50% zeroes, and 75% zeroes were 

created. First, for each dataset, 25% (50 years) of the time steps were randomly sampled (t = 

1 and t = 200 were excluded from sampling to ensure time series length remains the same), 

and the values at these time steps set to 0. Then a further 25% of the remaining time steps 

were randomly sampled, and these values set to 0, resulting in a dataset with 50% zeroes. 

Finally, an additional 25% of the remaining time steps were randomly sampled and set to 0, 

giving a dataset with 75% zeroes and resulting in a total of 400 datasets for which models 
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were constructed. An example dataset produced by this process is given below (only up to t = 

50 to ease visualisation): 

Separate MARSS models were created for each dataset with the maximum number of 

iterations set to 2000 and then examined for convergence. The table below provides a 

summary of the convergence results (1 indicates successful convergence, red 0’s indicate 

failure to converge and * indicates critical errors in convergence). 

Dataset 

No 

zeros 

25% 

zeros 

50% 

zeros 

75% 

zeros Dataset 

No 

zeros 

25% 

zeros 

50% 

zeros 

75% 

zeros 

1 1 0 1 1 51 0 1 1 1 

2 1 1 1 1 52 1 0 1 0* 

3 1 0* 0* 0 53 1 0 0 0 

4 0 0 1 1 54 1 0 1 0 

5 0* 1 1 0* 55 1 1 1 1 

6 1 1 0 1 56 1 1 0 1 

7 1 0 1 0* 57 0 0 0 0 
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8 1 1 0 0* 58 0* 1 0 0* 

9 1 1 1 1 59 0 1 1 0* 

10 1 1 1 0* 60 0 0 1 0 

11 1 1 0 1 61 1 0 0 0* 

12 1 1 0 0 62 1 1 1 1 

13 1 1 1 1 63 1 0 0 0 

14 0 1 1 0* 64 0* 0 0 1 

15 0 0 0 1 65 0 1 1 1 

16 0 1 1 1 66 0* 0* 1 1 

17 1 1 0* 0 67 1 0 1 0 

18 1 1 0 1 68 1 0 0 1 

19 0 1 0 0 69 0 0 0 1 

20 1 0 1 0* 70 0 1 1 0 

21 1 1 1 0* 71 0 0 1 0* 

22 1 1 0 0 72 1 0 0 1 

23 1 1 1 1 73 0 0 1 1 

24 1 0 1 1 74 0 0 0 0 

25 1 1 1 1 75 1 1 1 0* 

26 1 1 1 0* 76 0 1 1 0 

27 0 1 1 0 77 1 0 1 0 

28 1 1 1 1 78 0* 1 0 0* 

29 0 1 1 0 79 1 1 0 0* 

30 1 1 0 1 80 0 0 1 1 

31 0 0 1 1 81 1 0 0 0 

32 1 1 0 0 82 0 1 1 1 

33 0 1 1 1 83 1 0 1 0 

34 1 0 1 1 84 0* 0 1 1 

35 1 0 1 1 85 1 1 0 1 

36 1 1 0 0* 86 1 1 1 0 

37 0 1 1 1 87 0 0 1 1 

38 0 0 1 1 88 0 0 1 0* 

39 1 1 1 1 89 1 1 0 0 

40 1 1 0* 1 90 1 1 1 0* 

41 1 1 0 1 91 1 1 1 1 

42 1 1 1 1 92 1 1 1 1 

43 0 0 0 0 93 0* 1 1 1 

44 0 1 0 1 94 1 0 0 0 

45 1 1 0 0* 95 1 1 1 0 

46 0 0 0 0 96 0 1 1 1 

47 0 0 1 1 97 1 0* 1 1 

48 1 0 0 1 98 1 1 0 1 

49 1 1 0 0* 99 0 1 1 0* 

50 0 0 1 0* 100 0 0 1 1 

Total not converging 59 58 61 51 

Total critical errors 7 3 3 23 
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The total number of models not converging generally remains constant up until the data has 

more than 50% zeroes, at which point convergence drops off and the number of critical errors 

in particular increases substantially. A critical error can occur in the model when the solution 

becomes unstable and the log-likelihood drops, which may be a result of data being 

unintentionally scrambled during transformation, attempting to fit an illogical model, 

incorrect specification of the B matrix or in the worst case scenario, the Expectation-

Maximisation (EM) algorithm has not worked (Holmes et al., 2012). Since model 

specification and data simulation methodology was kept constant for all the datasets, the most 

likely reason for these errors is the failure of the EM algorithm. Additionally, there appears to 

be no systematic pattern in failure to converge resulting from the sequential addition of 

zeroes from 0-75% for each dataset; i.e. failure to converge at 25% zeroes does not imply 

failure to converge with the addition of further zeroes to the data.  

Missing values 

Data was simulated using the same methods as the previous section to investigate the impact 

of the frequency of missing values on MARSS model convergence but instead of zeroes, NAs  

were used to indicate a missing value. Similarly, maximum iterations were set to 2000 and 

the models examined for convergence. A summary table of the results is provided below (1 

indicates successful convergence, red 0’s indicate failure to converge and * indicates critical 

errors in convergence). 

Dataset 

No 

missing 

25% 

missing 

50% 

missing 

75% 

missing Dataset 

No 

missing 

25% 

missing 

50% 

missing 

75% 

missing 

1 1 1 0 1 51 0 1 0 1 

2 0 1 0 0 52 1 1 0 0* 

3 0* 0 0 1 53 1 0 1 1 

4 0 0 1 1 54 1 0 0 0 

5 0 0 1 1 55 0 1 0 1 

6 1 1 1 1 56 1 0 1 0 

7 1 0 0 1 57 1 0 1 1 
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8 1 1 1 0* 58 1 1 1 1 

9 1 0* 0* 0* 59 1 1 1 0* 

10 0 1 1 0* 60 0 1 1 0 

11 0 0 1 1 61 0* 0 1 1 

12 1 0 1 1 62 1 0 0 0* 

13 0 1 1 1 63 0 0 0 0 

14 1 0 1 0 64 1 0 0 1 

15 1 0 1 0 65 0* 1 0* 1 

16 1 0 0 1 66 0 0 1 0 

17 0 1 0 0 67 0 1 1 0* 

18 0 1 0 1 68 1 1 1 1 

19 1 0 0 1 69 1 1 1 1 

20 0 0 0 1 70 1 1 1 1 

21 1 1 1 0* 71 1 0 1 0 

22 0 1 1 1 72 0* 0 1 1 

23 1 1 0 1 73 1 0 1 1 

24 1 1 1 1 74 0 1 1 1 

25 1 1 1 0* 75 1 1 0 1 

26 1 1 1 1 76 0 0 1 0 

27 1 1 1 1 77 1 1 1 1 

28 0 0 1 0* 78 1 1 0 0* 

29 1 1 1 1 79 1 0 0 0* 

30 1 0 0 0 80 1 1 0 1 

31 1 1 1 1 81 0 1 0 0* 

32 0 0 0 1 82 1 1 1 1 

33 0 0 0 1 83 1 1 1 0* 

34 0 1 1 1 84 0 1 0 1 

35 1 1 0 0 85 1 1 0 0 

36 1 1 1 0* 86 0 1 1 1 

37 0* 0 0 0* 87 0 1 1 0* 

38 1 0 0 0 88 1 1 0 0 

39 1 0 1 0 89 1 1 1 0 

40 0 0 1 1 90 1 0* 1 1 

41 1 1 1 0 91 0 1 0 0* 

42 1 0* 1 1 92 0 1 0 1 

43 1 0 1 1 93 1 0 1 1 

44 1 1 1 1 94 1 1 1 0 

45 0 1 1 1 95 1 1 1 1 

46 0 1 1 1 96 0 0 1 1 

47 0 1 0 1 97 1 1 1 1 

48 1 0 1 1 98 1 1 0 0 

49 1 1 0 0 99 1 0 0 0* 

50 1 1 1 0 100 0 0 1 0 

Total not converging 61 58 61 57 

Total critical errors 5 3 2 19 

 



Appendices 

217 

 

The number of overall models converging generally remains constant despite the number of 

missing values; however as with the previous result, the number of critical errors increases 

substantially with more than 50% missing values and there is no systematic increase in the 

failure to converge with increasing the frequency of missing values.  

It is important to note that the simulated data produced using pre-specified parameters 

(atypically large observation error R and mean-reversion B) was intended to resemble 

abundances for T. glaucifolia rather than explore a variety of different parameters and data 

simulations, and this result may not apply to all time series traces. In addition, it is plausible 

for models to achieve convergence at iterations well beyond 2000, but given the number of 

datasets and time constraints, convergence beyond 2000 iterations was not investigated. In 

terms of critical errors, it would appear in this case that 50% or fewer zeroes or missing 

values has no substantial or consistent impact on the convergence properties or the failure of 

the EM algorithm. A more systematic, in-depth, stand-alone investigation may wish to 

establish a formal relationship between convergence properties and frequency of zeroes or 

missing values for a number of different parameter combinations but this is outside the scope 

of the current study. 
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Appendix 3 

How to apply multivariate autoregressive state-space models to time 

series count data to improve population monitoring 

Appendix 3-1: Location of the four study sites at Main Camp, Field River South, South Site, 

and Carlo Shitty (CSh) on Carlo Station and Ethabuka Reserve, Simpson Desert, Australia. 

Inset shows location of study region in Australia. 
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Appendix 3-2: Model selection criterion (DIC only) and parameter estimates for models with observation process drawn from overdispersed 

Poisson and negative binomial distributions for Main Camp. 

 

Model  States (m) Normal Poisson Negative Bin 

Wildfire 4 3277 3851 6469 

Whole site 2 3324 3832 6391 

Unstructured 1 3602 3833 7405 

 

  Normal Poisson Negative Bin Normal Poisson Negative Bin 

Site Stage  Q U 

MC-B Seed bank 1.26 (0.30, 3.67) 2.03 (0.43, 6.45) 0.72 (0.21, 2.09) 1.10 (-0.35, 2.49) 0.68 (-0.92, 2.30) 0.57 (-0.88, 2.24) 

 Plants 4.94 (2.31, 10.10) 121.26 (33.55, 369.05) 71.33 (24.16, 179.63) 0.24 (-1.00, 1.49) -0.19 (-1.87, 1.42) 0.45 (-1.24, 2.49) 

MC-U Seed bank 1.31 (0.26, 4.33) 3.34 (0.40, 11.86) 1.12 (0.16, 4.20) 0.65 (-0.99, 2.20) -0.17 (-1.83, 1.66) 0.62 (-1.16, 2.06) 

 Plants 3.65 (1.75, 7.51) 99.54 (26.02, 309.31) 58.02 (18.20, 151.94) -0.00 (-1.13, 1.11) -0.51 (-2.07, 1.01) -0.94 (-2.51, 0.60) 
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Appendix 3-3: Full MARSS model formulations for rainfall models, local wildfire models, 

and regional models, and JAGS code. 

Rainfall 

Local rainfall model (m = 4) 

State model: 

 
 
 
 
       

        

        

         
 
 
 

 

 
 
 
 
         

          

          

           
 
 
 

    

     

      
      

      

    

       

        
        

        

                   

   

 
 
 
 
 

     
            

                      

                 
                         

           

           

            

            

      
              

                  
  

 
 
 
 

 

 

Observation model: 

 
 
 
 
       

        

        

         
 
 
 

  

    
    
 
 

 
 

 
 

 
 

 

 
 
 
 
       

        

        

         
 
 
 

     

       

        

        

        

                   

    

     
 

 
 
 

 
      
 

 
 

 
 

      
 

 

 
 
 

      
 

  

Regional rainfall model (m = 1) 

State model: 

                                                                    

 

Observation model: 
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Local wildfire models – Main Camp example 

 

Wildfire model (m = 4) 

B = Burnt  U = Unburnt 

SB = Seed bank PL = Plants 

State model: 

 
 
 
 
       

       

       

        
 
 
 

 

 
 
 
 
         

         

         

          
 
 
 

    

     

     
     

     

    

       

       
       

       

                   

   

 
 
 
 
 

     
           

                    

               
                     

          

          

          

          

     
           

               
  

 
 
 
 

 

Observation model: 

 
 
 
 
 
 
 
 
 
 
              

 
               

              

 
               

              

 
 

                
 
 
 
 
 
 
 
 
 

  

    
    
 
 

 
 

 
 

 
 

 

 
 
 
 
       

       

       

        
 
 
 

       

       

       

       

       

                   

    

     
 

 
 
 

 
     
 

 
 

 
 

     
 

 

 
 
 

     
 

  

Note: Z is actually a 60 × 4 (n × m) matrix whereby each row represents 15 repetitions of 

each entry. For example, the first row is repeated 15 times and relates the 15 plots of B_SB 

observations to the state XB_SB,t, the second row repeated 15 times relates the 15 plots of 

U_SB observations to the state XU_SB,t and so on. The A matrix is a 60 × 1 column vector of 

estimates for the bias parameter for each observation, whereby the first observation for each 

state (i.e. the 1st, 16th, 31st, and 46th entries) equals 0. 
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Whole site model (m = 2) 

SB = Seed bank PL = Plants 

State model:  

 
     

     
    

       

       
    

     

     
    

     

     
                  

    
   
       

         
   

Observation model: 

 
 
 
 
 
 
 
 
 
 
              

 
               

              

 
               

              

 
 

                
 
 
 
 
 
 
 
 
 

  

  
  
 
 

 
 

  
     

     
        

     

     
                  

    

     
 

 
 
 

 
     
 

 
 

 
 

     
 

 

 
 
 

     
 

  

Note: Z is actually a 60 × 2 (n × m) matrix whereby each row represents 15 repetitions of 

each entry. For example, the first two rows are both repeated 15 times and relate the 15 plots 

of B_SB observations and 15 plots of U_SB observations to the state XSB,t. Similarly, rows 3 

and 4 are both repeated 15 times and relate the 15 plots of B_PL observations and 15 plots of 

U_PL observations to the state XPL,t. The A matrix is a 60 × 1 column vector of estimates for 

the bias parameter for each observation, whereby the first observation for each state (i.e the 

1st and 31st entries) equals 0. 

 

Unstructured model (m = 1) 

State model: 

                                                     

Observation model: 
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Note: Z is actually a 60 × 1 column vector whereby all observations relate to the single state 

Xpop,t. The A matrix is a 60 × 1 column vector of estimates for the bias parameter for each 

observation, whereby the first entry equals 0. 
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Regional models 

Independent site model (m = 8) 

MC = Main Camp FR = Field River CS = Carlo Shitty SS = South Site 

B = Burnt  U = Unburnt  SB = Seed bank PL = Plant 

State model: 

 
 
 
 
 
 
 
 
 
        

        

        

        

        

        

        

         
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
          

          

          

          

          

          

          

           
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
      

      
      

      
      

      
      

       
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
        

        
        

        
        

        

        

         
 
 
 
 
 
 
 

                  

    
      
              

 

   
            
        

 
  

Observation model: 



Appendices 

226 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 

 
                  

                 

 
                  

                 

 
                  

                 

 
                  

                 

 
 

                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
        

        

        

        

        

        

        

         
 
 
 
 
 
 
 
 

   

  

 
 
 
 
 
 
 
 
        

        

        

        

        

        

        

         
 
 
 
 
 
 
 

               

    
      
   

   
        

 
  

 

Note: Z is actually 240 × 8 (n × m) matrix whereby each row represents 15 repetitions of 

each entry. For example, the first two rows are both repeated 15 times and relate the 15 plots 

of MC_B_SB observations and 15 plots of MC_U_SB observations to the state XMC_SB,t, rows 
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3 and 4 are both repeated 15 times and relate the 15 plots of MC_B_PL observations and 15 

plots of MC_U_PL observations to the state XMC_PL,t, and so on for Field River, Carlo Shitty 

and South Site. The A matrix is a 240 × 1 column vector of estimates for the bias parameter 

for each observation, whereby the first observation for each state equals 0. 

 

Regional fire model (m = 4) 

MC = Main Camp FR = Field River CS = Carlo Shitty SS = South Site 

B = Burnt  U = Unburnt  SB = Seed bank PL = Plant 

State model: 

 
 
 
 
       

       

       

        
 
 
 

 

 
 
 
 
         

         

         

          
 
 
 

    

     

     
     

     

    

       

       
       

       

                   

   

 
 
 
 
 

     
           

                    

               
                     

          

          

          

          

     
           

               
  

 
 
 
 

 

Observation model: 
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Note: Z is actually a 240 × 4 (n × m) matrix in which the first consecutive string of 1’s in the 

first column relates the 15 burnt plots in Main Camp of the seed bank to the state estimate for 

XB_SB,t, the second column relates the 15 burnt plots in Main Camp of the above ground plants 

to the state estimate for XB_PL,t, the third column relates the 15 unburnt plots in Main Camp of 

the seed bank to the state estimate for XU_SB,t and the fourth column relates the 15 unburnt 

plots in Main Camp of the above ground plants to the state estimate for XU_PL,t and so on for 

Field River, Carlo Shitty and South Site. The A matrix is a 240 × 1 column vector of 

estimates for the bias parameter for each observation, whereby the first observation for each 

state equals 0. 

 

Overall region model (m = 2) 

MC = Main Camp FR = Field River CS = Carlo Shitty SS = South Site 

B = Burnt  U = Unburnt  SB = Seed bank PL = Plant 

State model: 

 
     

     
   

       

       
     

   

   
   

     

     
                   

Observation model: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 

 
                  

                 

 
                  

                 

 
                  

                 

 
                  

                 

 
 

                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
     

     
   

     

     
                 

    
      
   

   
        

 
  

Note: Z is a 240 × (n × m) matrix in which the first consecutive string of 1’s is 30 repetitions 

long and relates the 30 plots (combined burnt and unburnt) in Main Camp of the seed bank to 
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the state estimate XSB,t, the second column relates the 30 plots (combined burnt and unburnt) 

in Main Camp of the above ground plants to the state estimate XPL,t, and so on for Field 

River, Carlo Shitty and South Site.  
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Jags script for Bayesian MARSS models 
 
# ======================== 

# Set jags parameters 

# ======================== 

 

# MCMC parameters 

mcmcchains <- 3 

mcmcthin <- 10 

mcmcburn <- 5000 

samples2Save <- 20000 

 

# ================================ 

#     Local wildfire models 

# ================================ 

 

# NOTE: Regional models follow the same structure, parameters and priors, but specification of the A 

parameter and certain loops differ 

 

# Set parameters 

jags.params = c("x", "U","sigmaQ","sigmaR", "A", "B","Dsum") 

jags.params.cov = c("x", "U","sigmaQ","sigmaR", "A", "B", "C", "Dsum") 

jags.data = list("y","n.pop","n.t","n.states","z", "c") 

 

jags.local <- function() { 

   

  # PRIORS 

   

  # Q prior from wishart distribution: dwish ~ (omega, degrees of freedom) 

  tauQ[1:n.states, 1:n.states] ~ dwish(Omega, n.states); 

  for (i in 1:n.states) { 

    Omega[i,i] <- 1; 

  } 

  for (i in 1:(n.states-1)) { 

    for (j in (i+1):n.states) { 

      Omega[i,j] <- 0; 

      Omega[j,i] <- 0; 

    } 

  } 

   

  # MVN Process error 

  sigmaQ[1:n.states, 1:n.states] <- inverse(tauQ[,]); # convert from precision to sd 

   

  # MVN prior on initial state 

  x[1:n.states,1] ~ dmnorm(x.mu[], x.sigma[,]); 

  for (i in 1:n.states) { 

    x.mu[i] ~ dunif(0,10) 

  } 

   

  for(i in 1:n.states) { 

    x.sigma[i,i] <- 1; 

  } 

  for (i in 1:(n.states-1)) { 

    for (j in (i+1):n.states) { 

      x.sigma[i,j] <- 0; 

      x.sigma[j,i] <- 0; 

    } 

  } 

   

  # Normal prior for growth rate 
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  for(i in 1:n.states) { 

    U[i] ~ dnorm(0,1); 

  } 

   

  # Uniform prior on B 

  for (i in 1:n.states) { 

    B[i] ~ dunif(0,1) 

  } 

   

  # Normal prior on C 

  for (i in 1:n.states) { 

    C[i] ~ dnorm(0,1) 

  } 

   

  # PROCESS MODEL 

  for (t in 2:n.t) { 

    for (i in 1:n.states) { 

      predx[i,t] <- B[i]*x[i,t-1] + U[i] + C[i]*c[i,t]; 

    } 

    x[1:n.states,t] ~ dmnorm(predx[1:n.states,t], tauQ[,]) 

  } 

   

  # OBSERVATION MODEL 

   

  # Priors on bias parameter 

  for(i in 0:(n.states-1)) { 

    A[i*(n.pop/n.states)+1] <- 0; 

    for (j in 2:(n.pop/n.states)) { 

      A[i*(n.pop/n.states)+j] ~ dnorm(0,1); 

    } 

  }  

   

  # Observation error (diag, unique for each site and stage) 

  for(i in 0:3) { 

    tauR[(i*15)+1] ~ dgamma(0.001,0.001);     

    tauR[(i*15)+2] <- tauR[(i*15)+1]; 

    tauR[(i*15)+3] <- tauR[(i*15)+1]; 

    tauR[(i*15)+4] <- tauR[(i*15)+1]; 

    tauR[(i*15)+5] <- tauR[(i*15)+1]; 

    tauR[(i*15)+6] <- tauR[(i*15)+1]; 

    tauR[(i*15)+7] <- tauR[(i*15)+1]; 

    tauR[(i*15)+8] <- tauR[(i*15)+1]; 

    tauR[(i*15)+9] <- tauR[(i*15)+1]; 

    tauR[(i*15)+10] <- tauR[(i*15)+1]; 

    tauR[(i*15)+11] <- tauR[(i*15)+1]; 

    tauR[(i*15)+12] <- tauR[(i*15)+1]; 

    tauR[(i*15)+13] <- tauR[(i*15)+1]; 

    tauR[(i*15)+14] <- tauR[(i*15)+1]; 

    tauR[(i*15)+15] <- tauR[(i*15)+1]; 

  } 

  for (i in 1:n.pop) { 

    sigmaR[i] <- 1/sqrt(tauR[i]); 

  } 

 

  # Observation error model 

  for (i in 1:n.pop) { 

    for (t in 1:n.t) { 

      predy[i,t] <- inprod(z[i,], x[,t]) + A[i]; 

 

      # LOGNORMAL DISTRIBUTION 
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      y[i,t] ~ dnorm(predy[i,t], tauR[i])       

      # NOTE: priors and jags parameters currently set for log-normal 

 

      # POISSON DISTRIBUTION (WITH RANDOM EFFECTS) 

      # log.lambda[i,t] ~ dnorm(predy[i,t], tauR[i]); 

      # y[i,t] ~ dpois(exp(log.lambda[i,t])); 

 

      # NEGATIVE BINOMIAL DISTRIBUTION 

      # lambda.nb[i,t] <- exp(predy[i,t]) 

      # p[i,t] <- r[i,t]/(r[i,t]+lambda.nb[i,t])  

      # y[i,t] ~ dnegbin(p[i,t],r[i,t])  

      # r[i,t] ~ dunif(0,100) 

 

      # For Posterior predictive loss 

      # Generate replicated data 

      y.rep[i,t] ~ dnorm(predy[i,t], tauR[i]);  

       

      # Compute squared difference b/w observed and replicated data 

      sqdiff[i,t] <- pow(y[i,t]-y.rep[i,t], 2); 

    } 

  } 

  # For posterior predictive loss, sum squared differences across all years 

  Dsum <- sum(sqdiff); 

} 
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Appendix 3-4. State predictions and 95% credible intervals for MARSS-MCMC regional 

models. Points indicate census observations averaged over 15 plots at each site, model-

predicted state estimates are given by the solid line, and their 95% credible intervals by the 

shaded areas. Seed bank trajectories are brown and above-ground plant trajectories are green. 

 

  



Appendices 

234 

 

Appendix 4 

Life form explains consistent temporal trends across species: the 

application of dynamic factor analysis 

 

Appendix 4-1: Full species list for Main Camp, Field River and Carlo Shitty.  Ticks indicate 

species that were present and included in dynamic factor analysis, crosses indicate species 

that were present but excluded from dynamic factor analysis, and blanks indicate species that 

were not present. 

 

Species Name Main Camp Field River Carlo Shitty 

Abutilon otocarpum    

Acacia dictyophleba    

Acacia georginae    

Acacia ligulata    

Acacia stenophylla    

Adriana tormentosa    

Aristida contorta    

Atalaya hemiglauca    

Blennodia canescens    

Boerhavia coccinea    

Brunonia australis    

Calandrinia balonensis    

Calocephalus platycephalus    

Calotis erinacea    

Calotis hispidula    

Cleome viscosa    

Codonocarpus cotinifolius    

Convolvulus erubescens    

Dicrastylis costelloi    

Dodonaea viscosa    

Enneapogon polyphyllus    

Eragrostis dielsii    

Eremophila ovata    

Eriachne aristidea    

Eucalyptus pachyphylla    

Euphorbia drummondii    

Euphorbia tannensis    

Fimbristylis dichotoma    
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Frankenia gracilis    

Goodenia cycloptera    

Grevillea juncifolia    

Grevillea stenobotrya    

Grevillea striata    

Halganea cyanea    

Haloragis gossei    

Helipterum floribundum    

Helipterum moschatum    

Helipterum muelli    

Lechenaultia divaricata    

Lepidium phlebopetalum    

Maireana campanulata    

Myriocephalus stuartii    

Newcastelia cephalantha    

Newcastelia spodiotricha    

Oldenlandia pterospora    

Othonna gregorii    

Paractaenum refractum    

Petalostylis cassioides    

Pimelea simplex    

Portulaca pilosa    

Psoralea eriantha    

Pterocaulon sphacelatum    

Ptilotus latifolius    

Salsola kali    

Scaevola depauperata    

Scaevola parvibarbata    

Scaevola parviflora    

Sclerolaena bicornis    

Sclerolaena eriacantha    

Sclerolaena muricata    

Senna pleurocarpa    

Setaria surgens    

Sida fibulifera    

Sida trichopoda    

Solanum quadriloculatum    

Spermacoce auriculata    

Stylobasium spathulatum    

Swainsona microphylla    

Swainsona phacoides    

Tephrosia rosea    

Trachymene glaucifolia    

Tragus australianus    

Trianthema pilosa    

Tribulus cistoides    
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Tribulus terrestris    

Triodia basedowii    

Triraphis mollis    

Triumfetta winneckeana    

Velleia connata    

Yakirra australiensis    

Zaleya galericulata    

Zygochloa paradoxa    

Zygophyllum simile    
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Appendix 4-2: R functions used in Chapter 5 to manipulate data, conduct and produce plots 

for dynamic factor analysis, and construct presence/absence plots. 

 

##################################### 

####  TYPO FIX 

##################################### 

 

typo_fix = function(typos, true_values, string_distance = 1, ignore.case = FALSE) { 

  require(stringdist) 

  # Matrix with string distance from each typo to each true value 

  if ( ignore.case == TRUE) { 

    true_values_df = data.frame("True" = tolower(true_values)) 

    typo_stringdist = t(apply(true_values_df, 1, FUN = stringdist, tolower(typos))) 

  } else {  

    true_values_df = data.frame("True" = true_values) 

    typo_stringdist = t(apply(true_values_df, 1, FUN = stringdist, typos)) 

  } 

   

  #Vector holding replacement values and their locations 

  typo_replacements = vector("character", length(typos)) 

  for (i in 1:length(true_values)) { 

    typo_replacements[ which(typo_stringdist[i,] <= string_distance) ] = true_values[i] 

  } 

   

  to_fix = typo_replacements != "" 

  typos[ to_fix ] = typo_replacements[ to_fix ] 

   

  return(typos) 

} 

 

##################################### 

####  TRANSPOSE AND CLEAN DATA 

##################################### 

 

t.clean = function(grid_name, dates_grid, dates_site) { 

  # Remove NA's 

  grid_name[ apply(grid_name, 2, is.na) ] = 0 

   

  # Rename rownames and transpose 

  rownames(grid_name) = grid_name[,1] 

  grid_name = t(grid_name[sort(rownames(grid_name)),-1]) 

   

  rownames(grid_name) = dates_site 

  # Keep only periods in which grid was censused 
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  if (length(dates_grid) != length(dates_site)) { 

    grid_name = grid_name[ -c(which(rownames(grid_name) == 

setdiff(rownames(grid_name), as.numeric(dates_grid)))), ] 

  } 

  return(grid_name) 

} 

 

##################################### 

####  CONVERT DATES TO YEAR AND SEASON 

##################################### 

 

year.season = function(grid) { 

  month = as.numeric(rownames(grid)) - floor(as.numeric(rownames(grid))) 

  season = numeric(nrow(grid)) 

  for (i in 1:nrow(grid)) { 

    if (month[i] >= 2/12 & month[i] <= 4/12) { 

      season[i] = 0.25 

    } else if (month[i] >= 5/12 & month[i] <= 7/12) { 

      season[i] = 0.5 

    } else if (month[i] >= 8/12 & month[i] <= 10/12) { 

      season[i] = 0.75 

    } else { 

      season[i] = 0 

    } 

  } 

  rownames(grid) = floor(as.numeric(rownames(grid))) + season 

  return(grid) 

} 

 

##################################### 

###  INSERT MISSING CENSUS DATES AS NA 

##################################### 

 

insert.time = function(grid, start, end, NA.insert = TRUE) { 

  grid = year.season(grid) 

  full.ts = seq(start, end, by = 1/4) 

   

  ts.missing = setdiff(full.ts, rownames(grid)) 

  ts.missing.matrix = matrix(0, ncol = ncol(grid), nrow = length(ts.missing)) 

  if (NA.insert) { 

    ts.missing.matrix[,] = NA 

  } 

  rownames(ts.missing.matrix) = ts.missing 

  colnames(ts.missing.matrix) = colnames(grid) 
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  full.ts = rbind(grid, ts.missing.matrix) 

  full.ts = full.ts[sort(rownames(full.ts)), ] 

   

  return(full.ts) 

} 

 

##################################### 

###  STANDARDISE DATA 

##################################### 

 

z_score = function(data) { 

  data.z = (data - mean(data, na.rm = TRUE)) / sd(data, na.rm = TRUE) 

  return(data.z) 

} 

 

##################################### 

###  PLOT PRESENCE/ABSENCE MATRICES 

##################################### 

 

abundance_matrix = function(grid_name, plot_type = c("pres_abs", "hellinger", "relative"),  

                            sort_by = c("alpha", "presence", "life_form"), plot_title = "") { 

  # grid_name   - dataset 

  # plot_type   - presence/absence plot or heat map by hellinger abundance (relative to 

community) or relative abundance to itself 

  # sort_by     - sort species by alphabetical or by frequency of presence 

  # plot_title  - paste(plot_title, c("Presence/absence", "Hellinger Abundances", "Relative 

Abundances") 

  

  # Calculate month: date - year 

  month = as.numeric(rownames(grid_name)) - floor(as.numeric(rownames(grid_name))) 

  season = character(nrow(grid_name)) 

  for (i in 1:nrow(grid_name)) { 

    if (month[i] >= 2/12 & month[i] <= 4/12) { 

      season[i] = "S2" 

    } else if (month[i] >= 5/12 & month[i] <= 7/12) { 

      season[i] = "S3" 

    } else if (month[i] >= 8/12 & month[i] <= 10/12) { 

      season[i] = "S4" 

    } else { 

      season[i] = "S1" 

    } 

  } 
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  # Presence absence data frame: 1 = present 

  grid_pres = grid_name 

  grid_pres[grid_pres >= 1] = 1 

  rownames(grid_pres) = paste(floor(as.numeric(rownames(grid_name))), season) 

   

  if (sort_by == "presence") { 

    grid_name = grid_name[ , order(apply(grid_pres, 2, sum), decreasing = TRUE) ] 

    grid_pres = grid_pres[ , order(apply(grid_pres, 2, sum), decreasing = TRUE) ] 

  } else if (sort_by == "life_form") { 

    life_forms = Species_class[match(colnames(grid_name), Species_class[,"Species"]), 

"Type"] 

    grid_name = grid_name[ , order(life_forms)] 

    grid_pres = grid_pres[ , order(life_forms)] 

    colours  = c("black", "red", "pink", "green", "darkgreen", "gray", "blue", "orange", "cyan" , 

"darkgoldenrod") 

    axis.colour = mapvalues(sort(life_forms), from = levels(Species_class[, "Type"]), to = 

colours) 

  } 

   

  # Complete time series of census dates 

  full.ts = c(rep(2004:2012, each = 4), 2013, 2013) 

  full.ts = paste(full.ts, rep(c("S1", "S2", "S3", "S4"), length = length(full.ts))) 

   

  # Identify missing censuses 

  ts.missing = setdiff(full.ts, rownames(grid_pres)) 

  ts.missing = grid_pres[1:length(ts.missing), ] 

  ts.missing[,] = -1 # No census 

  rownames(ts.missing) = setdiff(full.ts, rownames(grid_pres)) 

   

  # Complete time series matrix of -1's (no census), 0's (absence) and 1's (presence) 

  full.ts = rbind(grid_pres, ts.missing) 

  full.ts = full.ts[sort(rownames(full.ts)), ] 

   

   

  ####################################### 

  # Presence/absence matrix plot 

  if (plot_type == "pres_abs") { 

    par(mar = c(4,10,1,1), font = 2) 

    # 0 = No survey = black 

    # 0.5 = Absence = white 

    # 1 = Presence = red 

    # Full.ts + 1 then divide by 2 to give appropriate numbers 

    image(1:nrow(full.ts), 1:ncol(full.ts), (full.ts[,rev(colnames(full.ts))]+1)/2, 
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          col= c("black", "white","red"), xlab="Time", ylab="", 

          axes=FALSE, zlim=c(0,1), main = paste(plot_title, "Presence/Absence"), lwd = 2) 

    axis(side = 1, at=seq(1,nrow(full.ts),1), labels=rownames(full.ts), 

         cex.axis=1.0) 

    if (sort_by == "life_form") { 

      Map(function(x,y,z)  

        axis(side = 2, at=x, col.axis=y, labels=z, cex.axis = 0.8, las = 1), 

        seq(1,ncol(full.ts),1), 

        rev(as.character(axis.colour)), 

        rev(colnames(full.ts))) 

    } else { 

      axis(side = 2, at=seq(1,ncol(full.ts),1), labels=rev(colnames(full.ts)), las= 1, 

           cex.axis=0.8) 

    } 

    grid(nx=(dim(full.ts)[1]), ny=(dim(full.ts)[2]), col="black", lty="solid"); 

  } else if (plot_type == "hellinger") { 

     

    ####################################### 

    # Color scaled by hellinger abundance 

    require(PCNM) 

    grid_hel = decostand(grid_name, "hellinger") 

     

    rownames(grid_hel) = paste(floor(as.numeric(rownames(grid_hel))), season) 

    # Identify missing census and set to -1 

    grid_hel = rbind(grid_hel, ts.missing) 

    grid_hel = grid_hel[sort(rownames(grid_hel)), ] 

    grid_hel[is.na(grid_hel)] = -1 

     

    ColorRamp = c(rep("white", length = 50), rgb(rep(1, length = 50), 

                                                 seq(0.95, 0.05, length = 50), 

                                                 seq(0.95, 0.05, length = 50))) 

     

    layout(matrix(data=c(1,2), nrow=1, ncol=2), widths=c(4,1),heights=c(1,1)) 

    par(mar = c(4,10,1,1), font = 2) 

    # -1 = No survey = black 

    # 0 = Absence = white 

    # >0 = Presence, red 

    image(1:nrow(grid_hel), 1:ncol(grid_hel), grid_hel[,rev(colnames(grid_hel))], 

          col = c("black", ColorRamp), xlab="Time", ylab="", 

          axes=FALSE, zlim=c(-1,1), main= paste(plot_title, "Hellinger Abundances")) 

    axis(side = 1, at=seq(1,nrow(full.ts),1), labels=rownames(full.ts), 

         cex.axis=1.0) 

    if (sort_by == "life_form") { 

      Map(function(x,y,z)  
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        axis(side = 2, at=x, col.axis=y, labels=z, cex.axis = 0.8, las = 1), 

        seq(1,ncol(full.ts),1), 

        rev(as.character(axis.colour)), 

        rev(colnames(full.ts))) 

    } else { 

      axis(side = 2, at=seq(1,ncol(full.ts),1), labels=rev(colnames(full.ts)), las= 1, 

           cex.axis=0.8) 

    } 

    grid(nx=(dim(full.ts)[1]), ny=(dim(full.ts)[2]), col="black", lty="solid") 

     

    # Add legend for colour scaling 

    par(mar = c(3,2.5,2.5,2)) 

    ColorLevels = seq(0, 1, length = length(ColorRamp)/2) 

    image(1, ColorLevels, 

          matrix(data=ColorLevels, ncol=length(ColorLevels),nrow=1), 

          col=ColorRamp[51:100],xlab="",ylab="",xaxt="n", las = 1) 

    par(mfrow = c(1,1)) 

  } else { 

     

    ####################################### 

    # Color scaled by relative abundance 

     

    grid_rel = apply(grid_name, 2, function(X) X/sum(X)) 

     

    rownames(grid_rel) = paste(floor(as.numeric(rownames(grid_rel))), season) 

    # Identify missing census and set to -1 

    grid_rel = rbind(grid_rel, ts.missing) 

    grid_rel = grid_rel[sort(rownames(grid_rel)), ] 

    grid_rel[is.na(grid_rel)] = -1 

     

    ColorRamp = c(rep("white", length = 50), rgb(rep(1, length = 50), 

                                                 seq(0.95, 0.05, length = 50), 

                                                 seq(0.95, 0.05, length = 50))) 

     

    layout(matrix(data=c(1,2), nrow=1, ncol=2), widths=c(4,1),heights=c(1,1)) 

    par(mar = c(4,10,1,1), font = 2) 

    # -1 = No survey = black 

    # 0 = Absence = white 

    # >0 = Presence, red 

    image(1:nrow(grid_rel), 1:ncol(grid_rel), grid_rel[,rev(colnames(grid_rel))], 

          col = c("black", ColorRamp), xlab="Time", ylab="", 

          axes=FALSE, zlim=c(-1,1), main= paste(plot_title, "Relative Abundances")) 

    axis(side = 1, at=seq(1,nrow(full.ts),1), labels=rownames(full.ts), 

         cex.axis=1.0) 
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    if (sort_by == "life_form") { 

      Map(function(x,y,z)  

        axis(side = 2, at=x, col.axis=y, labels=z, cex.axis = 0.8, las = 1), 

        seq(1,ncol(full.ts),1), 

        rev(as.character(axis.colour)), 

        rev(colnames(full.ts))) 

    } else { 

      axis(side = 2, at=seq(1,ncol(full.ts),1), labels=rev(colnames(full.ts)), las= 1, 

           cex.axis=0.8) 

    } 

    grid(nx=(dim(full.ts)[1]), ny=(dim(full.ts)[2]), col="black", lty="solid") 

     

    # Add legend for colour scaling 

    par(mar = c(3,2.5,2.5,2)) 

    ColorLevels = seq(0, 1, length = length(ColorRamp)/2) 

    image(1, ColorLevels, 

          matrix(data=ColorLevels, ncol=length(ColorLevels),nrow=1), 

          col=ColorRamp[51:100],xlab="",ylab="",xaxt="n", las = 1) 

    par(mfrow = c(1,1)) 

  } 

} 

 

##################################### 

###  CONDUCT AND COMPARE DFA MODELS 

##################################### 

 

dfa_auto = function(time_series, states = 2, R = "diagonal and equal", covariates = NULL) { 

  require(MARSS) 

  dfa.model.data = data.frame() 

  dfa.all = list() 

   

  # Compute DFA's 

   

  for (m in 1:states) { 

    dfa.model = list(A = "zero", R = R, m = m) 

    time_series.dfa = MARSS(t(time_series), model = dfa.model, z.score = TRUE, form = 

"dfa", 

                            control = list(maxit = 50000, allow.degen = FALSE), covariates = 

covariates) 

    dfa.model.data = rbind(dfa.model.data,  data.frame(m = m, K = 

time_series.dfa$num.params, 

                                                       AICc = time_series.dfa$AICc))     

    dfa.all[m] = list(time_series.dfa) 

  } 
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  # Extract best model 

  dfa.best = dfa.all[ dfa.model.data$AICc == min(dfa.model.data$AICc)][[1]] 

   

  # Factor loadings 

  dfa.z = coef(dfa.best, type = "matrix")$Z 

  H.inv = varimax(dfa.z)$rotmat  # Inverse of rotation matrix H 

   

  dfa.z.rot = dfa.z %*% H.inv 

  # Adjusted common trends 

  dfa.t.rot = solve(H.inv) %*% dfa.best$states 

   

  # Identify which species belongs to which trends 

  dfa.trends = matrix(FALSE, ncol(dfa.z.rot), nrow(dfa.z.rot)) 

  for (t in 1:nrow(dfa.t.rot)) { 

    dfa.trends[t,] = abs(dfa.z.rot[,t]) >= 0.2 

  } 

   

  return(list(AICc = dfa.model.data, dfa.best = dfa.best, dfa.z.rot = dfa.z.rot, dfa.t.rot = 

dfa.t.rot, dfa.trends = dfa.trends)) 

} 

 

##################################### 

###  PLOT FACTOR LOADINGS 

##################################### 

 

dfa_factor_plot = function(grid_name, z.rot, t.rot, species_trend, loading_threshold = 0.2, 

splits = 1, Ann_per = FALSE, pos = TRUE, add.legend = FALSE, legend_pos = "topright") { 

  # grid_name     - n x t matrix with species abundances over time 

  # z.rot         - n x m matrix with n species and m trends 

  # t.rot         - m x t matrix with m trends over t time steps 

  # species_trend - logical matrix indicating which species belong to which trend 

  # splits        - number of grids in matrix grid_name. grids must be symmetrical 

  # Ann_per       - colour code by annual/perennial or life form 

  # pos           - if factor loadings are majority negative, convert trends and loading to positive 

   

  require(plyr) 

   

  # Reverse sign is majority factor loadings are negative 

  if (pos) { 

    for (i in 1:ncol(z.rot)) { 

      if (sum(z.rot[,i] > 0) < sum(z.rot[,i] < 0)) { 

        z.rot[,i] = z.rot[,i] * -1 

        t.rot[i,] = t.rot[i,] * -1 
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      } 

    } 

  } 

   

  # Splits = 1 i.e. 1 grid 

  if (splits == 1) { 

    for (i in 1:ncol(z.rot)) { 

      # Note: requires Species_Class data.frame 

      # Colour coded by annual/perennial 

      if (Ann_per) { 

        life_forms = Species_class[match(colnames(grid_name[, species_trend[i,]]), 

Species_class[,"Species"]), "Ann...Per"] 

        colours = c("black", "red", "purple", "blue") 

        colour_code = as.character(mapvalues(life_forms, from = levels(life_forms), to = 

colours)) 

      } else { 

        # Colour coded by life form 

        life_forms = Species_class[match(colnames(grid_name[, species_trend[i,]]), 

Species_class[,"Species"]), "Type"] 

        colours = c("black", "red", "green", "blue", "cyan", "orange", "yellow", 

"gray","darkgoldenrod","darkorchid") 

        colour_code = as.character(mapvalues(life_forms, from = levels(life_forms), to = 

colours)) 

      } 

       

      # Plot factor loadings 

      plot(1:sum(species_trend[i,]), z.rot[species_trend[i,], i], pch = 16, ylim = c(-1.5, 1.5), col 

= colour_code,  

           ylab = "", xlab = "", xaxt = "n", main = paste("Factor loading Trend", i)); abline(h = 0, 

lty = 2) 

      # Add species labels 

      text(1:sum(species_trend[i,]), 0, sapply(strsplit(colnames(grid_name[, species_trend[i,]]), 

" "), "[[", 1),  

           cex = 1, srt = 90) 

       

      # Add legend 

      if (i == 1 & add.legend == TRUE) { 

        legend(legend_pos, legend = levels(life_forms), col = colours, pch = 16, cex = 0.8) 

      } 

    } 

  } else { 

    # For multiple grids 

    # Splits > 1 

    # Identify how many unique species 
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    grid_split = ncol(grid_name)/splits 

     

    # Divide dfa characteristics by grid into a list 

    grid_name_list = grid_z_list = grid_trend_list = list(0) 

    for (i in 1:splits) { 

      grid_name_list[[i]] = grid_name[,(grid_split*(i-1)+1):(grid_split*i)] 

      grid_z_list[[i]] = z.rot[ (grid_split*(i-1)+1):(grid_split*i), ] 

      grid_trend_list[[i]] = species_trend[ , (grid_split*(i-1)+1):(grid_split*i)] 

    } 

     

    species_trend_length = matrix(0, ncol(z.rot), grid_split) 

    species_trend_intersect = matrix(NA, ncol(z.rot), grid_split) 

     

    # for ith trend 

    for (i in 1:ncol(z.rot)) { 

      # Identify species belonging to common trend from different grids 

      species_trend_intersect.tmp = lapply(grid_trend_list, "[", i, ,drop = TRUE) 

      species_trend_intersect.tmp = t(sapply(species_trend_intersect.tmp, rbind)) 

      species_trend_intersect[i,] = apply(species_trend_intersect.tmp,2,sum) > 0 

      species_trend_length[i, species_trend_intersect[i,]] = 1 

       

      # for jth grid 

      for (j in 1:splits) { 

        grid_name_J = grid_name_list[[j]] 

        z.rot_J = grid_z_list[[j]] 

        species_trend_J = grid_trend_list[[j]] 

         

        # Colour coded by annual/perennial 

        if (Ann_per) { 

          # Note: requires Species_Class data.frame 

          # Colour coding 

          life_forms = Species_class[match(colnames(grid_name_J[, 

species_trend_intersect[i,]]), Species_class[,"Species"]), "Ann...Per"] 

          colours = c("black", "red", "purple", "blue") 

          colour_code = as.character(mapvalues(life_forms, from = levels(life_forms), to = 

colours)) 

        } else { 

          # Colour coded by life form 

          life_forms = Species_class[match(colnames(grid_name_J[, 

species_trend_intersect[i,]]), Species_class[,"Species"]), "Type"] 

          colours = c("black", "red", "green", "blue", "cyan", "orange", "yellow", 

"gray","darkgoldenrod","darkorchid") 

          colour_code = as.character(mapvalues(life_forms, from = levels(life_forms), to = 

colours)) 
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        } 

         

        # Insert NA where species is not part of common trend for jth grid 

        z.rot_J2 = z.rot_J[species_trend_intersect[i,], i] 

        z.rot_J2[ abs(z.rot_J2) < loading_threshold ] = NA 

         

        species_labels = z.rot_J2 

        species_labels = sapply(strsplit(colnames(grid_name_J[, species_trend_intersect[i,]]), " 

"), "[[", 1) 

         

        if (j == 1) { 

          # Alternate label for factor loading points 

          # counter = round(z.rot_J2); counter[ is.na(counter) ] = 0 

           

          plot(1:sum(species_trend_length[i,]), z.rot_J2, pch = 16, ylim = c(-1.5, 1.5), col = 

colour_code,  

               ylab = "", xlab = "", xaxt = "n", main = paste("Factor loading Trend", i)); abline(h = 

0, lty = 2) 

          text(1:sum(species_trend[i,]), z.rot_J2, paste(j), cex = 0.8, pos = 3) 

          # Species labels 

          text(1:sum(species_trend_length[i,]), 0, paste(species_labels),  

               cex = 1, srt = 90) 

        } else { 

          # counter = counter + round(z.rot_J2) 

           

          points(1:sum(species_trend_length[i,]), z.rot_J2, pch = 16, col = colour_code) 

          text(1:sum(species_trend[i,]), z.rot_J2, paste(j), cex = 0.8, pos = 3) 

           

        } 

         

        # Add legend 

        if (i == 1 & add.legend == TRUE) { 

          legend(legend_pos, legend = levels(life_forms), col = colours, pch = 16, cex = 0.8) 

        } 

      } 

    } 

  } 

} 

 

##################################### 

###  CALCULATE STATE PREDICTIONS 

##################################### 

 

dfa_pred = function(grid, z_rot, t_rot) { 
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  # Y[i,t] = Z[i,j] * X[j,t] 

   

  # Y[i,t] = observation for ith species at time t 

  # Z[i,j] = Factor loading for ith species and jth trend 

  # X[j,t] = Value of jth common trend at time t 

   

  state_predict = grid; state_predict[,] = 0 

   

  # Calculate state predictions 

  for (j in 1:ncol(grid)) { 

    for (i in 1:nrow(t_rot)) { 

      state_predict[,j] = state_predict[,j] + t_rot[i,] * z_rot[j,i] 

    } 

  } 

  return(state_predict) 

} 

 

##################################### 

###  CALCULATE RELATIVE MSE 

##################################### 

 

dfa_MSE = function(grid, state_predict) { 

  # RelMSE = 1 - [ sum( (Z[i,t] - Z*[i,t])^2 ) / T ] 

   

  # Z[i,t] = Standardised observations 

  # Z*[i,t] = Predicted observations 

  # T = time series length 

   

  grid_standard = apply(grid,2, z_score) 

   

  # Estimate MSE 

  species_MSE = t((grid_standard - state_predict)^2) 

  species_MSE = apply(species_MSE, 1, function(X) 1 - mean(X, na.rm = TRUE)) 

  species_MSE = round(data.frame(MSE = species_MSE), 3) 

   

  return(species_MSE) 

} 
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Appendix 4-3: Plots of presence/absence and relative frequency of species used in dynamic 

factor analysis for all grids sampled in Chapter 5 divided by life form. Grids that are burnt are 

indicated in the plot titles. Species in black are forbs, red are grasses, blue are shrubs and 

green are subshrubs. Red cells indicate presence, white indicates absence and gray indicates a 

missing value when a census was not conducted. Plots begin on next page.  
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Appendix 4-4: State predictions for Carlo Shitty model with five common trends and no 

covariate 

While AICc scores indicated the model with five common trends with no covariate for Carlo 

Shitty was the best fit, we chose instead to report the results of the model with the covariate 

included as state predictions were incredibly poor under the former model. We plot the state 

predictions below, whereby points indicate standardised observations from the four grids, 

grey dashed lines indicate state predictions for each of the four grids and black solid lines 

indicate the mean state predictions across the four grids obtained from the no covariate five 

trend  model.  
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