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Abstract

This thesis focuses on the design of network coding schemes and radio frequency

(RF) energy transfer in wireless communication networks. Novel network coding de-

signs are considered in the first part and then RF energy transfer/harvesting based

schemes are investigated in the second part. During the past few years, network cod-

ing has attracted significant attention because of its capability to transmit maximum

possible information in a network from multiple sources to multiple destinations via

a relay. Normally, the destinations are only able to decode the information with suf-

ficient prior knowledge. To enable the destinations to decode the information in the

cases with less/no prior knowledge, a novel idea on multiple interpretations by using

nested codes is adopted in this thesis.

To begin with, I construct a pattern of nested codes with multiple interpretations

using binary convolutional codes in a multi-source multi-destination wireless relay

network. Additionally, an opportunistic scheduling technique is employed at the relay

to maximise the system capacity. The detailed coding process of the proposed scheme

is presented. The upper bounds on bit error probability of the schemes with and

without opportunistic scheduling are derived. Good codes for the proposed system are

then investigated and simulations are carried out to validate the theoretical analysis.

To improve the spectrum efficiency of network coding schemes, the design of nested

codes could be considered in a high-dimensional coding field. Lattice codes, which

are defined in Euclidean space, have been widely adopted to enable simultaneous

transmissions from multiple sources to multiple relays with multi-user interference.

In this context, I reconstruct nested codes with convolutional codes and lattice codes

in multi-way relay channels. In particular, a class of novel nested convolutional lattice

codes (NCLC) is proposed over a finite field, which can achieve multiple interpreta-

tions for each source in two time slots. A theoretical upper bound on word error

rate for the NCLC is derived and, on that basis, code design criteria are developed.
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Simulation results show that the derived upper bound is asymptotically tight with

the increase of normalised signal-to-effective-noise ratio.

Although the spectrum efficiency is improved with the proposed NCLC, the de-

coding complexity increases exponentially as the lattice dimension grows. Since low-

density generator matrix (LDGM) codes can be regarded as a special type of low-

density parity-check (LDPC) codes with a linear encoding complexity, constructing

lattices based on LDGM codes can guarantee a manageable encoding/decoding com-

plexity with a desired error performance. Based on the above discussions, in this the-

sis, a network coded non-binary LDGM code structure is proposed for a multi-access

relay system, where multiple sources transmit lattice signals to a destination with the

help of a relay. A corresponding low complexity decoder is also designed and simula-

tion results show that the proposed code outperforms a designed reference scheme.

Another focus of this thesis is on the design of RF-enabled wireless energy transfer

(WET) schemes. Much attention has been attracted by RF-enabled WET technology

because of its capability enabling wireless devices to harvest energy from wireless sig-

nals for their intended applications. In practice, wireless energy transmitters, referred

to as power beacons (PBs), could be deployed to provide dedicated wireless charging

services. Accordingly, system designers can configure a PB-assisted wireless-powered

communication network (PB-WPCN), which consists of a set of hybrid access point

(AP)-source pairs and a PB. In this thesis, both cooperative and non-cooperative sce-

narios are considered, based on whether the PB is cooperative with the APs or not.

For the cooperative scenario, a social welfare maximisation problem is formulated to

maximise the weighted sum-throughput of all AP-source pairs, which is subsequently

solved by a water-filling based distributed algorithm. In the non-cooperative scenario,

I formulate an auction game and propose an auction based distributed algorithm by

considering the PB as the auctioneer and the APs as the bidders. Finally, numerical

results are performed to validate the convergence of both proposed algorithms and

demonstrate the effects of various system parameters.

In addition to delivering wireless energy, RF signals are also used to carry infor-

mation in wireless communications. A simultaneous wireless information and power

transfer (SWIPT) could thus be considered to realise the dual utilisation of RF signals

at the same time. In this thesis, I develop a new distributed power control scheme for

a power splitting-based interference channel (IFC) with SWIPT. The considered IFC

consists of multiple source-destination pairs. Each pair adjusts its transmit power and

power splitting ratio to meet both signal-to-interference-plus-noise ratio (SINR) and

vii



energy harvesting (EH) constraints at its corresponding destination. To characterise

rational behaviours of source-destination pairs, a non-cooperative game is formulated

for the considered system. A sufficient condition is derived for the existence and

uniqueness of the Nash equilibrium (NE) of the formulated game. The best response

strategy of each player is also presented and then the NE can be achieved itera-

tively. Numerical results show that the performance of the proposed game-theoretic

approach closely matches that of an optimal strategy under various SINR and EH

constraints.
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Chapter 1

Introduction

This chapter first introduces the history and motivation of my research. The major

research problems and the main contributions of this thesis are then summarised.

1.1 History and Motivation

Future communications are envisioned to support high data rates and a large

coverage. Network coding [1–3] has attracted much attention as a coding approach

to enhance high data rates. One significant feature of network coding is its capability

to transmit maximum possible information in a network from multiple sources to

multiple destinations via relays [4]. This benefit of network coding has also been

widely discussed in the open literature [2, 5, 6] via the demonstration of a butterfly

network, where the capacity for such a network coding scheme could be improved by

combining data packets at relay nodes.

To further enhance the capacity of network coding schemes, Yomo and Popovski

proposed an opportunistic scheduling (OS) approach in [7]. It is an opportunistic

selective mechanism by dynamically changing the set of destinations to maximise the

average capacity. However, in this scheme, it is assumed that the destinations have

1



Chapter 1. Introduction 2

sufficient prior knowledge, i.e., previous knowledge of some packets, which is some-

what unrealistic in practice. In [8], a novel idea on multiple interpretations by using

nested codes is proposed, which enables the destinations to decode the information in

the cases with less/no prior knowledge. Codes with multiple interpretation capability

are the codes that can be decoded at different rates by different destinations. The

basic idea of [8] is that different packets encoded with linearly independent genera-

tors are combined at a relay and then forwarded to different destinations. Because

the generators are mutually independent, the destinations can decode their desired

information from the combined packets with less/no prior knowledge. In Chapter 3

of this thesis, a convolutional code structure is proposed by considering both the OS

approach and nested codes, which achieves a desired code performance even with no

prior knowledge at destinations.

To improve the spectrum efficiency in network coding schemes, extensive work has

been done based on lattice codes [9–12]. The pattern of lattice codes enables simul-

taneous transmissions from multiple sources to a relay with multi-user interference,

which results in a high spectrum efficiency. A strategy of compute-and-forward is

proposed in [9] obtaining significantly higher rates by exploiting interference between

users. Rather than treating the interference as noise, the relays decode the linear

functions of transmitted messages into integer combinations of codewords, where lat-

tice codes are employed due to their algebraic structure. In [11], a general algebraic

framework, called lattice network coding, is developed based on the physical-layer

network coding (PNC) [12] schemes. The lattice network coding scheme reinterprets

the compute-and-forward strategy in a generalised construction, which results in a

form of linear network coding over modules. It is worth noting that different from the
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topic of (digital) network coding, where data packets are mixed using a finite field

representation in the “digital domain”, the PNC (lattices) based schemes consider

the combination of signals in the wireless medium. In this thesis, nested codes are

reconstructed based on lattices in order to achieve a high spectrum efficiency. In

Chapter 4, a multi-way relay channel (MWRC) [13–15] is considered, where all users,

without direct links among them, exchange their information via a single relay. A

class of nested convolutional lattice codes (NCLC) over a finite field is then proposed

for the MWRC model, which achieves multiple interpretations for each user in two

time slots.

Although the spectrum efficiency is improved with the proposed NCLC, the de-

coding complexity increases exponentially with the increasing of lattice dimensions.

Since low-density generator matrix (LDGM) codes are special types of low-density

parity-check (LDPC) codes [16] with a linear encoding complexity, constructing lat-

tices based on LDGM codes can guarantee a manageable encoding/decoding com-

plexity with a desired error performance. In Chapter 5, a network coded non-binary

LDGM code structure is proposed for a multi-access relay system, where multiple

sources transmit lattice signals to a destination with the help of a relay. By designing

a lattice-based decoder for the proposed code structure, the decoding complexity is

significantly reduced.

Another focus of this thesis is the design of radio frequency (RF)-enabled wireless

energy transfer (WET) schemes. Recently, the WET technologies have drawn wide

attention with their capability of energy supply [17]. Conventionally, the very limited

energy of wireless devices powered by batteries largely constrains their communica-

tion performance in many practical cases, such as wireless sensor networks (WSNs)
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[18]. Also, the battery replacement for wireless devices is not convenient or feasible in

many applications. These challenging issues have boosted the development of WET

technologies, which enable wireless devices to harvest energy from wireless signals for

their intended applications. As one category of existing WET techniques, the RF-

enabled WET [19] considered in this thesis provides the feasibility of a long-range

energy transfer (up to tens of meters [20]) compared to other technologies, such as

inductive coupling [21] and magnetic resonance coupling [22]. RF-enabled WET has

not been widely used in practice, largely due to high propagation losses of RF signals.

However, due to the latest breakthroughs in wireless communications, for example,

small cells [23], transmission using large-scale antenna arrays (i.e., massive MIMO)

[24], millimeter-wave communications [25] and sharp beamforming, the transmission

distances could be dramatically reduced and much higher WET efficiencies are fea-

sible [20]. Furthermore, the energy consumption of communication devices will be

continuously reduced by the advances in low-power electronics [26]. Thus, it is be-

lieved that the RF-enabled WET has great potential to be widely implemented in

the next-generation wireless communication systems. By applying the RF-enabled

WET techniques, a fully wireless-powered communication network (WPCN) can be

established with no need for battery replacement [27]. In a WPCN, wireless devices

are only powered by WET in the downlink (DL) and transmit their information using

the harvested energy in the uplink (UL) [28].

There have been several published papers that focused on the design of WPCNs for

different setups [26, 28–31]. In [28], a “harvest-then-transmit” protocol was proposed

for a multi-user WPCN, where users first harvest energy from RF signals broadcast

by a single antenna hybrid access point (AP) in the DL and then transmit information
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to the AP in the UL via time division multiple access (TDMA). Moreover, the DL

WET time from the AP and UL information transmission time of individual users

were jointly optimised to maximise the system sum-throughput. [29] extended [28]

to a multi-antenna WPCN scenario, where a multi-antenna AP enables simultaneous

UL transmissions via space division multiple access (SDMA). In [30] and [31], the

authors considered full-duplex WPCNs, where a full-duplex AP is adopted to provide

the simultaneous DL WET and UL information transmission. In all aforementioned

papers, only the AP is considered as the energy source of the whole network. In

[26], the authors proposed the idea of deploying dedicated power nodes, named power

beacons (PBs), to enable WET in the DL. By resorting to the stochastic geometry

theory, the densities and transmit power of PBs are investigated under data links’

outage constraint. With this PB-based WET, a new network setup thus could be

considered, namely “PB-assisted WPCN (PB-WPCN)”, in which each user can har-

vest wireless energy not only from the AP but also from the deployed PB. For this

new model, a natural question that arises is how to optimally allocate the resources of

PB-WPCNs, including the PBs’ energy, and the time for DL WET as well as the UL

information transmission. To the best of my knowledge, this is still an open question,

which motivated Chapter 6 of this thesis.

The recent emerging WET techniques enable wireless devices to harvest energy

from ambient/dedicated RF signals. It is well known that RF signals are also used

to carry information in wireless communications. As a result, simultaneous wireless

information and power transfer (SWIPT) [32, 33] has recently been proposed to realise

the dual utilisation of RF signals for joint information and energy transfer at the same

time. Such dual utilisation of RF signals in SWIPT leads to different system designs
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in various setups and applications. For example, in an interference channel (IFC) with

SWIPT, the cross-link interference is still harmful to the information decoding (ID)

at the receiver side, but it becomes beneficial when we focus on the energy harvesting

(EH) aspect.

There have been several papers in the open literature that focus on the design

of SWIPT in IFCs [34–38]. Specifically, authors in [34] considered SWIPT in a

multiple-input single-output (MISO) IFC, where the weighted sum-rate was max-

imised subject to individual EH constraints and transmit power constraints. In [35],

all possible transmission strategies with different combinations of ID and energy har-

vesting at the receiver side were investigated and compared in a two-user multiple-

input multiple-output (MIMO) IFC, which was subsequently extended to the general

K-user case in [36]. Authors in [37] investigated a joint beamforming and power split-

ting problem in a MISO IFC, where the total transmit power of all transmitters was

minimised under both rate and EH constraints, by employing a semidefinite program-

ming (SDP) method. A second-order cone programming (SOCP) relaxation-based

approach was developed in [38] as an alternative solution to resolve the same total

power minimisation problem in a decentralised manner. In all aforementioned pa-

pers that designed SWIPT schemes in IFCs, it is assumed that all source-destination

pairs cooperate to achieve the optimal network-wide performance (e.g., maximising

the sum-rate/minimising the total transmit power of all pairs). However, in many

practical scenarios, source-destination pairs may focus on maximising their own per-

formance instead of the overall one (see [39] and references therein). To the best

of my knowledge, there has been no work that designs SWIPT for the IFC with
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self-interested source-destination pairs reported in the open literature. This gap mo-

tivated Chapter 7 of this thesis.

1.2 Research Problems and Contributions

The main topics of the thesis are the design of network coding schemes and RF en-

ergy transfer in wireless communication networks. The novel network coding designs

are presented in Chapters 3, 4 and 5, followed by the RF energy transfer/harvesting

based schemes investigated in Chapters 6 and 7. I first investigate the network coding

design based on nested codes and the OS technique in Chapter 3, then employ lattices

in the designed nested codes to further improve the spectrum efficiency in Chapter 4.

To reduce the high decoding complexity caused by the adopted convolutional codes

in Chapter 3 and 4, a pattern of lattice based LDGM codes is proposed in Chapter 5.

In Chapter 6, the RF energy transfer based schemes are considered in a new net-

work setup named “PB-assisted WPCN”. I then make a further research in SWIPT

protocol in Chapter 7. In the sequel of this section, I elaborate the thesis research

problems and the corresponding contributions.

The first research problem in this thesis is the joint design of nested codes and the

OS technique to achieve a desired code performance with less/no prior knowledge at

destinations. It is commonly assumed in conventional systems that the destinations

have sufficient prior knowledge, i.e., adequate previous knowledge of some packets,

which motivated this idea to consider the cases with less/no prior knowledge. The

considered network consists of multiple sources, multiple destinations and a single

relay, where the relay collects all messages from multiple sources and forwards a

combination of selected messages to the destinations. To enable the destinations to
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extract their desired messages with less/no prior knowledge, sources are assumed to

encode their messages with low-rate linearly independent generators. All the gen-

erators actually compose the nested codes. As the nested codes can be decoded at

different rates, i.e., the rates of the packets resulting from cancellations with the

prior knowledge owned by different destinations, we say such codes have multiple

interpretations. Besides, to maximise the capacity of the considered network, the OS

technique is adopted at the relay. The main contributions regarding this research

problem include:

• A structure of convolutional codes based on nested codes and the OS is proposed

in a multi-source multi-destination wireless relay network. Multiple interpreta-

tions at different destinations are thus achieved in the cases with less/no prior

knowledge. System capacity is maximised by employing the OS at the relay.

• Upper bounds on bit error probability of the proposed schemes with and without

the OS are respectively derived.

• A code search is conducted based on designed criteria. The theoretical analysis

is validated through simulations and it is shown that upper bounds become

tight with the increase of signal-to-noise ratio (SNR).

The second research problem is the construction of nested codes based on lattices

to achieve multiple interpretations with a high spectrum efficiency in a MWRC with

fading. A common application scenario of the MWRC is the satellite communica-

tion, where all earth stations exchange their information via a satellite. The existing

scenarios usually consider that all users (earth stations) transmit their information

to a relay (satellite) via orthogonal channels. To improve the spectrum efficiency, I
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would like to consider the transmissions from all users to the relay via a multi-user

interference channel by exploiting the benefits of lattice codes. The transmissions for

the considered MWRC model are divided in two time slots, i.e., all users simultane-

ously transmit their own information to a relay with multi-user interference in the

first time slot, and the relay combines all the information and broadcasts a network

coded packet to all the users in the second time slot. At the end of the second time

slot, each user is able to extract all the other users’ information from the network

coded packet due to the employment of nested codes. The main contributions along

this research problem include:

• I propose a class of novel nested convolutional lattice codes (NCLC) over a finite

field in a MWRC with fading, which enables each user to obtain all the other

users’ information in two time slots.

• A theoretical upper bound on word error rate (WER) is derived for the NCLC.

• According to the derived theoretical upper bound, code design criteria are de-

veloped to optimise the NCLC. Simulation results show that the derived upper

bound is asymptotically tight with the increase of the normalised signal-to-

effective-noise ratio (SENRnorm, see Eq. (4.3.8) in Chapter 4).

The third research problem is the design of network coded LDGM codes based

on lattices to achieve a high spectral efficiency with a low encoding/decoding com-

plexity. In other words, I focus on the reduction of the decoding complexity while

maintaining a desired error performance, as the proposed NCLC in the previous work

has a high decoding complexity, which increases exponentially with the increasing of

lattice dimensions. I consider a multi-access relay system with multiple sources, one
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relay and one destination, where sources encode their messages with LDGM codes

and transmit lattice signals simultaneously to the common destination via the relay.

The LDGM codes are employed at sources due to their linear encoding complexities.

The main contributions regarding to this research problem are summarised as follows:

• I develop a network coded non-binary LDGM code scheme by considering

lattice-signal transmissions at both the sources and the relay.

• An achievable computation rate (ACR) of the proposed system is derived and

the corresponding key parameters in the proposed code scheme are optimised

to maximise the ACR.

• A low complexity decoder is designed for the proposed code. Simulation results

show that (1) the optimal setting of the parameters is consistent with that

obtained from the analysis; (2) the proposed code performs 2dB better than

the reference scheme at an average symbol error rate of 10−4.

The fourth research problem is the optimal resource allocation of a PB-WPCN,

which is constituted of one multi-antenna PB and multiple single-antenna AP-source

pairs. Different from the existing WPCNs, which consider that sources only harvest

energy from APs, the PB-WPCN introduces the PB to assist the APs by providing

a wireless charging service. The introducing of the PB could be beneficial as a whole

based on the following considerations: (1) The PB could be dedicated designed for

WET only and thus can achieve a higher WET efficiency by exploiting the benefits

of energy beamforming enabled by multiple antennas [40, 41]. (2) The deployment

of the PB could be more flexible since it has much looser backhaul requirements.

(3) By using both the AP and PB to perform WET simultaneously, the transmit
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diversity could be achieved and thus could make the RF energy harvesting at the

user side more robust. Besides, note that the energy allocation of the PB and time

allocation of each AP-source pair are tangled together. This makes the distributed and

optimal resource allocation for the considered PB-WPCN not trivial at all. For the

PB-WPCN, in particular, I consider both cooperative and non-cooperative scenarios

based on whether the PB is cooperative with the APs or not. The main contributions

regarding this research problem are summarised as follows:

• For the cooperative scenario, a social welfare maximisation problem is formu-

lated and a water-filling based algorithm is proposed to optimally solve the

problem in a distributed manner.

• For non-cooperative scenario, an auction game is formulated by considering the

PB as the auctioneer and the APs as the bidders. An auction based distributed

algorithm is proposed to analyse the formulated game and its convergence is

subsequently proved.

The fifth research problem is to develop a game-theoretic framework for the dis-

tributed power control in a power-splitting based IFC with SWIPT. The consid-

ered IFC consists of multiple source-destination pairs. Different from the existing

works, which assume that all source-destination pairs cooperate to achieve the opti-

mal network-wide performance, I consider that all pairs are self-interested and focus

on maximising their own performance instead of the overall one, which would be

more practical (see [36] and references therein). The main contributions regarding

this research problem are summarised as follows:

• A non-cooperative game is formulated for the considered IFC-SWIPT system,
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where each source-destination pair is modeled as a strategic player who aims to

minimise the source transmit power while satisfying both signal-to-interference-

plus-noise ratio (SINR) and EH constraints at the destination.

• A sufficient condition is derived to guarantee the existence and uniqueness for

the Nash equilibrium (NE) of the formulated game.

• The best response strategy for each pair is derived and then the NE is achieved

in a distributed manner. Numerical results validate the theoretical analysis and

show that the proposed game-theoretic approach can achieve a near-optimal

network-wide performance.



Chapter 2

Background

In this chapter, a brief review of some general concepts is provided, in the context

of network coding design and radio frequency (RF) energy transfer, respectively. In

particular, I first describe the encoding and decoding procedures of nested codes, the

soft-output Viterbi algorithm (SOVA) as well as lattices. Brief introductions to RF

energy transfer and wireless-powered communication are then presented.

13
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2.1 Nested Codes

Nested codes with multiple interpretations are first proposed in [8]. Codes with

multiple interpretation capability are the codes that can be decoded at different rates

at different destinations. The different rates are the results of cancellations with the

prior knowledge owned by different destinations. In the following, the principles of

encoding, hard-decision decoding and soft-decision decoding for the nested codes will

be presented respectively.

2.1.1 Encoding

Let boldface lowercase and uppercase letters denote vectors and matrices, respec-

tively. We denote by ij and Gj the message and generator matrix corresponding

to the jth node, ∀j ∈ {1, 2, · · · , N}. The encoding process can be regarded as the

exclusive or (XOR) of all codewords, i.e.,

c = i1G1 ⊕ i2G2 ⊕ · · · ⊕ iNGN = [i1, i2, · · · , iN ]


G1

G2

...

GN

 , (2.1.1)

where G1,G2, · · · ,GN are assumed to be linearly independent and ⊕ denotes the

XOR operation. The representations of the XORed codewords on the right-hand

side in (2.1.1) suggest how the codewords should be processed at the receiver. If the

receiver knows some of the messages, then those messages can be cancelled by XORing

their codewords first. Otherwise, the receiver can directly decode all the messages

associated with the “stacked” generator matrix on the right-hand side of (2.1.1).
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2.1.2 Hard-Decision Decoding

In hard-decision decoding, we have the input of a decoder as r̂ = c ⊕ e, where e

denotes the binary error pattern. At the jth receiver, r̂ can be interpreted as

r̂ =
⊕
`/∈Kj

i`G` ⊕
⊕
`′∈Kj

i`′G`′ ⊕ e, (2.1.2)

where Kj denotes the indices of the messages known a priori to the receiver j. Because

the part
⊕

`′∈Kj
i`′G`′ in (2.1.2) is known to the receiver j, it can be cancelled by

XORing to obtain

r̂j = r̂⊕
⊕
`′∈Kj

i`′G`′ =
⊕
`/∈Kj

i`G` ⊕ e. (2.1.3)

The right-hand side of (2.1.3) represents the nested code with the “stacking” gen-

erator matrices corresponding to all messages that are not known to receiver j. To

extract the desired messages i`, ∀` /∈ Kj, from r̂j in (2.1.3), a decoding algorithm

corresponding to the “stacking” generator needs to be employed. If the generators

are constructed by convolutional codes, the Viterbi algorithm [42] can be employed

to extract the desired messages.

2.1.3 Soft-Decision Decoding

In soft-decision decoding, the input of a decoder is a log-likelihood ratio or L-value

of the ith bit in the codeword c, denoted by Lc(i). Mathematically, we have

Lc(i) = ln
Pr (c(i) = 0)

Pr (c(i) = 1)
, (2.1.4)
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where Pr(X) denotes the probability of the event X. As the jth receiver may process

some prior knowledge, the codeword c can be decomposed as

c =
⊕
`/∈Kj

i`G`︸ ︷︷ ︸
cu

⊕
⊕
`′∈Kj

i`′G`′︸ ︷︷ ︸
cc

, (2.1.5)

where cu represents the collection of unknown information and cc is the collection of

the prior known information at the receiver j. It is apparent that the prior known

information cc should be cancelled. With the cancellation of the prior knowledge

cc, at the jth receiver, we can compute the L-value of the ith bit of the desired

information cu by

Lcu(i) , ln
Pr (cu(i) = 0)

Pr (cu(i) = 1)
=

Lc(i) = ln Pr(cu⊕cc(i)=0)
Pr(cu⊕cc(i)=1)

, if cc = 0,

−Lc(i) = ln Pr(cu⊕cc(i)=1)
Pr(cu⊕cc(i)=0)

, if cc = 1.
(2.1.6)

Note that there is no information lost via the above cancellation operation, because

it only changes the sign of the L-value. Then we have the calculated L-value Lcu ,

which is the estimated soft information of unknown packets to receiver j. To ex-

tract the unknown messages with the L-value Lcu , the soft-output Viterbi algorithm

(SOVA) [42], which will be briefly reviewed in the next section, can be employed if

the generators G` are constructed based on convolutional codes.

Note that this review on nested codes is mainly adopted from [8].

2.2 The Soft-Output Viterbi Algorithm (SOVA)

Consider a rate-k/n convolutional code. The encoder of the convolutional code

has k inputs, n outputs and k input shift registers for storing information bits. Let

mi be the length of the ith input register, i.e., the ith input register has mi memory
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elements, for i = 1, 2, · · · , k. The total memory of this encoder can be expressed by

M =
k∑
i=1

mi. (2.2.1)

The information bits stored in this memory define the state of the encoder. The

parameter

m = max
1≤i≤k

{mi}, (2.2.2)

is called the memory order and v = m+ 1 is called the constraint length of the code.

A rate-k/n convolutional code of memory order m is commonly called an (n, k,m)

convolutional code.

The SOVA is almost identical to the Viterbi algorithm, except that a reliability

indicator is appended to the hard-decision output for each information bit. The

combination of the reliability indicator and the hard-decision output is called a soft

output. For ease of illustration, I take a rate-1/n convolutional code as an example.

Let u, c and r denote an information bit, a codeword symbol, and a received symbol,

respectively. Let u, c and r denote the information sequence, the codeword sequence,

and the received sequence, respectively. The L-value of a received symbol r at the

output of a channel with binary inputs c = ±1 can be expressed by

Lr = ln
Pr (r|c = +1)

Pr (r|c = −1)
, (2.2.3)

and the L-value of an information bit u is defined as

Lu = ln
Pr (u = +1)

Pr (u = −1)
. (2.2.4)

Let Si denote the ith state, i = 0, 1, · · · , 2v − 1. Let ct and c′t denote the maximum

likelihood (ML) path and an incorrect path starting from time 0 till time t, respec-

tively. Assume that a comparison is being made at the state Si between the ML path

ct and an incorrect path c′t at time t. The probability that the ML path is correctly
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Figure 2.1: An illustration of the reliability vector update procedure for SOVA, where
a (1, 3, 1) convolutional code is employed with the memory order m = 1 and the
constraint length v = 2.

selected at time t, denoted by P (C), is given by

P (C) =
Pr(ct|r)

Pr(ct|r) + Pr(c′t|r)
. (2.2.5)

The L-value, or reliability, of this path decision is defined by

∆t−1(Si) = ln
P (C)

1− P (C)
. (2.2.6)

Now we show how the reliability of a path decision is associated with the hard-

decision outputs of a Viterbi decoder. First, consider the path decisions made at

τ = m + 1. The path decision at the state Si has the reliability ∆m(Si) given

by (2.2.6). The bits positions in which the two information sequences, that is, um
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corresponding to the codeword cm and u′m corresponding to the codeword c′m, differ

are the error positions. At time τ = m+ 1, a reliability vector can be formed for the

state Si as

Lm+1(Si) = [L0(Si), L1(Si), · · · , Lm(Si)] , (2.2.7)

where

Lτ (Si) =

∆m(Si), if uτ 6= u′τ

∞, if uτ = u′τ

, τ = 0, 1, · · · ,m. (2.2.8)

At time τ = m + 2, the path decisions result in reliability ∆m+1(Si), and the

reliability vector is given by

Lm+2(Si) = [L0(Si), L1(Si), · · · , Lm+1(Si)] . (2.2.9)

The reliability vector is updated by first determining Lm+1(Si) as in (2.2.8). For the

remaining entries, the minimum of ∆m+1(Si) and the previous entry in the reliability

vector will be taken. This updated procedure is repeated after each path decision.

At time τ = t, for the state Si, the reliability vector is updated to

Lt(Si) = [L0(Si), L1(Si), · · · , Lt−1(Si)] , (2.2.10)

where

Lτ (Si) =

min [∆t−1(Si), Lτ (Si)] , if uτ 6= u′τ

Lτ (Si), if uτ = u′τ

, τ = 0, 1, · · · , t− 1. (2.2.11)

For ease of understanding, Fig. 2.1 is obtained from [42] to graphically illustrate

the reliability vector update procedure of the SOVA. A (1, 3, 1) convolutional code is

employed with the memory order m = 1 and the constraint length v = 2. The “up”

branch leaving each state represents an input 1, and the “down” branch represents

an input 0.

Note that this review on SOVA is mainly adopted from [42, 43].
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2.3 Lattices

Lattices are patterns of points with a periodic structure arranged in Euclidean

space. Mathematically, we consider an infinite, discrete set of vectors (points) λ in

Euclidean space RN [44], i.e.,

Λ = {λ} ⊂ RN , with λ =


l1

l2
...

lN

 , (2.3.1)

where Λ denotes an N -dimensional lattice. Due to the underlying Euclidean space,

a lattice is endowed with attributes such as distances, volumes or shapes.

For the algebraic properties, a lattice is an abelian group under ordinary vector

addition in RN . For Λ being a lattice, we have the following requirements:

Closure: λi + λj ∈ Λ, ∀λi,λj ∈ Λ

Associativity : (λi + λj) + λk = λi + (λj + λk)

Identity : ∃0 ∈ Λ with λi + 0 = 0 + λi = λi, ∀λi ∈ Λ

Inverse: ∃ − λi ∈ Λ, with λi + (−λi) = 0, ∀λi ∈ Λ

Commutativity : λi + λj = λj + λi, ∀λi,λj ∈ Λ

There exists a set of N linearly independent vectors xi. Because of the group

structure, all lattice points λ ∈ Λ can be expressed as linear combinations of integer

multiples and these basis vectors xi, i.e.,

λ =
N∑
i=1

kixi, ki ∈ Z. (2.3.2)

The basis vectors have to be linearly independent and to span the N -space. Note

that the choice of the basis vectors is not unique. It is common to combine the basis

vectors gi as columns into a generator matrix, i.e.,

GΛ = [g1,g2, · · · ,gN ] . (2.3.3)
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With GΛ, the lattices can be specified as

Λ =

GΛ


k1

...

kN


∣∣∣∣∣∣∣∣ ki ∈ Z, i = 1, · · · , N

 . (2.3.4)

Note, the generator matrix is not unique; any linear transformation of the basis

vectors, which preserves the full rank of GΛ, can be used as well. In addition, for the

combined scaling and translation operation, we write briefly,

aΛ + b , (aλ+ b|λ ∈ Λ) , with a ∈ R,b ∈ RN . (2.3.5)

Note that this review on lattices is mainly adopted from [44].

2.3.1 Lattice Network Coding

In addition, we briefly review some basic concepts of lattice network coding [11].

A coarse lattice Λ′ is a subset of a fine lattice Λ, i.e., Λ′ ⊂ Λ. The set of all the

cosets of Λ′ in Λ, denoted by Λ/Λ′, forms a partition of Λ.

For lattice codes, the message space W is W = Λ/Λ′.

The message rate for each user is defined as R , 1
n

log2 |W|, where n is the code

length and |W| is the cardinality of W .

Let C denote the complex number field. A map QΛ : CN → Λ is defined as a

nearest-lattice-point quantiser, which sends a point x ∈ CN to the nearest lattice

point in Euclidean distance, i.e.,

QΛ(x) , arg min
λ∈Λ
‖x− λ‖. (2.3.6)

Let [s] mod Λ denote the quantisation error of x ∈ CN with respect to the lattice

Λ, and we have

[x] mod Λ = x−QΛ(s). (2.3.7)
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Figure 2.2: A typical RF energy receiver.

Let V denote the fundamental Voronoi region of a lattice, which is the set of all

points in CN that are closest to the zero vector,

V = {s : QΛ(s) = 0}. (2.3.8)

2.4 RF Energy Transfer

RF energy transfer is a process of delivering energy by wireless from an energy

transmitter to energy harvesting devices [45]. The features of RF energy transfer,

namely lower-power and long-distance energy transfer, make it suitable for powering

a large number of terminals spread over a relatively wide area. For the energy harvest-

ing device, an energy scavenging module, in terms of an RF energy receiver, should

be specifically designed to collaborate with RF energy transfer. Fig. 2.2 illustrates a

typical RF energy receiver, which consists of a receiver antenna (or antenna array), a

matching network, and an RF-to-direct current (DC) converter/retifier [46]. The an-

tenna can be designed to work on either single frequency or multiple frequency bands.

The matching network is a resonator circuit operating at the designed frequency band

to maximise the power transfer from the antenna to the RF-to-DC converter. The
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Figure 2.3: A conceptual network model of wireless-powered communication.

converter converts RF signals into DC voltage that can be used to either power the

load directly or charge an energy storage. The conversion efficiency of the RF energy

receiver depends on the accuracy of the impedance matching between the antenna

and the converter, and the power efficiency of the converter that rectifies the received

RF signals to DC voltage.

For the RF energy transfer, the amount of harvested energy, denoted by EH , can

be calculated based on the Friis equation [47] as

EH = PT ×GT × PL ×GR × η × τ, (2.4.1)

where PT denotes the transmit power, GT denotes the transmit antenna gain, PL is

the path loss, GR is the receiver antenna gain, η is the RF-to-DC energy conversion

efficiency and τ is the energy transfer duration.
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2.5 Wireless-Powered Communication

Enabled by the RF energy transfer, a new research paradigm, named wireless-

powered communication, can be established with no need for battery replacement.

In wireless-powered communication networks, wireless terminals can harvest energy

from RF signals radiated by dedicated energy transmitter(s) and use the harvested

energy for information processing or transmission [27].

A conceptual network model of wireless-powered communication is presented in

Fig. 2.3 with an AP and two terminals. There are two basic operation modes illus-

trated in Fig. 2.3. The first mode is that the AP transmits energy to Terminal 1 in

the DL, and then Terminal 1 transmits information to the AP during the UL using

the energy harvested in the DL. The second mode is the simultaneous information

and energy transfer from the AP to Terminal 2. This dual utilisation of RF signals

is referred to as SWIPT.

For more background information regarding RF energy transfer, please refer to

Chapters 6 and 7.



Chapter 3

Multiple Interpretations for
Multi-Source Multi-Destination
Wireless Relay Network Coded
Systems

In this chapter, a multi-source multi-destination wireless relay network coded sys-

tem is investigated. To achieve multiple interpretations at different receivers, nested

codes are constructed based on convolutional codes in the proposed system. Besides,

an opportunistic scheduling (OS) technique is adopted at the relay to maximise the

system capacity. The proposed system model combines the merits of both nested codes

and the OS. First, I present the detailed coding process of the proposed scheme. Then,

the upper bounds on the bit error probability of the schemes with and without the OS

are derived. Finally, good codes are investigated for the considered system and simu-

lations are carried out to validate the theoretical analysis.

25
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Figure 3.1: An example of the considered network coded system model.

3.1 System Model

Consider a network coding group, which consists of one relay and multiple sources

and destinations. A source can also be a destination of other sources. It is as-

sumed that all sources transmit to their respective destinations via the single relay

and there are no direct links between the sources and their destinations. Besides, all

sources/destinations in the network coding group are assumed to be within the com-

munication range of the relay. Note that one source may have multiple destinations

and let Ds denote the set of destinations of the source s, ∀s ∈ S, where S denotes

the set of sources. Let D ,
⋃
s∈SDs denote the set of destinations.

It is assumed that all sources transmit different packets via orthogonal channels

to the relay, and the relay broadcasts a combination of selected packets to a set of

selected destinations based on an opportunistic scheduling (OS) technique [7]. This

process will be made clear in the next section. It is also assumed that all the links,

between sources and the relay and between the relay and destinations, experience

independent quasi-static Rayleigh fading, i.e., the channel coefficients remain constant
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Figure 3.2: The coding process of the proposed network coded system.

over the length of one packet, but change independently from packet to packet [48].

Perfect channel state information (CSI) is assumed to be available at the relay side.

Let boldface lowercase and uppercase letters denote vectors and matrices. Let is and

Gs, ∀s ∈ S, denote the information sequence and the generator matrix of the source

s, respectively. An example of the considered scenario is illustrated in Fig. 3.1, in

which four sources transmit different packets to their destinations through the relay

r. S = {A,B,C,D}. The sets of the destinations corresponding to the sources A, B,

C, and D are denoted by DA, DB, DC and DD, respectively. Ds, ∀s ∈ {A,B,C,D},

can be an arbitrarily non-empty subset of {A,B,C,D}\s.

3.2 Coding with Nested Codes and the OS

The coding process of the proposed network coded system is shown in Fig. 3.2.

It can be observed that the entire process could be divided into three main parts:

encoding with nested codes at sources, implementing the OS and network coding

at the relay, and decoding with nested codes at destinations. In the following, we

elaborate the three parts respectively.
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3.2.1 Encoding with Nested Codes

Nested codes, which have been reviewed in Chapter 2, are employed in the con-

sidered network coding system. It is required that sources encode their respective

information with different linear independent generators. In this chapter, it is as-

sumed that an information sequence i is encoded with a binary convolutional gener-

ator matrix G. A coded packet sent by a source is iG. A binary phase-shift keying

(BPSK) modulation is assumed at each source side. Note that the modulator and

demodulator corresponding to the BPSK are ignored in Fig. 3.2.

The relay can observe all the coded packets sent by sources. For simplicity, it

is assumed that the relay makes hard decision on the coded packets received from

sources. As an example, if the relay forwards a mixed packet of all the received

packets to the destinations, recalling the coding structure of nested codes, we have

cnested = i1G1 ⊕ i2G2 ⊕ · · · ⊕ i|S|G|S| =
[
i1, i2, · · · , i|S|

]


G1

G2

...

G|S|

 , (3.2.1)

where cnested is the combination of all the coded packets from sources, ⊕ denotes

the XOR operation and |S| denotes the cardinality of the set of sources. Note that

G1,G2, · · · ,G|S| are assumed to be mutually linearly independent.

3.2.2 The Opportunistic Scheduling (OS)

The instantaneous SNR of the link between the source s and the relay r at the

time instant µ is given by [7]

γsr(µ) =
P |hsr(µ)|2

σ2
sr

, (3.2.2)
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where P is the transmit power from each source, hsr(µ) is the channel coefficient of

the link between s and r at the time instant µ, and σ2
sr denotes the variance of the

additive white Gaussian noise (AWGN).

The OS is an opportunistic selective mechanism by dynamically changing the set

of destinations at the relay to maximise the system capacity. The relay can order

the instantaneous SNRs of the links between the relay and the destinations into an

ascending sequence, where the higher SNR is always placed after the smaller one. Let

γk denote the kth instantaneous SNR in the sequence. The parameter k is named the

scheduling level [49]. According to the OS, only the destinations whose instantaneous

SNRs are equal to or higher than γk, will be selected. Then, the packets to be sent

to the selected destinations will be selected by the relay. Let Nd , |D| denote the

cardinality of the set of destination nodes D. For the scheduling level k, the number

of the selected destinations, denoted by Nk, should be Nk = Nd− k+ 1. In this case,

the instantaneous capacity per unit bandwidth can be expressed as

Ck
inst = Nk log2(1 + γk). (3.2.3)

At the relay, the selected packets according to the OS are linearly combined by

the XOR operation. Let Sr, Sr ⊆ S, denote the set of sources whose packets are

selected to be forwarded. We can obtain a network coded packet with the OS at the

relay as

cOSnested =
⊕
s∈Sr

isGs =
[
i1, i2, · · · , i|Sr|

]


G1

G2

...

G|Sr|

 . (3.2.4)

To adapt the maximised capacity by the OS, a class of rate-compatible punctured

convolutional (RCPC) codes [50, 51] can be employed at the relay. The RCPC codes



Chapter 3. Multiple Interpretations for Multi-Source Multi- . . . 30

are utilised to change the code rate of the network coded packet. If the maximum

capacity exceeds a predetermined threshold, the RCPC codes with the highest punc-

turing rate can be employed. Otherwise, a lower puncturing rate should be considered.

In this work, a convolutional code (1, 3, 2) with the optimum distance spectrum is

used as the parent code. The corresponding puncturing matrices of rates 1/3, 2/5,

2/4 and 2/3 are respectively chosen as [50]

P1/3 =


1 1

1 1

1 1

 , P2/5 =


1 1

1 1

1 0

 ,

P2/4 =


1 1

1 1

0 0

 , P2/3 =


1 0

1 1

0 0

 .

(3.2.5)

For ease of illustration, the effect of RCPC codes is ignored in the proposed network

coding scheme by choosing the puncture rate to be the same as the parent code 1/3.

3.2.3 Decoding with Nested Codes

At a destination, after the demodulator, a log-likelihood ratio or L-value of the

ith bit in cOSnested, denoted by LcOS
nested(i), can be obtained. Mathematically, we have

LcOS
nested(i) = ln

Pr
(
cOSnested(i) = 0

)
Pr (cOSnested(i) = 1)

. (3.2.6)

Because the destinations may possess some packets received at previous transmissions

from the relay, i.e., prior knowledge, the codeword cOSnested can be decomposed as

cOSnested =
⊕
l /∈Kd

ilGl︸ ︷︷ ︸
cu

⊕
⊕
l′∈Kd

il′Gl′︸ ︷︷ ︸
cc

, (3.2.7)

where Kd denotes the indices of the information prior known to the destination d,

cu represents the collection of unknown information and cc is the collection of the
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prior known information. By cancelling the prior knowledge cc, we can compute the

L-value of the ith bit of cu by

Lcu(i) , ln
Pr (cu(i) = 0)

Pr (cu(i) = 1)
=

LcOS
nested(i) = ln Pr(cu⊕cc(i)=0)

Pr(cu⊕cc(i)=1)
, if cc = 0,

−LcOS
nested(i) = ln Pr(cu⊕cc(i)=1)

Pr(cu⊕cc(i)=0)
, if cc = 1.

(3.2.8)

Note that there is no information loss via the above cancellation operation, because

it only changes the sign of the L-value. The Lcu is the estimated soft information of

unknown packets to the destination d. A SOVA (see Chapter 2) then can be employed

to extract the desired information with the L-value Lcu .

Note that in the case that the destination d has no prior knowledge, it still can

decode all the information out based on LcOS
nested

, i.e., the L-value of the codeword

cOSnested, and the “stacked” generator matrix in the right-hand side of (3.2.4).

3.3 Analytical Bounds on the Bit Error Probabil-

ity

In this section, an upper bound on the bit error probability for the proposed

scheme is derived. To obtain a closed-form expression of the upper bound, as shown

in Fig. 3.2, we regard the part between the output of the convolutional encoder and

the input of the convolutional decoder, as a binary symmetric channel (BSC), which

has a crossover probability PBSC
e .

We first derive the expression of the crossover probability PBSC
e . This probability

will be used for the derivation of the bit error probability for the link from a source

s to a destination d, and this will become evident later. Let PXOR
c denote the correct

bit transmission probability for the network coded packet at the relay. Let Pr→dc
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denote the correct bit transmission probability for the link from the relay r to the

destination d before the convolutional decoder. Then, the crossover probability PBSC
e

can be expressed as

PBSC
e ≤ 1− PXOR

c Pr→dc . (3.3.1)

Due to the OS at the relay, only the packets from the sources in the set Sr will be

selected and network coded. Since the probability that different packets suffer from

bit errors at the same positions is very small, especially at high SNR, the correct bit

transmission probability for the network coded packet can be approximated as

PXOR
c ≈

∏
s∈Sr

Ps→rc , (3.3.2)

where Ps→rc is the correct bit transmission probability for the link from s to r. For

an uncoded BPSK modulation over a Rayleigh fading channel, the correct bit trans-

mission probability of Ps→rc can be expressed as [52]

Ps→rc = 1− Ps→re

≥ 1− 1

2

(
1−

√
γsrR1

1 + γsrR1

)

=
1

2

(
1 +

√
γsrR1

1 + γsrR1

)
,

(3.3.3)

where Ps→re is the bit error probability for the link from s to r. γsr is the average

SNR for the link from s to r. R1 is the code rate of the convolutional encoder at the

source s.

Let Pr→de denote the bit error probability for the link from r to d. Then, the

correct bit transmission probability Pr→dc can be expressed as

Pr→dc = 1− Pr→de . (3.3.4)

With the consideration of RCPC codes over the link from r to d, Pr→de can be upper



Chapter 3. Multiple Interpretations for Multi-Source Multi- . . . 33

bounded by [53–55],

Pr→de ≤ 1

p

∞∑
ϕ=d′free

cϕPϕ, (3.3.5)

where p is the puncturing period, d′free is the free distance of the RCPC codes, cϕ is

the total number of bit errors for different incorrect track paths at distance ϕ, and

Pϕ is the pairwise error probability. For the BPSK modulation over a quasi-static

Rayleigh fading channel with perfect channel estimation and soft decision decoding

at the receiver, Pϕ can be written by

Pϕ = qϕ
ϕ−1∑
δ=0

(
ϕ− 1 + δ

δ

)
(1− q)δ, (3.3.6)

with

q =
1

2

(
1−

√
γrdR2

1 + γrdR2

)
, (3.3.7)

where γrd is the average SNR for the link from r to d and R2 is the code rate of the

employed RCPC code. Inserting (3.3.5) into (3.3.4), we can obtain a lower bound on

Pr→dc . Inserting this lower bound and (3.3.2) into (3.3.1), we then obtain an upper

bound on the crossover probability of PBSC
e .

Subsequently, by treating the channel between the source s and the destination d

as a BSC channel with the crossover probability PBSC
e , referring to [56], we can have

an upper bound on the bit error probability for the convolutional coded link from the

source s to the destination d, i.e., from the input of the convolutional encoder to the

output of the convolutional decoder, as

Ps→de <
1

m

∞∑
ϕ=dfree

aϕ
(
4PBSC

e

(
1− PBSC

e

))ϕ
2 , (3.3.8)

where m is the number of message bits fed to the convolutional encoder at the source

s, dfree is the free distance of the convolutional code, and aϕ is the number of paths

at a distance ϕ from the all-zero path. It is worth noting that since the process of the
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cancellation at the destination only discards the known information from the received

network coded packet, it will not change the degree of error and the packet’s length.

Therefore, the crossover probability for BSC is still PBSC
e after the cancellation process

at destinations.

Finally, a closed-form expression of the upper bound for the bit error probability

of the proposed scheme with the OS can be written by

Ps→de <
1

m

∞∑
ϕ=dfree

aϕ2ϕ

1− 1

p

∞∑
ϕ=d′free

cϕq
ϕ

ϕ−1∑
δ=0

(
ϕ− 1 + δ

δ

)
(1− q)δ


ϕ
2

×

(∏
s∈Sr

1

2

(
1 +

√
γsrR1

1 + γsrR1

))ϕ
2

×

1−

1− 1

p

∞∑
ϕ=d′free

cϕq
ϕ

ϕ−1∑
δ=0

(
ϕ− 1 + δ

δ

)
(1− q)δ


×
∏
s∈Sr

1

2

(
1 +

√
γsrR1

1 + γsrR1

))ϕ
2

,

(3.3.9)

where q is given by (3.3.7). Analogically, we can obtain the upper bound for the bit

error probability of the scheme without the OS by replacing Sr with S in (3.3.9).

3.4 Code Search

In this section, code criteria are first designed for the proposed scheme and a class

of good codes is then constructed.

To achieve multiple interpretations with nested codes, the code design is assumed

to satisfy the following criteria:

1. The generators assigned to different sources should be mutually linearly inde-

pendent.
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Table 3.1: Good nested codes

Rate Memory Number Generator Matrices dfree

2/3 2

(
6 5 1
7 2 5

)
8

5

2/4 2

(
3 7 1 6
4 7 6 3

)
8

8

3/4 2

 5 4 3 2
4 6 5 5
6 1 4 3


8

6

4/6 2


5 6 5 6 7 4
7 0 7 3 6 2
4 5 2 6 5 0
6 1 5 7 2 5


8

8

2. The rate of “stacked” generator matrix should be less than 1.

3. For convolutional codes, the “stacked” generator matrix should have large dfree

so that a desired error performance can be achieved.

According to the designed criteria, several good nested codes are selected from [57],

which are presented in Table 3.1. Then, we can choose different rows of one generator

matrix as different linearly independent generators. In this chapter, I choose a rate 4/6

code from Table 3.1 for simulations. Table 3.2, shown in the following page, illustrates

the code performance of the selected 4/6 code, which is analysed by Matlab.

3.5 Simulation Results

In this section, simulation results are presented to show the performance of the

OS and nested codes. In the simulations, the network shown in Fig. 3.1 is considered.

All the sources and the relay are assumed with the same transmit power P . All the

links are assumed to be quasi-static Rayleigh fading channels. The variance of AWGN
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Table 3.2: The performance analysis of the selected 4/6 code.

Rate Generator Matrices dfree

cϕ|ϕ=(dfree+i)

aϕ|ϕ=(dfree+i)

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

1/6

(
5 6 5 6 7 4

)
8

12 1
1

0
0

0
0

0
0

2
1

0
0

5
2(

7 0 7 3 6 2
)
8

10 2
1

1
1

0
0

3
1

0
0

0
0

8
2(

4 5 2 6 5 0
)
8

8 1
1

0
0

0
0

0
0

2
1

0
0

2
1(

6 1 5 7 2 5
)
8

11 1
1

0
0

0
0

0
0

0
0

4
2

0
0

2/6

(
5 6 5 6 7 4
7 0 7 3 6 2

)
8

9 5
2

18
4

14
4

19
5

87
14

200
26

374
48(

5 6 5 6 7 4
4 5 2 6 5 0

)
8

8 3
2

0
0

10
3

0
0

40
12

0
0

131
28(

5 6 5 6 7 4
6 1 5 7 2 5

)
8

9 2
1

0
0

7
3

13
4

11
3

40
9

68
12(

7 0 7 3 6 2
4 5 2 6 5 0

)
8

8 1
1

2
1

5
2

9
4

9
3

24
7

26
7(

7 0 7 3 6 2
6 1 5 7 2 5

)
8

8 2
1

0
0

4
2

16
6

24
6

24
6

28
6(

4 5 2 6 5 0
6 1 5 7 2 5

)
8

8 1
1

2
1

0
0

9
4

2
1

10
3

48
12

3/6

 5 6 5 6 7 4
7 0 7 3 6 2
4 5 2 6 5 0


8

8 8
3

42
10

95
18

208
35

580
88

1744
228

4971
570 5 6 5 6 7 4

7 0 7 3 6 2
6 1 5 7 2 5


8

8 2
1

29
7

102
19

162
30

349
55

1218
162

3622
429 5 6 5 6 7 4

4 5 2 6 5 0
6 1 5 7 2 5


8

8 10
3

42
11

75
13

214
34

527
76

1612
205

4644
545 7 0 7 3 6 2

4 5 2 6 5 0
6 1 5 7 2 5


8

8 9
4

15
4

24
7

90
23

285
51

845
135

2294
313

4/6


5 6 5 6 7 4
7 0 7 3 6 2
4 5 2 6 5 0
6 1 5 7 2 5


8

8 76
15

782
97

2571
269

11049
973

49770
3841

211356
14646

917121
57026
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Figure 3.3: The bit error probability of the received network coded packet before the
convolutional decoder at a destination under different OS selections.

is normalised to be unit. For the sources A, B, C and D, based on Table 3.2, it is

assumed that

GA = [5 6 5 6 7 4]8 ,

GB = [7 0 7 3 6 2]8 ,

GC = [4 5 2 6 5 0]8 ,

GD = [6 1 5 7 2 5]8 .

(3.5.1)

The rate of RCPC codes is chosen to be 1/3. To compare the performance of the

proposed system to that without the OS, a fixed scheduling with the fixed level k = 1

is also considered.

Fig. 3.3 illustrates the derived analytical upper bounds and simulation results

on the bit error probability under different OS selections. The bit error probability

performance considered here is that of the received network coded packet before the
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Figure 3.4: The performance of nested codes with different side information when the
OS level k = 1 and the RCPC code rate is 1/3.

convolutional decoder at a destination, namely PBSC
e in (3.3.1). The different OS

selections means that the number of selected packets is different. In general, the

larger scheduling level k corresponds to the fewer packets selected by the OS at the

relay. It can be observed from Fig. 3.3 that the derived upper bounds are tight at

medium and high SNRs. Also, it is shown that the schemes with the OS, i.e., k > 1

and less than 4 packets are selected, always have better performance on the bit error

probability than that of the case without the OS, i.e., k = 1 and 4 packets are selected.

Fig. 3.4 shows the simulation and analytical results when the scheduling level k is

fixed to 1, and the RCPC code rate is 1/3. The bit error probability considered here

is Ps→de in (3.3.9) at a destination. Without loss of generality, we choose an arbitrary

destination and assume three different situations for this node, which are full side

information, partial side information and no side information. For example, if it is
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assumed that the source A transmits to the destination C, then the situation with

full side information for the node C means that C has the prior knowledge of iB and

iD. Similarly, partial side information means that C has one of iB and iD, and no

side information means that C only knows its own information iC .

It is indicated in Fig. 3.4 that the node with full side information has the best

performance on the bit error probability. In contrast, when it only knows its own

information, it performs worst. This is due to the correlation between the amount

of prior knowledge and the performance of different corresponding generator matri-

ces. Specifically, the destinations with less prior knowledge correspond to the larger

“stacking” generator matrices. The larger “stacking” generator matrix generally has

a worse error performance. Moreover, it can be observed in Fig. 3.4 that the analytical

upper bounds are loose at low SNR and become tight with the increase of SNR.



Chapter 4

Novel Nested Convolutional
Lattice Codes for Multi-Way
Relaying Systems over Fading
Channels

In this chapter, I focus on the realisation of multiple interpretations with a high

spectrum efficiency in a multi-way relay channel (MWRC) with fading, where multiple

sources communicate with each other with the help of a relay. I first propose a class

of nested convolutional lattice codes (NCLC) over a finite field, which can achieve

the multiple interpretations for each source in two time slots. Then a theoretical

upper bound on word error rate (WER) is derived for the NCLC. I further develop

code design criteria by minimising the derived WER. Simulation results show that

the proposed code can realise multiple interpretations for each source in two time slots

and the derived upper bound is asymptotically tight with the increase of the normalised

signal-to-effective-noise ratio (SENRnorm).

40
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4.1 System Model and Preliminaries

In this section, the system model of a MWRC will be discussed first and then the

nested convolutional codes over a finite field are presented.

Consider a network coding group, which consists of one relay node and a set of

source nodes, as shown in Fig. 4.1, where r denotes the relay node and [s1, s2, · · · , sL]

denote the sources nodes. All sources are receivers as well. The simplified coding

process of the proposed scheme is summarised into the following steps:

1. All sources generate different information messages and encode the messages

with mutually linearly independent generators.

2. At the transmitter side, each source maps the coded message onto an element

of a lattice.

3. The lattice codewords from different source nodes are transmitted within the

same frequency band simultaneously in one time slot.

4. The relay observes the superposition of the lattice codewords, and demodulates

it to obtain a lattice-based network coded packet.

s1 sL-1s2 sL

r

Figure 4.1: The system model of a MWRC.
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5. The relay node broadcasts the lattice-based network coded packet to the differ-

ent source nodes via fading channels in the second time slot.

6. Each source’s receiver extracts the information messages of the other sources

from the received lattice-based network coded packet forwarded by the relay.

Let R denote the real number field, let C denote the complex number field, let

Z denote the integer and let ⊕ denote the addition over a finite field. Moreover, let

boldface lowercase and uppercase letters denote vectors and matrices, respectively.

Let Fq denote the finite field of size q, where q is assumed to be prime. Let w` be

the message vector that each of its element is generated independently and uniformly

over the Fq by the source node s`, ∀` ∈ {1, · · · , L}. Let G` denote the generator

matrix with each of its element over Fq at the source node s`. Let GT denote the

transpose of G.

The nested convolutional codes over Fq are developed based on the nested codes

[8, 58] and non-binary convolutional codes. The mathematical operation of the nested

convolutional codes over Fq can be expressed by

w1G1 ⊕w2G2 ⊕ · · · ⊕wLGL = [w1,w2, · · · ,wL] [G1,G2, · · · ,GL]T , (4.1.1)

where G1,G2, · · · ,GL are mutually linearly independent generators of q-ary convo-

lutional codes.
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4.2 Nested Convolutional Lattice Codes (NCLC)

Let w be a complex number so that the ring of integers Z [w] , {a+ bw|a, b ∈ Z}

is a principle ideal domain. In this chapter, a Z [w]-lattice is defined as [11],

Λ =
{
λ = GΛc : c ∈ Z [i]N

}
, (4.2.1)

where a lattice generator matrix GΛ ∈ CN×N is full rank and N is the number of

dimensions. Let Λ′ denote a coarse lattice, which is a subset of a fine lattice Λ, i.e.,

Λ′ ⊂ Λ. Let the message space be W = Λ/Λ′, where Λ/Λ′ denotes the set of all the

cosets of Λ′ in Λ. The message space is a collection of lattice points that the message

can be mapped onto. For the NCLC, the coded message w`G` is assumed to be

uniformly distributed on the lattice points within the message spaceW by a mapping

process. Besides, let zq(w) be an operation over Fq and let zΛ′(λ) be an operation

over the fundamental Voronoi region of Λ′ (see Chapter 2), denoted by V(Λ′), where

w ∈ Fq and λ ∈ Λ. We can have

zq(w) = [w] mod q, zΛ′(λ) = [λ] mod Λ′,

zΛ′(λ) = ψ (zq(w)) , and zq(w) = ψ−1 (zΛ′(λ)) ,
(4.2.2)

where ψ(·) denotes a map labeling the message over Fq to the points over V(Λ′) and

ψ−1(·) denotes the inverse process.

At each transmitter side, we have

t` = ψ(w`G`) and x` = [t` + d`] mod Λ′ , (4.2.3)

where t` denotes the coded message mapped on the fine lattice points. d` is a dither

vector at the `th node, which is generated independently according to a uniform

distribution over V(Λ′). x` denotes the transmitted lattice signal, which is subject to
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(a) The lattice network coding process at the relay node.

(b) The decoding process at the receiver of sj .

Figure 4.2: Processes of the NCLC at the relay node and the source node sj.

an average power constraint given by

1

n
E
[
‖x`‖2

]
≤ P, (4.2.4)

where n is the coded message length.

At the relay node, the input of the relay can be expressed as

ysr =
L∑
`=1

h`x` + zsr. (4.2.5)

Fig. 4.2(a) shows the lattice network coding process at the relay node. According

to the lattice-partition-based compute-and-forward scheme proposed by Nazer and

Gastpar [9], we choose a scale factor α ∈ C and a coefficient vector a , (a1, a2, · · · , aL)

with a ∈ Λ. We then obtain

αysr =
L∑
`=1

αh`x` + αzsr

=
L∑
`=1

a`x` +
L∑
`=1

(αh` − a`)x` + αzsr︸ ︷︷ ︸
n

=
L∑
`=1

a`x` + n,

(4.2.6)

where h` is the channel coefficient of the link between the source s` and the relay r
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and zsr represents a vector of AWGN samples, in which each element is an AWGN

with a zero mean and one-sided variance σ2. Refer to [9], α is derived as

α =
Psh

Ha

Ps‖h‖2 +N0

, (4.2.7)

where Ps is the transmit power at each source node, hH denotes the Hermitian trans-

pose of h and N0 is the average noise power. To remove dithers under the power

constraint, we have [
αysr −

L∑
`=1

a`d`

]
mod Λ′

=

[
L∑
`=1

a`x` + n−
L∑
`=1

a`d`

]
mod Λ′

=

[
L∑
`=1

a`t` + n

]
mod Λ′,

(4.2.8)

It is worth pointing out that
∑L

`=1 a`t` and n are independent in the above equation.

Now, we have the lattice network coded packet that should be broadcast by the relay

to the source nodes under the power constraint, i.e.,

xr =

[[
L∑
`=1

a`t` + n

]
mod Λ′ + dr

]
mod Λ′

=

[
L∑
`=1

a`t` + n + dr

]
mod Λ′,

(4.2.9)

where dr is a dither vector generated at the relay, which is made available at each

source node. According to [59], since
∑L

`=1 a`t` and n are independent, we can obtain

that xr and n are independent.

At the receiver side, as shown in Fig. 4.2(b), a source node sj, j ∈ {1, · · · , L}\`,

receives the lattice network coded packet from the relay node, i.e.,

yrsj = hjxr + zrsj

= hj

([
L∑
`=1

a`t` + n + dr

]
mod Λ′

)
+ zrsj .

(4.2.10)
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where hj is the channel coefficient of the link between the relay r and the source sj

and zrsj represents a vector of AWGN samples, in which each element is an AWGN

with a zero mean and one-sided variance σ2. Then, we remove the dithers at the jth

receiver node by choosing a scalar βj ∈ C and a coefficient bj ∈ Λ, i.e.,[
βjyrsj − bjdr

]
mod Λ′

=
[
βjhjxr + βjzrsj − bjdr

]
mod Λ′

=
[
bjxr + (βjhj − bj)xr + βjzrsj − bjdr

]
mod Λ′

=

bj L∑
`=1

a`t` + bjn + (βjhj − bj)xr + βjzrsj︸ ︷︷ ︸
mj

 mod Λ′

=

[
bj

L∑
`=1

a`t` + mj

]
mod Λ′,

(4.2.11)

where the optimal coefficient bj should be chosen to be close to the channel coefficient

according to [9]. The optimal βj is given by the following theorem,

Theorem 4.1. The optimal scale factor βj should be chosen to maximise the signal-

to-effective-noise ratio (SENR) of Eq. (4.2.11). Given the assumption that the min-

imum mean square error (MMSE) decoder is employed at each receiver, βj can be

obtained by

βj =
bjPrhj

Pr|hj|2 +N0

, (4.2.12)

where Pr is the transmit power from the relay.

Proof. See Appendix A.1.

Now, we can estimate the desired linearly combination at the source node sj by
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reversely mapping the lattice-based network coded packet to the finite field, i.e.,

ûj =ψ−1

(
QΛ

([
bj

L∑
`=1

a`t` + mj

]
mod Λ′

))

=ψ−1

(
QΛ

([
zΛ′

(
bj

L∑
`=1

a`t`

)
+ mj

]
mod Λ′

))

=ψ−1

(
QΛ

(
zΛ′

(
bj

L∑
`=1

a`t`

)
+ mj −QΛ′ (Θ)

))

=ψ−1

(
zΛ′

(
bj

L∑
`=1

a`ψ (w`G`)

)
+QΛ(mj)−QΛ′ (Θ)

)

=zq

(
pj

L∑
`=1

q`w`G`

)
+ ψ−1 (QΛ (mj))

=zq (pjWQG) + ψ−1 (QΛ (mj)) ,

(4.2.13)

where QΛ(·) is a quantiser (see Eq. (2.3.6) in Chapter 2), W = [w1,w2, · · · ,wL],

Q = diag{q1, q2, · · · , qL}, G = [G1,G2, · · · ,GL]T , pj = ψ−1 ([bj] mod Λ′), q` =

ψ−1 ([a`] mod Λ′), pj, q` ∈ Fq, and

Θ = zΛ′

(
bj

L∑
`=1

a`t`

)
+ mj. (4.2.14)

Note that the desired linear combination obtained from the lattice-based network

coded packet at the source sj actually is

uj = zq

(
pj

L∑
`=1

q`w`G`

)
= zq (pjWQG) . (4.2.15)

Therefore, it can be observed from Eqs. (4.2.13) and (4.2.15) that ûj = uj if and only

if ψ−1 (QΛ (mj)) = 0, or equivalently, QΛ (mj) ∈ Λ′.

Furthermore, each source node can reduce the decoding complexity by cancelling

its prior known information, if it has, from the desired linear combination. Let Kj

denote the indices of the information prior known to the jth receiver. Let cu denote

the collection of unknown information and cc be the collection of known information.
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We have,

cu = uj 	 cc

= zq

(
pj

L∑
`=1

q`w`G`

)
	zq

pj ∑
`∈Kj

q`w`G`


= zq

pj ∑
`/∈Kj

q`w`G`

 ,

(4.2.16)

where 	 denotes the subtraction over Fq.

Given the assumption that all the sources know all the assigned generators a

priori and can obtain a sequence of coefficients q, then, due to the structure of nested

codes, each receiver is able to decode all the unknown messages and the multiple

interpretations can be realised in two time slots1.

4.3 Performance Analysis

In this section, I derive a theoretical upper bound on WER for the NCLC and

further optimise the NCLC by developing code design criteria that minimises the

derived WER.

First, we derive the error probability of ûj at the jth receiver node,

Pr (ûj 6= uj) = Pr (QΛ (mj) /∈ Λ′) . (4.3.1)

1It should be noted that for the nested code to be an error-correcting code, the number of columns
of the “stacked” generator matrix must be larger than the number of rows. This forces the number
of columns in each submatrix G` to be larger than what would normally be required for a single
(non-nested) error-correcting code based on G`. Actually, there is a tradeoff between the spectral
efficiency advantages and the coding gain of nested codes. If the design of nested codes reduces the
spectral efficiency advantages, an additional coding gain could be obtained with the nested code
because it results in a longer code length than a single error-correcting code.
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With reference to [11], we have

Pr (QΛ(mj) /∈ Λ′) 6Pr (mj /∈ RV(0))

6
∑

λ∈Nbr(Λ\Λ′)

exp(−υ‖λ‖
2

2
)E
[
exp(υRe{λHmj})

]
, ∀υ > 0

(4.3.2)

where RV(0) denotes the Voronoi region of 0 in the set {Λ\Λ′}∪ {0} and Nbr(Λ\Λ′)

is the set of neighbours of 0 in {Λ\Λ′}.

Subsequently, based on Eqs. (4.2.6) and (4.2.11), we can have

E
[
exp(υRe{λHmj})

]
=E

[
exp

(
υRe

{
λH

(
bj

L∑
`=1

(αh` − a`)x` + bjαzsr

+(βjhj − bj)xr + βjzrsj
)})]

=E
[
exp

(
υRe{λH(bjαzsr + (βjhj − bj)xr + βjzrsj)}

)]
∏
`

E
[
exp(υRe{λHbj(αh` − a`)x`})

]
= exp

(
1

2
υ2‖λ‖2

(
|bj|2|α|2σ2

sr + Pr|βjhj − bj|2 + |βj|2σ2
rsj

))
∏
`

E
[
exp(υRe{λHbj(αh` − a`)x`})

]
= exp

(
1

4
υ2‖λ‖2N0

(
|bj|2|α|2 +

Pr
N0

|βjhj − bj|2 + |βj|2
))

∏
`

E
[
exp(υRe{λHbj(αh` − a`)x`})

]
.

(4.3.3)

By considering the lattice partition as a hypercube, according to [11], we have

E
[
exp(Re{vHx})

]
6 exp(‖v‖2δ2/24) , (4.3.4)

where x ∈ Cn is a complex random vector uniformly distributed over a hypercube

δUHn, δ > 0 is a scalar factor, U is any n × n unitary matrix, and Hn is a unit

hypercube in Cn defined by Hn = ([−1/2, 1/2] + i[−1/2, 1/2])n. Note that for a
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hypercube, P = 1
n
E[‖x`‖2] = δ2/6. Thus, we have

E
[
exp(υRe{λHmj})

]
= exp

(
1

4
υ2‖λ‖2N0

(
|bj|2|α|2 +

Pr
N0

|βjhj − bj|2 + |βj|2
))

∏
`

E
[
exp(υRe{λHbj(αh` − a`)x`})

]
≤ exp

(
1

4
υ2‖λ‖2N0

(
|bj|2|α|2 +

Pr
N0

|βjhj − bj|2 + |βj|2
))

∏
`

exp
(
‖υλbj(αh` − a`)‖2Ps/4

)
= exp

(
1

4
υ2‖λ‖2N0

(
|bj|2|α|2 +

Pr
N0

|βjhj − bj|2 + |βj|2
)

+
1

4
υ2‖λ‖2|bj|2‖αh− a‖2Ps

)
= exp

(
1

4
υ2‖λ‖2N0Q(α, a, βj, bj)

)
,

(4.3.5)

where the quantity Q(α, a, βj, bj) is defined as

Q(α, a, βj, bj) =
Ps
N0

|bj|2‖αh− a‖2 + |bj|2|α|2 +
Pr
N0

|βjhj − bj|2 + |βj|2. (4.3.6)

Hence, by choosing υ = 1/ (N0Q (α, a, βj, bj)), we obtain

Pr (ûj 6= uj) = Pr (QΛ(mj) /∈ Λ′)

6
∑

λ∈Nbr(Λ\Λ′)

exp

(
−υ‖λ‖

2

2
+

1

4
υ2‖λ‖2N0Q(α, a, βj, bj)

)

=
∑

λ∈Nbr(Λ\Λ′)

exp

(
− ‖λ‖2

4N0Q(α, a, βj, bj)

)

≈K(Λ/Λ′) exp

(
− d2(Λ/Λ′)

4N0Q(α, a, βj, bj)

)
=K(Λ/Λ′) exp

(
−3SENRnormγc(Λ/Λ

′)

2

)
,

(4.3.7)

where γc(Λ/Λ
′), d2(Λ/Λ′), and K(Λ/Λ′) denote the nominal coding gain, the squared

minimum inter-coset distance, and the number of the nearest neighbours with d2(Λ/Λ′)
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of the lattice partition Λ/Λ′, respectively. Refer to [60] and we have the SENRnorm as

SENRnorm =
SENR

2R
=

P

2RN0Q(α, a, βj, bj)
. (4.3.8)

Let V (Λ) denote the volume of the Voronoi region of Λ. The nominal coding gain

[61] can be expressed by

γc(Λ/Λ
′) =

d2(Λ/Λ′)

V (Λ)1/N
, (4.3.9)

where the number of dimensions N is equivalent to the coded message length n.

Next, we consider the WER of Ŵj at the jth node. To obtain the error probability

of the information matrix Wj from the desired linear combination uj, we can regard

Pr (ûj 6= uj) as the crossover probability of a BSC channel. Thus, according to [56,

58], we can obtain,

Pr
(
Ŵj 6= Wj

)
<

∞∑
d=d2free

ad(4Pr (ûj 6= uj) (1− Pr (ûj 6= uj)))
√
d/2, (4.3.10)

where d2
free and ad denote the minimum squared Euclidian distance and the number

of paths at a squared Euclidian distance d from the all-zero path of the convolutional

code corresponding to the “stacked” generator matrix G in (4.2.13), respectively.

The cancellation process at each receiver node actually will not change the degree

of error. Therefore, the crossover probability is still Pr[ûj 6= uj] after the cancellation

process. In other words, the cancellation process will not affect the performance of

the derived upper bound.

Finally, based on (4.3.6), (4.3.7) and (4.3.10), we have the code design criteria for

the proposed scheme as follows

1. The scalars α and βj should be chosen such that Q(α, a, βj, bj) is minimised.

2. The lattice partition Λ/Λ′ should be designed such that K(Λ/Λ′) is minimised

and d2(Λ/Λ′) is maximised.
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3. The “stacked” convolutional generator matrix should be designed such that

d2
free is maximised and ad is minimised.

4.4 Simulation Results

In this section, we consider a MWRC with three sources and one relay, and assign

different linearly independent q-ary convolutional generators with a rate 1/3 and

memory 1 for all the sources. It is assumed that all the sources and the relay have

the same maximum transmit power P , the lattice partition is chosen as a typical

Gaussian integer W ∼= Z[i]/δZ[i], where δ = 2 + 3i, and the finite field is chosen as

F13 with the size q = 13. Thus, W ∼= F13, the shaping is a rotated hypercube in CN ,

and the message rate R = 1
n

log2 13. Besides, all the links between sources and the

relay are assumed to be quasi-static Rayleigh fading channels.

Without loss of generality, we select the source node s3 as an example node. That

is, we focus on the realisation of multiple interpretations at s3 by extracting the in-

formation of s1 and s2 from the lattice-based network coded packet sent by the relay.

Specifically, s3 inversely maps each received message from the relay to the correspond-

ing non-binary convolutional codeword in F13, subtracts its own information based

on the cancellation process shown in Eq. (4.2.16), and decodes the desired informa-

tion by stacking the generator matrices of s1 and s2 as a rate 2/3 generator matrix.

Based on the code design criteria described in the previous section, we obtain a good

generator matrix with the code rate 2/3 given by[
G1

G2

]
=

[
8 + 2D 6 + 5D 2 + 4D

7 + 12D 0 7D

]
, (4.4.1)
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Figure 4.3: The Monte-Carlo simulation result and the analytical upper bound.

with

d2
free = 9 and ad|d=d2free

= 24. (4.4.2)

Next, the WER of s3, i.e., Pr
(
Ŵ3 6= W3

)
, is investigated based on the code pro-

file given in Eq. (4.4.1). We have W3 = [w1,w2], where W3 is the desired information

matrix at the source node s3, and is composed by the information w1,w2 from the

source nodes s1 and s2. Fig. 4.3 illustrates the Monte-Carlo simulation result and the

analytical upper bound on WER. The dotted and solid curves denote the simulation

result and analytical upper bound, respectively. We can observe that the analyti-

cal upper bound is asymptotically tight to the simulation result with the increase of

the SENRnorm.



Chapter 5

Network Coded Non-Binary
LDGM Codes Based on Lattices
for a Multi-Access Relay System

In this chapter, I propose a network coded non-binary low-density generator matrix

(LDGM) code structure based on lattices with a low complexity decoder for a multi-

access relay system, where multiple sources transmit to a destination with the help of

a relay. Specifically, a network coded non-binary LDGM code structure is developed

by considering lattice-signal transmissions at both the sources and the relay. Then

I derive the achievable computation rate (ACR) for the proposed system and select

the key parameters in the proposed structure to maximise the ACR. Furthermore, I

optimise the network coded non-binary LDGM codes based on lattices to approach the

ACR. Simulation results show that the optimal setting of the parameters is consistent

with that obtained from the analysis and the proposed code outperforms the designed

reference scheme.

54
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5.1 System Model

Consider a multi-access relay system with L sources, a single relay and a destina-

tion, as shown in Fig. 5.1 on the following page, where the relay receives transmissions

from the L sources and forwards a network coded message to the destination. The

transmission process is conducted in two time slots. Let boldface lowercase and upper-

case letters denote vectors and matrices, respectively. In the first time slot, messages

are transmitted from their respective sources to the relay, i.e.,

ysr =
L∑
`=1

h`x` + zsr, (5.1.1)

where ysr is the received signal at the relay from all the sources, h` is the complex

channel coefficient of the link between the `th source and the relay, x` is the trans-

mitted message from the `th source, and zsr represents a vector of AWGN samples,

in which each element is an AWGN with a zero mean and one-sided variance σ2. The

transmit power at the `th source is subject to the constraint 1
n
E [‖x`‖2] ≤ P , where

n denotes the message length. In the second time slot, the network coded message is

transmitted from the relay to the destination, i.e.,

yrd = hrdxr + zrd, (5.1.2)

where yrd is the received signal at the destination from the relay, hrd is the com-

plex channel coefficient of the link between the relay and the destination, xr is the

transmitted message from the relay, and zrd is a vector of AWGN samples, in which

each element is an AWGN with a zero mean and one-sided variance σ2. The transmit

power at the relay is subject to the constraint 1
n
E [‖xr‖2] ≤ P . We define the SNR

as γ = P/(2σ2).
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5.2 Nested LDGM Codes Based on Lattices

In this section, we first review the mapping relationships between the values in a

finite field and the points on a lattice. Then, we design the coding rules for the non-

binary nested codes. At last, we elaborate the code structure of the nested LDGM

codes based on lattices.

Let Λ′ denote a coarse lattice, which is a subset of a fine lattice Λ, i.e., Λ′ ⊂ Λ.

Let the message space be W = Λ/Λ′, where Λ/Λ′ denotes the set of all the cosets of

Λ′ in Λ. Let Fq denote a finite field of size q, where q is a positive prime integer and

q > 2. Let zq(w) be an operation over Fq and let zΛ′(λ) be an operation over the

fundamental Voronoi region of Λ′ [9], denoted by V(Λ′), where w ∈ Fkq and λ ∈ Λ.

Thus,

zq(w) = [w] mod q, zΛ′(λ) = [λ] mod Λ′,

zΛ′(λ) = ψ (zq(w)) , and zq(w) = ψ−1 (zΛ′(λ)) ,
(5.2.1)

where ψ(·) denotes a map labeling the message over Fq to the points over V(Λ′) and

ψ−1(·) denotes the inverse process [62].

Let w` denote the message vector that each of its element is generated indepen-

dently and uniformly over Fq by the `th source and let G` denote the generator matrix

with each of its element over Fq at the `th source. The mathematical operation of

nested codes over Fq can be expressed by

zq

(
L∑
`=1

w`G`

)
= zq (WG) , (5.2.2)

where W = [w1,w2, · · · ,wL], G =
[
GT

1 ,G
T
2 , · · · ,GT

L

]T
and G1, · · · ,GL are mutu-

ally linearly independent generators at different sources.

For the nested non-binary LDGM codes based on lattices, the finite field Fq of the

nested non-binary LDGM codes is regarded as the message space W of the lattices.
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Thus, the coded message w`G` is uniformly distributed over the message space W .

The message rate for each source is defined to be the same as R` , 1
n

log2 |W| =

r` log2 q, where r` is the LDGM code rate at the `th source.

At the `th source, let t` denote the coded message on Λ and let d` denote

a dither generated independently according to a uniform distribution over V(Λ′).

Then, we have

t` = ψ(w`G`) and x` = zΛ′(t` + d`). (5.2.3)

At the relay, as in [9], we optimise the system performance by choosing a scale

factor α and a coefficient vector a , (a1, a2, · · · , aL), where α ∈ C, C denotes the

complex field, and a ∈ Λ. It is worth noting that, to guarantee the successful decoding

of all the messages at the destination, it is assumed that a` 6= 0, ∀` ∈ {1, 2, · · · , L}.

Then, we obtain

zΛ′

(
αysr −

L∑
`=1

a`d`

)
= zΛ′

(
L∑
`=1

a`t` + n

)
, (5.2.4)

where n =
∑L

`=1(αh` − a`)x` + αzsr.

Thus, the transmitted network coded message from the relay to the destination

is xr = zΛ′

(∑L
`=1 a`t` + n + dr

)
, where dr is a dither generated independently ac-

cording to a uniform distribution over V(Λ′) at the relay.

At the destination, we remove the dither by choosing scalars β ∈ C and b ∈ Λ,

and obtain the received lattice signal v (see Fig. 5.1) given by

v = zΛ′ (βyrd − bdr) = zΛ′

(
b

L∑
`=1

a`t` + m

)
= zΛ′(u + m),

(5.2.5)

where the effective noise m = bn + (βhrd − b)xr + βzrd.

Then, we define a function τ(·) that converts the received ith lattice signal vi, vi ∈



Chapter 5. Network Coded Non-Binary LDGM Codes Based on . . . 59

v in (5.2.5), into the log-likelihood ratio vector L(ui) as the input of the decoder, i.e.,

L(ui) = τ(vi), ∀i ∈ {1, · · · , n}, ui ∈ u, vi ∈ v, (5.2.6)

where L(ui) ,
[
L(ui = λ(1)), · · · , L(ui = λ(q−1))

]
. Let λ(ξ) denote the ξth non-zero

fine lattice point in V(Λ′), and we have

L(ui = λ(ξ)) , ln
Pr
(
ui = λ(ξ)

)
Pr (ui = 0)

, ∀ξ ∈ {1, · · · , q − 1}. (5.2.7)

The detailed process of τ(·) function is given as follows. First, we expand (5.2.5),

corresponding to the ith signal, as

vi = zΛ′(ui +mi)

= zΛ′(ui,rl + jui,im +mi,rl + jmi,im)

= zΛ′(vi,rl + jvi,im), mi ∈m,

(5.2.8)

where mi,rl and mi,im are approximated as the realisations of Gaussian random vari-

ables with the same variance σ2
m. The joint probability density function of vi,rl, vi,im is

p(vi|ui)

=
1

2πσ2
m

k1=∞∑
k1=−∞

k2=∞∑
k2=−∞

exp

(
−(vi,rl − ui,rl − qk1)2

2σ2
m

− (vi,im − ui,im − qk2)2

2σ2
m

)
,

(5.2.9)

where q is the size of the finite field, as well as the number of fine lattice points

over V(Λ′).

Second, according to the Bayes’ theorem, we have

Pr(ui|vi) =
p(vi|ui)Pr(ui)

Pr(vi)

=gi

k1=∞∑
k1=−∞

k2=∞∑
k2=−∞

exp

(
−(vi,rl − ui,rl − qk1)2

2σ2
m

− (vi,im − ui,im − qk2)2

2σ2
m

)
,

(5.2.10)

where gi = Pr(ui)/(2πσ
2
mPr(vi)) is a constant if all the signals in V(Λ′) are trans-

mitted with equal probability. The normalised constant gi ensures Pr(ui = 0|vi) +
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∑q−1
ξ=1 Pr(ui = λ(ξ)|vi) = 1. Based on (5.2.10), we have the function τ(·) as

τ(vi) = L(ui) =

[
ln

Pr(ui = λ(1)|vi)
Pr(ui = 0|vi)

, · · · , ln Pr(ui = λ(q−1)|vi)
Pr(ui = 0|vi)

]
. (5.2.11)

Hence, given the assumption that the destination knows all the assigned gener-

ators a priori and can obtain a sequence of corresponding coefficients, according to

(5.2.2), it can extract all the messages from all the sources. It should be noticed

that the proposed code structure is significantly different from that in [9]. Following

the analysis in [9], only with sufficiently linear combinations of the transmitted sig-

nals sent from multiple relays, can the destination decode the messages individually.

However, due to the joint design of the nested LDGM codes and lattices, the desti-

nation in the proposed code structure can decode all the messages from one network

coded signal forwarded by the relay. Interested readers can refer to [58, 62] for further

information regarding such a nested code structure.

5.3 Achievable Computation Rate (ACR)

In this section, we will analyse the ACR and select the key parameters α, a, β

and b in the proposed code structure to maximise the ACR. The ACR is defined as

follows: a message rate R` is said to be achievable if and only if for any ε > 0 and n

large enough, can the destination recover all the messages with an average probability

of error ε.

Theorem 5.1. For the complex-valued channels, the ACR of the proposed system can

be expressed by

R(h, a, hrd, b) = log+

(
γ

|b|2‖αh− a‖2γ + |b|2|α|2 + |βhrd − b|2γ + |β|2

)
, (5.3.1)

where log+(x) , max(log2(x), 0).
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Proof. See Appendix B.1.

To maximise the ACR, the related parameters α, a, β and b are optimised by the

following propositions.

Proposition 5.2. The parameters α and β that maximise the ACR are given by

α =
aγhH

γ‖h‖2 + 1
and β =

bγhHrd
γ|hrd|2 + 1

, (5.3.2)

where a is chosen by a greedy approach to maximise the ACR and hH denotes the

Hermitian transpose of h.

Proof. See Appendix B.2.

Proposition 5.3. Given channel coefficient parameters h and hrd, the ACR is max-

imised by choosing the lattice network coding coefficient b to be the closest point to

the origin on Λ.

Proof. See Appendix B.3.

The ACR is derived and used as a theoretical limit for the optimisation of the

proposed codes. Here, different from [9], which only considers the optimisation of

parameters α and a at the relay, I consider a different system model and optimise all

the parameters α, a, β and b by maximising the ACR for the entire system at the

destination. If the chosen parameters can achieve a better ACR, then the performance

of the proposed codes can be improved with the corresponding parameters.

5.4 Code Optimisation

To optimise the proposed nested non-binary LDGM codes based on lattices, we

first develop a corresponding low complexity decoder. Note that a conventional low
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complexity decoding algorithm, such as the fast fourier transform (FFT), requires

that the size of the finite field should be a power of two. However, in the case of the

proposed code structure, the size of the finite field q is a prime. Therefore, I employ

and expand the extended min-sum algorithm in [63] to a lattice-based extended min-

sum (L-EMS) algorithm, where the size of the finite field is a prime. The initialised

channel input of the L-EMS decoder is estimated on the lattice by (5.2.11) and the

exchanged messages between variable nodes and check nodes are truncated vectors

with a length nm ≤ q. With the L-EMS decoder, the computational complexity is

dominated by O(nm log2(nm)), compared with that of the Belief Propagation (BP)

algorithm denominated by O(q2) [64].

We then optimise the proposed codes with the L-EMS decoder. It should be

noted that the structure of the nested non-binary LDGM codes based on lattices is

identical to that of a single “stacked” non-binary LDGM code based on lattices. In

particular, we consider only the average column weight wc of the single “stacked”

non-binary LDGM code, because it is intractable to locate the optimal code among a

huge irregular LDGM matrix set. For a given LDGM code rate, wc will be optimised

with respect to SNR under a certain symbol error rate. Formally, we write

wc,opt = arg min
wc

{γ(wc)}. (5.4.1)

As stated in [65], simulation based approaches have to be used to solve the opti-

misation problem (5.4.1). In this chapter, a lattice-based Monte Carlo method is

employed, where the initialised channel input on lattices is estimated as (5.2.11).
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5.5 Reference Scheme

This section presents a reference scheme based on amplify-and-forward (AF) pro-

tocol1 to compare with the proposed code structure. For the AF, the received signal

at the relay is still (5.1.1) and the received signal at the destination can be written as

yd = hrdA

(
L∑
`=1

h`x` + zsr

)
+ zrd, (5.5.1)

where A is the amplification factor given by A =
√

γ
γ‖h‖2+1

. Then, to successfully

decode the messages at the destination, analogue to the proposed code structure, we

introduce a scale factor ρ ∈ C as well as a coefficient vector c , (c1, c2, · · · , cL), where

c ∈ Λ and c` 6= 0, and then obtain

zΛ′

(
ρyd −

L∑
`=1

c`d`

)
= zΛ′

(
L∑
`=1

c`t` + nAF

)
, (5.5.2)

where nAF =
∑L

`=1(ρhrdAh` − c`)x` + ρhrdAzsr + ρzrd.

Based on Proposition 5.2, the scale factor ρ can be obtained as

ρ =
AcγhHhHrd

A2γ‖h‖2|hrd|2 +A2|hrd|2 + 1
, (5.5.3)

where c can be readily obtained via a greedy approach. Thus, based on Theorem 5.1,

the ACR of the reference scheme based on AF, denoted by RAF , can be obtained as

RAF = log+

(
γ

‖ρhrdAh− c‖2γ + |ρ|2|hrd|2A2 + |ρ|2

)
. (5.5.4)

5.6 Simulation Results

In the simulations, a multi-access relay system with two sources, one relay and

one destination is considered. As in [11], the channels are set as h1 = −1.17 + 2.15j,

1Decode-and-forward (DF) protocol is not considered for comparison because, to the best knowl-
edge of the author, there is not a feasible method except the proposed code structure that can be
implemented to decode the messages at the relay.
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Figure 5.2: The ACR performance of the proposed system with an optimal a and
different choices of b, compared with that of the reference scheme.

h2 = 1.25 − 1.63j and hrd = 0.77 + 1.12j. The lattice partition is chosen to be a

typical Gaussian integer W ∼= Z[i]/δZ[i] as in [60], where δ = 2 + 3i. The finite field

is F13. The LDGM code rate for each source is set as 0.25 and the LDGM code length

is 2000. Thus the message rate R` = 0.25 log2 13. According to Propositions 5.2 and

5.3, the optimal lattice network coding coefficients2 for the proposed code structure

are computed by a = [−1, 1] and b = 1. For the reference scheme, we have c = [−1, 1].

Using the lattice-based Monte Carlo method, we obtain an optimal average column

weight wc = 2.4 for the proposed codes over F13. Subsequently, we construct the

generator matrix G of the corresponding single “stacked” LDGM code. To assign

2Note that the optimal lattice network coding coefficients are the points on the fine lattice and
there are multiple choices for optimal a or b that maximise the ACR. Here I just present one optimal
result of a or b.
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Figure 5.3: The average detection error performance with different values of b.

each source with different linearly independent LDGM codes, we divide the generator

matrix of the single “stacked” LDGM code as3

G1000×2000 =

 G500×2000
1

G500×2000
2

 .
Fig. 5.2 shows the ACR performance of the proposed system with an optimal a and

different choices of b, and that of the reference scheme is also plotted for comparison.

It is illustrated that the curve with the optimal b achieves higher ACR than that with

b = −1 + 1i and b = 2i, respectively, which validates the result in Proposition 5.3

that b should be the closet point to the origin on Λ. It also can be observed that

the proposed system with optimal lattice network coding coefficients performs better

3Here, I simulate symmetric case only where the rates for G1 and G2 are equal. However, it can
be readily extended to asymmetric scenarios by assigning G1 and G2 with different rates.
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Figure 5.4: The average symbol error performance of the proposed codes.

than the reference scheme.

Fig. 5.3 shows the average detection error performance of the proposed system

with the lattice network coding coefficients chosen as b = 1, b = −1 + 1i, and

b = 2i, respectively. Each curve hereafter is obtained by averaging over 1000 runs.

The detection error is defined as the average symbol error rate at the input of the

decoder (i.e., the output of the function τ(·), see Fig. 5.1). Fig. 5.3 shows that the best

average detection error performance is realised by choosing optimal b = 1 compared

with b = −1 + 1i and b = 2i, which is consistent with the result of Proposition 5.3

and the analysis for Fig. 5.2. Besides, the average detection error performance of the

reference scheme is also shown for comparison, which reveals a worse performance

than that of the proposed system.
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In Fig. 5.4, the average symbol error performance of the optimised codes via Sec-

tion 5.4 with the L-EMS decoder are depicted with the truncated message length

nm = 3, 5, 7, and 13, respectively. A tradeoff exists between the code performance

corresponding to the value of nm and the decoding complexity. It is shown that a

further increase of nm from nm = 7 to 13 only results in a marginal performance

improvement, which indicates that nm = 7 can be a good choice for the codes. Con-

cerning the complexity, based on the analysis in Section 5.4, the L-EMS decoder with

nm = 13 is 2.44 times more complex than the L-EMS decoder with nm = 7. Further-

more, the performance of the reference scheme based on AF protocol with nm = 7 are

also simulated in Fig. 5.4 for comparison. The reference scheme employs the same

codes adopted by the proposed system. It is shown that the SNR required by the

proposed code structure to achieve an average symbol rate of 10−4 is about 2dB less

than that required by the reference scheme to achieve the same error rate.



Chapter 6

Distributed and Optimal Resource
Allocation for Power
Beacon-Assisted Wireless-Powered
Communications

In this chapter, the optimal resource allocation is investigated in a power beacon-

assisted wireless-powered communication network (PB-WPCN), which consists of a

set of hybrid access point (AP)-source pairs and a power beacon (PB). Both cooper-

ative and non-cooperative scenarios are considered based on whether the PB is coop-

erative with the APs or not. For the cooperative scenario, a social welfare maximisa-

tion problem is formulated to maximise the weighted sum-throughput of all AP-source

pairs, which is subsequently solved by a water-filling based distributed algorithm. In

the non-cooperative scenario, I formulate an auction game and propose an auction

based distributed algorithm by considering the PB as the auctioneer and the APs as

the bidders. Finally, numerical results are performed to validate the convergence of

both the proposed algorithms and demonstrate the impacts of various system parame-

ters.

68
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Hybrid Access Point Source Power Beacon

Information Transfer

Energy Transfer

Figure 6.1: System model for the proposed PB-WPCN.

6.1 System Model

In this chapter, as shown in Fig. 6.1, we consider a PB-WPCN with one PB and

N APs associated with N (information) sources. The considered network setup is

very likely to find its applications in the practical scenario of small cells, such as

picocells (range from 10 to 100 meters) and femtocells (WiFi-like range), which has

been regarded as one of the key enabling technologies of the upcoming 5G cellular

networks [23]. It is considered that the APs and the PB are connected to constant

power supplies. Each AP aims to collect the information from its associated source.

Denote by N = {1, · · · , N} the set of AP-source pairs. The ith AP-source pair

consists of the ith AP and the ith (associated) source, ∀i ∈ N . We consider that

each source has no fixed energy supplies and thus needs to replenish energy from the

signal1 sent by its AP and/or the PB. It is also considered that all APs are connected

1Note that the energy signal could be designed as a zero-mean pseudo-random signal with arbi-
trary distribution as long as its power spectral density satisfies certain regulations on radio signal
radiation for the operating band of interest since it does not carry any intentional information [66].
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with the PB via backhaul but they are not connected with each other directly. We

assume that all the AP-source pairs work on orthogonal frequency bands, while the

PB can work on all frequency bands. All AP-source pairs work in the half-duplex

mode. The APs and sources are each equipped with one single antenna and the

PB is equipped with M > 1 antennas. Full CSI is assumed to be available at the

transmitter side.

We exploit the “harvest-then-transmit” protocol proposed in [28]. Specifically,

each source first harvests energy from RF signals broadcast by its associated AP

and/or the PB in the DL and then uses the harvested energy for information trans-

mission in the UL. By considering that the sources may be low-cost, low-complexity

and low-energy devices, it is assumed that an integrated architecture is adopted at

each source, where the energy harvesting component and the information processing

component are integrated together by using one rectifier circuit2 [67]. In this context,

each source can only harvest energy from the RF signals with the frequency inside its

working band, which means that each source can only harvest energy from its own

AP and/or the PB.

As illustrated in Fig. 6.2, it is assumed that all APs and PB perform WET to

sources simultaneously from the beginning of each transmission block T . Denote by τi

the fraction of a transmission block T for DL WET from the ith AP to the ith source.

Denote by τ ′i the fraction for DL WET from the PB to the ith source. Then the DL

2Note that if the sources are advanced enough such that they are equipped with separated front-
end hardware for the energy harvesting unit and the information processing unit, it is also interesting
to consider the case that the RF energy transfer is performed in a wideband manner and the sources
can harvest energy over all frequency bands. However, the design of such a system with wideband
energy transfer would be quite different from and much more complicated than the one considered
with narrowband energy transfer. Thus, as with the initial effort towards the design of the PB-
WPCN, I choose to focus on the case with narrowband energy transfer in this chapter and I would
like to consider the design of another interesting setup with wideband energy transfer as future work.
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DL WET from the th
AP to the th source

i
i

DL WET from the PB 
to the th sourcei

UL information transmission from 
the th source to the th APi i

Figure 6.2: An illustration of the time diagram for ith AP-source pair in a transmis-
sion block T .

WET time for the ith source is thus given by max (τi, τ
′
i) T . During the remaining

time (1−max (τi, τ
′
i)) T , the ith source uses the harvested energy to transmit its

information to its corresponding AP in the UL. For convenience and without loss of

generality, it is assumed that T = 1 in the sequel of this chapter.

We assume that the DL and UL channels are reciprocal. Let scalar gi denote the

complex channel between the ith AP and the ith source and let ki ∈ CM×1 denote

the complex channel vector between the PB and the ith source, where CM×1 denotes

a set of all complex vectors of size M × 1. Besides, we use wi ∈ CM×1 to denote the

beamforming vector at the PB applied to the energy signal transmitted to the ith

source with ‖wi‖2 = 1, where ‖wi‖ is the Euclidean norm of wi. It is assumed that

the ith AP transmits with power pi to the ith source and the PB transmits to each

source on different frequency bands3 with the same power pb. Furthermore, the PB is

constrained by a total energy during each transmission block, denoted by Etot
b , which

leads to a total energy constraint4
∑

i∈N τ
′
ipb ≤ Etot

b .

3Multi-input single-output and orthogonal frequency division multiplexing (MISO-OFDM) can
be adopted at the PB to power the sources on different frequency bands via multiple antennas.

4Generally, an energy consumption constraint should also be imposed to each AP as that to the
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Then, during the DL WET phase, the received signal at the ith source, denoted

by yi, can be expressed as follows when both the ith AP and the PB perform WET

to the ith source,

yi =
√
pigixi,AP +

√
pbk

H
i wixi,PB + ni, (6.1.1)

where xi,AP and xi,PB are the transmitted signals from the ith AP and the PB to the

ith source, respectively, with E
[
|xi,AP |2

]
= 1 and E

[
|xi,PB|2

]
= 1. E [·] denotes the

expectation. (·)H is the Hermitian transpose. ni is the AWGN with a zero mean and

variance σ2. Note that the first or the second term on the right-hand side of (6.1.1)

should be removed when only the PB or the ith AP transfers energy to the ith source.

Since the multi-antenna PB transmits energy signal to a single-antenna source

and full CSI is available at the PB, the optimal energy beamforming vector at the

PB should be maximum ratio transmission (MRT) [41, 68]. We thus have wi = ki

‖ki‖ .

Therefore, at the end of WET phase, the amount of energy harvested by the ith

source, denoted by Es
i , can be written by

Es
i = η (τipiGi + τ ′ipbKi) , (6.1.2)

where 0 < η < 1 is the energy conversion efficiency, Gi , |gi|2 is the channel power

gain between the ith AP and the ith source, Ki , ‖ki‖2 is the equivalent channel

power gain between the PB and the ith source, and the harvested energy from the

noise is ignored since it is negligible in practice [67]. It is also defined that G ,

PB. However, the energy consumption requirement at the APs could be easily satisfied because we
consider that the APs are connected to constant power supplies and only serve their own source
with fixed transmit power. In contrast, the PB needs to transmit wireless energy to multiple sources
and its energy consumption constraint could be frequently violated when the number of sources
becomes large. Moreover, it is worth mentioning that the proposed distributed algorithm elaborated
in Section 6.2 can readily be extended to solve the problem with additional energy constraints for
the APs. For the purpose of exposition, in this chapter I choose to ignore the energy constraint at
each AP.
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[G1, · · · , GN ]H and K , [K1, · · · , KN ]H , respectively. Note that the derivation from

(6.1.1) to (6.1.2) is carried out based on the assumption that the signals transmitted

by the AP and PB are mutually independent as in [69–71].

After the source replenishes its energy in the DL, it then transmits its information

to the AP in the UL. It is assumed that the harvested energy is exhausted by the

source for information transmission. The effect of energy storage and energy con-

sumption of the circuit is disregarded for clarity as in [28, 29]. The transmit power

of the ith source, denoted by qi, is thus equal to

qi =
Es
i

1−max{τi, τ ′i}
=
η (τipiGi + τ ′ipbKi)

1−max (τi, τ ′i)
. (6.1.3)

Then, the achievable throughput at the ith AP can be written as

Ri (τi, τ
′
i) = (1−max (τi, τ

′
i))W log2

(
1 +

Giqi
σ2

)
= (1−max (τi, τ

′
i))W log2

(
1 +

Giη (τipiGi + τ ′ipbKi)

(1−max (τi, τ ′i))σ
2

)
,

(6.1.4)

where W is the bandwidth and σ2 is the noise power, which are assumed to be the

same for all AP-source pairs, without loss of generality. It can be observed from

(6.1.4) that the achievable throughput for the ith source to its AP can be increased

with the assistance of the PB.

In this chapter, both cooperative and non-cooperative scenarios are considered

based on whether the PB is cooperative with the APs or not. In the cooperative

scenario, the PB and the APs cooperate to maximise the network social welfare,

defined as the weighted sum-throughput of all AP-source pairs. In contrast, the PB

and the APs are considered to be self-interested in the non-cooperative scenario. More

specifically, the PB will request a monetary compensation for its wireless charging

service and each AP-source pair will value its benefits with its payment to the PBs.

Note that the cooperative scenario can correspond to the situation that APs and
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the PB are deployed by the same operator as the one considered in [26]. The non-

cooperative scenario could be used to model the case that the APs and the PB are

installed by different operators. In the following sections, the resource allocation

schemes for these two scenarios will be designed, respectively.

6.2 Cooperative Scenario

In this section, a social welfare maximisation problem is first formulated for the

cooperative scenario and then it is solved by a water-filling based algorithm in a

distributed manner.

6.2.1 Problem Formulation

Consider a weight λi > 0 for the ith AP, which represents a gain per unit through-

put from the ith source to its AP. Then, the social welfare maximisation problem can

be formulated as

max
{τi},{τ ′i}

∑
i∈N

λiRi (τi, τ
′
i) ,

s.t. τi, τ
′
i ≥ 0, 0 < max (τi, τ

′
i) < 1, ∀i ∈ N ,∑

i∈N

τ ′ipb ≤ Etot
b ,

(6.2.1)

where the constraint 0 < max (τi, τ
′
i) < 1 guarantees that the weighted sum-throughput

is larger than zero. By observing the objective function of problem (6.2.1), we obtain

the following lemma:

Lemma 6.1. The function Ri (τi, τ
′
i) in (6.1.4) can be rewritten as

Ri (τi, Ei) = (1− τi)W log2

(
1 +

Giη (τipiGi + EiKi)

(1− τi)σ2

)
, (6.2.2)
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where Ei , τ ′ipb is the amount of energy that the PB allocates to the ith source.

Proof. We first prove that max{τi, τ ′i} = τi by contradiction. If τi < τ ′i , then

max{τi, τ ′i} = τ ′i and (6.1.4) becomes

Ri (τi, τ
′
i) = (1− τ ′i)W log2

(
1 +

Giη (τipiGi + τ ′ipbKi)

(1− τ ′i)σ2

)
. (6.2.3)

We can easily see that the right-hand side of (6.2.3) is a monotonically increasing

function of τi. This means that the achievable throughput Ri can always be enhanced

by increasing the value of τi to that of τ ′i . This contradicts the assumption that τi < τ ′i .

We thus have τi ≥ τ ′i , i.e., max{τi, τ ′i} = τi. Furthermore, for the ease of presentation,

it is defined that Ei , τ ′ipb, which is the amount of energy that the PB allocates to the

ith source. Applying these two operations into (6.1.4), we can rewrite it as (6.2.2),

which completes this proof.

Based on Lemma 6.1, we can reformulate the problem (6.2.1) as

max
τ ,E

∑
i∈N

λiRi (τi, Ei) ,

s.t. 0 ≺ τ ≺ 1,

0 � E � τpb,∑
i∈N

Ei ≤ Etot
b ,

(6.2.4)

where τ , [τ1, · · · , τN ]T and E , [E1, · · · , EN ]T , the symbols ≺ or � represent the

element-wise inequality, 0 or 1 is a vector of zeros or ones that has the same size as

τ and E, and the constraint of E is derived based on Ei = τ ′ipb and 0 ≤ τ ′i ≤ τi.

Moreover, we denote by (τ ∗,E∗) the optimal solution to the problem (6.2.4).

We can see from (6.2.4) that the social welfare can only be maximised by jointly

designing the DL WET time of each AP and the energy allocation of the PB. It is
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worth noting that τ and E are mutually interdependent and the achievable through-

put of all APs are coupled together due to the total energy constraint
∑

i∈N Ei ≤ Etot
b .

6.2.2 Optimal Solution and Distributed Algorithm

The convexity of the objective function in problem (6.2.4) can readily be checked

by introducing a new optimisation variable θi = 1−max{τi, τ ′i}, ∀i ∈ N . Substituting

θi into (6.1.4), we can observe that Ri (τi, τ
′
i) is jointly concave on τi, τ

′
i and θi, since

θi is the perspective variable of the log. Accordingly, the problem (6.2.4) is convex

and could be solved by applying standard convex optimisation approaches. However,

these approaches are normally done in a centralised manner. In practice, a distributed

approach is of more interest because it can significantly reduce the network overhead.

Motivated by this, I propose a distributed method with three steps to resolve it in

this section. In step 1, we first find the optimal relationship between τi and Ei by

expressing τi as a function of Ei. Then, the problem (6.2.4) can be reformulated as

a problem with only E as a variable. In step 2, we investigate the properties of the

reformulated problem. Finally, a water-filling based algorithm is proposed to find the

optimal solution of the new problem in step 3. I present the details of these three

steps in the following subsections.

Step 1. Problem Reformulation

We first derive the expression of τi as a function of Ei for each AP. With a given

E that satisfies 0 � E ≺ 1pb and
∑

i∈N Ei ≤ Etot
b , the problem (6.2.4) is decoupled

and we can have the following optimisation problem for each AP regarding τi,

max
τi
Si (τi) , s.t. 0 < τi < 1, τi ≥

Ei
pb
, (6.2.5)
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where Si (τi) can be expressed by

Si (τi) = λiRi (τi, Ei) = λiW (1− τi) log2

(
1 +

Giη (τipiGi + EiKi)

(1− τi)σ2

)
. (6.2.6)

We denote by τi(Ei) the optimal solution of (6.2.5), which is given in the follow-

ing proposition.

Proposition 6.2. Given Ei ∈ [0, pb), the optimal solution τi (Ei) to the problem

(6.2.5) can be expressed by

τi (Ei) =


(z†i−1)σ2−GiηEiKi

(z†i−1)σ2+G2
i ηpi

, if 0 ≤ Ei ≤ Elim
i ,

Ei

pb
, if Elim

i < Ei < pb,

(6.2.7)

where

Elim
i ,

pb

(
z†i − 1

)
σ2(

z†i − 1
)
σ2 +Giη (piGi + pbKi)

, (6.2.8)

and zi
† > 1 can be expressed by

z†i = exp

(
W
(
G2
i ηpi − σ2

σ2 exp(1)

)
+ 1

)
, (6.2.9)

in which W (x) is the Lambert W function that is the solution to the equality x =

W exp(W).

Proof. See Appendix C.1.

Then, by replacing τi in Si (τi) with τi (Ei) given in Proposition 6.2, we have a

function Si (Ei) with only Ei as the variable given by the following Lemma.

Lemma 6.3. Si (Ei) can be expressed by

Si (Ei) =


λiWGiη(piGi+EiKi)

z†i σ
2 ln 2

, if 0 ≤ Ei ≤ Elim
i ,

λiW
(

1− Ei

pb

)
log2

(
1 + XiEi

pb−Ei

)
, if Elim

i < Ei < pb,

(6.2.10)

where Xi ,
Giη(piGi+pbKi)

σ2 .



Chapter 6. Distributed and Optimal Resource Allocation for . . . 78

Proof. See Appendix C.2.

Hence, we now can reformulate the problem (6.2.4) with only E as the variable

as follows

max
E

∑
i∈N

Si (Ei) , s.t. 0 � E ≺ 1pb,
∑
i∈N

Ei ≤ Etot
b . (6.2.11)

Note that we can solve the problem (6.2.11) to obtain E?, and then we can calculate

τ ? based on (6.2.7), thereby solving the original problem (6.2.4).

Step 2. Property Characterisation

To solve the problem (6.2.11), we first characterise the properties of the objective

function
∑

i∈N Si (Ei). Since
∑

i∈N Si (Ei) is a positive summation of N indepen-

dent functions with the same structure, we then first investigate the property of any

function Si (Ei), which is summarised in the following proposition:

Proposition 6.4. When 0 ≤ Ei < pb, Si (Ei) is differentiable and the gradient of

Si (Ei), denoted by ∇Si (Ei), is continuous. ∇Si (Ei) is derived as

∇Si (Ei) =


αi, if 0 ≤ Ei ≤ Elim

i ,

βi (Ei) , if Elim
i < Ei < pb,

(6.2.12)

where αi is a constant given by

αi =
λiWGiηKi

z†iσ
2 ln 2

, (6.2.13)

and βi (Ei) is strictly decreasing, which is expressed as

βi (Ei) = −λiW
pb

log2

(
1 +

XiEi
pb − Ei

)
+

λiWXi

(pb − Ei +XiEi) ln 2
. (6.2.14)

Proof. See Appendix C.2.
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Therefore, based on Proposition 6.4, it is easy to show that Si (Ei) is a concave

function of Ei when 0 ≤ Ei < pb. Then, by letting the first-order derivative of Si (Ei)

be equal to zero, i.e., βi (Ei) = 0, we obtain the stationary point that maximises

Si (Ei), denoted by Eo
i , given by

Eo
i =

pb

(
z‡i − 1

)
σ2(

z‡i − 1
)
σ2 +Giη (piGi + pbKi)

, (6.2.15)

where z‡i > 1 can be expressed as

z‡i = exp

(
W
(
Giη (piGi + pbKi)− σ2

σ2 exp(1)

)
+ 1

)
. (6.2.16)

Note that Eo
i has the same structure as Elim

i given in (6.2.8). The only differences

between them are the parameters z‡i and z†i . Furthermore, we can easily observe that

z‡i > z†i > 1 based on the property of the equation (C.1.2) in Appendix C.1. We divide

both the top and the bottom of the right-hand side in (6.2.15) by
(
z‡i − 1

)
σ2 ( in

(6.2.8) by
(
z†i − 1

)
σ2). We thus can obtain that Elim

i < Eo
i < pb. Now, we have an

important property of Si (Ei): it is increasing when 0 ≤ Ei ≤ Eo
i and decreasing when

Eo
i < Ei < pb. The PB will at most allocate the amount of energy that is equal to Eo

i

to the ith AP to achieve the maximisation of the social welfare. We thus only need

to focus on the interval 0 ≤ Ei ≤ Eo
i for each AP. We now can update the property

of the function Si (Ei) over the interval 0 ≤ Ei ≤ Eo
i in the following proposition:

Proposition 6.5. For 0 ≤ Ei ≤ Eo
i , Si (Ei) is differentiable, increasing and concave,

and ∇Si (Ei) is continuous. ∇Si (Ei) is constant when 0 ≤ Ei ≤ Elim
i while strictly

decreasing when Elim
i < Ei < Eo

i and equal to zero when Ei = Eo
i .

For the ease of understanding, functions τi (Ei), Si (Ei) and ∇Si (Ei), given in

(6.2.7), (6.2.10) and (6.2.12), respectively, are graphically interpreted in Fig. 6.3. We

use the black and red curves to characterise the functions in the intervals 0 ≤ Ei ≤
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(a) τi (Ei) versus Ei. (b) Si (Ei) versus Ei. (c) ∇Si (Ei) versus Ei.

Figure 6.3: Graphical interpretations for the functions (6.2.7), (6.2.10) and (6.2.12)
in the proposed cooperative scenario.

Elim
i and Elim

i < Ei < pb, respectively. We can see from Fig. 6.3(a) that τi (Ei) linearly

decreases in the interval 0 ≤ Ei ≤ Elim
i , but linearly increases when Elim

i < Ei < pb.

The harvesting time from the PB τ ′i = Ei

pb
is also shown in Fig. 6.3(a) using the blue

dashed line, which is always linearly increasing in the whole interval and coincides

with the red curve in the interval Elim
i < Ei < pb. It can be observed in Fig. 6.3(b)

that Si (Ei) is linearly increasing in the interval 0 ≤ Ei ≤ Elim
i , which corresponds

to the observation in Fig. 6.3(c) that ∇Si (Ei) is constant for 0 ≤ Ei ≤ Elim
i . With

the increase of Ei, Si (Ei) is maximised at the point Eo
i , where ∇Si (Ei) equals zero.

Finally, when Eo
i < Ei < pb, Si (Ei) keeps decreasing and ∇Si (Ei) is shown to be

always negative.

Step 3. A Distributed Algorithm

Based on the analysis in step 2, the optimisation problem (6.2.11) can be written as

max
E

∑
i∈N

Si (Ei) ,

s.t. 0 � E � Eo,∑
i∈N

Ei ≤ Etot
b ,

(6.2.17)
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where Eo , [Eo
1 · · · , Eo

N ]T . Based on the property of Si (Ei) summarised in Proposi-

tion 6.5, we then can solve the problem (6.2.17) using a water-filling based approach

[72]. It should be noted that when Etot
b ≥

∑
i∈N E

o
i , the optimisation problem (6.2.17)

has a trivial solution that E?
i = Eo

i , ∀i ∈ N . We thus only consider the case that

Etot
b <

∑
i∈N E

o
i , namely, the PB’s energy will be exhausted to enhance the social

welfare. The optimal solution E? to the problem (6.2.17) can be presented by the

following proposition.

Proposition 6.6. The optimal solution to the problem (6.2.17) is given by E? =

[E?
1 , · · · , E?

N ]T with

E?
i =


γi (ν) , if 0 ≤ ν < αi,

Etot
b −

∑
j∈N\{i}E

?
j , if ν = αi

0, if ν > αi,

(6.2.18)

where ν ≥ 0 is a constant chosen to meet the total energy constraint
∑

i∈N E
?
i = Etot

b

and γi (ν) is a strictly decreasing function on 0 ≤ ν < αi given by

γi (ν) =
pb

(
z§i − 1

)
σ2(

z§i − 1
)
σ2 +Giη (piGi + pbKi)

, (6.2.19)

where z§i > 1 is the unique solution of the equation

zi ln (zi) +

(
νpb ln 2

λiW
− 1

)
zi + 1 =

Giη (piGi + pbKi)

σ2
. (6.2.20)

Proof. See Appendix C.3.

According to Proposition 6.5 and Proposition 6.6, there exists a unique ν to meet

the total energy constraint. However, from Proposition 6.6, if ν = αi, then E?
i has a

unique solution only under the assumption that each AP corresponds to a different αi,

∀i ∈ N . This is because E?
j , ∀j ∈ N\{i} is unique when ν 6= αj. If there is at least
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another AP, say the kth AP, k ∈ N\{i}, and ν = αk = αi, then the optimality can be

achieved with multiple solutions. Based on the proof of Proposition 6.6, the solutions

of E?
i and E?

k can be any combination, which is subject to that 0 ≤ E?
i ≤ Elim

i ,

0 ≤ E?
k ≤ Elim

k and E?
i + E?

k = Etot
b −

∑
j∈N\{i,k}E

?
j .

Next, we propose a water-filling based distributed algorithm to obtain E? by

finding the constant ν. Note that we only consider the case that each AP corresponds

to a different αi, which can be readily modified to adapt to the case that multiple

APs have the same αi. For convenience and without loss of generality, we assume

that α1 > α2 > · · · > αN . As ν is unique and ν ≥ 0, a possible value of ν could be

αi, ∀i ∈ N , or between an interval (αi+1, αi), where αN+1 , 0. Note that when the

optimal ν falls into an interval between any two adjacent αi’s, we need to apply the

iterative water-filling algorithm [73] to achieve it. Specifically, after the PB releases

the current energy price in each round, all the APs update their bids in parallel and

feed them back to the PB within the current round.

We now elaborate the steps in Algorithm 1. Each AP first provides its αi to the

PB, then the PB constructs a descending sequence {αi}i∈N , sets i = 1 and announces

ν(i), which is equal to each αi, sequentially. Then, with ν(i), the jth AP, ∀j ∈ N\{i},

computes the response, here denoted by E
(i)
j , according to (6.2.18), while5 the ith AP

responds that E
(i)
i = Elim

i . Then, by comparing the aggregate of all the responses,

computed by E
(i)
agg =

∑
j∈N\{i}E

(i)
j + E

(i)
i , with Etot

b , the PB can decide on the value

of ν as listed in Algorithm 1. Note that if ν exists in an interval, then a bisection

5According to Proposition 6.6, given ν = αi, the response energy for the ith AP is that E?
i =

Etot
b −

∑
j∈N\{i}E

?
j . However, this happens only when ν is found to meet the total energy constraint.

As proved in Appendix C.3, given ν = αi, under the assumption that the ith AP does not know the
total energy constraint, the possible value of E?

i exists in an interval
[
0, Elim

i

]
. Therefore, in this

case, the ith AP is set to respond that E
(i)
i = Elim

i to the PB. Then the PB knows the interval of
the ith AP, which will help it to make decisions in the following steps.
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Algorithm 1 Water-filling based distributed algorithm

1: Each AP reflects its αi to the PB.
2: The PB constructs a descending sequence {αi}i∈N , sets i = 1 and repeats:

1. The PB announces ν(i) = αi to all APs.

2. The jth AP responds an optimal E
(i)
j to the PB according to Proposition 6.6,

∀j ∈ N\{i}, while the ith AP responds E
(i)
i = Elim

i .

3. The PB computes that E
(i)
agg =

∑
j∈N\{i}E

(i)
j +E

(i)
i and compares E

(i)
agg with

Etot
b :

(a) If E
(i)
agg < Etot

b , then set i = i+ 1 and continue.

(b) Elseif E
(i)
agg ≥ Etot

b and E
(i)
agg − Elim

i ≤ Etot
b , then ν = αi, E

?
j = E

(i)
j , and

E?
i = Etot

b −
∑

j∈N\{i}E
(i)
j .

(c) Else, the unique ν ∈ (αi, αi−1), which can be readily found via a bisection
method.

method [74] can be employed to find the unique value. The implementation of the

bisection method is simple and thus omitted. It can be observed that Algorithm 1

can always find the exact value or the existing interval of ν with at most N iterations,

since ν is unique and 0 ≤ ν ≤ maxi∈N{αi}.

According to Algorithm 1, each AP first needs to measure the (equivalent) channel

power gains Gi and Ki, and acquire the transmit power pb from the PB. The values

calculated by each AP and forwarded to the PB should be αi given in (6.2.13), Elim
i

defined in (6.2.8) and the optimal response obtained by (6.2.18). With these signals

from the APs, the PB announces ν
(i)
i at the end of each iteration and the allocated

energy E?
i finally to each AP.

Finally, with the value of ν achieved via Algorithm 1 and (6.2.18), we can obtain

E?. Subsequently, based on (6.2.7) given in Proposition 6.2, we have τ ?i = τi (E
?
i ) and

τ ? = [τ ?1 , · · · , τ ?N ]T . Therefore, we have already found the optimal solution (τ ?,E?)

of the original problem (6.2.4).
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6.3 Non-Cooperative Scenario

This section investigates the non-cooperative scenario, where the multiple APs and

the PB are assumed to be rational and self-interested. We adopt an auction model to

characterise the conflicting interactions among the APs and the PB, where the APs

are bidders and the PB is the auctioneer. Note that auction theory [75] has been well

investigated and widely applied for designing the resource allocation in cognitive radio

networks [76], D2D communication networks [77] and cooperative communication

networks [78], as well as energy harvesting networks [69, 79]. A cooperative network

with multiple source-destination pairs and a relay was considered in [69], where an

auction based power allocation scheme was proposed to allocate the harvested energy

of the relay in a distributed manner. [79] formulated a non-cooperative game to model

the competitive WET bidding of the users in a WPCN with one AP and multiple

users, where the AP adopted an auction mechanism for DL WET. Both [69] and [79]

adopted the concept of Nash equilibrium to evaluate the strategic interactions between

bidders only. In contrast, in this chapter we adopt a different auction mechanism

to study the hierarchal interaction between the PB (auctioneer) and the AP-source

pairs (bidders). In particular, we employ a well-known Ausubel auction [80], which

constructs an ascending-bid version of the Vickrey-Clarke-Groves (VCG) auction and

induces truthful bidding6 as well as achieving the maximum social welfare, i.e., the

global optimum [75, 80–82]. In the sequel, we first define the utility functions of both

APs and the PB. Then we formulate an auction game, in which an auction based

distributed algorithm is proposed. Last, we analyse the formulated game and prove

6Truthful bidding means that reporting true optimal demand at every iteration is the mutually
best response for each bidder [75].
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convergence of the proposed algorithm.

6.3.1 Utility Functions

We first present the utility functions of APs and the PB, respectively.

The Utility Function of Each AP

Given the unit price of the PB’s energy, denoted by µ, the payment from the ith

AP can be written by

Γi = µEi. (6.3.1)

Therefore, with (6.2.2) and (6.3.1), the utility function of the ith AP can be defined as

Ui (τi, Ei, µ) = λiRi (τi, Ei)− Γi

= λi(1− τi)W log2

(
1 +

Giη (τipiGi + EiKi)

(1− τi)σ2

)
− µEi.

(6.3.2)

The Utility Function of the PB

Recall that E = [E1, · · · , EN ]T . Then, the utility of the PB can be expressed as

Ub (µ,E) =
∑
i∈N

Γi = µ
∑
i∈N

Ei. (6.3.3)

Note that there is a reserve price for the PB, denoted by µ(0). It is assumed that if

the outcome price of an auction game is larger than µ(0), the PB would benefit from

the trade. Otherwise, it would not participate in the trade [76, 82].

6.3.2 Auction Game

Now, we are ready to formulate an auction game, where the APs are bidders and

the PB is the auctioneer. Each AP submits bids to compete for the PB’s energy, in
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order to maximise its utility defined in (6.3.2). On the other hand, the PB aims to

maximise its revenue in (6.3.3) by increasing its energy’s unit price. In particular,

the auctioneer first announces an initial price µ = µ(0), and the bidders respond to

the auctioneer with their optimal demands, i.e., the bids. Then, the auctioneer raises

the price µ until the aggregate demands meet the total energy constraint, and at that

point, the auctioneer concludes the auction and decides the final allocated energy to

each bidder.

In the formulated game, at each round t ≥ 0, with a given price µ(t), the ith AP

has an optimisation problem as

max
τi,Ei

Ui
(
τi, Ei, µ

(t)
)
, s.t. 0 < τi < 1, 0 ≤ Ei ≤ τipb. (6.3.4)

We denote by
(
τ

(t)
i , E

(t)
i

)
the optimal solution of (6.3.4). That is(

τ
(t)
i , E

(t)
i

)
= arg max

τi,Ei

Ui
(
τi, Ei, µ

(t)
)
. (6.3.5)

Thus the bid of the ith AP is E
(t)
i given µ(t). We also denote by Ẽ?

i and Γ̃?i the final

allocated energy and the final payment of the ith AP when the PB concludes the

auction. With Ẽ?
i and Γ̃?i , the utility of the ith AP in (6.3.2) becomes

Ui (τi) = λi(1− τi)W log2

1 +
Giη

(
τipiGi + Ẽ?

iKi

)
(1− τi)σ2

− Γ̃?i . (6.3.6)

We then have an optimisation problem regarding τi as

max
τi
Ui (τi) , s.t. 0 < τi < 1, τi ≥

Ẽ?
i

pb
. (6.3.7)

We use τ̃ ?i to denote the optimal solution to problem (6.3.7), which is the optimal

harvesting time of the ith source from its own AP. Analogue to the proof of Propo-

sition 6.2, we can readily get τ̃ ?i = τi

(
Ẽ?
i

)
, where τi (·) is given by (6.2.7).

Algorithm 2 elaborates the auction steps. Before starting the auction, the PB sets
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Algorithm 2 Auction based distributed algorithm

1: Given Etot
b , price step ∆ > 0, and t = 0, the PB initialises the asking price µ(0).

2: With µ(0), each AP computes and submits its optimal bid E
(0)
i with (6.3.5).

3: The PB sums up all bids that E (0) =
∑

i∈N E
(0)
i and compares E (0) with Etot

b :

1. If E (0) ≤ Etot
b , then the PB ends the auction and quits the trade.

2. Else, then the PB computes the cumulative clinches {C(0)
i }i∈N by (6.3.8),

sets µ(t+1) = µ(t) + ∆, t = t+ 1, and repeats:

(a) The PB announces µ(t) to all APs.

(b) Given µ(t), each AP updates its optimal bid E
(t)
i obtained by (6.3.5).

(c) The PB sums up all bids that E (t) =
∑

i∈N E
(t)
i and compares E (t)

with Etot
b :

i. If E (t) > Etot
b , then the PB records the cumulative clinches {C(t)

i }i∈N
and sequentially sets µ(t+1) = µ(t) + ∆, t = t + 1. The auction
continues.

ii. Else, then by setting T = t, the PB concludes the auction and
computes {C(T )

i }i∈N with (6.3.9). Then, the PB allocates Ẽ?
i = C(T )

i

to the ith AP.

up the iteration index t = 0, the constant price step7 ∆ > 0, and the initial price µ(0).

The price will be announced to all APs, and each AP will submit its optimal bid E
(0)
i

based on the optimal response given by (6.3.5). Then the PB sums up all bids that

E (0) ,
∑

i∈N E
(0)
i , and compares E (0) with Etot

b . If E (0) ≤ Etot
b , then the PB ends the

auction and quits the trade. Otherwise, the PB first computes a cumulative clinch

[80] for each AP, which is the amount of the PB’s energy that each AP is guaranteed

to be allocated. The cumulative clinch for the ith AP at the round t ≥ 0 is given by

C(t)
i = max

0, Etot
b −

∑
j∈N\{i}

E
(t)
j

 . (6.3.8)

7Note that the constant step normally introduces errors to the convergence point [83]. However,
this is not a problem for the considered auction mechanism with the proportional rationing rule
(PRR) [84] given in (6.3.9), which guarantees that the total energy of the PB can be entirely
allocated at last.
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Then, the PB sets µ(t+1) = µ(t) + ∆, t = t+ 1 and updates µ(t) to all APs.

With the updated µ(t), each AP submits its optimal bid E
(t)
i based on the op-

timal response
(
τ

(t)
i , E

(t)
i

)
obtained by (6.3.5). By comparing the aggregate bids

E (t) ,
∑

i∈N E
(t)
i with Etot

b , if E (t) > Etot
b , then the PB records the cumulative

clinches {C(t)
i }i∈N and sequentially sets µ(t+1) = µ(t) + ∆, t = t + 1. The auction

continues till E (t) ≤ Etot
b . By setting T = t, the PB concludes the auction and com-

putes the cumulative clinches {C(T )
i }i∈N according to the proportional rationing rule

(PRR) [84] by

C(T )
i = E

(T )
i +

E
(T−1)
i − E(T )

i∑
i∈N E

(T−1)
i −

∑
i∈N E

(T )
i

(
Etot
b −

∑
i∈N

E
(T )
i

)
, (6.3.9)

where C(T )
i is actually the finally allocated energy to the ith AP and it is a sum of its

last energy bid and a proportion of the remaining energy
(
Etot
b −

∑
i∈N E

(T )
i

)
. Then,

the PB allocates Ẽ?
i = C(T )

i to the ith AP. With Ẽ?
i , the ith AP can decide its final

harvesting time τ̃ ?i . Hence, the utility of the ith AP can be expressed by

Ui
(
τ̃ ?i , Ẽ

?
i

)
= λi (1− τ̃ ?i )W log2

1 +
Giη

(
τ̃ ?i piGi + Ẽ?

iKi

)
(1− τ̃ ?i )σ2

− Γ̃?i , (6.3.10)

where the payment from the ith AP Γ̃?i is given by

Γ̃?i = µ(0)C(0)
i +

T∑
t=1

µ(t)
(
C(t)
i − C

(t−1)
i

)
. (6.3.11)

Notice that the term
(
C(t)
i − C

(t−1)
i

)
in (6.3.11) is actually the amount of energy

that the ith AP is guaranteed to be allocated with the announced price µ(t). Their

product will be the corresponding payment of the ith AP at the current round. By

accumulating these payments generated at each round (from t = 0 to t = T ), we can

achieve the total payment of the ith AP given in (6.3.11). The utility of the PB thus
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is written by

Ub =
∑
i∈N

Γ̃?i =
∑
i∈N

(
µ(0)C(0)

i +
T∑
t=1

µ(t)
(
C(t)
i − C

(t−1)
i

))
. (6.3.12)

6.3.3 Analysis of the Formulated Game

In this subsection, we analyse the formulated auction game. We first derive the

optimal solution to problem (6.3.4) given in the following proposition.

Proposition 6.7. Given a price µ(t) by the PB, the optimal solution to problem

(6.3.4) can be expressed as

(
τ

(t)
i , E

(t)
i

)
=


(

(z†i−1)σ2

(z†i−1)σ2+G2
i ηpi

, 0

)
, if µ(t) ≥ µlimi ,(

γi(µ(t))
pb

, γi
(
µ(t)
))

, if µ(t) < µlimi ,

(6.3.13)

where µlimi is defined as the maximum acceptable price for the ith AP, which is equal

to αi in (6.2.13), z†i and γi (·) are expressed in (6.2.9) and (6.2.19), respectively.

Proof. See Appendix C.4.

Next, we prove that the proposed auction based distributed algorithm has the

following convergence property.

Proposition 6.8. The proposed auction based distributed algorithm converges within

a finite number of iterations.

Proof. Recall that E (t) =
∑

i∈N E
(t)
i and the auction concludes when E (t) ≤ Etot

b .

According to Proposition 6.7, if the asking price µ(t) ≥ µlimi , then the ith AP will

drop from the auction with E
(t)
i = 0. If the asking price µ(t) < µlimi , then the ith

AP always submits a non-zero bid E
(t)
i = γi

(
µ(t)
)
. By referring to Proposition 6.6,
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we can show that γi
(
µ(t)
)

is a strictly decreasing function when 0 ≤ µ(t) < µlimi and

when µ(t) approaches µlimi , we can get

lim
µ→µlimi

E
(t)
i = Elim

i . (6.3.14)

We denote by n the number of iterations when the proposed auction concludes.

Recall that the price step is ∆. Thus µ(T ) = ∆×n+µ(0). When n grows, µ(T ) increases.

Since E
(T )
i is a decreasing function of µ(T ), the summation of bids E (T ) =

∑
i∈N E

(T )
i

will decrease as µ(T ) increases. Therefore, there always exists an E (T ) that satisfies

E (T ) ≤ Etot
b such that the PB concludes the auction. Hence, the number of iterations

n is finite, which completes this proof.

Last, we analyse the required signaling for the computations in the non-cooperative

scenario. According to Algorithm 2, each AP first needs to measure the (equivalent)

channel power gains Gi and Ki, and acquire the transmit power pb from the PB. The

only value calculated by each AP and forwarded to the PB is the optimal bid E
(t)
i

obtained by (6.3.13). With all the bids from the APs, the PB announces the price

µ(t) at the end of each iteration and the allocated energy Ẽ?
i finally to each AP.

6.4 Numerical Results

In this section, numerical results are presented to illustrate and compare the per-

formance of both the proposed cooperative and non-cooperative scenarios. Let dAiSi

and dPSi
denote the distance between the ith source and its AP, and the distance

between the ith source and the PB, respectively, ∀i ∈ N . It is assumed that all

the channels experience quasi-static Rayleigh fading and adopt a distance-dependent

path loss model such as LdXY
= 10−3 (dXY )−ζ , where dXY denotes dAiSi

or dPSi
and
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Table 6.1: System parameters
The bandwidth W 100KHz
The noise power σ2 −80dBm

The path-loss factor ζ 2
The transmit power of the PB pb 2Watt
The transmit power of each AP pi 1Watt

The gain per unit throughput for each AP λi 10/Mbps
The distance between the ith source and its AP dAiSi

10m
The distance between the ith source and the PB dPSi

10m
The number of antennas at the PB 4
The energy conversion efficiency η 0.5

The reserve price for the PB µ(0) 0.001
The price step ∆ 0.01

ζ ∈ [2, 5] is the path-loss factor [85]. Notice that a 30dB average signal power atten-

uation is assumed at a reference distance of 1m in the above channel model [28]. The

system parameters used in the following simulations are listed in Table 6.1.

The curves in Figs. 6.4-6.5 correspond to a network setup consisting of three

AP-source pairs with one randomly generated channel realisation, where the channel

power gains between the APs and sources and the equivalent channel power gains

between the PB and the sources are

G =


0.0446

0.1569

0.8628

× 10−5, K =


0.1616

0.6486

0.4379

× 10−4. (6.4.1)

With these parameters, we thus can compute [α1, α2, α3] =
[
µlim1 , µlim2 , µlim3

]
= [5.6834,

4.7802, 0.4543],
[
Elim

1 , Elim
2 , Elim

3

]
= [0.1676, 0.0989, 0.3299] and [Eo

1 , E
o
2 , E

o
3 ] = [0.6325,

0.8307, 1.3247] based on (6.2.13), (6.2.8) and (6.2.15), respectively.

Fig. 6.4 illustrates the convergence properties in the case Etot
b = 1Joule8 for both

the proposed water-filling based distributed algorithm in Algorithm 1 and the auction

8We consider T = 1s to guarantee the consistency of all physical units.
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Figure 6.4: The convergence properties of both the proposed algorithms when N = 3.

based distributed algorithm in Algorithm 2. It is shown in Fig. 6.4(a) that the value

of ν starts from ν = maxi∈N{αi} = α1 = 5.6834, turns to ν = α2 = 4.7802 and

ν = α3 = 0.4543. Then it is confirmed that ν exists between α3 and α2. With the

bisection method, the proposed water-filling based distributed algorithm converges

within few iterations and the desired ν is achieved. In Fig. 6.4(b), with the increasing

price µ(t) (as the iteration index t increases), the third AP-source pair first quits the

auction when µ(t) ≥ µlim3 and its last bid is approximately equal to Elim
3 = 0.3299

(when the price step ∆ is sufficiently small). When the price µ(t) continues to rise,

the bids of the first and the second AP-source pairs will decrease till the summation

of the bids is smaller than Etot
b . Then the PB concludes the auction, sets t = T

and allocates the energy to each AP-source pair based on (6.3.9), which validates the

convergence of the proposed auction based distributed algorithm.

Fig. 6.5 shows the optimal allocated energy and optimal DL WET time for each

AP-source pair versus Etot
b in the case of N = 3 for both the proposed cooperative and

non-cooperative scenarios. It can be observed in Fig. 6.5(a) that the first AP-source

pair, which has the largest α1 = 5.6834, is first allocated energy by the PB. Then the
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Figure 6.5: The optimal allocated energy and optimal DL WET time for each AP-
source pair versus Etot

b for both cooperative and non-cooperative scenarios.

second and the third AP-source pairs with α2 = 4.7802 and α3 = 0.4543 are allocated

energy by the PB subsequently. With the increase of Etot
b , the optimal allocated

energy E?
i for each AP-source pair in the cooperative scenario converges to Eo

i and

equals Eo
i when Etot

b ≥
∑

i∈N E
o
i . Meanwhile, as expected, the final allocated energy

Ẽ?
i for each AP-source pair in the non-cooperative scenario can efficiently match that

in the cooperative scenario (i.e., E?
i ), when Etot

b is small. But Ẽ?
i plummets to zero

since the value of Etot
b exceeds that of

∑
i∈N E

(0)
i , which is due to the quitting of the

PB in the adopted auction mechanism. Note that when µ(0) is sufficiently small, the

energy payment of each AP to the PB can be ignored in its own utility function.

In this case, the non-cooperative scenario can be approximated to the cooperative

scenario. Thus, the optimal bid E
(0)
i from each AP should approximately equal to

Eo
i , which leads to

∑
i∈N E

(0)
i ≈

∑
i∈N E

o
i . Therefore, the approach of E?

i to Eo
i and
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the plummeting of Ẽ?
i to zero occur almost simultaneously, as depicted in Fig. 6.5(a).

Fig. 6.5(b) shows the trends of both τ ?i and τ̃ ?i versus Etot
b . By increasing Etot

b , the

optimal DL WET time of the first AP-source pair first decreases and then increases

while others remain the same. This is because the first AP-source pair is allocated

energy first. When Etot
b is small, the harvested energy for the source mainly comes

from its associated AP, which corresponds to the case τi > τ ′i (see Proposition 6.2).

But, with the assistance of the PB, the AP can shorten its DL WET time, which

leads to the decrease of τ ?i (or τ̃ ?i ). When Etot
b continually increases, the source can

harvest more energy from the PB, which corresponds to the case that the DL WET

time is dominated by the PB, i.e., τi = τ ′i (see Proposition 6.2). In this case, the

value of τ ?i (or τ̃ ?i ) grows as the value of Etot
b increases. Moreover, we can observe the

same tendency in the second and the third AP-source pairs when they are allocated

energy. When Etot
i ≥

∑
i∈N E

o
i , τ

?
i of each AP-source pair in the cooperative scenario

becomes constant as E?
i = Eo

i , almost at the same time, τ̃ ?i for each AP-source pair in

the non-cooperative scenario equals that in the case each source only harvests energy

from its own AP, which is caused by the quitting of the PB.

Now we show the average performance of both the proposed scenarios and each

curve hereafter is averaged over 104 randomly generated channel realisations. Fig. 6.6

demonstrates the average allocated energy and average DL WET time for each AP-

source pair versus Etot
b in both the proposed cooperative and non-cooperative sce-

narios. E [E?
i ], E[Ẽ?

i ], E [τ ?i ] and E [τ̃ ?i ] are averaged for each AP-source pair and

averaged over 104 channel realisations. It can be observed in Fig. 6.6(a) that the

optimal allocated energy in the cooperative scenario E [E?
i ] rises with the increase of

Etot
b . However, E [E?

i ] decreases with the increment of the number of participating
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Figure 6.6: The average allocated energy and average DL WET time for each AP-
source pair versus Etot

b for both cooperative and non-cooperative scenarios.

AP-source pairs with a given Etot
b because E [E?

i ] is averaged for each AP-source pair.

All E [E?
i ]s corresponding to different N converge to a constant value with the increase

of Etot
b , because the larger Etot

b is, the larger is the probability of Etot
b ≥

∑
i∈N E

o
i in

each simulation block with one channel realisation. For the non-cooperative scenario,

E[Ẽ?
i ] closely matches E [E?

i ] when Etot
b is small, but converges to zero when Etot

b is

sufficiently large due to the quitting of the PB. Fig. 6.6(b) depicts both E [τ ?i ] and

E [τ̃ ?i ] versus Etot
b . When Etot

b increases, both E [τ ?i ] and E [τ̃ ?i ] decrease first and then

increase, and they converge to different values for the reason shown in Fig. 6.5(b).

Besides, when the number of participating AP-source pairs rises, the turning point of

the corresponding curve appears later. The reason is that the more AP-source pairs,

the less energy allocated to each source from the PB. Then, a larger value of Etot
b is

needed to make the DL WET time at each source dominated by the PB.
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Figure 6.7: The average social welfare (i.e., the weighted sum throughput) of both
the proposed cooperative and non-cooperative scenarios versus Etot

b in the case of
different number of participating AP-source pairs.

Fig. 6.7 presents the average social welfare of both the proposed cooperative and

non-cooperative scenarios versus Etot
b in the case of different number of participating

AP-source pairs. The social welfare in the non-cooperative scenario is assumed to be

the aggregate of the utilities of all the AP-source pairs and the PB. It can be observed

that the network setup with a larger N in either proposed scenario achieves a better

social welfare performance due to the energy resource brought by the newly joined

AP-source pairs. The average social welfare of the cooperative scenario increases

as Etot
b grows and approaches a constant value when Etot

b is large enough. This is

because when Etot
b ≥

∑
i∈N E

o
i , as shown in Fig. 6.5(a), the allocated energy to

each source will be a constant value and independent of Etot
b , which leads to the

saturation of the social welfare performance. In the non-cooperative scenario, as
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Etot
b increases, the average social welfare performance closely matches that in the

cooperative scenario when Etot
b is small, but then deteriorates due to the quitting of

the PB when Etot
b ≥

∑
i∈N E

(0)
i . Notice that when Etot

b = 0, i.e., without the PB, the

average social welfare performance is always the worst.



Chapter 7

Distributed Power Control in
Interference Channel with SWIPT:
A Game-Theoretic Approach

This chapter develops a new distributed power control scheme for a power splitting-

based interference channel (IFC) with simultaneous wireless information and power

transfer (SWIPT). The considered IFC consists of multiple source-destination pairs.

Each pair adjusts its transmit power and power splitting ratio to meet both signal-to-

interference- plus-noise ratio (SINR) and energy harvesting (EH) constraints at its

corresponding destination. To characterise rational behaviours of source-destination

pairs, I formulate a non-cooperative game for the considered system, where each pair

is modeled as a strategic player who aims to minimise its own transmit power under

both SINR and EH constraints at the destination. I derive a sufficient condition for

the existence and uniqueness of the Nash equilibrium (NE) for the formulated game.

The best response strategy of each player is derived and then the NE can be achieved

iteratively. Numerical results show that the proposed game-theoretic approach can

achieve a near-optimal performance under various SINR and EH constraints.

98
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7.1 System Model and Game Formulation

In this section, I first describe the system model and then formulate a non-

cooperative game for the considered network.

7.1.1 System Model

Consider an IFC consisting of N source-destination pairs. I use N = {1, · · · , n

· · · , N} to denote the index set of source-destination pairs, in which the nth pair

consists of the nth source and the nth destination. All pairs are assumed to share the

same frequency band and thus they interfere with each other. It is assumed that all

sources and destinations are equipped with one antenna and operate in a half-duplex

mode. Each destination is equipped with a power splitting [33] device so that it is

able to decode the information as well as harvest energy from the received signal at

the same time. Besides, it is considered that the links between all nodes experience

slow and frequency-flat fading.

Let hnn and hmn denote the channel gain from the nth source to the nth destina-

tion and that from the mth source to the nth destination, respectively. At the nth

destination, the received signal before power splitting can be expressed as

yn = hnn
√
pnxn +

∑
m∈N/{n}

hmn
√
pmxm + zn, (7.1.1)

where pn and pm are transmit powers of the nth source and mth source, respectively.

xn and xm denote the unit-energy symbols transmitted by the nth source and mth

source. zn ∼ CN (0, δ2
n) is the additive noise introduced by the receiver antenna at

the nth destination.

The nth destination splits the received signal into two streams with a power
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splitting ratio αn. The fraction
√
αn of the received signal is used for EH, while the

remaining
√

1− αn fraction is passed to the ID unit. The ID unit at each receiver

will introduce an additional baseband noise to the signal stream passed to the ID

circuit. It is assumed that this additional baseband noise is an additive Gaussian

random variable with zero mean and variance σ2
n and it should be independent of the

antenna noise zn. Accordingly, we can express the respective harvested energy and

received SINR at the nth destination by

En
(
pn, αn;p−n

)
= ηαn

∑
m∈N

pmGmn, (7.1.2)

SINRn

(
pn, αn;p−n

)
=

(1− αn) pnGnn

(1− αn)
(∑

m∈N/{n} pmGmn + δ2
n

)
+ σ2

n

, (7.1.3)

where p−n , [p1, · · · , pn−1, pn+1, · · · , pN ]T , Gnn , |hnn|2, Gmn , |hmn|2, and 0 < η <

1 is the energy conversion efficiency. The notation
(
pn, αn;p−n

)
indicates that pn and

αn are variables given p−n. Note that in (7.1.2), the amount of energy harvested from

the antenna noise is ignored since it is normally below the sensitivity of the energy

harvesting device in practice [67].

7.1.2 Game Formulation

I follow [37, 38] and assume that each destination is subject to strict QoS and EH

constraints. The QoS constraint requires that the received SINR at the nth destina-

tion, i.e., SINRn given in (7.1.3), should be no less than a predefined threshold γn,

while the EH constraint imposes the condition that the value of En defined in (7.1.2)

should be larger than or equal to the energy threshold En. In contrast to [37, 38],

which assume that all source-destination pairs are cooperative to minimise the net-

work total transmit power, I consider an alternative non-cooperative scenario in which
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the source-destination pairs are all rational and self-interested so that they only want

to minimise their respective transmit powers under their individual SINR and EH

constraints. In this case, the results presented in [37, 38] by minimising the network

total transmit power may no longer be applicable for the considered non-cooperative

scenario. In this regard, I model the considered system by the well-established game

theory [86]. Specifically, I formulate the following non-cooperative game:

• Players : The N source-destination pairs.

• Actions : Each pair determines its source transmit power and the power splitting

ratio at the destination, i.e., (pn, αn), to minimise its transmit power under the

SINR and EH constraints at the destination.

• Utilities : The source transmit powers pn.

We notice that each player’s strategy (pn, αn) only depends on the transmit powers

of the others p−n, as the power splitting ratio of each player only operates at the

destination side. Thus, given the transmit powers of the others p−n, the best response

strategy of the nth pair (player) is the solution to the following optimisation problem,

min
{pn,αn}

pn,

s.t. C1 : 0 ≤ αn ≤ 1,

C2 : pn ≥ 0,

C3 :
(1− αn) pnGnn

(1− αn)
(∑

m∈N/{n} pmGmn + δ2
n

)
+ σ2

n

≥ γn,

C4 : ηαn
∑
m∈N

pmGmn ≥ En.

(7.1.4)

We denote by (p?n, α
?
n) the optimal solution to the optimisation problem (7.1.4).

It is straightforward to verify that (7.1.4) always has a feasible solution. Considering
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that pn and αn should be jointly optimised and they are all dependent on p−n, we can

rewrite αn as a function of pn and p−n, i.e., αn = fn
(
pn,p−n

)
. Then, we denote by

Pn
(
p−n

)
the feasible power policies of the nth pair given the others’ power strategies,

which can be expressed as

Pn
(
p−n

)
, {pn > 0 :SINRn

(
pn, fn

(
pn,p−n

)
;p−n

)
≥ γn,

En
(
pn, fn

(
pn,p−n

)
;p−n

)
≥ En

}
.

(7.1.5)

Now, we define p? = [p?1, · · · , p?N ]T and α? = [α?1, · · · , α?N ]T and denote by (p?,α?)

the solution (if exists) to the formulated non-cooperative game, which is well-known as

the NE [86]. A NE for the formulated game is a feasible profile (p?,α?) that satisfiesp?n ≤ pn

α?n = fn
(
p?n,p

?
−n
) , ∀pn ∈ Pn

(
p?−n

)
, ∀n ∈ N . (7.1.6)

7.2 Existence and Uniqueness of the NE

In this section, I first analyse the best response strategy of each source-destination

pair by solving the optimisation problem (7.1.4). Then, I derive a sufficient condition

that guarantees the existence and uniqueness for the NE of the formulated game.

7.2.1 The Best Response Strategy

Now, we calculate the best response strategy (p?n, α
?
n) for the nth pair by solving

the optimisation problem (7.1.4), which is described in the following proposition,

Proposition 7.1. Given p−n, the optimal response strategy of the nth pair can be

expressed as 
p?n = −Xn+Yn+γnXn+γnσ2

n+
√

∆n

2Gnn
,

α?n = Xn+Yn+γnXn+γnσ2
n−
√

∆n

2(Xn+γnXn)
,

(7.2.1)
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where Xn =
∑

m∈N/{n} pmGmn + δ2
n, Yn = En

η
and ∆n = (Xn − Yn + γnXn + γnσ

2
n)

2
+

4γnYnσ
2
n.

Proof. See Appendix D.1.

The best response strategy given in Proposition 7.1 confirms the discussion that

the choice of α?m, ∀m ∈ N /{n}, of the others will not affect the decision of the nth

pair. Therefore, the competitive interaction among the players is actually proceeded

by adjusting their own power allocation strategy. We thus define the best response

function at the nth pair as

p?n = Bn
(
p−n

)
=
−Xn + Yn + γnXn + γnσ

2
n +
√

∆n

2Gnn

, ∀n ∈ N . (7.2.2)

Besides, based on (7.2.1), we have

fn
(
pn,p−n

)
=
Xn + Yn + γnXn + γnσ

2
n −
√

∆n

2(Xn + γnXn)
. (7.2.3)

The NE for the non-cooperative game can now be redefined asp?n = Bn
(
p?−n

)
α?n = fn

(
p?n,p

?
−n
) , ∀n ∈ N , (7.2.4)

which can be readily achieved with the well-known best-response dynamics [71] if its

existence and uniqueness are guaranteed. It is worth mentioning that the adopted

best-response dynamics has a low implementation and computation complexity to

achieve the NE of the formulated game. In particular, each link only needs to mea-

sure its own channel gain (i.e., Gnn) and the power of the interference from all other

links and the antenna noise (i.e., Xn denoted in Proposition 7.1). With these mea-

surements, each link can easily compute its best response strategy based on (7.2.1),

and the NE of the formulated non-cooperative game can be readily achieved by the

proposed algorithm. In the next subsection, I will derive a sufficient condition to
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guarantee the existence and uniqueness for the NE of the formulated game.

7.2.2 A Sufficient Condition

The best-response dynamics, i.e., the iterative behaviours of each player with its

best response strategy, can be regarded as a mapping process [87, 88]. A sufficient

condition to guarantee the existence and uniqueness of the NE is equivalent to the

condition to guarantee the mapping process as a contraction, which then implies that

the mapping has a unique fixed point [88]. We then refer to the contraction mapping

theorem [87], i.e.,

Theorem 7.2. A mapping f(x), RN → RN (R is the set of real numbers) is a

contraction if and only if ||f(x1)− f(x2)|| ≤ β||x1 − x2||, ∀x1, x2, β < 1.

Note that the well-known contraction mapping theorem has been widely adopted

in open literature due to its following advantages [89]. First, it can guarantee not

only the existence of the NE but also the uniqueness of the NE. Second, it does not

require that the space being mapped onto itself is convex or bounded. Third, it has

the inherent convergence property. Additionally, it is also pointed out in [89] that

the contraction mapping theorem provides a quite general condition for the mapping

to have a unique fixed point. Then, we can have the following proposition regarding

the existence and uniqueness of the NE:

Proposition 7.3. The existence and uniqueness of the NE of the non-cooperative

game is guaranteed if the spectral radius1 ρ(Ω) < 1, where the square matrix Ω ∈
1The spectral radius of the matrix Ω is defined as the largest absolute eigenvalue of Ω, i.e.,

ρ(Ω) , max
i

(|λi|), where λi’s are eigenvalues of Ω [90].
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RN×N is defined as

[Ω]n,m =


0, if m = n,

Gmnγn
Gnn

, if m 6= n.

(7.2.5)

Proof. See Appendix D.2.

It is interesting to observe that the sufficient condition obtained in Proposition 7.3

is also that for the power minimisation problem in conventional IFCs with only rate

constraint, which was given and proved in [91]. This indicates that the introduction

of EH constraints does not lead to a stricter sufficient condition for the existence and

uniqueness of the NE.

7.3 Numerical Results

In this section, I provide numerical results to validate the above theoretical anal-

ysis. Let dmn denote the inter-link distance between the mth source and the nth

destination, ∀m ∈ N /{n}, and let dnn denote the inner-link distance between the

nth source and the nth destination. All channels are assumed to experience quasi-

static Rayleigh fading. I adopt a channel model with E [Gmn] = 10−3(dmn)−ζ and

E [Gnn] = 10−3(dnn)−ζ , where ζ ∈ [2, 5] is the path-loss factor [85] and a 30dB av-

erage signal power attenuation is assumed with reference distance of 1m. In all

simulations, I set dmn/dnn = 2, η = 0.5, ζ = 2, δ2
n = −60dBm, and σ2

n = −50dBm,

∀n ∈ N . To evaluate the performance of the formulated non-cooperative game, the

sufficient condition ρ(Ω) < 1 is assumed to be satisfied in the sequel.

First, I demonstrate the convergence of best-response dynamics in the formulated

non-cooperative game for a four-pair setup with one randomly generated channel
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Figure 7.1: The convergence of best-response dynamics in the formulated non-
cooperative game with four source-destination pairs starting from two different sets
of initial points, which are distinguished by solid lines and dash lines.

realisation as well as SINR and EH constraints. The pairs 1-4 are assumed with

SINR constraints 0dB, 0dB, 10dB, 10dB, and EH constraints −20dBm, −10dBm,

−20dBm, −10dBm, respectively. Fig. 7.1(a) and Fig. 7.1(b) show the transmit power

and the power splitting ratio of each pair versus the number of iterations, respectively.

Two cases starting from two random sets of initial points are presented, which are

distinguished by dash and solid lines, respectively. It can be observed from this figure

that both p?n and α?n can converge quickly to the same stationary values (i.e., the

NE) from different starting points. Also, as the minimum p?n is about 20dBm, the

signal-to-noise ratio (SNR) region is over 70dB (σ2
n = −50dBm), which is practical for

energy harvesting devices. Note that I only show results in Fig. 7.1 for one random

realisation of channel gains and the constraints, although similar results can also be

shown for other realisations. This validates the effectiveness of the derived sufficient

condition of the NE.
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Figure 7.2: Averaged total transmit power versus the EH constraint with different
SINR constraints in a two-pair network.

Fig. 7.2 illustrates the averaged total transmit power versus the EH constraints

with different SINR constraints in a two-pair network setup. The SINR and EH

constraints for two pairs are assumed to be the same, respectively. Each curve is

obtained by averaging over 104 independent channel realisations. The averaged total

transmit power obtained by the proposed game-theoretic approach is compared with

an optimal strategy calculated via an exhaustive search. The optimal strategy is

conducted based on the assumption that all source-destination pairs cooperate with

each other to minimise the averaged total transmit power. Note that the optimal

scheme here is actually consistent with the problems considered in [37] and [38]. It

can be observed from Fig. 7.2 that the averaged total transmit power of the proposed
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game-theoretic method can closely match that of the optimal results. Note that the

proposed strategy cannot perfectly coincide with the optimal strategy due to the

rational and selfish behaviours of source-destination pairs in the game formulation.

In addition, it is also shown that with the increasing of γn or En, the averaged total

transmit power increases accordingly to meet the higher SINR and EH constraints.



Chapter 8

Conclusions

In this thesis, I proposed new network coding schemes with designed network

coded structures and investigated resource allocations for the RF energy transfer

schemes with game theoretical approaches. In the following, I summarise the key

results and findings of this thesis.

In Chapter 3, I proposed a multi-source multi-destination wireless relay network

coded scheme combining the merits of nested codes and the OS. I presented the

detailed coding process of the proposed scheme, and derived upper bounds on bit

error probability for the schemes with and without the OS. The code search was also

carried out based on the designed criteria. In the simulation results, the theoretical

upper bounds were validated and it was shown that the designed network coded

scheme outperforms the scheme without the OS on the bit error probability.

In Chapter 4, I proposed a novel NCLC for a MWRC over fading to achieve a

high spectrum efficiency. In particular, the detailed coding process of the proposed

scheme was first presented. Then a theoretical upper bound on WER was derived for

the NCLC and code design criteria were developed by minimising the derived WER.

Simulation results showed that the NCLC can realise multiple interpretations for each
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source in two time slots, and the derived upper bound is asymptotically tight with

the increase of SENRnorm.

In Chapter 5, I proposed a class of nested non-binary LDGM codes based on

lattices for a multi-access relay system. Specifically, I first constructed these novel

codes by considering lattice-signal transmissions at both the sources and the relay.

Besides, I derived the ACR and optimised related parameters to maximise the ACR

for the proposed system. Furthermore, the proposed codes were optimised by using

a lattice-based Monte Carlo method to approach the ACR with a low complexity

L-EMS decoder. Finally, simulation results showed that the optimal setting of the

parameters is consistent with that suggested in the analysis and the proposed code

performs 2dB better than the reference scheme at an average symbol error rate of 10−4.

Chapter 6 investigated the joint time and energy allocation of a PB-assisted

WPCN with multiple AP-source pairs and a PB. I considered both cooperative and

non-cooperative scenarios corresponding to situations in which either the PB provides

wireless charging service to each AP-source pair for free or not. Moreover, the social

welfare was maximised in the proposed cooperative scenario and the respective utility

of each AP and the PB was maximised in the non-cooperative scenario. The numerical

results validated the convergence of both the proposed water-filling based and auction

based distributed algorithms. It was demonstrated that the average social welfare of

the cooperative scenario improves as either the number of participating AP-source

pairs or the total energy of the PB increases, but saturates when the total energy

of the PB is sufficiently large. Moreover, the average social welfare performance of

the non-cooperative scenario closely matches that in the cooperative scenario when

the total energy of the PB is small, but deteriorates when the total energy of the
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PB is sufficiently large, which is caused by the quitting of the PB in the adopted

auction mechanism.

Finally, in Chapter 7, I developed a game-theoretic framework to tackle the dis-

tributed joint power and power splitting ratio problem in an IFC with SWIPT. A

non-cooperative game was formulated for the considered system, where each source-

destination pair is modeled as a selfish and rational player who aims to minimise

its own transmit power under both SINR and EH constraints. The best response

strategy of each player was derived and thus the NE can be obtained iteratively. The

numerical results validated the sufficient condition and showed that the performance

of the proposed game-theoretic approach can closely match the optimal strategy on

averaged total transmit power under various SINR and EH constraints.

In addition to the key results and findings summarised above, there are still some

research problems to be investigated in the future. In the short term, comparisons

between the proposed code constructions in Chapters 3 and 4, and that in the state

of the art will be tried to make. Finding a fair way to compare the results in Chapters

3, 4 and 5 will also be considered. Besides, more interesting results related to the

SWIPT in the IFC will be provided as well. In the long term, further research on

the proposed code structures in Chapters 3, 4 and 5 will be conducted to apply the

findings in the upcoming 5G cellular network. Moreover, practical applications of RF

energy transfer will be considered to support the theoretical results that have been

obtained.



Appendix A

Proofs for Chapter 4. Novel
Nested Convolutional Lattice
Codes for Multi-Way Relaying
Systems over Fading Channels

A.1 Proof of Theorem 4.1

First, I show that maximising the SENR is equivalent to minimising mj/bj. From

Eq. (4.2.11), we have [
bj

L∑
`=1

a`t` + mj

]
mod Λ′

=

[
bj

(
L∑
`=1

a`t` +
mj

bj

)]
mod Λ′

=bj

(
L∑
`=1

a`t` +
mj

bj

)
−QΛ′ (Θ) ,

(A.1.1)

where

Θ = bj

L∑
`=1

a`t` + mj . (A.1.2)

Because QΛ′ (Θ) is the point on the coarse lattice Λ′ and ψ−1 (QΛ′ (Θ)) = 0, we can

regard QΛ′ (Θ) as a regular shift of the signal. Hence, βj should be chosen to minimise
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mj/bj, which is equivalent to maximising the SENR.

It is assumed that the MMSE detector is employed at each receiver node. Let

f(βj) = E
[
|mj/bj|2

]
, from Eqs. (4.2.6) and (4.2.11), we have,

f(βj) = ‖αh− a‖2Ps + |α|2N0 + Pr

∣∣∣∣βjbj hj − 1

∣∣∣∣2 +

∣∣∣∣βjbj
∣∣∣∣2N0. (A.1.3)

It is apparent that f(βj) is convex. By deriving
∂f(βj)

∂βj
= 0, we have,

βj =
bjPrhj

Pr|hj|2 +N0

. (A.1.4)

This completes the proof of Theorem 4.1.



Appendix B

Proofs for Chapter 5. Network
Coded Non-Binary LDGM Codes
Based on Lattices for a
Multi-Access Relay System

B.1 Proof of Theorem 5.1

Let h = [h1, · · · , h`, · · · , hL]. The ACR is obtained based on the observation that

the destination can decode the message with arbitrary coefficients a and b on Λ/Λ′.

Therefore, the message rate is within the ACR as

R` < min
a,b 6=0
R(h, a, hrd, b). (B.1.1)

The effective noise observed at the destination is expressed by m = bn + (βhrd −

b)xr + βzrd. Thus, the average power of the effective noise is

Ne = E
[
‖m‖2

∣∣h, hrd]
= |b|2‖αh− a‖2P + 2σ2|b|2|α|2 + |βhrd − b|2P + 2σ2|β|2.

(B.1.2)

The rate that can be achieved by the lattice code is less than that in [9]

R` < min
a,b 6=0

1

2
log+

(
P

G(Λ)4πeσ2
m

)
, (B.1.3)
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where σ2
m is the one-side variance of the effective noise m, G(Λ) is the normalised

second moment of the lattice Λ and

lim
N→∞

G(Λ(N)) =
1

2πe
. (B.1.4)

With ∀δ > 0, as the dimension N is large enough, we have that G(Λ)2πe < (1 + δ).

Meanwhile, 2σ2
m converges to Ne. It follows that for N large enough, 2σ2

m < (1+δ)Ne.

Thus, by choosing δ small enough, for the complex-valued channels, the ACR is given

by (5.3.1), which completes the proof.

B.2 Proof of Proposition 5.2

First, I show that maximising the ACR is equivalent to minimising Ne. From

(5.2.5), we have

zΛ′

(
b

L∑
`=1

a`t` + m

)
= Θ−QΛ′ (Θ) , (B.2.1)

where Θ = b
∑L

`=1 a`t` + m and the mapping QΛ′(Θ) , arg minλ′∈Λ′ ‖Θ− λ′‖. Since

QΛ′ (Θ) is a point on the coarse lattice Λ′ and ψ−1 (QΛ′ (Θ)) = 0, we can regard

QΛ′ (Θ) as a regular shift of the signal. Hence, α and β should be chosen to minimise

Ne, which is equivalent to maximising the ACR.

It is apparent that Ne is jointly convex in α and β. By solving ∂Ne

∂α
= 0 and ∂Ne

∂β

= 0, we complete the proof.

B.3 Proof of Proposition 5.3

Inserting the expressions of α and β into (5.3.1), we have another expression of

the ACR. Then maximising R(h, a, hrd, b) can be regarded as an equivalent to the
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following minimisation problem,

min
b 6=0

{
|b|2‖a‖2 − |b|

2γ|hHa|2

1 + γ‖h‖2
+ |b|2 − |b|

2γ|hHrd|2

1 + γ|hrd|2

}
. (B.3.1)

By extracting |b|2, as b ∈ Λ, it is optimum to choose b as the closest point to the

origin on the fine lattice Λ and this completes the proof.



Appendix C

Proofs for Chapter 6. Distributed
and Optimal Resource Allocation
for Power Beacon-Assisted
Wireless-Powered Communications

C.1 Proof of Proposition 6.2

To proceed, I first derive the second-order derivative of Si (τi) with respect to τi.

After some simplifications, we have

∂2Si (τi)
∂τi2

= − λiW (Ai +Bi)
2

(1− τi) (1− τi + Aiτi +Bi)
2 ln 2

. (C.1.1)

where Ai =
G2

i ηpi
σ2 and Bi = GiηEiKi

σ2 . Since ∂2Si(τi)
∂τi2

< 0, Si (τi) is a concave function of

τi. Thus, the optimal solution can be obtained by setting the first-order derivative of

Si(τi) equal to zero and comparing the obtained stationary points with the constraints.

That is, ∂Si(τi)
∂τi

= 0. After some algebraic manipulations, we have

zi ln (zi)− zi + 1 = Ai, (C.1.2)

where zi = 1 + Aiτi+Bi

1−τi . Note that zi > 1 as Ai > 0 and 0 < τi < 1. With reference

to [28], f (zi) = zi ln (zi) − zi + 1 is strictly increasing when zi > 1 and f (1) = 0.
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We then can deduce that there exists a unique solution, denoted by z†i > 1, to the

equality f(zi) = Ai. After some manipulations, we obtain

z†i = exp

(
W
(
Ai − 1

exp(1)

)
+ 1

)
, (C.1.3)

in which W (x) is the Lambert W function that is the solution to the equality x =

W exp(W). Let τ †i denote the optimal solution to the equation (C.1.2). Then, we

have 1 +
Aiτ

†
i +Bi

1−τ†i
= z†i . Rearranging this equality, we obtain

τ †i =
z†i − 1−Bi

z†i − 1 + Ai
. (C.1.4)

Recall the constraints on τi in the optimisation problem (6.2.5) that 0 < τi < 1

and τi ≥ Ei

pb
, we have

τi (Ei) = max

{
τ †i ,

Ei
pb

}
, (C.1.5)

since it is easy to check that τ †i < 1 and τ †i > 0 when Ei = 0. To further expand

(C.1.5), we compare the two terms τ †i and Ei/pb and obtain that τ †i < Ei/pb only if

Ei >
pb

(
z†i − 1

)
σ2(

z†i − 1
)
σ2 +Giη (piGi + pbKi)

, (C.1.6)

which is obtained by substituting the expression of Ai and Bi into (C.1.4). Therefore,

the optimal solution τi (Ei) to the problem (6.2.5) can be further expressed as

τi (Ei) =

τ
†
i , if 0 ≤ Ei ≤ Elim

i ,

Ei

pb
, if Elim

i < Ei < pb,
(C.1.7)

where Elim
i is defined as the right-hand side of (C.1.6). This completes the proof.
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C.2 Proof of Lemma 6.3 and Proposition 6.4

When 0 ≤ Ei ≤ Elim
i , by replacing τi in (6.2.6) with τi (Ei), with careful simplifi-

cation, we have

Si (Ei) =λiW
Giη (piGi + EiKi)(
z†i − 1

)
σ2 +G2

i ηpi
log2

(
z†i

)

=λiW
Giη (piGi + EiKi)(
z†i − 1

)
σ2 +G2

i ηpi

(
z†i − 1

)
σ2 +G2

i ηpi

z†iσ
2 ln 2

=
λiWGiη (piGi + EiKi)

z†iσ
2 ln 2

.

(C.2.1)

where the second equality is based on that z†i ln
(
z†i

)
− z†i + 1 =

G2
i ηpi
σ2 (please refer to

the proof in Appendix C.1). Thus, the gradient of Si (Ei) is a constant, denoted by

αi, given by

αi =
∂Si (Ei)
∂Ei

=
λiWGiηKi

z†iσ
2 ln 2

> 0. (C.2.2)

When Elim
i < Ei < pb, by inserting the expression of τi into (6.2.6), we have

Si (Ei) = λiW

(
1− Ei

pb

)
log2

(
1 +

XiEi
pb − Ei

)
, (C.2.3)

where Xi ,
Giη(piGi+pbKi)

σ2 . By deriving the first-order derivative of Si (Ei), we have

the gradient of Si (Ei) when Elim
i < Ei < pb, denoted by βi (Ei), as

βi (Ei) =
∂Si (Ei)
∂Ei

= −λiW
pb

log2

(
1 +

XiEi
pb − Ei

)
+

λiWXi

(pb − Ei +XiEi) ln 2
. (C.2.4)

Moreover, we derive the second-order derivative of Si (Ei) and obtain

∂2Si (Ei)
∂Ei

2 = − λiWX2
i pb

(pb − Ei +XiEi)
2 (pb − Ei) ln 2

< 0. (C.2.5)

Thus, when Elim
i < Ei < pb, βi (Ei) is strictly decreasing.

Furthermore, by inserting the expression of Elim
i , given by (6.2.8), into βi (Ei),
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with simplification, we have

βi
(
Elim
i

)
=

λiW

z†i pb ln 2

(
Xi −

(
z†i ln

(
z†i

)
− z†i + 1

))
=

λiW

z†i pb ln 2

(
Giη (piGi + pbKi)

σ2
− G2

i ηpi
σ2

)
= αi.

(C.2.6)

Hence, on 0 ≤ Ei < pb, Si (Ei) is differentiable and the gradient of Si (Ei) is continu-

ous. This completes the proof.

C.3 Proof of Proposition 6.6

According to Proposition 6.5, the Karush-Kuhn-Tucker (KKT) conditions are

both necessary and sufficient for the optimality of the problem (6.2.17). To proceed,

we first discuss the solution of a problem without the condition 0 � E � Eo. By

removing 0 � E � Eo, we have the Lagrangian as

L =
∑
i∈N

Si (Ei)− ν

(∑
i∈N

Ei − Etot
b

)
, (C.3.1)

Taking the stationarity condition, we have

∇Si (Ei)− ν = 0, (C.3.2)

and the KKT conditions are

ν

(∑
i∈N

Ei − Etot
b

)
= 0, (C.3.3a)

ν ≥ 0. (C.3.3b)

Recall that the gradient of Si (Ei) is subject to that 0 ≤ ∇Si (Ei) ≤ αi when

0 ≤ Ei ≤ Eo
i , on that basis, we begin to discuss the following cases.

Case 1: When Elim
i < Ei ≤ Eo

i , ∇Si (Ei) = βi (Ei), βi (Ei) is strictly decreasing

and 0 ≤ βi (Ei) < αi. Therefore, given 0 ≤ ν < αi, there always exists a unique E?
i
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satisfying (C.3.2). By solving that β (E?
i ) = ν with (6.2.14), we have

zi ln (zi) +

(
νpb ln 2

λiW
− 1

)
zi + 1 = Xi, (C.3.4)

where Xi = Giη(piGi+pbKi)
σ2 , zi = 1 +

XiE
?
i

pb−E?
i

and zi > 1 as Xi > 0 and Elim
i < E?

i ≤ Eo
i .

We denote by z§i > 1 the solution of (C.3.4). Then, we denote E?
i = γi (ν) and obtain

γi (ν) by solving z§i = 1 +
XiE

?
i

pb−E?
i

as

γi (ν) =
pb

(
z§i − 1

)
σ2(

z§i − 1
)
σ2 +Giη (piGi + pbKi)

. (C.3.5)

We then prove that z§i is unique. We first define a function that g (zi) = zi ln (zi)+

(Yi − 1) zi + 1, which is the left-hand side of (C.3.4) and Yi = νpb ln 2
λiW

. By deriving the

first-order derivative of g (zi), we have

∂g (zi)

∂zi
= ln zi + Yi. (C.3.6)

Therefore, as Yi ≥ 0, g (zi) is monotonically increasing when zi > 1. When zi = 1,

we have that g (1) = Yi. Consequently, there exists a unique solution z§i > 1 of the

function g (zi) = Xi, if Xi > Yi. By comparing Xi and Yi, we have

Xi − Yi =
Giη (piGi + pbKi)

σ2
− νpb ln 2

λiW

>
GiηpbKi

σ2
− νpb ln 2

λiW

>
pb ln 2

λiW

(
λiWGiηKi

σ2 ln 2
− αi

)
> 0.

(C.3.7)

Hence, z§i > 1 is the unique solution of (C.3.4).

Furthermore, as βi (Ei) is strictly decreasing, γi (ν) is strictly decreasing as well.

Because of the continuous property of ∇Si (Ei), we have γi (0) = Eo
i and γi (αi) =

Elim
i , respectively.

Case 2: When 0 < Ei ≤ Elim
i , ∇Si (Ei) = αi. Thus, given ν = αi, any value

of Ei between 0 and Elim
i could satisfy (C.3.2). However, by considering the KKT
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conditions, we have that E?
i = Etot

b −
∑

j∈N\{i}E
?
j .

The remaining case of ν > αi leads to E?
i = 0. In summary, we have proved Propo-

sition 6.6, where ν is chosen to meet the total energy constraint that
∑

i∈N E
?
i = Etot

b .

C.4 Proof of Proposition 6.7

The problem (6.3.4) can be solved by following a similar procedure for problem

(6.2.4). We first apply the optimal relationship between τi and Ei and simplify the

problem (6.3.4) to the following one

max
Ei

Ui
(
Ei, µ

(t)
)
, s.t. 0 ≤ Ei < pb, (C.4.1)

where

Ui
(
Ei, µ

(t)
)

= Si (Ei)− µ(t)Ei, (C.4.2)

with Si (Ei) defined in (6.2.10).

Based on the gradient of Si (Ei) shown in (6.2.12), we can readily obtain the

gradient of Ui
(
Ei, µ

(t)
)

with respect to Ei, denoted by ∇Ui (Ei), as follows.

∇Ui (Ei) =

αi − µ(t), if 0 ≤ Ei ≤ Elim
i ,

βi (Ei)− µ(t), if Elim
i < Ei < pb.

(C.4.3)

As βi
(
Elim
i

)
= αi and βi (Ei) is strictly decreasing (refer to Appendix C.2),

∇Ui (Ei) is continuous on 0 ≤ Ei < pb, remains constant when 0 ≤ Ei ≤ Elim
i

and strictly decreasing when Elim
i < Ei < pb. Then, we can infer that when µ(t) ≥ αi,

∇Ui (Ei) ≤ 0, which results in that E
(t)
i = 0. When µ(t) < αi, as µ(t) > 0 and accord-

ing to Proposition 6.5, we have that E
(t)
i is the unique solution of βi (Ei) − µ(t) = 0

and Elim
i < E

(t)
i ≤ Eo

i < pb. According to the analysis in Appendix C.3, we have
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E
(t)
i = γi

(
µ(t)
)
. In summary, we have

E
(t)
i =

0, if µ(t) ≥ µlimi ,

γi
(
µ(t)
)
, if µ(t) < µlimi ,

(C.4.4)

where µlimi = αi and it is defined as the maximum acceptable price for the ith AP.

With the optimal E
(t)
i , the ith AP thus can decide on the optimal τ

(t)
i . The utility

function of the ith AP with the given E
(t)
i and µ(t) can be reduced to

Ui (τi) = λi(1− τi)W log2

1 +
Giη

(
τipiGi + E

(t)
i Ki

)
(1− τi)σ2

− µ(t)E
(t)
i . (C.4.5)

Based on the analysis in Appendix C.1, we can directly obtain that

τ
(t)
i =

τ
†
i , if 0 ≤ E

(t)
i ≤ Elim

i ,

E
(t)
i

pb
, if Elim

i < E
(t)
i < pb.

(C.4.6)

Note that when µ(t) < µlimi , γi
(
µ(t)
)
> γi

(
µlimi

)
and γi

(
µlimi

)
= Elim

i . We now

can express the optimal solution to problem (6.3.4) in a compact form given by

(
τ

(t)
i , E

(t)
i

)
=


(

(z†i−1)σ2

(z†i−1)σ2+G2
i ηpi

, 0

)
, if µ(t) ≥ µlimi ,(

γi(µ(t))
pb

, γi
(
µ(t)
))

, if µ(t) < µlimi .
(C.4.7)

This completes the proof.



Appendix D

Proofs for Chapter 7. Distributed
Power Control in Interference
Channel with SWIPT: A
Game-Theoretic Approach

D.1 Proof of Proposition 7.1

First of all, we could notice that the constraint (C3) and (C4) should hold with

equality at the optimal solution; otherwise, we can reduce the power of pn. Therefore,

we need to solve the following equations
γn − (1−αn)pnGnn

(1−αn)(
∑

m∈N/{n} pmGmn+δ2n)+σ2
n

= 0,

En − ηαn
∑

m∈N pmGmn = 0.
(D.1.1)

Let Xn =
∑

m∈N/{n} pmGmn + δ2
n and Yn = En

η
, we have

(1−αn)pnGnn

(1−αn)Xn+σ2 = γn,

αn (pnGnn +Xn) = Yn.
(D.1.2)

By solving αn first, we can readily obtain

αn =
Xn + Yn + γnXn + γnσ

2
n ±
√

∆n

2(Xn + γnXn)
, (D.1.3)
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where ∆n , (Xn − Yn + γnXn + γnσ
2
n)2 + 4γnYnσ

2
n > 0.

Recall that the optimisation problem (7.1.4) always has a feasible solution and

0 ≤ αn ≤ 1. It is easy to check that

αn =
Xn + Yn + γnXn + γnσ

2
n +
√

∆n

2(Xn + γnXn)

>
Xn + Yn + γnXn + γnσ

2
n +

√
(Xn − Yn + γnXn + γnσ2

n)2

2(Xn + γnXn)

= 1 +
γnσ

2
n

Xn + γnXn

> 1,

(D.1.4)

which is invalid. We thus obtain

α?n =
Xn + Yn + γnXn + γnσ

2
n −
√

∆n

2(Xn + γnXn)
, (D.1.5)

and

p?n =
−Xn + Yn + γnXn + γnσ

2
n +
√

∆n

2Gnn

, (D.1.6)

which completes the proof.

D.2 Proof of Proposition 7.3

We first set Tn(p) = Bn(p−n) and T (p) = (Tn(p))n∈N . Then, the proof of this

proposition follows if the condition given in (7.2.5) can guarantee that the mapping

T (p) is a contraction mapping. To this end, we define that ϕTn(p) = |Tn(p)−Tn(p′)|

and ϕn = |pn − p′n|, ∀p,p′ ≥ 0. Recall that Xn =
∑

m∈N/{n} pmGmn and ∆n =

(Xn − Yn + γnXn + γnσ
2)

2
+ 4γnYnσ

2, we have X ′n =
∑

m∈N/{n} p
′
mGmn and ∆′n =



Appendix D. Proofs for Chapter 7. Distributed Power Control . . . 126

(X ′n − Yn + γnX
′
n + γnσ

2)
2

+ 4γnYnσ
2. Then, we have

ϕTn(p) =|Tn(p)− Tn(p′)| =

∣∣∣∣∣−Xn + γnXn +
√

∆n +X ′n − γnX ′n −
√

∆′n
2Gnn

∣∣∣∣∣
=

∣∣∣∣∣ 1

2Gnn

(
(γn − 1)(Xn −X ′n) +

∆n −∆′n√
∆n +

√
∆′n

)∣∣∣∣∣
=

∣∣∣∣Xn −X ′n
2Gnn

(γn − 1 + Zn(γn + 1))

∣∣∣∣ ,
(D.2.1)

where Zn is defined as

Zn ,
Xn − Yn + γnXn + γnσ

2 +X ′n − Yn + γnX
′
n + γnσ

2√
(Xn − Yn + γnXn + γnσ2)2 + 4γnYnσ2 +

√
(X ′n − Yn + γnX ′n + γnσ2)2 + 4γnYnσ2

.

(D.2.2)

By realising that ∀γn, En > 0, we have |Zn| < 1, which implies that

ϕTn(p) =

∣∣∣∣Xn −X ′n
2Gnn

(γn − 1 + Zn(γn + 1))

∣∣∣∣
<
∑

m∈N/n

∣∣∣∣Gmnγn
Gnn

∣∣∣∣ |pm − p′m| = ∑
m∈N/n

Gmnγn
Gnn

ϕm.
(D.2.3)

We define the vectors ϕT =
[
ϕT1(p), · · · , ϕTN (p)

]T
, ϕ = [ϕ1, · · · , ϕN ]T and define

the square matrix Ω ∈ RN×N given in (7.2.5). We thus have ϕT < Ωϕ. With

reference to [91], we can obtain

‖ϕT ‖w2,block = ‖T (p)− T (p′)‖w2,block < ‖Ω‖w∞,mat‖p− p′‖w2,block, (D.2.4)

where ‖x‖w2,block is the block-maximum norm of a vector x for a positive vector w

[87] and ‖ · ‖w∞,mat is the induced ∞-norm for matrix [90]. Thus, if ‖Ω‖w∞,mat < 1,

the NE is guaranteed to be existent and unique because the mapping in (D.2.4) is a

contraction. As Ω is a nonnegative matrix, we have ‖Ω‖w∞,mat < 1⇔ ρ(Ω) < 1 [87],

which completes the proof.
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[15] D. Gündüz, A. Yener, A. Goldsmith, and H. V. Poor, “The multiway relay

channel,” IEEE Trans. Inf. Theory, vol. 59, no. 1, pp. 51–63, Jan. 2013.

[16] J. Li, J. Yuan, R. Malaney, M. H. Azmi, and M. Xiao, “Network coded LDPC

code design for a multi-source relaying system,” IEEE Trans. Wireless Commun.,

vol. 10, no. 5, pp. 1538–1551, May 2011.



Bibliography 129

[17] S. Bi, C. K. Ho, and R. Zhang, “Recent advances in joint wireless energy and

information transfer,” in Proc. IEEE ITW, Nov. 2014, pp. 341–345.

[18] H. Nishimoto, Y. Kawahara, and T. Asami, “Prototype implementation of am-

bient RF energy harvesting wireless sensor networks,” in Proc. IEEE Sensors,

2010, pp. 1282–1287.

[19] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks with

RF energy harvesting: A contemporary survey,” IEEE Commun. Surveys Tuts.,

vol. 17, no. 2, pp. 757–789, 2nd Quart. 2015.

[20] K. Huang and X. Zhou, “Cutting last wires for mobile communications by mi-

crowave power transfer,” IEEE Commun. Mag., vol. 53, no. 6, pp. 86–93, Jun.

2015.

[21] R. Want, “An introduction to RFID technology,” IEEE Pervasive Comput.,

vol. 5, no. 1, pp. 25–33, Jan.–Mar. 2006.

[22] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić,
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