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Abstract 

Tissue reconstruction and restoration by tissue scaffolding is a promising technique. Over the 

past few decades, research in tissue engineering and scaffold has been carried out extensively 

and mostly experimentally in search of ideal scaffold design, and design criteria are being 

established. Even though some design criteria can be derived empirically from 

experimentation, it remains unclear how the microstructure of a scaffold affects cell 

proliferation and how it can be optimised for specific tissue applications. Meanwhile 

computational modelling is emerging as a new design method, and has demonstrated 

significant potential in predicting cell response and has augmented experimental design 

approaches. 

This thesis presents a computational investigation of scaffold design. It is hypothesised that 

the material properties of tissue scaffolds and the cell viability can be improved by means of 

structural design and optimisation. This study proposes an isosurface-based characterisation 

and optimisation technique for the design of periodic microscopic architecture, and a 

porosity-based design approach for the design of macroscopic structure. The goal of this 

study is to physically define the optimal tissue scaffold structures, and to establish any link 

between cell proliferation outcome and scaffold architecture. 

Single-objective and multi-objective topology optimisation was conducted at microscopic 

scale to determine the ideal scaffold structures. To create and to present unambiguous design 

models, a high quality isosurface modelling technique was formulated and automated to 

define scaffold microstructure in stereolithography format. Periodic structures with optimised 

permeability, and theoretically optimal diffusivity and bulk modulus were found using 

modified level set method. Microstructures with specific effective diffusivity were also 
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created by means of inverse homogenisation. Cell viability simulation was subsequently 

conducted to provide evidence that the optimised microstructures offered a more viable 

environment than those with random microstructure. The resultant isosurface models of tissue 

scaffolds exhibited superior model quality and improved numerical accuracy when compared 

to results obtained from conventional topology optimisation approaches. The results also 

showed that the multiobjective solutions closely resembled the Schwarz’s primitive surface 

though they appeared to be not exactly the same.  

The macroscopic porosity and material distribution of scaffolds were also subjected to 

topology optimisation. Biological design criteria were incorporated into the optimisation 

process to allow direct investigation of the relationship between physical structures and cell 

growth. This part of research demonstrated the possibility of improving cell proliferation 

outcome, in terms of cell number and survivability, through the manipulation of the porosity 

profile of tissue scaffolds. The resultant porosity patterns depended on a number of technical 

factors including seeding density, seeding uniformity, perfusion rate and the design objective.  

Artificial vascular systems were also designed and optimised to enhance nutrient transport. In 

this modelling process, a clear relationship between optimality and fractality of material 

distribution was established in the steady-state diffusion simulations, where the scaffold 

material was virtually non-conductive and the volumetric oxygen consumption was the 

primary driving force. The results supported the conjecture that natural vascular systems 

acquire their fractal shapes through the process of self-optimisation. Additionally, partially 

fractal and non-fractal optimised designs were found in other design scenarios. 
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1 Introduction 

1.1 Motivation 

Tissue scaffolding is a treatment technique developed to restore lost tissues [1]. The principle 

of tissue scaffolding is to fill the space that was originally occupied by tissue with special 

materials, for example, replacing a partially broken jaw with hypoxia appetite that is shaped 

like the original jaw. In addition to providing structural support, these materials are typically 

porous and are designed to allow host cells to recolonise, regenerate and mature. The ideal 

outcome of this treatment is the full regeneration of function tissue. 

Tissue engineering is a multidisciplinary research area that involves material engineering, 

cells biology and biomechanics [2-5]. Maintaining even oxygen supply and achieving 

uniform cell distribution are two major challenges in this field of research [6, 7]. Hypoxia in 

particular is frequently encountered in non-vascularised tissue scaffolds, and is responsible 

for low cell survival rate [8, 9]. Hypoxia and the subsequent cell death are typical of static 

culture, in which the viable living space is limited to the region near the scaffold boundary, 

where high oxygen concentration is maintained [10, 11]. Cell viability in the core region can 

experience an ongoing deterioration when the cells living near the scaffold boundary 

proliferate and form an oxygen transport barrier [12], which prevents oxygen from reaching 

the core region [13].  

It is known that diffusion transport alone is insufficient at maintaining an adequate oxygen 

level in large tissue scaffolds [14, 15]. A direct solution to this problem is the use of 

perfusion system, which has been proven highly effective in boosting oxygen concentration 

and improving uniform cell distribution [16, 17]. However, perfusion also induces wall shear 

stress and subsequently threatens the stability of cell attachment on the material surface [16, 
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18]. When the flow rate is increased above a certain point, the risk of cell detachment can 

negate the benefit of elevated oxygen level to cell colonisation. For this reason, perfusion 

must be applied with caution and under certain constraints. To improve the perfusion 

efficiency and to minimise the adverse wall shear stress, high permeability structure and 

artificial vasculature may be used to guide the fluid flow through pores in a more desirable 

manner. 

The porous structure of tissue scaffolds has been shown to play a critical role in nutrient 

transport [19] as well as cell infiltration and migration [10, 11, 13, 20]. A range of structural 

recommendations and requirements ranging from porosity [7, 13, 20], pore size [21] to 

connectivity [13] have been suggested since. However, meeting these basic requirements 

does not guarantee successful tissue regeneration outcome [22-25]. Increasing porosity also 

reduces structural strength [26, 27]. Therefore a direct investigation and characterisation of 

diffusivity [6, 28], fluid flow behaviour [18, 29] as well as other characteristics is necessary 

to critically assess the suitability of any structures for tissue scaffold applications. 

The structural design of tissue scaffolds can be carried out computationally [30, 31]. Past 

computational studies have encompassed structural properties [8, 19, 32], nutrient supply [33-

35], mechanical stimuli and the resultant biological response as design criteria [36-43]. The 

idea of building tissue scaffolds with microscopic periodic blocks known as the 

representative volume element (RVE) is especially popular. Unlike the conventional 

scaffolds, models created from computational design process are expected to be fabricated by 

means of solid freeform fabrication, which has a strong emphasis on structural details. 

Despite the successful computational application, most computational techniques are not 

customised and tailored for this design purpose and results are often flawed in a practical 

sense. Firstly, the topology optimisation methods used in the past studies utilised fixed-mesh 
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and voxelised modelling processes, which results in the formation of numerical artefacts. 

Secondly, the ambiguous nature of voxelised models makes it difficult to accurately fabricate 

the physical products. Additionally, there are unassessed potential designs and unverified 

claims of optimality. There is a strong need to properly define the porous architectures to 

enable more robust examination, and to bridge the gap between computational design and 

actual fabrication.  

 

1.2 Aims 

This study was set to overcome past design limitations and develop better, definitive 

structures of tissue scaffold with reasonably predictable outcome. The aims of this study can 

be summarised as follows: 

1. To determine the optimal porous structures for maintaining nutrient transport and cell 

viability in tissue scaffolds. These two prominent problems will be resolved by means 

of topology optimisation. 

2. To develop more accurate modelling techniques for structural characterisation. The 

optimal shapes of tissue scaffold structures must be unambiguously defined.  

3. To incorporate biological design criteria into the optimisation process and to directly 

investigate the relationship between physical structures and cell proliferation 

outcome. 

4. To examine popular design ideas and conjectures, and assess their potential as tissue 

scaffold structures. Past claims and design suggestions will be scrutinised, in 

particular the optimality of minimal surface models and natural vascular transport 

systems. 
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To achieve these, a new topology optimisation method has been proposed along with some 

other modified methods for the design tasks. The goal was not only to obtain the optimal 

results, but also to outperform conventional methods such as Bidirectional Evolutionary 

Structural Optimisation, Solid Isotropic Material with Penalisation, and the level set method. 

 

1.3 Structure and scope of the thesis 

This thesis is a five-part study. It begins with the development of new modelling techniques, 

and then the topology optimisation, and finishes with the construction and examination of 

fractal architectures. Each part of study introduces one core computational concept and solves 

a set of related problems. The first part of this study is the development of a high quality 

modelling technique. This modelling technique along with the level set method creates the 

foundation for topology optimisation to be used in the next two parts of study. The second 

and the third parts of the study focus on single-objective and multi-objective topology 

optimisation, respectively. Here, both conventional methods and the proposed approach are 

presented and compared. The last two parts of study take on the manipulation of the porosity 

of tissue scaffolds. In general, the earlier chapters focus on design at microscopic scale, and 

the later chapters cover macroscopic problems. 

Chapter 2 is the literature review. The first section of this chapter looks into the current 

development of tissue scaffolding techniques with a strong emphasis on structural design, and 

the second section surveys recent computational studies that present possible approaches to 

various design problems. The first section covers structural characterisation, common 

materials and fabrication techniques, mechanical and fluid dynamics behaviour, and general 

biological responses. In the second section, the merits and issues of existing computational 

topology optimisation methods are discussed. 
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Chapter 3 introduces the concept of smooth 3D isosurface modelling. This chapter provides 

detailed formulation and programming instructions required to automate the creation of 

isosurface as well as finite element mesh. Improving the robustness of mesh generation and 

the mesh quality is the primary objective. 

Chapter 4 presents the design and optimisation of the microstructure of tissue scaffolds. This 

is the single-objective topology optimisation that attempts to maximise effective bulk 

modulus, effective diffusivity and effective permeability. This chapter introduces the 

concepts of homogenisation for the characterisation of material properties, and boundary 

tracking for modelling of microstructure. Here it is demonstrated how isosurface modelling 

can be implemented in a level set based topology optimisation method and presents the 

optimisation results in such format. Detailed programming instructions of finite element 

analysis and the level set method are provided. The optimisation results are compared to 

those obtained from BESO method, conventional level set method and the SIMP method. 

Chapter 5 presents the multi-objective topology optimisation of the microstructure of tissue 

scaffolds. The goal is to maximise effective diffusivity and effective bulk modulus 

concurrently. The idea of design by inverse homogenisation is also explained. In addition to 

the topology optimisation, a steady-state cell viability test is presented to compare the 

optimised model with a model constructed from a CT-scanned tissue scaffold, which has 

random microstructure. 

Chapter 6 moves onto the optimisation of macrostructure. In this chapter, the possibility of 

improving cell proliferation outcome, in terms of cell number and survivability, is explored 

through using scaffolds with non-uniform porosity. An optimisation formulation based on 

biological outcome is introduced. Diffusion and advection transport scenarios are presented 

separately and the results are compared. 
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Chapter 7 introduces the concept of fractal and scale-independency. This chapter focuses on 

the design and optimisation of artificial vascular systems of tissue scaffolds for nutrient 

transport. This part of study explains how fractal vascular patterns develops in the process of 

topology optimisation in a steady-state, diffusion-driven system. This work attempts to 

establishes any potential relationship between optimality and fractality, which will help 

elucidate the much speculated self-optimising nature of vascular system  [44]. Partially 

fractal and non-fractal designs are also presented. 

Chapter 8 is a summary of the optimisation results, remarks and limitations of this thesis. 

Recommendations for future works are made in areas where this study had not been able to 

investigate. 
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2 Literature Review 

Tissue scaffolding is an emerging technique that aims to facilitate the restoration of body 

defects [1]. While some tissues such as blood and liver can regenerate and recover from a 

significant mass loss, many other body tissues cannot be restored easily. More specifically, at 

the site of a critical-size wound or defect, natural recovery will not occur during the lifetime 

of an animal; non-functional scar tissue may fill the void at best. The prospect of scaffolding 

treatment is that it is possible to initiate and guide the wound healing process, and achieve a 

desirable outcome by tailoring tissue scaffold design. Recent Biomedical Engineering studies 

have helped us develop a better understanding of aided body recovery, yet much work is to 

be done to fully realise the potential of such applications.  

Scaffolding and temporary tissue replacement is a complex process and involves material 

engineering, cells biology, grafting techniques, and working with biomechanical environment 

[2, 3]. To tackle the tissue restoration problem from an engineering design perspective, one 

must first understand the interaction between scaffold materials and cell-tissue development. 

Then some specific design objectives can be defined based on these biological requirements. 

Following this, appropriate engineering design processes are selected and applied to create an 

all-rounded solution. 

 

2.1 Artificial scaffold 

In tissue scaffold engineering, a scaffold (Figure 2-1) can be designed and tailored to address 

two major challenges: cell survival and development. It has been shown that the diffusion-

advection mass transport determines the cell viability [4], and biomechanics and 

mechanobiology play the critical role in tissue development and regeneration [5, 6]. In 
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general, tissue scaffolds can be categorised by their topology (section 2.1.1), material 

properties (section 2.1.2), biomechanics/mechanobiology (section 2.1.3), nutrient supply 

model (section 2.1.4) and biology (section 2.1.5), and customised to address one or more 

design problems. This regeneration technique becomes increasingly challenging as 

researchers try to accommodate multidiscipline elements through technical-design measures.  

  
(a) Outer structure (b) Cross-sectional view 

 
 

(c) Slice of a tissue scaffold (d) Microstructure 

Figure 2-1. CT-images of a porous tissue scaffold [7]. 

First, as an ideal structural substitute, the scaffold should possess mechanical properties 

similar to its replaced counterpart to minimise physical disruption on the local tissues while 

maintaining its own structural integrity. Mechanical strength is crucial to load bearing 

applications. Secondly, the scaffold surface must allow new tissues to attach, regenerate and 
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integrate with the engineering material [8]. Thirdly, the design must ensure the cell vitality 

within the construct during and after the cell invasion. Lastly, the new cell mass must become 

self-sustainable and functional before the disintegration of scaffolds and the exhaustion of 

any artificial biochemical supplements. The new tissue-scaffold composite (non-

biodegradable) or new tissue (with biodegradable scaffold) is expected to restore the lost 

biological functionalities to a satisfactory level. So far, vast researches have been conducted 

targeting multidiscipline factors and systemic cell-scaffold response [9]; yet a unified, 

comprehensive design solution has not been produced. 

Nevertheless, it is known that structural design allows us to manipulate different scaffold 

properties to meet specific design requirements [10]. Structural design is therefore an area of 

exploration for a comprehensive solution. Time dependent design is also a topic of 

investigation [11]. When manipulating scaffold properties, a conflict between different 

competing design requirements may surface [12]. Such conflict can be minimised through 

fine-tuning the scaffold micro-architecture until a compromised solution is obtained [13]. 

Remarkable progress and promising results in scaffold treatment has been shown in small 

animal test subjects [14, 15], yet there is no report on upscaling this level of success to human 

subjects. Researchers have started looking into the response of human mesenchymal stem 

cells (hMSCs) in tissue scaffolds, however there is still much work to be done to gain a full 

understanding of cell-scaffold interaction (section 2.1.5). Many problems remain in terms of 

translating the success from animal studies to human clinical trials due to limitations of 

animal models, inadequate animal data and overestimation of treatment efficacy [16].  

Given the scope of this design challenge, a literature review was conducted specifically in the 

area of scaffold architecture. This literature review firstly looks into the characterisation of 

the fundamental properties of scaffold (section 2.1.1), then the contemporary scaffold 
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fabrication techniques (section 2.1.2), followed by the discussion of major design obstacles 

and considerations (section 2.1.3 and onwards). Following this, the current progress and 

applications of topology optimisation in scaffolds design and engineering are reviewed 

(section 2.2). 

2.1.1 Characterisation 

Different topographical characteristics are known to prompt unique cell responses [17]. 

Material properties of substrate also affect cell morphology [18]. To take advantage of this 

knowledge in tissue scaffolds design, one should properly identify the structural 

characteristics that are beneficial to tissue regeneration and be able to recreate those 

conditions. However, the intricate relationship between biology and engineering mechanics 

presents a significant challenge to the control and the analysis of mechano-biological 

responses [19]. Quantifying the characteristics and standardising the design criteria is another 

challenge for those who attempt to recreate certain results. 

Some structural characterisations are made possible by micro-CT technology. Micro-CT is an 

effective, accurate and non-destructive approach for the evaluation of a wide range of 

parameters and the visualisation of morphological characteristics [20]. Porosity and pore 

shapes, especially closed pores, can be captured, with the possibility to derive permeability 

[21, 22]. Micro-CT scanning reconstructs the topology with reasonable accuracy, but this 

application is restricted to its hardware/software capability. This section looks into the most 

prominent characteristics established from the past research using various characterisation 

techniques. 

2.1.1.1 Porosity 

Many fundamental scaffold properties are derived directly from pore characterisation, 

especially in bone tissue engineering [23]. They provide some crude information regarding 
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the viability of a particular construct since mechanical strength, fluid conductivity and 

biological response can often be related to pore topology. In non-gel scaffolds, 

interconnecting pores are essential for cell colonisation and ingrowth to take place. High 

porosity is generally required for three-dimensional tissue proliferation and vascularisation. 

Pore size should be sufficiently large to allow the migration of cells and the infiltration of 

blood vessels. The void volume must be well connected, allowing cell and fluid access and 

movement. Well-structured pore connection is expected to guide the cells growth through the 

construct and to facilitate cell proliferation. Without doubt, the optimisation of pore topology 

and fabrication techniques is the centre of tissue engineering. A number of desirable pore 

characteristics as well as design constraints have already been quantified for design purposes. 

For example, a pore size requirement can be established based on vascularisation [24]. 

However, the ideal pore structure remains an unknown. 

As a topic of solid mechanics, the conflict between porosity and compressive strength is well-

recognized [25-29]. Increasing porosity implies reducing the volume of solid materials, 

which can in turn affect structural shape and continuity. So far, material science and 

manufacturing has been the most common approach to solving this porosity-versus-strength 

dilemma. For example, Nge et al. [26] found in their bacterial cellulose/chitosan scaffolds 

(BC/CTS) prepared by freeze-lyophilisation technique, scaffolds produced at low freezing 

temperature had larger pore size but lower mechanical strength. However, increasing 

bacterial cellulose weight percentage resulted in not only larger mean pore diameter but also 

higher compressive strength. This is attributed to the closer packing of bacterial cellulose 

nanofibrils network with increasing micro-fibrillated bacterial cellulose content and degree of 

crosslink integration with chitosan matrix. 
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The pore size of scaffold can influence cell attachment [29]. Oh et al. [29] made the 

following observation in their scaffolds specifically prepared to create porosity gradient: 

Fibroblasts exhibited the highest cell growth in the region with pores ranging from 186 to 200 

microns. Meanwhile, chondrocytes and osteoblasts preferred larger pores, typically around 

380 to 405 microns, which allow higher mass transportation rate. In their rabbit testing 

subjects, faster bone formation was observed in pores of 290-310 microns in size. Some bone 

formation was also seen in the regions with relatively large pore size; on the other hand, 

limited regrowth was observed in the regions with small pore sizes. Cell growth shows 

preference toward macro-porosity which is likely a result of better diffusion condition. Small 

pore size might hinder the ability of cells to migrate and colonise porous space [28]. 

2.1.1.2 Interconnectivity 

Pore interconnectivity is a derived scaffold property that predicts ease or difficulty in mass 

transport. Normally high pore interconnectivity is required for nutrient transport across all 

regions of scaffold, in addition to the cell migration. Voids can be intentionally introduced to 

scaffold constructs during the manufacturing process in order to create space and pathway. 

However, without the interconnectivity, the voids may simply compromise structural 

integrity without improving the mass transport efficiency.  

Use of large channels in scaffolds has a clear fluid dynamics advantage by allowing forced 

mass transport [30]. Artificial channels can be introduced for the same reason [31]. Rose et 

al. [30] found in their needle-channelled HA scaffolds that channel dimensions (varying from 

170 to 421 microns) could be directly correlated to both percentage and total cell coverage 

area. Based a linear mathematical extrapolation, they predicted that the minimal channel 

diameter required for cell infiltration is 82 microns, or around 80 microns. The outer and 

medium sections of the scaffold showed statistical significance in the increasing average cell 
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coverage (area or percentage) with respect to the increasing channel size. Also, the 

introduction of the channels actually improved the scaffolds strength probably due to the 

formation of strut around the channel upon needle insertion.  

Studies have shown that the surface of macro-channels appears to attract cell migration more 

than microscopic pores [32]. Silva et al. [32] developed an anisotropic macro-architecture 

through stainless needle insertion which left large channels in the constructs after sintering. In 

their study, osmium tetroxides straining revealed cell proliferation throughout the channels. 

The incorporation of channels allowed the cells to infiltrate deeper into the scaffold by 

migration along such artificial cavities. In contrast, the scaffolds without channels showed 

more intense cell growth only in the shallow surface regions. In summary, better cell growth 

can be achieved through artificial channel creation, which does not compromise the 

mechanical properties of the scaffolds. 

2.1.1.3 Morphology and Biomimeticity 

Recovery of defect is more than a process of elevating cell count in scaffold, more 

importantly cells have to differentiate to become functional tissues. It is hypothesised that 

that cells are aware of the physical characteristics of their surroundings, and can respond 

accordingly in terms of specific biological expressions [17]. Such cell-scaffold interaction 

can be utilised in guiding cell and tissue development. Based on this concept, morphological 

research aims to create special biomimetic environments, which cells can recognise and 

respond in a desirable or controlled manner. The influence of cell micro-patterning on tissue 

growth has drawn a fair amount of attention recently with the prospect of influencing 

biological expression through introducing topological cues. 

A typical example of this biomimeticity concept is the gas-foamed scaffolds, which is well-

known for the strut architecture that resembles trabecular bones [33]. Thus gas foaming and 
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sintering of ceramics materials [34] has dominated this research field in bone tissue 

engineering. Although foaming can also be applied to polymer, hydroxyapatite [35] and 

Bioglass [36] are often chosen because of their biocompatibility and chemical similarity to 

bone. Foamed Titania trabecular scaffolds have also been manufactured [37]. Clear 

trabecular-bone-like structure is observed in these studies. 

Cell alignment is believed to be an indicator of cell communication. The importance of cell 

alignment is emphasised particularly in the regeneration of highly organised tissues such as 

vascular wall and body organs [38-40]. Some studies attempted to create microscopic 

artefacts to not only guide the regeneration, but manipulate cell alignment in order to achieve 

desired outcome [39, 41, 42]. Sarkar et al. [38] showed in their study that cells seeded in such 

scaffolds with grooved micro-pattern were elongated and aligned (based on cell angle) 

compared to those cells in irregular microstructure in unmodified scaffolds. Micro-grooves 

improved cell alignment even if the cell aggregates outgrew the size of the artefacts, good 

cell alignment was reasonably maintained [39]. Furthermore, Sarkar et al. [38] suggested that 

fabrication techniques such as leaching, phase separation and freeze drying produce pore 

sizes greater than the critical size on a cellular scale, thus they cannot facilitate the alignment 

process. Pore shape also affects the cell aggregation pattern [43]. It is worth noting that cells 

can lose their preferential alignment in shape memory materials after the shape of the 

materials returns to their original state [44]. 

Inverted colloidal scaffolds (inverted volume of hexagonal-close-packing) have been 

fabricated with well-connected spherical pore network [45]. These constructs find 

applications in the liver scaffolding where liver spheroid cell clusters colonise and 

proliferated within the tailored pore space [46]. 
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Scaffolds with non-uniform material properties are another area of research. Scaffolds with 

functionally-graded material have been proposed, which takes into account the changing 

material properties along tissue interfaces [47]. Additionally, it has been demonstrated that 

microelasticity gradient can also influence cell migration and induce mechanotaxis [48]. 

2.1.1.4 Surface properties 

Surface properties of scaffolds can affect cell adhesion and differentiation [35]. The 

geometric organisation on a molecular scale for example can influence cell adhesion [49]. 

There exist various treatment methods to enhance surface cell attachment through mechanical 

or chemical means. In one study, Verma et al. [50] successfully applied P-15 modified PLGA 

microsphere to PLGA scaffolds to increase the surface roughness; in addition, P-15 is a 

synthetic analogue of cell-binding domain of specific collagen. This combined strategy 

helped improved the cell attachment. 

Ragetly et al. [51] conducted a comparison test on sponge and fibre chitosan scaffolds and 

demonstrated the advantage of fibrous constructs in cell differentiation. The experiment 

shows better mesenchymal stem cell selective differentiation in the fibre scaffolds through 

improved cell-cell, cell-matrix interaction. 

Bettahalli et al. [52] developed some biodegradable PLLA hollow fibres with high clean 

water and low protein retention at high medium fluxes. In static culturing, cells attached and 

proliferated well on the surface, showing high affinity to the material. However, under 

dynamic culturing condition, the cell attachment rate dropped significantly. This is 

considered advantageous as protein/cell adhesion can be strategically discouraged and flow 

pathway blockage can be prevented. 
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2.1.2 Materials and fabrication techniques 

Material Science is a classic research field in tissue scaffold engineering. It aims to provide 

better design solutions with advanced materials and fabrication techniques. Compression 

moulding [53-55], particulate-leaching [55-58], foaming [35, 37] and phase separation [28, 

43, 52, 57, 59] are commonly used techniques in the preparation of porous scaffolds. Casting 

[55, 56], fibre sintering [57] and deposition approaches [15] have also been developed to 

grant better control of the architectural details of tissue scaffolds. Techniques based on 

electrospun polymer fibres are also popular due to the products’ high porosity and low 

stiffness [60, 61]. Materials exhibiting shape-memory characteristic have also generated 

interest in tissue scaffold applications [62-64]. 

These popular fabrication techniques also come with disadvantages. In terms of scaffold 

topology, compression moulding and particulate-leaching tend to create random porous 

network, therefore desirable structural characteristics can be difficult to attain. The ceramic 

scaffolds by gas foaming-sintering are general known for their biomimetic features but also 

poor mechanical strength, likely to be a result of microscopic cracks in solid struts [37]. 

Attempts have been made to overcome such difficulty by introducing a polymeric coating to 

the ceramic trabecular scaffolds: Novak et al. [37] shows that (1) poly(D,L)lactide coating 

significantly improves compressive strength by filling the micro-cracks and increasing the 

strut thickness. Rates of poly(D,L)lactide coating degradation and cell growth have direct 

effect on the mechanical properties over time. (2) The improvement in strength is 

predominantly a result of increasing strut thickness. They advise there is a need to increase 

the strut thickness to produce more robust ceramic products, without a significant impact on 

scaffold porosity or pore connectivity. 
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Freeze-dry, or phase separation, is a favourable fabrication option in some studies because of 

the superior pore interconnectivity of the final products. The major interest in this technique 

is the ability to regulate pore formation process by altering freezing regime. Zmora et al. [43] 

demonstrated that freezing regime has a decisive effect on the final pore structure. They 

found that the resultant pore sizes as well as pore shape vary across the scaffold cooled in oil 

bath; more complex pore shapes were observed in the scaffolds cooled by liquid nitrogen. 

Only the scaffolds cooled by freezer displayed uniform, round, isotropic pore throughout the 

construct.  

Solid freeform fabrication is gaining popularity because of its potential in topological design, 

precision and versatility [65]. Combining computer-aided design, models with variable and 

tailored porosity can be produced [66]. Solid freeform fabrication however has its 

technological limitation: the amount of detail that can be produced is limited to its printing 

resolution. Unwanted topological artefacts and textured surface may form if the original 

models have low resolution [67]. Miot et al. [53] compared three-dimensional fibre 

deposition (3DF) scaffolds to those produced from compression moulding and showed that 

3DF scaffolds have lower surface area per volume ratio but also lower tortuosity (degree of 

twisting). 

Overall, solid freeform fabrication has the advantage over conventional techniques for being 

able to produce well-defined topological details on a macro/mesoscopic scale and has been 

applied in intervertebral disc research [68]. Besides direct scaffold printing, solid freeform 

fabrication can be used to produce sacrificial moulds that define the void space of scaffolds. 

The most significant implication of this application is that the scaffold material is no long 

exclusive to polymers, but any material mixture such as ceramic slurry that fills the void 

space can be used [67]. Mould replication technique has been done with foam [69].  
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Zhang et al. [27] developed an in-situ cement injection technique with calcium phosphate. 

This technique eliminates the need of machining and directly fills the void space of any 

shape. Use of porogen (mannitol in the study) gives the ability to control the scaffold 

porosity. Increasing porogen mannitol content also leads to increasing conversion rate of 

calcium phosphate cement to hydroxyapatite. The addition of chitosan improves mechanical 

properties. 

Two-photon polymerisation is also developed to fabricate suspended web structures and to 

tune Poisson's ratio [70] or guide cell alignment [42]. 

2.1.2.1 Materials 

The choice of materials usually depends on the site of implant and the desired material 

properties. For this reason, polymeric engineering materials are a popular choice and have 

been widely tested in tissue engineering due to their versatility [71] (Table 2-1). Notably, 

polycaprolactone (PCL) has recently attracted much attention because of its toughness and 

ease to process [54]. Metallic scaffolds such as porous titanium for bone tissue scaffolds have 

also been studied to some extend [72]. 

Researchers have also extensively studied ceramic biomaterials such as hydroxyapatite [35, 

67] and chitosan [25-27, 51]. The idea is to utilise natural materials’ biocompatibility, 

bioactivity, osteoconductivity and structural similarities to natural body tissues, with the 

anticipation that the implant will be recognised by the body as own structure and a seamless 

integration can be achieved. Osteoconductivity of bone scaffolds are induced by using 

calcium phosphate-based constructs (typically hydroxyapatite), which are chemically similar 

to the natural mineral phase of human bone. This mechanism is explained by Chai et al. [73], 

showing how calcium and phosphate ions initiate cell proliferation by pushing cell cycle into 

S-synthesis and M-mitotic phases. Past researches have successfully produced highly porous 
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trabecular hydroxyapatite scaffolds with permeability similar to natural trabecular bones [35]. 

In vivo, hydroxyapatite scaffolds demonstrate outstanding cell adhesion and 

osteoconductivity [15]. 

Biomaterials are not without their drawbacks: poor mechanical strength and rapid 

degradation in vivo are two common constraints in loading bearing application [37, 69]. 

Chitosan for example, a deacetylated derivative of chitin, is a relatively new biodegradable 

material whose application is hindered by its mechanical properties and rapid degradation 

rate [74]. Bi et al. [25] showed that high degree of crosslink lowered degradation rate 

initially; higher temperature also adds to lowering degradation rate. 

Table 2-1. Engineering materials used in recent tissue scaffold studies 

Alumina [69] 

bFGF [14] 

Bioglass [36, 37] 

Calcium phosphate [15, 69, 73, 81] 

Cartilage [80] 

Chitosan [25-27, 51] 

Collagen [83, 84] 

Collagen sponge/peptide-

amphiphile (PA) hybrid [83] 

Coral [82] 

ECM [75, 76] 

Glass beads [45] 

HA [15, 27, 30, 32, 35, 67, 69] 

Hydrogel [45, 46] 

Nylon [14]PBT/PEGT [53] 

PCL [28, 38, 54, 77-79] 

PLA [32, 56] 

PLLA [39, 40, 52, 57] 

PLGA [50, 55, 58] 

PLGA mould [38] 

Polystyrene mould[46] 

PDLLA [37] 

Salt/sugar [57] 

Silica [45] 

TG [28] 

TGF [15] 

TiO2 [37] 

VEGF [85] 

Wax [56, 79] 

 

2.1.2.2 Bimodal/Multimodal designs 

Bimodal and multimodal scaffolds are the more elaborated versions of scaffold design that 

incorporate different topologies into one. They typically consist of two types of porous 

structures, namely the macroscopic pores for mass movement such as cell migration [30, 32] 

and the microscopic pores for improved permeability [81] and diffusivity [39]. A number of 

studies have successfully combined different scaffold preparation techniques and produced 

structures with mixed but distinguishable characteristics, found in the scaffolds prepared from 
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the individual processes [28, 59]. Their hybrid designs showcase well-defined macro- to 

microscopic features, which work together to facilitate cellular activities on all scales. Such 

individual “modes” can also be added and created independently of each other to address 

different needs. For example, adding micro-porosity enhances transport condition [15, 57] 

while creating macro-channels improves mass transport [28, 59], and printing micro-patterns 

influences cell alignment [39]. 

Casting, moulding and solid freeform fabrication have been used to build the major 

(macroscopic) pore network for effective mass transport and mesoscopic artefacts [56, 78]. 

An obvious advantage of this is the improved guidance for cell colonisation across the 

scaffold. Experiments show that macroporosity in bimodal/multimodal models helps guide 

cell invasion through the porous network, thus more uniform cell distribution can be achieved 

[59, 86]. More conventional techniques such as porogen-leaching are incorporated to produce 

the microscopic structures for cell colonisation [56, 78]. Fibre sintering and fibre deposition 

are also used to create highly porous and interconnected network, nano-fibre deposition for 

example defines the nanoscopic structural characteristics [57]. 

 

2.1.3 Solid mechanics 

Scaffold solid mechanics is of strong interest in bone tissue [87] and cartilage [88] 

engineering, particularly in bone remodelling. Mechanobiology in particular plays an 

influential role in regulating cell development in tissue scaffolds [19]. To design from a 

mechanical perspective, one should examine the well-established links between mechanical 

properties and the biological response of cells, and formulate design processes with 

appropriate objectives and constraints. Therefore in this section, recent studies are surveyed 
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in terms of elastic modulus, compressive strength and strain pattern, and their roles in the 

indirect regulation of tissue restoration. 

2.1.3.1 Stiffness and Compressive strength 

Mechanical properties including stiffness (or elastic modulus), impact strength and flexural 

strength are often compromised by the need for porosity. Bi et al. [25] shows that higher 

temperature and higher genipin concentration in their chitosan scaffolds results in larger pore 

size and lower compressive strength. Zhang et al. [27] also reported the relationship between 

increasing porosity and decreasing flexural strength, stiffness and fracture toughness in an in 

situ scaffold with porogen-induced porosity. Other studies show decreasing elastic modulus 

in relation to increasing porosity [54, 77]. Pore shape is also shown to play a role as spherical 

pores resist compression better than the elongated pores [28]. The failure of porous construct 

is found to be initiated by the collapse of the pore network [59]. Furthermore, stiffness can 

affect skeletal myoblasts differentiation [89] and adhesion [90], thus it must be properly 

controlled during manufacturing. 

Strengthening of certain biomaterials can be achieved by means of chemical crosslinking. Bi 

et al. [25] developed a genipin-based crosslinking technique to improve chitosan scaffolds’ 

compressive strength. Bi et al. showed that an optimal strength was attained at a specific 

genipin concentration/temperature condition (1.0%, 20°C). Other strengthening techniques 

such as fibre reinforcement has also been applied (collagen scaffolds [83]). 

2.1.3.2 Strain stimulation 

Mechanical strain in bone tissue is a known stimulus as well as a regulator of cell 

differentiation [91-96], tissue formation [97, 98] and mineralisation [99]. Mechanical stress 

stimulates the differentiation of mesenchymal cells to ligament cells [100] and induces 

chondrogenesis [101]. Sumanasinghe et al. [92] have demonstrated that human mesenchymal 



25 

 

cells can be cultured in collagen matrices under mechanical load, which initiates the 

osteogenesis process; mechanical strain alone is proven sufficient to increase the expression 

of bone morphogenetic protein 2 (an indicator of growth) in the absence of chemical agents. 

Mechanical compression affects cellular activities in general [102, 103]. Cyclic hydraulic 

pressure has a similar effect [104]. However, scaffold strain does not always translate 

proportionally to cellular deformation [60]. This has fundamental implications in strategizing 

strain-stimulated growth. 

Computational simulation of cell differentiation is a useful tool for establishing the 

followings: (1) the timeline of tissue regeneration and cell type composition; (2) the transient 

mechanical properties in relation to specific mechanical input [105]. This information can 

help predict the minimum initial mechanical strength required to maintain scaffold integrity. 

An optimal combination of scaffold dissolution rate (medium), material elastic modulus, and 

initial porosity could also be determined. Byrne et al. [105] utilised random walk algorithms 

in their work to simulate in-scaffold tissue growth from mesenchymal stem cells (MSC) 

differentiation and established the follows: (1) the simulation results predicted that 

osteoblasts-dominated growth concentrated at the central region of the scaffold while soft 

tissue proliferated around periphery as a consequence of stress concentration. The initial 

stiffness was dictated by the porosity. Increasing initial porosity promoted bone tissue and 

cartilage generation. (2) The total volume of solid materials decreased initially at a steady 

rate as a result of scaffold dissolution (assuming constant degradation) but later increased 

rapidly as a result of accelerated bone formation. The change in stiffness directly reflected the 

change in solid volume. (3) The rate of bone formation depended on the availability of 

growth space. Although high dissolution rate is beneficial for cell growth, the scaffold might 
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collapse before the new-grown bone tissue can garner enough mechanical strength to take 

over the loading bearing function.  

Using a computational model similar to the one developed by Byrne et al. [105], Checa et al. 

[80] simulated in-scaffold bone differentiation process and found that: (1) with a uniform 

seeding density of 1% MSCs, dense capillary network formed at the periphery of the 

scaffolds, while very little blood vessel invasion was found at the central region. (2) With 5% 

uniform seeding density, blood vessels were able to fully penetrate the constructs after 1 

week. By the time MSC differentiation took place, capillaries had reached the deeper region, 

and were able to support bone growth. (3) Cartilage was only presented in the periphery due 

to high fluid flow. Peripheral seeding also promoted bone formation at the centre, where 

capillary network became well-developed before MSCs arrived at the sites. (4) Under a 1MPa 

loading, cell formation was predominately cartilage regardless of initial cell seeding 

conditions. The high mechanical environment led to a decrease of vascularisation initially. 

The empty space however allowed for the growth of vascular network after 6 weeks. In their 

conclusion, low mechanical load favours bone cell differentiation; high loading inhibits bone 

formation, but stimulates cartilage generation. It is also found in another experimental study 

that excessive loading of tendon is detrimental [106]. 

It has been demonstrated that the mechanical environment can override the influence specific 

substrates have on the long-term MSC development [107]. In short, the prominence of 

mechanical stimulation in cell biology is very well established.  

2.1.4 Fluid dynamics 

Fluid dynamics plays another fundamental role in bone tissue engineering [23], where the 

primary function of flow is nutrient transport. Perfusion system is already in common use in 

many tissue engineering researches to facilitate nutrient transport [16, 108]. The introduction 
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of fluid flow however brings up a unique design challenge, manifesting in form of complex 

hydrodynamic-microstructural interaction. To analyse this interaction, computational fluid 

dynamics (CFD) simulation can be utilise to study the fluid behaviour on a microscopic scale, 

and to help elucidate the interaction among myriad of design variables. 

As a nutrient transport problem, maintaining an adequate supply of oxygen and glucose, as 

well as effective removal of metabolic waste becomes a major challenge as cell density 

increases [109, 110]. Uniform cell seeding is typical of experimental studies, yet some 

computational studies have predicted poor cell vitality in uniformly seeded scaffolds, and 

questioned the practicality of such exercise [111, 112]. Poor viability is normally a result of 

high oxygen consumption at periphery of scaffold and the subsequent exhaustion of oxygen 

[109, 113]. The result is a brewing hypoxic condition in the core region, where cell death 

becomes inevitable. Normally, cells growth starts and is concentrated on the outermost region 

of scaffold, in contact with the culturing medium [114]. This implies that the uniformity of 

cell density is naturally difficult to maintain. 

It can be concluded from these observations that nutrient transport is another critical scaffold 

design criterion. The fluid dynamic properties of scaffolds are the decisive factors of nutrient 

transport. The basic mechanical properties of scaffolds may have to be sacrificed in order to 

create a more efficient fluid dynamic environment that allows mass transport deep in the 

constructs.  

2.1.4.1 Wound healing 

The transportation of oxygen is one of the most critical factors that determine the outcome of 

tissue scaffolding. The availability of oxygen impacts every aspect of wound healing whether 

as a source of energy, a chemical agent, or as a building block in molecule synthesis [115]. In 

cellular metabolism, oxygen is consumed in electron transfer system during synthesis of 
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adenosine-tri-phosphate and as mixed function oxidase. In an event of oxygen starvation, 

anaerobic reaction occurs by converting glucose to pyruvic acid and lactic acid with 

significantly lower amount of adenosine-tri-phosphate being synthesised while consuming 

the same amount of glucose molecules. Without an adequate oxygen and glucose supply, un-

vascularised tissue will struggle to stay viable when the wound healing process competes for 

oxygen, which is used for inflammatory response, fibrin formation and tissue regeneration. 

Considering that implantation site is also a wounded site, the implant is automatically subject 

to natural immune response and chemical reactions that would normally take place in a 

wound. These events are highly oxygen-dependent. The inflammatory response involving 

polymorphonuclear cells (PMN) requires high level of oxidants for the production of 

superoxide, hydrogen oxide, hydrogen peroxide and nitric oxide. Therefore oxygen tension 

has a direct impact on the execution of oxidative bacterial killing, affecting the efficiency of 

infection-fighting function. Synthesis of collagen provides materials for temporary matrix 

during early stages of wound healing. Substantial amount of oxygen is required for 

hydroxylation, a fundamental step in collagen maturation. Formation of collagen is 

impossible without an adequate supply of oxygen in addition to proline and lysine. High 

oxygen concentration also increases the enzyme activity. Hence, oxygen concentration is an 

fundamental element in tissue scaffolds design and application. 

2.1.4.2 Permeability, diffusivity and conductivity 

Permeability is a measure of ease of advection transport and is directly related to the pore size 

and interconnection [21, 79]. However, porosity and interconnectivity is a poor indicator of 

cancellous bone permeability [116]. A series of events starting from increasing number of 

cells, obstruction of flow path, to lowered permeability all contribute to the steep oxygen 

gradient [112, 113, 117], and porosity alone is not predictive of any of these events. The 
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relationship between porous topology and flow behaviour is somehow difficult to analyse 

experimentally. On the other hand, computational tools provide an alternative approach to 

investigate the hydrodynamic system in tissue scaffolds. Computational diffusion modelling 

is in fact now a popular topic of study in the design analysis of scaffold architecture, more 

specifically, in the performance analysis of perfusion systems [111, 117-119]. Computational 

studies of diffusion in porous network are typically Fick-law based [120], but Monte-Carlo 

method or random-walk algorithm may be utilised to simulate particle movement [121, 122]. 

Experimental studies typically adds extra porosity features to improve nutrient diffusion [39]. 

Papenburg et al. [39] developed sheet scaffolds with micro-pattern and micropores, and 

confirmed the critical role of these microscopic features in mass transport. The rate of 

increase of nutrient concentration was found to be significantly higher in the presence of 

micro-porosity. The initial increase in nutrient concentration (in the first 24 hours) was nearly 

linear; subsequently, the rate of rising concentration dropped as the concentration gradient 

decreased.  

While computational design has created a new avenue in tissue scaffold engineering, the 

characterisation of diffusivity and permeability requires advanced modelling of the pore 

network [123]. Zhou et al. [124] studied the stochastic particle movement in randomised pore 

network, and made the following observations in their computational structural analysis: (1) 

Both increasing pore size and increasing pore density lead to increasing degree of pore 

overlaps, that is, improved interconnections. (2) The changing dimension of apertures at 

overlaps has a significant influence on the resultant diffusivity especially if the apertures are 

relatively small (compared to the pore diameter); such effect diminishes at high porosity. This 

is true for both amorphous and structured architectures. (3) Smaller particles size also leads to 
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higher diffusion rate. The effectively diffusivity is inversely related to the increasing particle 

size. 

Besides nutrient transport, permeability also has a decisive effect on biological activities, for 

example, chondrogenesis and osteogenesis. It was found that high cartilaginous matrix is 

correlated to high permeability design [79]. Increasing collagen fibrillar density (a major 

component of bone extracellular matrix) is correlated to decreasing permeability and the 

inhibiting effect on MSC-induced matrix contraction [125]. 

2.1.4.3 Wall shear stress 

High flow rate improves viability [119], induces cell migration [126], and upregulates 

chondrogenic expression [127]. However, the resultant high wall shear stress threatens cell 

attachment [40, 52]. Such dilemma is found in perfusion system where mass transport is 

advection-driven. Thus, wall shear stress level is a critical limiting factor in perfused systems. 

Experimental results show that perfusion is beneficial but only within certain range of 

perfusion rate: shear stress below 10 MPa promotes formation of extracellular matrix [128]; 

osteoblast-like cells grew extensively under 30 MPa [129]; rising flow easily elevates the 

oxygen and glucose levels to support local cell proliferation, yet the flowing medium can also 

wash cells away from the solid surfaces [52]. Beyond this range, the detrimental effect 

outweighs the benefit of elevated oxygen and glucose level, and consequently lowers the 

culturing efficiency [130]. There exist some optimal flow rates for transport of different 

nutrients [110]. Flow perfusion adversely affects chondrogenesis [131]. 

A minimum wall shear stress design gives rise to another dilemma: high surface-to-volume 

ratio implies high resistance and high wall shear stress, which leads to high energy loss and 

subsequently lower permeability. On the other hand, area-to-volume ratio is believed to be an 

important parameter for cell attachment – this is based on the observation that the cell 
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regrowth relies on the availability of attachment site provided by the scaffold [58]. In spite of 

this, some studies proposed the use of minimal surface constructs in favour of the fluid 

dynamic system [66, 132]. These designs are typically based on the triply periodic minimal 

surfaces including Schwarz’s primitive surface and Schwann’s gyroid surface, 

manufacturable by solid freeform fabrication. From a solid mechanics perspective, 

Rajagopalan et al. [133] showed that these surfaces are free of sharp corner, turns, and steep 

angle; the solid partitions have higher modulus and lower stress concentration compared to 

other constructs; the stress distribution is ideal. Scaling of the strut size led to a nonlinear 

decrease in the modulus. The force-displacement relationship was almost linear in their 

fabricated scaffolds.  

Melchels et al. [134] observed that given the same porosity and mean pore size distribution, 

gyroid scaffolds have clear advantages over salt-leached scaffolds in fluid dynamics 

environment: (1) the interconnectivity of gyroid scaffolds prepared from stereolithography is 

far superior; (2) the permeability is one order of magnitude higher. (3) Cell seeding is easily 

done in those gyroid scaffolds whilst salt-leached scaffolds find cells entrapped in the outer 

region of scaffolds. (4) Poor cell retention is the major drawback for the minimal-surface 

construct.  

Fluid shear stress is strongly micro-architecture-dependent [72, 135]. Even on a microscopic 

scale, architectural difference [136] and perfusion condition [83] can influence the shear 

stress pattern on the solid surface, leading to dissimilar cell growth.  

2.1.4.4 Other fluid dynamics observations 

Solving the perfusion system as a CFD model, Yu [137] showed that Reynolds number was 

predictive of fluid behaviour inside and outside scaffold constructs. In their study, fluid flow 

approaching the scaffold became more perpendicular at a high Reynolds number; vortex 
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breakdown bubble appeared at Reynolds number above 1200. (2) With perfusion, the oxygen 

concentration in scaffold was around 40% lower than that of culture medium; high at the flow 

front (approaching) and lower on the opposite side (flow exiting). In contrast, in a diffusion-

only model, oxygen concentration was only 10% of that at the scaffold surface and nearly 

zero at the centre of the scaffold. In summary, the minimum oxygen concentration as well as 

the concentration pattern is associated with Reynolds number. The general flow direction also 

affects concentration pattern. 

The interstitial fluid velocity and tissue shear strain are another key mechanical stimuli for 

skeletal tissue differentiation [138]. It has also been suggested that fluid shear stress may be a 

more potent stimulus than mechanical compressive strain in inducing bone formation [139]. 

2.1.5 Cell biology 

Tissue regeneration can be initiated in vitro and enhanced using bioreactors. Common 

techniques such as programmed stimuli (as discussed in Section 2.1.3.2) are employed to 

simulate in vivo mechanical environment, which is thought to regulate cell development. 

New bioreactors are being developed to allow imposing simultaneous mechanical and 

hydrodynamic stimuli on cells [140-142]. 

It has been reported in many studies that under a static culturing condition, where oxygen 

transport is diffusion-driven, the depth of cell invasion is limited to approximately 200 

microns from the outermost scaffold surface [58]. Such short infiltration distance undermines 

the idea of scaffold-aided healing on any practical scale. Another research conducted by 

Papenburg et al. [40] reaffirmed the 200 µm diffusion limit using stacked sheet scaffolds. In 

that study, the resultant cell density peaked at the outermost layer, and declined to zero over 

several layers. Glucose content in the culturing medium dropped over time while lactate level 

increased steadily, which is an evident of inadequate diffusion transport. 
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2.1.5.1 Cell culturing techniques 

Growing autologous tissue in scaffolds prior to implantation is a typical treatment strategy, 

believed to be beneficial to the overall tissue restoration process [143]. It is expected that 

living tissue can generate, mature to a functional level, and colonise the cavity in vitro. From 

a treatment perspective, the principle of such tissue scaffolds is to pre-fill a wound or a defect 

with specific living tissue rather than an empty scaffold. This in vitro cell cultivation is also 

known as seeding. 

Current in vitro tissue culturing research focuses on effective cell seeding. Experimental 

results have shown that cell seeding density affects hMSC proliferation [94]. Ishaug et al. 

[58] concluded from their study on osteoblast proliferation in vitro that: (1) Seeding density 

affects both cell attachment and proliferation rate, but not cell function; high density seeding 

results in a higher cell count than the ones tested at a lower seeding density. Goldstein et al. 

[55] also suggested that higher seeding density might improve cell-cell communication, 

which would give raise to better cell growth. (2) The available surface area might be a 

limiting factor of cell density. (3) Scaffolds with low initial cell seeding density exhibited 

rapid initial growth rate. The total cell count in low seeding density scaffolds reached that of 

high seeding-density scaffolds after a period of time. (4) Pore size did not affect the 

expression of ALPase activity of osteoblasts at any given period. (5) Neither pore size nor 

seeding density was found to have a significant effect on the degradation rate of the 

biodegradable constructs. In other words, pore size did not significantly affect osteoblast 

proliferation or function in vitro.  

The utilisation of perfusion has a fundamental impact on cell morphology and on scaffold 

structure [118]. Preparation of live tissue scaffolds with higher cell density [55, 83, 144], 

more developed external cellular matrix [145], and homogeneity [134, 146] has been 
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achieved with perfusion. The type of perfusion system (constant flow, rotary vessel, and 

spinner flask) does not have a significant effect on cell density [55]. Though thickness 

perfusion was found more effective than surface perfusion [119]. 

Koch et al. [146] suggested that a minimum fluid flow velocity and spin cycle number were 

required to attain uniform cell distribution and high cell density in perfusion culture. Their 

study demonstrated that increasing number of perfusion cycle increases cell density and 

distribution in culture; an increase in flow velocity improves the distribution throughout the 

scaffold but had little influence on the cell number in scaffolds or on the overall seeding 

efficiency. Very high velocity resulted in high cell detachment due to high shear stress [40, 

130]. Low flow velocity of perfusion culture favours the differentiation of MSC to osteoblast 

[83]. Increasing perfusion rate (rpm) increased the number of cells seeded but decreased the 

cell viability; a speed of 100 rpm was considered optimal for cell seeding [30]. According to 

Bancroft et al. [145], the rate of cellular matrix mineralisation also increases as the flow 

increases, but there exists an upper mineralisation limit. However at medium to high flow 

rate, overproduction of cell matrix seemed to obstruct the porous network and this might have 

attributed to the non-linear increase of the mineralised matrix production, as well as an 

increase in wall shear stress. These studies have also demonstrated that osteoblast culturing 

does not require high media flow rates [55, 145]. 

Croll et al. [111] argued that homogeneous cell seeding in scaffold of any practical dimension 

will invariably fail because of the inability to maintain adequate oxygen supply in vivo 

without blood vessel network. This claim is supported by their animal test results ran in 

parallel with the experiment. This study suggested that future seeding strategy should pay 

more attention to the early-stage rapid vascularisation at the periphery of scaffold to secure a 

sustained oxygen support. 
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Architectural anisotropy also play a role in the seeding outcome [147]. Malda et al. [113] 

conducted a comparison study between compression-moulded/particle-leached sponge (CM) 

and 3D-deposited fibre (3DF) and concluded the superiority of 3DF fabrication in terms of 

effective nutrient transport and cell ingrowth. In both designs, cell density appeared to be 

much lower in the inner region compared to the peripheral region. The 3DF scaffolds 

achieved a lower cell count in the peripheral region but a higher cell count in the central 

region – thus a smaller cell density gradient. The study suggests the community effect might 

have been responsible for the lower cell count at the periphery of 3DF scaffolds. Cell 

proliferation might have been prohibited by signalling agents released by activated cells. In 

addition, a less pronounced fibrous tissue was observed encapsulating the construct. Overall, 

the cell distribution in 3DF scaffolds appeared more homogeneous and cartilage-like. 

As an alternative to cell farming for transplantation, culturing can be used for the production 

of cell matrix to transform the biologically inert material surfaces of scaffolds to a more 

biologically-friendly environment. In this culturing technique, the vitality of the seeded cells 

is only maintained during the period of cell matrix formation. Some researchers proposed 

using cultured cells to lay an osteoinductive matrix on scaffold surface [55]. The cell matrix 

will facilitate healing even if the cells die as a result of hypoxia before scaffold implantation. 

An in vitro study has demonstrated the potential of differentiated bone marrow stromal cells 

and developed matrices in bone formation by providing an osteoconductive environment 

during the repair of critical size bone defects in rats [148]. 

2.1.5.2 Growth factors 

Use of growth factors is a supplementary technique. It has two applications in tissue 

engineering: one is to accelerate tissue growth and maturation rate and the other is to control 

differentiation of mesenchymal stem cells. In contrast to cell culturing technique discussed 
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earlier that focuses on increasing cell mass, growth factors emphasise the regulation of cell 

growth cycle. 

While growth factor stimulated recovery appears to be a promising approach, it comes with a 

number of issues: growth factors are short-lived, lacking long term stability, tissue-specific 

and dose-dependent, and a single dose of growth factor may not be sufficient for a sustained 

recovery process [14, 100]. Growth factor carriers are designed to deliver and regulate dose 

release. Growth factors may be coated, mixed or encapsulated within the scaffold constructs. 

Carriers can also be incorporated into the biodegradable scaffolds construct, allowing the 

drug release rate to match the tissue regeneration rate. As a biodegradable material, the 

carriers should be biocompatible, non-toxic and can disintegrate through natural biological 

enzymic activities. 

Recent studies have demonstrated the effect of growth factors on bone regeneration and 

neovascularisation (angiogenesis) in rat models [14, 15]. Typical growth factors for this 

application include (1) transforming, (2) insulin-like, (3) fibroblast, and (4) vascular 

endothelial growth factor; and bone morphogenetic protein and platelet-derived growth factor 

for cartilage [100].  

Vascular endothelial growth factor (VEGF) is a vasculature mediator. VEGF stimulates cell 

proliferation and endothelial cell migration. The key function of VEGF in tissue engineering 

is to initial angiogenesis, a process of sprouting of new blood vessel from existing network in 

the scaffold surrounding, which lays the foundation for the later cell invasion. To improve the 

long-term effectiveness of growth factor, Chen et al. [85] developed a technique utilising 

chemical crosslinking to increase the VEGF carrying capacity of demineralised bone matrix. 

In their study, the scaffold material was demineralised bone matrix, a biocompatible 

derivative from native bone tissues; heparin was added to the surface of scaffolds by 
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adsorption and crosslinking. This surface had the ability to bind more VEGF compared to 

untreated scaffold surfaces. The VEGF release rate over time was found to be higher in those 

heparin-treated demineralised bone matrix scaffolds compared to the untreated ones. In vivo, 

the VEGF treated scaffolds exhibited better biological activity as well as higher degree of 

angiogenesis, reflected by the higher blood vessel density. 

2.1.5.3 Vascularisation 

Regardless of types of tissue scaffold, blood eventually has to take over the mass transport 

function to resolve any nutrient-related problems. Regeneration of blood vessels is obviously 

the ideal solution to sustained cell viability in vivo. In the absence of blood vessel network, 

cell necrosis is inevitable and this leads to an uneven live cell distribution [32]. It is expected 

at the end of the differentiation process that cells have correct genotype composition with an 

overall functionality matching the original tissues with proper blood vessel network.  

Early wound healing process normally involves angiogenesis. Angiogenesis is the growth of 

new blood vessel from existing network, characterised by the invasion of the new blood 

vessels into fibrin matrix, which is the biological scaffold. Angiogenesis is triggered by 

oxygen starvation, which stimulates the release of various growth factors such as 

transforming growth factor- beta 1 (TGF-β1) [149], platelet-derived growth factor (PDGF) 

[150] and vascular endothelial growth factor (VEGF) [151]. These growth factors are also 

found in tissues suffering hypoxia. Methods have been developed by adding growth 

hormones to the scaffold solid to stimulate the growth of new blood network at the site of 

wound [115], or incorporating oxygen carrier such as calcium peroxide to elevate oxygen 

concentration [152]. The development of oxygen releasing materials also presents a possible 

avenue to address this challenging cell viability issue [153]. 
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2.2 Design optimisation 

Computer-aided design (CAD) and simulation is a growing field in the characterisation, 

design and analysis of tissue scaffolds [154]. Computer models are also increasingly used and 

combined with manufacturing systems [155]. Computational studies have been done to 

investigate the regeneration of bone tissue after scaffold implantation [156]. Computational 

scaffold design has shown tremendous potential in this field, and would benefit from 

increasing computational power and development of more accurate biological and genetic 

algorithms [157]. 

2.2.1 Characterisation of material properties 

It has been shown that elastic and plastic mechanical behaviour in scaffolds can be 

computationally modelled with reasonable accuracy [158]. However, for the topological 

optimisation of scaffolds, full-scale modelling is normally impractical considering the 

complexity of porous network. To simplify the problem, effective scaffold properties are 

commonly derived through the analysis of a much small but representative block known as 

the representative volume element [159].  

An alternative mathematical approach to determine properties of a material that has a 

complex composition is through homogenisation, usually based on asymptotic expansion. 

The word homogenisation here is referred to as a mathematical technique that predicts the 

macroscopic material behaviour of porous or composite materials by analysing a microscopic 

representative volume element (RVE) in a controlled condition. The homogenisation 

principle can be applied to engineering tissue scaffolds and scaffold structure can be designed 

on both macroscopic and microscopic scales [160]. The Homogenisation Design Method was 

firstly established by Bendsoe and Kikuchi [161] which shapes the foundation for some 

optimisation techniques as well as design of composite [162] and porous materials [163]. 
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This method institutes the characterisation and up-scaling procedures for composites and 

multi-scale models, thus allowing design optimisation to be performed on porous or non-

uniform structures. The Homogenisation Design Method is later expanded to form the so-

called inverse homogenisation method for microstructure design and optimisation [164], 

which seeks optimal microscopic structures that can be used as the building block of 

macroscopic models. The homogenisation of effective permeability established by Sanchez-

Palencia et al. [165] has laid the groundwork for the characterisation of porosity medium in 

fluid flow systems. Hybrid lattice Boltzmann based approach is another approach to solving 

diffusion equation in CFD problems [166, 167]. 

2.2.2 Topology optimisation of tissue scaffolds 

The advanced computational design of tissue scaffolds was carried out utilising topology 

optimisation techniques, and studies had looked into the manipulation of microstructure 

based on multiple design criteria [13, 132, 164, 168]. Multi-objective topological 

optimisation helps address a multitude of design considerations, conflicts and constraints 

simultaneously [12, 169]. Optimisation algorithms such as bi-directional evolutionary 

structural optimisation (B/ESO), level-set [170, 171], and inverse homogenisation [164] have 

been applied and all-rounded design solutions have been obtained. However, a design method 

for time-dependent criteria has yet been established. Nevertheless, it has been suggested 

using a dynamically evolving culturing condition to match tissue maturity and maximise the 

efficiency of tissue regeneration process [172]. 

To evaluate and select the most suitable methods for scaffold design, various topology 

optimisation methods and results obtained from past researches were analysed. In this 

section, the merits and issues associated with computational techniques are discussed in the 
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context of structural modelling, along with their potential and limitations in tackling the key 

challenges in tissue engineering. 

2.2.2.1 Modelling and optimisation methods 

There exist a number of fully-developed topology optimisation methods, such as the 

Evolutionary Structural Optimisation and the Bi-directional variant, the Solid Isotropic 

Material Penalisation method, and the Level Set method. These techniques provide the design 

capability essential to generate and manipulate complex structural. 

Evolutionary Structural Optimisation (ESO) technique and its improved version, Bi-

directional Evolutionary Structural Optimisation (BESO), are two well-established finite 

element methods for topological design [173-175]. They are based on the idea of gradual 

structural evolution by eliminating less contributing elements and reinforcing the more 

critical ones (only in BESO) in a fixed finite element domain. The end result is a design with 

the highest average criteria across all individual constituent elements, hence the maximisation 

of design objective such as stiffness. The BESO approach allows the addition of efficient 

material, or the restoration of erroneously removed elements and provides a more flexible 

evolution path to the global optimum [176]. Recently studies have also demonstrated the 

capability of BESO of generating complex micro- and macro-structures [177-179]. While 

these methods enjoy computation robustness and versatility, the fact that they are using fixed, 

often square and cubic, mesh makes them strongly resolution dependent. 

The Solid Isotropic Material with Penalisation (SIMP) approach is a density or volume 

fraction based representation originally used in topological optimisation of macrostructures 

[175, 180] but later implemented in the design of porous materials [162]. Often combined 

with the method of moving asymptote [181], it uses partially solid elements with penalised 

material properties. The concept of ersatz material, i.e. conceptual material that only exists in 
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computational environment, is closely associated with SIMP only with an ultra-low density to 

mimic void. The implementation of sensitivity filtering is critical to the rigorousness of this 

density approach through the elimination of numerical artefacts [182]. Ersatz material and 

sensitivity filtering are also applied to numerical methods other than BESO when tackling 

similar issues. A major drawback is that volume fraction representation results in a grey scale 

model with a blurred boundary that is difficult to track. This approach makes better sense in 

solid evolution than fluidic design. 

It has been well known that conventional topology optimisation methods frequently 

encounter two issues: (1) one being the ambiguous, blurred boundary as a result of 

voxelisation or filtering, and dependence on resolution; (2) the common use of smeared 

Heaviside and δ functions that is responsible for level set function deterioration [183]. To 

tackle the second issue, numerous re-initialisation algorithms have been developed and 

implemented, but more than often the process is accompanied by adverse numerical side 

effects and inconsistency [184]. Meanwhile, the advances in unstructured mesh generation 

[185-189] and the development of new level-set based adaptive meshing methods [190] 

makes unstructured mesh a promising alternative to voxelised models and offers a possible 

optimisation pathway to a more accurate solution [171, 191]. 

To solve dynamic fluid boundary problems, the level set method stands out as a more 

favourable approach because of its surface tracking capability. Level set provides an implicit 

means for defining a stationary or dynamic boundary evolving in space, and is particularly 

useful for interface tracking. Level set method is well-established and has been incorporated 

into many numerical techniques such as image segmentation [192], fluid dynamics [170, 193, 

194], and shape optimisation [183, 190, 191] due to its versatility in tracking boundaries of 

random or complex bodies. A fictitious energy technique has been recently introduced to 
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allow formation of holes and the capability of topological optimisation [195]. The level set 

based topology optimisation was first developed by Sethian [196] and a more standard 

method was established by Osher et al. [197], Wang et al. [198], and Allaire et al. [183]. This 

technique clearly defines boundaries that divide a design domain into separate regions. For 

general solid design, the concept of ersatz material has also been incorporated into the level-

set method to improve computational robustness [199, 200].  

Many researches on the topic of level-set optimisation emphasize building more robust model 

with relatively low computational expense by avoiding re-meshing, but fail to take full 

advantage of such prospective boundary tracking technique. One of the most common 

approaches involves combining signed distance function and smeared Heaviside function 

when defining a fixed-grid level-set function and evaluate sensitivity as an evolution criterion 

[198]. However, this method suffers from a number of issues: it experiences certain degree of 

numerical diffusion which is a necessary process in sensitivity filtering; the simulation is not 

performed on the same design boundary (voxelised) drawn by the level-set function; also, the 

boundary sharpness is strictly limited by grid resolution used in finite element analysis. 

Implementing the re-meshing step is becoming inevitable in level-set based optimisation if a 

better boundary definition beyond the current tracking capacity is to be found. Recently, there 

are developments on level-set optimisation with implementation of unstructured grid [171, 

191] and new adaptive meshing technique found on level-set function [190]. These studies 

are making steps toward a possible breakthrough of a highly versatile mesh generation 

suitable for implicit modelling in an evolution purpose. In computational fluid dynamics 

(CFD), meshing is critical to the capture of topological effect, thus it holds the key to the 

accurate optimal solution in flow optimisation problems. Phase-field method is similar to 

level-set method but will not be discussed in this study [201]. 
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In summary, existing optimisation methods have the potential but not the full capacity to 

define the optimal structure of tissue scaffolds. Some modifications must be made to their 

surface tracking technique to resolve the modelling issues. 

2.2.2.2 Topology optimisation 

Topology optimisation has recently found applications in the field of scaffold tissue 

engineering. The key benefit of such application is that the structural design process can be 

carried out away from laboratories, thus it helps reduce experimental cost. Additionally, 

topology optimisation can help assess and verify the optimality of different structural 

characteristics, and create a clearer picture of the ideal tissue scaffolds. 

Past studies have shown support to the hypothesis that bone tissue regeneration in porous 

scaffold responds to local mechanical strain [202] or mechanical stimuli such as pulsatile 

pressure [203]. This implies that the basic properties of tissue scaffolds will affect tissue 

regeneration. For this reason, properties such as stiffness and bulk modulus can be subject to 

design optimisation to indirectly influence cell development. A number of studies has applied 

topology optimisation on microstructure using the effective stiffness [164, 204, 205] and bulk 

modulus [10, 206, 207] as a design criterion. 

Fluid flow behaviour in a porous tissue scaffold is a complex mechanical problem and is 

difficult to analyse on a microscopic level. Fortunately, computational fluid dynamics (CFD) 

and the homogenisation technique together make it possible to study the fluid-structure 

interaction. Topology optimisation of tissue scaffolds based on conductivity/diffusivity 

criterion has already been looked into [10, 12]. Results of permeability optimisation are seen 

as a potential solution to general issues associated with in-scaffold cell activity [84, 134]. 

Recent modelling studies have also investigated fluid transport phenomena in tissue scaffolds 

and suggested that optimised fluid domains somewhat resemble the Schwarz’s Primitive 
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surface, which led to the speculation that Schwarz’s Primitive surface construct is optimised 

for permeability and conductivity [170, 208, 209]. There is also a growing interest in 

characterising various triply minimal surfaces’ fluid-dynamics properties [66, 133, 134, 209, 

210]. Examples of triply minimal surfaces are Schwarz’s Primitive surface and Schwann’s 

Gyroid surface. However, apart from crude resemblance, researchers have yet provided 

rigorous proof that the optimised surface is exactly the same as the Schwarz’s Primitive 

surface, or counter-proof that the Schwarz’s Primitive construct can be improved further. 

2.2.3 Biological response 

Computer models have been used to analyse tissue regeneration and to predict biological 

response to different mechanical environments [211, 212]. It is known that on a cellular level, 

cells are capable of sensing and gathering mechanical information and interacting with 

scaffold materials correspondingly [213]. With this knowledge, cell movement 

(mechanotaxis) becomes predictable. On a macroscopic level, growth is directly related to the 

scaffold structural properties. Sanz-Herrera et al. showed in a computational study that 

increasing scaffold stiffness and mean pore size led to increasing rate of bone regeneration 

[214]. Zahedmanesh et .al demonstrated that low scaffold compliance compared to host 

arteries leads to increased luminal ingrowth and development [203]. 

Improving analytical and discretised algorithms is a research area by itself in tissue 

regeneration modelling. Reina-Romo et al. developed a discrete-continuum formulation, 

allowing more realistic approach of the cell migration and proliferation process [122]. Second 

gradient hyperelastic theory was developed to describe volumetric growth and mass transport 

phenomena in a continuum model [215]. 

Biodegradable material is another emerging field of research that considers the complex 

scaffold-cell interaction in tissue regeneration process. Computational modelling can be 
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utilised to deal with such complex design scenario, and help the researchers track the 

constantly changing biomechanical environment [206]. Another point of interest with 

biodegradable materials is their structural integrity. It has been found that scaffold can 

collapse if biomaterial resorption rate is high [214]. This warrants the transient analysis in 

topology optimisation if maintaining structural integrity is a critical design requirement. 

In summary, a comprehensive computational investigation would not only improve scaffold 

design, but also help predict cell response and explicate biological mechanisms that lead to 

the success or the failure of tissue regeneration in scaffolds. Computational analysis may also 

provide an insight into natural optimisation and feedback system. With a better understanding 

of the dynamic behaviour of tissues, biological requirements can be more effectively 

translated to engineering design criteria. 
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3 Isosurface Modelling 

Image segmentation techniques are well-established and widely used in medical imaging and 

engineering modelling, particularly for the creation of high quality visualisation and 

computational model. Modelling porous tissue scaffolds typically requires Computerized 

Axial Tomography scan (CT scan) and image segmentation. However, image segmentation 

processes are mostly manually performed, and are time-consuming and difficult to execute 

correctly in an iterative process. Therefore these techniques are rarely used in transient and 

iterative simulations due to high computational cost. Topology optimisation methods are 

typically iterative, thus they have benefited little from the rapid development of image 

segmentation techniques. Topology modelling is normally restricted to voxelised models. 

To overcome this technical limitation, an isosurface modelling technique was developed to 

bridge the gap between topology optimisation, finite element modelling and the generation of 

smooth material boundary. This new technique treats optimisation models as level set 

functions, from which closed-isosurfaces are rapidly extracted using the Marching Cubes 

methods. This technique involves a rigorous mesh-smoothing operation that improves the 

quality of isosurface meshes and the definition of 3D domains and boundaries, which in turn 

provide a suitable foundation for finite element analysis. Its robustness, flexibility and 

suitability for applications in medical imaging and topology optimisation are demonstrated in 

some numerical examples in this work. 

3.1 Introduction 

Converting an image with complex geometrical features to a smooth Finite Element Analysis 

(FEA) model normally requires manual image segmentation. The manual image 

segmentation procedure is highly time-consuming and is likely carried out only if it is a one-
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off event. Constructing smooth models is deemed impractical if the models change 

dynamically over time or over iterations, since repeating the segmentation process can 

increase the computational cost considerably. For that reason, topology optimisation 

methods, which are typically iterative, often opt for voxelised models to minimise 

computational cost. This modelling choice comes at a cost to numerical accuracy. 

Isosurface-based high quality modelling and meshing has been well-developed and are 

available on both commercial and open-source platforms [1-3]. With the ever-increasing 

hardware power, these programs have the potential to conduct and automate iterative 

modelling processes at an acceptable computational cost. It has come to a point that the full-

automation of isosurface and body mesh generation directly from image input is possible [4], 

only the robustness of the algorithms and computation speed are the limitations. One study 

has demonstrated the possibility of incorporating smooth mesh generation into two-

dimensional topology optimisation [5]. Hence, isosurface modelling appears to be an ideal 

candidate for 3D model creation in a fully automatic iterative process. 

Marching cubes is one of the well-known methods for isosurface generation, originally 

developed for the 3D modelling of binary images [6]. Most isosurface generators are 

developed based on the Marching Cubes method with additional numerical processing. 

Nowadays, high quality isosurface can be easily created from grey-scale images. However, 

typical isosurface modelling software is not developed with FEA applications in mind, thus 

the resultant mesh quality is usually unfit for body mesh generation for FEA. During meshing 

generation, postprocessing and modification of the isosurface are required to remedy the ill-

shaped mesh grid by relocating nodes of isosurface mesh [7]. Various vertex locating 

techniques have also been developed to allow the construction of isosurface and body mesh 

with guaranteed mesh quality [7, 8]. 
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Having realised what smooth isosurface modelling could offer, a customised program was 

developed. The first part of this topology optimisation study aimed to develop an isosurface 

modelling technique suitable for iterative simulation. The development of this technique 

enabled the automatic translation of grey-scale images to isosurfaces and 3D mesh with 

sound quality. 

3.2 Isosurface generation 

An isosurface model is a reasonably smooth representation of a 3D image, and it is expected 

that using a smoother FEA model can improve numerical accuracy as opposed to using 

voxelised format provided by the 3D image itself. 

Computationally, an isosurface is defined by a set of points with a constant value (Figure 3-

1). In a design space, any point carrying that value is part of the boundary. Such definition is 

exactly the same as contour line in 2D space (Figure 3-1a). In 3D space, this set of points 

forms a continuous surface (Figure 3-1b).  

Isosurface is commonly used as a visualisation tool. It can also be used to represent or to 

track numerical boundaries in systems of any dimension. The focus of this study is on the 

generation of high quality isosurface model in a computational environment. A four-step 

isosurface generation method is thereby proposed: surface triangulation, surface point 

merging, mesh clean-up and mesh smoothing. 
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(a) 2D (b) 3D 

Figure 3-1. Examples of isosurface. Isosurfaces in 2D space are equivalent to contour lines. 

Each line and each surface is a collection of a set of points of a certain value (set1 = -1.25, 

set2 = -0.75, set3 = -0.25,  etc.). 

3.2.1 Surface triangulation 

An isosurface represents a set of points in a 3D numerical array. The location and connection 

of such set of points is found by using the Marching Cubes algorithm, which goes through the 

3D array 8 points at a time (8 vertices per cubic array), and identifies any point of a certain 

value. Once all points are identified, the triangulation of the points is carried out to configure 

their interconnection. The result of this is the creation of one or more triangulated surfaces, 

which divide the 3D space into at least two separated domains. 

To properly define individual domains in a two-phase system, the isosurfaces have to be 

closed by extending and wrapping them around the modelling space. As seen in Figure 3-b, 

none of the individual domains is closed. To create wrapped surfaces and closed domains, a 

modelling procedure has been developed as illustrated in Figure 3-2. 
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(a) Original array (b) Pad one layer (c) Extract isosurface (d) Collapse boundary 

Figure 3-2. Demonstration of the process of creating closed isosurface. The solid grey lines 

are the original modelling boundary, the dashed grey lines are the temporary modelling 

boundary, and the thick solid lines are the outlines of isosurfaces. 

Basically, the original image is padded with one layer of elements, in which the values have 

opposite signs to the domains they are wrapping (Figure 3-2a-b). Isosurfaces are extracted in 

the extended modelling space (Figure 3-2c), collapsed, and then snapped to the original 

modelling boundary (Figure 3-2d). Boundary surfaces for different phases can be created at 

the same time to generate isosurface junctions (Figure 3-2d). 

3.2.2 Merge isosurface points 

Isosurface smoothing can be achieved by merging isosurface points that are very close to 

each other (Figure 3-3). From a computational perspective, an isosurface is smoothed by the 

identification and deletion of poor shaped triangles based on a length criterion. This process 

involves going through the vertex-face data of isosurface, determining if any edges of any 

triangle is too short (in other words, vertices are too close), and deleting them. When a short 

edge is identified (Figure 3-3a-c, red edges), two triangles that share this edge are deleted 

from the vertex-face data (F1 and F2 in Figure 3-3a; F1 and F4 in Figure 3-3b; F1, F2, F9 and 

F10 in Figure 3-3c), and the neighbouring triangles are reshaped to fill the gap (F3 in Figure 

3-3a; F3 in Figure 3-3b; F3-8 in Figure 3-3c). When two vertices are merged, one of the 

vertices is kept while the other is permanently deleted. Any triangle that uses the deleted 

vertex will use the remained one instead. 
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All slender triangles (with 1 short edge) and small triangles (with 2 or 3 short edges) are 

subjected to deletion unless their shapes can be improved. The order of their removal is based 

on the edge lengths in the ascending order. The edge lengths of all removal candidate are 

computed again just before the deletion in case that the length has changed during the 

process. 

  
(a) Simple edge removal (b) Formation of a duplicate in a tetrahedron 

  
(c) Duplicate formation and deletion (d) The order of importance 

Figure 3-3. Schematic of the isosurface point-merging process. 

To preserve critical geometric features in this process, the decision regarding which point to 

be deleted and if the remained point should be re-located is made according to the position of 

the individual point (Figure 3-3d). Intuitively, the less critical vertex on an edge should be 

deleted. The importance of a point depends on a number of factors. The order from the most 

critical to the least critical is: (1) corners of modelling boundary; (2) isosurface intersection at 

the edges of modelling boundary; (3) edges of modelling boundary; (4) isosurface 

intersection at the surfaces of modelling boundary; (5) surfaces of modelling boundary; (6) 

inner modelling space. If both vertices are equally critical, they will be merged into one at the 

midpoint. Vertex removal based on local mean curvature can also be considered as means to 

help preserve sharp features [8]. By following this deletion order, a gap-free surface model is 

guaranteed. Sharp edges and corners on modelling boundaries are also preserved. 
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3.2.3 Post-merging clean-up operation 

The removal of vertices usually results in the formation of geometric defects and redundancy 

(Figure 3-4). Three common types of defect and redundancy are duplicated faces, 

degenerated faces and unused vertices. To rectify these issues, a number of clean-up 

operations are required and must be carried out in a strict order to avoid the deformation of 

isosurface models. In this modelling procedure, face duplicates are firstly removed (F1 in 

Figure 3-4). Then, all unused vertices are deleted (V2 in Figure 3-4). Unused vertices can be 

found by counting the number of times each vertex is used. If a vertex is used only once and 

is not sitting on the modelling boundary (V1 in Figure 3-4), itself and the associated triangle 

(F2 in Figure 3-4) will also be deleted. Finally, all tetrahedrons (Figure 3-3b) and large-size 

triangles that contain exactly 3 smaller triangles (Figure 3-3a) are identified and replaced 

with a single triangle. The reason for this is they are often physically and graphically 

redundant. 

 

Figure 3-4. Schematic of the formation of vertex-face redundancy (F1, F2, V1 and V2). 

3.2.4 Additional smoothing operation 

On the modelling boundary, further mesh quality enhancement can be achieved by relocating 

all vertices in-plane simultaneously so they are evenly spaced. A direct approach for vertex 

relocation is to treat every edge of triangles as a spring that can exert a force directly 

proportional to its length. Long edges exert stronger force than the short edges and move the 
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vertices closer to themselves. At the state of equilibrium, the vertices rearrange themselves 

and become more evenly distributed as a result. An edge-swapping technique is further 

applied to fix pairs of slender triangles as well as re-orientate force direction of individual 

springs (section 3.3.2.3). 

3.3 Computational implementation 

Isosurface and mesh generation can be built as a program or a function. The purpose of this 

modelling function is to translate mathematical models to finite element models, in the 

element-node format for finite element analysis. This requires a level set function as the input 

and produces 3D FEA mesh as the output. This isosurface-based model generation is a two-

step process (Figure 3-5). Firstly, the 3D level set function is translated to a 3D surface model 

in the face-node format. This format is subsequently used as the input of the element-node 

generating function. The third-party applications iso2mesh and tetgen are employed to 

construct 3D unstructured mesh (element-node) from the isosurface model (face-node). The 

FEA model has two typical components, nodes and 3D elements, which are labelled with 

material number so they can be later identified as solid, fluid or other constitutes. Triangular 

elements can also be exported if required. 

3.3.1 Isosurface generation 

The isosurface generator aims to create a model in a format the same or similar to the 

stereolithography format, which is readable by most FEA mesh generators and programs. The 

output must have fully enclosed bodies so that every material phase in the model is clearly 

defined. The framework of isosurface generator is illustrated in Figure 3-6.  
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Figure 3-5. Isosurface-based modelling and meshing process. 

 

Figure 3-6. Isosurface generation process. 

The most basic isosurface requires two inputs, a level set function as a 3D matrix and a level 

set constant as a scalar value. The actual construction is a rather standardised process that 
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interpolates level set points and creates a triangulated isosurface. This output also has two 

components, one being a list of node defined by their coordinates: 

(Node 1) 𝑥1 𝑦1 𝑧1
(Node 2) 𝑥2 𝑦2 𝑧2
(Node 𝑖) 𝑥𝑖 𝑦𝑖 𝑧𝑖

 

and the other being a list of face consisting of three nodal numbers (𝑛𝑓𝑎𝑐𝑒#,𝑛𝑜𝑑𝑒# 𝑜𝑓 𝑓𝑎𝑐𝑒) 

(Face 1) 𝑛1,1 𝑛1,2 𝑛1,3
(Face 2) 𝑛2,1 𝑛2,2 𝑛2,3
(Face 𝑖) 𝑛𝑖,1 𝑛𝑖,2 𝑛𝑖,3

 

For example shown in Figure 3-7, to draw a square surface from four level set points (0,0,0), 

(1,0,0), (1,1,0) and (0,1,0) requires two triangular faces: 

 

Figure 3-7. Triangular discretisation of a square. 

In the matrix format, the nodal list is written as: 

0 0 0
1 0 0
1 1 0
0 1 0

 

The nodal number is assigned based on the row number, i.e. (0,0,0) is node #1 (first row) and 

(0,1,0) is node #4 (fourth row). The face list is then generated as: 

1 2 4
2 3 4

 

where the first face consists of node #1, #2 and #4 and the second face consists of node #2, 

#3 and #4. Some finite element mesh generators require that the faces to be oriented (the 

direction the surface normal is pointing) based on the right-hand rule, and point away from 



71 

 

the body they are wrapping. In the example above, both faces are pointing in the positive z-

direction (out of the page). [2,1,4] and [3,2,4] would otherwise face the negative z-direction 

(into the page). 

To ensure that the isosurface has fully enclosed a body, the boundary has to be drawn along 

with the boundary of modelling space as illustrated in Figure 3-8. 

 

Figure 3-8. Demonstration of a non-closed and a closed isosurfaces. 

In a two-phase problem, the entire modelling space boundary is drawn, rather than the single-

phase boundary shown above. Computationally, the creation of those additional boundary 

surfaces is executed in three steps (here it is assumed that the level set constant is 0): 

1. The original input matrix is padded with one layer of numbers around its borders (see 

Figure 3-2a-b). Below is a numerical example:  

−10 −10 −10
−10 1 1
−10 1 1

10 10 10
−1 −1 10
−1 −1 10

−10 1 1
−10 1 1
−10 −10 −10

−1 −1 10
−1 −1 10
10 10 10

 

The padded numbers are given the opposite signs of values along the border, i.e. if the 

value at the border is positive, the padded value will be negative; if the value at the 

border is negative, the padded value will be positive. The padded value is significantly 

greater (10) in magnitude than the values along the border (1). 
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2. Because of the opposite signs, a surface is created around the border when isosurface 

is generated (Figure 3-2c). 

3. The boundary isosurface is shrink-wrapped around the original border and joined to 

form a continuous surface (Figure 3-2d). 

Shrink-wrapping means that any node created outside the original modelling space (the solid 

grey line in Figure 3-2) is relocated to the modelling boundary surfaces. This shrink-

wrapping technique allows the creation of an intersecting isosurface, which is critical for two-

phase and multi-phase problems due to the ability to create multiple connected bodies at the 

same time. Connecting two isosurfaces requires removing some of the redundant nodes along 

the joined boundary. However, to distinguish the original isosurface from the added 

boundaries during the mesh smoothing process, shrink-wrapping is only carried out after the 

smoothing operation. 

3.3.2 Mesh smoothing 

The goal of mesh smoothing function is to remove or modify any triangular faces that are 

either redundant or severely skewed in the isosurface model. The end result of this operation 

is an isosurface model with evenly spaced nodes, and a more concise nodal-face set. 

Consequently, the FEA will be more accurate because of the improved element quality. 

Computational time can also be reduced due to the reduced number of element. Three 

different mesh smoothing techniques are used in this study: (1) point-merging, (2) finite 

element spacing and (3) long edge split. Point-merging is the most important mechanism and 

is applied to the entire isosurface mode. The other two techniques are only performed on the 

shrink-wrapped boundary surfaces. 
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3.3.2.1 Merging isosurface nodes 

In this study, mesh smoothing is carried out as an iteration process that removes faces and 

nodes, or vertices in non-FEA context (Figure 3-3 and Figure 3-9). The decision of removal 

is made according to a simple edge length criterion: any triangle that contains an edge shorter 

than a specified value will be deleted (red edges in Figure 3-9). This length value is user-

defined according to their modelling requirements. As face deletion will result in a hole on 

the isosurface, it must be patched by reshaping the neighbouring triangles. Node-merging 

also results in face degeneration (F9 and F10 in Figure 3-3c). These degenerated faces are 

also removed. Computationally, the node-merging process is carried out in the following 

sequence: 

1. The edge lengths of all triangles are calculated and sorted in the ascending order. Triangles 

with shorter edge(s) are deleted first. 

2. The location of all nodes is checked for order of importance (Figure 3-3d). Less critical 

nodes are deleted first. 

3. When a merging decision is made, one of the two nodes becomes redundant and is moved 

outside the modelling space and later deleted (Figure 3-9). 

Each node is given a importance value between 0 and 3.5 points. Basically, 1 point is given to 

a node if it is on the x-surfaces of the modelling boundary, 1 point if on the y-surfaces, 1 

point if on the z-surfaces, and an additional 0.5 points if the node is part of the boundary of 

the original isosurface. If two nodes are equally critical, they are merged at the midpoint, and 

one of them is randomly picked for deletion. 

Figure 3-9 (also Figure 3-3a) is also a special case, demonstrating the merging of three 

triangles into one. Tetrahedron as shown in Figure 3-3b is another special case where a face 

duplicate is created through face deletion and must be dealt with separately. To do this, once 

a tetrahedron is identified, two of the triangles containing the shortest edge are determined 
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and deleted (F1 and F4 in Figure 3-3b), and then one of the duplicated faces can be removed 

(F2 and F3 in Figure 3-3b).  

 

Figure 3-9. Schematic of the node-merging and face-patching process. 

Tetrahedrons can be identified in the node-face set by counting how many times each node 

has appeared in the nodal list. Those that appear exactly 4 times and share exactly 4 

triangular faces are part of a tetrahedron. Sometimes the entire tetrahedron can be deleted if it 

is not connected with the rest of isosurface model. 

3.3.2.2 Condensing the face-node lists 

The mesh smoothing process inevitably creates a large number of redundant nodes and face 

duplicates. Maintaining correct nodal and face lists is therefore an essential task in this 

isosurface smoothing process. A small function is warranted to maintain a concise face-node 

set. However, caution must be taken as removing any node from the list will result in a 

change in the nodal number, thus the face list must be updated concurrently. 

To save computational time, the actual node and face deletion from the vertex-face set takes 

place after the node-merging process is completed for the entire model, rather than every time 

two nodes. Using Figure 3-9 as an example, when nodes N8 and N9 are merged, it is apparent 

that: 

 1. Face 1 N7-N8-N9 becomes N7-N9-N9. 
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 2. Face 2 N9-N8-N5 becomes N9-N9-N5. 

 3. Face 3 N5-N7-N9 remains the same. 

 4. Node 8 N8 is moved out of the modelling space. 

Assuming this is the end of the operation, the mesh integrity is then examined. 

 1. Face 1 N7-N9-N9 is no longer a face. This entity is deleted. 

 2. Face 2 N9-N9-N5 is no longer a face. This entity is deleted. 

 3. Node 8 N8 is not used by any face. This node is deleted. 

 4. Node 9 N9 moves up the list and becomes the new N8. 

 5. Face 3 N5-N7-N9 is re-numbered as N5-N7-N8. 

Node 9 could have been removed instead of Node 8 in the first place since they are equally 

critical as both have 0 point. If the nodes N2 and N9 were to be removed, Node 9 (0 point) 

would be moved out of the modelling space since Node 2 was more critical (1 point for being 

on the modelling boundary). 

3.3.2.3 Boundary mesh smoothing through finite element method 

An alternative approach to improve the mesh quality is node spacing through finite element 

method, where all edges are treated as a tension spring that pulls its neighbouring nodes 

toward each other. Let this “tensile force” of every edge be directly proportional to its length, 

long edges would exert more force on their neighbouring nodes than short edges. 

Consequently, the mesh will re-arrange itself to counter-balance all forces by moving nodes 

to some intermediate positions. In other words, the goal of this technique is to relocate nodes 

in a way that the mesh quality can be enhanced. This process is combined with node-merging 

and is repeated a number of times until no further improvement is possible. This process is 

executed at most six runs per iteration as there are six boundaries in a 3D modelling space. 

Each run is conducted on its own 2D plane and in a 2D FEA context. 
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As an FEA problem, a global stiffness matrix representing the spring tension is created. The 

elemental stiffness matrix of one spring element, AB, is 

[

1
0

0
1

−1
0

0
−1

−1
0

0
−1

1
0

0
1

] {

𝑥𝐴
𝑦𝐴
𝑥𝐵
𝑦𝐵

} =

{
 

 
𝐹𝐴,𝑥
𝐹𝐴,𝑦
𝐹𝐵,𝑥
𝐹𝐵,𝑦}

 

 

 

where the 𝑥’s are the current coordinates of nodes. The global stiffness matrix is assembled 

from elemental matrices. The x/y/z coordinates of all nodes that are on the edges, on the 

corners of the modelling boundary, or on the boundary of the original isosurface are fixed, 

hence they are unaffected by this operation. 

 

Figure 3-10. Reconstruction and splitting of triangles on the isosurface boundary. 

Triangles with long edges can be dealt with in two different ways through reconstruction or 

splitting based on the length criterion (Figure 3-10). Either that a new pair of triangles can be 

defined with different nodal compositions (Figure 3-10, right, dashed red line), or the original 

triangles can be split into four (Figure 3-10, right, thick red line). Both techniques directly 

remove long edges, and indirectly affect the subsequent mesh-smoothing operation that 

rearranges the “forces field” of the current spring system (Figure 3-11, red edges). 
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Figure 3-11. Edge splitting adds force vectors to the existing spring system. 

For every long edge removed, two triangles are split or reconstructed. The surface normal of 

the new faces are oriented in the same direction as the original faces according to the right 

hand rule. Edge-splitting is performed separately in a fashion similar to the short edge 

removal process. However it adds new nodes and faces to the existing set. Edge-splitting is 

executed based on a list of faces that contain long edges, and rectify the issues one by one. A 

long edge will not be split if it happens to be part of the original 3D isosurface (Figure 3-3d, 

surface 6), or it is part of the modelling boundary edges (Figure 3-3d, point 1, point 2 and 

edge 3). Also, if either new edges being created is too short according to the short edge 

removal criterion, the process is skipped. Node relocation by finite element method and edge 

modification is repeated alternately for a number of times to ensure that both sets of 

smoothing criteria are satisfied. 

3.3.3 Body generation 

The body mesh generating function takes the isosurface model as an input, discretises the 

enclosed body, and produces unstructured tetrahedral mesh as the output (Figure 3-12). 

Parameters such as model size, mesh size, and the original LSF are also used to augment this 

discretisation process. 
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Figure 3-12. Generation of unstructured 3D mesh from isosurface. 

The first task of this function is identifying and labelling the enclosed bodies. In this thesis, 

the negative LSF domain represents fluid or void, and the positive LSF domain represents 

solid. There can be more than one solid body and more than one fluid body in a FE model at 

the same time. The identification of individual bodies is done using the flood-fill technique as 

illustrated in Figure 3-13. 
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Figure 3-13. Schematic demonstration of the flood-fill process.  

The flood-fill is carried out on a matrix the same size as the LSF, each matrix entry will be 

given a number as a material label, which is referred to as a set of material properties. Using 

Figure 3-13 as an example and starting with an empty matrix, the first empty entry is given a 

material number “1” (the top-left grey-coloured square). This material number is replicated 

and written into all its neighbouring entries that are empty and are in the same material 

domain (grey colour). In this LSF structure, nodes are connected orthogonally in six 

directions (x+, x-, y+, y-, z+ and z-). This step is repeated until no more squares can be filled 

(four subplots on the top), and then a new material number (“2”) is created for the next flood-

fill process (bottom left) and seeded in the first unoccupied matrix entry. New material 

numbers are created until the entire matrix is filled. When the body mesh generation is 

completed by the third-party programs, every solid and fluid body is marked by a material 

number. It is crucial to match all solid and fluid domains correctly by feeding the mesh 

generator the material information. The material labels, known as “material points” by some 

FEA software, are created for every zone/body to indicate what material and where each 

body is. These material points can be spatially back-tracked to its original level-set function 

and verified. 
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If the FE model is symmetric, only one eighth of the isosurface and 3D FEA model has to be 

built. To reconstruct the entire model from the 1/8
th

 model, the resultant 3D mesh is mirrored 

and duplicated three times in x, y and z directions (Figure 3-14). Following this, elements on 

the mirroring planes are connected by merging nodes at the interface (N3 and N12 for example 

in Figure 3-14). Similar to the isosurface node deletion process, the element definition have 

to be updated simultaneously to use the new nodal number. This produces the final element-

node set of the FE model. 

  
(a) Node and element mirroring (b) Node deletion and element re-numbering 

Figure 3-14. Schematic demonstration of mesh reconstruction through mirroring. 

In a computational fluid dynamics simulation, nodes at material interface have to be 

specifically marked. These nodes can be easily identified by going through the element lists. 

Nodes that appear on both solid element and fluid element lists are marked as such. 

3.4 Results and discussion 

Since the publication of the Marching Cubes algorithm in the 1980s, isosurface construction 

has become a well-established technique and a common procedure in 3D modelling. While 

high quality model and mesh are desirable in finite element analysis, they are rarely used in 

iterative processes such as transient analysis and topology optimisation due to high 

implementation cost and complexity. Therefore a custom isosurface and mesh generation 

program was built, designated for automated modelling in topology optimisation. 
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A smooth isosurface modelling technique has been developed based on the Marching Cubes 

method and a number of numerical operations. In this part of study, this technique was used 

to generate enclosed triangulated surfaces for a human brain, a CT-scan cuttlebone image, a 

multi-objective design optimisation model and the Clebsch model (Figure 3-15a, b-c, d-f and 

Figure 3-16, respectively) to test its modelling capability. The isosurfaces generated have 

captured the characteristic geometry of the structure of brain [4], the micro-structure of 

cuttlebone [9], and tracked the evolving shape of the topology optimisation model. The 

vertex or node-merging procedure and the mesh smoothing operations had eliminated all 

poorly-shaped triangles and condensed the overall isosurface model size. The final mesh 

sizes were larger than their pre-processed counterparts as fine meshes were merged to form 

coarser meshes. For the high resolution CT-scan image such as the cuttlebone, the deletion 

criteria are set at a value much greater than the pixel size of the input image to produce a 

significantly coarsened model. When combined with a robust body mesh generator such as 

tetgen [3], this isosurface modelling technique makes automatic re-meshing feasible and 

time-efficient. 

   
(a) Human brain (b) Cuttlebone - solid phase (c) Cuttlebone - void phase 
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(d) Initial model (e) 50

th
 iteration (f) Optimal model 

Figure 3-15. Smoothed isosurface examples in practical modelling (a)-(c) and topology 

optimisation (d)-(f). 

 
  

(a) Initial isosurface (b) Node distance > 1/160 (c) Node distance > 1/80 

   
(d) Node distance > 1/40 (e) Node distance > 1/20 (f) Node distance > 1/10 

Figure 3-16. The resultant Clebsch isosurfaces with different minimum node distances (as a 

fraction of the model size). The input data has a resolution of 41
3
 and 1/40 spacing. 

The deletion order has helped preserve the boundary features at the isosurface intersection in 

both the cuttlebone and the design optimisation models. Smoothing technique by numerical 

filtering was not being used in the cuttlebone case to avoid moving those feature-defining 

points. Unless all boundary vertices are properly constrained in one or more appropriate 

directions, moving an isosurface-boundary intersection or any boundary point would directly 

result in the degeneration of the model. 
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Body meshes have been automatically generated by the program, tetgen, to fill these 

isosurface models (Figure 3-17). As shown in Figure 3-17, the inner domain is filled with 

unstructured tetrahedral mesh. Mesh generation in the outer domain could be done 

simultaneously to fill the entire modelling space. A topology optimisation was also 

successfully carried out over 200 iterations to confirm the robustness of the program. 

  
(a) z = -0.35 (b) z = -0.1 

 
 

(c) z = 0.15 (d) z = 0.4 

Figure 3-17. Cross-sectional views of a body mesh of a topology optimisation model. Z 

indicates the position of the cross-section in the Cartesian coordinate system. 

Following the deletion order, the node-merging criterion is flexible and has no upper limit. 

This allows a virtually unlimited vertex-face condensation until the entire structure fully 

degenerates, as demonstrated in the Clebsch model (Figure 3-16). In the meantime, geometric 

features degenerate at a much slower rate. These results also show that the proposed 
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modelling program has outperformed similar functions provided in the Iso2Mesh toolbox 

(mesh resampling) in term of feature preservation, but at a higher computational cost. 

However, additional tests show that extracting a very coarse isosurface from a very high 

resolution image (100*100*100 and higher) can be impractical although possible by using a 

large distance value in node deletion. It is more efficient to reduce the input image resolution 

beforehand than repeating the node deletion. 

Breaking down one deletion process into multiple runs, with each subsequent run using a 

larger deletion distance, improves the stability and helps obtain more accurate results. For 

example, if the desired merging distance is 0.8 units, the function can be called twice with the 

first run merging nodes within 0.4 units, and the second run merging those within 0.8 units. It 

should be noted that the distance between nodes may change during the deletion process as a 

result of node re-location. Furthermore, constantly re-computing the nodal distance is 

inefficient, so the distance calculation is performed only once per deletion run. Consequently, 

deletion does not occur in a strictly ascending order. Some nodes distances that are close to 

the tolerance value can change their state from too short to satisfactory, therefore the distance 

should be double-checked just before deletion. Running the deletion process in multiple small 

steps allows it to be carried out in mostly ascending order. 

Merging nodes at their midpoint preserves the overall shape of the 3D models. However, 

some fine geometric details such as sharp edges and spikes can still be lost if the node-

merging process is extensive. All models shown in Figure 3-15 and Figure 3-16 were 

obtained with vertex relocation to the midpoints of the deleted edges. It can be seen in Figure 

3-16 that the final Clebsch models manage to retain most of its initial characteristics. 

Nevertheless, this midpoint relocation led to geometrical deviation every time an isosurface 

vertex is moved. In terms of volumetric deviation and numerical errors, such error can 
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accumulate over iteration. Alternatively, surface curvature-based relocation tactic can be used 

to ensure the new nodal locations stay on the original isosurface, but at a higher 

computational cost. 

Overall, the proposed technique guarantees high surface quality. Together with the octree 

mesh-generating method, a robust body mesh can be built. Mesh-generating methods such as 

Delaunay triangulation and advancing front are not recommended here as they may not 

always succeed in filling the body of a model. The development of more vigorous and 

comprehensive tetrahedral mesh generation will further improve the practical value of this 

isosurface modeller and strengthen its integration in iteration processes. 

3.5 Programming considerations 

In the isosurface-based topology optimisation (starting from the next chapter), modelling is 

the largest and most complicated programming components. The correct transformation of an 

implicit input to an unstructured mesh is the greatest challenge. 

When tetrahedral mesh is generated, some material zones (LSF subdomains) have been found 

to be very small and difficult to distinguish. They become a potential problem when 

assigning material properties to elements if the location of the elements cannot be clearly 

identified, in other words, it is unclear to which LSF zone the elements belong. There are two 

solutions to this problem, one is to analyse more or all elements from the zone until there is a 

general agreement; another solution is to merge the entire material group into its 

neighbouring group. In many structural design scenarios, discontinuity is forbidden and any 

isolated zone is automatically dissolved into its surrounding material zone. 

The nodal definition of an element has to conform to the FEA program standard. Normally, a 

tetrahedral element contains four unique nodes and is written as a row vector: 
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𝑁1 𝑁2 𝑁3 𝑁4. 

The numbering order must follow the right-hand rule where the surface normal of triangle 

𝑁1-𝑁2-𝑁3 points toward 𝑁4 (Figure 3-18). 

 

Figure 3-18. Node numbering of a tetrahedral element based on the right-hand rule. 

In the ANSYS environment however, the element has to be expressed in the 8-node 

hexahedral element format with repeated nodal numbers: 

𝑁1 𝑁2 𝑁3 𝑁3 𝑁4 𝑁4 𝑁4 𝑁4. 

3.6 Concluding remarks 

The implementation and automation of smooth isosurface generation in an iterative process 

requires a robust modelling system. The rapid surface model construction using the Marching 

Cubes method and the proposed edge clean-up technique together provide the robustness and 

allow the conversion of structured volumetric data to a two-phase surface model. This 

procedure guarantees the smoothness of final results as well as flexible control of mesh size 

and density. Its suitability for 3D medical and topological modelling has been demonstrated 

in this part of study. 
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4 Topology Optimisation of Tissue scaffolds 

 

Topology optimisation methods commonly employ fixed mesh and density-based model. 

Although such approach minimises the complexity of finite element modelling, it comes at 

the cost of the accuracy of finite element analysis (FEA). To improve accuracy and to 

validate the claims made by past studies aforementioned in the Chapter 2 Literature Review, 

the isosurface and level set function (LSF) co-modelling technique has been utilised in the 

design and optimisation of tissue scaffolds. This new method is based on the established level 

set optimisation method, with the addition of isosurface construction, unstructured tetrahedral 

meshing, and an isosurface-based topology update system that replaces the level-set based 

sensitivity analysis. The optimisation results were compared to those obtained from Bi-

directional Evolutionary Structural Optimisation (BESO), Solid Isotropic Material 

Penalisation (SIMP) and the conventional level-set method (LSM). 

There were three design objectives in this part of tissue scaffold design: maximisation of (1) 

effective bulk modulus, (2) effective diffusivity and (3) effective permeability. The optimal 

microstructures of tissue scaffold would be generated using the isosurface modelling method 

(Chapter 3) to create smooth and unambiguous material boundaries.  

 

4.1 Introduction 

Architectures of porous tissue scaffolds have been shown to have a major impact on tissue 

proliferation [1-3]. Past studies have attempted to tackle various mechanical and biological 

issues as structural design problems, in which the design criteria primarily focused on the 

properties of tissue scaffold such as pore connectivity [4], stiffness [5], diffusivity [6, 7] and 



89 

 

fluid flow interaction [8, 9]. Effective material properties such as bulk modulus, diffusivity 

and permeability have been used as objectives of topology optimisation [5, 10, 11]. In these 

studies, the design and characterisation of microstructure was typically carried out on a 

microscopic representative volume element (RVE), where the scaffold is assumed to be 

constructed by self-repeated unit cells in which the material distribution uniquely determines 

the effective properties in terms of homogenisation theory.  

Past computational studies have successfully applied topology optimisation to microstructure 

design to maximise effective stiffness [5], bulk modulus [12], conductivity [12, 13], and 

permeability [5, 14-17]. Some studies have also recommended using special mathematical 

models as the scaffold microstructure [2, 3]. However the optimisation results contain 

numerical artefacts such as voxelised surface (ESO, BESO and SIMP) [18], blurred boundary 

(level set method) [19] and diffused interface (phase field method) [20]. Such physical 

ambiguity can become a problem in the actual fabrication of tissue scaffolds by solid 

freeform fabrication (SFF) [2, 21]. 

To overcome this design and modelling limitation, an optimisation method has been selected 

and modified for the fabrication purpose. From the topology design point of view, a non-

parametric method is preferred and there are two possible options: density method (ESO, 

BESO and SIMP) and surface tracking (level set method and phase field method). While the 

density method are more versatile as they allow the formation of holes in both 2D and 3D 

spaces, it has been demonstrated that surface tracking can achieve the same in 3D space [22, 

23]. Level set function (LSF) is commonly used to track surface or boundary over time in 

computer simulations [24-26] before being utilised in topology optimisation [16, 27, 28]. The 

LSF method approximates the location of material boundary in a fixed mesh and has a 

voxelised, density-based band of boundary [19]. 
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What appears to be a possible solution to improving the boundary modelling is the explicit 

counterpart of level set, known as the isosurface. Isosurface is a well-developed visualisation 

and finite element modelling technique [29] but it is not well-known in topology 

optimisation. Nevertheless, a 2D isosurface-based topology optimisation method had been 

developed, which successfully produced smooth boundary models and eliminated the need of 

approximation or density modelling [30]. The implication is that the implicit level-set method 

can be combined with the explicit isosurface modelling to allow surface tracking and accurate 

finite element modelling at the same time.  

The implementation of isosurface modelling in a modified level set optimisation framework 

is hereby proposed. The goal of this study is to develop a smooth topology optimisation 

technique designated for tissue scaffold design and fabrication. This new method will 

determine the optimal microstructures for structural stiffness, diffusion transport and 

perfusion. The design criteria are homogenized bulk modulus, effective diffusivity and 

effective permeability. The proposed method will also be benchmarked in terms of the 

highest achievable material properties against a range of optimisation methods that utilise fix-

mesh. 

 

4.2 Single-objective topology optimisation 

4.2.1 Topology optimisation 

This part of study introduces an isosurface-based topology optimisation technique. Building 

on the established level-set optimisation framework [31], this technique replaces the 

conventional fixed-mesh density model with a smooth, non-density-based unstructured mesh. 

The design objective is to maximise the effective bulk modulus, diffusivity and permeability, 

which are calculated according to the homogenisation theory [32, 33]. 
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4.2.1.1 The level set method 

A level set is a surface that consists of points of a prescribed value. Together these points 

form one or multiple continuous boundaries between points with greater values and points 

with lower values (Figure 4-1). In an explicit model, the movement of a boundary is typically 

initiated by relocating the set of boundary points to the desired position. In an implicit model 

however, all points are stationary; a moving boundary is tracked by adjusting the value of the 

entire function so that only points at the new boundary position have the prescribed value 

(Figure 4-1b). Boundary tracking by level set method is an implicit technique that tracks the 

location of boundaries by adjusting the level set function value. 

  

Figure 4-1. Exemplar level set functions (bottom) and their respective level set boundaries 

(top) of an evolving system: (a) the original state, and (b) the new state. 

Mathematically, a level set (Γ) is defined as a set of points with a common value:  

 Γ: 𝜙(𝑥1, 𝑥2, … ) = 𝑘. (4-1) 

where 𝜙 is the level set function. For example in Figure 4-1, 𝜙 = 𝑧(𝑥, 𝑦) and the level set 

value 𝑘 is zero. If the level set function (𝜙) is continuous, a level set forms a continuous 
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surface that divides the entire space into two domains. Isosurface shares exactly the same 

mathematical definition, but the location of boundary points are explicitly determined and 

listed. 

In the design of porous tissue scaffolds, there are two material phases, namely solid (scaffold 

material) and void (pores). The part of LSF space with values smaller than k represents the 

void phase (Ωv: 𝜙(𝑥) < 𝑘 ) whereas the part of LSF space with values greater than k 

represents the solid phase (Ωs: 𝜙(𝑥) > 𝑘). The constant 𝑘 is typically zero in a two-phase 

problem. By this definition, the isosurface represents the phase boundary. 

Topology change is initiated through the manipulation of the LSF. If 𝑘 = 0, a change in the 

sign of the LSF value will result in a change in phase, and consequently a change in the 

boundary position.  Mathematically, this rate of change is expressed as a velocity function of 

the phase boundary. The actually change in LSF (𝜙) can be found mathematically by solving 

a Hamilton-Jacobi equation when the velocity function is given: 

 𝜕𝜙

𝜕𝜏
+ 𝑣𝑛|∇𝜙| = 0 (4-2) 

where ∂𝜏 is the pseudo-time, 𝑣𝑛 is the velocity function, and ∇𝜙 is the gradient field of LSF. 

A boundary with a positive velocity moves toward the solid side (the void phase expands) 

while a boundary with negative velocity moves to the void side (the solid phase expands). 

The actual displacement over time is controlled by a time step, ∂𝜏. Multiplying the velocity 

function by level set gradient and the time step yields the change in LSF, ∂𝜙: 

 𝜕𝜙 = −𝜕𝜏 × 𝑣𝑛|∇𝜙|. (4-3) 

To determine the rate of change of the LSF, the objective function is firstly defined as: 

 

maximise: 𝐽(𝜙) =
1

|Ω|
∫ 𝐻(𝜙)𝛼(𝜙, 𝑢)𝑑Ω
𝛺

 

subject to:  ∫ 𝐻(𝜙)𝑑𝛺
𝛺

= 𝛺𝑆 
(4-4) 



93 

 

where |Ω| is the total volume of design space, 𝐻(𝜙) is the Heaviside function, 𝛼(𝜙, 𝑢) is the 

nominal local effective material property, and 𝛺𝑆  is the total allowable volume of solid 

material. Multiplying 𝛼(𝜙, 𝑢) by 𝐻(𝜙) yields the local effective property. The integral yields 

the total effective property. The time derivative of this objective function is [19]: 

 
𝜕𝐽(𝑢, 𝜙)

𝜕𝜏
= ∫ 𝛿(𝜙)𝛽(𝑢, 𝜙)𝑣𝑛|∇𝜙|𝑑Ω

Ω

 (4-5) 

where 𝛿(𝜙) is the delta function, 𝛽(𝑢, 𝜙) is the nominal local sensitivity. This equation can 

be broken down by chain rule into two components: 

 
𝜕𝐽(𝑢, 𝜙)

𝜕𝜙
= ∫ 𝛿(𝜙)𝛽(𝑢, 𝜙)𝑑Ω

Ω

 (4-6) 

 𝜕𝜙

𝜕𝜏
= 𝑣𝑛|∇𝜙| (4-7) 

where 
𝜕𝐽(𝑢,𝜙)

𝜕𝜙
 is the shape derivative of the objective function. For effective bulk modulus and 

effective conductivity optimisation problems, Wang et al. had derived the shape sensitivity as 

[34]: 

 
𝜕𝐽(𝑢, 𝜙)

𝜕𝜙
= −

1

|Ω|
∫ 𝛿(𝜙) (𝐼 −

𝜕𝑢

𝜕𝑥
)
𝑇

𝐷(𝜙) (𝐼 −
𝜕𝑢

𝜕𝑥
) 𝑑Ω

Ω

 (4-8) 

where u is the degree of freedom, and D is the stiffness or conductivity of scaffold material.  

The same derivation can be applied to the effective permeability optimisation problem and 

this yields: 

 
𝜕𝐽(𝑢, 𝜙)

𝜕𝜙
= −

1

|Ω|
∫ 𝛿(𝜙) (

𝜕𝑢

𝜕𝑥
)
𝑇

𝐾(𝜙) (
𝜕𝑢

𝜕𝑥
) 𝑑Ω

Ω

 (4-9) 

where K is the fluid viscosity. Matching Eq. (4-6) with Eq. (4-8) and (4-9) reveals that: 

  𝛽(𝑢, 𝜙) = −
1

|Ω|
(1 −

𝜕𝑢

𝜕𝑥
)
𝑇

𝐷(𝜙) (1 −
𝜕𝑢

𝜕𝑥
), (4-10) 

 𝛽(𝑢, 𝜙) = −
1

|Ω|
(
𝜕𝑢

𝜕𝑥
)
𝑇

𝐾(𝜙) (
𝜕𝑢

𝜕𝑥
). (4-11) 

As all effective material properties must be positive, 𝛽(𝑢, 𝜙) ≤ 0 . Hence 𝛼(𝜙, 𝑢) =

−𝛽(𝑢, 𝜙) × |Ω|, and 
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𝜕𝐽(𝑢,𝜙)

𝜕𝜏
= −

1

|Ω|
∫ 𝛿(𝜑)𝛼(𝜙, 𝑢)𝑣𝑛|∇𝜙|𝑑ΩΩ

, (4-12) 

𝛼(𝜙, 𝑢) ≥ 0. If 𝑣𝑛 = − 𝛼(𝜙, 𝑢) ≤ 0, 
𝜕𝐽(𝑢,𝜙)

𝜕𝜏
≥ 0. However, to meet the volume constraint, 

the net change in volume must be zero, i.e. ∫ 𝑣𝑛𝑑Γ
Γ

= 0, where 𝑑Γ is the local boundary 

area and 𝑣𝑛𝑑Γ yields change in local solid volume. Choosing 𝑣𝑛 = −(𝛼(𝜙, 𝑢) + 𝜆) yields 

[19]: 

 −∫ (𝛼(𝜙, 𝑢) + 𝜆)dΓ
Γ

= 0, 

𝜆 = −
∫ 𝛼(𝜙,𝑢)𝑑Γ
Γ

∫ 𝑑Γ
Γ

, 
(4-13) 

where 𝜆 is the Lagrange multiplier, or namely the velocity adjustment term. Substituting 

𝛼(𝜙, 𝑢) = −𝑣𝑛 − 𝜆 back into Eq. (4-12), the following equation is obtained: 

 
𝜕𝐽(𝑢,𝜙)

𝜕𝜏
=

1

𝑉𝑅𝑉𝐸
∫ 𝛿(𝜙)𝑣𝑛

2|∇𝜙|𝑑𝑉
Ω

+
𝜆

𝑉𝑅𝑉𝐸
∫ 𝛿(𝜙)𝑣𝑛|∇𝜙|𝑑ΩΩ

. (4-14) 

If 𝜙  is a signed distance function, |𝛻𝜙| = 1  everywhere, and ∫ 𝛿(𝜙)𝑣𝑛|𝛻𝜙|𝑑ΩΩ
= 0 , the 

volume constraint is therefore satisfied. Also,  ∫ 𝛿(𝜙)𝑣𝑛
2|∇𝜙|𝑑𝑉

Ω
 is equal to or greater than 

zero, therefore 
𝜕𝐽(𝑢,𝜙)

𝜕𝜏
≥ 0 is guaranteed. 

4.2.1.2 Maximising effective permeability 

The primary goal of this topology optimisation is to maximise the effective material 

properties, specifically the effective permeability. The effective permeability is the measure 

of ease of fluid to travel through a presumably homogeneous porous medium under a 

pressure. Permeability is therefore crucial in the nutrient transport in tissue scaffold. The 

objective function is thereby formulated as a permeability maximisation problem: 

 
Maximise: 𝐽𝐾(𝑤) = 𝐾

𝐻 = ∫ (
𝜕𝑤

𝜕𝑥
)
𝑇

𝑲(𝜙) (
𝜕𝑤

𝜕𝑥
)𝑑Ω

Ωvoid

 (4-15) 

 
Subject to: ∫ dΩ

Ωvoid

= Ω0 (4-16) 
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where 𝑤  is the characteristic fluid velocity, 𝐾𝐻  is the effective permeability, 𝑲(𝜙) is the 

nominal fluid viscosity, and Ω0 is the void volume constraint. 𝐾𝐻 in a matrix form has the 

same size as 𝑲(𝜙). If isotropy of model is enforced, 𝐾𝐻 can be expressed as a scalar value 

and used as the objective number. Otherwise, the objective number is obtained by summing 

up the diagonal values in the objective matrix. In Eq. (4-12), α =
1

3
∑ (

𝜕𝑤

𝜕𝑥𝑖𝑖
)
𝑇

𝑲(𝜙) (
𝜕𝑤

𝜕𝑥𝑖𝑖
)3

𝑖=1 . 

The summation is done outside the integral. 

The characteristic fluid velocity 𝑤 is obtained by solving the homogenized Stokes equation: 

 ∇2𝑤 − ∇𝜋 = −I      ∀𝑥 ∈  Ω1(𝑥) (4-17) 

 ∇ ∙ 𝑤 = 0     ∀𝑥 ∈  Ω1(𝑥)   (4-18) 

 𝑤 = 0    on Γ(𝑥)   (4-19) 

where π is the characteristic pressure field, and I is an identity tensor applied as a body force. 

For an n-D model, the equations need to be solved n times to build the full homogenisation 

matrix.  

4.2.1.3 Maximising effective bulk modulus 

The effective bulk modulus is indicative of the mechanical property of the tissue scaffold. 

The objective function can be expressed as: 

 

Maximise: 𝐽𝐵(𝑢) = 𝐵𝐻 =
1

9
∑∑𝑬𝑖𝑗

𝐻

3

𝑗=1

3

𝑖=1

 

𝑬𝐻 = ∫ (1 −
𝜕𝑢

𝜕𝑥
)
𝑇

𝑬(𝜙) (1 −
𝜕𝑢

𝜕𝑥
) 𝑑Ω

Ωsolid

 

(4-20) 

 
Subject to: ∫ 𝑑Ω

Ωsolid

= 1 − Ω0 (4-21) 

where 𝑢  is the characteristic displacement, 𝐵𝐻  is the effective bulk modulus, 𝑬𝐻  is the 

effective stiffness, and 𝑬(𝜙) is the nominal stiffness matrix of the scaffold material. In Eq. 
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(4-12), α =
1

9
∑ ∑ (1 −

𝜕𝑢

𝜕𝑥𝑖𝑗
)
𝑇

𝑬(𝜙) (1 −
𝜕𝑢

𝜕𝑥𝑖𝑗
)3

𝑗=1
3
𝑖=1 . The summation is done outside the 

integral.  

The characteristic displacement is obtained by solving the homogenisation stiffness response 

equation: 

 𝜕

𝜕𝑥
𝑬(𝜙) (𝐼 −

𝜕𝑢

𝜕𝑥
) = 0 (4-22) 

where I is the unit-strain field, which is computationally an identity tensor. In 3D space, Eq. 

(4-20) is solved three times in three normal directions to produce a partial effective stiffness 

matrix 𝑬𝐻 (recreating the full matrix requires six sets of characteristic displacement solutions, 

three normal and three shear cases).  

4.2.1.4 Maximising effective diffusivity 

The effective diffusivity plays an important role in the nutrient transport in the tissue 

scaffolds. The objective function can be written as the following: 

 

Maximise: 𝐽𝐷(𝑞) = 𝐷𝐻 =
1

3
∑𝑫𝑖𝑖

𝐻

3

𝑖=1

 

𝑫𝐻 = ∫ (1 −
𝜕𝑞

𝜕𝑥
)
𝑇

𝑫(𝜙) (1 −
𝜕𝑞

𝜕𝑥
) 𝑑Ω

Ωvoid

 

(4-23) 

 
Subject to: ∫ 𝑑Ω

Ωvoid

= Ω0 (4-24) 

where 𝑞 is the characteristic concentration filed, 𝐷𝐻 is the scalar effective diffusivity, 𝑫𝐻 is 

the effective stiffness in a matrix form, and 𝑫(𝜙) is the local diffusivity matrix of the fluid. 

In Eq. (4-12), α =
1

3
∑ (1 −

𝜕𝑞

𝜕𝑥𝑖𝑖
)
𝑇

𝑫(𝜙) (1 −
𝜕𝑞

𝜕𝑥𝑖𝑖
)3

𝑖=1 . The summation is done outside the 

integral. 

The characteristic concentration filed is found by solving the homogenized thermal equation: 
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 𝜕

𝜕𝑥
𝑫(𝜙) (𝐼 −

𝜕𝑞

𝜕𝑥
) = 0 (4-25) 

where I is the unit-gradient or the identity tensor. In 3D space, Eq. (4-23) is also solved three 

times to create the full effective diffusivity matrix 𝑫𝐻 , whose diagonal values are then 

summed to produce a scalar value.  

4.2.1.5 Boundary conditions 

The homogenisation equations are solved using the standard finite element method. A 

combination of periodicity and symmetry boundary condition is applied as shown in Figure 

4-2. Under periodic boundary condition, the degree of freedom on one boundary of design 

domain (e.g. T1) must be the same as the opposite boundary (i.e. T2). Under symmetry 

boundary condition, the normal component of boundary flux or displacement at boundaries of 

design domain must be zero (e.g. vy=0 and uy=0 on y-plane). 

   
(a) Pressure, p, and velocity, v (b) Displacement, u (c) Temperature, T 

Figure 4-2. Boundary conditions for the homogenisation of effective (a) permeability (x 

component), (b) bulk modulus and (c) conductivity (x component). 

4.2.2 Isosurface modelling 

4.2.2.1 Isosurface extraction 

The generation of isosurface-based model involves three separate steps: (1) direct 

interpolation of isosurface vertices from the LSF, (2) isosurface triangulation and mesh 

smoothing, and (3) generation of finite elements. The position of isosurface vertices is found 

through interpolation of fixed-grid level set function (Figure 4-3a) to locate any points with 
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𝜙 = 0  (dark dots in Figure 4-3b, Eq. (4-2)). The points are then patched to form a 

triangulated surface (Figure 4-3c). Such operation is performed at each iteration step to 

explicitly track the motion of boundary. As the isosurfaces generated in such a direct manner 

often contains slender or highly skewed triangles that can affect the accuracy of finite 

element analysis, a mesh-smoothing operation is required to remove those low quality 

elements (Figure 4-3d). 

  
(a) Exemplar fixed-grid LSF (b) Interpolation of isosurface vertices 

  

(c) Face patching with triangular faces (d) Face deletion 

Figure 4-3. Schematic of the extraction process of an isosurface from a level set function. 

An iterative mesh-smoothing algorithm is implemented to remove slender and small 

triangular faces from the isosurface model. This basically involves identifying and then 

deleting all elements that contains one or more edges whose length fall short of a given 

tolerance (Figure 4-3 c-d), as described in detail in Chapter 3. 

This smoothed isosurface mesh is subsequently used as the foundation of tetrahedral mesh 

generation using tetgen [35-37] from the “iso2mech” Matlab toolbox [38] to produce 
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conforming meshes for both solid and void phases. Additional points may be added to the 

original isosurface mesh by the program to further improve mesh quality.  

4.2.2.2 Sensitivity interpolation 

After the FEA and homogenisation, the effective material properties and the sensitivity 

information stored in the unstructured FE model have to be passed on to the structured level-

set optimisation system. In this part of study, this information relay occurred in two steps. 

Firstly, the nodal objective and sensitivity are interpolated from the elemental values and 

secondly, the sensitivity at the structured LS grid points is interpolated from the nodal values. 

An inverse distance weight method was employed to determine the nodal sensitivity, 𝐽𝑛, 

 

𝐽𝑛 =
∑
1
𝑑𝑒
𝐽𝑒

∑
1
𝑑𝑒

 (4-26) 

where the subscripts 𝑛 and 𝑒 denote nodal and elemental properties respectively, and 𝑑𝑒  is 

the distance from each node to element centroid. The step basically weighs and averages the 

sensitivity values from all neighbouring nodes. Since only the surface sensitivity is of interest 

in the level set method, the interpolation is only performed at nodes that are within a certain 

distance to the isosurface. The second step relays the nodal values to the surrounding LSF 

grid also by means of weighted interpolation: 

 

𝐽𝑔 =

∑
1

(𝑑𝑛 + 0.1ℎ)2
𝐽𝑛

∑
1

(𝑑𝑛 + 0.1ℎ)
2

   (4-27) 

where the subscript 𝑔 denotes the LSF grid, and 𝑑𝑛 is the distance between node and the LSF 

grid point. All nodal values within 3 × ℎ distance to the point are taken into account. Adding 

0.1ℎ (one tenth of the grid spacing) to the distance is to avoid zero division. It is worth noting 

that this two-step interpolation process can induce some degree of numerical diffusion so that 
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an additional numerical filtering is not required. Taking the squared weight in the second step 

reduces numerical diffusion. 

The level set function is adjusted to maintain periodicity and isotropy at the boundaries of 

design domain. This is done by taking average of the level set function and the velocity 

function in the x-x, y-y and z-z directions (e.g. 𝜙(𝑥, 𝑦, 𝑧) = 𝜙(−𝑥, 𝑦, 𝑧) =
1

2
[𝜙(𝑥, 𝑦, 𝑧) +

𝜙(−𝑥, 𝑦, 𝑧)]); swapping x-y axes (𝜙(𝑥, 𝑦, 𝑧) = 𝜙(𝑦, 𝑥, 𝑧) =
1

2
[𝜙(𝑥, 𝑦, 𝑧) + 𝜙(𝑦, 𝑥, 𝑧)]); and 

then rotating all three axes, i.e. 𝜙(𝑥, 𝑦, 𝑧) = 𝜙(𝑦, 𝑧, 𝑥) =
1

2
[𝜙(𝑥, 𝑦, 𝑧) + 𝜙(𝑦, 𝑧, 𝑥)] . The 

second and the third operations work in conjunction to produce isotropy. 

4.2.2.3 Topology optimisation in the discretised domain 

Lagrange multiplier 𝜆 in Eq. (4-13) serves as a velocity adjustment term. Computationally, 

𝛼(𝜙, 𝑢) can be regarded as the relative velocity of the level set boundary, and 𝜆  as the 

velocity correction. When the integral of the velocity function, −𝛼(𝜙, 𝑢) + 𝜆, over the level 

set boundary (Γ) equals zero (∆𝑉 = ∫ 𝑣𝑛𝑑SΓ
= 0), the volume constraint is satisfied. The 

value of the Lagrange multiplier can be explicitly estimated by calculating the average 

movement of the isosurface. This computation is done over the discretised isosurface model 

as follows: 

 

𝜆 = −
∑ 𝐴𝑓

(𝑣𝑓1 + 𝑣𝑓2 + 𝑣𝑓3)
3

𝑛
𝑓=1

∑ 𝐴𝑓
𝑛
𝑓=1

 (4-28) 

where subscript f denotes triangular face of the isosurface, 𝐴𝑓 is the area of f
th

 triangle, and 

𝑣𝑓1 , 𝑣𝑓2 and 𝑣𝑓3 are three nodal velocities at three vertices.  

The gradient field of the LSF, namely ∇𝜙, is computed using the first order upwind scheme: 

 ∇𝑥+𝜙 =
𝜙𝑖+1,𝑗,𝑘−𝜙𝑖,𝑗,𝑘

ℎ
,  (4-29) 
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∇𝑥−𝜙 =
𝜙𝑖,𝑗,𝑘−𝜙𝑖−1,𝑗,𝑘

ℎ
. 

A total of six gradients in six orthogonal directions (x^+, y^-, x^+, y^-, z^+, z^-) are required 

to derive the local absolute gradient field, |∇𝜙|: 

 |∇𝜙|+ = 𝑠𝑞𝑟𝑡(max(∇𝑥−𝜙, 0)
2 +min(∇𝑥+𝜙, 0)

2 + 

                   max(∇𝑦−𝜙, 0)
2
+min(∇𝑦+𝜙, 0)

2
+ 

                   max(∇𝑧−𝜙, 0)
2 +min(∇𝑧+𝜙, 0)

2) 

|∇𝜙|+ = 𝑠𝑞𝑟𝑡(min(∇𝑥−𝜙, 0)
2 +max(∇𝑥+𝜙, 0)

2 + 

                   min(∇𝑦−𝜙, 0)
2
+max(∇𝑦+𝜙, 0)

2
+ 

                      min(∇𝑧−𝜙, 0)
2 +max(∇𝑧+𝜙, 0)

2) 

 (4-30) 

Using these two set of gradients, the LSF is updated as follows: 

 𝜙𝑘+1 = 𝜙𝑘 − 𝜕𝜏𝑘 (
𝜕𝑥+

𝜕𝜏
|∇𝜙|+ −

𝜕𝑥−

𝜕𝜏
|∇𝜙|−).  (4-31) 

where 𝜕𝜏𝑘 is the time step and 

{
 

 
𝜕𝑥+

𝜕𝜏
= 0,

𝜕𝑥−

𝜕𝜏
= 𝑣𝑛 if 𝑣𝑛 > 0

𝜕𝑥+

𝜕𝜏
= 𝑣𝑛,

𝜕𝑥−

𝜕𝜏
= 0 if 𝑣𝑛 < 0

 

To obtain a stable shape evolution, the maximal boundary motion 𝜕𝑥 should be less than one 

grid space per time step. The time step size is adjusted accordingly to maintain stability: 

 
𝜕𝜏𝑘 =

ℎ0
max (abs(𝑣𝑛 + 𝜆))

   (4-32) 

where ℎ0 < ℎ; h is the length of LSF grid-space (ℎ =
1

size (LSF)
). 

Isosurface discretisation error can also affect the resultant solid and void volume. To correct 

this error, the solid and void volume are adjusted every iteration by moving the level set 

boundary uniformly toward one side or the other. Numerically, this can be achieved by 

adding a secondary volume correction term, 𝜃, defined as: 
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𝜃 = sign(Ω0 −∫ 𝑣𝑑𝑆
𝑆

) × min (|
Ω0 − ∫ 𝑣𝑑𝑆

𝑆

∫ 𝑑𝑆
𝑆

| , ℎ0)   (4-33) 

where Ω0  is the target volume fraction. The corrector 𝜃  has the same magnitude as the 

maximum allowable distance of movement (h0) or the volume error divided by the isosurface 

area, whichever is smaller. The desirable movement of the level set function can then be 

expressed as 

 𝜕𝑥 = 𝜕𝜏(𝑣 + 𝜆) + 𝜃. (4-34) 

The final change in LSF at the current time step can then be calculated from: 

 𝜕𝜙 = −[∂𝜏(𝑣 + 𝜆) + 𝜃]|∇𝜙|.   (4-35) 

4.2.2.4 Computation of full velocity function and re-initialisation 

A simple flood-fill mechanism is introduced by this study to augment the isosurface-based 

topology optimisation. Following the interpolation process as described in Eq. (4-26)-(4-27), 

the velocity function is only non-zero in the vicinity of the level set boundary.  Such narrow-

band function will result in the deterioration of the smooth gradient field over the course of 

structural evolution. Therefore the rest of velocity function where the value is zero or missing 

is reconstructed using a rapid iterative filling technique as illustrated in Figure 4-4a. 

   
(a) Flood-fill the velocity 

function 
(b) Approximate the SDF (c) Flood-fill the SDF 

Figure 4-4. Schematic of the flood-filling operation: (a) the velocity function (green dots 

represent filled points, blue dots represent points being filled in the current iteration); (b) the 

signed-distance function, SDF (green dots represent filled points, blue and red points 
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represent points being filled in the current iteration; blue points are closer to the solid phase 

and red points are closer to the void phase). 

To maintain the smoothness of level set function and its gradient, a re-initialisation process is 

performed regularly to reconstruct the level set function as a signed-distance function (SDF). 

The signed distance function represents the shortest distance of any given point in design 

space from the level set boundary. In this study, the computation of SDF is carried out 

through both direct computation and indirect approximation, which is illustrated in Figure 4-

4b-c: 

1. In the direct computation, SDF is the shortest distance from a point to the isosurface 

model, where the location of the boundary is explicitly defined. 

2. In the indirect approximation, SDF is the accumulative distance covered by the flood-

filling operation. For example, if it takes the flood front three time-steps to reach a 

point, one unit-distance per time-step, then the point is three unit-distances away from 

the flood front. 

4.2.2.5 Conventional level set method, BESO and SIMP 

Topology optimisation methods that make use of fixed mesh, including (1) the level set 

method, (2) BESO, and (3) SIMP method with the MMA solver [39] can be run with the 

same design criteria to benchmark the performance of the proposed isosurface-based 

technique. The major difference is that in the BESO method, each element is cubic and is 

either solid (𝑥 = 1) or void (𝑥 ≈ 0). SIMP method uses elements in intermediate states, i.e. 

partially solid and partially void (0 ≤ 𝑥 ≤ 1), which however tend to converge toward either 

nearly-solid or nearly-void state through the topological evolution. In the level set method, 

most elements are either solid or void, except that the elements on material boundaries can be 

partially solid. The maximised effective material properties obtained from these methods are 

to be compared. 
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4.3 Computational implementation 

The programming of topology optimisation can be broken down into a few critical 

components: modeller, FEA, sensitivity analysis and structural evolution. In a programming 

environment, each component is built as a function with own input and output. These 

functions are compiled in a looped sequence and executed in an iterative manner. The 

programming workflow is illustrated in Figure 4-5. 

 

Figure 4-5. Topology optimisation framework. The primary inputs are the initial model and 

parameters required for initialising individual functions. 

Initial model. This optimisation program begins by defining a range of modelling and 

optimisation parameters and initialising variables. Key parameters and variables are listed in 

Table 4-1. 
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Table 4-1. Primary parameters 

Optimisation parameters: Modelling parameters: 

Number of iterations Model dimensions Level set constant 

Volume constraint Model resolution Initial model (user defined) 

LSF re-initialisation (yes/no) FE mesh size Orthotropic / isotropic 

Time step size RVE (yes/no) Symmetric model (yes/no) 

Step size scaling Solid B.C.s Solid material properties 

Weights of objectives Fluid B.C.s Fluid material properties 

 

Modelling. The first set of functions in topology optimisation is the modelling functions that 

translate a LSF to a FE model. An initial arbitrary LSF is firstly generated in a fixed 

modelling domain. The model is known as the representative volume element (RVE). This 

LSF is then used as an input variable to create an isosurface model. If symmetry and isotropy 

(Figure 4-6) is assumed, only one eighth of the RVE model is required as an input. Like all 

optimisation models, this initial model must meet the volume constraint. Therefore as soon as 

the initial isosurface model is created, the volume is examined. If the volume constraint is not 

satisfied, the LSF is adjusted and a new FE model is regenerated. Volume adjustment is 

repeated until all volume constraints are satisfied, by then finite element analysis is ready to 

be performed to determine the performance of the current design.  

 

Figure 4-6. Conditions of symmetry and isotropy. 
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FEA. The material properties of design model is assessed and characterised based on the 

theory of homogenisation. These material properties can be quantified according to the 

objective function to produce an objective number, which is an indicator of optimality of the 

model in this topology optimisation process. In a multiobjective design scenario, multiple 

objective numbers are gathered through separate FEA simulations (e.g. static elastic, thermal, 

and fluid flow analyses), then each objective is weighted and summed to yield a meta (upper 

level) objective number. In the meantime, the sensitivity is calculated to predict the change in 

the object number in response to changing element density (x). 

Topological change. The structural evolution involved two operations: topology update and 

re-initialisation of LSF. As part of the level set optimisation routine, some Lagrange 

multiplier and adjustment parameters are computed to determine how much the topology is 

altered per iteration. Once the model is updated, a re-initialisation function is executed to 

smooth the LSF. The execution is on-demand only, depending on the degree of LSF 

deterioration. This initialisation function regenerates a LSF with a smooth gradient field but 

keeps approximately the same level set boundary. 

All essential programming syntax is presented in this section in equation form, with vectors 

and matrices as variables. Some examples of data manipulation are also provided and written 

in the programming language of Matlab. Additional instructions are given to demonstrate 

how mathematical equations can be translated to syntax. 

4.3.1 Finite element analysis 

The finite element analysis (FEA) functions can be carried out by some third party 

applications such as ANSYS outside the main program. In this case, modelling and 

simulation information is passed on to the third party applications, where finite element 

models are solved. A typical FEA process involves modelling, defining the boundary 
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conditions, solving, and some postprocessing to derive additional information from the 

degree-of-freedom results as illustrated in the flow chart, Figure 4-7.  

 

Figure 4-7. Process of finite element analysis using ANSYS as a solver. 

To automate this FEA solution process using ANSYS as a solver, ANSYS Parametric Design 

Language (APDL) scripts are required. The script file contains commands to instruct the 

program what to do. In addition to this file, modelling information such as node and element 

lists are also written to file and exported to ANSYS. 

The creation of APDL script files is automated to allow streamlined computational process. 

In principle, these script-generating functions read the modelling conditions in forms of input 

variables and write all essential commands to conduct FEA in ANSYS. The complete script 

(command) file is an executable file that calls the target program, guides every aspect of the 

FEA solution process, and quits the program with some readable result files. Once the 

program is called, node and element files created earlier (see flow chart in Figure 3-5) are 

firstly loaded, then boundary conditions are defined, followed by the FE solution process, and 
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finally the exportation of data (Figure 4-8). Unlike other functions, output variables such as 

degree of freedom are not directly available to the main program. The results obtained from 

the third-party finite element solver have to be retrieved using separated commands after the 

successful execution of these functions. 

 

Figure 4-8. Generation of APDL scripts file. This file is used as the input of the FEA 

program shown in Figure 4-7. 

The APDL script generating functions take various inputs, including the loads, boundary 

conditions (BCs) and material properties. Whether the node-element information should be 

loaded or not depends on the nature of the simulation and the BCs. In case the periodic 

boundary is used, the position of nodes in the Cartesian coordinate system has to be loaded in 

order to determine periodic nodal pairs; otherwise, the modelling information is normally not 

required here to produce APDL scripts. The homogenisation BCs is often imposed on the 

nodes on the boundaries of modelling domain. If the BCs are non-linear, they can be written 

in function or tabular form. Imposing a functional or tabular load/force requires a more 

organised input format that can be easily translated to a readable format for the solver 
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program to understand. The final output of this generator includes one APDL command file, 

one element file, one node file, up to six homogenisation force files, up to seven node-

coupling files, and one material label file. 

4.3.1.1 Homogenisation and force 

A dedicated function is programmed to create the nodal force required to run homogenisation 

analysis. This function requires the node and element information of the FE model, and 

material properties of the all elements or all material phases in the modelling space. The 

output is the nodal force vectors, which are written to files and to be read by ANSYS. The 

number of force vectors created depends on the simulation condition. Normally 6 vectors are 

required for stiffness homogenisation (x-x, y-y, z-z, x-y, y-z and z-x) and 3 vectors for 

conductivity or permeability homogenisation (x-x, y-y and z-z). If only the normal stress-

strain response or the bulk modulus of the solid material is required, only 3 vectors are 

computed (x-x, y-y and z-z). If the RVE model is structurally isotropic, only 1 vector is 

necessary to determine the scalar value of conductivity or permeability (x-x or y-y or z-z). 

Diffusivity shares the same governing equations with thermal conductivity problem, therefore 

the same script generator can be used. Throughout this study, both terms diffusivity and 

conductivity are used interchangeably. 

In this program, each mathematical or programming variable is written in a matrix form. The 

homogenisation force vector field, 𝐹  from the governing equation 𝐾𝒖 = 𝐹 , is defined 

mathematically as: 

𝐹 = ∫
𝜕

𝜕𝑥𝑖
𝐸𝑖𝑗𝐼ℇ𝑗𝑑𝑉 

where 
𝜕

𝜕𝑥𝑖
 is the partial differentiation matrix, 𝐸𝑖𝑗  is the material property matrix, 𝐼ℇ𝑗  is the 

unit strain, i and j are directional indices (1 for 𝑥, 2 for 𝑦 and 3 for 𝑧), and 𝑑𝑉 is the elemental 

volume. In a structural problem, 𝐸𝑖𝑗 is the stiffness matrix defined by Hooke’s law: 
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𝐸 =
𝐸0

(1 + 𝜐)(1 − 2𝜐)

[
 
 
 
 
 
 
 
 
1 − 𝜐 𝜐 𝜐
𝜐 1 − 𝜐 𝜐
𝜐 𝜐 1 − 𝜐

⋱
0

⋱

⋱
0

⋱

1 − 2𝜐

2
0 0

0
1 − 2𝜐

2
0

0 0
1 − 2𝜐

2 ]
 
 
 
 
 
 
 
 

 

where 𝐸0 is the Young’s modulus, and 𝜐 is the Poisson’s ratio. In a thermal or conductivity 

problem, 𝐸𝑖𝑗 is the conductivity matrix: 

𝐸 = 𝐷0 [
1 0 0
0 1 0
0 0 1

] 

where 𝐷0  is the conductivity coefficient, assuming the material is isotropic. Each unique 

material has its own stiffness matrix. 

The partial differentiation matrix has a size of 12-by-3 or 12-by-6, depending on the size of 

𝐸𝑖𝑗. The number 12 comes from the number of degrees of freedom (3) times the number of 

nodes per tetrahedral element (4). The unit strain is an identity matrix and has the same size 

as the stiffness (6-by-6) or conductivity matrix (3-by-3). 

4.3.1.1.1 Structural hexahedral element 

A complete FEA programming instruction is provided in this section, specifically to explain 

how homogenisation is performed. The following sections demonstrate how the 

homogenisation force vectors are assembled in a programming environment and how 

effective material properties are computed. Some fundamental FEA information is also 

provided here so that the functional output can be easily reproduced by any potential learners 

if they follow the instructions. 
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Firstly, the differentiation matrix, 
𝜕

𝜕𝑥𝑖
, from ∫

𝜕

𝜕𝑥𝑖
𝐸𝑖𝑗𝐼ℇ𝑗𝑑𝑉 is computed on the elemental level 

in the natural coordinate system 𝑆1-𝑆2-𝑆3. Note that the notation 𝑥𝑖 represents the Cartesian 

coordinate system, where 𝑥1 = 𝑥, 𝑥2 = 𝑦 and 𝑥3 = 𝑧. 
𝜕

𝜕𝑥𝑖
 is calculated from the chain rule: 

𝜕

𝜕𝑥𝑖
= ∑

𝜕𝒩𝑘

𝜕𝑆𝑙

𝜕𝑆𝑙

𝜕𝑥𝑖

8
𝑘=1 . 

While 
𝜕𝒩𝑘

𝜕𝑆𝑙
 can be calculated directly, the 

𝜕𝑆𝑙

𝜕𝑥𝑖
 derivative has to be derived from the equation, 

∂

∂S𝑙
= ∑

∂𝑥𝑖

∂𝑆𝑙
×

∂

∂𝑥𝑖

3
𝑖=1 : 

[
 
 
 
 
∂

∂S1
∂

∂S2
∂

∂S3]
 
 
 
 

=

[
 
 
 
 
𝜕𝑥

𝜕𝑆1

𝜕𝑦

𝜕𝑆1

𝜕𝑧

𝜕𝑆1
𝜕𝑥

𝜕𝑆2

𝜕𝑦

𝜕𝑆2

𝜕𝑧

𝜕𝑆2
𝜕𝑥

𝜕𝑆3

𝜕𝑦

𝜕𝑆3

𝜕𝑧

𝜕𝑆3]
 
 
 
 

[
 
 
 
 
∂

∂𝑥
∂

∂𝑦

∂

∂𝑧]
 
 
 
 

. 

The 3-by-3 matrix of [
∂xi

∂Sl
] here is known as the Jacobian matrix, [𝐽]. Individual entries of the 

Jacobian matrix can be calculated directly. By multiplying both sides of the equation by the 

inverse of the Jacobian matrix, [𝐽]−1, 
𝜕

𝜕𝑥𝑖
 is found: 

[
 
 
 
 
∂

∂𝑥
∂

∂𝑦

∂

∂𝑧]
 
 
 
 

=

[
 
 
 
 
𝜕𝑥

𝜕𝑆1

𝜕𝑦

𝜕𝑆1

𝜕𝑧

𝜕𝑆1
𝜕𝑥

𝜕𝑆2

𝜕𝑦

𝜕𝑆2

𝜕𝑧

𝜕𝑆2
𝜕𝑥

𝜕𝑆3

𝜕𝑦

𝜕𝑆3

𝜕𝑧

𝜕𝑆3]
 
 
 
 
−1

[
 
 
 
 
∂

∂S1
∂

∂S2
∂

∂S3]
 
 
 
 

. 

To compute 
𝜕𝒩𝑘

𝜕𝑆𝑙
 (the first component of chain rule equation) in a matrix form, the shape 

functions of an 8-node hexahedral element are firstly defined as illustrated in the following 

figure (Figure 4-9): 
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𝒩1 = (1 − 𝑆1)(1 − 𝑆2)(1 − 𝑆3) 

𝒩2 = (1 + 𝑆1)(1 − 𝑆2)(1 − 𝑆3) 

𝒩3 = (1 + 𝑆1)(1 + 𝑆2)(1 − 𝑆3) 

𝒩4 = (1 − 𝑆1)(1 + 𝑆2)(1 − 𝑆3) 

𝒩5 = (1 − 𝑆1)(1 − 𝑆2)(1 + 𝑆3) 

𝒩6 = (1 + 𝑆1)(1 − 𝑆2)(1 + 𝑆3) 

𝒩7 = (1 + 𝑆1)(1 + 𝑆2)(1 + 𝑆3) 

𝒩8 = (1 − 𝑆1)(1 + 𝑆2)(1 + 𝑆3) 

 

Figure 4-9. Shape functions, 𝒩, in a Natural coordinate system. 

where 𝒩1 −𝒩8  are eight shape functions in a natural coordinate system, and 𝑆1 − 𝑆3  are 

three natural coordinates. The numbering of nodes obeys the right-hand rule, i.e. N1-N2-N3-

N4 points toward N5-N6-N7-N8. The partial derivatives of these shape functions, 
𝜕𝒩

𝜕𝑆
, with 

respect to each natural coordinate can be written in a table: 

      |        dNk/dS1        |        dNk/dS2        |        dNk/dS3        | 

       N1 N2 N3 N4 N5 N6 N7 N8 N1 N2 N3 N4 N5 N6 N7 N8 N1 N2 N3 N4 N5 N6 N7 N8 

[1]    -1  1  1 -1 -1  1  1 -1 -1 -1  1  1 -1 -1  1  1 -1 -1 -1 -1  1  1  1  1 

[S1]    0  0  0  0  0  0  0  0  1 -1  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1  1 -1 

[S2]    1 -1  1 -1  1 -1  1 -1  0  0  0  0  0  0  0  0  1  1 -1 -1 -1 -1  1  1 

[S3]    1 -1 -1  1 -1  1  1 -1  1  1 -1 -1 -1 -1  1  1  0  0  0  0  0  0  0  0   /8 

[S1S2]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  1 -1  1  1 -1  1 -1 

[S1S3]  0  0  0  0  0  0  0  0 -1  1 -1  1  1 -1  1 -1  0  0  0  0  0  0  0  0 

[S2S3] -1  1 -1  1  1 -1  1 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

where the 1
st
 column represents 

𝜕𝒩1

𝜕𝑆1
= −1 + 𝑆2 + 𝑆3 − 𝑆2𝑆3, the 2

nd
 column is 

𝜕𝒩2

𝜕𝑆1
= 1 −

𝑆2 − 𝑆3 + 𝑆2𝑆3, the 9
th

 column is 
𝜕𝒩1

𝜕𝑆2
, the 10

th
 column is 

𝜕𝒩2

𝜕𝑆2
, and so on. The 1

st
 row is the 

coefficient of term “1”, the 2
nd

 row is the coefficient of term “𝑆1”, and so on. For example, 

the first column says 

𝜕𝒩1

𝜕𝑆1
= −1(1) + 0(𝑆1) + 1(𝑆2) + 1(𝑆3) + 0(𝑆1𝑆2) + 0(𝑆1𝑆3) − 1(𝑆2𝑆3). 
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An elemental matrix [
𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐸

 can then be created as shown below in terms of 𝑆1, 𝑆2 and 𝑆3, 

where (k,l) denotes 
𝜕𝒩𝑘

𝜕𝑆𝑙
: 

(1,1) 0 0 (2,1) 0 0 (3,1) 0 0 (4,1) 0 0 (5,1) 0 0 (6,1) 0 0 (7,1) 0 0 (8,1) 0 0 

0 (1,2) 0 0 (2,2) 0 0 (3,2) 0 0 (4,2) 0 0 (5,2) 0 0 (6,2) 0 0 (7,2) 0 0 (8,2) 0 

0 0 (1,3) 0 0 (2,3) 0 0 (3,3) 0 0 (4,3) 0 0 (5,3) 0 0 (6,3) 0 0 (7,3) 0 0 (8,3) 

(1,1) 0 0 (2,1) 0 0 (3,1) 0 0 (4,1) 0 0 (5,1) 0 0 (6,1) 0 0 (7,1) 0 0 (8,1) 0 0 

0 (1,2) 0 0 (2,2) 0 0 (3,2) 0 0 (4,2) 0 0 (5,2) 0 0 (6,2) 0 0 (7,2) 0 0 (8,2) 0 

0 0 (1,3) 0 0 (2,3) 0 0 (3,3) 0 0 (4,3) 0 0 (5,3) 0 0 (6,3) 0 0 (7,3) 0 0 (8,3) 

(1,1) 0 0 (2,1) 0 0 (3,1) 0 0 (4,1) 0 0 (5,1) 0 0 (6,1) 0 0 (7,1) 0 0 (8,1) 0 0 

0 (1,2) 0 0 (2,2) 0 0 (3,2) 0 0 (4,2) 0 0 (5,2) 0 0 (6,2) 0 0 (7,2) 0 0 (8,2) 0 

0 0 (1,3) 0 0 (2,3) 0 0 (3,3) 0 0 (4,3) 0 0 (5,3) 0 0 (6,3) 0 0 (7,3) 0 0 (8,3) 

It is obvious that multiplying [
𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐸

 by the elemental displacement [𝒖]𝐸  = [𝑢𝑥,1 𝑢𝑦,1  𝑢𝑧,1 

𝑢𝑥,2 𝑢𝑦,2 𝑢𝑧,2 … 𝑢𝑧,8]
 T

 produces the elemental strain [
∂𝒖

∂𝑆𝑙
]
𝐸

 = [
∂𝑢𝑥

∂𝑆1
  
∂𝑢𝑦

∂𝑆1
  
∂𝑢𝑧

∂𝑆1
  
∂𝑢𝑥

∂𝑆2
  
∂𝑢𝑦

∂𝑆2
  
∂𝑢𝑧

∂𝑆2
  
∂𝑢𝑥

∂𝑆3
  

∂𝑢𝑦

∂𝑆3
  
∂𝑢𝑧

∂𝑆3
]

T
. T denotes transpose matrix. 

The Jacobian matrix, as part of the chain rule, is computed from 

𝐽𝑙,𝑖 =
∂x𝑖
∂Sl

=∑
𝜕𝒩𝑘
𝜕𝑆𝑙

𝑥𝑖,𝑘

8

𝑘=1

 

for i = [1, 2, 3] and l = [1, 2, 3]. The summation is over 8 hexahedral nodes. This 3-by-3 

matrix is inversed to create the inverse Jacobian matrix: 

𝐽−1 =
∂𝑆𝑙

∂𝑥𝑖
= [

𝐽1,1
−1 𝐽1,2

−1 𝐽1,3
−1

𝐽2,1
−1 𝐽2,2

−1 𝐽2,3
−1

𝐽3,1
−1 𝐽3,2

−1 𝐽3,3
−1

]. 

Also, the determinant of the Jacobian matrix is the volume of the element, i.e.: 

|𝐽| = 𝑑𝑉. 

To find six strain components, the inverse Jacobian matrix is rearranged and [
𝜕𝑆𝑙

𝜕𝑥𝑖
]
𝐸

 is defined 

as: 
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[
 
 
 
 
 
 
𝐽1,1
−1 𝐽1,2

−1 𝐽1,3
−1

0 0 0
0 0 0

0 0 0
𝐽2,1
−1 𝐽2,2

−1 𝐽2,3
−1

0 0 0

0 0 0
0 0 0
𝐽3,1
−1 𝐽3,2

−1 𝐽3,3
−1

0 0 0
𝐽2,1
−1 𝐽2,2

−1 𝐽2,3
−1

𝐽1,1
−1 𝐽1,2

−1 𝐽1,3
−1

𝐽2,1
−1 𝐽2,2

−1 𝐽2,3
−1

0 0 0
𝐽3,1
−1 𝐽3,2

−1 𝐽3,3
−1

𝐽1,1
−1 𝐽1,2

−1 𝐽1,3
−1

𝐽3,1
−1 𝐽3,2

−1 𝐽3,3
−1

0 0 0 ]
 
 
 
 
 
 

 

so that 

[
𝜕𝑆𝑙
𝜕𝑥𝑖

]
𝐸

× [
𝜕𝒩𝑘
𝜕𝑆𝑙

]
𝐸

= [
𝜕

𝜕𝑥𝑖
]
𝐸

 

[6×9] × [9×24] = [6×24]. 

The order of row 4, 5 and 6 has to match the stiffness matrix 𝐸𝑖𝑗 in the function. Note that 

any matrix operation of [
𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐸

 will invoke the summation of shape functions, 𝒩𝑘, for 𝑘 = 1 

to 8 due to the way it is defined. Therefore there is no shape function 𝒩𝑘 on the right hand 

side of the equation. It is apparent now that the strain matrix can be calculated in this form: 

[
𝜕𝑆𝑙
𝜕𝑥𝑖

]
𝐸

× [
𝜕𝒩𝑘
𝜕𝑆𝑙

]
𝐸

× [𝒖]𝐸 = [
𝜕𝒖

𝜕𝑥𝑖
]
𝐸

 

[6×9] × [9×24] × [24×1] = [6×1], 

where [
𝜕𝒖

𝜕𝑥𝑖
]
𝐸
= [

𝜕𝑢

𝜕𝑥
  
𝜕𝑣

𝜕𝑦
  
𝜕𝑤

𝜕𝑧
  (

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)  (

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)  (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)], in which u, v and w are three 

displacement components.  

The finite element integration involves summing values at eight Gaussian points (denoted by 

𝐺 for Gaussian). Substituting 𝑆 values into the equations above yields a matrix at a Gaussian 

point (see table below). The substitution of 𝑆 has to be performed 8 times for eight Gaussian 

points, and summed to create the elemental matrix (𝐸). For example: 

[
𝜕𝒩𝑘
𝜕𝑆𝑙

]
𝐸

= ∑ [
𝜕𝒩𝑘
𝜕𝑆𝑙

]
𝐺

8

𝐺=1

 

[
𝜕𝑆𝑙
𝜕𝑥𝑖

]
𝐸

× [
𝜕𝒩𝑘
𝜕𝑆𝑙

]
𝐸

= ∑([
𝜕𝑆𝑙
𝜕𝑥𝑖

]
𝐺

× [
𝜕𝒩𝑘
𝜕𝑆𝑙

]
𝐺

)

8

𝐺=1
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Table 4-2. Location of eight Gaussian points in a hexahedral elements. 

(𝐺) S1 S2 S3 

1
st
 −

1

√3
 −

1

√3
 −

1

√3
 

2
nd

 
1

√3
 −

1

√3
 −

1

√3
 

3
rd

 
1

√3
 

1

√3
 −

1

√3
 

4
th

 −
1

√3
 

1

√3
 −

1

√3
 

5
th

 −
1

√3
 −

1

√3
 

1

√3
 

6
th

 
1

√3
 −

1

√3
 

1

√3
 

7
th

 
1

√3
 

1

√3
 

1

√3
 

8
th

 −
1

√3
 

1

√3
 

1

√3
 

 

Here, the difference between [
𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐺

 and [
𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐸

 is that [
𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐺

 contains 𝑆1,2,3  in symbolic 

terms, while [
𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐸

 contains only numbers and no symbol. [
𝜕𝑆𝑙

𝜕𝑥𝑖
]
𝐺

 and [
𝜕𝑆𝑙

𝜕𝑥𝑖
]
𝐸

 go with the 

same notation. This substitution of 𝑆1,2,3 is done before any matrix multiplication. 

Following this, the elemental force vector can be computed through matrix operation: 

𝐹𝐸 = ∫
𝜕

𝜕𝑥𝑖
𝐸𝑖𝑗𝐼ℇ𝑗𝑑𝑉 = ∑ ([

𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐺

𝑇

× [
𝜕𝑆𝑙

𝜕𝑥𝑖
]
𝐺

𝑇

× 𝐸𝑖𝑗 × 𝐼ℇ𝑗 × |𝐽|)
8
𝐺=1 . 

The summation on the right hand side is over eight Gaussian points. Similarly, the elemental 

stiffness matrix 𝐾 is a 24-by-24 matrix, computed from the matrix operation: 

𝐾 = ∑ ([
𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐺

𝑇

× [
𝜕𝑆𝑙

𝜕𝑥𝑖
]
𝐺

𝑇

× 𝐸𝑖𝑗 × [
𝜕𝑆𝑙

𝜕𝑥𝑖
]
𝐺
× [

𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐺
× |𝐽|)8

𝐺=1 . 
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4.3.1.1.2 Structural tetrahedral element 

The matrix operation can be largely simplified if tetrahedral elements are used. In a 4-node 

tetrahedral element, the shape function is defined as the tetrahedral volume ratio as shown in 

the figure below (Figure 4-10). 

  

Figure 4-10. Shape functions, 𝒩, in a tetrahedral Natural coordinate system. 

A shape function is defined as the volume ratio: 

𝒩4 =
𝑉N1N2N3P4
𝑉N1N2N3N4

 

=
ℎ ∙ 𝐴N1N2N3/3

𝑉N1N2N3N4
 

=
(𝑃4 − 𝑁𝑘) ∙ �̂�4 ∙ 𝐴N1N2N3/3

𝑉N1N2N3N4
 

where 𝑉 is the volume, 𝑃4 represents the coordinates of an arbitrary point in the tetrahedral 

element, 𝑁𝑘 represents the coordinates of the point Nk (𝑘 can be 1, 2 or 3 but not 4 in this 

example), and 𝐴N1N2N3 denotes the area of triangle N1-N2-N3. The dot product, (𝑃4 − 𝑁𝑘) ∙

�̂�4 = ℎ, yields the height of the small tetrahedron N1-N2-N3-P4. Let P4 = 𝒙𝑖 = [𝑥 𝑦 𝑧], 

𝜕𝒩4
𝜕𝒙𝑖

=
1 ∙ �̂�4 ∙ 𝐴N1N2N3/3

𝑉N1N2N3N4
 

that is true for i = 1, 2 and 3. As the volume of the element is a constant, i.e. 𝑑𝑉 =

𝑉N1N2N3N4, 

(∑
𝜕𝒩𝑘
𝜕𝑥𝑖

4

𝑘=1

)𝑑𝑉 =∑(
𝜕𝒩𝑘
𝜕𝑥𝑖

𝑑𝑉)

4

𝑘=1
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=∑(
�̂�4 ∙ 𝐴𝑘/3

𝑑𝑉
× 𝑑𝑉)

4

𝑘=1

 

=∑(�̂�4 ∙ 𝐴𝑘/3)

4

𝑘=1

 

As the area 𝐴𝑘 =
1

2
|N~k,1N~k,2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ × N~k,2N~k,3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|, where ~𝑘,l denotes 3 nodes constituting the 

triangle, which excludes the k
th

 node, the following equation is obtained: 

(∑
𝜕𝒩𝑘
𝜕𝑥𝑖

4

𝑘=1

)𝑑𝑉 = ∑(�̂�𝑘 ∙ |N~k,1N~k,2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ × N~k,2N~k,3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|/6)

4

𝑘=1

 

=∑(N~k,1N~k,2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ × N~k,2N~k,3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗/6)

4

𝑘=1

 

Since this result contains neither the natural coordinates nor the Cartesian coordinates, in 

other words the strain is non-variable, the derivative ∑
𝜕𝒩𝑘

𝜕𝑥𝑖

4
𝑘=1  can be computed directly 

without using the chain rule and Gaussian integration. Therefore, the 
𝜕

𝜕𝑥
 matrix of a 

tetrahedral element (N1-N2-N3-N4) is: 

[
 
 
 
 
 
 
 
 
 
𝜕

𝜕𝑥1

𝜕

𝜕𝑦
1

𝜕

𝜕𝑧1
𝜕

𝜕𝑥2

𝜕

𝜕𝑦
2

𝜕

𝜕𝑧2
𝜕

𝜕𝑥3

𝜕

𝜕𝑦
3

𝜕

𝜕𝑧3
𝜕

𝜕𝑥4

𝜕

𝜕𝑦
4

𝜕

𝜕𝑧4]
 
 
 
 
 
 
 
 
 

=
1

6
×

[
 
 
 
 N2N4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × N4N3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

N1N3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × N3N4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

N1N4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × N4N2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

N1N2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × N2N3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]
 
 
 
 

 

where the right-hand side is four cross products. The 6-by-12 elemental matrix [
∂𝒩𝑘

∂xi
]
𝐸

 is 

defined as: 
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𝜕

𝜕𝑥1
0 0    

0
𝜕

𝜕𝑦1
0    

𝜕

𝜕𝑥2
0 0    

0
𝜕

𝜕𝑦2
0    

0 0
𝜕

𝜕𝑧1

0
𝜕

𝜕𝑧1

𝜕

𝜕𝑦1

0 0
𝜕

𝜕𝑧2

0
𝜕

𝜕𝑧2

𝜕

𝜕𝑦2
𝜕

𝜕𝑧1
0

𝜕

𝜕𝑥1
𝜕

𝜕𝑦1

𝜕

𝜕𝑥1
0

𝜕

𝜕𝑧2
0

𝜕

𝜕𝑥2
𝜕

𝜕𝑦2

𝜕

𝜕𝑥2
0

𝜕

𝜕𝑥3
0 0     

0
𝜕

𝜕𝑦3
0    

𝜕

𝜕𝑥4
0 0    

0
𝜕

𝜕𝑦4
0    

0 0
𝜕

𝜕𝑧3

0
𝜕

𝜕𝑧3

𝜕

𝜕𝑦3

0 0
𝜕

𝜕𝑧4

0
𝜕

𝜕𝑧4

𝜕

𝜕𝑦4
𝜕

𝜕𝑧3
0

𝜕

𝜕𝑥3
𝜕

𝜕𝑦3

𝜕

𝜕𝑥3
0

𝜕

𝜕𝑧4
0

𝜕

𝜕𝑥4
𝜕

𝜕𝑦4

𝜕

𝜕𝑥4
0

  / 4 

which corresponds to 12 elemental displacements [𝒖]𝐸  = [𝑢𝑥,1  𝑢𝑦,1  𝑢𝑧,1  𝑢𝑥,2  𝑢𝑦,2  𝑢𝑧,2  … 

𝑢𝑧,4]
 T

. Consequently, the elemental force vector can be compute from the following matrix 

operation: 

𝐹𝐸 = ∫
𝜕

𝜕𝑥𝑖
𝐸𝑖𝑗𝐼ℇ𝑗𝑑𝑉 = [

∂𝒩𝑘

∂xi
]
𝐸

𝑇

× 𝐸𝑖𝑗 × 𝐼ℇ𝑗 . 

Note that the term [
∂𝒩𝑘

∂xi
]
𝐸

𝑇

 includes both  
𝜕

𝜕𝑥𝑖
 and 𝑑𝑉. Any matrix operation of [

∂𝒩𝑘

∂xi
]
𝐸

𝑇

 also 

involves the summation of 4 shape functions. 

4.3.1.1.3 Thermal hexahedral element 

For thermal and diffusion analysis, there is only one degree of freedom and the strain has no 

shear components. Continuing from the derivation of 8-node stiffness element, the elemental 

matrix [
𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐸

 of thermal element can be defined as shown below, where (k,l) indicates 
𝜕𝒩𝑘

𝜕𝑆𝑙
: 

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1) 

(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (8,2) 

(1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (8,3). 

The elemental matrix of [
∂Sl

∂xi
]
𝐸

 is simply the inverse of the Jacobian matrix without 

rearrangement: 

[
∂Sl
∂xi
]
𝐸

= [𝐽]−1 = [

𝐽1,1
−1 𝐽1,2

−1 𝐽1,3
−1

𝐽2,1
−1 𝐽2,2

−1 𝐽2,3
−1

𝐽3,1
−1 𝐽3,2

−1 𝐽3,3
−1

] 
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[
𝜕

𝜕xi
]
𝐸

= [
∂Sl
∂xi
]
𝐸

× [
𝜕𝒩𝑘
𝜕𝑆𝑙

]
𝐸

 

[3×8] = [3×3] × [3×8] 

In the Matlab programming environment, instead of multiplying [
𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐸

 by the inverse 

Jacobian, the elemental derivative matrix [
𝜕

𝜕xi
]
𝐸

 can be found by issuing the backward 

division command, i.e.  

[
𝜕

𝜕xi
]
𝐸

= [𝐽] \ [
𝜕𝒩𝑘
𝜕𝑆𝑙

]
𝐸

 

d_dx = Jacobian \ dN_dS; 

[
𝜕𝑢

𝜕xi
]
𝐸

=

[
 
 
 
 
 
 
𝜕𝑢

𝜕x
𝜕𝑢

𝜕y
𝜕𝑢

𝜕z]
 
 
 
 
 
 

= [
∂Sl
∂xi
]
𝐸

× [
𝜕𝒩𝑘
𝜕𝑆𝑙

]
𝐸

× [𝒖]𝐸 

[3×1] = [3×3] × [3×8] × [8×1]. 

The final elemental homogenisation force vector can then be constructed as: 

𝐹𝐸 = ∫
𝜕

𝜕𝑥𝑖
𝐸𝑖𝑗𝐼ℇ𝑗𝑑𝑉 = ∑([

𝜕

𝜕xi
]
𝐺

𝑇

× 𝐸𝑖𝑗 × 𝐼ℇ𝑗 × |𝐽|)

8

𝐺=1

 

where the summation is over eight Gaussian points. 

4.3.1.1.4 Thermal tetrahedral element 

Continuing from Section 4.3.1.1.2, there are only 4 degrees of freedom per element in a 

thermal tetrahedral element. The 3-by-4 elemental matrix [
∂𝒩𝑘

∂xi
]
𝐸

 is thus defined as 

[
∂𝒩𝑘

∂xi
]
𝐸
=

[
 
 
 
 
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
𝜕

𝜕𝑦1

𝜕

𝜕𝑦2
𝜕

𝜕𝑧1

𝜕

𝜕𝑧2

𝜕

𝜕𝑥3

𝜕

𝜕𝑥4
𝜕

𝜕𝑦3

𝜕

𝜕𝑦4
𝜕

𝜕𝑧3

𝜕

𝜕𝑧4]
 
 
 
 

=
1

6
×

[
 
 
 
 𝑁2𝑁4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑁4𝑁3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑁1𝑁3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑁3𝑁4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑁1𝑁4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑁4𝑁2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑁1𝑁2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑁2𝑁3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ]
 
 
 
 
𝑇

. 

The tetrahedral element force vector is formulated the same way as the hexahedral element: 
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𝐹𝐸 = [
∂𝒩𝑘

∂xi
]
𝐸

𝑇

× 𝐸𝑖𝑗 × 𝐼ℇ𝑗 =
1

6
×

[
 
 
 
 𝑁2𝑁4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑁4𝑁3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑁1𝑁3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑁3𝑁4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑁1𝑁4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑁4𝑁2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑁1𝑁2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑁2𝑁3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ]
 
 
 
 

× 𝐸𝑖𝑗 × 𝐼ℇ𝑗 . 

4.3.1.2 Boundary conditions 

A separated and dedicated variable is used to specify the boundary conditions (BCs) for FEA. 

A range of BC writers are included in this scripting function and the one to be used in the 

actual FEA is chosen by this variable. This selection variable has two major components: 

loading condition and degree-of-freedom BC (Figure 4-11). In the homogenisation of 

permeability, two possible loading types are body force (gravitational) and uniform pressure 

load; two possible BCs are periodicity and symmetry. All nodes on the material boundary 

have to be exclusively defined in order to impose the no-slip fluid dynamics BC. In the 

homogenisation of stiffness, two possible BCs are periodicity and full symmetry. In the 

homogenisation of diffusivity and analysis of biological environment, four possible loading 

types are homogenisation force, wall flux, body force and tabular conditions; three possible 

BCs are periodicity, uniform gradient, and uniform gradient combined with periodicity. 

    
(a) Body force (b) Uniform pressure (c) Homogenisation (d) Wall flux 
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(e) Periodic (f) Partial symmetry (g) Full symmetry (h) Combined 

Figure 4-11. Schematic sketches of different types of loading conditions (a)-(d) and 

boundary conditions (e)-(h) used in homogenisation. The grey and white areas represent two 

different materials. 

4.3.1.3 Node coupling 

The imposition of periodicity BC on a FE model is done by means of node coupling. 

Principally, two nodes at the same position but on the opposite side of the modelling 

boundaries are linked (Figure 4-12), thus the word coupling. A node can belong to many 

different couples, and the result is that multiple nodes are linked to one another. The DOFs of 

all linked node are equal. 

 

Figure 4-12. Schematic sketch of node coupling. 𝑓𝑥,1 is a face node couple and contains 2 

nodes. 𝑒𝑧,1 is an edge node group but contains 4 nodes. 𝑣0 is a vertex node group containing 8 

nodes. 

List of nodal couples or groups is generated through the following steps:  



122 

 

1. Each node is assigned a nodal number as a form of identification. Each node is 

defined by four pieces of numerical information: Nodal number (#), and x, y and z 

coordinates. 

2. Identify all nodes that sit on the faces but not on the edges of the boundary of 

modelling space (Figure 4-12, points fx,i). A temporary list of these nodes is compiled 

in this format:  

#1 𝑥1
#2 𝑥2

𝑦1 𝑧1
𝑦2 𝑧2

#3 𝑥3
## …

𝑦3 𝑧3
… …

 

Assume that the modelling boundaries are [x/y/z = ±d] planes in the Cartesian coordinate 

system. To couple nodes in a 3D domain, 3 separate lists are required:  

x-face couples: |𝑥| = 𝑑 & |𝑦| ≠ 𝑑 & |𝑧| ≠ 𝑑 

y-face couples: |𝑥| ≠ 𝑑 & |𝑦| = 𝑑 & |𝑧| ≠ 𝑑 

z-face couples: |𝑥| ≠ 𝑑 & |𝑦| ≠ 𝑑 & |𝑧| = 𝑑 

Each of the three lists is sorted in the ascending order according to the value of x/y/z. In case 

(a), nodes with the same y/z values but with opposite x signs, i.e.  

#𝑖 𝑑
#𝑗 −𝑑

𝑦𝑖 𝑧𝑖
𝑦𝑗 = 𝑦𝑖 𝑧𝑗 = 𝑧𝑖

 

are identified. nodes #𝑖 and #𝑗 are said to be coupled. The process is repeated to create two 

other lists, i.e.  

#𝑖 𝑥𝑖
#𝑗 𝑥𝑗 = 𝑥𝑖

𝑑 𝑧𝑖
−𝑑 𝑧𝑗 = 𝑧𝑖

 

and 

#𝑖 𝑥𝑖
#𝑗 𝑥𝑗 = 𝑥𝑖

𝑦𝑖 𝑑
𝑦𝑗 = 𝑦𝑖 −𝑑

 

In Matlab, organizing and rearranging each list requires five commands: 

[~,~,couple] = unique(node(:,3:4),'rows');   %ID each couple 

    nnum = node(:,1);  % nodal number #i, #j, etc 
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[~,couple]   = sort(couple);   %Sort the nodes based on the ID 

couple = reshape(couple,[2, length(couple)/2]);   %Create a table  

couple = nnum( couple );   %Create the final list 

where node is a list compiled at step (2), and couple is a 2-column list of couples in this 

format: 

#𝑖 #𝑗
#𝑘 #𝑙
… …

 

3. Three more lists are compiled for nodes sitting on the edges but not at the corner of the 

boundary (Figure 4-12, points 𝑒𝑧,𝑖): 

|𝑥| ≠ 𝑑 & |𝑦| = 𝑑 & |𝑧| = 𝑑, 

|𝑥| = 𝑑 & |𝑦| ≠ 𝑑 & |𝑧| = 𝑑, 

|𝑥| = 𝑑 & |𝑦| = 𝑑 & |𝑧| ≠ 𝑑. 

Each of the three lists above is again sorted in the ascending order according to the value of 

x/y/z. In case (a), nodes with the same x coordinate but with different y/z signs, i.e.  

#𝑖 𝑥𝑖
#𝑗 𝑥𝑗 = 𝑥𝑖

𝑑 𝑑
𝑑 −𝑑

#𝑘 𝑥𝑘 = 𝑥𝑖
#𝑙 𝑥𝑙 = 𝑥𝑖

−𝑑 𝑑
−𝑑 −𝑑

 

are identified. These nodes, #𝑖, #𝑗, #𝑘 and #𝑙 are coupled. In Matlab, the list generation also 

requires five commands: 

[~,~,couple] = unique(node(:,2),'rows');   %ID each group 

    nnum = node(:,1);  % nodal number #i, #j, #k, etc 

[~,couple]   = sort(couple);   %Sort the nodes based on the ID 

couple = reshape(couple,[4, length(couple)/4]);   %Create a table 

couple = nnum( couple );   %Create the final list 

where node is a list compiled at step (2), and couple is a 4-column list of couples: 

#𝑖 #𝑗
#𝑚 #𝑛

#𝑘 #𝑙
#𝑜 …

 

This process is repeated for the other two lists.  

Finally, all nodes at the corners of the boundary of design domain are linked: 
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#𝑖 𝑑
#𝑗 𝑑

𝑑 𝑑
𝑑 −𝑑

#𝑘 𝑑
#𝑙 𝑑

−𝑑 𝑑
−𝑑 −𝑑

 

#𝑚 −𝑑
#𝑛 −𝑑

𝑑 𝑑
𝑑 −𝑑

#𝑜 −𝑑
#𝑝 −𝑑

−𝑑 𝑑
−𝑑 −𝑑

 

4. Up to 8 nodes can be grouped in the cubic modelling domain (Figure 4-12, points 

𝑣0). 

All seven lists (3 faces, 3 edges and 1 corner) are written to external files in a format readable 

by the external FEA program. 

4.3.2 Postprocessing function and sensitivity analysis 

The FEA results obtained from ANSYS are post-processed to determine the objective number 

and the sensitivity (Figure 4-32). The FE model, the FEA results and design constraints are 

required as an input variable for postprocessing. Sensitivity of the level set model is 

computed and exported as the output variable.  

 

Figure 4-13. Sensitivity analysis process. 
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The calculation of the objective number (homogenised material property) follows a procedure 

similar to the one presented in the previous calculation of the homogenisation force in terms 

of matrix operation and assembly. Using the notations from Section 4.3.1.1, the homogenised 

stiffness, conductivity/diffusivity and permeability can be computed from the following 

formula, respectively, if the mesh is hexahedron-based: 

𝐸𝑖𝑗
𝐻 = ∑ ∑ [(𝐼 − [𝒖]𝐸

𝑇 × [
𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐺

𝑇
× [

𝜕𝑆𝑙

𝜕𝑥𝑖
]
𝐺

𝑇
) × 𝐸𝑖𝑗 × (𝐼 − [

𝜕𝑆𝑙

𝜕𝑥𝑖
]
𝐺
× [

𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐺
× [𝒖]𝐸) × |𝐽|]

8
𝐺=1

𝑛
𝑒=1 , 

𝐸𝑖𝑗
𝐻 = ∑ ∑ [𝐸𝑖𝑗 × (𝐼 − [

𝜕𝑆𝑙

𝜕𝑥𝑖
]
𝐺
× [

𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐺
× [𝒖]𝐸) × |𝐽|]

8
𝐺=1

𝑛
𝑒=1 , and 

𝐸𝑖𝑗
𝐻 = ∑ ∑ [[𝒖]𝐸

𝑇 × [
𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐺

𝑇
× [

𝜕𝑆𝑙

𝜕𝑥𝑖
]
𝐺

𝑇
× 𝐸𝑖𝑗 × [

𝜕𝑆𝑙

𝜕𝑥𝑖
]
𝐺
× [

𝜕𝒩𝑘

𝜕𝑆𝑙
]
𝐺
× [𝒖]𝐸 × |𝐽|]

8
𝐺=1

𝑛
𝑒=1 , 

where the capital 𝐻 denotes homogenised property, e is the element index, n is the number of 

elements, and 𝐼 is the identity matrix representing the unit-strain field. Different elements can 

have different differentiation matrices if the mesh consists of non-brick element (cubic). If 

tetrahedral elements are used, the homogenised stiffness, conductivity/diffusivity and 

permeability can be computed from the formula below, respectively: 

𝐸𝑖𝑗
𝐻 = ∑ [(𝐼 − [𝒖]𝐸

𝑇 × [
𝜕

𝜕xi
]
𝐸

𝑇

) × 𝐸𝑖𝑗 × (𝐼 − [
𝜕

𝜕xi
]
𝐸
× [𝒖]𝐸) × 𝑑𝑉]

𝑒

𝑛
𝑒=1 , 

𝐸𝑖𝑗
𝐻 = ∑ [𝐸𝑖𝑗 × (𝐼 − [

𝜕

𝜕xi
]
𝐸
× [𝒖]𝐸) × 𝑑𝑉]

𝑒

𝑛
𝑒=1 , and 

𝐸𝑖𝑗
𝐻 = ∑ [[𝒖]𝐸

𝑇 × [
𝜕

𝜕xi
]
𝐸

𝑇

× 𝐸𝑖𝑗 × [
𝜕

𝜕xi
]
𝐸
× [𝒖]𝐸 × 𝑑𝑉]

𝑒

𝑛
𝑒=1 . 

The end result of 𝐸𝑖𝑗
𝐻 should be a 6-by-6 stiffness matrix with normal and shear components; 

a 3-by-3 stiffness matrix with only normal components; a 3-by-3 conductivity, diffusivity or 

permeability matrix; or a 1-by-1 isotropic conductivity, diffusivity or permeability matrix. 

This matrices are used to derive the final objective number, 𝑂𝑏𝑗, which is a scalar. For bulk 

modulus, 

𝑂𝑏𝑗 =
1

9
∑ (∑ 𝐸𝑖𝑗

𝐻3
𝑖=1 )3

𝑗=1 . 
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If a set of desirable material properties 𝐸𝑖𝑗
∗  is given, then the objective is minimising the 

difference: 

𝑂𝑏𝑗 = ∑ [∑ 𝑤𝑖𝑗(𝐸𝑖𝑗
∗ − 𝐸𝑖𝑗

𝐻)
23

𝑖=1 ]3
𝑗=1 , 

where 𝑤𝑖𝑗 is a weight factor for each matrix entry. This objective is used in the next chapter. 

In the isosurface-based topology optimisation method, the sensitivity of an element is directly 

proportional to its elemental objective value (mathematical derivation is provided in section 

4.2.1.1, where 𝛿(𝜙)  is a constant on the level set boundary). On the other hand, the 

sensitivity number (𝑆𝑒𝑛𝑠 ) in a SIMP-based optimisation has to be calculated using the 

following formula: 

𝑆𝑒𝑛𝑠𝐸 = 𝑝∑ [
1

𝜌
× (𝐼 − [𝒖]𝐸

𝑇 × [
𝜕𝒩𝑘
𝜕𝑆𝑙

]
𝐺

𝑇

) × [
∂Sl
∂xi
]
𝐺

𝑇

× 𝐸𝑖𝑗 × [
∂Sl
∂xi
]
𝐺

× (𝐼 − [
𝜕𝒩𝑘
𝜕𝑆𝑙

]
𝐺

× [𝒖]𝐸) × |𝐽|]

8

𝐺=1

 

where 𝑝 is the penalisation factor, and 𝜌 is the “density” or “porosity” of the element. The 

sensitivity value in every element is unique and needs not to be summed over the design 

space. 

The nodal sensitivity is interpolated from the elemental sensitivity using a distance-weighted 

method as illustrated in Figure 4-14. The weight of each element is defined as the inverse 

value of the distance between its elemental centroid to the node of interest. Assuming an 

idealistic level set model, only nodes on the material boundary (the isosurface) has non-zero 

sensitivity. In that sense, the interpolation only has to be performed on the boundary nodes. 

Theoretically all non-boundary nodes have zero sensitivity, so the interpolation at non-

boundary nodes is unnecessary.  
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(a) Interpolation in a structured mesh (b) Interpolation in an unstructured mesh 

Figure 4-14. Schematic elemental-to-node sensitivity interpolation in structured and 

unstructured FE models. 

The sensitivity of individual LSF points (LSF grid sensitivity) is subsequently interpolated 

from the nodal sensitivity, again using the weighted-distance interpolation (Figure 4-15). The 

weight is the distance between a node and a grid point this time. 

 

Figure 4-15. Schematic node-to-grid interpolation process in an isosurface model. 

During the node-to-grid interpolation, a constant value k is added to the weight. This addition 

prevents the division by zero if the original weight is zero, which happens when the node is at 

the same location as the grid point. This two-step interpolation process is repeated for every 

objective-sensitivity function. The resultant sensitivity numbers are weighted and summed 

per design optimisation condition to produce a single sensitivity value per element. 
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In the programming environment, the nodal sensitivity (𝑆𝑒𝑛𝑠𝑁 in Figure 4-14) is saved in a 

vector format, with the same length as the number of nodes. The grid sensitivity (𝑆𝑒𝑛𝑠𝐺1 and 

𝑆𝑒𝑛𝑠𝐺2 in Figure 4-15) is saved in a matrix format with the same size as the original LSF 

matrix. In addition to this sensitivity matrix, a companion matrix is used to record whether a 

sensitivity matrix entry is empty or filled. In the node-to-grid interpolation technique, empty 

entries can be given a default value of zero, whereas filled entries can have a zero or a non-

zero value. Therefore there is a need to label any point that has been filled during this 

operation. This additional matrix represents the approximated location of the isosurface 

boundary.  

4.3.3 Topology change and update 

In this level-set-isosurface method, the topology change is induced by the numerical 

manipulation of the LSF (Figure 4-16). The topology update function takes the current LSF 

and its sensitivity as the inputs and produces a new LSF as the output. The new tissue 

scaffold design should outperform the predecessor model. The numerical change required to 

produce the desired topology change is calculated based on the Hamilton-Jacobi like equation 

derived in section 4.2.1.1. The magnitude of change in topology is decided by two factors: 

sensitivity and volume constraint. 
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Figure 4-16. The process of topology update. 

In this LSF update function, the volume information that is essential to enforce the volume 

constraint is processed. As shown in Figure 4-17a, here 𝑉0 is defined as the volume constraint 

(∫ 𝑑𝑉
Ω

≤ 𝑉0), 𝑉𝑚 as the total solid volume of the current FE model (𝑉𝑚 = ∫ 𝑑𝑉
Ω

), 𝑉Δ as the 

difference between these two values (𝑉Δ = 𝑉0 − 𝑉𝑚), and 𝐴𝑚 as the total surface area of the 

current FE model (𝐴𝑚 = ∫ 𝑑𝑆
Γ

). In a discretised model, 𝐴𝑚 = ∑ 𝐴𝑚,𝑗
𝑛
𝑗=1  where 𝐴𝑚,𝑗 is the 

individual surface area of triangle j (Figure 4-17b). 𝑉Δ is used to calculate the secondary 

volume correction factor, θ, mentioned in section 4.2.2.3: 

θ =
VΔ
|VΔ|

× min (|
VΔ
𝐴𝑚
| , h0) 

where h0 is the desirable change in topology. The term 
VΔ

|VΔ|
 returns the sign of VΔ. Taking the 

minimum value of |
VΔ

𝐴𝑚
|  and h0  limits the magnitude of volume correction and prevent 

excessive topology change. If |
VΔ

𝐴𝑚
| and h0 are reasonably small in term of magnitude, the 

change in volume is roughly equal to the distance of change times the total isosurface area 

(𝑉𝑚′ ≈ ℎ × 𝐴𝑚, Figure 4-17a). 
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(a) Modelling volume correction (b) Sensitivity volume correction 

Figure 4-17. Schematic illustration of volume correction of the isosurface model. 

The primary volume correction factor, namely the Lagrange multiplier 𝜆, is calculated based 

on the nodal sensitivity values and integrated across the discretised isosurface (Figure 4-17b): 

𝜆 = −
∑ 𝑉𝑚

′𝑛
𝑗=1

𝐴𝑚
= −

∑ (𝐴𝑚,𝑗 ∑
𝑆𝑒𝑛𝑠𝑁,𝑖
3

3
𝑖=1 )𝑛

𝑗=1

∑ 𝐴𝑚,𝑗
𝑛
𝑗=1

 

where n is the number of triangular faces of the isosurface, j is the face index, and i is the 

vertex index of each triangular face (1
st
, 2

nd
 and 3

rd
 vertices). Only the part of isosurface that 

forms the material boundary is considered, whereas the isosurface on the modelling boundary 

is not used in this part of the calculation. The Lagrange multiplier is then added directly to the 

sensitivity function that is also the relative velocity function. 

The sensitivity function is the relative “speed” or “velocity” function in the LSF update. 

Recall that the sensitivity matrix obtained previously is only partially filled. A full sensitivity 

matrix must be reconstructed, which is done using the flood-fill mechanism introduced in 

Section 3.3.3 (Figure 4-18, also see Figure 3-13). 
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Figure 4-18. Schematic demonstration of matrix reconstruction by flood-filling. 

Unlike the modelling process, the goal of this flood-fill operation is to actually fill the blank 

entries in the sensitivity matrix rather than finding neighbours. This operation inserts values 

in empty entries in both solid and void/fluid domain by simply copying and taking average of 

filled entries to those blank ones as demonstrated in the figure.  

The time step (𝑑𝜏) size determines the distance of movement of the level-set-isosurface 

boundary. The 𝑑𝜏 value is found by dividing the desirable magnitude of topology change by 

the maximum “speed,” which is the maximum value of the sensitivity matrix. Note that only 

the sensitivity along with its Lagrange multiplier is factored into the finding of 𝑑𝜏 . The 

secondary volume correction factor, θ, is independent of 𝑑𝜏  as its goal is to rectify any 

numerical error that could not have been predicted and corrected during the sensitivity 

derivation. 

The gradient field of the LSF can be calculated in a number of ways with first order or third 

order accuracy. In this study, the gradient field is calculated with the first order accuracy. 
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4.3.4 Re-initialisation 

The re-initialisation process aims to reconstruct the LSF as a signed-distance function of the 

isosurface (Figure 4-19). The value of this function represents the shortest distance between 

each LSF grid point and the triangulated isosurface (Figure 4-19a). Each value also comes 

with a sign, which indicates what material phase the domain is in (Figure 4-19b, positive 

value for solid and negative value for void/fluid). The original LSF is used as the main input 

variable, along with the model size and distance limit as optional inputs. This re-initialisation 

is a two-part calculation process: the first part determines the actual shortest distance and the 

second part approximates the shortest distance. A special distance parameter (𝑙0) is used in 

this study to decide which LSF grid points undergo the first part of calculation, based on how 

far they are from the current isosurface. The rest of LSF is reconstructed through a distance 

approximation technique that will be explained later on.  

   
(a) l1 is the shortest distance (b) The shortest-distance in 

matrix form 

(3) The idealistic signed 

distance function 

Figure 4-19. Exemplar construction of signed distance function and its matrix form. 

The signed distance function (SDF) has two components, the sign and the magnitude. The 

magnitude is determined first, then signs are assigned. The SDF calculation checks one 

isosurface triangle at a time, and calculates the shortest distance (𝑙1) between the triangle and 

all of its surrounding LSF grid points. The distance value is only recorded if 𝑙1 ≤ 𝑙0. The 

shortest distance between a grid point and all isosurface triangles is not known until all 

triangles are checked. Each point of the output SDF has the same sign as its input LSF. 
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4.3.4.1 Calculate the shortest distance: actual 

In this study, only grid points that are within 3 grid-spaces away will be considered in the 

actual calculation of the actual shortest distance (𝑙0 = 3). This program starts by assigning a 

very large value to every SDF matrix entry (Figure 4-20, left). As the program processes the 

isosurface model triangle by triangle, each iteration produces new distance values for all 

surrounding grid points (Figure 4-20, middle). If smaller values are found, the SDF values are 

updated. The initial value must be sufficiently large, at least be as large as the length of two 

furthest points in the model, so that SDF update takes place correctly. The SDF function is 

finalised when all discrete isosurface components are considered (Figure 4-20, right). 

 

Figure 4-20. Exemplar construction of the actual SDF. Red values indicate updated entries 

and grey values indicated ignored entries. 

To calculate the shortest distance between a point and a triangular plate in a 3D space, the 

relative normal position of the point to the triangle is firstly determined. There are seven 

possible positions as shown in the following figure (Figure 4-21): 
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Projection of a point on the n-t’-t’’ plane 

where the triangle resides  

Seven possible relative positions on the n-t’-

t’’ plane 

Figure 4-21. Relative position of a point to a triangle in 3D space. 

When point P is projected perpendicularly onto the 3D plane where the triangular surface 

resides, this point can be either in the triangle (+++), or in one of the “edge zones” (−++, +−+ 

and ++−), or in one of the “vertex zones” (+−−, −+−, and −−+). The shortest distance is its 

perpendicular distance to the face (P2), to one of the edges (P1) or to one of the vertices (P3), 

respectively, as illustrated in the next figure (Figure 4-22): 

 

Figure 4-22. The shortest distance between point P and the triangle. The red lines are the 

shortest paths between individual points and the triangle in 3D space. 
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4.3.4.1.1 Face zone (+++) 

The projection of a point (P2) in a triangle can be defined in relation to the three vertices of 

the triangle. As shown the following figure, an imaginary plane (Plane AB) containing the 

line AB and being perpendicular to the triangle ABC is created (Figure 4-23):  

 

Figure 4-23. Relative position of a point to edges of a triangle. 

If points P and C are on the same side of the plane (right-hand side), then the following 

condition must have been satisfied: 

(𝐴𝐵⃗⃗⃗⃗  ⃗ × 𝐵𝐶⃗⃗⃗⃗  ⃗) ∙ (𝐴𝐵⃗⃗⃗⃗  ⃗ × 𝐵𝑃⃗⃗⃗⃗  ⃗) ≥ 0 

In other words, the surface normals of the triangles ABC and ABP’ (P’ is the projection of P) 

must be pointing in the same direction. Otherwise, if (𝐴𝐵⃗⃗⃗⃗  ⃗ × 𝐵𝐶⃗⃗⃗⃗  ⃗) ∙ (𝐴𝐵⃗⃗⃗⃗  ⃗ × 𝐵𝑃⃗⃗⃗⃗  ⃗) < 0, points P 

and C must be on the opposite sides of the plane. If the dot product is zero, the point P must 

be directly above or below the edge AB. Similarly, if 

(𝐵𝐶⃗⃗⃗⃗  ⃗ × 𝐶𝐴⃗⃗⃗⃗  ⃗) ∙ (𝐵𝐶⃗⃗⃗⃗  ⃗ × 𝐶𝑃⃗⃗⃗⃗  ⃗) ≥ 0 

(𝐶𝐴⃗⃗⃗⃗  ⃗ × 𝐴𝐵⃗⃗⃗⃗  ⃗) ∙ (𝐶𝐴⃗⃗⃗⃗  ⃗ × 𝐴𝑃⃗⃗⃗⃗  ⃗) ≥ 0 

then points P and A are on the same side of the BC plane, and points P and B are on the same 

side of the CA plane, respectively. Satisfying all three conditions means that point P is 

directly above or below the triangle ABC, thus its projection is within the triangle ABC. The 

shortest distance, 𝑑𝑃, can then be found using the following formula: 
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𝑑𝑃 = |𝐴𝑃⃗⃗⃗⃗  ⃗ ∙
𝐴𝐵⃗⃗⃗⃗  ⃗ × 𝐵𝐶⃗⃗⃗⃗  ⃗

|𝐴𝐵⃗⃗⃗⃗  ⃗ × 𝐵𝐶⃗⃗⃗⃗  ⃗|
| = |𝐴𝑃⃗⃗⃗⃗  ⃗ ∙ 𝑛𝐴𝐵�̂�| 

where 𝑛𝐴𝐵�̂�  is the surface normal of the triangle ABC.  𝑛𝐴𝐵�̂�  is a unit vector. 

4.3.4.1.2 Edge zones (−++, +−+ and ++−) 

Consider three projections, P1, P2 and P3, in the following figure (Figure 4-24): 

 

Figure 4-24. Relative position of a point to vertices of a triangle. 

Only the projection of P2 is in the zone of edge-AB. Mathematically, a point P in the edge 

zone AB must satisfy the following condition: 

0 ≤ 𝐴𝑃⃗⃗⃗⃗  ⃗ ∙ 𝑛𝐴�̂� ≤ |𝐴𝐵⃗⃗⃗⃗  ⃗| 

where 𝑛𝐴�̂� is the unit vector of edge AB. The shortest distance is calculated from the formula: 

𝑑𝑃 = 𝑃2𝐷 = |𝐴𝑃⃗⃗⃗⃗  ⃗ × 𝑛𝐴�̂�|. 

If the point P is not in the zone edge of 𝐴𝐵⃗⃗⃗⃗  ⃗, this process is repeated to check if P falls into the 

edge zones of 𝐵𝑃⃗⃗⃗⃗  ⃗  or 𝐶𝑃⃗⃗⃗⃗  ⃗ . In those cases, 𝑑𝑃 = |𝐵𝑃⃗⃗⃗⃗  ⃗ × 𝑛𝐵�̂�|  and 𝑑𝑃 = |𝐶𝑃⃗⃗⃗⃗  ⃗ × 𝑛𝐶�̂�| , 

respectively. 

4.3.4.1.3 Vertex zones (+−−, −+−, and −−+) 

If the point P fails to satisfy any of the above conditions, then its closest point to the triangle 

must be one of the vertices, A, B or C: 
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𝑑𝑃 = min (|𝐴𝑃⃗⃗⃗⃗  ⃗|, |𝐵𝑃⃗⃗⃗⃗  ⃗|, |𝐶𝑃⃗⃗⃗⃗  ⃗|). 

4.3.4.2 Calculate the shortest distance: estimated 

Once the calculation of actual shortest distance is completed, the rest of the SDF matrix is 

flood-filled with the estimated shortest distance. The SDF entries found earlier are used as the 

starting point of an iterative flood-filling process. To mimic the characteristic of a distance 

function, the values have to increase or decrease gradually according to their relative distance 

to the isosurface, as illustrated below (Figure 4-25). 

 

Figure 4-25. Approximation of the shortest distance by flood-fill. 

In this process, the SDF matrix is filled layer by layer, where each layer is the von Neumann 

neighbourhood of the filled SDF. In each step one layer of empty matrix entries is produced 

by taking average of its neighbouring entries (grey blocks), and a “distance value,” ∆𝑑 (blue 

values in the figure) is added to every entry. ∆𝑑 may have three different values depending 

on the existence and positions of its pre-filled neighbours. Some graphical examples of the 

distance value, ∆𝑑, are shown below (Figure 4-26): 
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Having a pre-filled neighbour in the cell(s) … 
∆𝑑 = 

“North” or “South” “East” or “West” “Top” or “Bottom” 

Yes No No 1 

No Yes No 1 

No No Yes 1 

Yes Yes No 1/√2 

Yes No Yes 1/√2 

No Yes Yes 1/√2 

Yes Yes Yes 1/√3 

 

Figure 4-26. Graphical illustration of the determination of “distance value,” ∆𝑑. 

4.4 Results and discussion 

The structure and pore connectivity of tissue scaffolds are the key determinants of their 

elastic properties and nutrient transportation efficiency. These material properties 

subsequently affect cell survival and proliferation. To improve the environment for cell 

survival and proliferation, topology optimisation of the microstructure of tissue scaffolds was 

performed. This part of study aimed to configure the micro-architecture of tissue scaffolds 

based on various design criteria, and to determine the best possible living conditions for cells 

in topological terms. The level set method and isosurface modelling technique were chosen 

for this task. 

4.4.1 Isosurface modelling of RVE 

The proposed technique combining LSF tracking and isosurface modelling has been 

successfully implemented in the design optimisation for permeability, effective bulk modulus 
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and diffusivity of unit-cell structure, or the representative volume element (RVE). The LSF 

provides the means for dynamic modelling while the isosurface model enables more accurate 

FEA and simulation. The integration was streamlined to allow modelling information to be 

passed between the structured optimisation LSF system and the unstructured isosurface 

model. Simulations were conducted on the smooth tetrahedral mesh. Three effective material 

properties, namely the bulk modulus, diffusivity and permeability were computed based on 

the theory of homogenisation. Following the FEA and the homogenisation process, various 

numerical operations were carried out to construct and transform the objective and sensitivity 

functions from the initially unstructured form to a structured array, then the LSF was updated. 

The symmetry and periodic boundary conditions were enforced to improve stability of 

structural evolution. In addition to the typical optimisation routine, the flood-fill technique 

has been introduced to approximate the velocity function and to accelerate the LSF re-

initialisation. The signed-distance-function re-initialisation was performed every fourth 

iteration to maintain the smoothness of the LSF. The final optimisation results were 

unambiguous, smooth, and explicitly defined. 

The default modelling space of all models was cubic, 1 unit in length, with a LSF resolution 

of 37×37×37 and a grid space of 1/36th unit. The initial void space consisted of three square 

channels intersecting at the cubic centre. Schwarz’s primitive surface ( 𝜙 = cos(𝑥) +

cos(𝑦) + cos(𝑧) = 0 ) was used as an alternative initial model if the original model 

experienced severe convergence issue. A 50% solid volume (constraint) was to be maintained 

throughout the optimisation process. Symmetry, periodicity and isotropy modelling 

conditions were applied and enforced. In the isosurface tetrahedral mesh, the maximum 

elemental volume is 6.33×10
-6

 cubic units. 
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The isosurface modelling technique translated the implicit LSF matrix to finite element 

models through linear interpolation, surface triangulation and mesh smoothing. The mesh 

smoothing step removed and merged any triangles with one or more short edges (0.75 × level 

set grid length was used in the study as shown in Figure 4-27a). The resultant triangulated 

surfaces had more evenly sized and spaced mesh (Figure 4-27b-c). Figure 4-27d is 

demonstration of isosurface construction of gyroid surface. The mesh generator Iso2Mesh 

[38] and tetgen [35-37] slightly modified the isosurface mesh by inserting additional nodes 

and triangle, which improved the quality of FE body mesh. 

  
(a) Unrefined isosurface (b) Smoothed isosurface 

  
(c) Isosurface on the modelling boundary (d) Smoothed gyroid surface model 

Figure 4-27.  Examples of smoothed 3D isosurfaces: (a-c) the Schwarz’s primitive surface 

model and (d) the gyroid surface model. 
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4.4.2 Topology optimisation 

Three optimal level-set-isosurface models have been obtained at a matrix resolution of 

37×37×37. The resultant effective permeability is 0.003551. The maximum effective 

diffusivity is 0.4 (unit length
2
 / s) at the porosity of 50%, which is close to the theoretical 

maximum value predicted by the Hashin-Shtrikman upper bound. The maximum effective 

bulk modulus is 0.2316 (Pascal, Poisson’s ratio = 0.3, and elastic modulus E = 1 unit). The 

topology optimisation was considered successful in the all isosurface- (Figure 4-28 a-c) and 

SIMP-based (Figure 4-28 j-k) models, but un-converged in all voxelised, non-density-based 

models (Figure 4-28 g-i, l and m). Introducing intermediate-density element to the 

conventional level set method had resulted in some success in the bulk modulus and 

diffusivity optimisation scenarios (Figure 4-28 e-f), and a less optimal permeability model 

(Figure 4-28 d). A recent study [40] used an improved version of BESO and the optimised 

structure had a maximum effective bulk modulus of 0.218, which is lower than the isosurface 

model presented here. 

Permeability 

(unit length
2
) 

Bulk modulus 

(Pa) 

Diffusivity 

(unit length
2
 / s) 

   
(a) 0.003551 (b) 0.2317 (c) 0.3965 
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(d) 0.0032505 (e) 0.2288 (f) 0.3929 

   
(g) 0.003178 (h) 0.1535 (i) 0.3306 

 

  
 (j) 0.2287 (k) 0.3889 

 

  
 (l) 0.1441 (m) 0.3305 
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Figure 4-28.  The optimised tissue scaffold models using the isosurface method (a-c), the 

conventional level set method with intermediate materials (d-f) and without (g-i), SIMP with 

MMA solver (j-k), and BESO without intermediate materials (l-m). 

The averaging operations of the LSF and the velocity function (section 4.2.2.2) ensured that 

the topology change took place symmetrically. These operations had also helped dampen the 

numerical error originated from the unstructured mesh. The topology could therefore 

converge smoothly with limited fluctuation in the objective number, which was mostly 

affected by the size of time step (Figure 4-30, level set method).  

It has been suggested that for 50% porosity, the Schwarz’s primitive structure has the highest 

permeability [5] and the even wall shear stress [11]. This study attempted to verify these 

claims by building and testing isosurface model of the Schwarz’s primitive structure, and 

characterizing the fluid dynamics behaviour. The result of this study reveals that the 

Schwarz’s primitive structure has a lower permeability and higher wall shear stress than the 

model optimized for permeability. 

Topologically, the Schwarz’s primitive structure shows resemblance but is not the exact 

shape of the optimized model (Figure 4-29). More specifically, the cross-sectional shape of 

channels in the optimized model is close to perfect circle (Figure 4-29a), whereas the 

Schwarz’s primitive structure has more diamond-shaped channels, which account for the less 

uniform wall shear stress distribution (Figure 4-29b). The channel necks in the optimized 

model are also wider and straighter than those in the Schwarz’s primitive structure. Wider 

channels imply lower flow resistance, thus higher permeability. 
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(a) Optimised structure (b) Schwarz’s primitive structure 

Figure 4-29.  Normalized wall shear stress distribution on the isosurface wall in the 

permeability models. The wall shear stress is more concentrated in the Schwarz’s primitive 

structure. 

4.4.3 Optimisation comparison 

Overall, the isosurface models have the highest objective numbers and the most stable 

convergence history, albeit slower structural evolution than the SIMP models (Figure 4-30). 

It was found that both BESO (Figure 4-28 h and i) and conventional level set method without 

banded material boundary (Figure 4-28 l and m) experienced difficulty in initiating drastic 

topology transition. The initial channelled structure (Figure 4-28h in particular) failed to 

transform and develop cellular-lattice structure like those found using other methods (Figure 

4-28b, c, e, f, j and k). As a result, the effective material properties stopped increasing after a 

small number of iterations (Figure 4-30 b-c, solid/void level set models). Changing the initial 

model from three orthogonal square channels to the Schwarz’s primitive surface model 

helped improve the optimisation result but only to a small extent (Figure 4-30a, Level set (2) 

and (1), respectively). Using density-based element enabled the models to break the 

transformation barrier and increase the objective value (Figure 4-30 b-c, density-based level 

set models).  
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(a) Effective permeability. All models are non-density-based. 

 
(b) Effective bulk modulus 
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(c) Effective diffusivity 

Figure 4-30.  The convergence of objective functions. The solid/void label denotes non-

density-based models. 

Density-based models were considered non-ideal for computational fluid dynamics 

simulation as there was no obvious boundary at which non-slip boundary condition could be 

applied. Furthermore, the Navier-Stokes equation only describes flow behaviour in purely 

fluidic space, therefore homogenisation of permeability could not be carried out on a SIMP-

based model. A past study done by Guest et al. attempted to work around this modelling 

limitation by combining Stokes Equation and Darcy’s equation to describe the fluid 

behaviour in the partially solid element [5]. The resultant effective permeability found in their 

study (0.0032) is lower than the finding from isosurface modelling. 

The SIMP method had improved the effective bulk modulus and diffusivity values, which 

matched the values found using the isosurface method (Figure 4-30 b-c). However, at the 

same modelling resolution, the optimised isosurface models attained a slightly higher 

diffusivity value when the models converged (Figure 4-28c versus k). Improved modelling 

accuracy and flexibility was likely the reason why the isosurface method outperformed the 

fixed-mesh methods. Such advantage becomes more obvious at low modelling resolution, 
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where the possible isosurface shape and configuration remains unlimited (Figure 4-31) 

whereas voxelised models have limited possible configurations (Figure 4-31c). 

   
(a) (b) (c) 

Figure 4-31.  Schematics of boundary configuration: (a) original boundary; (b) isosurface 

interpretation; (c) voxelised interpretation. 

A drawback of the isosurface method is that it requires extra computational time due to 

additional modelling operations and slower convergence. The preparation and postprocessing 

of isosurface model and other related operations accounted for approximately 5% of the total 

computation time; the re-initialisation added another 6-7% per iteration to the process but it 

was only performed every fourth iteration. For the level-set based optimisation, the periodic 

boundary condition was applied, which took longer to solve than the symmetry boundary 

condition. For the non-level-set-based bulk modulus and diffusivity optimisations, one eighth 

of the RVE model was used and symmetry boundary condition was applied to reduce 

computational cost. 

Overall, the isosurface implementation has improved the modelling accuracy of topology 

optimisation. It can be seen in the convergence history that voxelised models have less 

smooth convergence history (Figure 4-30c). Furthermore, this technique helped avoid 

reversing the topology evolution progress during re-initialisation, which could happen to 

voxelised level-set models [40]. This study had presented the isosurface-based re-

initialisation as a practical alternative to the existing re-initialisation technique. The model 

quality was improved without increasing the resolution of level set function, which directly 

influenced the computational cost. It was also found that the cost to extract and discretize 
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isosurface was small when compared to other parts of optimisation algorithm, accounting for 

a 5% to 10% increase in the total computational time. 

A flood-fill strategy had been implemented to quickly construct the full velocity function and 

the signed-distance function in regions far away from the isosurface. The result was a 

smoother velocity function (Figure 4-32). This reconstructed velocity function allowed the 

non-boundary region of the level set model to be appropriately adjusted. Such extended 

model adjustment was effective in minimising the deterioration of gradient field by allowing 

the entire level set model to move at the same speed as the closest boundary. Additionally, it 

reduces the need of re-initialisation. 

 

Figure 4-32.  Cross-sectional contour plots of velocity function before (left) and after (right) 

flood-fill after the first time step. 

The unstructured FE mesh and the LSF update had been identified as two major sources of 

numerical error. This error accumulated over iterations and caused the model volume to 

deviate from the target value. With the isosurface modelling implementation, the volume 

fraction of the solid and void domains was calculated by summing up the volume of the 

tetrahedral elements; whereas in the voxelised models, the volume would be the sum of the 

hexahedral element volumes. The change in volume in the discretised model had been more 

difficult to predict due to the added modelling complexity. This became a problem especially 

during the isosurface smoothing process in which nodes could shift slightly away from the 
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initial isosurface every time they were moved or deleted. Such error accumulated over 

extensive node moving-deletion process. Another contributor to the volume error was the 

LSF update, where the change in LSF depends on the gradient field. As the smoothness of the 

gradient field deteriorated, the accuracy suffered. 

The original level set method rectified the volumetric discretisation error by adding additional 

correction term on top of the Lagrange multiplier (𝜃 from Eq. (4-34)) [31]. This study has 

applied the same strategy. However, it was found that large optimisation step size could 

occasionally result in significant numerical errors that clearly violated the volume constraint. 

Furthermore, using large time step led to the severe fluctuation in the resultant solid volume 

as well as the objective number. To resolve this issue, the volume correction was carried out 

repeatedly until the volume constraint was satisfied or the error (residual) was reduced to an 

acceptable level. Computationally, these purely correctional iterations could be executed by 

skipping the optimisation process whenever the volume constraint was not satisfied. 

Conventional level set optimisation method makes use of smeared Heaviside function, H(x), 

and δ(x) function to compute sensitivity (Eqs. (4-8) and (4-9)). This formulation creates a 

grey sensitivity zone around the level set boundary (Figure 4-33 a-b). The sensitivity of an 

element is adjusted depending on the distance between the element and the implicit level set 

boundary. The fact that Heaviside function is user-defined makes the sensitivity function 

dependent on the programmer’s choice of interpretation. The isosurface modelling technique 

resolves such dependency by defining a material boundary explicitly (Figure 4-33 c-d). Based 

on the explicit formulation, the sensitivity function is only non-zero on the isosurface 𝜙 = 0, 

so that every node is either 100% sensitive or 0% sensitive.  
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(a) Conventional level set boundary (b) Conventional level set sensitivity 

  
(c) Isosurface boundary (d) Isosurface sensitivity 

Figure 4-33.  Comparison between conventional method and isosurface formulation. 

Maintaining signed distance function is the most common re-initialisation strategy and has 

been a crucial part of level set based optimisation process. It maintains the smoothness of the 

LSF and allows topological change to take place in a correct manner. Without proper and 

timely re-initialisation, the degrading gradient field of LSF can undermine solution 

convergence [31]. The reason that the gradient field can deteriorate can be seen in Figure 4-

33b. Conventionally, the velocity function is only non-zero within the grey boundary zone, 

which implies that the LSF change would only occur in this region. Changing the LSF in the 

far regions has no effect on the topology. This restricted LSF movement inevitably steepens 

the gradient field on one side and flatten the other. Hence it necessitates the re-initialisation. 

In contrast, the flood-filled velocity function devised by this study extended the LSF 

movement to the entire 3D domain. The far regions move alongside the level set boundary at 
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the same speed. Such numerical advection minimises the undesirable squeezing (steepening) 

or stretching (flattening) of the LSF and its gradient field, thus it minimises the distortion and 

the deterioration. Furthermore, the flood-fill re-initialisation strategy used in this study 

lowered the computational cost in reconstructing the less sensitive part of LSF. 

The Courant–Friedrichs–Lewy stability condition requires the level set function to be updated 

at a rate no faster than one grid space per iteration. However, additional tests performed in 

this study showed that a maximum step size greater than one grid-space had no significant 

effect on model evolution. This was likely a result of the improved LSF update and re-

initialisation, which was performed every fourth iteration and largely dampened the 

numerical instability. The convergence pattern was stable as long as the re-initialisation 

dampened the instability faster than it could accumulate. Note that the time step size capped 

the maximum boundary movement (Eq. (4-35)), therefore only part of the isosurface 

advanced at a rate faster than one grid space per iteration. 

The implementation of dynamic and adaptive FE mesh generation has been one of the 

greatest technical barriers to conducting topology optimisation with smooth models. The 

underlining issue of the conventional level set tracking method is the lack of defined 

boundary outline for smooth surface for body meshing processes. This issue was resolved in 

this study by means of isosurface extraction, which provided a rigorous foundation for FE 

surface mesh. However, the program had been relying on tetgen to produce body mesh, as it 

was the only open-source mesh generator found suitable at the time this study was 

undertaken. Another technical limitation has been the programmability of external software. 

The ability to prescribe mesh parameters such as mesh density function would improve the 

accuracy, especially in CFD simulation with high Reynolds number. Discretising highly 

tortuous geometrical features and creating holes in the model would also require more robust 
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program. Both concepts are beyond the scope of this study. Despite all these technical 

challenges, the isosurface modelling technique is proven to be a viable approach to the design 

and optimisation of microstructure of tissue scaffolds. 

 

4.5 Programming considerations 

Compiling a topology optimisation program from individual, independent functions allows 

more flexibility when coding. The proposed programming framework permits individual 

functions and solvers to be changed and re-run with minimal effort. In multiobjective 

topology optimisation, such programming flexibility is especially important since drawing 

the Pareto front requires a large number of simulations, each with a slightly different 

objective function. In Chapter 5 for example, the relative weights of individual objective 

values and sensitivity formulation could be adjusted effortlessly. This framework is also 

useful in debugging the program and in assessing the effect of optimisation parameters such 

as mesh size and sensitivity filter. Troubleshooting can therefore be less time consuming 

since syntax errors can be easily isolated and detected.  

The major reason for using the external FEA solver (ANSYS) is that commercial sparse 

matrix solvers tend to be more efficient and optimised, speed-wise and resource-wise. 

Writing an FEA solver using a high level language such as Matlab is usually easy if the FEM 

model has a fixed and structured mesh, i.e. all elements are cubic and have the same volume. 

However, it takes significantly more time to run the simulations. The introduction of the 

isosurface modelling method has increased the programming complexity as well as the 

hardware requirement, which made a Matlab solver a less practical choice. 
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To obtain the homogenised material properties in 3D space, a model has to be solved multiple 

times, each time with a different set of load and boundary conditions. To save time and 

computational resources, individual solution processes can be cascaded so that one occurs 

after another without quitting the external solver. In the simulations presented here, the DOF 

results were written directly to external files and then erased at the end of each matrix-solving 

process. A new set of BCs were applied, and the next solution process began. This workflow 

helped save time by eliminating overhead cost, i.e. loading the program, loading finite 

element mesh, and building the global stiffness matrix. The cascaded process could be 

terminated early without losing the results as they were written to files independently and 

immediately before the next solution process began. 

The most complex component of these script generators is the boundary condition writer, 

which has the ability to write different types of boundary conditions. The reason for including 

many BC options is that obtaining solution convergence usually requires trial and error; it is 

often unclear at the beginning which type of boundary condition would generate the best 

result. Although the compilation of the BC options is time consuming, once done, this allows 

quick switch from one combination of loading and DOF conditions to another by simply 

changing the value of the input parameters in the main script file. 

Commercial FEA programs that are currently available have very limited topology 

optimisation capability. The homogenised stiffness matrix 𝐸𝑖𝑗
𝐻  is commonly known as the 

strain energy or the energy dissipation by the FEA programs (Eq. ((4-15), ((4-20) and ((4-

23)). However in ANSYS, the elemental volume cannot be explicitly obtained or exported. 

As a result, the mathematical integration of 𝐸𝑖𝑗
𝐻 could not be done within the program. Also 

the calculation of the off-diagonal matrix entries of 𝐸𝑖𝑗
𝐻 , i.e. 𝑖 ≠ 𝑗 , involves matrix 

multiplication. The programming complexity of carrying out a matrix multiplication in 
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ANSYS is no less than writing a stand-alone program. For this reason, all numerical 

operations were performed outside ANSYS using Matlab functions. 

To save computational time in the node-to-grid interpolation, instead of finding the 

sensitivity at each grid point one by one, i.e. starting from j = 1, then j = 2 and so on: 

𝑂𝑏𝑗𝐺𝑗 =
∑ (

𝑂𝑏𝑗Ni
𝐿𝑖+𝑘

)i

∑ (
1

𝐿𝑖+𝑘
)i

, 

this can be done more efficiently by going through the nodal list (i = 1, 2, …) and update all 

𝑂𝑏𝑗𝐺𝑗 values systemically. More importantly, most grid points do not have a boundary node 

in the neighbourhood and the processing time is essentially a waste. Going through all the 

nodes j times translates to (n× j) times of processing. To eliminate such time wastage, the 

program can go through the node list instead and only add the nodal values (𝑂𝑏𝑗Ni) to those 

grid points (𝑂𝑏𝑗𝐺𝑗) that are in the vicinity, so that the grid points that have no neighbouring 

boundary node will never be considered in the first place. Using the schematic example of 

Figure 4-15 and starting with N1 , its distance-weight to all neighbouring grid points is 

calculated and the respective 
𝑂𝑏𝑗N1

𝐿𝑖+𝑘
 and 

1

𝐿𝑖+𝑘
 is added directly to the nominator and 

denominator of 𝑂𝑏𝑗Gj , N2 and so on are then processed. The final values of 𝑂𝑏𝑗Gj  remain 

known until all i nodes are processed. 

The location of a node determines which and how many grid points are involved in the 

computation. As illustrated in Figure 4-34, N1  at the centre of the cube has eight 

neighbouring grid points (G1,2…,8); N2 on a face has four neighbouring grid points (G1,4,5,8); 

N3  on a grid-line has two neighbouring grid points (G6,7); and N4  which is at the same 

location as G2 has only one neighbour, which is obviously G2. 
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Figure 4-34. A schematic sketch depicting the relationship between nodal position and the 

number of neighbouring grid points. 

The LSF update mechanism used in this function is significantly different from the 

established level set method. These operations focus on the discrete unstructured isosurface 

model. Some concepts of the level set method are not strictly followed, including the 

derivation of sensitivity function and volume correction. The flood-filled part of velocity 

function in particular has no mathematical or topological significance, because it theoretically 

has no effect on the final modelling outcome. However in the modelling context, they can 

still affect the gradient field. This indirectly affects the modelling accuracy whenever the LSF 

is updated, given that LSF change is a function of its gradient (see section 4.2.2.3).  

 

4.6 Concluding remarks 

The incorporation of isosurface modelling into the level set optimisation algorithm has 

improved various aspects of the topology optimisation, including the model definition, 

numerical accuracy, and convergence. The explicit boundary modelling and dynamic re-

meshing have been successful implemented in this study through the computation of 

unstructured isosurface from the structured level set function matrix. The effective materials 

properties obtained from isosurface modelling are the closest to the theoretical maximum 

values for any design objective compared to the other optimisation methods. On the other 
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hand, fixed-mesh methods such as BESO, SIMP and LSM had only been able to obtain the 

optimal structures by using density-based modelling. 

The isosurface modelling capacity have been tested in topology optimisation with effective 

permeability, bulk modulus and diffusivity criteria. At a reasonably low computational 

expense, this new technique has produced better optimisation results than those found using 

the conventional level set method and BESO. This is also suitable for computational fluid 

dynamics simulation where SIMP method may not be applicable. The optimisation of 

permeability structure in particular shows the importance of smooth boundary modelling that 

could only be achieved using the proposed method. Overall, the isosurface-based topology 

optimisation technique is more suitable for the design of porous tissue scaffolds. 
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5 Multiobjective Topology Optimisation of Tissue Scaffolds 

 

The viability of a porous tissue scaffold depends on well-maintained oxygen transport and 

nutrient supply. It is known that the porous architecture of a scaffold plays a critical role in 

oxygen transportation and tissue regeneration outcome. While past computational studies had 

designed a range of microstructures with optimised mechanical and fluid dynamics 

properties, their ability to sustain long term and long distance oxygen supply was rarely 

investigated. To accurately define and assess the optimal scaffold microstructures, 

multiobjective topology optimisation was conducted based on effective diffusivity and 

effective bulk modulus criteria, and through a combined level-set and isosurface method. 

Following this, an oxygen diffusion simulation was carried out on a selected optimised 

microstructure and a sample of an unstructured scaffold for comparison.  

A range of optimised microstructures with different combinations of diffusivity and effective 

bulk modulus were to be defined by isosurface modelling. This study aims to demonstrate the 

benefits of multiobjective topology optimisation for scaffold design involving oxygen 

transport. 

 

5.1 Introduction 

Maintaining adequate oxygen and nutrient supply is the key to maintain a viable environment 

for tissue regeneration in tissue scaffolds [1, 2]. The structure of tissue scaffolds in particular 

plays a critical role in nutrient transportation, cell infiltration and mechanical support [2, 3]. 

The presence of cells is also known to have a considerable effect on oxygen transport [4]. A 

range of scaffold structural requirements have been so far established in terms of porosity [2, 



161 

 

5, 6], pore size [7] and connectivity [8] to address those design issues. However, merely 

meeting these basic structural requirements does not guarantee successful tissue regeneration 

[9-12]. It has been shown that the scaffold topology plays a more influential role in cell 

migration and nutrient transport, which subsequently determine the outcome of cell 

distribution and proliferation [8], all together forming a complex biological feedback cycle. 

Poor cell infiltration in scaffolds is a major challenge in tissue engineering [13]. The 

implication is that the practical size of tissue scaffolds is limited by cell viability, which 

diminishes with increasing scaffold depth and decreasing oxygen concentration. To improve 

cell infiltration, the effect of scaffold structure has been studied extensively in relation to the 

regulation of cell migration [5, 6] and vascularisation [7]. Pore connectivity has since been 

identified as one of the key deciders of the effective mass transport and diffusion in scaffolds 

[8]. Some common strategies for enhancing nutrient transport include increasing porosity, 

introducing micro-porous structure (~ 1 μm) [13] and constructing dedicated macro-porous 

channels for the long distance transport [2]. Meanwhile, the conflict between increasing 

porosity and maintaining structural strength also has to be taken into account in the design 

process to ensure that the structural integrity is not compromised [14, 15]. 

Computational design and topology optimisation has demonstrated fair amount of potential in 

Tissue Engineering [16]. Topology optimisation has been performed to maximise or to create 

2D and 3D microstructures with desired conductivity [17, 18], permeability [19-23], stiffness 

[19, 24, 25] , and bulk modulus [10, 17, 26]. Some studies have suggested using special 

mathematical models such as minimal surfaces as the building blocks of tissue scaffolds [8, 

27, 28]. The fabrication of microstructures can be done by 3D printing [8, 29]. 

Even though non-parametric topology optimisation methods are well-established, they 

usually employ fixed-mesh, voxelised modelling techniques that trade off the model quality 
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for programming simplicity. The ambiguous nature of voxelised models makes it difficult to 

fabricate scaffolds that physically and accurately reflect the computational results. There is an 

obvious need to properly define the optimal microstructure, and bridge the gap between 

computational design and fabrication through an optimisation process that allows the direct 

translation of computational results to physical products.  

In summary, two key challenges remain in the design of porous tissue scaffolds. The first 

design challenge is to resolve the conflict between structural and transportation properties; 

and the second challenge is to address the complex interaction and feedback cycle of 

structural and biological factors. This study aims to address these two issues by using the 

smooth isosurface modelling technique and the level-set based topology optimisation, and by 

conducting oxygen consumption simulation to compare the steady-state cell proliferation in 

both optimised and non-optimised scaffolds. The multiobjective criteria have been created, 

aiming to maximise the effective diffusivity and bulk modulus of tissue scaffolds 

concurrently. The actual performance of the optimised scaffold structure is assessed through 

an oxygen transportation-consumption simulation, in terms of cell viability and oxygen level, 

and compared to an unstructured titanium scaffold sample.  

 

5.2 Multiobjective topology optimisation 

The ultimate goal of tissue scaffold design is to create a lasting, biologically viable 

environment. For this purpose multi-objective topology optimisation can be used to improve 

different scaffold properties simultaneously and resolve any conflict among individual 

objectives. Whatever biological factors that cannot be accounted for in the optimisation 

process, cell viability for instance, must be assessed separately. To precisely define and 

characterise the tissue scaffold models in this part of study, the isosurface modelling 
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technique developed in Chapter 3 had been again utilised. Also based on this technique, a 

comparison study had been carried out to assess the cell seeding effectiveness of different 

scaffold structures. 

5.2.1 Geometric representation 

This study has employed the smooth topology optimisation procedure that combines both 

implicit level-set and explicit isosurface modelling techniques, but on a multi-objective 

platform. In this section the level set topology optimisation method and the combined design 

criteria for diffusivity and bulk modulus are briefly outlined, which correspond to the 

structural support and nutrient transport requirements of tissue scaffolds, respectively. The 

next section will describe in detail the incorporation of isosurface modelling and the 

modification made to the level set method.  

Recalling from Chapter 4 that a level set is a collection of all points of a certain value in 

space. Such set of points forms a surface in the space, which can be used to represent the 

boundary of a model. A level set function (LSF) is used to track the surface movement over 

time. This mathematical set has an explicit counterpart known as the isosurface, which can be 

extracted from the LSF if the location of the level set is interpolated. Mathematically, the 

level set is defined as: 

 𝛤: 𝜑(𝑥) = 𝑘 (5-1) 

where Γ is the level set, 𝜑  is the level set function, x is the coordinate system of the 

modelling space, and k is a constant value. Let k = 0, the level set forms a continuous surface 

and divides the space into two domains: one is the porous space (Ωf: 𝜑(𝑥) < 0, or space 

filled by fluid in this design scenario) and the other is the solid material of the tissue scaffold 

(Ωs: 𝜑(𝑥) > 0).  
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The evolution of the level-set model is controlled by a velocity function, 𝑣𝑛. Conversely, the 

velocity function can be created according to the desired change or movement of the level-set 

model. Given a velocity function, the change in LSF required to induce the desired change is 

solved numerically in the form of a Hamilton-Jacobi equation: 

 
𝜕𝜑

𝜕𝜏
+ 𝑣𝑛|∇𝜑| = 0 (5-2) 

where 𝜕𝜏 is the evolution time, and |∇𝜑| is the absolute gradient field of the LSF. In topology 

optimisation, the rate of movement is determined by the sensitivity function so the evolution 

always results in a net increase in the effective diffusivity and bulk modulus.  

The isosurface modelling technique aims to create an explicit boundary from the structured 

implicit LSF. The goal of this implementation is to replace the conventional voxelised model 

with smoother finite element mesh, and to improve the numerical accuracy of sensitivity 

analysis, volume constraint, surface movement and re-initialisation. The key distinction 

between these two formats, explicit and implicit, is that isosurface modelling requires the 

physical location of every point of 𝜑(𝑥) = 𝑘  to be identified. In other words, isosurface 

represents the actual locations of 𝜑(𝑥) = 𝑘, thus explicit.  

The generation of an isosurface takes two steps: mesh extraction and mesh smoothening 

(Figure 5-1). In the discretised 3D LSF space, all level-set points can be extracted directly 

through linear interpolation (Figure 5-1 a-b). These points are then connected and patched to 

form one or more continuous triangulated isosurfaces, which are also the material boundaries. 

This surface mesh is then smoothened to improve its quality as FE mesh (Figure 5-1 c-d).  
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(a) Exemplar fixed-mesh LSF (b) Interpolation of isosurface points 

  
(c) Face patching with triangles (d) Mesh smoothing 

Figure 5-1. Schematic of the isosurface extraction from a level set function. 

Following this, unstructured tetrahedral body mesh is generated on both sides of the 

isosurfaces to create the 3D FE model. This study has made use of the “iso2mesh” Matlab 

toolbox [30] and the program, tetgen [31-33] to generate the 3D body mesh. The triangulated 

surface meshes serve as the foundation for a top-down body mesh generation. Additional 

points are added to the isosurface by the program to further improve the FE mesh quality. 

Both the isosurface extraction and the mesh generation are performed every iteration 

throughout the optimisation process. 
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5.2.2 Homogenized effective elastic tensor and diffusivity 

The effective material properties of a porous material can be computed based on the theory of 

homogenisation [34]. This involves solving the characteristic response of the representative 

volume element (RVE) to a unit-strain, followed by the computation of elemental stiffness 

and diffusivity, and then the summation of the two elemental properties. The homogenised 

diffusivity can be computed using the following formula: 

 𝑫𝑯 =
1

𝑉𝑅𝑉𝐸
∫ 𝐷 (1 −

𝜕𝑢𝐷
𝜕𝑥

) 𝑑𝑉
Ωf

 (5-3) 

where 𝑫𝑯  is the effective diffusivity of the scaffold, D is the nominal diffusivity of the 

diffusion media, VRVE is the total volume of the RVE, and 𝑢𝐷  is the characteristic 

concentration obtained by solving the following characteristic equation: 

 
𝜕

𝜕𝑥
𝐷 (𝐼 −

𝜕𝑢𝐷
𝜕𝑥

) = 0 (5-4) 

where 𝐼 is an identity matrix. This equation is solved three times (in x, y and z directions) to 

obtain three unique responses. 

Similarly, the homogenised bulk modulus can be calculated from: 

 𝑲𝑯 =
1

𝑉𝑅𝑉𝐸
∫ (1 −

𝜕𝑢𝐾
𝜕𝑥

)
𝑇

𝐾 (1 −
𝜕𝑢𝐾
𝜕𝑥

) 𝑑𝑉
Ωs

 (5-5) 

where 𝑲𝑯 is the effective stiffness of the porous structure, K is the nominal stiffness of the 

solid material, and 𝑢𝐾 is the characteristic displacement solution of 

 
𝜕

𝜕𝑥
𝐾 (𝐼 −

𝜕𝑢𝐾
𝜕𝑥

) = 0 (5-6) 

where 𝐼 is an identity matrix. Equation (5-6) is solved three times for three normal strain 

responses. Subsequently the effective bulk modulus can be calculated: 

 𝐵𝐻 =
1

9
∑ ∑ 𝑲𝒊,𝒋

𝑯3
𝑗=1

3
𝑖=1 . (5-7) 

If the effective diffusivity is isotropic, a scalar 𝐷𝐻 can be used instead: 
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 𝐷𝐻 =
1

3
∑ 𝑫𝒊,𝒋

𝑯3
𝑖=𝑗=1 . (5-8) 

This design problem is formulated as a multiobjective optimisation problem, which aims to 

simultaneously maximise the effective diffusivity and the effective bulk modulus. This 

operation requires that the effective diffusivity and the effective bulk modulus are 

normalised. A weight parameter, 𝑤, is also assigned to adjust their relative influences to the 

topology optimisation outcome. Repeating the topology optimisation with different values of 

𝑤 produces a Pareto front (0 ≤ 𝑤 ≤ 1). The multiobjective function is thereby formulated as: 

 max 𝐽 =
𝐷𝐻

𝐷𝑚𝑎𝑥𝐻
+

𝐵𝐻

𝐵𝑚𝑎𝑥𝐻
 (5-9) 

 

s. t.  ∫ 𝑑𝑉
𝛺𝑓

= 𝑉𝑓 

𝐷𝐻𝐵𝑚𝑎𝑥
𝐻

𝐵𝐻𝐷𝑚𝑎𝑥𝐻
=
1 − 𝑤

𝑤
  (0 ≤ 𝑤 ≤ 1) 

(5-10) 

where 𝐷𝑚𝑎𝑥
𝐻  is the maximum achievable effective diffusivity, 𝐾𝑚𝑎𝑥

𝐻  is the maximum 

achievable effective bulk modulus, 𝑉𝑓 is the volume constraint of fluid, 𝑤 is the weight of the 

normalized bulk modulus, and (1 − 𝑤) is the weight of the normalized diffusivity. 𝐷𝑚𝑎𝑥
𝐻  and 

𝐵𝑚𝑎𝑥
𝐻  serve as the normalisation factors in Eq. (5-9) and must be determined prior to the 

multiobjective optimisation. The second condition in the constraint equation (5-10) sets the 

target, which is the ratio between the normalised effective diffusivity and effective bulk 

modulus, for each value of 𝑤. 

5.2.3 Inverse homogenisation using topology optimisation 

The topology optimisation method can also be used to design RVE microstructures with 

desired material properties [35, 36]. In such design scenario, the objective function is 

formulated in a way that it indicates how close the material properties of current design are to 

the desired values. The topology is considered optimised when its effective material 

properties have attained the target numbers. From a macroscopic perspective, it is called the 
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inverse homogenisation as the effective material properties determine the topology, whereas 

in homogenisation, topology determines the effective material properties. 

5.2.3.1 Targeted stiffness tensor 

When designing the microstructure of hard tissue scaffolds, inverse homogenisation 

technique can be applied to create RVE structure with material properties that match the hard 

tissue it is replacing. It has been suggested that the stiffness of bone tissue scaffolds should 

match the host bone [37, 38]. Using the SIMP method and fixed-mesh, an objective function 

can be formulated in terms of the difference between the targeted stiffness tensor 𝑪𝒊𝒋
∗  and the 

current effective stiffness tensor 𝑪𝒊𝒋
𝑯, subjected to a volume fraction constraint: 

    

{
  
 

  
 min

𝜌𝑒
𝐽𝑆(𝜌

𝑒) = ∑(𝑪𝒊𝒋
∗ − 𝑪𝒊𝒋

𝑯(𝜌𝑒))
2

6

𝑖,𝑗=1

subject to:  0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1

1

𝑁𝐸
∑(1 − 𝜌𝑒) = 𝑉0

𝑁𝐸

𝑒=1

 (5-11) 

where 𝜌  is the volume fraction (or “density”) of an element, the superscript e denotes 

elemental property,  is the minimal allowable density of any element, and 𝑁𝐸  is the 

number of elements. 𝜌𝑚𝑖𝑛 > 0, otherwise the model will be singular and unsolvable. The 

sensitivity of the objective function with respect to the design variable e
 is determined by 

using the adjoint variable method as: 

 
𝜕𝐽𝑆
𝜕𝜌𝑒

= −2 ∑ 𝑟𝑖𝑗(𝑪𝒊𝒋
∗ − 𝑪𝒊𝒋

𝑯(𝜌𝑒))
𝜕𝑪𝒊𝒋

𝑯(𝜌𝑒)

𝜕𝜌𝑒

6

𝑖,𝑗=1

 (5-12) 

where 𝑟𝑖𝑗 is the weight of individual matrix entries, and 

 
𝜕𝑪𝒊𝒋

𝑯(𝜌𝑒)

𝜕𝜌𝑒
=∑(𝐼 − 𝑢𝑖

𝑒)𝑇
𝜕𝑪𝒊𝒋

𝑒 (𝜌𝑒)

𝜕𝜌𝑒
(𝐼 − 𝑢𝑗

𝑒)𝑑𝑉.

𝑁𝐸

𝑒=1

 (5-13) 

min
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Each elemental 𝑲𝒊𝒋
𝑒  value is unique. The method of moving asymptotes (MMA) algorithm 

[39] is employed to determine the appropriate e
 change during the structural evolution.  

5.2.3.2 Targeted diffusivity 

It has been suggested that designing and using microstructures with low effective diffusivity 

in places such as cartilage (Malda et al. 2003). In this design scenario, the effective 

diffusivity can be formulated as an objective, in which the goal is to minimise the difference 

between the desirable diffusivity 𝐃∗ and actual effective diffusivity 𝐃H: 

 {

min𝜌𝑒 𝐽𝐷(𝜌
𝑒) = ∑ (𝑫𝒊𝒊

∗ −𝑫𝒊𝒊
𝑯(1 − 𝜌𝑒))

23
𝑖=1

subject to:  0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1
1

𝑁𝐸
∑ (1 − 𝜌𝑒) = 𝑉0
𝑁𝐸
𝑒=1

. (5-14) 

The sensitivity function can be derived directly and the following is obtained: 

 
𝜕𝐽𝐷

𝜕𝜌𝑒
= 2∑ (𝑫𝒊𝒊

∗ −𝑫𝒊𝒊
𝑯(𝜌𝑒))3

𝑖=1
𝜕𝑫𝒊𝒊

𝑯(1−𝜌𝑒)

𝜕𝜌𝑒
. (5-15) 

Note that the sensitivity function in this case has the opposite sign to the stiffness sensitivity 

function since the diffusion domain is the inverted solid domain. Density change therefore 

has an opposite effect on the diffusivity property. 

The stiffness and the diffusivity targets may be combined by summation to form a single 

objective. In this case, the design outcome aims to match one target property while 

maximising the other, or aims to match both target properties. 

5.2.4 Sensitivity analysis 

Let 𝛼 = 𝐷 (1 −
𝜕𝑢𝐷

𝜕𝑥
)  in Eq. (5-3) and 𝛼 = (1 −

𝜕𝑢𝐾

𝜕𝑥
)
𝑇

𝐾 (1 −
𝜕𝑢𝐾

𝜕𝑥
)  in Eq. (5-5), the 

generalized objective functions can be expressed as: 

 𝐽(𝜑) =
1

𝑉𝑅𝑉𝐸
∫ 𝐻(𝜑)𝛼𝑑𝑉
𝛺

 (5-16) 

The time derivative of the objective function can also be written in a general form [40]: 
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𝜕𝐽(𝑢, 𝜑)

𝜕𝜏
= ∫ 𝛿(𝜑)𝛽(𝑢, 𝜑)𝑣𝑛|∇𝜑|𝑑𝑉 (5-17) 

where 𝛽(𝑢, 𝜑)  is some local sensitivity function. Wang et al. had derived the shape 

derivatives for effective elasticity and effective conductivity in their study, and for a two-

phase stiffness problem, the shape derivative of Eq. (5-16) with respect to 𝜑 is [41]: 

 
𝜕𝐽(𝑢, 𝜑)

𝜕𝜑
= −

1

𝑉𝑅𝑉𝐸
∫ 𝛿(𝜑) (1 −

𝜕𝑢

𝜕𝑥
)
𝑇

𝐷 (1 −
𝜕𝑢

𝜕𝑥
)𝑑𝑉 (5-18) 

By chain rule, it can be deduced that 
𝜕𝜑

𝜕𝜏
= 𝑣𝑛|∇𝜑| . By comparing the time and shape 

derivatives, 𝛽(𝑢, 𝜑) from Eq. (5-17) can be expressed as: 

 

𝛽(𝑢, 𝜑) = −
1

𝑉𝑅𝑉𝐸
(1 −

𝜕𝑢

𝜕𝑥
)
𝑇

𝐷 (1 −
𝜕𝑢

𝜕𝑥
) 

= −
1

𝑉𝑅𝑉𝐸
𝛼 

(5-19) 

𝛽 does not contain an undetermined adjoint variable. Therefore, Eq. (5-17) can be rewritten 

as: 

 
𝜕𝐽(𝑢, 𝜑)

𝜕𝜏
= −

1

𝑉𝑅𝑉𝐸
∫ 𝛿(𝜑)𝛼𝑣𝑛|∇𝜑|𝑑𝑉 (5-20) 

Replacing stiffness with diffusivity will yield similar result. 

To satisfy the volume constraint, the net change in volume, ∆𝑉 = ∫ 𝑣𝑛𝑑𝑆Γ
, must be zero. 

Therefore, a volume correction term must be introduced to enforce the volume constraint. Let 

𝑣𝑛 = −(𝛼 + 𝜆), solve for 𝜆 results in the following condition [40], 

 

∆𝑉 = −∫ (𝛼 + 𝜆)𝑑𝑆
Γ

= 0 

𝜆 = −
∫ 𝛼𝑑𝑆
Γ

∫ 𝑑𝑆
Γ

 

(5-21) 
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where 𝜆 is the volume correction term. 𝜆 < 0 as 𝛼 = (1 −
𝜕𝑢

𝜕𝑥
)
𝑇

𝐷 (1 −
𝜕𝑢

𝜕𝑥
) > 0. Since 𝑑𝑆 

has already been discretised during the isosurface modelling process, the value of 𝜆 can be 

computed as a surface integral over the isosurface. 

Applying 𝛼 = −𝑣𝑛 − 𝜆, Eq. (5-20) becomes 

 
𝜕𝐽(𝑢, 𝜑)

𝜕𝜏
=

1

𝑉𝑅𝑉𝐸
∫ 𝛿(𝜑)𝑣𝑛

2|∇𝜑|𝑑𝑉 +
𝜆

𝑉𝑅𝑉𝐸
∫ 𝛿(𝜑)𝑣𝑛|∇𝜑|𝑑𝑉 (5-22) 

Due to the volume constraint, ∫𝛿(𝜑)𝑣𝑛|∇𝜑|𝑑𝑉 = 0, which leads to: 

 
𝜕𝐽(𝑢, 𝜑)

𝜕𝜏
≥ 0 (5-23) 

Therefore objective maximisation is guaranteed. 

The sensitivity is originally calculated in the unstructured FE domain, whereas the structural 

evolution occurs in the structured LSF modelling space. For this reason, the sensitivity 

information must be passed on from the unstructured mesh to the structured LSF system. To 

do so, firstly, the nodal sensitivity is interpolated from the elemental sensitivity using an 

inverse distance-weighted method. For each node, the nodal sensitivity is: 

 𝐽𝑛𝑜𝑑𝑒 =

∑
1
𝑑𝑖
𝐽𝑒𝑙𝑒𝑚𝑒𝑛𝑡,𝑖

𝑒

𝑖=1

∑
1
𝑑𝑖

𝑒

𝑖=1

 (5-24) 

where e is the total number of elements containing that particular node, and di is the distance 

from the node to the centroid of each element. Due to the large element-to-node ratio in the 

unstructured mesh, this process is accompanied by some numerical diffusion. Following this 

operation, the structured LSF sensitivity can be interpolated from the nodal sensitivity 

through another inverse distance-weighted interpolation: 

 𝛼𝑔𝑟𝑖𝑑 =∑
1

(𝑑𝑗 + 0.1ℎ)2

n

𝑗=1

𝐽node,j ∑
1

(𝑑𝑗 + 0.1ℎ)2

n

𝑗=1

⁄  (5-25) 
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where n is the total number of nodes around the individual LSF point, and dj is the distance 

from the LSF point to each node. Using the squared-weight reduces numerical diffusion. 

Here adding 0.1 grid space to the distance avoids division by zero in such interpolation 

process. 

   

Figure 5-2. Schematic of the iterative flood-filling operation. Green dots represent the points 

filled by the operation; and blue dots are the points in the von Neumann neighbourhood, to be 

filled in the next iteration. 

A change in topology can only occur if there is a change in sign (+/−) in the LSF. Hence, a 

regional velocity function that covers the band of Γ:𝜑(𝑥) = 0 is sufficient to trigger the 

required structural evolution, since only the points in this band can experience sign-change. 

The rest of the velocity function can be either disregarded or constructed using an alternative, 

time-efficient but less accurate algorithm without affecting the overall optimisation. As the 

aforementioned interpolation process (Eq. (5-24)-(5-25)) already covers the entire band of the 

isosurface, the result of Eq. (5-25) can be readily used as the velocity function. The flood-

filling technique is employed to construct the rest of velocity function as illustrated in Figure 

5-2. 

Timely re-initialisation of the level set function helps regulate the structural evolution [42]. 

The re-initialisation aims to regenerate the LSF as a signed-distance function. In this study, 

this is a straight forward process as the distance between each LSF point and the level-set –

isosurface can be computed directly. In addition, the periodic boundary condition and 

isotropy of RVE is maintained through some numerical operations (see section 4.2.2.2). 
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5.2.5 Computational viability simulation 

In seeded scaffolds, cells occupying the porous space are known to affect the actual effective 

diffusivity [4]. As a result, the initially scaffold diffusivity may change or deteriorate as the 

cell population grows and becomes an oxygen transport barrier. To assess the actual 

optimality of the obtained models, steady-state diffusion tests were conducted and cell 

viability in two different structures were compared, one optimised and the other non-

optimised. In principle, higher oxygen concentration and high cell density are indicators of a 

better design. The effectiveness of the scaffold design can be assessed in term of cell viability 

and the steady-state oxygen concentration.  

The steady-state oxygen consumption model is governed by the standard diffusion equation: 

 
𝜕

𝜕𝑥
(𝐷

𝜕𝐶

𝜕𝑥
) + 𝑆 = 0 (5-26) 

where C is the oxygen concentration, D is the diffusivity of oxygen in the diffusion medium, 

and S is the oxygen consumption rate. 

To solve this nonlinear equation, it is necessary to correlate both the consumption rate (S) and 

the oxygen diffusivity (D) to the oxygen concentration (C) or the cell density. Every term in 

Eq. (5-26) can be expressed as a function of the oxygen concentration (C), which is the only 

degree of freedom per node. A pre-defined relationship between the oxygen concentration 

and cell viability is required to assess the viability. In this study, such relationship is derived 

from the experimental data reported by Radisic et al [43] (Figure 5-3).  
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Figure 5-3. Cell viability versus oxygen concentration plot. 

The oxygen consumption term from Eq. (5-26) has been implemented as a wall flux 

boundary condition. The relationship between oxygen consumption and oxygen concentration 

is governed by the Michaelis-Menten kinetics, and formulated as: 

 𝑆 = 𝑆0𝑁
𝐶

𝐶 + 𝑘𝑚
 (5-27) 

where S is the oxygen flux (consumed), S0 is the maximum oxygen consumption rate per cell, 

N is the cell number, and km is the Michaelis–Menten constant of half oxygen consumption. 

This study adopted the set of parameters and material properties of NIH-3T3 cells used by 

Kang et al. [4]. The maximum oxygen consumption rate S0 is 7.9×10
-17

 mole/cell/s. The 

Michaelis–Menten constant km is 1.547 μM [44]. In this study, cell densities N of 2.5×10
5
 and 

1×10
6
 cells/cm

3
 were used without considering cell proliferation or cell death. 
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Figure 5-4. Boundary conditions and domain size of the test models. The red boundary is the 

source with the fixed oxygen concentration. 

The simulation was carried out in a 0.5×0.5×2.5 cm
3
 modelling domain (Figure 5-4). The 

optimised scaffold model was created by stacking five optimal cubic RVEs in the direction of 

oxygen flow (from left to right as illustrated). The non-optimised model was created from the 

CT-image of a porous tissue scaffold. To simulate the oxygen transport, one face (0.5×0.5 

cm
2
) of the scaffold model was exposed to a fixed oxygen source at a concentration of 0.1 

µmol/ cm
3
 (Figure 5-4, red face on the left). The cell distribution on the scaffold internal 

solid surface was assumed to be initially uniform. To account for the effect of cell deposition 

on oxygen diffusivity, the porous space occupied by cells was treated as non-diffusive. The 

resultant fluid diffusivity was calculated based on the simple rule of mixture, i.e. the 

diffusivity was made directly proportional to the fluid volume fraction. The total non-

diffusive volume fraction is equal to the cell number multiplied by the cell volume (1.3×10
-19

 

cm
3
 / cell [45]).  

 

5.3 Results and discussion 

Past studies have applied multiobjective topology optimisation technique to the design of 

tissue scaffolds, and improved their transportation and mechanical properties [17-23]. 
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However the characterisation of the optimal topology has been problematic due to the use of 

fixed-mesh modelling in these studies, as FE modelling quality was readily traded off for 

programming simplicity. A smooth isosurface modelling technique has been thereby 

proposed and developed, based on the level set method. The primary goal of this study is to 

accurately define and characterise multiobjective optimisation models with maximised or 

desired material properties. Additional oxygen consumption simulations have been conducted 

to assess the optimality of the obtained solutions in terms of cell viability and oxygen 

concentration. 

5.3.1 Isosurface modelling and setup 

In this study, the smooth isosurfaces were generated from the structured array of level set 

function, at a resolution of 37×37×37 (c.f. Figure 5-5). Prior to the volume mesh generation, 

mesh smoothing was applied to the unrefined isosurface to remove any poorly shaped surface 

element. The mesh smoothening was carried out through an iterative clean-up process that 

removed all triangles whose constituting edges fell short of a given tolerance (0.75 × level set 

grid length). The resultant triangulated surfaces were more evenly sized and spaced after the 

operation. During the body mesh generation by Iso2Mesh [30] and tetgen  [31-33], additional 

nodes were added to the isosurface to improve the mesh quality. 

An isosurface-based FE model was developed from a CT-image of a tissue scaffold. This 

model was comparable to the optimised model in terms of pore connectivity, solid integrity, 

and volume fraction. In this unstructured RVE model, the total volume of isolated or poorly 

connected pores was about 1-2% of the RVE volume; such void volume was converted and 

merged into the solid. In the final model, both solid and fluid domains were continuous and 

each had the volume of 50% of the total volume of the modelling space, the same as the 

optimised model. The scaffold CT-image, 0.24×0.24×1.2 mm
3
 in size, was scaled to 
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0.5×0.5×2.5 mm
3
, at the resolution of 41×41×201. The optimised model was created by 

stacking five 0.5×0.5×0.5 mm
3
 RVEs in a row. In the cell viability assessment, 10% of the 

total fluid volume was considered occupied by cells, which were considered non-conductive. 

 

Figure 5-5. The isosurface model of the fluid phase of an unstructured scaffold extracted 

from a CT-scan image. This model served as the surface mesh of the FEA model. 

5.3.2 Topology optimisation  

Cubic RVEs were optimised under symmetry, periodicity and isotropy modelling conditions 

(Figure 5-6a-c). Both solid and fluid volume fractions of the RVEs remained constant at 50% 

throughout the design process. The starting model used in this optimisation process was a 

solid cube with three intersecting square channels.  

The normalisation of diffusivity and bulk modulus requires the maximum diffusivity and the 

maximum bulk modulus to be determined first, by running the topology optimisation with w 

= 0 and w = 1 (Eq. (5-10)), respectively. The maximum effective diffusivity obtained is 0.4 

(unit length
2
 / s), which coincides with the Hashin-Shtrikman upper bound, whereas the 

maximum effective bulk modulus obtained is 0.2316 (pressure unit, with Poisson’s ratio = 

0.3 and elastic modulus E = 1 unit). However in these two cases, there is phase discontinuity 

in the solid phase and porous phase in the maximum diffusivity and maximum bulk modulus 
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models, respectively (Figure 5-6(a) and (c). Such discontinuity also implies zero bulk 

modulus or zero diffusivity. These two cases correspond to the points at two ends of the 

Pareto front curve (Points A and C in Figure 5-6d). From the design perspective, maximising 

one material property would compromise the other. In the same figure, the normalised 

diffusivity and bulk modulus of the unstructured scaffold (CT-image) were marked by Point 

D, with a diffusivity of 0.2064 (unit length
2
 / s) and bulk modulus of 0.1083 (pressure unit), 

or 51.6% and 46.8% of the maximum achievable diffusivity and bulk modulus, respectively. 

   

(a) Maximum diffusivity 

(Point A)  

(b) Maximum combination 

(Point B) 

(c) Maximum bulk modulus 

(Point C) 

 
(d) Normalized Pareto front 

Figure 5-6. Multiobjective topology optimisation. (a), (b) and (c) are the fluid domains of the 

optimised models at w = 0, 13/28, 1, respectively. (d) is the Pareto front of the dual-objective 

optimisation. 
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The Pareto front in Figure 5-6(d) is generated by varying the weight ratio, 
1−𝑤

𝑤
 (Eq. (5-10)). 

The concave profile reflects the maximisation nature of this problem, in contrast to the 

convex profile found in other studies that used minimisation formulation [17]. This Pareto 

front contains two fairly straight segments and an acute change in the gradient at an objective 

weight of w = 13/28 (Point B). This result shows that there exist some design solutions that 

have a reasonably high combination of effective diffusivity and effective bulk modulus, with 

a weight ratio that slightly favours diffusivity (the blue dotted line in Figure 5-6(d)). The 

optimised models obtained around this weight ratio have 50% higher material properties than 

those of the unstructured scaffold sample. The optimised topology found in this study agrees 

with the results obtained in the past optimisation studies [19]. However, the smooth 

isosurface-based models enable smoother mapping of the Pareto front, compared to the 

scattered results produced by the voxelised modelling [18]. The optimum design selected for 

the comparative study in a later section has a weight ratio of 13/28 (Figure 5-6b). 

5.3.3 Inverse homogenisation with a diffusivity target 

Having determined the maximum achievable value of diffusivity, it was possible to create 

targets within this value and carry out the inverse homogenisation to build microstructures 

with designated diffusivity. Using the same volume constraint ( 𝜌𝑠𝑜𝑙𝑖𝑑 = 50% ), two 

diffusivity targets were established, one at 50% of the theoretical maximum ( 𝐃∗ =

0.50𝐃𝑚𝑎𝑥) and the other at 75% of the theoretical maximum (𝐃∗ = 0.75𝐃𝑚𝑎𝑥), in which 

𝐷𝑚𝑎𝑥 = 0.4 for 𝜌𝑠𝑜𝑙𝑖𝑑 = 50% (Table 5-1). 

The optimisation results show that there is no unique structural solution if the diffusivity 

target is lower than the theoretical maximum (𝐷𝑚𝑎𝑥 = 0.4). In other words, different RVE 

structures can be found for the same design criteria. As shown in Table 5-1 a-c, three 

different initial models had evolved into three distinct structural solutions, which all have the 
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same effective diffusivity value, 𝐃∗ = 0.2. Changing the optimisation parameters such as the 

penalisation factor in SIMP also affected the shape of final solution. It is reasonable to 

suggest that there exist infinitely many solutions for any diffusivity target as long as 𝐃∗ <

0.4. Results in Table 5-1a and Table 5-1d show that with different diffusivity targets but the 

same initial model, the resultant RVE shapes would be similar. 

Table 5-1. Inverse homogenisation solutions with different diffusivity targets. Three different 

initial models had been used: model 1 for cases (a) and (d), model 2 for case (b), and model 3 

for case (c). 

Target and initial model 

(𝜌𝑎𝑣𝑔 = 50%) 

Optimised base cell Periodic structure 333 

(a) Initial model 1 

D∗ = 0.50Dmax 

DH = [
0.2020 0 0
0 0.2020 0
0 0 0.2020

] 

 

 
(b) Initial model 2 

D∗ = 0.50Dmax 

DH = [
0.2000 0 0
0 0.2000 0
0 0 0.2000

] 

 
 

(c) Initial model 3 

D∗ = 0.50Dmax 

DH = [
0.2006 0 0
0 0.2006 0
0 0 0.2006

] 
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(d) Initial model 1 

D∗ = 0.75Dmax 

DH = [
0.2995 0 0
0 0.2995 0
0 0 0.2995

] 

 

 

 

5.3.4 Combined stiffness and diffusivity target 

Alternatively, different property targets would consolidated in a multiobjective topology 

optimisation. The inverse homogenisation could therefore be carried out with different targets 

and weight ratios (𝑤) to develop a range of RVE solutions and the Pareto front (Table 5-2), 

only as a minimisation problem. The results obtained in this study are consistent with results 

found in the past studies [10]. By comparing Table 5-2 and Figure 5-6, isosurface models 

show superior quality at the same modelling resolution. 

Table 5-2. Optimised topologies with combined stiffness and diffusivity design criteria. 

Design with combined 

stiffness and diffusivity 

Optimised base cell Periodic structure 222 

𝑤𝑆 = 1.0, 𝑤𝐷 = 0.0 

𝐶11
𝐻 = 𝐶22

𝐻 = 𝐶33
𝐻 = 0.4412 

𝐶44
𝐻 = 𝐶55

𝐻 = 𝐶66
𝐻 = 0.1006 

𝐷11
𝐻 = 𝐷22

𝐻 = 𝐷33
𝐻 = 0 

 

 

𝑤𝑆 = 0.92, 𝑤𝐷 = 0.08 

𝐶11
𝐻 = 𝐶22

𝐻 = 𝐶33
𝐻 = 0.3861 

𝐶44
𝐻 = 𝐶55

𝐻 = 𝐶66
𝐻 = 0.0880 

𝐷11
𝐻 = 𝐷22

𝐻 = 𝐷33
𝐻 = 0.0269 
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𝑤𝑆 = 0.64, 𝑤𝐷 = 0.36 

𝐶11
𝐻 = 𝐶22

𝐻 = 𝐶33
𝐻 = 0.3443 

𝐶44
𝐻 = 𝐶55

𝐻 = 𝐶66
𝐻 = 0.0744 

𝐷11
𝐻 = 𝐷22

𝐻 = 𝐷33
𝐻 = 0.1538 

 

 

𝑤𝑆 = 0.48, 𝑤𝐷 = 0.52 

𝐶11
𝐻 = 𝐶22

𝐻 = 𝐶33
𝐻 = 0.3336 

𝐶44
𝐻 = 𝐶55

𝐻 = 𝐶66
𝐻 = 0.0714 

𝐷11
𝐻 = 𝐷22

𝐻 = 𝐷33
𝐻 = 0.3237 

 

 
𝑤𝑆 = 0.0, 𝑤𝐷 = 1.0 

𝐶11
𝐻 = 𝐶22

𝐻 = 𝐶33
𝐻 == 0 

𝐶44
𝐻 = 𝐶55

𝐻 = 𝐶66
𝐻 == 0 

𝐷11
𝐻 = 𝐷22

𝐻 = 𝐷33
𝐻 = 0.3975 

 

 
 

5.3.5 Cell viability assessments 

So far, the topology optimisation had been conducted without considering the effect of cells 

seeding and proliferation on the diffusivity. The actaul cell viability also remained an 

unknown. To assess the actual improvement brought about by the optimised design, several 

comparison tests were performed. 

The viability assessment results have shown an improved overall viability condition in the 

optimzed structure (Figure 5-7). With a uniform seeding density of 2.5×10
5
 cells/cm

3
, the 

unstructured scaffold shows a steeper drop in the oxygen concentration and a significantly 

longer proportion of scaffold at the state of hypoxia (depth > 0.1 cm) than that in the 

optimised structure. Also in the region 0–0.1 cm, the deviation of oxygen concentration (the 
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width of vertical spread of points) in the unstructured scaffold appears to be much greater. On 

the other hand, the oxygen drop in the optimised scaffold exhibits some periodic pattern and a 

narrower deviation, which reflect the structured periodicity of the optimised model.  

 
(a) 

 
(b) 

Figure 5-7. Oxygen concentration profile (a) and viability (b) of the optimised structure and 

the specimen of unstructured scaffold under uniform seeding condition. The values in the 

legend indicate cell seeding density. 

Figure 5-7b shows that the viability in the unstructured scaffold is up to 20% higher in the 

region within 0.05 cm from the scaffold surface, compared to that of the optimised scaffold. 
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At a seeding density of 2.510
5
 cells/cm

3
, the cell viability in the optimised structure drops 

below 25% at a depth of 0.05 cm; in comparison, the cell viability in the unstructured 

scaffold drops below 25% at 0.07 cm. However, the viability in both structures drops below 

5% at a depth of 0.1 cm, and below 1% at 0.1 cm for the unstructured scaffold and 0.2 cm for 

the optimised scaffold. Furthermore, the deep scaffold region (> 0.15 cm) is nearly unviable 

in the unstructured scaffold. Increasing the uniform seeding density to 1×10
6
 cells/cm

3
 in the 

optimised scaffold lowered the viability by approximately 20% near the source (< 0.05 cm) 

and 1% in the deep region (0.25 cm).  

 
(a) Oxygen concentration 
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(b) Local cell density 

Figure 5-8. Oxygen concentration profiles (a) and cell number (b) of the optimised structure 

and the unstructured scaffold under variable seeding density condition. 

In the second part of this simulation, the cell distribution in tissue scaffolds were assessed 

without the assumption that seeding density could remain uniform and constant. As the 

seeding density became a variable, the cell viability was rewritten as a function of oxygen 

concentration. With these modifications, the resultant cell distribution still showed an 

improved steady-state oxygen concentration and cell uniformity in the optimzed scaffold 

(Figure 5-8). It was found that at a maximum cell density of 5×10
6
 cells/cm

3
, the oxygen 

concentration as well as the living cell number was more uniform in the optimised scaffolds. 

The smaller deviation in oxygen concentration and the higher cell number in the optimised 

scaffold confirmed that optimising effective diffusivity had improved the cell living 

condition. Figure 5-8 (b) further shows that the deviation in cell number (as in the vertical 

spread of data points) in the optimised scaffold is much smaller than that in the unstructured 

scaffold regardless of the maximum seeding density. Changing parameters such as the size of 

simulation domain, the size of RVE, cell density, oxygen consumption rate, or the boundary 

conditions had not affected the general oxygen concentration pattern. 



186 

 

As shown in Figure 5-8, it was observed that the cell viability and cell number were sensitive 

to the seeding density even in the deep scaffold region where the viability could be extremely 

low. It was found that increasing seeding density from 1×10
7
 to 5×10

7
 cells/cm

3
 resulted in a 

net decrease in the living cell number in the deep region (> 0.2 cm), due to the worsening 

hypoxia. It is not clearly shown in the figure that the red line is very slightly lower than the 

green line for depth greater than 0.2 cm when zoomed in. This suggests a conflict between 

the maximisation of total cell number and maintaining the uniformity of cell distribution. In 

other words, cell distribution tends to be more uniform if the cell density is lowered. It was 

also found that for all tested seeding densities, the oxygen diffusivity across cells did not have 

a significant effect on the simulation outcome. On the other hand, changing the oxygen 

diffusivity across fluid would directly affect the oxygen concentration gradient, nevertheless 

the pattern in the cell distribution profile remained the same. 

The relationship between cell viability and structural tortuosity (how twisted pores are) is 

well-established by the past studies [8]. A closer inspection of this unstructured scaffold 

model reveals that at a depth of 0.1 cm, there are only three very narrow fluid passages 

connecting the major pores (Figure 5-5c). Such poor connectivity unsurprisingly coincides 

with the pattern of the highest oxygen drop shown in Figure 5-7. The 0.1 cm depth also 

becomes the cut-off depth of viable cell seeding. Other structural irregularities such as highly 

tortuous and fragmented passages are also found at depths of 0.04 and 0.19 cm (Figure 5-5c). 

Overall, structural defects have a random distribution, and the results of Figure 5-7 may be 

characteristic only of the CT-image used in this study. Increasing the sampling dimension of 

the unstructured scaffold should improve the homogeneity of material properties and the 

uniformity of oxygen concentration [46]. Nevertheless, this cell distribution assessment 

highlights the adverse effect of the scaffold tortuosity as well as the benefit of topology 

optimisation.  
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These comparison tests have shown that the outcome of cell seeding is influenced by more 

than just the structural properties. Having the same porosity (50%) and interconnectivity 

(100%), the optimised scaffold model clearly outperforms the unstructured scaffold in terms 

of diffusivity, bulk modulus, and cell viability. Therefore the importance of topological 

characteristics of tissue scaffolds in diffusion-driven cell seeding should not be overlooked. 

The size and number of narrow pore connection for example, are decisive factors of 

successful cell infiltration. Design optimisation therefore has helped create a more efficient 

and more consistent transport environment across the tissue scaffolds.  

5.4 Programming considerations 

To correctly compute the effective diffusivity and the bulk modulus, both fluid and solid 

phases must be fully connected and continuous in the modelling space. Otherwise, any 

unconnected solid part would result in computational singularity, whereas unconnected pores 

would not be able to contribute to diffusive transport. For these reasons, discontinuities such 

as voids embedded in the solid were not modelled during the construction of the CT-image-

based FE model. 

Due to the non-linear nature of the oxygen consumption (Eq. (5-27)), the steady-state oxygen 

concentration were obtained through an iterative solution method. It was found that 

increasing the cell number or the oxygen consumption rate per cell would affect the 

convergence.  

In this study, most of the seeding scenarios involved a relatively small volume of cells (~1% 

volume with the seeding density of 1×10
7
 cells/cm

3
), thus the volumetric effect of cells on the 

diffusivity and the oxygen transport efficiency had been marginal. The use of rule of mixture 

was therefore justified when estimating the effective oxygen diffusivity through fluid.  
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5.5 Concluding remarks 

A porous tissue scaffold should accommodate cell growth and allow efficient nutrient 

transportation across the entire construct. To achieve this, the pore network must be well-

connected to enable cell infiltration and oxygen diffusion. Meanwhile, the mechanical 

strength and the structural integrity must not be compromised.  

This study has formulated the scaffold design problem as a multiobjective optimisation 

problem, and has incorporated the smooth isosurface modelling technique to improve model 

definition and numerical accuracy. A renovated level set optimisation method is presented 

here with modified sensitivity analysis and topology update process. Based on the effective 

diffusivity and effective bulk modulus criteria, a range of optimal cubic RVE models has 

been obtained, ranging from the maximum effective diffusivity structure to the maximum 

effective bulk modulus structure. This set of design solutions are consistent with those 

voxelised models obtained in the past studies. However, the isosurface modelling technique 

has demonstrated its higher modelling capacity with more accurately defined microstructures 

in topology optimisation.  

The cell viability simulation has been conducted to evaluate the effectiveness of the 

optimised scaffold model, in comparison to an unstructured scaffold model constructed from 

a CT-image. The simulation results confirm that the optimised model provides a more viable 

environment. The results have also revealed that the connectivity defects and tortuosity in the 

unstructured model severely impact the effective oxygen transport. In summary, this 

comparative test makes evident the benefit of having an optimised and well-organized 

microstructure. 
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6 Optimisation of Nutrient Transport and Cell Viability 

 

The survival of cells in porous tissue scaffolds relies on efficient and sustained oxygen 

transport, which is especially important in static culturing conditions. However, cell 

deposition and proliferation can create diffusion barriers and subsequently affect the oxygen 

transport across the scaffold construct. Consequently, regional hypoxia and cell death occurs. 

To improve the cell seeding condition in a scaffold, this study proposes applying method of 

structural optimisation to the structural design and examine the influence of graded porosity 

profile on the steady-state cell seeding outcome. The goal of this study is to determine the 

optimal porosity profile of tissue scaffold for cell growth and viability. 

One-dimensional steady-state cell growth simulation has been conducted and the response 

surface method has been employed to configure the structural profile of scaffold and improve 

cell living conditions. The optimal scaffold porosity structures for cell growth were to be 

profiled as a function of depth. The effect of the manipulation of porosity profile on oxygen 

level and cell viability was then assessed. 

 

6.1 Introduction 

Insufficient nutrient supply and ill cell distribution are two major challenges facing the tissue 

scaffold engineering [1, 2]. Cells in static cultures in particular often suffer from hypoxia as 

they rely on diffusion to drive oxygen transport [3]. It is known that increasing cell 

population reduces nutrient transport efficiency [4], which can develop into hypoxia and 

result in the deterioration of cell vitality in the core region of tissue scaffolds [5]. 

Consequently, the viable living space shrinks and is limited to the region near the scaffold 

boundary [6, 7]. It is also suggested that the non-uniform cell deposition across a tissue 
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scaffold, induced by uneven nutrient distribution, may form a self-imposed transport barrier 

and further deepens cell distribution deviation [8]. Thus loss in transport efficiency becomes 

inevitable as the cells populate the pores near the scaffold surface. The solution to sustaining 

nutrient supply may lie in the structural design of porous tissue scaffolds, which aims to 

minimise the adverse effect of cell deposition on nutrient supply. 

The structural design of tissue scaffolds has been a key research topic with a special focus on 

the regulation of cell migration [8, 9] and vascularisation [10]. Pore connectivity is 

commonly used as a design requirement to ensure unimpeded cell infiltration and general 

mass movement [11]. Some common strategies for promoting cell infiltration include 

increasing global porosity, introducing micro-porosity (smaller than typical cell size) for the 

transport of oxygen and chemical species [7], and constructing macro-porous network for 

nutrient transport and cell migration  [2]. While high porosity is preferred due to its apparent 

benefit to diffusion, short diffusion depth remains a primary limiting factor of how far cells 

can stay alive from nutrient supply [7]. High porosity also compromises structural strength 

[12, 13]. 

A direct solution to the nutrient transport problem is the use of perfusion system. Past studies 

have demonstrated the effectiveness of advection in overcoming physical transportation 

barriers, elevating nutrient concentration and improving uniform cell distribution across 

scaffolds [14]. The significant improvement in both nutrient concentration and cell survival 

rate makes advection an almost essential condition for cell seeding. However, forced nutrient 

movement is accompanied by elevated wall shear stress, which could threaten cell attachment 

and survival [15]. This drawback can potentially negate the benefit of increase nutrient 

concentration. In a high flow rate scenario, forced fluid flood becomes detrimental to cell 

survival [14]. For this reason, wall shear stress constraint outweighs the nutrient transport 
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constraint at a high flow rate. The implementation of perfusion system is therefore double-

edged and the benefit is not unlimited. 

Past studies have applied topology optimisation on the scaffold microstructures and produced 

architectures with maximised transport efficiency and mechanical properties [16], and 

optimised wall shear stress distribution [17]. Functionally graded design has also shown 

potential in facilitating scaffolded bone remodelling [18]. Despite the success of structure 

optimisation, the interaction between the topology of tissue scaffolds and the living tissue is 

rarely used directly as a design criterion [19]. It remains unclear that to what extent the 

optimisation of microscopic structure can favourably affect the steady state seeding outcome. 

To produce more realistic design solutions, the cell activities must be taken into account. This 

requires incorporating porosity modelling, diffusion-advection computation, and optimisation 

using cell viability as the design criterion. This optimisation study aims to link the diffusion 

transport mechanics and the cell proliferation outcome, and to determine the steady-state 

porosity profile of tissue scaffolds in which cell viability is maximised and the even cell 

distribution is achieved. 

 

6.2 Optimisation of porosity profile 

The importance of scaffold porosity in nutrient transport and cell survival is well recognized 

in tissue engineering [10, 20]. However, porosity is rarely considered as a design variable in 

tissue scaffold design. The idea of a functionally graded design in particular, i.e. a scaffold 

with different porosities at different depths, has yet been fully explored and implemented. 

This is also unknown whether higher cell survival rate can be achieved by manipulating the 

diffusion efficiency across scaffolds. To investigate the potential of variable-porosity 

structure for tissue engineering purposes, this study carries out optimisation on the scaffold 
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porosity and aims to determine the optimal porosity profile that results in the maximum cell 

viability. 

This structural optimisation seeks improvement in the total cell number, viability and cell 

infiltration length by altering regional scaffold porosity. The optimisation procedure has two 

components: the computation of cell proliferation and the optimisation of the porosity profile. 

The nonlinear diffusion system is firstly solved to predict the steady-state cell density and 

oxygen concentration [21]. The sensitivity of oxygen concentration, cell number and cell 

viability to the change in porosity is then determined using the response surface method, and 

then the porosity profile is updated. This process is performed repeatedly until the objectives 

can no longer be improved. 

6.2.1 Oxygen diffusion-advection modelling 

Oxygen diffusion-advection model can be created to simulate changing oxygen concentration 

over time as a result of oxygen intake by cells. This model represents the scaffold 

environment that contains tissue scaffold materials, cells and fluid. Cell number and oxygen 

concentration in the tissue scaffold can be determined, and subsequently be used to predict 

the final living cell number under different seeding conditions. The model is constructed as 

shown in Figure 6-1a: a cubic scaffold with homogeneously porous structure is seeded with 

cells, with only one of the six faces being exposed to an oxygen and nutrient source. All other 

five surfaces are walls, sealed to disallow transportation in or out of the model. If there is 

fluid flow, the surface opposite to the source is assumed to be a flow outlet. This system can 

be effectively translated to a one-dimensional (1D) model in which all variables are 

formulated as a function of depth, which is the distance to the oxygen source (x, Figure 6-1b).  
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Figure 6-1.  Schematic representation of (a) scaffold microstructure and boundary 

conditions; and (b) volume fraction of various constitutes. 

The model has three volumetric constitutes: scaffold, cells, and a purportedly fully-

connected, fluid-filled porous space. The porous space is the only constitute that allows 

diffusion and advection to occur. The porosity is assumed to be homogeneous on the 

macroscopic level in the non-x directions, so that the transport properties do not vary in the 

non-x directions. Based on this assumption, the oxygen diffusivity and permeability can be 

formulated as a function of x-porosity only. The primary design variable is the solid volume 

fraction (ρ), which is the volume ratio of the modelling space occupied by the scaffold 

materials; the remaining volume is divided into two fractions according to their effective 

transport properties: cell volume fraction (v) consisting of cells and the space rendered 

inaccessible for oxygen transport, and an effective fluid volume fraction that has full fluid 

diffusivity and conductivity. More precisely, this cell volume fraction value represents the 

space occupied by cells, which is treated as impermeable in this diffusion-advection system. 

The solid and the cell volume fraction together form an effective solid volume fraction (ρ
*
) 

which represents the total non-conductive, non-permeable space (Figure 6-2, black and grey 

regions). The transportation properties of tissue scaffold exist in the fluid phase (Figure 6-2, 

white region).  
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Figure 6-2.  Schematic representation of the cell settlement in a tissue scaffold. 

The oxygen concentration is the primary degree of freedom in this diffusion-advection 

model. The steady-state concentration is governed by the following equation: 

 
𝑑

𝑑𝑥
(𝐷

𝑑𝑢

𝑑𝑥
) − 𝑉

𝑑𝑢

𝑑𝑥
+ 𝑆 = 0 (6-1) 

where u is the oxygen concentration, D is the oxygen diffusivity across the fluid, 𝑉 is the 

fluid flow rate, and S is the oxygen uptake rate. Diffusivity, fluid flow rate and oxygen uptake 

rate are all directly related to the local cell number and are indirectly related to the oxygen 

concentration. 

The cell volume and oxygen uptake rate are written as functions of u: 

 𝑣 = 𝑣0𝑁(𝑢) (6-2) 

 𝑆 = 𝑆0𝑁(𝑢) ×
𝑢

𝑘𝑚 + 𝑢
 (6-3) 

where v is the cell volume fraction (ml/ml), v0 is the volume of one single cell (ml/cell), N is 

the local cell density (cells/ml), S0 is the maximum oxygen uptake rate (mol/cell), and km is 

the Michaelis–Menten constant for half oxygen uptake rate (μM). 
𝑢

𝑘𝑚+𝑢
 can be regarded as 

the level of cell activity and has a value between 0 and 1. 

In this study, the effective diffusivity is formulated as a function of porosity, based on the 

Hashin-Shtrikman upper bound equation [22]: 
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 𝐷 = 𝐷∗ [1 −
3(𝜌 + 𝑣)

2 + (𝜌 + 𝑣)
]

𝑝

 (6-4) 

where D
*
 is the nominal diffusivity of oxygen in water, 𝜌 is the solid volume fraction, and p 

is a penalisation factor. Note that 𝜌 + 𝑣 is equal to 1 minus the porosity. For 𝑝 = 1, the 

scaffold architecture is theoretically ideal for diffusion and has the highest possible 

diffusivity. The 𝑝  value has been set to 1.2 in this study since the random scaffold 

microstructure is unlikely to be optimal. The 𝑣  value may be adjusted if the cells are 

considered partially-permeable or partially-conductive. 

To obtain a deterministic solution in this biological model, it is necessary to pre-define the 

cell number, N, as a function of the oxygen concentration, u. The cell viability to oxygen 

concentration relationship has been derived from the experimental data reported by Radisic et 

al [23] (Figure 6-3). The non-linear diffusion model is solved iteratively in the order of u, N, 

S, D and lastly V until the concentration profile (u) converged. Volume constraint, 𝜌𝑚𝑖𝑛 ≤

𝜌(𝑥) ≤ 𝜌𝑚𝑎𝑥 , can be applied to restrict the solidity or porosity of scaffold model to a 

desirable range. 

  
 

O2 (μmol/cm
3
) Viability 

0 0 

0.031566 0.001186 

0.045817 0.002348 

0.062977 0.004882 

0.082868 0.01118 

0.105443 0.030186 

0.13079 0.104348 

0.148053 0.26646 

0.155201 0.402484 

0.162518 0.621118 

0.170063 1 

Figure 6-3.  Cell viability versus oxygen concentration.  Table 6-1. Estimated cell 

viability by Radisic et al [30]. 
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In the diffusion models developed in this study, most design constraints have been chosen 

with the intention to produce generic results that are representative of common cell seeding 

scenarios. The design space was constructed as a 1 cm
3
 cube (Figure 6-1a and Figure 6-2). 

The concentration on the left boundary (x = 0 cm) was kept at u = 175 μM whereas the right 

boundary (x = 1 cm) was the flow outlet (see Figure 6-1b). The upper limit (𝜌𝑚𝑎𝑥) and lower 

limits (𝜌𝑚𝑖𝑛) of the local solid volume fraction were set to 50% and 30%, respectively. The 

cell volume was assumed to be 1.3 × 10−9  ml/cell [24]. It was also assumed that the 

maximum number of cells that the peak oxygen concentration (175 μM) could support was 

1.61 × 108 cell/mL and each cell consumed oxygen at a rate of 7.9 × 10−11 μmol/s/cell [25]. 

The nominal diffusivity, D
*
, from Eq. (6-4) is 2.0 × 10−5 (cm

2
/s), the same as water. The 

Michaelis–Menten constant of half oxygen consumption, 𝑘𝑚, is 1.547 μM [25]. 

6.2.2 Numerical implementation 

Since this diffusion-advection system is non-linear, it has to be solved iteratively in a time 

domain: 

 
𝑑𝑢

𝑑𝑡
=
𝑑𝐷

𝑑𝑥

𝑑𝑢

𝑑𝑥
+ 𝐷

𝑑2𝑢

𝑑𝑥2
− 𝑉

𝑑𝑢

𝑑𝑥
+ 𝑆(𝑥) (6-5) 

where u is the oxygen concentration, 𝑡 is the time, D is the diffusion coefficient (diffusivity), 

V is the flow velocity, and S is the oxygen consumption rate. The flow velocity is constant 

across the scaffold. Diffusivity and velocity are functions of the total impermeable volume 

fraction (𝜌∗ = 𝜌 + 𝑣) as defined earlier. The flow velocity across a porous tissue scaffold can 

be calculated based on Darcy’s Law [26], 

 

𝑉 = −
𝐾

𝜇

𝑑𝑃

𝑑𝑥
 

= −
1

∫𝑅𝑑𝑥

1

𝜇

𝑑𝑃

𝑑𝑥
 

(6-6) 

where K is the overall scaffold permeability, μ is the fluid viscosity, 𝑑P is the pressure 

change across the scaffold, 𝑑x is the scaffold thickness, and R is the local flow resistance. K 
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is the inverse of the sum of flow resistance. A negative pressure drop has been used to induce 

flow in the positive-x direction. 

A simplistic permeability-porosity relationship is formulated based on the Kozeny-Carman 

equation: 

 𝐾𝑙𝑜𝑐𝑎𝑙 =
𝐴𝜑3

𝑆2(1−𝜑)2
. (6-7) 

where Klocal is the local permeability, A is a material constant, S is the specific surface area, 

and φ is the local porosity. To simplify the model, let 𝐴 = 1 and 𝑆 = 1. Local flow resistance 

R is the inverse of local permeability 𝐾𝑙𝑜𝑐𝑎𝑙, 

 𝑅 =
1

𝐾𝑙𝑜𝑐𝑎𝑙
=

(1−𝜑)2

𝜑3
. (6-8) 

As a function of 𝜌 and 𝑣, it can be written as: 

 𝑅 =
(𝜌+𝑣)2

(1−𝜌+𝑣)3
. (6-9) 

The sizing of time step must obey the Courant–Friedrichs–Lewy condition (CFL condition), 

which imposes a limit on how much the degree of freedom can be changed per iteration. The 

time step sizes of all individual terms from the governing equation must be considered: 

 

𝑑𝑡1 =
ℎ0ℎ

𝑉
 

𝑑𝑡2 =
ℎ0ℎ

max (𝐷)
 

𝑑𝑡3 =
ℎ0ℎ

max (
𝑑𝐷
𝑑𝑥
)

 

𝑑𝑡 = min (𝑑𝑡1, 𝑑𝑡2, 𝑑𝑡3) 

(6-10) 

where h is the length of the finite-difference mesh, and ℎ0 is the desired step size. 0 ≤ ℎ0 ≤

1. 
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6.2.3 Optimisation by response surface method 

This structural optimisation aims to optimise cell seeding efficiency in tissue scaffolds at the 

steady state. The optimisation algorithm consists of two processes, namely the oxygen 

consumption simulation and the optimisation (Figure 6-4). Three design objectives are (1) 

increasing total cell number, (2) increasing overall survivability, and (3) reducing oxygen 

concentration drop. Various combinations of design objectives, seeding mode, and oxygen 

transportation have been tested as listed in (Table 6-2). 

 

 

Figure 6-4.  Process of response surface optimisation. 
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Table 6-2. A list of optimisation scenarios. 

Scenario Objective Seeding density Oxygen transportation 

(1) Maximise cell number Oxygen-dependent Diffusion-advection 

(2) Maximise viability Constant Diffusion-advection 

(3) Maximise viability Constant Diffusion 

(4) Minimise compliance Oxygen-dependent Diffusion 

(5) Minimise compliance Constant Diffusion 

In the first design scenario where the cell density is a function of oxygen concentration, the 

objective function is formulated based on the total cell number, as: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒: 𝐽(𝜌) = ∫𝑁(𝑢)𝑑𝑥 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
∫ 𝜌𝑑𝑥

𝑙
= 𝑉𝑆 

(6-11) 

where 𝑁(𝑢) is the local number of living cells, l is the thickness of the scaffold, and 𝑉𝑆 is the 

volume constraint of the scaffold material. The maximum value of 𝑁  is 1.61 × 108 

(cells/ml). 

In uniform cell seeding scenario, an objective function can be formulated based on the cell 

survivability as follows: 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒: 𝐽(𝜌) = ∫min (𝑁(𝑢), 𝑁0)𝑑𝑥 (6-12) 

where 𝑁0 is the original seeding density, and 𝑁(𝑢) is the viable cell density if cell number 

were u-dependent. The difference between this and the previous formulations is that the 

uniform seeding density 𝑁0 is much lower than 1.61 × 108 (cells/ml) (see Table 6-2). 

Another possible viability measure is the drop in oxygen concentration. In this case, the 

objective function is the diffusion compliance: 

 𝑀𝑖𝑚𝑖𝑚𝑖𝑠𝑒: 𝐽(𝜌) = ∫
𝑑𝑢

𝑑𝑥

𝑇

𝐷
𝑑𝑢

𝑑𝑥
𝑑𝑥 (6-13) 

In this paper, the solid volume fraction was solved using the response surface method with 

full factorial design. The entire design domain was discretised into 7 to 8 nodes, each node 



204 

 

represented a ρ variable. The complete ρ profile was interpolated from these nodes using 

piecewise cubic Hermite interpolating polynomial (PCHIP) and spline interpolation. To 

satisfy the volume constraint as well as the upper (𝜌𝑚𝑎𝑥) and lower (𝜌𝑚𝑖𝑛) porosity limits, the 

change in ρ must satisfy: 

 𝜌𝑖+1  =  𝑚𝑎𝑥 (𝑚𝑖𝑛 (𝜌𝑖 + (𝑎
𝑑𝐽

𝑑𝜌
𝑖

+ 𝑏) , 𝜌𝑚𝑎𝑥) , 𝜌𝑚𝑖𝑛) (6-14) 

where a and b are two scaling terms that satisfy the following condition: 

 𝑚𝑎𝑥(|𝜌𝑖+1 − 𝜌𝑖|) = ℎ𝑖 (6-15) 

where ℎ𝑖 is the desirable step size of ρ during the i
th

 iteration. Noted that 
𝑑𝐽

𝑑𝜌𝑖
 is the desirable 

change in porosity, the polynomial 𝑎
𝑑𝐽

𝑑𝜌𝑖
+ 𝑏  adjusts the actual change in porosity at 

individual points. The values of a and b are found through an iterative process: 

 
𝑎 = 𝑎 ×

ℎ𝑖
𝑚𝑎𝑥(|𝜌𝑖+1 − 𝜌𝑖|)

 

𝑏 = 𝑏 + [𝑚𝑒𝑎𝑛(𝜌𝑖+1) − 𝑉𝑆] 

(6-16) 

The step size is scaled in every iteration step to improve solution convergence: 

 ℎ𝑖+1 = ℎ𝑖 × 𝑘, (0 < 𝑘 ≤ 1) (6-17) 

 

6.3 Results and discussion 

Poor cell proliferation in tissue scaffolds is usually a result of inadequate oxygen supply. 

Ironically, growing cell population is a potential oxygen transportation barrier. To address 

such dilemma in tissue scaffold design, optimisation on the structural profile of scaffolds was 

carried out, and the steady-state cell seeding outcome under different seeding conditions was 

simulated. 

A range of diffusion-advection models of porous tissue scaffold were constructed as one-

dimensional finite-difference models. Each model was 1 cm in length. All models were 

initialised with a uniform scaffold solid volume fraction (ρ) of 40% and the volume fraction 
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sum across the scaffold was constant throughout the structural optimisation. The maximum 

and minimum allowable ρ values were set to 50% and 30%. Five different seeding scenarios 

involving three optimisation objectives were created and simulated. The objectives were to 

(1) maximise the cell number at steady state, (2) maximise the cell viability and (3) minimise 

the diffusion compliance. Models with different fluid flow rates or different cell seeding 

densities were tested and compared.  

6.3.1 Maximisation of cell number with perfusion 

In the first design scenario where the cell number is oxygen-concentration-dependent, the 

optimised profiles of solid volume fraction differ drastically among models with different 

perfusion rates (Figure 6-5). It can be seen in Figure 6-6, the structural evolution is directly 

affected by pressure drop and perfusion rate. In the design scenario where the pressure drop 

(dP) is 400 Pa, the final ρ
*
 profile is essentially a straight line (black dotted line), which gives 

the lowest total flow resistance. In the absence of fluid flow (dP = 0), the cell number is low 

and the cell volume is negligible. Reducing the flow rate reduces the cell volume as well as 

the uniformity of cell distribution. In that case, reducing flow resistance becomes less 

important. 
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Figure 6-5. The optimised ρ profiles of the tissue scaffold under non-uniform seeding 

condition (Figure 6-1). Different pressure drops (dP) were applied to different induce 

perfusion rate. 

 

Figure 6-6. The total solid volume fractions (ρ
 *
) of the optimised tissue scaffolds under non-

uniform seeding condition (Figure 6-1).  

The objective number had increased steadily over the course of structural optimisation 

(Figure 6-7a) and converged before the ρ profile started to converge (Figure 6-7b, 50
th

 

iteration) Nevertheless, running extra iterations produced a more characteristic ρ profile 
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(Figure 6-7b, 200
th

 iteration), even though the objective number has already reached the 

maximum value. 

  
(a) (b) 

Figure 6-7. The convergence history of the non-uniform seeding of dP = 0 model. 

6.3.2 Maximisation of viability with perfusion 

Under uniform seeding condition and viability criterion (Eq. (6-12)), the ρ profile acquired 

shapes similar to the ones obtained under non-uniform seeding condition and cell number 

criterion (Figure 6-8). However, the segment of the no-perfusion model that reaches the 

maximum ρ limit is significantly shorter. The fluctuation in the ρ profile is also more 

pronounced, although it is likely a numerical artefact of the spline interpolation. In general, 

the ρ value rises rapid from minimum to maximum over a short distance, and drops back to 

the initial average value (𝜌 = 0.4). The minimisation of flow resistance again dominates the 

structural evolution of the high perfusion models, and the resultant ρ
*
 profiles are largely 

uniform except the shallow region (distance < 0.3 cm). 
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Figure 6-8. The optimised ρ profiles of the tissue scaffold under uniform seeding condition. 

Different pressure drops (dP) were applied. 

Figure 6-9a shows that increasing perfusion rate, by means of increasing pressure drop, 

directly prevents the living cell density from dropping. However, the increase in the objective 

number is almost negligible in the high perfusion case (Figure 6-9b). This suggests that 

optimisation is ineffective if the perfusion rate is high enough. 

  
(a) (b) 

Figure 6-9. The local cell density profiles of the tissue scaffold at different perfusion rates. 

6.3.3 Maximisation of viability without perfusion 

The optimisation of the ρ profiles under uniform cell seeding condition has produced 

distinctive profile shapes (Figure 6-10). The results are signified by four segments of extreme 
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and alternating porosity. Between individual segments is either a steep increase or a steep 

decrease in the ρ value. Such “stepped” transition has become more apparent as the number 

of iterations increases over the optimisation process. During the simulation, the formation 

these “steps” occurred progressively, starting from the source region (x = 0) in the beginning 

and moving towards the deep region (x = 1) in the end. Such trend coincided with magnitude 

of the sensitivity function and had persisted since the sensitivity function changed little over 

the duration of the optimisation process. The local structural evolution ended as the ρ value 

reached the upper or lower limit. On the other hand, the change in ρ in the deepest scaffold 

region, where the sensitivity was close to zero, was primarily driven by the volume constraint 

in response to the changing volume fraction in the shallower scaffold region. 

 

Figure 6-10. The optimised ρ profiles of the tissue scaffold under uniform seeding condition. 

Different cell seeding densities (N) were applied. 

6.3.4 Minimisation of diffusion compliance with variable seeding density 

The use of diffusion compliance criterion has also yield a unique ρ profile (Figure 6-11). Four 

distinct ρ segments can be identified: next to the nutrient source is the maximum ρ segment, 

followed by a minimum segment, an intermediate segment and finally a maximum segment. 

The curved profile in the intermediate segment might have been a result of spline 
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interpolation and non-smooth N-u relationship (Figure 6-3). Increasing the weight of PCHIP 

interpolation could reduce the curvature and the overshoot, but at a cost of convergence 

speed. 

 

Figure 6-11. The optimised ρ profiles of the tissue scaffold under non-uniform seeding 

condition (Figure 6-1). No pressure drop was applied. 

In this optimisation scenario, a moderate increase in oxygen concentration was observed in 

the shallower scaffold region (distance < 0.4 cm), whereas the deeper region appeared 

unaffected (Figure 6-12). Such localized improvement implies that the influence of design 

optimisation on the deeper scaffold region is limited. Thus, the cells that could actually 

benefit from the enhanced viability were limited to those living close to the nutrient source. 

In the region where oxygen concentration and cell viability was low since the beginning of 

optimisation, the living condition has not improved. In fact, the local oxygen level in the very 

deep region experienced a mild drop as a result of decreasing diffusivity.   
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Figure 6-12. The evolution of steady-state oxygen concentration profiles of the diffusion 

compliance model though the structural optimisation. 

6.3.5 Minimisation of diffusion compliance with uniform seeding density 

Figure 6-13 shows the characteristic “step” ρ profiles at three different uniform seeding 

densities. The lengths of individual ρ segments are inversely related to the seeding density. If 

viability is defined as the depth of scaffold where the oxygen concentration drops to 

approximately zero, the viability of scaffold is about 0.35 cm at a seeding density of 3×10
5
 

cell/ml, 0.2 cm at 1×10
6
 cell/ml, and 0.1 cm at 3×10

6
 cell/ml (Figure 6-14). Beware that the 

viable depth depends not only on the seeding density but also on the scaffold thickness. 

Increasing the seeding density and the thickness will significantly reduce the cell viability in 

a static culture. 



212 

 

 

Figure 6-13. The optimised ρ profiles of the tissue scaffold under uniform seeding condition. 

Different cell seeding densities (N) were applied.  

 

Figure 6-14. The steady-state oxygen concentration profile of the optimising diffusion 

compliance model under uniform seeding condition. 

Overall, using scaffolds with graded and depth-dependent porosity profile can improve 

seeding outcome and diffusion condition. The improvement in cell viability and cell number 

are concurrent. However, it was found that the cell infiltration depth and viability are very 

limited in static culturing condition as manipulating the porosity in the deep scaffold region 

makes little impact on the cell growth outcome. Static culture with diffusion transport can 

only support cell life up to a seeding density and to a certain depth. The depth restriction 
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implies that there exists a limit to the practical thickness of tissue scaffolds, in which seeded 

cells can stay alive over a long period of time. 

In summary, cell number, cell survivability and the overall oxygen concentration in porous 

tissue scaffolds can be improved by using graded-porosity designs. Additional tests have 

shown that scaling the cell volume (v0, Eq. (6-2)), oxygen uptake rate (S0, Eq. (6-3)), and 

penalisation factor (p, Eq. (6-4)) made little impact on the final optimisation outcome. The 

diffusivity property of cells also has little influence on the final results if the cell density is 

lower. It was found that the non-linear nature of this biological model and convergence issue 

had indirectly limited the maximum and the minimum cell density that could be simulated. 

Nevertheless, the simulation conditions used in this study are representative of tissue 

scaffolding in general. 

The oxygen concentration plots and the cell viability profiles presented in this chapter are 

generally consistent with the past findings [6, 7]. However the actual effect of variable 

porosity on cell viability cannot be validated since no experimental study has been done on 

scaffolds with strategically graded porosity, experiments are also outside the scope of this 

research. Therefore this study recommended further investigation of tissue scaffolds with 

graded porosity. 

6.4 Programming consideration 

The response surface method was used for the reason that an analytical expression of the 

sensitivity could not be derived directly from the non-linear diffusion equation. As the full 

factorial design of the response surface method was rather expensive to perform, the number 

of ρ variables to eight was limited to eight points. The ρ profile of the whole scaffold model 

was interpolated using the PCHIP and the spline methods. Two of such modelling nodes were 
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placed outside the simulation space of the tissue scaffold, allowing the manipulation of ρ 

gradient near the modelling boundaries (x = 0 or x = 1).  

   
(a) Original (b) Updated (c) Final 

Figure 6-15. Schematic illustration of the update of the ρ profile. 

The structural evolution could slow down when the high sensitivity regions with low ρ values 

reached the lower ρ limit (Figure 6-15a). When that happened, the ρ profile could not be 

updated based on the desired ρ change, otherwise the volume constraint would be violated 

(Figure 6-15b). To satisfy the volume constraint, only the part of ρ profile with low 

sensitivity was allowed to move (Figure 6-15c). As a result, the actual ρ update would be 

much slower than planned. To maintain a reasonable ρ evolution pace, the change in ρ must 

be scaled up (Eq. (6-16)).  

6.5 Concluding remarks 

The optimal structures for cell survival in tissue scaffold have been characterised in terms of 

graded porosity. The results show that improved cell seeding outcome can be achieved 

through the manipulation of porosity profile. The configuration of porosity/solid volume 

fraction profile depends on the cell seeding mode, perfusion rate as well as the design 

objective. The thickness of individual porosity layers and the resultant oxygen concentration 

largely depends on the seeding condition. The seeding density also determines the practical 
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thickness of tissue scaffolds. The porosity of the deep scaffold region is less critical and may 

be compromised to meet the volume constraint. Overall, this design strategy has significantly 

improved the long-distance diffusion transport across the scaffold but has limited effect on 

advection-dominated transport system. 

While the simulation results have shown that perfusion can effectively improve nutrient 

transportation rate, it was found the structural optimisation process could not improve the 

effectiveness of perfusion much further. The influence of structural optimisation on nutrient 

transport diminishes with increasing perfusion rate. 
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7 Design and Optimisation of Fractal Vasculature 

Effective nutrient transportation is critical to cell survival in tissue scaffold engineering. In 

the absence of blood vessels and other advection transport measures, cells in a scaffold often 

suffer from hypoxia. The hypoxic condition is especially dire in a pure diffusion 

environment. In this regard, natural vascular systems and their fractal patterns have inspired 

the design of artificial vasculature in tissue scaffolds. In this chapter, the design problem of 

artificial vasculature has been carried out as a topology optimisation problem with diffusion 

criterion. Solid isotropic material penalisation (SIMP) method was employed. The topology 

optimisation was performed in square (2D) and cubic (3D) modelling spaces, with a fluid 

phase that has a high diffusivity and a solid phase that has a low diffusivity. A range of 

optimised models had been thereafter obtained by using different fluid and solid diffusivity 

values. It was found that with a very low solid diffusivity, the optimised fluid phases 

resemble natural vascular systems and exhibit certain degree of fractality. Increasing solid 

diffusivity or increasing surface flux at the modelling boundary reduced the resultant 

fractality. The link between optimality and fractality was found to be case-specific, generally 

associated with low diffusivity, high volumetric oxygen consumption, and low surface flux. 

7.1 Introduction 

Sustained and efficient nutrient transport is crucial to the tissue regeneration and the long-

term viability of cells in porous tissue scaffolds. It has also been found that, diffusion 

transport alone cannot maintain an adequate oxygen level across tissue scaffolds of large size, 

and is further hindered by the cell settlement in the porous space [1, 2] (also see Chapter 6). 

Decreasing diffusivity has been correlated to increasing cell population, which encumbers the 

nutrient movement that keeps cells alive inside a scaffold [3] and threatens cell viability 

across a construct [4]. 
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In natural tissues, blood vessels address the demand of nutrient by acting like a source. The 

branching of blood vessels improves their spatial coverage and reduces the distance between 

individual cells and the vessels. Similarly in tissue scaffolds, vascularisation creates an 

internal nutrient supply that facilitates tissue regeneration [5]. The development of the 

vasculature system through a tissue scaffold during the tissue regeneration process, or the 

lack of it, will determine whether the oxygen level in any part of the construct can be 

sustained [6]. Considering the absence of vascular system in typical tissue scaffolds in vitro, 

the introduction of artificial vasculature may improve certain aspect of cell viability and 

growth [7]. For this reason, artificial vasculature emerges as a strategy to tend the need of 

mass transportation and oxygen conduction [8].  

To tackle the nutrient transportation problems from a structural perspective, topology 

optimisation methods can be utilised to create complex and non-intuitive structures that 

resemble blood vessel network. Topology optimisation has already been used in transport-

related design problems such as the design of fluid channels [9, 10] and permeable 

microstructure [11]. Computational design optimisation also has been applied to solve 

diffusion-related problems on both microscopic [12, 13] and macroscopic levels [14]. 

Moreover, complete and realistic vascular branching networks have been generated using the 

constrained constructive optimisation [15]. 

Fractal is a special design focus in this study. Naturally occurring fractal patterns found in ice 

crystal, coastline [16], and blood vessel network [17] has fascinated mathematicians and 

artists alike. Although the optimality of these fractal patterns is largely up for debate, 

biologically-inspired materials is becoming a popular area of research for those who seek 

natural solutions [18]. The key challenge in this field of work is the lack of proof of 

optimality. On one hand, it is unclear whether fractal patterns can potentially be optimal. On 
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the other hand, it is yet known whether some well-known optimal solutions are fractal. To 

gain a better understanding of the nature of optimality and fractal patterns, the cause and 

effect of fractalisation must be determined. 

A multi-scale optimisation on the diffusion transport in tissue scaffolds has been conducted. 

The goals of this study are: (1) to design a vasculature network for optimal nutrient transport 

by means of topology optimisation, and (2) to establish any possible relationship between 

optimality and fractality under the steady-state diffusion condition. This relationship will help 

elucidate the much speculated self-optimising nature of vascular system [19]. Design from a 

fractal perspective also gives rise to the prospect of a comprehensive tissue scaffolding 

solution, which encompasses both macroscopic and microscopic transportation mechanisms 

on a continuous scale.  

7.2 Optimisation of vascular structure 

Introducing artificial macroscopic channels to scaffolds is shown to be an effective technique 

in supporting cell colonisation in tissue scaffolds [20, 21]. To take advantage of such 

technique at their maximum potential, the application of topology optimisation in the design 

of vasculature system was proposed. Following the optimisation, the hypothetical optimality 

of natural blood vessel system was assessed from an engineering design point of view. 

7.2.1 Diffusion optimisation under uniform oxygen consumption 

The aim of this study is to design an artificial vasculature system for tissue scaffolds. It is 

assumed that the scaffolds are uniformly seeded with cells under a steady-state diffusion 

condition, where cells consume oxygen at a constant rate (Figure 7-1). To prevent hypoxia, 

the artificial vasculature should be designed in a way to ensure maximum oxygen delivery 

and concentration. 
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Figure 7-1. Boundary and load conditions in design models with uniform oxygen 

consumption. 

This design problem can be formulated as a two-phase problem with void/fluid as the 

conductive phase and solid as the less-conductive phase (Figure 7-2). In this study, it is 

assumed that oxygen enters the scaffold through a point-source where the oxygen 

concentration level is maintained at a constant level. The void/fluid phase is given a nominal 

diffusivity value of 1 unit. The solid phase is considered partially conductive, and allows 

diffusion to occur at a lower rate (<1). The topology optimisation is to be conducted in 

various scenarios, each with a different oxygen diffusivity value of the solid phase. 

 

Figure 7-2. Schematic sketch of the artificial vasculature. 

The objective of this topology optimisation is to minimise the diffusion compliance, 𝐽, which 

is expressed as: 

 

Minimise:  𝐽 = ∫
𝜕𝑢

𝜕𝑥

𝑇

𝐷
𝜕𝑢

𝜕𝑥
𝑑Ω

Ω

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  ∫ 𝜌𝐶𝑑Ω
Ω

≤ Ωvoid 

(7-1) 
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where u is the concentration, D is the diffusivity coefficient or matrix, Ω denotes the design 

domain, dΩ is the volume, ρC is the local void volume fraction, and Ωvoid is the total void 

volume fraction constraint. The void volume is presumably filled with fluid. Such objective 

formulation is identical to the thermal compliance, which is a measure of thermal 

conductivity [13]. The diffusivity coefficient is a function of fluid-solid volume fraction. 

Assuming that the fluid and solid phases have nominal diffusivity of 𝐷𝑉 and 𝐷𝑠, respectively, 

the effective local diffusivity 𝐷 of partially-solid material can be expressed as: 

 𝐷(𝜌) = 𝐷𝑠 + (𝐷𝑉 − 𝐷𝑠) × 𝜌𝑉
𝑝, (7-2) 

where 𝑝 is the penalisation factor. This power-law relationship between volume fraction and 

diffusivity has followed the Solid Isotropic Material with Penalisation (SIMP) principle [22]. 

The diffusion system at the state of equilibrium is governed by Fick’s law, 

 −𝐷
𝜕2𝑢

𝜕𝑥2
= 𝑓𝑏, (7-3) 

where 𝑓𝑏 is the body force and its value is a constant. The oxygen consumption is volumetric 

and can be appropriately represented by the body force term. 

7.2.2 Applying oxygen consumption as surface flux 

Oxygen consumption can also be applied as surface flux across the modelling boundary, or as 

a combination of flux and body force, as illustrated in Figure 7-3. In this case, flux can be 

considered as the oxygen demand of the neighbouring tissue just outside the design domain. 

Therefore, oxygen is drawn out of the modelling domain. 
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Figure 7-3. Boundary and load conditions in design models with surface flux. C denotes the 

location where load 𝑓𝑐 (flux) is applied. 

To model the additional oxygen consumption, a flux term is added to the governing equation: 

 −𝐷
𝜕2𝑢

𝜕𝑥2
= 𝑓𝑏 + 𝑓𝑐  (7-4) 

 
∫ 𝑓𝑏𝑑Ω
Ω

+∫ 𝑓𝑐𝑑Ω
c

= 𝐹 (7-5) 

where 𝑓𝑐 is the flux across the modelling boundary, and 𝐹 is the sum of oxygen consumption. 

The total oxygen consumption, F, is a constant value. Neither the flux nor the body force can 

be negative anywhere in the modelling space. Different design scenarios can be created with 

different combinations of 𝑓𝑏 and 𝑓𝑐 values. 

7.2.3 Zooming and re-optimisation 

To investigate the local material distribution and improve the clarity of regional vasculature 

pattern, a small section of model can be taken and re-optimised at a higher resolution. As 

illustrated in Figure 7-4, a section, Ω1, is taken from the original model, Ω0. The resolution of 

Ω1 is increased to match that of the original model. Concentration degree of freedom (DoF) 

on all internal boundaries of the new model is fixed (marked in red). The concentration is 

interpolated from the original DoF solution along the internal boundaries. 
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Figure 7-4. The boundary and load conditions of a new local design model. 

7.3 Results and discussion 

Maintaining even nutrient distribution and transport is a common challenge in tissue scaffold 

engineering. The design of macroscopic channels and vasculature network has been proposed 

as a potential solution to enhance the transport environment and improve cell viability in 

tissue scaffolds [7, 8, 23]. Based on this concept, a scenario of topology optimisation known 

to produce models exhibiting characteristics of vasculature was created [13, 14]. The 

optimised vascular structures were examined to determine their fractality through model-

scaling and re-optimisation. Using these results, it can be deduced whether the optimal 

structures are truly fractal, or conversely, whether the fractal nature of vasculature network is 

essential to achieving optimality. 

7.3.1 Volumetric oxygen consumption 

In Chapter 6, it has been demonstrated that the scaffold porosity can be used as a design 

variable in structural optimisation. The results shows that manipulating the porosity profile 

can effectively increase the overall cell survivability, even though such success does not fully 

resolve the viability problem. Here porosity is used as a design variable for the creation of 

macroscopic vasculature-like porous network. 
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In this chapter, a two-phase design problem has been formulated, in which one phase 

represents the artificial vasculature and the other represents the solid scaffold material. 

Topology optimisation was performed to manipulate the solid material distribution of the 

vascular system. The overall impedance to diffusion transport was minimised by minimising 

the diffusivity compliance. Design models were discretised into 125×125 structured finite 

element models; each element has solid volume fraction of 65% at the beginning of the 

simulation, at the same time a 65% total volume constraint was imposed. The Method of 

Moving Asymptote (MMA) solver [24] was employed to solve this optimisation problem. 

Different combinations of oxygen diffusivity and consumption models had been tested. The 

sink (consumption) was formulated as a combination of uniform body force and surface flux, 

which signified the volumetric oxygen demand inside the simulation domain and the oxygen 

demand outside the domain, respectively. 

Vasculature-like structures had been successfully generated through the topology 

optimisation. Complex branch patterns have formed naturally in optimisation scenarios that 

involved only volumetric oxygen demand, as shown in Figure 7-5. Starting in a modelling 

space filled with intermediate material (𝜌 = 65% in every element), solid elements (𝜌 → 1) 

and fluid elements (𝜌 → 0) gradually materialised and became distinguishable over time. 

Using a high penalisation factor helped remove the intermediate density elements (0 < 𝜌 <

1), and allowed the models to evolve into two distinct phases. The fluid elements self-

arranged into channelled system regardless of the diffusivity value. As the fluid phase 

sharpened, small auxiliary channels spawned along their larger parent channels like branches. 

In some cases, many generations of channels formed and self-arranged in a fractal fashion 

(Figure 7-5 g-i). In most scenarios, toward the end of topology optimisation there remained a 

small percentage of intermediate elements at the interface of two material phases. Increasing 

the penalisation factor or increasing the modelling resolution reduced the grey band 
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thickness. Removing this intermediate phase became increasingly challenging as Ds 

decreases, which resulted in the development of finer channels and the increasingly complex 

solid-fluid boundary. The end result in the Ds = 10
-8

 case closely resembles the models found 

in an earlier study in term of branching pattern [13]. Decreasing Ds value unsurprisingly led 

to increasing diffusivity compliance and a steeper concentration drop across the model 

(Figure 7-6). 

   
(a) Ds = 0.1 (b) Ds = 0.075 (c) Ds = 0.05 

   
(d) Ds = 0.025 (e) Ds = 0.01 (f) Ds = 0.005 

   
(g) Ds = 0.0025 (h) Ds = 0.00125 (i) Ds = 10

-8
 

Figure 7-5. Optimised models with different oxygen diffusivities through the solid phase 

(white region). The total fluid volume fraction (black region) is 35%. No flux was applied on 

the boundary of design domain. 
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Figure 7-6. Compliance versus oxygen diffusivity through the solid phase, Ds. 

In the optimised Ds = 10
-8

 model, the total fluid volume fraction decreases across the design 

domain (Figure 7-7). Notably, when plotted as a function of distance from the source point 

(x=0, y=0), the fluid volume appears to drop exponentially (Figure 7-7a). When plotted 

against the distance from the source surface (y=0), the drop appears to be linear (Figure 7-

7b). 

  
(a) Distance from the point source  

(x=0, y=0) 

(b) Distance from the y = 0 surface 

Figure 7-7. Fluid volume fraction versus diffusion distance. Here, the fluid volume fraction 

is the sum of fluid volume (area of the black region) divided by the total volume (total area). 

The model is case (i) of Figure 7-6, where Ds = 10
-8

. 



228 

 

A small section of the low solid diffusivity model Ds = 10
-8

 was up-scaled in term of mesh 

density to allow a closer inspection of the branch structure and re-optimisation (Figure 7-8). 

In this process, the top-right corner of original model was taken with five times increase in 

resolution, and re-optimised (Figure 7-8 a-b ×5). The process was repeated to further improve 

image quality (Figure 7-8 b-c ×25, c-d ×125, and d-e ×625). Remarkably, all optimised local 

(scaled) models contain ubiquitous branch structure, which suggested fractality (Figure 7-8 a-

e). Throughout the zooming and optimisation process, new and finer branches had kept 

emerging regardless of how small the extracted model was. On the scale of ×625, self-

similarity can be clearly observed (Figure 7-8e). Note that the size of the model in Figure 7-

8d is the same as the size of single square element in Figure 7-8a (every model has a 

resolution of 125-by-125). This shows that the fractal fluid channels are presented in the grey 

pixel at the top right corner of the original model. Repeatedly zooming in and re-optimising 

had revealed the local material distribution that could not have been defined due to the 

resolution limit. When the same operation was performed on non-fractal models, for 

example, zooming and re-optimising the higher solid diffusivity model, Ds = 10
-2

 (Figure 7-

5e), the material boundary had only been smoothened and sharpened but no fractal pattern 

had emerged (Figure 7-8f). In comparison, the fluid network in the local Ds = 10
-8

 model 

shows obviously better spatial coverage than that of the zoomed-in Ds = 10
-2

 model. This 

result demonstrates that fractality is not a numerical artefacts created by the zooming process, 

and reaffirms the obvious fact that only fractal topology shows fractal patterns on all levels.  

   
(a) Ds = 10

-8
, zoom: ×1 (b) Ds = 10

-8
, zoom: ×5 (c) Ds = 10

-8
, zoom: ×25 
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(d) Ds = 10

-8
, zoom: ×125 (e) Ds = 10

-8
, zoom: ×625 (f) Ds = 10

-2
, zoom: ×5 

Figure 7-8. Enhanced local images of optimised channel network show infinite branching 

pattern. Each subsequent image is a re-optimised partial model of its predecessor. The top-

right corner of each original model (a-d, 25×25 pixel) is zoomed in by 500% (b-e, 125×125 

pixels) and re-optimised as a new model. (f) is the zoom-in image of Ds = 10
-2

 model, which 

shows no fractal pattern. 

It was found that the resultant fractal shapes were sensitive to the choice of design 

parameters. Using different MMA parameters or initial models could result in some degree of 

deviation in the final topological (compare Figure 7-5i and Figure 7-8a). For this reason, the 

zoomed and re-optimised images could deviate when using a different set of design 

parameters. 

Some topological anomalies emerged during the re-optimisation process. These numerical 

artefacts include isolated material spots, artificial spots and lines along the interpolated 

boundary. Large black spots in Figure 7-8b-e are examples of the isolated void, forming in 

the region where the DoF boundary condition was imposed. Artificial spots and lines 

emerged along the borders where discrete volume constraints were applied (black dots and 

lines in Figure 7-8d-e). Nevertheless, the re-optimised fluid phase distribution conformed 

well to the original image where it was taken. Only the light grey areas, i.e. pixels that are 

mostly solid, re-arranged to form a new fluid network (compare Figure 7-8a with b, and b 

with c). Generally, the DoF boundary condition and the volume constraint are believed to be 

responsible for the formation of these numerical artefacts in the zoomed-in models. Anyhow, 

using the scaled original images (Figure 7-8a-d, red square) as the initial models produced 

fairly conformal results. Using a uniformly grey image as the initial model would otherwise 
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result in very different material distribution and break the material/DoF connectivity at the 

modelling boundary. 

Recursion, which is a main feature of fractal, is manifested in the formation of diffusion 

barrier. In this specific model, the solid phase with extremely low diffusivity (Ds = 10
-8

) has 

acted as diffusion barrier and emerged concurrently with void channel. Throughout the 

optimisation process, long continuous solid walls formed across the design domain and 

practically divided it into many sub-domains as illustrated in Figure 7-9. As diffusion could 

occur between across the walls, the solid structure in each sub-domain evolved 

independently, in which shorter walls formed and further divided each sub-domain into 

smaller domains (Figure 7-9b-c). This process had repeated and had been self-driven as 

formation of wall (ρ → 1) always occurred in conjunction with formation of diffusion 

passage (ρ → 0) due to the volume constraint. 

   
(a) Primary division (b) Secondary division (c) Tertiary division 

Figure 7-9. Effective flux boundary of the diffusion network. These lines depict major solid 

barriers that divide the transportation network into independent zones. (a) Each primary zone 

(1-9) contains only one primary channel. (b) Each secondary zone (a-k) contains only one 

secondary channel, and so on. 

Self-similarity, which is another feature of fractal, is signified by the similar branching 

pattern in every divided domain and on every level (Figure 7-8 and Figure 7-9). The 

branching behaviour is attributed to the need of spatial coverage of the transport system. It is 

obvious that multiple thin channels provide a better spatial coverage than one thick channel. 
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Such spatial coverage has the apparent advantage of minimising the distance between any 

point in the design space and the nutrient supply stream. It has been reported that in human 

body, most cells live within 200 microns from the nearest capillary and 200 microns is about 

the longest viable diffusion distance in cell culture [25, 26]. Hence, minor branches are found 

everywhere in similar spatial arrangement. 

The branching and fractal pattern was also observed in the models where oxygen 

consumption was only imposed on the solid phase (Figure 7-10). The resultant models 

showed no significant difference in topology when compared to their uniform oxygen 

consumption counterparts, but with slightly thinner fluid network and improved spatial 

coverage. Such topological difference was attributed to the fact that the fluid phase no long 

consumed oxygen, and reaching out into the deep solid area was essential to reduce diffusion 

gradient and compliance. The material distribution among the models with different Ds 

values appeared to be more consistent. The results also show an increasing fractality as the Ds 

value decreases. 

  
(a) Ds = 0.01 (b) Ds = 0.0025 
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(c) Ds = 0.00125 (d) Ds = 10

-8
 

Figure 7-10. Optimised models with different oxygen diffusivities, Ds. The imposed body 

force is directly proportional to the solid volume fraction. The total fluid volume fraction 

(black region) is 35%. There was no surface flux across the modelling boundary. 

The fluid channels did not grow all the way through the body-force-only models. 

Furthermore, the optimal channel length and branching pattern were found to depend on Ds. 

In high solid diffusivity models (𝐷𝑠 ≫ 0.01 × 𝐷𝑓), the branches tended to be shorter and 

offered less spatial coverage since the solid phase already allowed certain degree of diffusion. 

In contrast, the channels in low solid diffusivity models (𝐷𝑠 ≪ 0.01 × 𝐷𝑓) almost reached the 

modelling boundary at the end of optimisation. If fluid were to flow through these constructs, 

the solid edges of these images must be cropped (Figure 7-11). In that case, each model 

should be cropped by a different percentage according to the thickness of the solid layer. 

High solid-diffusivity models were trimmed by a greater amount. Individual images were 

also sharpened to create higher black-and-white contrast using different lightness thresholds, 

so that the volume fraction constraint was satisfied. High solid-diffusivity models required 

lower thresholds, meaning that most nearly-black (nearly-fluid) elements were considered as 

solid (white). 
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(a) Ds = 0.025 (b) Ds = 0.01 (c) Ds = 0.005 

   
(d) Ds = 0.0025 (e) Ds = 0.00125 (f) Ds = 10

-8
 

Figure 7-11. Cropped and sharpened images with different oxygen diffusivities. The total 

fluid volume fraction (black region) is 40% in all models. 

Image sharpening could compromise phase continuity. The formation of fine channels and 

isolated solid and fluid regions were observed in the sharpened low Ds models (e.g. Figure 7-

11f). It was found that with a nearly zero Ds (e.g. Figure 7-11f), fractality could increase 

indefinitely. Consequently, the newer generations of channels became thinner than the pixel 

size (consider Figure 7-9c). As it is impossible to increase the model resolution indefinitely, 

grey elements would always present regardless of modelling setting. The channels became 

infinitely thin as Ds approaches zero, and were filtered out during image processing. 

It is important to note that the significant amount of intermediate material (grey elements) 

found in the final models is not an indication of poor convergence. In fact, these grey pixels 

reflect the nature of fractal pattern, particularly in the low resolution models. As 

demonstrated in Figure 7-8a-e, fluid network exists on all levels and covers every single 

pixel. Increasing the penalisation factor of the SIMP method in topology optimisation reduces 

the “greyness”, but it does not eliminate their existence. Increasing the modelling resolution 

has also shown limited influence, and is only effective in improving the black-and-white 
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contrast if the optimal pattern is non-fractal (e.g. Figure 7-8f). Changing other modelling and 

optimisation parameters affects only the resultant material distribution but not the level of 

fractality. Knowing that the optimal distribution is fractal, attempting to remove such pattern 

is actually counterproductive to the optimisation effort. Therefore, the “greyness” should be 

recognised as a characteristic of the optimised diffusion model rather than a convergence 

problem. 

Fluid movement has not been taken into account in this design process. Based on the 

diffusion design criterion, the transport systems are optimised for steady-state diffusion only. 

Nevertheless, the design scenarios presented here are a reasonable analogue of pressure-

driven fluid transport system such as plant roots and leaf veins. The point source term is an 

analogue of water absorption through roots and water supply to leaves. The mass transport of 

nutrients and oxygen in permeable media follows similar principle that governs diffusive 

mass movement. Therefore the design models and the solutions are consistent with natural 

transport phenomena. 

The results however may not be representative of a forced perfusion system due to the 

difference in nature between creeping flow and forced advection. Unlike diffusion, advection 

rate can be increased by increasing pressure. Increasing advection rate alone can minimise 

global concentration gradient to any desirable level regardless of the size of model. Even 

though a design constraint can be imposed on the fluid flow rate or the wall shear stress level 

[27], the wall shear stress can be easily reduced by scaling up the channel size. Such 

scalability implies that it is easier to upscale mass transport by simply increasing fluid flow 

rate and channel size than trying to modify the vasculature. As a result, advection transport 

can largely outweigh diffusion transport and quantitatively makes diffusion a less influential 
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factor. Furthermore, the boundary condition of an advection problem is very different from 

the point-source boundary condition used in a diffusion-driven system. 

The intermediate material phase in the optimised models can become a problem when it 

comes to manufacturing. Multiphase topology optimisation normally expects the results that 

contain only pure material phases. However, the advancing multi-material printing 

technology has made it possible to fabricate structures with intermediate materials [28]. 

Although not topologically ideal, structures with such materials exhibit better phase 

continuity. Such technology may eliminate some problems regarding the manufacturability of 

intermediate materials to some extent. However, considering that void or fluid is not a 

printable phase, this manufacturing technique cannot be applied.  

7.3.2 Oxygen flux across boundary of design space 

In the second part of this study, the flux boundary condition was introduced and its impact on 

topology optimisation was assessed. As seen in Figure 7-12, the most apparent effect of this 

new oxygen demand was that fluid channels went all the way across the design space. It was 

found that increasing the proportion of oxygen uptake through flux reduced fractality, and 

improved the connection of channel network between the source and the boundary. By 

conducting the aforementioned zooming and re-optimising process, it was found that the 

branching pattern would not become fractal if body force was zero (Figure 7-12a-b). 

However, as long as the body force was non-zero, fractal pattern would emerge, especially in 

models with very low diffusivity (note the light-grey elements in Figure 7-12d, f, h, j and l). 

Nonetheless, the relative amount of surface flux affects the complexity of branching pattern, 

channels size, and number of dead-end channels (Figure 7-12e, g, i and k).  
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Flux:Body 

force 
Ds = 0.00125 Ds = 10

-8
 

100%:0% 

  

 (a) (b) 

90%:10% 

  

 (c) (d) 

75%:25% 

  

 (e) (f) 

50%:50% 

  

 (g) (h) 
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25%:75% 

  

 (i) (j) 

10%:90% 

  

 (k) (l) 

Figure 7-12. Optimised models with different flux to body-force ratios and oxygen 

diffusivities in the solid phase. The total fluid volume fraction (black region) is 35%. 

In the high-flux low-body-force scenarios, the optimised structures appear in a common 

shape regardless of the diffusivity through the solid phase (compare Figure 7-12 a and b). The 

branched channel pattern could only be obtained if Ds was sufficiently low (Ds < 0.01, 

compared to Figure 7-13). Otherwise, the fluid phase would acquire a “bulb” shape (Figure 7-

13a, Ds = 0.1) similar to the results found in the body-force-only simulations (Figure 7-5a-c). 

In other words, a model developed a bulb-shaped fluid phase with a high Ds value and a 

branched channel network with a low Ds value. A branched pattern can be either fractal or 

non-fractal whereas the bulb pattern is always non-fractal. It has become apparent that both 

the development and the fractalisation of channel network pattern are strongly related to the 

oxygen diffusivity in the less conductive phase, namely the solid phase in this study. 
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Flux:Body 

force 

 

100%:0% 

  
 (a) Ds = 0.1 (b) Ds = 0.01 

Figure 7-13. Optimised models with different solid diffusivities, Ds, under surface-flux 

condition only. The total fluid volume fraction (black region) is 35%. 

7.3.3 3D volumetric oxygen consumption 

The topology optimisation in 3D under body force condition has also yielded the 

characteristic branching pattern, as shown in Figure 7-14. With relatively high oxygen 

diffusivity in the solid phase, branching did not occur (Figure 7-14a). Reducing the oxygen 

diffusivity has resulted in the development of branched fluid phase (Figure 7-14b-d). The 

optimised model with a very low oxygen diffusivity shows that the fluid channels cover the 

entire modelling domain.  
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(a) Ds = 0.05 (b) Ds = 0.01 

  
(c) Ds = 0.001 (d) Ds = 10

-8
 

Figure 7-14. Quarter-model view of the optimised 3D models with different oxygen 

diffusivities through solid, Ds. The source point is at the bottom corner (x,y,z) = (0,0,-0.5) of 

the quarter model. The total fluid volume fraction (cyan region) is 35%. 
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The cross-sectional plots in Figure 7-15 reveal the material distribution and possible degree 

of fractality. It was found that only low oxygen diffusivity models contained a significant 

amount of intermediate materials (red and yellow pixels in Figure 7-15d), whereas the high 

solid diffusivity models contained distinct solid and fluid phases and little intermediate phase. 

This result is consistent with the findings in 2D optimisation scenarios, and thus strengthens 

the supposed link between solid diffusivity, fractality and branching pattern. 

  
(a) Ds = 0.05 (b) Ds = 0.01 

  
(c) Ds = 0.001 (d) Ds = 10

-8
 

Figure 7-15. Cross-sectional view of the optimised 3D vasculature with different oxygen 

diffusivities through solid, Ds. Elements with different solid volume fractions are illustrated 

with different colours. The total fluid volume fraction (black and coloured regions) is 35%. 

Special results have been obtained by imposing a partial body force condition and the no-flux 

boundary condition (Figure 7-16). A tree/roots-shaped structure has been produced by 

applying the uniform oxygen consumption only to the upper half of the modelling space. 
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(a) Isosurfcae view (b) Cross-sectional view 

Figure 7-16. Cross-sectional view of the optimised 3D models (Ds = 10
-8

) with partial 

oxygen consumption. Oxygen consumption is only applied to the upper half of the modelling 

space, 0.5 <= z <= 1. Ds = 10
-8

. The total fluid volume fraction (black and coloured regions) 

is 35%. 

7.4 Programming consideration 

Despite having clarified the link between fractal and the presence of intermediate material 

phase, convergence has remained a major problem in this part of topology optimisation study. 

The drastic difference in sensitivity among individual elements has been identified as the 

primary cause of two convergence problems, which are the instability of structural evolution 

and the sluggish convergence. Instability is prevalent in the low diffusivity models in which 

fractal pattern were obtained. The fractal nature implies difficulty in measuring sensitivity 

accurately since many elements are in the intermediate material phase, and contain complex 

solid and fluid network on a smaller scale. As a result, the structural evolution can become 

unstable as the phase state of some elements alternate undecidedly between solid and fluid. 

This numerical oscillation had been observed and was found to propagate across the 

modelling space, and result in divergence of some of the simulations. Furthermore, the SIMP 

formulation is a numerical technique employed to improve phase contrast, with an ultimate 

goal to rid of all intermediate-phase elements. It however is not designed to measure the 
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actual sensitivity of intermediate phase. As a result, the sensitivity of intermediate elements 

may not have been accurately determined. 

On the other hand, sluggish convergence has encumbered the 3D optimisation effort by 

impeding individual elements from reaching their optimal states, whether they are solid or 

fluid. Sluggish convergence has been found to be associated with sensitivity and volume 

constraint. In this study, an element with high sensitivity became more fluid while an element 

with low sensitivity became more solid. Once an element attained a completely fluid state, its 

high sensitivity would no longer initiate volumetric change. This became a significant issue 

when a small number of elements with extremely high sensitivity were preventing the 

majority of elements with extremely low sensitivity from evolving (see Table 7-1 for a 

numerical example). If the sensitivity was not properly adjusted, it could hinder further 

structural evolution (Table 7-1, compare Adjustments 1 and 2). 

Table 7-1. Exemplar volume update and possible approaches to meet the volume constraint. 

Initial data 

Hypothetically, if there are 1002 elements in one model and the sensitivity analysis shows: 

 Element #1 Element #2 Element #3-#1002 Average 

Volume (current) 99% 65% 64.966% 65% 

Sensitivity 10 0.1 0.0901 0.1 

Sensitivity 

(adjusted) 
9.9 0 -0.0099 0 

Volume update (proposed max change = 10%) 

Volume change 10% 0 -0.01% 0 

Volume (new) 
99%+10% = 

109% 
65%+0 = 65% 

64.966%-0.01% = 

64.956% 
65% 

Volume 

(constraint) 
100% 65% 64.956% 64.991% 

Volume change 

(actual) 

100%-99% = 

1% 
0% -0.01% 

-9% 

(not satisfied) 
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Adjustment 1 (proposed max change = 1%) 

Volume change 1% (lower) 0 -0.001% (lower) 0 

Volume (new) 
99%+1% = 

100% 
65%+0 = 65% 

64.966%-0.001% 

= 64.965% 
65% 

Volume 

(constraint) 
100% 65% 64.965% 65% 

Volume change 

(actual) 
1% (lower) 0% -0.001% (lower) 

0 

(satisfied) 

Adjustment 2 (proposed max change = 9%) 

Volume change 1% (lower) 9% (higher) -0.01% 0 

Volume (new) 
99%+1% = 

100% 

65%+9% = 

74% 

64.966%-0.01% = 

64.956% 
65% 

Volume 

(constraint) 
100% 74% 64.956% 65% 

Volume change 

(actual) 
1% (lower) 9% (higher) -0.01% 

0 

(satisfied) 

Sensitivity 

(effective) 
0.09121 (lower) 0.1 0.0901 0.09011 

Sensitivity 

(adjusted) 
0.001099 0.009889 -0.00001099 

0 

(satisfied) 

As shown in the example, some sensitivity and volume adjustments should be made not only 

to satisfy the volume constraint, but also to maintain the rate of structural evolution. The 

actual change in elemental volume would most certainly deviate from the sensitivity if the 

evolution rate was to be maintained. 

The built-in adjustment mechanism in the MMA solver could cope with the 2D sensitivity 

issues but not so well in the 3D situations. Additional adjustments were made to augment the 

volume constraint system. In this study, the sensitivity value of individual elements was 

capped by one upper limit and one lower limit. The upper limit was determined by the 

sensitivity of the element whose volume changed the most in the previous time step (in the 

example above, Element #2 increased most). The lower limit was determined by the 

sensitivity of the element whose volume changed the least (or most negative) in the previous 

time step (in the example above, Element #3-#1002 decreased most). As the solid volume 

fraction of Element #1 has reached 100%, its sensitivity in the following iteration will be 
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limited by the sensitivity of Element #2. In fact in the current iteration, the effective 

sensitivity of Element #1 only has to be a fraction of the sensitivity of Element #2. 

7.5 Concluding remarks 

Sustained nutrient transport is recognised as the key to successful tissue scaffolding. The 

diffusive movement must be maintained spatially and temporally to ensure cell viability. 

Inspired by the efficiency of natural vascular systems in nutrient transport and their fractal 

pattern, this topology optimisation study was carried out to design and optimise artificial 

vasculature system and to determine if there exists a link between optimality and fractality. 

From the 2D and 3D optimisation results, it is concluded that fractal is an optimal structural 

pattern in diffusion transportation systems under uniform oxygen consumption. The fractal 

pattern is more recognisable in scenarios involving high uniform body force and low 

diffusivity. Lowering the oxygen diffusivity in the solid phase will result in higher degree of 

fractality. The architecture of the optimised models resembles natural vascular transport 

systems found in plants and animals. Moreover, it is deduced that the intermediate material 

phase is actually part of the solution, rather than an un-converged numerical transition 

between two major phases. 
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8 Conclusions and Future Work 

8.1 Summary 

This fire-part study has demonstrated that the material properties and cell viability of tissue 

scaffolds can be improved through numerous design approaches. The material properties of 

tissue scaffolds can be optimised independently to the point of theoretical optimum, or 

simultaneously to meet multidisciplinary design requirement (Figure 8-1). Also, cell viability 

can be significantly enhanced under diffusion-dominated condition. 

 

Figure 8-1. A multi-scale design of tissue scaffold with optimised permeability, diffusivity, 

bulk modulus and cell viability. RVE model (b) is recommended for the intermediate porosity 

region. RVE model (c) is recommended for the high porosity region. RVE model (d) can be 

used in the low porosity region. 

The major achievements of this study are: 

 The development of high quality models of tissue scaffolds. 
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 The clarification of the optimal structures of tissue scaffolds in terms of: 

o effective diffusivity, 

o effective bulk modulus, 

o effective permeability, 

o steady-state cell viability, 

o steady-state cell number, and 

o steady-state oxygen concentration. 

 Demonstrating the effectiveness of topology optimisation on improving cell viability 

in diffusion-dominated and advection-dominated systems. 

 The validation of optimality of fractal vascular systems. 

This thesis was a five-part study. The first part of this study (Chapter 3) was the formulation 

of the high quality isosurface modelling technique. The isosurface modelling process was 

automated and implemented in the level-set-based topology optimisation. This technique 

showed robustness and capability in converting complex CT-images and mathematical 

models to smooth finite element meshes. The resultant meshes exhibited decent quality, 

suitable for the subsequent finite element analysis and topology optimisation procedure. The 

isosurface models were written in the stereolithography format, which could be readily used 

in solid freeform fabrication. Isosurface modelling as a tool for topology optimisation was 

further demonstrated in the next two parts of study. 

The second part of this study (Chapter 4) was the single objective optimisation of tissue 

scaffolds and the characterisation of optimal structures. The RVE of tissue scaffolds with 

optimised bulk modulus, diffusivity and permeability were found using the level set method 

and the isosurface modelling technique. The incorporation of isosurface modelling was 

proven beneficial, showing significant improvements in model quality, numerical accuracy, 
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and smoother convergence when the results were compared to those obtained from 

conventional approaches. The proposed topology optimisation technique appropriately filled 

the gap in topology optimisation in CFD. 

The third part of this study (Chapter 5) was the multiobjective optimisation of tissue scaffold 

structures. A range of optimal cubic RVE models were obtained, ranging from the maximum 

effective diffusivity structure to the maximum effective bulk modulus structure. The optimal 

intermediate model was found to be similar but not exactly the same as the Schwarz’s 

primitive surface, which was suggested the optimal shape by past studies. Further cell 

viability test provided evidence that the optimised RVE design offered a more viable 

environment than a scaffold with random microstructure. 

The forth part of the study (Chapter 6) was the optimisation of the porosity profile of tissue 

scaffolds. The results revealed that to improve the final cell seeding outcome, non-uniform 

porosity structures were required. The resultant porosity patterns depended on a number of 

technical factors including seeding density, seeding uniformity, perfusion rate and the design 

objective. Overall, the manipulation of porosity profile had shown significant influence on 

the cell survivability in a diffusion-dominated environment. Besides topology optimisation, a 

number of facts were also deduced: 

 Advection, or perfusion, was found crucial to the sustainability of oxygen level in a 

tissue scaffold that was one centimetre in size, or larger. 

 Topology optimisation as a design technique had shown limited influence on the cell 

survivability in an advection-dominated environment. 

 The practical size or the thickness of a tissue scaffold, in term of cell survivability, 

could be predicted if the desired seeding density was given. 
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This knowledge can help us decide whether a scaffold size is viable to begin with, and if 

topology optimisation will make a significant different in the final seeding outcome. 

The last part of the study (Chapter 7) was a multi-scale design and optimisation of artificial 

vascular system. A clear connection between optimality and fractality of material distribution 

was established through the steady-state diffusion simulation. However, such relationship 

was found only to exist in situations where the scaffold material was virtually non-conductive 

and the volumetric oxygen consumption was the primary force. On the other hand, optimal 

vascular networks with low degree of fractality or with no observable fractality were found in 

situations where surface flux was dominant, and in scenarios where scaffold material allowed 

diffusion to occur within itself, even at an extremely slow rate. In conclusion, the results 

support the conjecture that natural vascular systems acquire their fractal shapes through the 

process of self-optimisation. 

Finally, this thesis has presented not only a comprehensive design of tissue scaffolds for load-

bearing and nutrient transportation purposes, but also explored how biological responses 

could trigger beneficial or adverse feedback cycles that can lead to cell death or self-

optimisation. The driven mechanisms of both engineering and biological optimisations were 

explained. This research is a demonstration of the benefit of computational investigation in 

tissue engineering and scaffold design. 

8.2 Recommendations for future works 

In this thesis, all problems were formulated and solved as deterministic problems to simplify 

the solution process. However, biological processes usually involve some degree of 

uncertainty. In the context of design of tissue scaffolds, taking into account the uncertainty in 

cell proliferation outcome should produce more realistic solutions. Design under uncertainty 

is therefore a potential area for future investigation. 
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The scope of this study has been limited by the availability of mathematical models of 

biological systems. A re-investigation or a reformulation of the optimisation method is 

necessary if any of the following models is improved or new models are made available in 

the future: 

1. cell growth rate as a function of oxygen concentration, 

2. cell death rate as a function of oxygen concentration, 

3. diffusion model for space partially occupied by cells, and 

4. the determination of effective diffusivity and stiffness of fractal materials. 

To our knowledge there is no study on time-dependent optimisation of tissue scaffolds. All 

results obtained in this study were also optimised at the steady state only. The development of 

time-dependent models of biological system will be crucial to the investigation of real-time 

cell proliferation and the biological effect of topology. 

Finally, experiments are necessary to verify and validate the optimality of the computational 

designs. The primary factors that have been preventing this from taking place in this five-part 

study are the cost and the ability to manufacture the prescribed microstructures at the desired 

scale. Nevertheless, solid freeform fabrication is a promising and suitable technique for the 

production of structured tissue scaffolds. The development and integration of precision solid 

freeform fabrication in tissue engineering is highly anticipated. 
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