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ABSTRACT 

Global Positioning System (GPS) or Smartphone technology has been 

increasingly used in travel data collection. Although GPS devices can directly 

record spatial and temporal information, trip ends, travel modes and trip 

purposes are not recorded. So GPS data processing becomes a critical procedure 

to produce these results, which can be used in transport planning. It has been 

proved that GPS records are more reliable than travel diaries; however, the 

quality of GPS data processing work usually influences the quality of results. 

Researchers have been engaging in the improvement of GPS data processing for 

the past decade. Traditionally, data processing for GPS records (from dedicated 

GPS loggers and Smartphones) includes three steps, namely trip identification, 

mode detection and purpose imputation. However, the results of mode and 

purpose detection are entirely based on the result of trip identification. Hence, 

the total accuracy of a GPS survey would be the product of the accuracy of each 

step.  

This thesis focuses on the improvement of travel data quality by improving data 

collection and processing. In this study, a new procedure is introduced which 

combines the process of trip identification and mode detection. Some general 

rules (i.e., a threshold of dwell time and the time interval for recording data) are 

tested. This research also firstly applies a new technology, a life-logging camera, 

to travel data collection. Images are used to help to pursue ground truth -- 

especially recorded trips in which GPS data were missing -- and detect some 

types of travel modes in order to improve the accuracy of data processing. An 

automating image processing procedure is proposed and tested in this study. In 

addition, a concept of “mode-point-chain” is discussed to identify the cases of 

mode change and modify incorrect mode detection results. For the process of 

purpose imputation, more travel information is suggested to be used in the 

process. This thesis also uses tour-based information in trip purpose imputation 

to improve the results. By using the new procedure, the trip identification 

accuracy was increased by almost 30 percent, taking the missing trips into 
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account. Since trip identification and mode detection were combined, this 

increase also benefits mode detection results. With the help of image processing 

and the new procedure of mode change detection, the accuracy of mode detection 

increased by 7% regardless of the accuracy increase in trip identification. The 

new processing method also increased the accuracy of trip purpose imputation by 

8%. This improvement can help researchers and planners obtain more accurate 

data for decision making and planning.  
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1  INTRODUCTION 

This thesis reports on a new method of travel data collection and a corresponding 

procedure for data processing by using Global Positioning System (GPS) devices 

and life-logging cameras based on data collected in Sydney (Australia), Oxford 

(UK), and Cincinnati (USA). In the first chapter, Section 1.1 briefly introduces 

the background of the research topic. A few research questions are identified in 

Section 1.2 to show the motivation of this study. Section 1.3 highlights the 

contribution of this thesis to the field of passive travel surveys and travel data 

processing. In Section 1.4, an outline of the thesis is presented to show the 

structure of the whole thesis.  

1.1 BACKGROUND 

Data collection is a critical procedure for all transport research. The household 

travel survey is one of the critical surveys that obtains information regarding 

individual travel behaviour. The information usually includes socio-demographic 

data, household size and structure, and all the journeys and activities that people 

make on given days, etc. In terms of journeys, not only is the spatial and 

temporal information for origins and destinations collected in the survey, but also 

the choices of travel mode and the types of trip purposes are reported or recorded 

for transport planning and decision making. These types of information can 

enhance research or modelling to forecast changes in travel patterns, transport 

facilities, and policies based on social and economic change and development. The 

models established for transport planning and policy making rely heavily on the 

quality of data collected. Two factors impact the quality of a survey, data quality 

(i.e., the accuracy and relevance of the data collected) and the representativeness 

of the survey.   

Over the past 60 years, researchers have been making efforts to improve travel 

survey methods, so as to impact data quality and response rates, and reduce the 

survey costs at the same time. At the very beginning of collecting travel 

information in the 1950s, a face-to-face interview was usually conducted and is 
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still used in many countries as the principal survey method (Wolf, 2000), After 

that, there has been a new approach that people attempted to apply about every 

decade (Tsui, 2005; Stopher, 2008). Generally, travel surveys have developed 

from self-reported surveys to passive surveys.  Traditionally, no matter what 

method or medium (e.g., paper and pencil, mail, telephone, internet, etc.) they 

use, people need to report their travel information in a travel diary by 

themselves. It has been shown that a self-report survey not only reports 

inaccurate information, but has a relatively high non-response rate. About 18 

years ago, the development of a new technology, GPS, provided an opportunity 

for passive data collection.  

The Global Positioning System (GPS) is a satellite-based navigation system, 

which can offer information about where people or vehicles are at a certain time. 

It can also provide the route and speed of the travel. The system has been widely 

used in military, civil, and commercial applications around the world.  

The GPS survey was then introduced to support or even replace travel diaries to 

record people’s travel information due to the lack of accuracy of the diary survey. 

The GPS survey also collects similar information that people report in travel 

diaries. However, for some important information, e.g., travel modes and trip 

purposes, GPS devices cannot directly and automatically record it. Therefore, a 

process of information imputation is required. Over the past decade, researchers 

have focused on the approaches of processing GPS data, including the data from 

dedicated GPS devices and Smartphones, to improve the accuracy of imputation. 

To provide the data required in travel surveys, GPS data processing typically 

includes trip identification, travel mode detection and trip purpose imputation. 

Although advanced approaches have reached a high level of accuracy in terms of 

identifying trip ends and travel modes, the quality of GPS surveys still suffer 

from the signal issue, which leads to missing data.  
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1.2 RESEARCH QUESTIONS 

For the past decade, GPS devices and Smartphones have become popular in 

travel surveys. However, there are a number of research gaps existing in data 

processing. The first issue is signal noise and signal loss from GPS or 

Smartphone data. It is common that there would be some spurious GPS data 

points (i.e., signal noise) and some data gaps (i.e., missing data) due to 

insufficient satellites to obtain positions or obtain a correct position, or urban 

canyons or cold starts (see more details in Section 2.2). These issues cannot 

simply be solved by applying a new processing method, because no method can 

process data that were not recorded by the devices. According to the history of 

travel surveys, there might be a new method that can change the way of 

collecting travel data. This study addresses this gap by introducing a new 

technology into travel data collection.  

The second issue is that the detection of mode and purpose is based on the result 

of trip identification in the current processing methods. If the result of trip 

identification is poor, mode detection and purpose imputation also cannot 

produce a correct output. This thesis examines this gap to see if the whole 

procedure of GPS data processing might be changed. Another gap is regarding 

“ground truth” for GPS research. Generally, the term “ground truth” is related to 

measurements in cartography, where data collected remotely (e.g., by satellites) 

are validated by measurements made on the ground. In travel data collection in 

transport research, ground truth refers to what the traveller really did (e.g., 

travel time and distance, trip ends, travel modes, trip purposes, etc.). There is 

very little research that has addressed this issue. Although researchers usually 

use various data sources (e.g., prompted recall surveys) as ground truth, these 

data sources also have errors. A Prompted Recall (PR) survey is conducted after 

the main survey, in which respondents are assisted to recall their actual travel 

by receiving GPS-generated maps of where and when they travelled. This study 

introduces a new approach to obtain ground truth. In addition, the methods of 

mode detection and purpose imputation still have potential to be improved. More 

details of research gaps are discussed in Chapter 2.  
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In order to address these gaps, a main research question of this thesis is: 

“To what extent can new and enhanced technologies/methods further 

improve the data quality and the accuracy of detection?”  

Before answering this, a number of sub-questions are also necessary to be 

mentioned: 

- What might be the best travel data collection method in the next ten years? 

- How could the whole GPS data processing procedure be improved? 

- If new technologies will be applied in data collection, how would the new 

data be processed? 

- Should a GPS device still be used for travel data collection? 

In addition to putting more effort into improvement of GPS data processing 

procedures, this thesis also explores changes of lifestyle and the development of 

new technologies, and introduces life-logging cameras in travel surveys. The 

performance of the new devices is also investigated. Applying a new device or 

method to collect data will always be a challenge. The assessment of current 

collection methods has been undertaken in the literature, so it is necessary to 

compare the new method with current collection methods to test the advantages 

of a new method, and the feasibility of applying it. Similar to the beginning of 

GPS applications, a new technology or a new device requires a new approach to 

process the data from the device. Because a travel survey involves a large 

amount of data, automating the processing work is important and required. 

1.3 THESIS CONTRIBUTION TO THE LITERATURE 

The field of travel data processing, especially for GPS data, has been developing 

rapidly; however, some research gaps still exist. There is no standard procedure 

for GPS data processing and there is no evidence proving which method currently 

used is superior to others. This thesis introduces a new device along with the 

GPS device to collect travel data. Also, a corresponding procedure for travel data 

processing is developed to fill the research gaps that currently exist and to 

illustrate the new method’s superiority to other methods.  
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In terms of the use of data, the life-logging camera is applied in this area for the 

first time. The passive camera has been used in research for only a few years, 

mainly in physical activity studies. Because visual content can provide sufficient 

useful information for mode and purpose detection, and the photos are not 

subject to the signal issues, this is a promising technology.  

Another contribution that the life-logging camera can make is to find “ground 

truth”. Most current research uses Prompted Recall (PR) survey data as “ground 

truth” to check the accuracy of the GPS survey and processing. However, PR data 

also have similar problems to self-reported surveys. It is ground-breaking work to 

coordinate/compare images with GPS data for acquisition of better “ground truth” 

data.   

In the steps of trip/segment identification (TI/SI) and mode detection, this thesis 

introduces a new approach which combines these two separate steps. There is no 

research that has been conducted combining these two steps. Since speed change 

is detected in TI/SI, it is inefficient to analyse it again in mode detection; 

therefore, mode detection can be combined with TI/SI, which shortens the 

processing time. It also enables mode detection to be less dependent on TI/SI. In 

this approach, the rules for determining segments are first tested with empirical 

and/or theoretical research. The time interval for GPS devices to record reliable 

data is also tested for the first time. Moreover, signal noise has significant 

negative influences on the detection results. Some researchers ignore this 

problem, resulting in unreliable results, while some researchers take a great 

amount of time on “map editing”, a post-validation step to deal with signal noise 

and signal loss. This thesis discusses a new method of map editing, significantly 

reducing the processing time. By using the life-logging cameras, the other main 

problem of GPS data, i.e., signal loss, can be tackled. Image processing for mode 

detection is another original contribution of this study. Although image 

processing has been used in the recognition of faces, vehicle plates, etc., images 

are adopted in the detection of travel mode for the first time.  
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In the step of trip purpose imputation, the input variables currently used are not 

sufficient. The accuracy of trip purpose imputation based on current methods is 

much lower than the accuracy of mode detection. This study suggests some 

additional information as inputs for the imputation. In addition, tour-based 

information is applied to assist trip purpose detection for the first time. Most 

current research to automate mode and purpose detection is based on 

trips/segments. Each of these trips/segments is regarded as a single, separate 

object when detecting the modes and purposes. However, in reality, there are 

actually some sequences when people travel. Tour-based information is tested 

and then applied in this study for the first time. 

1.4 SUMMARY AND THESIS OUTLINE 

This thesis includes five chapters. Chapter 1 discusses the background to the 

research, introducing a brief history of travel surveys. This chapter also 

introduces the motivation of studying this topic by presenting the main 

contributions to the area of travel data collection. The key points of this chapter 

are: 

- GPS/Smartphone survey is used as a state-of-the-art method in travel 

survey method. 

- The main research question of this thesis is: “to what extent can new and 

enhanced technologies/methods further improve the data quality and the 

accuracy of detection?” 

- This study will contribute to GPS/Smartphone survey methods by 

improving the data processing procedure from data collection to producing 

results for transport planning and travel demand modelling.  

The content of the remaining chapters is set out in the following paragraphs. 

Chapter 2 reviews all the methods of travel data collection from the 1950s to the 

early 21st century. First, some traditional methods, e.g., face-to-face interviews, 

mail surveys, telephone surveys, etc., are discussed, showing the development of 

travel data collection and the motivations to change the methods. The GPS 

survey is then explored. A systematic review of GPS surveys conducted around 
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the world shows the popularity of using GPS devices or Smartphones to collect 

data. Also, different data processing methods are compared in detail. Although 

all the methods are not based on the same dataset, there are some common 

aspects that can be compared. In addition, the technology of the life-logging 

camera is introduced. Chapter 2 lists a number of applications of life-logging 

cameras.   

Chapter 3 presents the framework of a new method that collects travel data and 

processes the data. The rule for identifying trip ends and the interval of recording 

GPS data are tested, to improve the performance of trip identification and reduce 

the processing time. The new combined procedure of trip identification and mode 

detection is discussed based on GPS devices and life-logging cameras. The 

procedure includes the identification of trip ends, mode change, and different 

travel modes. Walk and train trips are detected by GPS devices based on the 

general GPS information and the GIS information obtained externally. Car and 

bicycle trips are detected by life-logging cameras because the critical features for 

these two modes can be easily captured by image processing. Because the shapes 

of critical features for car and bicycle are identical, a Hough transform is adopted 

as the method for detecting these two modes. This new framework also applies 

photos from life-logging cameras to locate and identify the missing trips, which is 

much more reliable than the map editing process. The cost of the map editing 

process is also much higher than image processing, so the new framework can 

reduce the data processing cost compared to existing methods. In terms of 

purpose imputation, new rules of inputting additional travel information and 

tour-based information based on GPS data are discussed.  

Chapter 4 analyses the issues mentioned in Chapter 3 and shows the results and 

findings based on the framework suggested in Chapter 3. The chapter starts from 

some tests of general issues in GPS surveys. A reasonable interval for recording 

GPS data and a threshold of dwell time for determining a stop are suggested. The 

data collected in Oxford, UK are used for the test. The performance of the new 

procedure is demonstrated step by step from segmenting the raw data to final 
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results of trip identification and mode detection. The data collected in Sydney, 

Australia is applied as a case study. In Chapter 4, a comparison is undertaken 

between the results of the new procedure and ground truth to show the accuracy 

of the processing work. Another comparison between the results of the new 

procedure and the existing procedure for processing travel data is also conducted 

to show the accuracy improvements made by the new procedure. A case study 

from the GPS survey in the Greater Cincinnati region, USA shows the 

performance of the new rules applied in purpose imputation.  

Chapter 5 summarises all the findings and analyses in this thesis, and also 

highlights the contributions of this thesis to the literature. Limitations of this 

study are discussed in this chapter, followed by further discussions on this topic. 

Introducing cameras into travel data collection might be controversial as it may 

cause a privacy issue. The way to cope with the ethical issues arising is 

suggested.  
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2 LITERATURE REVIEW 

Travel surveys are widely used around the world for transport planning. 

Traditionally, the face-to-face interview was the first approach used in travel 

surveys in the 1950s. Due to both safety and cost issues, other approaches, such 

as mail-out/mail-back and the telephone survey, gradually replaced face-to-face 

interviews by the 1970s in the US, although face-to-face and other survey 

methods have continued in other countries around the world. In the late 1990s, 

Global Positioning System (GPS) devices started to be introduced in travel 

surveys and have been developed rapidly over the past decade. Because GPS 

devices are very accurate at recording time and positional characteristics of 

travel, GPS surveys can improve the accuracy and depth of travel survey data, 

and correct the trip misreporting issue caused by respondents. Compared with 

GPS records, paper-based travel diaries under-report about 20-30% of trips (Wolf, 

2000; Bricka and Bhat, 2006; Stopher and Greaves, 2009; Stopher and Shen, 

2011). However, as a new method, the GPS survey also has some shortcomings, 

such as unstable signal acquisition in certain areas and difficulties in GPS data 

processing.  

In this section, an overview of travel surveys, especially GPS surveys, is provided. 

In Section 2.1, the history of travel surveys from face-to-face interviews to GPS 

surveys is reviewed, showing the development of travel surveys. Section 2.2 

discusses GPS surveys specifically in different countries. The initial idea of using 

GPS surveys in transport data collection was to replace paper-based travel 

diaries; GPS surveys currently are being applied in a number of transport fields. 

Some of these applications are introduced. The methods of processing GPS data 

are reviewed and compared in Section 2.3. Section 2.4 introduces a new 

technology that potentially could be used in travel surveys. Section 2.4 suggests 

current research gaps, which leads to the research goals and hypotheses for the 

next chapter.  
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2.1 TRADITIONAL TRAVEL SURVEY METHODS 

The role of the travel survey (i.e., travel diaries) is to collect detailed travel and 

activity information from respondents, and then use the collected information in 

travel demand modelling (Arentze et al., 2001). In the field of urban transport 

planning and modelling, the household travel survey started as a face-to-face 

interview in the 1950s in the US, in which interviewers visited the participants’ 

homes and asked questions about the household’s travel information. The 

interviewers recorded the answers using paper and pencil. However, this method 

was considered to be unsafe in some areas in the US and the labour and time 

costs for interviews were too high. Therefore, interviews were gradually replaced 

by the mail-out/mail-back survey, which is another method started in the 1960s 

in the US (Wolf, 2000), in which households received some survey documents by 

mail and returned them after completing the survey. The main problem of a 

postal survey is the low response rate. In addition, the mail survey still needs 

labour to transfer the records from paper to computers.  

In order to overcome the disadvantages of paper-and-pencil surveys, computer 

assisted surveys were introduced in the 1980s. There are three main types of 

computer-assisted survey — the computer-assisted telephone interview (CATI), 

the computer-assisted personal interview (CAPI), and the computer-assisted self-

interview (CASI) (Stopher, 2008). The web survey is one of the CASI methods. 

Respondents can fill in the travel information in a web interface. In the web 

survey, some information, such as travel modes and trip purposes, can be chosen 

from a list, while other information, such as start and end times for a trip and 

addresses of origins and destinations, must be typed in by the respondent. 

However, all of these methods face issues of non-response (Zimowski et al., 1997) 

and misreporting (Wolf, 2000). Therefore, automated data collection methods 

were then considered.  

2.2 GPS TRAVEL SURVEYS 

GPS technology has been used in travel surveys since the late 1990s (Wagner, 

1997). Most GPS surveys were undertaken as supplementary surveys to measure 
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the accuracy of traditional surveys. Due to issues of non-response and data 

inaccuracy in traditional survey methods, GPS technology provides the potential 

to replace the traditional travel survey and obtain more reliable and accurate 

data. Although GPS devices are very accurate at recording time and positional 

characteristics of travel, they cannot record travel mode, trip purpose or the 

number of occupants in a private vehicle – all of which are important attributes 

that are collected in a traditional travel survey. Therefore, data processing 

procedures become critical to the usefulness of GPS surveys, because there would 

be insufficient information for travel modelling purposes without the results of 

the processing.  

For the past decade, GPS surveys have been undertaken in Australia, Austria, 

Canada, China, Demark, France, Israel, Netherlands, Japan, Sweden, 

Switzerland, the UK and the US (Schönfelder et al., 2002; Itsubo, 2006; Oliveira 

et al., 2006; Marchal et al., 2008; Bohte and Maat, 2009; Krygsman and Nel, 

2009; Papinski et al., 2009; Schüssler and Axhausen, 2009; Stopher and 

Wargelin, 2010; Beijing Municipal Committee of Transportation, 2012; Kelly et 

al., 2013;  Kohla and Meschik, 2013; Rasmussen et al., 2013; Stopher et al., 

2013a;) at least. Some countries have conducted a number of GPS studies, but 

Table 2.1 only shows some representative examples of GPS surveys around the 

world. From these surveys, researchers reported that GPS devices can correct the 

trip misreporting issue caused by respondents and improve the accuracy of travel 

data (Bricka et al., 2009). The earliest GPS surveys required participants to enter 

additional trip information into a personal data assistant (PDA) when each trip 

started. However, this step increases the complexity and cost of the GPS survey 

(Bachu et al., 2001). Since researchers improved the methods of processing GPS 

data, the PDAs have no longer been used. 
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Table 2.1 GPS Surveys Conducted in the World 

Location Year Survey purpose Device Sample Size 
Collection 

period 
Technical details 

Processing 

involved* 

Four states in 

Australia 

2007-

2013 

Travel behaviour change 

monitoring 

Dedicated GPS device, recording 

data every second 

130 

households 

15 days (6 

waves) 
Random sampling; GPS-only survey TI, MD 

Ontario, Canada 2007 Route choice Smartphone plus a GPS receiver 31 respondents 2 days 

Snowball sampling; GPS survey with a pre-

interview and a web-based prompted recall 

survey 

TI, PI 

France 
2007-

2008 

Sub-sample of National 

Travel Surveys 

Dedicated GPS device, recording 

data every 10 seconds 

9% of the main 

survey 
7 days 

Random sampling; GPS survey with one day 

travel diary  
TI, MD, PI 

Matsuyama, Japan 2004 
Compare GPS records and 

travel diaries 

GPS-equipped mobile phone, 

recording data every 30 seconds 
31 respondents 5 days 

Non-random sampling; paper-based diary and 

GPS survey with a web diary 
TI 

Jerusalem, Israel 2010 
GPS-only household travel 

survey 

Dedicated GPS device, recording 

data every second 

3000 

households 
1 day 

Random sampling; GPS-only with a 

prompted recall survey  
TI, MD, PI 

Three cities in 

Netherlands 
2007 Residential selection 

Dedicated GPS device, recording 

data every 6 seconds 

1104 

respondents 
7 days 

Random sampling; GPS-only survey with a 

web-based prompted recall survey 
TI, MD, PI 

Western Cape, 

South Africa 
2008 

Assess the reliability of 

GPS survey 

Dedicated GPS device, recording 

data every second 

100 

respondents 
14 days 

Random sampling; GPS survey with two-day 

travel diary 
TI, MD, PI 

Borlänge, Sweden 
1999-

2001 
Traffic safety 

In-vehicle GPS device, recording 

data every second 
310 vehicles 

15 days-243 

days 
Stratified Sampling; in-vehicle GPS survey TI, PI 

Three cities in 

Switzerland 
2008 

Explore whether 

participants pass certain 

billboards 

Dedicated GPS device 
4882 

respondents 

average 6.6 

days 
Random sampling; GPS-only survey TI, MD, PI 

UK 2011 
Test the possibility of 

replacing travel diaries 

Accelerometer-equipped GPS 

units, recording data every second 

429 

households 
7 days 

Random sampling; pilot survey (GPS only) 

for National Travel Surveys 
TI, MD 

Ohio, US 
2009-

2010 

GPS-only household travel 

survey  

Dedicated GPS device, recording 

data every second 

2059 

households 
3 days 

Random sampling; GPS-only survey with a 

web-based prompted recall survey 
TI, MD, PI 

Graz and 

Tullnerfeld, 

Austria 

2009-

2010 

Test an integration of new 

technologies for a mobility 

survey 

Dedicated GPS device 
235 

respondents 
3 days 

Random sampling for four groups (passive 

GPS-only, active GPS-only, GPS with diary, 

and diary-only; pilot GPS survey with 

prompted recall 

TI, MD, PI 

Beijing, China 2010 
Sub-sample of Beijing 

Household Travel Surveys 

Dedicated GPS device, recording 

data every 5 seconds 
890 persons 1 day 

Random sampling; GPS survey with one day 

travel diary  
TI, MD 

Greater 

Copenhagen Area 
2013 

Part of the research on 

travel chain and sustainable 

mobility 

Dedicated GPS device recording 

data every one second 
54 households 3-5 days 

Random sampling from Danish National 

Travel Survey; GPS survey with one day 

travel diary 

TI, MD 

*TI =trip identification, MD= mode detection, PI= purpose imputation
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From the beginning of the 21st century, prompted recall (PR) surveys have 

been conducted, in which respondents are assisted to recall their actual 

travel by receiving GPS-generated maps of where and when they travelled. 

PR surveys are used to validate the GPS data, because GPS devices are 

also subject to some problems such as difficulty in obtaining a signal in 

certain areas and devices being left at home, which means that GPS would 

miss data that need to be collected. 

Bachu et al. (2001) undertook a proof-of-concept experiment with a PR 

survey. This survey was a face-to-face interview in which respondents 

reported their trip purposes and vehicle occupancy. Bachu et al. (2001) 

suggested that PR surveys could reduce burden on the respondent because 

it took only 15-20 percent of the time for completing a one-day diary, 

which results in a high response rate for PR surveys. They also found that 

even after 3-4 days, respondents still could recall their travel information 

in a PR survey.  

Recently, PR surveys have been developed as web-based surveys and 

Smartphone-based surveys (Giaimo et al., 2010; Greaves et al., 2010; Dias, 

et al., 2014; Safi, H., 2014). In these surveys, respondents usually receive 

a map of one day’s travel based on a Geographic Information System (GIS) 

application. They are asked to add more information or correct the GPS 

records in terms of travel modes, trip purpose, and vehicle occupancy. 

Some PR surveys even allow respondents to modify their trip information 

(e.g., changing trip route, inserting trips) (Greaves et al., 2010). 

In a very recent study, Bricka et al. (2012) suggested that the GPS survey 

is more suitable for the younger respondent, while traditional survey 

methods may be better for older respondents, because younger 

respondents are more technology savvy. Another earlier study of the 

factors influencing response rates to GPS surveys by Hawkins and 

Stopher (2004) suggests that the acceptance/rejection rates of GPS surveys 
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between the old and the young have no statistically significant differences. 

Different from Bricka et al.’s research, the method of recruitment of this 

survey in 2004 was a face-to-face interview. Even though the devices used 

in that survey were older generation devices, it still reached the conclusion 

that there is not sufficient evidence to show that the age of respondents 

significantly influences the acceptance of a GPS survey. This suggests that 

different methods for recruitment also may change the response rate for 

different ages.   

It is widely accepted that GPS surveys can report more accurate data. 

However, signal loss and signal noise are the two main issues that GPS 

units have. Signal problems occur for several reasons, such as a cold start 

or warm start, which usually occurs at the beginning of each day (i.e., cold 

start) or when the GPS device switches from “sleep mode” to “working 

mode” after a person stops for one or two hours (i.e., warm start), and 

travelling in urban canyons. Urban canyons are formed by tall buildings 

flanking roads on both sides (Cui and Ge, 2003). Because the tall buildings 

can block the signal of satellites, they have impacts on GPS signal 

reception, and cause missing GPS data due to insufficient satellites. Also, 

signals may be reflected off the buildings, so that an incorrect position 

may be recorded by the GPS device. Signal problems result in missing 

trips or parts of trips and generating spurious trips (a sequence of points 

generated by a stationary GPS device that has been incorrectly identified 

as a trip). For those studies that require data integrity and identification 

of mode for each trip, such as physical activity or energy expenditure for 

the travelling task, the travel information for missing GPS trips becomes 

critically important. Although a number of studies (Tsui, 2005; Chen et al., 

2010; Gong et al., 2012) have discussed the reasons for signal problems, 

only a few studies suggest how to fix the problem or reduce the errors that 

missing data would cause. Chen et al. (2010) used GPS to record data all 

day long without the “sleep mode” to solve the cold/warm start. This would 

increase the dataset size and reduce the working time of a device due to 
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battery issues. The authors do not report the battery performance when 

they turned off the “sleep mode”. Also, they adopted detailed GIS 

information to deal with the issue of travelling in urban canyons. Stopher 

et al. (2013b) added an additional step, called “map editing” to fix some 

data errors manually. Even though there are a few approaches to 

overcome signal problems, missing data and errors are still the main 

challenges for GPS studies.  

 

2.2.1 Smartphone-based GPS surveys 

As Smartphones are becoming one of the necessities of daily life and a 

GPS module is usually built into Smartphones, Smartphone-based GPS 

surveys have been proposed to replace dedicated GPS devices (Gilani, 

2005). Some research projects also use Smartphones to conduct surveys 

(Reddy et al., 2010; Hudson et al., 2012; Xiao et al., 2012; Bierlaire et al., 

2013). Because Smartphones are now increasingly popular, using 

Smartphones to collect GPS data would reduce the costs. Also, most 

Smartphones have GPS and accelerometer sensors, both GPS and 

accelerometer data can be recorded by phones, and could be used to detect 

modes and purposes.  

 

Although the Smartphone has less warm-up time to find the first position 

(Bierlaire et al., 2013), adoption of Smartphones as GPS devices in GPS 

surveys is limited by such issues as short battery life (compared with GPS 

devices), poor accuracy of positioning, and difficulties and high-cost of 

transferring data from phones to data centres (Safi et al., 2013).  

 

2.2.2 GPS Survey Applications 

Because GPS surveys have significant advantages as described above, 

they have been applied in a number of transport fields. Bullock et al. 

(2005) used GPS technology to measure whether a bus service was 

running on time. According to their conclusion, it is also shown that GPS 

is a cost-effective method to collect data. In addition, analysis of highway 
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travel time and travel speed was undertaken by Quiroga and Bullock 

(1998). They concluded that GPS speeds determined from the latitude-

longitude information were preferable for computing segment speeds.  

 

Due to the advantage of GPS to objectively report the spatial locations, 

research on walking and cycling has also used GPS to provide better 

understanding of pedestrians and cyclists’ behaviour. Menghini et al. 

(2009) specifically investigated cyclists’ route choice by GPS data. They 

mentioned that, using GPS data, it is possible to estimate high quality 

route choice models.  

 

Route choice, in fact, is one of the earliest fields to which GPS surveys 

were applied. Wolf et al. (1999) applied GPS surveys for route choice data 

collection, just a couple of years after GPS was introduced in household 

travel data collection to validate travel-demand models. GPS technology 

provides an opportunity to conduct revealed preference surveys for route 

choice research. The accuracy of trip identification and data integrity are 

often the most critical factors for route choice, because missing data could 

lead to inaccuracy of the results of route choice modelling. Papinski et al. 

(2009) recruited 31 individuals to carry GPS devices for their travel, and 

compared their planned routes and observed routes to understand the 

route choice decision-making process. In addition to the research on 

vehicles, the route choice of cyclists has become a hot topic. GPS can be 

used to test the preference of cyclists regarding bicycle facilities (e.g., 

paths, lanes, and boulevards). Generally, cyclists are more concerned with 

travel time and traffic volume, which are sometimes conflicting, because 

the shortest paths usually are arterial roads that have high traffic 

volumes (Dill and Gliebe, 2008; Broach et al., 2012.). Krizek et al. (2007) 

drew a similar conclusion, while they suggest that cyclists may not be 

deterred by intersections. Their conclusion also implies that land-use 

planning and transport policy for cycling could be adjusted according to 

the findings of route choice research.  
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Using GPS devices to assist an on-board survey is another GPS survey 

application (Oliveira and Casas, 2010). GPS was used to record the 

location of the participants and their arrival and departure times so that 

the boarding information, the routes of the trips, and transit trip times 

could be obtained more accurately.  

 

GPS devices have also been applied in the health field to determine where 

physical activity happens (Rodriguez et al., 2005). Rodriguesz et al. (2005) 

combined GPS data with accelerometer data to observe the behaviour of 

transport-related physical activities. Krenn et al. (2011) reviewed several 

GPS applications in physical activity to determine the capability of GPS in 

research on the relationship between physical activity and the 

environment, and they concluded that GPS is a promising tool to obtain 

more reliable data. Mackett et al. (2006) conducted a survey using GPS 

and a diary especially for children to analyse their activities. University of 

California, San Diego has also endeavoured to develop a Personal Activity 

and Location Measurement System (PALMS, http://ucsd-palms-

project.wikispaces.com/) to estimate Physical Activity Energy Expenditure 

by combining accelerometer data, heart rate monitor data, and GPS data.  

 

Stopher et al. (2009) applied GPS travel surveys to evaluate travel 

behaviour change initiatives. They asked respondents over 14 to carry 

GPS devices for a week or 15 days for three waves (from 2005 to 2007). 

The evaluation was undertaken of a TravelSmart intervention in South 

Australia, which was an important element of the national program to 

reduce greenhouse gas emissions from cars. They also used GPS for this 

purpose in Canberra, and have recently completed a long-term evaluation 

over four states in Australia (Stopher et al., 2013a). More recently, they 

have undertaken a new study in northern Adelaide to evaluate another 

TravelSmart intervention from respondents’ travel behaviour changes 

(e.g., changes in VKT (Vehicle Kilometres Travelled), switching mode from 

private vehicle to public transport, etc.).  

http://ucsd-palms-project.wikispaces.com/
http://ucsd-palms-project.wikispaces.com/
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2.3 GPS DATA PROCESSING 

Typical GPS data processing can be divided into two principal steps. The 

first step is to transfer data from GPS devices to computers and create 

output files that could be used for statistical analysis. The second step is 

to identify trips and other information (e.g., travel modes and trip 

purposes). GPS devices can record the travel time and the coordinates of 

locations every second, which can therefore report start time and end 

time, and routes of the trips (Wolf, 2000). Speed is also accurately reported 

by GPS devices which is measured using a Doppler process. However, 

most GPS devices cannot automatically identify trip ends or report travel 

modes and trip purposes, although an in-vehicle device with no internal 

power supply can detect trip ends through the turning on and off of the 

ignition. Figure 2.1 shows a common procedure to process GPS data. 

 

 

Figure 2.1 Process to Analyse GPS Data (Stopher et al. 2008) 
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Most research needs to process millions of data points, so looking for a 

potential way to reduce the number of data points becomes important. 

Although the latest computers have increased their capability, it still 

needs several days to process millions of data points from trip 

identification to mode and purpose detection. In practice, one second as 

the interval to record data is typically used, whilst 3 seconds, 5 seconds, or 

an even longer interval are also applied in some research. Reducing the 

number of data points by increasing the time interval of recording data 

can reduce the processing time and further reduce the data processing cost. 

(Note that using 3-second interval data would reduce the size of data sets 

by two-thirds, and 5-second data by 80 percent). Also, with the increasing 

use of smartphones in travel data collection, increasing the data recording 

interval could improve the performance of other devices (e.g., smartphones) 

to collect data. For instance, smartphones will have a longer battery life if 

a longer interval is used for recording data.  

 

2.3.1 Trip/Segment Identification 

Trip identification (TI) or segment identification (SI) would be the first 

challenge for all researchers. The travel-demand model needs information 

about each trip, and the following data processing (i.e., mode detection and 

trip purpose detection) is currently based on the results of trip 

identification. In this step, the concept trip refers to a one-mode trip, 

which is also known as a segment. There are also two common concepts, 

trip chains and tours, which are usually used by researchers. A trip chain 

means a journey between “significant” locations (e.g., home, workplace, 

etc.). It can show how people link their segments into journeys. A tour 

means a round trip from one place back to the same place. For instance, a 

home-based tour is a tour from home back to home with one or more stops 

away from home.  

 

Currently, most researchers use rule-based algorithms to undertake the 

TI/SI processing. The early work of Wolf (2000) assumed that the dwell 
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time between activities would be a main criterion for TI/SI. She suggested 

that 120 seconds of dwell time would be a reasonable time because the 

traffic signal cycle should always be less than 120 seconds according to the 

Highway Capacity Manual, and the signal light stops should not be 

regarded as trip ends. This rule has been widely accepted. Although other 

researchers provided some supplementary rules (e.g., Schüssler and 

Axhausen (2009) set point density as another criterion; Stopher et al. 

(2008b) adopted a rule of the latitude and longitude change), the 120-

second rule is still being used in practice. However, the 120-second rule 

actually lacks empirical and/or theoretical research to support. Also some 

activities, such as pick-up/drop-off, may have a shorter duration. 

Therefore, it is reasonable to argue that the number of trips may be 

underestimated due to the excessive dwell time. Biljecki (2010) applied a 

two-step method to segment travel. The first step is to segment to journeys 

(between two meaningful locations), and then segment journeys to single-

mode segments before detecting transport modes. He applied 12 seconds 

as a dwell time, which is much less than 120 seconds. However, this 12-

second rule also lacks empirical research to support. With this rule, it 

generated excessive segments. As a result, some segments are merged 

after mode detection if the adjacent trips have the same mode 

classification results. This method may identify stops with short duration 

when people change mode, but it might also generate too many segments 

to merge, which will increase the processing time. Also, it could 

mistakenly merge two segments that have the same mode results but 

there actually is a real stop between them.  

 

In the TI/SI procedure, besides identifying short stops, there are mainly 

two difficulties that need to be dealt with: signal loss and signal noise 

(Tsui, 2005; Biljecki, 2010). Based on the 120-second rule, Tsui (2005) 

analysed the cases of signal loss. Specifically, if the distance travelled 

based on the trip gap is less than 50 metres during the time of signal loss 

(i.e., longer than 120 seconds and shorter than 600 seconds), then there 
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should be a short duration activity occurring in the time of signal loss; if 

the trip gap during this time is more than 500 metres, even if the signal 

loss time is longer than 120 seconds, then it is possibly an underground 

trip without a stop. Most TI/SI methods take the number of satellites and 

the horizontal dilution of precision (HDOP) into account to exclude signal 

noise. In general, this will delete only a few noisy data points. Spurious 

trips still exist in most research results. 

 

All these methods use specific approaches for TI/SI, and the results of this 

step are used further for mode and purpose detection. In this case, mode 

and purpose detection would rely greatly on the reliability of TI/SI. 

Unfortunately, the results of TI/SI still have a great number of problems 

(e.g., spurious trips, missing trips, etc.).  

 

2.3.2 Travel Mode Detection 

Travel mode detection is the next data processing step. Similar to TI/SI, 

mode detection is usually based on rules. It is widely accepted that the 

main criteria for mode detection are travel speed, acceleration/deceleration 

and the information from the GIS database (Stopher et al., 2008b; Gilani, 

2005; Bohte and Maat, 2009). Specifically, speed can distinguish most 

walk trips because they are made at speeds below 6 km/h and car trips, 

which are above 40 km/h, while acceleration/deceleration can be used to 

differentiate bicycle trips from walk trips and public transport trips from 

car trips (Stopher et al., 2008b). Public transport can also be easily 

detected by public transport timetables, and public transport routes and 

stops based on GIS databases. However, one still cannot be fully confident 

of the results because these deterministic methods struggle with the 

ambiguity of two similar modes, such as bicycle and bus. Stopher et al. 

(2008b) also suggested that household information could be used for the 

detection. For example, if the household does not own bicycles or cars, the 

mode they probably use would be public transport. This rule would be 

especially useful when it is difficult to distinguish bicycle trips, bus trips, 
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or car trips only by speed. However, it cannot help to identify modes when 

respondents are passengers rather than drivers because people from other 

households could drive a respondent who does not own a car to a place. 

Comparing to data collected by a prompted recall survey, Stopher et al. 

(2008b) report that 95% of modes are correctly detected by their 

deterministic method.  

 

By adopting GIS databases, map matching is another challenge especially 

for the situation where the quality of GPS data is poor. White et al. (2000) 

discuss some simple map matching algorithms to match inaccurate 

locational data with an inaccurate map/network. However, the match is 

usually somewhat uncertain. Bierlaire et al. (2013) used a more 

sophisticated probabilistic method based on a structural model and a 

measurement mode to match the GPS points and transport networks. 

They calculated the loglikelihood for all the possible routes, and the real 

path is assumed to be that with the highest log likelihood. The 

probabilistic approach not only provides more accurate map matching 

results, but also reduces the influences of GPS data errors. 

 

Some researchers have adopted a probabilistic method to detect mode. 

Schüssler and Axhausen (2009) proposed a fuzzy-logic approach for mode 

detection. They set three fuzzy variables – the median of the speed 

distribution and the 95th percentiles of the speed and acceleration 

distributions. For the median speed, there were four membership 

functions (i.e., very low, low, medium, and high); and for the latter two 

variables, three membership functions were set (i.e., low, medium, and 

high). Based on the membership functions, each mode is given a 

probability. They did not report their accuracy of detection because there 

is no ground truth for them to compare against. As mentioned in Chapter 

1, in travel data collection in transport research, ground truth refers to 

what the traveller really did (e.g., travel time and distance, trip ends, 

travel modes, trip purposes, etc.). The paper does not report the accuracy 
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of detection, but the authors compared the trip distance and distribution 

for each mode between their results and the Swiss Microcensus on Travel 

Behaviour 2005 to evaluate the performance of their system in mode 

detection.  They concluded that mode detection yields realistic results.  

Although researchers are becoming interested in accelerometers, and 

accelerometers have been proved helpful to identify trips and stops 

underground when the GPS signal is lost, it is still arguable whether 

accelerometer data should necessarily be used in mode detection. First of 

all, an accelerometer also has similar problems to GPS devices in 

distinguishing modes with similar accelerometer readings (e.g., trains and 

buses) (Stenneth et al., 2011). Also, accelerometer data are very sensitive 

to the location where people put the device/hold the device, especially for 

cycling due to movements of the cyclist’s body (e.g., the accelerometer data 

would be very different if the respondent fastened the device on his or her 

arms or on their legs when they are cycling).  

 

Biljecki (2010) designed a more sophisticated fuzzy expert system to 

classify more modes. He mentioned several indicators that might influence 

the output, such as speed, proximity to a network (e.g., railway, bus 

network, roads, etc.), water surfaces (for the detection of ferry), potential 

transition points (e.g., parking lots, bus stops, or train stations), 

acceleration, stop rate, heading change rate, elevation, journey distance, 

and journey duration. However, due to the lack of data and low 

performance of some indicators, he only chose mean speed, mean moving 

speed, nearly-maximum speed (i.e., 95th percentile), proximity to the 

nearest network and the location of a segment with respect to a water 

surface as the inputs. He developed a fuzzy expert system that achieved 

91.6% accuracy for ten modes determined by a prompted recall survey and 

the author’s own experiments. Certainty factors are applied in his fuzzy 

system to measure the confidence of drawing a conclusion from the 

evidence. He also suggested that it still had much room for improvement, 
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such as adding more inputs and removing noisy samples, e.g., a gap 

between two trips or a missing trip. 

 

Due to the limitations of setting rules/algorithms for software, researchers 

have tried to apply new technologies in the transport area. Artificial 

Intelligence (AI), a learning system, has become possible to use in GPS 

data processing.  

 

Gonzalez et al. (2010) applied neural networks (NNs) to deduce travel 

modes. They used mobile phones to record GPS data. As they mentioned, 

the advantage of using NNs is that they can explore the information from 

data that is missed by humans or other analysis algorithms. NNs need 

inputs and outputs to learn. In their research, the inputs they chose were 

acceleration, speed, estimated horizontal accuracy uncertainty, the 

percentage of location fixes that refer to the cellular signal coverage area 

instead of the GPS-calculated position of the phone, the standard 

deviation of distances between stop locations, and the average dwell time. 

The NN learnt the small differences between car, bus and walking trips 

based on the input attributes. After the training process, the NN was used 

to automatically determine the modes for new trips. Because neural 

networks perform better with more training data points, they trained the 

system 500 times and got a result with around 90% accuracy for detection 

of all modes determined from the data that people input. There are three 

main limitations of their research. First, the number of inputs for the 

neural networks might be insufficient. More inputs could possibly increase 

the accuracy of the NNs. Second, the sample size (i.e., 114 trips) or the 

amount of GPS data for the training is relatively small. These problems 

influenced their results and also limited their system to determining only 

three different modes. Third, the data they used are mobile phone data 

rather than dedicated GPS data, which have the problems of short battery 

life (compared with GPS devices), lack of multi-tasking, poor accuracy of 

positioning, and difficulties and high-cost of transferring data from phones 
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to data centres. It should be noted that their accuracy of results are still 

not as high as those obtained with rule-based methods. 

 

Tsui (2005) combined a fuzzy logic system with neural networks for mode 

detection. Her work was mainly based on the fuzzy system, while the 

values of parameters for membership functions of the fuzzy sets are 

determined by existing NN software, NEFCLASS-J, developed by the 

Technical University of Braunschweig. It can be improved by developing a 

dedicated NN system for GPS data processing. Her work identified modes 

correctly 94% of the time. However, the accuracy of the detection is 

calculated by comparing the GPS results with volunteers’ travel diary 

results, which are not ground truth. 

 

Similar to the above probabilistic methods, another method currently used 

in mode detection is Bayesian Belief Networks (BBNs). Feng and 

Timmermans (2012) adopted a BBN to detect modes based on both GPS 

data and accelerometer data. Due to the problem of recording speed (they 

were struggling with this manufacturing problem for their devices), they 

had to calculate average speed to define the real speed based on latitude 

and longitude information of each point. This decreases the accuracy of 

detection, because speed is one of the most important factors in the 

detection system. Moreover, the data are not rich enough (only 80,000 

points) for detecting more than five modes. These records are not 

continuous segments in a whole day, which also simplifies the procedure. 

From their results, the model is excellent in most of the modes but train, 

and it also has some difficulties to identify a stop.  It also cannot be 

concluded that this method is better at detecting modes than other 

methods.  

 

Another current method to detect transport modes is Discriminant 

Function Analysis (DFA). Troped et al. (2008) conducted a survey 

requiring respondents to take GPS devices and accelerometers when they 
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walk, run, cycle, in-line skate, or drive. Participants were asked to 

perform prescribed activities. In their analysis, they tested nine 

classification variables that could influence mode detection: means, 

medians, and inter-quartile ranges for accelerometer counts and steps, 

and GPS speed (calculated by using Doppler measurement). Modes were 

determined from the combinations of the nine variables. They do not 

provide more details of this method for the whole GPS data processing. 

From their results, the accuracy of mode detection using their approach is 

around 90%.  

 

Reddy et al. (2010) conducted an experiment to ask 16 volunteers to carry 

six phones positioned in different places (e.g., positioned on the arm, 

waist, etc.) for 15 minutes for each mode. GIS information was not used in 

their research. They used a decision tree followed by a discrete Hidden 

Markov Model to detect modes and achieve 93.6% accuracy overall. 

Because it was based on an experiment, the quality of GPS data was 

better. Unfortunately, they did not test the method on a whole day survey 

in which signal problems would usually influence the quality of data and 

further reduce the accuracy of detection. 

 

Table 2.2 summaries different approaches applied for mode detection.  

According to the detection accuracy of these methods used currently, most 

of the methods report that the accuracy of mode detection is over 90%. 

However, overall, none of the complex methods appear to have achieved a 

higher accuracy than the simple rule-based procedures. 
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Table 2.2 Summary of Different Approaches for Mode Detection 

Author/s Method Attributes Accuracy Ground 

truth  

Stopher et al. 

(2008b) 

Rule-based 

algorithm  

Speed, GIS, 

car/bike 

ownership 

95% Prompted 

recall 

survey 

Schüssler and 

Axhausen 

(2009) 

Fuzzy-logic 

system  

Speed, 

acceleration  

n/a n/a 

Biljecki (2010) Fuzzy expert 

system 

Speed, proximity 

to the nearest 

networks  

91.6% Prompted 

recall 

survey 

Gonzalez et 

al. (2010) 

Neural 

networks 

Speed, 

acceleration, 

data quality, 

travel distance, 

average dwell 

time. 

90% User 

inputted in 

the mobile 

phones 

Tsui (2005) Fuzzy system 

plus an existing 

neural 

networks 

Speed, 

acceleration, 

data quality 

94% Travel 

diaries 

Feng and 

Timmermans 

(2012) 

Bayesian Belief 

Networks 

Speed, GIS, 

car/bike 

ownership, data 

quality 

96% Travel 

diaries 

Troped et al. 

(2008) 

Discriminant 

Function 

Analysis 

Speed, 

accelerometer 

counts and steps 

90% n/a 

Reddy et al. 

(2010) 

Decision tree 

and discrete 

Hidden Markov 

Model 

Speed, 

acceleration  

93.6% Experiment 

(i.e., mode 

known) 

 

2.3.3 Trip Purpose Imputation 

The next stage in processing GPS data is trip purpose imputation. There 

are only a few papers that have looked into the area of trip purpose 

imputation. The traditional process of trip purpose imputation is based on 

either land-use information (Wolf et al., 2001; Wolf et al., 2004) or a 

combination of land use and personal information (e.g., home address, 

possession of vehicles) (Stopher et al., 2008b; Bohte and Maat, 2009).  
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Wolf et al. (2001) suggested that GIS land use data can be used to detect 

trip purpose. Based on a vehicle-only survey, they identified 10 categories, 

i.e., return home, shop, go to work, go to school, pickup/drop-off, change 

mode, social/recreation, personal business, eat, and unknown. Based on 

the addresses of different locations, they provided three possible purposes 

for each location. The previous purpose and arrive time were used to 

further identify the exact purpose from those three possible purposes. 

According to a CATI based recall survey, although they only reported 10 

wrong purposes (out of a total of 151 trips), 39 trips (26%) are unknown 

trips and they failed to detect 10 pickup/drop-off trips due to problems of 

trip identification.  

 

Stopher et al. (2008b) introduced personal information into the purpose 

imputation to improve the accuracy of the detection, especially for return 

home trips and work trips. Respondents provided the addresses of home, 

workplace or school, and the address of the two most frequently used 

grocery stores. Based on these types of data, they detected purpose 

correctly over 60% of the time determined by a web-based prompted recall 

survey.  

 

Bohte and Maat (2009) also applied a rule-based system to detect trip 

purpose, mainly based on the GIS land-use data and the addresses of 

home and work place. They suggested that for a non-home or non-work 

location, if a trip ends within a radius of 50 metres from that location, it 

can be regarded as a destination. For a home or work location, the 

threshold is changed to 100 metres. Because home and work addresses are 

known and frequently visited, a wider radius still would be reliable. The 

accuracy of their trip purpose detection is 43%. They also used a web-

based prompted recall survey to test the accuracy of their detection 

method. 
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Except for the influences from TI/SI, the main challenge for these methods 

is to classify purposes in mixed-use locations such as shopping centres. 

Bricka et al. (2012) also found that processing algorithms using primary 

working place only to determine a work trip may under-report work trips. 

A new perspective of trip purpose imputation is that tour-based trip 

purpose sequences can be used to correct the initial results. According to 

previous findings (O’Fallon and Sullivan, 2004; Zhang et al., 2010), there 

are several possible trip purpose sequences for a tour. A simple sequence 

would be Home-Work-Home, referring to a tour from home to the work 

place, and then from work to home. This tour-based information can 

validate the purpose imputation. For example, Zhang et al. (2010) 

suggested that a complex work, education and shopping tour (e.g., home-

work-education-shopping-home) in people’s daily travel occurs very rarely, 

so that any such instances should be re-examined carefully, to see if 

evidence is strong in suggesting such a tour.  

 

A decision tree is another method used in purpose imputation (Griffin and 

Huang, 2005). Trip stop length and the time of trip ends are the two 

attributes to detect purpose. Their work can only detect some “go to work” 

trips and “go to school” trips. But for most other purposes, stop time and 

arrive time alone are not sufficient.  

 

McGowen and McNally (2007) adopted two methods to impute trip 

purpose – discriminant analysis and classification trees. Their final 

results for both methods are similar, 72% and 74% accuracy. A very 

detailed GIS map was used in their research, including all the locations 

for points of interest (POIs). Thus, they reported more accurate results 

than other research for shopping and social recreational activities. 

However, for most research, such detailed GIS mapping is difficult to 

obtain and it would increase the cost of a GPS survey.  
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Table 2.3 Summary of Different Approaches for Purpose Imputation 

Author/s Method Attributes Accuracy Ground 

truth  

Wolf et al. 

(2001) 

Rule-based 

algorithm  

GIS land use data 60.9% Travel 

dairies 

Stopher et 

al. (2008b) 

Rule-based 

algorithm 

GIS land use data, 

home and 

workplace/school 

addresses, address 

of the two most 

frequently used 

grocery stores 

Over 60% Prompted 

recall 

survey 

Bohte and 

Maat (2009) 

Rule-based 

algorithm 

GIS land use data, 

home and 

workplace/school 

addresses 

43% Prompted 

recall 

survey 

Griffin and 

Huang 

(2005) 

Decision 

trees 

Trip stop length 

and the time of trip 

ends 

90% (work 

and 

education) 

n/a 

McGowen 

and McNally 

(2007) 

Discriminant 

analysis and 

classification 

trees 

Detailed GIS land 

use map 

72% and 

74% 

Travel 

dairies 

 

To sum up, there are only a few methods that have been used in trip 

purpose imputation, and the results of this research are unconvincing 

from lack of accuracy. Table 2.3 summarises the different approaches for 

purpose imputation.  

 

The last issue for both mode and purpose detection is “ground truth”. The 

most popular recent method to obtain ground truth is conducting 

prompted recall (PR) surveys, in which respondents are assisted to recall 

their actual travel by receiving GPS-generated maps of where and when 

they travelled. However, PR results are still far from the “ground truth” 

due again to self-report errors, similar to those in conventional surveys. 

Most current research uses PR results or PR combined travel diaries as 

ground truth to calculate the accuracy of mode and purpose detection, or 

train learning systems. Therefore, the results and conclusions from those 

research projects must be considered to be questionable.  
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2.4 LIFE-LOGGING CAMERAS 

Life-logging is a process for people to record automatically their own daily 

life, including both indoor and outdoor activities and all the journeys they 

make, using a robotic camera. Compared to a travel diary, life-logging is 

more like a digital diary. Different from the travel diary, this digital diary 

does not require people to report and record their activities; instead, a 

digital device passively records all the activities.  There are various types 

of life-logging used in people’s lives. For example, a patient who has heart 

diseases may carry a medical life-logging device to monitor his/her daily 

health level.  

 

One class of life-logging is called visual life-logging (Wang and Smeaton, 

2013). This process usually is supported by a wearable camera taking 

photos (e.g., SenseCam and Narratives) or videos (e.g., GoPro). This type 

of life-logging is similar to “activity diaries”, which can be used to record 

travel information. Because taking videos requires more battery 

consumption for a continuing daily record and may cause more ethical 

issues, photos are typically recorded as a product of life logging. Most life-

logging cameras take photos at a pre-specified frequency or can be 

triggered to take a photo by changes of sensors or wearer intervention. A 

fish-eye lens with a wide angle is used to capture the view from the 

wearer. One day’s activities can therefore be “logged” into thousands of 

pictures. Like most digital devices, battery life is always a concern for 

users. Since the purpose of the camera is to capture life, most life-logging 

cameras currently on the market can last approximately two to three 

days. The life-logging cameras can be very useful in travel data collection 

because they can capture visual records for all participants’ trips and 

activities on the survey days.  

 

2.4.1 Applications of Life-logging Cameras  

With the use of Web 2.0 (e.g., social networks), one of the motivations of 

using life-logging cameras is to share the moments in one’s life with 
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friends. Life logging is becoming a tool for people to use in their leisure 

time. People can select and post photos taken by cameras in their special 

events on their social network sites.  

 

The main application of life-logging cameras currently in scientific fields is 

memory rehabilitation (Silva et al., 2013). People can recall what 

happened in their lives by reviewing the photos. Several clinical studies 

have addressed the topic of autobiographic memory (Hodges et al., 2011; 

Loveday and Conway, 2011; Doherty et al., 2012), and concluded that life-

logging cameras will not only benefit memory-impaired patients, but also 

patients with mental health problems. The main advantage of reviewing 

the photos for the patients is that the life-logging photos enable people to 

recall the locations of the events as well as their feelings and emotions 

during the events. More health-related studies, such as people’s sedentary 

behaviour (Kerr et al., 2013) and dietary analysis (O’Loughlin et al., 2013), 

have been undertaken by adopting life-logging cameras as a 

supplementary tool. In addition to the studies of health, life-logging 

cameras are also used in social reflection (Fleck and Fitzpatrick, 2009), 

where professionals can review their previous practice and reflect on what 

they did and improve their practice in the future.  

 

It should be noted that most of the research using life-logging cameras 

traditionally was based on self-reported notes. Life-logging cameras can 

overcome the problems of misreporting or false memory that all self-report 

methods have. Travel surveys, which are also traditionally based on self-

report diaries, potentially can use life-logging cameras to collect data, 

especially when the latest devices — both dedicated GPS devices and 

Smartphones — used in travel surveys have signal problems. Kelly et al. 

(2011) investigated active and sedentary travel behaviour by using life-

logging cameras. Although their work was initially focused on public 

health, it shows a potential that these state-of-the-art cameras can help to 

collect travel information that travel diaries usually report.  
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The photos captured by life-logging cameras are time-stamped, which 

could provide the start time and end time for all the activities and trips if 

trip ends can be detected. Whilst the information of travel modes, trip 

purposes and vehicle occupancy are the most difficult to obtain in GPS 

surveys, pictures can visually show the information directly. However, 

there is no speed information directly recorded by the camera. Therefore, a 

reasonable suggestion for travel surveys is to use the life-logging camera 

as a supplementary device, along with GPS devices to collect travel data.  

 

Kelly (2013) used the SenseCam to validate travel diaries. He found 

SenseCam can capture a substantial number of journeys of less than 3 

minutes duration that are thought to be difficult to measure by self-report 

surveys. He also reported that SenseCam also missed 14% of trips due to 

respondents failing to wear the devices.  

 

2.5 RESEARCH GAPS FOR GPS SURVEYS 

As mentioned above, travel data are critical for transport planning, 

particularly for travel demand models. Traditional methods (i.e., self-

reported interviews) lack accuracy and reliability for recording travel 

information, which becomes a rationale for using new technology (e.g., 

GPS, Smartphone, life-logging cameras, etc.) to collect travel data. In the 

past decade, GPS surveys have been applied increasingly for travel data 

collection. To obtain more accurate travel data, a number of methods of 

processing GPS data have been developed during the past decade. The 

previous section systematically reviewed the approaches to identifying trip 

ends, detecting travel modes, and inferring trip purposes. Although 

researchers try to use different methods to obtain accurate results, there 

are several research gaps in all the steps of GPS data processing. 

 

For the TI/SI processing, it is usually undertaken before mode and 

purpose detection. Therefore, the accuracy of mode and purpose detection 

is likely to be highly influenced by the accuracy of trip identification. The 
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errors caused by this step also reduce the accuracy of mode and purpose 

detection. Furthermore, signal noise and signal loss are still challenging 

the quality of GPS data. For travel mode and purpose detection, 

deterministic methods are struggling with the ambiguity of similar modes, 

such as bicycle and bus. Probabilistic methods are also subject to either 

long training procedures or a lack of required “ground truth” data. Also, 

all the methods focus on a single trip (segment) to determine its mode. Yet 

little has been done on the analysis of a tour-based mode chain for people’s 

travel. In the process of purpose imputation, a single point is usually used 

to represent a place, which would be a problem for the case where the area 

of that place is large (e.g., airport, university, shopping centre with 

parking, etc.). Instead, a polygon could be used to represent a place (this 

study does not address this issue due to time limitation). Also, tour-based 

information could help refine trip purposes.  

 

Recently, researchers have tried to use different data mining methods, 

which have been used in different areas, for GPS data processing, 

especially for mode detection. This is a questionable direction because 

different methods have pros and cons for different research projects. It is 

difficult to compare these methods to conclude which one is superior to the 

other. Since there have been a great number of methods being used in this 

area, it is definitely worthwhile putting efforts into the improvement of 

current methods rather than trying different data mining methods. 

Another potential direction for travel data collection in the future is to use 

latest technology, which can deal with the current problems of GPS 

surveys. Bolbol et al., (2010) have proposed Geoweb 2.0, crowd sourcing 

and user generated content as a possible way to collect data, and enable 

travellers to upload their trips directly into the web to see them. As 

discussed in Section 2.4, using passive digital cameras is also a new 

approach to collect travel data. Travel information, especially for mode 

and purpose, can be shown visually by images.   
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Although GPS surveys may still have some issues currently, it is admitted 

that GPS devices can record more accurate travel information than self-

reported diaries, and GPS surveys have become more reliable and cheaper 

nowadays for data collection, although they are still more expensive in 

some developed countries (e.g., the US) than travel diaries. With the 

development of new technology, more new devices could be introduced in 

travel data collection, along with GPS units, to collect more accurate data.   

 

Based on the gaps mentioned above, this thesis explores two directions 

(i.e., improve the current processing method and use new technology) to 

fill the gaps and then produce more accurate data of better quality.   

 

2.6 SUMMARY 

In this Chapter, the history of travel surveys was reviewed, followed by a 

systematic review and comparison between different GPS data processing 

methods. Research gaps were also discussed. The key points of this 

chapter are: 

- Travel surveys started in the 1950s. The methods of travel surveys 

include face-to-face interviews, mail survey, CAPI, CATI, CASI, 

GPS/Smartphone survey, etc.  

- GPS technology can directly record location and time of the travel, 

but trip ends, travel modes, and trip purpose need to be detected by 

data processing methods.    

- The typical procedure in GPS data processing includes three steps: 

trip identification, mode detection and purpose imputation. Two 

common methods to process GPS data are deterministic methods 

(e.g., rule-based algorithm) and probabilistic methods (e.g., machine 

learning).  

- The main gaps in the current processing methods are: 

o The mode detection result is highly dependent on the result 

of trip identification, which reduces the mode detection 

accuracy. 
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o A number of critical rules used in trip identification are 

arbitrary, which affects the result of identification of trip 

ends. 

o Most GPS studies suffer from signal noise and signal loss. 

o There is little research that has addressed the issue of 

“ground truth”, which is important in data processing and 

validation. 

o The purpose imputation result is relatively poor compared to 

mode detection. 

In the next Chapter, the methods used in this study are introduced to 

address the research gaps mentioned above.  
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3 METHODOLOGY 

In this chapter, the methodology applied in this study is discussed. The 

chapter starts with research goals and hypotheses in Section 3.1. Section 

3.2 introduces how the data were collected for this research. In Section 3.3, 

a general issue of GPS data processing (i.e., pursuing “ground truth” for 

validating and assessing the work of GPS data processing) is discussed 

before the introduction of data processing. A new procedure of data 

processing is proposed in Section 3.4, which suggests that trip 

identification and mode detection should be combined as one step. The 

improvement of trip purpose imputation is introduced in Section 3.5. In 

Section 3.6, the whole framework of the new approach is demonstrated, 

followed by a summary of the whole chapter.  

 

3.1 RESEARCH GOALS AND HYPOTHESES 

According to the introduction of research gaps in Chapter 2, there are 

several research goals that are pursued in this thesis (See Table 3.1). In 

order to achieve these objectives, seven hypotheses are listed for the steps 

of the new procedure.  

 

Hypothesis I  

H1: The threshold of dwell time for an activity is less than 120 seconds. 

H0: The threshold of dwell time for an activity is equal to or greater 

than 120 seconds. 

Hypothesis II  

H1: One second time intervals are the longest time interval to obtain 

reliable data for mode detection. 

H0: Longer than one second time interval (e.g., 3 seconds, 5 seconds, 

10 seconds, etc.) also can provide reliable data for mode detection. 
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Hypothesis III  

H1: life-logging cameras can help find the ground truth.  

H0: life-logging cameras cannot help find the ground truth. 

Hypothesis IV  

H1: 15 successive one-second data points are enough for detecting 

mode changes 

H0: 15 successive one-second data points are not enough or too much 

for detecting mode changes 

Hypothesis V  

H1: Combining trip identification and mode detection can increase the 

accuracy of total detection for travel survey data.  

H0: Combining trip identification and mode detection cannot increase 

the accuracy of total detection for travel survey data. 

Hypothesis VI 

H1: Automating image processing can be used for mode detection.  

H0: Mode cannot be automatically detected from images. 

Hypothesis VI 

H1: Tour-based information can increase the accuracy of purpose 

detection. 

H0: Tour-based information cannot increase the accuracy of purpose 

detection. 

Hypothesis VII  

H1: Additional data (i.e., activity duration, the time when the activity 

occurs, and the frequency of activity) can improve the accuracy of 

purpose detection. 

H0: Additional data (i.e., activity duration, the time when the activity 

occurs, and the frequency of activity) cannot improve the accuracy of 

purpose detection. 
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Table 3.1 Research gaps and goals 

Issues/Gaps Goals   

Mode detection result is highly 

dependent on the result of trip 

identification. 

Reduce the dependency of mode 

detection on the trip 

identification result 

  

A number of critical rules used in 

trip identification are arbitrary. 

 

Replace the arbitrary rules which 

are currently used in TI/SI 

processing 

  

Most GPS studies suffer from 

signal noise and signal loss.  

Reduce the errors caused by GPS 

signal noise and signal loss 

  

There is little research that has 

addressed the issue of “ground 

truth”, which is important in data 

processing and validation.  

Investigate a way to pursue 

“ground truth” 

  

There are limited ways to cope 

with missing GPS data and to 

pursue ground truth.  

Process data from new 

technologies other than GPS 

  

The purpose imputation result is 

relatively poor compared to mode 

detection.  

Introduce tour-based information 

and other useful travel 

information for both mode and 

purpose detection 

  

 

3.2 DATA COLLECTION 

Since 2001, the Institute of Logistics and Transport Studies (ITLS) at the 

University of Sydney has conducted a number of surveys that involved 

GPS loggers. The data collected from these various surveys were used in 

this research for testing purposes. Also, two supplementary surveys were 

conducted in Sydney, Australia, and Oxford, UK.  
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3.2.1 Surveys 

Among the surveys in which ITLS was previously involved, one survey is 

the main source from which the data used in this study come: a GPS 

household travel survey in Cincinnati, Ohio, USA.  

The Ohio GPS Household Travel Survey was conducted in 2009 and 2010 

by using an address-based sample frame, advance letters, and Internet 

and phone recruiting and forms reporting (Stopher and Wargelin, 2010). 

Every respondent in the household over 12 years old was asked to carry 

the GPS logger for three days when they travelled. A subsample of follow-

up prompted recall surveys was conducted to allow respondents to review 

their GPS travel information from maps for verification. A total of 60,900 

trips were collected from 2,059 households in this survey.  

 

With the development of technology and the use of social networks (e.g., 

Facebook and Instagram), visual images are increasingly applied in 

people’s daily lives. This provides a huge opportunity for travel data 

collection. To improve data quality and pursue ground truth, two 

supplementary surveys were conducted in 2012.  The British Heart 

Foundation Health Promotion Research Group, University of Oxford 

provided the author an opportunity to undertake a collaborative work with 

them as a visitor in Oxford for two weeks in July 2012. Twelve volunteers 

were recruited in Oxford, and they were asked to carry both a GPS device 

and a SenseCam camera, which is a passive digital camera, for three days. 

The volunteers were mainly university staff and their families. All the 

participants were over 18 years old. A similar survey was conducted later 

in Sydney after the collaborative work in the UK, in which seven 

volunteers were recruited and asked to take one GPS device and one 

SenseCam for five days. They were also asked to fill out some forms to 

provide the addresses of home, workplace or school, the address of the two 

most frequently used grocery stores, and car and bicycle ownership, 

identical to what ITLS does in GPS-only surveys. Apart from that, 

volunteers were required to report the occasions when they forgot to carry 
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either or both devices with them when they were travelling, so that it 

would be known whether there were some trips that both cameras and 

GPS devices did not record. There was no other paper-based or web-based 

recall survey afterwards. In these two surveys, the majority of the 

respondents were students and university staff (i.e., 11 respondents for 

the Oxford sample and six respondents for the Sydney sample).  

 

3.2.2 Devices 

The devices for collecting data were GPS units provided by the Institute of 

Transport and Logistics Studies at the University of Sydney, and 

Microsoft SenseCams, provided by the British Heart Foundation Health 

Promotion Research Group at the University of Oxford.  

 

The GPS device used in this study is manufactured in Taiwan, and was 

customised to our specifications. This 50 gram device has a rated 

sensitivity of -158 dbm, with 16 MB of memory. According to the standard 

NMEA 0183 output stream, this device can store 800,000 records in the 16 

MB of storage.  The tracking interval is every second, which permits the 

devices to record about 170 days of data, given that an individual’s daily 

travel time averages 1 hour and 15 minutes (Stopher et al., 2008).  

There are three lights on the device: a green flashing light, a blue flashing 

light and a red flashing light. The green light indicates that the device is 

searching for a signal; the blue light indicates that the Bluetooth function 

is on; once the red light is flashing, a position has been acquired. Battery 

life is usually critical to GPS devices. This device can last 20-26 hours on 

one charge. Also, with a vibration sensor, the device can last even longer 

because it turns off recording and satellite searching if there is no 

vibration for 15 minutes. If the device moves again (i.e., vibration is 

detected), the device turns on and searches for a signal again. This 

function not only saves the battery, but also reduces unnecessary data.  

Voice messages state whether the device is searching for a signal, the 

signal is found, or the battery is low. The devices are smaller than most 
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mobile phones (see Figure 3.1), and can be put in participants’ pockets or 

bags.   

 

  

Figure 3.1 GPS Logger and SenseCam Camera 

 

Typically, there are 10-12 variables that can be recorded by GPS devices 

in transport research. The device used by ITLS can record time, velocity, 

longitude and latitude, heading, the number of satellites in view, the 

horizontal dilution of precision (HDOP), the distance travelled from the 

last recorded point and the altitude (see Figure 3.2). Data can be 

downloaded in universal coordinated time (UTC) or local time. In this 

study, UTC was used in the downloading step and converted to local time 

afterwards. The instantaneous velocity is provided from Doppler 

measurement, which is much more accurate than using the quotient of 

travel distance and time. In terms of coordinates, latitude and longitude 

are expressed in a format of decimal degrees, and positive or negative 

signs are used to indicate the hemisphere. The number of satellites in 

view and HDOP indicate the quality of the data. In order to obtain a 

correct position, at least four satellites are required, because there are 

four unknowns that need four equations to solve.  
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Figure 3.2 Example of Raw Data from GPS Devices 

 

This study also introduced life-logging cameras. The reason that the 

author decided to use this new device is because it would be impossible to 

“estimate” travel information for the missing data in a GPS dataset. Using 

a new device that could record missing parts would be the only way to 

identify the entire travel details. SenseCam is a passive digital camera 

(see Figure 3.1) that contains a number of different electronic sensors, 

which include light-intensity and light-colour sensors, a passive infrared 

(body heat) detector, a temperature sensor, and a multiple-axis 

accelerometer. Certain changes in sensor readings can automatically 

trigger the SenseCam to take a photograph. If nothing changes, it takes 

time-stamped photos every 30 seconds. Overall, it can capture images 

approximately every 22 seconds throughout the day and can take 

approximately 3,000 photos per day (Hodges et al., 2006; Kelly et al., 

2011).  
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In terms of battery, a 980mAh 3.7V lithium-ion rechargeable battery is 

used for the SenseCam, providing approximately 24 hours of continuous 

operation. Users can charge the device by plugging it into a PC or USB 

charger via the USB connection. The full charging time is about three 

hours.  

 

There is no display on the SenseCam, and a wide-angle lens is used for the 

camera, which can ensure almost everything in the wearer’s view is 

captured.  Participants are asked to wear a camera around their neck, at 

chest level or higher, in order to capture photos with good quality and 

view. From those images, travel modes and activities that respondents 

undertake can be detected (see Figure 3.3).   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Samples of Images Captured by SenseCam 

 

SenseCam’s photos are stored as compressed .jpg files on the 1 GB 

internal memory, and the size of each picture is about 30 KB, which allows 

the camera to store over 30,000 images. Wearers are not able to download 

the photos by themselves, so all the photos are downloaded by researchers 

after the survey. Given that the camera can take 3,000 photos per day, 

theoretically, a survey can last for up to 10 days.  
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For privacy concerns, there is a “privacy” button designed for SenseCam. 

Users can press the button to stop the images being taken. The camera 

will return to “working mode” after about seven minutes.  

 

3.3 GROUND TRUTH 

Generally, the term “ground truth” is related to measurements in 

cartography, where data collected remotely (e.g., by satellites) are 

validated by measurements made on the ground. In travel data collection 

in transport research, ground truth refers to what the traveller really did 

(e.g., travel time and distance, trip ends, travel modes, trip purposes, etc.). 

That was the original reason for using a travel diary to ask people to 

report their travel. However, it has been proved by some of the 

unquestionable GPS records (e.g., time) that traditional diaries 

underreport about 20 percent of trips (Stopher and Shen, 2011) that 

people make and over-report the travel duration. Also, the start and end 

times of trips reported by respondents are usually incorrect, and people 

tend to round the time to the nearest 5, 10, 15 or even 30 minutes. Stopher 

and Shen (2011) conducted an in-depth analysis comparing travel diaries 

and GPS records. They found that people may report a trip which was 

made on a different day, or did not even taken place. Although they only 

focus on trips, reports of mode and purpose from diaries are also 

questionable. Because of its unreliability, the travel diary should not be 

used as “ground truth” to report people’s real travel, or validate GPS 

records.  

 

However, it would be too optimistic to conclude that GPS data represent 

ground truth, which several very early studies suggest (Wagner et al., 

1997; Guensler and Wolf, 1999). The main problems for GPS data are 

signal loss and signal noise. In addition, respondents have to remember 

and be willing to carry the GPS device at all times. It has been shown that 

even a combination of GPS records and self-reported diaries is not ground 

truth.   
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The most popular recent method to pursue ground truth is conducting 

prompted recall (PR) surveys (Bachu et al. 2001; Giaimo et al., 2010; 

Greaves et al., 2010; Wilhelm et al., 2012), in which respondents are 

assisted to recall their actual travel by receiving GPS-generated maps of 

where and when they travelled. Because people have memory issues of 

reporting what they did in the past, the maps and travel information 

provided to them from the GPS device that each has taken would help 

them correctly report or correct their travel to some extent. But PR 

surveys unfortunately are still far from ground truth. Stopher et al. (2014) 

investigated the issues of prompted recall surveys. They suggest that self-

reported results are still unreliable even if people are provided with 

detailed travel information from GPS devices. People may misunderstand 

the definition of a trip, resulting in mistakenly joining/splitting trips, may 

delete real trips they made, or claim an incorrect mode or purpose 

according to factual data. For this reason, similar to the diaries, prompted 

recall surveys cannot provide ground truth to validate GPS results.   

 

It has been increasingly important to obtain ground truth in GPS surveys, 

because all the methods need to be tested for their accuracy of processing 

data, and the ground truth is necessary for calculating accuracy. Also, a 

number of methods used in data processing require training a learning 

system in which ground truth data are critical.  

 

A recent technological development is that of digital image capture.  As 

introduced in Section 3.1.2, the Microsoft SenseCam has been utilised 

most in public health research for observation and recording of an 

individual’s health behaviours.  This new technology also provides an 

opportunity for transport researchers to capture ground truth about 

people’s travel. Because there is no signal loss issue on SenseCam and it 

can take a photo about every 20-30 seconds on average, ground truth can 

be found by the camera if the camera is working properly when people are 

travelling during the day. However, this first generation of life-logging 
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camera has a limitation of use, which is that the camera cannot capture 

clear photos in the dark. According to my study, fortunately, there is only 

a small proportion of the trips that suffer from this issue.  

 

As a proof of concept test, an investigation was undertaken to see if 

SenseCam can help pursue ground truth. In order to compare the results 

from GPS and SenseCam, the data need to be processed.  

 

The G-TO-MAP software (Stopher et al., 2008) was used for GPS data 

processing to identify the trips, travel modes for each trip, and trip 

purposes. G-TO-MAP is a rule-based software developed by the Institute 

of Transport and Logistics Studies (ITLS) at the University of Sydney. In 

addition to automating data processing, a manual map-editing process 

was also included, which is undertaken at ITLS about two-thirds of the 

way through the processing of the GPS data into trips (trip identification). 

The reason for using map-editing is even with the rules suggested by 

Stopher et al. (2008) to delete some invalid data, some spurious trips may 

still remain in the processed data due to signal noise. Some trips may also 

not be split by the automated process and need to be split by map-editing 

due to a short dwell time (the threshold of dwell time to identify a stop in 

G-TO-MAP is 120 seconds). Therefore, deleting spurious trips, adding 

missing trips, and splitting trips are the main actions in map editing. 

Deleting a spurious trip takes about 30 seconds, while adding a missing 

trip takes about 2 minutes. G-TO-MAP can achieve 95%, 90% and over 60% 

accuracy respectively for identifying trip ends, modes and purposes 

according to our previous projects, which included prompted recall surveys 

after the main surveys. The accuracy is based on the results of prompted 

recall surveys. G-TO-MAP requires GIS maps to detect modes; 

unfortunately, the GIS layer for bus routes in Oxford was unavailable, so 

bus trips could not be identified by the application for the Oxford data.  
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SenseCam images were initially processed by the SenseCam Browser, the 

software developed by Doherty et al. (2011). This application groups all 

the images into each activity and/or trip (i.e., splits the journeys into trips) 

by a learning system. However, automated image processing is always a 

big challenge. There were a number of trip ends wrongly identified by the 

software. With the Browser, researchers can visually check each photo and 

modify the result of identified trip ends. The SenseCam Browser does not 

have the capability to automate mode and purpose detection, so mode and 

purpose results need to be added manually when the researchers check 

the results of trip ends. Mode and purpose information also need to be 

manually reviewed and determined by researchers from the images. It 

may take about 10 to 60 minutes (about twice as long as map editing for 

GPS data) to complete this manual correction for each respondent-day 

depending on the number and the level of complexity of images being 

taken.  

 

After the processing, the following results were detected from both GPS 

data and SenseCam images: 

 Trip start time and end time 

 Travel mode for each trip 

 Trip purpose for each trip 

 Trip and activity duration 

 

Trip start time and end time were used as key attributes to link the 

results of GPS processing and SenseCam processing. A more detailed 

explanation of G-TO-MAP can be found in Stopher et al. (2008).  

 

SenseCam may miss some trips or stops because of not working properly 

or because the lens is accidently covered by respondents. So it can be 

expected that a GPS device needs to be used as a supplementary device. 

The results are reported in Section 4. The next challenge is, if the new 
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technology can help to provide ground truth, how to automate the data 

processing. Also, GPS data processing methods need to be improved.   

 

3.4 DATA PROCESSING- TRIP IDENTIFICATION AND 

MODE DETECTION  

Traditionally, data processing for GPS records includes three steps, 

namely trip identification, mode detection and purpose imputation. 

However, the results of mode and purpose detection are entirely based on 

the results of trip identification. Hence, the total accuracy of a GPS survey 

would be the product of the accuracy of each step. According to the 

definition of a trip, i.e., the movement of people between two geographical 

locations by only one mode for only one purpose, mode detection could 

actually help identify a trip, especially for the case of mode change. So 

mode detection should be taken into account in the process of trip 

identification.  

 

3.4.1 Time Interval for GPS Data Recording 

Before identifying trip ends and modes, one principle rule of GPS surveys 

needs to be tested. Most GPS surveys record GPS points every second 

(Stopher et al., 2008; Bohte and Maat, 2009), while there are also several 

surveys (Feng et al., 2011; Mohammadian et al. 2011) using three seconds 

or an even longer time as an interval to record the GPS data.  According to 

Mokhtarian and Chen (2004), average daily travel time expenditure for a 

person is 1.1 hours-1.3 hours, so the number of GPS points for that person 

is about 4000 per day if the time interval to record GPS data is one second. 

Thus, there will be about 3 million GPS points for a sample of one hundred 

persons who travel for a week, which would constitute a large dataset. 

Therefore, a suitable and efficient method to process the data is essential.  

 

One issue of processing GPS data is the processing time. Although the 

latest computers have increased their capability, it still needs several days 
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to process millions of data points from trip identification to mode and 

purpose detection. So reducing the number of data points by increasing 

the time interval of recording data can reduce the processing time and 

further reduce the data processing cost. (Note that using a 3-second 

interval would reduce the size of data sets by two-thirds, and a 5-second 

interval by 80 percent.) Therefore, it is worthwhile testing and comparing 

different time intervals to see what influences each option would have on 

the final processing results. Also, with the increasing use of smartphones 

in travel data collection, increasing the data-recording interval could 

improve the performance of other devices (e.g., smartphones) to collect 

data. For instance, smartphones will have a longer battery life if a longer 

interval for recording data is applied.  

 

This study first tests four options —1 second, 3 seconds, 5 seconds, and 10 

seconds—to show the different impacts of each option. Because the 

purpose of this test is to see if using a longer time interval can generate 

similar or even better results of trip identification than the one-second 

interval option, the existing processing procedure was still used.  

 

The G-TO-MAP software was initially designed for processing one-second 

GPS data. The data collected in this study, which were recorded every 

second, were processed by the software first. Manual map editing was 

undertaken to identify the spurious trips (a sequence of points generated 

by a stationary GPS device that have been incorrectly identified as a trip) 

based on GPS-generated maps. Map editing is a manual step that is 

undertaken at ITLS about two-thirds of the way through the processing of 

the GPS data into trips (trip identification). At that point, when the 

records have been split into what are thought to be trips by the software, a 

map is produced for each person-day of data, with each trip shown in a 

different colour, and each of the recorded data points comprising a GIS 

layer. This allows a person to examine the map on a computer and, by 

moving the cursor onto any point, display the data stream for that point 
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from the GPS recording. Even with deleting some invalid data based on 

the rules suggested by Stopher et al. (2008), some spurious trips may still 

be recorded by GPS devices and shown on maps due to signal noise. From 

the map, those trips, which in fact do not exist, are usually shown as 

people travelling through buildings without any stops, sometimes along 

with some missing data after these spurious trips. Figure 3.4 shows an 

example of a spurious trip, shown in red). An in-depth investigation was 

undertaken, on a case-by-case basis, to check the trips that were initially 

identified by G-TO-MAP. G-TO-MAP was also used for mode detection and 

purpose imputation for different time intervals for recording data. Speed 

(both maximum and average speed), GIS layers, and car and/or bike 

ownership are the main inputs for mode detection in G-TO-MAP. Land use 

information, the addresses of homes and work places/schools, and the 

addresses of the two most-frequently visited grocery stores are the main 

inputs for purpose imputation.  

 

 

Figure 3.4 An Example of a Spurious Trip (Shown in Red) 
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Generally, if a longer interval can be applied in GPS data recording, it can 

save a substantial amount of processing time and also save storage space 

for the GPS data. For testing purposes, the intervals of 3 seconds, 5 

seconds, and 10 seconds were tested, by dropping out every 2, every 4, or 

every 9 data points, respectively. Because the data collected for this 

research were recorded every second, it could be easily converted to an 

every 3, 5, or 10 seconds dataset by resampling the data.  

 

It could be expected that with the increase of the time interval and 

decrease of the GPS records, the number of trips and the number of stops 

that were identified by the software would be different between each 

option. Some trade-offs would exist, because using longer time intervals 

may lose several short distance trips due to insufficient points, but it may 

also add several low-speed trips because those trips sometimes look like 

“clouds”, which are more likely to be regarded as spurious trips and be 

deleted by automated processing in a one-second dataset. The reason for 

the “clouds” is because the position accuracy of the GPS device is around 

±2.5 m. In that case, the apparent position appears to move around for 

low-speed trips. The following are the consequences that changing the 

interval would lead to, together with the reasons why those consequences 

would occur. Each consequence is investigated in detail, case by case, in 

this study.  

 

Consequences of changing the interval of recording data: 

 Add a new real trip 

These new real trips usually have low speeds, and are mistakenly deleted 

as spurious trips by the software because the points shown on the map 

look like clouds. With less points recorded in the dataset, the distances 

between each point become larger, and some “clouds” would become a 

curve or a straight line so that the software would identify those as real 

trips. 
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 Add a new spurious trip 

On the other hand, fewer recorded points in the dataset also could create 

some spurious trips that the software deleted, because the “clouds” would 

disappear when the number of points decreases.  

 Add a new spurious stop by mistakenly splitting a trip 

A larger time interval may risk not recording some essential GPS points 

that record critical information for whether mode is changed. For example, 

if a person is travelling on a congested road by car, one-second data will 

record the speed every second, which would show some higher speed 

values when the car is moving. However, in the 10-second dataset, the 

chances are that only low-speed values (due to congestion) are recorded, 

and some high-speed values (when the car is moving) may not be recorded 

due to the larger time interval. In this case, it might be regarded as a 

mode change because the person may travel from a free-flow road to the 

congested road, and the GPS records would show that the speed/average 

speed of the records change dramatically from high values to low values. 

As a result, a “spurious” stop may be mistakenly added.  

 Add a new real stop 

Because the minimum break time is set as 120 seconds for this test, a stop 

time of less than 120 seconds would not be detected. Increasing the time 

interval of recording data could increase the apparent stop time, which 

would add some real stops that are missed by the 120-second rule (for 

example, if in 5-second data, the last point recorded before a stop was 5 

seconds before the stop and the first point after the stop was recorded 5 

seconds after travel resumed, then a 110-second stop would appear to be 

120 seconds). Also, there might be some spurious points, which look like 

part of a trip in one-second data, because there are some continuous 

movements between those points, but the spurious points are actually 

caused by a stop. In the dataset that has the longer time interval, there 

would be fewer points and the pattern of those reduced points would not 

be like a continuous line, so those spurious points would be deleted, which 

results in adding a real stop.  
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 Mistakenly deleting a real trip  

Similar to the second result of adding new stops, a real trip could also 

mistakenly be deleted since a real trip could be regarded as a spurious trip 

due to fewer points when a longer time interval is applied.  

 Correctly delete a spurious trip 

The reason is the same as the second result of adding new stops, where it 

would be a whole spurious trip rather than a part of a trip.  

 Failure to split a trip which was correctly split in the base option 

There might be insufficient points to identify a mode change when a 

longer time interval is chosen to record GPS data, especially at the 

beginning or end of a trip when the travel mode switches between walk 

and car, for example.  

 

3.4.2 Threshold of Dwell Time 

The data collected from GPS devices are raw data, without any 

information on trip ends. In order to process all of these millions of data 

points, data need to be segmented. A typical procedure of trip 

identification is actually to apply a threshold of dwell time to segment the 

raw data and obtain the trip ends. Although a new procedure for 

processing the data is suggested, segmentation is still necessary. A more 

accurate segmentation can improve the final results and also reduce the 

time of map editing. Current processing typically uses 120 seconds 

(Stopher et al., 2008; Wolf, 2000) as a rule to split the raw data into 

segments because the traffic signal cycle should always be less than 120 

seconds according to the Highway Capacity Manual (2010) and stops for 

traffic signals should not be regarded as trip ends. However, this arbitrary 

rule has a problem to find any stop less than 120 seconds, which some 

activities, e.g., pick-up/drop off or buy a snack at a convenience store, 

would usually take. Also, different countries may have different maximum 

traffic signal cycle times, which suggests that 120 seconds may need to be 

adjusted even if the signal cycle is used as a key criterion. On the other 

hand, if the threshold of the minimum break time is reduced, more stops 
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may be identified than are actually correct. This study also tests different 

options for the minimum break time setting to show which one might be 

the optimal option. 

 

It is common that researchers use a threshold of dwell time to segment 

travel data to identify trip ends; therefore, using an arbitrary value could 

cause great errors in the results. The greatest difficulty in identifying trip 

ends is to find short stops. A longer threshold of dwell time would generate 

a great number of segments, which would need to be split manually into 

two or more trips. The purpose of this test is to reduce the number of trips 

that should be split but which the software failed to split, because 120 

seconds could be too long as a threshold, resulting in failure to identify a 

stop that is less than 120 seconds. This study tested several shorter 

options, which are 15, 30, 45, 60, 75, and 90 seconds. By re-running the 

GPS trip identification procedure with a different threshold of dwell time, 

six new results can be generated. Comparing with the result that is based 

on the 120-second rule, the number of increased stops can be counted for 

each option.  

 

The next step is to examine those added stops to see whether they are real 

stops or spurious stops, because a threshold of dwell time which is less 

than 120 seconds may detect more real stops which are not found by the 

120-second rule, but it could also create more spurious stops. There are 

three types of spurious stops: a stop due to traffic (i.e., congested road), a 

stop at an intersection (e.g., waiting for traffic signals), and a stop at a bus 

stop/train station for boarding and alighting of other passengers. So the 

main map-editing task is switched from splitting trips to joining trips. 

However, according to experience in map editing, the cost of deleting a 

spurious stop (or joining two trips) is much less than the cost of splitting a 

trip. After segmentation, the first result (R1) can be obtained for the next 

step.  
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3.4.3 Mode Change and Detecting Walking Trips 

From R1, raw data are separated into segments. The next step is to 

identify cases of mode change. Logically, if a person needs to change a 

mode, walking should be involved. In this study, five modes are identified 

– car, bus, train, bicycle, and walk. Figure 3.5 shows all the possible 

changes from mode to mode.  

 

   

Figure 3.5 Possible Cases of Mode Change  

 

Based on this logic, a walk trip needs to be identified to see if there is any 

mode change. The rule for identifying a walk trip is applied in the GPS 

data processing based on the attribute of speed. Different from the normal 

processing procedure, this step is to check the mode for each data point. 

Because there are millions of data points, the rules created for each point 

should be simple, but effective. If the speed of one data point is equal to or 

less than 6 km/h, “walk” is assigned to that point. If the speed is more 

than 6 km/h, “other” is assigned. However, people may travel in other 

modes with a low speed, e.g., travel by car on a congested road. Most 

existing methods investigate the maximum speed and average speed as 

attributes, but it would not be useful to identify the mode change by these 

attributes.  

 

A new way to check if it is a mode change between two points or 

mistakenly identified mode for one of the points is to create a mode-point-

chain. Ideally, the case shown in Figure 3.6 represents a mode change.  
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Figure 3.6 An Ideal Case of a Mode-Point-Chain for Mode Change  

 

However, a real case would more likely be similar to that shown in Figure 

3.7. In order to fix this issue, and identify the real cases of mode change, 

some rules need to be created.  

Rule 1: If “walk” is assigned to at least 15 seconds of continuous data 

points, and “other” is assigned to the point before or after the “walk 

chain”, then it is a mode change. The “walk chain” which is more than 

15 seconds is detected as a walk trip.  

Rule 2: If “walk” is assigned to no more than 15 seconds of continuous 

data points, then “walk” is changed to “other”. 

Rule 3: If “other” is assigned between walk trips, and there are less 

than 15 seconds of continuous data points marked as “other”, then 

“other” is changed to “walk”, and the walk trips need to be joined.  

Rule 4: If Rule 2 conflicts with Rule 3, execute Rule 2 first.  

 

Figure 3.7 A Real Case of Mode-Point-Chain for Mode Change  

 

After the analysis of mode change, all the walk trips can be detected. As 

discussed in Section 3.2, potentially SenseCam can be used to identify 

modes. However, walking is relatively difficult to be identified from 
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images because the view from the walker varies. Also, walking can be 

easily detected by GPS data based on the attribute of speed. Therefore, all 

walking trips are detected only by GPS data 

 

3.4.4 Detecting Train Trips 

The rail system is a special system for processing data. In this study, train 

refers to heavy rail, which does not share “roads” or tracks with other 

modes. Train would be difficult to detect if only based on the GPS 

attributes. The speed of train would be similar to car, and the stop 

duration in train stations would also be similar to the car’s waiting time 

for signals. For this reason, the information from a Geographic 

Information System (GIS) is usually used as a supplementary source to 

process the data.  

 

In this study, GIS information is obtained from two main sources. The 

first is OpenStreetMap (OSM). OSM is a project originally created in the 

UK in 2004. The purpose of this project was to provide free world-wide 

geographic data. The GIS data of most countries can be downloaded from 

OSM. Although OSM mainly focuses on transport facilities, it also collects 

land-use information. The UK GIS layers were downloaded, including the 

networks of road, train, and rivers. The second source is from the Bureau 

of Transport Statistics of NSW. A Transport Data Exchange (TDX) 

program offers students the NSW GIS information for free. Although OSM 

also provides Australian GIS layers, the layers from TDX are more up-to-

date. Similar to OSM, TDX provides all the GIS layers of transport 

networks in Sydney. Figure 3.8 shows an example of a GIS layer of rail 

networks.  
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Figure 3.8 GIS Layer of Rail Networks of Sydney 

 

Before identifying if the trip is on a train route, GPS data need to be 

linked to the GIS map, which is called link matching or map matching. G-

TO-MAP uses TransCad® or Maptitude® to complete this task. This step 

usually takes a long time. Once the map-linking is completed, software 

can detect if the trip is a train trip. The approach used in this step is to 

calculate the distance between each GPS record and the train route. As is 

well known, GPS positions are acquired by solving (at least) four 

equations. Because the number of satellites acquired is different, GPS 

positions would have errors from their real locations. Hence, if the 

distance is less than a certain value, the trip can be regarded as a train 

trip.  

 



 

60 
 

3.4.5 Detecting Car, Bicycle, and Bus Trips 

Different from walk and train, bus, car, and bicycle are typically difficult 

to distinguish by GPS mode detection procedures. They share the same 

roads, and the speed for each mode is similar especially on congested 

roads. Therefore, SenseCam images are used to detect these types of trips. 

Figure 3.9 shows the procedure for detecting modes from GPS data and 

SenseCam images.  

 

Figure 3.9 A Procedure for Detecting Modes from GPS Data and 

SenseCam Images 

 

Because walk and train trips have been detected by GPS records, these 

records can be removed in this step. Also, GPS records can show if 

respondents are stationary or in a building to undertake an activity, 

because GPS devices would be in a “sleep mode” for those cases. Hence, 

the remaining data only shows the movement of people by car, bicycle, and 

bus. First, images and GPS records need to be linked. Images do not have 

coordinate information, so GPS records are still important. The connection 

between GPS records and SenseCam images is time. Both records are 

time-stamped, so they can be easily linked according to the time, although 

the time intervals for the two devices to record/capture the data are 
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different. Then the mode detection task depends on the processing of the 

SenseCam images.  

 

Like most processing work, image processing for SenseCam images starts 

from a visual check. As introduced in Section 3.2, modes can be visually 

identified via a SenseCam Browser by reviewers. However, it takes up to 

one hour to review one person-day of data. Given that household travel 

surveys usually include thousands of days of data, an automatic approach 

to process the images is necessary. The main challenge of this step is that 

cameras have never been adopted for travel data collection. Although 

image processing has been applied in many other fields, no similar photo 

has been processed to such a detailed level.  

 

There are two ways to detect modes for each trip. Because the raw data 

have been segmented by the threshold of dwell time, and images are 

linked to GPS data points, the easiest way is only to process one image for 

each segment. This would be very similar to the idea of detecting modes 

after the trip identification results have been obtained. The problem with 

this idea is that there might be some errors in trip identification results, 

so the best way is to process all the images to detect the mode for each 

linked GPS record and also to see if there is any mistake from trip 

identification. Because the time interval of capturing photos is about 20-30 

seconds, the number of photos is much less than the number of GPS points.  

 

Automating image processing for mode detection has six steps – image 

input, converting images to greyscale images, edge detection, mode 

detection, results output, and exit (see figure 3.10). The first three steps 

are also called pre-processing, which converts the raw images to files with 

a suitable format for image processing.  
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Figure 3.10 Image Processing for Mode Detection 

 

3.4.5.1 Image Pre-processing 

The first step is to convert images to greyscale images. The reason for this 

step is to increase the processing speed on the basis of keeping all the 

useful information. As introduced in Section 3.1.2, SenseCam images are 

stored as full colour .jpg files. Based on the purpose of this study, colour is 

not critical for detecting modes.  

 

Because image processing is to distinguish car, bus, and bicycle trips, 

finding critical features for each mode is important. From the images for 

car, bus and bicycle in Figure 3.11, there are a number of features that 

can be found.  

    

Figure 3.11 Images for Bus, Bicycle and Car 
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For bus, the features can be seats, people, handrails, views of the road, etc.; 

for bicycle, the features can be two hands from the cyclist, the bicycle 

handlebar, roads, traffic, etc.; for car, the features can be drivers hands, 

the A pillar of the car (the A pillar is the near vertical supports of a car’s 

front windshield), the steering wheel, window reflection, road, traffic, etc. 

The views from bus passengers are highly variable. It might be easy to 

find the critical feature for passengers who are seated, but for those who 

are standing, the features can change for every photo. There is no way to 

find a single feature for bus passengers. For car driver and bicycle, 

because the wearer’s gestures are relatively stable on a bicycle or in a car, 

some features are always visible. The bicycle handlebar in the photo is a 

critical feature for bicycle trips. It can be captured for most cases when 

people are cycling. Similarly, the A pillar and the steering wheel are the 

two critical features for car trips when the wearer is a driver.  

 

The data collected in this study for car trips is only from car drivers. 

Based on this, this study only detects car-driver trips and bicycle trips 

from images. Because there are five modes in total that need to identified, 

if car-driver and bicycle trips can be detected, and walk and train trips are 

detected by GPS data processing, the rest of the trips are bus trips. More 

discussion about car trips made by car passengers is provided in Section 

5.4. Comparing the two critical features for car-driver trips, the steering 

wheel is easier to capture than the A pillar. Given that all private vehicle 

trips were made by drivers in this study, the steering wheel is picked as a 

critical feature for a car trip.  

 

In order to capture the critical features for car (i.e., the steering wheel) 

and bicycle (i.e., the handlebar), the edges of these features need to be 

detected. Generally, there are a few edge detection operators (Gonzalez et 

al., 2003), e.g., Sobel, Roberts, Prewitt, Canny, etc.  
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The Sobel operator is one of the classic operators used in edge detection. It 

uses two 3x3 convolution kernels (Figure 3.12) to calculate the horizontal 

and vertical changes. The two kernels are convolved with the original 

image (i.e., I(x, y)) to get  (a horizontal value of a point in an image) 

and  (a vertical value of a point in an image). The gradient 

magnitude can be defined as: G= . The gradient's direction is 

 . Similar to the Sobel operator, the Prewitt and Roberts cross 

operators also use Kernels being convolved with the original images. The 

masks they use are also shown in Figure 3.12.  

 

   

3x3 Kernels for the Sobel operator 

   

3x3 Kernels for the Prewitt operator 

   

2x2 Kernels for the Roberts cross operator 

Figure 3.12 Masks Used for Different Operators  

 

The Canny detector uses a different way to detect the edge of objects. The 

first step of Canny detection is to use a Gaussian blur to reduce the noise. 

The second step is to obtain the strength and direction of the gradients. 

Then Non-maximum suppression is used to pick up the better “candidate 

edge”. The last step is hysteresis controlled by two thresholds (i.e., high 

and low). If the gradient of a pixel is higher than the high threshold, the 

pixel is a part of an edge. If the gradient is lower than the low threshold, 

the pixel is excluded as a part of an edge. The values between the high and 

low thresholds would not be considered as a part of an edge unless they 

are connected to the pixel whose gradient is higher than the high 

threshold.   
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The advantage of classical operators (Sobel, Prewitt, and Roberts) is that 

they are simple, and processing time would be less than a complex 

operator. However, they are noise sensitive. The quality of photos from 

SenseCam differs due to environmental changes (e.g., light, weather, etc.), 

so photos may have noise. The Canny detector, on the other hand, can 

perform better in noisy conditions. Therefore, the Canny detector is 

expected to be a more suitable edge detector.  

 

In the process of edge detection, a circle for a steering wheel and a “T” bar 

for a bicycle handle bar can be detected. A Hough transform can be used in 

the next step, because compared with other methods, it is less affected by 

image noise. Also, the shapes of the critical features for car and bicycle are 

relatively simple.  

 

3.4.5.2 Hough Transform 

A Hough transform was introduced in 1959 (Hough, 1959) and first used 

to find lines in images a decade later (Duda and Hart, 1972). The goal is to 

find the location of lines, circles or other structures in images if the 

parametric equation of those structures is known. Generally, a Hough 

transform is used for detecting a shape from its boundary points. Points, 

lines, and curves in image space are associated with some kinds of shapes 

in Hough space. A line can be described as , where r is 

the perpendicular distance from the line to the origin, and θ is the 

orientation of r with respect to the X-axis. So each point (x, y) on this line 

will be a sine wave (r, θ) in Hough space. All the waves will intersect at 

one point in Hough space. This point is associated with the line in image 

space (see Figure 3.13). Similarly, a circle in image space can be described 

as . In this study, because the radius of a steering 

wheel is unknown, each point (x, y) on this circle (i.e., the steering wheel) 

will be a cone (a, b, r) in Hough space. All the cones will intersect at one 

point in Hough space, representing the circle in image space (see Figure 
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3.14).  If a circle or a “T” bar is detected, a mode of car or bicycle can be 

determined.  

 

 

  Figure 3.13 A Line in Image Space and Hough Space 

 

 

Figure 3.14 A Circle in Image Space and Hough Space 

 

Following the detection results for car trips and bicycle trips, bus trips are 

also identified. Because the detection is for each photo, a “mode chain” is 

then created. There might be some cases of mode change that the previous 

step did not detect. For example, a person might be dropped off at a bus 

stop, and a bus may be just coming after the person gets out of the car. 

There is a very short walking time between car and bus, so this case of 

mode change would not be detected in the previous detection. However, by 

applying a similar rule to that used in the detection of mode change for 

GPS records, the “mode chain” can help to find if there are more cases of 

mode change. Also, some mistakenly-detected modes can be fixed by the 
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“mode chain”. After this step, a final result for trip identification and mode 

detection is generated. 

 

3.5 IMPROVEMENT OF TRIP PURPOSE IMPUTATION 

In terms of purpose imputation, images potentially could be processed for 

purpose imputation, but there are several limitations to such a process, so 

that automating this work is not included in this research. First, there are 

few features that can be identified for each activity, which would be a 

major challenge for automating image processing. Second, for those 

activities that can be detected relatively easily by images (e.g., work), GPS 

records can produce more accurate results based on the location where the 

activities occur. However, since trip and mode results can be identified 

before purpose imputation, picking one photo for each activity to manually 

check the purpose would be possible. Before transport research, SenseCam 

was used in different areas. A visual check is still used to identify what 

people actually do in an activity. This study actually can reduce a large 

amount of visual processing time after identifying trips and modes for 

current research in, for instance, physical activities.  

 

Because automating image processing for purpose imputation is too 

complicated to accomplish currently, an improved process for GPS data 

processing is proposed. The idea is to examine the effects of tour-based 

information and additional activity information on trip purpose 

imputation from GPS travel data.  

 

Based on the traditional process, some additional information about an 

activity, i.e., activity duration and the time when the activity occurs, is 

analysed in this study for purpose detection. The 2009 National Household 

Travel Survey (NHTS) in the US (U.S. Department of Transportation, 

Federal Highway Administration, 2009) was used as a basic data source 

for analysing the distribution of the additional travel information 

mentioned above and tour information of people’s daily travel. A case 
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study of the GPS survey in the Greater Cincinnati region was undertaken 

(see Section 3.1.1).  

 

Although some research has adopted probabilistic methods to impute 

purpose from GPS data (Griffin and Huang, 2005; McGowen and McNally, 

2007), the approach taken in this research remains a deterministic 

approach, developing additional rules for classifying purposes. The reason 

for this stems partly from the fact that early GPS work provided data with 

much less accuracy than is currently possible to achieve, and therefore has 

not provided an adequate pool of information that could be used in 

probabilistic approaches, and partly because a reliable source of ‘ground 

truth’ about travel is not yet available (Bohte and Maat, 2009). 

 

3.5.1 Approach and Data Analysis 

The NHTS data are used as source data to obtain the basic information 

that can be applied to the case study (i.e., the Greater Cincinnati region 

GPS-only survey). The basic travel information includes the distribution of 

the activity duration, the distribution of the time when the activity occurs, 

and tour information.  

 

3.5.1.1 Distribution of Activity duration 

People undertake different activities normally for different durations. 

Typically, there are some basic rules for some activities in terms of 

duration, e.g., working may take four to eight hours per day and education 

may take three to six hours per day. Since the NHTS data are used and 

they include residents over the age of five, while the data in the Greater 

Cincinnati region only included residents over 12, the first step was to 

exclude children from age five to twelve from the dataset. Also, certain 

adult proxy reporting data were removed due to lack of accuracy. Greaves 

(2000) found that people who have their travel information reported by 

proxy reporting can under-report their travel by 18 percent. This study 

focuses on the activities of work, education, shopping, being at home and 
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others. Therefore, all the trips in the NHTS are categorised into those 

groups. In this analysis, in-home activities, which mainly occur during 

nights, are not counted, because information about these activities could 

not help examine the effects of activity duration on trip purpose 

imputation. Figure 3.15 shows the proportion of each activity. The number 

of “going-to-work” and “returning home” trips are respectively 78,395 and 

67,117, accounting for 33.6% of total trips. “Shopping” and “Other” are the 

most probable activities to occur during the day and education makes up 

the smallest percentage of the activities. 

 

 

 

Figure 3.15 Proportion of Each Activity 

 

Figure 3.16 shows the distributions of different activity durations. It 

illustrates that work and education are more likely to occur when the 

duration is longer than four hours. Shopping mostly takes less than four 

hours. Working dominates the activities when duration is longer than 

eight hours. Therefore, a rule is created to test the effect of activity 

duration on purpose imputation, i.e., if the duration is longer than four 

hours and the purpose detected from GPS data is not work or education, 
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this purpose should be suspected as being possibly wrong and the purpose 

may need to be redefined. 

 

Figure 3.16 Distributions of Different Activity Durations 

 

3.5.1.2 Distribution of the Time When Activities Occur 

Similar to the activity duration, there are also some basic rules for the 

time when an activity occurs. In this section, an activity (i.e., shopping, 

work, education, home, other) refers to a “travel to” purpose. Working 

trips (i.e., go to work) are more likely to occur from 8-9 am and finish at 5-

6 pm. NHTS data are still used to analyse the basic distribution of the 

time when activities occur. Different from the analysis of activity duration, 

the home activities that occur during the night are also counted because 

the trips for those activities are normally return-home trips, and 

understanding the time for return-home trips will increase the detection 

accuracy of those trips. Figure 3.17 shows a 24-hour distribution of the 

times when activities occur.  
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Figure 3.17 24 Hourly Distribution of the Time When Activities Occur 

 

From Figure 3.17, education rarely starts before 5 am or after 8 pm. 

Working is more likely to start in the morning, which matches the fact 

that people often go to work in the morning. Return-home trips increase 

during the daytime. Based on this figure, an activity marked as 

“education” (i.e., travel to school) from GPS results that occurs before 5 am 

or after 8 pm may be wrong and may need to be redefined. In addition, 

combining with the activity duration figure, if duration is longer than 6 

hours and the activity occurs before 9 am, the trip for that activity is more 

likely to be a work or an education trip; and socio-demographic data and 

addresses of work places and schools could be used to distinguish work 

and education trips (Stopher et al., 2008).  

 

3.5.1.3 Tour Information Analysis 

The next step is to use tour-based trip purpose sequences to correct the 

results. According to previous findings (Krizek et al., 2003; O’Fallon and 

Sullivan, 2004; Zhang et al., 2010), there are several possible trip purpose 

sequences for a tour. A tour is defined as all the travel and activities that 

occur between a person leaving home and returning home. A simple 

sequence would be Home-Work-Home, defining a tour from home to the 
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work place and back to home, without any other stops for activities. All 

the trips are regarded in a tour as a chain, and use reasonable sequences 

to correct the individual trip purpose. To obtain tour information, NHTS 

data, excluding children under the age of 13 and adult data reported by 

proxy, are used. In order to use the entire tour information, missing trips 

from the self-reported data are manually added. The rules for adding 

missing trips are: 

- If the “purpose from”, Pfi, of a trip (not the first trip of a day) does 

not match the “purpose to”, Pti-1, of the previous trip, add a 

missing trip. The “purpose from” of this added trip, Pfj, is the same 

as Pti-1; the “purpose to” of this trip, Ptj, is the same as Pfi.  

 

- If the destination of the last trip is not home and the first origin of 

the next day’s trip is home, add a return-home trip.  

 

The same classification as Zhang et al. (2010) suggests was adopted. The 

count of tours for each tour type is listed in Table 3.2. To be consistent 

with the analysis in the preceding section, five purposes are included in 

the tours (i.e., home, work, education, shopping, other). In Table 3.2, the 

letters “h”, “w”, “e”, “s” and “o” in the “sequence” column respectively stand 

for home, work, education, shopping, and other. The trip purposes in 

square brackets must occur in the sequence; and the purposes in bold 

must occur at least once in the sequence. The purposes in round brackets 

may not occur or may occur multiple times in the sequence. For example, 

the sequence h – [e/o] – (– e/o –) – [e/o] – h includes h – e – e – h, h – e – o 

– h, h – o – e – h, h – e – o – o – h, etc. According to the meaning of the 

square brackets and purposes in bold, there must be at least three trips in 

this sequence, and the purpose of “education” must occur. All the 

sequences must start and end at home. In Chapter 4, the application of 

this method is introduced to show the improvement of the new rules.  
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Table 3.2 Tour Type Classifications 

Tour 

type 

number 

Tour Description Sequence Count 

of  

Tour 

% 

1 Simple work tour h-w-h 22,209 12.80% 

2 Simple education tour h-e-h 4,674 2.69% 

3 Simple shopping tour h-s-h 19,969 11.51% 

4 Simple other tour h-o-h 54,080 31.17% 

5 Complex work tour (including 

composite and multipart 

work tours) 

h – [w/o] – (– w/o –) 

– [w/o]–h 

13,792 7.95% 

6 Complex education tour 

(including composite and 

multi-part education tours) 

h – [e/o] – (– e/o –) 

– [e/o] –h 

1,552 0.89% 

7 Complex shopping tour 

(including composite and 

multi-part shopping tours 

h – [s/o] – (– s/o –) – 

[s/o] –h 

32,160 18.53% 

8 Complex work and education 

tour 

h – [w/e/o] – (– 

w/e/o –) –[w/e/o] –h 

564 0.33% 

9 Complex education and 

shopping tour 

h – [e/s/o] – (– e/s/o 

–) –[e/s/o] –h  

1,354 0.78% 

10 Complex work and shopping 

tour 

h – [w/s/o] – (– 

w/s/o –) –[w/s/o] –h 

11,579 6.67% 

11 Complex work, education, 

and shopping tour 

h – [w/e/s/o] – 

[w/e/s/o] – (–

w/e/s/o –) – 

[w/e/s/o] –h 

207 0.12% 

12 Multi-part Other Tour h – [o] – (–/o –) – 

[o]–h 

11,382 6.56% 
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3.6 FRAMEWORK OF THE METHODOLOGY 

Since the late 1990s, the methods of GPS data processing have been 

improved significantly. However, studies on GPS data collection still 

suffer from signal problems. This study introduces a life-logging camera to 

assist the data collection. An in-depth investigation of ground truth was 

conducted by comparing life-logging camera images and GPS records. 

With the new cameras, more trips and stops are expected to be identified. 

Therefore, a new procedure to process the GPS data and images was 

introduced. Figure 3.18 demonstrates the framework of this new 

procedure.  

 

The first step is to determine the ideal recording interval to minimise the 

number of data points but still keep the critical travel information. Then 

the raw GPS data needs to be segmented into segments by using a 

threshold of dwell time. This study tested different thresholds to find an 

optimal option. After this step, the first trip identification result can be 

obtained. However, mode change usually takes a very short time. 

Logically, walking should be one of the two modes in mode change because 

people typically cannot directly switch among car, train, bicycle, and bus. 

There should be a walking trip (even if very short) between two other 

modes. Therefore, mode change can be identified by detecting walking 

trips, and seeing if there is a significant change of speed.  

 

GPS data may be the only source at this stage; meanwhile, train trips can 

be detected from a GIS layer, because it usually does not share a route 

with other modes. In this study, train refers to the heavy rail in Australia 

and the UK. If tracks can be detected, train trips are then detected. 
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Figure 3.18 Framework of Data Processing  
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For car-driver and bicycle trips, images from life-logging cameras are 

applied. The first reason to use images in this step is that bus, car, and 

bicycle share the same road with a similar speed. It would be difficult to 

distinguish them only by GPS data. The second reason is that the critical 

features of car (i.e., the steering wheel) and bicycle (i.e., the handlebar) 

can be easily captured by life-logging camera photos. The method of edge 

detection and a Hough transform are applied in image processing to detect 

car-driver and bicycle trips. Although car-passenger trips were not 

detected in this study because all the car trips were made by drivers, it 

could be possible to process images to define car-passenger trips through 

either the shape of car seats (sitting at back) or the front window (sitting 

at front) from images. Also, because G-TO-MAP has a process to highlight 

shared trips within the same household, this also could be used to identify 

car-passengers in the car. For example, if the car driver is identified, then 

all the other household members who were sharing a trip were 

passengers. Once all the other four modes are detected, the remaining 

trips are bus trips. A mode change detection process also needs to be 

undertaken in this step. Some cases of mode change may not be detected 

in the previous step because the walking distance is too short to be 

identified in the GPS data. After this step, final trip identification and 

mode detection results are obtained.  

 

Potentially, images can be applied in purpose imputation. However, there 

are few critical features captured in the images that can determine 

activities.  This study introduced an improved process for trip purpose 

imputation based on GPS data. Additional travel information, i.e., activity 

duration and the time when the activity occurs, was proposed to see if the 

information can be used to improve the accuracy of imputation. Also, tour-

based information can be used to correct some mistakes of imputation.  
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3.7 SUMMARY 

In this chapter, hypotheses were proposed and a new approach for 

processing travel survey data was introduced. Ground truth is critical for 

validating the travel data processing and also may need to be used for 

learning processes for artificial intelligence approaches. An analysis of 

ground truth was suggested in Section 3.3. The methods of testing a 

threshold of dwell time and an interval of recording GPS data were 

suggested. A method which combines trip identification and mode 

detection was discussed in this chapter. This method can overcome a 

general issue where mode and purpose results are highly dependent on 

the result of trip identification. Mode change analysis was applied to link 

the step of trip identification and mode detection, because when mode 

change is detected, the result of trip identification is changed. Walking 

trips and train trips were suggested to be identified by GPS data, and car 

and bicycle trips need to be detected from images. Since life-logging 

cameras were applied for pursuing ground truth and identifying travel 

modes, an image processing approach was proposed in this chapter. For 

trip purpose imputation, additional travel information and tour-based 

information are proposed to improve the results.  
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4 ANALYSES AND RESULTS 

In this Chapter, some research findings are analysed based on the 

methodology introduced in Chapter 3. In Section 4.1, an analysis of ground 

truth is shown to suggest a new way to obtain ground truth. Section 4.2 

discusses the result of testing new rules for trip identification. Two case 

studies are undertaken in Section 4.3 and 4.4 to investigate the new 

approach for travel information imputation from travel survey data 

processing. Section 4.5 briefly summaries the whole chapter.   

 

4.1 PURSUING GROUND TRUTH 

As discussed in Chapter 3, ground truth is the primary issue that needs to 

be investigated. Data from life-logging cameras and GPS devices were 

used for the analysis. The purpose of this analysis is to see if the new 

technology can obtain ground truth and, therefore, improve the quality of 

the collected data. Because SenseCam can record all the visual images 

while a respondent is travelling or undertaking activities, ideally, there 

would be no missing trips or activities if the camera is working properly 

and the respondent is wearing it. By visually investigating all the images, 

it was found that cameras were in proper working condition during most 

of the survey period; for those periods when cameras were not capturing 

images or images cannot be identified, GPS devices were working well.  

 

In this analysis, all the data collected in Oxford (UK) was used. By 

combining GPS and SenseCam data, there are 285 trips recorded in 

Oxford. Table 4.1 shows the comparison of results between the two devices 

in terms of trip identification. If both GPS and SenseCam recorded a 

completed journey (e.g., from place A to B), we marked this trip as a 

“match”. However, some journeys may include more than one segment 

(e.g., from place A to C first, then from place C to B), and either the GPS 

processing software or the SenseCam processing software may fail to 

detect the stops between segments. We marked these cases as “split by 
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SenseCam” (where the GPS failed to split the trip, but SenseCam showed 

a split) or “split by GPS” (for the reverse case). There are 174 trips (61.1%) 

that match between GPS and SenseCam, among which 113 trips match 

exactly, 54 trips that should be split were not split in the GPS processing 

results and 7 trips were not split in the SenseCam processing results.  

 

Table 4.1 Trip Identification Comparison 

 Number of Trips Percent 

Match 

Segment match 113 39.6% 

61.6% Split by SenseCam 54 18.9% 

Split by GPS 7 2.5% 

GPS map editing 20 7.0% 

Only recorded by SenseCam 66 23.2% 

Only recorded by GPS 25 8.8% 

Total 285 100% 

 

There are two main reasons for GPS not splitting trips—the trip duration 

is too short or the stop duration between two trips is too short. In this 

analysis, the threshold of dwell time to identify a trip is 120 seconds. Due 

to this rule, less than 2 minutes is defined as “short”. According to the 

results from SenseCam, which split those trips, those cases can be 

investigated in detail. Moreover, there are 7.0% of trips in Oxford that 

were not recorded by the GPS devices initially, but were added by a map 

editing process.  

 

Table 4.2 shows the number of trips that were not split by G-TO-MAP in 

the GPS results by reason. Because of the rule of identifying stops, the 

software would have difficulty to split a trip when the dwell time is less 

than 2 minutes. Also, some trips may be too short and there were 

insufficient data points so that the software failed to split them. For 
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instance, people may walk from the office to a bicycle parking place or bus 

stop with a very short distance. In fact, bicycle and bus are actually more 

frequently used than car in Oxford. It seems that the two reasons have 

similar impacts (46.3% versus 51.9%), resulting in almost all the cases of 

failure to split trips.  

 

Table 4.2 Reasons for GPS Failing to Split Trips 

Reasons Number of 

Trips  

Percent  

Short duration trips (<2mins) 25 46.3% 

Short duration activities (<2mins) 28 51.9% 

Unknown 1 1.8% 

Total 54 100.0% 

 

The primary reason that SenseCam did not split trips is that SenseCam 

did not capture the short stop between trips. SenseCam captures images 

only when there are certain changes in sensors or every 30 seconds if there 

is no change in sensors. Therefore, for a stop that is less than 30 seconds, 

SenseCam may miss it. Also, pictures captured in the evening could be too 

dark to identify a stop. 

 

Returning to Table 4.1, although through the GPS map editing process, 7 

percent of trips are fixed, 23.2 percent of trips that were not recorded by 

the GPS devices could not be fixed by manual map editing. Because 

SenseCam recorded relevant images during these trips, it can be 

concluded that these trips are missing from the GPS records. Using the 

images recorded by SenseCam, the reasons for the GPS to miss data can 

be examined on a case-by-case basis. This analysis is shown in Table 4.3. 

Cold starts, short duration trips, and travelling in urban canyons are the 

three principal causes for the GPS to miss recording data on a trip. Some 

other reasons, such as people forgetting to carry the device or people 

switching off the device, cannot be detected by the comparison with 
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images, so those reasons are marked as “unknown”. Cold starts (24.4%) 

and short duration (33.7%) trips lead to most cases of missing GPS data, 

whilst 20.9% of trips are missing because of respondents traveling in 

urban canyons. 

 

Table 4.3 Reasons for Missing GPS Data  

Reasons Number of Trips  Percent 

Cold start 21 24.4% 

Short duration trips (<2mins) 29 33.7% 

Travelling in urban canyons 18 20.9% 

Unknown 18 20.9% 

Total 86 100.0% 

 

SenseCam also missed some trips (8.8%). Similar to the problem of failing 

to split trips by SenseCam, inadequate light is also an issue from which all 

cameras may suffer and is another reason that images cannot be detected. 

Also, the lens may be accidently covered by participants’ hands or clothes, 

which will also create difficulties for identification.  

 

Given that there were only a few periods when SenseCam was not 

working well and GPS devices were recording data for those periods, it is 

reasonable to conclude that almost all trips and activities were recorded 

based on the combination of GPS and SenseCam results, although some 

trips and activities may still be missed during the periods when the 

SenseCam was not working due to any coincident GPS recording issues. In 

other words, the combined results of SenseCam and GPS are as near to 

ground truth as we are currently able to come. 

 

For those trips that are an exact match between SenseCam and GPS, 

mode detection and trip purpose imputation results also can be compared. 

Because G-TO-MAP detects public transport modes by GIS layers and the 

bus route layer is not available in Oxford, 14 bus trips are not detected. 
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Mode and purpose are visually detected by images without errors. 

Therefore, the mode results from SenseCam can be used to check the 

accuracy of mode and purpose detection by GPS data. According to the 

comparison, 76.1 percent of trips match on mode, and 83.2 percent of trips 

match on purpose, where work, shopping, education, at home, and other 

are used for trip purpose. Tables 4.4 and 4.5 show the results of these 

comparisons. 

 

Table 4.4 Travel Mode Comparison  

 Number of Trips (Oxford) Percent 

Match 86 76.1% 

Not match 13 11.5% 

No bus layer 14 12.4% 

Total  113 100.0% 

 

Table 4.5 Trip Purpose Comparison 

 Number of Trips (Oxford) Percent 

Match 94 83.2% 

Not match 19 16.8% 

Total  113 100% 

 

Based on the mode detection results, the missing trips from the GPS 

records are mainly walk trips (89.2%). Even though the proportion of all 

walk trips is comparatively high (67.3%) because most volunteers are 

university staff and their families, and this study focuses on 

trips/segments rather than journeys, the proportion of missing walk trips 

is still much higher than other modes, which suggests that GPS may not 

record walk trips as accurately as other modes. On the other hand, for 

those studies focusing on vehicle trips, the issue of missing data from the 

GPS may be of less importance than in studies of pedestrian travel.  

 

Based on this analysis, it is concluded that SenseCam, as a passive digital 

camera, can help find the ground truth not only for trips but also for travel 

mode and trip purpose. Also, GPS data are more likely to be missing at the 

beginning of a trip due to cold starts and for short-duration trips. Those 
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missing trips are more likely to be walking trips, which may not have a 

large impact on surveys of vehicular travel. This analysis also suggests 

that trips recorded by GPS devices may be split when a short duration trip 

occurs at the beginning or at the end of the whole journey or when a short 

duration activity occurs during the whole journey.  

 

Although life-logging cameras can help obtain ground truth, similar to 

GPS loggers first being applied in travel data collection, it is questionable 

as to whether wearing SenseCam would be a new burden for participants. 

However, because SenseCam is a passive digital camera, it would be 

relatively easy for participants to carry the devices. Ethics (e.g., privacy) 

would be another issue for carrying cameras. Kelly et al. (2013) developed 

an ethical framework for wearing the cameras in related research. They 

suggested that a good framework would help solve ethical problems. There 

has not been any research on peoples’ willingness to wear this type of 

camera for travel data collection, which research needs to be done in the 

future when larger samples are collected.  

 

4.2 NEW RULES FOR TRIP IDENTIFICATION 

4.2.1 Analysis of Comparison between Different GPS 

Recording Intervals  

As discussed in Chapter 3, it is important to investigate the time interval 

for recording data. An in-depth comparative analysis among four options 

(one second, three seconds, five seconds and ten seconds) was undertaken. 

To process the data, 120 seconds was used as the threshold of dwell time 

to identify a stop. The data collected in Oxford were used for this test.  

 

After the initial GPS trip identification, the total number of trips was 234, 

based on a base option (i.e., applying the 120-second rule with one-second 

data) without any manual map editing, including the trips not split by the 

software and spurious trips. With the simplified map-editing procedure, 
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which only focuses on the investigation of spurious trips, 15.9% of trips 

were found to be spurious trips.  Also, by comparing with ground truth, it 

was found that the software did not split some trips, and some trips were 

missed from the GPS processing results. The total trips that respondents 

actually made (i.e., ground truth) is 285. Table 4.6 shows the result of the 

base option for both datasets.  

 

Table 4.6 Result of Base Option 

Trip type Number of trips  Percent 

Real trips 145 
69.8% 

62.0% 

Trips not split 54 23.1% 

Spurious trips 35 
n/a 

15.9% 

Sub Total 234 100.0% 

Missing trips 86 30.2% 

Total 285 100.0% 

 

4.2.1.1 Comparison of Trip Identification 

Three-second, 5-second, and 10-second options were also run through G-

TO-MAP. As discussed in Chapter 3, seven consequences (i.e., adding a 

new real trip, adding a new spurious trip, adding a new spurious stop by 

mistakenly splitting a trip, adding a new real stop, mistakenly deleting a 

real trip, correctly deleting a spurious trip, failing to split a trip which was 

correctly split in the base option) would occur when the interval of 

recording the data is changed. Table 4.7 shows the results for each option. 

Due to the increase in the time interval for recording data, some real trips 

were regarded as spurious trips and mistakenly deleted. In addition, some 

trips were mistakenly joined. As a result of these two results, 138 real 

trips recorded in the base option were found for the 3-second option, while 

140 and 130 real trips were found for the 5-second and 10-second options, 

respectively. New real trips were also identified by the longer time 

interval options. In terms of the 5-second option, it identified 10 new real 

trips, which is about 5.3% (15 out of 285) of total trips. Also, it correctly 

split 2 trips. Thus, the total numbers of real trips for the 5-second option is 
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157 (140+15+2). Similarly, the total number of real trips for the 3-second 

and the 10-second option are respectively 141 and 142.  

 

Because of this trade-off, compared with 145 trips from the base option, 

the 3-second and 10-second options have less real trips overall, and the 5-

second option identified more real trips. At the same time, some spurious 

trips were deleted from the 35 spurious trips in the base option; however, 

new spurious trips were also generated due to an insufficient number of 

data points. The 5-second option mistakenly regarded the most spurious 

trips (i.e., 20) as real trips. Although the 3-second option identified the 

least new real trips (only one), it also generated the least spurious trips. 

The total numbers of spurious trips for the 3-second, 5-second, and 10-

second options are 34, 49, and 41 respectively.  

 

Table 4.7 Comparison of Processing Results between Different Options  

Consequence The Base 

Option 

3-Second 

Option 

5-Second 

Option 

10-Second 

Option 

Number of 

trips/stops 

Number of 

trips/stops 

Number of 

trips/stops 

Number of 

trips/stops 

Real trips remaining  145 138 140 130 

Spurious trips remaining  35 27 29 26 

New real trips N/A 2 15 9 

New spurious trips N/A 7 20 15 

New spurious stops N/A 
4 4 5 

New real stops (splitting trips) N/A 1 2 3 

Delete real trips N/A 5 1 2 

Delete spurious trips N/A 8 6 8 

Fail to split trips N/A 2 4 3 

Total real trips 145 141 157 142 

Total spurious trips 35 34 49 41 

Total trips not split 54 57 56 56 

N/A= not applicable 
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Figure 4.1 shows the overall change in the number of real trips and 

spurious trips. Even though the 5-second option has the most real trips, it 

is still necessary to be careful to draw a conclusion whether it is the 

optimal option because of the large number of spurious trips. In this study, 

the 5-second option identifies more real trips than the other three options 

overall (12, 16 and 15 more real trips than the base, 3-second, and 10-

second options, respectively), and generates more spurious trips (14, 15 

and 8 more spurious trips than the other three options, respectively). The 

cost difference between adding real trips and deleting spurious trips needs 

to be estimated. Based on the experience of map editing work, manually 

adding a real trip is much more expensive than deleting a spurious trip. It 

would take at least 2 minutes to add a new trip; by contrast, removing a 

spurious trip would only take 30 seconds. The ratios of additional new real 

trips to additional new spurious trips over the other three options are 

respectively 12/14, 16/15 and 15/8. All of them are more than the ratio of 

the cost of adding a real trip to the cost of deleting a spurious trip (i.e., 

0.25), which means that the 5-second option can save more time on 

processing data than any of the other options. For example, the 5-second 

option in this study saved 17 (12*2-14*0.5) minutes on map editing 

compared with the base option.  

 

Figure 4.1 Overall Change in Total Number of Real and Spurious Trips for 

Each Option  
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In that case, the 5-second option seems to be the best. The benefit from 

this is that the total number of points would be dramatically reduced (i.e., 

one fifth of the base option), which will speed up the processing work. 

However, it is important to note that this result applies only to trip 

identification.  

 

4.2.1.2 Comparison of mode detection  

Applying different time intervals to recorded data will not only change the 

results of trip identification, but also change the mode and purpose results, 

because data by these time intervals show travel information at different 

levels of detail. The results of mode detection by G-TO-MAP were then 

compared with ground truth for the different options. Table 4.8 shows the 

accuracy of mode detection for each interval. Because a GIS bus layer for 

Oxford, which is necessary for G-TO-MAP to detect bus trips, was 

unfortunately not available for use, the 14 trips that were made by bus in 

Oxford were not counted in this analysis. The results indicate that the 

accuracy of mode detection overall is reduced with the increase of the time 

interval. Table 4.9 shows the details of the detection accuracy for each 

mode. While the accuracy of detection for bicycle appears to remain 

unchanged with the increase of the time interval, because G-TO-MAP 

applies a rule of bicycle ownership as an additional rule to detect cycling 

trips, the accuracy of detection for other modes decreases.  One reason for 

this decrease is that using a longer time interval to record data could lose 

some data points that contain important information for mode detection. 

For instance, the average speed for a car travelling on a congested road 

may be the same as a bicycle, but the maximum speed for the motorised 

trip is higher than a cycling trip; however, if a longer time interval is 

applied, some high speed points could be missing, and a motorised trip 

may be identified as a cycling trip or bus trip. In addition to that, the less 

points that are recorded, the more difficult it is for the software to 

determine if the route of a trip matches a GIS layer of public transport, 

resulting in failure to detect bus and train.  
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Table 4.8 Accuracy of Mode Detection for Each Option 

 1 second  3 seconds 5 seconds 10 seconds 

Match 116 111 119 109 

Not match 15 16 24 19 

Accuracy 88.5% 87.4% 83.2% 85.2% 

 

Table 4.9 Accuracy of Mode Detection for Each Mode for Each Option  

Mode 1 second 3 seconds 5 seconds  10 seconds 

walk 

98.5% 

(65/66) 

93.4% 

(57/61) 

93.2% 

(69/74) 

94.0% 

(63/67) 

car 

100.0% 

(19/19) 

90.0% 

(18/20) 

90.5% 

(19/21) 

89.5% 

(17/19) 

train 

100.0% 

(1/1) 

100.0% 

(1/1) 0.0% (0/1) 0.0% (0/1) 

bus n/a n/a n/a n/a 

bicycle 

68.9% 

(31/45) 

77.8% 

(35/45) 

66.0% 

(31/47) 

70.7% 

(29/41) 

 

4.2.1.3 Comparison of purpose imputation 

Similar to the comparison of mode detection results, purpose imputation 

results were also investigated. Tables 4.10 and 4.11 show that the 

accuracy of purpose imputation is also reduced with the increase of the 

time interval; however, the range of the decrease is smaller than for mode 

detection. The main reason for this is the rules used in the imputation. 

Rule-based purpose imputation is mainly based on the land use 

information and the addresses of homes, work places, schools, shops, etc. 

Although the precision of the locations of each stationary point could be 

reduced due to less points recorded when the longer time intervals apply, 

the locations would still be close to the actual points, because when a 

person stops, the GPS points shown on the map would look like a cloud, no 

matter which time interval is applied. The location of the centres of each 

cloud, which was used as the point for each stop, for different time 
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intervals would be similar. Therefore, the accuracy of purpose imputation 

is not decreased substantially as a consequence of the increase of the time 

interval.  However, it does decrease in accuracy, so the more points, the 

better, meaning that 1-second data is best.  

 

Table 4.10 Accuracy of Purpose Imputation for Each Option 

 1 second 3 seconds 5 seconds  10 seconds 

Match 125 118 132 117 

Not match 20 23 25 25 

Accuracy 86.2% 83.7% 84.1% 82.4% 

 

Table 4.11 Accuracy of Purpose Imputation for Each Activity for Each 

Option  

Purpose Accuracy for Oxford data 

Home 

100.0% 

(45/45) 

95.3% 

(41/43) 

95.9% 

(47/49) 

93.0% 

(40/43) 

Work 

100.0% 

(16/16) 

100.0% 

(15/15) 

100.0% 

(16/16) 

93.8% 

(15/16) 

Education 

75.0% 

(3/4) 

66.7% 

(2/3) 

80.0% 

(4/5) 

60.0% 

(3/5) 

Shopping 

100.0% 

(7/7) 

100.0% 

(7/7) 

90.9% 

(10/11) 

88.9% 

(8/9) 

Other 

74.0% 

(54/73) 

72.6% 

(53/73) 

72.4% 

(55/76) 

73.9% 

(51/69) 

 

According to these comparative results, both mode and purpose detection 

accuracy decreased with the increase of the time interval of recording data. 

Although the accuracy is still relatively high (i.e., over 80% for both mode 

and purpose detection), one-second data can provide more detailed 

information and produce more accurate mode and purpose detection 

results.  
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Based on this analysis, it seems that the time interval of recording GPS 

data can be increased to five seconds for trip identification because with 

the five seconds interval, the result for trip identification is not worse than 

the result of one-second data. It can even reduce the cost of map editing. 

However, for mode and purpose detection, one-second data still can 

provide the most accurate result, suggesting that a one-second recording 

interval may still be used for GPS-only data collection, but processing for 

trip identification with current software could potentially sample the data, 

using five second intervals between data points. 

 

4.2.2 Results of Comparison between Different 

Thresholds of Dwell Time 

4.2.2.1 Trip Identification Difference between Options 

According to the analysis of ground truth, it has been shown that current 

GPS software has issues to identify a short trip or a stop based on current 

rules. Therefore, the rule for identifying a stop (i.e., using 120 seconds as 

the threshold of dwell time) might be changed.  

 

In this study, the data collection from Oxford is used. Six options were run 

by G-TO-MAP in this study. This analysis focuses on the trips that needed 

to be split, especially for those stops that are less than 120 seconds. It is 

expected that the shorter the threshold of dwell time, the more short-

duration stops can be identified. According to Table 4.12, 54 trips failed to 

be split when the 120-second rule was applied. By reducing the threshold 

of dwell time, more real stops can be identified. According to Table 4.12, if 

a 15-second rule is applied in the processing, 14 trips can be found, which 

would include all the stops that are less than 120 seconds. It seems that 

not many short duration stops were found (25.9%). The reason is that the 

proportions of walking and cycling trips are higher in Oxford than other 

major cities in the US or Australia, and there are more short duration 

trips (less than 2 minutes), where most of those trips occur before or after 

a case of mode change (e.g., from walk to bicycle, or vice versa). Some trips 
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are often too short which leads to a failure to detect a mode-change case.  

A 90-second rule only found 1 more short duration stop. Meanwhile, new 

spurious stops were also added. For the 15-second rule, 51 spurious stops 

were identified. Given that the total number of real trips is 285, it seems 

to be too many spurious trips generated. Waiting for signals and stopping 

at train stations or bus stops are the main reasons for generating spurious 

stops.  

 

Table 4.12 Comparison of Processing Results between Different Minimum 

Dwell Time Settings  

Consequence 15-second  30-second  45-second  60-second  75-second  90-second 120-

second 

Number 

of 

trips/stop

s 

Number 

of 

trips/stop

s 

Number 

of 

trips/stop

s 

Number 

of 

trips/stop

s 

Number 

of 

trips/stop

s 

Number 

of 

trips/stop

s 

Number 

of 

trips/stop

s 

New real stops 14 10 10 4 1 1 N/A 

New spurious 

stops (congested 

road) 

9 8 3 1 1 1 N/A 

New spurious 

stops (waiting for 

signals) 

14 8 6 0 0 0 N/A 

New spurious 

stops (train 

stations/bus stop) 

28 21 15 9 7 3 N/A 

Total new 

spurious stops 

generated 

51 37 24 10 8 4 N/A 

Total trips not 

split 

40 44 44 50 53 53 54 

N/A= not applicable 

 

Figure 4.2 shows the change in the total number of real and spurious stops 

for different dwell-time settings. From the graphs, the total number of 

trips that were not split decreases as the dwell-time setting decreases, 

while the number of spurious trips increases. There is a cross point 

between these two curves, which seems to indicate that the optimal 

threshold of dwell time is between 45 seconds and 60 seconds.  
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However, the value of this optimal threshold may depend on the specific 

data, which means that a value between 45 seconds and 60 seconds is not 

necessarily the best for all data sets. In this study, with the 45-second 

option, while 6 more new real stops were identified than the 60-second 

option in total, it generated 14 more spurious stops than the 60-second 

option. According to the experience of map editing, the cost of deleting a 

spurious stop is one quarter of the cost of splitting a trip. This means that 

the 45-second option would be the best option for this study. 

 

 

Figure 4.2 Comparison of the Total Number of Real and Spurious Stops 

between Different Thresholds of Dwell Time  

 

4.2.2.2 Mode and purpose detection for new identified trips/stops 

Changing the threshold of dwell time can identify more stops and 

activities. It is useful to check the modes for those new identified trips. 

Table 4.13 implies that when people are walking or cycling, they are more 

likely to undertake an activity of less than 60 seconds duration. On the 

other hand, once a motorised trip stops, the stop time is more likely to be 

longer than 60 seconds, although there might be a few pick-up/drop-off 

stops for car trips.  
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Table 4.13 Mode Detection Results for New Identified Trips 

 

15-second  30-second  45-second  60-second  75-second  90-second 

Car 3 2 2 2 1 1 

Walk 8 6 6 2 0 0 

Bicycle 2 1 1 0 0 0 

Train 1 1 1 0 0 0 

 

It is also necessary to understand the purpose of those new identified trips. 

If shorter thresholds of dwell time than 120 seconds can be applied, the 

purpose of those trips also can be detected. Clearly, pick-up/drop-off and 

mode change and some short duration shopping activities could be less 

than 120 seconds. For example, people may go into a store to buy a bus 

ticket or only to check if something is in stock, which may only take less 

than one minute. Table 4.14 shows that 21.4% of the new short duration 

activities identified by the threshold of 15 seconds were shopping. There 

are still a large proportion of new identified activities marked as “other”.  

 

Table 4.14 Purpose Imputation Results for New Identified Activities 

 

15-second  30-second  45-second  60-second  75-second  90-second 

Shopping 3 3 3 2 0 0 

Other 11 7 7 2 1 1 

 

Table 4.15 provides more details for the purpose “other”. G-TO-MAP was 

supposed to detect all the mode-change stops, but some stops for mode 

change were too short to be detected. For example, a person may alight 

from a train, run across the platform and board another train that is just 

arriving. The whole transfer time would be less than 30 seconds and could 

be much shorter, and it could be difficult for the software to detect this 

stop. For the dwell-time option of 15 seconds, pick-up/drop off accounts for 

one sixth of all the “other” activities, and mode change accounts for 40% of 

the “other” activities. 
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Table 4.15 Detailed Trip Purpose for “Other” 

 

15-

second  

30-

second  

45-

second  

60-

second  

75-

second  

90-

second 

Mode Change 6 3 3 1 0 0 

Pick up/drop off 2 2 2 1 0 0 

Other 6 5 5 2 1 1 

 

From the analysis of thresholds of dwell time, using the 120-second rule 

would lose around 20% of the real stops. Although many of those real 

stops can be fixed by reducing the threshold, more new spurious stops will 

be created at the same time. Therefore, the stop-time rule might be 

tightened, but the extent of tightening will depend on the relative costs of 

splitting trips by map editing, versus deleting spurious stops (i.e., 

combining trips) by map editing. Considering the trade-offs between the 

number of new real stops and spurious stops, and between the cost of 

adding real stops and deleting spurious stops, the 45-second option would 

be the best option for the dwell time based on the data in this analysis. 

The mode and purpose detection for new identified trips/stops for each 

threshold of dwell time suggests that people are more likely to undertake 

a brief activity (e.g., less than 60 seconds) when they are walking than 

when they are driving a car. In addition, shopping, mode change, and pick-

up or drop-off are the main known purposes of the short duration 

activities.  

 

4.3 CASE STUDY FOR NEW DATA PROCESSING METHOD 

FOR TRIP IDENTIFICATION AND MODE DETECTION 

The results from Section 4.2 were then used in a case study based on the 

data collected in Sydney. The new processing method was adopted in this 

study to process both GPS data and images from life-logging cameras to 

improve the accuracy of collected travel data.  
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Because mode and purpose will also be detected, in case some information 

might be lost if a longer time interval is adopted to collect the data, GPS 

data were collected every second. Like all the GPS data processing 

methods, the first step is to convert raw data to a workable format and 

determine the validity of data by some attributes from the GPS devices, 

e.g., the number of satellites in view and the horizontal dilution of 

precision (HDOP). Stopher et al. (2008) explain in detail the rules for 

cleaning GPS data. The next step is to segment the GPS points into 

segments. As suggested in Section 4.2, 45 seconds was then used as the 

threshold of dwell time. Therefore, combining with the rules suggested by 

Stopher et al. (2008), a trip end can be identified by the following rules: 

- The difference in successive latitude and longitude values is less 

than 6 m; and  

- The heading is unchanged or is zero; and 

- Speed is zero; and  

- The dwell time is equal to or greater than 45 seconds 

 

4.3.1 Trip Segmentation 

Initially, there are 312,568 GPS data points for the data collected in 

Sydney, including the trips from seven volunteers travelling for five to 

seven survey days. Although the GPS device has a “sleep mode” to stop 

recording data, the sleep mode is only activated several minutes after a 

trip is completed. GPS devices still record data for these few minutes. 

However, the data need to be removed because the trip has ended. Also, 

some invalid data were removed from the raw data.  As a result, from the 

raw data, the total number of GPS data points was reduced to 102,640 

travel points by applying the rules of identifying a stop and the threshold 

of dwell time. The reasons of this reduction of the number of points are: 1) 

there were a number of cases that devices should have been in sleep mode 

but they were not, so the devices continued to record a few hours data 

where people were actually stationary; 2) data marked as invalid was 

removed. 
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 These travel points consist of 233 segments identified by G-TO-MAP. In 

those segments, some are spurious trips, which need to be deleted, and 

some are actually within one trip, but wrongly split by the rule of the 

threshold of dwell time. A new map editing process is then adopted. The 

normal map editing process for G-TO-MAP is to delete spurious trips, add 

missing trips, and split or join segments by in-depth investigation based 

on the GIS map or Google map generated by the software. The main 

challenge is to add missing trips. Logically, the location of an origin should 

match its previous destination unless it is the first origin of the whole 

survey. Similarly, the location of a destination should match its next 

origin unless it is the last destination of the survey. If they do not match, 

there has to be a missing part between them. It could be a single trip or 

multiple trips. The information of other trips that the respondent made on 

the same day or other days can be used to add the information for missing 

trips. The travel information from other persons in the same household 

also can be used to assist the process, but the start and end times for those 

missing trips cannot be estimated.  Although respondents were asked to 

report if they had forgotten to carry the devices for the whole day or just a 

part of a day, for those cases when people forget to carry their GPS 

devices, there is no way to add the missing trips by map editing. The other 

issue is that adding trips by map editing can create new errors due to lack 

of travel information. According to the analysis of ground truth, life-

logging cameras can help to find the trips that GPS devices do not record. 

Hence, adding missing trips would not be a task for the new map editing 

process. However, flags were marked at the place of missing trips by 

comparing the longitude and latitude of origins and their previous 

destinations and also based on the reports that respondents provided 

about whether they were carrying the devices. The flags were used to 

locate the missing trips and help find them by images. Because the 

threshold of dwell time is decreased to 45 seconds, more trips need to be 

joined, and the map editing procedure mainly focused on deleting spurious 

trips and joining segments in this study. 
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The definition of spurious trips was introduced in Chapter 3. According to 

the map editing process, there are 28 spurious trips among the segments 

identified initially. Therefore, the number of real trips is reduced to 205 

(233-28). After deleting the spurious trips, all the time-stamped images 

from life logging cameras were linked to the GPS data.  

 

Because the reasons for wrongly splitting segments are mainly waiting for 

signals and stopping at train stations and bus stops, map editing focused 

on those locations to see if there were some segments that needed to be 

joined (see an example in Figure 4.3).  

 

 

Figure 4.3 An Example of Joining Segments 

 

4.3.2 Trip Identification and Mode Detection 

By deleting spurious trips and joining segments, there are 150 real trips 

identified. These 150 trips were then marked as R1 for the first result of 

trip identification. The next step is to identify cases of mode change from 

R1. Logically, a walk trip should be involved in the cases of mode change. 

As discussed in Chapter 3, mode change detection was undertaken 

according to the speed of each GPS point in the segments. The rules for 
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identification were introduced in Chapter 3. Figure 4.4 shows the result of 

the first trip segmentation and mode change detection. 

 

Within the 150 segments, there are 43 cases of mode change, resulting in 

43 more trips. At the same time, all the walking trips were identified by 

the rules. The total number of walking trips is 100, which makes up 51.8% 

of the total trips. The proportion of walking trips is relatively high, 

because this research focuses on the trips rather than journeys, and people 

usually need a walking trip to link two other trips by different modes. 

Since the walk trip has been identified, all the GPS points for these walk 

trips are removed from the dataset for the remainder of mode and trip 

identification.  

 

 

Figure 4.4 Result of the First Trip Segmentation 

 

The next step is to identify train trips. Because train only travels on the 

track and does not share the track with any other modes, the GIS layer of 

the train routes is critical to identify a train trip.  

 

61%

1%

18%

3%

17%

Trip Segmentation

Real segments

Wrongly split on the road near
intersections

Wrongly split at intersections

Wronly split at train stations/bus
stops

Mode changes
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By using the GIS layer, a process of link matching is necessary where all 

the GPS points are linked to a GIS map. In this study, this process was 

completed by G-TO-MAP. From the segmentation result, there are 93 trips 

that are not walk trips. Based on the G-TO-MAP process, 18 train trips 

were identified.  All the GPS points for train trips were then removed after 

this step.  

 

The 75 remaining trips are therefore car, bus and bicycle trips if all the 

walk trips and train trips were correctly detected. As described in Chapter 

3, images from life-logging cameras were applied in the detection process.  

 

Matlab® version 2014a was used in this study to process the images. 

Matlab® is a software using a high-level language for analysing data, 

creating models and other applications. It has been used in various areas, 

especially in information systems, finance, and biology. The language used 

in Matlab® is simpler than traditional programming languages. Also, 

because it has a number of built-in functions and toolboxes, it can find a 

solution much faster than other software based on traditional programing 

languages. The Image Processing Toolbox is one of the powerful toolboxes 

in Matlab®. People can use the toolbox to develop their own functions to 

display and analyse images.   

 

Pre-processing was undertaken before mode detection of the images. After 

inputting all the images for car trips, bus trips and bicycle trips, all 

images were converted to greyscale format. Figure 4.5 shows the greyscale 

images for driving a car and riding a bicycle. The main information in the 

images was still kept in greyscale images.  
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Figure 4.5 Greyscale Images for Driving a Car and Cycling 

 

Next, all the greyscale images needed to be converted again to binary 

images, also known as black-and-white images, for edge detection. There 

are several operators widely used in edge detection. The critical factor that 

affects the performance of each operator is the threshold. Generally, the 

more stringent the threshold chosen, the more detailed the characteristics 

of the edge that can be detected. Figure 4.6 shows the performance using 

the Sobel operator with different thresholds.  

Figure 4.6 Performance of the Sobel Operator with Different Thresholds 

 Threshold=0.15 Threshold=0.10 

Threshold=0.05 Threshold=0.01 
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Also different operators perform differently in different contexts. In this 

study, because all the photos were captured by life-logging cameras, there 

is significant noise in each photo. Figure 4.7 demonstrates the 

performance of different operators. For the comparison among operators, 

different thresholds were chosen for different operators in order to reach 

the best performance for each operator.  The ideal result of edge detection 

is to include all the important and useful information from the images, 

and also not include too detailed but useless information and noise. 

Apparently, even with a higher threshold, the Canny detector still 

performed better than the other three operators. The make of the car (i.e., 

Volkswagen in this case) was successfully detected by the Canny detector, 

and the edge was much clearer with less noise. As a result, the Canny 

detector was chosen for edge detection in this study.  

Figure 4.7 Performance of Different Operators for Edge Detection 

 
 

 

Prewitt (threshold=0.03) 

 

Roberts (threshold=0.035) 

 

Sobel (threshold=0.03) 

 

Canny (threshold=0.15) 
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To choose a proper threshold is also a function of the environment. 

Generally speaking, it would be darker travelling in a car or on a bus than 

cycling on a bicycle. If a low threshold is chosen, there might be too much 

information in the cycling photos, which may report errors when mode is 

detected. For example, there might be some circles or curves on the 

roadside (e.g., traffic signs) when people are cycling. Because the critical 

feature for the car is a steering wheel, some circles or curves might be 

wrongly detected as “steering wheels”.  

 

On the other hand, if the threshold is too high, then the edge might not be 

detected for car trips. In other words, detecting car trips is more sensitive 

to the threshold than detecting bicycle trips. Therefore, a two-step method 

was applied. Firstly, a relatively high threshold (i.e., 0.3) was chosen. The 

requirement for this threshold was to identify the bicycle handlebar, and 

not identify any similar shapes for photos of car and bus trips. Figure 4.8 

shows edge detection results of examples for all three modes with the 

threshold set to 0.3.  

 

With the edge detection results, mode detection for bicycle was run first. 

There are 3,326 photos in total for the detection. A Hough transform was 

used to detect the lines in the photo so that the bicycle bars can be 

detected. In order to identify a handlebar, the length of the handlebar 

should be set as a threshold. A threshold with 25 pixels was set. Figure 4.9 

shows a detection result for bicycles after detecting lines of the handlebars.   
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Figure 4.8 Edge Detection Results by Canny Detector for Three Modes 

with Threshold=0.3 
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Figure 4.9 Mode Detection Result for Bicycles 

 

Among the 3,326 photos, 159 photos were detected as “bicycle”. All the 

other photos were marked as “other than bicycle”. Then a similar rule 

used in the detection of mode change was used. Because the SenseCam 

takes images around every 22 seconds, if more than three (inclusive) 

successive photos are detected as “bicycle”, this successive “photo chain” 

represents a bicycle trip. If there are less than three successive photos 

marked as “bicycle”, these “bicycle” photos would be reclassified as “other 

than bicycle”. Although there would not be any mode change between 

bicycle, car and bus logically, the interval for taking photos may be too 

long to capture a case of mode change (i.e., a walking trip). So there still 

might be cases of mode change within a successive “photo chain”. 

Similarly, if there are no more than three successive photos marked as 

“other than bicycle” in a “photo chain”, they need to be reclassified as 

“bicycle”. By applying this rule, 25 more photos were marked as “bicycle”.  

Also one more case of mode change was detected.  

 

The next step is to undertake edge detection again with a low threshold 

and run mode detection for car for all these photos. The threshold for the 

Canny detector used in this step was 0.15, in order to detect more details 

in the car (see Figure 4.10). 
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Figure 4.10 Edge detection results by the Canny detector for three modes 

with threshold=0.15 

 

A Hough transform was used to detect the circle (i.e., steering wheel). 

Because different circles have different radii, a range needs to be 

determined. In Matlab, the unit for expressing the radius of a circle in an 
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image is a pixel. According to the size of steering wheels for different cars, 

a range from 150 pixels to 300 pixels was chosen. Because of the angle of 

taking photos, a steering wheel in an image may not be a standard circle. 

Thus, there might be more than one circle being detected (see Figure 4.11). 

Also a value for sensitivity needs to be determined, because if the 

sensitivity is too high, it may detect some “circles” which were actually not 

circles. If the sensitivity is too low, then circles cannot be detected (see 

Figure 4.12).  

 

 

Figure 4.11 Examples of Circle Detection 

 

 

Figure 4.12 Circle Detection for Different Values of Sensitivity 

 

Based on the results of circle detection, 2,801 photos were detected as car. 

A similar photo-chain rule was applied to identify a car trip. 22 more trips 

were reclassified as car after the rule was applied. Some photos may be 

detected as car in this step, but detected as bicycle in the previous step. 

This may arise, because the photos in this step have too much information 
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about the edges of items, which could cause some errors for an outdoor trip. 

Circles on the road might be mistakenly detected as steering wheels. 

Therefore, if the result in this step is in conflict with the one in the 

previous step, the result from the previous step is used.  

 

Although photos were detected individually, the result of car and bicycle 

detection was at the trip level. In total, there are 56 car trips that were 

detected, along with nine bicycle trips. Given that 75 were left after the 

detection of walk and train, and one more mode change was detected in 

image processing, the 11 remaining trips were bus trips. The mode 

distribution for all trips is shown in Figure 4.13.  

 

 

Figure 4.13 Mode Distribution for All Trips 

 

4.3.3 Missing Trips 

According to the analysis of ground truth, it has been shown that GPS 

devices may lose some data points. The method used in this study for data 

processing is based on both GPS devices and life-logging cameras, so after 

all the GPS data were processed, SenseCam images were used to find the 

missing trips.  

51%

29%

9%

6%

5%

Mode Distribution for All Trips

Walk

Car

Train

Bus

Bicycle
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The first task is to locate missing trips. In trip segmentation, some 

missing parts have been flagged when GPS records were linked with 

SenseCam images. There are two types of missing trips. One is caused by 

signal problems for GPS devices. For these missing trips, the destination 

of a trip usually does not match the next origin. The other type of missing 

trip is caused by respondents forgetting to carry the devices. For this type, 

the previous destination matches the next origin. It is necessary to 

investigate these flagged segments. Like the map editing process, this 

process can be called image editing, where the SenseCam Browser 

developed by the Nuffield Department of Population Health at the 

University of Oxford is used to visually investigate the information from 

the missing parts. Two tasks were involved in the image editing. The first 

was to add the missing trips, checking if the missing part includes one or 

multiple trips. Although the route of this trip may not be identified due to 

the loss of GPS data, travel duration and travel distance are still needed. 

Travel duration is the difference between start time and end time, which 

can be found from time-stamped images. Travel distance, however, can 

only be estimated from the difference between the previous destination 

and the next origin. The second task is to visually determine the travel 

mode for the missing trips from images.  

 

Based on this investigation, 52 missing trips were found and added, which 

is about 20% of the total number of trips. By adding missing trips, the 

total number of trips identified for this dataset is 245. Table 4.16 shows 

the mode for the 52 missing trips. 

 

Table 4.16 Mode for Missing Trips 

 Number of trips Percentage 

Walk 44 84.6% 

Car 3 5.8% 

Train 5 9.6% 
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It appears that walk trips were easy to be missed. The reason is that some 

walk trips are too short to be recorded. Walk trips are also heavily 

influenced by the data quality. When data quality is low, single errors may 

be larger when the speed is low, and the errors would more easily generate 

a spurious trip. In that case, a real trip can be recorded as a spurious trip 

and mistakenly deleted by software or the process of map editing. There 

are no missing car or bus trips in this study.  

 

4.3.4 Evaluation of the Case Study 

Adding missing-trip information is the last task for the new process of trip 

identification and mode detection. The next step is to check the accuracy of 

the detection by comparing the result of this new method with ground 

truth.  

 

4.3.4.1 Comparison between Ground Truth and Case Study Results 

For research purposes, ground truth was obtained by visually checking the 

images from SenseCam with GPS information assistance. It was similar to 

the analysis in Chapter 4.1.  

 

For trip identification, 246 trips were identified by the new process, while 

there are 258 real trips from ground truth. By comparison, all of the 12 

trips were actually included in the identified trips but were not correctly 

split. Because the threshold dwell-time rule applied for the segmentation 

was 45 seconds, for those stops (not including mode change) less than 45 

seconds, they were difficult to be identified. Although it should be rare 

that a real stop is less than 45 seconds for an activity, there are three 

stops based on the information from the ground truth. Also, a walking trip 

might be too short to be detected for a mode change. Sometimes the GPS 

signal issue could lead to a failure to detect a mode change. In the process 

of data cleaning, invalid data are removed based on the GPS data quality, 

but the data might be part of a real trip. Because of the removal of GPS 

data, there are not enough data points for identification. Seven trips were 
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not split for this reason. There are also two short running trips that were 

not split. The purpose of the two running trips was actually mode change, 

and due to the speed and trip duration, the mode change detection process 

did not split them.  

 

For the mode detection result, all the walking trips were detected correctly. 

There are 23 train trips according to ground truth. 18 train trips were 

correctly detected; another five, however, were not detected as train trips. 

The reason for not detecting train trips is that the GPS may have signal 

issues during the train trips, especially in the CBD in Sydney because the 

train travels underground. If the train trip loses some parts, it might be 

difficult for the software to detect the trip based on a GIS layer. None of 

these five trips were detected as car or bicycle in the image processing. 

Therefore, five trips were then classed as bus trips. Most of the car trips 

were detected correctly, while only one trip was not detected as car. Also, 

one bus trip was mistakenly detected as bicycle because the respondent 

just stood behind a horizontal handrail, which looks like the handlebar of 

a bicycle. Two bicycles trips were not detected, which were wrongly classed 

as bus trips. Table 4.17 shows the accuracy of detection for each mode.  

 

Table 4.17 Accuracy of Mode Detection 

Mode The number of 

trips detected 

The number of 

trips correctly 

detected 

The number 

of trips from 

ground truth 

Detection 

Accuracy 

Walk  100 100 100 100% 

Car  56 56 57 98.2% 

Train  18 18 23 78.3% 

Bus  11 3 4 75% 

Bicycle  9 8 10 80% 

Overall  194 185 194 95.4% 
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It seems that the largest difference between the number of detected trips 

and ground truth is from bus trips. This is because the sample size for this 

research is relatively small, and also the process actually does not directly 

detect bus trip but classes all the remaining trips not detected as other 

modes to be bus trips. Since the total number of trips at the trip level is 

relatively small, it would be useful to explore the detection accuracy for 

each photo. Table 4.18 provides the details of the result for image 

processing.  

 

Table 4.18 Image Processing Result Evaluation  

Mode  Image input Mode correctly detected Accuracy 

Car 2,917 2,823 96.8% 

Bicycle 208 184 88.5% 

Bus 201 n/a n/a 

 

Because the results for bus trips were not directly detected by processing 

work, the table only shows the detection accuracy for car and bicycle trips. 

Overall, the accuracy is 96.2% (3,007 out of 3,125). The main reason for 

the incorrect detection is that the critical features (i.e., steering wheel and 

bicycle handlebar) are not very clear or are not captured in these photos. If 

the photo is too bright or too dark, the features are difficult to detect. Also, 

the bicycle handlebar might not be captured by the camera due to the 

movement of the cyclist. All the incorrect results were reported as “bus 

trips” by the processing software.  

 

4.3.4.2 Comparison between Results from Existing Software and the 

New Method   

Another comparison was also undertaken between the existing software 

and the new method to see if the new method improves the results. The 

existing G-TO-MAP software uses rule-based algorithms to detect trip 

ends, travel modes, and trip purposes. 120 seconds is used as the 

threshold of dwell time to identify a trip end.  
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For the purpose of the comparison, only trip end and travel mode results 

were compared. G-TO-MAP initially identified 191 trips out of 258, 33 of 

which were not split correctly. The existing processing method also 

involves a map editing procedure. While map editing fixed 14 trips for the 

issue of missing data, there are still 53 trips that could not be identified 

because there is no or limited data recorded by the GPS devices. Also, 

there is little clue for map editing to add those trips. Table 4.19 shows the 

comparison between the new approach and the existing method for trip 

identification.  

 

Table 4.19 Comparison of Trip Identification between the New Method 

and the Existing Method 

 

In total, 66.7% of the total number of trips was identified by the existing 

method, 28.7% lower than the accuracy of the identification by the new 

method. The reason why the existing method only identified two third of 

the real trips is because missing trips comprised 20.5% of the total trips. It 

should be pointed out that the current method still can record about 20%-

30% more trips than traditional diary reports. While there are still a 

 Existing Method New Method 

Number 

of trips 

Percent Number 

of trips 

Percent 

Exact trips 

identified initially 

158 61.3% 

66.7% 

194 75.2% 

95.4% Trip fixed by 

editing work after 

initial processing 

14 5.4% 52 20.2% 

Trips identified but 

not split 

33 12.8% 

 

12 4.7% 

 

Missing trips 53 20.5% 0 0% 

Total real trips 258 100.0% 258 100.0% 
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number of trips not split correctly by both methods, there is no missing 

trip from the introduction of the life-logging camera in travel data 

collection.  

 

For those trips that are correctly identified and split, mode detection 

results of both methods can be compared. While 140 trips were correctly 

detected by the G-TO-MAP software, which reaches a high accuracy level 

of 88.6%, the accuracy of the new method combined with GPS data 

processing and image processing is 6.8% higher. Table 4.20 specifically 

shows the comparison of the detection accuracy between the two methods 

by investigating in detail for each mode. 

 

Table 4.20 Travel Mode Comparison  

 Detection accuracy for the 

existing method 

Detection accuracy for the 

new method 

Walk  97.3% 100% 

Car  88.6% 98.2% 

Train  68.4% 78.3% 

Bus  75% 75% 

Bicycle  77.8% 80% 

Overall  88.6% 95.4% 

 

It appears that the accuracy of detection for car and bicycle by image 

processing is higher than for the GPS data processing. With the rule of the 

shorter threshold of dwell time and the approach of detecting mode change, 

walk and train trips can also be detected more accurately, because if more 

trips can be split correctly, the travel information for single trips can be 

more useful and accurate for detection.  
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4.4 CASE STUDY FOR NEW RULES FOR PURPOSE 

IMPUTATION 

Travel data processing usually includes trip identification, mode detection 

and purpose imputation. Because the improvement has been made for trip 

identification and mode detection, improvement for purpose imputation 

should also be progressed. Some new rules for trip purpose imputation 

were also discussed in Chapter 3. In this section, an analysis to test if 

those new rules can be used to improve the purpose imputation results is 

reported. Because the data collected in Oxford and Sydney were not 

sufficient to test tours, a supplement of data collected in Ohio in the USA 

was used to show the results.  

 

The Ohio Department of Transportation conducted the first GPS-only full-

scale household travel survey in the USA in 2009 in the Greater 

Cincinnati region. Every member in the household over the age of 12 was 

asked to carry a passive GPS device for three days. After the collection, a 

prompted recall (PR) web survey was also conducted, in which 

respondents were assisted to recall their actual travel by receiving GPS-

generated maps of where and when they travelled. The software known as 

G-TO-MAP was used to process all the GPS data. The rules suggested in 

Chapter 3 based on NHTS data were applied to the data from the Greater 

Cincinnati region survey to check the performance of these rules. The 

sample representativeness of the NHTS and the Ohio GPS survey was 

tested (See Tables 4.21 to 4.24). According to the sample size and data 

availability, household size, car ownership, the number of workers and 

household income are involved in the comparison. The results show that 

there are only a few notable differences in the distributions of household 

size, the number of workers, and the number of vehicles between the two 

datasets. Also, the large difference (7.21%) in households whose incomes 

are lower than $25,000 appear most likely to be the result of the 7.7% of 

households in the GPS survey that did not answer the income question. 
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The additional trip/tour information was applied in the GPS survey. In 

order to compare with the result from the PR data, all the trips in this 

study should be in both the GPS data and the PR results. After adding 

missing trips by map editing, there are 4,133 trips from the GPS data that 

can be used for analysis. Initially, compared with the PR results, which 

are currently regarded as “ground truth” in GPS travel surveys, the 

accuracy of trip purpose imputation for the processed GPS data is 58.7% 

(2,425 out of 4,133). Although the PR results are still not actual ground 

truth, they are the only resource that can be used in this study to check 

the accuracy.  

 

Table 4.21 Comparison of Household Size 

 GPS Data NHTS Data Percent 

Difference 

GPS / NHTS 

Household Size Frequency Percent Frequency Percent Percent 

1 Person 669 32.5% 21632 29.23% 3.27% 

2 Persons 696 33.8% 27385 37.00% -3.20% 

3 Persons 278 13.5% 10660 14.40% -0.90% 

4+ Persons 416 20.2% 14330 19.36% 0.84% 

Total  2059 100% 74007 100%  

 

Table 4.22 Comparison of the Number of Workers 

 GPS Data NHTS Data Percent 

Difference 

GPS / NHTS 

Number of Workers Frequency Percent Frequency Percent Percent 

0 Worker 573 27.8% 24909 33.66% 5.86% 

1 Worker 704 34.2% 27391 37.01% 2.81% 

2 Workers 643 31.2% 18703 25.27% -5.93% 

3+ Workers 139 6.8% 3004 4.06% -2.74% 

Total 2059 100% 74007 100%  
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Table 4.23 Comparison of the Number of Vehicles 

 GPS Data NHTS Data Percent 

Difference 

GPS / NHTS 

Number of 

Vehicles 

Frequency Percent Frequency Percent Percent 

0 Vehicle 91 4.4% 2267 3.06% -1.34% 

1 Vehicle 676 32.8% 19348 26.14% -6.66% 

2 Vehicles 809 39.3% 32143 43.43% 4.13% 

3+ Vehicles 483 23.5% 20249 27.36% 3.86% 

Total 2059 100% 74007 100%  

 

Table 4.24 Comparison of the Household Income 

 GPS Data NHTS Data Percent 

Difference 

GPS / NHTS 

Household Income Frequency Percent Frequency Percent Percent 

Up to $25,000 344 16.7% 17695 23.91% 7.21% 

Over $25,000 to 

$50,000 

450 21.9% 17918 24.21% 2.31% 

Over $50,000 to 

$75,000 

395 19.2% 12526 16.93% -2.27% 

More than $75,000 712 34.6% 25868 34.95% 0.35% 

Don’t know/Refused 158 7.7% n/a n/a  

Total 2059 100% 74007 100%  

 

4.4.1 Validation by Using Additional Activity 

Information 

According to the analysis of NHTS, there are three rules created in 

Chapter 3 to examine the processed GPS results and validate the results: 

- Rule 1: If the duration is longer than four hours and the purpose 

detected from the GPS data is not work or education, this purpose 
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should be suspected as being possibly wrong and the purpose may 

need to be redefined. 

- Rule 2: If an education activity occurs before 5 am or after 8 pm, the 

purpose may need to be redefined. 

- Rule 3: If the duration of a non-work or non-education activity is 

longer than 6 hours and the activity occurs before 9 am, the purpose 

may need to be redefined. 

 

Because G-TO-MAP uses home addresses to impute return-home trips, 

which should be correct, none of the return home trips were validated. 

Based on Rule 1, there are 236 trips that are suspect. An in-depth analysis 

was conducted to visually examine these suspect trips. All of these trips 

were tested using Google Earth® and land use information (i.e., workplace 

address, school address, home address, and addresses of the two most 

frequently used grocery stores).  

 

The trip purposes of 110 trips after testing remained the same as the GPS 

processed results (including 77 return-home trips). The results of the 

remaining 126 (=236-110) trips were modified. Specifically, 78 trips were 

changed from “other” to “work”; 23 trips were changed from “shop” to 

“work”; 6 trips were changed from “shop” to “education”; and 9 trips were 

changed from “other” to “education”. There were also 10 trips that were 

reassigned from either “shop” or “other” to “home”. Also, among those 126 

trips, 73 trips could be validated by Rule 3. Only 5 trips met the condition 

of Rule 2. With visual examination from Google Earth®, all the trip 

purpose results of these 5 trips were modified. Table 4.25 shows the 

results of trip purpose validation based on these three rules. After the 

validation, the correct results of trip purpose imputation from the GPS 

data increased to 2,556 (=2,425+126+5), with an accuracy of 61.8%. 
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Table 4.25 Results of Trip Purpose Validation Based on Additional 

Activity Information 

Type of Suspected Error Number of Trips 

Suspect trips (Rule 1) 236 

Trips with no change after testing (Rule 1) 110 

Trips with change after testing (Rule 1) 126 

Trips changed by Rule 3 73 

Suspect trips (Rule 2) 5 

Trips changed after testing (Rule 2) 5 

 

4.4.2 Validation by Using Tour-Based Information 

As discussed in Chapter 3, tours from the NHTS data have been classified 

into 12 categories. Similarly, tour type classifications are undertaken 

based on the GPS data from the Cincinnati survey. From those 4,133 trips, 

there are 1,222 tours from the GPS results. Using the same classification 

as for the NHTS data, the proportion of each tour type is shown in Table 

4.26.  

 

Compared with the NHTS classification, Tour Types 11 and 12 from the 

GPS data are much higher (0.57% versus 0.12%, and 16.94% versus 

6.56%). Also, Tour Types 3 and 6 are much lower (5.07% versus 11.51% 

and 11.46% versus 18.53%). Although NHTS, as a self-reported survey, is 

subject to memory mistakes and fatigue of respondents, the NHTS data 

still provides a useful benchmark for the distribution of tour types.  

 

Therefore, the tours of Tour Types 11 and 12 should be examined. By 

checking the location on Google Earth®, these tours were revised by 

changing some trip purpose results, resulting in 75 “multi-part other” 

tours being assigned to other categories (in particular, 50 tours to complex 

shopping tours). Table 4.26 also shows the change of results before and 

after validation.  
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Table 4.26 Tour Type Classifications for GPS data 

Tour 

type  

Tour Description Sequence Number 

of Tours 

(Before) 

Number 

of Tours 

(After) 

GPS 

Percentage 

Before 

NHTS 

Percentage 

GPS 

Percentage 

After 

1 Simple work tour h-w-h 109 109 8.92% 12.80% 8.92% 

2 Simple education tour h-e-h 35 35 2.86% 2.69% 2.86% 

3 Simple shopping tour h-s-h 62 62 5.07% 11.51% 5.07% 

4 Simple other tour h-o-h 356 356 29.13% 31.17% 29.13% 

5 Complex work tour (including composite and 

multipart work tours) 

h – [w/o] – (– w/o –) – [w/o]–

h 

161 171 13.18% 7.95% 13.99% 

6 Complex education tour (including composite 

and multi-part education tours) 

h – [e/o] – (– e/o –) – [e/o] –h 32 34 2.62% 0.89% 2.78% 

7 Complex shopping tour (including composite 

and multi-part shopping tours 

h – [s/o] – (– s/o –) – [s/o] –h 140 192 11.46% 18.53% 15.71% 

8 Complex work and education tour h – [w/e/o] – (– w/e/o –) –

[w/e/o] –h 

21 21 1.72% 0.33% 1.72% 

9 Complex education and shopping tour h – [e/s/o] – (– e/s/o –) –

[e/s/o] –h  

14 15 1.15% 0.78% 1.23% 

10 Complex work and shopping tour h – [w/s/o] – (– w/s/o –) –

[w/s/o] –h 

78 91 6.38% 6.67% 7.45% 

11 Complex work, education, and shopping tour h – [w/e/s/o] – [w/e/s/o] – (–

w/e/s/o –) – [w/e/s/o] –h 

7 4 0.57% 0.12% 0.33% 

12 Multi-part Other Tour h – [o] – (–/o –) – [o]–h 207 132 16.94% 6.56% 10.80% 
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It would be useful to test to see whether the distributions of the GPS tours 

and NHTS tours are significantly different from each other, and also to 

determine whether the changes in tour purposes increased the similarity 

of the two distributions. Unfortunately, there are some difficulties in doing 

this. The chi-square test is rejected because the values from the chi-square 

test are heavily influenced by the magnitude of the values of the numbers 

of tours and because the differences in sample size between the Cincinnati 

GPS survey and the NHTS are too large. Alternatively, the Kolmogorov 

Smirnov (K-S) test is the best available test for this analysis.  

 

The K-S test statistic Dn is defined by 

Dn= |Fn(x)-F(x)| 

Where Fn(x) is an empirical cumulative distribution function; F(x) is a 

given cumulative distribution function; and n is the sample size.  

 

The K-S test (see Table 4.27) also shows the improvement of results after 

using additional activity information and tour-based information. Dn for 

the GPS results before validation is 0.1230. Using additional activity 

information and tour-based information, Dn in the K-S test is reduced to 

0.1219, which means that the difference of distributions between GPS 

results and the NHTS data has been reduced. Given that the D value is 

0.375 at a significance level of 0.05 for 12 categories, both GPS results are 

not significantly different from the NHTS records. The validation for the 

GPS results also removed some large values of Di, thereby decreasing the 

K-S test value. 
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Table 4.27 Kolmogorov-Smirnov Test 

Expected  

Cumulative 

Percentages  Before 

Cumulative 

Percentages  Di After 

Cumulative 

Percentages  Di 

12.80% 12.80% 8.92% 8.92% 0.0388 8.92% 8.92% 0.0388 

2.69% 15.49% 2.86% 11.78% 0.0371 2.86% 11.78% 0.0371 

11.51% 27.00% 5.07% 16.85% 0.1015 5.07% 16.85% 0.1015 

31.17% 58.17% 29.13% 45.98% 0.1219 29.13% 45.98% 0.1219 

7.95% 66.12% 13.18% 59.16% 0.0696 13.99% 59.97% 0.0615 

0.89% 67.01% 2.62% 61.78% 0.0523 2.78% 62.75% 0.0426 

18.53% 85.54% 11.46% 73.24% 0.1230 15.71% 78.46% 0.0708 

0.33% 85.87% 1.72% 74.96% 0.1091 1.72% 80.18% 0.0569 

0.78% 86.65% 1.15% 76.11% 0.1054 1.23% 81.41% 0.0524 

6.67% 93.32% 6.38% 82.49% 0.1083 7.45% 88.86% 0.0446 

0.12% 93.44% 0.57% 83.06% 0.1038 0.33% 89.19% 0.0425 

6.56% 100.00% 16.94% 100.00% 0.0000 10.80% 100.00% 0.0000 

      Dn 0.1230     0.1219 

 

Because there is not a natural order to the tour types, a second test was 

run in which the tour types were ordered from the most-frequently 

occurring to the least-frequently occurring in the NHTS data. The result of 

this was slightly higher, but still non-significant values of the K-S statistic, 

with the before value being 0.1943 and the after value declining to 0.1518. 

Again, these values are well below the 5 percent significance value of 

0.375, but also show a more marked decrease from the before situation to 

the after situation. 

 

From these tests, it can be concluded that the distributions were initially 

not significantly different according to the K-S test. Also, while the 

distributions were still not significantly different after the adjustments, 

the values had become closer. 

 

Within the 75 “multi-part other” tours being assigned to other categories, 

the trip purposes of 191 trips were corrected. The number of trips whose 
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purposes are correctly imputed is correspondingly increased to 2,747 trips 

(=2556+191), and a final accuracy of trip purpose imputation is 66.5 

percent (2,747 out of 4,133 trips). Table 4.28 demonstrates the final 

results. 

 

Table 4.28 Final Results of Validation 

Correction Number of Trips 

(Percent) 

Initially correct trips in terms of purpose imputation 2,425 (58.7%) 

Correct trips after activity information is applied  2,556 (61.8%) 

Correct trips after tour-based information is applied 2,747 (66.5%) 

 

 4.5 SUMMARY  

In this chapter, all the issues mentioned in Chapter 3 were analysed. 

Findings and results based on the method introduced were discussed. The 

analysis of ground truth proved that life-logging cameras can help to 

obtain ground truth, especially because they can find missing trips that 

GPS devices fail to record. The result of this analysis also suggests that 

walking trips are more likely to be missed for GPS records.  

 

The analysis of the time interval of recording data suggests that using five 

seconds as an interval to record data seems to be the best option for trip 

identification, because it can still record important information of trip 

ends for the identification, and also can reduce the total number of data 

points. However, it might be premature to conclude that using a five 

second interval would still get an accurate result of mode detection and 

purpose imputation. The reason is that detecting modes and purpose 

needs more detailed information for a trip that a longer time interval may 

lose. Lack of data points may also lose the detail of the travel route, which 

will cause a problem when GIS information is used for public transport 

detection.  
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In the area of GPS data processing, the threshold of dwell time is always 

critical to identify a trip end. This study tested different options to 

conclude that a threshold between 45 seconds and 60 seconds would be the 

optimal option, because it can detect most of the short stops, and would 

not generate too many spurious stops. In this study, a threshold dwell 

time of 45 seconds was applied in the analysis for data processing.   

 

A new method for collecting and processing the travel data was introduced 

in Chapter 3. This chapter also shows results by applying this new method 

to a case study in Sydney. Based on the results, life-logging cameras have 

potential to be used in household travel surveys to improve data quality. 

The new method combined the procedure of trip identification and mode 

detection to identify more cases of mode change. All the trips were 

identified by the new method although a few trips were not split correctly. 

Dedicated GPS devices were still used in this study because GPS data are 

still important for collecting travel information (e.g., travel speed, 

locations, routes, etc.).  

 

Walking trips and train trips were detected by GPS data. Car and bicycle 

trips were automatically identified by the information obtained from GPS 

data and the images from SenseCam cameras, with overall above 95 

percent accuracy. An image processing procedure was applied for the 

detection.  Also, the concept of a “photo chain” can help to fix some 

mistakes in detection. Comparing to the existing method, the accuracy of 

trip identification and mode detection by applying the new method is 

higher.  

 

As an entire processing procedure, this study also introduced some new 

rules that involved additional trip information and tour information for 

trip purpose imputation. From the results, the proposed additional 

information can help improve the accuracy of trip purpose imputation. 

Specifically, a rule for activity duration of work/education trips, a rule for 
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the time when work/education trips occur, and also a tour-based trip chain 

were suggested. In total, the accuracy of purpose imputation is increased 

by approximately 8% for the dataset used in this study.  

 

The key points of this chapter are: 

- The result of testing a threshold of dwell time suggests that 45 

seconds performed better than other options in this study; 

- GPS data can be sampled by every five seconds to reduce the 

processing time for trip identification; 

- Life-logging cameras can be used in travel data collection to obtain 

ground truth and also help to identify travel modes; 

- The new approach which combines trip identification and mode 

detection can improve the total results of both steps; and  

- Additional travel information was suggested to add into purpose 

imputation. The result shows the accuracy can improve 8%.  
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5 CONCLUSION  

Chapter 1 of this thesis introduces the background of this research area, 

followed by a systematic review of the literature in Chapter 2. Based on 

the research gaps discussed in the review, Chapter 3 and Chapter 4 

documented the application of a new procedure for travel data collection 

and data processing. In this chapter, Section 5.1 summarises the results 

and findings of this research. Section 5.2 highlights the main 

contributions based on the findings. Similar to most research, there are a 

few limitations in this study, which are discussed in Section 5.3, and 

Section 5.4 provides suggestions for future work in this area.  

 

5.1 SUMMARY OF RESEARCH RESULTS AND FINDINGS 

This study has addressed the research gaps mentioned in Chapters 1 and 

2. In the analysis of ground truth, this study compared the results from 

SenseCam and GPS devices. It concluded that life-logging cameras can be 

used to help find ground truth, especially for finding the missing trips that 

GPS devices do not record, and identifying travel modes. Ground truth 

then can be used for the validation of travel data processing. Also, with 

SenseCam images, the performance of GPS devices was investigated in 

detail in this study. In general, GPS devices may miss approximately 20-

25% of trips. Specifically, GPS data are more likely to be missing at the 

beginning of a trip due to cold starts and for short-duration trips. Those 

missing trips are more likely to be walking trips, which may not have a 

large impact on surveys of vehicular travel. This research suggests that 

trips recorded by GPS devices may need to be split when a short duration 

trip occurs at the beginning or at the end of the whole journey or when a 

short duration activity occurs during the whole journey.  

 

Based on the ground truth obtained by life-logging camera and GPS 

devices, this study also undertook a number of tests to improve the 

criteria of identifying trips/segments. The time interval for recording data 
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was tested. According to the results, a 5-second option seems to be the best 

option for trip identification for this study because more new real trips 

were identified; however, the comparisons of mode and purpose detection 

indicate that one-second data can provide more detailed travel information 

and more accurate mode and purpose detection results. This suggests that 

data should continue to be collected at a one-second interval, but 

processing for trip identification could potentially sample the data, using 

five-second intervals between data points.  

 

This study also tested the value of the threshold of dwell time that defines 

when a trip ends. Currently, most research uses 120 seconds as the 

threshold of dwell time. This study suggests that this may lose about 20% 

of the real stops. While many of those real stops can be fixed by reducing 

the threshold, more new spurious stops will be created at the same time. 

Therefore, the stop-time rule might be tightened, but the extent of 

tightening will depend on the relative costs of splitting trips by map 

editing, versus deleting spurious stops (i.e., combining trips) by map 

editing. Considering the trade-offs between the number of new real stops 

and spurious stops, and between the cost of adding real stops and deleting 

spurious stops, it is concluded that the 45-second option is the best option 

for the dwell time according to the data collected in Oxford. In terms of 

travel modes, people are more likely to undertake a short time activity 

when they are walking, and those short duration activities are usually 

shopping, mode change and pick-up or drop-off. The test also suggests that 

some changes might be made to loosen rules for trip identification. 

 

Based on the case study in Sydney, the new procedure for collecting and 

processing the travel data was tested. About 95 percent of the trips were 

correctly identified by the new procedure. The other 5 percent of the trips 

were actually recorded by the devices but were not correctly split. 

Compared with an existing procedure (G-TO-MAP), which appears to be 

one of the most accurate methods that is currently available, the trip 
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identification accuracy is increased by almost 30 percent, taking the 

missing trips into account. The new method, which combines the 

procedure of trip identification and mode detection, identified more cases 

of mode change. It needs to be mentioned that dedicated GPS devices were 

still used in this research because GPS data are still important for 

collecting travel information (e.g., travel speed, locations, routes, etc.).                             

 

While mode detection is combined with trip identification in the new 

procedure, investigating the accuracy specifically for mode detection is 

still necessary. In the new procedure, walking trips and train trips were 

detected by GPS data only. Car and bicycle trips were automatically 

identified from the information obtained from GPS devices and the images 

from SenseCam cameras. An image processing procedure was applied for 

the detection. Also, the concept of a “photo chain” was used to help fix 

some mistakes in image processing. From the results of mode detection, 

walk trips can be detected with 100 percent accuracy, followed by car trips 

(98.2 percent). For all modes, the overall accuracy is 95.4 percent. The 

accuracy to detect a car from a single photo is about 96.8 percent, while 

88.5 percent of the photos for bicycle trips can be correctly detected.  By 

comparing with an existing method, the accuracy of mode detection by 

applying the new method is 7 percent higher than the accuracy by using 

the existing method.  

 

In terms of trip purpose imputation, this research introduces a number of 

new rules that involve additional trip information and tour information for 

trip purpose imputation. The proposed additional information can help 

improve the accuracy of trip purpose imputation. Specifically, a rule for 

activity duration of work/education trips (i.e., rule 1: if the duration is 

longer than four hours and the purpose detected from the GPS data is not 

work or education, this purpose should be suspected as being possibly 

wrong and the purpose may need to be redefined), a couple of rules for the 

time when work/education trips occur (i.e., rule 2 and 3: if an education 
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activity occurs before 5 am or after 8 pm, or if the duration of a non-work 

or non-education activity is longer than 6 hours and the activity occurs 

before 9 am, the purpose may need to be redefined), and also a tour-based 

trip chain were applied in this study. A GPS-only survey in Ohio in the US 

was used for the test. In total, the accuracy of purpose imputation was 

increased by approximately 8 percent in our case.  

 

This study also pointed out that although GPS surveys may still have 

some issues currently, it is clear that GPS devices can record more 

accurate travel information than self-reported diaries, and GPS surveys 

have become more reliable and cheaper nowadays for data collection. With 

the development of new technology, more new devices could be introduced 

in travel data collection, along with GPS units, to collect more accurate 

data.   

 

5.2 MAIN CONTRIBUTIONS 

GPS surveys are increasingly accepted and applied for travel data 

collection. To obtain more accurate travel data, a number of methods of 

processing GPS data have been developed during the past decade. This 

study has a number of original contributions to the literature and 

practical data collection.  

- This thesis systematically reviewed the approaches for identifying 

trip ends, detecting travel modes, and inferring trip purposes. 

Based on the review, both advantages and disadvantages for 

different approaches were discussed. Research gaps that currently 

exist were pointed out. 

- This thesis investigated the issue of ground truth. Life-logging 

cameras were introduced for the first time in travel surveys. It has 

been shown that these cameras can help improve data quality.  

- This thesis tested the time interval of recording data to show the 

potential to reduce the number of data points and further save 

processing time.  



 

129 
 

- The threshold of dwell time was tested for the first time, which can 

help identify more short duration stops.  

- An approach combining the steps of trip identification and mode 

detection was suggested. By this approach, more mode changes can 

be identified and trips can be identified not only based on the 

original GPS inputs (e.g., speed, duration of stops, etc.), but on the 

result of mode detection also.  

- A new procedure of processing data from GPS and life-logging 

cameras was suggested and tested. Image processing was applied to 

detect travel modes for the first time. In addition, the impacts of 

signal issues (especially signal loss) from GPS devices are reduced 

by applying the life-logging camera data.  

- The map editing process in the new procedure is much easier than 

the existing process, which can therefore reduce a great amount of 

time 

- For trip purpose imputation, additional rules were tested and 

shown to improve the results of purpose imputation.  

- This thesis applied tour-based information to assist trip purpose 

detection for the first time. Travel mode and trip purpose were 

typically identified from a single trip. Tour-based information 

identified a number of trips as a “trip chain”. Using the logical 

sequence of the trip chain, the accuracy of purpose imputation can 

be increased.  

 

Existing studies usually use arbitrary rules to determine GPS data 

frequency and identify trip ends. This thesis tested different options for 

these rules and suggested best rules for this study. By using the new 

rules, more short-stop trips can be identified, which would be useful when 

researchers or planners need to analyse trips of serving passengers. Also, 

this study proved that one-second data may not be necessary for trip 

identification.  
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There is very little research that has addressed the ground truth issue in 

the literature. Most studies were limited in how to obtain ground truth. 

Some studies used travel diaries to train their learning system for mode 

detection, which would reduce the accuracy of the processing results. This 

research provided a new method to pursue ground truth which could be 

used in the future, especially for studies which need training data. In 

addition to that, ground truth can help report the correct accuracy of data 

processing for each study.  

 

Trip identification and mode detection are typically separated in 

GPS/Smartphone data processing. The overall accuracy of mode detection 

is associated with trip identification accuracy. If trips cannot be identified 

correctly, travel modes detected for those trips are incorrect. In this study, 

these two steps were combined into one, so mode detection results can also 

correct some results in trip identification. The overall result was 

generated together from trip identification and mode detection.  

 

Little GPS research has provided a proper method to deal with missing 

data due to GPS signal issues. The main reason is that there is very 

limited information that can be used to impute missing parts. This study 

introduced life-logging camera to visually review the missing data in GPS 

data streams. The new technology can fill the missing gaps between trips.  

The common inputs used in current research in purpose imputation are 

land use and the addresses of homes, work places and shops. Different 

from existing studies, this research suggested that more information 

needs to be added as inputs. The result from this thesis proved that 

additional information can improve the purpose imputation result.  

 

5.3 LIMITATIONS 

There are several limitations to this study. The sample size is relatively 

small for the tests and the case study for the processing of trip 

identification and mode detection. Because only five life-logging cameras 
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were avaible to use in Oxford, and only one camera was avaible to use in 

Sydney, a small sample was drawn for research purpose in order to obtain 

ground truth, but the number of trips, especially the number of trips for 

each mode is small.  

 

Secondly, bus trips were not compared between GPS processing results 

and ground truth because the GIS bus network was not available in 

Oxford. Another limitation is from the device. While SenseCam helped 

identify missing trips from GPS devices due to signal issues, SenseCam 

also missed some trips or stops because of low light or the lens accidently 

being covered by respondents. Better instructions need to be provided to 

the respondents. Because, with the first generation of life-logging cameras, 

there is no GPS module in the camera, participants had to carry both 

devices for all the survey period, which might be burdensome. Also, even 

with the new generation camera which is equipped with a GPS module, 

cameras currently cannot record GPS information as frequent as 

dedicated GPS devices and cannot record speed and direction as dedicated 

GPS devices do. Hence, respondents will still be needed to carry dedicated 

GPS devices, which therefore influence the response rate and the data 

integrity. 

 

Limitations also exist in the research on trip purpose imputation. First, 

the basis of the additional travel information (i.e., activity duration, the 

time when activities occur and the distribution of tour types) were derived 

from NHTS data, which is subject to the problems of self-reported surveys. 

Second, the PR results were used as ground truth for this test because life-

logging cameras were not available for that study. PR results have been 

shown not to be real ground truth, which could lead to a problem where 

GPS results might be correct while PR data show different results. Bohte 

and Maat (2009) found that people struggle a lot with a PR survey when 

they need to add/split a great number of trips, and as a result they may 
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leave the wrong trips in the PR results. But in the Ohio data, PR is the 

best source to validate the data.  

 

There is no study that has been undertaken for the comparison between 

life-logging cameras and GPS records, while Kelly (2013) has compared 

SenseCam images with travel diaries. As mentioned in Chapter 2, the 

missing trips he found from SenseCam were more than this study. Given 

his sample size was also small, a larger sample may need to be tested in 

the future to provide more details of the performance of life-logging 

cameras.  

 

5.4 FURTHER DISCUSSION 

There are several additional issues that can be discussed. As suggested 

above, the time interval to record data could be changed especially for trip 

identification. One might use a 5-second interval by drawing a sample 

from one-second data for trip identification, but there could be at least five 

different samples, depending on the starting point. For example, for a trip 

being made from 16:00:01 to 16:06:40, one can draw a sample from 

16:00:01, and take every fifth point after this start point until the end of 

the trip. One also can draw the sample from 16:00:02, 16:00:03, 16:00:04, 

or 16:00:05. Therefore, all the five samples can be drawn and the results 

from all the five possible samples can be compared. 

 

In addition, similar to GPS loggers first being applied in travel data 

collection, it is questionable whether wearing SenseCam could be a new 

burden for participants. However, because SenseCam is a passive digital 

camera, it is relatively easy for participants to carry it.  

 

Ethics (e.g., privacy) is another issue of carrying cameras, and most 

participants will be concerned about this issue. Kelly et al. (2013) 

developed an ethical framework for wearing the cameras in related 

research. They suggested that a good framework can help solve ethical 
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problems. This framework includes the preparation of documents for 

surveyors and instructions for the respondents. Also, the manufacturer 

built in a “pause” button to give respondents an opportunity to stop taking 

the photos for seven minutes for the first generation device, i.e., 

SenseCam. There has not been any research on the publics’ willingness to 

wear this type of camera for travel data collection, which needs to be done 

in the future when larger samples are collected.  

 

Also, it is still unclear whether the general public are willing to carry life-

logging cameras. Wearing cameras when people travel may be intrusive 

for both survey participants and those people who are captured by the 

cameras. The acceptability of this new device still needs to be investigated, 

especially for different groups of people.  

 

The next step of this research is to try to identify the critical features for 

other modes besides car and bicycle. Since photos have been shown to be 

able to provide more reliable and accurate results, photos could be used to 

detect all modes. Car occupancy is another topic for future research. 

Because the view from a car driver and a car passenger is different, 

identifying the number of persons in a car is possible. Similarly, a study of 

purpose imputation based on life-logging cameras needs to be undertaken. 

Photos provide much more detailed information about activities. While 

identifying the critical feature for activities is extremely complicated and 

difficult, it is still worthwhile investigating if activities can be imputed 

directly from photos. Also, another approach (i.e., machine-learning 

systems) may be applied to process images automatically.  

 

The newest generation of life-logging cameras have a GPS module built in. 

However, researchers/consumers do not have full access to the GPS data. 

Data are currently uploaded and stored in the Cloud from the company 

who designed and manufactured the cameras. Nevertheless, it is possible 

to have a life-logging camera with full access to GPS data in the future. If 



 

134 
 

GPS devices and cameras can be combined as one device, then the 

respondents would not experience increased burden to carry the life-

logging cameras, and the data quality for travel surveys could be improved.  

Passive digital cameras can be used more widely in transport research. 

For instance, research on cyclists can collect more accurate bike trips by 

cameras because the bicycle bar is clearly shown in the photos; crowd 

research also could benefit from the photos captured by passive cameras 

on public transport and in crowded pedestrian areas. With the benefits 

that cameras bring, it can be expected that more studies will be conducted 

by using the new generation cameras in the transport area in the future.  

Furthermore, besides using the life-logging cameras, there is another 

potential direction for travel data collection in the future, which can deal 

with the current problems of GPS surveys. Bolbol et al., (2010) have 

proposed Geoweb 2.0, crowd sourcing and user generated content, as a 

possible way to collect data and enable travellers to upload their trips 

directly to the web to see them.  

 

5.5 SUMMARY 

This chapter summarised the findings in this thesis, and discussed the 

limitations of this research and provided a number of thoughts about 

future work. The key points of this chapter are: 

- The approach suggested in this study filled a number of research 

gaps mentioned in Chapter 2. Overall, the new procedure can raise 

trip identification accuracy by almost 30 percent, taking the missing 

trips into account. The accuracy of mode detection and purpose 

imputation increased by 7% and 8%, respectively.  

- This study provided two directions to the literature: improving the 

current methods and using a new technology and processing 

procedure for travel data collection.  

- Sample size is the main limitation in this study. Also, ethical issue 

would become the main obstacle for people to use life-logging 

cameras in travel surveys.  
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- Image processing could be undertaken for purpose imputation. 

Since the images are shown visually, the result could be better than 

GPS processing.    
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