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1 Introduction

In this work, we explore the theory and applications of various multi-regime mod-

els involving Markov chains. Markov chains are an elegant way to model path-

dependent data. We study a series of problems with non-homogeneous data and

the various ways that Markov chains come into play. Non-homogeneous data can

be modelled using multi-regime models, which apply a distinct set of parameters

to distinct population sub-groups, referred to as regimes. Such models essentially

allow for a practitioner to understand the nature (and in some cases the existence)

of particular regimes within the data without the need to split the population

into assumed sub-groups. Examples of problems involving non-homogeneous data

include the problem of modelling business outcomes in different economic states

(without explicitly using economic variables) or studying rainfall patterns as the

seasons change across geographies. The problems we discuss here involve multiple

regimes in two different ways and they also involve Markov chains in two different

ways. Different regimes can apply to an entire population at different times, which

we see in our first two problems, and different regimes can also apply to different

subsections of the population over the whole observed time, which we see in our

second two problems. Markov chains are involved via the estimation procedure

or within models for the observed data. We first study multi-regime problems

with Markov chains used in the estimation procedure. These are conducted from

a Bayesian approach and we utilise the properties of Markov chains to discover

and establish efficiencies in the estimation algorithms. Following this, we explore

the uses of Markov chains as components of models applied to non-homogeneous

data. Note that our second problem involves Markov chains in both the estima-

tion procedure as well as the model. Although this work is largely focussed on

addressing the theoretical issues of each problem, the motivation behind each of

the problems studied comes from real datasets, which possess levels of complexity
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that are insufficiently described through more standard procedures.

Our first problem is motivated by a simple form of non-homogeneous data. We

study a single discrete time series representing quarterly driver fatality counts for

the state of Victoria, Australia. Upon inspection of the data, it is clear that there

are shifts in the levels of the counts over different time periods. Thus, there is a

need to model the non-homogeneous dataset, allowing for multiple regimes. We

apply a Bayesian Poisson change-point model to the data, using a Gibbs sampler,

and note that there is no way of knowing how many iterations of the sampler

will be required for a sufficient level of convergence. We derive a key property

of the Markov chain involved in the Gibbs sampler procedure to estimate the

parameters of a Poisson change-point model, which provides a significant insight

into the nature of the convergence rate of the sampler. This enables us to have

greater confidence around the model estimates and the resulting insights gained

on the phenomena driving the multiple regimes in the data.

We continue with the use of Bayesian estimation algorithms for our second

problem, which is motivated by the regime-switching nature of credit rating mi-

gration dynamics for a homogeneous population of firms. This is a problem with

more complex discrete time-series data, with multiple series of different lengths.

This dataset is modelled using the double chain Markov model (DCMM), where

we have a hidden Markov chain that drives the switching process between two

Markov chains that drive the observed data. Similar to the first problem, we also

estimate the model using a Markov chain Monte Carlo procedure and show how

it can be applied to model credit rating migration data over discrete time and

identify where the key regime switches occur, which aligns remarkably well with

notable economic events of the past few decades in the United States. We exploit

the properties of the Markov chain underlying the estimation procedure to en-

hance the efficiency of the sampling algorithm. We show using simulation studies
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that we are able to improve the estimation efficiency, when compared to existing

estimation procedures.

The application of credit rating migration modelling is also the motivation

for our third problem. However, instead of supposing that the different regimes

occur over time, we look at different regimes that drive a particular proportion

of the population over the whole of the finite observation window. We are thus

looking at a Markov chain mixture model and focus on the problem of testing

for the number of mixture components. We prove that the log-likelihood ratio

test statistic, for the test between 1 and 2 Markov chain components, diverges to

infinity with probability 1.

We then outline a simplified version of the model, where we only have 2 possi-

ble states for each Markov chain component, one for non-default and an absorbing

state for default, and state a theorem that gives the exact limiting distribution of

the log-likelihood ratio test statistic for this version of the problem. This test is

equivalent to the test between 1 and 2 components in a mixture of censored ex-

ponentials. We ultimately find the exact limiting distribution of the log-likelihood

ratio test statistic for this challenging problem, which would allow us to test for

the presence of a mixture for this class of models.

Our first problem is explored in Chapter 2, where we apply the Poisson change-

point model to driver fatality counts for the state of Victoria, Australia. The

different regimes arise from evolving policy settings with some causing the fatal-

ities to drop significantly. We fit this model with a Bayesian approach using the

Gibbs sampler, a commonly used Markov chain Monte Carlo procedure. Our sam-

pler starts with initial parameter estimates that are sampled from their respective

prior distributions, which are used to sample a subset of the parameters from the

conditional distributions that arise from knowing the complementary subset, then

conditioning on these new samples to re-sample the initial subset. This iterative
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procedure continues until the resulting samples of each parameter have distribu-

tions that resemble their true marginal distributions. If these sample distributions

are in a steady state and have low values of the autocorrelation function at each

lag k ≥ 1 with respect to the index of the sampled chain of estimates, then we say

that the algorithm has converged. Note here that the conditional distribution of

future samples, conditional on the current and past samples, is only dependent on

the current sample and not the samples preceding it. This is the Markov property

of the Gibbs sampler. The chain is the series of samples for the full parameter

vector and the state space of the chain is the corresponding combined parameter

space of the model. In order to generate appropriate parameter estimates (and

distributions around each), we require that the Markov chain of the Gibbs sam-

pler is able to explore all possibilities in the parameter space. That is, we require

that the Markov chain be ergodic. If there was an absorbing state, for example,

the Markov chain would not be ergodic. This could mean that a particular Gibbs

sampler may eventually sample the value that results in the absorbing state and all

subsequent samples for that parameter would be the same. This would not allow

the sampler to explore all areas of the parameter space but only a small section of

it. Sometimes a Markov chain can be ergodic but the chance of an arbitrary chain

exploring a particular part of the distribution is so low that it is barely sampled

from, even after many iterations of the algorithm. In a practical setting, we require

algorithms to be fast and thus need to know the rate at which the Markov chain in

the Gibbs sampler has explored all areas of the parameter space sufficiently. We

utilise some key results in the literature to show that if a particular sampler has

certain properties, we can show that the Markov chain in the sampler is geomet-

rically ergodic. That is, it explores all areas of the parameter’s sample space at a

geometric rate, meaning that only a moderate amount of iterations are necessary

to have a sufficiently rich sample from the parameter space to fit the model.
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Key results of this chapter have been published in Fitzpatrick (2014), which

was produced as a key component of this thesis with the overarching theme of

multi-regime models involving Markov chains. Here, our observations derive from

underlying regimes that change over time and we estimate the parameters using a

procedure involving a Markov chain. Our key result is on finding a particular prop-

erty of this Markov chain, geometric ergodicity, which has important implications

for our estimation procedure and hence the reliability of our results.

In Chapter 3, as well as using Markov chain Monte Carlo for estimation, we

explore a model that uses Markov chains to describe the data dynamics directly.

We are modelling the credit rating dynamics of hundreds of financial services firms

in the United States of America across a time period that spans many different

economic states. We note that the rating dynamics vary widely enough to warrant

a multi-regime model. Since the broader economy is often described as a cycle,

with growth and contraction periods, we choose to fit two regimes and also model

the switching process between these regimes with a Markov chain. This is known

as the double chain Markov model (DCMM). The observed data is driven by

a Markov chain at each time point; however, the particular Markov chain that

drives the data is selected by a hidden Markov chain, which models the switching

dynamics. We estimate all of the parameters with an efficient Bayesian algorithm

to ensure that all areas of the parameter space are sufficiently explored to allow

for effective convergence of the Gibbs sampler as in Chapter 2. After fitting the

model to the credit rating data, we find that not only do the two regimes clearly

represent good and bad credit migration dynamics but they are selected for the

time periods that are well known to be the good and bad times of the United

States economy. This is a remarkable finding, given that only the credit rating

migration dataset was used with no economic information used a priori. It has

always been a challenge for practitioners to model business dynamics, particularly
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when it comes to rare events such as defaults of highly rated firms. The double

chain Markov model allows for a few parameters to describe complex dynamics that

can assist in understanding the credit risk taken by banks and large investment

firms. When we allow for multiple regimes, we are able to estimate the dynamics

that occur during times of economic stress. We know from the recent financial

crisis of 2008-2009, which had truly global effects, that economic conditions can

vary quite dramatically from the long-term average. Thus, we are working in an

area that is in great need of further exploration. The iterative model estimation

algorithms, the data, computing power, model consistency and general theory all

must be explored further to extend the tools available for understanding these

dynamics.

Key results of this chapter have been published in Fitzpatrick and Marchev

(2013), which was produced as a key component of this thesis with the overarching

theme of multi-regime models involving Markov chains. The observed data are

driven by different underlying regimes, which switch between each other over time,

and Markov chains are involved in a number of ways. Firstly, in a similar way to

the previous chapter, the estimation is performed by running a Markov chain.

Secondly, the series of regimes that are selected over time is a Markov chain,

meaning that, conditional on the current regime, the regime we select for the next

time point is independent to the previous regimes. Finally, the parameters of the

observed model are also Markov chains. This is because the credit rating data

that we study have a discrete state at each time point and the dynamics of their

potential migration to other ratings in the future, given a selected regime, is only

dependent on their current state.

We study a different need for multi-regime models in Chapter 4 where the

different regimes apply to different subsets of the population. We continue with

the motivating problem of modelling the credit rating migration dynamics of firms;
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however, we look into the theory behind the test for the number of Markov chains

required to satisfactorily fit a particular dataset. We explore this problem with

mixtures of continuous-time Markov chains and specifically develop the theory for

the test between 1 and 2 Markov chain components in the mixture. We conjecture

that, similarly to Hartigan (1985), the log-likelihood ratio test statistic diverges to

infinity with the sample size, contrary to the claim from Frydman (2005) that we

can use standard theory to apply a chi-squared distribution with degrees of freedom

equal to the difference in the number of parameters between the 1 component and

2 component mixture models. We provide evidence for our conjecture with the

use of a parametric bootstrap procedure and then adapt the theory of Fukumizu

(2003) to our case to definitively prove that the log-likelihood ratio test statistic

does in fact diverge to infinity with the sample size. In order to develop a test

for the presence of a Markov chain mixture, the next step would be to derive the

limiting distribution of the log-likelihood ratio test statistic. We pursue this for a

special case in the following chapter.

In Chapter 5, we focus on a simple case of the model in Chapter 4, where

each Markov chain component consists of a non-default state and an absorbing

default state. We derive the exact limiting distribution of the log-likelihood ratio

test statistic for the test between 1 and 2 Markov chain mixture components.

This test is equivalent to the test between 1 and 2 components in a censored

exponential mixture problem. We show that the log-likelihood ratio test statistic

is asymptotically equivalent to the square of the maximum of a Gaussian process

over an interval whose length increases as the logarithm of the sample size. We

prove that this Gaussian process is locally stationary so that we may utilise the

extreme value theory developed in Hüsler (1990) to ultimately derive the exact

limiting distribution of the log-likelihood ratio test statistic. These developments

allow us to conduct a two sided test between 1 and 2 censored exponential mixture
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components, which has applications beyond our original motivating example. We

provide some conclusions and ideas for future research following our results.
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2 Geometric ergodicity of the Gibbs sampler for

the Poisson change-point model

In order to understand the changing rates of driver fatalities over the past 20 years

in the state of Victoria, Australia, we observe a discrete time series of quarterly

counts between March 1989 and December 2010, shown in Figure 1. From inspec-

tion, we can see that there is an initial sharp drop in the counts for each quarter,

before a levelling off followed by another drop in the counts and a further levelling

off. Although the more recent data is generally lower than the previous years,

it does not seem to be following a linear trend, nor a gradual geometric decline.

There seems to be multiple levels in the data for various time intervals but it isn’t

entirely obvious where these levels are. If the count data seemed to have one level

of propensity, then we could fit a simple Poisson model. However, due to the

multiple levels of counts, it is appropriate to apply a Poisson change-point model

to the data. This will allow us to estimate where the change-points are, where we

shift to a new regime and what the fatality rates are in each regime.

Poisson change-point models are used for modelling inhomogeneous time-series

of count data. There are a number of methods available for estimating the param-

eters in these models using iterative techniques such as Markov chain Monte Carlo

(MCMC). Many of these techniques share the common problem that there does

not seem to be a definitive way of knowing the number of iterations required to

obtain sufficient convergence. In this chapter, we show that the Gibbs sampler of

the Poisson change-point model is geometrically ergodic. Establishing geometric

ergodicity is crucial from a practical point of view as it implies the existence of a

Markov chain central limit theorem, which can be used to obtain standard error

estimates. We prove that the transition kernel is a trace-class operator, which

implies geometric ergodicity of the sampler (see Khare and Hobert (2011) for de-
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Figure 1: The count of driver fatalities in Victoria for each quarter between March
1989 and December 2010. Source: TAC (2011)

tails). We then examine the application of the sampler to a Poisson change-point

model for quarterly driver fatality counts for the state of Victoria, Australia.

2.1 Introduction

Under the Poisson change-point model, we observe a non-homogeneous sequence

of T independent Poisson random variables X1, . . . , XT . More specifically, we con-

sider the case when the rate λ changes from λ1 to λ2 at an unknown point τ1,

then from λ2 to λ3 at a later unknown point τ2, and so on, until the rate changes

to λK , where it remains for the observation periods τK + 1 to T . This model

has been widely studied (see Carlin et al. (1992) and Raftery and Akman (1986),

among others). Each of these models have a fixed K, which means the number

of change-points is known a priori. The Bayesian Poisson change-point model
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studied in Raftery and Akman (1986) assumed conjugate priors and has a single

change-point at an unknown time. The model is applied to a well known data set

consisting of intervals between coal-mining disasters given by Jarrett (1979). Car-

lin et al. (1992) present a general approach to hierarchical Bayesian change-point

models, including a version of the Poisson change-point model that we apply to our

data, and describes a Gibbs sampler procedure in great detail. Although Carlin

et al. (1992) acknowledge the need to derive the number of iterations and sampler

replications required for sufficient convergence, the convergence of the algorithm

is concluded through inspection of the postetior distribution for the parameters

after applying up to 50 iterations and 100 replications. Further understanding of

the properties of convergence of the Gibbs sampler for the Poisson change-point

model will allow for a more precise number of iterations and replications to be

directly derived.

Here, we use a Poisson change-point model for detecting the shifts and levels

of quarterly driver fatality counts for the state of Victoria, Australia. Within

this application, the timing and size of the shifts in the dynamics of the data

provide insight into the effectiveness of particular government policies in reducing

the number of road fatalities.

In this study of non-homogeneous count data for driver fatalities in Victoria,

we utilise the results from Khare and Hobert (2011) to show a theoretical result

on the convergence of the Gibbs sampler for estimating the model parameters that

is of great importance to practitioners. In cases where these models are utilised

for providing objective evidence to influence future policy-making, we must have

confidence that the iterative algorithm for estimating the model parameters has

converged. It is an interesting approach to providing statistical evidence of shifts in

outcomes. Traditionally, a hypothesis would be set that assumes a particular effect

is or is not present and this hypothesis is tested as to whether we should adopt the
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defined alternative. This essentially requires us to know what the alternatives are.

For example testing whether data could be derived from a particular model (such

as the standard normal distribution), we would produce a test statistic that has a

particular distribution under the null hypothesis and infer with a particular level

of confidence whether we should reject this hypothesis in favour of a more general

alternative. However, with the class of models discussed here, we are only assuming

a model form and then using the data to allow us to discover the potential causes

for shifts in the rates of driver fatalities. This differs to us needing to guess the

potential causes first then test for whether we should guess again. If the results

from this more exploratory approach align with independent prior ideas as to what

could be driving the data, our understanding can be further verified.

In Section 2.2, we outline the model specification and introduce some notation.

We then discuss the estimation of the model parameters in Section 2.3. The

main result is presented in Section 2.4 where we show that the Gibbs sampler

is geometrically ergodic. This is a specific application of the results of Khare

and Hobert (2011) to our model chosen here due to its practical significance.

These theoretical results are used in practice in Section 2.5, where we apply the

model to quarterly driver fatality counts for the state of Victoria, Australia. Our

main interest is in estimating the non-constant fatality rate λ and the change-

points τ = (τ1, . . . , τK) by obtaining a sample from their posterior distributions.

We are interested in estimating both the timing of the change-points as well as

the size of the shift in fatality rates. The significant shifts in the driver fatality

counts, which are thankfully being reduced over time, align with some key policy

implementations and public campaigns, providing evidence for their impact. A

comparison of the fatality rates in each regime provides a measurement of their

effectiveness, despite the natural variation in the data from year to year. We then

discuss some conclusions and potential avenues for future research.
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2.2 Model specification

For the application of modelling the quarterly driver fatality counts, we are pre-

sented with a time series of count data. That is, a series of 0 < T < ∞ positive

integers Y1, Y2, . . . , YT representing the number of driver fatalities in each quar-

ter. Upon inspection of Figure 1, we see that these numbers vary over the series

within a reasonably controlled range and we see immediately that the earlier data

points tend to have higher counts than the later data points. We are modelling

these data in an exploratory fashion, to understand the features of the data, any

patterns that emerge and the resulting insights this can give us about what to

expect with future data points given relationships with causal factors that are not

directly captured in the data (such as road safety regulations, number of cars,

size and density of the population, types of vehicles on the roads, quality of the

roads, quality of the drivers, weather and natural disasters etc.). Note that it is

impossible to discern exactly what the causes are but we can show evidence that

supports or challenges a particular claim. We could look to capture other infor-

mation that may be related to the data and find a statistical relationship such as

fitting a generalised linear model of sorts; however, this requires access to many

other sources of data for the same time period and region involved. Given that our

analysis is largely exploratory, we would be required to gather much more data

than an eventual model as we should keep an open mind as to what may have

the strongest relationship with our dependent variables. Alternatively, we can find

patterns in our count data and use these patterns to point us in the right direction

what could be causing these patterns to emerge. This approach is key. It starts

with the data and we are guided to a greater understanding of what drives it.

Let us refer to the probability of a driver fatality within a particular time period

with a particular risk level. Focussing again on the actual counts, we note that

although the counts are greater for the earlier years than the later years, there
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does not seem to be a steady decline. In fact, there seems to be a single step down

in the counts and a levelling out before another step down. This multi-level effect

points to a shift in risk levels that are constant for a certain period before shifting

to a new level for the next period and so on. If we modelled all of the data with a

regular Poisson model, we would not have a good idea of the level of risk at each

time point but rather a view of the average risk over the entire observable period.

From inspection, we see that a constant level of risk is certainly not appropriate.

Poisson models may work to describe the count data but we must allow for the

shift in the risk levels.

We thus consider the Poisson change-point model, where

Yi|λ, τ
ind.∼



Po(λ1) for i = 1, . . . , τ1;

Po(λ2) for i = τ1 + 1, . . . , τ2;
...

Po(λK) for i = τK−1 + 1, . . . , τK ;

Po(λK+1) for i = τK + 1, . . . , T .

λi|β, τ
ind.∼ G(ai, βi), i = 1, . . . , K + 1

βi|τ
ind.∼ IG(ci, ρi), i = 1, . . . , K + 1

(1)

0 < K ≤ T − 1 is a known constant and τ1, . . . , τK are distributed as the order

statistics from a random sample of size K taken without replacement from the set

{1, 2, . . . , T − 1}.

Here X ∼ G(a, b) implies that X follows the gamma density

fX(x) = xa−1

baΓ(a)
e−

x
b , x > 0 and X ∼ IG(c, ρ) implies that X follows the inverse

gamma density fX(x) = 1
ρcxc+1Γ(c)

e−
1
ρx , x > 0.

The particular form of this model is consistent with the literature. In fact, if

we fix K = 1, then we have the Poisson change-point model that was studied in

Carlin et al. (1992). It is also constructed for a Bayesian approach. Given the
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data, there is no way for us to produce consistent maximum likelihood estimates

as we do not know when the shifts in λ take place. If we knew when the shifts

were (or guessed) then fitting the model with a frequentist approach would be

trivial. However, with this approach we allow the timing of the shifts to vary, thus

allowing the data to provide guidance as to where these could be. We may also

analyse the posterior distribution of the parameters, given their prior distributions

and the information provided by the data, which can give us a greater idea of our

level of certainty with each of the parameters and the potential that there may be

something quite different going on. The choice of prior distributions is consistent

with the sort of data that we are analysing (count data that occurs where there are

multiple experiments with a low risk of a particular outcome being experienced).

These distributions are also conjugate prior distributions. That is, they retain their

form in the posterior distribution after being combined with the data likelihood

distribution.

We will firstly explore some theoretical properties of this general model before

applying it specifically to our practical task at hand. This is the first time that

this particular dataset has been analysed in this way, so our findings will be of

use to policy makers seeking to further understand the drivers of the data. We

also extend the theory to further our understanding of the rate of convergence of

the Gibbs sampler for this model, which gives us some guidance as to the running

time required for the iterative algorithm to fit the model before we can analyse

the parameters and extract practical insights.

2.3 Estimation of the model parameters

Recall that our main interest is in estimating the vector λ and the change-points

τ = (τ1, . . . , τK) by obtaining a sample from their posterior distributions. From
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(1) we obtain the joint density

f(y,λ,β, τ ) =
1(

T−1
K

) τ1∏
h=1

λyh1 e
−λ1

yh!

K∏
i=2


τi∏

j=τi−1+1

λ
yj
i e
−λi

yj!


T∏

k=τK+1

λykK e
−λK

yk!

K+1∏
l=1

λal−1
l

βall Γ(al)
e
−λl
βl

K+1∏
m=1

1

ρcmm βcm+1
m Γ(cm)

e−
1

ρmβm .

(2)

Then, the complete posterior density is

f(λ,β, τ |y) ∝ λ
∑τ1
i=1 yi+a1−1

1

K∏
k=2

{
λ

∑τk
i=τk−1+1 yi+ak+1−1

k+1

}
λ
∑T
i=τK+1 yi+a2−1

K+1

×
e
−λ1(τ1+ 1

β1
)∏K

k=2

{
e
−λk(τk−τk−1+ 1

βk
)
}
e
−λK+1(T−τK−1+ 1

βK+1
)∏K+1

k=1

{
e
− 1
ρkβk

}
βa1+c1+1

1 βa2+c2+1
2

.

The desired sample will be obtained by running a two-stage Gibbs sampler that

iterates between

f(λ|β, τ ,y) and f(β, τ |λ,y),

where the sequence of β’s will be simply ignored.

From (2), it is clear that conditional on β, τ ,y, the parameters λ1, . . . , λK+1

are independent with

λ1|β, τ ,y ∼ G

(
τ1∑
i=1

yi + a1,
β1

τ1β1 + 1

)
;

λk|β, τ ,y ∼ G

 τk∑
i=τk−1+1

yi + ak,
βk

(τk − τk−1)βk + 1

 for k = 2, . . . , K;

λK+1|β, τ,y ∼ G

(
T∑

i=τK+1

yi + aK+1,
βK+1

(T − τK)βK+1 + 1

)
.

(3)

Again, from (2) it is clear that conditional on λ,y, the parameters β1, . . . , βK+1
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and τ are independent with

βk|λ,y ∼ IG

(
ak + ck,

ρk
ρkλk + 1

)
for k = 1, . . . , K + 1;

f(τ |λ,y) =
f(y|τ ,λ)∑T−K−1

τ ′1=1

∑K
i=2

∑T−K−1+i
τ ′i=τ

′
i−1+1 f(y|τ ′,λ)

.
(4)

Remarks:

1. Note that we intentionally chose the parametrization of the gamma and

inverse gamma densities so that equations (3) and (4) agree perfectly with

the complete conditional distributions derived in Carlin et al. (1992).

2. It is possible to integrate out the β variables from the posterior density. For

example, in the case of one change-point, we see that

f(λ, τ |y) ∝ λ
∑τ
i=1 yi+a1−1

1 λ
∑T
i=τ+1 yi+a2−1

2 e−λ1τ e−λ2(T−τ)

(ρ1λ1 + 1)a1+c1(ρ2λ2 + 1)a2+c2
.

However, the above density, although available in closed form (apart from a

normalizing constant), is not easy to draw from. Moreover, the introduction

of more than one change point makes sampling from f(λ, τ |y) even harder,

whereas with our approach the algorithm is essentially the same.

2.4 Geometric ergodicity of the Gibbs sampler

In this section we prove that the Gibbs sampler, originally described by Geman

and Geman (1984), applied to the Poisson change-point model, specified in the

previous section, is geometrically ergodic. A geometrically ergodic Gibbs sampler

converges to its target distribution at a geometric rate. We do this by using the

results in Khare and Hobert (2011) about data augmentation (DA) algorithms

which are trace-class. DA algorithms involve the introduction of unobserved or
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latent variables to sampling or iterative optimisation procedures. Stochastic DA

algorithms constructed for posterior sampling can take the form of a two-block

Gibbs sampler, such as the one used for our model.

Definition 2.1. If a DA algorithm based on a joint density f(x, y) satisfies

∫
Θ

Kmo(θ|θ)dθ =

∫
Y

∫
X
fX|Y (x|y)fY |X(y|x)µ(dx)ν(dy) <∞, (5)

then the Markov operator, Kmo, associated with the chain is a trace-class operator.

Here, Θ = X × Y and also fX|Y (x|y) and fY |X(y|x) are the densities for the

parameter subsets X and Y with measures µ and ν respectively.

Furthermore, if Kmo is a trace-class operator then it is compact and its norm

‖Kmo‖ < 1, so by Roberts and Rosenthal (1997), the corresponding Markov chain

must be geometrically ergodic. Further details about trace-class operators can be

found, for example, in Conway (1990).

We can prove geometric ergodicity of the Gibbs sampler for our model via the

following theorem.

Theorem 2.2. For the Poisson change-point model (1), the two conditional den-

sities (3) and (4) satisfy

T−K−1∑
τ1=1

K∑
i=2

T−K−1+i∑
τi=τi−1+1

∫
RK+1

+

∫
RK+1

+

f(λ|β, τ ,y)f(β, τ |λ,y)dβdλ <∞. (6)

Therefore, the Gibbs sampler for the Poisson change-point model (1) is geo-

metrically ergodic.

We can see from (5) that (6) implies that the Markov operator associated with

the Gibbs sampler for the Poisson change-point model (1) is a trace-class operator.
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We can then use the results of Roberts and Rosenthal (1997) to see that the Gibbs

sampler for (1) is geometrically ergodic.

Proof. From (3) and (4) we can see that the left hand side becomes

T−K−1∑
τ1=1

K∑
i=2

T−K−1+i∑
τi=τi−1+1

∫ ∞
0

. . .

∫ ∞
0

f(λ1|β1, τ ,y) . . . f(λK+1|βK+1, τ ,y)f(β1|λ1)

× . . . f(βK+1|λK+1)f(τ |λ,y)dβ1 . . . dβK+1dλ1 . . . dλK+1.

Note that

f(τ ∗|λ,y) =
f(y|τ ∗,λ)∑T−K−1

τ1=1

∑K
i=2

∑T−K−1+i
τi=τi−1+1 f(y|τ ,λ)

≤ 1 for all possible τ ∗,

which implies that the left hand side of the expression in the theorem is bounded

above by

T−K−1∑
τ1=1

K∑
i=2

T−K−1+i∑
τi=τi−1+1

∫ ∞
0

. . .

∫ ∞
0

f(λ1|β1, τ ,y) . . . f(λK+1|βK+1, τ ,y)

× f(β1|λ1) . . . f(βK+1|λK+1)dβ1 . . . dβK+1dλ1 . . . dλK+1

=
T−K−1∑
τ1=1

K∑
i=2

T−K−1+i∑
τi=τi−1+1

{∫ ∞
0

∫ ∞
0

f(λ1|β1, τ ,y)f(β1|λ1)dβ1dλ1

}
× . . .

×
{∫ ∞

0

∫ ∞
0

f(λK+1|βK+1, τ ,y)f(βK+1|λK+1)dβK+1dλK+1

}
.

Thus, since T is finite and since f(λk|βk, τ ,y) and f(βk|λk) are distributed simi-

larly for all k = 1, . . . , K + 1, then it will suffice to prove that

∫ ∞
0

∫ ∞
0

f(λ1|β1, τ ,y)f(β1|λ1)dβ1dλ1 <∞ ∀ τ1 = 1, . . . , T −K − 1. (7)
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Note also that letting M(τ1) = τ1, M(τK+1) = T−τK , and M(τi) = τi−τi−1 for

i = 2, . . . , K, and letting N(τ1) =
∑τ1

j=1 yj, N(τK+1) =
∑T

j=τK+1 yj, and N(τi) =∑τi
j=τi−1+1 yj for i = 2, . . . , K, we have

f(λi|y, τ , bi) ∼ G

(
ai +N(τi),

(
bi

biM(τi) + 1

))
f(bi|λi) ∼ IG

(
ai + ci,

(
ρi

ρiλi + 1

))

where ai, ci, and ρi are known positive constants, for i = 1, . . . , K + 1. Thus,

taking the model specification into account, for any general τ ∈ {1, . . . , T − 1}

and N(τ) =
∑τ

i=1 yi, we are required to prove

∫ ∞
0

∫ ∞
0

λa+N(τ)−1e−λ(τ+ 1
b
)

( b
bτ+1

)a+N(τ)Γ(a+N(τ))

e−
1
b
(λ+ 1

ρ
)

( ρ
ρλ+1

)a+cΓ(a+ c)ba+c+1
dbdλ <∞. (8)

We will do this by bounding the left hand side by integrable functions. We will

bound the left and right tails of each of the b and λ supports by a different function

and show that the result is still finite.

LHS =

∫ ∞
0

∫ ∞
0

I1dbdλ

=

∫ ∞
0

∫ ∞
0

λa+N(τ)−1(λ+ 1
ρ
)a+ce−λ(τ+ 2

b
)

Γ(2a+N(τ) + c+ 1)( b
bτ+2

)2a+N(τ)+c+1
dλ

×

[
Γ(2a+N(τ) + c+ 1)( b

bτ+2
)2a+N(τ)+c+1e−

1
b
( 1
ρ

)

( b
bτ+1

)a+N(τ)Γ(a+ c)Γ(a+N(τ))ba+c+1

]
db

<

∫ ∞
0

∫ M

0

I1dλdb+

∫ ∞
0

∫ ∞
M

λ2a+N(τ)+ce−λ(τ+ 2
b
)

Γ(2a+N(τ) + c+ 1)( b
bτ+2

)2a+N(τ)+c+1
dλ

×

[
Q1( b

bτ+2
)2a+N(τ)+c+1e−

1
b
( 1
ρ

)

( b
bτ+1

)a+N(τ)ba+c+1

]
db

where Q1 = Γ(2a+N(τ)+c+1)
Γ(a+c)Γ(a+N(τ))

, since there exists M > 0 such that (x + 1
ρ
)a+c <
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xa+c+1 ∀ ρ, a, c > 0 and x > M . So now, we have

LHS <

∫ ∞
0

∫ M

0

I1dλdb+Q1

∫ ∞
0

(bτ + 1)a+N(τ)e−
1
b
( 1
ρ

)

(bτ + 2)2a+N(τ)+c+1ba+c+1
db

<

∫ ∞
0

∫ M

0

I1dλdb+Q1

∫ ∞
0

e−
1
b
( 1
ρ

)

(bτ + 2)a+c+1
db

<

∫ ∞
0

∫ M

0

I1dλdb+Q1ρ
a+cΓ(a+ c)

∫ ∞
0

e−
1
b
( 1
ρ

)

ba+c+1ρa+cΓ(a+ c)
db

=

∫ ∞
0

∫ M

0

I1dλdb+Q2

where Q2 = Q1ρ
a+cΓ(a+ c). Thus we can now focus on the first term, so

LHS <Q2 +

∫ M

0

∫ ∞
0

(bτ + 1)a+N(τ)e−
1
b
(2λ+ 1

ρ
)

b2a+N(τ)+c+1Γ(2a+N(τ) + c)( ρ
2ρλ+1

)2a+N(τ)+c
db

×

[
Γ(2a+N(τ) + c)( ρ

2ρλ+1
)2a+N(τ)+cλa+N(τ)−1e−λτ

( ρ
ρλ+1

)a+cΓ(a+ c)Γ(a+N(τ))

]
dλ
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and since there exists N > 0 such that (bτ+1)a+N(τ) < bda+N(τ)+1e ∀ b, τ, a,N(τ) >

0 and b > N ,

<Q2 +

∫ M

0

∫ N

0

I1dbdλ

+

∫ M

0

E[bda+N(τ)+1e]
Γ(2a+N(τ) + c)( ρ

2ρλ+1
)2a+N(τ)+cλa+N(τ)−1e−λτ

( ρ
ρλ+1

)a+cΓ(a+ c)Γ(a+N(τ))
dλ

<Q2 +

∫ M

0

∫ N

0

I1dbdλ

+

∫ M

0

Γ(2a+N(τ) + c− da+N(τ) + 1e)
( ρ

2ρλ+1
)da+N(τ)+1e

( ρ
2ρλ+1

)a+N(τ)λa+N(τ)−1e−λτ

Γ(a+ c)Γ(a+N(τ))
dλ

<Q2 +

∫ M

0

∫ N

0

I1dbdλ

+

∫ M

0

Γ(2a+N(τ) + c− da+N(τ) + 1e)
Γ(a+ c)Γ(a+N(τ))

(
2λ+

1

ρ

)da+N(τ)e

e−λτdλ

=Q3 +

∫ M

0

∫ N

0

I1dbdλ

where Q3 = Q2 + M Γ(2a+N(τ)+c−da+N(τ)+1e)
Γ(a+c)Γ(a+N(τ))

(
sup0<λ<M(2λ+ 1

ρ
)da+N(τ)ee−λτ

)
, and

under the condition that 2a+c−dae 6= 1, 0,−1,−2, . . ., which is not very restrictive.

Therefore, the last thing to prove is that

A =

∫ M

0

∫ N

0

I1dbdλ <∞. (9)

For this, we note that the mode of an IG(α, β) distribution is 1
β(α+1)

and the mode

of a G(α, β) distribution is α−1
β

. Thus, we have

A <

∫ M

0

∫ N

0

(a+N(τ)− 1)b

bτ + 1

ρλ+ 1

ρ(a+ c+ 1)
dbdλ

=

∫ M

0

∫ N

0

I2dbdλ
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and since

∂I2

∂b
=

(a+N(τ)− 1)(ρλ+ 1)

ρ(a+ c+ 1)(bτ + 1)2
> 0 for all 0 ≤ b ≤ N,

we have

A < N

∫ M

0

(a+N(τ)− 1)(ρλ+ 1)

ρ(a+ c+ 1)(Nτ + 1)2
dλ.

Also,

∂

∂λ

[
(a+N(τ)− 1)(ρλ+ 1)

ρ(a+ c+ 1)(Nτ + 1)2

]
=

(a+N(τ)− 1)ρ

ρ(a+ c+ 1)(Nτ + 1)2
> 0 ∀ 0 ≤ λ ≤M,

so we have

A < MN
(a+N(τ)− 1)(Mρ+ 1)

ρ(a+ c+ 1)(Nτ + 1)2
<∞.

Therefore,

∫
Θ

Kmo(θ|θ)dθ <∞

as required.

2.5 Applications to Victorian driver fatality count data

A popular application of the Poisson change-point model is in the assessment of

the effectiveness of government policies. We analyse count data for the number of

fatal crashes in each calendar quarter, recorded in the state of Victoria, Australia.

The data is from the Australian Government - Department of Infrastructure and

Transport, TAC (2011). This particular time series is of interest due to the fact

that the frequency of fatal crashes in Victoria has reduced dramatically over the

27



past twenty years, despite an increase in the number of drivers over the same

period. It is important to assess the nature of the reductions, whether it is a

steady downward trend or whether there are sudden drops due to various effective

policies or other discrete influences.

Our data set consists of T = 88 quarterly observations, ranging from the March

quarter of 1989 to the December quarter of 2010. We fit the Poisson change-

point model from (1), with K = 2 change-points, to the data. The constant

hyperparameters are set with a1 = 170, a2 = 120, a3 = 80, c1 = c2 = c3 = 1, and

ρ1 = ρ2 = ρ3 = 1, so that the sampled rate parameters λi are more likely to begin

with values that roughly mirror the values in Figure 1. The algorithm runs for

100, 000 iterations, after a burn-in period of 10, 000 iterations. The results are as

shown in Figure 2.

The estimated change-points are after the June quarter of 1990 and the March

quarter of 2002. The first change-point was a major drop that followed the imple-

mentation of the Road Safety Act (1986), which governs road use and deals with

licensing and road related offences in Victoria. This also lead to the establishment

of the Transport Accident Commission (TAC), which is the statuatory insurer of

third-party personal liability. In 1989 there was also a federal Ten Point Plan to

reduce the number of deaths on Australian roads. The TAC have also launched

successful TV advertising campaigns in Victoria throughout the 1990’s and early

2000’s. In 2000, the National Road Safety Strategy 2001-2010 was developed, with

a target of a 40 per cent reduction in the population rate of road fatalities from

9.3 to 5.6 per 100,000. The Strategy was supported by a series of two-year action

plans. The introduction of this targeted focus on road fatality reduction coincided

with the second change-point seen in the data.

It is difficult to discern exactly what causes the change-points. However, it is

evident that significant shifts in the rate of road fatalities in Victoria have been
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Fatal Crashes in Victoria
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Figure 2: Crash statistics data with Poisson change-point model parameters

observed and assuming that the behaviour of the general population is consistent

over time, it is likely that the introduction and implementation of these major

policy introductions have lead to a significant reduction in road fatality rates. The

model parameter estimates allow us to measure the difference in rates. From the

ratios of the posterior estimates of λ2/λ1 and λ3/λ2, we see that the first change-

point lead to a drop in road fatalities of between 36 and 45 per cent and the second

change-point lead to a drop in road fatalities of between 18 and 26 per cent, at the

95 per cent confidence level. This form of objective feedback to the effectiveness

of major policy decisions is vital to continued high levels of governance.
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2.6 Conclusions

On a practical level, we have seen how the Poisson change-point model can be

estimated for modelling road fatalities, where there are various policies and laws

in place at different times. The model clearly shows shifts in the count levels

towards a lowered rate of fatalities, despite a rise in the population of drivers.

Given the validity of the datapoints, we can conclude that the level of fatalities

has significantly reduced over the past 20 years. It would be of interest to see if

these results held true for other states and territories around Australia, which could

help identify the cause of the decline in fatalities. For example, if the downward

shifts occur around the same time, it could indicate the cause of the decline in

fatalities was due to a federal intervention. On a theoretical level, the results in

this chapter imply that the Gibbs sampler for the Poisson change-point model

will converge at a geometric rate. Thus, given a specific convergence level, the

minimum number of iterations required can be calculated. Although we have

identified a key quality of the convergence rate of the sampler, the calculation

of the specific rate of convergence is left for further research. It would also be

of interest to see if the bounding technique of section 2.4 can be used to prove

geometric ergodicity of MCMC algorithms for other models.
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3 Efficient Bayesian estimation of the multivari-

ate double chain Markov model

Key results of this chapter have been published in Fitzpatrick and Marchev (2013),

which was produced as a key component of this thesis with the overarching theme

of multi-regime models involving Markov chains. The observed data are driven

by different underlying regimes, which switch between each other over time, and

Markov chains are involved in a number of ways. Firstly, in a similar way to the

previous chapter, the estimation procedure is a Markov chain. Secondly, the series

of regimes that are selected over time is a Markov chain, meaning that, conditional

on the current regime, the regime we select for the next time point is independent

to the previous regimes. Finally, the parameters of the observed model are also

Markov chains. This is because the credit rating data that we study have a discrete

state at each time point and the dynamics of their potential migration to other

ratings in the future, given a selected regime, is only dependent on their current

state.

The double chain Markov model (DCMM) is used to model an observable pro-

cess Y = {Yt}Tt=1 as a Markov chain with transition matrix, Pxt , dependent on the

value of an unobservable (hidden) Markov chain {Xt}Tt=1. We present and justify

an efficient algorithm for sampling from the posterior distribution associated with

the DCMM, when the observable process Y consists of independent vectors of (pos-

sibly) different lengths. Convergence of the Gibbs sampler, used to simulate the

posterior density, is improved by adding a random permutation step. Simulation

studies are included to illustrate the method. The problem that motivated our

model is presented at the end. It is an application to real data, consisting of the

credit rating dynamics of a portfolio of financial companies where the (unobserved)

hidden process is the state of the broader economy.
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3.1 Introduction

Let Y be a set of J elements. For convenience we will denote them with the first J

positive integers; i.e., Y = {1, . . . , J}. Consider a stochastic process {Yt}Tt=0, where

each Yt takes values in Y for t = 0, . . . , T . Dependence among such Yt’s, taking

values in a finite state space, can be modeled by Markov chains. For example, the

first order simple Markov chain model can be described as follows:

P
(
(Y1, . . . , YT )> = (y1, y2, . . . , yT )>|Y0 = y0, θ

)
=

T∏
t=1

θyt−1yt ,

where θ is a J × J transition matrix such that θij = P(Yt = j|Yt−1 = i, θ) for

t = 1, . . . , T , i, j = 1, . . . J and the elements in each row of θ sum to 1. In other

words, regardless of any external factors that may affect the observations, given

the state yt of the random variable at the current time, it migrates with the same

multinomial distribution of probabilities (θyt1, . . . , θytJ) to the other possible states.

A more rigorous definition of Markov chains in a general state space can be found

in Meyn and Tweedie (1993).

There have been different extensions to the simple Markov chain model that

have emerged in the literature. One of the most important has been the Hid-

den Markov model (HMM) which was first presented in the late 1960’s in Baum

and Petrie (1966) and can be regarded as a Markov chain observed with noise.

More precisely, a HMM is a stochastic process {(Yt, Xt)}Tt=0, where {Xt}Tt=0 is a

hidden Markov chain (i.e. unobservable), and {Yt}Tt=0 is a sequence of (observ-

able) independent random variables such that the distribution of Yt depends on

Xt, t = 0, . . . , T . An excellent book on inference in HMM’s is Cappé et al. (2005).

Various applications, in areas such as meteorology, biotechnology, finance and

speech recognition, have motivated the exploration of the properties of HMM’s.
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For example, Churchill (1989) uses HMM’s to study the sequences of bases on a

DNA molecule and Hughes et al. (1999) study the relationship between observed

rainfall occurrence and broad scale atmospheric circulation patterns via HMM’s.

These models have also been popular in their application to credit modeling in

recent years. Studies such as Giampieri et al. (2005), and Korolkiewicz and Elliott

(2008) use HMM’s to model credit rating dynamics, by making the assumption

that the observed ratings are not dependent upon previous observed ratings but

rather on the hidden variables, representing the effects of the broader economy. A

good summary of the bibliography on HMM’s can be found in Cappé (2001).

Since the model we consider in this chapter is a version of a HMM, we now

describe the HMM in more detail. Assume that the hidden process {Xt}Tt=0 evolves

independently of {Yt}Tt=0 and is a Markov chain with first-order transition matrix

Π of dimension a× a and initial state distribution Π0 := (π01, . . . , π0a)
>. Assume

further that at each time point t = 0, . . . , T , depending on the value of the hidden

process xt, there are a finite number, a, of possible distributions of the random

variable Yt that takes values in the set Y . We write the mass function of Yt as

P(Yt = yt|Xt = xt,Θ) = θxt,yt , where Θ = {θk,l, k = 1, . . . , a, l ∈ Y}, are unknown

parameters. That is, letting θ = {Π0,Π,Θ}, the HMM can be described as

P(y0, . . . , yT , x0, . . . , xT |θ) = P(y0, . . . , yT |x0, . . . , xT , θ)P(x0, . . . , xT |θ)

= P(x0|Π0)P(y0|θx0)
T∏
t=1

[P(yt|xt,Θ)P(xt|xt−1,Π)]

= π0x0θx0,y0

T∏
t=1

θxt,ytπxt−1,xt .

These models work well for modeling the heterogeneity of the observed process

over time. However, they do not incorporate any direct dependence between ob-

servations. The logical extension is to allow the hidden Markov process to select
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one of a finite number of Markov chains to drive the observed process at each time

point. This sort of model is known as the double chain Markov model (DCMM)

and was first formally presented in Berchtold (1999). It is basically designed for

modeling non-homogeneous time series. If a time series can be decomposed into a

finite mixture of Markov chains, then the DCMM can be applied to describe the

switching process between these chains. This idea is not entirely new. The first

extension was to combine the HMM with an autoregressive model for the observed

process in Poritz (1982) and later in Kenny et al. (1990). Then Wellekens (1987)

and Paliwal (1993) presented a model, similar to the DCMM for both the continu-

ous case of the HMM and the discrete case respectively. Berchtold (1999) differed

from Paliwal (1993) with a more rigorous derivation of the forward-backward and

Viterbi algorithms involved in the model estimation and also by interpreting the

relation between observed outputs of the model as a non-stationary Markov chain.

There have been extensions to the DCMM presented in Berchtold (1999), in-

creasing the order of the Markov chains as in Eisenkopf (2008). However, this leads

to an explosion in the number of parameters. There exist alternatives to modeling

higher order dependence in Markov chains, such as in the mixture transition distri-

bution (MTD) model presented in Raftery (1985), which presents the conditional

probability of the current state as a linear combination of contributions from each

of a fixed number of past states. An iterative algorithm for the estimation of these

models was described in Berchtold (2002). The DCMM was extended in Eisenkopf

(2008) using the theory of MTD’s in Berchtold (2002) to show that the DCMM can

handle higher order relationships among the hidden states as well as the observed

outputs.

There are alternative generalizations of the HMM, which also take into account

the heterogeneity of mixture models over time. In Lanchantin et al. (2008), the

triplet Markov chain (TMC) model is presented, which can be viewed as an al-
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ternative generalization of HMM’s that is slightly different to the DCMM, where

the non-stationary distribution of the hidden Markov chain was modelled by an

auxiliary process governing the switching of the transition matrix over time (in

the DCMM, the hidden process is time-homogeneous). There are several explo-

rations of the TMC, such as in Pieczynski and Desbouvries (2005) and Pieczynski

(2007). Finally, we point the interested reader to Kirshner (2005), where there is

a detailed description of all levels of generalization from HMM’s to models such

as the DCMM, where there are direct relationships between the observed states,

to non-homogeneous hidden Markov models with autoregressive observed states,

similar to the TMC.

The computational estimation of the DCMM is explored in Berchtold (1999).

Due to the structure of the DCMM, there is no direct formula to compute the

log-likelihood. The problem is solved using an iterative procedure known as the

forward-backward algorithm. The estimation of the model parameters is tradi-

tionally obtained by an expectation-maximisation (EM) algorithm known in the

speech recognition literature as the Baum-Welch algorithm. Finally, the optimal

sequence of hidden states is computed using another iterative procedure called the

Viterbi algorithm presented in Forney (1973).

This chapter is focused specifically on multivariate time series data, which is

especially relevant in the context of modeling vectors of observations of different

lengths for each time point, such as in credit portfolio applications. The estima-

tion of the hidden states, the model parameters and the hidden Markov process

parameters is from a Bayesian perspective and is carried out using an efficient

extension of the techniques presented in Chib (1996). In order to improve the

convergence speed of the Gibbs sampler used to simulate the posterior density, we

employ the random permutation sampler presented in Frühwirth-Schnatter (2001).

During each iteration of the sampling process, the hidden states are sampled from
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their joint distribution, given the current parameter estimates and the observed

data. Then, we randomly permute the current labelling of the states of the hidden

process. This permutation of the labels is justified and is shown to be optimal us-

ing the recent results of Hobert and Marchev (2008). After obtaining the MCMC

sample, a post-processing algorithm from Stephens (2000), as presented in Boys

and Henderson (2002), is utilised to find the most suitable permutation of the

labels at each run of the sampler so that a consistent form of the model results,

without the non-identifiability arising from label switching.

Our work was motivated by the lack of appropriate models in the context of

credit portfolio modelling. In this setup the hidden Markov process represents

the effects of the broader economy and governs the particular regime driving the

transitions of credit ratings in a large portfolio of firms for each time point. We

apply our model on a dataset comprised of monthly Standard and Poor’s (S&P)

credit rating transitions for a portfolio of globally sourced financial institutions

and insurance companies from the 1st of January 1981 to the 1st of January 2010.

The estimated switching behavior of the hidden Markov regimes selected for each

time point bear remarkable similarities to the behaviour of the global economy

over the last three decades, as explained in Section 5.

The chapter is organised as follows. In Section 3.2 we specify the model and

introduce the notation and background to the theory of DCMM’s. In Section 3.3,

we estimate the model parameters from a Bayesian perspective, using an efficient

Data Augmentation (DA) algorithm in combination with the post-processing al-

gorithms of Stephens (2000) and Boys and Henderson (2002). Section 3.4 displays

the results of the model when applied to simulated data. In Section 3.5 we apply

our model on real data from Standard and Poor’s. Finally, Section 3.6 provides

conclusions and ideas for further research in this area.
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3.2 Model specification

In this section, we describe our multivariate Bayesian DCMM and its parameters

and derive the density function of the complete data set, consisting of both hidden

and observed variables.

Consider data of n random variables observed discretely over time, each of

potentially different lengths. That is, for each i = 1, . . . , n, we observe a vector,

(yi,ui , . . . yi,mi)
>, where ui < mi. Define

u0 := min
1≤i≤n

{ui}, and M := max
1≤i≤n

{mi}

and note that the times ui and mi may vary over the entire observation period

from u0, . . . ,M with the only restriction that mi − ui ≥ 1, i = 1, . . . , n.

Assume that for each i = 1, . . . , n and each time point t = ui, . . . ,mi, the

random variable Yi,t ∈ Y , where Y = {1, . . . , J}, and is modelled as dependent

upon the value at the previous time point, yi,(t−1), as well as on a hidden state,

xt, for that time point. We assume that the hidden process X = {Xt}Mt=u0
is

a Markov chain with first-order transition matrix Π of dimension a × a, where

πgh = P(Xt = h|Xt−1 = g) for g, h = 1, . . . , a and t = u0 + 1, . . . ,M . We let the

first hidden state Xu0 be selected from a multinomial distribution with vector of

probabilities r = (r1, . . . , ra)
>. We also assume that the observable process is a

Markov chain with a possible transition matrices P1, . . . , Pa, each of order J × J ,

such that for a given hidden state xt, the elements of the transition matrix Pxt are

pxt,jk = P(Yi,t = k|Yi,(t−1) = j,Xt = xt),

for i = 1, . . . , n, t = ui + 1, . . . ,mi.

For each random variable, we consider the time of initial observation ui, the
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initial observed state yi,ui and the number of consecutive time-points that it was

observed mi − ui + 1 as fixed so all inference is conditional on those values. We

denote the collection of all parameters in our model by θ and observe that θ ∈

Θ, where Θ is the d-dimensional hypercube with d equal to the number of free

parameters in the model, since all parameters are probabilities between 0 and 1.

Conditional on X, each of the random variables are modelled independently

of each other. For each i = 1, . . . , n, if we define yi, := (yi,(ui+1), . . . , yi,mi)
>, then

we consider the following hierarchical Bayesian model:

P(yi,|yi,ui ,x, θ) = P(yi,(ui+1)|yi,ui , xui+1)× · · ·×

× P(yi,mi |yi,(mi−1), xmi)

P(x|θ) = P(xu0)P(xu0+1|xu0)× · · ·×

× P(xM |xM−1)

P(θ) = P(r)P(Π )P(P1) . . .P(Pa),

(10)

where, similarly to Chib (1996), the priors on r, Π , P1, . . . , Pa are Dirichlet as

follows:

r ∼ D(α01, . . . , α0a)

(πi1, . . . , πia)
ind∼ D(αi1, . . . , αia), i = 1, . . . , a

(p1,l1, . . . , p1,lJ)
ind∼ D(α1,l1, . . . , α1,lJ), l = 1, . . . , J

...

(pa,l1, . . . , pa,lJ)
ind∼ D(αa,l1, . . . , αa,lJ), l = 1, . . . , J,

and the α’s are given constants. More details on how priors are chosen for HMM’s

can be found in Subsection 13.1.2 of Cappé et al. (2005).
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Then the model for Y := (Y 1,, . . . ,Y n,) is

P(y|y0,x, θ) =
n∏
i=1

P(yi,|yi,ui ,x, θ), (11)

where y0 := (y1,u1 , . . . , yn,un)> and P(x|θ) and P(θ) are as specified in (10).

From equation (10) the joint mass function of Yi, and X given yi,ui and θ is:

P(yi,,x|yi,ui , θ) = rxu0
πxu0xu0+1 . . . πxuixui+1pxui+1,yi,uiyi,(ui+1)

× · · · × πxmi−1xmi
pxmi ,yi,(mi−1)yi,mi

. . . πxM−1xM

=

[
a∏
l=1

r
I{xu0}

(l)

l

]
M∏

t=u0+1

a∏
g=1

a∏
h=1

π
I{(xt−1,xt)}(g,h)

gh

×

[
mi∏

t=ui+1

a∏
l=1

J∏
j=1

J∏
k=1

p
I{(yi,(t−1),yi,t,xt)}

(j,k,l)

l,jk

]
, (12)

where IA(x) is the usual indicator function of a set A.

Next, we utilise the fact that the random vectors Y i, for i = 1, . . . , n are

independent, conditional on the hidden process X, when deriving the joint mass

function of all random variables Y and X:

P(y,x|y0, θ) =

[
a∏
l=1

r
I{xu0}

(l)

l

][
M∏

t=u0+1

a∏
g=1

a∏
h=1

π
I{(xt−1,xt)}(g,h)

gh

]

×

[
n∏
i=1

mi∏
t=ui+1

a∏
l=1

J∏
j=1

J∏
k=1

p
I{(yi,(t−1),yi,t,xt)}

(j,k,l)

l,jk

]
. (13)

We are interested in exploring the posterior density f(θ|y) := f(y,θ)
f(y)

, where

f(y, θ) and f(y) are defined from (13) and (10) as

f(y, θ) =
∑
x∈Xm

P(y,x|y0, θ)P(θ) (14)
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and f(y) =
∫

Θ
f(y, θ)dθ with Xm being the m-tuple product of the set {1, . . . , a}

with itself. Here, m = M − u0 + 1. Of course, given the nature of P(y,x|y0, θ)

in (13) and the summation in (14), direct calculation of f(θ|y) is impossible;

however, as explained in the next section, it is possible to construct an efficient

MCMC algorithm to obtain approximate draws from it.

3.3 Estimation of the model parameters

The target density f(θ|y), as defined in the previous section, is not available in

closed form, but can be presented as the θ-marginal density of f(θ,x|y), where

f(θ,x|y) = f(y,x|y0,θ)P(θ)
f(y)

. Therefore, we will employ the data augmentation (DA)

algorithm of Tanner and Wong (1987) to obtain approximate draws from it. Thus,

we run a two-stage Gibbs sampler that alternates between sampling from

P(x|y, θ) :=
f(θ,x|y)

f(θ|y)
(15)

and

P(θ|x,y) :=
f(θ,x|y)

f(x|y)
, (16)

where f(x|y) is the x-marginal density of f(θ,x|y). The exact forms of (15) and

(16) are derived in the next two subsections.

It is well-known that in Bayesian mixture models, there is the so called problem

of “label switching”, which means that the target posterior density is multi-modal

and the sampler can easily get stuck in one of the modes (or explore the modes ir-

regularly). We remedy this issue by performing an additional step, which randomly

permutes the labels after sampling from (15). This random permutation step was

introduced in Frühwirth-Schnatter (2001) and further analyzed in Hobert et al.

(2011) as being a special case of the general scheme for improvement of DA algo-

rithms, presented in Hobert and Marchev (2008). What we will show in Subsection
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3.3.3 is that this extra step is also optimal in the sense of Hobert and Marchev

(2008), as being constructed via a group action on Xm with the appropriate Haar

measure.

Finally, the parameters θ are estimated as posterior means, calculated from

the output of the modified DA algorithm, after a post-processing step is applied

(as detailed in Subsection 3.3.4).

3.3.1 Sampling from P(x|y, θ)

Chib (1996) developed a method for simulating the hidden states x, given a par-

ticular i ∈ {1, . . . , n} and a single vector of observed data, yi,. We will generalise

this algorithm to a set of multiple vectors y1,, . . . ,yn, of different lengths.

For u0 < t < M define

x−t := (xu0 , . . . , xt)

xt := (xt, . . . , xM)

y,t :=
⋃
i:ui<t

{
(yi,ui , . . . , yi,min{t,mi})

}
yt :=

⋃
i:t<mi

{
(yi,max{t+1,ui}, . . . , yi,mi)

}
y(t) := {yi,t} for all i ∈ {1, . . . , n} with ui ≤ t ≤ mi,

and note that the first, third and fifth definitions are also valid for t = M .

The following lemma is used to derive P(x|y, θ):

Lemma 3.1. For t = u0, . . . ,M − 1 we have

P (xt+1|xt,y,t, θ) = P (xt+1|xt,Π ).
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Proof. For all t = u0, . . . ,M − 1 we have

LHS = P(xt+1|xt,y,t, θ)

=
P(y,t|xt, xt+1, θ)P(xt+1|xt, θ)

P(y,t|xt, θ)
= P(xt+1|xt, θ)

since, by the definition of the model in (10), the observable data up to any such time

t is not dependent upon the unobservable data at time t + 1 and only dependent

on the unobservable data up to time t and θ. Then,

P(xt+1|xt, θ) = P(xt+1|xt,Π )

since, by the definition of the model in (10), the unobservable data is driven by

a hidden Markov chain with transition matrix Π that is not dependent upon the

other parameters.

Our main result about sampling from P(x|y, θ) follows.

Theorem 3.2. For data of independent vectors {Y i,}ni=1 the joint distribution,

P (x,y, θ), of the hidden data, the observed data and the parameters is given by

P (x,y, θ) ≡ P (x−M |y,M , θ) ∝ P (xM |y,M−1, θ)f
(
y(M)|y,M−1, θxM

)
×

M−1∏
t=u0+1

P (xt+1|xt,Π )P (xt|y,t−1, θ)f
(
y(t)|y,t−1, θxt

)
×P (xu0+1|xu0 ,Π )P (xu0 |r)

with

P (xt|y,t−1, θ) =
a∑
l=1

P (xt|xt−1 = l,Π )P (xt−1 = l|y,t−1, θ).

Remark: Note that from the above only P (xt|y,t−1, θ) needs to be calculated
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and the remaining components are from the model specified in equations (10) and

(11).

Proof. The joint mass function of the hidden states, given the parameters and the

observed data as vectors at each time point is

P(x−M |y,M , θ) = P(xM |y,M , θ)× . . . ×P(xt|y,M ,xt+1, θ) · · · × P(xu0|y,M ,xu0+1, θ).

The “typical term” can be written as

P(xt|y,M ,xt+1, θ) = P(xt|y,t,yt+1,xt+1, θ)

=
P(xt+1,yt+1|y,t, xt, θ)P(xt|y,t, θ)

P(xt+1,yt+1|y,t, θ)

= P(xt|y,t, θ)
P(xt+1,x

t+2,yt+1|y,t, xt, θ)
P(xt+1,yt+1|y,t, θ)

= P(xt|y,t, θ)P (xt+1|xt,y,t, θ)
P(xt+2,yt+1|y,t, xt, xt+1, θ)

P(xt+1,yt+1|y,t, θ)

= P(xt|y,t, θ)P(xt+1|xt,Π )
P(xt+2,yt+1|y,t, xt, xt+1, θ)

P(xt+1,yt+1|y,t, θ)

by Lemma 3.1. Now,
P(xt+2,yt+1|y,t,xt,xt+1,θ)

P(xt+1,yt+1|y,t,θ)
depends only on xt+1, and is therefore

independent of xt and thus can become the normalising constant. That is,

P(xt|y,M ,xt+1, θ) ∝ P(xt|y,t, θ)P(xt+1|xt,Π ). (17)

We continue, in more detail, to show

P(xt|y,t, θ) = P(xt|y,t−1,y(t), θ)

=
P(xt|y,t−1, θ)P(y(t)|xt,y,t−1, θ)

P(y(t)|y,t−1, θ)

∝ P(xt|y,t−1, θ)f(y(t)|y,t−1, θxt).

(18)
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By the law of total probability and Lemma 3.1, we have

P(xt|y,t−1, θ) =
a∑
l=1

P(xt|xt−1 = l,y,t−1, θ)P(xt−1 = l|y,t−1, θ)

=
a∑
l=1

P(xt|xt−1 = l,Π )P(xt−1 = l|y,t−1, θ)

and consequently from (17) and (18),

P(xt|y,M ,xt+1, θ) ∝ P(xt+1|xt,Π )

[
a∑
l=1

P(xt|xt−1 = l,Π )P(xt−1 = l|y,t−1, θ)

]
×f
(
y(t)|y,t−1, θxt

)
.

This is initialized at t = u0 by setting P(x0|y,M , θ) = P(xu0|r) to be the same as

the Dirichlet prior on D(α01, . . . , α0a).

3.3.2 Sampling from P(θ|x,y)

Define

n0,l := I{xu0}(l), l = 1, . . . , a,

ngh :=
M∑

t=u0+1

I{(xt−1,xt)}(g, h), g, h = 1, . . . , a,

nl,jk :=
n∑
i=1

mi∑
t=ui+1

I{(yi,(t−1),yi,t,xt)}(j, k, l),

for j, k = 1, . . . , J, l = 1, . . . , a.

Then from Equation (13), combined with the Dirichlet priors, it can be seen

that P (θ|x,y) can be simulated separately and independently for r, Π and all the

44



P ’s as follows:

r|x,y ∼ D(α0,1 + n0,1, . . . , α0,a + n0,a)

π11, . . . , π1a|x,y ∼ D(α11 + n11, . . . , α1a + n1a)

...

πa1, . . . , πaa|x,y ∼ D(αa1 + na1, . . . , αaa + naa).

For the parameters for the observed process in each regime l = 1, . . . , a, this yields

pl,11, . . . , pl,1J |x,y ∼ D(αl,11 + nl,11, . . . , αl,1J + nl,1J)

...

pl,J1, . . . , pl,JJ |x,y ∼ D(αl,J1 + nl,J1, . . . , αl,JJ + nl,JJ).

3.3.3 Extra permutation step

To improve the convergence properties of the DA algorithm at each iteration of

the Gibbs sampler, we conduct a random permutation of the labels, as detailed in

Frühwirth-Schnatter (2001). Here we show that this extra step is justified and is

optimal in the sense of Hobert and Marchev (2008). What they denote by Y is

our Xm and what they denote by X is our Θ.

From (14) it can be seen that the posterior of interest, f(θ|y), is the θ-marginal

density of f(x, θ|y); i.e., f(θ|y) =
∑
x∈Xm f(x, θ|y) =

∫
Xm f(x, θ|y)µ(dx), where

µ is the counting measure on Xm. Clearly, this form of the target density allows

for construction of the optimal Haar PX-DA algorithm, as defined in Hobert and

Marchev (2008). Here we will show that the random permutation sampler of

Frühwirth-Schnatter (2001) is a specific case of the Haar PX-DA algorithm.

In our case X = {1, . . . , a} and the space Xm is the m-tuple product of X with
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itself:

Xm = {(x1, . . . , xm) : xi ∈ X , i = 1, . . . ,m}

= {1, . . . , a}m

where m = M−u0 +1. Notice that X , as any other discrete space, is a particularly

simple topological space, equipped with the discrete metric

d(x, x̃) =

 0, x = x̃

1, x 6= x̃
, ∀ x, x̃ ∈ Xm.

Any discrete space with discrete metric is separable and locally compact and

all subsets are open (and closed). In addition, we need to define a group action on

Xm. Let G be the symmetric group on the set X ; i.e.,

G := SX := {permutations of (1, . . . , a)},

again equipped with the discrete metric. Finally, define the group action on Xm

as

F (g,x) = gx = (g(x1), . . . , g(xm)),

which just permutes the values of the labels. (For example, if J = 3, x =

(3, 2, 1, 1) ∈ X 4, and g = (2, 3, 1), then gx = (1, 3, 2, 2).) Then for the identity

permutation e, we have ex = (x1, . . . , xm) = x, and for any two permutations g1

and g2, (g1g2)x = g1(g2x). As a multiplier we take χ(g) = 1, ∀ g ∈ SX . Then,

obviously, χ(g1g2) = χ(g1)χ(g2). It is easy to see that µ is relatively invariant,
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since for any integrable function h we have:

χ(g)

∫
Xm

h(gx)µ(dx) =
∑
x∈Xm

h(gx) =
∑
x∈Xm

h(x) (19)

=

∫
Xm

h(x)µ(dx).

Note that (19) follows from the fact that Xm
g := {gx : x ∈ Xm} = Xm, since for

any x ∈ Xm, there exists x̃ = g−1x such that gx̃ = x. The last piece of the Haar

PX-DA setup is the function j : g×Xm → R+, defined as j(g,x) = 1. Also notice

that the Haar measure on the symmetric group is the counting measure ν(dg).

After all this, the Haar PX-DA will iterate between the following three steps to

move from the current θ′ to the next θ:

1. x ∼ P(x|θ′,y);

2. g ∼ χ(g)P(gx|y) = P(g(x1), . . . , g(xm)|y). Set x′ = gx;

3. θ ∼ f(θ|x′).

Notice that step 2. in the above algorithm reduces to choosing a random per-

mutation on X with probability 1
a!

, as long as the x-marginal density P(x|y) is

symmetric under permuting the values of x1, . . . , xm. This may sound very restric-

tive and impractical but it is equivalent to the well-known random permutation

sampler developed in Frühwirth-Schnatter (2001) and used to remedy convergence

problems of MCMC algorithms used in mixture models and HMM’s. The condi-

tion that P(x|y) is symmetric under permutations is easy to check and is generally

satisfied under model (10) combined with Dirichlet priors with equal parameters.

Since the above derivations show that the extra step of randomly permuting the

labels is obtained under the conditions of Theorem 4 from Hobert and Marchev

(2008), the resulting Markov chain will have smaller asymptotic variance and bet-
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ter mixing than the regular DA algorithms. Further theoretical developments

about the extra step can be found in Khare and Hobert (2011) and Roy (2012).

3.3.4 Post-processing algorithm

In general, the posterior densities of each of the parameters can have a different

modes, meaning that simply taking the posterior means would not yield a useful

estimate. Since we cannot directly use the posterior mean as an estimate, it

is necessary to either impose artificial identifiability constraints to each of the

components in the model or to employ a post-processing algorithm to ensure that

the labels of the hidden states are consistent for all iterations. Stephens (2000)

details how the first approach generally fails to deal with the problem of label

switching in mixtures. We therefore use the post-processing algorithm of Stephens

(2000) to ensure consistency in the labeling of the components in our model.

This algorithm attempts to relabel the parameters for each iteration k =

1, . . . , N so as to minimize the expected loss under a class of loss functions. These

loss functions are defined in the decision theoretic framework outlined in Stephens

(2000). The specific version we use is as described in the relabelling algorithm in

Figure 3 on page 247 of Boys and Henderson (2002). Initially for each iteration

k = 1, . . . , N of the original Gibbs sampler, the post-processing algorithm seeks

out the particular permutation of the labels that minimizes the number of labels

that differ from the selected labels of the previous iteration k − 1. Then this per-

mutation of the labels is applied to the parameters that were sampled at iteration

k. Finally, for the selected labels at each time point t for t = u0, . . . ,M , the label

to be selected is the mode of all of the labels at t that have been selected over all

of the previous iterations 1, . . . , k.
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3.4 Simulation studies

In this section we illustrate the performance of our algorithm on simulated data.

It consists of two parts - estimating parameters and estimating the whole poste-

rior density. We also compare various performance measures of the Haar PX-DA

estimation procedure to the DCMM estimation procedure outlined in Berchtold

(2002). We used R to program our algorithm and we used MARCH 3.0 for Berch-

told’s method.

3.4.1 Parameters Estimation

In this subsection we opted for large sample sizes, so that the parameter estimates,

calculated as the posterior means, will be close to the values used to simulate the

data. We tried many combinations of a and J and all of them performed similarly.

Here we present the result for one of these settings.

We simulated data from the multivariate DCMM using equations (11) and (10)

with n = 500 random vectors, a total ofm = 300 possible time points, a = 2 hidden

states and J = 4 possible observed states. For i = 1, . . . , n, the random vectors

Y i, were simulated with different starting times ui and ending times mi, selected

uniformly from 2 to m. The data were simulated using the following transition

matrices:
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Π ∗ =

 0.4 0.6

0.2 0.8

 , P ∗1 =


0.80 0.16 0.03 0.01

0.15 0.65 0.15 0.05

0.05 0.10 0.60 0.25

0.01 0.01 0.01 0.97

 ,

P ∗2 =


0.80 0.15 0.04 0.01

0.10 0.85 0.04 0.01

0.01 0.15 0.75 0.09

0.01 0.01 0.01 0.97

 .

(20)

In this case Π was motivated by our real data example, presented in the next

section, and P ∗1 and P ∗2 were intentionally chosen to be similar to each other so

that it would be difficult for the algorithm to distinguish between the two regimes.

The α’s of each Dirichlet prior were all set to 1.

We ran our Haar PX-DA procedure for 40, 000 iterations. Even with such a

high number of iterations and with such large values for n and m, this took only

22 minutes on a Pentium E6550 processor at 2.33 Ghz using our non-optimised R

code. The estimates of the parameters, Π , P1 and P2, were then obtained as the

posterior means of the corresponding distribution (after the post-processing was
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applied). The results for a = 2, J = 4 were as follows:

Π̂ =

 0.4323 0.5677

0.1725 0.8275

 ,

P̂1 =


0.7935 0.1610 0.0346 0.0109

0.1508 0.6551 0.1485 0.0456

0.0535 0.1047 0.6114 0.2304

0.0082 0.0135 0.0093 0.969

 ,

P̂2 =


0.8064 0.1407 0.0416 0.0112

0.0991 0.8465 0.0437 0.0107

0.0087 0.1465 0.7477 0.0971

0.0108 0.0107 0.0111 0.9675

 .

(21)

We notice that upon comparison to the true parameter values in (20), the

estimated values in (21) are remarkably accurate, especially since the true values

of the two components driving the simulated data were quite similar.

The eventual level of accuracy of the parameter estimates clearly depends on

the level of separation between the two components. We conduct this simulation

with similar components, such as in the real example in Section 3.5, to illustrate

the approximate accuracy of the parameter estimates that can be obtained with

an appropriately large amount of data.

It is also worth mentioning that the posterior estimates obtained without the

extra permutation step were not very different from those obtained with the per-

mutation step. The reason for this is the use of the post-processing algorithm,

which plays a similar role to that of the extra step - it reduces the autocorrelation

of the Markov chain. However, as we demonstrate in the next subsection, the

extra permutation step greatly improves the overall posterior density estimates.
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Furthermore, while the extra permutation has been completely justified theoret-

ically in Hobert and Marchev (2008), there is very little proved in the literature

about the post-processing algorithm. Lastly, it should be mentioned that the post-

processing benefits come at a very “steep” price in terms of computation time -

roughly the same as to run the DA algorithm, whereas the Haar PX-DA’s extra

step just takes a couple of extra seconds overall.

Figure 3: Histograms of some of the posterior densities, before post-processing
algorithm is applied. The dotted lines in the graphs are the locations of the true
values used to simulate the data

In Figure 3, we see that, before post-processing is applied, there is a clear

bi-modal form to the posterior densities. The dotted lines in the graphs are at

the true values used to simulate the data. We see in Figure 4 that after the

post-processing algorithm of Stephens (2000) as described in Boys and Henderson
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(2002) is run, the bi-modal form of the posterior densities is no longer present, so

the mean of the posterior samples over all iterations would be a suitable estimate

for each parameter in the model.

Figure 4: Histograms of some of the posterior densities, after post-processing
algorithm is applied

3.4.2 Posterior Density Estimation

To illustrate the benefit of employing the extra permutation step in our Haar PX-

DA procedure compared to the standard DA (no extra step) procedure in obtaining

estimates for the posterior densities of each of the parameters, we conducted further

simulations with a smaller amount of data and a smaller number of iterations,

varying the number of hidden components a and the number of observed states J .
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The metric for comparing the posterior density estimates f̂(x), from the algo-

rithms with and without the extra permutation step, to the “true” posterior f(x)

was the integrated squared error (ISE), defined as ISE =
∫

[f̂(x)− f(x)]2dx. We

simulated data from the multivariate DCMM using equations (11) and (10) with

n = 30 random vectors, and a total of m = 400 possible time points. The number

of hidden states a and the number of observable states J were varied between 2

and 4 to investigate the efficiency of our algorithm with 10, 000 iterations. Various

transition matrices were used to simulate the data in each case. Since we know

in the theory from Hobert and Marchev (2008) that the Haar PX-DA procedure

is at least as efficient as the standard DA procedure in this setting, the posterior

distributions are assumed to converge towards those obtained by using the Haar

PX-DA procedure with 300, 000 iterations, which we will call the “true” posterior

distribution. No post-processing was used as we did not need the posterior means

in this study. Table 1 summarizes all of the simulations, where the sum of the ISE

for the elements in each matrix is displayed for comparison.

a J Perm Π P1 P2 P3

2 3 Yes 0.05147 0.34813 0.30698 –

2 3 No 2.65665 18.70867 19.00292 –

3 3 Yes 0.20895 2.28660 2.41501 2.33394

3 3 No 11.0752 153.974 31.3304 25.1975

3 4 Yes 2.03327 3.90679 3.52574 3.03290

3 4 No 14.2823 237.698 43.7094 41.4116

Table 1: Sum of the ISE for each element of the transition matrices for various
simulations, using the estimation procedure with and without the extra permuta-
tion step, denoted by Perm=Yes and Perm=No respectively.

We see in Table 1 that by using our Haar PX-DA procedure, with the extra

permutation step, we can obtain much better approximations of the posterior

density estimates for the parameters than with the standard DA procedure with
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the same number of iterations. Although the results display the sum of the ISE for

the elements in each matrix in the simulations, it must be noted that the Haar PX-

DA procedure was superior for estimating parameters from the posterior density

for every parameter in the model. We also note that if we use the standard DA

with 300,000 iterations as a benchmark, then the results for the case a = 2, J = 3

are almost unchanged. However, in the other two cases the standard DA was still

stuck in one of the modes even after 300,000 iterations.

Figure 5: Posterior density estimates for parameters in the simulation where n =
30, m = 400, a = 2, and J = 3. The true posterior density is in black, the estimate
with the permutation step is red and the estimate without the permutation step
is green
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We further illustrate the difference between the estimation procedures in Figure

5, which displays the estimated posterior densities obtained by our Haar PX-

DA procedure, the standard DA procedure and the true posterior estimates for

a selection of the parameters. These parameters are from the simulation where

n = 30, m = 400, a = 2 and J = 3, corresponding to the first two rows of Table 1.

It is clear in Figure 5 that the standard DA procedure is not as efficient in sampling

from all modes of the posterior distribution as the Haar PX-DA procedure, which

employs the extra permutation step. In some instances, such as in P1 for the a = 2,

J = 3 simulation, the standard DA procedure estimates the posterior densities very

poorly, compared to our Haar PX-DA procedure. This is due to the fact that the

posterior densities for the parameters in such mixture models are multi-modal due

to the invariance of the likelihood under label permutations. However, it can so

happen that the standard DA procedure predominantly samples from one of the

modes, leading to a poor estimate of the posterior density.

3.4.3 Comparison to MARCH 3.0 software

In this subsection we compare the performance of our Haar PX-DA procedure

to the standard DCMM estimation procedure outlined in Berchtold (2002). The

algorithm for our estimation procedure was written using the R programming lan-

guage. The procedure in Berchtold (2002) has been implemented into a publicly

available software package called MARCH 3.0.

The first comparison between the two procedures was done using a real dataset,

presented in Azzalini and Bowman (1990). This dataset consists of a sequence of

299 successive observations of either long or short duration eruptions of the Old

Faithful geyser in Yellowstone Park, USA, during the period 1-15 August, 1985.

Using 100 expectation-maximisation (EM) iterations, the MARCH 3.0 software can

fit a first order DCMM in under 10 seconds on a standard PC to this dataset with
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a = 2, J = 2, n = 1 and m = 299. The log-likelihood is −124.421 and the BIC is

271.582. The first order DCMM was also fit using our Haar PX-DA procedure with

100 iterations in R. This was also completed in under 10 seconds on a standard

PC and yielded a comparable fit, with a log-likelihood of −128.151 and a BIC of

290.424. Upon calculating the log-likelihood of the observations, conditional on

the estimated path of hidden states, the Haar PX-DA procedure yields a slightly

better result of -33.792 compared to -40.779 from using the MARCH 3.0 software.

We also compared the two estimation procedures on a simulated data set from

a first order DCMM with known parameters. With a = 2, J = 2, n = 1 and

m = 300, the true parameters were as follows:

Π ∗ =

 0.9 0.1

0.05 0.95

 ,

P ∗1 =

 0.85 0.15

0.2 0.8

 , P ∗2 =

 0.4 0.6

0.75 0.25

 .

We then estimated a first order DCMM on this simulated dataset, using both the

Haar PX-DA procedure and the MARCH 3.0 software. The performance results

were as follows:

MARCH 3.0 Haar PX-DA

SSE 0.1168266 0.0398213

Cond. Log-Likelihood -150.1 -155.5

Log-Likelihood -201.1 -191.8

BIC 436.4 417.8

Regime Error Rate 0.179 0.179

Computation Time 63 seconds 55 seconds

Software MARCH 3.0 R

Table 2: Performance comparison between our Haar PX-DA procedure to the
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standard DCMM estimation procedure outlined in Berchtold (2002) on a simulated
dataset.
Note: The sum of squared errors (SSE) is just the sum of squared differences of

all parameters used to simulate the data and their estimates.

The results in Table 2 show that our estimation method not only allows fur-

ther practical applications due to its flexibility with data types but it can also

improve the accuracy and fit of parameter estimates in some cases, compared to

the procedure presented in Berchtold (2002). This is of great importance to prac-

titioners who constantly deal with irregular data sets and also require accurate

model estimation.

3.5 Applications to Standard and Poor’s credit rating data

In this section we use our model on a real dataset. The data to be analysed

are the monthly Standard & Poor’s credit rating transitions of n = 3, 918 firms,

ranging from the 1st of January 1981 to 1st of January 2010. Since the economic

conditions vary across different industries, our model is most meaningful when

applied to similar firms only; in this case all firms are financial institutions and

insurance companies.

We decided to fit a model with a = 2 since it is a well-accepted theory that the

economic cycle fluctuates between two regimes: “expansion” and “contraction”.

The value of J is 10, corresponding to 10 levels of credit ratings: AAA, AA, A , . . . ,

D. We ran our MCMC algorithm for 50,000 iterations and the results are shown

in Table 3 with Component 1, corresponding to “contraction” and Component 2

to “expansion”:
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Hidden Matrix

Component 1 Component 2

Component 1 0.6897 0.3103

Component 2 0.1083 0.8917

Component 1

AAA AA A BBB BB

AAA 0.9859 0.0126 0.0003 0.0003 0.0002

AA 0.0006 0.9793 0.0196 0.0002 0.0001

A 0 0.0012 0.9881 0.0098 0.0005

BBB 0.0001 0.0004 0.0028 0.9856 0.0094

BB 0.0002 0.0002 0.0003 0.0044 0.9745

B 0.0003 0.0003 0.0005 0.0003 0.006

CCC 0.0012 0.0012 0.0012 0.0035 0.0024

CC 0.011 0.0111 0.011 0.011 0.011

C 0.052 0.0516 0.052 0.0523 0.0517

D 0.0103 0.0103 0.0102 0.0103 0.0102

B CCC CC C D

AAA 0.0001 0.0001 0.0001 0.0001 0.0001

AA 0.0001 0.0001 0.0001 0.0001 0.0001

A 0.0001 0 0 0 0.0001

BBB 0.0006 0.0003 0.0002 0.0001 0.0006

BB 0.0165 0.0022 0.0008 0.0002 0.0009

B 0.9651 0.017 0.0038 0.0003 0.0066

CCC 0.0096 0.9298 0.0147 0.0023 0.0343

CC 0.0111 0.0282 0.6694 0.011 0.2252

C 0.052 0.0522 0.0527 0.4295 0.1541

D 0.0102 0.0103 0.0103 0.0102 0.9077
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Component 2

AAA AA A BBB BB

AAA 0.9944 0.0049 0.0003 0.0001 0.0001

AA 0.0005 0.9948 0.0044 0.0002 0

A 0 0.0029 0.9943 0.0024 0.0001

BBB 0 0.0003 0.0053 0.9912 0.0027

BB 0 0.0003 0.0003 0.0072 0.9863

B 0.0001 0.0001 0.0002 0.0008 0.0096

CCC 0.0004 0.0004 0.0004 0.0004 0.0017

CC 0.0067 0.0067 0.0066 0.0066 0.0067

C 0.0338 0.034 0.0337 0.0338 0.0336

D 0.0037 0.0037 0.0037 0.0037 0.0038

B CCC CC C D

AAA 0 0 0 0 0

AA 0 0 0 0 0

A 0 0 0 0 0.0001

BBB 0.0003 0 0 0 0.0001

BB 0.005 0.0004 0.0001 0 0.0004

B 0.9834 0.004 0.0007 0.0001 0.001

CCC 0.0206 0.9568 0.0028 0.0004 0.015

CC 0.0201 0.0225 0.8102 0.0067 0.1073

C 0.0339 0.0337 0.0338 0.6609 0.0689

D 0.0037 0.0037 0.0037 0.0037 0.9664

Table 3: Estimated transition probabilities from the Standard and Poor’s credit
rating data (that is, π̂, P̂1, P̂2).

Note that the transition probabilities between the hidden economic cycles are

estimated remarkably close to the well-established transition probabilities given in

Bangia et al. (2002). Note also that the two estimated transition matrices for the

observed process under the two different hidden regimes are quite different to the
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transition matrix obtained by assuming the simple Markov chain model in Table

4.

Simple Markov Chain Transition Matrix

AAA AA A BBB BB

AAA 0.9929 0.0068 0.0002 0.0001 0

AA 0.0005 0.9914 0.0079 0.0001 0

A 0 0.0025 0.9931 0.004 0.0002

BBB 0 0.0003 0.0048 0.9903 0.0041

BB 0 0.0002 0.0002 0.0064 0.9842

B 0 0.0001 0.0002 0.0006 0.0086

CCC 0 0 0 0.0006 0.0013

CC 0 0 0 0 0

C 0 0 0 0 0

D 0 0 0 0 0

B CCC CC C D

AAA 0 0 0 0 0

AA 0 0 0 0 0

A 0 0 0 0 0.0001

BBB 0.0004 0.0001 0 0 0.0002

BB 0.0076 0.0007 0.0002 0 0.0004

B 0.9803 0.0068 0.0013 0.0001 0.0021

CCC 0.017 0.9547 0.0055 0.0003 0.0205

CC 0.009 0.0179 0.8161 0 0.157

C 0 0 0 0.8966 0.1034

D 0 0 0 0 1

Table 4: Estimated transition probabilities using a simple Markov chain (SMC)
model from the Standard and Poor’s credit rating data
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Figure 6: Mean value of selected components over all iterations with S&P data
along with the Dow Jones Industrial Average closing price linearly scaled for com-
parison. The DJIA is red for periods that our model estimated as a “contraction”
and green for periods that our model estimated as an “expansion”

We also draw attention to Figure 6 representing the mean estimated regime

of the hidden process for each time point superimposed with the Dow Jones In-

dustrial Average (DJIA) index. In particular, it can be seen that Component 1

(corresponding to downturns of the economy) was selected, at times correspond-
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ing to well-known economic downturns in the financial services industry. Similarly,

Component 2 tends to be selected during growth periods. More specifically, in the

last 30 years of finance history there are a number of notable events. These include:

1. Savings and Loan Crisis (Early 1980s)

2. Black Monday (October 1987)

3. Economic Recession (1990-1991)

4. Asian financial crisis (1997-1998)

5. Dot-com bubble (1995-2001)

6. Dot-com bust and September 11 terrorist attacks after effects (2001-2002)

7. United States housing bubble (2002-2008)

8. Global Financial Crisis (2008-2010).

It must be noted that although the parameters of the model are estimated from

the observed credit rating data, the hidden states sampled at each time point bear

a remarkable resemblance to the above-mentioned events in the history of finance.

Therefore, the intuitive expectation of the effect that a hidden economic state has

on the migration behavior of a large portfolio of firms is captured in the model.

This is of extreme importance for practitioners before confidence can be placed in

a model’s forecasting abilities.

In comparison to our results, Bangia et al. (2002) considers a DCMM-type

model applied to credit modeling, where the hidden states are known to be either

an expansion or a contraction of the economy. The observed credit ratings of

firms are driven by a process, which switches between two Markov chains (one for

each state of the economy). The hidden states are directly observed from macro-

economic data and the parameters of the hidden transition matrix are estimated
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independently of the observed credit ratings. However, this model is not a single

integrated HMM but rather two separate simple Markov chain models that may

not be able to detect true heterogeneity in transition behavior. We were able to

estimate the underlying transition matrix of the hidden process quite well without

relying on observations of economic variables but entirely from the observed credit

ratings data.

Since practitioners are often concerned with the one year default probabilities of

a portfolio of firms (i.e. migration probabilities into the D credit rating category),

we now utilise the estimated model parameters and the simple Markov model in

Table 4 to predict the expected proportion of defaults in each credit rating from

AAA to C, after 12 months. This method is employed in Jarrow et al. (1997) and

can potentially incorporate a model for the term structure of default rates. The

results are displayed in Table 5 for the following scenarios:

1. Firms migrate according to the estimated hidden Markov model, conditional

on the first month migrating by Component 1 (C1).

2. Firms migrate according to the estimated hidden Markov model, conditional

on the first month migrating by Component 2 (C2).

3. Firms migrate according to the Simple Markov Chain model (SMC).

4. Firms migrate according to the estimated hidden Markov model, conditional

on all of the next 12 months migrating by Component 1 (Worst).

5. Firms migrate according to the estimated hidden Markov model, conditional

on all of the next 12 months migrating by Component 2 (Best).
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Annual Expected Default Rates

C1 C2 SMC Worst Best

AAA 0.0017 0.0002 0 0.0025 0

AA 0.0017 0.0002 0.0001 0.0024 0

A 0.0015 0.0012 0.0012 0.0017 0.0012

BBB 0.0074 0.002 0.0027 0.0103 0.0013

BB 0.0203 0.0072 0.0079 0.0285 0.0057

B 0.0901 0.0269 0.039 0.1211 0.0178

CCC 0.3121 0.1844 0.2253 0.3654 0.1636

CC 0.6895 0.5672 0.7936 0.716 0.5407

C 0.3591 0.2785 0.7301 0.3772 0.2645

Table 5: Forecasted 12-month default rates from the Standard and Poor’s data
We see in Table 5 that with the DCMM, we are able to provide more informa-

tion about future default rates of firms with each of the Standard and Poor’s credit

ratings, than with the traditional SMC approach. Since the DCMM has estimated

two migration matrices for the observed states, one with favourable (stable) mi-

grations and the other with unfavourable (unstable) migrations, we are able to

obtain lower and upper bounds of yearly default rate outcomes for each of the rat-

ings, denoted by the Worst and Best columns of Table 5 respectively. Note that

the default rates in the columns for C1, C2 and SMC all lie within the forecasted

range, apart from the CC and C credit ratings, where there are not very many

historical observations.

3.6 Discussion

3.6.1 Conclusions

In the practice of modelling multivariate panel data-sets with a large number of

independent random variables observed over many time points, it is often clear that
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there is a need to model the time heterogeneity of the migrations of observations.

The particular source of this heterogeneity is particularly difficult to estimate and

model directly from the observed data. Allowing a hidden state driven by a Markov

process to govern the Markov regime driving the observations at each time point

can often provide an intuitive way to capture the varying dynamics of the random

variable’s migrations over time. We have shown in this chapter that a double

chain Markov model that has this capability can be estimated efficiently from the

observed panel dataset and is not reliant on pin-pointing the exact causes of the

hidden effect on the migration dynamics.

The application of modeling the credit ratings of a large portfolio of firms over

time is of particular relevance to the contributions of this chapter. The fact that

each firm can enter the portfolio at different times, as well as leave the portfolio at

different times, means that at each time point, we have a vector of observations that

are possibly of different lengths. We have shown that the efficient computational

techniques presented in Chib (1996) can be extended to a new sampling algorithm

that applies to the exact type of data set that we are dealing with here.

There is a subtle dependence between the random variables of the panel dataset.

This dependence is as a result of the fact that all random variables migrate at each

time point according to the same transition matrix that is selected by the hidden

Markov process. Upon looking back at the selected hidden states in our application

to real world credit rating data, over the observed time period, we note that we

are able to capture significant events in the history of financial institutions and

insurance companies. Therefore the model provides a strong fit to our large data

set, with only a small increase in the number of parameters over the simple Markov

chain model that does not capture any economic effects at all.
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3.6.2 Further Research

This study has brought to light that there are areas of further research that should

be explored. In our study, we allowed all parameters to be estimated with a

non-zero probability. If practitioners need to impose restrictions on some of the

parameters, by forcing an observable state to be an absorbing state for example,

then techniques such as the method of Lagrange multipliers should be employed

to ensure that the update of the parameter values at each iteration of the Gibbs

sampler algorithm is accurate.

Another possible avenue for future research would be to incorporate a more

complicated data structure between the random vectors Y 1,, . . . ,Y n,, rather than

assuming that they are conditionally independent given the hidden process X.

Perhaps there could be different groups of Y i,’s, corresponding to different types

of observations (e.g., different types of companies are affected differently during

the different periods of economic cycles).

It should also be pointed out that although we allow for different start and end

points of the random vectors Y 1,, . . . ,Y n,, we assume there are no missing data.

That is, our method doesn’t work correctly with vectors observed with gaps.

On the theoretical side, it would be interesting (and challenging) to develop

more specific results about the convergence rate of the modified Haar PX-DA

algorithm and to compare it to the convergence rate of the regular DA without

the extra permutation step.
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4 Mixtures of Markov chains

In this chapter, we continue with the application to modelling the non-homogeneous

credit rating dynamics of firms; however, instead of allowing for different regimes

in the data over time, we will instead allow for different regimes to apply to dif-

ferent parts of the population. That is, we approach the problem by detecting

and modelling the non-homogeneity amongst the population rather than chang-

ing dynamics over time. Although the estimation procedure used in this chapter

(the E-M Algorithm of Dempster et al. (1977)) is similar to the Bayesian MCMC

estimation methods employed in the previous two chapters, we do not focus on

the properties of the Markov chains used in the estimation. Instead, we will focus

on the Markov chains used in the parameters for the observed data to develop

the theory behind testing whether a single homogeneous Markov chain model is

appropriate for the data.

A key difference to the Markov chains used to model the observed data in this

chapter, as opposed to the previous chapter is that we are studying continuous

time Markov chains here compared to the previously studied discrete time models.

The choice of model lies with the type of data studied (whether it is observed at

discrete time points or if it is continuously observed) but there are some important

differences to the theory, discussed in Frydman (2005). We first introduce our no-

tation and some key concepts around continuous time discrete state Markov chains

before introducing the concept of mixtures of continuous-time Markov chains and

some key considerations for testing between 1 and 2 mixture components. We con-

duct a parametric bootstrap procedure to test for the presence of a mixture, which

yields results that throw into doubt the claim from Frydman (2005) that we can

use standard theory to apply a chi-squared distribution with degrees of freedom

equal to the difference in the number of parameters between the 1 component and

2 component mixture models. This motivates us to adapt the theory of Fukumizu

68



(2003) to our case to prove the divergence of the log-likelihood ratio test statistic

for the test between 1 and 2 component mixture components. Finally, we look

at the most simple case of 2-state Markov chain components, which each have

the second state being an absorbing state, which directly applies to a default vs.

non-default model in our application (grouping all non-default credit ratings into

one category) and we derive a theorem for the exact limiting distribution of the

log-likelihood ratio test statistic.

4.1 The continuous-time Markov chain

Suppose we have a discrete state, continous-time Markov chain {X(t); 0 ≤ t ≤ T}

with T < ∞, that takes values amongst the discrete states in the set {1, . . . , w}

over time. Furthermore, when certain conditions are satisfied (see (22) and (23)

below), X(t) takes values in the space of step functions x(·) ∈ X with a finite

number of jumps between the discrete states over the fixed observation window

[0, T ].

We let d = (d1, . . . , dw) be the initial state distribution given by

di = P [X(0) = i]

for i ∈ {1, . . . , w}. We also let P (s, t) be the transition matrix with (i, j)th element

Pij(s, t) = P [X(t) = j|X(s) = i]

with s < t and i, j ∈ {1, . . . , w}. Then, following Albert (1962), we characterise

X(t) in terms of d and P (s, t).

Our process here has stationary transition probabilities,

P (s, t) = P (t− s) (22)
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so that transitions depend only on the difference between start and end times. We

also have the infinitesimal generator matrix Q, which solves

∂P (t)

∂t
= P ′(t) = QP (t) = P (t)Q; such that P (0) = I.

Thus, we define the continous-time Markov chain in terms of the transition matrix

P (t) = etQ =
∞∑
n=0

(tQ)n

n!
,

so that our stochastic process forms right-continous paths x(·) ∈ X . We may write

the density as the product

f(x(·)|d, Q) = dx(0)g(x(·)|Q)

where g(x|Q) is the conditional density of a continuous-time Markov chain with

infinitesimal generator Q, given that the initial state X(0) = x(0).

The elements of Q can be written more formally as

Qii = −
∑
j 6=i

Qij = lim
h→0

[(1− Pii(h))/h]

Qij = lim
h→0

[(Pij(h))/h] ∀ j 6= i. (23)

for i, j ∈ {1, . . . , w}.

A realisation x(·) of a discrete state, continous-time Markov chain can be de-

scribed by the sequence {z0, z1, . . .} of states visited and the corresponding se-

quence of durations of time the process spends in each state
{
t̃0, t̃1, . . .

}
, so that

X(t) = zj for
∑j−1

b=0 t̃b ≤ t <
∑j

b=0 t̃b, with j = 1, 2, . . . and x(t) = z0 for 0 ≤ t < t̃0.

The corresponding random sequence {Zj; j ∈ N} forms a discrete time Markov
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chain with transition matrix J with (i, j)th element

Jij =


Qij
−Qii for i 6= j and

0 for i = j.

Define

λi = −Qii =
∑
j 6=i

Qij, for each i ∈ {1, . . . , w} .

Note that given Z0 = z0, Z1 = z1, . . ., the sequence T̃0, T̃1, . . . are conditionally

independent random variables, with each T̃j exponentially distributed with rate

1

λzj
= E(T̃j) for j ∈ {1, 2, . . .}.

We then have some further properties of the chain, which are written as follows

T̃0 = inf {t > 0|X(t) 6= X(0)}

P (T̃0 > t|X(0) = i) = e−λit

P (X(t̃0) = j|X(0) = i) = Jij.

If T̃0 > T , we let ñ = 0 and define T0 = T . Otherwise, letting ñ = j with

j ≥ 1, if
∑j−1

i=0 T̃i < T and
∑j

i=1 T̃i > T , we define T0, T1, . . . , Tñ such that

Tj =

 T̃j for j ∈ {0, 1, . . . , ñ− 1} and

T −
∑ñ−1

i=0 T̃i for j = ñ

It is useful to reparameterise the chain in terms of d,λ, and J . That is Q =

Q(λ, J) is viewed as a function of λ and J . Suppose now that we observe a right-

continous sample path x(·) from the process {X(t); 0 ≤ t < T}, where T < ∞ is
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the length of our observation window. It follows from (22) and (23) that with

probability 1 this is a step function with a finite number of jumps ñ < ∞. See

Albert (1962) and Chapter 6 of Doob (1953) for technical details.

We then represent a complete observation x(·) = {x(t); 0 ≤ t < T} as follows

((z0, t0), (z1, t1), . . . , (zñ−1, tñ−1), (zñ, tñ)) ,

which is a point in the space

Wñ =

[
ñ∏
j=1

(W0 × (0, T ])

]
×W0 (24)

where W0 = {1, . . . , w} is the state space of the chain and (0, T ] ⊂ R is the

observation window. We denote σ to be the measure on the space of all sample

functions such that

σ(B) =
∞∑
ñ=0

σ(ñ)(B ∩Wñ)

where B ⊂ W is an event with W = ∪∞ñ=0Wñ, and σ(ñ) is the measure

σ(ñ) =

[
ñ∏
j=1

(C × l)

]
× C

for the Lebesgue measure l on R and the counting measure C on W0 such that

C({z}) = 1 if z ∈ W0 and 0 otherwise.

Note that our initial state is x(0) = z0, so that we have ñ jumps in total

before we reach the end of the observation window and that for ñ > 0, we have

Tñ = T −
∑ñ−1

j=0 Tj.

With the parameters for the initial state distribution d = (d1, . . . , dw), the

rates of leaving each of the states λ = (λ1, . . . , λw) and the matrix for the jump
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process J , as well as the statistics for our initial state x(0), the number of each

type of jump

njk =
ñ∑
i=1

I {zi−1 = j, zi = k} for j, k = 1, 2, . . . , w

and the total time spent in each of the states

τj =
ñ∑
i=0

tiI {zi = j} for j = 1, 2, . . . , w,

we can then write the density with respect to σ to be

P [B] =

∫
B

f(x(·)|d,λ, J)dσ(x(·)) where

f(x(·)|d,λ, J) = dx(0)g(x(·)|λ, J). (25)

Here, g(x(·)|λ, J) is the density of the process, conditional on the initial state,

which takes the form

g(x(·)|λ, J) =



e−λx(0)T if x(·) = (z0, T );∏w
j=1 e

−λjτj
∏w

k=1 λ
njk
j J

njk
jk

if x(·) = ((z0, t0), (z1, t1), . . . , (zn−1, tn−1), (zñ, tñ)) ,

with ñ > 0, ti > 0 (i = 0, 1, . . . , ñ− 1) and
∑ñ

i=0 ti = T ; and

0 otherwise.
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Note that we can write g(x(·)|λ, J) = h(1)(x(·)|λ)h(2)(x(·)|J), where

h(1)(x(·)|λ) =
w∏
j=1

e−λjτj
w∏
k=1

λ
njk
j and (26)

h(2)(x(·)|J) =
w∏
j=1

w∏
k=1

J
njk
jk . (27)

Suppose we have n independent and identically distributed (iid) realisations of

{X(t), 0 ≤ t ≤ T}, then we have a log likelihood function defined by

L(1)
n =

n∑
k=1

log f(xk(·)|d, λ, J)

=
n∑
k=1

log
[
dxk(0)g(x|λ, J)

]
.

If we let bk,i be 1 where the initial state of xk is i and 0 otherwise, nk,ij be the

number of times that xk makes an i → j transition with i 6= j, and τk,i be the

total time that xk spends in state i, then the log likelihood becomes

L(1)
n =

n∑
k=1

{
w∑
i=1

bk,i log di +
w∑
i=1

∑
j 6=i

nk,ij [log Jij + log λi]−
w∑
i=1

τk,iλi

}

=
n∑
k=1

w∑
i=1

bk,i log di +
n∑
k=1

w∑
i=1

∑
j 6=i

nk,ij log Jij

+
n∑
k=1

w∑
i=1

∑
j 6=i

nk,ij log λi −
n∑
k=1

w∑
i=1

τk,iλi. (28)
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As in Albert (1962) we obtain the sufficient statistics

bi =
n∑
k=1

bk,i

nij =
n∑
k=1

nk,ij

τi =
n∑
k=1

τk,i

and the maximum likelihood estimates of the parameters from (28) as

d̂i =
bi∑w
i=1 bi

Ĵij =
nij∑
j 6=i nij

λ̂i =

∑
j 6=i nij

τi
. (29)

Note that when the log likelihood is written in the form (28), we can clearly see

that the initial state distribution d appears in a term that is separate to a term

involving the transition probabilities {Jij}, which is in turn separate to a term

involving the rate parameters {λi}. When we obtain estimates for each of the

parameters by maximising the total likelihood, it suffices to maximise each of

these terms separately.

It may be the case that one of our discrete states is an absorbing state. This

is where the probability of leaving the state is zero. If, for example, state w is an

absorbing state, we will assume that there are no observations whose initial state

x(0) = w, thus we can fix dw = 0 and we will also set the parameters of the wth

row of Q to be

Qwj = 0 for j = 1, . . . w.
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Equivalently, we will set λw = 0 and the wth row of J to be

Jwj = 0 for j = 1, . . . , w.

This constrains the parameter space. Then, assuming there are no jump ob-

servations out of the absorbing state, the maximum likelihood estimates given by

(29) above will still obey the constraints.

4.2 General finite mixtures of continuous-time Markov chains

We now consider the case where our stochastic process {X(t), 0 ≤ t ≤ T} is driven

by one of a finite number N of possible independent discrete state, continuous-time

Markov chain components {Xm(t), 0 ≤ t ≤ T} for m ∈ 1, 2, . . . , N . Thus, we have

a random vector Y = (Y1, . . . , YN), where Ym = 1 if X(t) is driven by the mth

component and 0 otherwise. Let

P (Ym = 1) = πm for m ∈ 1, . . . , N,

where each πm ≥ 0 and
∑N

m=1 πm = 1. We then have

X(t) =
N∑
m=1

Xm(t)I {Ym = 1} ,

so that X(t) has a mixture of Markov chains distribution.

We use a form of Markov chain mixtures presented in Frydman (2005), where

the mixing is on the transition rates λ and the initial state distributions. That is

the mth component Xm(t) has parameters λm,dm and J (note that J is common

to all components). This parameterisation is different to Frydman (2005) but the

model is equivalent as we show with (34) and (36) below.

We have {X(t), 0 ≤ t ≤ T} that takes values in the set {1, 2, . . . , w}, so {X(t)}
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takes values in the same sample space W as described in (24) above such that

P (X(·) ∈ B) =
N∑
m=1

P (X(·) ∈ B|Ym = 1)P (Ym = 1)

=
N∑
m=1

P (Xm(·) ∈ B)P (Ym = 1)

=
N∑
m=1

πm

∫
B

fm(x(·))dσ(x(·)). (30)

This implies that the density is as follows

f(x(·)) =
N∑
m=1

πmfm(x(·))

=
N∑
m=1

πmdx(0),mg(x(·)|λm, J). (31)

Here, f(·) is the density for a mixture of N < ∞ continuous-time Markov chains

{Xm(t), 0 ≤ t ≤ T} with initial distributions {d1,m, d2,m, . . . , dw,m} and generators

Qm = Q(λm, J) for 1 ≤ m ≤ N .

We write (as in (25)) the density of a single Markov chain in the form

f(x(·)|d,λ, J) = dx(0)g(x(·)|λ, J)

= dx(0)h
(1)(x(·)|λ)h(2)(x(·)|J),

where h(1)(x(·)|λ) and h(2)(x(·)|J) are defined with (26) and (27) respectively. We

see that the mixture density can be written as

f(x(·)|d,π,λ, J) =
N∑
m=1

πmdx(0),mg(x(·)|λm, J)

= h(2)(x(·)|J)
N∑
m=1

πmdx(0),mh
(1)(x(·)|λm). (32)
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For a finite number n of iid observations, we write the N -component Markov

chain mixture log-likelihood as

L(N)
n = log

{
n∏
k=1

[
h(2)(xk(·)|J)

N∑
m=1

πmdxk(0),mh
(1)(xk(·)|λm)

]}

=
n∑
k=1

w∑
i=1

∑
j 6=i

nk,ij log Jij +
n∑
k=1

log

{
N∑
m=1

πmdxk(0),mh
(1)(xk(·)|λm)

}
.(33)

Note the log-likelihood can be written as the sum of two terms, one of which

only involves J , the other only involving the other parameters. Indeed, the term

involving J is identical to that in the single component Markov chain model log-

likelihood in (28) and so maximum likelihood estimation for J is the same as in

that case, since it again suffices to maximise each term separately.

It is convenient to change parameters slightly, by expressing π,d1, . . . ,dN in

terms of other parameters d, s1, . . . , sN , defined as follows. From (30), we again

write d = (d1, . . . , dw) as the initial distribution of X(·) under the mixture model,

which is given by

di = P (X(0) = i)

=
N∑
m=1

πmP (Xm(0) = i)

=
N∑
m=1

πmdi,m.

Defining

si,m =
πmdi,m∑N
m=1 πmdi,m

= P (Ym = 1|X(0) = i) (34)
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as the conditional mixture proportions given the initial state, we thus write the

density in (31) as

f(x(·)|d, s,λ, J) =
N∑
m=1

dx(0)sx(0),mh
(1)(x(·)|λm)h(2)(x(·)|J)

= dx(0)h
(2)(x(·)|J)

{
N∑
m=1

sx(0),mh
(1)(x(·)|λm)

}
. (35)

The N -component Markov chain mixture log-likelihood of n iid observations can

then be written as

L(N)
n = log

{
n∏
k=1

[
dxk(0)h

(2)(xk(·)|J)

{
N∑
m=1

sxk(0),mh
(1)(xk(·)|λm)

}]}

=
n∑
k=1

w∑
i=1

∑
j 6=i

nk,ij log Jij +
n∑
k=1

w∑
i=1

bk,i log di

+
n∑
k=1

log

{
N∑
m=1

sxk(0),mh
(1)(xk(·)|λm)

}
. (36)

Note that it is clear from the form of (36) that the initial state distribution

can now be estimated separately from the other parameters, similarly to how

we separately estimate the jump matrix J in (28). We see that the initial state

distribution vector d and the jump matrix J have the same interpretation and

maximum likelihood estimates as under a 1-component Markov chain.

There is, however, no easy closed form solution for the maximisation over λ

and s so these must be obtained numerically. Frydman (2005) employs the E-M

algorithm of Dempster et al. (1977) to obtain maximum likelihood estimates. This

is an iterative algorithm with two steps. In the “E”-step, we obtain the E-M log-

likelihood as a function of our parameters and the data, given by the conditional

expectation under the current parameter values of the full data log-likelihood given

the observed data. Then the “M”-step involves finding parameter values which
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maximise the E-M log-likelihood. These steps are iterated until there is sufficient

convergence of the parameter estimates (or some other stopping criterion).

Frydman (2005) considers a conditional version of this model, which does not

model the initial states as random. The n observations can be split into w sets

based on their initial states, each with b1, . . . , bw observations respectively, with

densities given as follows

X1,1(·), . . . , X1,b1(·) are iid with density f(x(·)) =
∑N

m=1 s1,mg(x(·)|λm, J, x(0) = 1)

X2,1(·), . . . , X2,b2(·) are iid with density f(x(·)) =
∑N

m=1 s2,mg(x(·)|λm, J, x(0) = 2)

...

Xw,1(·), . . . , Xw,bw(·) are iid with density f(x(·)) =
∑N

m=1 sw,mg(x(·)|λm, J, x(0) = w).

The conditional log-likelihood of all such observations is then given by

L(Nc)
n =

n∑
k=1

w∑
i=1

∑
j 6=i

nk,ij log Jij +
n∑
k=1

log

{
N∑
m=1

sx(0),mh
(1)(xk(·)|λm)

}
, (37)

which is just L
(N)
n from (36) with the term involving the di’s and bi’s removed.

Thus, all of the remaining parameters have the same (conditional) maximum

likelihood estimates under (37) as in the unconditional case (36). The log-likelihood

ratio for comparison with the single component Markov chain that conditions on

the initial states,

L(1c)
n =

n∑
k=1

w∑
i=1

∑
j 6=i

nk,ij log Jij

+
n∑
k=1

w∑
i=1

∑
j 6=i

nk,ij log λi −
n∑
k=1

w∑
i=1

τk,iλi, (38)

which is the same as L
(1)
n from (28) with the term involving the di’s and bi’s
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removed. Thus, the log-likelihood ratio statistics for the two formulations L
(Nc)
n −

L
(1c)
n and L

(N)
n − L

(1)
n are identical. We choose to use the unconditional (iid)

formulation as it is more convenient to derive its asymptotic properties.

4.3 Testing between 1 and 2 mixture components

The data set studied in Frydman (2005) consists of the time-series of credit ratings

for a sample of 848 corporate bond issuers in the industrial sector, observed each

day between January 1985 and December 1995. The original rating categories are

grouped into the coarser rating states Aaa,Aa,A,Baa,Ba,B, and C. There are

also rating states WR for rating withdrawal and D for the default state. Note that

the initial states of each of the firms are given. They are distributed across each

of the ratings states, except for WR and D, where there are no firms that begin

in these states. There are also no firms that migrate out of D, thus it is assumed

to be an absorbing state.

In practice, credit rating dynamics are often modelled with a simple Markov

chain. However, this can fail to pick up some of the more complex dynamics that

appear in the data. The new mixture introduced in Frydman (2005) allows for

the modelling of population heterogeneity on the rates that firms leave each rating

state and argues that this provides a significantly better fit than the simple Markov

chain.

In Frydman (2005) there is a likelihood ratio test conducted to test between

the null hypothesis of a simple Markov chain model and the alternative hypothesis,

where the data is modelled by a mixture of two Markov chain components (which

has a jump process J that is common to all of the components in a mixture). In

order to test for whether it is necessary to introduce these additional parameters to

model the data, as opposed to using a single Markov chain component, Frydman

(2005) conducts a likelihood ratio test. As discussed at the end of Section 4.2,
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we are considering the (iid) unconditional model, which is superficially different

to Frydman (2005) but essentially equivalent. The likelihood ratio test between a

mixture of 2 Markov chains and a simple Markov chain uses the following statistic

Λn = L(2)
n (d̂, λ̂1, λ̂2, ŝ, Ĵ)− L(1)

n (d̂, λ̂0, Ĵ), (39)

where we write the log-likelihood functions for the single component Markov chain

and the 2-component Markov chain mixture as

L(1)
n (d,λ, J) =

n∑
k=1

w∑
i=1

bk,i log di +
n∑
k=1

w∑
i=1

∑
j 6=i

nk,ij log Jij

+
n∑
k=1

w∑
i=1

∑
j 6=i

nk,ij log λi −
n∑
k=1

w∑
i=1

τk,iλi (40)

L(2)
n (d,λ1,λ2, s, J) =

n∑
k=1

w∑
i=1

bk,i log di +
n∑
k=1

w∑
i=1

∑
j 6=i

nk,ij log Jij

+
n∑
k=1

log

{
sxk(0)

w∏
i=1

e−λ1,iτi

w∏
j=1

λ
nij
1,i

+(1− sxk(0))
w∏
i=1

e−λ2,iτi

w∏
j=1

λ
nij
2,i

}
, (41)

and define maximum likelihood estimates via

(d̂, λ̂1, λ̂2, ŝ, Ĵ) = argmax
d,λ1,λ2,s,J

L(2)
n (d,λ1,λ2, s, J),

and (d̂0, λ̂0, Ĵ0) = argmaxd,λ,J L
(1)
n (d,λ, J), noting that d̂0 = d̂ and Ĵ0 = Ĵ as

discussed in Section 4.2. Thus, the log-likelihood ratio for the test in Frydman

(2005) can be seen to be of the form from (39), although we are also modelling

the initial states as random so we have iid observations, facilitating our analysis
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below.

Frydman (2005) claims that by standard theory, the likelihood ratio test statis-

tic Λn is distributed under the null hypothesis as a chi-squared with 8 degrees of

freedom, corresponding to the difference in the number of parameters. The result-

ing statistic of 276.96 is used to indicate a strong rejection of the simple Markov

chain in favour of the alternative model. However, it is not obvious that the stan-

dard theory applies. We show below that in fact Λn diverges to infinity under the

iid model and indeed the results of the parametric bootstrap in the next section

suggest the result of the likelihood ratio test is not even significant.

4.3.1 A parametric bootstrap procedure to test for the presence of a

mixture

To investigate this further, we employ a parametric bootstrap procedure. This

procedure is used to understand the distributional properties of a statistic using

resampling. In our case, we are interested in approximating the distribution of the

likelihood ratio test statistic under the null hypothesis. We simulate from our fit

and recompute the statistic a large number of times. We can then compare our

calculated statistic to this approximate empirical distribution of simulated statis-

tics to assess the evidence against the null hypothesis in favour of the alternative.

The parametric bootstrap p-value is then calculated as the proportion of simu-

lated statistics exceeding the originally calculated statistic. Although we do not

prove here that this test is conclusive, the resultant parametric bootstrap p-value

we derive is strongly suggestive that the result is not significant evidence against

the null hypothesis in favour of the alternative.

The procedure is conducted as follows:

1. Estimate the simple Markov chain parameters by maximum likelihood esti-

mation from the original sample data
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2. Estimate the two component Markov mixture model parameters with the

EM algorithm from the original sample data

3. Calculate the likelihood ratio test statistic for the above two models and the

original sample data

4. Simulate another dataset from the simple Markov chain estimated in step 1

5. Estimate the simple Markov chain and Markov mixture models from this

data and calculate the likelihood ratio test statistic

6. Repeat step 4 and step 5 many times, recording the likelihood ratio test

statistics at each stage to form a simulated empirical distribution

7. Compare the likelihood ratio test statistic from step 3 to the distribution of

likelihood ratio test statistics in step 6 to obtain a parametric bootstrap p-

value. If the parametric bootstrap p-value is not very small then we conclude

that the data provides no evidence against the null hypothesis of a single-

component Markov chain.

We use the data summaries from Tables 1 and 2 from Frydman (2005) and

define the empirical data parameters including the observation window, number of

firms in each of the starting states as well as the simple Markov chain to generate

the data. Then we extract the parameters from the maximum likelihood estimates

in Frydman (2005) and simulate from their single Markov chain fit. Finally, we

conduct the parametric bootstrap procedure that yields the following result in

Figure 7.

The parametric bootstrap procedure is an important and widely used data-

analytic tool. We note that further investigation is warranted into the properties
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Figure 7: A comparison between the likelihood ratio statistic derived in Frydman
(2005) and the distribution of the likelihood ratio statistic derived from a para-
metric bootstrap procedure. The parametric bootstrap p-value is 0.528, which
suggests that we do not have sufficient evidence to reject the null hypothesis.

of the estimates and asymptotic distributions involved in the test. It suffices to

say that this result challenges the claim that the data provides strong evidence

against the null hypothesis in favour of the alternative, with a likelihood ratio test

statistic of 276.96. The parametric bootstrap p-value of 0.528 suggests this is not

strong evidence against the null hypothesis of a single Markov chain. This provides

significant motivation for us to further explore the properties of the likelihood

ratio test between a single component Markov chain model and a two component

mixture of Markov chains alternative.

It is pointed out in Frydman (2005) and is widely the case in practice that

not all of the censoring times are the same. That is, we have firms that enter our

dataset at different times, so are thus observed over varying periods. In Frydman
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(2005) no indication is given as to the distribution of starting times for each of

the firms, so we have assumed that the initial states of each of the firms are all

observed at the beginning of the observation window.

4.3.2 Non-identifiability of the likelihood ratio test

Despite the fact that mixture models have been studied for some time, for many

types of models, there remains no definitive way to test for the number of mixture

components. Studies such as Hartigan (1985), Ghosh and Sen (1985), Dacunha-

Castelle and Gassiat (1997), Liu and Shao (2003) and Garel (2005) develop meth-

ods to deal with likelihood ratio tests for the number of components in mixture

models. However, they are either applied to mixtures of normal distributions or

require certain conditions to hold that can be very difficult to verify in a practical

setting. Frydman (2005) claims that by standard theory, the asymptotic distribu-

tion of the usual log-likelihood ratio test statistic Λn, under H0, is chi-squared with

(N − 1) × w degrees of freedom. However, the appropriate regularity conditions

for applying the test are not verified. Given the results of our parametric boot-

strap procedure, rather than Λn having an asymptotic chi-squared distribution, its

limiting behaviour is given by the following proposition:

Proposition 4.1. If Λn is given by (39), then Λn →∞ in probability as n→∞.

The problem here is that the null hypothesis H0 is not identifiable. That is,

there are infinitely many ways that the null model (of the simple Markov chain)

can be written in terms of the parameters of the alternative model (of a mixture

of two continuous-time Markov chains).

Let us define the null model parameters to be θ0 = {d0,λ0, J0} where θ0 ∈ Θ0

is a point within the null parameter space, and the alternative model parameters

are θ = {d, s,λ1,λ2, J} where θ ∈ Θ is a point within the higher-dimensional

alternative parameter space. If we let si = 0 for i ∈ 1, . . . , w then our null model
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and alternative model have the same likelihood. Thus, one may propose that we

simply test for whether each si = 0. However, this would not be appropriate

since there is the case where si 6= 0 for i ∈ 1, . . . , w and we set λ1 = λ2 = λ0,

which would also mean that the null model and the alternative model have the

same likelihood. The point {d0,λ0, J0} ∈ Θ0 does not correspond to a single point

in Θ. In fact, each single point in the null model space corresponds to infinitely

many points in the alternative model space. It is thus possible that the parameters

change but the likelihood doesn’t. This is what we refer to as non-identifiability.

This non-identifiability issue implies that the Fisher information matrix of the

likelihood ratio, under the null hypothesis, is singular, so the “standard theory” of

Wilks (1938) does not necessarily apply. The model is a very interesting one, given

the need in finance to model the inhomogenous behaviour of large populations over

time. Thus from a practitioner’s perspective, it is important to understand the

considerations that must be taken into account in testing for the number of mixture

components required.

The problem of testing for the identification of a mixture using the likelihood

ratio test was explored with normal mixtures in Hartigan (1985). For an iid sample

X1, X2, . . . , Xn, Hartigan (1985) examines the asymptotics of the likelihood ratio

for the test between

H0 : X1 ∼ N(0, 1) against

H1 : X1 ∼ (1− p)N(0, 1) + pN(θ, 1).
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The asymptotic properties of the likelihood ratio

Ln = sup
θ,p

Ln(θ, p)

= sup
θ,p

n∑
i=1

log
[
(1− p) + peXiθ−

1
2
θ2
]

are then derived. For this example, Hartigan (1985) proves that the log-likelihood

ratio diverges to infinity in probability and conjectures that the rate of divergence

is of the order log log n. This was later proven in Bickel and Chernoff (1993) and

Liu and Shao (2004).

A generalisation of this example is presented in Fukumizu (2003) for locally

conic models, using the reparameterisation techniques of Dacunha-Castelle and

Gassiat (1997). Fukumizu (2003) proves that under some regularity conditions, if

there exists a sequence of standardised score functions that approaches 0 in proba-

bility, then the likelihood ratio diverges in probability. The theorem is applied to a

practical example of the likelihood ratio for multilayer neural network models. We

provide a useful sufficient condition in a special case of this theory for our practical

example with the test between 1 and 2 component mixtures, with a focus on the

mixtures of Markov chains presented in Frydman (2005).

Recall that the likelihood ratio test statistic Λn, for the test between 1 and 2

mixture components presented in Frydman (2005), can be written as in (39). We

observe that

Λn = L(2)
n (d̂, λ̂1, λ̂2, ŝ, Ĵ)− L(1)

n (d̂, λ̂0, Ĵ)

≥ L(2)
n (d0,λ0, λ̃2, π̃1, J0)− L(1)

n (d̂, λ̂0, Ĵ) (42)

=
[
L(2)
n (d0,λ0, λ̃2, π̃1, J0)− L(1)

n (d0,λ0, J0)
]

(43)

−
[
L(1)
n (d̂, λ̂0, Ĵ)− L(1)

n (d0,λ0, J0)
]
, (44)
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where

(λ̃2, π̃) = argmax
λ2,π

L(2)
n (d0,λ0,λ2, π1, J0).

For the parameters of L
(2)
n in (42), we set each element of d to be d0 the true

value of the initial distribution under the null hypothesis, we set J equal to J0 the

true value of the jump matrix under the null hypothesis and we set (s1, . . . , sw) to

be some fixed (π, . . . , π) with 0 < π < 1. Note that (44) is written as the difference

between two log-likelihood ratio test statistics for simple hypothesis tests, where

λ0 is the true value of λ under the null hypothesis. The first of these is a test

between

H0 : X(·) ∼ d0,x(0)g(x(·)|λ0, J0), d0,λ0, J0 known, against

H
(2)
1 : X(·) ∼ d0,x(0) {(1− π)g(x(·)|λ0, J0) + πg(x(·)|λ2, J0)} . (45)

The second test has an identical null hypothesis but has a different alternative

hypothesis

H
(1)
1 : X(·) ∼ dx(0)g(x(·)|λ0, J), d,λ0, J unknown. (46)

Twice the log-likelihood ratio test statistic in (44) is for a regular testing prob-

lem with alternative hypothesis (46) and so, under the assumption that the true

values of J0, λ0 and d0 are interior points in the parameter space, is asymptotically

chi-squared distributed with degrees of freedom equal to the difference in the num-

ber of free parameters between H0 and H
(1)
1 . Otherwise a mixture of chi-squared

distributions is obtained (see Chernoff (1954) for details). Then defining,

Λ1 =
[
L(2)
n (d0,λ0, λ̃2, π̃1, J0)− L(1)

n (d0,λ0, J0)
]
, (47)
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we can write

Λn ≥ Λ1 +Op(1) . (48)

We show below that Λ1 → ∞. If Λ1 diverges, then so too does Λn, at least as

quickly.

4.3.3 Divergence of the log-likelihood ratio test statistic

Suppose {gλ} is a set of density functions with a parameter λ that takes values

in the parameter space Λ. Let λ0 be a fixed, known parameter value within Λ.

Suppose further that each of the density functions in {gλ} are dominated by gλ0

for all λ ∈ Λ, so that gλ(x) > 0 =⇒ gλ0(x) > 0. Then, we let rλ = gλ
gλ0

and

‖rλ‖2 =

∫
r2
λgλ0dµ =

∫ (
g2
λ

gλ0

)
dµ. (49)

We consider the statistical model S = {f(x|(λ, β))}, which is a mixture model

with two components

f(x|(λ, β)) = (1− p(λ, β))g(x|λ0) + p(λ, β)g(x|λ), (50)

where

p(λ, β) =
β√

‖rλ‖2 − 1
.

We can then refer to the parameter space Θ = {β ∈ [0,Bλ],λ ∈ Λ} where

Bλ =
√
‖rλ‖2 − 1.

Suppose we have an iid sample X1, X2, . . . , Xn generated by the true density

90



g(x|λ0). For the hypothesis test

H0 : X1 ∼ g(X|λ0) with λ0 ∈ Λ known, against

H1 : X1 ∼ f(X|(λ, β)) with (λ, β) ∈ Θ = Λ× Bλ,

defining Θ0 = {(λ, β) ∈ Θ|f = g}, we have the likelihood ratio

sup
λ∈Λ,β∈Bλ

Ln((λ, β)) = sup
λ∈Λ,β∈Bλ

n∑
i=1

log
f(Xi|(λ, β))

g(x|λ0)
. (51)

From (50), we have

f(X1|(λ, β)) = β

(
g(λ)
g0
− 1
)

‖g(λ)
g0
− 1‖

g0 + g0, (52)

where g(λ) and g0 represent g(x|λ) and g(x|λ0) respectively.

The conditions for S to be locally conic at f0 = g0 in the sense of Fukumizu

(2003) are as follows

1. The parameter space Θ contains the set of true parameters Θ0 = Λ × {0},

where f(x|λ, β) = g(x|λ0) [µ a.e.] ⇐⇒ β = 0.

2. For each λ ∈ Λ, the set Θ(λ) = {β ∈ B|(λ, β) ∈ Θ} is a closed interval with

open interior.

3. f(x;λ, β) is differentiable on β (right differentiable at 0) for each λ ∈ Λ and

f0µ-a.e. x. For each λ ∈ Λ the Fisher information∣∣∣∣∣∣∣∣∂ log f(x|λ, 0)

∂β

∣∣∣∣∣∣∣∣ = 1.

We write the score function of Sλ = {f(x|λ, β)|β ∈ Θ(λ)} at the origin β = 0
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as

νλ(x) =
∂ log f(x|λ, 0)

∂β

=

(
g(λ)
g0
− 1
)

‖g(λ)
g0
− 1‖

. (53)

Writing g(x|β) = f(x|λ, β) with some λ ∈ Λ fixed, we present the conditions

for asymptotic normality in the sense of Fukumizu (2003) to be as follows

1. For any β ∈ Θ(λ), the integral Eg0 [|g(x|β)|] is finite.

2. If Θ(λ) = R+, where R+ = {x;x ∈ R, x ≥ 0}, the function H(x; t) =

supβ≥t log g(x; β) satisfies limt→∞ Ef0µ [H(x; t)] <∞ and there exists ∆ such

that
∫

∆
f0(x)dµ > 0 and limt→∞H(x; t) = −∞ for all x ∈ ∆.

3. limρ↓0 Ef0µ

[
sup|β′−β|≤ρ log g(x|β′)

]
<∞ for all β ∈ Θ(λ).

4. The density g(x|β) is three times differentiable on β for all z and

lim
ρ↓0

∫
sup

0≤β≤ρ

∣∣∣∣∂νg(x|β)

∂βν

∣∣∣∣ dµ <∞ for ν = 1, 2,

lim
ρ↓0

Ef0µ

[
sup

0≤β≤ρ

∣∣∣∣∂3 log g(x|β)

∂β3

∣∣∣∣] <∞.
The conditions for S to be locally conic at g0 and the conditions for asymptotic

normality for each submodel Sλ = {f(x|(λ, β)|β)} will be satisfied in the case of

the general 2-component mixture model (50) due to (52), if we have the following:

The ratio rλ =
gλ
g0

is well defined for all λ,λ0 ∈ Λ; (54)

‖rλ‖ = 1 ⇐⇒ λ = λ0 ; and (55)∫
|log gλ(x)|g0(x)dx <∞ for all λ ∈ Λ. (56)
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We now present a version of Theorem 1 from Fukumizu (2003), with simplified

regularity conditions, for the case of the mixture model (50).

Theorem 4.2. Let S = {f(x|(λ, β))} be a statistical model given by (50), that

satisfies (54), (55) and (56). Let C = {νλ|λ ∈ Λ} be the family of score functions

as in (53). If there exists a sequence of score functions {νi}∞i=1 in C such that

νi → 0 in probability, then, for arbitrary M > 0, we have

lim
n→∞

P

(
sup
(λ,β)

Ln(λ, β) ≤M

)
= 0. (57)

Proof. Here, we show that a mixture model S as in (50) that satisfies (54), (55) and

(56) satisfies the conditions for S to be locally conic at g0 as well as the conditions

for asymptotic normality.

The parameter space for β is [0,Bλ] where Bλ =
√
‖rλ‖2 − 1. Condition (54)

implies that β is always well-defined. We see through the form of (52) that β = 0

implies f(x; (λ, β)) = g(x;λ0) [µ a.e]. If we let f(x; (λ, β)) = g(x;λ0) [µ a.e] then

condition (54) implies that ‖rλ‖ = 1. Then, the form of Bλ implies that β = 0.

This gives us the first locally conic condition.

The second locally conic condition is easily satisfied since for each fixed λ ∈ Λ,

condition (54) implies that Bλ =
√
‖rλ‖2 − 1 is given by a closed interval with

open interior.

The third locally conic condition is trivial, due to the form of (52), which is

linear in β for each λ ∈ Λ and f0µ-a.e. x and calculating the Fisher information

yields

∣∣∣∣∣∣∣∣∂ log f(x;λ, 0)

∂β

∣∣∣∣∣∣∣∣ =
‖g(λ)

g0
− 1‖

‖g(λ)
g0
− 1‖

= 1.

Thus, the condtions (54) and (55) imply the conditions for S to be locally conic

93



at g0.

From condition (56) we have

∫
|log gλ(x)|g0(x)dx <∞ for all λ ∈ Λ

=⇒
∫

(log gλ(x)) g0(x)dx > −∞

=⇒ (1− p)
∫

(log g0(x)) g0(x)dx+ p

∫
(log gλ(x)) g0(x)dx > −∞

=⇒
∫

(log [(1− p)g0(x) + pgλ(x)]) g0(x) > −∞ (58)

due to Jensen’s inequality. We note also that condition (56) yields

∫
|log gλ(x)|g0(x)dx <∞ for all λ ∈ Λ

=⇒
∫

(log gλ(x)) g0(x)dx <∞,

which gives the third condition for asymptotic normality. This property also im-

plies

∫
(log [(1− p)g0(x) + pgλ(x)]) g0(x)dx =

∫
(log g0) g0dx

+

∫
log

(
1 + p

(
gλ
g0

− 1

))
g0dx

≤
∫

(log g0) g0dx+

∫
p

(
gλ
g0

− 1

)
g0dx

since log(1 + x) ≤ x for x > 0

≤
∫

(log g0(x))g0(x)dx <∞. (59)

Combining (58) and (59) yields

∫
|log [(1− p)g0(x) + pgλ(x)] |g0(x) <∞,
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which gives the first condition for asymptotic normality.

The second condition for asymptotic normality does not apply for our case

since Θ(λ) 6= R+. Finally, the fourth condition for asymptotic normality is trivial

due to the form of (52), which is linear in β so the first two partial derivatives in

β are finite constants and the supremum for 0 ≤ β ≤ ρ in

∂3 log g(x; β)

∂β3
=

(
gλ
g0
− 1

‖gλg0 − 1‖

)3(
β

gλ
g0
− 1

‖gλg0 − 1‖
+ g0

)−3

is attained when β = 0, which gives a finite constant.

Therefore, a mixture model S as in (50) that satisfies (54), (55) and (56)

satisfies the conditions for S to be locally conic at g0 as well as the conditions for

asymptotic normality.

We have satisfied all of the regularity conditions for Theorem 1 from Fukumizu

(2003), which can now be applied to achieve our result.

Fukumizu (2003) proves a version of the above theorem for the general case,

then shows that the example of the Gaussian mixture model with two components

satisfies the conditions of the theorem quite easily, thus showing an alternate proof

for Hartigan (1985).

We will also show that for general 2-component mixture models, we can have

a simplified sufficient condition for divergence of the likelihood ratio test statistic

(51). That is the following theorem:

Theorem 4.3. Let a statistical model S = {f(x|(λ, β))} be a mixture model as

in (50) that satisfies (54), (55) and (56). Then if there exists a sequence {λi}∞i=1

such that ‖rλi‖ → ∞ then for any 0 < M <∞, we have

lim
n→∞

P

(
sup
(λ,β)

Ln(λ, β) ≤M

)
= 0.
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Proof. Here, we show how our sufficient condition for Theorem 4.3, that ‖rλi‖ →

∞, implies the sufficient condition in Theorem 4.2, where the sequence of score

functions νi → 0 in probability. This simplification is easy to verify for general

2-component mixture problems.

Suppose X ∼ f0 and that a sequence {λi} is given. Write ri = rλi . We now

show that if ‖ri‖ → ∞ then

si(X) =
ri(X)− 1√
‖ri‖2 − 1

p−→ 0.

Fix ε > 0. There exists 0 < N0 <∞ such that for all i > N0 we have

1√
‖ri‖2 − 1

≤ ε.

Then for i > N0,

si(X) =
ri(X)− 1√
‖ri‖2 − 1

≥ −1√
‖ri‖2 − 1

≥ −ε.

Therefore, for such i,

P (|si(X)|> ε) = P (si(X) > ε)

≤ P
(
ri(X) > ε

√
‖ri‖2 − 1

)
≤ 1

ε
√
‖ri‖2 − 1

→ 0 as i→∞,

by Markov’s inequality, since E [ri(X)] ≡ 1 for all i.

This gives us the sufficient condition for Theorem 4.2, so that for arbitrary
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M > 0, we have

lim
n→∞

P

(
sup
(λ,β)

Ln(λ, β) ≤M

)
= 0.

as required.

Suppose we have a sampleX1, . . . Xn of n iid observations from a two-component

mixture of Markov chains parameterised as in (35) with density

f(x(·)|d, s,λ, J) = dx(0)

{
(1− sx(0))g(x(·)|λ0, J) + sx(0)g(x(·)|λ, J)

}
,

for some λ = Γλ0 with Γ = diag(γ1, . . . , γw) such that γj < ∞ for j ∈ 1, . . . , w

and known λ0. Write g(x(·)|λ, J) above as fλ and define the density ratio rλ(ν)

as

rλ(ν) =
gΓλ0(ν)

gλ0(ν)

=

∏w
i=1 e

−γiλ0,iτi
∏

j 6=i(γiλ0,i)
nijJ

nij
ij∏w

i=1 e
−λ0,iτi

∏
j 6=i λ

nij
0,i J

nij
ij

. (60)

Note that this is well defined for all λ,λ0 ∈ Λ, thus (54) is satisfied. If we set

λ = λ0, it is clear that ‖rλ‖2 =
∫ (g2

λ

g0

)
dµ = 1. Also, if ‖rλ‖ = 1, then we must

have that gλ
g0

= 1. This implies that γi = 1 for i ∈ 1, . . . , w, which in turn implies

that (55) is satisfied. We write

∫
|log gλ(x)| g0(x)dx =

∫ ∣∣∣∣∣
w∑
i=1

(−γiλ0,iτi)
∑
j 6=i

nij log (γiλ0,iJij)

∣∣∣∣∣ g0(x)dx

< ∞

as each τi ≤ T < ∞ and each nij ≤ ñ < ∞ for all i, j ∈ 1, 2, . . . w and all λ ∈ Λ.
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Thus, (56) is satisfied. We also wish to show that we can find a sequence {λi}∞i=1

such that

‖rλi‖2 =

∫
W
r2
λi

(ν)gλ0(ν)dσ(ν)

=

∫
W

g2
Γiλ0

(ν)

gλ0(ν)
dσ(ν)

→ ∞

as i→∞. It suffices to consider each element of Γ to be the same, that is

Γi = γiIw for γi <∞ for all i,

where Iw is the w × w identity matrix. Then for ν ∈ W , we have

g2
Γλ0

(ν)

gλ0(ν)
=

(∏w
i=1 e

−γλ0,iτi
∏

j 6=i(γλ0,i)
nijJ

nij
ij

)2

∏w
i=1 e

−λ0,iτi
∏

j 6=i λ
nij
0,i J

nij
ij

=
w∏
i=1

e−(2γ−1)λ0,iτi
∏
j 6=i

(
γ2

2γ − 1
(2γ − 1)λ0,i

)nij
J
nij
ij

≥ 1

4

(
1

2γ − 1

)
g(2γ−1)λ0(ν), for all cases ñ = 0, 1, . . .

Here we have

‖rγλ0‖2 ≥ 1

4

(
1

2γ − 1

)
.

Thus, for any sequence
{

1
2
< γi <∞

}
such that γi → 1

2
we have ‖rΓiλ0‖2 →∞

as required. We can now apply Theorem 4.3 to prove that Proposition 4.1 holds

true.

98



4.3.4 A special case with 2 states

Frydman (2005) presents mixtures of Markov chains that migrate among the dis-

crete states 1, . . . , w, where the wth state is an absorbing state. We consider the

simplest case where we have w = 2 states in total. In the context of modelling

credit rating migrations, the first state represents “non-default”, the other repre-

sents “default”. As in Frydman (2005) (and widely in practice), we assume the

second, “default” state is an absorbing state. The time until a transition from

“non-default” to “default” is exponentially distributed. However, since a firm is

only observed for a fixed time period then the default time may or may not occur

in the observation period. Thus, a sample of independent observations of n such

firms is iid with a censored exponential distribution.

Now, we consider a sampleX1, X2, . . . , Xn of iid observations from a 2-component

mixture of 2-state continuous-time Markov chains X0(t) and X1(t), observed from

time 0 to T , starting in state 1 and with state 2 being an absorbing state. In

this case, we do not require the parameter d since all of our firms begin in the

non-default state 1 (i.e. d = (1, 0)) and our parameter s, which is represented as

si,m =
πmdi,m∑N
m=1 πmdi,m

for i = 1, 2 and m = 1, 2

can be represented by a simple scalar p where

p = P (X(t) = X1(t)|X(0) = 1)

= P (X(t) = X1(t)) and

1− p = P (X(t) = X0(t)).

Note that we do not have multiple jumps for a particular observation. It either

stays in state 1 for the entire observation window [0, T ] or it jumps once to the
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absorbing state 2 within the observation window and remains there until the end

of the observation window T . Thus, we can represent an observation x(·) using

the time until the first jump out of the initial state with

x =

 T0 if T0 < T and

T otherwise.

This is (in effect) the amount of time that a firm is observed in the “non-

default” state. Our density for a particular observation x(·) = x is then

f(x) = (1− p)g(x|λ0) + pg(x|λ1) (61)

where, g(x|λ) is given by

g(x|λ) =


λe−λx if 0 < x < T

e−λT if x = T

0 otherwise.

(62)

This is a censored exponential distribution, with rate parameter λ observed within

a finite time window (0, T ].

For the hypothesis test, which tests between 1 and 2 mixture components for

the two-state case

H0 : X(·) ∼ g(x|λ0),

H1 : X(·) ∼ (1− p)g(x|λ1) + pg(x|λ2) (63)

we define the log-likelihood ratio for n iid observations to be

Λn =
n∑
i=1

{
sup
λ1,λ2,p

log [(1− p)g(x|λ1) + pg(x|λ2)]− sup
λ0

log [g(x|λ0)]

}
.
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From (48), we see that in the test between 1 and 2 components we have

Λn ≥ Λ1 +Op(1) , (64)

where

Λ1 = sup
λ1,p

n∑
i=1

log

[
(1− p)g(x|λ0) + pg(x|λ1)

g(x|λ0)

]
. (65)

If Λ1 diverges as the sample size n→∞ then this implies Λn also diverges. We

have shown that Λ1 does in fact diverge, using Theorem 4.3. Understanding the

rate of divergence of Λ1 will give us a substantial insight into the rate of divergence

for Λn. From (64), we see that if Λ1 diverges at a rate R1,n, then Λn diverges at a

rate R2,n ≥ R1,n. For the case where w = 2 we can go beyond the rate to find the

exact limiting distribution of Λ1.

Without loss of generality, we will also assume that the true value under the

null hypothesis for λ0 is 1. Then we can present the following theorem, with proof

to be provided in the following chapter:

Theorem 4.4. If we let

Λ = sup
λ>0,0≤p≤1

n∑
k=1

{log [(1− p)g(xk|1) + pg(xk|λ)]− log g(xk|1)} ,

where g(x|λ) is given by (62) above, then

lim
n→∞

P
{

2Λ− 2 log log n+ log(16π2) ≤ x
}

= e−e
−x/2

.
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5 Censored exponential mixture detection

In this chapter, we continue with the motivating application of the previous chap-

ter, where we are faced with the problem of modelling the non-homogeneous dy-

namics of credit rating migrations of firms. We are focussed on different regimes

applying to different segments of the population, rather than different regimes over

time. The theoretical developments in this chapter contribute towards establish-

ing a proof of Theorem 4.4, which states the exact limiting distribution of the

log-likelihood ratio test statistic for the test between 1 and 2 component mixtures

of Markov chains, which each have 2 states, with the second state being an absorb-

ing state. The challenges of testing between 1 and 2 component mixtures using the

likelihood ratio test were explored for location mixtures of normal distributions in

Hartigan (1985), which proves that the log-likelihood ratio diverges in probability

and conjectures that the rate of divergence is of the order log log n where n is the

sample size. This conjecture was later proven in Bickel and Chernoff (1993) and Liu

and Shao (2004). The problem of finding the limiting distribution was addressed

for location mixtures of normal distributions in Garel (2005) and for mixtures of

gamma distributions in Liu et al. (2003). Although there have been some studies

that work towards a general solution, under particular regularity conditions, such

as Dacunha-Castelle and Gassiat (1997) and Liu and Shao (2003), there remains

a gap in the theory for our specific problem of testing between 1 and 2 Markov

chain mixture components with 2 states, one of which is an absorbing state. It

is motivated by a simple case of our practical example from Frydman (2005) and

our key result is that we go beyond our findings in the previous chapter, where we

proved that the log-likelihood ratio test statistic diverges to infinity as the sample

size n → ∞, to successfully derive its rate of divergence and exact limiting dis-

tribution. We find that this problem can be reframed as a test between a 1 and

2 component mixture of censored exponentials and so is more broadly applicable
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than just to our Markov chain context.

We follow a similar strategy to Liu et al. (2003) and solve some key theoretical

challenges that arise from the fact that our practical application requires that we

have censoring (due to the finite observation window on our data). Liu et al. (2003)

derive the limiting distribution of the log-likelihood ratio test statistic for testing

between 1 and 2 components in a scale mixture of gamma distributions, with the

constraint that the scale parameter of the second unknown component is greater

than the scale parameter of the first known component. Technical difficulties pre-

vent them from dealing with the two-sided version of the test. The log-likelihood

ratio test statistic is shown in Liu et al. (2003) to be asymptotically equivalent

to the square of the maximum of a stationary Gaussian process over an interval

whose length increases as the logarithm of the sample size. The stationarity of the

Gaussian process is crucial to their derivation of the limiting distribution of the

statistic. The corresponding process in the censored case is no longer stationary

and so in order to use the same general strategy of Liu et al. (2003) some new tools

are required. Such tools are provided by the locally stationary Gaussian process

extreme value theory developed by Hüsler (1990). One obstacle to the use of these

tools is the potentially difficult verification that a given Gaussian process is indeed

in the locally stationary class. Our Lemma 5.9 achieves this for the Gaussian pro-

cess we consider by showing that certain higher-order derivatives of its correlation

function are uniformly controlled.

A happy consequence of the censoring is that we are able to consider the two-

sided version of the testing problem. We are able to elegantly extend the methods

of Liu et al. (2003) to analyse the maximum of the log-likelihood ratio statistic over

this extended range, thus removing the rather restrictive one-sided constraint that

Liu et al. (2003) are forced to adhere to in the uncensored version of the problem.

We then use this result to derive the exact limiting distribution of the log-likelihood
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ratio test statistic, thus solving the outstanding practical problem from Frydman

(2005). After providing an overview of the testing problem in Section 5.1, we work

in Section 5.2 to establish our key results. We then provide the detailed proofs of

these results in Section 5.3.

5.1 An overview of the testing problem

Censored exponentials are widely used in practice for modelling time-to-event data

where events occur with a constant underlying rate over a given finite time win-

dow (0, T ]. In the previous chapter we studied a problem that was motivated

by the application of modelling credit rating migration dynamics of firms, which

involved testing for mixtures of discrete-state Markov chains with an absorbing

state observed continuously over a finite time period. In the simplest case when

the Markov chain has 2 states, the time to absorption has a censored exponential

distribution. We consider the problem of testing for the existence of a mixture of

censored exponentials. Specifically, we study the asymptotics of the log-likelihood

ratio test statistic for testing between 1 and 2 mixture components and show that

it diverges in probability at a rate of log log n, where n is the sample size.

Let X1, X2, . . . , Xn be an independent and exponentially distributed sample

with rate parameter λ. Since we are only observing the data from time 0 to T ,

we define Yi = min(Xi, T ), so that Y1, Y2, . . . , Yn is an iid sample from a censored

exponential distribution. We thus have the cumulative distribution function

Gλ(y) =


0 if y < 0

1− e−λy if 0 ≤ y < T

1 if y ≥ T .
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This distribution has a density

gλ(y) =


λe−λy if 0 < y < T

e−λT if y = T

0 otherwise,

with respect to a dominating measure given by the sum of Lebesgue measure on

[0,∞) and counting measure on {T}. The expectation operator with respect to

this density is given by

E [f(Y1)] =

∫
fgλdµ =

∫ T

0

f(y)λe−λydy + f(T )e−λT (66)

where µ(A) = L(A) + 1 {T ∈ A} with L(·) the Lebesgue measure.

The log-likelihood of a series of observations y = (y1, y2, . . . , yn) can thus be

written as

L(1)
n (λ|y, T ) =

n∑
i=1

log
(
λe−λyi1{yi < T}+ e−λT1{yi = T}

)
. (67)

The corresponding 2-component mixture distribution, where each observation

y has density (1− p)g(y|λ0, T ) + pg(y|λ, T ), yields a log-likelihood for n iid obser-

vations y = (y1, y2, . . . , yn) as follows

L(2)
n (p, λ0, λ|y, T ) =

∑n
i=1 log

(
[(1− p)λ0e

−λ0yi + pλe−λyi ]1{yi < T}

+[(1− p)e−λ0T + pe−λT ]1{yi = T}
)
. (68)

We are interested in the testing problem

H0 : Y1 ∼ Gλ0 , for λ0 > 0 known, against

H1 : Y1 ∼ (1− p)Gλ0 + pGλ for p ∈ (0, 1], λ > 0 both unknown, (69)
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where without loss of generality, we may take λ0 = 1. For convenience, we write

g = g1. We write the log-likelihood ratio test statistic as

Λn = sup
p,λ

Ln(p, λ) = sup
p,λ

{
L(2)
n (p, 1, λ|Y , T )− L(1)

n (1|Y , T )
}

= sup
p,λ

n∑
i=1

log

[
(1− p)g(Yi) + pgλ(Yi)

g(Yi)

]
= sup

p,λ

n∑
i=1

log [1 + pZi(λ)] , (70)

where

Zi(λ) =
gλ(Yi)

g(Yi)
− 1

=
{
λe−(λ−1)Yi1{Yi < T}+ e−(λ−1)T

1{Yi = T}
}
− 1. (71)

From (66), we calculate the expected value and variance of Z1(λ) under the

single component density as

E{Z1(λ)} = E

{
gλ(Y1)

g(Y1)
− 1

}
= 0 and

Var{Z1(λ)} = E

[(
λe−(λ−1)Y11{Y1 < T}+ e−(λ−1)T

1{Y1 = T} − 1
)2
]

=

∫ T

0

λ2e−(2λ−1)ydy + e−(2λ−1)T − 1

=

(
λ2

2λ− 1
− 1

)(
1− e−(2λ−1)T

)
. (72)

5.2 Testing homogeneity in censored exponential mixture

models

In Liu et al. (2003), the asymptotic distribution for the log-likelihood ratio test

statistic for a one-sided test between a 1 and 2 component scale mixture of gamma
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distributions is derived. The general approach of the paper follows that of Bickel

and Chernoff (1993) and Liu and Shao (2003) for the analogous normal location

mixture problem. Specifically, the profile log-likelihood, obtained by maximising

only over p, is firstly approximated by the square of a standardised score process.

The asymptotic distribution of the maximum of the score process with respect to λ

is found to be the same as the maximum of a stationary Gaussian process over an

interval of length log n. The square of such a maximum can be represented as Gn+

log log n, where Gn has an asymptotic Gumbel distribution. This approximation is

shown to be suitably accurate so that the log-likelihood ratio statistic inherits the

same limiting distribution. Note that this strategy can only hope to be successful

for the one-sided version of the gamma scale mixture problem they consider. This is

because for λ < 1
2
, the variance of the score process is infinite and the convergence

to a Gaussian process fails. Taking κ = 1 in Liu et al. (2003) results in a one-sided

uncensored version of our problem. We use the same general strategy as Liu et al.

(2003) however several of their steps need new tools for application to our case, as

foreshadowed in the introduction. We will establish our notation and present our

key results in this section before providing details of original proofs in the next

section.

Suppose Y1, . . . , Yn are iid random variables from a censored exponential dis-

tribution with rate parameter λ = 1, with density g(y). We interpret Yi = G−1(Ui)

for uniform random variables U1, . . . , Un, where

G−1(u) =

 − log(1− u) for 0 ≤ u ≤ 1− e−T

T for 1− e−T < u ≤ 1,
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is the inverse cumulative distribution function of G(·). The test at (69) becomes

H0 : Y1 ∼ G against

H1 : Y1 ∼ (1− p)G+ pGλ. (73)

Recall the definition of the norm ‖·‖2 in (49). We write the likelihood ratio as

lλ(y) = gλ(y)/g(y) and define the standardised score process

Sn(λ) = n−
1
2

n∑
i=1

[
λe−Yi(λ−1)I {Yi < T}+ e−(λ−1)T I {yi ≥ T} − 1

]
[
( λ2

2λ−1
− 1)(1− e−(2λ−1)T )

] 1
2

= n−
1
2

n∑
i=1

lλ(Yi)− 1√
‖lλ‖2 − 1

= n−
1
2

n∑
i=1

sλ(Yi). (74)

We will show that Λn has the same asymptotic distribution as 1
2
M2

n, where Λn is the

log-likelihood ratio test statistic in (70) andMn = Sn(λ̂) with λ̂ = argmaxλ>0 Sn(λ).

Let Fn(u) be the empirical cumulative distribution function of U1, . . . , Un. It

is possible to define these on a suitable probability space together with a sequence

of Weiner processes {Wn(u)} so that the corresponding empirical process αn(u) =
√
n [Fn(u)− u] is well approximated by the Brownian bridge Bn(u) = Wn(u) −

Wn(1)u (see (102) where this is made more precise).

For any function g(·) on [0, 1] of bounded variation, we may, using an integration-

by-parts formula, define the stochastic integral

∫ 1

0

g(u)dBn(u) = −
∫ 1

0

Bn(u)dg(u)

= −
∫ 1

0

[Wn(u)−Wn(1)u] dg(u)

= Wn(1)g(1)−
∫ 1

0

Wn(u)dg(u)
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in terms of ordinary Riemann-Stieltjes integrals. We show in Appendix A that∫ 1

0
g(u)dBn(u) is mean zero Gaussian for each g(·) and for any other h(·) of

bounded variation we have

E

{∫ 1

0

g(u)dBn(u)

∫ 1

0

h(u)dBn(u)

}
=

∫ 1

0

g(u)h(u)du. (75)

We may write our standardised score process from (74) as

Sn(λ) =

∫ 1

0

sλ(G
−1(u))dαn(u) (76)

= Hn(λ) +Rn(λ), (77)

where

Hn(λ) =

∫ 1

0

sλ(G
−1(u))dBn(u) and (78)

Rn(λ) =

∫ 1

0

sλ(G
−1(u))d [αn(u)−Bn(u)] . (79)

In Liu et al. (2003), the score process is approximated by a Gaussian process,

which after a certain transformation becomes stationary. In the censored case that

we study here, the same transformation may be used; however, the approximating

Gaussian process
{
Hn(es + 1

2
),− log 2 ≤ s <∞

}
is not stationary. It is however

locally stationary in the sense of Berman (1985) and Hüsler (1990) (this is verified

in Lemma 5.9). Theorem 4.2 of Hüsler (1990) then yields the following lemma.

Using the same general strategy of Liu et al. (2003) we have developed analogues

of the Lemmas and Theorems in their paper. It should be noted however that

several of our proofs differ substantially from their analogues in Liu et al. (2003).
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Lemma 5.1. The Gaussian process
{
Hn(es + 1

2
),− log 2 ≤ s <∞

}
satisfies

lim
C→∞

P

{
AC

[
sup

− log 2≤s≤C
Hn(es + 1

2
)− AC

]
+ log(4π) ≤ y

}
= e−e

−y
, (80)

where AC = (2 logC)
1
2 .

We show that, within the range of λ where the maximum of Hn(λ) is attained,

with probability tending to 1, the supremum of Sn is asymptotically equivalent to

the supremum of Hn(λ). We split up the parameter space into separate intervals

to prove this with the following lemma. Let us write log(2) n = log log n and

log(3) n = log log log n for large enough n.

Lemma 5.2. In a suitable probability space,

sup
λ∈[1,logn]∪[n(logn)−4,∞)

Sn(λ) ∨ 0 = Op(1) (log(3) n)
1
2

sup
λ∈[logn,n(logn)−4]

|Sn(λ)−Hn(λ)| = Op(1) (log n)−1. (81)

Then, the asymptotic distribution for Mn = Sn(λ̂) is derived using Lemma 5.1

and Lemma 5.2 with the following theorem.

Theorem 5.3. Under the null hypothesis for the test (73), Mn = supλ≥0 Sn(λ)

satisfies

lim
n→∞

P
{√

2 log(2) n
(
Mn −

√
2 log(2) n

)
+ log(4π) ≤ y

}
= e−e

−y
.

Moreover, the asymptotic distribution of Mn can also be expressed as

lim
n→∞

P
{
M2

n − 2 log(2) n+ log(16π2) ≤ y
}

= e−e
−y/2

.

We now wish to show that the log-likelihood ratio test statistic in (70) has the
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same asymptotic distribution as 1
2
M2

n. The log-likelihood ratio test statistic

Λn = sup
p,λ

n∑
i=1

log {1 + pZi(λ)} = sup
p,λ

n∑
i=1

log {1 + p‖Zi(λ)‖sλ(Yi)} . (82)

We examine the standardised score process Sn(λ) over the region 0 < λ ≤ 1

and then over the region 1 < λ < λ∗ for some constant 1 < λ∗ <∞. Here,

sλ(y) =
λI{y<T}e−y(λ−1) − 1√
(λ−1)2

2λ−1
(1− e−T (2λ−1))

=
λI{y<T}e−y(λ−1) − 1

|1− λ|

√
2λ− 1

1− e−T (2λ−1)
. (83)

Now the second factor in (83)

√
2λ− 1

1− e−T (2λ−1)
→ 1√

1− e−T

as λ ↑ 1. Writing λ = 1− ε (for ε > 0), the first factor in (83) becomes

eyε − 1− εeyε

ε
=
eyε − 1

ε
− eyε → y − 1

for y < T and

eTε − 1

ε
→ T

for y = T as ε ↓ 0. Thus

lim
λ↑1

sλ(y) =
y − I {y < T}√

1− e−T
.
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As λ ↓ 0,

sλ(y)→


− 1√

eT−1
for y < T ,

− eT−1√
eT−1

for y = T .

We thus define s0(y) and s1(y) accordingly. Moreover, for all 0 ≤ λ ≤ 1, sλ(y)

is a non-decreasing function over 0 < y < T . Thus

inf
0<y≤T

sλ(y) = lim
y↓0

sλ(y)

= −
√

2λ− 1

1− e−T (2λ−1)
(84)

≥ − 1√
1− e−T

since (84) is minimised at λ = 1. Also

sup
0<y≤T

sλ(y) = sλ(T )

=
eT (1−λ) − 1

1− λ

√
2λ− 1

1− e−T (2λ−1)
(85)

≤
√
eT − 1

since (85) is maximised at λ = 0. We have thus shown that the set of functions

{sλ(y) : 0 < y ≤ T, 0 ≤ λ ≤ 1} are monotone and all take values in the fixed closed

interval

[
− 1√

1−e−T
,
√
eT − 1

]
.

Now, for the case where 1 < λ < λ∗, writing λ = 1 + ε (for ε > 0), the first

factor of (83) becomes

e−yε − 1 + εe−yε

ε
=
e−yε − 1

ε
+ e−yε → −y + 1
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as ε→ 0 for y < T , and

e−Tε − 1

ε
→− T as ε→ 0 for y = T .

Thus,

lim
λ↓1

sλ(y) =
I {y < T} − y√

1− e−T
= − lim

λ↑1
sλ(y).

As λ ↑ λ∗,

sλ(y)→


λ∗e−y(λ∗−1)−1

λ∗−1

√
2λ∗−1

1−e−T (2λ∗−1) for y < T ,

e−T (λ∗−1)−1
λ∗−1

√
2λ∗−1

1−e−T (2λ∗−1) for y = T .

For all 1 < λ < λ∗, sλ(y) is a non-increasing function over 0 < y < T . Thus,

inf
0<y≤T

sλ(y) = lim
y↑T

sλ(y)

=
e−T (λ−1) − 1

λ− 1

√
2λ− 1

1− e−T (2λ−1)
(86)

≥ −T
√

1

1− e−T
, (87)

since (86) is minimised at λ = 1. Also,

sup
0<y≤T

sλ(y) = lim
y↓0

sλ(y)

=

√
2λ− 1

1− e−T (2λ−1)
(88)

≤
√

2λ∗ − 1

1− e−T (2λ∗−1)
, (89)

since (88) is maximised at λ = λ∗. We have thus shown that the set of func-

tions {sλ(y) : 0 < y ≤ T, 1 ≤ λ ≤ λ∗} are monotone and all take values in the fixed

closed interval
[
−T
√

1
1−e−T ,

√
2λ∗−1

1−e−T (2λ∗−1)

]
. Thus by Example 19.11 in van der
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Vaart (1998) they form a (universal) Donsker class so that the corresponding em-

pirical process {Sn(λ) : 0 ≤ λ ≤ 1} given by

Sn(λ) = n−
1
2

n∑
i=1

sλ(Yi)

converges (in the space of bounded functions on [0, 1] under the uniform norm) to

a tight Gaussian process. In particular

sup
0≤λ≤1

Sn(λ) = Op(1) . (90)

Similarly, we have

sup
1≤λ≤λ∗

Sn(λ) = Op(1) . (91)

Since the functions {sλ(y); 0 < y ≤ T, 0 ≤ λ ≤ λ∗} are uniformly bounded,

they trivially have a square integrable envelope function; this, along with the

fact that they form a Donsker class, implies by Theorem 3.1 from Liu and Shao

(2003) that

sup
0≤λ<λ∗

Λn = Op(1) . (92)

Let us write our vector of random variables Y1, . . . , Yn in ascending order to

form the order statistics Y1,n, . . . , Yn,n. Taking the partial derivative of the log-

likelihood ratio yields

∂

∂λ
Ln(p, λ) =

n∑
i=1

(1− λy)e−(λ−1)yI {y < T} − Te−(λ−1)T I {y = T}
1 + pZi(λ)

.

When λ > 1
Y1,n

, we have ∂
∂λ
Ln(p, λ) < 0. Since we know, from Theorem 4.3 in the
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previous chapter, that the log-likelihood ratio test statistic diverges to infinity in

probability, it suffices to maximise Ln(p, λ) for λ ∈ (0, 1
Y1,n

].

Let In = [log n, n(log n)−4] and I∗n = [λ∗, log n] ∪ [n(log n)−4, 1
Y1,n

]. Then we

have the following lemmas

Lemma 5.4. Under the constraint that Ln(p, λ) > 0,

sup
λ∈In∪I?n

pλ = O(1).

Lemma 5.5. Letting Pns
2
λ = n−1

∑n
i=1 s

2
λ(Yi), we have

sup
λ∈In∪I?n

1

Pns2
λ

= Op(1) .

Moreover, when λ ∈ In, Pns
2
λ = 1 +Op

(
(log n)−

1
2

)
.

Now, by (90), Lemma 5.1 and Lemma 5.2, the supremum of Sn(λ) is found when

λ ∈ In. Therefore, we prove 2Λn = M2
n + op(1). Using (92) and Theorem 5.3, we

have the following theorem on the asymptotic distribution of the log-likelihood

ratio test statistic Λn.

Theorem 5.6. The log-likelihood ratio test statistic for the test (73) satisfies

2Λn = M2
n + op(1) and

lim
n→∞

P
{

2Λn − 2 log(2) n+ log(16π2) ≤ y
}

= e−e
−y/2

.
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5.3 Details of original proofs

Lemma 5.7. Suppose we have a function D(s, t) which is symmetric in its argu-

ments s, t ≥ k for some constant −∞ < k <∞ and that we define the function

ρ(s, t) =
D(s, t)√

D(s, s)D(t, t)
(93)

with derivatives denoted by

Dij(s, t) =
∂i+jD(s, t)

∂si∂tj
.

Then if

1. the (i, j)th derivative exists and is continuous for all integers i, j ≥ 0 and

i+ j ≤ 3;

2. sups,t≥k|Dij(s, t)|<∞ for i, j ≥ 0 such that 1 ≤ i, j ≤ 3;

3. for two constants 0 < a < b <∞, a ≤ D(s, t) ≤ b for all k ≤ s, t <∞;

for t, t+ ∆ ≥ k we have the representation

ρ(t, t+ ∆) = 1− V (t)

2
∆2 + ∆2Rn(t,∆) (94)

where

V (t) =
D11(t, t)

D(t, t)
−
[
D01(t, t)

D(t, t)

]2

satisfies

sup
t≥k
|V (t)|<∞ (95)
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and

lim
∆→0

sup
k≤t,t+∆<∞

|Rn(t,∆)|= 0. (96)

That is to say as ∆→ 0, Rn(t,∆) = o(1) uniformly in t ≥ k.

Proof. By assumption 1 for some 0 ≤ α1 ≤ 1 we have

D(t, t+ ∆) = D(t, t) + ∆D01(t, t) +
∆2

2
D02(t, t+ α1∆)

= D(t, t) + ∆D01(t, t) +
∆2

2
{D02(t, t) + [D02(t, t+ α1∆)−D02(t, t)]}

= D(t, t) + ∆D01(t, t) +
∆2

2
D02(t, t) + ∆2Rn1(t,∆)

where Rn1(t,∆) = o(1) uniformly in t ≥ k by assumption 2. By assumption 3, we

can then also say

D(t, t+ ∆)

D(t, t)
= 1 + ∆

D01(t, t)

D(t, t)
+

∆2

2

D02(t, t)

D(t, t)
+ ∆2Rn2(t,∆) (97)

where Rn2(t,∆) = o(1) uniformly in t ≥ k. Similarly we also have

D(t+ ∆, t+ ∆) = D(t, t) + ∆ [D01(t, t) +D10(t, t)]

+
∆2

2
[D02(t, t) + 2D11(t, t) +D20(t, t)] + ∆2Rn3(t,∆)

= D(t, t) + 2∆D01(t, t) + ∆2 [D02(t, t) +D11(t, t)] + ∆2Rn3(t,∆)

due to the symmetrical property of D(s, t) and

D(t+ ∆, t+ ∆)

D(t, t)
= 1 + 2∆

D01(t, t)

D(t, t)
+ ∆2D02(t, t) +D11(t, t)

D(t, t)
+ ∆2Rn4(t,∆)

= 1 + ∆Qn1(t,∆)

where uniformly in t ≥ k, Qn1(t,∆) = O(1) and Rnj(t,∆) = o(1) for both j = 3, 4.
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For small enough ∆, applying a Taylor expansion we have (for some 0 ≤ α2 ≤ 1)

[
D(t+ ∆, t+ ∆)

D(t, t)

]− 1
2

= [1 + ∆Qn1(t,∆)]−
1
2

= 1− ∆Qn1(t,∆)

2
+

∆2Qn1(t,∆)2

8
[1 + α2∆Qn1(t,∆)]−

5
2

= 1− ∆Qn1(t,∆)

2
+

∆2Qn1(t,∆)2

8
[1 + ∆Qn2(t,∆)]

= 1− ∆Qn1(t,∆)

2
+

∆2Qn1(t,∆)2

8
+ ∆2Rn5(t,∆)

= 1−∆
D01(t, t)

D(t, t)
− ∆2

2

D02(t, t) +D11(t, t)

D(t, t)
− ∆2

2
Rn4(t,∆)

+
1

8

{
2∆

D01(t, t)

D(t, t)
+ ∆2D02(t, t) +D11(t, t)

D(t, t)
+ ∆2Rn4(t,∆)

}2

+ ∆2Rn5(t,∆)

= 1−∆
D01(t, t)

D(t, t)
− ∆2

2

{
D02(t, t) +D11(t, t)

D(t, t)
−
[
D01(t, t)

D(t, t)

]2
}

+ ∆2Rn6(t,∆)

where uniformly in t ≥ k, Qn2(t,∆) = O(1) and Rnj(t,∆) = o(1) for j = 5, 6.

Multiplying this by (97), the boundedness of the ratios
Dij(t,t)

D(t,t)
gives the result of

(94) satisfying (95) and (96).

Corollary 5.8. If a function ρ(s, t) = ρ1(s, t)ρ2(s, t) is the product of two functions

admitting a representation of the form (94) satisfying (95) and (96), so that

ρj(t, t+ ∆) = 1− Vj(t)

2
∆2 + o(∆2)

with o(∆2) uniform in t ≥ k for both j = 1, 2, then

ρ(t, t+ ∆) = 1− [V1(t) + V2(t)]

2
∆2 + o(∆2)

again with o(∆2) uniform in t ≥ k.
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Lemma 5.9. The correlation function of the Gaussian process
{
Hn(es + 1

2
), − log 2 ≤ s <∞

}
is of the form (94) satisfying (95) and (96) with k = − log 2.

Proof. Since our standardised score function sλ(·) is of bounded variation, we may

use our result in (75) for our Gaussian process

Hn(λ) =

∫ 1

0

sλ(G
−1(u))dBn(u) from (78)

to derive the correlation function

E [Hn(λ1)Hn(λ2)] =

∫ 1

0

sλ1(G−1(u))sλ2(G−1(u))du

=

∫ ∞
−∞

sλ1(y)sλ2(y)dG(y) = E [Sn(λ1)Sn(λ2)]

=

∫∞
−∞ (lλ1 − 1) (lλ2 − 1) dG(y)√
‖lλ1‖2 − 1

√
‖lλ2‖2 − 1

=

√
(2λ1 − 1)(2λ2 − 1)

λ1 + λ2 − 1

[
1− e−T (λ1+λ2−1)

]√
(1− e−T (2λ1−1))(1− e−T (2λ2−1))

.

The correlation function of the re-scaled process
{
Hn(es + 1

2
), − log 2 ≤ s <∞

}
becomes

ρ(t, t+ ∆) = E
[
Hn(et + 1

2
)Hn(et+∆ + 1

2
)
]

=
2

e
∆
2 + e−

∆
2

1− e−T (et+et+∆)√
(1− e−2Tet)(1− e−2Tet+∆)

. (98)

This is of product form as in Corollary 5.8 above. When ∆ → 0 the first factor

can be written as

2

e
∆
2 + e−

∆
2

= 1− ∆2

8
+ o(∆2),

where the remainder does not depend on t and thus trivially satisfies (94), (95)
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and (96) with V (t) ≡ 1
4
.

The second factor is of the form (93) with

D(s, t) = 1− e−T (es+et).

Note firstly that for all s, t ≥ k,

1− e2ekT ≤ D(s, t) ≤ 1

and thus assumption 3 of Lemma 5.7 is satisfied. The first derivative is

D01(s, t) = Tete−T (es+et)

= (Tet)e−Te
t

e−Te
s

≤ (Tet)e−(Tet)

≤ sup
x≥0

xe−x

= e−1.

The second order partial derivatives satisfy

0 ≥ D11(s, t) = −T 2es+te−T (es+et)

= −
[
(Tes)e−(Tes)

] [
(Tet)e−(Tet)

]
≥ −e−2

D02(s, t) =
(
Tet − T 2e2t

)
e−T (es+et)

D12(s, t) = −Tes
(
Tet − T 2e2t

)
e−T (es+et)

D22(s, t) =
(
Tet − T 2e2t

) (
T 2e2s − Tes

)
e−T (es+et).
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Finally, the third order partial derivatives satisfy

D03(s, t) =
(
T 3e3t − T 2e2t + Tet

)
e−T (es+et)

D13(s, t) = −Tes
(
T 3e3t − T 2e2t + Tet

)
e−T (es+et)

D23(s, t) =
(
T 2e2s − Tes

) (
T 3e3t − T 2e2t + Tet

)
e−T (es+et)

D33(s, t) = −
(
T 3e3t − T 2e2t + Tet

) (
T 3e3t − T 2e2t + Tet

)
e−T (es+et).

Each of these expressions is also uniformly bounded (since xje−x is uniformly

bounded for each 0 ≤ j ≤ 3). The conditions 1 and 2 of Lemma 5.7 are therefore

both satisfied. Thus for this second factor, (94), (95) and (96) hold with

V (t) =
D11(t, t)

D(t, t)
−
[
D01(t, t)

D(t, t)

]2

=
T 2e2te−2Tet

1− e−2Tet
−

[
Tete−2Tet

1− e−2Tet

]2

= −T
2e2te−2Tet

1− e−2Tet

(
1− e−2Tet

1− e−2Tet

)

= −
(
Tete−Te

t
)2 1− 2e−2Tet

(1− e−2Tet)2

= −
(
Tete−Te

t
)2 1− 2e−2Tet

1− 2e−2Tet + e−4Tet
.

Thus the product ρ(t, t+ ∆) also satisfies (94), (95) and (96) with

V (t) =
1

4
−
(
Tete−Te

t
)2 1− 2e−2Tet

(1− e−2Tet)2

=
1

4
− (Tete−Te

t

)2 1− 2e−2Tet

1− 2e−2Tet + e−4Tet
. (99)
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5.3.1 Proof of Lemma 5.1

Hüsler (1990) builds on the work of Leadbetter et al. (1983) and Berman (1985)

to consider large values of locally stationary Gaussian processes, which satisfy

Berman’s condition of long range dependence. We are able to utilise the results of

Hüsler (1990) if we are able to verify that a Gaussian process having the correlation

function ρ(s, t) from (98) is locally stationary. To do this, in addition to (94), (95)

and (96), we need to verify

0 < inf
t≥k

V (t) ≤ sup
t≥k

V (t) <∞. (100)

There are two cases to deal with here. Firstly, if e−2Tet < 1
2

then according to the

form (99) we can see that the first factor in the second term satisfies

0 ≤
(
Tete−Te

t
)2

≤ e−2

while the second factor of the second term in (99) satisfies

0 ≤ 1− 2e−2Tet

1− 2e−2Tet + e−4Tet
≤ 1

and so for such t, T ,

1

4
≥ V (t) ≥ 1

4
− e−2 ≈ 0.114.

Now, if 1
2
≤ e−2Tet < 1 then we have

−1 ≤ 1− 2e−2Tet ≤ 0
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and since for 0 ≤ x < 1,

x

2
≤ x− x2

2
≤ 1− e−x ≤ x ≤ 1

we also have

(Tet)2 ≤ (1− e−2Tet)2 ≤ 1

and so for such t, T ,

1

4
≤ V (t) =

1

4
− (Tete−Te

t
)2

(1− e−2Tet)2
(1− 2e−2Tet)

≤ 1

4
+

(Tete−Te
t
)2

(Tet)2

≤ 1

4
+ e−2Tet

≤ 5

4
.

We have thus established that for all t ≥ − log 2,

1

4
− e−2 ≈ 0.114 ≤ V (t) ≤ 5

4
.

Thus condition (100) holds. This implies that our Gaussian process
{
Hn(es + 1

2
)
}

with correlation function ρ(s, t) given in (98) is locally stationary.

In order to utilise the results of Theorem 4.2 of Hüsler (1990), we must verify

the long range condition

sup
t,t+∆≥k

ρ(t, t+ ∆) = o

(
1

log(∆)

)
as ∆→∞, (101)

so that conditions (5), (6) and (10) of Hüsler (1990) are satisfied. This is straight-
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forward, since the first factor in (98) satisfies

2

e
∆
2 + e−

∆
2

= 2e−
∆
2 [1 + o(1)]

as ∆ → ∞ which decays much faster than the rate in condition (101) above (i.e.

e−
∆
2 log ∆ → 0 as ∆ → ∞). Thus, by Lemma 5.9 and by Theorem 4.2 of Hüsler

(1990) we complete the proof of Lemma 5.1.

5.3.2 Proof of Lemma 5.2

Liu et al. (2003, equation (10), page 234) show that on a suitable probability space

there exist versions of {αn(u) : 0 ≤ u ≤ 1} and {Bn(u) : 0 ≤ u ≤ 1} satisfying

sup
U1,n≤u≤Un,n

n
1
4

∣∣∣∣∣αn(u)−Bn(u)

[u(1− u)]
1
4

∣∣∣∣∣ = Op(1)

=⇒ |αn(u)−Bn(u)| = Op(1) [u(1− u)]
1
4 n−

1
4 . (102)

Case (1) When λ ∈ [log n, n(log n)−4].

Letting v(λ) =
√

(λ−1)2

2λ−1
(1− e−T (2λ−1)), the remainder term Rn(λ) from (77)

can be written as

Rn(λ) =

∫ 1−e−T

0

λ(1− u)λ−1

v(λ)
d [αn(u)−Bn(u)] +

∫ 1

1−e−T

e−T (λ−1)

v(λ)
d [αn(u)−Bn(u)]

=
[
αn(1− e−T )−Bn(1− e−T )

] [λe−T (λ−1) − e−T (λ−1)

v(λ)

]
+

∫ 1−e−T

0

[αn(u)−Bn(u)] d

(
−λ(1− u)λ−1

v(λ)

)
(103)

=
[
αn(1− e−T )−Bn(1− e−T )

] [λe−T (λ−1) − e−T (λ−1)

v(λ)

]
+Op(1)n−

1
2 log n

[
λ(1− e−T (λ−1))

v(λ)

]
using (102)

= Op(1)n−
1
2 log nλ

1
2 = Op(1) (log n)−1.
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Case (2) When λ ∈ [1, log n].

Similarly to Case (1), we have

|Rn(λ)| = |Sn(λ)−Hn(λ)|

= Op(1)n−
1
2 log nλ

1
2 = Op(1)n−

1
2 (log n)

3
2 .

Lemma 5.1 with C = log(2) n yields

sup
λ∈[1,logn]

Hn(λ) = Op(1) (log(3) n)
1
2 .

Thus, supλ∈[1,logn] Sn(λ) ∨ 0 = Op(1) (log(3) n)
1
2 .

Case (3) When λ ∈ [n(log n)−4, n].

Lemma 5.1, with C = log(2) n yields

sup
λ∈[n(logn)−4,n]

Hn(λ) = Op(1) (log(3) n)
1
2 .

From (103), we can write

Rn(λ) = ∆1 + ∆2 + ∆3 + ∆4,
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where

∆1 =
[
αn(1− e−T )−Bn(1− e−T )

] [(λ− 1)e−T (λ−1)

v(λ)

]
,

∆2 =

∫ 1−e−T

U1,n

[αn(u)−Bn(u)] d

(
−λ(1− u)−(λ−1)

v(λ)

)
,

∆3 =

∫ U1,n

0

√
n [Fn(u)− u] d

(
−λ(1− u)−(λ−1)

v(λ)

)
and

∆4 =

∫ U1,n

0

Bn(u)d

(
λ(1− u)−(λ−1)

v(λ)

)
.

From (102),

∆1 = Op(1)n−
1
4

[
(λ− 1)e−T (λ−1)

v(λ)

]
= op(1)

due to the fact that λ ≥ n(log n)−4 →∞. Note that (102) implies [αn(u)−Bn(u)] =

Op(1)n−
1
4 (u(1− u))

1
4 and also that u = G(y) = O (1) y. We can show the asymp-

totic order of ∆2,∆3, and ∆4 using the same reasoning as Liu et al. (2003), so that

we have

∆2 = Op(1)n−
1
4

∫ T

Y1,n

y
1
4λ(λ− 1)e−y(λ−1)

v(λ)
dy

= Op(1)n−
1
4λ

1
4 = Op(1) .

When 0 ≤ u ≤ U1,n, we have Fn(u) = 0 and
(
λ(λ−1)e−y(λ−1)

v(λ)

)
is a decreasing

function of y. Thus, ∆3 ≤ 0.

Finally, when 0 ≤ y ≤ Y1,n, we have Bn(G(y)) = Op(1)G
1
2 (Y1,n) = Op(1)Y

1
2

1,n.
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We note that Y1,n = Op(1) 1
n
. Then we have

|∆4| =

∫ U1,n

0

Bn(u)d

(
λ(λ− 1)e−y(λ−1)

v(λ)

)
= Op(1)

∫ Y1,n

0

Y
1
2

1,nλ(λ− 1)e−y(λ−1)

v(λ)
dy

= Op(1)Y
1
2

1,nλ
1
2 = Op(1)n

1
2Y

1
2

1,n = Op(1) .

Therefore,

sup
λ∈[n(logn)−4,n]

Sn(λ) ∨ 0 = Op(1) (log(3) n)
1
2 .

Case (4) When λ ≥ n.

Note firstly that G(y) = O(1)y, Fn(y) = Op(1) y and that v(λ) = O(1)λ
1
2 for

large λ. Then from (76) we have

Sn(λ) =

∫ 1

0

sλ(G
−1(u))dαn(u)

= n
1
2

∫ 1−e−T

0

λ(1− u)(λ−1)

v(λ)
d [Fn(u)− u] + n

1
2

∫ 1

1−e−T

e−T (λ−1)

v(λ)
d [Fn(u)− u]

= n
1
2

∫ 1−e−T

0

(Fn(u)− u)λ(λ− 1)(1− u)λ−2

v(λ)
du

+n
1
2

[
Fn(1− e−T )− (1− e−T )

]((λ− 1)e−T (λ−1)

v(λ)

)
= n

1
2

1

v(λ)
lim

t↑T,t<T

∫ t

0

(Fn(G(y))−G(y))

y
yλ(λ− 1)e−y(λ−1)dy + op(1)

= Op(1)n
1
2λ−

1
2 lim
t↑T,t<T

∫ t

0

λ2ye−yλdy

= Op(1) .

This completes the proof of Lemma 5.2.
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5.3.3 Proof of Theorem 5.3

Lemma 5.2 yields that

Mn = sup
λ>1

Sn(λ) = sup
λ∈[logn,n(logn)−4]

Sn(λ)

= sup
λ∈[logn,n(logn)−4]

Hn(λ) +Op(1) (log n)−1.

If we write λ = es + 1
2
, then we have s = log

(
λ− 1

2

)
. Applying this transfor-

mation to the upper bound of s in Lemma 5.1 yields

λ ≤ n (log n)−4

=⇒ s ≤ log

(
n (log n)−4 − 1

2

)
= log

{
n (log n)−4

[
1− 1

2n (log n)−4

]}
= log n− 4 log log n+ log

[
1− 1

2n (log n)−4

]
= log n− 4 log log n+Op(1)

1

n (log n)−4

= Cn.
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As in Lemma 5.1, we define

ACn =
√

2 logCn

=

√
2 log

[
log n− 4 log log n+Op(1)

1

n (log n)−4

]

=

√√√√2 log

{
log n

[
1− 4 log log n

log n
+Op(1)

(log n)3

n

]}

=

√√√√2

{
log log n+ log

[
1− 4 log log n

log n
+Op(1)

(log n)3

n

]}

=

√
2 log log n+Op(1)

log log n

log n

=
√

2 log log n

[
1 +Op(1)

1

log n

] 1
2

=
√

2 log log n

[
1 +Op(1)

1

log n

]
. (104)

Lemma 5.1 yields

ACn
[
Mn −Op(1) (log n)−1 − ACn

]
+ log(4π) = Gn + op(1) ,

where Gn converges to a Gumbel distribution as n → ∞. From (104) we have

ACn →∞ and letting K = log(4π), we can write

Mn = ACn +
Gn −K + op(1)

ACn
+ op(1) so that

M2
n = A2

Cn + 2 [Gn −K] + op(1) , which implies

M2
n − A2

Cn

2
+K = Gn + op(1) .
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Therefore, we have

lim
n→∞

P

{
M2

n − A2
Cn

2
+K ≤ w

}
= e−e

−w

and substituting w = y
2

yields

lim
n→∞

P
{
M2

n − A2
Cn + 2K ≤ y

}
= e−e

− y2 (105)

as required.

5.3.4 Proof of Lemma 5.4

If pλ ≤ 2, then we would have pλ = O(1). Thus, we can assume here that pλ > 2.

Similar to Liu et al. (2003) we define y0(p, λ) = log(pλ)/(λ− 1), which we will

simply denote by y0.

Case 1 (y0 ≥ T ).

If y0 ≥ T then

log(pλ)/(λ− 1) ≥ T =⇒ λ ≥ pλ ≥ eT (λ−1) =⇒ pλ = O(1). (106)

Case 2 (y0 < T ).

We note that G(y) and Fn(G(y)) are identical to the functions for the gamma

distribution with κ = 1 from Liu et al. (2003) for y < T . Thus we have

n−1Ln(p, λ) =

(∫ T

y0

+

∫ y0

0

)
log (1 + p(l(y, λ)− 1)) dFn(G(y)) +

1

n

n∑
i=1

e−T (λ−1)I {Yi = T}

≤
∫ T

y0

(
e−(y−y0)(λ−1) − p

)
dFn(G(y)) + [1− Fn(G(T ))] e−T (λ−1)

+

∫ y0

0

[log 2 + (y0 − y)(λ− 1)] dFn(G(y)). (107)
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Note that Fn(G(y)) = Op(1)G(y) and also that e−T (λ−1) = O(1), otherwise

λ = O(1) and hence pλ = O(1).

Now, the first part of (107) yields

∫ T

y0

(
e−(y−y0)(λ−1) − p

)
dFn(G(y)) + [1− Fn(G(T ))] e−T (λ−1)

=
[
(e−(T−y0)(λ−1) − p)Fn(G(T ))− (1− p)Fn(G(y0))

]
+

∫ T

y0

Fn(G(y))d(−e−(y−y0)(λ−1)) + [1− Fn(G(T ))] e−T (λ−1)

≤ −pFn(G(T )) +
(
e−(T−y0)(λ−1) − e−T (λ−1)

)
Fn(G(T ))

+Op(1)

∫ T

y0

G(y)d(−e−(y−y0)(λ−1)) + e−T (λ−1)

= −pFn(G(T )) +
(
e−(T−y0)(λ−1) − e−T (λ−1)

)
Fn(G(T ))

+Op(1)

(
−G(T )e−(T−y0)(λ−1) +G(y0) +

∫ T

y0

e−(y−y0)(λ−1)dG(y) + e−T (λ−1)

)
≤ −pFn(G(T )) +Op(1)

(
(Fn(G(T ))−G(T )) e−(T−y0)(λ−1) + e−T (λ−1) (1− Fn(G(T )))

)
+Op(1) (G(y0) + p(1−Gλ(y0))) .

Note that Equation 12 from Liu et al. (2003) yields

sup
U1,n≤u≤Un,n

|αn(u)| = Op(1)
(
log(2) n

) 1
2 (u(1− u))

1
2 , (108)

which is applied such that

Op(1)
(
(Fn(G(T ))−G(T )) e−(T−y0)(λ−1)

)
= Op(1)

(
log(2) n

n

) 1
2 (
e−T (1− e−T )

) 1
2

= op(1) for pλ→∞.

The second part of (107) can be bounded by Op(1)G(y0) log(pλ), thus, follow-
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ing in the same way as Liu et al. (2003),

n−1Ln(p, λ) ≤ p {−Fn(G(T )) +Op(1) [h(p, λ)]} (109)

where the right hand side of (109) is decreasing when pλ is large and h(p, λ)→ 0

as pλ→∞. Therefore, when Ln(p, λ) > 0, we have pλ = O(1).

This completes the proof of Lemma 5.4.

5.3.5 Proof of Lemma 5.5

We define

Pns
2
λ =

1

n

n∑
i=1

s2
λ(Yi)

=

∫ 1

0

[
λI{G−1(u)<T}e−G−1(u)(λ−1) − 1

]2

v2(λ)
du

+

∫ 1

0

[
λI{G−1(u)<T}e−G−1(u)(λ−1) − 1

]2

v2(λ)
d (Fn(u)− u)

= 1 +

∫ 1−e−T

0

(
λ(1− u)(λ−1) − 1

)2

v2(λ)
d (Fn(u)− u)

+

∫ 1

1−e−T

(
e−T (λ−1) − 1

)2

v2(λ)
d (Fn(u)− u)

= 1 +

(
e−T (λ−1) − 1

)2

v2(λ)

[
1− e−T − Fn(1− e−T )

]
+
Fn(1− e−T )− (1− e−T )

v2(λ)

{
λ2e−2T (λ−1) − 2λe−T (λ−1) + 1

}
−
∫ 1−e−T

0

[Fn(u)− u]
d

du

[(
λ(1− u)λ−1 − 1

)2

v2(λ)

]
du

= 1 + ∆5 + ∆6 + ∆7,
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where

∆5 =

∫ Y1,n

0

(Fn(G(y))−G(y)) d
(
−s2

λ(y)
)
,

∆6 = lim
t↑T,t<T

∫ t

Y1,n

(Fn(G(y))−G(y)) d
(
−s2

λ(y)
)

and

∆7 =

[
Fn(1− e−T )− (1− e−T )

]
v2(λ)

{
(λ2 − 1)e−2T (λ−1) − (2λ− 2)e−T (λ−1)

}
.

Case (1) When λ ∈ [λ∗, n(log n)−4].

Since Fn(G(y)) and G(y) are identical to the case in Liu et al. (2003) with

κ = 1 for y < T , using the same steps as their’s (although ignoring the second

term in their ∆5), we have

|∆5| = Op
(
(log n)−1

)
and

|∆6| = Op
(
(log n)−1

)
.

We can also see that

|∆7| ≤
[
Fn(1− e−T )− (1− e−T )

]
4v2(λ)

since λke−2T (λ−1) is uniformly bounded in λ for k = 1, 2. When λ ∈ [log n, n(log n)−4],

we have v2(λ) = O(1) so that from (108) we can see that |∆7| = op(1).

Case (2) When λ ∈
[
n(log n)−4, 1

Y1,n

]
.

We define

X 2(x, λ) = (2λ− 1)(e−x(λ−1) − λ−1)2 (110)

to be the same as the square of the centered, standardised score function for the
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case of κ = 1 in Liu et al. (2003). Note that Lemma 4 of Liu et al. (2003) yields

1
1
n

∑n
i=1X 2(xi, λ)

= Op(1) (111)

Note that,

(
1− e−(λ−1)T

)2

1− e−(2λ−1)T
= 1 +

e−(2λ−1)T − 2e−(λ−1)T + e−(2λ−2)T

1− e−(2λ−1)T

= 1 + o(1) as n→∞. (112)

Then using (112) we can show directly that

1

n

n∑
i=1

s2
λ(Yi) =

1

n

n∑
i=1

X 2(xi, λ)

[ (
1− e−(λ−1)T

)2

(1− λe−(λ−1)xi)
2

]I{xi≥T}
1

1− e−T (2λ−1)

≥ 1

n

n∑
i=1

X 2(xi, λ)

[(
1− e−(λ−1)T

)2

1− e−(2λ−1)T

]

=
1

n

n∑
i=1

X 2(xi, λ) [1 + o(1)] (113)

Then (111) yields that

1
1
n

∑n
i=1 s

2
λ(Yi)

= Op(1) . (114)

This completes the proof of Lemma 5.5.

5.3.6 Proof of Theorem 5.6

The proof of Theorem 5.6 is identical, mutatis mutandis, to the proof of Theorem

2 in Liu et al. (2003).

134



6 Conclusion

In this work, we have explored the theory and applications of various multi-regime

models involving Markov chains. We have addressed a series of problems involving

non-homogeneous data, where Markov chains are used in the parameter estimation

procedure as well as in the model itself. We saw in Chapter 2 how a multi-regime

model can be applied to a single discrete time series. Specifically, we applied a

Poisson change-point model to the history of quarterly driver fatality counts in the

state of Victoria, Australia. This approach is the first of its kind on this data and

provides some useful insights into when change-points occurred in the data and

what the magnitude of the changes were. We gained a deeper understanding of

the properties of the Markov chain used in the estimation procedure. That is, we

proved that the Gibbs sampler for the Poisson change-point model is geometrically

ergodic. This result is of great importance to practitioners using Poisson change-

point models in a Bayesian framework for many different types of data. Thus, given

a specific convergence level for the distribution, the minimum number of iterations

required can be calculated. Although we have identified a key quality of the

convergence rate of the sampler, the calculation of the specific rate of convergence

is left for further research. It would also be of interest to see if the bounding

technique of Section 2.4 can be used to prove geometric ergodicity of MCMC

algorithms for other models.

The Gibbs sampler is again used in Chapter 3. Here, we are applying a double

chain Markov model to multiple discrete time series of differing lengths. Conver-

gence of the Gibbs sampler is improved by adding an additional step, where the

hidden data labels are randomly permuted. The nature of the data provides a

challenge when specifying the exact steps for parameter estimation. We derive

these steps and apply the model to credit rating migration data that are driven

by Markov chains that are selected from a Markov chain of hidden regimes. When
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we overlay the regimes selected by the model on the data with historical economic

data, we are able to see that a remarkable pattern emerges, where credit migration

dynamics switch in positive and negative market conditions. We also show that

our model is more effective than other existing double chain Markov models, using

a simulation study. It would be of interest to further the theoretical work on this

problem so that we can develop more specific results about the convergence rate

of the modified Haar PX-DA algorithm and to compare it to the convergence rate

of the regular DA without the extra permutation step.

A similar dataset on credit rating migrations, albeit with multiple observations

over continuous time, is involved in Chapter 4. The multiple regimes are across the

population rather than over time, thus we are studying a Markov chain mixture

model for the data. We address the problem of testing for the number of mixture

components using the log-likelihood ratio. We adapt the results of Fukumizu

(2003) that show the divergence of the log-likelihood ratio under certain conditions,

to show that the log-likelihood ratio for our model also diverges to infinity. This

is contrary to the claims of Frydman (2005) and we provide evidence for our claim

through a parametric bootstrap procedure. We then look at a simplified version

of the mixture problem, where each Markov chain mixture component has only 2

states, one of which is the absorbing default state, which is equivalent to a mixture

of censored exponentials problem.

In Chapter 5, we analyse this particular problem and derive the exact limiting

distribution of the log-likelihood ratio test statistic, so that we are able to test for

the presence of a mixture. Each of the problems we explore enable us to gain a

greater understanding of the nature of multi-regime models that involve Markov

chains in the parameter estimation procedures or in the models themselves. These

significant insights are gained through the application of these models to address

practical problems that do not have a clear solution.
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It would be of interest to develop a general theorem, similar to Fukumizu

(2003), which applies to a greater number of Markov chain components than the 1

vs. 2 component test we explored. The results of Chapter 5 could also be extended

to tests for the number of mixture components of N -state Markov chains with

N > 2, to derive the limiting distribution of the log-likelihood ratio test statistic.

This would enable the theory to address all of the problems involving tests for

the number of mixture components in the class of models discussed in Frydman

(2005). We leave these problems to be explored with further research.
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A Covariance calculation for stochastic integrals

The left hand side of (75) on page 109 can be written as follows

E

{[
Wn(1)g(1)−

∫ 1

0

Wn(u)dg(u)

] [
Wn(1)h(1)−

∫ 1

0

Wn(u)dh(u)

]}
= E

{
g(1)h(1)− g(1)

∫ 1

0

Wn(1)Wn(u)dh(u)

−h(1)

∫ 1

0

Wn(1)Wn(u)dg(u) +

∫ 1

0

∫ 1

0

Wn(u)Wn(v)dg(u)dh(v)

}
.

= g(1)h(1)− g(1)

∫ 1

0

udh(u)− h(1)

∫ 1

0

udg(u)

+

∫ 1

0

∫ 1

0

(u ∧ v)dg(u)dh(v). (115)

The fact that we may take expectations inside these integrals follows e.g. from the

representation of the Wiener process as a series W (u) =
∑

j Aj(u)Zj for indepen-

dent standard normal random variables {Zj} and a countable class of continuous

functions {Aj(·)} satisfying
∑

j Aj(u)Aj(v) = u ∧ v for all 0 ≤ u, v ≤ 1 for our

counting index j = 1, 2, . . . and with u ∧ v denoting the minimum of u and v (see

McKean (1969) for further details).
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The last integral at (115) in turn can be written as

∫ 1

0

∫ 1

0

(u ∧ v)dg(u)dh(v)

=

∫ 1

u=0

([∫ u

v=0

v +

∫ 1

v=u

u

]
dh(v)

)
dg(u)

=

∫ 1

0

uh(1)dg(u)−
∫ 1

u=0

∫ u

v=0

h(v)dvdg(u)

= h(1)

[
g(1)−

∫ 1

0

g(u)du

]
−
∫ 1

v=0

∫ 1

u=v

dg(u)h(v)dv

= g(1)h(1)− h(1)

∫ 1

0

g(u)du−
∫ 1

v=0

[g(1)− g(v)]h(v)dv

=

∫ 1

0

g(u)h(u)du− g(1)h(1) + g(1)

∫ 1

0

udh(u) + h(1)

∫ 1

0

udg(u).

Inserting this into (115) gives the result.
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