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ABSTRACT 
Activated protein C (APC) is an endogenous anticoagulant that also possesses a wide range of 
other actions including: stimulation of proliferation; inhibition of apoptosis; induction of 
migration in a range of cell types; and suppression of inflammation. APC is effective as a 
systemic treatment in models of arthritis, severe sepsis, pancreatitis, spinal cord/brain injury, 
and stroke. APC delivered locally also has proven efficacy as a wound healing agent in patients 
with chronic venous wounds, diabetic wounds, and recalcitrant orthopaedic skin ulcers. These 
properties of APC are primarily modulated through its receptors, endothelial protein C receptor 
(EPCR) and protease-activated receptors (PAR)1/2, and subsequent activation of downstream 
proteins including extracellular signal-regulated kinases (ERK)-1/2, protein kinase B 
(PKB/Akt), p38, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB).  
 
In this study, APC was investigated for its potential application in bone repair and arthritic 
bone conditions, including rheumatoid arthritis (RA) and osteoarthritis (OA), through its 
actions on osteoblasts. The effects of APC on osteoblasts and the underlying cellular 
mechanisms are presented in Chapter 3 using human MG-63 and murine MC3T3-E1 
osteoblast-like cells. Cell viability was assessed by MTT assay, the trypan blue exclusion 
method, and MUSE® cell count/viability assay. Receptor expression and signalling molecules 
were measured by immunostaining, PCR, and western blotting. Treatment with APC 
significantly increased MG-63 and MC3T3-E1 cell viability, concordantly with increased 
phosphorylation of ERK, Akt, and p38. EPCR, PAR1, and PAR2 were expressed by MG-63 
cells, and accordingly, PAR1 antagonists were found to ameliorate the effects of APC. These 
results were consistent with two reports published whilst the work for this thesis was 
undertaken. These reports showed that APC can induce osteoblast proliferation through ERK-
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1/2, and osteoblast differentiation by up-regulating type I collagen, calcium deposition, and 
alkaline phosphatase activity. 
 
In Chapter 4, the in vivo effects of APC on bone are presented, using a recombinant human 
bone morphogenetic protein (rhBMP)-2-induced ectopic bone formation model. Absorbable 
collagen sponges were infused with rhBMP-2 in the presence or absence of APC and implanted 
into the hind limbs of C57BL/6J mice. Bone formation was assessed at 2 and 3 weeks by X-
ray and micro-computed tomography (µCT). Osteoclast numbers were quantified by tartrate-
resistant acid phosphatase (TRAP) staining. Significantly increased bone and tissue volume 
were found after APC treatment, without any alteration to bone volume/tissue volume ratio. 
This was associated with a significant increase in TRAP+ cells within the ectopic bone tissue.  
 
The results of APC-stimulated osteoblast viability in conjunction with its in vivo effect on 
BMP-2 indicated that APC may prove useful for improving bone repair. Further study of APC 
using a closed murine mid-tibial fracture model is shown in Chapter 5 to evaluate this 
hypothesis. APC, however, did not enhance osteoclast number, bone volume, or tissue volume 
in the hard callus specimens. Further studies are suggested to better evaluate the therapeutic 
potential of APC in bone. 
 
The effects of APC on OA and RA human bone-derived cells (HBDCs) are presented in 
Chapter 6. The expression of protein C (PC), EPCR, and PARs were determined in OA and 
RA condyles and isolated subchondral HBDCs. The osteoblastic phenotype of the subchondral 
HBDCs was also examined. Then, the effects of APC and its receptor antagonists on HBDC 
viability and intracellular protein signalling were measured. Contrastingly to the results from 
Chapter 3, treatment with APC significantly decreased cell viability and ERK1/2 activation but 
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increased p27 levels in OA HBDCs. EPCR, PAR1, and PAR2 were all found to be involved in 
APC-mediated suppression of OA cell viability. APC, however, had no effect on RA HBDC 
viability. 
 
The effect of APC on OA and RA HBDCs was not limited to changes in cell viability. In 
Chapter 6, APC was further investigated for its effects on inflammation. Collagen-degrading 
matrix metalloproteinase (MMP)-2 and -9 activity in OA and RA HBDCs were assessed using 
gelatin zymography and the cytokines TNF-α and IL-6 were quantified by ELISA. Following 
APC treatment, TNF-α-induced production of IL-6 was significantly reduced in RA but not 
OA HBDCs. Furthermore, APC treatment significantly increased levels of activated MMP-2 
in both OA and RA HBDCs. 
 
Collectively, these results demonstrate the diverse actions of APC in normal and arthritic bone 
biology. Stimulation of MG-63 viability and enhancement of ectopic bone formation suggests 
that APC has potential, at least in combination with BMP-2, for bone repair. In arthritic cells, 
the down-regulation of OA bone cell viability by APC may be beneficial by moderating 
turnover in subchondral bone. Furthermore, the suppression of IL-6 production and activation 
of MMP-2 suggests that APC ameliorates inflammation in arthritis. The implications for these 
actions are discussed in Chapter 7. 
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1 Literature Review 
1.1 Bone Structure and Function 
Bone is a highly specialised connective tissue that serves as mechanical support, provides 
locomotion, protects vital organs, enables haematopoiesis, and provides a metabolic reserve of 
ions for homeostasis [1-4]. Bone is a composite material, consisting of an organic matrix with 
90% type I collagen fibres, a non-organic component made of spindle-shaped hydroxyapatite 
crystals (3Ca3(PO4)2(OH)2), and ground substance including proteoglycans [5]. This composite 
structure confers both strength and flexibility to bone and enables support and protection of the 
body [6, 7]. 
 
1.2 Bone Cells 
Bone is modulated by three key cell types including osteoblasts, osteoclasts and osteocytes. 
Osteoblasts and osteoclasts are associated with bone formation and resorption respectively. 
Osteocytes have been shown to have a major role in bone, particularly at a regulatory level.  
 
1.2.1 Osteoblasts 
Osteoblasts are small mononucleated cells (Figure 1-1), responsible for the production and 
mineralisation of bone matrix constituents during bone formation and remodelling [8-10]. They 
originate from mesenchymal stem cells (MSCs) that differentiate under the influence of local 
signals that include growth factors, hormones, and cytokines. Osteoblasts also have the 
capability to regulate osteoclast formation, via cell to cell contact or cytokine secretion, through 
receptor activator of nuclear factor-κB ligand (RANKL), and macrophage-colony stimulating 
factor (M-CSF) [9, 11, 12].  
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Figure 1-1 Haematoxylin and eosin staining of osteoblasts in bone, with cell nuclei stained 
blue and bone matrix stained pink. This image is from the author’s collection of human OA 
subchondral bone. 

 
Osteoblast Differentiation and Maturation 
Prior to the commitment of MSCs into osteoprogenitors, they are pluripotent and possess the 
ability to differentiate into other cell lineages such as fibroblasts, chondrocytes, or adipocytes, 
each specified according to local and systemic signalling factors [13]. As MSCs undergo 
commitment, they further differentiate and mature into osteoblasts, a process consisting of 
metamorphosis from spindle-shaped cells into a cuboidal-shaped cell morphology [14].  
 
The transformation from MSCs into osteoblasts depends on several local and systemic factors 
that act through autocrine or paracrine signalling pathways. These include fibroblast growth 
factors (FGFs), bone morphogenetic proteins (BMPs), parathyroid hormone (PTH), and 
wingless (WNT) proteins. Such factors induce downstream intracellular signalling cascades 
including the extracellular signal-regulated kinase (ERK)1/2 pathway, which acts partly 

OB 
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through the stabilisation of transcription factors such as runt-related transcription factor 2/Core-
binding factor subunit alpha-1 (RUNX2/CBFA1) [15-25].  
This progressive development can be observed within in vitro bone nodule formation assays, 
and it has three distinct chronological stages: (1) the proliferation of osteoblasts, which depends 
on the synthesis of extracellular matrix (ECM), then (2) the accumulation and maturation of 
this ECM, which leads to the shutdown of proliferation, and subsequently (3) the progression 
of osteoblast differentiation and mineralisation [26-29].  
 
Once differentiated, cuboidal osteoblasts play a central role in controlling bone formation by 
interacting with bone ECM, synthesizing osteoid that comprises of type I collagen, and 
expressing a high level of alkaline phosphatase (ALP) [30-34].  
 
Type I Collagen 
Type I collagen is a connective tissue protein found in tendons, muscle, and bone. It is the most 
abundant collagen of the human body, and together with hydroxyapatite, it confers much of the 
strength to bone [35]. It is also an early marker of osteoblast differentiation, whereby 
accumulation of this collagen in the ECM paves the way for maturation of osteoblasts and 
mineralisation of matrix [36]. Collagen is made up of three polypeptide chains (α-chains), 
which form a triple helical structure [5]. The accumulation of extracellular collagen interacts 
with α2β1 integrin on osteoblasts, conveying extracellular signal to the cell. This leads to the 
intracellular phosphorylation of ERK, a mitogen-activated protein kinase (MAPK) that is 
required for osteoblast proliferation and differentiation [31, 36-39]. 
 
Alkaline Phosphatase (ALP) 
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ALP is an enzyme that catalyses the removal of phosphate groups from substrate molecules 
such as proteins and nucleotides. It is classified into three main isoenzymes: intestinal, 
placental, and tissue-nonspecific. The latter is expressed throughout the body, but it is detected 
at its most abundant levels in liver, kidney, and bone. In bone, ALP hydrolyses inorganic 
pyrophosphate (PPi) that suppresses hydroxyapatite crystal formation, and yields free 
monophosphate ions (Pi) locally for incorporation into mineral matrix [40, 41]. ALP also serves 
as a maturation marker of osteoblast differentiation, its expression rises after the arrest of 
osteoblast proliferation, peaks just before mineralisation, and then declines with mineralisation 
of the ECM [26]. ALP is also mediated by ERK, where inhibition of ERK signalling results in 
a down-regulation of ALP expression by osteoblasts, and a subsequent reduction in the amount 
of matrix mineralisation [31]. 
 
Bone Morphogenetic Proteins (BMPs) 
BMPs are multi-functional growth factors that comprise a large subgroup within the 
transforming growth factor (TGF)-β superfamily. BMPs are involved in the regulation of 
embryonic development and cellular functions such as bone induction [42-45]. BMP-2 
signalling, in particular, plays critical roles in cartilage, heart, neural, and bone development, 
[42]. Mice lacking BMP-2 are non-viable [42].  
 
In bone, the signalling action of BMP-2 is critical for the commitment of pluripotent MSCs 
towards osteoblastic lineage, via induction of ALP expression, stimulation of collagen 
synthesis, and enhancement of osteoblast differentiation [46-48]. BMP-2-induced 
differentiation of osteoblastic progenitor cells works through the up-regulation of type I 
collagen and subsequent ERK activation [23]. Inactivation of BMP-2 in the skeletal system 
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results in impaired fracture healing [49-51]. On the other hand, subcutaneous implantation of 
BMP-2 in rats results in ectopic cartilage and bone formation [52].  
 
Preclinical and clinical studies have shown that BMP-2 can be utilised in various therapeutic 
interventions, such as critical-size bone defects, non-union fractures, spinal fusion, 
osteoporosis, and root canal surgery [42, 53-57].  
 
1.2.2 Osteoclasts 
Osteoclasts are large multi-nucleated cells of monocyte-macrophage lineage that degrade and 
resorb mineralised bone matrix (Figure 1-2) [58, 59]. Cytokines involved in the differentiation 
and activation of osteoclasts from its mononuclear phagocyte precursors: receptor activator of 
nuclear factor-B ligand (RANKL), M-CSF, and IL-6 are all produced by osteoblasts [59-61]. 
The activation and differentiation of osteoclasts depends on the 
RANK/RANKL/osteoprotegerin (OPG) axis, where RANK on osteoclasts interacts with 
RANKL from osteoblasts to stimulate bone resorption [62]. OPG is a soluble decoy receptor 
for RANKL that inhibits osteoclastic bone resorption [63].   
 
Once active, osteoclasts are polarised and form strong adhesion bonds to the bone surface. 
They create a ruffled border where the plasma membrane is highly infolded to increase 
resorption surface area [58, 64]. The cells then secrete H+ through this border to create a locally 
acidic environment of resorption lacuna, called the Howship’s lacuna, to digest the bone matrix 
[65]. They are found commonly with high levels of tartrate-resistant acid phosphatase (TRAP), 
and a foamy appearance due to the high concentration of vesicles and vacuoles required for 
bone resorption [59].  
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Abnormalities in osteoclast differentiation and resorption occur in inflammatory bone diseases 
including rheumatoid arthritis. In RA, excessive inflammation stimulates osteoclast activity 
and leads to disproportionate degradation of bone [66-69]. Osteoclasts are also extremely 
important in the early part of bone/fracture healing, where their resorption enables further 
progression of healing processes [2, 70].  

 
Figure 1-2 Haematoxylin and eosin (H&E) staining of osteoclasts in normal human bone, with 
nuclei stained blue and bone matrix pink. Image from [71]. 

 
1.2.3 Osteocytes 
Osteocytes are terminally differentiated osteoblasts which have embedded themselves in the 
bone matrix [72]. During this process, they become encased in a lacuna and turn into stellate 
cells with thin dendritic processes [73]. These processes enable communication between 
osteocytes, from osteocytes to bone surfaces, and from osteocytes to bone lining cells [74]. 
Emerging evidence indicates that osteocytes are able to regulate bone structure in response to 
mechanical and hormonal stimuli; through their actions on both osteoblastic bone formation 
and osteoclastic bone resorption [74, 75]. Local apoptosis of osteocytes occurs in response to 
bone unloading, bone micro-damage, and oestrogen withdrawal [76, 77]. Apoptotic bodies 
from these cells release RANKL and stimulate osteoclastogenesis [78]. Conversely, the 
presence of viable osteocytes is necessary to prevent bone resorption and maintain bone mass 

OC OC 
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[72]. Osteocytes act in two ways on osteoblasts. They can positively regulate osteoblasts 
through nitric oxide and prostaglandins but also supress osteoblast activity through sclerostin 
[72, 75, 79]. 
 
1.3 Bone Remodelling 
Bone maintains and adapts itself in response to mechanical challenges, micro-fractures, and 
plasma calcium homeostasis through continuous remodelling [80]. The bone remodelling 
process was originally described as focal repair of micro-damage by the interaction of 
osteoblasts and osteoclasts in a spatially and temporally restricted organisation known as a 
basic multi-cellular unit (BMU) [8, 11, 81, 82]. Activation of remodelling involves the 
detection of a remodelling signal such as mechanical strain or a hormone signal [83]. Osteoclast 
resorption of mineralised bone then follows, resulting in the degradation of organic bone matrix 
and dissolution of bone minerals [83]. Completion of the remodelling process is achieved by 
osteoblastic bone formation and subsequent mineralisation [84].  
 
However, the bone remodelling process does not only involve the actions of osteoblasts and 
osteoclasts. It is a complex set of interactions between many cell contributors. For example, 
recent research demonstrates the importance of osteocytes in regulating skeletal mass [73, 75, 
85]. The stimulation of osteoclastogenesis by osteocyte apoptosis suggests that osteocytes may 
be the initiators of remodelling in BMUs (Figure 1-3) [86]. Research also demonstrates the 
contribution of other cell types in bone remodelling, including endothelial cells, vascular cells, 
and immune cells [73, 86]. The interaction between these cells is also not representative of a 
linear algorithm as there are two-way communications between multiple cell types in bone 
[85]. 
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Figure 1-3 Basic multi-cellular unit (BMU) in trabecular bone. A remodelling signal, which 
may come from osteocytes, recruits osteoclast precursors from the local vasculature and 
induces osteoclastogenesis and bone resorption. Subsequently, osteoblast progenitors and 
pericytes are recruited from the vasculature and synthesise new bone to replace resorbed 
tissue. T cells and macrophages can also access this local environment. Image from [86]. 

 
1.4 Fracture Healing 
1.4.1 Stages of Fracture Healing 
Fracture/bone healing can be divided into four stages beginning with an initial injury that leads 
to haemostasis and inflammation, then the formation of soft callus, progression to hard callus 
formation and mineralisation, and finally remodelling to achieve the original bone contour 
(Figure 1-4) [70, 87-89].  
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Figure 1-4 Stages of fracture healing include injury and haematoma formation, followed by 
inflammation, callus formation, and remodelling/restoration of bone integrity. Images from 
Servier Medical Art at http://www.servier.com/Powerpoint-image-bank. 
 
Inflammatory Stage 
In the inflammatory stage, tissue disruption results in interrupted vasculature and distortion of 
bone architecture [90]. Blood cells extravasate from vessels and form a haematoma at the 
fracture site. Inflammatory cells including macrophages, lymphocytes, and monocytes 
infiltrate the haematoma to remove bacteria, debris, and produce cytokines (Figure 1-4) [70, 
91]. Growth factors, cytokines, and hormones from the acute inflammatory response recruit 
and proliferate local mesenchymal stem cells (Figure 1-5). This signalling cascade also 
promotes fibroblast survival and replication within the fracture space, forming new connective 
tissue containing small blood vessels. Known as granulation tissue, this forms a template for 
subsequent soft callus formation [70].  
 
Reparative Stage - Soft Callus Formation 
In the early reparative stage, migration and local differentiation of MSCs replace the 
granulation tissue with a cartilaginous template in a process called endochondral ossification 
[6, 92]. The cartilaginous template, or soft callus, supports the fracture and provides a base on 

Haematoma Callus formation and  Remodelling 
Restored bone integrity 
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which the bony hard callus will later remodel over. At later stages the chondrocytes in the soft 
callus undergo hypertrophy and the extracellular matrix then becomes calcified cartilage [90].  
 
Reparative Stage - Hard Callus Formation 
After the formation of a soft callus plug, the mineralised cartilage is then degraded by 
osteoclasts. This allows neovascularisation, which is essential for the restoration of nutrients 
to the area. Neo-vascularisation also enables the migration of osteoblasts into the callus area to 
produce and mineralise osteoid matrix. These osteoblasts then quickly form irregular woven 
bone to enhance callus stability [93].  
 
Remodelling Stage 
The woven bone formed at the site of fracture gap is then remodelled by osteoclasts and 
osteoblasts into lamellar bone. Eventually, the medullary cavity is also reconstituted and the 
bone structure is restored to its original mechanical strength as it is further remodelled 
according to Wolff’s law [94].  
 

 Figure 1-5 Cellular contributions in fracture healing. Inflammatory cells first invade the site 
of injury and recruit mesenchymal progenitors. Chondrocytes form a cartilaginous template 
and undergo hypertrophy, these are then resorbed by chondroclasts. Hard callus is then formed 
by osteoblasts and osteoclasts and vasculature is restored. Bone is further remodelled its 
original strength. Figure modified from [70]. 
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1.4.2 Pathological Fracture Healing 
The management of fractures, especially traumatic open fractures, are difficult to treat due to 
high rates of non-union, where permanent failure or cessation of healing occurs before fractures 
are bridged [95]. Non-union can necessitate recurrent surgical procedures and long in-hospital 
stays, which are challenging for both surgeons and patients [96, 97]. One of the main factors 
leading to non-union is a lack of requisite biological factors [95, 97].  
 
Insufficient biological factors within the local environment can come from the disruption of 
local blood supply or the failure to create new blood supply into the fracture haematoma [98]. 
Blood vessels play an important role in the process of fracture healing, as they deliver all the 
necessary cells for repair, and the growth factors to stimulate new bone formation. The 
disruption of blood vessels disables the flux of cell recruitment and regenerative factors into 
the fracture haematoma, leading to atrophic non-union [99].  
 
1.4.3 Current Treatments for Fracture Healing 
Management of fractures in the acute trauma setting begins with stabilisation of patient vitals, 
control of haemorrhage, treatment with analgesia and antibiotics, and assessment of 
complications [100, 101]. The orthopaedic treatment of a fracture depends on whether the 
fracture is closed or open: the former describes fractures in which the skin is not broken and 
the latter occurs when a skin break communicates with the fracture [102].  
 
Patients with closed fracture can undergo reduction, where the fracture ends are manipulated, 
apposed, and corrected into normal alignment [103]. Minimally displaced fractures can be 
reduced with closed manipulation and traction [103]. However, sometimes open or surgical 
reduction is the only option for regaining function. Factors including fracture stability, site of 
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injury, severity of injury, infection risk, pathology of injury, and failure of closed reduction are 
all considered when choosing open reduction [104]. After reduction, the fracture is then 
immobilised and protected until it consolidates [105]. Then patients will then undergo 
rehabilitation of the muscles and joints to restore function to the affected limb [105]. 
 
In an open fracture, patients are at increased risk of developing acute or chronic infections of 
the bone (osteomyelitis) [106-108]. Open fractures can be further classified according to the 
wound length, the level of contamination, the extent of soft tissue injury, and extent of bone 
injury [102, 104]. The mainstay of open fracture treatment includes debridement of wound 
edges and devitalised tissue, cleaning of contaminated tissue by irrigation, stabilisation of 
fracture by fixation, protection of soft tissue from further injury, and adequate soft tissue cover 
over exposed bone [102, 109].  
 
Despite the differences in treatment of open or closed fractures, preservation of blood supply 
is essential to fracture management. In fracture healing, it is necessary for bone regeneration 
to restore vasculature in order to return full functionality to the tissue [110, 111]. In the initial 
haematoma formation, there is a high level of cytokine secretion to stimulate angiogenesis, 
resulting in a higher blood flow early in the fracture healing process [110, 112]. Hypertrophy 
and apoptosis of chondrocytes after soft callus formation also stimulates angiogenesis, and the 
absence of these signals results in delayed fracture progression [113, 114]. Angiogenesis 
enables the egress of osteoclast precursors from the vasculature to the site of fracture [115]. 
Osteoblast precursors also move into fracture sites at the same time as blood vessel invasion 
[116]. Angiogenesis not only delivers cells but also oxygen to enhance cell survival. Ischemic 
fractures result in increased apoptosis and delayed fracture healing [117-119]. Thus, immediate 
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surgical exploration is required for a devascularised limb, as ischemia of the tissue is a major 
risk factor for non-union [102]. 
 
Mechanical stability is also required for fracture healing. Fracture immobilisation provides 
mechanical stability and includes splinting, plaster cast, traction, external fixation, and internal 
fixation [102, 109]. Traction is applied to the distal half of the fracture, exerting a pull along 
the long axis of the bone to prevent angulation of the fracture joint and support normal 
alignment [103]. However, traction requires immobilisation of the patient, therefore, increasing 
the likelihood of complications, and cannot be used for long periods of times [103]. Casting 
and splinting can be used prior to operations but impedes the monitoring of soft tissue swelling, 
the evaluation of vascular impairment, the examination of compartment pressures, and 
increases the risk of joint stiffening [104]. Plaster casting can also be used following closed 
reduction and in conjunction with internal fixation [103, 104]. Internal fixation is used in 
unstable fractures, fractures that require surgery, pathological fractures, multiple fractures, or 
when closed reduction has failed [120]. It involves the fixation of bone fragments using inter-
fragmentary screws, metal plates, transfixing wires, or intramedullary rods/nails [103, 121]. 
Internal fixation holds a fracture securely so that weight-bearing can commence straight away, 
although this fixation risks the development of sepsis [103, 121]. External fixation applies pins 
and bars above and below the site of injury [121]. It provides stability without the need for a 
foreign object, such as plates and screws, within the injured tissue itself, and it is useful in the 
presence of soft tissue injury [121].  
 
When natural bone repair mechanisms fail, treatments to restore biological factors and a 
conducive healing microenvironment are used. These include bone grafting, bone transport, 
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the addition of growth factors, tissue engineering approaches, and bisphosphonate use [122-
124].  
 
Bone grafting can restore vascularity of the bone, however, it requires a donor site thus leading 
to donor site morbidity. Other complications of this procedure include bleeding, infection, and 
pain [125, 126]. Bone transport or distraction osteogenesis is a surgical process that induces 
bone regeneration through the gradual separation of fracture ends to enable new bone formation 
within the gap. The process is technically demanding and requires a lengthy treatment time 
[127]. 
 
Growth factors naturally produced by osteoblasts such as platelet-derived growth factors 
(PDGFs), insulin-like growth factors (IGFs), fibroblast growth factors (FGFs), and 
transforming growth factors (TGF)- comprise an important component of the fracture healing 
process, and are investigated clinically for their bone repair and regenerative properties [8, 
127]. PDGF promotes the osteogenesis of MSCs, however, it also inhibits osteoblast 
differentiation when secreted by osteoclasts, and its therapeutic utility still requires further 
investigation [128]. Temporal regulation of FGF-1 and 2 are essential to the process of bone 
healing [129-133]. Both FGFs accelerate the healing process in larger animal trials, yet the full 
role of FGFs is still unclear [134]. IGFs are released by osteoclastic digestion of the bone matrix 
during remodelling attract [135, 136]. It attracts osteoblasts to the remodelling surface and 
plays a role in the longitudinal growth of bones, however, the clinical effects of IGF on bone 
are limited by its potent stimulation of osteoclastogenesis [135, 136]. TGF- exerts a biphasic 
effect upon bone formation depending on local concentrations - low levels stimulate, whereas 
high levels inhibit osteoblast proliferation [137, 138]. The expression of TGF- is present in 
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the early stages of the fracture process, but it is subsequently down-regulated in the mid to late 
stages [137, 138].  
 
Clinical application of these growth factors still require further investigation; their limitations 
demonstrate the complex nature of bone repair and highlight the need for an alternative therapy. 
Even BMPs, while clinically effective in promoting new bone growth, have significant 
complications including inflammation, induction of bone resorption, overgrowth of bone, 
oedema, wound problems, infections, and carcinogenicity [139-142]. 
 
Tissue engineering utilises a combination of cells and biomaterial scaffolds to repair or replace 
tissues. Modern tissue engineering approaches aim to produce scaffolds seeded with living 
cells to impart greater integration and functionality. Ceramics are the most commonly used 
biomaterials, due to their strength and structural similarity to bone, and they are currently 
applied clinically as bone fillers [143]. However, recent literature has suggested that to mimic 
the complex environment of bone by improving bioactivity and osteointegration, the ideal bone 
graft needs to not only possess mechanical strength and structural similarity, but also contain 
a combination of osteogenic factors, angiogenic factors, and MSCs [144-149]. The success of 
tissue engineering approaches not only relies on clinical applicability, but also needs to 
overcome clinical issues including efficacy, safety, and cost before its use can become practical 
[150].  
 
Bisphosphonates are a class of drugs primarily used to inhibit osteoclastic resorption in diseases 
including osteoporosis, Paget’s disease of the bone, and bone metastasis [151]. 
Bisphosphonates bind onto the bone surface, preferentially on areas undergoing active 
resorption [152]. Bisphosphonates released following the resorption of bone act to: inhibit 
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osteoclast attachment to bone surfaces, inhibit osteoclastic resorption, promote osteoclast 
apoptosis, and decrease numbers of osteoclast progenitor [153-156]. Newer bisphosphonates 
including alendronate, pamidronate, and zoledronate have greater potency owing to the 
inclusion of nitrogen in their structure [157].  
 
Bisphosphonates have been trialled, both in animal models and clinically, for their use in bone 
healing. Results from animal models have been mixed, with studies reporting no effect, delayed 
fracture healing, or even enhanced fracture healing [158-162]. In patients, most bisphosphonate 
studies have been conducted in the context of osteoporosis and strong evidence from these 
studies demonstrates the protective effect of bisphosphonates in preventing osteoporotic 
fractures [162-167]. However, the use of bisphosphonates as treatments in human bone repair 
is not well studied [162]. One study assessed bisphosphonate treatment in osteoarthritic patients 
undergoing high tibial osteotomy and demonstrated that one infusion of zoledronic acid 
improves pin fixation in osteotomy, although no difference in time to healing was seen between 
treatment and control [168]. A recent review appraised the used of bisphosphonates in 
conjunction with anabolic agents, including BMPs, to enhance bone repair and reported mostly 
positive results [169]. The use of bisphosphonates, however, is associated with serious adverse 
effects including the suppression of bone turnover, increased incidence of atypical fractures, 
and bisphosphonate-related osteonecrosis of the jaw [170-176]. 
 
Overall, the complications and low success rates highlight the inadequacy of current treatments 
for traumatic fractures.  
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1.5 Arthritis 
1.5.1 Rheumatoid Arthritis (RA) 
Rheumatoid arthritis is a debilitating chronic inflammatory autoimmune disease that affects 
approximately 2% of Australians [177]. It causes pain, disability, and impaired quality of life 
in patients. RA primarily affects the joints but can also involve other organs including the eyes, 
lungs, skin, and heart [178].  
 
1.5.2 RA Disease Pathology 
RA pathology involves inflammation and an aberrant immune system. A primary feature of 
RA is the excessive production of inflammatory cytokines, such as tumour necrosis factor 
(TNF)-α, interleukin (IL)-1, IL-6, and IL-17 by CD4+ T-cells, macrophages, and synovial cells 
[66, 179-181].  
 
The normal joint synovium is a one to two cell layer lining with thin-walled blood vessels. 
Early changes in RA lead to hyperplasia of the synovium, vessel ingrowth, recruitment and 
activation of endothelial cells, infiltration of T- and B- lymphocytes, and cytokine production 
[182, 183]. This leads to the formation of a pannus, which then infiltrates into the adjacent 
cartilage and bone, eroding it away with high levels of degrading enzymes including matrix 
metalloproteinases (MMPs) and osteoclasts activators [67, 184, 185]. Excessive inflammation 
from cytokines and enzymes cause joint pain, swelling, and damage to joint tissue, resulting in 
irreversible loss of shape and alignment in the joint (Figure 1-6) [177].  
 
Animal models have been developed to better understand the pathogenesis of RA, yet no 
animal model fully recapitulates RA pathogenesis in humans [186]. RA models including the 
adjuvant model, collagen-induced arthritis (CIA), antigen-induced arthritis (AIA), spontaneous 
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inflammatory arthritis (K/BxN), and streptococcal cell-wall-induced arthritis (SCW) use 
various stimuli such as bacteria, viruses, and auto-antigens to initiate the arthritic process [187-
189]. This demonstrates the multi-factorial nature of RA. 
 

 
Figure 1-6 Radiography of normal and RA hands. The normal hand shows good joint space 
between metacarpophalangeal joints (left) while the RA hand demonstrates severe bone 
erosion, ulnar deviation, loss of joint space and subluxation (right). Images from 
http://www.uofmhealth.org/health-library/zm6061 and http://www.glucosamine-
arthritis.org/arthritis/RA-Hands, respectively 

 
Despite the multi-factorial nature of RA, animal models have highlighted one key cytokine in 
its pathogenesis: TNF-α. Injection of TNF-α in mice exacerbates CIA and inhibition of TNF-
α with antibodies ameliorates CIA [190]. Furthermore, transgenic TNF-α mice spontaneously 
develop a severe erosive arthritis and treatment of these mice with TNF-α antibody completely 
prevents arthritis [191, 192]. These models have significantly advanced the understanding of 
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RA pathogenesis and demonstrated the importance of TNF-α in the progression of RA, thus 
enabling the design of specific targets against TNF-α as therapeutic treatments [193].  
 
1.5.3 The Role of Osteoblasts in RA 
There are three types of bone loss in RA: (1) focal bone loss at the joint margins, (2) peri-
articular osteopenia, and (3) generalised skeletal osteoporosis [194, 195]. Osteoclasts are the 
principal cells responsible for bone loss in RA but osteoblasts also contribute to the problem. 
Abnormalities in osteoblasts occur at focal erosion sites in RA, where defective osteoblasts 
produce less bone than normal [194, 196, 197]. This is partly due to inhibition of osteoblast 
differentiation by cytokines such as TNF-α [196, 197]. In conjunction, the mineralisation of 
the newly formed bone at sites of inflammation is reduced, suggesting that impairment of 
normal osteoblast activity also plays a role [195, 198]. 
 
1.5.4 Current RA Treatments 
The most common treatments used by RA patients are primarily: complementary/alternative 
medicines (e.g. vitamins, minerals, herbal medicines), non-steroidal anti-inflammatory drugs 
(NSAIDs) which relieve pain and dampen inflammation, analgesics for pain, and disease-
modifying anti-rheumatic drugs (DMARDs), including the biological drugs (Figure 1-7) [199]. 
Unfortunately, due to the multi-factorial nature of RA, one treatment is unlikely to fit all 
patients. 
 
Currently, the first line of treatment for RA is a DMARD called methotrexate. However, 
advances in the research of RA pathology has enabled the development of biological DMARDs 
(bDMARDs) that can target specific inflammatory cytokines. These include anti-TNF-α drugs 
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(infliximab, etanercept and adalimumab), IL-1 receptor antagonist (anakinra), B-cell response 
blocker (rituximab), or T cell co-stimulation blocker (abatacept) [179, 200-202].  
 
There are several limitations to bDMARD use in patients, including increased infection risk, 
high costs, and the inability to reverse joint damage. The increased risk of tuberculosis 
reactivation and susceptibility to viral infection are the most common safety concerns from 
bDMARD immunosuppression [203-205]. These treatments are also classified as high-cost 
medications with each treatment costing around $20,000 per patient per year, which is 
substantially more expensive than conventional DMARDs [206]. Furthermore, bDMARDs 
cannot reverse the damage already done on the joint, thus early intervention with biologics is 
essential for the prevention of joint erosion [179]. Final stage RA patients who fail medical 
therapy including bDMARDs may need to undergo joint replacements to restore mobility.  
 

 
Figure 1-7 Types of medications used in RA, by gender from 2004-05. RA is primarily 
medicated by complementary medicines followed by NSAIDs. Figure from [199]. 
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1.5.5 Osteoarthritis (OA) 
Osteoarthritis is a progressive joint disease triggered by abnormal intra-articular stress. It was 
traditionally viewed as a cartilage-based disease with matrix fibrillation and proteoglycan loss, 
but increasing evidence shows that the whole joint is affected, with thickening of the synovium, 
degradation of the meniscus, and abnormalities of the subchondral bone [207-210].  
 
1.5.6 OA Disease Pathology 
OA is a joint condition that primarily affects the hands, spine, and weight-bearing joints, such 
as the hips, knees, and ankles [211]. OA symptoms include movement limitation, crepitus, 
tenderness, pain, and joint stiffness [211]. OA remains a mystery to scientists as its aetiology 
is largely unknown in patients but its risk factors include a combination of obesity, joint 
mechanics, age, and previous injury [208]. Several studies in patients with OA have found 
obesity to be a major modifiable risk factor for OA [212-214]. Spontaneous OA in guinea pigs 
also shows ageing to be a factor in the progression of OA [215]. Mechanical destabilisation 
and injury also contribute to OA as OA animal models can be induced by surgical 
destabilisation [215].  
 
In the normal knee joint, the femur and tibia are held together by ligaments, lined with a 
synovial capsule, with attaching musculature to provide mechanical stability. The femur and 
tibia are covered with load-bearing articular cartilage that holds water using proteoglycans, 
providing shock absorbance [216]. The knee joint also includes two menisci to distribute load 
and protect the underlying hyaline cartilage.  
 
In the OA joint, mechanical and biologic changes lead to uncoupling of extracellular matrix 
degradation and synthesis by chondrocytes [216, 217]. This results in loss or damage to the 
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articular cartilage. Emerging evidence from animal models indicates that there is also crosstalk 
between cartilage and bone within the OA joint [208-210, 218]. Models in guinea pigs and 
dogs show that subchondral bone changes can exacerbate cartilage degradation, and in some 
cases precede changes in the cartilage, highlighting the importance of subchondral bone in 
osteoarthritis [219, 220]. Furthermore, a monkey model of OA demonstrates that changes in 
the bone-cartilage interface correlate positively with OA severity [221]. In patients, changes in 
the bone-cartilage subunit include cartilage degradation, sclerosis of subchondral bone, 
decreased mechanical strength of bone, areas of hypomineralisation, increased bone turnover, 
and osteophyte formation (Figure 1-8) [210, 222-224]. 
 
It was thought that the major difference between OA and RA lies in the inflammation of the 
joint in RA, which is not evident in OA. However, more recent research indicates that the 
pathophysiology of OA involves inflammatory factors, especially in the early stages of the 
disease, including TNF-α, IL-1, IL-6 and the catabolic enzyme MMP-9 [225-229].  
 

 
Figure 1-8 Radiography of normal and OA knee. OA knee (right) shows narrowing of joint 
space and bone spur (osteophyte) formation as compared to normal (left). Image from 
http://www.webmd.com/osteoarthritis/x-ray-of-osteoarthritis-of-the-knee. 
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1.5.7 The Role of Osteoblasts in OA 
OA bone is characterised by changes in both macroscopic bone and also aberrant signalling in 
osteoblasts. Macroscopically, OA joints have extensive remodelling, leading to osteophyte 
formation at the margins of articular cartilage and sclerosis of the subchondral bone [230]. 
Although there is increased bone formation, the mineralisation of this bone is incomplete [210]. 
At a cellular level, OA osteoblasts exhibit aberrant Wnt signalling pathway activity, abnormal 
expression of OPG and RANKL, and elevated type I collagen [195]. They also express elevated 
levels of alkaline phosphatase, type I collagen, and osteocalcin and exhibit altered response to 
vitamin D [231-233]. These OA osteoblasts are uncoupled from osteoclasts, further 
contributing to distorted bone formation and remodelling [231, 233, 234].  
 
1.5.8 Current OA Treatments 
Current treatments for OA improve symptoms but do not delay disease progression. Instead, 
they primarily involve non-pharmacological managements including exercise and weight loss, 
physiotherapy, simple analgesics such as paracetamol, and NSAIDs [217, 235]. The use of 
complementary medicines, including glucosamine and omega-3, for easing pain and stiffness 
remains controversial as there is insufficient evidence for their efficacy in improving OA [236-
240]. Failure to benefit from previous interventions, severity of symptoms, and functional 
limitations are the main reasons for joint replacement [241]. There are currently no effective 
evidence-based treatment options for OA. Further investigation into molecular/pathogenic 
mechanisms in OA may reveal novel targets for treatment. 
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1.6 Activated Protein C (APC) 
1.6.1 Protein C (PC) Structure and Activation 
Protein C (PC) is a vitamin K-dependent zymogen that, once activated, becomes a 
physiological anticoagulant. It is a 62kDa protein (419 amino acids) with a light (21kDa) and 
a heavy chain (41kDa) linked by a disulfide bond. PC is encoded by the PROC gene on 
chromosome 2q13-14 (nine exons) [242-244]. The light chain begins with a γ-
carboxyglutamatic acid (Gla), which enables PC binding onto phospholipids to enhance its 
anticoagulant activity. The Gla domain also facilitates PC binding to its predominant receptor, 
endothelial PC receptor (EPCR), to exert its cytoprotective functions [242]. Further along the 
light chain are two epidermal-growth-factor-like domains and a small activation peptide 
(Figure 1-9) [242, 245]. The heavy chain consists of an active serine protease domain which is 
important for coagulation factor degradation [246].  
 

 
Figure 1-9 PC structure including the position of glutamine-rich (Gla), epidermal growth 
factor, and active serine protease domains on PC. Adapted from [247]. 
 
PC is activated when thrombin is bound to a membrane-bound receptor, thrombomodulin. 
Thrombin then cleavages the activation peptide in PC. This results in the release of an Arg-Ile 
peptide between residues 14 and 15 of the heavy chain. PC subsequently undergoes a 
conformation change into its active form (Figure 1-10).  
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PC circulates the body at 70 nM (≈4 μg/mL) with a circulatory half-life of ~8 hours. Its 
activated form is present at much lower circulating concentrations of 40 pM ( ≈ 2.3 ng/mL) 
with a half-life of 20 minutes [248].  
 

 
Figure 1-10 PC activation by thrombin bound to thrombomodulin. PC binds to EPCR on the 
surface of lipid rafts (orange). This enables thrombin (dark green), bound to thrombomodulin 
(TM, blue), to cleave the activation peptide (pink, A). Subsequent conformation change of APC 
(B) enables it to cleave and activate PAR1/2 (red) in order to phosphorylate its intracellular 
G protein and exert its cytoprotective actions (C). 

A B 

C 
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1.6.2 Anticoagulant Functions of APC 
APC proteolyses coagulation factors Va (FVa) and VIIIa (FVIIIa) in the presence of co-factor 
Protein S to inhibit the generation of thrombin in the coagulation cascade thus preventing 
clotting [249, 250]. APC is also profibrinolytic as it can bind to the plasminogen activator 
inhibitor and enable the conversion of plasminogen to plasmin, which then leads to fibrin 
degradation and anticoagulation [251]. Severe presentation of PC deficiency can result in the 
life-threatening condition of purpura fulminans characterised by skin necrosis and 
disseminated intravascular coagulation (DIC) [252]. Milder presentations of PC deficiency 
results in thrombophilia and is associated with an increased risk of venous thromboembolism 
(VTE) [253, 254]. APC treatment can induce bleeding in patients with severe sepsis [255]. 
However, new constructs of PC engineered without anticoagulant activity demonstrate no 
bleeding or bruising in patients in a recent Phase I trial [256, 257].  
 
1.6.3 Cytoprotective Activities of APC 
APC has been more recently been investigated for its cytoprotective functions, which can be 
modulated independently from its anticoagulant effects [242]. These include (but are not 
limited to) the promotion of cell proliferation & viability, prevention of apoptosis, suppression 
of inflammation, and stabilisation of the endothelial barrier.  
 
APC stimulates cell growth and migration by increasing DNA synthesis, proliferation, 
viability, and decreasing apoptosis in muscle cells, brain endothelial cells, human 
keratinocytes, neural stem/progenitor cells, and podocytes, both in vitro and in vivo [258-264].  
 
APC stimulates angiogenesis in endothelial cell tube formation assays, rabbit corneal assays, 
and chick embryo chorioallantoic membrane (CAM) assays [265]. APC’s actions lead to the 
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stimulation of vascular endothelial growth factor (VEGF) and angiopoietins [265-267]. 
Recently, it has also been found that APC can utilise ang1/Tie2 to promote endothelial barrier 
stabilisation [267].  
 
A recent paper by Kurata and colleagues, published during the first year of this PhD, 
demonstrates for the first time that PC is present in fracture haematomas [268]. They show that 
the application of APC, but not PC, enhanced DNA synthesis and stimulated pERK1/2 in 
normal human osteoblasts [268]. EPCR is expressed on these cells and mediates the effects of 
APC [268]. Notably, APC does not require its protease activity or PAR1 for these actions [268]. 
During this PhD, another paper by Lee and colleagues showed that APC can enhance viability 
and markers of osteoblast differentiation, including type I collagen, alkaline phosphatase, and 
calcium deposition in human osteoblast-like MG-63 cells [269]. This paper also investigated 
the complex interaction between APC and three bisphosphonates: alendronate, pamidronate, 
and zoledronate [269]. APC increased collagen production in the presence of all three 
bisphosphonates but only stimulated alkaline phosphatase activity and calcium deposition in 
combination with alendronate [269]. In contrast, APC protected against cell death and caspase-
3 activation in zoledronate and pamidronate-treated cells but enhanced cell death in the 
presence of alendronate [269]. EPCR was required for the protective effect of APC in 
conjunction with zoledronate, but not its detrimental effects with alendronate [269]. 
 
1.6.4 Anti-inflammatory Activities of APC 
The anti-inflammatory activity of APC involves: the suppression of pro-inflammatory 
cytokines IL-6, IL-1β, and TNF-α; the counteraction of LPS-mediated inflammation; the down-
regulation of nuclear factor-kappa B (NF-κB) in monocytes, keratinocytes and endothelial 
cells; and the inhibition of leukocyte migration [184, 270-280]. Elevated APC levels in RA 
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patient synovium and synovial fluid correlates with the anti-inflammatory matrix 
metalloproteinase (MMP)-2 [281]. APC activates MMP-2 in keratinocytes, RA monocytes, RA 
synovial fibroblasts, normal and OA chondrocytes [184, 282-284]. APC also inhibits MMP-9 
production by RA monocytes, RA synovial fibroblasts, human brain endothelial cells in vitro 
and in animal models of brain haemorrhage, LPS-induced endotoxic shock in vivo [184, 285, 
286] 
 
1.7 APC in Disease 
The cytoprotective properties of APC makes it a versatile and attractive agent for therapeutic 
investigation in a variety of diseases including wound healing, Alzheimer’s disease, spinal cord 
injury, endotoxemia, ischemic reperfusion, renal failure, acute pancreatitis, and arthritis, 
however its role in severe sepsis is controversial [184, 265, 281, 282, 287-295]. Though APC 
was previously used for sepsis treatment, it has since been withdrawn from the market due to 
a lack of efficacy [287, 288, 296, 297].  
 
APC preservation and stimulation of muscle cells, improvement of microcirculation, reduction 
of tissue hypoxia, reduction of apoptosis, and decrease in inflammatory leukocyte recruitment 
improves outcomes in endotoxemia models [298-301]. APC also inhibits cardiomyocyte 
apoptosis and protects against injury in rat ischemia-reperfusion models, by modulation of 
TNF-α, IL-6, and NF-kB pathways [301-303].  
 
APC induction of proliferation on neural progenitors, neural stem cells, and neovascularisation 
is essential for the survival and improved functional outcomes in post-ischemic mice brains 
[264]. APC protects against ischemia/reperfusion injury in rat spinal cords by the reduction of 
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micro-infarcts, preservation of grey matter, attenuation in TNF-α levels, and reduction in 
neutrophil activation [304]. 
 
The stimulation of angiogenesis and cytoprotective effects of APC on keratinocytes also 
promotes cutaneous wound healing in animal models [265, 292]. In rat full-thickness punch 
biopsy wounds, APC enhances vasculature and decreases neutrophils throughout healing [265]. 
APC also improves cranially based dorsal cutaneous ischemic flap survival in rats by elevating 
pro-angiogenic and anti-inflammatory gene expression, enhancing muscle cell viability, 
increasing vessel infiltration, and inhibiting inflammatory cells [305]. 
 
Recently, PC was estimated to be 36 nM (≈2.2 μg/mL) in bone fracture haematomas, which is 
almost half the concentration of that which circulates the body [268]. A possible explanation 
for the difference between serum and fracture haematoma levels is that PC is depleted when 
local cells consume it to generate APC for cytoprotection [306]. APC levels have not been 
determined in bone [307]. 
 
1.8 APC in Clinical Trials 
APC has been widely used in clinical trials, the most well-known of which was the PROWESS 
sepsis trial that led to the subsequent FDA approval in 2002 for commercial recombinant 
human APC (rhAPC, Xigris) [287, 296, 308]. It has since then been voluntarily recalled from 
the market by parent company Eli-Lilly due to lack of efficacy found in PROWESS-SHOCK 
trial and Cochrane review [255, 288]. However, APC is still being trialled as a potential 
therapeutic agent for other indications including cutaneous wound healing in chronic ulcers, 
diabetic wounds, and orthopaedic wounds [290, 291, 309]. 
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Six diabetic patients with lower leg chronic ulcers (for >6 months) were treated with 400 μg 
APC for 6 weeks in a small randomised, double-blind, placebo-controlled pilot study. The 
patients demonstrated a significant improvement in healing in comparison to no change in 
saline-treated control patients [291]. Fracture healing shares many similarities with soft-tissue 
and cutaneous wound healing [92]. Repair of soft tissues is also an intrinsic component of 
managing orthopaedic injury [92]. The acceleration of wound healing by APC supports a role 
for it in orthopaedic medicine. 
 
In a recent publication from our laboratory, topical APC treatment was trialled in patients with 
enduring orthopaedic wounds [309]. Treatment in these patients was made difficult by post-
operative infection and concurrent metalware fixation [309]. APC treatment led to improved 
healing of soft tissue injuries, granulation tissue formation, re-epithelisation of surrounding 
tissue, and in some cases spontaneous resolution of chronic underlying osteomyelitis [309]. 
The local inflammatory reaction in response to osteomyelitis can results in necrosis of 
entrapped bone and formation of a sequestrum, a piece of separated necrotic bone. Viable 
organisms can persist in the sequestrum for years, which makes the management of 
osteomyelitis extremely challenging. Whether APC treatment can prevent the prolonged 
existence of a sequestrum is unknown. 
 
The noteworthy and curative effects seen with APC treatment illustrate the efficacy of APC as 
a healing agent. At the time of initiation of this project, no studies had specifically investigated 
the effect of APC on fracture healing.  
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1.9 APC Receptor Candidates in Bone 
1.9.1 Endothelial Protein C Receptor (EPCR) 
EPCR was first discovered on endothelium but since then has been detected on vascular smooth 
muscle cells, eosinophils, neutrophils, monocytes, keratinocytes, hippocampal neurons, 
cardiomyocytes, placental trophoblasts, and more recently osteoblasts [259, 268, 279, 303, 
310-314]. Mutations in EPCR or its promoter region by insertion and deletion can lead to 
increased odds for late foetal loss during pregnancy, recurrent miscarriages, and venous 
thromboembolism [315-324].  
 
The Gla domain of PC and APC bind to EPCR. Recent evidence indicates that other vitamin 
K-dependent proteins including factor VII (FVII) and activated FVII (FVIIa) can also bind to 
EPCR, as Gla domains are highly conserved between vitamin-K-dependent proteins [325, 326]. 
EPCR is a non-signalling receptor located in the caveolin-rich membrane domains called lipid 
rafts, in close proximity to thrombomodulin [327]. PC produced by the liver, then circulates in 
the plasma and binds locally onto EPCR on the surface of cells where it becomes activated 
[245]. The occupancy of EPCR by PC/APC also recruits PARs to lipid rafts to enable the 
subsequent proteolytic cleavage and activation of these PARs [328]. 
 
1.9.2 Protease-Activated Receptor (PAR)1 
Protease-activated receptors (PARs) are a heptahelical family of G protein-coupled receptors 
(GPCRs) that are irreversibly activated after the extracellular proteolytic cleavage of their NH2-
terminus tail [329]. Cleavage by serine proteases including APC and thrombin exposes a new 
NH2-terminus that acts as a tethered ligand, binds intramolecularly to the receptor, and activates 
their cognate G-proteins [330, 331]. PAR signalling, due to its irreversible nature, is terminated 
by internalisation and degradation of the receptor.  
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Polymorphisms in PAR1 are associated with a decreased risk of developing thrombosis, an 
increased risk of coronary heart disease, protection against breast cancer recurrence, and 
depending on the location of the single-nucleotide polymorphisms (SNPs), differential risk for 
myocardial infarction [332-336].  
 
APC is cytoprotective in various cells and it was later discovered that these actions required 
the activation of PAR1 [245]. However at that time, the only known downstream effects of 
PAR1 included promotion of inflammation and thrombosis which contradicted the protective 
effects of APC [337, 338]. Subsequent studies have demonstrated that APC signalling through 
PAR1 on lipid rafts is cytoprotective because PAR1 couples to anti-inflammatory Gi proteins 
when cleaved by APC, whereas it couples to pro-inflammatory G12/13 proteins when cleaved 
by thrombin [327, 328, 339]. Additionally, APC cleavage of PAR1 occurs at a different site to 
thrombin and generates a unique agonist for PAR1 to induce cytoprotective effects [340]. 
 
Since the discovery of APC-mediated PAR1 signalling, APC has been demonstrated to act 
widely through this receptor, including its protection against staurosporine-induced endothelial 
apoptosis; its anti-inflammatory, anti-thrombotic, and neuroprotective effects in a mouse focal 
ischemic stroke model; and its anti-apoptotic effects in ischemic brain endothelium [261, 262, 
271]. Through PAR1, APC also enhances endothelial barrier protection; mediates wound 
healing phenotype in keratinocytes and tenocytes; and protects against diabetic nephropathy 
by inhibition of endothelial and podocyte apoptosis [282, 341-343]. Intracellularly, PAR1 can 
bind to protein kinase C, protein kinase A, and its C-terminus tail also contains a 
serine/threonine residue that increases the affinity of the intracellular binding to β-arrestins, 
which can then lead to signalling through extracellular-signal regulated kinase (ERK) (Figure 
1-10) [344]. 
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1.9.3 Protease-Activated Receptor (PAR)2 
PAR2, like PAR1, is a heptahelical G-proteincoupled receptor (GPCR) that requires a serine 
protease for activation, however, unlike PAR1, it cannot be cleaved by thrombin because PAR2 
lacks a hirudin-like domain on its NH2 tail which is essential for binding to thrombin [330]. 
Both PAR1 and PAR2 can be cleaved by trypsin, tissue factor, mast cell tryptase, and APC 
[345].  
 
Polymorphisms in PAR2 are associated with an increased risk for atopy, higher serum IgE, 
higher total eosinophil count, changes in agonist sensitivity [346, 347]. PAR2 plays an 
inflammatory role in atopic dermatitis, pancreatitis, colitis, and autoimmune inflammation 
[348, 349]. PAR2 is up-regulated by TNF-α, IL-1 in endothelial cells and induces an 
inflammatory response including the stimulation of NF-kB [350, 351]. PAR2 can also be trans-
activated by thrombin-cleaved PAR1 in invasive breast cancer [352].  
 
APC acts through PAR2 to induce p38 and reduce ERK1/2 phosphorylation in wound healing 
[292]. APC acts through both PAR1 and PAR2 to induce vascular protection in sepsis, yet the 
functional activity of APC-activated PAR2 in other diseases and systems is still undetermined 
[353, 354].  
 
1.10 Aims and Hypotheses 
1.10.1 Hypotheses 
APC is an anti-inflammatory, pro-angiogenic agent with cytoprotective effects, and one that 
has demonstrated efficacy in wound healing. The functional effect of APC on bone formation, 
fracture healing, and arthritic bone are yet to be explored. The work presented in this thesis 
explores the specific roles for recombinant human (rh)APC in the aforementioned conditions.  



Chapter 1: Literature Review 

35 
 

Based on the literature, we hypothesised that: 
(1) APC promotes osteoblast viability through its receptors EPCR, PAR1, and PAR2 and 
downstream phosphorylation of ERK1/2;  
(2) APC augments bone formation through the EPCR/PAR axis and by stimulation of 
osteoblast activity;  
(3) APC improves fracture repair in a mouse model through increased bone formation; and 
(4) APC regulates viability and down-regulates inflammatory cytokines in osteoblasts 
derived from OA and RA bone, which is facilitated by the EPCR/PAR axis and ERK1/2 
intracellularly. 

 
1.10.2 Aims 
Based on our hypotheses, four main aims were formulated to: 

1. confirm and identify the effect and mechanisms of APC on the viability of MG-63 
osteoblast-like cells (Chapter 3).  

2. determine the effect of APC on bone formation in vivo using a BMP-2-induced 
ectopic bone formation model (Chapter 4).  

3. examine whether APC can impact on fracture healing using a closed-fracture model 
(Chapter 5); and 

4. establish whether APC alters viability or inflammation of OA and RA osteoblast-
like cells (Chapter 6). 

Specific aims are detailed in each chapter. 
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2 General Methodology 
2.1 In Vitro Studies 
MG-63 and MC3T3-E1 cells were used in this study as they are versatile, share osteoblastic 
features, and are commonly used to model osteoblast responses in bone healing. Human 
osteoblasts, referred to as human bone-derived cells (HBDCs), were also derived from the 
subchondral bone of OA and RA patients. 
 
2.1.1 MG-63 Cell Culture 
MG-63 cells (provided by Professor Rebecca Mason, Department of Physiology, University of 
Sydney, Sydney, NSW, Australia) are osteosarcoma cells that synthesise type I collagen, 
osteocalcin, bone sialoprotein, and decorin [355-357]. In comparison to osteoblasts, MG-63 
cells have a higher rate of proliferation, lack contact inhibition, and grow in multi-layers. They 
also exhibit karyotypic alterations as compared to human foetal osteoblastic cells [358]. MG-
63 cells have been commonly used to model osteoblast responses due to their versatility [357, 
359]. Cells from passage 5-10 were cultured in reconstituted DMEM medium (D7777, Sigma-
Aldrich, St Louis, MO, USA) supplemented with 3.7 grams/litre (g/L) sodium bicarbonate, 
10% (v/v) heat-inactivated FBS (Gibco, Life Technologies, Carlsbad, CA, USA) and 
maintained in 75 cm2 flasks at 37°C in humidified atmosphere of 5% CO2 in air. Once 
confluent, cells were passaged into 24- or 96-well plates for subsequent experiments. 
 
2.1.2 MC3T3-E1 Cell Culture 
MC3T3-E1 mouse pre-osteoblast cells were cultured in α-MEM supplemented with 10% FBS, 
1% L-glutamine, and 2% penicillin/streptomycin (Invitrogen). Cells were passaged and 
maintained as per MG-63 protocol. MC3T3-E1 are capable of collagen synthesis, osteoblast 
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differentiation, express osteoblast markers, and can be stimulated by vitamin D and ascorbic 
acid [36, 356].  
 
2.1.3 Human Bone-Derived Cell (HBDC) Isolation and Culture 
HBDCs were isolated by sequential collagenase digestion (Sigma-Aldrich, C2674, St Louis, 
MO, USA) of fresh bone fragments from the subchondral bone of OA (n=4) or RA (n=3) 
patients undergoing knee replacement surgery [360, 361]. Tissues were collected with patient 
written informed consent and approval from the Northern Sydney Local Health District Human 
Research Ethics Committee. All patients fulfilled the American College of Rheumatology 
criteria for RA or OA [362, 363]. Bone specimens were unavailable from normal joints. 
 
  Isolation of HBDCs was performed using an original protocol by J.A. Gallagher modified by 
Dr Benjamin Chan [364]. Under aseptic conditions, tissues were sterilised in 70% EtOH for 10 
sec to decontaminate before 3 thorough washes in warm phosphate buffered saline (PBS) with 
50 U/mL of penicillin and 50 µg/mL of streptomycin (Gibco 15070-063; Figure 2-1). Soft 
tissues and cartilage were removed by scraping with a scalpel blade and subchondral cancellous 
bone sections were harvested using bone cutters (Figure 2-1). Bone sections were further 
dissected to 1-2 mm diameter fragments using bone rongeurs to increase surface area for 
collagenase penetration and digestion (Figure 2-1). 
 
Bone fragments were then washed in warm PBS and centrifuged at 1200 rpm for 10 min per 
wash to isolate and remove the lipid layer. Minced bone was then incubated in 1 mg/mL of 
collagenase type I (Sigma-Aldrich, C2674) with 0.05% trypsin (MP Biomedicals, 103139, 
Santa Ana, CA, USA) with 0.53 mM ethylenediaminetetraacetic acid (EDTA, Aldrich, 
431788) in PBS for 20 min to liberate non-osteoblastic cells.  
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Figure 2-1 Isolation of HBDCs from subchondral bone. Subchondral bone tissues were dipped 
into 70% ethanol (A), washed thrice in 37°C PBS (B, C). Cartilage and synovial tissue were 
removed (D, E) before small bone fragments were removed and washed in PBS (F-H). 

A B 
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Minced bone was further digested in 1 mg/mL of collagenase type I without trypsin-EDTA for 
3 h before the supernatant was collected and resuspended in 10% FBS α-MEM media (Gibco, 
11900-024) with penicillin/streptomycin, and maintained in 75 cm2 flasks. 
 
2.1.4 Colony Forming Units (CFU-f) 
Studies on mesenchymal stem cells (MSCs) have used CFU-fs to determine highly proliferative 
pluripotent mesenchymal cells which exhibit an uncommitted phenotype [365, 366]. This is an 
imperfect assay for defining MSCs, as these cells form adherent cultures which express high 
levels of CD90, CD73, CD105, are CD45 negative and can differentiate into bone, fat and 
cartilage in vitro [365, 367].  However, CFU-f assays were used as a simple and economical 
way to enrich for mesenchymal cells with osteoblastic potential.  
 
High proliferative mesenchymal cells were characterised within each isolated HBDC 
population by CFU-f positive colonies. Passage 1 cells were plated in T25 flasks at a density 
of 200 cells per flask. Cells were left to duplicate and form colonies over 10 days with media 
replacements on days 3, 6, and 9. Flasks were then gently washed twice with ice-cold PBS and 
fixed in 100% MEOH (POCD, MA004, NSW, Australia) for 15 min. The flasks were allowed 
to air dry until MEOH had evaporated completely. Giemsa working solution was made up fresh 
from a mixture of 50 mL of water, 1.5 mL of 100% MEOH, and 2 mL of Giemsa stock 
consisting of 1 g Giemsa (Edward Gurr Ltd, 13900, London, UK), 66 mL of glycerol (Sigma, 
G5516), 66 mL of MEOH. Five millilitres of working Giemsa was added to each flask and was 
incubated at room temperature for 1 h. The flasks were washed twice with distilled water and 
left to air dry. Photographs were taken as required. 
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CFU-f positivity was quantified by counting colonies of greater than 100 cells with defined 
morphologies. Stromal cells were either rapidly proliferating or slowly proliferating 
populations (Figure 2-2). 
 

  Figure 2-2 CFU-f colonies. Slow proliferating mesenchymal stromal cells and fast 
proliferating stromal cells as stained by Giemsa staining. 
 
2.1.5 Alkaline Phosphatase Staining 
To determine the osteoblast marker alkaline phosphatase, HBDCs were plated in 24-well plate 
at a density of 2.5x105 cells per well in α-MEM, and left to equilibrate overnight. HBDCs were 
washed twice with ice-cold PBS and fixed in cold 10% neutral formalin buffer (10% PBS, 10% 
formalin in distilled water) for 15 min before rinsing and 15 min equilibration in distilled water. 
Naphthol stock (2×) solution was made from 0.01g naphthol AS MX-PO4 (Sigma-Aldrich, 
N5000), 400 µL N,N-Dimethylformamide (Fluka, Sigma-Aldrich, 40255), 50 mL of 0.2M 
Tris-HCL pH 8.3, and aliquoted and frozen at -20°C for storage. Fresh naphthol substrate was 
filtered from 5 mL of stock solution and combined with 5 mL of distilled water and 6 mg of 
Red Violet LB salt (Sigma-Aldrich, F3381) then incubated in wells at room temperature for 45 
min. Wells were rinsed thrice with distilled water to terminate the stain, then air dried, and 
photographed. 
 

Slow Proliferating Cells Fast Proliferating Cells 
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2.1.6 Immunocytochemistry 
For immunocytochemistry of PC/APC and its receptors, cells were grown at a density of 10,000 
per well in 8-well glass chamber slides. Media was discarded and cells were washed twice in 
PBS before fixation in 10% formalin for 30 min at room temperature as previously described 
[260, 368]. Cells were further washed thrice in PBS for 5 min/wash to remove formalin traces. 
Endogenous peroxidase activity was quenched by incubating slides for 15 min in 3% H2O2 in 
PBS. Cells were then washed in distilled water and PBS before permeabilisation. PBS 
containing 2% BSA and 0.05% Tween 20 was added for 1 h as a blocking agent. Cells were 
probed overnight with 2 µg/mL of anti-human antibodies including rabbit anti-PC and anti-
PAR1 antibodies, goat anti-EPCR antibody, and mouse anti-PAR2 antibodies (Table 2-1).  
 
Table 2-1 Human (h) or mouse (m) antibodies used in immunostaining. 
Antibody Isotype Final Conc Catalogue 

# 
Company Location 

hPC/APC Rabbit IgG 2 µg/mL P4680 Sigma-Aldrich St Louis, MO 
mEPCR Goat IgG 2 µg/mL AF2749 R&D Systems Minneapolis, MN 
hEPCR Goat IgG 2 µg/mL AF2245 R&D Systems Minneapolis, MN 
h/mPAR1 Rabbit IgG 2 µg/mL Sc-5605 Santa Cruz 

Biotechnology 
Santa Cruz, CA 

hPAR2 Mouse 
IgG 

2 µg/mL Sc-13504 Santa Cruz 
Biotechnology 

Santa Cruz, CA 

mPAR2 Goat IgG 2 µg/mL Sc-8205 Santa Cruz 
Biotechnology 

Santa Cruz, CA 

Rabbit 
IgG 

N/A 2 µg/mL I-1000 Vector Labs Burlingame, CA 

Mouse 
IgG 

N/A 2 µg/mL MAB002 R&D Systems Minneapolis, MN 

Goat IgG N/A 2 µg/mL I5256 Sigma-Aldrich St Louis, MO 
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After washing, cells were then stained using Dako LSAB+ (Dako, Glostrup, Denmark) system 
staining kit and visualised by 3,3'-Diaminobenzidine (DAB, Dako) following the 
manufacturer’s instructions and counterstained with haematoxylin. IHC staining was optimised 
using serial dilutions of anti-PC, anti-PAR1, anti-EPCR, anti-PAR2 antibodies, and their 
respective negative controls. This ensured minimal background staining. Staining for human 
subchondral tissue, isolated HBDCs, and cell lines was carried out in a single batch. 
 
2.1.7 Alizarin Red Staining 
To determine the effect of treatments on matrix mineralisation, osteogenic media, i.e. α-MEM 
containing 10% FCS, 400 µM L-ascorbic acid (BDH, VWR, 44006, Radnor, PA, USA) and 10 
mM β-glycerophosphate (Sigma-Aldrich, G9891) was added to HBDC cultures. Fresh 
osteogenic culture media containing treatment reagents were replenished every two days over 
the course of 28 days. Supernatants were then discarded and cell monolayers were washed 
thrice in Ca2+-free ice-cold PBS to remove free Ca2+ before fixation in 10% neutral formalin 
buffer (10% formalin in 10% PBS) for 15 min. The monolayers were equilibrated in distilled 
water before staining with 1% Alizarin Red S solution (A5533, Sigma-Aldrich) at pH 4.2 for 
15 min. Finally, the stain was washed with distilled water. Plates were scanned (LiDE110, 
Canon, Tokyo, Japan) and processed in Microsoft Picture Manager (Microsoft, Redmond, WA, 
USA). 
 
2.1.8 Viability Assays 
APC’s potential to affect viability was determined by 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-
Diphenyl Tetrazolium Bromide (MTT, Table 2-2) cell viability assay and trypan blue dye 
exclusion. For MTT assays, cells were plated at a density of 5000 cells per well on 96-well 
plates and left to adhere for 4 h. Cells were switched to DMEM with 2% FCS overnight and 
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treated with rhAPC, EPCR blocking antibody RCR-252, EPCR non-blocking antibody RCR-
92, PAR1 antagonists SCH7979, PAR2 antagonist ENMD-1068, thrombin and dimethyl 
sulfoxide (DMSO) vehicle control over 48 h (Table 2-2). MTT solution (10 µL) was added to 
each well to achieve a final concentration of 0.1 mg/mL and incubated for 4 h to allow for the 
conversion of MTT into formazan by live mitochondrial dehydrogenases. Supernatant media 
was drawn off at the end of an experiment and 100 µL DMSO was used to solubilise the 
formazan crystals. The number of viable cells was evaluated on a plate reader (BioRad, 
Hercules, CA, USA) at 570 nm and a background of 630 nm.  
 
Table 2-2 Reagents for cell culture. Rh = recombinant human, U = units. 
Reagent Final 

Concentration 
Catalogue # 
 

Company Location 

MTT 0.1 mg/mL M5655 Sigma-Aldrich St Louis, MO 
DMSO 2.5-10 µM 2225 Ajax Finechem  NSW, Australia 
rhAPC 
(Xigris) 

0-10 µg/mL N/A Eli Lilly  Indianapolis, IN 

RCR-92 10 µg/mL Gifts from Professor Fukudome, Department of 
Immunology, Saga Medical School, Nabeshima, Saga, 
Japan 

RCR-252 10 µg/mL 

PAR1 At 
 

2.5-10 µM SCH79797 Axon MedChem  Groningen, The 
Netherlands 

PAR1 At 10 µM ATAP-2 Santa Cruz 
Biotechnology 

Santa Cruz, CA 

PAR2 At 10 µM ENMD-1068  Enzo 
Lifesciences  

Farmingdale, NY 

PAR1 Ag 10 µM SP3108b  Abgent San Diego, CA 
PAR2 Ag 10 µM 530109  Calbiochem,  Billerica, MA 
Thrombin 0.1 U/mL T6884  Sigma-Aldrich  St Louis, MO 
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Cells counts were also performed by trypan blue exclusion assay as previously described [282]. 
Cells were cultured at 15,000 per well and left to adhere on a 24-well plate, then serum-reduced 
to 2%, and treated similarly to cells as described above for the MTT assay, over 48 h. Culture 
supernatants were then discarded and cells washed twice with PBS to remove media remnants, 
and then trypsinised with 0.025 trypsin. The enzyme was deactivated by adding fresh media 
with 10% FCS in a 1:2 ratio. Cells were then diluted 1:1 in trypan blue exclusion dye to 
differentiate live and dead cells. Live cells were counted on a haemocytometer with four 
replicates per well. 
 
Cellular viability was also confirmed by MUSE® cell count and viability kit (Merck Millipore, 
Germany) according to the manufacturer’s instructions. Briefly, cells were resuspended in 
MUSE count and viability reagent at a concentration of 1×105 cells/mL, Samples were analysed 
on a MUSE® Cell Analyzer. All samples were assayed in triplicate and the results are n=6. 
 
2.1.9 PCR 
Qualitative PCR was carried out on 1 µg of mRNA extracted from cells to determine the gene 
expression of EPCR, PAR1, and PAR2 controlled against β-actin. Cells were cultured to 
confluence on 24-well plates and supernatants were discarded. Monolayers were washed twice 
to remove contaminating phenols and then cells extracted for RNA using RNAzol (RN 190, 
Molecular Research Inc, Cincinnati, OH, USA) according to the manufacturer’s instructions. 
First strand cDNA was synthesised using Bioline cDNA synthesis kit according to the 
manufacturer’s instructions (BIO-65026, Bioline, London, UK). cDNA was amplified in the 
presence of primer sequences (Table 2-3) and Immomix (Bioline), with a program cycle of 
94°C for 4 min followed by 40 cycles of 94°C for 20 sec, 55-56°C for 30 sec, and 72°C for 35 
sec finished with 1 cycle of 72°C for 8 min. Amplicon products were visualised on a 1% 
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agarose gel and detected via fluorescence on an Image Quant LAS (29-006-05, GE 
Lifesciences, Cleveland, OH, USA). Primers were used in one reaction with a Primers 
sequences for EPCR, PAR1, and PAR2 were validated by a single melt curve. Primers are 
outlined in Table 2-3 and described previously [293, 368].  
 
Table 2-3 Primer list for PCR. 
Molecule Species 

Accession # 
Sequence 5’ to 3’ Temp 

(°C) 
Product 
Size(bp) 

β-actin Homo sap. 
BC002409 

F- CAG AGC CTC GCC TTT GCC GAT CC 
R- GGC CTC GTC GCC CAC ATA GGA 

56 228 

EPCR Homo sap. 
NM006404 

F- CTC CTT TCT TCT CCC ACA TCT GC 
R- ATC CCA AGT CTG ACA CAC CTG G 

55 305 

PAR1 Homo sap. 
NM0001992 

F- GCC ATC GTT GTG TTC ATC CTG 
R-AGA CCC AAA CTG CCA ATC ACT G 

55 150 

PAR2 Homo sap. 
AY3336105 

F- CCT GTG GGT CTT TCT TTT CCG 
R- TTT GCC TTC TTC CTG GAG TGC 

56 279 

 
2.1.10 ELISA Assays 
To quantitate the levels of antigens in Table 2-4, sandwich ELISAs for IL-1β, IL-6, IL-17, and 
TNF-α were performed according to the manufacturer’s instructions using cell supernatants. 
Cell lysates were separately pretreated with 50 µL of 1N HCl and 50 µL 1N NaOH for EPCR 
ELISA. Capture antibodies were coated on the microtitre plate surface to enable immobilisation 
of antigens. Excess capture antibody was aspirated and washed off in buffer (0.05% Tween 20 
in PBS, pH7.2-7.4). Plates were blocked in reagent diluent (1% BSA in PBS, pH 47.2-7.4) as 
per manufacturer’s instructions. Antigen samples were then added and incubated for 2 h at 
room temperature, before being aspirated and the plate washed again. Detection antibody 
diluted in reagent diluent was added for 2 h at room temperature. Plates were further 
aspirated/washed before conjugation to streptavidin-HRP for 20 min. Plates were further 
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aspirated/washed before substrate solution (1:1 mixture of Color Reagent A, H2O2 and Color 
Reagent B, tetramethylbenzidine; R&D Systems, DY999) was added to visualise the signal. 
Stop solution (2N H2SO4; R&D Systems, DY994) was added to terminate the experiments, and 
the optical density was measured at 450 nm on a background of 570 nm. PierceTM BCA assay 
(Thermo Fisher Scientific, Waltham, MA, USA) was used to correct protein loading on ELISA 
assays. 
 
Table 2-4 ELISA kits. 
Antigen Assay 

Concentration 
Limit 

Catalogue # Company Location 

EPCR 800 ng/mL DY2245 R&D Systems Minneapolis, MN 
IL-17 1000 pg/mL DY317 R&D Systems Minneapolis, MN 
IL-1β 250 pg/mL DY201 R&D Systems Minneapolis, MN 
IL-6 600 pg/mL DY206 R&D Systems Minneapolis, MN 
TNF-α 1000 pg/mL DY210 R&D Systems Minneapolis, MN 

 
2.1.11 Western Blotting 
To quantify the expression of intracellular protein levels, whole cell lysates were extracted with 
lysis buffer (20 mM Tris, 100 mM NaCl, 1 mM EDTA, 0.5% Triton X-100 with phosphatase 
and protease inhibitors) and cleared by centrifugation. Lysates were then denatured at 90°C in 
SDS-polyacrylamide gel electrophoresis loading dye (75 mM Tris-HCl pH 6.8, 15% Glycerol, 
1% SDS, 0.5 M β-mercaptoethanol, 0.1% Bromophenol blue) and separated on 10% SDS-
PAGE before electrotransfer onto a PVDF membrane as previously described [248]. Novex 
Sharp (Invitrogen) pre-stained standards were loaded alongside samples for determining the 
relative molecular weights of the protein bands.  
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Membranes were subsequently blocked with 5% skim milk in TBST (50 mM Tris-HCl pH 7.5, 
150 mM NaCl, 0.1% Tween-20) and then incubated with primary antibodies listed in Table 2-
5. After washing, membranes were incubated with horseradish peroxidase (HRP) conjugated 
secondary antibodies for 1 h at RT. After 3 washes with TBST, immunoreactivity was detected 
using the ECL detection system (Amersham Biosciences, Buckinghamshire, UK).  
 
Table 2-5 Primary antibodies for western blotting. 
Antibody Isotype Dilution Catalogue # Company Location 
p21 Rabbit IgG 1:1000 2947S Cell signalling Danvers, MA 
p27 Rabbit IgG 1:1000 3686S Cell signalling Danvers, MA  
pAkt Rabbit IgG 1:1000 4060S Cell signalling Danvers, MA  
Akt Rabbit IgG 1:1000 9272S Cell signalling Danvers, MA  
NF-kB Mouse IgG 1:1000 MAB3026 Millipore Billerica, MA  
p38 Rabbit IgG 1:1000 Sc-535 Santa Cruz 

Biotechnology 
Dallas, TX 

p-p38 Rabbit IgG 1:1000 Sc-17852 Santa Cruz 
Biotechnology 

Dallas, TX 

ERK1/2 Rabbit IgG 1:1000 9102S Cell signalling Danvers, MA  
pERK1/2 Rabbit IgG 1:1000 9101L Cell signalling Danvers, MA  
β-actin Mouse IgG 1:10 000 A5441 Sigma-Aldrich St Louis, MO  

 
Protein levels were normalised against β-actin and visualised on ImageQuant LAS 4000 (GE 
Healthcare Life Sciences, Buckinghamshire, UK) and semi-quantified using Multi Gauge 
software (FujiFilm, Tokyo, Japan). Graphs were compiled from 4 duplicate blots and changes 
were expressed as a percentage of control protein levels. 
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2.1.12 Zymography 
To determine the regulation of MMP-2 and -9 in cells, gelatin substrate (1 mg/mL) was added 
to the standard acrylamide polymerisation preparation (as per western blotting protocol) to 
enable cleavage of gelatin by MMP-2 and -9. Culture medium supernatants were then collected, 
mixed with sample buffer (25 mM Tris pH 6.8, 2.5% SDS, 25% glycerol, 0.625% bromophenol 
blue) and separated on 10% SDS-PAGE under non-reducing conditions. A positive control 
consisting of MMP-2 and MMP-9 proteins were loaded alongside samples for determination 
of relative product masses. Sample proteins were normalised by BCA assay (Life 
Technologies) prior to loading.  
 
After electrophoresis, gels were renatured in 0.25% Triton X-100 (BDH, 30632) with gentle 
agitation for 1 h at room temperature in developing buffer (50 mM Tris-B, 200 mM NaCl, 5 
mM CaCl2.2H2O) overnight at 37°C. The gels were stained for 1 h in staining solution (0.2% 
Coomassie Blue R-250, 50% EtOH, 10% acetic acid, 40% distilled water) and destained for 1 
h in 20% MEOH, 10% acetic acid, 70% distilled water before a final wash in tap water. 
Visualisation and semi-quantification were carried out as per western blotting protocol. 
 
2.2 Studies of OA and RA Tissue 
Tissues were collected and processed with patient written informed consent and approval from 
the Northern Sydney Local Health District Human Research Ethics Committee. 
 
2.2.1 Histology of OA and RA Tissue 
A total of 4 OA and 4 RA condyle samples were collected within 24 h of knee replacement 
surgery and fixed in 10% neutral formalin buffer for 24 h. Samples were then briefly rinsed in 
distilled water to remove remnant formalin before decalcification in 5% formalin and 10% 
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formic acid solution. Decalcification solution was changed daily between days 1-6 and 
remained unchanged for days 7-8. At the completion of decalcification, samples were placed 
into 70% EtOH for storage. Cross sections from femoral condyles of re-sectioned joints were 
extracted, rinsed briefly in distilled water, and paraffin embedded into cassettes by Sue Smith 
(Raymond Purves Laboratory, Kolling Institute) using a Shandon Excelsior ES (Thermo Fisher 
Scientific) and Leica EG 1150 H (Leica). The embedded tissues were then sectioned by Agnes 
Chan (Sutton Laboratory, Kolling Institute) or the author at 4.5 µM using a rotating microtome 
and then placed onto Superfrost Plus slides (HD Scientific Supplies Pty Ltd, Wetherill Park, 
NSW, Australia), and heated at 80°C to dewax for 1 h and 50°C overnight to adhere the tissue 
to the slides. The slides were then processed into H&E, Toluidine Blue, or 
immunohistochemistry. All samples fulfilled ethical criteria as set out in Section 2.2.1. 
 
2.2.2 Haematoxylin and Eosin (H&E) Staining of OA and RA Tissue 
Tissue sections of OA and RA subchondral bone were taken through two changes of 100% 
xylene, 3 min each to dewax the sections. Sections were then taken through decreasing gradient 
of EtOH from 100%, 100%, 95%, and 70% for 1 min each to remove xylene. Slides were 
washed under tap water for 1 min before they were stained with Mayer’s haematoxylin for 5 
min. Slides were then washed through tap water until excess haematoxylin was removed and 
sections were then dipped into Scott’s blueing solution for 1 min before the excess solution 
was removed under running tap water. Slides were checked by microscopy to ensure the correct 
ratio of staining, then placed into eosin solution for 5 min, and washed briefly in running tap 
water to remove excess. The slides were dehydrated in 4 changes of 100% EtOH before they 
were cleared in 4 changes of xylene, then mounted in a non-aqueous resinous mountant, Euckitt 
and left to dry. Slides were scanned on ScanScope (Aperio, Vista, CA, USA) and processed on 
ImageScope software (Aperio). 
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2.2.3 Toluidine Staining of OA and RA Tissue 
OA and RA subchondral bone were sectioned and stained with toluidine blue to assess cartilage 
degradation. Tissue sections were taken through 4 changes of xylene, each wash was 3 min, to 
deparaffinise the samples. Slides were then taken through decreasing gradients of EtOH from 
100%, 100% to 95% for 1 min each to remove xylene and then placed into 70% EtOH for 15 
min. Without rinsing, the sections were placed in toluidine blue O staining (C.I.52040) in 0.1M 
sodium acetate buffer pH 4.0 for 10 min. Slides were rinsed thoroughly in tap water, stained 
with 0.1% fast green FCF (C.I.42053) for 2 min and rinsed in running tap water. To prevent 
dilution of toluidine blue stain, sections were dehydrated in 3 changes of 100% propanol then 
cleared, mounted and scanned as per Section 2.2.2.  
 
2.2.4 PC/APC, EPCR, PAR1, and PAR2 Stain of OA and RA Tissues 
To stain for PC, EPCR, PAR1, and PAR2, tissue sections were deparaffinised, taken to EtOH, 
and rinsed in running tap water for 3 min before incubation in 3% H2O2 to quench endogenous 
peroxidase activity for 5 min. Slides were further rinsed in running tap water for 5 min before 
assembly into SequenzaTM trays and coverslips (Thermo Fisher Scientific, 73310015 & 
721100117). Slides were then washed in TBST (0.05M Tris, 0.15M NaCl, 0.05% Tween 20, 
pH 7.6), treated with serum-free protein block (Dako, X0909) for 10 min at RT, and then 
incubated overnight at 4°C with primary antibodies and a negative control. Reagents are listed 
in Table 2-1.  
 
On the following day, slides were washed in TBST for 6 min at room temperature before 
incubation with biotinylated secondary antibody (LSAB+, Dako, K0690) for 30 min, followed 
by a TBST wash, incubation with streptavidin/HRP substrate for 30 min, and a final TBST 
wash. Slides were disassembled from the SequenzaTM and placed in a humid chamber before 
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DAB+ (Dako, K3468) was added for 10 min to all sections. Slides were then placed into racks 
and washed in running tap water for 5 min to stop DAB reaction. Tissues were counterstained 
with haematoxylin for 2 min then dehydrated, cleared, mounted and scanned as per Section 
2.2.2. 
 
2.3 In Vivo Studies 
2.3.1 PAR KO Mice Housing and Genotyping 
To elucidate the in vivo involvement of rhAPC in WT, Par1-/- and Par2-/- mice, female 8-9 
week old mice with homozygous deletion for Par1 or Par2 on a C57BL/6J background were 
bred at the Kearns Animal Facility at the Royal North Shore Hospital under ethics approval 
from Royal North Shore Hospital Animal Care and Ethics Committee (Protocol 1305-009A). 
PAR KO mice were age- and sex-matched with C57BL/6J wild types (WT). All mice were 
housed in groups of 5 with standard water and feed.  
 
Par1-/- or Par2-/- mice were genotyped using tail tips taken from the offspring of knockout 
mice. Tails were digested and DNA extracted using PureLinkTM Genomic DNA kit (Invitrogen) 
according to the manufacturer’s instructions. Mouse tail tips were digested in Purelink 
Genomic Digestion Buffer and proteinase K at 55°C overnight. Lysates were then centrifuged 
at maximum speed for 3 min to remove any particulates and transferred to new sterile 
microcentrifuge tubes. RNase A was added for 2 min to digest remnant RNA. PureLinkTM 
Genomic Lysis Buffer was then added with 100% ethanol and mixed by vortexing. The mixture 
was centrifuged at 10,000 g for 1 min on the PureLinkTM Spin Column. The collection tube 
was discarded, and the spin column was subsequently washed with Wash Buffer 1 and Wash 
Buffer 2 before the sample was eluted using the PureLinkTM, and then analysed for DNA 
quantity on NanoDrop (Thermo Fisher Scientific).  
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DNA was amplified by semi-quantitative reverse transcriptase (RT)-PCR using primers 
provided by Dr Miriam Jackson (Table 2-6). All four Par1-/- (Neo) and Internal standard (Instd) 
primers were used in one reaction with a program cycle of 94°C for 4 min followed by 12 
cycles of 94°C for 20 sec, 60-64°C for 30 sec, and 72°C for 35 sec followed by 40 cycles of 
94°C for 20 sec, 58°C for 30 sec, and 72°C for 35 sec, finished with 1 cycle of 72°C for 8 min. 
Wild-type (WT) and Par1 primers were separately used in a program cycle with an annealing 
temperature of 60°C. All three Par2 primers were added to one reaction with a program of 1 
cycle at 94°C for 4 min followed by 40 cycles of 94°C for 30 sec, 68°C for 45 sec, and 72°C 
for 1 min, finished with 1 cycle of 72°C for 8 min. Amplicon products were visualised on a 2% 
(w/v) agarose gel stained with Gel Red and assessed on a LAS fluorescent imaging machine 
(GE Healthcare).  
 
For subsequent in vivo studies, animals were transferred to Transgenic Animal Facility at 
Westmead hospital under animal ethics approval from Animal Care and Ethics Committee for 
the Children’s Medical Research Institute and The Children’s Hospital Westmead (CHW 
Animal Ethics, Protocol K294). 
 

Table 2-6 Primers for Par1-/- or Par2-/- mice genotyping, contributed by Dr Miriam Jackson. 
Primer Species 

Accession 
Number 

Sequence 5’ to 3’ Temp 
(°C) 

Product 
Size 
(bp) 

Par1 Mus musc 
20 

Wt F–    GAT TGT GTT CAT TGT CAG CCT TCC 
Wt R–    ACG TGT AGC AGA CCG TGG AAA C 
Neo13 F– CTT GGG TGG AGA GGC TAT TC 
Neo14 R- AGG TGA GAT GAC AGG AGA TC 
IntS1 F- CAA ATG TTG CTT GTC TGG TG 
IntS2 R– GTC AGT CGA GTG CAC AGT TT 

60 
 
64 
58 
64 
58 

WT- 545 
 
KO- 300 
 
IntS-200 

Par2 
 

Mus musc.  
Monash 

Par2 F- TAT CCG ACT CAT CAT CAC CGT GCT G 
WT R- AGC TGC ATG CTT GTG ATT GGT GCA G 
KO R- TGA GAC GTG CTA CTT CCA TTT GTC AC 

68 WT- 500 
KO- 350 
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2.3.2 Ectopic Bone Formation 
To screen for the capacity of rhAPC to augment bone formation in combination with rhBMP-
2, female WT type C57BL/6J mice (8 weeks) were assigned to groups of 5 with bilateral 
treatments of: 10 µg rhBMP-2 (Medtronic, Minneapolis, MN, USA); 10 µg rhBMP-2 + 10 µg 
rhAPC; or 10 µg rhBMP-2 + 25 µg rhAPC (Table 2-7). Anaesthesia was induced in mice by 
isoflurane gas inhalation, then an incision was made over the anterolateral aspect of each mouse 
femur. An absorbable collagen sponge (ACS, Medtronic) was cut to even sizes using a 3 mm 
punch biopsy. Recombinant protein treatments were dissolved in 10 µL of water for injection 
and added onto the scaffold. ACS were then implanted surgically into an intramuscular pocket, 
the wound was closed with suture (Vicryl, 5-0, Ethicon, Somerville, NJ, USA). All mice were 
given saline and 0.05 mg/mL of analgesic (Temgesic) post-operatively. Mice were monitored 
2 and 24 h post-surgery and then twice a week. Likewise, female Par1-/- or Par2-/- mice on a 
C57BL/6J background (8-9 weeks) were also implanted with bilateral collagen scaffold were 
infused with 10 µg rhBMP-2 (Medtronic) with or without 25 µg rhAPC. 
 
Ectopic bone formation experiments were carried out under approval from CHW Animal 
Ethics, Protocol K294. WT C57/B6 mice were sourced from the Animal Resources Centre 
(Perth).  
 
Table 2-7 Ectopic bone formation mouse groups. Rh stands for recombinant human. 
Strain Sex Age Treatment #mice Procedure 
C57BL/6J F 8 weeks rhBMP-2 5 Bilateral ectopic bone formation 

C57BL/6J F 8 weeks 
rhBMP-2 + 
rhAPC 10 µg 5 Bilateral ectopic bone formation 

C57BL/6J F 8 weeks 
rhBMP-2 + 
rhAPC 25 µg 5 Bilateral ectopic bone formation 
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Radiological Imaging & µCT 
Ectopic bone formation was monitored radiographically using X-ray (Faxitron X-ray Corp, 
Wheeling, IL, USA) at 2 and 3 weeks. Nodules were analysed ex vivo using microCT (µCT) 
and histology. Bone nodules formed were dissected from mice 3 weeks after implantation 
(n=10 per treatment), fixed in 4% paraformaldehyde (PFA), and radiographed using X-ray 
(Faxitron). Nodules were then preserved in 70% ethanol for µCT analysis. Bone volume, tissue 
volume, and trabecular structure were measured using a Skyscan 1174 µCT machine as 
previously described [369]. Densities were calibrated to a global threshold of 0.3 g/mm3 for 
bone tissue. Three-dimensional volumetric analysis and modelling were carried out on nodules 
through CTAn Software (Bruker, Billerica, MA, USA). Nodules midsections were 
reconstructed using 20 slices of scanned images to illustrate trabecular complexity.  
 
2.3.3 Murine Closed Fracture Model 
To investigate the effect of rhAPC on fracture healing, a closed murine fracture model was 
employed. For surgery, anaesthesia was induced with ketamine (35 mg/kg) and xylazine (5 
mg/kg) via intraperitoneal injection, and maintained with isoflurane inhalation. Surgery was 
performed in female 8 week old C57BL/6J mice. A small incision was made slightly distal to 
the knee and an intramedullary rod (0.3 mm-diameter stainless steel insect pin) was surgically 
inserted into the medullary canal of the tibia, followed by the insertion of a second stabilisation 
pin. Closed mid-tibial fractures were then induced manually by three-point bending with a set 
of modified surgical staple removers. Incision site was then closed by sutures. Fractures were 
allowed to heal over 21 days as described previously [369]. Intramedullary pins impacted on 
ambulation. Injections were made from anterolateral and posteromedial axis into the site of 
injury, as guided by intact tibial bone surrounding the injury. Treatments were: 30 µL of saline 
(n=10); biweekly injection of rhAPC 25 µg in 30 µL of water for injection (n=10); or a single 
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bolus of rhAPC 50 µg in 30 µL of water for injection immediately post-surgery (n=10) (Table 
2-8).  
 
Fracture healing endpoints include day 3, day 10, and day 21. Fractures were radiographed by 
XR at 3 days, 7 days, 10 days, 14 days, and 21 days. Calluses at day 21 were analysed using 
µCT. After 3 weeks, tibiae and fibula were dissected from culled mice, fixed in 10% formalin 
and transported in 70% ethanol, similarly to bone pellets. A region of interest, including the 
callus but excluding the original cortical tibial bone, was applied to the fracture calluses. Then, 
bone volume, tissue volume, and trabecular structure were measured similarly to bone nodules. 
Densities were calibrated to a global threshold of 0.3 g/mm3 for bone tissue. Three-dimensional 
volumetric analysis and modelling were carried out on nodules through CTAn Software 
(Bruker, Billerica, MA, USA). Fracture studies were carried out under approval from CHW 
Animal Ethics, Protocol K248. Exclusion criteria include infection of fractures or the slippage 
of intramedullary pins, which were both monitored by physically examining the mice and 
through regular XR.  
 

Table 2-8 Treatment groups in murine closed fracture model. 
Strain Sex Age Treatment # Mice Endpoint  
C57BL/6J F 10 weeks Saline 3 3 days 
C57BL/6J F 10 weeks rhAPC 50 µg bolus 3 3 days 
C57BL/6J F 10 weeks rhAPC 25 µg biweekly 3 3 days 
C57BL/6J F 10 weeks Saline 3 10 days 
C57BL/6J F 10 weeks rhAPC 50 µg bolus 3 10 days 
C57BL/6J F 10 weeks rhAPC 25 µg biweekly 3 10 days 
C57BL/6J F 10 weeks Saline 10 21 days 
C57BL/6J F 10 weeks rhAPC 50 µg bolus 10 21 days 
C57BL/6J F 10 weeks rhAPC 25 µg biweekly 10 21 days 
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2.3.4 Histology of Bone Nodules 
Bone Nodules 
Processing of bone nodules for histology was first carried out by fixation in 4% PFA overnight 
and then at room temperature for 4 h. Nodules were then stored in 70% alcohol for 24 h before 
incubation in 30% sucrose overnight in the cold room and then at room temperature for 4 h to 
enable cryoprocessing. Nodules were cut in half using a Struers minitom (Struers, Westlake, 
OH, USA) and then cryoembedded with cut side face down in Tissue-Tek OCT Compound 
(Sakura Finetek, Torrance, CA USA). Cryosections were cut to 5 µM by cryostat (Leica, 
CM1900) onto cryofilm (Section Lab-Co Ltd, Tokyo, Japan). Sections were then adhered to 
glass slides using chitosan glue. Sections were stained for TRAP expression to evaluate 
osteoclast quantity and receptors EPCR, PAR1, and PAR2 to determine the receptor 
involvement in the bone formation process. 
 
TRAP Staining 
To determine osteoclast numbers, TRAP staining was conducted on nodules. Cryosections 
were rehydrated in PBS for 15 min at room temperature and then further incubated in 1 M Tris-
HCl buffer (pH 9.4) for 5 min at room temperature before transfer into 1 M Na-Acetate buffer 
(pH 5.0 with 1% tartaric acid) for 10 min at room temperature. The tissues were then incubated 
for 4 min at 37°C in filtered TRAP staining solution (35 mg of tartaric acid + 40 mg of naphthol 
ASBI phosphate in 2 mL of dimethylformamide + 100 µL of new fuchsine and 100 µL of 
sodium nitrite). Cryosections were then counterstained with haematoxylin, dipped in lithium 
chloride and coverslipped in Aquatex mounting solution (Merck Millipore, Billerica, MA, 
USA). Osteoclast numbers were counted using Bioquant Software (BioQuant, University of 
Heidelberg, Heidelberg, Germany).  
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2.3.5 Immunohistochemistry (IHC) 
Staining for EPCR, PAR1, and PAR2 was conducted using antibodies from Table 2-1. 
Cryosections were rehydrated in PBS for 2×10 min and permeabilised in buffer (PBS + 0.1% 
Triton X-100) for 20 min. Sections were then washed thrice in wash buffer (PBS + 0.05% 
Tween 20), and then blocked (PBS + 10% goat serum + 1% BSA + 0.05% Tween 20) for 1 h, 
before incubation overnight with primary goat anti-mouse EPCR antibody, rabbit anti-mouse 
PAR1, or goat anti-mouse PAR2 antibody in dilution buffer (PBS + 10% goat serum + 1% 
BSA + 0.1% Triton X-100). The slides were washed thrice in washing buffer the next day and 
endogenous peroxidase activity was quenched using 3% H2O2 in PBS. The slides were further 
equilibrated in wash buffer before incubation with secondary HRP goat antibody (E0449, 
Dako) or HRP rabbit antibody (BD Pharmingen, 554021) for 2 h. Three further washes were 
conducted before incubation with streptavidin-horseradish peroxidase (HRP) for 30 min. 
Labelling was visualised using DAB staining according to the manufacturer’s instructions, and 
slides were counterstained and coverslipped as per the TRAP staining protocol. Slides were 
scanned as per Section 2.2.2.  
  
2.4 Statistics 
Statistical analyses and data graphing were performed using GraphPad Prism 5 (GraphPad, La 
Jolla, CA, USA). All duplicated values were presented as mean ± standard error (SE). 
Statistical significance was determined using one-way analysis of variance (ANOVA), 
followed by a non-parametric Student-Newman-Keuls post-hoc comparison between groups to 
identify significantly different means between treatment groups. P values less than 0.05 were 
considered statistically significant. Non-parametric tests have been used to assess ectopic bone 
formation and fracture union as these parameters do not follow a normal distribution. Fracture 
unions were statistically analysed using Fisher’s exact test.  
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3 APC Enhances MG-63 and MC3T3-E1 Viability 
3.1 Introduction 
Bone formation is a tightly regulated anabolic process that begins with the commitment of 
osteoprogenitor cells, and then their subsequent differentiation into pre-osteoblasts. These cells 
will then further mature in the presence of local and systemic osteogenic factors [1, 8, 9, 29, 
258, 370]. Actively proliferating osteoblasts progress into mature osteoblasts, increasing 
extracellular matrix maturation, and mineralisation of the matrix through calcium deposition 
[11, 26, 83]. Osteoblasts are integral to both the normal and pathological processes that occur 
in bone [195]. 
 
APC is a physiological anticoagulant that exerts a broad range of cytoprotective activities, 
including stimulation of cell proliferation, suppression of apoptosis, inhibition of 
inflammation, and protection of cells from damage [247, 342]. APC exerts profound effects 
upon the mitosis and differentiation of endothelial cells, vascular smooth muscle cells, 
keratinocytes, tenocytes, and neural stem/progenitor cells [258, 259, 282, 343, 371]. In 
endothelial and smooth muscle cells, APC’s effects are mediated at least partly by stimulation 
of ERK1/2 activity [259, 371]. In conjunction with its stimulatory effects on cellular 
proliferation, APC also prevents apoptosis in endothelial and neuronal cells [258, 262, 372]. 
The effects in the latter are mediated through an Akt-dependent pathway [258]. These in vitro 
effects translate into in vivo protection by APC against various diseases. For example, the 
protective effect of APC on neuronal and endothelial cells is also apparent in neurotoxicity, 
traumatic brain injury, and stroke [264, 371, 373, 374]. Some of these effects are mediated 
through APC-induced suppression of NF-κB signalling and reduction of inflammation [375]. 
In mouse models of diabetic nephropathy and ulcerative colitis, APC also rescues endothelial 
cells and podocytes from injury [261, 282, 373, 376]. Both human and animal studies have 
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shown APC promotes wound healing through its effects upon both endothelial cells and 
keratinocytes, and this is at least partly the consequence of inhibiting the p38 signalling cascade 
[292]. 
 
Canonical APC signalling requires PC binding to EPCR and subsequent activation by thrombin 
cleavage [327, 328, 353]. Once activated, EPCR bound APC cleaves either PAR1 or PAR2, 
and stimulates intracellular Gi protein signalling through the aforementioned effectors, 
ERK1/2, Akt, p38, and NF-κB, to exert cytoprotective effects [247, 248, 292, 377]. APC 
signals through the PAR1 receptor in many cell types, including, neurons, podocytes, 
leukocytes, keratinocytes, cardiomyocytes and endothelial cells [260, 261, 264, 299, 342, 353, 
372, 378, 379]. There is much less experimental evidence with regard to the actions of APC 
through PAR2, though it has been observed in both keratinocytes and endothelial cells [292, 
353]. In contrast to APC, thrombin-mediated cleavage of PAR1 on endothelial cells activates 
either Gq or G12/13 to exert inflammatory effects [327, 328, 339]. However, in osteoblasts, 
thrombin is known to signal via PAR1 to induce cell proliferation, and the release of both 
cytokines and growth factors; or independently of PAR1, to exert anti-apoptotic effects [24, 
337, 380-387].  
  
Following the commencement of this study, Kurata and colleagues demonstrated that APC can 
stimulate the proliferation of normal human osteoblasts [268]. Here we have been able to 
confirm this observation, and also provide additional insight into APC-mediated signalling and 
regulatory mechanisms within osteoblasts. In this chapter, we hypothesised that APC would 
act through EPCR and PARs to promote viability of both the MG-63 and MC3T3-E1 
osteoblastic cell lines, as these receptors have been shown to be required for many of APC’s 
known cytoprotective actions [260, 261, 264, 299, 342, 353, 372, 378, 379]. We further 
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hypothesised that APC exerts its effects through regulation of ERK1/2, Akt, p38, and NF-κB 
signalling activity, as these pathways have been shown to be regulated by APC in numerous 
other cell types [247, 248, 292, 377], and it is likely that the same would be true for the 
osteoblast.  
 
3.2 Aims 
The overall aim of this chapter was to examine the role of APC on osteoblast viability. 
Specifically, we aimed to: 

1. examine the effects of APC and thrombin on osteoblast-like MG-63 and MC3T3-E1 
cell viability;  

2. determine whether or not APC receptors, including EPCR and PARs, were present on 
osteoblasts and implicated in APC’s effects; and 

3. elucidate APC signalling mediators, particularly ERK1/2, Akt, p38, and NF-κB 
activity. 

 
3.3 Methods 
3.3.1 MG-63 and MC3T3-E1 Culture 
Human MG-63 osteoblast-like cells and murine pre-osteoblast MC3T3-E1 cells were cultured 
in DMEM and αMEM respectively, both supplemented with 10% FCS as per Sections 2.1.1 
and 2.1.2 and maintained in T75 culture flasks until passage for experiments. 
 
3.3.2 APC Receptor Expression in MG-63 Cells 
EPCR, PAR1, and PAR2 receptor gene and protein expression in MG-63 cells were determined 
by RT-PCR and immunocytochemistry respectively. In brief, MG-63 were cultured in 24-well 
plates, the medium was aspirated and the cells were washed with pre-warmed sterile PBS. RNA 
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was then extracted from the cells using RNAzol (Molecular Research Inc.), according to the 
manufacturer’s instructions. To determine the relative mRNA expression corresponding to the 
receptor primers listed in Table 2‐3, RNA extraction was carried out. RNA was then reverse 
transcribed into cDNA, and then amplified by PCR, and the products resolved and visualised 
by agarose gel electrophoresis. Receptor gene levels were normalised to β-actin gene 
expression (Sections 2.1.9). PCR efficiencies were conducted for each set of receptor primers 
and confirmed to be between 90-100%. 
 
For immunocytochemistry, sub-confluent MG-63 cells were cultured on 8-well chamber plates. 
Cell culture medium was aspirated, the cells were washed with PBS and then fixed in 10% 
formalin. Fixed cells were further washed with PBS, and then incubated overnight with EPCR, 
PAR1, and PAR2- specific primary antibodies as listed in Table 2-1. Respective secondary 
antibodies were conjugated to these MG-63 cells, before visualisation with DAB, and 
haematoxylin counterstain (Section 2.1.9). 
 
3.3.3 APC and Receptor Involvement in Cell Lines 
To determine the effect of APC and thrombin on MG-63 viability, the cells were grown as 
previously described, and MTT cell viability and trypan blue exclusion assays were performed 
at 24, 48, or 72 h time points. APC treatment of 0.1, 1, or 10 µg/mL was first assessed in MG-
63 cells cultured in 10% FCS, and then in subsequent experiments, in 2% FCS-containing 
media. Thrombin, EPCR blocking antibody and non-blocking antibody, and PAR antagonists 
were used 30 min prior to APC addition. The effects of APC on PARs were confirmed in 
osteoblasts derived from Par-/- mice. PAR1 antagonist SCH79797 was originally reconstituted 
in DMSO, but was further diluted in PBS for experiments. SCH79797 was diluted to 0.1, 1, or 
10 µM in and assessed against respective concentrations of vehicle DMSO to confirm the 
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independent effect of SCH79797 in MTT assays. MC3T3-E1 experiments were independently 
conducted by Dr Ciara Murphy using MUSE viability kit (Merck).  
 
3.3.4 APC Treatment on Activation of Signalling Proteins ERK, Akt, NF-κB, & P38 
Western blotting was performed to assess the effects of APC treatment upon ERK, Akt, p38, 
and NF-κB in MG-63 cells treated with APC for 0, 15, 30, or 60 min. Then APC’s effect was 
assessed in the presence and absence of PAR1 and PAR2 antagonists at the optimised time of 
60 min. Cell lysates were extracted with lysis buffer, separated by electrophoresis and 
electrotransferred onto a PVDF membrane as per Section 2.1.11. Detection of the proteins was 
conducted by incubation of the blot with the respective primary and secondary antibodies 
(Table 2-5) and then visualised by addition of ECL, which was detected on ImageQuant. 
 
3.3.5 Statistics 
Statistical analysis was conducted by one-way ANOVA and post-hoc Student-Newman-Keul 
as per Section 2.4. N is representative of the number of duplicates in each experiment. 
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3.4 Results 
3.4.1 EPCR, PAR1, and PAR2 are Expressed in MG-63 Cells 
To examine whether EPCR, PAR1, and PAR2 could facilitate APC’s effect on MG-63 cells, 
we first examined the expression of these receptors. Immunocytochemistry staining and 
qualitative RT-PCR showed that EPCR, PAR1, and PAR2 were all expressed by MG-63 
osteoblasts, at both the gene and protein levels (Figure 3-1). Although immunocytochemistry 
showed that cell cultures expressed all three receptors, staining of each receptor was 
heterogeneous on different MG-63 cells (Figure 3-1B).  
 
3.4.2 APC Stimulates MG-63 Viability over 72 h 
We first investigated the effect of APC on the viability of MG-63 cells grown in DMEM 
containing 10% FCS, but found there to be no effect following a 24 h treatment (Figure 3-2). 
We hypothesised that the presence of APC inhibitors in the serum may mask the effect from 
APC. Thus, in a subsequent experiment, we reduced the FCS concentration to 2% and then 
measured cell viability in response to APC treatment over a 72 h time period. 
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Figure 3-1 EPCR, PAR1, and PAR2 expression in MG-63 cells. RT-PCR was carried out on 
mRNA derived from MG-63 cells to determine qualitative levels of β-actin (ACTB, control), 
EPCR, PAR1, and PAR2 (A). Immunocytochemistry was performed on EPCR, PAR1, and 
PAR2 on MG-63 cells (B) with respective negative control IgGs visualised above. Scale Bar = 
50 µm.  
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Figure 3-2 The effect of APC treatment on MG-63 cells at 10% FCS. MG-63 cells were treated 
with 0.1, 1, or 10 µg/mL of APC over 24 h as assessed by MTT assay. Statistical analysis was 
conducted by one-way ANOVA and Newman-Keuls post-test. Data represented as mean ± S.E 
(n=4). 
 
Further treatment of MG-63 cells with APC at 10 µg/mL in serum-reduced media over 24 h 
showed a significant increase of 17% (P<0.05; Figure 3-3) in viability. However, treatment of 
MG-63 cells with APC at 0.1 or 1 µg/mL did not change viability over 24 h (6%, P=0.15 and 
11%, P=0.054 respectively; Figure 3-3). At 48 h, there were subsequent increases of 15% or 
12% at 1 or 10 µg/mL of APC treatment (P<0.05 for both; Figure 3-3). At 72 h, there was a 
continued increase in viability by 13% using 10 µg/mL of APC (P<0.05; Figure 3-3). Although 
the stimulation by APC was modest, the results were robust, with similar results found in 
further experiments (Figure 3-3, 3-5, 3-6). However, there was no significant difference 
between the 24, 48, or 72 h time points for any of the APC doses. 
 
Cell counts with trypan blue exclusion dye yielded similar results to the MTT assays. In 
response to APC treatments at 0.1, 1, or 10 µg/mL, cell counts demonstrated no significant 
difference (3%, 17%, or 14% and P=0.67, P=0.06, P=0.07 respectively; Figure 3-3). Over 48 
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h and 72 h, an increase of 26% was seen from 10 µg/mL of APC treatment 48 h (P<0.01) and 
25% at 72 h (P<0.05). There was no significant difference between APC treatments at 24 h but 
an increase of 16% or 14% was found between 0.1 vs. 1 µg/mL and 0.1 vs. 10 µg/mL of APC 
treatments at 48h (P<0.05 for both; Figure 3-3). Similarly, a difference of 24% was found 
between 0.1 vs 10 µg/mL of APC treatment at 72 h (P<0.05; Figure 3-3). These results suggest 
that the effect was partially dose-responsive. 
 
Independent confirmation studies were carried out using the commercially available kit, 
MUSE® viability and cell count analyser, and this showed similar results. Murine MC3T3-E1 
cells tolerated growth in low-serum media less well than human MG-63 cells, and thus were 
analysed at 48 h rather than 72 h. APC treatment of MG-63 cells by MUSE® showed 
significant increases at all treatment doses over 72 h (42%-56%, P<0.05 for all; Figure 3-4). 
APC treatment of cultured cells at 1 µg/mL led to significantly increased numbers of viable 
MC3T3-E1 cells (37%, P<0.05; Figure 3-4).  
 
3.4.3 APC-Mediated MG-63 Viability is Unaffected by Thrombin 
Thrombin signals through PAR1 in osteoblasts and is required for PC activation [245, 337, 
380, 382-386]. Here, we investigated the effect of thrombin, both alone and in combination 
with APC, upon MG-63 viability by MTT assay. Treatment of cells with APC over 48 h 
demonstrated a similar increase to that shown in Section 3.4.2 (14% increase, P<0.05; Figure 
3-5). Thrombin treatment alone at 1 U/mL was no different to control (8%, P=0.09; Figure 3-
5). Combined treatment with thrombin and APC revealed no difference to APC alone (3%, 
P=0.58; Figure 3-5), but a significant increase when compared to control (10%, P<0.05; Figure 
3-5). This suggested that APC, rather than thrombin, protected osteoblast viability. 
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Figure 3-3 The effect of APC on MG-63 cellular viability over 72 h, as assessed by MTT assay 
and cell counts. Serum-reduced (2%) cells were treated with 0.1, 1, or 10 µg/mL of APC, then 
assayed for cell viability by trypan blue exclusion dye and MTT at 24, 48, and 72 h. Statistical 
analysis was conducted by one-way ANOVA and Newman-Keuls post-test. Data represented 
as mean ± S.E (n=4). * Denotes P<0.05 and ** denotes P<0.01 between treatment and control. 
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Figure 3-4 The effect of APC on MG-63 and MC3T3-E1 cell numbers as assessed by MUSE® 
assay. Serum-reduced cells treated with 0.1, 1, or 10 µg/mL of APC were assayed for cell 
viability by automated cell analyser in MC3T3-E1 cells at 48 h post-treatment (A) and MG-63 
cells at 72 h post treatment (B). Statistical analysis was conducted by one-way ANOVA and 
Newman-Keuls post-test. Data represented as mean ± S.E (n=4). * Denotes P<0.05 versus 
untreated controls.  
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Figure 3-5 The effect of thrombin treatment of MG-63 cells, as assessed by MTT assay. MG-
63 cells were treated with 1 U/mL of thrombin, 10 µg/mL of APC or both, and assayed for cell 
viability by MTT. Statistical analysis was conducted by one-way ANOVA and Newman-Keuls 
post-test. Data represented as mean ±S.E (n=4). * Denotes P<0.05 between treatment and 
control.  
 
3.4.4 APC-Mediated MG-63 Viability Requires PARs 
As EPCR, PAR1, and PAR2 were expressed by MG-63 cells, we further examined the roles of 
these receptors in APC-mediated cell viability. EPCR blocking antibody (RCR-252) was added 
30 min prior to APC treatment on MG-63 cells to block APC binding to EPCR on cell surfaces, 
controlled against EPCR non-blocking antibody (RCR-92), and viability was determined after 
48 h (Figure 3-6A). In comparison to control, APC treatment induced a 21% increase (P<0.05) 
in viability, whereas cells pre-treated with RCR-92 or RCR-252 prior to APC treatment 
demonstrated no difference as compared to APC treatment alone (3%, P=0.67 or 5%, P=0.31, 
respectively). RCR-92 or RCR-252 treatment alone were not significantly different to control 
(5%, P=0.44 or 8%, P=0.16, respectively). This suggested that APC activity on MG-63 cells 
did not work through EPCR (Figure 3-6A).  
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PAR1 antagonist (SCH79797) and PAR2 antagonist (ENMD-1068) were used to block PAR1 
and PAR2 signalling. SCH79797 or ENMD-1068 treatment 30 min prior to APC addition led 
to the abolishment of APC-mediated up-regulation of cell viability (Figure 3-6B). Interestingly, 
SCH79797 treatment substantially suppressed viability in comparison to control alone (57%, 
P<0.001). This marked suppression by SCH79797 was confirmed in a dose-dependent study, 
controlled against vehicle DMSO to excluded any effect from DMSO as a diluent (Figure 3-
6C). SCH79797 treatment at 2.5, 5, or 10 µM dose-dependently decreased MG-63 viability 
over 48 h by 28%, 41%, or 49% (P<0.01 for all; Figure 3-6C) as compared to DMSO control, 
where viability was only significantly decreased by 19% at 10 µM (P<0.05), indicating that 
the effect was largely from endogenous inhibition of PAR1 activity by SCH79797, rather than 
DMSO. 
 
ENMD-1068 treatment significantly increased MG-63 viability as compared to non-treated 
controls by (12%, P<0.05) and this difference was maintained after APC treatment (10%, 
P<0.05; Figure 3-6B). However, Par2-/- osteoblasts has similar viabilities as compared to WT 
osteoblasts (Figure 3-6D). 
 
To test the specificity and efficacy of PAR agonists and antagonists, osteoblasts isolated from 
Par1-/- and Par2-/- mice were used [388]. Throughout this thesis, osteoblasts from Par1-/- or 
Par2-/- mice will be referred to as Par1-/- or Par2-/- osteoblasts. Mice genotypes were confirmed 
by semi-quantitative PCR. APC treatment of WT osteoblasts provided a significant increase in 
viability (24%, P<0.05), whereas treatment of Par1-/- or Par2-/- osteoblasts had no effect on 
viability (6%, P=0.5 or 10%, P=0.09, respectively; Figure 3-6D), confirming the effect found 
in MG-63 cells (Figure 3-6).  
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Figure 3-6 EPCR, PAR1, and PAR2 involvement on APC-induced MG-63 viability, as assessed 
by MTT assays. APC (10 µg/mL) treatment followed blocking of EPCR by antibody RCR-252, 
controlled against a non-blocking antibody, RCR-92 (A), and blocking of PAR1 by SCH79797 
or PAR2 by ENMD-1068 (B). These results were controlled against DMSO (C) or confirmed 
in WT, Par1-/-, or Par2-/- murine osteoblasts (D). Statistical analysis was conducted by one-
way ANOVA and Newman-Keuls post-test. Data represented as mean ±S.E (n=4). * Denotes 
P<0.05 and ** denotes P<0.01 between treatment and control. 
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3.4.5 APC Induces pERK1/2, pAkt, and p-p38 in MG-63 Cells 
We next determined the effect of APC, PAR1, and PAR2 on Akt, p38, ERK1/2, and NF-κB in 
MG-63 cells in serum-reduced media. Time courses were first established by APC treatment 
of MG-63 cells at 0, 15, 30, 60 min, or 24 h for each intracellular protein (Figure 3-7). 
Subsequent experiments were carried out at the optimal time of 60 min post APC treatment, in 
the presence of PAR receptor antagonists, SCH79797 or ENMD-1068. 
 
APC treatment led to increases in phosphorylation of ERK1/2, Akt or p38 by 25%, 31%, or 
35% (P<0.05, P<0.05, P<0.01 respectively; Figure 3-8) but did not significantly affect NF-κB 
(13%, P=0.16; Figure 3-8). SCH79797 addition did not affect pERK1/2, pAkt, NF-κB, or p-
p38 (16%, 4%, 17%, 6%, and P=0.07, P=0.22, P=0.44, P=0.59 respectively; Figure 3-8). APC 
addition after SCH79797 blocking was not different to SCH79797 alone for any of the proteins. 
This suggests that APC acts via PAR1 to phosphorylate these intracellular proteins. 
. 
ENMD-1068 treatment resulted in a 20% and 22% increase in pERK1/2 and pAkt as compared 
to control (P<0.05 for both) but had no effect on NF-κB or p-p38 (12% or 6%, P=0.23, P=0.49 
respectively; Figure 3-8). APC treatment after ENMD-1068 led to a further 25% increase in 
pERK1/2 (P<0.01) and 18% increase in pAkt (P<0.05), but not NF-κB, or p-p38 (5%, P=0.3 
and 25%, P=0.49 respectively) which, interestingly, suggested that APC acts through PAR2 to 
induce p-p38 but not pERK1/2 or pAkt at 60 min on MG-63 cells (Figure 3-8). 
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Figure 3-7 Timeline of APC on p38, NF-κB, ERK1/2, and Akt phosphorylation in MG-63 cells. 
Confluent MG-63 monolayers were treated with APC and whole cell lysates collected at 0 min, 
15 min, 30 min, 60 min, and 24 h post treatment. Proteins were separated by electrophoresis, 
transferred onto PVDF membrane, and incubated with primary antibodies against p-p38, 
pERK1/2, NF-κB, and pAkt and relevant secondary antibodies before visualisation and semi-
quantification. Results shown are from a single experiment. β-actin was used as a loading 
agent. 
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Figure 3-8 The effect of APC and PAR antagonists on p38, NF-κB, ERK1/2, and Akt in MG-
63 cells. Protein analysis followed APC treatment on pERK1/2 (A), pAkt (B), NF-κB (C), and 
p38 (D). SCH79797 and ENMD-1068 were used to block PAR1 and PAR2 activity respectively. 
β-actin was used as a loading agent. Statistical analysis was carried out by one-way ANOVA 
and Newman-Keuls post-test on APC vs control and agonist + APC vs agonist alone. Data 
represented as mean ±S.E (n=4). * Denotes P<0.05 between treatment and control, ** denotes 
P<0.01 between treatment and control. 
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3.5 Discussion 
Osteoblasts are the primary cellular drivers of new bone formation, and are therefore critical 
for bone repair and remodelling [8, 9, 11]. In this study, we sought to determine how the 
osteoblast-like MG-63 and MC3T3-E1 cell lines respond to APC treatment. In this regard, we 
have shown that there is a significant increase in the number of viable osteoblast-like cells, 
following APC addition to both the human and murine cell cultures. We have demonstrated 
that EPCR, PAR1, and PAR2 expressed by MG-63 cells are required for APC to exert its effect 
upon these cells. Furthermore, we also found that APC treatment activates the downstream 
signalling of the ERK1/2, Akt, and p38 pathways. Overall, these findings demonstrate the 
potential for APC to enhance osteoblast cell viability, as discussed below. 
 
APC increases the rate of proliferation of many different cell types, which includes normal 
human osteoblasts [268, 269]. We have confirmed the protective effect of APC on MG-63 and 
MC3T3-E1 viability, although the response was greater in MG-63 cells. While both cells are 
osteoblastic in nature, they demonstrate phenotypic differences. MG-63 cells are human 
osteosarcoma cells with higher rates of proliferation than normal human osteoblasts and 
express heterogeneous levels of both immature and mature osteoblastic markers [357, 359]. 
MC3T3-E1 are murine pre-osteoblast cells that express greater levels of alkaline phosphatase 
and a greater response to vitamin D stimulation than MG-63 cells [355]. These differences can 
partially account for the slight difference in response to APC. Alternatively or additionally, it 
may be due to a species related effect of APC. Such effect is apparent in a murine stroke model, 
where mouse APC is more potent than human APC in neuroprotection against ischemic stroke 
[389]. Nonetheless, both cell lines are commonly used to model osteoblast responses and our 
results showed that APC stimulates MG-63 and MC3T3-E1 viability. 
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Our findings that APC stimulated osteoblastic-like cell viability are consistent with the work 
of Kurata and colleagues, who showed a similar effect of APC upon MG-63 cells [269]. We 
were able to demonstrate these effects using the MTT, and trypan blue exclusion assays, and 
obtained further confirmation with the MUSE® cell viability assay. The study by Kurata et al 
demonstrated APC enhancement of normal human osteoblast DNA incorporation and total cell 
count over 24 h [268]. In our study, we found that this effect was still detectable at 72 h post-
treatment, indicating that a single dose of APC can exert long-lasting effects upon osteoblastic 
cells.   
 
The Kurata et al study [268] reported that 500 nM APC was able to induce a 50% increase in 
osteoblast number following treatment. In this study, we observe a much more modest effect. 
One explanation for the difference could lie in the different experimental techniques employed 
by each study. For instance, in our study, the MTT and cell count assays demonstrated a smaller 
APC-induced effect, as compared to that measured by the commercial MUSE® assay. The 
MTT assay measures metabolic status, but it is often used to approximate cell viability and 
proliferation, as rapidly dividing cells are more metabolically active [390-392]. The MUSE® 
assay uses the principle of bromodeoxyuridine (BrdU), which utilises DNA incorporation and 
reflects a different aspect of cell proliferation than MTT. Despite differences in the degree of 
stimulation reported, all studies consistently demonstrate a robust enhancement of 
proliferation/viability in different osteoblastic cell types from APC treatment [268, 269]. 
 
The MTT and trypan blue exclusion assays used in this study determine cellular viability, 
which does not strictly correlate with proliferation [393, 394]. Despite this, MTT and trypan 
blue assays can directly substitute for proliferation in experiments, provided that parameters 
such as the MTT concentration, the length of incubation, and the confluence of cells are 
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standardised across the experiments [390-393, 395]. We have applied these parameters in the 
same manner to experiments in cell lines and cultured them under the same conditions to best 
enable interpretation of the MTT readings. These assays have been used to describe 
proliferation in many osteoblast studies [396-400] and are likely a suitable measure of cell 
proliferation in our study. 
 
We further hypothesised that APC-augmented MG-63 viability would act through its canonical 
pathway involving EPCR and PARs. Previous papers have demonstrated the presence of these 
receptors on osteoblasts. Kurata et al and Lee et al have demonstrated the presence of EPCR 
on normal human osteoblasts and MG-63 cells respectively, and we confirmed the latter 
observation in this study [268, 269]. Although other papers have shown the presence of PAR1 
and PAR2 in murine osteoblasts [24, 268, 401], we have demonstrated for the first time that 
PAR1 and PAR2 are present in MG-63 cells, at both a gene and protein level. We further 
characterised the involvement of PARs in APC-treated osteoblastic cell lines and found APC-
mediated viability and signalling was dependent upon PAR1 and PAR2 rather than EPCR in 
MG-63 cells. This observation was further confirmed in both Par1-/- and Par2-/- osteoblasts. 
 
These results contrast with those from the Kurata et al study, which demonstrates EPCR but 
not PAR1 is required for APC action in normal human osteoblasts [268]. There are several 
possible explanations for this discrepancy. Firstly, we did not utilise positive controls for the 
EPCR inhibitors and cannot differentiate between a true lack of inhibition or if the dose of 
inhibitors was simply too low to inhibit the EPCR pathway. However, we have used the same 
concentration as previous studies of EPCR inhibition, including the Lee et al study of APC and 
bisphosphonate treatments in MG-63 cells [260, 269]. The Lee et al study offers a separate 
possible explanation for this discrepancy. Lee et al demonstrated that EPCR mediates the effect 
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of APC on alendronate but not zoledronate-treated MG-63 cells [269]. This suggests that APC 
may act through other signalling mechanisms independent of EPCR. Two previous 
publications demonstrate EPCR independent effect from APC; the first shows APC stimulation 
of pERK1/2 through PAR1/sphingosine-1-phosphate receptor (S1P1); and the second shows 
APC protection against podocyte apoptosis through PAR3 [402, 403]. In the latter, the anti-
apoptotic effect of APC also required PAR3 heterodimerisation with PAR2 or PAR1 [402]. As 
we have demonstrated a PAR1/2 dependent but EPCR independent mechanism, we 
hypothesise that the effect of APC on MG-63 cells in our study may work through PAR3 or 
S1P1. Differential responses to EPCR, even within the same cell type, demonstrates that there 
exists a degree of plasticity in APC-induced cell signalling. Despite this, there is no current 
experimental data to indicate why APC works via EPCR under some circumstances and not 
others. 
 
We found that the treatment of MG-63 cells with PAR1 antagonists suppressed cell viability, 
after accounting for effects due to the vehicle control. However, SCH79797 has been reported 
to induce off-target effects that can influence the viability of fibroblast, embryonic kidney, and 
melanoma cell lines [404]. It is was not clear whether the reduction in APC-induced viability 
was due to these off-target effects. Thus, we determined the involvement of another PAR1 
agonist, thrombin, on the effects of MG-63 cells. Activation of PAR1 by thrombin has been 
reported to stimulate osteoblast proliferation [381, 382, 386, 405]. However, we were unable 
to reproduce this thrombin-mediated effect on MG-63 cells. Only one paper demonstrated this 
effect in MG-63 cells, however, they used different culture and assay ([3H] thymidine 
incorporation) conditions to our work [406]. It is possible that these different experimental 
conditions, particularly the higher sensitivity of the thymidine incorporation compared to the 
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MTT assay, may at least partially explain the conflicting results. Despite this, our study has 
shown that APC, acting through the PAR1 receptor, promotes osteoblastic cell viability. 
 
In contrast to the suppression of osteoblast viability by PAR1 antagonist, PAR2 antagonism 
alone demonstrated a mild increase in cellular viability, ERK and Akt activity, however, Par2-

/- osteoblasts did not demonstrate a similar increase in viability as compared to WT osteoblasts. 
We postulate that this is due to the species difference between murine knockout cell outcomes 
and antagonist approaches in human cells. 
 
Although both PAR1 and PAR2 signalling were involved in APC-mediated MG-63 viability, 
we found that PAR2 was only involved in APC-mediated p38 signalling, and PAR1 
involvement to be specific in ERK1/2 and Akt signalling. APC acts through different 
permutations and combinations of receptors to achieve its effects, depending on the cell type. 
There is precedent for APC signalling through either PAR1 or PAR2 to induce p38, Akt in 
some studies [266, 292, 407], and both PAR1 and PAR2 for APC-induced pAkt activity in 
other studies [408]. In the current literature, however, there has been no evidence for the 
involvement of APC-PAR2 signalling in activating ERK1/2 [258]. Our results here suggest 
that the individual effects of APC on intracellular proteins, ERK1/2, Akt, and p38, in MG-63 
cells rely on particular receptors. However, the use of single time point in our study limits the 
interpretation of these results. Another possible outcome from SCH79797 and ENMD-1068 
inhibition of PAR1 and PAR2 is a shift in the peak response of the intracellular signalling 
proteins. Further studies using these PAR1 and PAR2 inhibitors over several time points will 
determine whether this response is due to inhibition of PAR receptors or shifting in signalling 
protein response.  
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ERK1/2 is a primary signalling pathway for many cellular activities including proliferation 
[409, 410], and APC signals through ERK1/2 to induce proliferation in keratinocytes and 
endothelial cells [248, 371]. ERK1/2 is required for osteoblast proliferation and mediates the 
proliferative effect of endogenous growth factors, hormones, amino acids, phenols, and 
mechanical strain on osteoblasts [411-419]. APC promotion of osteoblastic viability was 
concurrent with its activation of ERK1/2 in our study, which is consistent with recent papers 
showing APC stimulation of ERK1/2 in MG-63 cells and normal human osteoblasts [268, 269]. 
ERK1/2 not only regulates osteoblast proliferation, but it also plays a complex role in 
osteogenic differentiation, possessing both agonistic and antagonistic effects [420]. Lee et al 
demonstrated that APC enhances ERK1/2 and stimulates MG-63 differentiation through 
augmentation of collagen production and alkaline phosphatase activity [45]. However, the 
study did not extend to determine whether or not differentiation was dependent upon ERK1/2, 
thus, it is unclear whether APC signals via the ERK1/2 pathway to induce osteoblast 
differentiation.  
  
Activation of p38 promotes early and late osteoblast differentiation through different substrates 
including Runx2 and Osterix [421, 422]. It also mediates BMP-induced osteoblast 
differentiation [421, 422]. APC can differentially regulate the p38 pathway; stimulating p38 
activity in keratinocytes, blood monocytes, and contrastingly, reducing p38 activity in 
tenocytes, arthritic synovial fibroblasts, and monocytes [184, 276, 277, 292, 343, 377]. It has 
been shown that APC’s inhibition of p38 in keratinocytes occurs specifically via the PAR2 
receptor [292], however, PAR2 involvement in other studies was not determined. Here, we 
demonstrate that APC activates the p38 pathway in MG-63 cells, and this effect is dependent 
upon the PAR2 receptor. This provides further evidence for the involvement of PAR2 in APC 
modulation of p38 signalling. Although the activation of p38 promotes osteoblastic 
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differentiation, and APC has been demonstrated to induce MG-63 differentiation, it is not yet 
known whether the latter is influenced by the former. It is possible that APC stimulation of 
osteoblast differentiation may also act through PAR2 and the p38 pathway.  
 
The signalling protein Akt is required for bone formation, skeletal mass regulation and 
endochondral ossification [32, 423]. Activated Akt exerts a two-fold effect upon osteoblast 
growth, by stimulating proliferation and protecting against apoptosis [424]. In a similar manner 
to p38 signalling, Akt mediates BMP-induced osteoblast differentiation, but Akt activation 
itself also augments osteoblast differentiation and bone mineral density [425, 426]. APC has 
been shown to induce pAkt in neuronal production, myocardial injury, cutaneous wound 
healing, and counteraction of inflammation [258, 292, 370, 377, 408]. In this study, APC 
stimulation of pAkt was consistent with its promotion of MG-63 cell viability, however, we 
have not investigated whether pAkt mediates other effects of APC. The complex role of Akt in 
osteoblasts and bone suggests that APC may have additional effects, such as protection against 
bisphosphonate-induced cell death as demonstrated by Lee et al [269]. 
 
In contrast to the actions of Akt and p38, stimulation of NF-κB leads to suppression of 
osteoblast differentiation and mineralisation [427, 428]. NF-κB is primarily up-regulated in 
cells during states of inflammation, and from their exposure to the cytokines IL-1 and TNF-α; 
the latter being an inhibitor of bone formation [428, 429]. Several studies have reported the 
negative regulation of NF-κB by APC treatment: (1) APC inhibits NF-κB in the mononuclear 
cells of septic patients, but not those of normal patients [430]; (2) APC suppresses 
lipopolysaccharide stimulated production of TNF-α through suppression of NF-κB in 
monocytes [277]; (3) APC reduced LPS-induced NF-κB in endotoxemic mice [431]; (4) APC 
further suppresses tissue plasminogen activator-induced NF-κB and MMP-9 [285]; and (5) 
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APC inhibits NF-κB activation by alendronate on MG-63 cells [269]. In this study, we did not 
find NF-κB suppression by APC in MG-63s, and we suggest that it is likely that exogenous 
inflammatory stimuli are necessary for APC to down-regulate NF-κB in osteoblasts. 
 
3.6 Summary 
The viability of osteoblasts is integral to the processes of bone formation and remodelling. The 
protection of osteoblasts function may improve outcomes in orthopaedic applications. A large 
number of studies have demonstrated that APC is a potent stimulator of cellular proliferation 
with the ability to protect different cell types against cellular injury through its receptors EPCR 
and PARs. In this chapter, we present data to confirm that APC can act on osteoblasts. 
 
We demonstrate that APC promotes the viability of both the MG-63 and MC3T3-E1 
osteoblastic cell lines. This was an action dependent upon PAR1 and PAR2 but not EPCR. We 
also show, for the first time, that APC not only enhances ERK1/2 signalling in MG-63 cells 
but similarly activates Akt and p38, both of which are proteins essential for osteoblastic 
differentiation and cell survival. Notably though, the effect from APC on these proteins 
required different PARs. Overall, these results demonstrate that APC treatment is protective in 
osteoblast cells and suggest that APC may have therapeutic potential on bone formation. 
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4 APC Enhances BMP-2-Induced Ectopic Bone Formation 
4.1 Introduction 
In bone injury and disease, one cause for an inadequate bone healing response is a deficiency 
in requisite growth factors. This can be the result of reduced or damaged blood supply, external 
factors including infections, or a large bone defect size [95, 127, 432]. Current treatments to 
restore osteogenic factors, such as bone grafts, bone transport, and supplementation with 
recombinant growth factor have their limitations [122, 126, 140]. Recombinant BMP-2, an 
FDA approved molecular therapy for bone healing, has proven efficacy in animal models and 
clinical applications [94]. However, the off-label use of recombinant BMP-2 to promote 
osteogenesis has been increasingly shown to induce complications including inflammation and 
bone resorption [141]. For example, the use of recombinant BMP-2 to promote osteogenesis 
has been increasingly shown to induce complications including inflammation and bone 
resorption [141]. This highlights the need to investigate possible alternative means to increase 
biological factors.  
 
APC promotes the healing of cutaneous wounds in animal models and humans including rat 
full-thickness punch biopsy wounds, ischemic flap survival, and long-standing diabetic wounds 
[290-292, 433]. These actions result because of APC’s capability to promote granulation tissue 
and re-epithelisation through its induction of various growth factors [265, 305].  
 
In light of the results described in Section 3.4.2, where APC was found to induce MG-63 and 
MC3T3-E1 viability, we sought to further investigate the effect of APC on bone healing, 
specifically osteogenesis. Traditionally, the assessment of the osteogenic potential of agents is 
examined in vitro by molecular markers, cell biology-based assays, and in vitro mineralisation 
assays [434]. Despite the utility of in vitro assays, they are limited in their ability to capture the 
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complexity of the in vivo environment and the interaction between different cell types within 
the bone microenvironment. Furthermore, the expression of in vitro markers does not always 
correlate with the osteogenic capacity of an agent in vivo [435, 436]. For these reasons, we 
further investigated the effect of APC on bone formation in an in vivo setting using a murine 
model. 
 
Hydroxyapatite/tricalcium phosphate (HA/TCP) is frequently utilised in vivo to determine the 
osteogenic potential of agents. This assay requires the mixing of potential agents with HA/TCP 
and implantation into mice. This method is relatively easy to perform and also provides 
reproducible results. However, micro-computed tomography (µCT) is unable to quantitate the 
newly formed bone and differentiate it from implanted HA/TCP granules [434]. Schindeler et 
al highlighted that an alternative method that can be used as a rapid in vivo screening assay 
[437]. Using a modified version of this approach, we implanted collagen scaffolds containing 
recombinant human BMP-2 into the hind limb musculature of a mouse. The addition of BMP-
2 induces ectopic bone formation and leads to rapid induction of a bone nodule over 3 weeks 
that can be readily quantified using µCT [437]. 
 
We hypothesised that APC would (1) adjunctively augment BMP-2-induced ectopic bone 
formation, (2) act through a PAR1/PAR2-dependent pathway, and (3) suppress osteoclast 
numbers. 
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4.2 Aims 
The overall objective of this chapter was to investigate the effect of APC on BMP-2-induced 
ectopic bone formation. Specifically, we aimed to: 

1. determine the effect of APC on bone formation in an in vivo model; 
2. examine the underlying mechanism of APC on ectopic bone formation including the 

effect on osteoclasts; and 
3. examine whether a PAR1/PAR2-dependent pathway was implicated in APC’s actions. 

 
4.3 Methods 
4.3.1 APC and BMP-2-Induced Bone Formation in WT and Par-/-Mice 
The effect of APC on BMP-2-induced bone formation was assessed using an ectopic bone 
formation model. Treatments of 10 or 25 µg recombinant human APC (Eli Lilly) was combined 
with 10 µg recombinant human BMP-2 (Medtronic) in 10 µL of water, which was then pipetted 
onto collagen sponges. These treated collagen sponges were then implanted bilaterally into 
intramuscular pockets of Par1-/-, Par2-/-, or WT control mice (all mice possessed a C57BL/6J 
genetic background), according to the groups in Table 2-7 (Section 2.3.2). Par-/- mice were 
genotyped as per Section 2.3.1. All animal experiments were approved by the Animal Care and 
Ethics Committee for the Children’s Medical Research Institute and The Children’s Hospital 
Westmead (Protocol K294).  
 
Ectopic bone formation was monitored radiographically using X-ray (Faxitron X-ray Corp) at 
2 and 3 weeks. Fixed bone nodules were further analysed using µCT and CTAn Software for 
bone volume, tissue volume, and trabecular structure. Nodule midsections were reconstructed 
using 20 slices of scanned images to demonstrate trabecular complexity.  
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4.3.2 Osteoclast Numbers in Ectopic Bone Nodules 
To evaluate osteoclast numbers in bone nodules, TRAP staining was performed on histologic 
sections of bone nodules. Bone nodules were fixed, cryoembedded and sectioned as per Section 
2.3.4. TRAP staining was conducted to determine osteoclast numbers. Cryosections were 
rehydrated in PBS, and then further incubated in Tris-HCl buffer before transfer into Na-
Acetate buffer. The tissues were then incubated in filtered TRAP staining solution, then 
washed, counterstained with haematoxylin, and coverslipped (Section 2.3.4). Osteoclast 
numbers were assessed using microscopy and Bioquant Software (BioQuant).  
 
4.3.3 EPCR, PAR1, and PAR2 Staining in Ectopic Bone Nodules 
To assess PAR1 and PAR2 staining in ectopic bone nodules, sections were cut onto cryofilm, 
adhered to slides using chitosan. Staining for EPCR, PAR1 and PAR2 was conducted using 
antibodies from Table 2-1 as per Section 2.3.5. Staining was counterstained with haematoxylin 
and coverslipped in Euckitt solution. Staining was visualised and scanned on ScanScope. 
 
4.3.4 Statistics 
Statistical analyses and data graphing were performed as per Section 2.4. P-values less than 
0.05 were considered statistically significant. All duplicated values were presented as mean ± 
standard error (SE). N indicates the number of bone nodules. 
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4.4 Results 
4.4.1 APC Increases BMP-2-Induced Bone Formation 
Our previous in vitro results (Section 3.4.2) suggested the potential for APC to act on bone 
formation through its stimulatory actions on osteoblasts. In this chapter, the capacity of APC 
to augment BMP-2-induced bone formation was examined in a mouse ectopic bone formation 
model. Scaffolds containing BMP-2 and APC were compared to scaffolds infused with BMP-
2 alone. After 3 weeks, bone nodules were formed and quantified by X-ray and µCT (Figure 
4-1 & 4-2). 
 
Representative bone nodules in each treatment group were compiled to examine the 
relationship between XR images and µCT results. Qualitative X-rays demonstrated nodule 
formation after 3 weeks with varying levels of structural complexity and size. Quantitation of 
nodules was then carried out after µCT to determine total volume and bone volume. Whole 
nodule modelling was constructed to provide 3D confirmation of nodule sizes and shapes seen 
from X-ray (Figure 4-1). Three-dimensional µCT reconstructions showed enhanced bone 
formation in APC-treated specimens consistent with the XR images (Figure 4-1). Cross-
sectional reconstruction of 20 slices within nodules also demonstrated an increased trabecular 
complexity in both APC treatment groups (Figure 4-1).  
 
The examination of X-ray images taken at the 3-week timepoint, revealed an increase in the 
volumetric size of the nodules, following both BMP-2 + 10 µg APC or BMP-2 + 25 µg APC 
treatment, as compared with BMP-2 treatment alone (Figure 4-1). This suggested that APC has 
a positive effect on ectopic bone formation. Indeed, quantification of µCT data using CTAn 
software revealed that inclusion of only 25 µg APC led to a significant increase in bone volume 
(BV) by 74% (P<0.01; Figure 4-2A).  The 10 µg of APC inclusion had no significant effect on 



Chapter 4: APC Enhances BMP-2-Induced Ectopic Bone Formation  

91 
 

BV (32%, P=0.07; Figure 4-2A). Similarly, 25 µg of APC inclusion led to a significant increase 
in total tissue volume (TV) by 104% (P<0.01) but not the 10 µg of APC (40%, P=0.09; Figure 
4-2B). These results indicate that APC increased the area of bone remodelling. However, there 
was no apparent change in the ratio of bone volume to total volume (BV/TV) with APC 
treatment, demonstrating that APC did not affect the density of bone nodules (Figure 4-2C). 
This is the first study to demonstrate that APC can increase bone volume in vivo. 
 

  Figure 4-1 Representative bone nodules selected based on median bone volume, from X-ray 
imaging and µCT reconstructions. Figure shows representative X-rays and 3D µCT models of 
whole nodules and cross-sectional compilation of 20 slices after 3 weeks of BMP ± APC 
incorporation. 

BMP-2 BMP-2 
+ APC10µg 

BMP-2 
+ APC25µg 
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Figure 4-2 The effect of APC on BMP-2-induced bone formation model. CT analysis was used 
to calculate bone volume (A), total volume (B), and bone volume to total volume (BV/TV, C) 
ratio in nodules treated with BMP-2 ± 10 or 25 µg APC. Statistical analysis was carried out 
by one-way ANOVA and Newman-Keuls post-test. Data represented as mean ± S.E (n=10). ** 
Denotes P<0.01 between treatment and control. 
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4.4.2 APC Increases Osteoclasts in Bone Nodules 
Increases in net bone in the BMP-2 ectopic bone formation assay could be indicative of either 
increased bone anabolism or of suppressed bone resorption. To examine this further, TRAP 
staining was performed to examine osteoclast number (OcN) (Figure 4-3A).  
 
No decrease was seen in osteoclasts numbers, suggesting that increases in bone volume were 
not influenced by an anti-catabolic effect of APC. Indeed, a 20% increase in TRAP+ cell 
number was observed with 25 µg APC (P<0.05; Figure 4-3B), as compared to BMP-2 alone. 
Similarly for bone volume and total tissue volume, no differences were seen with 10 µg of 
APC (10%, P=0.2; Figure 4-3B).  
 
Osteoclasts were noted to be adherent to the bone surface, unlike with bisphosphonate 
treatment where they are detached from the bone surface [438-440]. When osteoclast numbers 
were normalised to respective bone surface areas, there was no significant effect of APC 
(Figure 4-3C). These results suggest that the stimulation of bone formation by APC is an 
anabolic effect and the concurrent increase in osteoclast number resulted from an increase in 
bone surface area.  
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Figure 4-3 The effect of APC on osteoclast activity in bone nodules. Osteoclasts were stained 
for TRAP (red) enzymatic staining (A). Positive cells were counted in five random fields of view 
at 20X and graphed as osteoclast numbers (OcN, B), and normalised to bone surface area (BS, 
C). Statistical analysis was conducted by one-way ANOVA and Newman-Keuls post-test. Data 
represented as mean ± S.E (n=10). * Denotes P<0.05 between treatment and control. Scale 
bar 50 µm.  
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4.4.3 APC Does Not Affect EPCR and PAR Expression in Bone Nodules 
As our previous in vitro data (Section 3.4.4) demonstrated a role for PAR1 and PAR2 in APC-
induced MG-63 cell viability, we sought to investigate whether or not EPCR and PAR receptors 
were up-regulated in APC-infused nodules following 3 weeks of treatment.  
 
Our immunohistochemical staining revealed EPCR-positive cells to be sporadically distributed 
throughout the bone nodule (Figure 4-4). EPCR staining, however, did not appear to be 
expressed on bone lining cells or cuboidal cells on the bone surface. Overall, there was no 
significant difference in EPCR expression between APC-treated bone nodules, and those 
treated with BMP-2 alone (10 µg APC, 11%, P=0.48; 25 µg APC, 2%, P=0.88). 
 
Similarly to EPCR, PAR1 and PAR2-positive cells were dispersed throughout bone nodules, 
and this was not significantly altered in APC-treated nodules (Figure 4-5). The level of PAR1 
expression in the 10 µg or 25 µg APC treatment groups was not significantly different to that 
of control nodules (4%, P=0.83 and 15%, P=0.41 respectively). Likewise, PAR2 expression 
resulted in no change (5%, P=0.74) after 10 or 25 µg APC (15%, P=0.18) as compared to 
control.  
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Figure 4-4 The expression of EPCR, PAR1, and PAR2 in bone nodules. IHC was performed 
using EPCR, PAR1, and PAR2 antibodies on bone nodules treated with BMP-2 ± 25 µg APC. 
Slides were scanned using a ScanScope scanner and processed in ImageScope. Scale bar 
indicates 60 µm.  
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Figure 4-5 Quantification of EPCR (A), PAR1 (B), and PAR2 (C) in bone nodules. Stained 
nodules were analysed using ImageScope for positive staining to total tissue ratio. Statistical 
analysis was conducted by one-way ANOVA and Newman-Keuls post-test. Data represented 
as mean ± S.E (n=10).  
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4.4.4 APC-Induced Bone Formation Requires PAR1 but Not PAR2 
In Section 3.4.4, we observed that the cell viability of an in vitro osteoblast model was 
dependent upon PAR signalling. Following this observation, we sought to investigate the role 
of PARs in APC-induced ectopic bone formation. We compared the effects of APC treatment 
on Par1-/-, Par2-/-, and wild-type (WT) mice. Initially, mice were treated with 25 µg APC, 
which we had experimentally determined to be the optimal APC dose to administer (Section 
4.4.1). Then, we investigated whether BMP-2-induced ectopic bone formation was further 
impacted by an increased APC dose. To this end an additional treatment group of the study 
was created, whereby a higher dose of 50 µg APC was administered to WT mice. 
 
Experiments with WT mice were conducted using the conditions described in Section 4.4.1. 
XR images, representative 3D µCT reconstructions, and quantitative µCT results after 3 weeks 
were compiled in Figure 4-6. X-rays and µCT indicated that inclusion of 25 µg or 50 µg APC 
led to increases of 43% or 74% in total volume, respectively (P<0.05, P<0.01; Figure 4-7) and 
32% or 46% increase in bone volume (P<0.05 for both; Figure 4-7). There was no significant 
change in BV/TV following APC treatment.  
 
Interestingly, in Par1-/- mice, there was no significant difference in bone volume (45%, P=0.19; 
Figure 4-8 & 4-9), total volume (46%, P=0.27), or BV/TV (7%, P=0.58) in response to APC 
treatment. However, in Par2-/- mice, APC significantly increased total volume by 49% 
(P<0.05) but did not increase bone volume (42%, P=0.06; Figure 4-8 & 4-9), nor BV/TV as 
compared to control (8%, P=0.41). These results suggest that PAR1 rather than PAR2 was 
involved in mediating APC’s anabolic effect on ectopic bone formation. 
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Figure 4-6 The effect of APC on bone nodules via X-ray and µCT reconstruction in WT mice. 
The figure shows representative nodules X-rays, 3D µCT reconstructed models, and cross-
sectional compilation of 20 slices after 3 weeks of BMP ± APC incorporation. 
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Figure 4-7 The effect of higher doses of APC on bone nodules via µCT analysis in WT mice. 
CT analysis was performed on bone volume (A), total volume (B), and the ratio of bone volume 
to total volume (BV/TV) (C). Statistical analysis was carried out by one-way ANOVA and 
Newman-Keuls post-test. Data represented as mean ± S.E (n=10). * Denotes P<0.05, ** 
denotes P<0.01 between treatment and control. 
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Figure 4-8 The effect of APC 25 µg on nodules via X-ray and µCT reconstruction in WT, Par1-/-, and Par2-/- mice. The figure shows representative 
nodule X-rays, 3D µCT reconstructed models and cross-sectional compilation of 20 slices.
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Figure 4-9 The effect of APC on bone nodules via µCT analysis in Par1-/- or Par2-/- mice. CT 
analysis was performed on bone volume, total volume, as well as the ratio of bone volume to 
total volume (BV/TV). Statistical analysis was carried out by one-way ANOVA and Newman-
Keuls post-test. Data represented as mean ± S.E (n=10). * Denotes P<0.05 between treatment 
and control. 
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4.5 Discussion 
Previous studies have demonstrated that the clinical administration of APC has therapeutic 
benefits on the healing of recalcitrant orthopaedic wounds in patients [309]. We have shown 
that APC can protect the viability of cultured MG-63 osteoblastic cells via a PAR1- and PAR2-
dependent mechanism (Section 3.4.4). In this chapter we sought to further investigate whether 
APC could also stimulate bone formation. Indeed, we found that local co-delivery of APC 
augmented BMP-2-induced bone formation in vivo and increased osteoclast numbers within 
bone nodules. Experiments with knockout mouse models revealed that this action of APC was 
PAR1-dependent, however, PAR2 expression was found not to be required. 
 
In this chapter, we utilised an ectopic bone formation model which requires BMP-2 for bone 
induction [437]. This model provides an ideal in vivo screening tool for determining the 
anabolic effects of agents, such as APC, on bone remodelling. We observed, by X-ray imaging, 
a substantial enhancement of bone formation in response to APC, and this increase was 
confirmed with µCT quantification. These in vivo findings, consistent with those of our 
previous in vitro studies, show that APC has an anabolic effect on bone formation [268, 269, 
309]. This is a novel finding that highlights the physiological importance of the biological 
interactions between local coagulation and bone factors. One limitation of the study design is 
that blind evaluation of µCT outcomes could have reduced the bias of the results. However, we 
were able to replicate these results in further studies of APC in WT and Par-/- mice. 
 
The nature of the in vivo model we utilised meant that we were unable to ascertain which effects 
were due to the specific action of APC, and those which arose from the interaction between 
APC and BMP-2. APC has not been previously shown to be osteogenic or capable of 
stimulating ectopic bone formation. Therefore, we assayed the quantitative effect of APC on 
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ectopic bone formation by utilising APC in combination with BMP-2. It will be necessary for 
future studies to implement in vivo models that are not dependent upon exogenous BMPs, to 
address the osteogenic potential of APC when used alone.  
 
Aside from the osteogenic potential of APC, it may also functionally interact with BMP-2, in 
a manner similar to the interactions that have been reported to occur between BMP-2 and other 
coagulation factors. A prime example is heparin, which binds to BMP-2, leading to increased 
stabilisation and prolonged half-life, and thus an increase in BMP-2-induced osteoblast 
differentiation in both in vitro and in vivo models [441-443]. In contrast, heparin treatment 
alone actually decreases bone mineral density, suggesting the above effects on bone are 
mediated via a specific interaction with BMP-2 [444, 445]. Similarly to the effects of APC 
described in this chapter, heparin addition to BMP-2 induces a dose-dependent increase of 
mineralised bone tissue in ectopic bone formation as compared to BMP-2 alone [446]. Notably, 
heparin can also bind to the serine protease domain of APC [447, 448], so it is possible that 
APC interacts with heparin to potentiate BMP-2-generated ectopic bone formation. 
 
The effect of APC on enhanced bone formation may not only be due to increased osteoblastic 
viability but also other aspects of osteoblastogenesis. For instance, Lee et al have demonstrated 
that APC enhances osteoblast differentiation through the induction of type I collagen and 
alkaline phosphatase, both markers of osteoblast maturation [269]. Currently, we have no data 
to support the role of APC in the induction of osteoblastogenesis within bone nodules as we 
have not studied the effect of APC on osteoblast histomorphometric parameters in these bone 
nodules. However, we propose that APC augmentation of bone formation is likely to occur 
secondary to the multiple effects it has on the osteoblastic lineage; including the stimulation of 
osteoblastic differentiation and enhancement of cell viability. We suggest that further studies 
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with APC in ectopic bone nodules can utilise alkaline phosphatase markers to determine the 
number and effect of APC on osteoblasts within these nodules. 
 
As APC was capable of enhancing bone formation, we sought to further determine whether 
this effect was reliant on an anabolic action or an anti-catabolic action. Histology of nodules 
revealed a modest increase in osteoclast number, despite a large increase in bone formation. 
However, this catabolic effect was diminished when normalised to bone surface area, 
suggesting that the effect was proportional to the increase in bone surface area. Taken together 
with APC’s stimulation of osteoblasts and its increase of trabecular complexity, it appears that 
APC can induce dual increases in anabolism and catabolism, with the net effect being anabolic 
[70]. It is feasible that suppression of osteoclast activity using anti-catabolic drugs such as 
bisphosphonates may lead to further increases in total bone in response to APC. 
 
The potential benefit of APC in combination with bisphosphonates is not only limited to the 
inhibition of osteoclasts. Lee et al demonstrated the differential effects of APC on osteoblast 
viability and differentiation in combination with bisphosphonates [269]. The addition of APC 
protects against pamidronate and zoledronate-induced cell death but enhances alendronate-
induced MG-63 apoptosis [269]. The addition of APC to alendronate enhances calcium 
deposition whereas addition to pamidronate and zoledronate abolishes this effect [269]. APC 
also enhances type I collagen in all the presence of all 3 bisphosphonates [269]. These disparate 
effects of APC on bisphosphonate-treated MG-63 cells makes it difficult to predict how 
combined treatment will translate in vivo and whether these combination treatments can 
enhance bone formation. However, we suggest that APC enhancement of osteoblast viability 
in the presence of pamidronate and zoledronate, and its promotion of soft tissue healing may 
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be beneficial in some cases of bisphosphonate-related osteonecrosis of the jaw, a condition 
which requires both bone and soft tissue healing.  
 
Existing studies have also utilised bisphosphonates in combination with BMP-2 to provide both 
anabolic and anti-catabolic effects in bone repair models, with mostly positive results [169]. 
The combined delivery of BMP-2 with the bisphosphonate minodronate in a rat intramuscular 
ectopic bone formation model demonstrates increased bone area, bone strength, and reduced 
osteoclast numbers over BMP-2 alone [449]. The combination of BMP-2 with another 
bisphosphonate, ibandronate, has been trialled in ischemic osteonecrosis of the femoral head 
where it increased trabecular number, bone volume, and thickness at the same time as it 
suppressed osteoclast numbers [450]. Additionally, combined bisphosphonate-BMP-2 
treatment is effective in the genetic orthopaedic model of neurofibromatosis type 1 (NF1), a 
condition manifested by increased bone catabolism and decreased anabolism [451]. The 
delivery of local BMP-2 with systemic zoledronate injection maximised bone production and 
reduced osteoclast numbers in wild-type and NF1 deficient mice [452]. Despite the promising 
results from these studies, higher doses of bisphosphonates can result in impaired orthopaedic 
function, even in the presence of BMP-2 [169, 453]. This suggests that bisphosphonate 
augmentation of the effects of BMP-2 requires a low dose of bisphosphonates. It is yet 
unknown whether the triple combination of BMP-2, bisphosphonates, and APC can further 
improve the existing outcomes of dual BMP-2-bisphosphonate treatment. This would depend 
on whether APC addition can lower the required dosage of bisphosphonate without 
compromising orthopaedic outcomes. Alternatively, as APC is protective against 
bisphosphonates in MG-63 cells, APC addition to high doses of bisphosphonates may defend 
against the adverse effects of bisphosphonates. 
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As we found EPCR and PAR involvement in APC-induced effects on MG-63 cells, we further 
determined their role in APC-augmented bone formation. APC has been shown to up-regulate 
EPCR expression in keratinocytes [260], however, it is unknown whether APC or BMP-2 
regulates EPCR, PAR1 or PAR2 expression in osteoblasts. We found no difference in EPCR 
or PAR expression in the presence or absence of APC when bone nodules were excised after 
their formation at 3 weeks. We also did not notice EPCR or PAR expression on bone lining 
cells or cuboidal cells on bone surfaces. One explanation for this is that APC may have exerted 
its effects early in the ectopic bone formation process and thus EPCR and PAR receptors on 
bone lining cells were not upregulated at 3 weeks. We did not conduct pharmacokinetic or 
pharmacodynamic experiments to determine the distribution or half-life of APC, so we cannot 
be certain whether APC affected the expression of these receptors at earlier time points, and 
whether this effect has subsided over time.   
 
PAR1 and PAR2 play important roles in bone healing with PAR1 primarily mediating the 
proliferative effects of thrombin on osteoblasts [385, 405]. Par1-/- mice have reduced 
mineralisation and greater osteoclast presence in the early stages of healing but no 
morphological differences in the later stages of healing [385]. PAR1 has been involved in many 
actions of APC including its protection of endothelial cells, neurons, podocytes against 
apoptosis and injury, its maintenance of the endothelial barrier, its induction of a wound healing 
phenotype in keratinocytes, and importantly its mediation of APC’s angiogenic effects [261, 
262, 342, 353, 371, 372, 454]. Kurata et al have shown that PAR1 is not required for the 
proliferative effects of APC on normal human osteoblasts. In contrast, we have shown in 
Section 3.3.3 that PAR1 was involved in APC-mediated MG-63 and MC3T3-E1 viability. To 
further investigate the involvement of PAR1 in bone formation, we applied APC to the ectopic 
bone formation model in Par1-/- mice and found that APC-induced bone volume and total 
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volume was abolished, confirming that PAR1 is required for APC-augmented ectopic bone 
formation. There was considerable variability largely due to a single outlier in the APC-treated 
group. However, statistical analysis after the removal of this outlier also showed no significant 
difference, confirming the important role of PAR1 in APC and BMP-2-induced ectopic bone 
formation. 
 
Similarly to Par1-/-, Par2-/- mice exhibit decreased mineralisation of callus formation in femur 
fractures compared to WT animals, as assessed by bone volume fraction and total mineral 
density [455]. However, the genetic deletion of PAR2 does not result in delayed fracture 
healing [455]. Currently, the role of PAR2 in osteoblasts is unclear, although, it has been shown 
to stimulate intracellular calcium levels, and type I collagen expression, and to have no 
apparent effect on alkaline phosphatase activity [24]. PAR2 can also regulate RANKL/OPG 
ratio in osteoblasts to decrease osteoclast differentiation [456]. In the current study using Par2-

/- mice, APC elevated total volume but not bone volume or BV/TV. The lack of significance 
may be attributed to the unexpected larger biological variation seen in the Par2-/- mice as 
compared to both WT and Par1-/- mice. A greater sample size of Par2-/- mice may show that 
APC does induce bone volume.  
 
4.6 Summary 
The healing of bone injuries is both frequently and dramatically impeded by a lack of biological 
factors. To date, a large body of experimentally derived evidence has demonstrated the ability 
of APC to significantly enhance the healing of soft tissue wounds. In this thesis, we present 
novel data that for the first time points to the additional clinical utility that APC may possess 
in the treatment of bone fractures. 
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Firstly, in Section 3.4.2, we demonstrated that APC enhances the viability of osteoblastic cell 
lines, and we hypothesised that APC would enhance ectopic bone formation in a rapid 
screening in vivo model. In this chapter, we tested this hypothesis, and we did indeed observe 
that APC augmented BMP-2-induced ectopic bone formation, an effect that was found to be 
PAR1-dependent.  
 
APC treatment led to an increase in osteoclast numbers. This suggests that APC works via 
multi-faceted actions, on different cells within the bone environment including osteoblasts and 
osteoclasts. The discovery of these novel findings show that the healing abilities of APC may 
also be extended to the treatment of bone injuries. We further propose that it will now be 
important to investigate APC in other orthopaedic models, particularly those of fracture 
healing. 
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5 The Effect of APC on Closed Fracture Healing 
5.1 Introduction 
The union of a fracture depends on an adequate cellular environment, sufficient growth factors, 
a bone matrix, absence of infection, and mechanical stability [70, 90, 97, 457, 458]. In addition, 
factors such as age, gender, smoking, systemic corticosteroid therapy, diabetes, fracture 
severity, the metabolic and nutritional state of the patient, and whether fracture was open or 
closed, can all contribute to delayed healing [146, 459-466]. In the previous chapters, we have 
found that APC augmented osteoblast viability in vitro and it worked adjunctively to enhance 
BMP-2-induced bone formation in vivo. This potential for APC to enhance bone formation 
suggested that it may have therapeutic effects in fracture healing.  
 
Both ectopic bone formation and fracture healing share similarities, including the recruitment 
of local factors into the area and the induction of new bone formation [94, 467]. BMPs stimulate 
the migration of mesenchymal stem cells to the site of implantation [52]. These progenitor cells 
first differentiate into chondrocytes, forming islands of cartilage that are similar to the 
cartilaginous soft callous formation observed in fracture healing [468, 469]. This is followed 
by vascular invasion, hypertrophy and mineralisation of chondrocytes, which is also 
comparable to the hypertrophy of soft callus in fracture healing [470]. Finally, the subsequent 
migration of osteoblasts into the site, bone formation, and remodelling parallels the hard callus 
and remodelling stages of fracture healing [469, 470]. 
 
Different models of fracture healing are available to assess the repair of long bones after a 
fracture. A common model of bone repair in rodents is a closed fracture, generated by blunt 
trauma [471]. As closed fractures involve less damage to soft tissue than open fracture models, 
they can achieve greater experimental reproducibility by minimising the variability introduced 
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by local wound healing [471]. Also, the study of osteoblastic and osteoclastic lineages in open 
fracture models of bone healing is complicated by myogenic progenitors that contribute to the 
repair process [472]. Furthermore, it has been observed that moderate soft tissue trauma delays 
bone healing in the early phases, but advances regeneration at the later stages [473]. Of the 
available models, the mouse closed tibial fracture models have been described as the most 
faithful replication of common clinical fractures in terms of anatomical site, aetiology, and 
fixation in this species [474]. For these reasons we chose to study the effect of APC in this 
model system. 
 
BMP-2 promotes bone formation and repair of critical size defects in animal models [469, 475]. 
In rodent models of fracture healing, the expression of BMP-2 protein is present in 
intramembranous and endochondral ossification at early stages but also present in trabecular 
bone at later stages [476, 477]. A deficiency of BMP-2 in mice results in delayed formation of 
secondary ossification centres at an early age and a complete absence of fracture healing occurs 
later in life once weight-bearing commences [51]. Clinical use of rhBMP-2 with a collagen 
sponge carrier has been approved by FDA for use as a bone graft in conjunction with internal 
stabilisation to heal a fresh open fracture of the tibia [169, 478]. Therapeutic use of BMP in 
non-union demonstrates a comparable time to union as bone graft substitutes and BMP 
application avoids the need for a donor site [479, 480]. However, off-label BMP application 
can induce complications including immunogenic responses, heterotopic bone formation, 
premature bone catabolism, local inflammation and oedema, graft failure, pseudarthrosis, and 
surgical site infection or complications [141, 142, 169, 475]. This suggests that many factors 
must be considered before the clinical use of BMPs. 
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The application of APC with topical negative pressure was shown to promote soft tissue 
healing in patients with chronic wounds post-orthopaedic surgery that had failed to respond to 
conventional therapy [309]. Based upon this observation, along with our previous findings that 
APC enhanced both osteoblast cell line viability and ectopic bone formation; we hypothesised 
that in a fracture healing model, exogenous APC treatment will promote bone repair. This 
effect may be mediated by enhancement of premature callus remodelling by osteoclasts.  
 
5.2 Aims 
Following results from the previous chapter, we further examined the potential effect of APC 
on fracture healing in vivo. Specifically, we aimed to: 

1. determine the effect of APC on healing in closed murine fractures over 3, 7, and 21 
days, and whether APC can enhance bridging of fractures or callus formation; and 

2. determine the effect of APC on osteoclast numbers in fracture calluses. 
 
5.3 Methods 
5.3.1 Murine Closed Fracture Model 
To investigate the effect of APC on fracture healing, a closed murine fracture model was 
employed. Closed fractures were induced in 8 week old female C57BL6 mice under 
anaesthesia and allowed to heal over 21 days. APC treatment was administered by anterolateral 
and posteromedial axis injections into the site of injury.  Mice were subsequently treated either 
with biweekly treatments of 25 µg APC over 3 weeks (i.e. 25 µg ×5) or a 50 µg bolus dose, to 
compare between single dose and multiple dosage treatments of APC (Table 2-8, Section 2.3.3) 
Fracture healing endpoints were at 3, 10, and 21 days.  
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Three samples of fracture calluses were collected from treated mice on days 3 and 10. Ten 
samples were collected per treatment on day 21. Fractures were radiographed by X-ray (XR) 
at 3, 7, 10, 14, and 21 days, and visually assessed for union. Calluses at day 21 were analysed 
using µCT and CTAn as per Section 2.3.2. All animal experiments were approved by the 
Animal Care and Ethics Committee for the Children’s Medical Research Institute and The 
Children’s Hospital Westmead (Protocol K248).  
 
5.3.2 Histology of Fractures 
After fractures were scanned in µCT, they were processed for histology, similarly to ectopic 
bone nodules. Briefly, the samples were fixed overnight in 4% PFA, stored in 70% alcohol for 
24 h, and then incubated in 30% sucrose overnight. Fractures were then cryoembedded in 
Tissue-Tek OCT Compound (Sakura Finetek). Cryosections were cut until a parasagittal 
section of the fracture was reached and further sectioned to 5 µm by cryostat (Leica, CM1900) 
onto cryofilm (Section Lab-Co Ltd). Sections were then adhered as per Section 2.3.4.  
 
5.3.3 Staining of Fractures 
After histology was completed, sections were stained for TRAP similarly as ectopic bone 
nodules to assess osteoclast numbers in calluses (Section 4.3.2). In brief, TRAP staining was 
conducted using naphthol ASBI phosphate substrate, tartaric acid, new fuchsine dye, and 
sodium nitrite after washing in buffers. Once stained, cryosections were then counterstained 
with haematoxylin, coverslipped, and osteoclast numbers were counted using Bioquant 
Software (BioQuant). 
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5.3.4 Statistics 
Statistical analyses and data graphing were performed as per Section 2.4. P values less than 
0.05 were considered statistically significant. Results are presented as mean ± standard error 
(SE) performed in duplicate. Fisher’s exact test was employed to assess union where 
appropriate. 
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5.4 Results 
5.4.1 APC Treatment Does Not Enhance Closed Fracture Healing 
X-rays of fractures from 3, 10, and 21 days illustrated that tibia were broken in all animals at 
the time of surgery, with close alignment of the broken ends, small degrees of axial rotation, 
as well as minimal damage to the surrounding soft tissues (Figures 5-1, 5-2, 5-3). Fibulas were 
broken in 36 out of all 48 mice. On day 3, there was no new bone formation seen on radiographs 
(Figure 5-1). After 7 days, there was no radiographic evidence of calluses (Figure 5-3). By day 
10, X-rays indicated the early formation of calluses at ends of the fracture site although none 
of the fractures were bridged by this callus, regardless of treatments. At 14 days, 50% of all 
fractures were bridged by callus in the control group, 40% in the 25 µg×5 APC group, and 40% 
in the 50 µg APC bolus group. At day 21 all fractures formed fully enclosed hard calluses. 
Illustrative X-ray images of mid-tibial fractures are presented in Figure 5-3.  
 
By day 14, injection into the fracture site was made difficult by the hard callus formation and 
APC (25 µg×5) treatments beyond this time were injected locally into the soft tissue and 
allowed to passively diffuse into the hard tissue. Prior to the completion of the experiment, at 
day 16, one of the mice died due to unknown causes.  
 
X-ray and 3D modelling of representative fracture at 21 days did not demonstrate any obvious 
increase in volume that could be associated with APC treatment (Figure 5-2). All of the 
fractures achieved union regardless of treatment, and Fisher’s exact test yielded P=1 between 
treatment groups and control. 3D µCT reconstructions of coronal fracture cross-sections 
showed no obvious change in callus architecture in APC-treated specimens (Figure 5-4). 
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Quantification of total tissue volume (TV) indicated that there was no statistical significance 
between APC treatment and saline control. Biweekly treatments of 25 µg or 50 g bolus of APC 
induced no difference (75%, P=0.28; average TV=0.14 mm3, SE=0.04 mm3 and 61%, P=0.2; 
average TV=0.23 mm3, SE=0.05 mm3 respectively; Figure 5-5A) as compared to control 
(average TV=0.14 mm3, SE= 0.04 mm3; Figure 5-5A). There was a large variation in tissue 
volume due to an outlier in APC 25 µg (×5) treatment. The removal of this outlier resulted in 
no significant difference between APC treatment and control (22%, P=0.63; Figure 5-5A). 
 
Quantification of bone volume (BV) indicated that there was no statistically significant change 
between biweekly APC 25 µg or 50 µg of APC bolus treatment (20%, P=0.64, average 
BV=0.08 mm3, SE=0.02 mm3 and 31%, P=0.44, average BV=0.09 mm3, SE=0.02 mm3 

respectively; Figure 5-5) as compared to saline control (average BV=0.06 mm3, SE=0.02 mm3, 
Figure 5-5). Bone volume over tissue volume (BV/TV) assessment revealed no significant 
changes between biweekly APC 25 µg treatment or 50 µg of APC bolus treatment as compared 
to control (20%, P=0.11, average BV/TV = 43%, SE = 5.5% and 22%, P=0.06, average BV/TV 
= 42%, SE = 3.3%; Figure 5-5C).  
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Figure 5-1 X-rays of murine closed fracture healing on days 3 and 10. Biweekly treatments of 
APC (25 µg, x5), APC (50 µg, bolus), or saline control were injected into fracture calluses. X-
rays were taken with intact intramedullary pins at 3 days (n=3 per group, A) and 10 days (n=3, 
B) per group. 
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  Figure 5-2 X-rays of murine closed fracture healing on day 21. Biweekly treatments of APC 
(25 µg, x5), APC (50 µg, bolus), or saline control were injected into fracture calluses. X-rays 
were taken after 21 days. N=10 per group except APC 50 µg (n=9). 

21 days 
Control 

APC 50µg bolus 

APC 25µg × 5 
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Figure 5-3 Representative X-rays of closed mid-tibial fractures. Control and APC-treated 
closed fractures were X-rayed on days 3, 7, 10, 14, and 21.  
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Figure 5-4 The effect of APC treatment on murine closed fracture healing X-ray, 3D 
reconstruction, and transverse/coronal cross sections. Representative closed fractures from 
Figure 5-2 were X-rayed at 21 days, reconstructed as 3D models, reconstructed from 20 slices 
of transverse, and coronal cross sections. 
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Figure 5-5 The effect of APC treatment on murine closed fracture healing via µCT analysis. 
Closed fractures treated with biweekly APC 25 µg ×5 or APC 50 µg bolus were assessed for 
total volume (A), bone volume (B), or bone volume/total volume ratio (BV/TV) (C), after 3 
weeks. Statistical analysis was conducted by one-way ANOVA and Newman-Keuls post-test. 
Data represented as mean ± S.E (n=10, except APC 50 µg at 21 days where n=9).  
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5.4.2 APC Does Not Affect Osteoclast Numbers in Fractures 
TRAP staining was performed to determine the effect of APC on osteoclast number (Figure 5-
6). APC treatment of 25 µg×5 or 50 µg bolus had no effect on TRAP+ cells in the callus at 21 
days (17%, P=0.1, 22%, P=0.1 respectively; Figure 5-6). This was consistent with the lack of 
change in callus size (i.e. total volume). 

 
Figure 5-6 The effect of APC treatment on osteoclast number in closed fractures. After 3 weeks 
of treatment, fracture calluses were sectioned and osteoclasts were stained for TRAP (red). 
TRAP-positive cells were counted in five random fields of view at 20X. Results were graphed 
as osteoclast numbers (OcN) and normalised to bone surface area (BS). Statistical analysis 
was conducted by one-way ANOVA and Newman-Keuls post-test. Data represented as mean ± 
S.E. (n=10, except APC 50 µg bolus where n=9). Scale bar indicates 60µm.  
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5.5 Discussion 
APC is well-documented to promote soft tissue healing, and in Section 4.4.1 we showed that 
APC can augment BMP-2-induced ectopic bone formation [290, 291, 309]. Here, we sought to 
additionally investigate the potential of APC in the treatment of healing bone fractures. 
However, assessment of the primary outcome found no radiographic evidence for enhanced 
callus formation or shortened bridging time following APC treatment. Nor did we observe an 
effect from APC on the number of TRAP-stained osteoclasts in this model. This outcome 
differs from the positive effects of APC we had previously observed on BMP-2-induced ectopic 
bone nodules. These findings are at first indicative of APC not possessing the ability to 
accelerate bone fracture healing; however, several limitations of the experimental model need 
to be addressed, before we can confidently draw such a conclusion. 
 
One major limitation of this study was that we chose to utilise a murine closed midshaft fracture 
model. Such fractures models are low energy trauma, with little disruption of periosteum and 
sufficient vascular supply for regenerative factors provision at the site of injury. Therefore, 
closed fracture models demonstrate reduced time to union and requires little intervention [369, 
472, 481]. Indeed, all fractures observed in this study rapidly healed within 3 weeks and 
possessed prominent callus formation. In hindsight, any therapeutic effect of APC might not 
be observable in such a system that already heals efficiently without intervention. For this 
reason, investigation of APC should be carried out in complex fracture models that are more 
challenging to heal. For example, open fracture models exhibit extensive damage to the 
periosteum, which compromises the healing process by preventing vascular ingrowth and 
migration of osteoprogenitor cells [90, 369, 472, 482]. Clinically, open fractures also require 
aggressive debridement to prevent infection, which can further deprive the access of 
osteoprogenitors to the healing site, increasing the risk of non-union [95, 127, 309]. The ability 
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of APC to heal soft tissue could also further benefit open fracture healing [290, 291, 309]. The 
use of a distal tibial model, where limited accessibility to osteoprogenitor cells from the bone 
marrow or soft tissue, could present another method of investigating whether APC can recruit 
essential factors to the fracture site [369, 483]. APC heals by induction of angiogenesis and 
restoration of biological factors [248, 265, 292, 484], suggesting that it may have more 
potential in a high trauma situation such as open fractures. 
 
Another animal model in which APC may be utilised is one of osteomyelitis. Models species 
that are commonly utilised to study osteomyelitis are rabbits, rats, and mice, all of which can 
readily undergo surgical interventions that include the use of metal implants and screws [485]. 
Rats have become the animal of choice in osteomyelitis models due to the detailed knowledge 
of their immune system, their size, ease of handling, and lower costs. They also enable 
bioluminescent imaging of bacteria’s metabolic activity without the need to sacrifice the 
animal, thereby markedly reducing cost and the number of animals required for such studies 
[485]. Our lab has recently developed an osteomyelitis rat model induced by the inoculation of 
open fractures with Staphylococcus aureus bacteria [486]. The potential for APC to heal 
orthopaedic wounds with underlying osteomyelitis suggests that it may also benefit 
osteomyelitis in animal models [309]. We hypothesise that this effect, at least partly, will rely 
on the angiogenic properties of APC; the increased local blood supply enabling a more efficient 
removal of pathogens, that is typically only achieved surgically.  
 
A key difference between the ectopic bone formation study described in Chapter 4 and the 
fracture healing study in this chapter was the use of BMP-2 in the ectopic model. As previously 
discussed in Section 4.5, there may be an additive effect resulting from combined APC and 
BMP-2 treatment. The application of BMP-2 with APC together in an open fracture or critical 
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defect rat model would be an additional method of investigating the combined effects of these 
agents. BMPs have been long investigated in critical defect, delayed, and non-union models, 
however, they are limited by some of their adverse side-effects [15-17, 28, 29]. Combination 
therapy warrants future investigation, as it may allow a reduction of BMP’s therapeutic dose 
and therefore minimise its associated side-effects. 
 
APC efficacy is dependent on a sufficient concentration reaching the target tissue. This can be 
limited by several factors. Firstly, APC has a short half-life of ~15 min, and may be quickly 
depleted [487]. If so, a single bolus treatment may not be sufficient to treat fractures. However, 
there is a precedent for a single dose of APC exerting cytoprotective and healing effects over 
more than 12 days in a rat skin wound healing model [265]. Despite this, we did not find an 
increase in callus BV or TV with the bolus APC application. Furthermore, osteoclast numbers 
were not affected by APC treatments at 3 weeks. It is possible that osteoclast numbers at earlier 
time points could have been altered by APC.  
 
Timing of APC delivery was an issue that we attempted to address in this study by using two 
separate dosing regimens. It is well known that the beginning of fracture healing requires an 
inflammatory stage comprising of IL-1, IL-6, and TNF secretion which is essential for 
chemotaxis of osteoprogenitors and initiating the healing process [70, 89]. APC down-
regulates inflammatory cytokines, including TNF-, IL-6, and IL-1, through the suppression 
of NF-B [265, 270, 274, 294, 301, 324]. This suggests that early treatment of fractures with 
high APC doses may suppress the inflammatory response thereby delaying the healing process. 
Although APC treatment of 25 µg was carried out biweekly so that the effect of APC on the 
later phases of fracture healing was also incorporated, we still saw no evidence of fracture 
healing. To overcome the potential anti-inflammatory effects of APC on early fracture healing, 
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APC treatment can be applied in fracture responses which exhibit abnormal levels of 
inflammation including osteomyelitis/high impact traumatic fractures.  
 
Lastly, it may have been the case that APC did not reach therapeutically effective 
concentrations, due to the use of soft-tissue injection as our method of drug delivery. 
Administration of APC into the injury site became very difficult after callus formation, and 
therefore most injections had to be alternatively delivered into soft tissue surrounding the 
calluses. Although we were unable to ascertain as such, it may be the case that little or no APC 
was able to diffuse from these injection sites into callus [488]. This is similar to the application 
of BMPs where a controlled local delivery was required due to their short half-life. This issue 
was resolved for rhBMP-2 using collagen scaffolds, which provided greater sustained release 
when compared to buffer alone [489]. Based on this, we propose that future studies utilising 
sustained release such as collagen scaffolds, may provide a linear release of APC and 
demonstrate efficacy [490, 491].   
 
5.6 Summary 
Fracture repair is an important process that is dependent on vasculature and mechanical 
stability. Current treatments for fracture repair, although providing some clinical benefit, are 
associated with several limitations including inflammation, immunogenic responses, induction 
of bone resorption, and surgical site infection. This suggests the need for alternative therapies 
in fracture repair. 
 
In Chapter 3 and 4, we demonstrated that APC can both enhance osteoblastic viability and 
ectopic bone formation, which suggested that it may be an effective therapy in bone repair. 
Nevertheless, in a murine tibial fracture model, two dosing regimens of APC resulted in no 
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changes in fracture healing, including union rates, callus BV and TV, and osteoclast numbers. 
Several limitations of this model were identified, particularly in terms of the robustness of 
healing seen in untreated controls and the delivery of the APC. Further studies using alternative 
models that show more deficient healing responses and/or feature infection may be appropriate 
for investigating the orthopaedic effects of APC. 
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6 APC Suppresses Viability and Inflammation in OA and RA HBDCs  
6.1 Introduction 
Bone homeostasis is balanced by the processes of osteoblastic bone formation and osteoclastic 
bone resorption [8, 9, 11, 83]. This homeostasis is altered in diseases such as rheumatoid 
arthritis (RA) and osteoarthritis (OA). In RA, chronic inflammation with intense cytokine 
production, inflammatory cell infiltration, and synovial fibroblast proliferation leads to 
aggressive pannus formation [492]. Cytokines, including TNF-α, IL-1β, IL-6, and IL-17 inhibit 
osteoblast maturation through the down-regulation of alkaline phosphatase and type I collagen 
expression, and stimulates osteoclast formation and activation [196, 201]. RA osteoblasts 
adjacent to inflammatory synovium express a paucity of mature markers and an inability to 
mineralise bone, which together with an increased rate of bone resorption, leads to an overall 
decrease in bone formation [194, 195, 201, 493]. Synovial pannus also mediates the 
degradation of cartilage and bone matrix by proteinases such as MMP-2 and MMP-9 [183]. 
These pathological changes result in irreversible joint damage.  
 
In contrast to RA, OA is not traditionally considered an inflammatory arthritis. However, acute 
synovial inflammation does occur in the early stages of OA, and this is characterised by 
synovial hypertrophy, hyperplasia, and increased lymphocyte infiltration [494]. Pro-
inflammatory cytokines within the OA joint, including TNF-α and IL-1β, are responsible for 
enhanced catabolism by inhibiting ECM synthesis by chondrocytes, and stimulating secretion 
of proteolytic enzymes such as MMP-2 and MMP-9 [225, 283, 495]. TNF-α and IL-1β also 
stimulate IL-6 production by osteoblasts, which deregulates osteoblast-osteoclast coupling 
through the RANKL/OPG signalling axis, resulting in aberrant bone resorption [233, 496]. 
This leads to hypomineralisation, subchondral sclerosis and osteophyte formation in joints 
[209, 224, 435].  
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APC is a natural anticoagulant with potent anti-inflammatory and cytoprotective properties 
[245, 247]. Previously, our laboratory identified elevated PC/APC antigen and APC activity in 
RA synovial fluid as compared with OA synovial fluid [281]. The same study also found that 
APC co-localises with the anti-inflammatory marker MMP-2 in both RA and OA synovial 
tissue. Furthermore, APC stimulates MMP-2 activation in both RA and OA synovial fibroblasts 
and suppresses pro-inflammatory MMP-9 expression in RA synovial fibroblasts. Combined, 
this data is indicative of the anti-inflammatory effects of APC on arthritic synovial fibroblasts 
[184]. Furthermore, APC reduces RA synovial fibroblast proliferation and down-regulates 
TNF-α-induced phosphorylation of p38, JNK, and Akt [377]. Similarly in RA monocytes, APC 
inhibits monocyte activation and decreases TNF-α-induced MMP-9 secretion through 
suppression of NF-kB, and p38 phosphorylation [184, 293]. In cartilage, PC/APC antigen is 
present on chondrocytes and in areas of fibrillation [284]. Exogenous APC treatment activates 
MMP-2 and MMP-9 to augment collagen breakdown, and the release of aggrecan, 
glycosaminoglycans (GAGs), and hydroxyproline in OA cartilage [283, 284]. It is evident from 
these studies that APC plays an important role in arthritis, however to date, there have been no 
studies investigating the action of APC upon OA and RA osteoblasts. 
 
We have shown that APC enhances MG-63 cell viability via EPCR and PAR1 (Section 3.4.2 
& 3.4.4) [268]. On the basis of these results and the scientific literature we hypothesised that 
APC would: (1) enhance OA and RA osteoblast viability through activation of EPCR and 
PARs; (2) modulate downstream ERK1/2, p38, and Akt signalling activity; (3) attenuate pro-
inflammatory cytokines TNF-α, IL-1, IL-6, and IL-17 in OA and RA HBDCs; and (4) inhibit 
TNF-α stimulated cytokine and MMP production. 
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6.2 Aims 
The overall aim of this chapter was to examine the role of APC on OA and RA osteoblast 
viability and inflammation. Specifically, we aimed to: 

1. examine the morphology of OA and RA subchondral tissue; 
2. determine the phenotype of OA and RA human bone-derived cells (HBDCs); 
3. investigate the effect of APC on OA and RA HBDC viability;  
4. examine the expression of PC, EPCR, PAR1, and PAR2 on OA and RA bone sections 

and human bone-derived cells (HBDCs) and the implication of these receptors in APC’s 
effects on HBDCs; 

5. measure the effect of thrombin on HBDCs; 
6. elucidate the role of APC on signalling mediators, ERK1/2, Akt, p38, and NF-κB 

activity in HBDCs; 
7. measure the effects of APC in the presence or absence of TNF-α on IL-1β, IL-6, and 

IL-17 cytokine secretion in HBDCs; and 
8. determine the effect of APC in the presence or absence of TNF-α on MMP-2 and -9 

secretion in HBDCs. 
 
6.3 Methods 
6.3.1 Histology of OA and RA Tissue 
A total of 4 OA and 4 RA condyle samples were collected, decalcified, and fixed as per Section 
2.2.1. Condyles were embedded in paraffin and then sectioned before staining with H&E and 
Toluidine Blue to assess joint morphology and proteoglycan loss (Section 2.2.2-2.2.3). 
Sections were also assessed by IHC for PC/APC (0.2 ng/mL), PAR1, PAR2, and EPCR 
expression (as previously described in Section 2.2.4) in arthritic bone. Slides were then scanned 
using ScanScope and visualised and assessed for qualitative changes using ImageScope 
software. 
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6.3.2 HBDC Osteoblast Culture 
Four sets of OA HBDCs was derived from 4 patients and 3 sets of RA HBDCs were derived 
from 3 patients. These cells were cultured by sequential collagenase digestion, as per Section 
2.1.3, and grown in 75 cm2 tissue culture flasks containing α-MEM media (Gibco, 11900-024) 
supplemented with 10% FBS and penicillin/streptomycin.  
 
6.3.3 APC and TNF-α Treatment on IL-1β, IL-6 and IL-17 Production in HBDCs 
To determine the effect of APC and/or TNF-α treatment on the cytokine profile of OA and RA 
HBDCs, cultured monolayers grown as per Section 6.3.2 were first assessed for basal secretion 
of TNF-α, IL-1β, IL-6, and IL-17. Then, the cells were treated with either 1, 10, or 100 ng/mL 
of TNF-α; or 10 µg/mL of APC; or both, in which TNF-α was added to the culture 30 min prior 
to APC addition. Then, to quantify the amount of secreted cytokines including IL-1β, IL-6, IL-
17, culture supernatants were collected at 24 h post-treatment and analysed by ELISA (Section 
2.1.10) using a plate reader (BioRad), and then the data was analysed using GraphPad Prism 5 
software. 
 
6.3.4 HBDC Phenotype and Receptor Expression 
HBDCs were assessed for colony forming capacity by CFU-f (as per Section 2.1.4), 
differentiated in osteogenic media and stained for alkaline phosphatase (Section 2.1.5). Then 
HBDCs were allowed to mineralise in osteogenic media over 28 days and stained for calcium 
deposits by Alizarin Red S staining (Section 2.1.7). Primary HBDCs were cultured in chamber 
wells and assessed for PAR and EPCR expression using immunocytochemistry (Section 2.1.6). 
HBDC cells grown into monolayers were harvested for subsequent extraction and purification 
of total RNA. Then, RT-PCR was performed in quadruplicates to determine gene expression 
of EPCR, PAR1, and PAR2, each normalised against β-actin expression as the internal control 
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(Section 2.1.9). Cell lysates from monolayers were also analysed by ELISA to assess EPCR 
protein expression levels (Section 2.1.10). 
 
6.3.5 APC and Receptor Involvement in HBDC Viability 
The effect of APC upon HBDC viability was measured using the MTT and trypan blue dye 
exclusion assays. The treatment of HBDCs with APC was first assessed in 10% FCS-
containing media, which after optimisation, was reduced to 2% FCS. HBDCs were then 
incubated with 0.1, 1, 10 µg/mL of APC or 0.1, 1, 10 U of thrombin over 24, 48, or 72 h. EPCR 
blocking and non-blocking antibodies, as well as PAR antagonists, were employed 30 min prior 
to APC addition to determine EPCR and PAR1/2 involvement in APC-mediated viability by 
MTT. This was then confirmed with trypan blue exclusion dye assay as per Section 2.1.8. 
PAR1 antagonist SCH79797 was originally reconstituted in DMSO but was further diluted in 
PBS for experiments. SCH79797 was diluted to 0.1, 1, or 10 µM in and assessed against 
respective concentrations of vehicle DMSO. Three and four sets of isolated HBDCs were used 
to compile RA and OA graphs respectively.  
 
6.3.6 APC Treatment on Activation of Signalling Proteins ERK, Akt, NF-κB, and P38  
Whole cell lysates extracted from cultured HBDCs were analysed by western blotting (Section 
2.1.11) to determine the effect of APC treatment upon the expression of the intracellular 
signalling proteins ERK, Akt, NF-κB, and p38. In brief, cell cultures were treated with APC 
for 60 minutes prior to extraction of whole cell lysates. Proteins were separated by 
electrophoresis and then electro-transferred onto a PVDF membrane, incubated with primary 
antibodies (as per Table 2.5), and then relevant HRP-conjugated secondary antibodies. 
Membrane were visualised using an ECL system and ImageQuant LAS 4000 (GE). 
Densitometric analysis of protein bands was performed using MultiGauge software (FujiFilm).  
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6.3.7 APC and TNF-α Treatment on MMPs in HBDCs 
To determine the effects of APC and TNF-α treatment upon MMP activity in HBDCs, gelatin 
zymography was used as per Section 2.1.12. Baseline levels of pro- and active- MMP-2 and -
9 were determined prior to and after the addition of APC, TNF-α, or combined treatments. 
Media from treated cells was isolated and then their protein concentrations determined and 
standardised. Samples were then resolved by electrophoresis through zymography gels, which 
were then developed, stained, and destained. Visualisation and semi-quantification were 
carried out on ImageQuant LAS 4000 (GE) and analysed similarly to western blotting. 
 
6.3.8 Statistics 
One-way ANOVA, Student-Newman-Keuls post-hoc test, and data graphing were performed 
using GraphPad Prism 5 (GraphPad) as per Section 2.4. N refers to the number of HBDC 
samples unless otherwise stated. 
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6.4 Results 
6.4.1 Morphology of OA and RA Bone 
To determine the morphology of bone tissue in OA and RA, a total of 4 OA and 4 RA 
subchondral bone samples were collected, fixed, and stained. From available demographic 
information, 3 RA samples and all OA samples came from female patients (Table 6-1). The 
number of RA samples available for this project was limited due to the overall reduction in 
joint replacement surgery performed on RA patients treated with biological drugs. Recent 
literature demonstrates reductions in the rate of joint replacement surgery in the biologic era, 
suggesting that improved biologics reduce the need for joint replacement [497-499]. Thus, to 
increase the sample size, two RA knuckle samples were obtained from hand surgery, with the 
remainder being femoral condyles (Table 6-1).  
 
Table 6-1 Patient demographics for histology samples.  

Disease Sample # Gender Age  Joint 
OA 1 F 58 Femoral condyle 
 2 F 68 Femoral condyle 
 3 F 83 Femoral condyle 
 4 F 76 Femoral condyle 
RA 1 F 43 Femoral condyle 
 2 F 67 Femoral condyle 
 3 F Unknown Knuckle 
 4 Unknown Unknown Knuckle 
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Toluidine blue staining, which determines proteoglycan and GAG levels, was first used to 
detect cartilage damage in OA and RA tissue. Fast green counterstaining allowed visual 
assessment of collagen content. Fibrillation in the superficial zone of the cartilage was evident 
in all RA and OA samples. This was associated with GAGs and proteoglycans loss, as indicated 
by the decrease in toluidine blue stain on the superficial cartilage layer (Figure 6-1). Although 
both RA knuckles had less proteoglycan content than RA condyles, there was a considerable 
difference between the two knuckles (Figure 6-2). There was no clear difference between 
cartilage GAG loss in OA and RA condyles.  
 
There was evidence of increased bone turnover in both RA and OA samples, with the presence 
of an osteophyte at the condyle edge in the OA sample, resorption of the cartilage tidemark in 
both samples, and marked hypertrophy of the synovium also in both samples (indicated by 
arrows in Figure 6-1).  
 
H&E staining of RA and OA samples also showed synovial tissue hyperplasia, as well as a 
number of bone lining cells on the bone surfaces, and presence of blood vessels in osteophytes. 
However, there was no obvious visual difference between OA and RA condyles in the 
parameters previously mentioned (Figure 6-1). 
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Figure 6-1 Toluidine levels in representative RA (A) and OA condyles (B). There is evidence 
of proteoglycan loss, resorbed cartilage tidemark, and synovial hyperplasia in both OA and 
RA subchondral bone samples. An osteophyte is also present in the OA condyle. Blue scale 
bars indicate 5 mm, white scale bars indicate 500 µm. 

 
Figure 6-2 RA knuckles stained with toluidine blue and fast green. Blue scale bars indicate 4 
mm, black scale bars indicate 500 µm. 
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Figure 6-3 H&E of RA knuckle, RA condyle, and OA condyle. Beneath are magnified views of 
osteophytes in both OA and RA. C = cartilage, B = bone, S = synovium. Blue scale bar 
indicates 4 mm, black scale bars indicate 5 mm, and brown scale bars indicate 200 µm. 
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Figure 6-4 H&E staining of OA and RA tissue surfaces. Femoral condyle sections showed 
synovial hyperplasia (A&B), bone lining cells (C&D), and the presence of blood vessels 
(E&F). Tissues labelled with b for bone, s for synovium, and v for vessels. Scale bar 100 µm. 
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6.4.2 OA and RA HBDCs are Heterogeneous Populations 
The characterisation of HBDCs using CFU-f, alkaline phosphatase staining and osteoblast 
differentiation was employed to help determine the success of osteoblast isolation.  
 
During the first cell culture passage, the percentage of positive colonies (defined as clusters 
consisting of more than 100 cells) was 15% for OA HBDCs and 9% for RA HBDCs (Figure 
6-5 A&B), which indicates heterogeneity of the isolated cell population [366]. This was 
consistent with a previous study that has shown that HBDC culture contains cells of the 
osteogenic lineage at different stages of maturation [364]. Subsequent CFU-f in passage four 
cultures demonstrated a marked increase in the number size of colonies (Figure 6-5C), where 
up to 30% were CFU-f positive.  
  
HBDCs were then cultured to confluence in osteogenic media and stained for alkaline 
phosphatase, a mid-stage marker for the osteoblast lineage, to further confirm the osteoblastic 
phenotype of HBDCs. They were also terminally differentiated to ensure that they can form 
bone in osteogenic media and that they were capable of mineralisation as determined by 
Alizarin Red staining of calcium.  
 
It appeared macroscopically that fewer RA HBDCs expressed alkaline phosphatase than OA 
HBDCs (Figure 6-6). Differentiation was conducted in the presence of L-ascorbic acid and β-
glycerophosphate (Figure 6-7). OA cells readily formed calcium deposit after 28 days of 
differentiation, whereas RA cells did not form any calcium deposits (Figure 6-7). This may be 
related to the pathology of RA osteoblasts as previous literature has shown that these cells fail 
to mineralise bone matrix [194]. 



Chapter 6: APC Suppresses Viability And Inflammation OA And RA HBDCs  

142 
 

 
CFU-f counts

OA RA0
20
40
60
80

100 PositiveNegative

Pe
rce

nta
ge

of 
tot

al c
olo

nie
s

 
Figure 6-5 CFU-fs OA and RA HBDCs. Passage 1 RA (A) & OA HBDCs (B) and passage 4 
OA HBDCs (C) were seeded at 200 cells/5cm2 flask and cultured for 10 days before fixing and 
staining with Giemsa. Four sets of OA HBDCs and three sets of RA HBDCs at passage 1 were 
used to plot positive and negative CFU-fs (D). Positive CFU-f was defined as colonies with 
distinctive borders that counted greater than 100 cells.  
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Figure 6-6 Alkaline phosphatase staining in representative OA and RA HBDCs grown to 
confluence.  

 

 
Figure 6-7 Osteogenic differentiation of OA HBDC and RA HBDC. OA or RA cells were 
seeded at 2×105 and then treated with 50 µg/mL of L-ascorbic acid and 10 mM of β–
glycerophosphate for 28 days and then stained for calcium deposits with Alizarin Red. As a 
negative control, OA HBDCs were seeded at the same density and grown in growth media 
rather than osteogenic media. 
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6.4.3 PC/APC and Receptors are Expressed in OA and RA Bone and HBDCs 
The presence of PC has previously been investigated in fracture haematomas of normal bone 
[268]. Here we investigated its presence in OA and RA subchondral bone [268]. We have also 
found the expression of APC receptors on MG-63 cells and their involvement in APC-mediated 
viability in Section 3.4.1 & 3.4.4. We further examined the presence of EPCR, PAR1, and 
PAR2 in both arthritic subchondral bone and primary HBDCs. 
 
PC, EPCR, PAR1, and PAR2 expression was found in both OA and RA tissue (Figure 6-8). 
There were no clear differences observed between the intensity of PC or receptor staining of 
OA and RA tissues. PC, EPCR, and PAR2 staining on OA and RA bone tissue were 
heterogeneous and localised to some cuboidal shaped osteoblasts and bone lining cells (Figure 
6-8 A&B, C&D, G&H). PAR1 stained most bone surfaces and many cuboidal and bone lining 
cells (Figure 6-8 E&F). Osteocytes in the embedded bone matrix were not positive for PC or 
the receptors. Neither PC nor its receptors were specifically located to areas of high 
remodelling. 
 
There was also no obvious visual correlation between PC and receptor staining. PC and PAR1 
staining was controlled against rabbit IgG, EPCR against goat IgG, and PAR2 against mouse 
IgG at the same concentrations (Figure 6-8 I-K). 
 
Immunocytochemistry staining and qualitative PCR confirmed that EPCR, PAR1, and PAR2 
were expressed by OA and RA HBDCs at both gene and protein levels (Figure 6-9, 6-10). Gene 
expression levels were normalised against β-actin mRNA. Positive immunostaining was 
controlled similarly to subchondral bone staining (Figure 6-9, 6-10). 
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Figure 6-8 PC, EPCR, PAR1, and PAR2 staining in RA and OA subchondral bone. Sections were cut, dewaxed, incubated overnight with PC 
(A&B), EPCR (C&D), PAR1 (E&F), and PAR2 (G&H) antibodies or rabbit, mouse, and goat IgG as negative controls (I-K). Then slides were 
conjugated to secondary antibodies, stained with DAB, and counterstained with haematoxylin. Scale bar indicates 50 µm. 
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Figure 6-9 Immunohistochemistry and PCR was conducted to measure EPCR, PAR1, and 
PAR2 protein and mRNA expression, respectively, in OA HBDCs. RT-PCR was conducted on 
mRNA extracted from untreated OA HBDC to determine qualitative levels of β-actin/ACTB, 
EPCR, PAR1, and PAR2 (A). Immunocytochemistry staining was performed using a goat anti-
EPCR antibody, a rabbit anti-PAR1 antibody, or a mouse anti-PAR2 antibody and their 
respective negative control IgGs. Slides were then visualised with DAB and counterstained 
with haematoxylin (B). Scale Bar equals 50 µm.  
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Figure 6-10 Immunohistochemistry and PCR was conducted to measure EPCR, PAR1, and 
PAR2 protein and mRNA expression, respectively, in RA HBDCs. RT-PCR was conducted on 
mRNA extracted from untreated RA HBDC to determine qualitative levels of β-actin/ACTB, 
EPCR, PAR1, and PAR2 (A). Immunocytochemistry staining was performed using a goat anti-
EPCR antibody, a rabbit anti-PAR1 antibody, or a mouse anti-PAR2 antibody and their 
respective negative control IgGs. Slides were then visualised with DAB and counterstained 
with haematoxylin (B). Scale Bar equals 50 µm. 
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Visual assessment of EPCR expression by immunocytochemistry showed reduced expression 
in OA as compared to RA HBDCs, however, there was no difference in expression of PAR1 
or PAR2. APC treatment of OA or RA HBDCs did not substantially alter EPCR, PAR1, or 
PAR2 staining (Figure 6-9, 6-10).  
 
To further evaluate whether there was a quantitative difference in EPCR expression between 
OA and RA HBDCs, the more sensitive and quantitative ELISA technique was used. RA 
HBDCs expressed a mean of 37.4 ng/mL of EPCR, which was significantly higher than the 
mean 7.8 ng/mL of EPCR found in OA cells (P<0.05; Figure 6-11). 

 
Figure 6-11 ELISA of EPCR expression in OA and RA HBDCs. Untreated OA and RA HBDCs 
lysates were assayed for EPCR by ELISA. Protein loading was corrected for by BCA assay. 
Statistical analysis was conducted by one-way ANOVA and Newman-Keuls post-test. Data is 
presented as mean ± S.E (OA n=4, RA n=3). * Denotes P<0.05 between treatment and control. 

 
6.4.4 APC Decreases OA HBDC Viability 
As we have previously shown that APC enhances MG-63 viability, similar studies were 
performed in HBDCs. The effect of APC was first examined on 4 sets of OA HBDCs and 3 
sets of RA HBDCs, cultured in normal growth medium (αMEM with 10% FCS). No difference 
in viability was found from APC treatment on RA and OA HBDC at 72 h (Figure 6-12). 
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Figure 6-12 The effect of APC on cells cultured in 10% FCS. RA or OA HBDCs were seeded 
and treated with 0.1, 1, or 10 µg/mL of APC in α-MEM + 10% FCS and MTT performed 72 h 
after stimulation. Statistical analysis was performed by one-way ANOVA and Newman-Keuls 
post-test. Data is presented as mean ± S.E (OA n=4, RA n=3). 

 
Since inhibitors present in the serum may mask APC’s effect, the serum in media was reduced 
to 2% FCS. Using the serum-reduced media, we determined the baseline cell proliferation for 
RA and OA cells over 72 h and found a greater increase in MTT readings of OA cells as 
compared to RA cells (25%, P<0.01). This suggested a slower growth rate for RA cells (Figure 
6-13).  
 
We further treated OA and RA HBDCs with APC in serum-reduced media. Treatment of OA 
HBDCs with APC over 24 h showed no significant changes in MTT absorbance but significant 
decreases of 20% or greater (P<0.05; Figure 6-14) in cell numbers. At 48 h, treatment with 10 
µg/mL of APC significantly decreased both cell numbers and MTT readings by 21% (P<0.05 
for both assays; Figure 6-14). At 72 h, there was a continued suppression of MTT reading by 
19% after 10 µg/mL of APC treatment (P<0.05; Figure 6-14), and likewise a 26% suppression 
of cell numbers (P<0.05).  
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Overall, these effects showed that APC was able to suppress OA HBDC viability, contrasting 
with APC’s effect on MG-63 cells. All subsequent OA and RA HBDC cell viability 
experiments utilised 10 µg/mL of APC as the optimal treatment dose. 
 
Treatment of RA HBDCs with APC in serum-reduced media over 24 h had no significant 
impact upon on MTT absorbance (Figure 6-15). Over 48 h, APC treatment had no effect on 
MTT reading in RA cells (23%, P=0.06; Figure 6-15). At 72 h, APC had no effect. APC also 
had no significant effect on RA HBDC counts at 24, 48 or 72 h. The lack of significance for 
the aforementioned results may be attributed to the small sample size (n=3) in RA HBDCs. 
Due to the low numbers of replacements surgeries for RA patients, these were the only samples 
available for this study.  
 

 

Figure 6-13 The effect of 2% serum on OA and RA HBDCs. Cells were seeded and maintained 
in 2% FCS α-MEM and MTT assays were conducted 24, 48, and 72 h. Statistical analysis was 
conducted by one-way ANOVA and Newman-Keuls post-test. Data is presented as mean ± S.E 
(OA n=4, RA n=3). ** Denotes P<0.01 between 72 h OA and RA HBDC MTT reading. 
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Figure 6-14 The effect of APC on OA HBDC viability over 72 h. Cells were serum-reduced 
overnight and then treated with 0.1, 1, or 10 µg/mL of APC. After 24, 48, or 72 h, cell viability 
was measured by MTT and trypan blue exclusion. Statistical analysis was conducted by one-
way ANOVA and Newman-Keuls post-test. Data is presented as mean ± S.E (n=4). * Denotes 
P<0.05 and ** denotes P<0.01 between treatment and control. 

0 0.1 1 100.00
0.05
0.10
0.15
0.20

APC (g/mL)

Via
bili

ty (
Ab

s 5
70)

0 0.1 1 100.0
0.1
0.2
0.3
0.4

*

APC (g/mL)

Via
bili

ty (
Ab

s 5
70)

MTT 
24h

rs  

0 0.1 1 100.0
0.1
0.2
0.3
0.4
0.5

*

APC (g/mL)

Via
bili

ty (
Ab

s 5
70)

48h
rs  

72h
rs  

0 0.1 1 100
5

10
15
20
25 * * *

APC (g/mL)

Ce
ll C

ou
nt 

(10
00s

/mL
) Cell Count 

0 0.1 1 100
10
20
30
40

* *

APC (g/mL)

Ce
ll C

ou
nt 

(10
00s

/mL
)

0 0.1 1 100

10

20

30
*

APC (g/mL)

Ce
ll C

ou
nt 

(10
00s

/mL
)

OA 



Chapter 6: APC Suppresses Viability and Inflammation in HBDCs from OA/RA Patients 

152 
 

  
Figure 6-15 The effect of APC on RA HBDC viability over 72 h. Cells were serum reduced 
overnight and then treated with 0.1, 1, or 10 µg/mL of APC. After 24, 48, or 72 h, cell viability 
was measured by MTT and trypan blue exclusion. Statistical analysis was conducted by one-
way ANOVA and Newman-Keuls post-test. Data is presented as mean ± S.E (n=3). * Denotes 
P<0.05 and ** denotes P<0.01 between treatment and control. 

0 0.1 1 100.00
0.05
0.10
0.15
0.20
0.25

APC (g/mL)

Via
bili

ty (
Ab

s 5
70)

MTT 
24h

rs 
48h

rs 
72h

rs 
Cell Count 

0 0.1 1 100.0

0.1

0.2

0.3

APC (g/mL)

Via
bili

ty (
Ab

s 5
70)

0 0.1 1 100.0
0.1
0.2
0.3
0.4

APC (g/mL)

Via
bili

ty (
Ab

s 5
70)

0 0.1 1 100
5

10
15
20
25

APC (g/mL)

Ce
ll C

ou
nt 

(10
00s

/mL
)

0 0.1 1 100
5

10
15
20
25

APC (g/mL)

Ce
ll C

ou
nt 

(10
00s

/mL
)

0 0.1 1 100
5

10
15
20
25

APC (g/mL)

Ce
ll C

ou
nt 

(10
00s

/mL
)

RA 



Chapter 6: APC Suppresses Viability and Inflammation in HBDCs from OA/RA Patients 

153 
 

6.4.5 PAR1 and PAR2 are Required for APC’s Actions 
It was shown in Chapter 3 that PARs are involved in APC’s actions on MG-63 viability. We 
further investigated the involvement of EPCR and PARs on the mediation of APC activity in 
OA & RA HBDCs.  
 
Consistent with previous experiments, APC treatment was associated with a 14% reduction in 
OA HBDC viability as compared to the untreated controls (P<0.05; Figure 6-16). Blocking 
EPCR with an RCR-252 antibody prior to a 48 h treatment with APC abolished the APC-
stimulated suppression of OA cell viability. The non-blocking control antibody, RCR-92, had 
no significant effect. These data suggests that APC’s mechanism of action in OA HBDCs is 
mediated at least partly through EPCR, which contrasts with APC’s actions in MG-63 cells 
(Section 3.4.4). 
 
PAR1 antagonist (SCH79797) or PAR2 antagonist (ENMD-1068) were used to block PAR1 
or PAR2 signalling, respectively. SCH79797 or ENMD-1068 treatment prior to APC addition 
led to the abolishment of APC-mediated down-regulation of viability. SCH79797 alone 
significantly suppressed viability by 50% (P<0.01; Figure 6-16) and APC treatment post 
SCH79797 yielded no difference (2%, P=0.89). Similarly, APC treatment post ENMD-1068 
addition resulted in no difference (6%, P=0.45). These results suggest that APC may work 
through both PAR1 and PAR2 in OA HBDCs. 
 
In RA cells, neither RCR-92, RCR-252 nor ENMD-1068 resulted in any significant changes in 
viability. APC treatment did not affect MTT viability in RA HBDCs (11%, P=0.06; Figure 6-
16). SCH79797 treatment alone caused a significant decrease (28%, P<0.05) in RA HBDC 
viability (Figure 6-16), which was maintained even after APC treatment.  
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The marked suppression of OA and RA viability by SCH79797 was confirmed in a study 
controlled against vehicle DMSO (Figure 6-17). Compared to DMSO control, SCH79797 (10 
µM) treatment alone decreased viability over 48 h by 23% (P<0.01) in OA HBDC and 23% 
(P<0.05) in RA HBDC. These results indicate that DMSO did not cause the inhibition of PAR1 
activity by SCH79797. 

 
Figure 6-16 The involvement of EPCR, PAR1 and PAR2 on APC-induced OA and RA cellular 
viability. OA and RA HBDCs were pre-incubated with either 10 µg/mL of RCR-92 (EPCR non-
blocking antibody) or 10 µg/mL of RCR-252 (EPCR blocking antibody) (A&C), 10 µM of PAR1 
antagonist SCH79797 or 10 µM of PAR2 antagonist ENMD-1068 (B & D) for 30 min prior to 
48 h of 10 µg/mL of APC treatment. Statistical analysis was conducted by one-way ANOVA 
and Newman-Keuls post-test. Data is presented as mean ± S.E (OA n=4, RA n=3). * Denotes 
P<0.05 between treatment and control.  
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Figure 6-17 Dose-dependent effect of SCH79797 in OA and RA HBDCs. Cells were pre-
incubated with either PAR1 antagonist SCH79797 at 0.1, 1, or 10 µM or respective DMSO 
controls. Statistical analysis was conducted by one-way ANOVA and Newman-Keuls post-test. 
Data is presented as mean ± S.E (OA n=4, RA n=3). * Denotes P<0.05, ** denotes P<0.01 
between SCH79797 and DMSO control. 

 
6.4.6 Thrombin Does Not Alter HBDC Viability 
As PAR1 was found to be involved in APC’s actions on HBDCs, we hypothesised that another 
PAR1 agonist, thrombin, could induce a similar decrease in OA and RA HBDC viability. 
Assessment by MTT assay showed no significant difference in either OA or RA HBDC 
viability after 0.1-10 U/mL of thrombin treatment (Figure 6-18).   
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Figure 6-18 Thrombin treatment of OA and RA HBDCs. OA and RA HBDC were serum-
reduced overnight and then treated with 0.1, 1, or 10 U/mL of thrombin and cell viability was 
measured by MTT. Statistical analysis was conducted by one-way ANOVA and Newman-Keuls 
post-test. Data is presented as mean ± S.E. (OA n=4, RA n=3). 

 
6.4.7 APC Down-regulates ERK1/2, Enhances p27 in OA HBDCs 
APC stimulates mitogenesis through signalling of pERK1/2, Akt, p21, p27, and p38 in RA 
synovial fibroblasts [368, 377]. We previously showed APC can stimulate pERK1/2, pAkt, and 
p38 in MG-63 cells (Section 3.4.5) and these and NF-κB were examined in cultured OA and 
RA HBDCs.  
 
APC increased p27 (56%, P<0.05; Figure 6-19), decreased pERK1/2 (26%, P<0.05) in OA 
cells but did not significantly affect p21 (P=0.06), p-p38 (P=0.69), NF-κB (P=0.64), or pAkt 
(10%, P=0.15). In RA cells, APC did not significantly influence any of these intracellular 
signalling proteins (Figure 6-19). 
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 Figure 6-19 Intracellular signalling in APC-treated HBDCs. OA and RA HBDCs were treated 
with APC and lysates were analysed by western blot. β-actin was used as a loading agent. 
Statistical analysis was conducted by one-way ANOVA and Newman-Keuls post-test. Data is 
presented as mean ± S.E (OA n=4, RA n=3). * Denotes P<0.05, ** denotes P<0.01 between 
treatment and control. 
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6.4.8 APC Reduced TNF-α Stimulated Cytokine Production in HBDCs 
APC exerts anti-inflammatory effects through its suppression of pro-inflammatory cytokines 
such as TNF-α and IL-6 [270, 376, 500]. Here we investigated the effect of APC treatment on 
OA and RA HBDCs cytokine profiles including TNF-α, IL-1β, IL-6, and IL-17. First, we 
determined the basal levels of each cytokine secreted by untreated cells, and then measured the 
amount of each cytokine following TNF-α induction, with or without first treating with APC. 
 
At baseline, there was no secretion of TNF-α by OA or RA cells. APC treatment induced TNF-
α secretion in one set of OA HBDCs, but not in other OA HBDC sets (Figure 6-20). APC 
treatment did not induce TNF-α secretion in any of the RA cells (Figure 6-20). 
 

  
Figure 6-20 TNF-α secretion by OA and RA HBDCs after APC treatment. Cells were cultured 
to confluence and incubated with 0.1, 1, or 10 µg/mL of APC over 24 h. Supernatants were 
then collected and assayed for TNF-α using ELISA. Data are represented as mean ± S.E (OA 
n=4 and RA n=3).  
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IL-6 production in OA or RA HBDCs when used alone (Figure 6-21). However, TNF-α 
treatment significantly stimulated IL-6 secretion by OA cells in a dose-dependent manner, with 
increases of 682%, 867%, or 953% in response to the 1, 10, or 100 ng/mL dosages, respectively 
(P<0.05, P<0.01, P<0.01; Figure 6-21A). APC treatment did not significantly decrease IL-6 
production in response to TNF-α stimulation in OA HBDCs. 
 
In RA HBDCs, TNF-α treatment significantly increased IL-6 production by 360%, 442%, or 
452% at 1, 10, or 100 ng/mL, respectively (P<0.01 for all treatments; Figure 6-21B). APC 
treatment, when administered in combination with 10 or 100 ng/mL of TNF-α, significantly 
decreased IL-6 production by 32% or 29% (P<0.01, P<0.05) as compared to TNF-α stimulation 
alone. 
 
These results show that APC may ameliorate the inflammatory profile of RA HBDCs through 
modulation of TNF-α-induced IL-6 production but not in OA HBDCs. 
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Table 6-2 Average & (SEM) of cytokine levels of IL-1β and IL-17 after 10 µg/mL of APC 
treatment or 1, 10, 100 ng/mL of TNF-α in OA HDBCs (n=4). 

Cytokine No 
treatment 

APC 
10 µg/mL 

TNF-α 
1 ng/mL 

TNF-α 
10 ng/mL 

TNF-α 
100 ng/mL 

APC + 
TNF-α 
1 ng/mL 

APC + 
TNF-α 
10 ng/mL 

APC+ 
TNF-α 
100 ng/mL 

IL-1β 
(pg/mL) 

0 0 0 0 0 0 0 0 

IL-17 
(pg/mL) 

0 0 0 0 0 0 0 0 

IL-6 
(pg/mL) 

193 
(29) 

228  
(9) 

1368 
(182) 

1707 
(277) 

1831 
(474) 

1227 
(151) 

1303 
(145) 

1311 
(219) 

 
 
Table 6-3 Average & (SEM) of cytokine levels of IL-1β and IL-17 after 10 µg/mL of APC 
treatment or 1, 10, 100 ng/mL of TNF-α in RA HDBCs (n=3). 

Cytokine No 
treatment 

APC 
10 µg/mL 

TNF-α 
1 ng/mL 

TNF-α 
10 ng/mL 

TNF-α 
100 ng/mL 

APC + 
TNF-α 
1 ng/mL 

APC + 
TNF-α 
10 ng/mL 

APC+ 
TNF-α 
100 ng/mL 

IL-1β 
(pg/mL) 

0 0 0 0 0 0 0 0 

IL-17 
(pg/mL) 

0 0 0 0 0 0 0 0 

IL-6 
(pg/mL) 

575  
(178) 

351  
(61) 

2467 
(238) 

3120 
(115) 

3178 
(75) 

1898 
(135) 

2127 
(327) 

2266 
(228) 
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Figure 6-21 IL-6 secretion by OA (A) and RA HBDCs after APC, TNF-α, or combined 
treatment (B). Cells were cultured to confluence and incubated with either 10 µg/mL of APC 
or 1, 10, or 100 ng/mL of TNF-α for 24 h or were treated with APC 30 min prior to TNF-α 
challenge. Data is presented as mean ± S.E (OA n=4, RA n=3). * Denotes P<0.05, ** denotes 
P<0.01 between treatment and control. # Denotes P<0.05, ## denotes P<0.01 between TNF-
α control and respective APC + TNF-α treatment. 

 
6.4.9 APC Differentially Modulates MMP-2 and MMP-9 in HBDCs 
APC has been shown to modulate MMP-2 and MMP-9 in synovial tissue [184]. Basal levels 
of MMP-2 and MMP-9 were determined by zymography in OA and RA HBDCs. Bands of pro- 
and active MMPs were confirmed against a positive control. OA HBDCs contained variable 
levels of pro-MMP-9, the precursor form of MMP-9. Levels of pro- or active MMP-9 levels in 
OA as compared to RA HBDCs was not significantly elevated (21%, P=0.4 and 8% P=0.39 
Figure 6-22).The ratio of active MMP-9 to total MMP-9 (comprising both active and pro-
forms) was not significantly different between OA and RA cells (6%, P= 0.54; Figure 6-22). 
Levels of pro-MMP-2, active MMP-2 were not significantly different between OA and RA 
HBDCs (11%, P=0.27 and 54%, P=0.15, respectively). The ratio of active to total MMP-2 was 
not significantly different between OA and RA cells (17%, P=0.11; Figure 6-22). 
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Figure 6-22 MMP-2 and -9 production by OA and RA HBDCs. Supernatants from HBDCs 
were normalised to protein levels and run on a gelatin zymography to determine MMP-9 levels 
and MMP-2 levels. Statistical analysis was conducted by one-way ANOVA and Newman-Keuls 
post-test. Data is presented as mean ± S.E (OA n=4, RA n=3). * Denotes P<0.05 between 
treatment and control. 
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We further investigated the effect of APC, TNF-α, and combined treatment on MMP 
production in arthritic bone cells. APC alone had no effect on MMP-9 levels in OA HBDCs 
(Figure 6-23, 6-24). TNF-α treatment alone, 10 or 100 ng/mL, in OA cells significantly 
increased pro-MMP-9 production by 108%, 109% (both P<0.05), but did not affect active 
MMP-9 levels (Figure 6-23, 6-24). Treatment of HBDCs with APC 30 min prior to TNF-α 
challenge did not significantly affect MMP-9 levels (Figure 6-23, 6-24). In RA HBDCs, neither 
APC, TNF-α, nor combined treatment altered MMP-9 levels (Figure 6-23, 6-24).  
 
APC treatment on OA cells significantly increased active to total MMP-2 by 19% (P<0.05; 
Figure 6-25) largely due to its enhancement of active MMP-2 levels by 73% (P<0.05; Figure 
6-25). TNF-α treatment had no effect on MMP-2 in OA HBDCs. Combined APC and TNF-α 
treatment had no effect on pro-MMP-2 levels in OA cells (Figure 6-25). However, combined 
APC and TNF-α-treatment (10 or 100 ng/mL) significantly increased active MMP-2 by 98%-
105%, (both P<0.01; Figure 6-25) as compared to respective TNF-α controls. This resulted in 
an increase of active to total MMP-2 in combined treatment cells by 18-26% as compared to 
respective TNF-α controls (all P<0.01; Figure 6-25). 
 
In RA HBDCs, APC also stimulated active to total MMP-2 ratio by 17% (P<0.05) as compared 
to control. This was achieved by a 45% increase in MMP-2 activation from APC treatment 
(P<0.05; Figure 6-25). TNF-α treatment had no effect on MMP-2 (Figure 6-25). Combined 
APC and TNF-α treatment resulted in increased active MMP-2 by 60%-67% compared to 
respective TNF-α controls (P<0.05 for all; Figure 6-25). This caused an increase in the active 
to total MMP-2 ratios by 27%-28% in combined treatments as compared to TNF-α only 
treatments (P<0.05 for all; Figure 6-25). 
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Figure 6-23 Representative MMP-2 and -9 levels after APC treatment and TNF-α challenge 
in OA and RA HBDCs. OA HBDCs or RA HBDCs were cultured and treated with or without 
10 µg/mL of APC for 30 min before challenge with 1, 10, or 100 ng/mL of TNF-α. Supernatants 
collected after 24 h and run on a gelatin zymography to determine pro- and active MMP-9 
levels as well as pro- and active MMP-2 levels. Data from above zymographies are compiled 
into graphs in Figure 6-24 and 6-25. Control MMP bands do not precisely line up as MMP 
bands from different cell types can vary slightly in their migration on PAGE gels. 
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Figure 6-24 MMP-9 levels after APC treatment and TNF-α challenge in OA and RA HBDCs. 
OA and RA HBDCs were treated with or without 10 µg/mL of APC before challenge with 1, 
10, or 100 ng/mL of TNF-α. Supernatants collected after 24 h and run on a gelatin zymogram 
to determine pro-, active MMP-9 levels, and active to total MMP-9. Statistical analysis was 
conducted by one-way ANOVA and Newman-Keuls post-test. Data is presented as mean ± S.E 
(OA n=4, RA n=3). * Denotes P<0.05 between treatment and control.  
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Figure 6-25 MMP-2 levels after APC treatment and TNF-α challenge in OA and RA cells. OA 
(n=4) and RA (n=3) HBDCs were treated as per Figure 6-24. Supernatants collected after 24 
h and run on a gelatin zymogram to determine pro- and active MMP-9 levels, and active to 
total MMP-9. Statistical analysis and data presented as per Figure 6-24. * Denotes P<0.05, 
** denotes P<0.01 between treatment and control. # Denotes P<0.05, ## denotes P<0.01 
between TNF-α control and APC + TNF-α treatment. 
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6.5 Discussion 
In this study, we sought to further determine whether APC plays a role in the viability and 
inflammation of bone cells derived from arthritic patients. Firstly, we demonstrated the 
expression of both APC and its receptors on the surface of subchondral bone and within 
primary OA and RA HBDCs. We then determined that APC treatment negatively impacted 
upon the viability of OA HBDCs via EPCR, PAR1, and PAR2 dependent pathways. 
Furthermore, we observed that APC down-regulated downstream ERK signalling activity and 
increased p27 expression in these cells. We also observed that APC treatment acted to counter 
TNF-α-induced IL-6 production by RA HBDCs, and enhanced activation of MMP-2 in both 
OA and RA derived cells. Overall, these findings illustrate the complex array of effects that 
APC treatment exerts upon OA and RA HBDCs.  
 
6.5.1 OA and RA HBDCs Possess Different Characteristics 
The expression of PC was previously reported in fracture haematomas [268], and in this study, 
PC expression was found on both subchondral bone surfaces and in HBDCs. The presence of 
PC on OA and RA bone surfaces suggested a possible role for APC in arthritic HBDCs. 
Isolation from bone tissue and not bone marrow reduces the potential for contamination of the 
osteoblastic cells [501]. Cultures of OA HBDCs were predominantly CFU-f negative, 
exhibited alkaline phosphatase expression, and were capable of differentiation upon combined 
treatment with ascorbic acid and β-glycerophosphate. Together, these observations indicate 
that the cell populations were highly enriched for cells of an osteoblastic cell lineage. In 
comparison, RA cells were adherent cells that were low in CFU-f colonies. RA cells also 
exhibited low alkaline phosphatase and did not generate calcified bone in vitro when 
differentiated. Our current observations are consistent with previous studies that demonstrated 
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that RA bone-derived cells exhibit low expression levels of the osteoblast marker alkaline 
phosphatase, and are also defective in bone formation [194].  
 
6.5.2 Contrasting Effects of APC on HBDC Viability 
Based upon the published data demonstrating APC’s stimulatory effects upon MG-63 and 
normal osteoblast proliferation [268], we hypothesised that APC would also enhance the 
viability of OA and RA HBDCs. Unexpectedly, we found that APC actually down-regulated 
OA HBDCs viability. These data contrasts with the proven stimulatory role of APC on several 
different cells types including tenocytes, keratinocytes, endothelial cells, vascular smooth 
muscle cells, and neurons [259, 268, 282, 343, 371, 373]. However, we recently reported that 
APC can suppress proliferation in RA synovial fibroblasts [377] by acting i) through regulation 
of cell cycle proteins to suppress proliferation and ii) through suppression of inflammation, 
which in turn dampens synoviocyte proliferation [377]. Based on the findings that OA 
osteoblasts show excessive proliferation in response to chemokine and growth factor 
stimulation [502, 503], we postulate that APC acts on these cells to suppress excess OA HBDC 
proliferation. 
 
OA and RA tissue demonstrate pathological changes including: extensive bone remodelling, 
osteophyte formation, and sclerosis in OA subchondral bone; and impaired osteoblast 
differentiation, hypomineralisation at sites of bone erosion and bone destruction in RA 
subchondral bone [194, 195, 210, 230, 493]. In our study, both OA and RA subchondral bone 
demonstrated histological features of remodelling and osteophyte formation, confirming these 
pathological changes in the subchondral bone environment. HBDCs derived from RA condyles 
demonstrated lower cellular viability than OA cells over 72 h, despite being seeded at the same 
cellular density. This was consistent with a previous publication that found a lower proliferative 
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capacity, reduced expression of osteoblast markers, and shorter telomere length in RA 
osteoblasts compared with OA osteoblasts [504].  
 
We found that APC had no significant effect upon RA HBDC viability. This negative finding 
may be due the limitation of a small sample size in our study, and therefore, reduced power to 
detect relatively subtle effects. Furthermore, due to the insufficient availability of patient 
femoral condyles, two knuckles were included in order to maintain the size of the sample group. 
This could potentially alter the data, as the pathological processes in subchondral condyles may 
be distinct to those occurring in knuckle joints. Indeed, RA is known for primarily affecting 
the smaller joints including the metacarpals and proximal interphalangeal joints [177, 505, 
506]. Here, we also found higher levels of proteoglycan loss in RA knuckles as compared to 
RA condyles suggesting greater joint damage in the knuckles. 
 
Our viability results were consistent at 48 h and 72 h, however at 24 h there were some 
discrepancies between cell count and MTT reading. The latter measures cell viability by 
mitochondrial metabolism whereas the trypan blue cell dye exclusion assay determines 
viability through counting the number of viable and non-viable cells within the population. 
Although both assays are well-established measurements of cell turnover, they have different 
sensitivities owing to the different measurement parameters of each assay [390].  
 
6.5.3 APC Regulates Signalling Molecules 
APC increased the expression of the cyclin-dependent kinase inhibitor, p27, but had no impact 
upon p21 levels, and was found to decrease levels of phosphorylated ERK1/2 in OA HBDCs. 
This was consistent with APC-induced down-regulation of OA cell viability. Cell cycle 
modulator p27 binds to and prevents the activation of cyclin E-CDK2 or cyclin D-CDK4, thus 
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inhibiting cell cycle progression at G1 [507]. APC has been previously shown to up-regulate 
both p21 and p27 in RA synovial fibroblasts, where it concurrently down-regulates 
proliferation [377]. In normal dermal fibroblasts, APC acts in the complete opposite way to 
stimulate proliferation and down-regulate both p21 and p27 [377]. Thus, it appears that APC 
inhibits the growth of diseased cells that are rapidly growing, yet stimulates the growth of 
normal slow-growing cells. Modulation of p27 expression by APC was dependent upon 
ERK1/2 signalling in RA synovial fibroblasts [377]. ERK1/2 is well established as a stimulator 
of cell cycle progression from G0/1 to S phase [508, 509]. APC stimulates levels of pERK1/2 
and promotes proliferation of normal human osteoblasts [268]. Conversely, the disruption of 
ERK signalling induces an anti-proliferative effect on human osteoblastic cell lines, which 
arrest in the G1 and G2/M cell cycle phases [510]. Although the results from our study 
demonstrate the involvement of p27 and pERK1/2 in APC signalling, we have not confirmed 
the involvement of ERK1/2 in p27 signalling.  
 
In a similar manner, we also studied the effects of APC upon the intracellular proteins Akt, 
p38, and NF-κB. Akt signalling is involved in a variety of cellular functions including cell 
survival and proliferation [511, 512]. Akt knockout mice demonstrate reduced bone mineral 
density with decreased bone remodelling, and the Akt signalling pathway is required for BMP-
induced osteoblast differentiation [513]. Although Akt is not required for the normal survival 
and proliferation of osteoblasts, it can be activated by stressors including hydrogen peroxidase 
[514]. APC-induced Akt protects both neurons and myocardium from ischemic damage and 
prevents noise-induced hearing loss in hair cells [266, 370, 515, 516]. In contrast, APC inhibits 
proliferation of both OA and RA synovial fibroblasts through the down-regulation of pAkt 
[377]. The MAPK p38 is up-regulated as a stress response to stimuli, such as inflammation, 
and it is known to play a major role in the development of arthritis [517]. In osteoblasts, p38 
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promotes osteoblast differentiation via the regulation of transcription factors such as 
Runx2/Cfba1 and Osterix [421, 518]. It has been shown that APC-induces p38 activation in 
both keratinocytes and blood monocytes, and this leads to a wound healing phenotype and 
increased IL-10 production in each cell type respectively [260, 276]. In contrast, APC down-
regulates p38 in tenocytes, RA monocytes, RA synovial fibroblasts, models of acute 
pancreatitis, septic shock and noise-induced hearing loss [184, 277, 292, 343, 377, 407, 516, 
519]. APC does not modulate p38 expression in pulmonary neutrophils despite decreasing 
neutrophil chemotaxis in an acute lung inflammation model [72]. Based on the importance of 
Akt and p38 in osteoblasts and APC stimulation of these proteins in other cell types, we 
hypothesised that APC may modulate Akt and p38 in OA HBDCs. However, we found that 
APC had no effect on Akt or p38 activation. These studies suggest that APC acts differentially 
on Akt and p38 in different cell types with neither of these downstream pathways being 
required to mediate APC’s effects upon osteoblast proliferation. 
 
NF-κB interferes with BMP-2 and TGF-β signalling in osteoblasts and down-regulates 
osteoblast differentiation [520-522]. The inhibitory effect of TNF-α upon osteoblasts is 
mediated by NF-κB in both in vitro and in vivo models [196, 428, 523, 524]. APC inhibits NF-
κB activation by lipopolysaccharide (LPS), high-mobility group box-1, and alendronate on 
keratinocytes, HUVECs, and MG-63 cells respectively [269, 282, 525]. APC treatment also 
reduces NF-κB in animal models of acute pancreatitis and neuronal excitotoxicity [526, 527]. 
We investigated the effect of APC on NF-κB and hypothesised that APC may suppress NF-κB 
activity. We found, contrary to our original hypothesis, that APC had no effect on NF-κB in 
OA or RA HBDCs. The main difference between APC action on NF-κB in other cells as 
compared to HBDCs lies in the presence of an inflammatory stimulus. In previous in vitro and 
in vivo studies, cells or animal models were first exposed to NF-κB enhancing agents prior to 
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APC addition. We speculate that if APC were applied after inflammatory provocation, that it 
would also suppress NF-κB. 
 
6.5.4 APC Receptor Involvement 
EPCR is present on normal osteoblasts and mediates APC’s actions on these cells [268]. We 
identified EPCR expression on subchondral OA and RA bone surfaces, mainly in osteoblasts 
and bone lining cells. EPCR expression was also detected in OA and RA HBDCs by both 
immunostaining and RT-PCR. There was no visible difference in the intensity of EPCR 
staining between OA and RA on subchondral tissue surfaces. However, further investigation 
of EPCR expression on primary cells by the more sensitive ELISA technique determined that 
OA HBDCs expressed significantly less EPCR than RA HBDCs. We further investigated 
EPCR’s role in culture using receptor antagonists; these data showed that EPCR was required 
for APC’s actions on OA HBDCs.  
 
PAR1 is expressed in most joint tissues including synovium, cartilage, bone and the respective 
cells in these tissues [380, 401, 528-530]. In our study, PAR1 was strongly expressed on bone 
surfaces, cuboidal cells and bone lining cells in both OA and RA tissue as well as HBDCs. On 
joint tissues, PAR1 primarily mediates the effects of thrombin. In RA synovium, PAR1 
mediates the mitogenic actions of thrombin [528, 529]. In explanted OA cartilage, PAR1 
mediates thrombin-induced cartilage damage [531]. Moreover, depletion of PAR1 is protective 
against cartilage damage in murine arthritis models [532]. In bone, PAR1 mediates the 
proliferative effect of thrombin, however, the role of PAR1 has not been identified in OA or 
RA osteoblasts [380, 384, 386]. We hypothesised that PAR1 would be required for APC’s 
inhibitory effects on HBDCs and further determined the role of PAR1 using PAR1 antagonists, 
agonists and thrombin. We found that PAR1 is involved in APC-mediated suppression of OA 
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HBDCs. We further investigated the function of PAR1 through antagonist SCH79797 and 
agonist thrombin. 
 
Similarly to our previous MG-63 study in Section 3.4.4, treatment with PAR1 antagonist 
SCH79797 alone suppressed HBDC viability. This is likely due to the importance of PAR1-
mediated signals in maintaining normal cell growth. PAR1 is necessary for thrombin 
stimulation of osteoblastic proliferation and antibodies against PAR1 inhibit thrombin 
activation [380, 385, 401, 405]. SCH79797 is also anti-proliferative through the inhibition of 
ERK1/2 [404]. Thrombin treatment of osteoblasts also induces growth factors and cytokines 
including TGF-β, FGF-2, and VEGF in a PAR1-dependent manner [381]. Abolition of PAR1 
may, therefore, eliminate endogenous thrombin stimulation of osteoblastic proliferation and 
signalling. Thrombin independent signalling of PAR1 by FVIIa and FXa has also been 
demonstrated in endothelial cells [329], although not on osteoblasts. Notably, intravenous 
dosage of FVII accumulates in bone, primarily in bone forming areas [533], although the 
function of FVII in bone is unknown. This is suggested to be due to the Gla protein interaction 
with bone [533]. However, whether these coagulation factors act on PAR1 in osteoblasts is still 
unknown. 
 
Thrombin is a PAR1 agonist that stimulates MMP-induced cartilage degradation, pro-
inflammatory cytokine release, and correlates with the severity of inflammation in arthritic 
joints [534, 535]. Thrombin is markedly elevated in the RA joint and plasma [536]. Previous 
reports have shown that thrombin stimulates normal osteoblast proliferation and prevents 
apoptosis [380, 382, 385, 387]. The current work is the first to report the effect of thrombin on 
OA or RA osteoblast growth and we found that thrombin had no effect on OA or RA HBDC 
viability. Interestingly, APC also works through the same PAR1 receptor, yet inhibits HBDC 
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viability. Although these results at first appear paradoxical, they may be explained by 
understanding the difference in PAR1 cleavage between thrombin and APC. Thrombin cleaves 
PAR1 at Arg41 which exposes a tethered ligand which then binds to an exosite of PAR1 to 
activate the receptor [340]. The peptide agonist used in this study mimics the amino acid 
structure of the peptide exposed after thrombin cleavage. In comparison, APC cleavage occurs 
at Arg46 which exposes a different tethered ligand that activates PAR1 via a different 
mechanism involving β-arrestin, and exerting different downstream effects [340]. This is 
consistent with evidence that PAR1 cleavage by thrombin or PAR1 agonists induce pro-
inflammatory signalling whereas the cleavage of PAR1 by APC induces cytoprotective effects 
[340].  
 
Similarly to PAR1, PAR2 plays an important role in mediating chronic inflammation in 
arthritis [537]. We found PAR2 in both OA and RA subchondral bone and HBDCs, but no 
clear difference was seen between PAR2 expression in OA and RA bone. Treatment with PAR2 
agonist in monoarthritis prolongs joint swelling [538, 539]. Conversely, the deficiency of 
PAR2 in inflammatory arthritis mouse models reduces synovial thickness, cartilage damage 
and joint swelling [538, 539]. PAR2 inhibition is also known to reduce inflammatory signalling 
in OA synovial fibroblasts and inhibit RA synovial fibroblast proliferation, invasion, and 
inflammatory cytokine production [368], suggesting an inflammatory role for PAR2 [540-542]. 
We also demonstrate that APC can work through PAR1 and PAR2 in OA HBDCs suggesting 
an anti-inflammatory role for PAR2 in APC signalling. 
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6.5.5 APC Activation of MMP-2 and Suppression of TNF-α-Induced IL-6 
APC is an anti-inflammatory agent in many diseases and we hypothesised that APC would 
down-regulate a spectrum of inflammatory cytokines with or without TNF-α challenge. Our 
present study showed that there was minimal production of IL-17 or IL-1 by HBDCs under 
basal conditions, which was consistent with a previous study that showed an absence of IL-1α, 
IL-1β expression by RA and OA osteoblasts [543]. There was no basal secretion of TNF-α in 
OA HBDCs. However, one set of HBDCs also markedly increased TNF-α in response to APC 
treatment. It is unknown whether the patient from whom the cells were derived had any other 
inflammatory conditions which could have affected this cytokine profile. Other OA and RA 
HBDCs expressed minimal amounts of TNF-α, consistent with previous literature [543]. 
Instead, cytokines (including TNF-α) are more commonly secreted by synovial cells to drive 
the inflammatory cascade in bone and cause impairment in osteoblasts [194, 544, 545]. The 
lack of TNF-a secretion from OA and RA HBDCs may be due to the small number of samples 
we collected, a greater number of samples may demonstrate different responses, and thus we 
cannot draw a solid conclusion from this data.  
 
Similar to its action in RA and OA synovial cells, we found that TNF-α-stimulation markedly 
enhanced IL-6 levels in HBDCs, however, TNF-α did not stimulate IL-1β or IL-17. TNF-α and 
IL-6 are primary molecules through which bone destruction occurs [192, 546]. The stimulation 
of IL-6 by TNF-α in our RA cells further supports the concept that anti-TNF-α treatment can 
dampen the inflammatory cascade in RA bone. In OA, TNF-α is a potent driver of the 
inflammatory cascade [225, 547]. Both TNF-α levels and IL-1β levels are elevated in OA 
subchondral bone, and drive IL-6 production [225, 547]. The role of IL-6 in osteoblasts is 
controversial and the conflicting reports suggest that it depends upon the cells models used 
[195, 548, 549]. IL-6 studies in vitro show contradictory effects on alkaline phosphatase and 
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osteoblast differentiation with stimulation, inhibition or no effect depending on the cell type 
[550-557]. Furthermore, some studies have shown no effect of IL-6 on human osteoblast 
proliferation [558-560]. Whereas another study demonstrates a positive response from IL-6 on 
osteoblast proliferation [561]. Production and mRNA of IL-6 are higher in RA and OA 
osteoblasts as compared to normal osteoblasts [562]. A study has also found two sets of OA 
osteoblasts differentiated by their low and high level of IL-6 secretion, although this was not 
correlated with markers of bone cell activity [496]. From these complicated actions 
demonstrated by the literature, there is clearly still much more to be understood from the role 
of IL-6 in arthritic osteoblasts. 
 
Our second hypothesis was confirmed when upon adding APC prior to TNF-α challenge, there 
was a marked decrease in TNF-α-induced IL-6, suggesting that APC can act to ameliorate the 
cytokine cascade [192]. This is consistent with APC’s dampening effects on IL-6 in 
pancreatitis, sepsis, acid aspiration lung injury, and necrotising enterocolitis [563-566]. This 
reduction in IL-6 production by APC may be important in OA and RA subchondral bone, as 
IL-6 is a primary mediator of osteoclast differentiation and bone resorption [60, 202, 546, 567, 
568]. The therapeutic significance of APC in arthritic bone can be assessed in preclinical 
models of OA and RA, and this is one potential future direction for this research.  
 
A major limitation of this study is the fact that the HBDCs were derived from end stage disease 
joints, which possess a significantly different morphology and response to those of earlier 
stages of the disease. For example, it is known that the cytokine profiles of synovial cells from 
end-stage OA patients produce fewer cytokines in response to inflammatory IL-1α trigger as 
compared to normal synovial tissue explants [569]. A similar change can be found in RA where 
higher levels of cytokines, including IL-2, IL-4, and IL-17, are present in early stage disease 
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as compared to later disease [570]. These studies suggest that tissue from late stage arthritis is 
characterised by a blunted response to inflammation, thus extrapolation of the current results 
to early OA and RA disease is limited.  
 
Cytokines including TNF-α can drive joint degradation in both RA and OA via their actions 
on MMPs [571, 572]. It has been previously reported that MMP-9 levels are detectable in RA 
synovial fibroblasts but not OA synovial fibroblasts [573], however, there is no published 
information on MMP-2 and MMP-9 levels in OA and RA osteoblasts. In this study, we found 
no significant difference in MMP-2 or MMP-9 between OA and RA HBDCs under basal 
conditions. TNF-α treatment significantly enhanced pro-MMP-9 production in OA HBDCs, a 
phenomenon previously observed in monocytes [574]. Interestingly, this pattern was not 
present in RA cells, which may reflect the patient demographics. For example, treatment with 
infliximab and golimumab have been shown to reduce MMP-9 levels in peripheral monocytes 
of RA patients and may affect the MMP profile in RA HBDCs [200, 575-577].  
 
Elevated levels of APC in RA synovial fluid were previously found to correlate with MMP-2 
levels, and this was confirmed in IHC studies of synovial sections [281]. APC differentially 
regulates MMP-2 and MMP-9 in skin keratinocytes, RA synovial fibroblasts and RA 
monocytes [184, 282], although in OA chondrocytes, APC activates both MMP-2 and MMP-
9 [283]. Elevated levels of APC in RA synovial fluid correlate with elevated MMP-2 levels 
and this was confirmed in IHC studies of synovial sections [23]. Despite the evidence for APC-
mediated MMPs in arthritic synovium, MMP-2 and MMP-9 have not previously been 
investigated in the context of bone [260, 282, 484, 578]. We hypothesised that APC would 
down-regulate TNF-α-induced pro-inflammatory MMP-9 and up-regulate anti-inflammatory 
MMP-2, similarly to its actions in synovial cells [184, 573]. However, we found that APC 



Chapter 6: APC Suppresses Viability and Inflammation in HBDCs from OA/RA Patients 

178 
 

treatment only attenuated pro-MMP-9 in OA HBDCs after TNF-α challenge. APC did not alter 
active MMP-9 levels in either cell type. However, the down-regulation of pro-MMP-9 levels 
may lead to a further decrease of active-MMP-9 levels by decreasing the available substrate 
for activation. 
 
In contrast to its effects on MMP-9, APC markedly increased active MMP-2 in the presence or 
absence of TNF-α on both OA and RA HBDCs. This is similar to previous studies showing 
that APC stimulated the expression and activation of MMP-2 in RA synovial fibroblasts, 
endothelial cells, keratinocytes, and monocytes [184, 282, 578]. In monocytes and RA synovial 
fibroblasts, MMP-2 acts to inhibit inflammatory response and its suppression results in 
increased TNF-α and IL-17 [573]. Furthermore, deficiency of MMP-2 in mice results in severe 
clinical and histological arthritis [579]. The activation of MMP-2 by APC in all arthritic bone 
samples suggest that it may be involved in APC’s dampening effect on inflammation. The 
effect of APC on other MMPs including MMP-1, MMP-3 and MMP-13 are suggested for 
future investigations as these MMPs are increasingly found to be implicated in OA 
pathogenesis [225]. 
 
6.6 Summary 
APC is a potent stimulator of proliferation of many different cell types. It also acts to counter 
inflammation through the down-regulation of the cellular response to TNF-α and LPS. We have 
previously shown that APC increases the proliferative rate of MG-63 cells, and also their 
production of inflammatory cytokines. Here, we examined this response in primary 
subchondral HBDCs isolated from OA and RA patients. Primary cultures generated from both 
disease types yielded heterogeneous populations of cells which for the OA samples was 
enriched for pre-osteoblasts and osteoblasts. Investigation of PC and receptors found that they 
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were expressed on both OA and RA subchondral bone and also within primary cells. APC 
treatment was found to suppress OA HBDC viability, and this effect was mediated through the 
EPCR, PAR1, and PAR2 receptors. These effects coincided with activation of downstream p27 
and suppression of pERK1/2. In contrast, treatment of RA and OA HBDCs with APC had no 
effect on NF-κB, p38, p21, or Akt. Notably, APC counteracted TNF-α to decrease IL-6 in RA 
HBDCs and stimulate MMP-2 activation in both OA and RA cells. In summary, we have shown 
that APC can suppress OA osteoblast viability and modulate inflammatory profiles in OA and 
RA cells via partly resolved signalling mechanisms.
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7 General Discussion and Future Directions 
APC is a physiological circulating protein with potent anticoagulant and cytoprotective 
properties. A recombinant form of the protein has been used as a therapeutic agent to treat 
sepsis. The cytoprotective effects of APC in numerous tissue types have been widely published 
over the past 20 years. This includes research into the involvement of APC in diseases such as 
OA, RA, and tissue healing. The first report of APC in bone was in 2010, when Kurata et al 
detected the presence of PC in fracture haematomas and that APC stimulated human osteoblast 
proliferation [268]. These findings provided evidence for APC involvement in bone physiology 
and formed the basis for our investigation into the actions of APC on bone. We investigated 
the physiological effect of APC on osteoblasts as well as the therapeutic effects of APC on 
bone formation and fracture healing. Building upon evidence of APC in normal osteoblasts, 
we sought to further investigate the effect of APC on OA and RA HBDCs in the context of 
cellular viability and inflammation. 
 
The major novel findings of this thesis include: 

 1)  APC stimulates MG-63 viability through PARs;  
2)  APC augments BMP-2-induced ectopic bone formation, and does not affect osteoclasts 

numbers;  
3)  APC does not increase healing outcomes in a murine model of closed fracture healing;  
4)  APC reduces OA HBDC viability, ERK1/2 through canonical receptors; and 
5)  APC inhibits inflammation in RA and OA HBDCs; including suppression of TNF-α-

stimulated inflammatory IL-6 in RA HBDCs.  
 
The association between these findings in relation to current literature are discussed below. 
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7.1 Stimulation of Bone Anabolism  
Osteoblasts are key moderators in bone formation and repair processes. Previous studies have 
determined that APC increases proliferation, cell viability, and markers of osteoblastic 
differentiation in MG-63 cells [268, 269]. Our studies found a contrastingly different effect 
from APC on MG-63 cells as compared to OA HBDCs. This difference may be attributed to 
several different reasons including the excessive the excessive proliferation of OA osteoblasts 
as discussed in Section 6.5, a lack of contact inhibition, the highly aberrant karyotype (Section 
2.1.1), and the difference between a transformed cells, or the diseased phenotype of OA and 
RA osteoblasts [502, 503]. For example, MG-63 cells and OA osteoblasts respond differently 
to IL-1. MG-63 cells release high molecular weight isoforms of fibroblast growth factor (FGF)-
2 in response to IL-1 [580]. These isoforms are the same isoforms that are secreted by primary 
osteoblasts from normal patients but different to the low molecular weight isoforms of FGF-2 
released by osteoblasts from OA patients [580]. High and low molecular weight isoforms have 
opposing effects on bone, the low molecular weight isoform of FGF-2 increases bone mass, 
whereas the high molecular weight isoforms inhibit matrix deposition [581-583]. We postulate 
that APC may act differentially on FGF-2 isoforms to achieve opposing effects in MG-63 cells 
and OA osteoblasts.  
 
Cumulating evidence in experimental, animal, and human studies have shown that APC is a 
potent therapeutic agent for soft tissue healing. APC induces migration and proliferation of 
keratinocytes, smooth muscle cells, and endothelial cells, which are essential for angiogenesis 
and wound healing in vitro and in vivo [259, 282, 371]. In small clinical studies, APC treatment 
in patients also improves healing of chronic leg ulcers, chronic wounds from orthopaedic 
surgery, and diabetic ulcers [290, 291, 309]. This APC-induced healing occurred despite 
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underlying vascular disease or recurrent infections. Bone healing is a specialised type of wound 
healing and thus shares a similar chain of events [584].  
 
Both types of healing follow a sequence of dynamic events including haemostasis following 
injury, an inflammatory phase with cytokine production and immune cell infiltration into the 
injury site, the removal of damaged tissue, recruitment of progenitor cells, and the restoration 
of local vasculature [584-586]. This is followed by a proliferative phase, which involves 
predominantly fibroblasts, epithelial, and endothelial cells in soft tissue, and chondrocytes and 
fibroblasts in bone [70, 587]. These cells proliferate to fill up the wound space with a 
preliminary scaffold [70, 587]. A major difference between bone and soft tissue healing is the 
formation of a soft/hard callus in bone versus scar formation in soft tissue [584, 586]. However, 
both types of healing undergo further remodelling to improve wound strength which involves 
scar contraction in soft tissue or replacement of trabecular with compact bone [70, 588]. These 
similar mechanisms between soft tissue and bone repair as well as the strong evidence for APC 
as a soft-tissue healing agent inspired our work on bone healing.  
 
While Kurata et al detected endogenous PC in fracture haematomas and demonstrated a 
protective effect of APC on osteoblasts [268], they did not further investigate the impact of 
APC on bone formation.  
 
We found that APC not only stimulated osteoblastic cell line viability (Section 3.4.2) but also 
augmented BMP-2-induced bone formation in vivo (Section 4.4.1). This demonstrates an 
additive interaction between the two proteins. BMP-2 can also interact with factors in the 
coagulation system including Factor X (FX). The inhibition of FX leads to decreased levels of 
BMP-2 gene expression [589-592] and decreased osteoblast growth, metabolism, and alkaline 
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phosphatase production [591, 593]. BMP-2 binds to the matrix Gla protein [47], a domain 
which is present on FX and other coagulation factors including thrombin, FVII, FIX, and APC 
[245, 594]. However, it is unknown whether BMP-2 can interact with this site on APC or 
whether this site is required for the augmentation of ectopic bone formation by APC. We 
hypothesise that there is an interaction between APC and BMP-2 which may require the 
binding of BMP-2 to APC Gla domain. Further in vitro binding studies of APC and BMP-2 
treatment as well as the use of anti-Gla-peptide antibodies could help determine whether BMP-
2 binds to this Gla domain on APC. 
 
APC has two main functions; as an anticoagulant and a cytoprotective agent. The effect of APC 
in stimulating bone formation may rely on its actions as a cytoprotective agent rather than its 
anticoagulant function. Further studies using modified APC with reduced anticoagulant 
actions, such as 3K3A-APC [595], will be useful to ascertain whether APC requires 
anticoagulant activity to enhance bone formation. This form of APC has already demonstrated 
safety in both preclinical and phase I clinical trials, with markedly reduced bleeding risk as 
compared to wild-type APC [257, 595]. Interestingly, the removal of anticoagulant function in 
3K3A-APC demonstrates more neuroprotection against infarction and ischemia-induced 
apoptosis, as well as improved recovery from traumatic brain injury as compared to 
conventional APC [596-598]. Future studies may also need to consider species-specific effects, 
as murine APC is more protective than human APC in some mouse models. For example, 
murine 3K3A-APC administered at 4 h after embolic stroke in mice improved functional 
outcome and reduced by 80% the infarct volume 7 days after stroke, at 10-fold lower doses 
than human 3K3A-APC [599]. It is feasible that the use of murine 3K3A-APC in mouse studies 
will show improvements on bone formation and fracture healing over wild-type APC. 
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Elevated levels of pro-angiogenic factors, present in the fracture haematoma, enable 
mesenchymal and hematopoietic progenitor recruitment and differentiation into osteoblasts 
and osteoclasts [99, 115, 600-602]. Although APC did not affect osteoclast numbers in our 
study, the effect of APC on the osteoclast lineage is unknown. APC acts on monocytes, which 
are osteoclast precursors, to suppress production of, and response to, TNF-α through the 
inhibition of NF-κB [276, 277, 280, 353, 375, 603-612]. APC also blocks monocyte migration, 
chemokine release, proliferation, and endothelial binding, but enhances monocyte survival and 
microparticle release [276, 277, 280, 353, 375, 603-612]. Both TNF-α and intracellular NF-κB 
signalling are required for osteoclastogenesis from monocyte/macrophage precursors [613, 
614], suggesting that the inhibitory actions of APC on monocytes may reduce osteoclast 
numbers. Therefore, we hypothesised that there would be a decrease in osteoclasts in response 
to APC, however, we found no change in the number of TRAP-positive cells in bone nodules. 
The effect of APC on osteoclast formation and activity is yet to be resolved. 
 
The effect of APC on osteoclastogenesis could be further examined either directly or through 
osteoblast-to-osteoclast coupling. For the former, osteoclast precursors are treated with APC 
in the presence of osteoclastogenic agents including TNF-α, and the subsequent effect on NF-
κB signalling and bone resorption measured. The coupling between osteoblasts and osteoclasts 
can be determined by first exploring the effect of APC on the RANK/RANKL/OPG axis in 
both cell types followed by an assessment of the cell communication using direct or indirect 
co-cultures in the presence of APC. This would provide a more comprehensive picture of how 
APC acts in bone. 
 
Based on the previous literature and the results from the current study, we speculate that APC 
acts on a number of different cell progenitors and mature cells in the bone environment to 
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augment bone formation, as shown in Figure 7-1. These effects include protection of 
osteoblastic viability and stimulation of osteoblastic proliferation and differentiation, however 
it is unlikely that APC affects osteoclast numbers.  

 

Figure 7-1 Schematic showing our model of APC actions on osteoclasts, monocytes, and 
osteoblasts. APC does not affect osteoclast numbers in bone nodules, however, APC’s action 
on osteoclastogenesis is unknown. In monocytes, APC decreases migration, proliferation, 
chemokine production, TNF-α production, and suppresses NF-κB. On osteoblasts, APC 
increases viability, proliferation, type I collagen, alkaline phosphatase, and bone formation. 
The combination of APC and BMP-2 enhances bone formation. 
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7.2 Orthopaedic Application of APC 
Similarities between fracture healing and soft-tissue/cutaneous wound healing [290, 291, 309, 
584] led to our hypothesis that APC would enhance fracture repair. However, we found that 
APC had no effect on murine closed fracture repair as evidenced by a lack of increase in bone 
volume or tissue volume in fractures at day 21. This unexpected result may be explained by 
several reasons, as discussed in Section 5.5, including the use of human APC instead of mouse 
APC as described above, and the choice of closed fracture model. Closed fractures are less 
challenging to heal than open fractures as they have a shorter time to union and lower rates of 
non-union due to a more favourable biologic environment [95, 481]. APC may have therapeutic 
effects in a more traumatic fracture model, such as an open fracture. 
 
An additional potential application for APC is osteonecrosis. Vascular disruption is postulated 
to be one of the primary mechanisms for the development of avascular necrosis of the femoral 
head [615-617]. Restoration of angiogenesis in the necrotic bone tissue accelerates the repair 
process [615, 616, 618]. Current trials using stem cell therapy in avascular necrosis of the 
femoral head aims to improve both osteogenesis and angiogenesis [618]. Similarly, the 
mechanism for bisphosphonate-related osteonecrosis of the jaw is also related to low bone 
turnover and disruption of angiogenesis [619, 620]. In previous studies, APC has been 
demonstrated to enhance angiogenesis and protect against selective bisphosphonate-induced 
osteoblast death [265, 269]. In our study, we demonstrate that APC can also enhance osteoblast 
activity. Thus, we propose that APC may be a useful therapeutic agent in both avascular and 
bisphosphonate-related osteonecrosis. However, the choice of bisphosphonates in conjunction 
with APC treatment is important as differential effects are found with pamidronate, 
zoledronate, and alendronate [269]. Whereas all three drugs induced MG-63 cell death in a 
dose- and time-dependent manner, pamidronate- and zoledronate-related cell death were 
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prevented by APC treatment, however, cell death induced by alendronate was accelerated by 
APC [269]. 
 
7.3 Mechanism of PAR Signalling 
APC docking to EPCR and subsequent cleavage of PAR1 and/or PAR2 modulates the primary 
effects of APC [621]. The role of PAR1 in APC-mediated effects on osteoblasts, however, is 
unclear. Kurata et al indicated that APC does not act through PAR1 for its actions on normal 
human osteoblasts [268], whereas we demonstrated that PAR1 is required for both APC in vitro 
signalling in MG-63 and MC3T3-E1 cells and in vivo stimulation of BMP-2-induced bone 
formation. Similar to our results, PAR1 is known to mediate many of the APC-induced 
cytoprotective effects in vitro and in vivo, including inhibition of apoptosis, promotion of 
cellular proliferation, and related ERK signalling mechanisms in numerous cell types [248, 
250, 260, 622, 623]. There are currently no reports that directly compare the difference in PAR1 
signalling between osteoblast cell lines and primary osteoblast cells.  
 
Although PAR1 mediated the enhancement of bone formation, osteoblast viability, and 
differentiation induced by APC, thrombin which is also a PAR1 agonist failed to exert a similar 
effect. How can two molecules which act on the same PAR1 receptor exert different effects? 
This may be partly explained by the requirement of cell membrane caveolae 
compartmentalisation in APC-induced PAR1 signalling, which is not necessary for thrombin 
signalling [267, 327, 354, 624, 625]. An alternative explanation was revealed in a recent paper 
which demonstrated novel cleavage of PAR1 by APC at a different site as compared to 
thrombin [340]. This paper demonstrated the difference between APC and thrombin signalling 
through the use of synthetic agonists peptides, TR47 and TRAP, which mimic the cleaved 
PAR1 N-terminus by APC at Arg46 and thrombin at Arg41, respectively [340]. The effect of 
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TR47, a 20-mer amino acid peptide, is similar to APC and demonstrates a biased signalling 
towards cytoprotective pathways but does not simulate the pro-inflammatory effects of 
thrombin [340]. TR47 stimulation of Akt and enhancement of endothelial barrier stabilisation 
in vivo suggests that this peptide could be a novel agonist that substitutes for APC to exert 
cytoprotective actions.  
 
We found that EPCR, PAR1, and PAR2 were expressed on RA and OA HBDCs and 
subchondral sections of OA and RA patient samples, with the expression of PAR1 particularly 
prominent on bony surfaces in both OA and RA samples. Both PAR1 and PAR2 are involved 
in arthritic pathophysiology. PAR1 mediates thrombin-induced cytoprotection against 
oxidation in OA synoviocytes and thrombin-induced proliferation of RA synovial cells [283, 
626, 627]. Ablation of PAR1 in mice significantly reduces the severity of joint inflammation 
and cytokine production in antigen-induced arthritis as compared to wildtype [532]. PAR2 
expression is correlated with disease activity in both OA and RA synovium [541, 542, 628-
630] and deficiency of PAR2 is protective against OA and RA-mediated joint damage [368, 
388, 538, 539, 631-633]. Despite the involvement of PARs in inflammation and arthritis, only 
one paper has reported PARs in OA and RA osteoblasts. The authors found higher PAR2 
expression in OA osteoblasts as compared to normal osteoblasts, and this was further enhanced 
in the presence of pro-inflammatory signals [630]. Activation of PAR2 by specific agonists 
stimulated OA osteoblast production of inflammatory cytokines and bone resorption factors 
[630]. To date, there have been no reports on APC-induced PAR signalling in OA or RA 
osteoblasts. We found that PAR1 and PAR2 mediated down-regulation of OA HBDC viability 
by APC (Section 6.4.6), confirming the unique actions of APC on PAR receptors and 
describing a new role for PAR signalling in OA osteoblastic cells.  
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7.4 Implications of Intracellular Signalling 
ERK 1/2 is a primary signalling pathway by which APC induces its proliferative effects [247]. 
In normal osteoblasts, ERK1/2 is not only essential for proliferation but also plays an important 
role in osteoblast differentiation, as discussed in Section 3.5 [25, 31, 417, 510, 634]. In our 
study, APC differentially modulated ERK1/2 in OA HBDCs compared to MG-63 cells (Figure 
7-2). ERK1/2 is likely to be involved in APC stimulation of MG-63 viability and differentiation 
as discussed in Section 3.5. However, in OA, ERK1/2 drives inflammatory signalling by 
mediating IL-1β- and S1P-induced cytokine and prostaglandin release by chondrocytes [635-
637]. ERK1/2 is also involved in crosstalk between chondrocytes and osteoblasts in OA, where 
ERK1/2 activation is required for chondrocytic enhancement of osteoblastic differentiation and 
vice versa, for osteoblastic induction of hypertrophic changes in chondrocytes [638, 639]. 
Thus, overactivity of the subchondral bone is driven partly by ERK1/2 signalling. APC 
suppression of ERK1/2 in OA osteoblastic cells but may play an important role in down-
regulating chondrocyte responses to osteoblast crosstalk.  
 
In osteoblasts, MAPK p38 promotes osteoblast differentiation and mediates responses to 
inflammation in arthritis [518]. Stimulation of RA and OA synovial fibroblasts with TNF-α 
phosphorylates p38 and conversely, inhibition of p38 completely abolishes TNF-α-induced 
proliferation and IL-6 secretion in both OA and RA synovial cells [640]. Similarly to ERK1/2, 
p38 is involved in IL-1β- and S1P-mediated increase of prostaglandin and IL-6 in OA 
chondrocytes [635, 636]. In crosstalk between OA subchondral osteoblasts and articular 
chondrocytes, p38 down-regulation is required for osteoblast-induced hypertrophic changes in 
chondrocytes but is not involved in chondrocyte-induced osteoblastic differentiation [638, 
639]. In RA, p38 contributes to the expression of pro-inflammatory cytokines, chemokines, 
and MMPs [517]. We have demonstrated that APC induces p38 in MG-63 cells, where it may 
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contribute to differentiation, but not in OA or RA HBDCs (Figure 7-2). The evidence for a pro-
inflammatory role of p38 in arthritis and the lack of APC stimulation of p38 in OA or RA 
HBDCs is consistent with the anti-inflammatory APC actions we found on OA and RA HBDCs 
(Section 6.4.9-10), further providing evidence to support an anti-inflammatory role for APC in 
OA and RA. Activation of p38 in normal osteoblasts, however, promotes osteoblast 
differentiation as discussed in Section 3.5.  
 
In normal bone physiology, Akt stimulates osteoblast proliferation and protects against 
apoptosis [424]. We have found that APC stimulates Akt in MG-63 cells, consistent with its 
stimulation of viability. In OA and RA, however, Akt plays a more complex role and mediates 
growth factor, cytokine signalling, and cell proliferation in synovial cells, chondrocytes, and 
osteoblasts. Akt is required for chemokine stimulation of IL-6 and IL-1β production in OA 
synovial fibroblasts [641-643], and important for cytokine production in RA blood 
mononuclear cells and survival of RA synovial fibroblasts [644, 645]. In osteoblasts, though, 
chemokines stimulate pAkt and proliferation in RA but not OA osteoblasts [646], suggesting a 
greater involvement of pAkt pathway in RA than OA cells. We found no effect of APC on any 
signalling protein in RA HBDCs, although it is unclear whether the sample size affected the 
results (as discussed in Section 6.5).  
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Figure 7-2 Our summarised model contrasting APC’s actions on MG-63 cells and OA HBDCs. 
APC stimulates pERK, pAkt, p-p38, and viability in MG-63 cells through PAR1 and PAR2. In 
contrast, APC inhibits pERK, viability, and pro-MMP-9 yet stimulates p27 and active-MMP-2 
in OA HBDCs through EPCR, PAR1, and PAR2. 

 
7.5 Involvement in Arthritic Bone 
The evidence from this thesis suggests a multi-faceted involvement of APC in arthritis. As 
APC down-regulated OA HBDC viability, APC treatment in OA may ameliorate high levels 
of bone turnover to decrease subchondral sclerosis and osteophyte formation. Investigation of 
APC in OA has been reported in cartilage in vitro [283, 284], however, no animal models 
studying APC in this disease have been published. Many models of OA are surgically-induced, 
which do not adequately reflect the development of spontaneous OA [647]. There are also 
spontaneous and genetic models, although these models do not represent the risk factors in 
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humans of trauma and obesity [648]. Models of mechanical loading better replicate the joint 
injury in humans as repetitive loading leads to osteophyte formation, synovial hyperplasia, 
fibrosis, and cruciate ligament pathology [649]. Mechanical loading models also demonstrate 
a transient elevation of TNF-α and IL-1β early in the disease with increased articular cartilage 
production of MMP-2 and MMP-9 [650, 651]. Compression of osteoblasts stimulates IL-6 
production by these cells [652]. As Jackson et al reported that APC activates MMP-2 and 
MMP-9 in explanted OA cartilage, it will be important to determine whether this effect is 
maintained in vivo [283, 284]. We suggest that APC treatment of a cyclic loading model would 
be useful in the investigation of APC on OA bone as mechanical loading augments MMP-2, 
MMP-9, and IL-6 production and APC acts on these factors in OA HBDCs [651-653]. 
Subchondral sclerosis and osteophyte formation could be assessed histologically within joints 
and by bone scans. 
 
In RA, there currently exists several animal models, each with their limitations. Collagen-
induced arthritis (CIA) is a model which embodies tolerance and auto-antibodies of RA 
pathogenesis but it is heterogeneous, with varying levels of severity depending on the strain of 
mice [193]. Antigen-induced arthritis (AIA) is an inflammatory arthritis model which is 
initiated through injection of various antigens, commonly BSA, and this model facilitates 
research into T cell pathogenesis [654]. In both AIA and CIA, the primary pathogenic cytokine 
is IL-6, whereas in other models, including adjuvant-induced arthritis and streptococcal cell 
wall arthritis, levels of TNF-α, IL-6, and IL-1β play equally important roles [655]. As we have 
demonstrated that APC suppresses IL-6 levels in RA HBDCs, we suggest that any of these 
models, particularly AIA or CIA, would be suitable to assess the effects of APC on subchondral 
bone.  
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Although we have outlined appropriate choices of OA or RA animal models for testing the 
therapeutic benefit of APC, we acknowledge that these models may result in experimental bias 
due to the selection of pathways/pathology that would be particularly susceptible to APC. In 
order to reduce experimental bias, we also suggest that multiple models can be used to 
determine the effect of APC both OA and RA. These models should have both high and low 
predicted probability of involving APC-susceptible-pathways in order to provide a better 
representation of response in true disease.  
 
7.6 Conclusion 
The findings of this thesis extend upon existing research on APC in bone, with current literature 
demonstrating APC protection of viability in both normal human osteoblast and MG-63 as well 
as APC stimulation of MG-63 differentiation. We found that APC not only enhances the 
viability of osteoblastic cell lines but also promotes BMP-2-induced ectopic bone formation, 
highlighting a novel effect of APC on bone. This discovery opens up new realms of 
investigations pertaining to: mechanisms underlying APC and BMP-2 interaction; the potential 
effects of APC on osteoclast formation and activation; use of mutant forms of APC with 
reduced anticoagulant activity, and; application of APC in orthopaedic models. Although we 
hypothesised that APC would be beneficial in fracture healing, we were not able to demonstrate 
an effect on closed murine fracture healing. Nonetheless, we propose that APC may be 
beneficial in other orthopaedic models.  
 
We demonstrated an anti-inflammatory role of APC on OA and RA osteoblastic cells through 
stimulation of active MMP-2 and in RA cells, suppression of TNF-α-induced IL-6. 
Interestingly, APC suppressed viability in OA cells, suggesting a different physiology for APC 
in these cells as compared to normal osteoblasts. This may be attributed to a number of 
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alterations in the signalling of OA including Akt, ERK1/2, and p38 pathways. The published 
divergent effects from APC on OA versus RA cartilage and synovial tissues is also clearly 
evident in our study using bone and osteoblastic cells.  
 
Despite the variations in response to APC between osteoblastic cells of different origins, our 
study highlights the involvement of both PAR1 and PAR2 as primary receptors mediating the 
effects of APC. 
 
The research conducted in this thesis provides the first evidence for a potential therapeutic 
effect of APC on normal and/or arthritic bone.  
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