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Within the context of the twisted Poincaré algebra, there exists no noncommutative
analog of the Minkowski space interpreted as the homogeneous space of the
Poincaré group quotiented by the Lorentz group. The usual definition of commu-
tative classical fields as sections of associated vector bundles on the homogeneous
space does not generalize to the noncommutative setting, and the twisted Poincaré
algebra does not act on noncommutative fields in a canonical way. We make a
tentative proposal for the definition of noncommutative classical fields of any spin
over the Moyal space, which has the desired representation theoretical properties.
We also suggest a way to search for noncommutative Minkowski spaces suitable
for studying noncommutative field theory with deformed Poincaré symmetries.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2907580�

I. INTRODUCTION

There have been intensive research activities in quantum field theory on noncommutative
spaces �see, e.g., Refs. 1 and 2 and references therein� in recent years. All aspects of noncommu-
tative quantum field theory on the Moyal space have been studied, which include foundational
issues, renormalization, as well as model building for particle physics. We mention, in particular,
that noncommutative quantum field theories behave very differently from their commutative coun-
terparts, as can be seen, e.g., from the UV/IR mixing3 appearing in the noncommutative case.

A major conceptual advance was the recognition4 that the twisted Poincaré algebra should
play the same role in noncommutative quantum field theory on the Moyal space as that played by
the Poincaré group in usual relativistic quantum field theory. The merit of the twisted Poincaré
symmetry of the noncommutative quantum field theory �NC QFT� is that its particle representa-
tions are identical to the ones of the usual Poincaré symmetry since the structure of the twisted
Poincaré algebra is identical to the one of the Poincaré algebra and, hence, the Casimir operators
are the same. As a result, the particle states of NC QFT are classified according to their mass and
spin4 as ordinary. The study of the consequences of this twisted Poincaré symmetry 1 has increased

1Recently several papers6–8 claimed that twisted Poincaré invariant noncommutative quantum field theory on the Moyal
space had the same S-matrix as its commutative counterpart. This is very surprising in view of the drastic differences
between the commutative and noncommutative theories.
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the interest in the subject since the publication of Ref. 4. Attempts5 have also been made to gauge
the twisted Poincaré algebra in order to construct a noncommutative theory of general relativity.
Other possible noncommutative spacetime symmetries have also been studied in the literature,
e.g., the �-Poincaré algebra.9

The twisted Poincaré invariance of noncommutative quantum field theory is an extremely
important issue, which should be systematically investigated by starting from first principles. To
consider it, one needs to have a representation theoretical interpretation of the fields and also a
precise definition of the actions of the twisted Poincaré algebra on them. Unfortunately, neither is
well understood, especially for fields with nonzero spin �of course, we cannot give precise mean-
ings to the terms “fields” and “spin” yet�. In the literature, there is enough material for one to
extract a general definition of a classical noncommutative scalar field on the Moyal space and
specify the precise transformation rule for it under the twisted Poincaré algebra �see, e.g., Ref. 10
and also later treatments by other authors�. However, there is hardly any discussion on what fields
with nonzero spin should be, leaving alone any precise formulation, from first principles, of their
transformation rules under the twisted Poincaré algebra. Some researchers are aware of aspects of
this problem. For example, there was a lengthy discussion in Ref. 6 on the need of formulating a
transformation rule of fields under the twisted Poincaré algebra, but the authors did not directly
address the issue, rather they suggested a way to side step it instead. Also, Ref. 11 aimed at
addressing similar issues for general Hopf algebras.

For simplicity, we shall consider twisted Poincaré invariance of noncommutative classical
field theory. Recall that in the commutative setting, Minkowski space is realized as the quotient of
the Poincaré group by the Lorentz group, and a classical field is a section of a vector bundle
induced by some representation of the Lorentz group �or its double cover�. The space of sections
of the bundle, which is the well-known induced module, carries a natural action of the entire
Poincaré group. One would expect that the Moyal space and noncommutative fields on it should
be understood in such terms as well.

We shall carefully examine the induced module construction in Sec. II, and then investigate
the possibility of generalizing it to the twisted Poincaré algebra in Sec. III A. Unfortunately, we
find that the natural generalization does not go through, primarily because the universal envelop-
ing algebra of the Lorentz Lie algebra is not a Hopf subalgebra of the twisted Poincaré algebra.
We shall explain in detail the obstacle preventing the generalization in the second half of Sec.
III A. To further illustrate the problems, we examine in Sec. III C the two noncommutative alge-
bras in the literature, which are closely related to the Moyal space and arise from the representa-
tion theory of the twisted Poincaré algebra, and explain why they are not useful for defining
classical fields. These rather unexpected difficulties indicate that one cannot use the same canoni-
cal definitions in the case of noncommutative fields on the Moyal space to address the represen-
tation theoretical properties relative to the twisted Poincaré algebra.

One could, however, approach the problem differently. In Sec. IV, we propose a definition of
noncommutative classical fields, which agrees with what noncommutative scalar fields were im-
plicitly taken to be in the literature �see, e.g., Ref. 10� and recovers the usual definition of scalar
fields in the commutative case. We hope that the proposal will provide a useful framework for
studying twisted Poincaré invariance of quantum field theory on the Moyal space.

A further useful aspect of results in this paper is that they provide a theoretical basis for the
search of noncommutative analogs of the Minkowski space, which are suitable for studying
noncommutative field theory with deformed Poincaré symmetries. We shall discuss this point in
more detail in Sec. V.

Before closing this section, we mention that we shall limit ourselves to the case where the
noncommutative fields carry no internal degrees of freedom. This enables us to better focus on
properties of noncommutative fields relative to the twisted Poincaré algebra. All results of this
paper can be generalized to include internal degrees of freedom in a straightforward manner.
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II. INDUCED MODULES OF POINCARÉ GROUP AND CLASSICAL FIELDS

We review the basic definition of Poincaré group actions on commutative classical fields. This
material is needed later when we investigate the possibilities/difficulties of generalizing it to the
twisted Poincaré algebra.

Choose the metric �=diag�−1,1 ,1 ,1� for R1,3. Let G denote the Poincaré group, which is the
semidirect product of the Lorentz group and the Abelian group of translations on R1,3, where the
Lorentz group is defined with respect to the metric �. Since spinor fields should be included in the

framework as well, we consider, instead, the covering group G̃=Spin�1,3�›R1,3, the semi-direct
product of Spin�1, 3� with the group of translations. Now Spin�1, 3� acts on translations via the
surjection � from Spin�1, 3� to the Lorentz group. For convenience, we shall denote Spin�1, 3� by
L.

Denote the coordinate of R1,3 by x= �x0 ,x1 ,x2 ,x3�. For computational purposes, it is the best

to write an element of G̃ as � exp�iPx�, where ��L and x�R1,3, with the product of two
elements � exp�iPx� and �� exp�iPy� given by

�� exp�iPy�� exp�iPx� = ��� exp�iP��−1�y� + x�� .

Here, �−1�y��=���−1��
�y�.

Let C��G̃� be the set of smooth functions on G̃. In the present �untwisted� case, it forms a
commutative algebra under the usual pointwise multiplication from calculus.

Remark 2.1: The pointwise multiplication of functions on G̃ is intimately related to the fact
that we give the group algebra the cocommutative comultiplication

�0�g� = g � g ,

for all elements g in the group. This comultiplication is compatible with the standard cocommu-
tative comultiplication (3.2) for the Poincaré algebra.

There are two natural actions of G̃ on C��G̃�, the left and right translations, which we shall

denote by L and R, respectively. For any 	�C��G̃� and g� G̃, Lg�	� and Rg�	� are respec-
tively, defined by

Lg�	��g1� = 	�g−1g1�, Rg�	��g1� = 	�g1g�, ∀ g1 � G̃ .

It is these actions that give rise to actions of the Poincaré group on classical fields. We shall
carefully examine this point now with the view of possible generalizations to the noncommutative
case.

To discuss properties of classical fields on R1,3 in relation to the Poincaré group, we first note

that R1,3� G̃ /L. At this point, we need to make a choice in interpreting this either as a left or right

coset space. We shall take G̃ /L as the right coset space consisting of equivalence classes with the
following equivalence relation: � exp�iPx���� exp�iPx�, for all � ,���L.

Let V be a finite dimensional L-module and denote by 
 the representation of L on V relative
to some choice of basis. Then, a classical field of a type characterized by V is a section of the

associated C� vector bundle G̃�LV→ G̃ /L. Denote by ��V� the space of the smooth sections of

this vector bundle, which is a subspace of C��G̃��CV, where the latter vector space is endowed

with an action of L defined for any 	 � v�C��G̃��CV by

��	 � v� = �L � 
��0����	� = L��	� � 
���v, ∀ � � L .

Then, ��V� is the subspace of invariants of C��G̃��CV with respect to this L-action, that is,

042302-3 Noncommutative fields and twisted actions J. Math. Phys. 49, 042302 �2008�
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��V� = �C��G̃��CV�L. �2.1�

As is well known, the space ��V� of sections forms a module, the induced module, for the entire

Poincaré group G̃ with the group action defined by

g�� = �Rg � idV�, g � G̃,  � ��V� . �2.2�

Remark 2.2: Note that in formulating (2.1), it is of crucial importance that the group algebra

of L is a Hopf subalgebra of the group algebra of G̃ under the comultiplication �0.
Both Eqs. �2.1� and �2.2� can be made more explicit. If ���V�, then �2.1� implies that

�L� � idV� = �id � 
��−1��, ∀ � � L , �2.3�

where the id on the right side is the identity map on C��G̃�. Therefore,

�� exp�iPx�� = 
����exp�iPx�� .

Denote

	�x� = �exp�iPx��, �g · 	��x� = �g����exp�iPx��, g � G̃ .

Then, by using �2.3�, we easily see �with notations as above� that Eq. �2.2� is equivalent to

�� exp�iPa� · 	��x� = 
���	��−1x + a�, � exp�iPa� � G̃ . �2.4�

This is the familiar transformation rule for a classical field on R1,3 under the action of the
Poincaré group. The type of a classical field is determined by V. For example, the field is a vector
if V is the natural module for the Lorentz group and a spinor if V is a spinor module.

Let V and V� be L-modules. If f :V→V� is an L-module homomorphism, it induces a mor-
phism between the associated vector bundles,

f*:��V� → ��V��,  � �id � f� .

Also note that the multiplication of C��G̃� induces a tensor product map for the associated vector
bundles,

��V� � ��V�� → ��V � V�� , �2.5�

defined for =�i	i � vi���V� and �=� j� j � v j����V�� by

 � � � � = �
i,j

	i� j � vi � v j�.

By a direct computation, one can show that the right hand side, indeed, belongs to ��V � V��.
There is an obvious generalization of the map to more than two bundles.

Given a classical field ���V�, we may consider, say, k���V�k�. If there exists a module
map f from V�k to the one-dimensional trivial L-module C, then f*�k� is a complex valued

function on R1,3. Then, for all � exp�iPa�� G̃,

� dx�� exp�iPa� · �f*�k����x� =� dx�f*�k����−1x + a� =� dx�f*�k���x� ,

that is, the integral 	dx�f*�k���x� �which means 	dx�f*�k���exp�iPx��� is Poincaré invariant.
The construction of the invariant integral can obviously generalize to the case with more than one

classical field, which can be sections of different vector bundles on G̃ /L �derivatives of a section
are considered as a section of different vector bundles�. This is how one constructs Poincaré
invariant Lagrangians in classical field theory.

042302-4 Chaichian et al. J. Math. Phys. 49, 042302 �2008�

Downloaded 28 Jul 2008 to 129.78.72.28. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Remark 2.3: Unitarity of the induced module ��V� is required in order to have a sensible field
theory.

III. INDUCED MODULES FOR THE TWISTED POINCARÉ ALGEBRA

A. Generalities on induced modules for the twisted Poincaré algebra

In this section, we shall first discuss induced modules of the twisted Poincaré algebra in
general terms, then explain the obstruction preventing the generalization of the constructions of
Sec. II to the noncommutative setting.

There are detailed treatments of induced modules for quantum groups in the literature, see,
e.g., Refs. 12 and 13. Two equivalent approaches were followed by using the languages of
comodules12 and modules.13 Our discussion below is presented in terms of modules.

Let g be the complexification of the Lie algebra Lie�G̃� of the Poincaré group. Then, g= l

+p, where l is the complexification of the Lie algebra of the Lorentz group and p is the complexi-
fication of the Lie algebra of the group of translations on R1,3. A basis for g is 
J�� , P� �� ,�
=0,1 ,2 ,3� with the following commutation relations:

�J��,J�
� =
1

i
����J�
 − ���J�
 − ��
J�� + ��
J��� ,

�J��,P�� = i���P� − i���P�, �3.1�

�P�,P�� = 0.

We denote by U the universal enveloping algebra of the Poincaré algebra g. The standard cocom-
mutative comultiplication �0 is given by

�0�X� = X � 1 + 1 � X, ∀ X � g . �3.2�

The twisted Poincaré algebra is the associative algebra U equipped with a twisted comultipli-
cation defined in the following way. Let �= ����� be a real 4�4 skew symmetric matrix. Set

F = exp�
�,�

1

2
i���P� � P�� ,

which is understood as belonging to some appropriate completion of U � U. The twisted comulti-
plication is then defined by

�:U → U � U, u � F�0�u�F−1, �3.3�

which is, indeed, coassociative as can be easily shown. Now, for any �� l and P�p,

���� = � � 1 + 1 � � −
1

2 � i������,P�� � P� + P� � ��,P��� ,

�3.4�
��P� = P � 1 + 1 � P .

If we also define the counit � and antipode S, respectively, by ��1�=1, ��X�=0, and S�X�=−X for
all X�g, then U is a Hopf algebra with comultiplication �.

It is worth mentioning that the F used to twist �0 to obtain the new comultiplication � is an
example of a special type of gauge transformations in the powerful theory of quasi-Hopf
algebras14,15 �see also Ref. 16�. We refer to Ref. 17 for more details on twisting comultiplications.

042302-5 Noncommutative fields and twisted actions J. Math. Phys. 49, 042302 �2008�
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The coalgebra structure of U induces a natural associative algebra structure on the dual space
U* of U. Since � is clearly noncocommutative, U* is noncommutative. Note that U* is a huge

object, which contains C��G̃� as a subspace in some appropriate sense. There exist two left actions
L ,R :U � U*→U*, respectively, defined for any f �U* and u�U by

Lu�f��w� = f�S−1�u�w�, Ru�f��w� = f�wu�, ∀ w � U . �3.5�

Let A�g� be either U* itself or an appropriate subalgebra of it. In the latter case, we require
that for any nonzero u�U, there exists some a�A�g� such that a�u��0. Also, A�g� should be
stable under both the left and right translations, that is, Lu�A�g�� ,Ru�A�g���A�g� for all u�U.
The algebra A�g� will be taken as defining some noncommutative space following the general
philosophy of noncommutative geometry.19

Let C be a two-sided coideal of U satisfying c�1�=0 for all c�C, where 1 is the identity
element of U. Being a two-sided coideal means that ��C��C � U+U � C. Now, define

A�g,C� ª 
f � A�g��Lc�f� = 0, ∀ c � C� . �3.6�

Then, A�g ,C� is a subalgebra of A�g�. The proof of this is quite illuminating. If f ,g�A�g ,C�,
then for all c�C and u�U, we have

Lc�fg��u� = �f � g���S−1�c�u� = �
�c�,�u�

Lc�2�
�f��u�1��Lc�1�

�g��u�2�� ,

where we have used Sweedler’s notation19 for the comultiplications of c and u. Since C is a
two-sided coideal, we have

Lc�fg��u� = 0, ∀ u � U .

The algebra A�g ,C� is taken as defining a noncommutative analog of some homogeneous space of

G̃.
As far as we are aware, this is the definition of noncommutative homogeneous spaces that

requires the weakest conditions on C. If we also want to develop a theory of induced representa-
tions similar to that in the setting of Lie groups, we need to impose the stronger condition that C
generates a Hopf subalgebra of U.

Now, we make the assumption that C generates a Hopf subalgebra H of U. Then,

A�g,C� = A�g�LH,

which is the subalgebra of A�g� consisting of the H invariant elements. Let V be a finite dimen-
sional H-module. We define the vector space

��V� ª �� � A�g��CV��
�u�

�Lu�1�
� u�2��� = ��u��, ∀ u � H� , �3.7�

where we have used Sweedler’s notation ��u�=��u�u�1� � u�2� for the comultiplication of u. Then,
��V� is a two-sided A�g ,C�-module under the multiplication in A�g�: for any a�A�g , l� and �
=�	i � vi���V�, both

a� = � a	i � vi and �a = � 	ia � vi

belong to ��V�.
Remark 3.1: Both the definition of ��V� and its A�g , l�-module structures rely in a crucial way

on the Hopf algebra structure of H.
It is important to observe that ��V� forms a left U-module under the action

042302-6 Chaichian et al. J. Math. Phys. 49, 042302 �2008�
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U � ��V� → ��V�, u � � � �Ru � idV�� . �3.8�

Furthermore, if V and V� are both H-modules, then there exists a map

��V� � ��V�� → ��V � V�� �3.9�

defined in exactly the same way as �2.5�.
Remark 3.2: By imposing appropriate conditions on the algebra A�g�, we can reproduce the

results in Sec. II this way by using the usual comultiplication �0 for U.

B. Difficulties with representation theoretical interpretation of noncommutative fields

In order for the twisted Poincaré algebra to play a similar role in noncommutative field theory
as that played by the Poincaré group in commutative field theory, it appears to be quite necessary
to have a noncommutative analog of the construction of induced representations given in Sec. II.
It is that construction that provides the definition of classical fields on R1,3 and also specifies the
action of the Poincaré group on them.

If we wish to generalize Sec. II to the noncommutative setting, we have to take such a
subspace C of U that contains l but not any nontrivial subspace of p. However, in this case, C
cannot be a two-sided coideal as one can easily see by inspecting the comultiplication �3.4�. For
example, the natural choice C= l does not give us a two-sided coideal. It still makes sense to define
A�g , l�=A�g ,C� in this case; however, A�g , l� will not be a subalgebra of U* since the universal
enveloping of l is not a Hopf subalgebra of U.

This means that conceptually, we cannot regard A�g , l� as defining a noncommutative geom-
etry. An immediate practical problem caused by this is the following. If we follow the type of
thinking in Sec. II, we would like to interpret elements of A�g , l� as a “scalar field.” Since A�g , l�
is not an algebra, we do not know how to multiply two “fields” �or a “field” with itself� together.

Now, we consider the induced module construction. If V is merely an l-module, then the
corresponding ��V� as that in �3.7� cannot be defined. One way out is to take V to be a U-module
with a trivial p action. Then, at least, we can define a ��V� by �3.7�. Now, the map �3.9� is not
defined. Therefore, we cannot simply generalize the classical construction to build Lagrangians
from elements of ��V� and defining Wightman functions in the corresponding quantum theory.

In summary, there does not exist a noncommutative analog of R1,3= G̃ /L in terms of the
twisted Poincaré algebra, and the induced module construction for the Poincaré group in Sec. II
cannot be generalized to the twisted setting.

Therefore, one cannot generalize the canonical definition of actions of the Poincaré group on
classical fields to the noncommutative setting. Note that a similar situation is encountered in the
case of the �-Poinincaré algebra,9 for the same reason that the enveloping algebra of the Lorentz
subalgebra is not a Hopf subalgebra.

C. Representation theoretical constructs related to Moyal space

There are two noncommutative algebras in the literature, which arise from the representation
theory of the twisted Poincaré algebra and are related to the Moyal space. We discuss difficulties
which one encounters when trying to take any of these algebras as the algebra of functions on
some noncommutative space and develops field theory on it. There are also various inaccurate
statements concerning the relationship between these algebras and the Moyal space in the litera-
ture, which we hope to clarify here. We should mention that it is not hard to deduce the material
below from appropriate mathematical sources, e.g., Ref. 19.

1. A module algebra

Consider an indecomposable module V=X � C1 for the Poincaré algebra U, where C1 is a
one-dimensional submodule and X= ��=0

3 Cx� forms the natural module for l. Explicitly, the U
action on V is given by

042302-7 Noncommutative fields and twisted actions J. Math. Phys. 49, 042302 �2008�
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J���x�� =
1

i
���

�x� − ��
�x��, P��x�� =

1

i
��

�1, Y�1� = 0, ∀ Y � g .

Let T�V� be the tensor algebra of V. Then, T�V�=�k=0
� T�V�k with T�V�k=V�k and T�V�0=C. Now,

T�V� has a natural U-module structure with respect to the twisted comultiplication �.
Let �= 1

2 ����J�� and P=�c�P�, where ��� and c� are complex numbers. Set ��
�

=��������. For the following elements of V � V:

A��
ª x�

� x� − x�
� x� − i���1 � 1 ,

V�
ª x�

� 1 − 1 � x�,

we have

����A�� = i�
�

���
�A�� − i��

�A���, ��P�A�� = − i�c�V� − c�V�� ,

����V� = i�
�

��
�V�, ��P�V� = 0.

Also observe that the element 1−1�T�V�0 � T�V�1 is an invariant. Therefore, the two-sided ideal
I of T�V� generated by all A��, V�, and 1−1 is a U-submodule with respect to the twisted
comultiplication. Define the unital associative algebra

A ª T�V�/I , �3.10�

which admits a natural action of the twisted Poincaré algebra U. The algebra A frequently appears
in the literature. It may be regarded as generated by x� ��=0,1 ,2 ,3� and the identity subject to
the relation

x�x� − x�x� = i���. �3.11�

These are the same as the familiar relations satisfied by the coordinate functions of the Moyal
space. However, one cannot simply assign numerical values to x� to obtain numbers from ele-
ments of A. This fact prevents one from constructing field theory by directly using the algebra A.

Let us now investigate the algebra A a little further. Since the ideal I is not homogeneous as
the generator 1−1 is not, the Z+ grading of T�V� does not descend to A but induces a filtration

A0 � A1 � A2 � ¯ ,

where Ai=T�V��i / �I�T�V��i� and T�V��i=�k�iT�V�k. Every Ai is obviously a U-submodule;
thus,

gr Ai ª Ai/Ai−1

admits a natural U-action. Then, gr A=�igr Ai is a graded algebra with the momentum operators
P� acting on it by zero and the Lorentz generators J�� acting through the usual untwisted comul-
tiplication �0. Results from classical invariant theory of orthogonal groups state that the subalge-
bra of U invariants in gr A is the polynomial algebra generated by the image �X2�0�gr A of the
element

X2
ª �

�,�
���x�x� � A .

A simple calculation shows that J���X2�=0 for all � and �, and this in turn leads to J���X2�k=0 for
all k. Now, let A0 be the subset of A consisting of elements annihilated by all J��, that is,
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A0 = 
	 � A�J���	� = 0, ∀ �,�� .

If 	�A0 belongs to Ai but not to Ai−1, then its image in gr A is a polynomial of degree i in the
variable �X2�0. Then, there exists some complex number c such that 	−c�X2�k�Ai−1�A0. By
induction on i, we can show that A0, in fact, consists of polynomials in X2. Therefore, we have the
following result: the set A0 of Lorentz invariant elements of A consists of polynomials in X2 and
thus forms a subalgebra of A.

Remark 3.3: One may think that the result is intuitively clear but, in fact, this is far from the
truth because the first fundamental theorem of invariant theory breaks down in the present situa-
tion as the algebra A is noncommutative. Therefore, the result is quite interesting mathematically
from the point of view of invariant theory.

2. Algebra generated by matrix elements of a representation

Let us now consider the subalgebra of U* generated by the matrix elements of the represen-
tation of U associated with the module V. We shall denote this algebra by A�g�.

Order the basis elements of V as x0 ,x1 ,x2 ,x3 ,1 and denote 1 by x4. Consider the matrix
elements tb

a �a ,b=0,1 , . . . ,4� of the representation of U furnished by the module V relative to this
basis. Here, tb

a�U* such that for any u�U, uxa=�b=0
4 tb

a�u�xb. From ux4=��u�x4, we obtain t4
4=�,

the counit of U. Also note that t�
4 =0 for �=0,1 ,2 ,3. A further property of the matrix elements is

that if � ,��3,

t�
� �uP�� = t�

� �P�u� = 0, ∀ u � U .

Form the 5�5 matrix t= �ta
b�, where a is the row index and b is the column index, and write

t�u�= �ta
b�u�� for any u�U. Then, t�u�t�u��= t�uu�� for all u ,u��U. Let C��

ª��,
=1
3 ��
t�

�t�

. Then,

C�� satisfies C���uP��=0 for all u�U. Also, ��,
=1
3 ��
x� � x
 is invariant under the action of the

Lorentz subalgebra; thus, we conclude that

�
�,
=1

3

��
t�
�t�


 = ���� . �3.12�

This is the familiar orthogonality relation satisfied by the matrix elements of the natural represen-
tation of the orthogonal group.

It is easy to show that the opposite comultiplication �� of U is related to � through

F−2� = ��F−2,

where F−2 satisfies all the defining properties of a universal R-matrix. Thus, it follows that

ta
btc

d − tc
dta

b = − �a
4�c

4i�bd� − �
�,�

i���t�
b t�

d� , �3.13�

where �bd=0 if any of the indices is 4. Now, �3.13� is equivalent to the following relations:

t�
� tc

d = tc
dt�

� , t4
�t4

� = t4
�t4

� − i���� − �
�,
=0

3

i��
t�
�t


�, �,� � 3. �3.14�

It follows from the first relation that the elements t�
� �� ,��3� commute among themselves and

also commute with all the other matrix elements. In view of �3.12�, the t�
� are nothing else but the

matrix elements of the natural module of the orthogonal group.
The second relation in �3.14� is reminiscent of the relation �3.11�. We may define ���

ª����+��,
=0
3 ��
t�

�t

�. Then, ��� is skew symmetric in the indices � and � and commutes with t4




for all 
. Also, the components ��� commute with one another. Denote ��
ª t4

�. Then,

���� − ���� = i���. �3.15�
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The elements �� and ��� together generate a subalgebra of A�g�. We may consider the
commutative ring R generated by all the components of ��� and consider this subalgebra over R.
Denote the R-algebra by A�, then again the relations �3.15� are the same relations as those
satisfied by the coordinate functions of the Moyal space but with ��� replaced by ���.

One may be tempted to identify some completion of A� with the Moyal space, which,
however, is not possible. Note that A� is not stable under the action of the Lorentz subalgebra
corresponding to the left or right translations, e.g., LJ��

������ contains terms of the form t�
�����

�t�
� ,

which do not belong to the subalgebra. This is not surprising since the Lorentz generators do not
generate a Hopf subalgebra of U. It is also this fact which causes the induced module construction,
which works so well in the classical setting, to fail badly in the context of the twisted Poincaré
algebra.

IV. NONCOMMUTATIVE FIELDS ON MOYAL SPACE

As we have already seen in Sec. III A, it is not possible to generalize the induced module
construction of Sec. II to the noncommutative setting. This probably means that there is no
canonical definition of noncommutative fields in relation to the representation theory of the
twisted Poincaré algebra.

However, we shall make a tentative proposal for the definition of noncommutative classical
fields with twisted Poincaré algebra actions on the Moyal space. It agrees with what is assumed in
the literature for scalar fields on the Moyal space. We hope that this will provide a framework for
studying twisted Poincaré invariance of theories involving noncommutative fields with nonzero
spin.

A more systematic treatment of the problem addressed in this section will require us to
develop a theory of twisted Poincaré algebra equivariant noncommutative vector bundles on the
Moyal space. This is well beyond the scope of the present paper. Furthermore, there is no other
known way to construct such bundles except for the induced module construction.

A. Special type of commutative classical fields

Hereafter, we denote by C��R1,3� the space of complex valued smooth functions on R1,3.
Denote by x= �x0 ,x1 ,x2 ,x3� the coordinate of R1,3. Then, regardless of what algebraic structure we
impose on C��R1,3�, we can always assign numerical values to the x� to obtain numbers from
elements of C��R1,3�. This is in sharp contrast to the situation of Sec. III C 1.

We return to Sec. II and consider the associated vector bundle G̃�LV→ G̃ /L in the special
case when V is a finite dimensional module for the twisted Poincaré algebra and U with trivial
action of all the generators P�.

The bundle is trivial; thus, its space of sections ��V� is a free module over �C��G̃��LL. Note
that

C��R1,3� = �C��G̃��LL, �4.1�

and this is an identification of commutative associative algebras if we equip C��R1,3� with the
usual commutative multiplication, which shall be denoted by ·. Therefore, we have the
�C��R1,3� , · �-module isomorphism

��V� � C��R1,3� � V .

In the special case under consideration, we can easily describe the isomorphism. Now, C��G̃�
contains a subalgebra, which is spanned by the matrix elements of the finite dimensional repre-

sentations of G̃ with trivial actions of all P�. Denote this algebra by A�l�. Then, A�l�, in fact, has
the structure of a commutative Hopf algebra.

Being a finite dimensional G̃-module, V forms a right A�l� comodule. We denote the comod-
ule map by
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�:V → V � A�l� ,

and also use Sweedler’s notation ��v�=��v�v�1� � v�2� for any v�V. Then, the isomorphism is
given by

�:C��R1,3� � V → ��V�, a � v � �
�v�

v�2�a � v�1�.

It is a useful exercise to check that the image of � is, indeed, contained in ��V�, but we omit the

details and refer to Ref. 13 for general ideas. Since C��R1,3� is a G̃-module under the action L,

C��R1,3� � V admits a natural G̃ action via the usual coproduct. One can easily show that � is a

G̃-module map when ��V� is regarded as a G̃-module in the sense of �2.2�.
Elements of ��V� are a special class of classical fields determined by the inducing module V

of the spinor group, which is, in fact, the restriction of a module for the entire Poincaré group G̃.
The reason for us to consider this special case is that this generalizes to the noncommutative
setting.

B. Generalization to noncommutative setting

Let us equip C��R1,3� with the standard �-product defined for any functions f and g by

�f � g��x� = lim
y→x

exp i

2�
�,�

��� �

�x�

�

�y�
� f�x�g�y�, x,y � R1,3.

Then, �C��R1,3� , � � is a noncommutative associative algebra. There is the natural action of the
twisted Poincaré algebra on C��R1,3� given by

P��f��x� = − i��f�x� ,

�4.2�
J���f��x� = − ix���f�x� + ix���f�x� .

By modifying this action, we obtain another action � :U � C��R1,3�→C��R1,3� of the twisted
Poincaré algebra on C��R1,3� given by

��u1u2��f� = S�u2��S�u1��f�� ,

for all u1 ,u2�U and f �C��R1,3�.
As was first pointed out in Ref. 4 and very well known by now, C��R1,3� has the structure of

a module algebra over the twisted Poincaré algebra as a Hopf algebra with the twisted comulti-
plication �. For any elements f and g of C��R1,3�, and any u�U,

u�f � g� = �
�u�

u�1��f� � u�2��g� . �4.3�

It also follows that C��R1,3� has the structure of a module algebra over U under the action � with
respect to the opposite twisted comultiplication ��,

��u��f � g� = �
�u�

��u�2���f� � ��u�1���g� . �4.4�

A noncommutative scalar field is an element 	 of C��R1,3� regarded as a �U ,�� module,
where 	 rapidly vanishes at infinity. This definition is in agreement with that implied in the
literature on noncommutative field theory and reduces to the usual definition of scalar fields in the
commutative setting.

Two observations are important for the proposal of a definition of noncommutative fields with
nonzero spin. One is that the space A�l� of matrix elements of the finite dimensional representa-
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tions of U with trivial P� actions for all � forms a commutative subalgebra of the dual U* of the
twisted Poincaré algebra and, furthermore, A�l� commutes with all elements of U*. Another

observation is that there exists a canonical vector space embedding j :C��R1,3�→C��G̃� given by
Eq. �4.1� as a subset of functions on the classical Poincaré group, since the algebraic structure with
the �-product is imposed afterward. Now, A�l� � C��R1,3� naturally has an associative algebra
structure with the multiplication, which we still denote by �, given by

�a � f� � �b � g� = ab � f � g ,

for any a � f and b � g in A�l� � C��R1,3�. Consider the vector space embedding

i:A�l� � C��R1,3� → C��G̃� ,

i�a � f��� exp�iPx�� = a���f�x�, ∀ � exp�iPx� � G̃ ,

and denote

A ª i�A�l� � C��R1,3�� .

We can introduce a noncommutative algebraic structure on A by setting

i�a � f� � i�b � g� = i�ab � f � g� .

Then, obviously, i is an algebra isomorphism between A�l� � C��R1,3� and A, and we shall denote
the resulting algebra by �A , � �.

The twisted Poincaré algebra U acts on A�l� � C��R1,3�,

R:U � A�l� � C��R1,3� → A�l� � C��R1,3� ,

�4.5�
u � a � f � Ru�a � f� = �

�u�
Ru�1�

�a� � ��u�2���f� .

This leads to a well defined action on A,

R̂:U � A → A , �4.6�

given for any g= i�a � f� with a � f �A�l� � C��R1,3� by

u � i�a � f� � R̂ui�a � f� = i�
�u�

Ru�1�
�a� � ��u�2���f�� .

This turns �A , � � into a module algebra for the twisted Poincaré algebra.

Remark 4.1: The R̂ action on A can, in fact, be obtained by differentiating the right trans-
lation by the Poincaré group.

Any finite dimensional U-module V with trivial actions of all P� automatically has an A�l�
comodule structure, which we still denote by

�:V → V � A�l�, v � �
�v�

v�1� � v�2�.

Define the map

��:C��R1,3� � V → A � V �4.7�

by a � v���v�i�v�2� � a� � v�1� and set
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���V� ª ���C��R1,3� � V� , �4.8�

where we emphasize again that V is assumed to be a finite dimensional U-module with trivial
actions for all P�.

Then, ���V� forms a U-module with the action defined for any u�U and ����V� by

u · � ª �R̂u � idV�� .

Regard C��R1,3� as a U-module with the action �. Then, C��R1,3� � V has a natural U-module
structure. It can be shown that �� is U linear.

For any element �=�igi � vi of ���V� and the special type of elements exp�iPx�� G̃, we write

��x� ª �
i

vigi�exp�iPx�� .

Then,

�u · ���x� = � ���u�1��gi��x�u�2��vi� . �4.9�

Note that if we rewrite the action �2.4� of the Poincaré group on commutative classical fields
in terms of the the universal enveloping algebra of the Poincaré algebra, the resulting formula will
have the same form as �4.9�. Therefore, elements � of ���V� may be regarded as noncommutative
classical fields. �We have excluded internal degrees of freedom throughout the paper.�

We define the spin of the field �����V� to be the spin of the irreducible module V of the
Lorentz subalgebra determined by the highest weight. For example, �����V� will be called a
scalar field if V is the one-dimensional trivial module, and a spinor field if V is the spinor module.
However, we should note that when all ���=0, this definition of fields reduces to a special case of
that in the commutative setting over the usual Minkowski space.

Remark 4.2: The discussion after Eq. (2.5) at the end of Sec. II generalizes to the noncom-
mutative setting for the ���V� defined by �4.8�.

As a simple example, we consider the case of scalar fields. Since V is a one-dimensional
trivial module, the matrix element of the corresponding representation is the identity of the algebra
U*. From �4.8�, we obtain ���V�=C��R1,3�. Thus, a scalar field �x� is nothing else but an element
of C��R1,3�. Assuming that  is real, then the classical action

S = 1
2 � d4x���x� � ���x�

is twisted Poincaré invariant.10

It will be very interesting to construct twisted Poincaré invariant theories involving spinor
fields. Work in this direction is in progress.

C. Transformation rules of noncommutative quantum fields

Before closing this section, let us make some remarks on the quantum case. After quantiza-
tion, all gi in a field �=�gi � vi����V� become operators �field operators� acting on some Hilbert
space. Denote the algebra of field operators by O. Then, every gi belongs to the algebra O
� C��R1,3� with the natural algebraic structure of the tensor product of two algebras,

�A � f��B � h� = AB � f � h, ∀ A,B � O, f ,h � C��R1,3� .

The twisted Poincaré algebra is realized in terms of the field operators � :U→O. In order for the
action of the twisted Poincaré algebra on O to respect the algebraic structure of the latter, one has
to define the action of U on a quantum field � by
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�u · ���x� ª� ��u�1��gi�x���S�u�2��� � vi, u � U . �4.10�

One can show that this, indeed, defines an action of U on quantum fields by noting that the right
hand side involves the well-known adjoint action of a Hopf algebra.

The transformation rule of the quantum field is then given by

�u · ���x� = � ���u�1��gi��x� � u�2��vi� , �4.11�

which is formally of the same form as �4.9� but with the left hand side given by �4.10� and the
��u�1�� on the right side acting on the C��R1,3� component of gi only.

V. CONCLUSION, COMMENTS, AND OUTLOOK

As we mentioned earlier, some researchers were clearly aware of the necessity of formulating
a precise transformation rule for noncommutative fields under twisted Poincaré algebra. For ex-
ample, this was discussed at length by Fiore and Wess in Ref. 6 �Sec. IV�. Lacking such a rule,
they suggested6 to replace it by a condition imposed on the Wightman functions. This condition
formally looked the same as that in the commutative case. Even assuming that one would even-
tually find any justification for this, there is still the need of a general rule to associate a field with
a representation of the Lorentz subalgebra of the twisted Poincaré algebra in order to state the
condition. So in this sense, the transformation rule for noncommutative fields under twisted
Poincaré algebra cannot be entirely avoided. Our proposal for such a transformation rule is self-
consistent and should be the correct form. It hopefully provides the necessary framework for
studying twisted Poincaré invariance of noncommutative quantum field theories on the Moyal
space.

There are many important issues in noncommutative field theory related to the present work,
which all deserve independent in depth treatments. Below, we shall briefly discuss some of the
issues, which we shall return to in the future.

A. Wigner’s construction for twisted Poincaré algebra

Recall that usually �see, e.g., Ref. 20�, one starts with a Poincaré invariant classical field
theory, then performs quantization �say, canonical quantization� to arrive at quantum fields. The in
and out states of the quantum field theory correspond to particles classified by Wigner’s theory in
terms of unitary representations of the Poincaré group, where single particle states correspond to
irreducible representations and multiparticle states to tensor products of representations. The in-
vestigations in the present paper follows this general line of thinking.

However, a rather different approach to quantum fields was advocated by Weinberg in Ref. 12
�Sec. V�. The starting point now is Wigner’s classification of particles. Relativistic quantum fields
are directly constructed from particle states through cluster decomposition. It will be very inter-
esting to generalize this approach to the noncommutative setting, especially in view of the diffi-
culties discussed in Sec. III B. We plan to develop this approach in a future publication.

Since Weinberg’s approach relied on Wigner’s classification of particle states, here we briefly
describe the generalization of Wigner’s construction of unitary representations of the Poincaré
group to the twisted Poincaré algebra. One can take any four momentum k= �k0 ,k1 ,k2 ,k3�, on
which the Lorentz subalgebra l of the twisted Poincaré algebra U acts in the standard way. Let

lk = 
X � l�X�k� = 0� ,

which is the subalgebra of the Lorentz algebra that leaves k invariant. This is the Lie algebra of the
“little group” of Wigner. Recall that we used p to denote the subalgebra of translations in the
Poincaré algebra. Now, lk+p is again a Lie subalgebra. It is important to note the following fact.

Lemma 5.1: Let Uk=U�lk+p� be the universal enveloping algebra of lk+p. Then, Uk is a Hopf
subalgebra of U.
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Given any irreducible lk-module Vk, we can define a Uk-module structure on it by taking any
nonzero vector v�Vk and requiring p�v=k�v for all �. Then, it follows that for all w�Vk, we
have p�w=k�w. This way, we arrive at an irreducible Uk-module, which we still denote by Vk.

Remark 5.1: One can extend any given lk-module to a Uk-module by requiring p� to act by k�

for all �.
Because of Lemma 5.1, one can now use �3.7� with V=Vk and H=Uk to define an induced

module ��Vk� for the entire twisted Poincaré algebra U. This is the generalization of Wigner’s
construction to the twisted Poincaré algebra in a nut shell, leaving aside issues on unitarity and
irreducibility, which are beyond the scope of this paper.

B. Noncommutative Minkowski spaces

Another useful aspect of results reported here is that they point out a way to look for possible
noncommutative Minkowski spaces suitable for developing quantum field theory with space-time
symmetries described by Hopf algebras, which are deformations of the Poincaré algebra. In order
for fields to naturally emerge within such a framework, one might require the deformed Poincaré
algebra to contain the enveloping algebra of the Lorentz algebra or a deformation of it as a Hopf
subalgebra.

As an example, we consider the Poincaré algebra twisted by

F� = exp�− i�J12 � J34� .

�We could have antisymmetrized the exponent as in Ref. 22 but have not done so because we want
to have simple expressions for the �-product.� Now, the universal enveloping algebra of the
Lorentz algebra is contained in this twisted Poincaré algebra as a Hopf subalgebra. Thus, there

exists a noncommutative analog M� of the homogeneous space G̃ /L �the usual Minkowski space�,
and noncommutative fields then naturally emerge as sections of noncommutative homogeneous
vector bundles on M�. The noncommutative Minkowski space M� is also easy to describe. Write
F�

−1=�F� � G�. Define the following noncommutative product �� on the space of functions on
R1,3:

�f � g��x� = � �F�f��x��G�g��x� ,

and denote the resulting algebra by �C��R1,3� ,���. Then, �C��R1,3� ,��� is the algebra of functions
on the noncommutative Minkowski space. Denote by X�, �=1,2 ,3 ,4, the coordinate functions,
that is,

X��x� = x�, x � R1,3.

Then, �X���X���x�=x�x�, if ���, or � ,�� 
1,2�, or � ,�� 
3,4�, and

�X1��X3��x� = x1x3 cos � − ix2x4 sin � ,

�X1��X4��x� = x1x4 cos � + ix2x3 sin � ,

�5.1�
�X2��X3��x� = x2x3 cos � + ix1x4 sin � ,

�X2��X4��x� = x2x4 cos � − ix1x3 sin � .

It will be interesting to construct quantum field theoretical models on such a noncommutative
Minkowski space, which are invariant with respect to the twisted Poincaré algebra.

Other possible examples are the quantum Poincaré algebras constructed in Refs. 23 and 24 in
the context of the complexified conformal algebra so�6,C�=sl�4,C��gl�4,C�. These quantum
Poincaré algebras are quantized parabolic subalgebras of the enveloping algebra of gl�4,C� and
contain the quantum group Uq�sl2� � Uq�sl2� as a Hopf subalgebra, which is the quantized version
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of the enveloping algebra of the complexified Lorentz algebra. In these cases, there exist natural
quantum homogeneous spaces, which play the role of the Minkowski space. The noncommutativ-
ity of the quantum Minkowski spaces is now much more severe than that of the standard Moyal
space or the previous example. Nevertheless, by using appropriate analogs of the quantum Haar
measure13 one may be able to construct quantum Poincaré invariant field theory on such quantum
Minkowski spaces.

There remains the possibility that the Seiberg–Witten map1 allows for a realization of space-
time symmetry of the twisted Poincaré type. We also mention that quantum group symmetries
manifest themselves in conformal field theory as well25 but in a manner different from space-time
symmetries. It will be interesting to understand such quantum group symmetries from the point of
view of noncommutative geometry.
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