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Invariant integrals on Hopf superalgebras, in particular, the classical and quantum
Lie supergroups, are studied. The uniqueness~up to scalar multiples! of a left
integral is proved, and aZ2-graded version of Maschke’s theorem is discussed. A
construction of left integrals is developed for classical and quantum Lie super-
groups. Applied to several classes of examples the construction yields the left
integrals in explicit form. ©2001 American Institute of Physics.
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I. INTRODUCTION

This article studies invariant integrals on Hopf superalgebras. We shall focus on the
superalgebras of functions on classical Lie supergroups and their quantum counterparts, d
ing aspects of the general theory of integrals on them, and also establishing an explicit co
tion of such integrals.

An important feature of classical and quantum Lie superalgebras is that their fi
dimensional representations are not completely reducible. This imposes severe restrictions
possible integrals on the corresponding classical and quantum Lie supergroups. We shall
sively investigate this fact, arriving at a result which may be regarded as aZ2-graded version of
Maschke’s theorem in an infinite-dimensional setting.

Recall that if the dual of a given finite-dimensional Hopf algebra is semisimple, th
generalization of Maschke’s theorem~see Refs. 1 and 2! applies, and the invariant integral on th
Hopf algebra can be obtained by considering a Peter–Weyl type basis of the Hopf algebra
a construction of integrals fails badly in the supersymmetric setting@except for OSP(1u2n) and
OSPq(1u2n)#. Here we develop an explicit construction of integrals, which can be impleme
on classical Lie supergroups and also on type I quantum supergroups. The construction can
adapted to produce integrals on quantum groups at roots of unity.

The study of this article is motivated by the great importance of the Haar measure
theory of locally compact Lie groups. The first place we know of where integrals in the sen
Hopf algebra theory have shown up is Hochschild’s proof of Tannaka’s duality theorem
compact groups.3 Later on they played an important role in the structure theory of fin
dimensional Hopf algebras~for example, see Refs. 4–7!.

With the appearance of quantum groups and quantum algebras, it became obvious th
grals have to play an important role there, too. In fact, the quantum Haar functional is a bas
in theC* -algebra approach to quantum groups,8 and it can also be used to introduce topologies
Hopf algebras which originally are defined by purely algebraic means.9 Correspondingly, there are
various attempts to define integration on quantum groups, quantum spaces and their
generalizations~see Ref. 10 and the references therein!.

In principle, the braided case includes Hopf superalgebras as a special example, but it
worthwhile to investigate the super case separately. Needless to say, there is a huge li
dealing with the integration on supermanifolds and supergroups, but a theory of integrals on
38710022-2488/2001/42(8)/3871/27/$18.00 © 2001 American Institute of Physics
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superalgebras seems to be missing. This will be the topic of the present work. We hop
integrals will also prove to be useful in the further investigation of the structure and repres
tions of quantum supergroups, and that our results will shed some new light on the integ
over classical, i.e., undeformed Lie supergroups.

At present, we know of only one related work.11 In that reference, integrals on quantu
supergroups of the special linear type are constructed by means of theR-matrix formalism.
However, even for the SLq(mu n) quantum supergroups the techniques used and the result
rived in that paper are totally different from those to be presented here@even though, because o
the uniqueness theorem to be proved in Sec. II, the integrals on SLq(mun) constructed here and in
Ref. 11 must be proportional#.

The organization of the article is as follows. In Sec. II we develop some general theo
integrals on Hopf superalgebras and establish results generalizing Maschke’s theorem. In
we study classical Lie supergroups. A general construction of integrals is developed, and a
to the type I Lie supergroups, and also the type II Lie supergroups OSP(1u2n) and OSP(3u2). In
Sec. IV we extend the results to the quantum setting, obtaining a method for constructing in
on quantum supergroups. As examples, the type I quantum supergroups are studied in
Section V contains a brief discussion of our results. Finally, in the Appendix we have coll
some information on the finite dual ofU(gl(1)).

We close this introduction by recalling some conventions related toZ2-graded algebraic struc
tures. The two elements ofZ2 are denoted by 0¯ and 1̄. Unless stated otherwise, all gradatio
considered in this work will beZ2-gradations. For any superspace, i.e.,Z2-graded vector space
V5V0̄% V1̄ , we define the gradation index@ #: V0̄øV1̄→Z2 by @x#5a if xPVa , where a
PZ2 . All algebraic notions and constructions are to be understood in the super sense, i.e., t
assumed to be consistent with theZ2-gradations and to include the appropriate sign factors.

II. INTEGRALS ON HOPF SUPERALGEBRAS

Let A be a Hopf superalgebra with comultiplicationD, counit «, and antipodeS. A left
integral* l on A is an element ofA* , such that

S idA ^ E l DD51AE l

. ~1!

Equivalently, this means that

a* •E l

5a* ~1A!E l

, ;a* PA* , ~2!

where the dot denotes the multiplication inA* deduced fromD. A right integral* rPA* on A is
defined by a similar requirement

S E r

^ idADD 51AE r

. ~3!

Let A aop,cop be the Hopf superalgebra opposite toA both regarded as an algebra and
coalgebra. Then a linear form*PA* is a left/right integral onA if and only if it is a right/left
integral onA aop,cop. In particular, if the antipodeS of A ~and hence ofA aop,cop) is invertible, then
S61 are isomorphisms ofA ontoA aop,cop, and hence* is a left integral onA if and only if *S61

are right integrals onA. Thus we only need to consider left integrals~or right integrals!.
We have the following result:
Theorem 1: The dimension of the space of left integrals onA is not greater than 1. In

particular, any integral onA is even or odd.
1 Feb 2008 to 129.78.64.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Proof: The proof is carried out by reducing the problem to the classical nongraded ca
principle, this can be viewed as an application of Majid’s bosonization,12 but for the present
simple case the technique has been known for quite some time.

For notational convenience~and for reasons that will become obvious at the end of this pro!
we define a map

t:Z23Z2→C

by

t~a,b!5~21!ab, ;a,bPZ2 .

Let C Z2 be the group Hopf algebra ofZ2 . The canonical basis elements will be denoted byga ,
aPZ2 . In particular, we have

gagb5ga1b , ;a,bPZ2 .

Then

Ā5A^ C Z2

is made into a usual Hopf algebra by means of the following definitions~where a,bPA and
a,bPZ2!:
product:

~a^ ga!~b^ gb!5t~a,@b# ! ab^ ga1b ,

coproduct~in Sweedler’s notation!:

D̄~a^ ga!5(
(a)

~a(1)^ g[a(2)] 1a! ^ ~a(2)^ ga!,

counit:

«̄~a^ ga!5«~a!,

antipode:

S̄~a^ ga!5t~@a#,a1@a# ! S~a! ^ g2a2[a] .

Now let s be a left integral onA, i.e., a linear formsPA* such that

~ idA^ s!D51A s,

and let us assume thats is homogeneous of degrees. Recall that̂ denotes the tensor product i
the gradedsense. Nevertheless, it is easy to see that the equation above is equivalent to

(
(a)

a(1)s~a(2)!5s~a! 1A , ;aPA,

i.e., it takes the same form as in the nongraded case.
Define the linear formts on C Z2 by

ts~ga!5ds, a , ;aPZ2 .

Then
1 Feb 2008 to 129.78.64.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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s̄5s^ ts

~nongraded tensor product! is a left integral onĀ. We prove this by showing thats̄ satisfies the
equation analogous to that given above fors: For all aPA andaPZ2 , we have

~ idĀ^ s̄!~D̄~a^ ga!!5~ idĀ^ s̄!(
(a)

~a(1)^ g[a(2)] 1a! ^ ~a(2)^ ga!

5(
(a)

~a(1)^ g[a(2)] 1a! s~a(2)! ts~ga!

5(
(a)

~a(1)^ g2s1a! s~a(2)! ts~ga!

5S (
(a)

a(1)s~a(2)! D ^ g0 ts~ga!

5s~a!ts~ga! 1A^ g0

5 s̄~a^ ga! 1A^ g0 ,

as required.
Now let us suppose thatsÞ0 and thats8 is a second nonzero integral onA which is

homogeneous of degrees8. Thens̄5s^ ts and s̄85s8^ ts8 are nonzero integrals onĀ. Accord-
ing to Sullivan’s theorem on the uniqueness of integrals on ordinary~nongraded! Hopf algebras
~see Refs. 13 and 2! these integrals must be proportional. This implies thats5s8 ~otherwise,ts

and ts8 would be linearly independent! and hence thats ands8 are proportional.
Finally, letsPA* be an arbitrary linear form onA, and lets5(sPZ2

ss , with ssP(A* )s , be
its decomposition into homogeneous components. Obviously,s is a left integral onA if and only
if all of the ss are. Applying the foregoing result to thess , we conclude that, for a left integrals,
at most one of thess can be different from zero, i.e., thats is homogeneous. This proves th
theorem.

The reader will notice that the same proof applies to arbitrary color Hopf algebras~and this
was the other reason to introduce the mapt!.

The uniqueness result of the theorem enables us to investigate how a left integral b
under ‘‘right translations.’’ Thus, let* be a nontrivial left integral onA. We know that the linear
form * is homogeneous, letg be its degree. We consider the linear map

g:A→A, g5S E ^ idDD.

Obviously, it is homogeneous of degreeg and not equal to zero~otherwise,« g5* would be equal
to zero!. Using the coassociativity of the coproduct, it is easy to check that

~g^ id!D5D g, ~4!

~ id^ g!D5 j g, ~5!

where

j :A→A^ A, j ~a!51A^ a

is the right canonical injection ofA into A^ A.
Now let a* PA* be an arbitrary homogeneous linear form onA. Equation~5! implies that

a* g is a left integral onA and hence proportional to* . In particular,a* g vanishes on the kerne
1 Feb 2008 to 129.78.64.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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of * . Since this is true for all homogeneous elementsa* PA* , it follows thatg itself vanishes on
the kernel of* . Consequently, there exists a unique elementa0PA such that

g~a!5 K E , aL a0 , ;aPA,

anda0 is even. Equation~4! now means that

D~a0!5a0^ a0 .

Sincea0 is nonzero~becauseg is nonzero!, we see thata0 is a grouplike element ofA. Thus we
have proved the following proposition.

Proposition 1: Let* be a nontrivial left integral on a Hopf superalgebraA. Then there exists
a unique even grouplike element a0PA such that

S E ^ id DD5a0E .

In particular, * is also a right integral if and only if a051A .
Let V be a finite-dimensionalZ2-graded rightA-comodule, and let

v:V→V^ A

be its structure map~which, according to our general conventions, is supposed to be even!. The
antipode ofA enables one to introduce a rightA-comodule structure on the dual spaceV* of V,
with the structure map

v̄:V* →V* ^ A

uniquely defined by

^v* ,w&1A5~^,& ^ M !~ idV* ^ T^ idA!v̄~v* ! ^ v~w!, ;v* PV* ,wPV,

whereT is the flipping map,M denotes the multiplication inA and^ , & is the dual space pairing
It follows that End(V)5V^ V* has a natural rightA-comodule structure

d:End~V!→End~V! ^ A.

For later use we note that a mapgPEnd(V) is a comodule endomorphism ofV if and only if it is
even and coinvariant, i.e., it satisfies

d~g!5g^ 1A .

If * is a left integral onA, we define the linear map

F5S id^ E D d : End~V!→End~V!.

ConsiderF(m)PEnd(V) for any mPEnd(V). Left invariance of* immediately leads to

d~F~m!!5F~m! ^ 1A ;

that is, we have the following.
Lemma 1:Im F is contained in the subspace of coinvariant elements ofEnd(V).
Now we consider the case whenV contains a sub-comoduleV1 . Let PPEnd(V) be a pro-

jection ontoV1 , i.e., ImP5V1 andP25P. It can be easily shown thatF(P) satisfies
1 Feb 2008 to 129.78.64.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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F~P!V,V1 and F~P!v15v1E 1A , ;v1PV1 .

Suppose now that*1AÞ0. This implies that* is even. ThusF(P) is even as well, and henc
it is a comodule endomorphism ofV. It follows that KerF(P) is a comodule complement ofV1

in V. Since this holds for any finite-dimensional rightA-comodule V and any of its sub-
comodules, we conclude that all finite-dimensional rightA-comodules are completely reducibl
Using the basic fact that all finitely generated comodules are finite-dimensional, it follow
means of standard arguments~known, for example, from the general theory of semisimple m
ules over rings! that all ~not necessarily finite-dimensional! right A-comodules are completel
reducible.

Conversely, letA be a Hopf superalgebra such that all rightA-comodules are completel
reducible. In particular,A regarded as a rightA-comodule with structure mapD is completely
reducible. LetA 0 be a comodule complement ofC 1A in A. Then any linear form* r on A with
kernelA 0 is a right~!! integral onA such that* r1AÞ0. Applying the foregoing toA aop,copand* r

~which is a left integral onA aop,cop) we conclude that all leftA-comodules are completely reduc
ible and thatA also has a left integral* l such that* l1AÞ0. It should be noted that according t
Larson6 analogous results hold for Hopf algebras, comodules and integrals living in an arb
tensor category.

Actually, much more can be said. Let$V(l)ulPL% be a complete representative set of
finite-dimensional rightA-comodules, whereL is some index set. Among these, there is a o
dimensional comodule,V(0), say,such that under the coaction,v°v ^ 1A . We call V(0) the
trivial A-comodule. For eachV(l), we choose a basis$va

(l)ua51,2,...,dimV(l)%. Then under the
coaction ofA, we have

v~va
(l)!5(

b
vb

(l)
^ tba

(l) ,

and thetab
(l) form a Peter-Weyl type of basis forA. If * denotes the linear form onA defined by

E 1A51, E tab
(l)50, ;lÞ0,

then* is both a left and right integral onA and, obviously, it is even.
Summarizing part of our results, we have proved the following generalization of the

known Maschke’s theorem to the case of Hopf superalgebras~see Refs. 1, 6, and 2!.
Proposition 2: The Hopf superalgebraA admits a left integral* with *1AÞ0 if and only if all

right A-comodules are completely reducible.
In the present work we are mainly interested in the case whereA is a sub-Hopf-superalgebr

of the finite dualU° of a Hopf superalgebraU. The comultiplication, counit, and antipode ofU will
also be denoted byD, «, andS, respectively. In this case, ifV is a rightA-comodule, thenV also
has a natural leftU-module structure defined by

x v5~21! [x][ v]~v~v !!~x!, ;xPU, vPV.

We denote byU2Modr the collection of all the leftU-modules obtained from finite-dimension
right A-comodules, which forms a monoidal category. The above proposition is equivalent
following statement: The categoryU2Modr is semisimple if and only ifA admits a left integral
which does not vanish on the identity.

Let us close this section by the following simple remark. As above, letA be a sub-Hopf-
superalgebra ofU°. The even grouplike elements ofU° are exactly the characters ofU, i.e., the
superalgebra homomorphisms ofU into C. By convention,A always contains the unit element o
U°, i.e., the counit«U of U. This is the so-called trivial character ofU. Now Proposition 1 implies
the following lemma.
1 Feb 2008 to 129.78.64.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Lemma 2: Suppose thatA does not contain any non-trivial character ofU. Then every left
integral onA is also a right integral.

III. INTEGRALS ON CLASSICAL SUPERGROUPS

Let g5g0̄% g1̄ be a finite-dimensional Lie superalgebra,14,15whereg0̄ andg1̄ are the even and
odd subspaces respectively. We takeU to be the enveloping algebraU(g) of g. U(g) contains the
enveloping algebraU(g0̄) of the Lie subalgebrag0̄ as a subalgebra. We denoteU(g0̄) by Ue , and
let

I: Ue→U
be the embedding, which is a Hopf superalgebra map. It is well-known that the dualI* of I
induces a Hopf superalgebra map

P: U°→U °e,

which is given by

^P~a!,u&5^a , I~u!&, ;aPU°, uPUe .

In the present work, a Lie supergroup will be defined in terms of its Hopf superalgeb
functions, i.e., we proceed as in the usual definition of quantum groups16 or quantum
supergroups17 ~for a related treatment of supergroups, see Refs. 18 and 19!. More precisely, ifg is
a Lie superalgebra, the superalgebra of functions on a Lie supergroup associated tog will be a
sub-Hopf-superalgebraA of U °5U(g)°, subject to the condition thatA be dense inU(g)* .
Actually, in our discussion of integrals, this latter property will not be used.

Thus, letA be a sub-Hopf-superalgebra ofU °. We set

P~A!5Ae ,

which is a Hopf subalgebra ofU °e. Then there exist the following natural Hopf superalgebra m
~which are injective ifA is dense inU* and, consequently,Ae is dense inUe* ):

n: U~g!→A°,

x°n~x!, ^n~x!, a&5~21! [x][ a]^a, x&, ;aPA; ~6!

ne : Ue→A7e,

u°ne~u!5ũ , ^ũ, a0&5^a0 , u&, ;a0PAe ;

Î5nI: Ue→A°,

u°û , ^û, a&5^ũ, P~a!&5^P~a!, u&5^a, I~u!&, ;aPA. ~7!

Let

E
0
: Ae→C

be a left integral onAe with *01Ae
51. The existence of*0 depends on properties ofg0̄ andAe .

In the case wheng0̄ is semisimple or reductive as a Lie algebra, such an*0 is known to exist and
is right invariant as well.~However, see the Appendix about the reductive case.!

Lemma 3: The linear form*0P: A→C is left invariant with respect toUe in the sense that
1 Feb 2008 to 129.78.64.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Î~u!•S E
0
P D 5«~u!E

0
P, ;uPUe .

Proof: Lemma 3 can be confirmed by a direct calculation. For anyuPUe andaPA, we have

K û•S E
0
P D , aL 5(

(a)
^û, a(1)&E

0
P~a(2)!

5(
(a)

^ũ, P~a(1)!&E
0
P~a(2)!

5K ũ^ E
0
, DP~a!L

5K ũ•E
0
, P~a!L 5«~u!E

0
P~a!.

Let J5Ug0̄ . By using the Poincare´–Birkhoff–Witt theorem for Lie superalgebras,15 one
immediately sees the following.

Lemma 4: The subspace J is a left ideal ofU with finite codimension.
Consequently, the quotient spaceU/J is a left U-module in the standard fashion:

x~y1J!5xy1J, ;xPU, y1JPU/J.

Note that this module is isomorphic to theU-module induced from the trivialUe-module. Accord-
ing to the usual definition, an elementz1JPU/J, with zPU, is said to be invariant~under the
action ofU) if

x~z1J!5«~x!z1J, ;xPU.

Let z1J be any invariant of this type, and letn(z) be the image ofz in A° under the natural Hopf
superalgebra map~6!. Then we have the following theorem.

Theorem 2: The linear form*5n(z)•*0P is a left integral onA and does not depend on th
choice of the representative for z1J. If z¹J and if the matrix elements of theU-moduleU/J
belong toA, the integral* is not equal to zero.

Remark :The definition of* involves implicitly the comultiplication ofA. For anyaPA,

Ea5K n~z! ^ E
0
P, D~a!L .

Proof of Theorem 2:It follows from Lemma 3 that for anyX0Pg0̄ , n(X0)•*0P50. Asn is an
algebra homomorphism,n(y)•*0P50 for all yPJ. This proves the second part of the theore
Now the invariance property ofz1J leads to

n~x!•E 5«~x!E , ;xPU.

This implies Eq.~1!. @Indeed, sinceA is contained inU* , it is sufficient to check Eq.~2! for all
a* 5n(x), xPU.#

To prove the last part of the theorem, we choose a homogeneous basis (v i)1< i<r of U/J such
that v151U1J. Let p be the representation ofU in U/J, and letp i , j be the matrix elements ofp
with respect to the basis (v i), i.e.,
1 Feb 2008 to 129.78.64.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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p~x!v j5(
i 51

r

p i , j~x!v i if xPU, 1< j <r .

Sincev1 is Ue-invariant, we have

p i ,1~x!5«Ue
~x!d i ,1 if xPUe , 1< i<r .

This implies that

Ep i ,15~21! [v i ]p i ,1~z!, 1< i<r

~recall that we are assuming that*01Ae
51). Sincez¹J and since

z1J5p~z!v15(
i 51

r

p i ,1~z!v i ,

at least one of the matrix elementsp i ,1(z) must be different from zero. This proves the theore
We notice that

E1A5«~z!E
0
1Ae

.

Taking for granted that*01Ae
is different from zero, we see that*1AÞ0 if and only if «(z)Þ0.

Remark:Suppose that the Lie algebrag0̄ is reductive, and that the adjoint representation of
center ofg0̄ in g1̄ is diagonalizable. Then the subspace ofU-invariant elements ofU/J is at most
one-dimensional. This follows at once from Theorems 1 and 2, applied to a suitable sub-
superalgebraA of U ° ~see the Appendix!.

Let us now consider examples.
Example 1: The Berezin integral
Consider the purely odd Lie superalgebrag5g1̄ with the basis$j i , i 51,2,...,n% and with the

super bracket

@j i , j j #50, ; i , j .

Obviously,U5U(g) is the Grassmann algebra on then generatorsj i , andUe5C 1U . It is well-
known thatU has the basis

J j 1¯ j l
5j j 1

¯j j l
, 1< j 1,¯, j l<n,

where thel 50 element is understood to be the unity. The Hopf structure ofU is the standard one
for enveloping algebras of Lie superalgebras.

Introduce a basis$Q i 1¯ i k
, 1< i 1,¯, i k<n, 0<k<n% for U* ~thek50 case corresponds t

the unit element! such that

^Q i 1¯ i k
, J j 1¯ j l

&5~21!~1/2! k(k21)dkl d i 1 j 1
¯d i kj k

,

and set

u i5Q i , i 51, 2, ...,n.

The cocommutativity ofU implies that

u iu j1u ju i50, ; i , j .
1 Feb 2008 to 129.78.64.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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It is also easy to show that

Q i 1¯ i k
5u i 1

¯u i k
, i 1,¯, i k .

As a Hopf superalgebra,U* has the unique comultiplication such that

D~u i !5u i ^ 111^ u i ,

the counit is fixed by

«~u i !50,

and the antipode is specified by

S~u i !52u i .

Since (U* )* >U in this case, we make the identification. It is obvious that*0P51U . More-
over, theU-invariant elements ofU are the scalar multiples ofJ1 2 ¯ n . Thus upon choosing an
appropriate normalization we obtain the unique integral

E5~21!~1/2! n(n21)j1j2¯jn ,

which yields the standard Berezin integral on the Grassmanian algebraU* :

Eu i 1
u i 2

¯u i k
50, if k,n,

Eu1u2¯un51.

To explain the left~and right! invariance of* in more familiar terms, note that ifP(u) is any
polynomial in theu i ’s, then

DP~u!5P~u ^ 111^ u!.

Left invariance of the integral means

S id^ E DD~P~u!!5E P~u!.

One may write1^ u i asu i , and denoteu i ^ 1 by l i , which is regarded as an independent Gra
mann number. The above equation states that

E
u
P~u1l!5E P~u!,

where the subscriptu on the left hand side indicates the fact that the ‘‘integration’’ is carried
over theu’s. The last equation is nothing but the translational invariance of the Berezin inte

Example 2: The Lie supergroupSL(mun)
Let g denote the Lie superalgebrasl(mun), which we shall regard as a subalgebra of t

general linear Lie superalgebragl(mun). Let $Eab ua,b51,2,...,m1n% be the standard homoge
neous basis ofgl(mun), which satisfies the commmutation relations

@Eab , Ecd#5dbcEad2~21! [Eab][ Ecd]ddaEcb ,
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where @•, •# should be understood as the graded brackets, namely, it is symmetric when
arguments are odd, and antisymmetric otherwise.

The standard basis forg then is given by

Eab , aÞb; ha5Eaa2~21!damEa11, a11 , a,m1n.

The maximal even subalgebra ofg is g0̄5sl(m) % sl(n) % gl(1). Let g1̄1 be the odd subalgebr
spanned byEim , i<m, m.m, and g1̄2 be that spanned byEm i . Then g is the direct sumg
5g1̄2 % g0̄% g1̄1 ~as vector spaces!. Under the Lie superbracket,

@g1̄1 , g1̄1#5$0%, @g1̄2 , g1̄2#5$0%,
~8!

@g0̄ , g1̄6#,g1̄6 , @g1̄1 , g1̄2#,g0̄ .

Next, we observe thatU(g1̄1) andU(g1̄2) are both isomorphic to the Grassmann algebra
mn generators. The subspaces of the highest Grassmann degree inU(g1̄1) andU(g1̄2) are both
one-dimensional. We choose the following bases for them, respectively,

E5E m E m21¯ E1 , F5F1 F2 ¯ Fm ,

where

Ei5Ei ,m11 Ei ,m12 ¯ Ei ,m1n ,

Fi5Em1n,i Em1n21,i ¯ Em11,i .

Then we have

@X, E#5@X, F#50, ;XPg0̄ ,

j1E50, ;j1Pg1̄1 ,

j2F50, ;j2Pg1̄2 ,

j2E2~21!mnE j2PU~g!g0̄ , ;j2Pg1̄2 .

Defining

G5E F,

it follows that

XGPU~g!g0̄ , ;XPg.

Let t be the defining representation ofsl(mun), with

t~Eab!5eab , aÞb,

t~ha!5eaa2~21!damea11, a11 ,
1 Feb 2008 to 129.78.64.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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where theeab’s are the matrix units, and lettab , a,b51, 2, ...,m1n, be the elements ofU°
5U(g)° defined by

~ tab~x!!a, b51
m1n 5t~x!, ;xPU~g!.

Moreover, lett̄ be the dual representation oft, and let us similarly introduce the matrix elemen
t̄ abPU(g)° of t̄ . We note that

(
c

t̄ catcb~21!([a] 1[c])([ b] 11̄)5dab .

The standard comultiplication onU(g) is super cocommutative. Therefore the finite du
U(g)° is a super commutative Hopf superalgebra. The matrix elementstab and t̄ ab of the vector
representation and the dual vector representation generate a sub-Hopf-superalgebraA of U(g)°,
with the comultiplication

D~ tab!5(
c

tac^ tcb ~21!([a] 1[c])([ c] 1[b]) ,

D~ t̄ ab!5(
c

t̄ ac^ t̄ cb~21!([a] 1[c])([ c] 1[b]) ,

the counit«(tab)5«( t̄ ab)5dab , and the involutary antipodeS(tab)5(21)[a]([ a] 1[b]) t̄ ba , where

@a#5H 0̄, a<m,

1̄, a.m.

An important fact is the following.
Proposition 3: The subspaceA is dense in U(sl(mu n))* .
Proof: This follows from a slight strengthening of a theorem which in the nongraded ca

due to Harish-Chandra. LetV be a finite-dimensional graded vector space and letg be a graded
subalgebra of the Lie superalgebrasl(V). We regardV as ag-module. Arguing as in the non
graded case~see the proof of Theorem 2.5.7 in Ref. 20! one can easily prove that for any nonze
elementxPU(g) there exists an integerr>0 such thatx acts nontrivially onV^ r . Actually, there
is a minor complication: Dixmier’s proof only applies if dimV0̄ÞdimV1̄ . But if dimV0̄

5dimV1̄ , we can embedV into W5V% C, whereC is regarded as a trivialg-module. Then his
arguments apply toW, and the tensorial powers ofW are isomorphic to direct sums of tensori
powers ofV. This proves the proposition.

As at the beginning of this section, letP be the dual of the embedding ofU(g0̄) in U(g). We
have

P~ t im!5P~ tm i !5P~ t̄ im!5P~ t̄ m i !50 , 1< i<m , m,m<m1n.

Set

Ae5P~A!.

Then Ae has a Peter-Weyl type basis in terms of the matrix elements of irreducible fi
dimensional representations ofsl(m) % sl(n) % gl(1). Thus it follows from the discussion of th
last section that there exists a unique normalized left integral
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E
0
: Ae→C,

which also turns out to be right invariant~see the Appendix!. Denote byn(G)PA° the image of
G under the natural embeddingU(g)→A°. Recalling Lemma 2, we have the following theore

Theorem 3: The linear form*5n(G)•*0P is a nontrivial left and right integral onA.

To see that* is indeed nontrivial, we consider*QQ̄, where

Q i5t i ,m1nt i , m1n21¯t i ,m11 ,

Q̄ i5 t̄ i ,m1nt̄ i ,m1n21¯ t̄ i ,m11 , i 51, 2, ...,m,

Q5QmQm21¯Q1 ,

Q̄5Q̄mQ̄m21¯Q̄1 .

We have

EQQ̄5^QQ̄, E F&E
0
P~det~ tmn!det~ t̄ mn!!m.

As

det~ tmn!det~ t̄ mn!~u!5«~u! , ;uPU~g0̄!,

we immediately obtain

E
0
P~det~ tmn!det~ t̄ mn!!m51.

By induction we can show that

^QQ̄, E F&5~21!mn(mn11)/2,

hence

EQQ̄5~21!mn(mn11)/2.

Example 3: The Lie supergroupOSP(2u2n)
The Lie superalgebrasg5osp(2u2n) form the other series of type I~basic classical! Lie

superalgebras besidessl(mun). They share many properties with the latter. In particular, the
subspace ofosp(2u2n) is a direct sum ofg1̄1 andg1̄2 . Both U(g1̄1) andU(g1̄2) are isomorphic
to the Grassmann algebra on 2n generators. The maximal even subalgebra ofosp(2u2n) is
sp(2n) % gl(1), andg0̄ andg1̄6 satisfy relations of the same form as~8!.

The subspaces ofU(g1̄6) of the highest Grassmann degree are both one-dimensional
choose basesE andF for them, respectively, and setG5E F. Then

XGPU~g!g0̄ , ;XPg.

Let t be the defining representation ofosp(2u2n). It is known thatt is self-dual. Introduce the
matrix elements oft,

tabPU~g!°, a,b51,2,...,2n12,
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with t i j and tmn being even, andt im and tm i odd, wherei , j 51,2; m,n53,4,...,2n12.
Proposition 4: The elements tab generate a sub-Hopf-superalgebraA of U(osp(2u2n))°, and

A is dense in U(osp(2u2n))* .
Proof: This follows from the proof of Proposition 3.
SetAe5P(A). ThenAe admits a unique~up to scalar multiples! left integral*0 . Denoting by

n(G) the canonical image ofG in A°, we have
Theorem 4: The linear form*5n(G)•*0P is a nontrivial left and right integral onA.
The t im and tm i generate a Grassmann algebra contained inA. We takeQ to be a nonzero

element of the highest degree in this Grassmann algebra. Then direct computations can sh

EQÞ0.

Example 4: The Lie supergroupOSP(1u2n)
Let us start with the simplest case,n51. The Dynkin diagram ofosp(1u2) is justd, and the

simple Chevalley generators are$e, f , h%, where e and f are odd whileh is even, with the
commutation relations

@h, e#5e, @h, f #52 f , @e, f #5h.

It is important to observe that@e, e#5E, @ f , f #5F andh span ansl(2) subalgebra, which is the
maximal even subalgebraosp(1u2)0̄ . This is a general feature of any type II superalgebra, wh
some simple generators of the maximal even subalgebra are generated by odd elements. W
g5osp(1u2), g0̄5sl(2),osp(1u2), U5U(g) andUe5U(g0̄).

Now

11e f1Ug0̄

is an invariant of the leftU-moduleU/Ug0̄ , and we have the left and right integral

E 5n~11e f !•E
0
P:U°→C,

where*0 :U °e→C is the standard Haar functional onU °e. Consider*1U ° . We have

E1U °5^1U ° ,11e f&E
0
P~1U °!5E

0
1U °e

Þ0.

That is, the integral does not vanish on the identity element ofU °. It follows from the discussion
of Sec. II that all finite-dimensional representations ofosp(1u2) are completely reducible, which
of course, is a well-known fact.

The general case can be treated similarly. We do not go into details but only mention t
even elementu0PU5U(osp(1u2n)) such that«(u0)Þ0 and such thatu01Ug0̄ is invariant in
U/Ug0̄ has been constructed by Djokovic´ and Hochschild in Ref. 21. Moreover, they have prov
the following theorem:

Let g be a finite-dimensional Lie superalgebra over a field of characteristic zero. The
finite-dimensional representations ofg are completely reducible if and only if the following tw
conditions are satisfied.

~1! The Lie algebrag0̄ is semisimple.
~2! There is an elementu0 in U(g) such thatu01U(g)g0̄ is an invariant element ofU(g)/U(g)g0̄

and satisfies«(u0)Þ0.

Visibly, in the cited reference the elementu0 has been a decisive tool in the proof that
finite-dimensional representations ofosp(1u2n) are completely reducible. It is remarkable that
1 Feb 2008 to 129.78.64.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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the present work it serves to construct a left integral onU° which does not vanish on the un
element, a result which, in turn, implies the complete reducibility of theU°-comodules and henc
of the finite-dimensionalU-modules.

Example 5: The Lie supergroupOSP(3u2)
Let g denote the Lie superalgebraosp(3u2). It is the simplest of those orthosymplectic L

superalgebras which are not of type I and not one of the special algebrasosp(1u2n). Its maximal
even subalgebra isg0̄5so(3)% sp(2). The g-moduleU(g)/U(g)g0̄ will be denoted byW. We
shall also need the quadratic Casimir elementCPU(g) and the corresponding Casimir operat
CW acting onW.

In the subsequent investigation of theg-moduleW we are going to use the classification
finite-dimensional irreducibleg-modules obtained by Van der Jeugt in Ref. 22. Both theg-modules

and theg0̄-modules are characterized by a pair of numbersp,qP$0,1
2,1,32,...%. By a slight abuse of

notation, we denote the correspondingg-module by@p,q#, and the correspondingg0̄-module by
(p,q). @We remark thatp is associated in the obvious way toso(3) andq to sp(2).#

A version of the Poincare´–Birkhoff–Witt theorem implies thatW, regarded as ag0̄-module, is
isomorphic to the Grassmann algebra constructed overg1̄ . Using the representation theory o
sl(2), we conclude that theg0̄-moduleW decomposes into the direct sum of the modules c
tained in the following list, where the first line gives the Grassmann degree to which the mo
underneath belong.

0 1 2 3 4 5 6

~0,0! ~1,1
2! ~1,1! ~2,1

2! ~1,1! ~1,1
2! ~0,0!

~2,0! ~1,1
2! ~2,0!

~0,0! ~0,3
2! ~0,0!

Comparison with the lower-dimensional irreducibleg-modules then shows that for a Jorda
Hölder sequence of theg-moduleW the irreducible quotients must be isomorphic to the followi
modules:

@0,3
2#, @1,1#, @1,1

2#, @0,0#, @0,0#.

For the convenience of the reader and for later use, we also note how these modules dec
into irreducibleg0̄-submodules, moreover, in the first column we give the eigenvalue of
quadratic Casimir operator~normalized as in Ref. 22! in these modules:

26 @0,3
2#>~0,3

2! % ~1,1! % ~1,1
2! % ~0,0!

0 @1,1#>~1,1! % ~1,1
2! % ~2,1

2! % ~2,0!

2 @1,1
2#>~1,1

2! % ~2,0! % ~0,0!

0 @0,0#>~0,0!

Note that at this point it is obvious that theg-module W is not completely reducible: It is
generated, as ag-module, by ag0̄-invariant element; the multiplicity of (0,0) in theg0̄-moduleW
is equal to 4, but the length of theg-moduleW ~i.e., the number of irreducible quotients of
Jordan-Ho¨lder sequence! is equal to 5.

The eigenvalues given previously imply that the primary decomposition ofW with respect to
CW takes the following form:

W5W26% W2% W0 , ~9!
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whereWr , r P$26,2,0%, is the primary subspace ofW corresponding to the eigenvaluer of CW .
Of course, theWr ’s areg-submodules ofW. Regarded asg-modules, we have

W26>@0,3
2#, W2>@1,1

2#,

whereasW0 has a Jordan-Ho¨lder sequence of the form

W0.W08.W09.$0%,

where one of the three modulesW0 /W08 , W08/W09 , W09 is isomorphic to@1,1#, while the other two
are trivial one-dimensional. In any case we have

CW~W0!,W08 , ~10!

CW~W08!,W09 , ~11!

CW~W09!5$0%. ~12!

We stress that whileW26 andW2 are eigenspaces ofCW , this is not so forW0 . In fact, we shall
see that the restriction ofCW to W0 is not equal to zero but only nilpotent.

Lemma 5: The subspace CW(W0) of W0 is either a trivial one-dimensionalg-submodule of
W0 or else it is equal to$0%.

Proof: In the subsequent discussion, it is important to keep the following fact in m
(* ) The g-module@1,1# does not contain a trivialg0̄-submodule.

There are three cases to consider.

~a! The moduleW0 /W08 is isomorphic to@1,1#. This case is not possible sinceW0 , like W2, is
generated by ag0̄-invariant element which, under the present assumption and becau
(* ), would have to belong toW08 .

~b! The moduleW08/W09 is isomorphic to@1,1#. In this case,W09 consists ofg-invariant elements,
hence the existence of nonzerog-invariant elements inW0 is obvious. However, we want to
find an explicit expression for them, and a first step towards this end is the lemma. Ac
ing to Eq. ~11! we haveCW(W08),W09 . Using Eq.~12! and recalling (* ), we can even
conclude thatCW(W08)5$0%. Thus CW induces ag-module mapW0 /W08→W0 , and this
implies our claim. Actually, it is easy to see thatCW(W0),W09 .

~c! The moduleW09 is isomorphic to@1,1#. Equation~12! says thatCW(W09)5$0%, henceCW

induces ag-module mapW08/W09→W08 which, according to Eq.~11!, is even a map intoW09 .
Invoking (* ) we conclude thatCW(W08)5$0%, and our claim follows as in part~b!. This
proves the lemma.

Let us now recall the decomposition~9! of W and also the fact that theg-module W is
generated by the element1U(g)1U(g)g0̄ . Then the lemma above can be rephrased as follo
Either the element

z5C~C22!~C16!PU~g!

belongs toU(g)g0̄ , or elsez1U(g)g0̄ is a nontrivial invariant element ofU(g)/U(g)g0̄ .
Thus all that remains to be shown is thatz does not belong toU(g)g0̄ . This is an easy

consequence of the Poincare´–Birkhoff–Witt ~PBW! theorem, which allows us to construct
suitable basis ofW. Actually, the task can be simplified, as follows. The Casimir elementC can be
decomposed~in various ways! into the sum of two pieces,

C5Co1Ce ,
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whereCo is quadratic in the elements ofg1̄ , and whereCe belongs toU(g0̄). SinceC commutes
with all elements ofU(g), it follows that

zPCo~Co22!~Co16!1U~g!g0̄ ,

and hence we can replacez by

zo5Co~Co22!~Co16!.

Applying Theorem 2 toz or zo and recalling Lemma 2 we obtain a nonzero left and rig
integral onU(osp(3u2))°.

IV. INTEGRALS ON QUANTUM SUPERGROUPS

We shall extend the construction of integrals on classical supergroups to quantum super
at genericq. Recall that the Drinfeld-Jimbo quantum superalgebraUq(g) associated with a simple
basic classical Lie superalgebrag is usually defined with respect to the distinguished simple r
system ofg where only one odd simple root exists. By removing the odd simple generators~but
retaining the corresponding Cartan generator!, one obtains a graded quantum subalge
Uq(g0),Uq(g), whereg0,g is an even subalgebra ofg, which is a reductive Lie algebra. W
stress that while for the basic classical Lie superalgebras of type I we haveg05g0̄ , this isnot the
case for type II.

An important fact is thatUq(g0) forms a Hopf subalgebra ofUq(g), with its structure inher-
ited from the latter. We have the following Hopf superalgebra maps:

I: Uq~g0!→Uq~g!,

P: Uq~g!°→Uq~g0!°,

whereI is the natural embedding andP is induced from its dualI* .
A quantum supergroup associated withUq(g) is defined by specifying its superalgebra

functions A, where A should meet two basic requirements, namely, it forms a sub-H
superalgebra ofUq(g)°, and it is dense inUq(g)* . In general,A is generated by the matrix
elements of some finite-dimensional irreducible representations ofUq(g). The structure ofA
associated with a type I quantum superalgebra has been extensively studied. The fact thA is
dense inUq(g)* implies that the natural Hopf superalgebra maps

n: Uq~g!→A°,

Î5nI: Uq~g0!→A°,

are embeddings.
DenoteAe5P(A). ThenAe separates points ofUq(g0), i.e., it is dense inUq(g0)* . Further-

more,Ae admits a Peter-Weyl type basis in terms of the matrix elements of finite-dimens
irreducible representations ofUq(g0), and there exists a unique~up to scalar multiples! left
integral

E
0
: Ae→C,

which also turns out to be right invariant, and it is nonvanishing on1Ae
.

Similar to the classical case, we consider

E
0
P: A→C,
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which is clearly left invariant with respect toUq(g0), i.e.,

Î~u!•E
0
P5«~u!E

0
P, ;uPUq~g0!.

Let K denote the ideal ofUq(g0) defined by

K5$uPUq~g0!u «~u!50%,

where« is the counit ofUq(g). Then

J5Uq~g!K ~13!

is a left ideal ofUq(g).
Lemma 6: Ifg is one of the Lie superalgebrassl(mu n) or osp(2u2n) ~i.e., if g is basic

classical of type I!, the left ideal J has finite codimension in Uq(g).
Proof: This follows immediately from the PBW theorems for these quantum superalge

established in Refs. 23 and 24.
Clearly Uq(g)/J forms a leftUq(g)-module under the natural action

x~y1J!5xy1J, ;x,yPUq~g!.

Let z1J be an invariant ofUq(g)/J, i.e., x(z1J)5«(x)z1J, ;xPUq(g). Nontrivial invariants
of this kind exist for type I quantum superalgebras, as we will see later. However, we doub
the type II quantum superalgebras admit such invariants, as in this caseJ is expected to have
infinite codimension.

Theorem 5: Let *5n(z)•*0P. Then* is a left integral onA, that does not depend on th
representative of z1J. As before, n(z) is the image of z under the natural embedding Uq(g)
→A°.

Proof: The proof goes in the same way as in the classical case.
Example 6: The quantum supergroupSLq(mu n)
We study the quantum supergroup SLq(mu n). The quantum superalgebraUq(sl(mu n)) is

generated by the simple and the Cartan generators

Ea, a11 , Ea11,a , ka
61, a51,2,..., m1n21,

subject to the standard relations.~Here ka5KaKa11
21 in the notation of Ref. 23.! The generators

Em, m11 andEm11, m are odd, while all the others are even. Define recursively

Eab5EacEcb2qc
21EcbEac ,

Eba5EbcEca2qcEcaEbc , a,c,b,

whereqc5q(21)[c]
. The vector representationt of Uq(sl(mu n)) is given by

t~Ea, a61!5ea, a61 ,

t~ka!5qa
eaaqa11

2ea11, a11511~qa21!eaa1~qa11
21 21!ea11, a11 .

We shall denote the dual vector representation byt̄ , and let

tab , t̄ abPUq~sl~mu n!!° , a,b51, 2, ...,m1n,
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be the matrix elements oft and t̄ , respectively. Then the superalgebraA of functions on the
quantum supergroup SLq(mu n) is defined to be the subalgebra ofUq(sl(mu n))° generated by the
tab , t̄ ab . In Ref. 25 the following was shown.

Proposition 5: The algebraA is a sub-Hopf-superalgebra of Uq(sl(mu n))° and is dense in
Uq(sl(mu n))* .

The quantum even subalgebraUq(g0) is Uq(sl(m) % gl(1)% sl(n)) with generators

ka
61, Eb,b11 , Eb11, b , a,b51,2,...,m1n21 , bÞm.

The images oft and t̄ underP give rise to representations ofUq(g0), with

P~ t !5S P~ t i j ! 0

0 P~ tmn!
D , P~ t̄ !5S P~ t̄ i j ! 0

0 P~ t̄ mn!
D .

The matrix elements of these representations generateAe , which forms a Hopf subalgebra o
Uq(g0)°. OnAe there exists a unique left integral*0 which annihilates the matrix elements of a
nontrivial irreducible representations and satisfies

E
0
1Ae

51.

Introduce

Ei5Ei ,m11 Ei , m12 ¯ Ei ,m1n ,

Fi5Em1n,i Em1n21,i ¯ Em11,i ,

E5E m E m21¯ E 1 ,

F5F1 F2 ¯ Fm ,

G5E F.

Lemma 7: Let J be defined as in (13). Then the image ofG under the canonical map
Uq(sl(mu n))→Uq(sl(mu n))/J is an invariant.

Proof: In Ref. 23 it was shown that

kaG5G ka , ;a,

@Ec, c11 , E#5@Ec,c11 , F#50, cÞm,

@Ec11, c , E#5@Ec11, c , F#50, cÞm.

It is also clear that

Em,m11G50.

This immediately leads to

Ei ,m11G50, ; i<m.

What remains to be shown is that

Em11,mGPJ. ~14!
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By using the fact thatEm11, m q-anticommutes with allEm,i , m>m11, i<m, and (Em11, m)2

50, we have

Em11, m F50.

Thus

Em11, mG5@Em11, m , E# F.

To determine the right hand side, we need the following commutation relations:

@Em11, m , E i #5qm1n22Ei , m12 Ei , m13 ¯ Ei , m1nkmEi , m , i ,m,

@Ei , m , E j #50, i . j .

Now

@Em11, m , G#5@Em11, m , E m# E m21 ¯ E 1 F,

where@Em11, m , E m# can be easily calculated to yield

@Em11, m , E m#5
km2km

21

q2q21 Em, m12 ¯ Em, m1n

1 (
a52

n

~21!aq2(n2a)Em, m11 ¯ Êm, m1a ¯ Em, m1nEm11, m1a ka
21,

with Êm, m1a indicating thatEm, m1a is removed from the second term. By using

Em11, m1a E i2q22 E i Em11, m1a50 , i 51,2,...,m , a52,3,...,n,

we immediately see that~14! indeed holds.
Let n:Uq(g)→A° be the natural embedding.
Theorem 6: There exists the following nontrivial left integral onA:

E 5n~G!•E
0
P.

Example 7: The quantum supergroupOSPq(2u2n).
We denote byg the Lie superalgebraosp(2u2n) and recall that in this caseg05g0̄ is the

maximal even subalgebrasp(2n) % gl(1) of g. Introduce the (n11)-dimensional Minkowski
spaceh* with a basis$d i u i 50,1,2,...,n% and the bilinear form(,):h* 3h* →C defined by

~d i ,d j !52~21!d0,i d i , j , ; i , j .

Then the simple roots can be expressed asa i5d i2d i 11 , 0< i ,n, an52dn , with a0 being the
unique odd simple root. A convenient version of the Cartan matrixA5(ai j ) i , j 50

n is ai j

52(a i ,a j )/(a i ,a i), ; i .0, a0,j5(a0 ,a j ). The quantum superalgebraUq(g) is the universal
complex superalgebra with generators$ki

61 , ei , f i ,i PNn%, Nn5$0,1,2,...,n%, wheree0 and f 0

are odd and the rest are even. The defining relations are

kikj5kjki , kiki
215ki

21ki51,

kiejki
215qi

ai j /2ej , ki f jki
215qi

2ai j /2f j ,
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@ei , f j #5d i j ~ki
22ki

22!/~qi2qi
21!, i , j PNn ,

~e0!25~ f 0!250,

(
m50

12ai j

~21!mF12ai j

m G
qi

ei
12ai j 2mejei

m50, iÞ0,

(
m50

12ai j

~21!mF12ai j

m G
qi

f i
12ai j 2m f j f i

m50, iÞ0,

where@n
m#q is aq-binomial coefficient. As is well-known, the quantum superalgebraUq(g) has the

structure of a Hopf superalgebra. Note that$ei , f i , ki
61 u i 51,2,...,n% generate a Hopf subalgebr

Uq(sp(2n)),Uq(g). Together with$k0
61%, they generateUq(g0)5Uq(sp(2n) % gl(1)).

Define the odd elements

c15e0 ,

c i 115c iei2qeic i , 1< i ,n,

c2n5cnen2q2encn ,

c2 i5c2 i 21ei2qeic2 i 21 , 1< i ,n;

f05 f 0 ,

f i 115 f if i2q21f i f i , 1< i ,n,

f2n5 f nfn2q22fnf n ,

f2 i5 f if2 i 212q21f2 i 21f i , 1< i ,n,

which satisfy the following relations

c6 ic6 j1q61c6 jc6 i50, i< j ,

c ic2 j1qc2 jc i50, ; iÞ j ,

cnc2n1q2c2ncn50,

c2 i 21c i 111c i 11c2 i 211qc2 ic i1q21c ic2 i50, i ,n;

c jei2q(a i ,d02d j )eic j5d i j c i 11 , ; i , j ,

c2 jei2q(a i ,d01d j )eic2 j5d i 11,jc2 i 11 , i .1,

and also similar relations forf6 i , where cn11 and fn11 are understood asc2n and f2n,
respectively. Let

E1,25e1 ,

E1,i 115E1, iei2qeiE1, i , 1, i ,n,

E1, n̄5E1, nen2q2enE1, n ,
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E1, ī 5E1, i 11ei2qeiE1, i 11 , 1, i ,n,

E1, 1̄5E1, 2̄e1q212qe1E1, 2̄ ,

where we have introduced the notationī 52 i . Then

$c i , f 0%5E1, i k0
22, $c2 i , f 0%5E1, ī k0

22.

Define

E5c1c2¯cnc2nc2n11¯c21 ,

F5f21f22¯f2nfnfn21¯f1 ,

G5E F.

We have the following lemma.
Lemma 8: Let J be defined as in (13). Then

(i) @v, E#5@v, F#50, ;vPUq(sp(2n)),Uq(g0),
(ii) @u, G#50, ;uPUq(g0),
(iii) x GP«(x)G1J, ;xPUq(g).

Of particular importance for us is the vector representationt of Uq(g). Introduce the index
a5 i or ī , with i 50,1,...,n, ī 50̄,1̄,...,n̄. We have

t~e0!5e0, 11e1̄,0̄ , t~ f 0!5e1, 02e0̄,1̄ ,

t~ei !5ei , i 112ei 11, ī , t~ f i !5ei 11, i2eī , i 11 , 1< i ,n,

t~en!5en, n̄ , t~ f n!5en̄, n ,

t~ki !5qi
Hi /2 , 0< i<n,

where

H05d0* 1d1* ,

Hi5d i* 2d i 11* , 0, i ,n,

Hn5dn* ;

d i* 5ei , i2eī , ī , 0< i<n.

Let tabPUq(g)°, a,b50,1,...,n,0̄,1̄,...,n̄, be the matrix elements of the vector represen
tion t,

^tab , x&5t~x!ab , ;xPUq~g!.

We will take the algebraA of functions on OSPq(2u2n) to be the subalgebra ofUq(g)° generated
by the elementstab . In Ref. 26 we have shown the following.

Proposition 6: The algebraA is a sub-Hopf-superalgebra ofUq(osp(2u2n))° and is dense in
Uq(osp(2u2n))* .
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As usual, letP:Uq(g)°→Uq(g0)° be the map induced by the dual of the embedd

I:Uq(g0)→Uq(g), let n:Uq(g)→A° be the canonical map, and letÎ5n I. SetAe5P(A). Then
Ae admits a left integral*0 , which we normalize by setting*01Ae

51. Now

E
0
P:A→C

is a well-defined linear map, which is left invariant with respect toUq(g0),Uq(g):

Î~u!•E
0
P5«~u!E

0
P, ;uPUq~g0!.

We define

E 5n~G!•E
0
P.

Theorem 7: The linear form* :A→C is a left integral onA.
Consider*L, where

L5t 1̄ 0̄¯t n̄ 0̄ tn 0̄¯t1 0̄ t 1̄ 0¯t n̄ 0 tn 0¯t1 0.

Using the following property of the Hopf superalgebra homomorphismP,

P~ ta 0!5P~ ta 0̄!50, ;aÞ0,0̄,

P~ t0 0̄!5P~ t 0̄ 0!50,

we have

EL5^L, G&E
0
P~~ t 0̄ 0̄!2n~ t0 0!

2n!.

Now

P~ t 0̄ 0̄ t0 0!5P~ t0 0 t 0̄ 0̄!51Uq(g0)° ,

thus

EL5^L, G&,

which does not vanish if itsq→1 limit is nonzero. A brute force calculation shows

u^L, G&u→1, as q→1.

V. DISCUSSION

In the present work we have introduced and investigated the integrals on Hopf superalg
with special emphasis on the classical and quantum supergroups. In the undeformed case,
obviously one problem that we have not solved completely, namely, to prove the existen
nonzero integrals for all of the basic classical Lie supergroups. However, in the meantime w
shown that nonzero integrals exist for a large class of Lie supergroups, including the cla
simple ones. For further details, we refer the reader to Ref. 27.
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In the quantum case, we have only been able to treat the type I supergroups. In particu
could not say anything about most of the orthosymplectic quantum supergroups. There ar
indications that our method will not work~or, at least, has to be modified! in this case. However
one should remember that, at present, only very little is known about the orthosymplectic qu
supergroups anyway.
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APPENDIX: DESCRIPTION OF U„gl„1……°

In Example 2 of Sec. III we need to choose a~left! integral on

Ae,U °e,

where

Ue5U~g0̄!5U~sl~m! % sl~n! % g~1!!>U~sl~m!! ^ U~sl~n!! ^ U~gl~1!!,

and hence

U °e>U~sl~m!!° ^ U~sl~n!!° ^ U~gl~1!!°

~the isomorphisms are to be interpreted in the Hopf algebra sense!. According to the discussion in
Sec. II, the Hopf algebrasU(sl(n))° are sufficiently well understood. In particular, there is
unique~up to scalar multiples! left integral onU(sl(n))°, which turns out to be right invariant a
well. Forosp(2u2n) and for the quantum counterparts the situation is similar. Corresponding
the present appendix we would like to comment onU(gl(1))°. Needless to say, the results to b
presented are well-known,28,29 and we summarize them here in order to clarify some sligh
subtle issues.

The Lie algebragl(1) is one-dimensional, henceU(gl(1)) is isomorphic~as a Hopf algebra!
to the polynomial algebraC @X# in one indeterminateX. The Hopf algebra structure is the on
known from enveloping algebras: The structure maps are uniquely fixed by the equations

D~X!5X^ 111^ X,

«~X!50,

S~X!52X.

It follows that

D~Xr !5(
s50

r S r
sD Xs

^ Xr 2s,

for all integersr>0.
The finite dualC @X#° of C @X# can be described as follows. Define, for any elementaPC

and any integerr>0, the linear formua
r on C @X# by
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^ua
r ,P&5

d r P

dXr U
X5a

, ;PPC @X#.

Using some elementary algebra, it is not difficult to prove that these linear forms, witha andr as
described above, form a basis of the vector spaceC @X#°. The multiplication inC @X#° is given by

ua
r ub

s5ua1b
r 1s ,

in particular, the unit element is equal tou0
0 ~which is the counit ofC @X#), the coproduct is given

by

D~ua
r !5(

s50

r S r
sD ua

s
^ ua

r 2s ,

the counit by

«~ua
r !5d r , 0 ,

and the antipode by

S~ua
r !5~21!ru2a

r ,

where, in all cases,a,bPC and r ,s>0 are integers.
Let us next recall that the dualC @X#* of the vector spaceC @X# can be identified~in various

ways! with the space of formal power seriesC @@Y## in one indeterminateY. If the dual pairing

^ , &:C @@Y##3C @X#→C

is chosen such that

K (
n>0

cnYn,Xr L 5r ! cr , ;r ,

then the coalgebra structure ofC @X# induces just the usual algebra structure onC @@Y##. Using
this identification, the corresponding injection

C @X#°→C @@Y##

is given by

ua
r →Yr exp~aY!,

which immediately gives the product rule for theua
r ’s. Similarly, we find

D~Yr exp~aY!!5~Y^ 111^ Y!r~exp~aY! ^ exp~aY!!.

Under the canonical embedding ofC @@Y## ^ C @@Y## into C @@Y^ 1,1^ Y##, the algebra of formal
power series inY^ 1 and1^ Y, the right hand side of this equation can be written in the form

~Y^ 111^ Y!r exp~a~Y^ 111^ Y!!.

In this sense, the coproduct inC @X#° is fixed by the simple rule

D~Y!5Y^ 111^ Y,

just as forC @X#.
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Let us now turn to the object of our main concern, the integrals. It is easy to see th
C @X#° a nontrivial integral does not exist. However, there is a way out. Obviously, the elem
ua

0, aPC, span a Hopf subalgebraK of C @X#°, and the linear form* on K, defined by

Eua
05da, 0 , ;aPC,

is a left and right integral onK. Note that theua
0’s are exactly the characters of the algebraC @X#,

i.e., the grouplike elements ofC @X#°, and thatK is isomorphic to the group Hopf algebra of th
additive groupC.

Now we recall that, for an arbitrary algebraA ~associative, with unit element!, the finite dual
A° consists exactly of the matrix elements~regarded as linear forms onA! of the representations
of A. ~Here and in the following, all representations are assumed to be finite-dimensional.! It is
easy to see that the matrix elements of the completely reducible representations ofC @X# ~i.e., the
representations for which the image ofX is diagonalizable! belong toK, whereas the othe
elements ofC @X#° stem from those representations which are not completely reducible. Note
once again, the close relationship between complete reducibility and the existence of non
integrals shows up.

Returning to the situation at the beginning of this appendix, we have to assume that

Ae,U~sl~m!!° ^ U~sl~n!!° ^ K.

According to the foregoing discussion, this corresponds to the requirement to consider only
representations ofg5sl(mun) for which the one-dimensional center ofg0̄ is represented by diag
onalizable operators, which is usually assumed anyway.
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