
Copyright and use of this thesis

This thesis must be used in accordance with the 
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright 
may be an infringement of copyright and 
copyright owners may be entitled to take 
legal action against persons who infringe their 
copyright.

Section 51 (2) of the Copyright Act permits 
an authorized officer of a university library or 
archives to provide a copy (by communication 
or otherwise) of an unpublished thesis kept in 
the library or archives, to a person who satisfies 
the authorized officer that he or she requires 
the reproduction for the purposes of research 
or study. 

The Copyright Act grants the creator of a work 
a number of moral rights, specifically the right of 
attribution, the right against false attribution and 
the right of integrity. 

You may infringe the author’s moral rights if you:

-  fail to acknowledge the author of this thesis if 
you quote sections from the work 

- attribute this thesis to another author 

-  subject this thesis to derogatory treatment 
which may prejudice the author’s reputation

For further information contact the 
University’s Copyright Service.

sydney.edu.au/copyright

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sydney eScholarship

https://core.ac.uk/display/41241727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


HOW OPEN IS ‘OPEN API’? A CRITIQUE OF THE 

POLITICAL ECONOMY OF OPENNESS IN 

PROGRAMMING 

 

 

 

 

 

by  

Yuanbo Qiu 

 

 

 

 

A thesis submitted in fulfilment of the requirements for the degree of  

Master by Arts (Research) 

Faculty of Arts and Social Sciences 

The University of Sydney, Australia 

August 2015 



 

 

ii 

ABSTRACT 

As a way to provide services or data to third-party developers, Open Application 

Programming Interfaces (Open APIs) have gained popularity among the programming 

community in recent years. Some advocates regard Open APIs as an alternative to 

open source as it facilitates collaboration between different software. Today many 

corporations such as Google, Facebook and Twitter are developing Open APIs for 

their existing services, and most of them are free of charge. As an API usually takes 

effort to be developed and exposes proprietary data to public, then why would 

for-profit companies be interested in investing in these kinds of projects?  

Indeed, Open APIs can help external programs integrate with proprietary 

software. Many developers, however, have found this collaboration risky, and some of 

them have started to think about the openness of API compared with open source. 

More importantly, the definition of Open API is rendered ambiguous through the 

discursive practices that define ‗openness‘ in contemporary digital culture. Drawing 

on a critical political economy perspective, this study begins with the discussion of 

theories of openness in programming. It then identifies the ‗openness‘ in Open API 

when compared with other collaborative ways of software production, including open 

source. It concludes by discussing how corporations are using Open APIs as a 

marketing strategy to incorporate external developers into their business.   



 

 

iii 

ACKNOWLEDGEMENTS 

There are a number of individuals that helped me and made this dissertation 

possible. I cannot do justice to all of them, but I would like to thank a few in 

particular. 

I thank my supervisor, Grant Bollmer, who guided me in these two years. Grant 

was an accommodating, patient supervisor throughout the process, and he has always 

provided critical feedback to my thesis. I would also like to thank Chris Chesher, for 

his support and helpful advices. I also appreciate the help from staff and colleagues of 

Faculty of Arts and Social Science.  

Special thanks to the teachers of Writing Hub of the University of Sydney and 

Claire Reaburn, who helped me correct the grammar and format issues. 

Last but certainly not least, I would like to thank my family, especially my 

parents for their years of support. Also, thank my friends who have been supportive of 

my research.  

 

  



 

 

iv 

TABLE OF CONTENTS 

Introduction: The Rise of Open APIs ........................................................................................ 1 

History of Open APIs ............................................................................................................ 2 

Literature Review .................................................................................................................. 5 

Open APIs and collaboration. ............................................................................................ 5 

Power of code and Open APIs. .......................................................................................... 9 

Methodology ....................................................................................................................... 14 

A political economy approach to communication. .......................................................... 14 

Ideological criticism and critical discourse study. ........................................................... 21 

Overview of Dissertation ..................................................................................................... 25 

Chapter 2: The Openness of Open APIs .................................................................................. 27 

Source Code, Object Code and Software ............................................................................ 27 

The Power of the Human in the transition from Source Code to Object Code ................... 28 

The Open Movement and Disclosure of Software .............................................................. 31 

Distinction of Free Software and Open Source ............................................................... 33 

The Openness of FLOSS and its Alteration ........................................................................ 34 

From The Open Software Movement to Open API: Or, The ‗Open‘ in Open API ............. 37 

Exploring ‗openness‘ with two sets of questions. ........................................................... 37 

Two levels of interaction in Open APIs. ......................................................................... 39 

Power of the Pre-defined ‗openness‘ of Open APIs ............................................................ 41 

Example of using Google Maps API. .............................................................................. 43 

Building asymmetrical relationships between vendors and developers—power from 

closed source feature. ...................................................................................................... 47 

Management of API key as a form of control. ................................................................ 51 

The ‗openness‘ of Open APIs. ......................................................................................... 57 

Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers ... 59 

The Convenience of Using Closed Source APIs ................................................................. 61 

Participating in Using APIs and the Feeling of ‗Fun‘ ......................................................... 67 



 

 

v 

Participatory democracy in digital media. ....................................................................... 68 

Market-based Capitalist Production Beyond Peer Production ........................................ 69 

Exploitation in the Usage of Digital Technology ................................................................ 73 

A critique of gratification and exploitation. .................................................................... 73 

Principle of exploitation in digital media usage. ............................................................. 75 

Chapter 4: The Extraction of Surplus Value in the Use of Open APIs ................................... 79 

Collecting information without paying ............................................................................... 79 

Collecting information and innovative ideas from external developers. ......................... 79 

Collecting personal information from end users. ............................................................ 81 

The relationship between collecting information and exploitation. ................................ 84 

Monetization of Open APIs—‗Open‘ as a Commercial Strategy ....................................... 86 

The exploitative of targeted advertising within APIs. ..................................................... 87 

Profit from Ads APIs. ...................................................................................................... 93 

Profit from services. ........................................................................................................ 98 

Chapter 5: Force of Open APIs ............................................................................................. 100 

The Force of Law .............................................................................................................. 100 

Deploying TOS to protect the benefit of underlying software. ..................................... 101 

The deployment of copyright law to achieve the monopoly of interface. ..................... 109 

The Power of Ideology in Open APIs ............................................................................... 115 

An ideology that misleads developers. .......................................................................... 116 

Openness as a marketing ideology. ............................................................................... 124 

Exploitation, Power and the Central Position of Vendors ................................................. 128 

Conclusion: Danger of Vendor Dependent Structure based on API ..................................... 130 

References ............................................................................................................................. 134 

 



 

 

vi 

List of Figures 

Figure 1.1: Galloway‘s Historical Periodisation of Technology and Control .............. 12 

Figure 2.1: Openness of Open API .............................................................................. 40 

Figure 2.2: Creates a digital map centred on UNSW via Google Maps API ............... 44 

Figure 2.3: Result of digital map centred on UNSW via Google Maps API ............... 44 

Figure 2.4: Result of customised digital map .............................................................. 45 

Figure 2.5: Key of users in API ................................................................................... 52 

Figure 3.1: Location Based Instagram Photo ............................................................... 66 

Figure 4.1: Advertisement of Google Maps Embed API ............................................. 91 

Figure 4.2: AdSense on Northlight Images .................................................................. 95 

Figure 5.1: Frontpage of the Google Maps API ......................................................... 117 



Introduction: The Rise of Open APIs 

 

 

1 

Introduction: The Rise of Open APIs 

Open Application Programming Interfaces, or ‗Open APIs‘, provide services or 

data to third-party developers, so these developers can remix and remake the 

proprietary data owned by corporations such as Google, Facebook and Twitter into new 

applications and programs. For instance, the Google Maps API launched in 2005, 

perhaps one of the most well-known APIs today, has been used by map services such as 

Tripview and Foursquare in the development of new and innovative web platforms. As 

Google advertised on its website: ‗With the world‘s most accurate global coverage and 

an active mapping community making daily updates, your users will benefit from a 

continually improving service‘ (Google Maps APIs Overview, 2015). The Google 

Maps API provides geographic data and interactive maps so that programmers can 

embed map services on their own websites or in their applications. Twitter‘s API is 

described as ‗a fast and easy way to grow your user base for mobile apps… let other 

users viewing those Tweets to download and launch your app across a number of 

mobile platforms‘ (Twitter Developers, 2014). Twitter‘s API helps programmers 

associate their apps with the Twitter, increasing the apps‘ potential market.  

Open APIs usually take effort to be developed and maintained, but most of them 

are free to use. Why do Internet companies like Google commit themselves to develop 

such freely accessible interfaces? What do they bring to the massive community of 



Introduction: The Rise of Open APIs 

 

 

2 

programmers and web users? What is the cultural significance of Open APIs? By 

exploring these questions from both social and technical perspectives, this dissertation 

argues that Open APIs can be designed for the benefit of the programming community, 

but profit-seeking vendors restrict the openness of Open APIs to reinforce the 

commodification of data in contemporary Internet culture. This process reframes the 

meaning of the word ‗open‘ from its historical association with the Free and Open 

Source Software movements. Most popular Open APIs are vendor-dependant and thus 

facilitate the domination of Internet companies over the programming community, 

which could have a negative effect on the computing industry.  

History of Open APIs 

Open APIs have their origin in private APIs. A private API, or internal API, is an 

interface to connect the function of different applications within one specific system for 

internal use, in effect reducing the cost and redundancy of transactions to improve 

efficiency. Programmers used private APIs long before the popularity of Open APIs, as 

far back as when Microsoft was developing Windows 3.1x, which was released in 1992 

(Microsoft, 2014). The Windows APIs provide access to the fundamental resources or 

processes such as file systems or devices managed throughout the Windows operating 

system. Many resources or procedures involved in Windows were standardised through 

APIs, so programmers could integrate the many dimensions of Windows in order to 

gain extra functionality for their programs in a more convenient and efficient way 



Introduction: The Rise of Open APIs 

 

 

3 

(Microsoft, 2014). For example, for a user to copy a sentence from a TXT document to 

a Microsoft Word document requires the use of specific APIs to negotiate between 

different software. In this case, Word is retrieving this sentence from TXT via APIs 

instead of creating this sentence in Word itself. APIs function as an agent between these 

two pieces of software. In addition, APIs allow older applications to run on newer 

versions of Windows via ‗Compatibility Mode‘, a process that emulates the functions 

of older versions of Windows through the implementation of APIs. When users are 

using an application, it does not mean that only one application is running at this 

time—many applications could be working together through the mediation of APIs. 

Like the gears that can combine different parts of a machine, APIs integrate different 

pieces of software to effectively build a new entity. 

Open APIs depart from the history of private APIs by targeting external users, 

enabling interoperability and the sharing of data between different websites and online 

services (Bodle, 2011). They are named ‗open‘ in opposition with ‗private‘, as they are 

for public use rather than limited by internal intent. Nevertheless, the meaning of ‗open‘ 

has been confused by developers and vendors in pursuit of profit and efficiency. 

Vendors package parts of their services and open them to the public through Open APIs, 

in ways that negotiate an apparent ‗openness‘ of online information with proprietary 

control.  



Introduction: The Rise of Open APIs 

 

 

4 

The parallel development of the semantic web
1
, web services, Web 2.0

2
 and the 

architecture of participation
3
 all contribute to the cultural and technical infrastructure 

of sharing and distribution (Floyd, 2007), which together facilitate the blooming of 

Open APIs. Via the Internet, Open APIs can mix complex services provided by Internet 

giants such as Google and Twitter. As Open APIs are often used for fast integration of 

different pieces of web services (Bodle, 2011), they are also referred to Web APIs or 

public APIs. Today, Open APIs are so central to many web services that the term ‗Open‘ 

has been dropped, with the term ‗API‘ assumed to be, in some way, ‗open‘. 

As should be evident, Open APIs are ubiquitous in today‘s software industry. For 

instance, when you get a high score in a game online or on your smartphone, you may 

find buttons like Google Plus‘ ‗+1‘ or Facebook‘s ‗like‘. When you click on this button, 

you share your score with your friends in Google Plus or Facebook without ever 

leaving the game. This simple act, ubiquitous online and essential for the Web 2.0 logic 

of ‗sharing‘, depends on Facebook‘s and Google‘s use of simple Open APIs. Some 

                                                      

1 A web-technology make data machine-readable, so that make it easy for the integration and reuse of data across 

various applications and platforms, see Berners-Lee, T., Hendler, J. and Lassila, O. (2001). ―The Semantic Web‖. 

Scientific American, 284(5). pp 34-43. 

2 A design patterns and business modes that let owners provide their data in a form that allows remixing by others, 

see O‘reilly, T. (2007). What is Web 2.0: Design patterns and business models for the next generation of software. 

Communications & strategies, (1), pp. 17-31. 

3 ‗Architecture of participation‘ is a norm of cooperation, in which the service itself acts as an intelligent broker to 

connect other services, and harnessing the power of the users themselves. See O'reilly, T. (2007). What is Web 2.0: 

Design patterns and business models for the next generation of software. Communications & strategies, (1), p.22. 



Introduction: The Rise of Open APIs 

 

 

5 

location-based services like Foursquare use Open APIs in a more interesting and 

complex way. They offer location-based data of user-to-social network applications 

such as Instagram to facilitate user interaction (Wilken, 2013). When maps are 

embedded into an app through APIs, as they are in the transport system software Tripgo, 

end users can plan their real-time trip when using public transport. Overall, by using 

Open APIs, third-party developers can find new ways to package their own content and 

provide new informational services to end users. 

Literature Review 

Open APIs and collaboration. 

Open APIs may sound like a ‗free lunch‘ for web services users, and they remind 

developers of the ‗open‘ standard of Free or Open Source Software. Free and Open 

Source Software give developers the right to study, use, modify and redistribute the 

original software without paying, which facilitate collaboration between different 

softwares. Open APIs also advocate sharing data, but their mechanism are different 

from Free and Open Source software. Some researchers have been focusing on the 

differentiation between Open APIs and other collaborative tools. While Free and Open 

Source Software are non-proprietary and depend on nonmarket production strategies 

(Benkler, 2006), Open APIs are usually proprietary software and most of them are 

designed for marketing purposes. In terms of accessibility, Open APIs provide closed 



Introduction: The Rise of Open APIs 

 

 

6 

and packaged data to users, meaning third-party developers can only retrieve data 

without any change to the original code. In contrast, open source software provides full 

access to source code. Bucher (2013) points out that an important dimension of APIs is 

‗function without disruption‘. The utility of Open APIs is limited, in order to prevent 

full access to data and keep API under control (Bucher, 2013). He also claims: ‗Situated 

in between codes belonging to interoperable systems, APIs ensure that changes in the 

underlying code will not affect the code written to interact with the core system‘ 

(Bucher, 2013). Thus, when cooperating with Open APIs, third-party developers may 

not enjoy the same freedom as they did with Free or Open Source Software—though 

this limitation may not hinder external programmers‘ enthusiasm for using Open APIs.  

The reasons why developers are increasingly interested in APIs have been 

examined by many studies. As Bucher explains, external developers can build great 

applications based on Open APIs, as they are standing on the shoulders of giants. In 

addition, users maintain a degree of independence, as the cost for coordination with 

Open APIs is low (De Souza & Redmiles, 2009). If users feel it difficult to cooperate 

with one Open API, they can just switch to another service. For example, Foursquare 

switched to OpenstreetMap after Google Maps API changed its terms of service and 

charged programmers (Fox, 2012). Apple developed their own maps service for iOS 

and cooperated with OpenstreetMap as a response to Google‘s changing policy 

(Openstreetmap, 2012).  



Introduction: The Rise of Open APIs 

 

 

7 

Floyd (2007) points out three aspects of Open APIs that facilitate innovation in 

informational technology, explaining why developers are fond of them: 

1. They provide access to highly developed, robust technologies which only a 

large organization [sic] of expert programmers could create. 

2. They provide access to massive amounts of content which no individual could 

gather on their own or afford to keep and maintain. 

3. They lower the barriers to developing creative novel applications with 

powerful technologies. (p. 2) 

For Floyd, developers neither need detailed knowledge of how a particular API works, 

nor do they need to be proficient in advanced programming skills. What external 

developers need is merely a creative idea to utilise these services (Chesbrough, 2003; 

Aitamurto, & Lewis, 2013). This seems to confirm Benkler‘s argument that human 

creativity becomes the core resource in the contemporary networked information 

economy (Benkler, 2006, p. 6). Benkler claims that human creativity and the economics 

of information structure the new model of economy, which facilitates commons-based 

peer production and collaborative efforts. In this sense, Open APIs seem like a new 

paradise for collaboration in addition to Free or Open Source Software among the 

programming community. 

There are significant works about how to design and use APIs (Xie & Pei, 2006; De 

Souza & Redmiles, 2009; Sullivan, 2010; Jones, 2012; Michel, 2013; Gray, 2015), or 



Introduction: The Rise of Open APIs 

 

 

8 

how APIs minimise the knowledge required for the construction of software and the 

facilitation of cooperation (Floyd, 2007; Kansa & Wilde, 2008; Aitamurto & Lewis, 

2013; Duvander, 2014). However, there are two key points these works do not cover.  

First, although these works do mention the features of Open APIs, few of them go 

into technical detail about what this ‗open‘ means in terms of programming. Without 

fully examining the technical process of adopting Open APIs, they might 

misunderstand the point about the meaning of ‗open‘ and how economics affect the 

‗openness‘ of Open APIs. Second, most previous work from practitioners and 

researchers on Open APIs merely examines how this new technology facilitates the 

coordination of software. They stress these positive uses of Open APIs while 

neglecting issues of ownership, control and profit. Some studies point out this 

taken-for-granted economic dimension should be carefully scrutinised, as it could lead 

to a potential disadvantage for external software developers whose products depend on 

Open APIs (Aitamurto & Lewis, 2013; Bodle, 2011), but elaboration on how these 

power structures are enforced via Open APIs could be done through specific case 

studies. Drawing from these two key points, this dissertation first explores the 

meaning of ‗open‘ in ‗Open APIs‘. It discusses how practitioners conceive of this ‗open‘ 

historically and presently, and then examines the use of this definition of ‗open‘ to 

achieve an economic and political goal of top-down control rather than collective 

collaboration.  



Introduction: The Rise of Open APIs 

 

 

9 

Power of code and Open APIs. 

According to Berry (2011), APIs belong to the ‗functions/methods‘ category of 

programming. They are blocks of code that ‗can be used and reused and are usually 

written in a general fashion to be applicable to standard data types‘ (p. 56). APIs, 

specifically, are a library of handy functions or methods used by programmers and 

standardised across different platforms (Berry, 2011, p. 56). The underlying 

technologies and assumptions that guide human collaboration is essential. As 

Galloway notes, ‗Code is a set of procedures… designed in particular ways to achieve 

particular ends in particular contexts‘ (2004, p. xii). Moreover, as Bucher (2014) notes 

of the Twitter API, APIs are not only intermediaries between providers and users, but 

also tools that help providers to control, manage, or take advantage of third-party 

developers: 

The history and practice of working with the Twitter APIs suggests that APIs 

are mediatory objects that have enactive powers, structuring both the Twitter 

platform and its users. By providing an API, the company is able to harness 

the capacity of the field, of letting third-party developers come up with ideas 

that they would not have been able to. (Bucher, 2013) 

In this sense, when analysing the integration through APIs, the intention and 

affordance come from APIs providers should be clearly identified. The collaboration is 

not only caused by technology themselves, but also affected by providers as they 



Introduction: The Rise of Open APIs 

 

 

10 

decide how Open APIs are developed and being used. The power of API providers is 

the key point when examining the implementation of power through APIs. As will be 

elaborated, the purpose of most vendors in distributing Open APIs is to seek profit and 

build a new infrastructure that depends on them. These purposes influence the 

technical implementation of Open APIs distributed by commercial organisations, 

frames these Open APIs as (in spite of their name) Closed Source APIs, and reinforces 

various forms of control.  

Power from legal contract.  

These forms of control have two dimensions. First, Open APIs give providers an 

almost unlimited power through accessibility and the setting of legal contracts such as 

Terms of Use or User Agreement. Providers can change their rules and limit access 

whenever they sense a threat from third-party developers. Third-party users are thus 

rendered passive, as they are not involved in the negotiation of the rules that govern 

them. Sometimes users‘ applications or websites are suspended when vendors of APIs 

limit access. Sometimes they are involved in lawsuits because they offend the 

constantly changing Terms of Use or User Agreements. Changes in the 2011 Twitter 

API is a typical example of how this works in practice. Although third-party 

programmers were obeying the terms of Twitter APIs, from 2010 Twitter enforced 

increased restrictions and contractual limitations on accessibility. These restrictions 

caused financial loss for some third-party users and made them constantly worry about 



Introduction: The Rise of Open APIs 

 

 

11 

offending Twitter‘s governing principles (Bucher, 2013). Moreover, vendors of Open 

APIs restrict redistribution of their services, prohibiting peer production and 

propagating a vendor-dependent infrastructure, which directly contradicts most ideals 

about ‗openness‘ held throughout the history of the Internet. These arguments will be 

elaborated in Chapter Five. 

Power of Pre-defined Code. 

Second, as APIs standardise forms of interaction between applications, their 

functions are similar to what Alexander Galloway (2004) terms ‗protocol‘, which is a 

set of communication rules employed for computers to communicate with each other. 

Galloway divides the history of technology and control into three eras: the classical era, 

the modern era and the postmodern era. The characteristics of each era are as follows: 

Era Machine Period Diagram  Manager 

Classical era Simple 

mechanical 

machines 

Sovereign 

societies 

Centralisation Hierarchy 

Modern era Thermodynamic 

machines 

Disciplinary 

societies 

Decentralisation Bureaucracy 



Introduction: The Rise of Open APIs 

 

 

12 

Postmodern 

era 

Cybernetic 

machines and 

computer 

Control 

societies 

Distributed 

network 

Protocol 

Figure 1.1: Galloway‘s Historical Periodisation of Technology and Control 

Galloway outlines what kind of ‗diagram‘ and what kind of force is taking charge in 

each era. ‗Diagram‘, as Galloway defines it, is cartography of organisational designs 

that coexist with the social field (Galloway, 2004, p. 196). From centralisation to 

decentralisation and the distributed network, each diagram represents a mode of 

control maintained by a different techno-cultural assemblage. The distributed network 

in the postmodern era is managed by protocol, and it extends deeply into every aspect 

of social field (p. 11). Galloway argues that protocol is not merely a technology that 

regulates data exchange on a computational level, but also a management style that 

governs social relations. Protocol carries politics which are similar to bureaucracy and 

hierarchy, though in a way that is distributed throughout networked machines and 

perpetuated through the management of information. Protocol seems to shape reality 

automatically, without direct human intent, making distributed networks more 

controllable and more regulated than the previous forms of hierarchical and 

bureaucratic control. From this perspective, Open APIs, which define a way to connect 

users‘ applications and vendors‘ applications, also contain political and governmental 

‗powers‘ that affect social relationships.  



Introduction: The Rise of Open APIs 

 

 

13 

Following Galloway, Chun (2011) develops Lessig‘s (1999) argument that ‗Code is 

law‘ to emphasise the power of code on the governance of conduct. Chun claims that 

code ‗automatically brings together disciplinary and sovereign power through the 

production of self-enforcing rules‘ for governing (Chun, 2011, p. 27). Chun claims that 

users‘ actions are limited by code, and as code is developed by its programmers, 

programmers have the ability to control users as a form of governance. This governance 

is conducted through self-regulation as users‘ abilities are limited by predefined code. 

Since APIs are pre-defined by vendors, the programming processes with APIs have to 

abide by the protocol that specific Open APIs are using, and external developers have 

to follow the instructions of specific APIs and alter their own software to work with 

Open APIs. In short, external programmers might lose their independence and be 

controlled by forces that come from the inflexible Open APIs developed by vendors. 

Indeed, independent power still exists within code itself, in addition to legal 

contracts like Terms of Service or End-User Agreements. Open APIs can achieve 

results that follow the purpose of designers or exceed their expectations. This subtle 

power of code is what concerns critical code scholarship such as the work of Galloway 

and Chun. Thus, examining the transition of these Open APIs and interpreting the 

power function from a technical perspective is another way to study the mediation of 

Open APIs on the interaction between providers and users. Chapter Five will also focus 

on the force embedded in APIs.  



Introduction: The Rise of Open APIs 

 

 

14 

In sum, this dissertation is firstly going to answer: What is the meaning of ‗open‘ in 

Open API? Why do vendors develop Open APIs and open their private data to the 

public? Discourse analysis will be deployed to answer these questions. This thesis 

then asks: What politics does this term ‗open‘ carry for programmers? What kind of 

unequal relationship is formed between vendors and users of Open APIs? How are 

different kinds of power enforced through API usage? To answer these questions this 

dissertation adopts a perspective derived from Vincent Mosco‘s theory of the political 

economy of communication.  

Methodology 

A political economy approach to communication. 

This dissertation relies heavily on a version of political economy advanced by 

Vincent Mosco (2009). Political economy is usually deployed to analyse distribution, 

exchange, power and control in the processes of production and consumption. It can be 

applied to both physical production and non-physical production, such as that of 

‗immaterial‘ information in the process of communication. According to Mosco, 

‗Political economy is the study of the social relations, particularly the power relations 

that mutually constitute the production, distribution and consumption of resources, 

including communication resources‘ (Mosco, 2009, p. 2). Based on ‗uncover[ing] 

connections between ownership, corporate structure, finance capital, and market 



Introduction: The Rise of Open APIs 

 

 

15 

structures to show how economics affects technologies, politics, cultures, and 

information‘ (Meehan, Mosco, and Wasko, 1993, p. 347), the political economy of 

communication examines how different communication sectors interact with each other 

along with the power embedded in media within a broader social context. Specifically, 

Mosco introduces three entry points for the study of political economy of 

communication: commodofication, spatialisation and structuation. Commodification 

is the process of transforming use values into exchange values (Mosco, 2008, p. 129). 

Commodification happens when goods and services, which are valued for their utility, 

are turned into commodities for exchange in market. Spatialisation is the process of 

overcoming the constraints of space and time in social life. It is significant for the 

study of political economy because communication is one of the primary means of 

bringing about spatialisation throughout society (Mosco, 2008, p. 157). Structuration 

describes ‗a process by which structures are constituted out of human agency, even as 

they provide the very ―medium‖ of that constitution‘ (Mosco, 2008, p. 185). Mosco 

examines structuration of communications in terms of class, gender, race, social 

movements and hegemony to reveal how power works to crystallise what is popularly 

called common sense into hegemony. Structuration, as Mosco proposed, is a means of 

describing the social relations of communication practices (Mosco, 2008, p. 185).  

Examining the role of communication technology is another dimension of 

understanding the political economy of communication. Some scholars might 



Introduction: The Rise of Open APIs 

 

 

16 

overemphasise the role of communication technology in shaping social relationships. 

Benkler (2006) proposes an approach to rethink the political economy of new media 

through the lens of peer-production and sharing. He argues that the economic model of 

the 19
th 

and 20
th

 centuries emphasises marketing and capital–intensive production. This 

model results in an increasingly centralised control mode where the capitalist 

dominates communication and the circulation of information. However, the emergence 

of computers, networks and increasingly affordable media production outlets has 

transformed the economy from an Industrial Information Economy to a Networked 

Information Economy, characterised by non-proprietary forms of production and 

increasingly decentralised individual actions. In the Networked Information Economy, 

‗human capacity becomes the primary scarce resource‘ because of the lower constraints 

of communication and lower transaction costs (Benkler, 2006, p. 6).  

Benkler believes contemporary innovations in informational modes of production 

mostly come from actors who exist beyond the limits of the capitalist market: 

‗Advanced economies rely on nonmarket organizations [sic] for information 

production much more than they do in other sectors‘ (Benkler, 2006, p. 48). He thereby 

believes these innovations, which are free of the centralised control of capitalism, 

reveal the democratic potential of new media.  

However, when these ‗innovations‘ that exist ‗outside‘ of the capitalist market are 

placed into a broader social context, we can see they still have close ties to marketing 



Introduction: The Rise of Open APIs 

 

 

17 

and other capitalist structures of power. Individuals are not automatically empowered 

via technological development, and social media firms can take advantage of the 

increasing ‗creative‘ capability of individuals. Mosco (2009) claims that new media 

users are being exploited by corporate organisations. Compared with traditional media, 

new media ‗deepen and extend tendencies within earlier forms of capitalism by 

opening new possibilities to turn media and audiences into saleable commodities‘ 

(Mosco, 2009, p. 120). Similarly, drawing on the ‗peer production‘ central for social 

media, Bauwens identifies how the creative empowerment of users still takes place 

under the conditions of value extraction that benefit major capitalist organisations: 

Because of the hyperproductive nature of peer production, which allows for 

broader participation and input, passionate engagement, and universal distribution 

of its benefits (conditioned by network access), it attracts the participation and 

engagement of capital through the activities of netarchical capitalists. Netarchical 

capital is that sector of capital that understands the hyperproductive nature of peer 

production and therefore enables and empowers social production to occur, but it 

is conditioned by the possibility of value extraction to the benefit of the holders of 

capital. (Bauwens, 2012) 

Thus, a critical study of the politics of Open APIs should take into account the 

ownership models implicit in contemporary digital culture, and what kind of value is 

generated through ‗open‘ software, rather than merely examining how ‗openness‘ is 



Introduction: The Rise of Open APIs 

 

 

18 

assumed to technically facilitate coordination between peers.  

Some theorists have tried to combine different methods to deal with complex 

economic issues raised by these technological developments. Van Dijck deploys 

Actor-Network-Theory (ANT) as a complementary method to the political economic 

study of social media. ANT treats both human subject and non-human elements as 

equal actors in the construction of ‗society‘, discovering the dynamic interaction 

between these actors. According to van Dijck, the adoption of ANT is a response to the 

ignorance of technologies in the mainstream political economic study of media. In 

particular, van Dijck criticises Manuel Castells. As she contends, Castells mainly 

focuses on the institutional power, interactions and forms of resistance between 

individuals. However, Castells‘ approach overlooks the technologies themselves, 

especially in their everyday use (van Dijck, 2013, p. 27). Castells‘ political economy 

only examines the ‗larger power relationship vital to their development‘ while ignoring 

technological affordances
4
: ‗Political economists, for their part, focus on 

socioeconomic power struggles between owners and users, but technologies and 

content are likely to escape their radar‘ (van Dijck, 2013, p. 27). 

Van Dijck thus proposes the use of ANT to emphasize the importance of 

                                                      

4 The possibilities that technological changes afford for social relations and social structure. See Wellman, B. (2001). 

Physical place and cyberplace: The rise of personalized networking. International journal of urban and regional 

research, 25(2), pp. 227-252. 



Introduction: The Rise of Open APIs 

 

 

19 

technology in relation to political economy. ANT concentrates on coevolving networks 

of people and technologies, while a political economic approach focuses on the power 

which promotes such a evolution. These two complementary approaches can help 

researchers get an overall perspective of a changing ecosystem of connective media. 

Drawing from ANT and political economy, van Dijck examines popular social 

platforms and argues that large companies are ‗making sociality technical‘ rather than 

‗making the web social‘ (van Dijck, 2013, p. 12). Social activities of users have been 

converted into algorithmic concepts by coding technologies. As a result, global 

corporations are exploiting user connectivity and transmitting ideological principle in a 

subtle way. 

The combination of ANT and political economy considers both social and 

technical features of digital media. But ANT is not a technologically determinist 

method—it also stresses the impact of human agents on altering the ways that digital 

media is used, particularly when these technologies are developed and designed by 

certain groups for certain purposes. All technologies may have positive potential to 

advance social and technical welfare, but how they are utilised, and to what ends they 

are being used, can highly affect the final social impact. Fuchs examines social media 

revolutions and claims technology itself cannot cause revolution: ‗Only people who 

live under certain social conditions and organize [sic] collectively can make rebellions 

and revolutions‘ (Fuchs, 2013, p. 102). He identifies the relationship between power 



Introduction: The Rise of Open APIs 

 

 

20 

and technologies and beliefs:  

Societal phenomena merely express themselves in communicative and 

technological spaces; technologies do not cause them. Technological determinism 

inscribes power into technology; it reduces power to a technologically manageable 

phenomenon and thereby neglects the interaction of technology and society. The 

Internet is not like the mainstream mass media an ideological actor, but rather an 

object of ideological signification in moral panics and moral euphoria. (Fuchs, 

2013, p. 137) 

Thus, the human actors who can alter the usage of these technologies are also the 

central issues in addition to their technical features. 

When applying the political economy of communication to digital media, one 

cannot see technology itself as the only determining factor. Rather, political economy 

looks towards the broader structures of power owned by different human agents, and 

how this power affects the usage of technology. It does not mean that we can ignore the 

technical affordances of digital technology, but that we have to emphasise the 

underlying social system within which a technology is situated. As Birkinbine (2014) 

says, technology has changed, but the underlying class distinctions and social 

antagonisms have not changed (p. 39). ‗In other words, no matter how purportedly 

revolutionary or novel the technology, the technology exists within a capitalist system 

that has certain well-documented tendencies that cause it to remain relatively constant‘ 



Introduction: The Rise of Open APIs 

 

 

21 

(Birkinbine, 2014, p. 39). Drawing from this methodology, this study first examines the 

particular technical attributes of Open APIs, then looks at how capital takes advantage 

of these technical attributes. 

Ideological criticism and critical discourse study. 

Ideology is another dimension that has to be addressed with the political economy 

of communication. Benkler believes technology is neither deterministic nor wholly 

malleable: ‗It can make some actions, relationships, organizations [sic], and institutions 

easier to pursue, and others harder‘ (Benkler, 2006, p. 17). He points out what matters 

in the usage of technology are the values and motivations for human behaviour. 

Likewise, Graham (2007) reviews the history of the political economy of 

communication and criticises contemporary studies. He believes that new media 

‗inevitably lead to new political economic formations‘, so scholars need new 

understandings of political economy to correspond these changes. Graham advocates a 

new political economy of communication by combining four elements: Smythe‘s 

‗consciousness‘
5
, Marx‘s ‗value‘

6
, Silverstone‘s ‗mediation‘

7
, and Lemke‘s ‗meaning‘. 

                                                      

5 The total awareness of life, includes people‘s understanding of themselves as individuals and their relationships 

with other individuals and natural environment. See Smythe, D. W. (1981). Dependency road: Communications, 

capitalism, consciousness, and Canada. New York, NY: Ablex Publishing Corporation. P. 81 

6 The ways in which Marx evaluate various aspects of our world from a political economic perspective, See Marx, 

K. (1867). Capital. Volume I. London, UK: Penguin 

7 See Silverstone, R. (1999). Why study the media? London, UK: Sage. P. 13 



Introduction: The Rise of Open APIs 

 

 

22 

The new political economies of communication require entirely new 

understandings that can comprehend the ways in which consciousness is 

produced; ways in which values are produced; the means by which meanings 

are moved; and the ways in which these aspects are realised in specific 

meanings. (Graham, 2007, p. 26) 

The synthesis of these four aspects can help shape political economy for the complex 

communication environment today. Both Benkler and Graham identify purpose and 

value as significant aspects of human activity and should be considered with political 

economic study. As discursive practices can shape meaning making and affect human 

consciousness, ideological criticism on discourse can be complementary to political 

economic study. Graham and Luke (2011) propose critical discourse analysis and 

political economy to understand the new corporate order. They define discourse as 

‗institutionally and culturally structured patterns of meaning making‘ and deploy 

critical discourse analysis as the study of discourse with particular reference to 

inequalities of power and formulation of ideology (Graham & Luke, 2011).  

Fuchs (2013) outlines a comprehensive way to study social media through 

ideology critique. He contends: ‗ideologies are practices and modes of thought that 

present aspects of human existence that are historical and changeable as eternal and 

unchangeable […] ideologies claim that things cannot be changed, have always been or 

need to be the way they are now‘ (Fuchs, 2013, p. 17). Following Marx, Fuchs believes 



Introduction: The Rise of Open APIs 

 

 

23 

that everything in society is created by humans in social relationships and can be 

changed—everything has alternatives (p. 17). Ideology naturalises something as 

common sense, creates ‗false consciousness‘, and makes us believe some claim about 

reality is undoubtable. Thus, ideology critique is essential to ‗denaturalise‘ what is 

accepted as ‗natural‘ relations of existence. Ideology critique is a complementary 

necessity for any political economy of digital media, as ideology is usually a required 

component for the maintenance of domination and exploitation. Political economy 

focuses on the structural features of capitalism, while ideology critique identifies 

claims about reality and exposes them as false or contingent (Fuchs, 2013, p. 97). This 

dissertation thus employs critical discourse analysis to discuss the ideology of ‗open‘ 

when employed by Open APIs. 

Ideologies are usually naturalised by the use of discourse for specific goals by 

specific organisations. This discourse claims something is natural and unchangeable. 

Critical Discourse Analysis (CDA) is one way to reveal ideology, specifically 

identifying the structural relations of power legitimated by language. Fairclough is a 

theorist who believes ideologies are significant for various social relations including 

power differences and inequalities (Fairclough, 2013, p. 26), and he proposes CDA for 

ideological critique. Ideology is firstly a relation between texts and power, and it is also 

a relation ‗between orders of discourse and power and between languages and power‘. 

Meanings of texts, in which power is embedded, can in turn affect social structure and 



Introduction: The Rise of Open APIs 

 

 

24 

power structure and ‗can achieve relative stability and durability in social practices and 

social structures‘ (Fairclough, 2013, pp. 28-29). As Fairclough (2013) contends, 

contemporary capitalism has the power to ‗prevents or limits, as well as in certain 

respects facilitating, human wellbeing and flourishing‘ (Fairclough, 2013, p. 2), and 

discourse should account for this power as it ‗brings into the complex relations which 

constitute social life: meaning, and making meaning‘ (Fairclough, 2013, p. 3).     

Specifically, to deploy critical discourse analysis is to ‗explore often opaque 

relationships of causality and determination between (a) discursive practices, 

events and texts, and (b) wider social and cultural structure, relations and process; 

to investigate how such practices, events and text arise out of and are ideologically 

shaped by relations of power and struggles over power; and to explore how the 

opacity of these relationships between discourse and society is itself a factor 

securing power and hegemony. (Fairclough, 2013, p.93) 

In this study, the ideology of the seductive word ‗open‘ is examined. This dissertation 

argues how the term ‗open‘ conveys an ideology that expresses a strong belief in the 

power of technology itself, as if Open APIs are effectively independent of society and 

can automatically facilitate free or open standards among programmers. By 

denaturalising the taken-for-granted assumption that Open APIs are, in fact, ‗open‘, 

this study puts Open APIs into a broader social context to explore the ideological 

manipulation inherent in this ‗openness‘.  



Introduction: The Rise of Open APIs 

 

 

25 

Overview of Dissertation 

In sum, how vendors make sense of the ‗open‘ of Open APIs, how third-party 

developers use and understand Open APIs, and what is the implication of this 

integration in programming are the major questions of this study. Specifically, this 

study focuses on documentary evidence of corporate operations, FLOSS (Free/Libre 

and Open Source Software) community and developers‘ forums. The structure is as 

follows: Chapter Two identifies the technical features of Open API and discusses the 

meaning of the ‗open‘. This ‗open‘ is compared with different historical meanings 

given to ‗openness‘ in programming. Then it revisits the discussion of the power of 

code to identify the pre-defined technical features of Open APIs, and concludes with 

the argument that for-profit corporations alter the technical feature of Open APIs to 

enforce control, which make the ‗open‘ of Open APIs far from the open standards of 

open source. Chapter Three reviews previous literature about participation in digital 

technology and identifies new principles for the examination of exploitation. It points 

out that a new form of surplus value is generated in digital technology use. It also 

identifies the power that maintains this exploitation as another principle to examine 

the politics of Open APIs. Drawing from specific examples, Chapter Four explains 

how the production of surplus value happens in the use of Open APIs from the 

perspective of political economy. Chapter Five then focuses on how the power of 

vendors is maintaining this exploitation. Throughout, this dissertation identifies the 



Introduction: The Rise of Open APIs 

 

 

26 

ideological manipulation implemented by vendors of Open APIs. Vendors are 

promoting a closed system and use ‗open‘ as a marketing strategy to compel 

developers to join this system, which will be detrimental to the development of 

software.  



Chapter 2: The Openness of Open APIs 

 

 

27 

Chapter 2: The Openness of Open APIs 

This chapter focuses on the specific meaning of ‗open‘ in Open APIs. It outlines 

how different groups understand ‗openness‘ and clarifies whether this ‗open‘ is aligned 

with the historical meaning of ‗open‘ in the field of programming. As some of the 

language used by programmers tends to be obscure or ambiguous, this chapter begins 

by contextualising ‗open‘ and associated terms by providing relevant background 

knowledge essential for understanding debates about the openness of software. Then it 

gives an introduction to the ‗open‘ movement and the rise of Free and Open Source 

Software (FLOSS) community, and examines their use of openness as a positive value. 

Finally, this chapter identifies the technical and social characteristics of Open APIs to 

see how they differ from this historical understanding of ‗open‘. 

Source Code, Object Code and Software 

Source Code is a key element in computing. Berry (2011) identifies two major 

kinds of code in programming: delegated code and prescriptive code. For Berry, 

delegated code is what people usually call source code: human-readable text files that 

are used for editing and programming software (Berry, 2011, p. 52). Source code cannot 

usually be run and understood by a machine. Instead, it needs to be translated—or 

compiled—into executable, machine-readable prescriptive code. At a machine level, 

prescriptive code is usually binary, ‗represented digitally as a stream of 0s and 1s and is 

very difficult for humans to write or read directly‘ (p.53). This prescriptive code is 



Chapter 2: The Openness of Open APIs 

 

 

28 

machine-read language that aims to give direct orders to computers.  

Prescriptive code is generally referred to as ‗object code‘ by programmers; it is 

usually packaged and sold as product without the underlying source code (Berry, 2011, 

p. 53). Users cannot edit a product like Microsoft Word, for instance. It is this final 

product that we refer to as ‗software‘. In effect, prescriptive code, object code and 

software are different names of the same thing (Berry, 2011, p. 32, p. 65). However, 

source code is different: It is the static textual form of software which consists of 

human-readable instructions, while software is the processual operating form (Berry, 

2011, p.32). When we are using Microsoft Word, it is in the form of object code, while 

source code is controlled and maintained by the Microsoft Corporation. For skilful 

programmers, access to source code means they can study and modify software. 

Moreover, programmers can redistribute new software based on the original source 

code. As exposing source code might result in infringement of intellectual property, 

proprietary software vendors usually keep the source code secret. In this regard, 

whether the source code of a software package is available for external developers is 

key to a sense of ‗openness‘.  

The Power of the Human in the transition from Source Code 

to Object Code  

Vaidhyanathan (2001) also identifies the relationship between these two basic 



Chapter 2: The Openness of Open APIs 

 

 

29 

forms of code in programming. As he said, source code is a set of instructions that 

human beings write in order to give commands to programmable computers. Source 

code can be translated into object code by a ‗complier‘, then object code can give direct 

orders to the computer (Vaidhyanathan, 2001, p. 154). What should be clarified here is 

there is a clear line between these two codes. Source code and object code are related 

but not identical, and the process of ‗translation‘ from source code to object code does 

not happen automatically. Chun (2011) suggests that this difference has resulted in the 

positioning of ‗source code as fetish‘: 

To state the obvious, one cannot run source code: it must be compiled or 

interpreted. This compilation or interpretation—this making executable of code 

—is not a trivial action; the compilation of code is not the same as translating a 

decimal number into a binary one. Rather, it involves instruction explosion and 

the translation of symbolic into real addresses (Chun, 2011, p. 23). 

There is a gap between source code and execution. Source code can be rendered into 

machine-readable commands and be executed, but there is a process pre-defined by 

human programmers. As Chun (2011, p.53) argues, source code itself is not 

executable without the intercession of other ‗layers‘, and computers cannot think but 

merely follow human instructions (Chun, 2011, p. 53). Code has been made to be 

executable by human, thus the format of source code and its connection with 

executable object code are controlled by the code creators. Lessig (2006) argues that 



Chapter 2: The Openness of Open APIs 

 

 

30 

‗code is law‘—code in cyberspace regulates software and hardware like laws do in 

real space, thus code creators are increasingly lawmakers and are empowered: ‗They 

determine what the defaults of the Internet will be; whether privacy will be protected; 

the degree to which anonymity will be allowed; the extent to which access will be 

guaranteed. They are the ones who set its nature‘ (Lessig, 2006, p. 79). A key point 

Lessig mentions is: laws penalise people after they violate a rule, but code enforces its 

control directly; people just cannot offend this new ‗law‘ in the beginning (p. 110). 

Code changes following the choices and values of the code creators require users of 

code to adhere to those same values. Chun further argues that code is not law but rather 

a lawyer‘s dream of what law should be: automatically enabling and disabling certain 

actions, functioning at the level of everyday practice (Chun, 2011, p. 27). Code is not 

inherently neutral and open, it is created and controlled by initial distributors.  

In sum, the power of vendors of specific code comes from two dimensions. In 

addition to the accessibility of source code, another force comes from the design of 

code. That is, code is executable because it embodies the power of the executive (Chun, 

2011, p. 27). Vendors define how source code can be executable, thus enabling and 

disabling certain usage. This power is given and controlled by designers or owners of 

specific code. Thus, even if the source code of software is accessible and free to be 

used by external developers, it does not mean the software is free of corporate power, 

because source code is already in its pre-defined form to achieve specific goal. 



Chapter 2: The Openness of Open APIs 

 

 

31 

Programmers who wish to modify source code have to obey the pre-defined order of 

vendors so that they make their program executable. This pre-defined feature of 

software carries political economic issues as well. 

Software without source code cannot be modified or redistributed—this is the first 

level of control over software employed to manage its political economy. The 

availability of source code (or lack thereof) and the legality of copyright both ensure 

this control. In the second and more subtle level, the disciplinary power of code 

developers is embedded in the source code of software and are ruling the programming 

process. The following section will introduce the open movement which began in the 

middle of last century to elaborate the relationship between code and openness, along 

with the politics of resisting the corporate control of software and programming. 

The Open Movement and Disclosure of Software 

In the 1960s and 1970s, ‗only computer programmers used computers widely‘ 

(Vaidhyanathan, 2001, p. 154), and companies often released source code along with 

their software in the spirit of openness and collaboration among programmers. When 

the software industry bloomed in the 1980s, companies became aware of the 

importance of keeping code secret to earn profit (p. 154). UNIX was a popular 

operating system developed by MIT in the 1980s, and Richard Stallman was one of the 

developers of UNIX. However, AT&T, as the vendors of UNIX, decided to keep the 

source code secret and make it commercial in 1982, which made it difficult for 



Chapter 2: The Openness of Open APIs 

 

 

32 

programmers to learn and update. Stallman realised the threat to freedom and creativity 

raised by increasing corporate control, and left MIT to establish the Free Software 

Foundation (FSF) in 1984. With the FSF, he established the GNU operating system and 

urged programmers to distribute what they had produced under free software licenses 

on his new system. Stallman, as the head of the FSF, started promoting software 

freedom and fighting against the proprietary software since then. This ‗Free‘ means 

freedom to ‗run it, to study and change it, and to redistribute copies with or without 

changes‘ (Stallman, 2014). As it is often described, the ‗free‘ of Free Software is not the 

free of ‗free beer‘, as it is not about money but about liberty (Vaidhyanathan, 2001, p. 

155).  

To avoid free software being used by corporate power, Stallman proposed 

‗Copyleft‘ licenses. ‗Copyleft licenses require that anyone who copies or alters Free 

Software agrees to release publicly all changes and improvements. These changes 

retain the Copyleft license. Thus the license perpetuates itself. It spreads the principle 

of openness and sharing wherever someone chooses to use it‘ (Vaidhyanathan, 2001, p. 

155). In short, Copyleft refers to licenses that ‗allow derivative works but require them 

to use the same license as the original work‘ (GNU Operating System, 2014a). The 

GNU General Public License (GPL) is one typical copyleft license of free software.   

In 1998, Eric Raymond and a group of hackers founded Open Source Initiative 

(OSI). Differentiated from the FSF, OSI focused on the practical value and economic 



Chapter 2: The Openness of Open APIs 

 

 

33 

perspective of software. They created the open source operating system ‗Linux‘ to 

promote their works. Unlike Free Software, Open Source Software does not confront 

the issue of intellectual property directly. Some advocates of Open Source Software 

believe that Open Source can appeal to corporate entities, as it highlights the practical 

perspective and admits the commercial value of software. Other supporters of Open 

Source simply rejected Free Software‘s ethical and social values as ideological and 

radical (Stallman, 2014). For the Open Source movement, the question of whether 

derivative software should be open source is a practical question, not an ethical or 

political one. OSI regards non-free software as a suboptimal solution. However, for the 

FSF, non-free software is a social problem and free software is the solution (Stallman, 

2014).  

Distinction of Free Software and Open Source 

From a practical perspective, all the licenses of open source software and free 

software allow the source code of the original program to be freely distributed. The 

main difference is their relationship with proprietary software—with or without 

restriction on derivative works. Free software emphasises the redistribution of the code, 

completely opposing any commercial usage of software (West, 2003) which could 

affect the ownership of derivative works. Programmers of free software have to give up 

any proprietary control of their works and require any derivative works to follow the 

principles of free software, too. For instance, if software is released under GNU 



Chapter 2: The Openness of Open APIs 

 

 

34 

General Public License (GPL), all users should share any changes when using it, and 

any derivative works should also follow the GNU GPL. In this way ‗you can avoid the 

risk of having to compete with a proprietary modified version of your own work‘ by 

using GNU GPL (GNU Operating System, 2014b), as the FSF suggests. 

While the Free Software Foundation recommends such copyleft licenses, and 

usually use GNU GPL (GNU Operating System, 2015), the Open Source Initiative is 

more liberal as it maintains a list of approved licenses, which includes GNU GPL, 

though is not limited to it. Software under any license approved by the Open Source 

Initiative can pass the review process and label themselves open source (OSI, 2014a). 

Some licenses do not require the distributed works to open their source code. For 

example, the MIT License and BSD (Berkeley Software Distribution) License enable 

programmers to develop proprietary software based on original software. These 

licenses allow developers to use open code to create a commodity. Thus, Open Source 

Software are more attractive for external users as users maintain a degree of ownership 

over their software and can monetise them.  

The Openness of FLOSS and its Alteration 

Although the Free Software and Open Source Software communities differ in their 

values, they share the same belief: software should be free for developers to study, 

modify and distribute. That is why they can be combined together and coined FLOSS 



Chapter 2: The Openness of Open APIs 

 

 

35 

(Birkinbine, 2014, p. 13). According to OSI, to qualify as ‗open‘, software needs to use 

at least one of the approved licenses (OSI, 2014a) and go through a public review 

process by OSI (OSI, 2014b). All the licenses emphasise the right of redistribution in 

addition to merely making source code inspectable. The implication of ‗open‘ in open 

source software has been misused by commercial organisations, and OSI has pointed 

out this phenomenon:  

The term ‗open‘ applied to software source code was sometimes used to 

imply source code being merely inspectable or visible or available, as in the 

phrases ‗open computing‘ and ‗open systems‘ that were adopted by 

proprietary Unix companies‘ marketing efforts in the 1980s. OSI‘s term 

‗open source‘, as detailed in the Open Source Definition, has since clarified 

that open source specifically entails not mere inspection access but also 

conveying to recipients the perpetual right to fork (develop new software 

with the source code of original software) covered code and use it without 

additional fees (OSI, 2014c). 

Stallman (2014) also identifies that some companies have taken advantage of the term 

‗open‘. He points out that IBM and Cygnus were advertising their proprietary programs 

as ‗Open Source‘. The description of their software ‗didn‘t actually say that these are 

―open source software‖, they just made use of the term to give careless readers that 

impression‘ (Stallman, 2014). Stallman subsequently pointed out these corporations‘ 



Chapter 2: The Openness of Open APIs 

 

 

36 

trick: ‗These companies actively invite the public to lump all their activities together; 

they want us to regard their non-Free Software as favourably as we would regard a real 

contribution, although it is not one. They present themselves as ―open source 

companies,‖ hoping that we will get a warm fuzzy feeling about them, and that we will 

be fuzzy-minded in applying it.‘ Stallman also identifies why companies use the term 

‗open‘ in preference to ‗free‘: perhaps the term ‗free‘ is loaded with idealism while 

‗open‘ is more suitable for developers to accept (Stallman, 2014). ‗Open‘, to some 

extent, is deployed by commercial organisations to mislead developers. 

What needs to be clarified here is the definition of ‗open‘ of FLOSS entails not only 

inspection or usage, but also the right of modification and distribution without fees 

(OSI, 2014d). In response to the commercialised misuse of the word ‗open‘, 

programming communities such as Creative Commons gave a clear definition of 

‗open‘ through principles that define openness in relation to data and content 

(Creative Commons, 2014; Open Definition, 2014). This definition is according to the 

principles of OSI and FSF. From the documents that define ‗open‘ we can conclude 

that both free software and open source software meet the same requirements, which 

are the essence of FLOSS:  

1. Both source code and object code should be open to public (OSI, 2014d).  

2. There should be no restrictions on use that differentiate between users.  

3. Anyone is able to legally modify and redistribute open software.   



Chapter 2: The Openness of Open APIs 

 

 

37 

4. Any implementation of this software should be free of charge.  

Software that lacks any one of these conditions is partly closed and cannot be labelled 

‗open‘ according to FLOSS criteria.  

From The Open Software Movement to Open API: Or, The 

‘Open’ in Open API 

Exploring ‘openness’ with two sets of questions. 

Tkacz (2014) traces the proliferation of the word ‗openness‘ and considers how it 

functions in contemporary culture. As he claims, the ‗spirit of open‘ is closely 

articulated with collaboration and participation with reference to the debates about 

open systems and the emergence of the FLOSS community (Tkacz, 2014, pp. 7-8). 

‗Translated from the world of software (but not reducible to it), openness must 

therefore be understood as a powerful new form of political desire in network cultures‘ 

(Tkacz, 2014, p. 28). And network cultures, as Tkacz states, refer to ‗groups who 

organize [sic], communicate, and produce primarily through the web and other 

networked technologies‘ (Tkacz, 2014, p. 28). As he identifies, today openness passes 

through technocultures, undergoes transformations, flows into every aspect of 

contemporary culture and triggers politics. For example, discourses of ‗open‘ in open 

access, the Open Everything movement, and the ‗openness‘ of organisations all carry 

different meanings. ‗Open‘ in open access describes the making available of published 



Chapter 2: The Openness of Open APIs 

 

 

38 

content such as scholarly, educational or scientific materials. This ‗open‘ refers to 

making knowledge accessible and visible. The strongest expression of a new form of 

openness comes from the Open Everything movement from 2010. The ‗open‘ of the 

Open Everything movement covers different dimensions of openness but mainly 

focuses on a new mode of collaboration, which gathers people to use openness to 

create and improve software, education, media, architecture, etc. (Tkacz, 2014, pp. 

26-28). The meaning of open also varies in different organisations. For example, 

Tkacz identifies the openness of Wikipedia as allowing for creation and modification 

under commons-based licenses. But sometimes openness is fraught with ambiguity, 

when used, for instance, by companies like Google for ‗an innovative and competitive 

production method‘ (Tkacz, 2014, p. 29).  

Thus, it is important to differentiate these forms of ‗openness‘ and ask two 

questions: What is actually open? To what extent is it open? In regards to 

programming, we have to ask specific questions in relation to its technical features. 

This dissertation proposes two set of key questions when examining the openness of 

one software. The first set of questions is: With a specific piece of software, what is 

actually open? Source code? Or object code? Or both? The second set of questions are 

concerning the right of external developers: Open to whom? To what degree it is 

open—is it only visible for watching and learning, or can users use and modify it? 

Can users actually redistribute it and gain profit? Clarifying these questions is key to 

identifying the ‗openness‘ in programming. 



Chapter 2: The Openness of Open APIs 

 

 

39 

Two levels of interaction in Open APIs. 

After identifying the criteria of the openness, we can examine the openness of 

Open API from a technical perspective in this section. One API alone does not 

compose an entire software platform. De Souza and Redmiles (2009) point out the 

importance of information hiding in software engineering, and the relevance of this 

hidden software with the development of Open APIs. They identify APIs as a way of 

hiding functionality of software, as APIs support the separation of an interface from its 

implementation. For vendors, the main advantages of deploying APIs come from ‗the 

possibility of separating modules into public (the API itself) and private (the 

implementation of the API) parts‘ (De Souza & Redmiles, 2009). In this sense, adopting 

an API contains two level of interaction, and external users are dealing with two objects: 

modules (which this dissertation also refers to as ‗interface‘) and implementation 

(which this dissertation also refers to as ‗data‘ or ‗functionalities‘ from underlying 

software).  

Technically speaking, one Open API is just an interface to specify a way for 

integration and it cannot function without the underlying software or functionality (e.g., 

Google Maps is the underlying software and data set of Google Maps API). However, 

the meaning of ‗Open API‘ has been conflated with the underlying functionalities in 

recent years. According to Stanton (2015), the term API was initially referred to a 

precise specification that helps developers to connect software components: ‗It 



Chapter 2: The Openness of Open APIs 

 

 

40 

describes what functionality is available, how it must be used and what formats it will 

accept as input or return as output.‘ However, now API is colloquially used to describe 

both the interfaces and the underlying service by many programmers (Patterson, 

2015). As a result, what is actually open has been confused, and to what extent it is 

open becomes controversial. Thus, we need to begin with answering the two sets of 

questions about openness in terms of two levels of coordination in API use. 

The integration between the programs of external developers and API providers 

specifically contains two levels of interaction: external programs and Open APIs 

themselves; external programs and underlying software or implementation that APIs 

link to. These two interactions are deeply intertwined and cannot be completely 

separated. Ideally, the openness of Open API should draw from both of these two levels. 

Figure 2.1 outlines this openness: 

 

Figure 2.1: Openness of Open API 

In the level of interface, the source code of Open APIs is ‗open‘ because it is visible for 



Chapter 2: The Openness of Open APIs 

 

 

41 

public and developers can use these codes to retrieve data from underlying software. 

However, sometimes these codes have restrictions on redistribution and some of them 

are not free to use. For example, the Google Maps Terms of Service sections 10.1.1, 

10.1.3 and 10.2 all specify limitations on the redistribution of users‘ software after 

integrating with Google Maps API (Google Maps/Google Earth APIs TOS, 2013). In 

addition, Google Maps API has a request limit per day that prohibits commercial users 

from using it freely (Google Maps API FAQ, 2015). Thus, in the first level, the 

openness of interface refers to merely visible and limited usable.  

In the second level, the object code of underlying software is available, running as 

popular platforms such as Google Maps and Twitter. However, their source code is not 

available for programmers. Corporations tend to keep the source code of underlying 

software secret, as they previously did with other examples of proprietary software. 

The only way to interact with underlying software is to use a vendor‘s API without 

examining the source code. Its object code is also closed as platforms usually just 

provide limited function to different users and sometimes charge fee for premium 

features.  

Power of the Pre-defined ‘openness’ of Open APIs 

Some articles encourage developers to embrace Open APIs, and yet do not make a 

clear differentiation between Open APIs and Open Source (Lyman, 2012; 



Chapter 2: The Openness of Open APIs 

 

 

42 

Carrillo-Tripp et al., 2009; Aitamurto, & Lewis, 2013). These two different kinds of 

technologies contain different affordances. The following chapters will elaborate 

unique features of Open API with specific examples about these affordances from the 

perspective of political economy, while the point here is to clarify a misunderstanding: 

the source code of interfaces must be differentiated from the source code of underlying 

software when analysing the openness of Open APIs. The source code of APIs may be 

open for developers to study and use, while the source code of underlying software is 

always closed for most vendors‘ owned APIs. In fact, a key problem for vendors has 

been solved by APIs: How can we let external programmers integrate and build upon 

our software while minimising the potential threats to our intellectual property? The 

solution is to obscure any underlying software and provide APIs. By means of 

integrating APIs, external programmers can ‗use‘ the underlying software without the 

vendors‘ source code, but this implementation is limited in ‗use‘ and never ‗owned‘ by 

anyone other than the vendor. Michel (2013) introduces a metaphor used by David 

Orenstein to explain how APIs works: 

Let‘s imagine that you are building a deck in your backyard and you realize [sic] 

that you don‘t have a hammer. You have three neighbours who you know have a 

hammer. One neighbour never allows anyone to borrow anything or use any of his 

stuff without paying up. This neighbour represents a closed or proprietary system. 

Another neighbour leaves his garage open and allows you to take anything you 



Chapter 2: The Openness of Open APIs 

 

 

43 

need without any rules or guidelines. This is your bearded open-source neighbor. 

The third neighbour represents an API. You can utilize [sic] the services of her 

hammer as long as you ask her in the proper way. Furthermore, she doesn‘t actually 

give it to you; she just allows you to use it (Michel, 2013, p. xi). 

API providers define the ‗proper way‘ to use, and the code of APIs which designed by 

vendors implicates how ‗open‘ Open APIs are. 

Example of using Google Maps API. 

Analysing the code of Google Maps API is an entry point to explain the openness 

of APIs. Creating a digital map in one application from scratch is complicated, but 

applying APIs to retrieve an existing map from vendors is much easier. Here is an 

example of creating a digital map centred on the University of New South Wales via the 

Google Maps API (W3school, 2014): 

<!DOCTYPE html> 

<html> 

<head> 

<script 

src="http://maps.googleapis.com/maps/api/js?key=A

IzaSyDY0kkJiTPVd2U7aTOA 

whc9ySH6oHxOIYM&sensor=false"> 

</script> 

<script> 

function initialize() 



Chapter 2: The Openness of Open APIs 

 

 

44 

{varmapProp = { 

center:newgoogle.maps.LatLng(-33.91722, 

151.23064), 

zoom:16, 

mapTypeId:google.maps.MapTypeId.ROADMAP }; 

var map=new 

google.maps.Map(document.getElementById("googleMa

p"),mapProp);} 

google.maps.event.addDomListener(window, 'load', 

initialize); 

</script> 

</head> 

<body> 

<div id="googleMap" 

style="width:500px;height:380px;"></div> 

</body> 

</html> 

Figure 2.2: Creates a digital map centred on the UNSW via Google Maps API 

 

Figure 2.3: Result of digital map centred on the UNSW via Google Maps API 

These lines of code are a basic example of using the Google Maps API. When external 



Chapter 2: The Openness of Open APIs 

 

 

45 

developers put this code, or a version similar to this into their websites, they can 

retrieve a map (Figure 2.3) and embed it into their web pages. In addition, external 

developers can also customise the maps with their own information. For example, they 

can change the colour of the map, add markers such as parking areas or add a custom 

legend following the using Google Maps API tutorial (Google Maps Tutorials, 2014). 

The result of customised map can be seen in Figure 2.4:  

 

Figure 2.4: Result of customised digital map 

Figure 2.4 is the customised digital map based on Figure 2.3. To be clear, the maps 

created by Open APIs are not static pictures, but interactive. End users can zoom in or 

explore street view on the embedded maps, in the same way they can with Google 

Maps. As we can see here, Open APIs in these cases are just several lines of code, but 

the result shows the whole function of interactive Google Maps centred on the UNSW. 

Two things should be mentioned here: First, the APIs connect to Google Maps and 



Chapter 2: The Openness of Open APIs 

 

 

46 

authorise users‘ API key in the beginning of the codes via: 

 <script 

src="http://maps.googleapis.com/maps/api/js?key=AIz

aSyDY0kkJiTPVd2U7aTOAwhc9ySH6oHxOIYM&sensor=false"> 

The API key authorises API users and gives them access. Second, there is no source 

code or object code about original Google Maps; all codes for creating the digital map 

are the source code of an API—interface that specifies how to retrieve data from the 

underlying Google Maps. Without the key data of original Google Maps, these codes 

only contain some parameters of how to display Google Maps such as the coordinates: 

-33.91722, 151.23064, or the zoom scope: 15. In short, APIs just define a way to 

retrieve certain functions of Google Maps and customise a map after the authorisation 

of users‘ unique API key. While the source codes of interfaces are available and 

editable, the source codes of Google Maps remain secret by vendors. Every time users 

need a digital map from Google Maps, they request it via their unique API key 

allocated by Google and use the code of interfaces defined by Google. Making 

underlying data closed source and using API key are two ways for vendors to control 

external developers. 



Chapter 2: The Openness of Open APIs 

 

 

47 

Building asymmetrical relationships between vendors and 

developers—power from closed source feature. 

With Open APIs, vendors find a way to provide their proprietary data to external 

developers while keeping the source code of their software secret—providing Open 

APIs to their closed/proprietary software. Keeping code secret protects the software of 

vendors from being exposed, modified or reduplicated. To some extent, it also reduces 

the workload of external developers, as will be examined in Chapter Three. While 

increasing numbers of developers are deploying Open APIs, there has been controversy 

among the programming community about the usage of Open APIs and their 

advantages, especially when compared with Open Source. Some developers think 

source code availability of underlying software does not matter, because executable 

functions that APIs retrieved are enough for software integration (Soulskill, 2011), thus 

Open APIs could be a replacement for Open Source (Lyman, 2012). However, other 

users point out the potential risk when Open Source Software is becoming increasingly 

replaced by Open APIs: 

Seriously though, the source availability may not be of use to you now, 

directly but, if you don't think it is of use to you, then realize [sic] that if the 

service with the published API goes away, you don't have a starting point 

to replace it, other than the API docs. (TheCarp, 2011)  

Once users embrace an API without source code of underlying implementation, they 



Chapter 2: The Openness of Open APIs 

 

 

48 

are bound to an overpowering partner. The modification and availability of the 

underlying implementation of an API could be fatal to external developers‘ application. 

As source code is totally owned and controlled by vendors, external developers would 

lose control over their own product while they become dependent on APIs.  

For example, Google Reader was a platform for serving news and information. It 

aggregated web content such as news, blog posts and video together in one place for 

easy reading. Google Reader provided an API for external websites to integrate with it 

for significant data. However, as the usage of Google Reader declined, Google 

decided to close it in July 2013 even though there were still users using it (Google, 

2013). As many users found Google Reader valuable, they launched a petition to urge 

Google to keep Google Reader (Albanesius, 2013). Realising the difficulty in 

persuading Google to keep running Google Reader, some users asked Google to open 

source the code and let the fans take control: ‗We will find a way to monetise it, we 

will find a way to keep it going‘ (Albanesius, 2013). Yet, Google did not respond to 

users‘ requests. As Google only gave a notice of three months before deleting all the 

data, many users failed to continue their applications or websites. Thus, users have to 

save their data and find an alternative to store it as soon as possible. Many people 

asked Superfeedr (another feed API which aggregates web content) if it could help 

them save the data from Google Reader API (Julien, 2013). However, developers of 

Superfeedr Blog claimed it was difficult to find the right tool to store all this data and 



Chapter 2: The Openness of Open APIs 

 

 

49 

they could only try to ‗back up as much of the data‘ as possible. Moreover, to continue 

their websites means to find an alternative service to store significant data, which is 

very difficult in a short time (Julien, 2013). In order to maximise profit, Google and 

other commercial organisations sometimes shut down their services and their APIs 

when usage declines, regardless of the developers who are reliant on these services. 

This is one risk of using API without underlying source code of implementation. 

Another concern argues the potential risk of engaging with closed/proprietary 

software via API is they might contain unwanted functions or resources that developers 

do not know. A developer wrote a post to state his concerns about using API: ‗You 

don‘t know what the code‘s going to do. Specifically, what will it do to you or your 

business? How will it use or abuse your data?‘ (MBR1, 2012). Developers only get an 

executable file, not the source code, which makes it hard to detect what the program 

really does, and hard to change it. Services or data may contain malicious content or 

bugs which is detrimental to end users of external programs—those who API vendors 

do not or cannot care for. APIs themselves can be used by hackers to deliver malicious 

content. As the source code is not available, it is difficult for developers to detect the 

malicious features embedded in Open APIs. For example, security researcher David 

Sopas has discovered a bug in the Instagram API that could be exploited by hackers to 

post a link to a web resource they manage (Fisher, 2015). Via this bug, hackers can 

post a link which points to a malicious file for end users to download which appears 



Chapter 2: The Openness of Open APIs 

 

 

50 

to come from a legitimate Instagram domain. ‗The attacker can host any malicious file 

he chooses at the target location, including malware‘. Sopas points out that this kind 

of bug is ‗very dangerous and combined with other attacks like phishing or spam it 

can lead to massive damage‘ (Fisher, 2015). Although developers discovered this bug 

and find it dangerous to their services, they cannot fix it by themselves without 

underlying source code. All developers can do is ask vendors to fix the problem they 

have identified. As Sopas said, he tried to convince Instagram to solve this problem as 

soon as possible, but the security engineers of Instagram told him the issue was not a 

priority.  

While the safety and privacy of developers‘ labour cannot be guaranteed, vendors 

usually deploy detailed clauses to avoid their programs being harmed while letting 

users bear the risk alone. For example, Google clarifies its innocence when developers‘ 

software is damaged: 

13.2 You expressly understand and agree that your use of the service and 

the content is at your sole risk and that the service and the content are 

provided ‗as is‘ and ‗as available‘. […] 13.3 Any content obtained through 

the use of the Google services is done at your own discretion and risk and 

you will be solely responsible for any damage to your computer system or 

other device, loss of data, or any other damage or injury that results from 

the download or use of any such content. (Google Developers, 2013) 



Chapter 2: The Openness of Open APIs 

 

 

51 

By hiding their source code, vendors ensure the ownership of their software and 

avoid the potential risk when integrating with external developers‘ software. 

Without the source code, external developers are rendered passive and 

dependent at the same time. This asymmetrical relationship is due to the closed 

source feature of Open APIs. Open APIs can be open source, but vendors 

choose not to do so. For Galloway, code is designed in particular ways to 

achieve particular ends in particular contexts (2004, p. xii); for vendors, 

designing APIs in this closed source way aims at achieving their domination in 

programme development. 

Management of API key as a form of control. 

The API key plays an important role for vendors‘ control of Open APIs. For most Open 

APIs, the first time an external programmer intends to use them, he needs to sign up and 

apply a ‗key‘ from the providers. ‗A key is a string of numbers and letters that identifies 

you as the source of an API request‘ (Yee, 2008, p. 122).  

<!DOCTYPE html> 

<html> 

<head> 

<script 

src="http://maps.googleapis.com/maps/api/js?key=A

IzaSyDY0kkJiTPVd2U7aTOA 

whc9ySH6oHxOIYM&sensor=false"> 

</script> 



Chapter 2: The Openness of Open APIs 

 

 

52 

<script> 

[…] 

<html> 

Figure 2.5: Key of users in API 

In Figure 2.5, ‗IzaSyDY0kkJiTPVd2U7aTOAwhc9ySH6oHxOIYM‘ is the key of 

current user, and an API usually authorises a user‘s identity with the API key in the 

beginning of the code. Each time users intend to use an API they need their unique key 

to grant them access, just like some websites require users to log onto their personal 

account before entering. This key not only grants a user access to the API, but it also 

identifies the user, thus enabling vendors to track and manage that user‘s usage of the 

API. Yee identifies the power of the key: 

Through keys, the API provider knows something about the identity of an API 

user (typically at least the API key holder‘s email address if nothing else) and 

monitors the manner in which a user is accessing the API (such as the rate and 

volume of calls and the specific requests made). Though such tracking, the API 

provider might also choose to enforce the terms of use for the API—from 

contacting the user by email to shutting down access by that key…to suing the 

user in extreme cases! (Yee, 2008, p. 122) 

Keys are required for entrance to most Open APIs today. But once there is a key, it 

means there is a lock—vendors keep track of users, controlling their use of the API, and 

reserve the right to suspend the external developers‘ usage. The API key, as a 



Chapter 2: The Openness of Open APIs 

 

 

53 

pre-defined requirement for developers, entails a sort of protocological control that 

limits developers in the beginning, and it is almost impossible for external developers 

to escape this pre-defined power of code.  

As an API key grants developers access, controlling usage of APIs can also be 

implemented by revoking or suspending an API key. What should be mentioned here is: 

an API key does not inherently exist in API code but is designed by vendors as a way 

of control. Some APIs do not require a key for access in the beginning, but most of 

them deploy an API key as a management style currently. For example, Twitter API 

did not require all developers to be authorised in the beginning, but the vendors 

increased restriction and deployed an API key (known as OAuth) to manage 

accessibility after a few years (Bucher, 2013). When Twitter figured out some 

audiences of Twitter were going to third-party applications based on Twitter API, it felt 

unprecedented threat. From 2010, Twitter enforced increasing restriction to limit 

third-party developers. On March 11, 2011, Twitter‘s platform manager Ryan Sarver 

even posted a message to urge developers to stop making applications which provide 

similar user experience to Twitter. Finally, in late 2012, Twitter updated its APIs 

versions to 1.1, which has several significant changes including the requirement of an 

API key. 

Michel Slippey, as the vice president of product and design at Twitter, outlined and 

explained these changes in a developer blog about Twitter API v1.1. According to him, 



Chapter 2: The Openness of Open APIs 

 

 

54 

the new Twitter API requires ‗every request to the API to be authenticated‘, because 

Twitter found many applications were pulling data from Twitter at very high rates and 

some of them might have malicious use. It also sets per-endpoint rate limiting on the 

API to limit the traffic. Moreover, new rules require developers to work with Twitter 

APIs directly if they have large amount of users. Developers‘ applications which have 

more than 100,000 user tokens, from then on, have to gain permission from Twitter 

directly and are subject to additional terms (Twitter, 2015). Twitter said by direct 

cooperation they could guide developers ‗toward areas of value for users and their 

businesses‘ (Slippey, 2012), but the implication of these rules are more than just a 

guide: it lets Twitter enforce control and surveillance on third-party applications 

especially those which have high volume of API use. In addition, new rules also 

prohibit creating certain kind of applications which are similar to Twitter‘s own 

function, and existing applications which offend these rules are being shut down. 

Tweetbot and Echofon are two applications that have been forced to close. According 

to Slippey, Twitter‘s dominance over third-party applications must be ensured: ‗Nearly 

eighteen months ago, we gave developers guidance that they should not build client 

apps that mimic or reproduce the mainstream Twitter consumer client experience […] 

And to reiterate what I wrote in my last post, that guidance continues to apply today‘ 

(Slippey, 2012). For the vendors of Twitter, using an API key to monitor and control 

developers can significantly cut down the threat of competitive third-party applications 

and ensure vendors‘ dominance.   



Chapter 2: The Openness of Open APIs 

 

 

55 

The control from an API key also happens in the Guardian‘s APIs, which 

provide access to news articles, images, audio or videos. ‗If a partner is in 

breach of our terms we will terminate their key. We will also terminate keys when 

partners abuse our service, use it to compete with us unfairly, or damage our 

brand‘ (The Guardian, 2014a). In addition, an API key also plays an important 

role in differentiating different levels of developers of Guardian APIs, which is a 

kind of discrimination that offends the ‗openness‘ of FLOSS. 

As we examined before, Open APIs do not open all functionalities to all users, 

vendors can open specific, limited function to specific developers. This discrimination 

can be implemented via an API key to classify developers, so vendors can gain more 

profit by targeting specific developers. Guardian API is a typical instance of this 

discrimination. There are three levels of access for Guardian API users: Keyless, 

Approved, and Bespoke (The Guardian Open Platform, 2014a). Keyless tier is the entry 

level. ‗Keyless‘ here might mean an API Key is not even needed, as developers do not 

need to be authorised when access the data through Keyless tier. However, it only 

offers developers the right to access the headlines of news instead of the full text. In 

addition, developers‘ IP addresses will be subject to limitation on the times of requests 

per day. The second level—Approved level—provides full articles to developers, but 

developers have to apply an API key for this level. Moreover, in this level, the 

Guardian keeps the right to ‗sell the ad inventory embedded within Guardian articles 



Chapter 2: The Openness of Open APIs 

 

 

56 

wherever they appear‘ (The Guardian Open Platform, 2014a). Thus, external 

developers who access Guardian API through Approved level have to display ads and 

let vendors profit from advertising. The third one—Bespoke is a high level of access 

and requires unique API key. It offers custom ways for software integration and 

provides premium services. In this level, Guardian API grants users unrestricted 

access and ad-free services, thus third-party developers do not need to worry about the 

interruption of advertisements and limitation of content. For external developers, 

different kinds of API keys determine how they can integrate with Guardian API, 

these integrations define their programming process in the beginning.  

In short, vendors make source code of implementation closed and deploy API 

keys for controlling external developers, so these two technical transformations 

become pre-defined features of most Open APIs today. As Chun claims, code enforces 

power through the production of ‗self-enforcing rules‘ for governing. These two 

features of Open APIs entail irresistible forces that coerce developers to act in 

particular ways. Developers‘ independence and freedom are limited by the code of 

APIs, and as vendors define the code, developers are under the governance of vendors 

via inflexible code. The codes of APIs become a way for vendors to utilise 

surveillance, control and discrimination on developers. As APIs are proprietary, 

vendors can alter the code to fit their purpose as a new form of management, thus 

power of protocol constitutes a coercive means of control designed by vendors. 



Chapter 2: The Openness of Open APIs 

 

 

57 

The ‘openness’ of Open APIs. 

According to the Open Source Initiative (OSI, 2014), open source should have no 

discrimination and restriction on users. However, most Open APIs have many limits on 

use such as request time and ways of using, and some Open APIs set different levels of 

access to differentiate users (Google Developers, 2014; Bucher, 2013; The Guardian 

Open Platform, 2014a) as we discussed above. As companies usually own Open APIs, 

they clearly belong to the category of proprietary rather than ‗open‘. They usually have 

copyright protection and keep source code secret (Free Software Foundation, 2014). 

For Kelty, proprietary is opposed to open and free: ‗the opposite of an ―open system‖ 

was not a ―closed system‖ but a ―proprietary system‖‘ (Kelty, 2008, p. 149).  

Thus, the ‗open‘ of Open API is, at best, a discursive trick. Many people 

automatically associate ‗open‘ in the world of software and programming with the 

openness of open source. These APIs are often thought to be a new means for ‗open‘ 

and ‗free‘ collaboration and peer production. However, most Open APIs (except for 

some APIs that are actually open source) are not open source software and the ‗open‘ 

only means that an API is open for public use rather than restricted to private use within 

one organisation. This ‗open‘ means the certain kind of services that vendors provide 

are visible for public consumption, and external users can implement these services via 

API without direct contact with vendors and their underlying, proprietary software and 

data. However, visibility and limited access are far from the essence of the openness 



Chapter 2: The Openness of Open APIs 

 

 

58 

advocated by the standards developed within the FLOSS movement. Compared with 

the criteria of open advanced by FLOSS, Open API is not open at all. In the level of 

interface, the source code and executable file of APIs are exposed to users, but 

limitation on accessibility are enforced by vendors. Moreover, as some companies own 

the copyright of API, redistribution without permission or any imitation might result in 

legal issues. In the second level, the underlying software is no different from the 

previous closed or proprietary software—users only get executable files without the 

source code. In fact, Open APIs only give users the right to retrieve a specific, complied, 

executable form of underlying software, while the source code of both APIs and the 

software behind them differ from the openness of FLOSS.  

As Kelty (2008, p. 303) claims, a great deal of social software today merely 

borrows the idea of Open Software, but is, in fact, not open at all. This software merely 

intends to make users into consumers (Kelty, 2008, p. 303). In essence, Open API is an 

affiliated tool of proprietary software, which borrows the name of open and is used by 

vendors to pursue profit through the language of the movements that previously shaped 

the communal and political use of software as a form of anti-corporate activism.  

  



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

59 

Chapter 3: Profiting from Closed Source 

Open APIs—How Vendors Exploit 

Developers  

As examined in Chapter Two, despite their name, Open APIs are neither open  

through their interfaces nor through their underlying software. Technically, these Open 

APIs are Closed Source APIs, and are usually owned and managed by commercial 

organisations. However, another set of Open APIs—Open Source APIs—does exist, 

which follows the criteria of the ‗open‘ standards of FLOSS. For example, OpenStack 

is a set of open source software for building and managing cloud computing platforms. 

It aims to build an open source community with researchers, developers and 

enterprises to create a scalable cloud computing system (Wen, 2012). OpenStack APIs 

let developers access all the components of OpenStack and use predefined functions 

(OpenStack, 2014). As they are developed under open processes, followed by open 

licenses with open governance, OpenStack APIs are Open Source APIs. Although 

Open APIs contain both Open Source APIs and Closed Source APIs, Open Source 

APIs are often ignored by developers, and their numbers and popularity do not rival 

Closed Source APIs. As shown on Programmableweb.com, a popular website for APIs 

developers to communicate and share ideas, most popular APIs discussed, including 

those operated by Facebook, Google Maps, Twitter and YouTube, are all owned by 

commercial organisations (Duvander, 2014). When programmers hired by these 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

60 

corporations develop their APIs, they do not follow the model of those from the FLOSS 

community who aim for sharing and peer-production, and are instead beholden to their 

employer. They are employees serving the companies they work for, which use APIs to 

seek financial profit. As a result, the ‗open‘ of their final programming product is 

different from the ‗open‘ of FLOSS community. As Closed Source APIs account for a 

major proportion of popular Open APIs today, they in effect force some programmers 

to overlook the differences between the ‗open‘ of ‗Open Source‘ and ‗Open APIs‘.  

In this regard, this chapter will focus on how these prevalent Closed Source APIs, 

as particular kinds of Open APIs, have become dominant in contemporary Internet 

culture and facilitate a new form of participation. It first identifies the convenience of 

adopting Open APIs to advance external programs, and explores how enthusiastic 

external developers are in using these APIs. It then examines this enthusiastic 

participation in programming in terms of critical concepts such as participatory 

democracy, peer production and recursive publics, and points out these modes of 

participation constructed by Open APIs are exploitative and can be utilised by 

companies. After that, this chapter introduces the theories of exploitation developed 

by Marx, Fuchs, Andrejevic and others, and then discusses how to apply their 

concepts of exploitation to understand the power of digital technology; specifically 

how to examine the collaboration of Open APIs in terms of a critical political 

economy of digital media. 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

61 

The Convenience of Using Closed Source APIs 

How Open APIs reduce the cost of collaboration and facilitate the integration of 

software has been identified by many studies. Rather than discuss the impact of Open 

APIs on the whole software industry, this section argues Open APIs, at least, are a fast 

and easy way for individuals to integrate with vendors‘ software, and this convenience 

is a major advantage of Open APIs over Open Source, which ensures the domination 

of this new ‗openness‘.  

Once programmers find a useful API, they can learn to use it and embed them into 

their application in a very short time. Even for nonprofessional programmers, to begin 

with an unfamiliar API is not a difficult task if they have basic programming knowledge 

(Gray, 2015). There are three reasons why Open APIs are seductive for external 

programmers: they are easy to access, easy to use and they provide substantial 

infrastructures for programming. 

First, gaining access to an Open API is much easier than obtaining and making use 

of the source code of concrete software. The underlying proprietary software contains 

substantial resources for external developers, but it usually takes time and effort to get 

direct access from vendors if developers need an entire source code of software. Using 

Open APIs is another way to collaborate with proprietary software rather than negotiate 

with vendors, signing a contract after negotiation, and obtaining direct access to source 

code. Although developers have to accept the TOS of APIs and get an API key before 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

62 

using, this process usually just takes a few minutes and users do not need to 

consciously engage in the establishment of these legal contracts. For instance, if 

developers intend to build an application based on the Twitter API, they just need to do 

three things:  

1. Log on to their Twitter account;  

2. Go to the ‗create an application‘ page and fill in a simple form—which only 

requires the application‘s name, description and URL;  

3. Read the Developers Agreement (which many individual users do not actually 

read, anyway) and agree to it (Twitter, 2014).  

After these three steps, Twitter grants developers an API Key, and API users gain 

access to the Twitter API. Obviously, it is much easier to begin with an Open API than 

through direct contact with vendors to ask for access to original source code.    

Second, without the process to study the underlying software, developers can 

improve their own services and bypass any effort to study complicated source code. 

Unlike dealing with software from companies or the FLOSS community, developers 

just need to examine and use the source code that APIs provide from the level of 

interface instead of the complex underlying software. Although different APIs vary in 

their source code, and it still takes time for developers to learn how to program with a 

specific API, they are all simpler than dealing with the source code of an entire 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

63 

corporate platform. In addition, companies are constantly updating their APIs, not only 

to provide new functions, but also to simplify code to maintain ease of use. Twitter‘s 

new REST APIs (a new style of API developed under Representational State 

Transfer—a new and light web service architecture), for instance, provide easy 

programmatic access for external developers to read and write Twitter data. If 

developers need a collection of the most recent tweets posted by specific Twitter users, 

they just need to log on their account, authenticate their API key, and simply enter the 

API request URL into their browser:  

 GET 

https://api.twitter.com/1.1/statuses/user_timeline.

json?screen_name=twitterapi&count=2 

Twitter will then send back the result code for developers for copy. This request 

comparatively easy to learn: ‗GET‘ means retrieve information; 

‗https://api.twitter.com/1.1/statuses/user_timeline‘ is the resource URL that Twitter has 

defined for this request; ‗json‘ is the format of result code, can be replaced by XML, 

RSS or any other format that Twitter supports; ‗screen_name‘ is the name of a user, 

which, in this example, is ‗twitterapi‘; and ‗count‘ is the number of tweets developers 

intend to retrieve, in this case is two (‗2‘) (Twitter Developers, 2013). There are a 

number of other parameters that can be added to the request, which can be found in the 

tutorial (Twitter Developers, 2013). But the point of this example is that a simple 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

64 

request can let developers get a set amount of information through the new Twitter 

API. 

Vendors usually specify categories for their APIs, and have detailed tutorials for 

them (e.g. Twitter Developers, 2015b; Google Maps Tutorials, 2014). Some API 

providers archive code samples so users do not need to remember the actual code of 

each API. For example, Google archives sample code of Google Maps JavaScript API 

v3 for reference at https://developers.google.com/maps/documentation/javascript/- 

examples/. Moreover, some APIs have a system that lets programmers customise how 

they access the API via a simple form, which then automatically generates source code 

for programmers. Programmers just need to copy and paste rather than write the code 

themselves. Twitter‘s new OAuth Tool, for instance, can generate part of the final 

source code that developers need to interact with Twitter (Twitter Developers, 2015a). 

Some API providers like Autonavi even provide users with visual tools, and amateur 

programmers with little coding knowledge can simply change the parameters in a form 

(Autonavi LBS Open Platform, 2014a), or edit digital maps to depict intended results 

(Autonavi LBS Open Platform, 2014b). These visual tools can then generate source 

code to be used to interface with these platforms. Programmers merely need to copy 

and paste API code into their software. 

Third, some Open APIs provide programmers with a solid infrastructure so they 

can build new applications that then augment a specific platform. It takes a huge 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

65 

amount of effort for an individual to launch a location-based service from scratch. 

However, building these applications on the infrastructure afforded by, say, the APIs of 

Google Maps or Foursquare is significantly easier. Innovative developers can also 

integrate several APIs and build a new application without any first hand resources. For 

example, AA Route Planner uses the Google Maps API for driving directions, and 

retrieves real time traffic conditions from the TomTom Geocoding API, all to create a 

comprehensive route plan for drivers (AA, 2014). Location Based Instagram Photos is 

another interesting application built by third-party programmers. It is based on two 

different APIs: the developer uses the Google Maps API and the Instagram API to 

display Instagram photos based on your location (MobileMerit, 2014). 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

66 

 

Figure 3.1: Location Based Instagram Photo 

The convenience of integrating Open APIs gives programmers an unprecedented 

ability to improve existing applications or build new applications without too much 

effort, and nonprofessional programmers who are interested in software can build their 

own application through APIs. Rather than handling complicated copyright issues and 

dealing with the complexities of the source code of an entire platform, programmers 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

67 

implementing APIs only need to sign a user agreement and learn simple programming 

interfaces. The latter choice also offers substantial resources and functionalities for 

external programmers.  

Participating in Using APIs and the Feeling of ‘Fun’ 

As discussed in the previous section, APIs seem like a terrific opportunity for 

programmers to enhance their applications, which is primarily why they are welcomed. 

Indeed, studies show that developers are often even thought to be addicted to ‗playing‘ 

with Open APIs. Bucher (2013) examines developers‘ addiction to APIs through an 

investigation of individual responses to the Twitter API. As Bucher shows, 

‗[u]tterances like ―engineer by day, Twitter hacker by night‖, or ―making apps for fun 

after work‖‘ is common parlance among Twitter developers forums. Some developers‘ 

vocations are completely irrelevant to Twitter API, but they still use it in their spare 

time as it is ‗a super fun way to get into coding‘ and some of them hope to create the 

‗next killer app‘ (Bucher, 2013).  

These examples show the fact that, while some have to deal with APIs in their 

daily work, programmers still spend plenty of their spare time playing with APIs in 

their daily life as a gratification. Developers are enthusiastic in participating in 

programming with Open APIs, and their enthusiasm is similar to what they had on 

FLOSS. However, as this ‗openness‘ is different, as discussed in Chapter Two, 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

68 

engaging with APIs and FLOSS can carry different politics for programmers.  

Participatory democracy in digital media. 

Fuchs‘ (2013) discussion of participation and exploitation in social media is an 

entry point to identify the external developers‘ usage of Open APIs. While Jenkins 

(2008), Benkler (2006), Tapscott and Williams (2007) argue that contemporary social 

media and Web 2.0 technologies require active ‗participation‘ and emphasise the 

positive aspects of this ‗participation‘, Fuchs proposes suspending this judgement and 

understanding participation in terms of participatory democracy. Drawing from 

Staughton Lynd (1965), participatory democracy means all members in a society have 

the right of decision-making, and all members control the organisations that affect 

them. It not only refers to a political democracy that all people have control over 

society, but also refers to an economic democracy in which producers control the 

production process and the means and outcomes of production (Fuchs, 2013, p. 14).   

In this regard, only having the right to create and share content in digital media 

does not constitute real participation: ‗Participation means that humans have the right 

and reality to be part of decisions and to govern and control the structures that affect 

them‘ (Fuchs, 2013, p. 57). Real participation in an Internet platform relies on its 

participatory ownership structure. Questions about the ownership of platforms, 

collective decision-making and profit should be concerned when exploring 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

69 

participation in digital media. In this sense, corporate social media does not constitute 

real ‗participation‘ as it lacks a participatory ownership structure. To apply this logic 

to software industry, we can see software from FLOSS usually does not have 

copyright protection, so programmers can use, modify and redistribute them in the 

ways they want. Programming with FLOSS, to some extent, fits the meaning of 

‗participatory democracy‘ as developers have the right to govern and control both the 

programming process and final software product. However, as Closed Source APIs 

are proprietary and belong to profit-seeking vendors, forces and restrictions can be 

embedded in the programming process and final programmes. This reduces 

developers‘ control over software and eliminates the potential of participatory 

democracy.  

Market-based Capitalist Production Beyond Peer Production  

The implication of participation can be further elaborated through the discussion 

of coordination and peer production. As Kelty (2008) points out, for many participants 

and observers, coordination is the central innovation and essential significance of 

Open Source: ‗the possibility of enticing potentially huge numbers of volunteers to 

work freely on a software project, leveraging the law of large numbers, ―peer 

production‖, ―gift economies,‖ and ―self-organizing [sic] social economies‖‘ (Kelty, 

2008, p. 210). In software development, peer production means a group of developers 

working together freely in a shared software product, which is a typical feature of 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

70 

FLOSS. Bauwens (2012) points out the importance of peer production: 

Peer production is both immanent and transcendent vis-à-vis capitalism, because it 

has features that strongly decommodify both labor and immaterial value and 

institute a field of action based on peer-to-peer dynamics and a peer-to-peer value 

system. Peer production functions within the cycle of accumulation of capital but 

also within the new cycle of the creation and accumulation of the commons. 

(Bauwens, 2012) 

Peer production, in this sense, is not only a method of coordination, but also a way to 

avoid commodification in the cycle of accumulation of capital. However, this peer 

production is unlikely to happen in programming through Open APIs. While Open 

APIs attract many developers to participate in programming, they do not facilitate 

actual peer-production because there is no shared product for developers to modify 

and redistribute. There are two kinds of products generated in the use of Open APIs. 

The first kind of product is the API itself, which is proprietary and maintained by 

vendors. As will be examined later in this chapter, vendors update APIs based on 

third-party users‘ efforts, or develop new products based on the information gathered 

from external developers. As all these products are owned by vendors instead of 

opening among ‗peers‘, they lack a ‗peer-production‘ element. The second kind of 

product is the developers‘ program, which has been advanced by Open APIs. As 

developers‘ programs contain proprietary APIs of vendors after integration, their 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

71 

ownership might be affected by commercial organisations. As will be examined in 

Chapter Five, the redistribution and modification of developers‘ programs are limited 

according to the TOS of APIs, which make developers‘ programs become dependent 

on vendors. This means external developers who used Open APIs as components can 

no longer share their program among the community.  

As these two kinds of products cannot be freely shared in communities for 

developers to modify, peer-production can hardly happen in the usage of Open APIs. 

Unlike FLOSS, on which programmers can collaboratively develop derivative works, 

Open APIs only let programmers develop their own software without the right making 

it public for modification and redistribution. Thus, there is no coordination between 

external developers on a shared product because the vendors of API do not allow it. 

The significance of Open and Free software, as Kelty notes, is the constitution of 

recursive public: ‗constituted by a shared concern for maintaining the means of 

association through which they come together as a public‘ (2008, p. 28). Programmers 

find affinity, and work to maintain this affinity (Kelty, 2008, p. 28), with their 

recursive public, facilitating contribution and collaboration. Furthermore, Kelty 

argues that social media like YouTube, MySpace and Flickr take inspiration from Free 

Software but do not forge a recursive public that promotes collaboration, because ‗most 

of them are commercial entities whose structure and technical specifications are 

closely guarded and not open to modification‘ (Kelty, 2008, p. 303). As ‗intellectual 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

72 

property is a central and dominating concern‘, the proprietary nature of these social 

platforms limits the potential for collaboration (Kelty, 2008, p. 303). Open APIs are 

also proprietary; they do not build ‗recursive publics‘, but instead function as a strategy 

for vendors to encourage ‗interested users to become consumers in more and more 

sophisticated ways‘(Kelty, 2008, p. 303). As Open APIs borrow the name of ‗open‘ but 

are inherently commercial entities whose structure is closed, they lack this ‗recursive‘ 

commitment. As developers become increasingly in favour of using Open APIs, it 

seems that market-based capitalist production wins this time over peer production. 

Peer production and recursive features of coordination were removed because vendors 

reinforce the closure on Open APIs and make them proprietary and closed source. As 

a result, what left is inherently exploitative.  

Given the situation that developers are increasingly programming with 

exploitative Open APIs, it is essential to examine how exploitation happens and what 

the political implications of such an engagement are. The issues surrounding these 

questions can be clarified through the discussion of exploitation and domination from a 

political economic perspective. The remainder of this chapter will then focus on 

predominant forms of capital accumulation and exploitation underlying the usage of 

these non common-based Closed Source APIs. 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

73 

Exploitation in the Usage of Digital Technology 

A critique of gratification and exploitation. 

First, it is essential to identify the new form of exploitation in digital era. 

Exploitation sometimes does not feel like exploitation, even though it nonetheless 

exists in the everyday use of social media. As discussed in last section, if we only look 

at users‘ enthusiastic participation in social media, we might ignore the broader 

possibilities and limitations of participatory democracy and its implications for the 

Internet. If we consider the capitalist infrastructure behind it, we can see that ‗An 

Internet that is dominated by corporations that accumulate capital by exploiting and 

commodifying users can never, in the theory of participatory democracy, be 

participatory and the cultural expressions of it cannot be expressions of participation‘ 

(Fuchs, 2013, pp. 65-66). Thus, we cannot only look at the benefits of using corporate 

social media and users‘ willingness for participation while neglecting aspects of class 

and power behind this use. As Fuchs claims, domination and exploitation should be 

understood via the language of critical theory in terms of property and controls: 

Critical theory questions all thought and practices that justify or uphold 

domination and exploitation. Domination means that one group benefits at the 

expense of others and has the means of violence at hand that they can use for 

upholding the situation where the one benefits at the expense of others. 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

74 

Exploitation is a specific form of domination, in which one group controls 

property and has the means to force others to work so that they produce goods or 

property that they do not own themselves, but that the owning class controls. 

(Fuchs, 2013, pp. 13-14)  

Drawing on this view, Fuchs examines Google‘s so-called ‗playtime‘ policies designed 

to please employees with ‗fun‘ work environments, arguing how these strategies are 

aimed at making employees work longer and more efficiently, which ‗result in a lack of 

work-life-balance and feelings of stress‘ (Fuchs, 2013, pp. 149-150). Another platform 

which, according to Fuchs, follows a communist production model that is independent 

from corporate power, but is nonetheless under the risk of capitalist exploitation is 

Wikipedia: ‗These communist potentials are, however, antagonistic because of the use 

of the Creative Commons Attribution-Share Alike license that allows the selling of 

Wikipedia content as commodity. In those cases where an article is sold, all underlying 

voluntary work is unpaid labour and the involved Wikipedians are infinitely exploited‘ 

(Fuchs, 2013, p. 248). 

In this sense, social media and other digital technologies from corporations 

capitalise on users‘ desire for social, intellectual and cultural worth in order to exploit 

their labour and make them create monetary value. It is difficult to separate play and 

labour in digital media use:   

The exploitation of the Internet prosumer commodity is an expression for a stage 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

75 

of capitalism in which the boundaries between play and labour have become fuzzy 

and the exploitation of play labour has become a new principle. Exploitation tends 

to feel like fun and becomes part of free time. (Fuchs, 2013, p. 122) 

Ross (2013) claims that this feeling of fun as a gratification is still a kind of 

self-exploitation. He identifies that even if the crowd cannot help making creative 

works, their willingness to produce content can be a form of self-exploitation: ‗job 

gratification comes at a heavy cost—longer hours in pursuit of the satisfying finish, 

price discounts in return for aesthetic recognition, self-exploitation in response to the 

gift of autonomy, and dispensability in exchange for flexibility‘ (Ross, 2013, p. 21). 

From this point of view, even if a corporate platform fosters a new form of creativity 

and interaction it should not obscure the underlying new forms of exploitation, and 

new principles should be outlined when exploring exploitation in people‘s 

participation in digital media.  

Principle of exploitation in digital media usage. 

For Fuchs, exploitation happens when one group controls property and forces 

others to produce goods or property for this group. Property control and force are two 

key points in examining exploitation (Fuchs, 2013, pp. 13-14). In Andrejevic‘s (2013, 

p. 154) critique of digital labour, he introduces Hesmondhalgh‘s (2010) discussion of 

the three principles of exploitation as an entry point:  



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

76 

First, exploitation occurs when the material welfare of one class is causally 

dependent upon the material deprivation of another. The capitalist class in modern 

societies could not exist without the deprivations of the working classes. Second, 

that causal dependence depends in turn on the exclusion of workers from key 

productive resources, especially property. Third, the mechanism through which 

both these features (causal dependence and exclusion) operate is appropriation of 

the labour of the exploited. (Hesmondhalgh, 2010, p. 274) 

Drawing from these principles, Andrejevic identifies that users in the digital era have to 

surrender their personal information to access the informational resources from 

commercial organisations. This is a form of material deprivation and enclosure, as it 

separates users from the infrastructure that supports their communicative activities. As 

a result, ‗the structure of social relations wherein a small group controls the productive 

resources used by the many and allows economic advantages to accrue from this 

control‘ are reinforced (Andrejevic, 2013, p. 155). 

Relating these principles back to the political economic study of Fuchs and Marx, 

we can conclude that the principle of exploitation in the digital era is the about the 

private ownership of collaborative digital product and the power that maintains this 

production process. First, users‘ activities generate content for vendors, which is a 

kind of surplus value production. When users are engaging in the use of ‗free‘ digital 

platforms, platform vendors usually gather their user-generated content and personal 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

77 

information. This content and information can be appropriated as surplus value when 

turned into profit by vendors without paying wages to users. Another term, alienation, 

or estrangement, means one‘s labour becomes an external object outside him and a 

power confronting him. It is called alienation because it usually refers to one‘s own 

labour becoming independent, hostile and alien (Marx, 2012, p. 8). In a traditional 

factory, the worker‘s labour-power is separated from the worker‘s body, becoming an 

object in the capitalist‘s possession. In the digital era, while the vendors of a platform 

control the productive resources, users‘ activities on that platform can possibly be 

privatised and monetised by vendors. The deprivation of users‘ activities is a form of 

alienation in digital era. Thus, the first step to explore contemporary forms of 

exploitation should look at what kind of products are generated through users‘ 

activities, who owns them, and how they profit from them as a way of property 

control.  

The further point to be made is that the asymmetric power that maintains this 

mechanism is another principle to identify exploitation. As Andrejevic points out, 

exploitation is not simply about a loss of monetary value but also a loss of control 

over one‘s productive and creative activity (Andrejevic, 2013, p. 154). Exploitation is 

always accompanied by power, which compels producers to offer their labour. 

Traditionally, power works in the form of physical or economic coercion (Elster, 1986, 

p. 83), which is usually embodied in contractual requirements that compel workers to 



Chapter 3: Profiting from Closed Source Open APIs—How Vendors Exploit Developers 

 

 

78 

work overtime or deprive them from ownership of product. This coercion still exists 

currently in the use of digital media, but is not simply a conspicuous force that requires 

workers to work in the assembly line. Power in the digital era exists not only in the 

form of physical violence or economic coercion, but can be managed through 

ideologies that urge people to donate labour for gratification, or through disciplinary 

power from code that standardises users‘ activities. Identifying how corporations 

enforce such coercion and why people accept it is another principle to examine 

exploitation in the use of digital technologies.  

From these two principles, we can tease out the attributes of exploitation in the 

digital era and relate them to APIs by asking the following questions: What kind of 

product is generated when developers use APIs? Who owns these products and benefits 

from them? What surplus value is produced in the use of APIs? Do external developers 

lose their independence, or are ultimately coerced through some form of force? In short, 

individual choice and pleasure are not the measurement of exploitation from a political 

economic perspective—exploitation can only be examined in terms of social relations 

from the perspective of political economy. Chapter Four will examine the production 

of surplus value in the use of Open APIs, and the force that ensures this exploitation 

will be explored in Chapter Five. 

  



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

79 

Chapter 4: The Extraction of Surplus Value 

in the Use of Open APIs 

This chapter explores how Open APIs exploit external developers and end users 

in terms of the extraction of surplus value. It first examines how vendors collect 

information from various resources without paying. For one thing, vendors are 

collecting the data and innovative ideas of external developers. For another, vendors 

are mining the personal information of the everyday users of applications or websites 

that are developed by external programmers. This chapter then discusses the 

relationship between collecting information and exploitation from a theoretical point 

of view, and points out that vendors are monetising so called ‗free‘ APIs in three 

major ways: displaying targeted advertisements on external programs; promoting Ads 

APIs to external developers; and developing non-free complementary services which 

are based on APIs. 

Collecting information without paying 

Collecting information and innovative ideas from external 

developers. 

One typical form of exploitation happens when developers‘ use of Open APIs 

contributes to the improvement of APIs without the payment of wages. This 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

80 

contribution differs from those of the FLOSS community as APIs are proprietary and 

are used in the pursuit of profit. For example, in the case of Twitter‘s APIs, third-party 

users‘ work is systematically fed back into the underlying Twitter services (Bucher, 

2013). An interviewee from Bucher‘s study explains this logic: 

Software companies have to develop a very small part of the software and they get 

millions of developers for free (almost) all around the world, creating new 

improvements to the original software. The companies can even incorporate those 

modifications into the software if they become important enough, and the cycle 

keeps going round! Basically they are taking, what is probably their biggest direct 

cost, programmers, and dilute that cost amongst a huge base of programmers that 

not only code for less but also provide the largest source of new ideas for their 

software. They are making sure they stay in the retail software game as it evolves. 

(Bucher, 2013) 

Vendors do not simply provide Open APIs as a kind of service to developers, they also 

monitor a developer‘s usage, gathering data for the purposes of adjusting and 

enhancing their platforms. For example, Google also takes advantage of the 

information from third-party developers through their APIs: 

Google may share non-personally-identifiable information about you, including 

Web site URLs, site-specific statistics, and similar information collected by 

Google, with advertisers, business partners, sponsors and other third parties. In 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

81 

addition, you grant Google the right to access, index and cache your Websites, or 

any portion thereof, including by automated means including Web spiders or 

crawlers. (Gangadharan, 2009) 

Google acknowledges that programmers‘ innovative ways of using APIs help them 

improve their services (Chiu, 2015). While vendors keep updating their services based 

on the contributions of developers, developers themselves are excluded from the 

process of developing APIs, which remain vendor owned and controlled, reserving the 

right of any future modification to the APIs. In addition, developers are excluded from 

being paid for their contribution to APIs, and they cannot redistribute APIs to gain 

profit as they are proprietary and copyrighted. In this sense, external programmers 

donate their unpaid labour time to develop the services of vendors, this generate 

surplus value in the process of production.  

Collecting personal information from end users. 

Taking a step back, if we look at what services Open APIs provide, we can see 

most fundamental resources they offer are not produced by vendors but come from 

exploiting end users (not programmers but the everyday users of social media). For 

many social platforms such as Twitter and Facebook, end users‘ information is 

collected by vendors for profit. These social platforms usually have a large user base 

because of their popularity, so APIs based on these social platforms are attractive for 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

82 

external developers who are interested in building applications based on social 

networks. Andrejevic (2013) points out these interactive services are mining users‘ 

information for the purposes of marketing:  

The entire app layer of interactive services, for example, provides as many new 

dimensions of computer monitoring as it does innovative conveniences. If you 

download an application for surfing or knitting, you have simultaneously joined a 

new demographic group for the purposes of target marketing. The more targeted or 

unique the service, the more detailed and unique the information about the user it 

provides. Even upgrades to the computer language (hypertext markup language, or 

HTML) that supports the web incorporate new capacities for online monitoring 

and tracking. (Andrejevic, 2013, p. 149) 

End users submit their personal information for sharing online, join the social platform 

and treat it as an instrument for being connected. However, vendors see it another way: 

they treat this personal data as proprietary (Vis, 2013; Fuchs, 2013, p. 164-166; van 

Dijck, 2013), using it to attract programmers and advertisers by allowing access to data 

via their API. For example, the Facebook Games API provides game developers with a 

substantial user base, but this sometimes depends on exposing end users‘ personal 

information. After third-party game developers integrate with the Facebook Games 

API, it recommends these third-party games to specific end users of Facebook from 

their personal front page or sends notifications of advertisement to end users. 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

83 

Sometimes the Games API provides monetisable methods for in-game purchasing 

through Facebook (Facebook Developers, 2014), thus stimulating the in-game 

consumption of end users. Another API—The Facebook Connect API—allows end 

users of Facebook to log onto external websites with their Facebook accounts. Thus, 

end users do not need to create a new account if the websites adopt Facebook Connect 

API—a Facebook account can be a passport for them all. However, this API also 

opens end users‘ data to external developers, and these data include profile information, 

friends and privacy preference. Moreover, some location-based APIs such as 

Facebook Open Graph provide external websites and applications with end users‘ 

geographic data, including information such as location-based check-in status of end 

users (Bodle, 2011).  

In this regard, social platforms collect end users‘ personal information, and use 

Open APIs as a way for ‗selling‘ it. Vendors make end users a commodity to attract 

external sites and applications, redirecting traffic to Facebook‘s services, and attract 

partners such as advertisers to gain more profit. Social platforms and APIs are 

together being utilised by vendors for the extraction of personal information from the 

end user.  



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

84 

The relationship between collecting information and 

exploitation. 

For using the services of vendors, end users of social platforms and external 

developers of APIs have signed agreements that allow vendors to use their data. 

However, as discussed earlier in this chapter, arguments about end users‘ and 

programmers‘ choices overlook the generation of surplus value as the central attribute 

of exploitation: ownership of the final product and who profits from it. As we have 

examined, through APIs, external programmers‘ efforts and end users‘ personal 

information are going back to improve the services of vendors, which are totally 

owned by vendors. To some extent, their information becomes the private property of 

commercial entities and can be monetized. Third-party developers‘ labour becomes an 

external object outside developers, and generating value for vendors. This is a process 

of alienation and deprivation, and it is legalised by user agreements and TOS, which 

are defined by vendors.  

No matter how much job gratification external programmers get from utilising 

Open APIs, no matter how happy end users feel in using social media, their information 

become entangled with vendors‘ services, and generates surplus value for commercial 

entities. Andrejevic (2013) points out:  

A critique of the exploitation of free labour, then, would highlight the very real 

ways in which control of new productive resources is concentrated in the hands of 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

85 

the few, allowing them to appropriate and profit from the activity of the many who 

must surrender their personal information to secure access to the productive and 

informational resources of the digital era. (p. 155) 

This kind of exploitation is happening in the use of Open APIs. Vendors control the 

productive resources and use Open APIs as a way for commodifying end users and 

external developers. Some programmers have expressed their worry about the 

popularity of APIs: ‗Companies offer web services to get free ideas, exploit free R&D, 

and discover promising talent […Companies] offer the APIs so people can build clever 

toys, the best of which the company will grab—thank you very much—and develop 

further on their own‘ (Linden, 2007). To some extent, end users and programmers are 

totally open to APIs vendors, but Open APIs maintain proprietary and close sourced.  

These activities reinforce the social relations of capitalism on which exploitation 

relies, as Comor (2010) identifies: ‗as long as private property, contracts and exchange 

values are dominant mediators of our political economy, disparities and exploitative 

relationships will remain largely unchallenged—unchallenged, at least, through the 

auspices of resumption‘ (2011, p.323). As long as APIs are the private property of 

commercial organisations, users‘ activities can never escape the exploitation of vendors 

if vendors intend to do so.  



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

86 

Monetization of Open APIs—‘Open’ as a Commercial 

Strategy 

Another question remains: As most Open APIs are free to access and use, how 

can vendors profit from them to achieve the full circle of exploitation? Even if 

vendors ensure their domination over a product, they still need to ‗sell‘ it as a 

commodity to complete the circle of exploitation. This section will focus on how 

vendors commodify developers and get the financial profit from Open APIs.  

Theorists of political economy have identified the importance of financial profit 

in the study of exploitation. Fuchs (2013, pp. 65-66) identifies the central economic 

role of monetisation in the political economy of social media. He argues that the social 

benefits that emerge from platform use cannot cover the truth that vendors are 

exploiting users for profit. Money, as Fuchs makes clear, ‗has a central importance in 

capitalism because it is a general equivalent of exchange: it is the only commodity that 

can be exchanged against all other commodities‘ (2013, pp. 63-64). Therefore, who 

actually gains profit in the form of money is key for a political economic examination 

of today‘s digital culture. In the case of Open APIs, vendors make their APIs ‗open‘ to 

use ‗free of charge‘ to enable collaboration, but in truth this ‗collaboration‘ through 

social media monopolies and programmers is nonetheless about the pursuit of profit.  

Unlike programmers who are part of a community which promotes the 

non-commercial use of software, programmers of corporations are serving stockholders 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

87 

and partners who show more interest in money. Some Open APIs are free of charge 

when they are initially developed, but once these APIs, owned by profit-seeking 

vendors as they are, are adopted by developers and accepted as an effective community 

standard, vendors could start harvesting developers in various ways for monetary 

value.  

The exploitative of targeted advertising within APIs. 

Advertising is one major way vendors used to monetise popular Open APIs, 

which perpetuates a form of exploitation through their use. The relationship between 

advertising and exploitation has been pointed out by Smythe (1981). He argues that 

media programs are a ‗free lunch‘ used for producing audiences for advertisers. People 

are attracted by this ‗free lunch‘ and their attention and time becomes a commodity, 

which is sold to advertisers. Based on this theory, Fuchs (2013) explores exploitation 

through the capital accumulation of social media. For him, new media corporations do 

not or hardly pay users for their information and user-generated content. Rather, their 

strategy is to use free access to services and platforms to attract users to produce 

content, and sold as a commodity to advertisers.  

No product is sold to the users, but the users are sold as a commodity to 

advertisers. The more users a platform has, the higher the advertising rates can 

be set. The productive labour time that capital exploits involves, on the one hand, 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

88 

the labour time of the paid employees and, on the other hand, all of the time that 

is spent online by the users. (Fuchs, 2013, p. 110) 

Furthermore, targeted online advertisements as a new form of advertisements are 

revealing their significance. It is because they usually base on the collecting and 

analysing of audiences‘ information. According to Marx, the value that unpaid labour 

generates is surplus value, which constitutes exploitation (Marx, 1867, p. 376). In 

digital era, the unpaid activities and personal information of users are the new unpaid 

labour, which generates surplus value for platform vendors. Marx also point out the 

production of surplus value consists of absolute surplus value production and relative 

surplus value production. Surplus value produced by prolonging the working day is 

absolute surplus value, and those produced by increase efficiency and productivity is 

called relative surplus value (Marx, 1867, p. 431). Fuchs (2013) interprets targeted 

advertising as a form of relative surplus value production. Traditionally, all watchers 

see the same advertisements at the same time. But in targeted online advertising, 

advertisers present different ads to targeted users at the same time. Thus, more 

advertisements that fit the interest of audience are shown in the same period, so the 

efficiency of advertising is increased and more relative surplus value is generated 

(Fuchs, 2013, pp. 105-106).  

The same kind of exploitation is happening in Open APIs. Initially, Google Maps 

API was free of charge, with no ads displayed in the result after developers integrated 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

89 

with API, but its TOS shows that it reserves the right to display advertisements in the 

future (Google Maps/Google Earth APIs TOS, 2013). Google Maps API did this in 

October of 2011:  

There are also a number of changes that relate to advertising and usage limits. To 

ensure that we can continue to offer the Maps APIs to developers for free, we now 

require that any new Maps API applications going forward display any advertising 

delivered in the maps imagery‘. (Google Geo Developers Blog, 2011)  

From then on, advertisements are binding to Google Maps API. Moreover, the Google 

Maps API‘s Terms of Service ensure the legality of displaying advertisements: 

(a) In Places Results. Google reserves the right to include advertising in the 

places results provided to you through the Maps API(s). By using the Maps 

API(s) to obtain places results, you agree to display such advertising in the 

form provided to you by Google. 

(b) In Maps Images. Google also reserves the right to include advertising in 

the maps images provided to you through the Maps API(s)…(Google 

Maps/Google Earth APIs TOS, 2013) 

In addition, the advertisements usually target specific users based on their personal 

information. Google says that it ‗collect[s] information to provide better services‘. 

However, this collection of information also mines users‘ profiles and habits that 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

90 

emerge from data collected from the usage of Google‘s services: ‗We may collect 

information about the services that you use and how you use them, like when you visit a 

website that uses our advertising services or you view and interact with our ads and 

content‘ (Google Privacy Policy, 2014).  

To be clear, the ‗users‘ that advertisements target are not the external developers 

who adopt APIs in their software, but the end users of software that is developed by 

external developers. For example, if a mobile app adopts the Google Maps API, then 

the mobile app end users are forced to see the advertisements when they are using the 

app which includes an embedded version of Google Maps through its use of Google‘s 

API. Open APIs retrieve their private information and give targeted advertising, which 

includes collecting users‘ actual location and delivering potential advertisements for 

nearby restaurant. When developers embed Google Maps in their apps via API, the end 

users of apps could see on-map advertisements regardless of the intent of the 

developers. For instance, end users can see a recommendation for Massage Envy Spa 

for recommendation when they are searching for Yerba Buena Center for Arts. 

(Google Maps Embed API, 2014): 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

91 

 

Figure 4.1: Advertisement of Google Maps Embed API 

While the targeted on-map ads are displayed in developers‘ programs, developers 

themselves excluded from controlling or even noticing these ads: ‗The ad format and 

the set of ads shown in any given map may change without notice‘ (Google Maps 

Embed API, 2014). As content that developers retrieve via APIs are controlled by 

vendors, delivering targeted ads together with necessary data is a typical strategy for 

vendors to gain profit. Both external developers and application users are being 

exploited as they are producing surplus value that is owned by vendors without 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

92 

paying.  

This exploitation from advertisement is more complicated than what Fuchs and 

Smythe examined about social media, because this exploitation contains two steps. 

First, the direct users of vendors‘ services are external developers, and developers 

themselves are not being served ads. Developers only use APIs to retrieve 

functionality from underlying software, while the embedded ads are also being 

retrieved and displayed in their final software product. In the second step, the final 

users of external programmers‘ product are being served ads. In this sense, developers‘ 

programs, which might have plenty of visitors, are subject to vendors whose 

motivations are creating audiences and delivering ads. Developers‘ labour is being 

exploited as it helps vendors to profit from ads.  

Throughout, the subjectivity of external developers becomes instrumental for 

vendors. Companies commercialise third-party programmes by firstly integrating their 

innovative ideas into its own services, and incorporating external programs and their 

final users into vendors‘ own advertising business. Via Open APIs, corporations use 

capital accumulation models based on the exploitation of the unpaid labour of external 

developers and end users. Open APIs are the ‗free lunch‘ that uses programming 

opportunity to attractive external developers. When Open APIs are adopted, both 

external developers and end users become commodity and sold to advertisers for 

targeted advertising. This is how corporation profit from so-called free to use Open 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

93 

APIs and accumulate surplus value. 

Profit from Ads APIs. 

In addition to the delivery of targeted advertising, vendors also provide Ad APIs 

as a new way to collaborate with advertisers and external developers. As APIs can 

provide access to any underlying data, they can also provide a way for programmers to 

integrate with advertisements directly. Ads APIs are a kind of API that links 

advertisements to external applications, which offer an easy way for developers to 

display and manage ads on their websites or apps. They specify a way for 

programmers to embed advertisements in their products, so what programmers need 

to do is just add a string of code of Ads APIs in their source code of websites or apps. 

Then external developers can share the profit when vendors getting paid from 

advertisements. In Ads APIs, advertisements themselves are services that vendors 

provide for external developers. This gives external developers the opportunity to 

make fast money from advertisements without contacting advertisers by themselves. 

However, end users of developers‘ websites and apps and being exploited by 

ubiquitous advertisements from Ads APIs.  

Google‘s AdSense API is a typical instance of these kinds of APIs. Google‘s 

AdSense program lets external developers (which Google describes as ‗network 

members‘) make money from their sites: ‗Show ads that relate to the content and users 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

94 

of your website‘ (Google Ads Adsense, 2014). If one site or application draws traffic, it 

can make money from Google AdSense with little effort. Turow (2012) examines how 

Google AdSense works on monitoring external developers‘ websites: ‗a network of 

websites that agreed to allow Google to serve ―contextual‖ text ads on them based on 

Google‘s analysis of the content of the sites‘ Web pages that the visitor was reading‘ 

(Turow, 2012, , p. 75). To apply Google AdSense to applications is easier than dealing 

with advertisers directly if developers need profit from ads. Developers only need to 

register an account and make ads space available on their websites or applications, then 

paste ad code and choose where they want the ads to appear. Advertisers will bid to 

show ads, while the highest paying ad will show in the ads space. In this way, AdSense 

will show relevant ads in the designated space targeted to external developers‘ sites 

and audience. Both external developers and Google can share the money from 

advertisers (Google Adsense, 2014). External users can also deploy the AdSense 

Management API to get reports on AdSense earnings and manage AdSense inventory 

(Google Developers, 2015).  

Keith Cooper is a commercial photographer who built his website Northlight 

Images initially intending to promote his business. This website displays Cooper‘s 

works and articles about photography to attract visitors. As the website became 

increasingly popular, Cooper started looking for advertising to earn profit. However, 

most advertisements are too much for him to handle: ‗I looked into it, and most of the 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

95 

advertisers were only suitable for larger businesses, where you can have a dedicated 

employee managing the advertising. As a small UK business with a global site 

audience, I needed an efficient solution with ads that were relevant to visitors in their 

geographical area‘ (Google AdSense Case Study, 2013). According to him, traditional 

advertising is time intensive and has diminishing returns for small businesses like 

Northlight Images. However, Google AdSense offers a high level of flexibility and 

helps him to collect income. The ads appearing on his websites are very relevant, and 

he does not need to worry about updating them (Google AdSense Case Study, 2013).  

 

Figure 4.2: AdSense on Northlight Images 

As Figure 4.2 (Northlight Images, 2015) shows, the top area entitled ‗Start your MBA 

in 2015‘ is the ads displayed by Google AdSense. Developers of this website only 

need to set a space for Google AdSense, and Google will decide what will be shown 

in the specified area. The ads vary based on visitors‘ personal information, which 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

96 

means the same place could advertise games if a visitor is a gamer.  

The case of Northlight Images is one of the ‗successful stories‘ on Google 

AdSense‘s official site, and it helps Google demonstrate how great AdSense is while 

masking the underlying risk of adopting it. First, it uses the words ‗traditional 

advertising‘, ‗time intensive‘ and ‗diminishing returns‘ to manifest how innovative, 

convenient and profitable Google AdSense is for developers seeking ads. Second, by 

introducing Keith‘s comments on Google AdSense, Google intends to highlight how 

successful AdSense is in sending targeted advertisements, regardless of the fact that it 

is mining information. For example, Keith needed relevant ads for ‗visitors in their 

geographical area‘, and his site has two different parts, which attract different types of 

visitors. Even so, Google AdSense still fit ‗particularly well‘ in each of the pages and 

Keith ‗pronounces himself highly satisfied with the quality of the ads‘ and ‗hasn‘t  

‗found this to be a problem‘ (Google AdSense Case Study, 2013). These statements 

highlight the merit of Google AdSense while covering up the context of targeted 

advertising—Google is mining developers‘ content and websites visitors‘ personal 

information. These statements also convey a message that Google‘s AdSense adapts 

particularly well to developers‘ websites, so no supervision of advertisements is 

needed for developers. However, as Figure 4.2 shows, the ads on MBA class is not 

even relevant to photography. Visitors who are interested in an MBA might be 

distracted and click the link to the advertisers‘ page. In this sense, Google AdSense is 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

97 

indeed doing ‗particularly well‘ in sending target ads and attracting visitors, but may 

not be doing a good job in helping websites gain visitors. Moreover, using the 

discourse like ‗Northlight Images, was initially intended solely to promote his 

business‘, ‗As a small UK business‘, Google is promoting the feasibility of its 

AdSense. Google wants to inform developers that any website—whether or not it is 

commercial, no matter how big the scale is—can use Google Adsense. The claim 

‗income from AdSense lets him develop his photography business in the way that he 

wants to‘ tells developers that profit from AdSense can free them from financial strain. 

In this way, Google intends to attract any developers who need money to use Google 

AdSense, so as to incorporate external developers into Google‘s business.  

Again, the Ads APIs is another way vendors monitor information from their 

partners and display targeted advertisements, and this time it looks like a win-win game 

for external developers as they are sharing the profit from ads with vendors. However, 

end users become commodities and are sold to advertisers. In addition, Google is 

becoming dominant in online advertising as increasingly more developers adopt Ads 

APIs as an easy way for earning profit. According to Google‘s Annual Report in 2013 

(United States Securities and Exchange Commission, 2014, p. 27), the total 

advertisement revenue of Google reached $US 50 billion in 2013, increasing about 20% 

each year since 2011. More than 90% of the total revenue of Google came from 

advertisements in 2013. Websites of Google itself received more than $37 billion in 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

98 

2013, accounting for 67.4% of the total advertising revenue. In addition, Google 

Network Members‘ websites (websites of external developers) accounted for 23.6%, 

which was about $13 billion in 2013 (United States Securities and Exchange 

Commission, 2014, p. 27-28). As increasing external developers adopt Ads APIs for 

profit, more end users will be exploited by targeted advertisements.  

Profit from services. 

In addition to the advertisements, vendors still have various ways to profit from 

Open APIs. They can set request limitations and charge for extra usage as a way to gain 

profit. From October 2011, Google Maps API amended its licenses: any application 

that generates more than 2500 requests per day from Google maps incurs charges 

(Google Developers, 2014). In addition, commercial applications that generated profit 

have to pay for the Google Maps API once they adopt it—even if they do not exceed 

stated limitations (Google Maps API FAQ, 2015). From then on, developers who 

intended to develop a commercial application, along with those who exceeded set 

limitations, have had to pay for access through the API. 

Moreover, the sale of complementary hardware or software is another typical 

strategy of vendors to gain profit with their so-called ‗free of charge‘ software. As 

mentioned, Open APIs disclose only part of the function of original software, while 

keeping the remaining secret. Thus, vendors can develop derivative APIs based on the 



Chapter 4: The Extraction of Surplus Value in the Use of Open APIs 

 

 

99 

same underlying software for purposes of sale. Google Maps for Business has more 

functionalities than ‗free‘ Google Maps API as it charges. Both of these APIs are based 

on the informational resources of the same services: Google Maps. However, the 

advantage of using Google Maps for Business includes, but is not limited to, a larger 

number of requests permitted, advertisement control, technical support, and a higher 

resolution (Google Maps for Business, 2014). In this sense, the original Google Maps 

API becomes a sort of light version as it lacks features included in the paid ‗Business‘ 

version. If developers intend to gain more functionality or get rid of advertisements, 

they pay for the ‗premium‘ version, which in this case is Google Maps for Business, to 

enjoy better performance than through the ‗free‘ version. In what sense can we call 

these APIs ‗free‘, as they neither give users freedom to modify and distribute, nor are 

they truly free of charge?  

Although Open APIs may look like they are free and open, vendors still receive 

profit from them because of their proprietary nature. Via advertisement and other 

methods for monetising content and access, vendors get significant income without 

paying developers and end users who keep donating their free labour for 

‗participation‘, thus surplus value is produced by means of this new ‗collaborative‘ 

technology. However, the generation of surplus value is only one principle when 

identifying exploitation. Power, which maintains this production of surplus value, is 

also a significant principle when doing political economic critique.  



Chapter 5: Force of Open APIs 

 

 

100 

Chapter 5: Force of Open APIs 

The previous chapter explored how vendors profit via Open APIs by exploiting 

developers and end users of programs. This chapter focuses on the power that 

maintains this exploitation. It answers these questions: from where does the 

asymmetric power that ensures the private ownership of collaborative digital product 

in API use emerge? Specifically, this chapter identifies two forms of power 

maintained by vendors through Open APIs. The first form of power comes from the 

legal contract. Vendors control vital programming resources, use contracts and 

copyright law to limit redistribution of APIs and derivative works to ensure their 

domination over programmers. The second form of power comes from an ideology 

that persuades developers to cooperate with Open APIs rather than use other 

collaborative methods. Discursive practices overexaggerate the openness of Open 

APIs, making developers willing to join a vendor-dependent infrastructure for 

short-term advantage without realising the risk. As a result, programming with Open 

APIs creates a new form of sociality integrally tied to commercial infrastructure. 

The Force of Law  

Vendors always publicise the openness of APIs, but ‗open‘ in programming is not 

just about the right to view and use. More explicitly, ‗open‘ is also about modifying and 

distributing, as we examined in Chapter Two. The fact is: Open APIs are not open at all. 



Chapter 5: Force of Open APIs 

 

 

101 

They are not built for collaboration and development throughout the IT industry, but 

deployed by profit-seeking companies who try to reduce transaction costs, incorporate 

developers, and gain a long-term advantage. To achieve this and ensure the central 

position of their commercial services, vendors protect their APIs by controlling the 

programming process and redistribution. In addition to the power of protocol, vendors 

resort to Terms of Service (TOS) agreements and other copyright laws to ensure this 

domination. Vendors utilise this power in two ways. On the one hand, vendors use 

their own TOS to protect the data of underlying software. On the other hand, vendors 

use copyright law to protect the code of interface and try to make their own interface 

an industrial standard for any collaboration. 

Deploying TOS to protect the benefit of underlying software. 

In the last few years, the TOS of some APIs are increasingly showing 

corporations‘ intention of limiting external developers in programming. For example, 

the Guardian API explicitly uses its terms to stabilise its central position among the 

developers who using their API: ‗You are allowed 5,000 API queries per day and 2 

queries per second by default. You may store Guardian content for no longer than 24 

hours‘ (The Guardian Open Platform, 2014a). Similar terms like this limit the 

development of external programmers‘ applications and ensure the market domination 

of original Guardian services. These terms, as The Guardian explains, aim to ‗Protect 

us and our partners from unwanted behaviour‘ (The Guardian Open Platform, 2014b), 



Chapter 5: Force of Open APIs 

 

 

102 

but the ‗unwanted behaviour‘ could be creating competitive services which can 

threaten vendors‘ dominant position. 

Developers need to obey the TOS released by vendors, otherwise will they lose 

their access or even get into legal trouble. It is acceptable for developers to sign an 

agreement with vendors, but the central issue about the agreement is: developers need 

to strictly follow vendors‘ preferences as vendors reserve the right to change their TOS 

when they want (Google developers, 2013; The Guardian, 2009; Flicker, 2014). 

Moreover, the descriptions of some terms are vague: 

For uses of Flickr APIs over a certain rate or for certain types of commercial 

applications, Flickr reserves the right to charge fees for future use of or access to 

the Flickr APIs. (Flicker, 2014) 

While ‗certain rate‘ and ‗certain types‘ remain undefined, vendors reserve the right of 

final decision and interpretation—they become the only decision-makers, legislators 

and executors. In this situation, the only ‗right‘ external developers who adopt Open 

APIs have is the right to opt out. Thus, external developers become subordination 

because of the legislation that defined by vendors. The legislation, in turn, reinforces 

the domination of APIs and intensifies the exploitation.  

As vendors are pursuing profit, they show intolerance toward any kind of 

redistribution or uncontrolled access that might threaten their ‗openness‘, and this 

intolerance is revealed in their detailed clauses. For instance, TOS of Google Maps 



Chapter 5: Force of Open APIs 

 

 

103 

API forbid almost any form of uncontrolled access and redistribution (Google 

Maps/Google Earth APIs TOS, 2014). It first forbids any modification or detachment 

of its services: 

[10.1.1. ] (c) No Reverse Engineering. You must not attempt to reverse engineer or 

decompile the Services or any component, unless this is expressly permitted by 

applicable law.  

(d) Substitute Service. You must not attempt to create a substitute or similar 

service through use of or access to the Services 

(e) No Modification of Search Results. You must not modify, reorder, augment or 

manipulate search results (such as those provided in the Google Places API) in any 

way unless you explicitly notify the end user of your actions. 

(f) No Modification of Links. You must not modify, replace, obscure, or otherwise 

hinder the functioning of links to Google or third-party websites provided in the 

Content. For the avoidance of doubt, titles for place results must link to the 

applicable URL provided in the result, unless the title is intended to be selected 

only for purposes of navigation by an end user accessing your Maps API 

Implementation from a device with appropriately space-constraining user 

interface options. In these cases, the title linking to the Google-provided URL 

must be displayed as the top and primary link on the subsequent landing page or 

user interface component […]. (Google Maps/Google Earth APIs TOS, 2014) 



Chapter 5: Force of Open APIs 

 

 

104 

These clauses reveal the fact that Google Maps API and the underlying data it 

retrieves can only be displayed in external programs as an entirety. External users are 

not permitted to modify software, nor are they allowed to decompile any component 

to fit their need. Ironically, the restrictions on modification do not function rigorously 

if vendors choose not to enforce them. Google Maps was released in February 2005 as 

an application. At that moment, it only aimed to provide geo-location services to web 

users instead of letting developers program with it. A Google Maps API also existed at 

this point, but it was a private one under development—not an open one for external 

developers to integrate with until June 2005. However, once familiar with the 

functions of Google Maps, developers were keen to hack its API and develop 

applications based on it. Before the publcation of the official Google Maps API in 

June 2005, many programmers reverse engineered it and integrated map data into 

their own applications without Google‘s permission. However, Google did not stop 

these practices because it found that the developer community‘s reverse engineering 

of Google services had led to ‗great things‘ (Chiu, 2015). The innovative ways that 

developers used APIs inspired vendors to improve it, which led to the creation of 

official Google Maps API. Although Google Maps API was a private API at that time 

and reverse engineering is a violation of TOS, Google allowed this hacking and 

modification as it is beneficial for companies.  

Second, Google Maps TOS 10.1.1.(h), 10.1.3 and 10.2 (a) explicitly forbid 



Chapter 5: Force of Open APIs 

 

 

105 

external use and storage of underlying content from Google Maps except via its APIs, 

which limits the redistribution of derivative programs of Google Maps: 

10.1.1. (h) No Use of Content without a Google Map. You must not use or display 

the Content without a corresponding Google map, unless you are explicitly 

permitted to do so in the Maps APIs Documentation […] 

10.1.3 Restrictions against Copying or Data Export. 

(a) No Unauthorized [sic] Copying, Modification, Creation of Derivative Works, 

or Display of the Content. You must not copy, translate, modify, or create a 

derivative work (including creating or contributing to a database) of, or publicly 

display any Content or any part thereof except as explicitly permitted under these 

Terms. […] 

(b) No Pre-Fetching, Caching, or Storage of Content. You must not pre-fetch, 

cache, or store any Content, […] For example, you must not use the Content to 

create an independent database of ―places‖ or other local listings information. 

(c) No Mass Downloads or Bulk Feeds of Content. You must not use the Service in 

a manner that gives you or any other person access to mass downloads or bulk 

feeds of any Content, including but not limited to numerical latitude or longitude 

coordinates, imagery, visible map data, or places data (including business listings). 

For example, you are not permitted to offer a batch geocoding service that uses 

Content contained in the Maps API(s)‘. (Google Maps/Google Earth APIs TOS, 



Chapter 5: Force of Open APIs 

 

 

106 

2014) 

As these terms show, although the data from Google Maps are available for public use 

via APIs, Google still claims it is proprietary and maintains control on these data. 

Thus, it is not ‗open‘ compared with FLOSS. To be specific, these clauses mean the 

only thing external developers can do with Google Maps is display the maps they 

retrieved from APIs, and developers do not have the right to separate any data from 

maps except explicitly permitted. For example, once an external developer uses 

Google Maps API to retrieve Google Maps, an interactive map will be displayed in 

the chosen position of this application. As a result, visitors will have a better 

experience when using this application as they have an interactive map to view. 

However, the data in this map including ‗coordinates, imagery, visible map data, or 

places data‘ are not permitted to be stored or fabricated—vendors do not give away 

the proprietary of these data. More importantly, these terms also mean any usage of 

Google Maps‘ data should go through Google Maps API itself rather than from other 

external developers who adopt API, which limit redistribution. The content from maps 

cannot be used ‗without a corresponding Google Maps‘, and ‗Modification, Creation 

of Derivative Works‘ of content are not permitted according to TOS. For example, if 

an open source software integrates with Google Maps API, then it is no longer ‗open 

source‘ because it contains an API which cannot be open sourced according to TOS of 

Google. Other developers who want to program with an application can see the data 



Chapter 5: Force of Open APIs 

 

 

107 

on the embedded Google Maps of this application, but they cannot use them in their 

own programs. Any derivative works of this software can only use its original open 

source component and try to go through Google Maps API for the remaining 

part—the component from Google Maps API can only be integrated through Google 

directly rather than through third-party developers. This limits the sharing and 

developing between different external developers, and ensures vendors‘ dominance 

over developers. A user of APIs points out Open APIs are not open enough as the 

licenses limit the redistribution:  

The point about Free Software is not that you can write software to work in 

somebody else‘s walled garden, but that you can modify it and distribute the 

results under the same or compatible licenses. This is true just as much for cloud 

computing as for desktops and other devices. Being able to use only the vendor‘s 

instance of software is not nearly open or Free enough. (Mokurai, 2012) 

According to Google Maps API TOS, any derivative works have to ask Google for 

permission and get an API key, thus programmers cannot collaboratively develop 

derivative works but bond to Google Maps in the redistribution process. These 

restrictions help vendors maintain any external usage of their own data to be 

monitored and controlled, which empower vendors in programming community.  

Third, specific types of third-party applications are strictly prohibited to use 

Google Maps APIs:  



Chapter 5: Force of Open APIs 

 

 

108 

‗10.2 Restrictions on the Types of Applications that You are Permitted to Build 

with the Maps API(s). Except as explicitly permitted in Section 8 (Licenses from 

Google to You) or the Maps APIs Documentation, you must not (nor may you 

permit anyone else to) do any of the following: 

(a) No ―Wrapping.‖ You must not create or offer a ―wrapper‖ for the Service. For 

example, you are not permitted to: (i) use or provide any part of the Service or 

Content (such as map imagery, geocoding, directions, places, or terrain data) in an 

API that you offer to others; or (ii) create a Maps API Implementation that 

reimplements or duplicates Google Maps/Google Earth.[…] 

(b) No Business, Residential, or Telephone Listings Services […] 

(c) No Creation or Augmentation of an Advertising Product. You must not use 

any business listings Content to create or augment an advertising product. 

(d) No Navigation, Autonomous Vehicle Control, or Enterprise Applications. 

[...](Google Maps/Google Earth APIs TOS, 2014) 

All of these forbidden applications including Maps APIs, product advertisments 

and navigation services share a common feature: Google is currently running similar 

services and all these types of applications can be threatening to Google‘s profit. That 

might be the major reason why Google considers the development of these 

applications as an infringement of TOS. In short, vendors ensure the closure of 

underlying data by deploying licenses that regulate developers‘ activities and limit 



Chapter 5: Force of Open APIs 

 

 

109 

redistribution. This is the first way that vendors implement the power from 

legalisation. In the second way, vendors also use copyright law to protect the code of 

their interfaces which specify how two software component integrate. 

The deployment of copyright law to achieve the monopoly of 

interface. 

While the underlying data are closed according to the TOS, the interface itself is 

also closed by vendors. Despite the underlying data, an interface itself defines a 

specification for integrating with underlying data, and this specification can gets its 

popularity and finally become an industrial programming standard for developers. 

Thus, vendors sometimes limit the redistribution of the interfaces solely in order to 

maintain their domination on the specification for integration. Practically, even if the 

source code of an API is visible and usable for developers, vendors sometimes claim 

its copyright and restrict any program from being developed based on its code. Once 

the intellectual property of an interface is infringed, there could be a conflict. The 

lawsuit between Oracle and Google from 2010 is a typical example.  

The Java language is a common programming language that being broadly used 

among developers. The Java API (also known as class libraries) is a tool that allows 

programmers to retrieve pre-written code of Java language rather than write their own 

code from scratch (Oracle v. Google, 2014, pp.7-11). If programmers want to give 



Chapter 5: Force of Open APIs 

 

 

110 

specific commands to computers, they do not need to write every line of new code if 

they deploy Java API. For example, if a programmer needs a step in his program to 

return the greater of two numbers, he does not need to write a new string of code for 

that function. Rather, he can call upon the corresponding java.lang.Math.max (one 

Java API package) to use ready-made functions from Java. The code of API to 

achieve this step can be very simple: ‗int a = java.lang.Math.max (x,y)‘. After 

deploying this line of code, the computer would find the ‗Max‘ method under the 

‗Math‘ class in the ‗java language‘ package; the word ‗int‘ means an integer is 

returned by the method of ‗Max‘; the words ‗x‘ and ‗y‘ are input numbers, and the 

bigger one will be returned and set as the value of ‗a‘; (Oracle v. Google, 2012, 

pp.10-13). This API specifies a way to retrieve the function of ‗Max‘ method in Java 

language. As it shows, programmers can simply choose pre-written programs from 

Java APIs to retrieve ready-to-use codes of the Java language, which makes 

programming process efficient (Oracle v. Google, 2012, p.5). As the Java API 

simplifies the process of programming, it is prevalent among the programming 

community, and many programmers are accustomed to using Java API to relieve 

workload. 

 In 2010, Oracle incorporated Sun Microsystems (who developed Java) and 

acquired the copyright of Java. In 2005 when Google was developing its Android 

software platform for mobile devices, it used some elements of the Java API for 



Chapter 5: Force of Open APIs 

 

 

111 

reference, making Android easy for programmers to familiarise themselves with. The 

final Android platform includes 168 API packages, 37 of which correspond to the Java 

API (Oracle v. Google, 2014, p.10). After Oracle discovered this correspondence, it 

sued Google for infringing the copyright of their Java APIs. 

Although 37 packages of Android system correspond to the Java API and share the 

same name and function, 97% of the underlying code is different. Google merely 

borrowed the name and functions of these APIs:  

As to the 37 packages at issue, Google believed Java application programmers 

would want to find the same 37 sets of functionalities in the new Android system 

callable by the same names as used in Java. Code already written in the Java 

language would, to this extent, run on Android and thus achieve a degree of 

interoperability‘.  (Oracle v. Google, 2012, p. 6) 

The other 3% of Android code was the same as that of the Java APIs—they have 

identical lines of code that specify names, parameters and functionality (Oracle v. 

Google, 2012, p. 7). Google claims that it did not steal any data or services from Java 

but only borrowed the protocol—the way to retrieve data. Google did not copy the 

underlying implementations of Java but instead develop its own implementations of 

the 37 API packages. What Google ‗copied‘ was the specification that helps 

developers to retrieve data from the Google‘s own implementations. However, Oracle 

still accused Google of infringing its copyright because they claim Google ‗had 



Chapter 5: Force of Open APIs 

 

 

112 

replicated the structure, sequence and organization [sic] of the overall code for the 37 

API packages‘ (Oracle v. Google, 2014, p. 2). 

In this lawsuit, whether or not an interface solely is copyrightable is controversial. 

Usually at the level of interface, the structure of code and the specification do not have 

the protection of copyright law. This is not only because an API itself is meaningless 

without the underlying software, but also because it consists of a command structure 

which is necessary for interoperability: ‗This command structure is a system or method 

of operation under Section 102(b) of the Copyright Act and, therefore, cannot be 

copyrighted. Duplication of the command structure is necessary for interoperability‘ 

(Oracle v. Google, 2014, p.4). Drawing from this spirit, in the year 2012, United States 

District Court for the Northern District of California concluded that Java API is not 

copyrightable as it is a general expression—‗there is only one way to write‘ the names 

and declaration for the command (just like common parameters ‗Math‘, ‗Max‘), and 

the ‗merger doctrine bars anyone from claiming exclusive copyright ownership of that 

expression‘ (Oracle v. Google, 2014, p. 13). However, in 2014 United States Court of 

Appeals for the Federal Circuit reversed the judgement and acknowledged the 

copyright of API, which made Google pay billions of US dollars for compensation 

(Oracle v. Google, 2014, p. 69). 

Google states this decision is disappointing, as it damages computer science and 

software development (Bort, 2014). Law professor Samuelson (2014) points out the 



Chapter 5: Force of Open APIs 

 

 

113 

appeals court should not conflate the code of APIs with the code of underlying 

software. Underlying software can be copyrighted, but program structures such as 

APIs are inherently functional and ‗aimed at achieving technical goals of efficiency‘, 

that is why they should not be protect by copyright law (p. 3). Making interfaces 

copyrightable is detrimental to software development, because the design choices of 

subsequent programmers can be constrained by the interface designs embodied in 

earlier programs (Samuelson, 2014, p. 4). Indeed, only giant companies like Google 

can afford a two-year-long lawsuit and afford the penalty. The only thing small or 

middle scale companies can do is to accept these ‗closed‘ interfaces and their unequal 

TOS.  

Kelty (2008) points out the ‗goal‘ of commercial organisations is not just creating 

competitive product, but also creating and maintaining a standard infrastructure of 

programming based on them, which was what the vendors of UNIX intended to do in 

the 1980s: 

In short, the challenge was not just the creation of competitive products but the 

creation of a standard infrastructure, dealing with the technical questions of 

availability, modifiability, and reusability of components, and the moral 

questions of the proper organization [sic] of competition and collaboration 

across diverse domains: engineers, academics, the computer industry, and the 

industries it computerized [sic]. (Kelty, 2008, p. 152) 



Chapter 5: Force of Open APIs 

 

 

114 

Could it also be the vendors of Open API trying to achieve? Corresponding to the API 

lawsuit, it seems that in the level of interface, power from vendors are still 

implementing in maintaining their domination on the interface rather than merely 

underlying software. The constraint on the modification and redistribution of APIs 

shows vendors‘ intention of building a standard infrastructure on their software 

product. Indeed, Google can choose not to collaborate with the dominating Java API. 

However, if Google starts building a new API for programming from scratch, how 

much effort will it take? How many external users are likely to learn a new API and new 

language to establish their programme? 

APIs were built for achieving interoperability, but making it copyrightable 

excluded any developers from freely building programs on it. Furthermore, when a 

proprietary API becomes a merger doctrine for software integration, every developer 

who does not want to be excluded has to follow the rule of vendors. APIs, in this sense, 

are making it easier for vendors to control collaboration in software industry. APIs, to 

some extent, are rendered even more closed, and they can never be as ‗open‘ as 

FLOSS. In what sense can we call it open? If the ultimate goal of vendors is not 

making their services open for collaboration but for achieving monopoly, then, the 

‗open‘ of APIs could be an ideology that exaggerate interoperability and convince 

developers to join a vendor dependent infrastructure. 



Chapter 5: Force of Open APIs 

 

 

115 

The Power of Ideology in Open APIs 

In traditional productive activity, capitalists force workers to work in the factory 

to earn low wages for their survival. Power in this era is in the form of economic 

coercion or physical force, which is essential for exploitation. In the usage of Open 

API, vendors do not force developers to program with their Open APIs—Open APIs 

are just optional services and they are not necessary components for developers‘ 

programs. Another kind of force, which is subtle but functions significantly in 

maintaining exploitation, comes from the ideological manipulation by vendors. 

Ideology is usually a required component for the maintenance of domination and 

exploitation, and is naturalised by the use of discourse for specific goals by specific 

organizations. Andrejevic (2013, p.154) states that force in exploitation can refer to 

commercial organisations reproducing the forms of scarcity that compel freely given 

submission. Presently capitalists do not force workers to work in an assembly line, but 

control vital resources for production and use this advantage to compel freely given 

submission of labours.  

In today‘s context, commercial organisations are those who control vital 

resources for programming in digital era, and they convey an ideology which tells 

developers that Open APIs are ‗open enough‘ and are the best choice for collaboration, 

urging developers to use Open APIs without enough consideration. Fuchs identifies 

the goal of ideology and its relationship with exploitation:  



Chapter 5: Force of Open APIs 

 

 

116 

Ideology aims at instilling the belief in the system of capital and commodities 

into humans‘ subjectivity. The goal is that human thoughts and actions do not go 

beyond capitalism, do not question and revolt against this system and thereby 

play the role of instruments for the perpetuation of capitalism. It is of course an 

important question to what extent ideology is always successful and to what 

degree it is questioned and resisted, but the crucial aspect about ideology is that 

it encompasses strategies and attempts to make human subjects instrumental in 

the reproduction of domination and exploitation. (Fuchs, 2013, p. 22) 

Ideology maintains domination and exploitation by claiming the particular social 

structure is natural. Thus, using ideology critique to denaturalise these false 

consciousness can be a complementary necessity for political economy study of 

digital media (Fuchs, 2013, p. 17). This section examines the ideology of Open APIs 

conveyed by vendors, points out that vendors are attempting to naturalise the 

‗openness‘ of their proprietary APIs and persuade external developers to use APIs 

without question their validity. 

An ideology that misleads developers. 

For external developers who are interested in one API, they are likely to go to the 

official websites of the API and examine what it is and what it can do. However, for 

most APIs that are provided by commercial organisations, official websites do not 



Chapter 5: Force of Open APIs 

 

 

117 

have a clear introduction about what their APIs are and do. Rather, they constantly 

point out the advantage developers can get when adopt their APIs, and sometimes 

they just post links to tutorials that tell developers how to use the API. 

For example, on the frontpage of Google Maps API, developers can see Google 

Maps are displayed in three screens and followed by a sentence ‗Google Maps, 

available on every screen‘ (Google Maps APIs, 2015). 

 

Figure 5.1: Frontpage of the Google Maps API 

These three screens represent three platforms, IOS, PC and Android. Below these 

pictures, there are words listed with the title ‗IOS‘, ‗Web‘, ‗Android‘ and 

‗Everywhere‘. This information that vendors give to developers is apparently showing 

the ubiquity of Google Maps API and lets developers choose the platform they intend 

to use. There is only one sentence that ‗describes‘ a particular platform under each 

title:  



Chapter 5: Force of Open APIs 

 

 

118 

iOS: 55 million downloads can‘t be wrong. Bring the popularity of Google Maps 

to your app with the Google Maps SDK for iOS;  

Android: Bring more accurate, comprehensive and easy-to-use maps to your 

mobile app with the Google Maps Android API. 

Web: Deliver a seamless browser experience with the Google Maps JavaScript 

API v3 and kill two birds with one HTML5-powered stone. 

Everywhere: It's a bird. It's a plane. It‘s Google Maps, now available in the 

dashboard of your car, in your gaming console, and with you while you work out. 

(Google Maps APIs, 2015) 

These descriptions are not telling developers what these APIs are, but are showing the 

ubiquity of their APIs. It seems that Google Maps APIs are popular among the 

programming community, and programmers have to use it or they will get left behind. 

Rather than introductions, they are more likely to be advertisements that promote 

Google Maps. In addition to the information above, the remainder of this page lists 

two titles: ‗Design a map to call your own‘ and ‗When only accurate and 

comprehensive maps will do‘. Both of these titles are followed by some functionality 

of Google Maps API and descriptions about them. Similarly, these descriptions are all 

emphasising how amazing the functionalities are. For instance, the description of 

Google Place API is ‗The Google Places API can be used to find places your users 

care about like restaurants, businesses and landmarks. The database of 95 million 



Chapter 5: Force of Open APIs 

 

 

119 

businesses is verified by owners and users on a daily basis‘. In short, from this 

website external developers cannot understand what, explicitly, Google Maps API is, 

they only know Google Maps sounds great for developers and it looks like everyone 

is using it.  

If one developer is willing to use Google Maps API on his websites, he might 

click the link for the ‗Web‘ version and look for details. As Google is using the 

Google Maps JavaScript API v3 for its web service now, developers will go to the 

official webpage of Google Maps JavaScript API. However, from the frontpage of 

Google Maps JavaScript API (Google Maps JavaScript API, 2015), we can only see a 

Google interactive digital map and a section on ‗Product Features‘ which still stresses 

how good the API is. If a developer wants to continue, the next stage is ‗get started‘, 

which goes to the part of tutorial teaching programmers how to program with Google 

Maps JavaScript API v3. As of yet, there is still no clear description of what the API is 

and how vendors can enforce control through it. This information reveals the vendors‘ 

intention: let developers know how good their APIs are, and encourage them to start 

to learn how to use them and adopt them for external applications as soon as possible. 

External developers will only realise the limitations of using API when applying an 

API key and see the TOS (which might be too long and tedious for some developers 

to read thorough). The same thing also happens on the websites of the Facebook 

Graph APIs, where there is only one short paragraph about what Graph API is: ‗The 



Chapter 5: Force of Open APIs 

 

 

120 

Graph API is the primary way to get data in and out of Facebook's platform. It's a 

low-level HTTP-based API that you can use to query data, post new stories, manage 

ads, upload photos and a variety of other tasks that an app might need to do‘ 

(Facebook Graph API, 2015). It conveys a simple message: the Graph API can let 

developers get data from Facebook, and an app might need that data. After this short 

introduction, it goes on to describe technical details about the programming language 

of Graph API and how to use it. Not until developers review Facebook‘s Platform 

Policy (Facebook Developers, 2015) can they realise limitations on modification and 

redistribution. Among the websites of APIs, all this  information is about promoting 

openness and teaching developers how to use APIs, and there is little information 

about the limitation and closure except in the TOS.  

It is fair enough to assume that vendors believe external developers know the 

basic background of programming and what exactly an API is, but the websites that 

introduce APIs can still lead to misunderstandings. Vendors just keep emphasising 

that they open their data to third-party developers and how fantastic this opportunity 

is, but there is no explicit description about the openness and limitation. On the one 

hand, the limitation and restriction that ensure the closure are depicted in the tedious 

TOS that some developers may not read completely before adopting APIs. On the 

other hand, the accessibility that APIs provide is emphasized by vendors, but the 

potential of monitoring and controlling are not outlined clearly. These vague 



Chapter 5: Force of Open APIs 

 

 

121 

descriptions about API can render confusion, which makes many programmers do not 

know what API refers to. Patterson observes that the term API is colloquially used to 

describe both the specification and underlying service in recent years (Patterson, 

2015). As a result, some external developers tend to think that vendors open their 

services and data for programmers just like FLOSS did, without realising the fact that 

the services are closed source and there are interfaces serving as an agent between 

external applications and vendors‘ services. While the underlying software is always 

closed, even the interface itself is just partly ‗open‘ as it is copyrighted and ultimately 

closed off to modification. However, the ‗open‘ interface and substantial functionality 

it connects to might cover the truth of their closure. Indeed, external programmers can 

benefit a lot from APIs when they adopt them, as we examined in the beginning of 

Chapter Three. This convenience makes developers regularly use APIs without too 

much hesitation, as they believe APIs are not just an option for collaboration but the 

best and only way to advance their own application efficiently.  

As Open APIs facilitate interaction between different applications, they are 

sometimes conceived of as a substitute for ‗open source software‘ for some 

programmers, and some of them even believe that Open APIs are more open because of 

their flexibility and low transaction cost. Lyman, a programmer and software analyst 

wrote a blog that said open APIs are ‗the new Open Source‘ (Lyman, 2012). Lyman 

suggests that open APIs as a kind of open services, are better than open source for 

integration: ‗they (programmers) soon find that they are dealing much more with APIs 



Chapter 5: Force of Open APIs 

 

 

122 

than with source code. Both customers and providers indicate an initial interest in open 

source and source code, but they soon find the APIs to be the more appropriate point of 

interface and integration‘ (Lyman, 2012). Lyman believes that although proprietary 

software keep their underlying code secret, they offer Open APIs as convenient 

methods for integration so they are ‗open enough‘. Lyman and programmers who 

support him share a similar argument: the proprietary computing resources that vendors 

of API own are too massive for some external developers to handle. Providing access to 

the services via Open APIs instead of providing the entire source code might be better 

for external developers as it save costs.  

In terms of interoperability, APIs might have done a great job, sometimes better 

than providing entire source code of software as we discussed in Chapter Two, which is 

why Lyman and other developers believe in it. However, the partly open ‗source code‘ 

of these interfaces does not make them ‗open source‘. If this openness is not as ‗open‘ 

as FLOSS, interoperability and fast integration can still lead to closure and 

exploitation. All these discursive practices are ideological; they claim adopting APIs 

for programming is the best mode of collaboration, while neglecting the closure of 

APIs and the risk of exploitation. The fact that many developers benefit from APIs in 

the short term even ‗proves‘ such a claim about the collaboration of APIs, thus 

intensify the proliferation of this ideology. 

 Once developers are convinced by this ideology and join the infrastructure of 



Chapter 5: Force of Open APIs 

 

 

123 

vendors, they are under control that they are not even aware of. The Power of 

pre-defined code and legal documents are controlling developers and their 

applications or websites. The interaction and transaction between different programs 

which use APIs are becoming relied upon by vendors. Programmers are becoming 

increasingly dependent on the infrastructure controlled by a few commercial entities, 

too. They lose their independent way of programming while switching to the way that 

commercial entities prefer, just because their way is more convenient and entertaining. 

A commentator responded to Lyman‘s article (JimPlamondon, 2012): 

In the 1990s, as a Microsoft employee, I sold this very same argument on 

Microsoft's behalf: that the Windows API was ‗open enough‘. AMAZINGLY 

[sic], people bought this argument, back then. Every line of code that they wrote 

to Windows' API locked them more firmly into the Windows API and hence into 

Microsoft as the sole vendor of that API (failed ‗zombie projects‘ such as WINE, 

WABI, and Bristol aside). Writing a line of code to the Windows API was like 

giving Microsoft a line of credit against your future earnings...but people did it, 

because it gave them a short-term time-to-market advantage. SURELY [sic], the 

industry hasn't forgotten Microsoft's utter dominance of the PC computing 

industry...has it? 

For external developers, this trend of using APIs without enough consideration 

increases the potential of domination. For vendors of API, this ideology is helping 



Chapter 5: Force of Open APIs 

 

 

124 

them to build a vendor-dependent infrastructure that gains more profit in the long 

term. The next section will identify how ‗open‘ becomes a marketing ideology from 

the perspective of vendors. 

Openness as a marketing ideology. 

Some programmers notice the exploitive nature of Open APIs and express their 

concerns. Duncan Geoff is a commenter and programmer who shows interest in the 

changing policy of the Google Maps API. He examined the Google Maps policy and 

believes that ‗The idea was to make Google‘s online mapping service a de facto 

standard for digital maps on the Web and in mobile devices. Once Google had 

established a serious presence in the digital mapping marketplace, it would figure out a 

way to monetize [sic] the service‘ (Duncan, 2012). From his point, vendors establish 

Open APIs only for ensuring their market domination and aim for more profit rather 

than considering facilitating collaboration. 

With the development of digital technology and increasingly data mining, 

covering the data is no longer easy for vendors, especially for those who provide data 

as public services. Given the situation that ‗open‘ their services are inevitable, vendors 

might be considering: why not make this ‗open‘ more controllable? Deploying Open 

APIs can be a strategy for vendors to follow the trend of ‗open‘ and become more 

competitive. Aitamurto and Lewis (2013) examine the APIs of news websites and 



Chapter 5: Force of Open APIs 

 

 

125 

point out why vendors provide APIs to their news content. For them, offering APIs to 

developers is just a better way to gain more profits:  

We made the push. We sold it internally. There was some apprehension; some 

wonder what you‘re talking about, ‗Why are we going to give away the farm for 

free? This is our baby. We‘re giving away the content‘. However, the point is ‗The 

content is on the website. Anyone can come and scrape it. Anyone can capture a 

stream. The content is out there. It‘s free anyways‘. Some developers realized [sic] 

open part of APIs was an unavoidable, thus they working on develop Open APIs 

for purposes of better R&D and thus for greater profits. (Aitamurto & Lewis, 2013) 

Moreover, some vendors do not hesitate to express how they conceive the term ‗open‘ 

and how they can manage an open system and lead the trend of ‗open‘. In Google‘s 

official blog, Product Manager Jonathan Rosenberg published the post in 2009 titled 

‗The Meaning of Open‘, which identifies ‗open‘ as a kind of marketing strategy that 

works better than ‗closed‘ strategies. Google believes open systems will win out 

because they ‗lead to more innovation, value, and freedom of choice for consumers, 

and a vibrant, profitable, and competitive ecosystem for businesses‘ (Rosenberg, 

2009). For him, the competitive advantage of open systems derives from 

understanding the fast-moving system and using that knowledge to generate better, 

more innovative products: 

The successful company in an open system is both a fast innovator and a thought 



Chapter 5: Force of Open APIs 

 

 

126 

leader; the brand value of thought leadership attracts customers and then fast 

innovation keeps them. This isn‘t easy—far from it—but fast companies have 

nothing to fear, and when they are successful they can generate great shareholder 

value. (Rosenberg, 2009) 

An open system, for Google, is a way to generate shareholder value. And Google uses 

the customers of this open system for this purpose. Google claims they ‗harness the 

intellect of the general population and spur businesses to compete, innovate, and win 

based on the merits of their products and not just the brilliance of their business 

tactics‘ (Google Official Blog, 2009). 

For companies like Google, openness is a strategy for them to gain leadership 

and become more competitive. It looks like this strategy is also benefiting external 

developers, but the truth is the interest of external developers‘ and the development of 

whole software industry is just a bonus from vendors, not vendors‘ main goal. Once 

they conflict with the interest of vendors, there is no chance for negotiation. For 

example, many vendors intensify the restriction of their APIs to control external 

developers‘ activities, only to maximise vendors‘ own interest. These limitations are 

infringing upon external developers‘ benefits and eroding the innovation and 

development of software industry. Janet Wagner, a data journalist who focuses on APIs, 

points out how overly restrictive API policies are killing innovation:  

In recent years, there has been a growing trend of companies initially providing 



Chapter 5: Force of Open APIs 

 

 

127 

public APIs and an open platform, only to enact API restrictions or even close 

access to the platform later on. This pattern has become rather commonplace 

among social networking service providers. Facebook, Google, Twitter and 

LinkedIn have all made changes to their API terms of service in recent years, 

limiting access to their platforms in varying degrees. (Wagner, 2014) 

As a result, ‗Innovative applications built with social networking APIs has [sic] been 

drastically reduced‘ (Wagner, 2014). However, vendors seem to not care about this. 

Thor Mitchel, Product Manager of Google, in response to the commentary of Wagner 

on Google APIs increasing restriction, points out the fact directly: ‗An API is not a 

successful product until that adoption translates into value for the provider. If your use 

of an API is not generating value for the provider, then all it is generating is cost and 

you‘re skating on very thin ice by relying on it‘ (Mitchel, 2014, August 7). In this case, 

value, or profit for commercial organisations, is why companies open APIs for their 

software. To some extent, ‗openness‘ is a bait which is provided in the name of 

encouraging innovation and openness. For vendors, they do not really care about open 

or not, they only care about profit. Just like Spivack says: ‗―All that matters is the 

money‖ (to quote Shark Tank). And the money says, closing the APIs is sub-optimal. 

You can make more money by opening them with a good monetization model‘ (Spivack, 

2012, August 16). While an increasing number of Closed Source APIs are developed 

and opened for public use, the increasing number of third-party users is drawn into a 



Chapter 5: Force of Open APIs 

 

 

128 

monetisation mode of commercial organisations. 

Overestimating the collaboration facilitated by Open APIs advances an ideology 

that Open APIs are beneficial for both external developers and the whole industry, 

without taking into account how the interests of vendors are dominating and shaping 

programming practices. In this sense, ideology of openness in Open APIs affects the 

subjectivity of external developers, making them instrumental for advocating and 

improving vendors‘ services, and finally aggravates domination and exploitation.  

Exploitation, Power and the Central Position of Vendors 

The significant power of Open APIs cannot be attributed to technology itself, 

instead, vendors are the major factor of this. Vendors play the key role in facilitating 

the pre-defined power of code, legal contract and ideological manipulation. In fact, 

Open APIs alone do not create this power, neither can they themselves lead to 

exploitation. It is embedded into the power structures of contemporary society, where 

profit-seeking corporations are exploiting the potentials of these digital technologies 

for commercial purposes. As discussed, Open APIs contain Open Source APIs and 

Closed Source APIs, both of which have the potential to foster new technical 

innovation and creativity. Nevertheless, the blooming of Closed Source APIs and 

exploitation among their usage only reveals the social relations of capitalism. 

As long as an API is proprietary, it cannot be as open as FLOSS where 



Chapter 5: Force of Open APIs 

 

 

129 

exploitation has little opportunity to happen. Developers volunteer to use APIs to get a 

short-term advantage: retrieve geographic information from Google Maps API, or gain 

a significant user base via Facebook or Twitter API. In effect, their own software 

become dependent on the API vendors, and the mode of programming is tied to 

developing commercial infrastructures. When programmers are increasingly fond of 

APIs, they are becoming more and more reliant upon the provision these Closed Source 

APIs rather than the actual source code of underlying software upon which they used to 

rely. The proprietary nature of it limits the possibility for API to be truly open.  

Chesbrough (2003) points out how openness in digital technology is used to forge 

new pathways for commercialising innovations crafted within and beyond the 

boundaries of a firm. Today the openness of APIs is such an open innovation strategy, 

where a company integrates external ideas and information into its own business and 

commercialises third-party programmes (Chesbrough, 2003; Aitamurto, & Lewis, 2013). 

From a critical Marxist perspective, exploitation is ‗evil‘ because it ‗involves force and 

domination in manifold ways and because it deprives workers of control that should be 

theirs‘ (Andrejevic, 2013, p. 157). In this regard, Google‘s motto ‗Don‘t be evil‘ might 

need to be reconsidered as its Closed Source APIs manifest their power and exploitive.   



Conclusion: Danger of Vendor Dependent Structure based on API 

 

 

130 

Conclusion: Danger of Vendor Dependent 

Structure based on API 

Kelty (2013) has made an argument that ‗there is no free software‘. For him, even 

if software is truly free, it has the potential to make a ‗heterogeneous ecology of small 

and medium sized nodes (single servers and small clusters of servers) to a handful of 

enormous data centres and server farms running virtualized [sic] versions of the 

Internet inside them.‘ Kelty is warning us about the potential domination of free 

software, as they might lead to monopoly: giants control all the services and become a 

central server. The biggest of these, such as Google and Amazon, are all running 

‗open source‘ software, but the concept of ‗open source‘ is making increasingly little 

sense the larger and more controlled these systems become. For companies, ‗they only 

do so at the pleasure of the sovereign, so to speak—the once beloved power to ―fork‖ 

the software disappears in a world where centralized infrastructure is everything‘ (Kelty, 

2013). Kelty is warning us about the danger of centralised infrastructure, and the 

central point of this claim is cause for alarm: once a handful of software publishers gain 

popularity and become de facto standards, the self-organised network of the 

programming community will inevitably turn to centralised infrastructure—even if the 

standards are facilitated by free software. This centralised infrastructure deprives 

developers‘ independence, and once it becomes commercialised, exploitation may 

happen. Birkinbine (2014) explicitly identifies how large software companies get 



Conclusion: Danger of Vendor Dependent Structure based on API 

 

 

131 

involved in the development of popular FLOSS projects, change the ownership 

structure or make profitable business on these projects. In this sense, even the common 

based peer labour can be exploited as corporations are seeking to make commercial 

use of the contributions of developers. 

The issue of Open APIs is more complicated as it is proprietary and closed in the 

first place and conceived as ‗open‘ for programmers. Vendors use Open APIs to achieve 

market dominance and cultivate dependency, which establish an infrastructure that 

supports unequal social relations. The problem is not due to the technical feature of 

Open APIs, rather, APIs provide a truly innovative way for software collaboration. 

The central issue is whether APIs are ‗vendor-dependent‘, or, whether capitalism is 

affecting technical implementation of APIs. If an API belongs to commercial 

organisations, vendors can use it to privatise and commercialise developers‘ labour as 

they want: 

The privatization and commercialization [sic] of the Internet is a form of material 

deprivation and enclosure insofar as it separates users from the infrastructure that 

supports their communicative activities. It reinforces and reproduces the structure 

of social relations wherein a small group controls the productive resources used by 

the many and allows economic advantages to accrue from this control. The 

ownership class that includes the founders of Facebook, Google, Yahoo, and so on 

could not exist without capturing and controlling components of the productive 



Conclusion: Danger of Vendor Dependent Structure based on API 

 

 

132 

infrastructure. (Andrejevic, 2013, p.155) 

In the use of APIs, vendors gain economic advantages from developers‘ programming 

activities, and use different forms of power to maintain this unequal relationship. 

These closed source API reinforces the structure of social relations that intensifies 

exploitation and domination. As long as APIs are affected by capital, it could lead to 

domination and monopoly, which is detrimental to the development of computing.  

Indeed, vendor-neutral software and vendor-neutral Open APIs do exist such as 

OpenStack APIs (OpenStack, 2014). Open source APIs could be a way out of the 

influence of capital as Gangadharan says: 

In the future, we believe that more open APIs will begin to be licensed using 

open source licenses. While the source code of the interface of an open API is 

always available, open sourcing an open API makes the source code of the API 

implementation available in addition to the source of its interface. In this case, 

users would be able to modify an API, or derive new APIs from an open API. 

(Gangadharan, 2009) 

Vendor-neutral APIs like OpenStack API and open source computing are adopted by 

the computing industry today but their numbers and scale are too small compared to 

proprietary services. This is why there is so much confusion and misuse about the word 

‗Open API‘ and ‗Open source‘. Open API itself does not lead to ideological 

manipulation and domination. The trigger, one the one hand, is uncritical external 



Conclusion: Danger of Vendor Dependent Structure based on API 

 

 

133 

developers who adopt APIs without full consideration. On the other hand, are 

profit-seeking vendors who have significant resource, keep promoting their business 

and alter the technical feature of APIs for pursuing profit. As most open APIs 

nowadays are proprietary, the development of programming is limited by capitalist 

structures of ownership and profit-seeking vendors.  

To advance a democratic programming environment, it is crucial to build a real 

open infrastructure like FLOSS which is not subject to market logic. More 

importantly, it is crucial to let developers realise the essence of the openness of 

FLOSS and its significance for software development. Even if there will be more 

‗open‘ technologies for software collaboration, corporations can still make them 

closed and find a way to monetise them. Only when developers fully understand the 

principles of FLOSS and develop a critical view on the openness of software can they 

make a right decision before adopting new software tools. In this way, developers can 

avoid being affected by ideologies, and protect their peer labour from unwanted 

commercial use.    

  



References 

 

 

134 

References 

AA. (2014). The AA Route Planner. Retrieved September 25, 2014 from 

http://www.theaa.com/route-planner/index.jsp  

Aitamurto, T., & Lewis, S. C. (2013). Open innovation in digital journalism: 

Examining the impact of Open APIs at four news organizations. New media & 

Society, 15(2), 314-331. 

Albanesius, C. (2013, March 14). Online Petitions Protest Google Reader Shutdown. 

[Web Log]. Retrieved from 

http://www.pcmag.com/article2/0,2817,2416602,00.asp 

Andrejevic, M. (2013). Estranged Free Labor. In Scholz, T. Digital Labor, The Internet 

as Playground and Factory, pp.149-164. UK: Taylor & Francis. 

API Evangelist.(2012). History of APIs. Retrieved December 20, 2012 from 

http://apievangelist.com/2012/12/20/history-of-apis/ 

Authorize. Net. (2013). SOAP API Documentation. Retrieved September 27, 2013 

from http://www.authorize.net/support/CIM_SOAP_guide.pdf 

Autonavi LBS Open Platform. (2014a). Location Tag. Retrieved September 16, 2014 

from http://lbs.amap.com/api/lightmap/guide-2/point/ 

Autonavi LBS Open Platform. (2014b). Maps API tools. Retrieved September 16, 



References 

 

 

135 

2014 from http://lbs.amap.com/console/show/tools 

Awsdocumentation.(2006). Amazon Simple Storage Service Developer Guide. 

Retrieved from Awsdocumentation: 

http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html. 

Bauwens, M. (2012). Thesis on Digital Labor in an Emerging p2p Economy. Digital 

Labor: The Internet as Playground and Factory, 207. 

Berners-Lee, T., Hendler, J. and Lassila, O. (2001). ―The Semantic Web‖. Scientific 

American, 284(5). pp 34-43. 

Berry, D. M. (2011). The philosophy of software. London, UK: Palgrave Macmillan. 

Benkler, Y. (2006). The wealth of networks: How social production transforms markets 

and freedom. New Haven, CT: Yale University Press 

Birkinbine, B. J. (2014). Incorporating the Commons: Towards a Political Economy of 

Corporate Involvement in Free and Open Source Software (Doctoral dissertation), 

University of Oregon. Eugene, US. 

Bodle, R. (2011). Regimes of sharing: Open APIs, interoperability, and Facebook. 

Information, Communication & Society, 14(3), 320-337. 

Bort, J. (2014). Google: This Oracle Lawsuit Could Damage The Whole Software 

Industry. Business Insider Australia. Retrieved May 10, 2014 from 



References 

 

 

136 

http://www.businessinsider.com.au/google-oracle-lawsuit-is-damaging-2014-5 

Bucher, T. (2013). Objects of intense feeling: The case of the Twitter APIs. 

Computational Culture, 3. Retrieved 2013 from 

http://computationalculture.net/article/objects-of-intense-feeling-the-case-of-the-

twitter-api 

Carrillo-Tripp, M., Shepherd, C. M., Borelli, I. A., Venkataraman, S., Lander, G., 

Natarajan, P., Johnson, J. E.,Brooks, S. L. & Reddy, V. S. (2009). VIPERdb2: an 

enhanced and web API enabled relational database for structural virology. Nucleic 

acids research, 37(suppl 1), D436-D442. 

Castells, M. (2011). The rise of the network society: The information age: Economy, 

society, and culture (Vol. 1). Hoboken, NJ: John Wiley & Sons.  

Chesbrough, H. (2003). Open innovation: The new imperative for creating and 

profiting from technology. Cambridge, MA: Harvard Business School 

Publishing.  

Chiu, P. (2015). Update on the Autocomplete API. Retrieved July 24, 2015 from 

http://googlewebmastercentral.blogspot.com.au/2015/07/update-on-autocomplete

-api.html 

Chun, W. H. K. (2011). Programmed visions: Software and memory. Cambridge, MA: 



References 

 

 

137 

Mit Press. 

Comor, E. (2011). Contextualizing and Critiquing the Fantastic Prosumer: Power, 

Alienation and Hegemony. Critical Sociology, 37(3), 309-327 

Creative Commons. (2014). Open Definition 2.0 released. Retrieved October 7, 2014 

from http://creativecommons.org/tag/open-definition 

Cubit, S. (2013). The Political Economy of Cosmopolis. In Scholz, T, Digital Labor, 

The Internet as Playground and Factory, pp.58-68. UK: Taylor & Francis.  

De Souza, C. R., &Redmiles, D. F. (2009). On the roles of APIs in the coordination of 

collaborative software development. Computer Supported Cooperative Work, 

18(5-6), pp. 445-475. 

Duncan, G. (2012). Why are companies defecting from Google Maps? Retrieved  July 

8, 2014 from 

http://www.digitaltrends.com/mobile/why-are-companies-defecting-from-googl

e-maps/#!DsbY0 

Duvander, A. (2014). Most popular apis: At least one will surprise you. 

Programmableweb. Retrieved July 14, 2014 from 

http://www.programmableweb.com/news/most-popular-apis-least-one-will-surp

rise-you/2014/01/23 

Elster, J. (1986). An Introduction to Karl Marx. Cambridge, UK: Cambridge University 



References 

 

 

138 

Press. 

Facebook Developers. (2014). Games Overview. Retrieved December 8, 2014 from 

https://developers.facebook.com/docs/games/overview 

Facebook Developers. (2015). Platform Policy. Retrieved March 25, 2015 from 

https://developers.facebook.com/policy/#properuse 

Facebook Graph API. (2015). Graph API Overview. Retrieved June 5, 2015 from 

https://developers.facebook.com/docs/graph-api/overview/ 

Fairclough, N. (1995).Critical discourse analysis: The critical study of language. 

London, UK: Longman. 

Fairclough, N. (2013).Critical discourse analysis: The critical study of language.2
nd

 ed. 

New York, NY: Routledge. 

Fisher, D. (2015, March 26). Instagram API Bug Could Allow Malicious File 

Downloads.[Web log]. Retrieved from 

https://threatpost.com/instagram-api-bug-could-allow-malicious-file-downloads/

111784 

Flicker. (2014). Flickr APIs Terms of Use. Retrieved September 12, 2014, from 

https://www.flickr.com/services/api/tos/ 

Floyd, I. R, Jones, M. C.Rathi, D&Twidale, M. B (2007). Web mash-ups and 

patchwork prototyping: User-driven technological innovation with web 2.0 and 



References 

 

 

139 

open source software. In System Sciences, 2007. HICSS 2007. 40th Annual Hawaii 

International Conference, p. 86. IEEE. 

Fox,Z.(2012, March 01).Foursquare Says Farewell to Google Maps, Joins 

OpenStreetMap Movement. [web log].Retrieved from 

http://mashable.com/2012/02/29/foursquare-openstreetmap/ 

Fuchs, C. (2013). Social media: A critical introduction. Los Angeles, CA: Sage. 

Galloway, A. R. (2004). Protocol: how control exists after decentralization. Cambridge, 

MA: MIT Press. 

Gangadharan, G.R. (2009). Licensing of Open APIS. Retrieved 2014, from 

http://timreview.ca/article/243 

GNU Operating System. (2014a). What is Copyleft. Retrieved September 12, 2014 

from https://www.gnu.org/copyleft/copyleft.en.html 

GNU Operating System. (2014b). FAQ. Retrieved September 12, 2014 from 

http://www.gnu.org/licenses/gpl-faq.html#DoesFreeSoftwareMeanUsingTheGPL  

GNU Operating System. (2015). Licenses. Retrieved September 12, 2014 from 

https://www.gnu.org/licenses/licenses.en.html  

Google. (2013). A second spring of cleaning. Retrieved March 3, 2015 from 



References 

 

 

140 

http://googleblog.blogspot.com.au/2013/03/a-second-spring-of-cleaning.html  

Google AdSense. (2014). How it works. Retrieved December 6, 2014 from 

https://www.google.com/adsense/start/how-it-works.html 

Google Ads AdSense. (2014). Overview. Retrieved March 2, 2015 form 

http://www.google.com/adsense/start/ 

Google AdSense Case Study. (2013). Google AdSense creates a profitable sideline for 

British photographer. Retrieved June 30, 2015 from 

http://services.google.com/fh/files/misc/uk_northlight_adsense.pdf 

Google Developers. (2014). Google Maps API Licensing.Retrieved December 25, 

2014 from https://developers.google.com/maps/licensing 

Google Developers. (2015). AdSense Management API. Retrieved June 26, 2015 from 

https://developers.google.com/adsense/management/index 

Google Geo Developers Blog. (2011). Updates to the Google Maps/Google Earth APIs 

Terms of Service. [web log post]. Retrieved from 

http://googlegeodevelopers.blogspot.com.au/2011/04/updates-to-google-maps-ap

igoogle-earth.html 

Google Maps APIs. (2015). Retrieved June 30, 2015 from 

https://developers.google.com/maps/ 

Google Maps API FAQ. (2015). Retrieved March 15, 2015 from 



References 

 

 

141 

https://developers.google.com/maps/faq 

Google Maps APIs Overview. (2015). Retrieved June 16, 2015 from 

https://www.google.com/work/mapsearth/products/mapsapi.html 

Google Maps/Google Earth APIs TOS. (2013). Retrieved April 5, 2014 from 

https://developers.google.com/maps/terms?csw=1 

Google Maps Embed API. (2014). Retrieved June 3, 2014from 

https://developers.google.com/maps/documentation/embed/guide 

Google Maps JavaScript API. (2015). Retrieved March 5, 2015 from 

https://developers.google.com/maps/documentation/javascript/ 

Google Maps Tutorials. (2014). Customizing Google Maps: Custom Markers. 

Retrieved June 15, 2014 from  

https://developers.google.com/maps/tutorials/customizing/custom-markers 

Google Privacy Policy. (2014). Retrieved December 12, 2014 from 

http://www.google.com/policies/privacy/ 

Graham, P. (2007). Political economy of communication: A critique. Critical 

perspectives on International Business, 3(3), pp. 226-245. Retrieved from QUT 

Digital Repository: http://eprints.qut.edu.au/19150/1/19150.pdf 

Graham, P.W & Luke, A. (2011) Critical discourse analysis and political economy of 

communication: understanding the new corporate order. Cultural Politics, 7(1), pp. 

https://www.google.com/work/mapsearth/products/mapsapi.html
https://developers.google.com/maps/terms?csw=1


References 

 

 

142 

103-132. 

Gray, I.A. (2015). Build Your First Twitter App Using PHP in 8 Easy Steps. [web log 

post]. Retrieved March 1st from 

http://iag.me/socialmedia/build-your-first-twitter-app-using-php-in-8-easy-steps/ 

Hackus. (2011, December 30). Re:What's the point?. [web log comment]. Retrieved 

from 

http://news.slashdot.org/story/11/12/30/1317216/open-source-increasingly-replac

ed-by-open-apis 

Hall, S., Critcher, C., Jefferson, T., Clarke, J., & Roberts, B. (1978).Policing the crisis: 

Mugging, the state and law and order. London, UK: Macmillan. 

Hesmondhalgh,D. (2010). User-Generated Content, Free Labor and the Cultural 

Industries.Ephemera 10, no. 3/4 (2010): 267-248.  

Jenkins, H. (2008). Convergence Culture. New York, NY: New York University Press. 

JimPlamondon. (2012, Febraruy 16). Deja Vu all over again. [web log comment]. 

Retrieved from  

http://www.linuxinsider.com/perl/board/mboard.pl?board=lnitalkback&thread=5

891&id=5896&display=1#message_5896 

Jones,B. (2012). The API Revolution. Campaign, 04/2012, p. 24. 



References 

 

 

143 

Julien. (2013). A Google Reader Compatible API. [Web Log Post].Retrieved 19 Mar 

2013 from http://blog.superfeedr.com/google-reader-compatible-api/ 

Kansa, E. C., & Wilde, E. (2008). Tourism, peer production, and location-based service 

design. In Services Computing, 2008.SCC'08.IEEE International Conference, Vol. 

2, pp. 629-636. IEEE. 

Kelty, C. M. (2008). Two bits: The cultural significance of free software. Durham, NC: 

Duke University Press.  

Kelty,(2013). There is no Free Software. Journal of Peer Production. Issue #3: The 

Critical Power of Free Software. Retrieved 2014 from 

http://peerproduction.net/issues/issue-3-free-software-epistemics/debate/there-is-

no-free-software/ 

Labourey, S and Harris,S. (2013). ―Developer Freedomat Stake as Oracle Clings to 

Java API Copyrights In Google Fight‖. Techcrunch, (3).  

Lessig, L. (1999).Code and Other Laws of Cyberspace. New York, NY: Basic Books. 

Lessig, L. (2006). Code: Version 2.0. New York, NY: Basic Books 

Linden,G. (2007). The truth about free APIs. Retrieved March 2, 2014 from 

http://glinden.blogspot.com.au/2007/06/truth-about-free-apis.html 

Lyman, J. (2012). Open APIs are the New Open Source. Retrieved January 10, 2014 



References 

 

 

144 

from http://www.linuxinsider.com/story/74419.html 

Lynd, S. (1965). The New Radicals and ―Participatory Democracy‖. Dissent 12 (3), pp. 

324–333. 

Marx, K. (1867). Capital. Volume I. London, UK: Penguin. 

Marx, K. (2012). Economic and philosophic manuscripts of 1844. North Chelmsford, 

MA: Courier Corporation. 

Mayberry, M. (2012). WinRT Revealed. New York, NY: Apress.  

MBR1. (2012, February 14). Open APIs can't be trusted the way Free Software can. 

[web log comment]. Retrieved from 

http://www.linuxinsider.com/perl/board/mboard.pl?board=lnitalkback&thread=5

891&id=5893&display=1#message_5893 

Meehan, E.R., Mosco, V., &Wasko, J. (1993). Rethinking political economy: 

Continuity and change. Journal of Communication, 43(4), pp. 347-358. 

Michel, J. P. (2013). Web service APIs and libraries. Chicago, IL: American Library 

Association. 

Mitchel, T. ( 2014, August 7). Balancing innovation and risk in API policy. [web log]. 

Retrieved from 



References 

 

 

145 

http://icouldntpossiblycomment.blogspot.com.au/2014/08/balancing-innovation-

and-risk-in-api.html  

Microsoft.(2014). Window 32 API. Retrieved July 15, 2014, from 

http://www.onestopqa.com/resources/Win32%20API.pdf 

MobileMerit. (2014). Location Based InstaGram Photos. Retrieved October 25, 2014, 

from http://mobilemerit.com/location-based-instagram-photos/  

Mokurai. (2012, Feburary 14). Open APIs are still closed source and non-Free. [web 

log comment]. Retrieved from 

http://www.linuxinsider.com/perl/board/mboard.pl?board=lnitalkback&thread=5

891&id=5892&display=1#message_5892  

Mosco, V. (2009).The political economy of communication (2nd ed.). Los Angeles, CA: 

Sage. 

Northlight Images. (2015). Commercial Photography. Retrieved July, 2015 from 

http://www.northlight-images.co.uk/commercial_photo_services.html 

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., 

&Zagorodnov, D. (2009).The eucalyptus open-source cloud-computing system. In 

Cluster Computing and the Grid, 2009. CCGRID‟09.9th IEEE/ACM International 

Symposium, pp. 124-131. IEEE. 



References 

 

 

146 

Open Definition. (2014). Open Definition Version 2.0. Retrieved from 

http://opendefinition.org/od/  

Openstreetmap. (2012). Welcome, Apple. Retrieved from 

https://blog.openstreetmap.org/2012/03/08/welcome-apple/ 

OpenStack. (2014). Resources for application development on private and public 

OpenStack clouds. Retrieved December 22, 2014 from 

http://developer.openstack.org/#api 

Oracle V. Google, No. C 10-03561. (2012). Retrieved from 

https://www.eff.org/files/alsup_api_ruling.pdf 

Oracle V. Google, No. 10-CV-3561. (2014) retrieved from 

http://www.cafc.uscourts.gov/images/stories/opinions-orders/13-1021.Opinion.5-

7-2014.1.PDF   

O‘reilly, T. (2007). What is Web 2.0: Design patterns and business models for the next 

generation of software. Communications & strategies, (1), pp. 17-31. 

OSI. (2014a). Open Source License. Retrieved August 10, 2014 from 

http://opensource.org/licenses/ 

OSI. (2014b). The Licence Review Process. Retrieved August 10, 2014 from 

http://opensource.org/approval  

OSI. (2014c). FAQ. Retrieved August 10, 2014 from 



References 

 

 

147 

http://opensource.org/faq#free-software  

OSI. (2014d). The Open Source Definition. Retrieved August 10, 2014 from 

http://opensource.org/osd  

Patterson, M. (2015, April 3). What Is an API, and Why Does It Matter? [web log] 

Retrieved from http://sproutsocial.com/insights/what-is-an-api/ 

Rosenberg, M. J. (2009). The Meaning of Open. [web log]. Retrieved December 14, 

2014 from http://googleblog.blogspot.com.au/2009/12/meaning-of-open.html 

Samuelson, P. (2014). Google, Inc. v. Oracle America, Inc.United States Supreme 

Court No. 14-410, Brief of Amici Curiae Intellectual Property Professors in 

Support of Grant of Petition for a Writ of Certiorari to the United States Court of 

Appeals for the Federal Circuit. University of California, Berkeley. Retrieved July, 

2015 from 

http://sblog.s3.amazonaws.com/wp-content/uploads/2014/12/Google_v_Oracle_I

P-Profs-certpetition-amicus-brief.pdf 

Silverstone, R. (1999). Why study the media? London, UK: Sage.  

Slippey, M. (2012, August 16). Changes coming in Version 1.1 of the Twitter API. [web 

log] Retrieved from https://blog.twitter.com/2012/changes-coming-to-twitter-api 

Soulskill. (2011, December 30). Open Source Increasingly Replaced By Open 

APIs.[web log post]. Retrieved from 



References 

 

 

148 

http://news.slashdot.org/story/11/12/30/1317216/open-source-increasingly-replac

ed-by-open-apis 

Spivack, N. (2012, August 16).The Twitter API Insanity–What Everyone Seems to Be 

Missing. [web log]Retrieved from 

http://www.novaspivack.com/uncategorized/the-twitter-api-insanity-what-everyo

ne-seems-to-be-missing 

Stallman,R. (2010).Who Does That Server Really Serve? GNU Operating System. 

Retrieved May 9, 2014 from 

http://www.gnu.org/philosophy/who-does-that-server-really-serve.html 

Stallman, R. (2014) “Why „Free Software‟ is better than „Open Source.‟” Retrieved 

September 18, 2014 from 

http://www.gnu.org/philosophy/free-software-for-freedom.html.en. 

Stallman, R. (2014) „Why Open Source misses the point of Free Software‟. Retrieved 

September 18, 2014 from 

http://www.gnu.org/philosophy/open-source-misses-the-point.html.en. 

Sullivan, W. (2010). The big winner at ONA: APIs for news organizations. Journerdism. 

Retrieved from 

www.journerdism.com/the-big-winner-at-ona-apis-for-news-organizations. 

Smythe, D. W. (1981). Dependency road: Communications, capitalism, consciousness, 

http://www.gnu.org/philosophy/free-software-for-freedom.html.en


References 

 

 

149 

and Canada. New York, NY: Ablex Publishing Corporation. 

Tapscott, D & Willams, A. D.(2007).Wikinomics: How Mass Collaboration Changes 

Everything. London, UK: Penguin. 

TheCarp. (2011, December 30). Re: I see no problem here. [web log comment] 

Retrieved from 

http://news.slashdot.org/story/11/12/30/1317216/open-source-increasingly-replac

ed-by-open-apis 

The Guardian Open Platform. (2014a). FAQ. Retrieved March 10th, 2014 from 

http://www.theguardian.com/open-platform/faq 

The Guardian Open Platform. (2014b). Partner Programs. Retrieved March 10th, 2014 

from http://www.theguardian.com/open-platform/partner-programs 

Tkacz, N. (2014). Wikipedia and the Politics of Openness. Chicago, IL: University of 

Chicago Press. 

Turow, J. (2012). The daily you: How the new advertising industry is defining your 

identity and your worth. New Haven, CT: Yale University Press. 

Twitter. (2014). Create an Application. Retrieved October 15th, 2014 from 

https://apps.twitter.com/app/new 



References 

 

 

150 

Twitter. (2015). Developer Agreement & Policy. Retrieved May 30, 2015, from 

https://dev.twitter.com/overview/terms/agreement-and-policy 

Twitter Developers. (2013). GET statuses/user_timeline. Retrieved December, 16 from 

https://dev.twitter.com/rest/reference/get/statuses/user_timeline 

Twitter Developers. (2015a). OAuth Tool. Retrieved December, 16 2015 from 

https://dev.twitter.com/oauth/tools/signature-generator/8028632?nid=801 

Twitter Developers. (2015b). Rest APIs. Retrieved Januray 10, 2015 from 

https://dev.twitter.com/rest/public 

Twitter Developers. (2014). Introducing. Retrieved December 19, 2014 from 

https://dev.twitter.com/ 

United States Securities and Exchange Commission. (2014). 2013 Annual report of 

Google Inc. Retrieved from  

https://investor.google.com/pdf/20131231_google_10K.pdf 

Vaidhyanathan, S. (2001).Copyrights and copywrongs: The Rise of Intellectual 

Property and How it Threatens Creativity. New York, NY: New York University 

Press. 

Van Dijck, J. (2013). The culture of connectivity: A critical history of social media. 



References 

 

 

151 

Oxford, UK: Oxford University Press. 

Vis, F. (2013). A critical reflection on Big Data: Considering APIs, researchers and 

tools as data makers. First Monday, 18(10), Retrieved from 

http://firstmonday.org/ojs/index.php/fm/article/view/4878 

Wagner, J. (2014). Overly Restrictive API Policies Kill Innovation. ProgrammableWeb. 

Retrieved December 14, 2014 From 

http://www.programmableweb.com/news/overly-restrictive-api-policies-kill-inno

vation/analysis/2014/07/16 

Wen, X., Gu, G., Li, Q., Gao, Y., & Zhang, X. (2012). Comparison of open-source 

cloud management platforms: OpenStack and OpenNebula. In Fuzzy Systems and 

Knowledge Discovery (FSKD), 2012 9th International Conference, pp. 2457-2461. 

IEEE.  

West, J. (2003). How open is open enough? Melding proprietary and open source 

platform strategies. Research policy, 32(7), pp. 1259-1285. 

Wellman, B. (2001). Physical place and cyberplace: The rise of personalized 

networking. International journal of urban and regional research, 25(2), pp. 

227-252.  

Wilken, R. C. (2013). Foursquare, the Politics of Location Platforms, and the 



References 

 

 

152 

Importance of Geocoded Data. Selected Papers of Internet Research, 3.  

Wright,E.O. (1997). Class Counts: Comparative Studies in Class Analysis. Cambridge, 

UK: University of Cambridge Press.  

W3school. (2014). Google API. Retrieved July 3, 2014 from  

http://www.w3schools.com/googleAPI/tryit.asp?filename=tryhtml_map_first 

Xie, T., & Pei, J. (2006, May). MAPO: Mining API usages from open source 

repositories. In Proceedings of the 2006 international workshop on Mining 

software repositories, pp. 54-57.  

Yee, R. (2008). Pro Web 2.0 mashups: remixing data and web services. New York, NY: 

Apress. 

Zhou, M., Zhang, R., Zeng, D., &Qian, W. (2010). Services in the Cloud Computing era: 

A survey. In Universal Communication Symposium (IUCS), 2010 4th 

International, pp. 40-46. IEEE. 

 


