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Structured Abstract:   

Background: Biomarkers may contribute to risk stratification in coronary heart disease 

(CHD). We examined whether plasma midregional proadrenomedullin (MR-proADM) 

concentration at baseline and its change over one year predicts long-term outcomes in stable 

CHD patients. 

Methods: The LIPID study randomised patients 3-36 months after an acute coronary 

syndrome with total cholesterol 4.0-7.0 mmol/L (155-271 mg/dl), to placebo or pravastatin 40 

mg. Follow-up was 6.0 years. MR-proADM plasma concentrations at baseline and one year 

later were determined in 7,863 and 6,658 patients, respectively. These were categorised into 

quartiles to perform Cox regression analysis, adjusting for baseline parameters. 

Results: Baseline MR-proADM concentrations predicted major CHD events (non-fatal 

myocardial infarction or CHD death; hazard ratio (HR) 1.52, 1.26–1.84 for Q4-Q1), CHD 

death (HR 2.21, 1.67-2.92), heart failure (HR 2.30, 1.78-2.97) and all-cause mortality (HR 

1.82, 1.49-2.23). Associations were still significant after adjustment for baseline B-type 

natriuretic peptide (BNP) concentration. Increase in MR-proADM after one year was 

associated with increased risk of subsequent CHD events (HR 1.34, 1.08-1.66), non-fatal 

myocardial infarction (HR 1.50, 1.12-2.03), heart failure (HR 1.78, 1.37-2.30) and all-cause 

mortality (HR 1.31, 1.04-1.64). Associations with heart failure and all-cause mortality 

remained significant after adjusting for baseline and change in BNP concentration. Change in 

MR-proADM moderately improved risk reclassification for major CHD events (net 

reclassification improvement (NRI) 3.48%) but strongly improved risk reclassification for 

heart failure (NRI 5.60%). 

Conclusions: Baseline and change in MR-proADM concentrations over one year are 

associated with risk of major clinical events, even after adjustment for BNP concentrations.  
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Introduction 

Cardiovascular disease is the leading cause of death worldwide.1 It is largely preventable, 

and biomarkers have received growing attention in attempts to improve the prediction of risk 

for atherothrombotic events.2 Particularly, biomarkers reflecting cardiac volume or pressure 

overload appear promising in terms of risk stratification and prediction of subsequent CHD 

events and heart failure.3, 4 Besides the natriuretic peptides5, midregional proadrenomedullin 

(MR-proADM) has now moved into the centre of interest in this area. MR-proADM is a stable 

and surrogate marker for adrenomedullin (ADM) release.6 ADM is a peptide hormone that 

acts as a vasodilator and plays important roles in the microcirculation and in endothelial 

dysfunction.7, 8  

 

Plasma ADM concentrations are increased with myocardial infarction and correlate with the 

severity of associated heart failure.9, 10  In patients with chronic heart failure, MR-proADM has 

been shown to be an independent predictor of mortality and to provide additional prognostic 

information beyond established biomarkers.11-13 Increased MR-proADM concentrations have 

also been associated with a worse outcome in patients with acute dyspnoea and suspected 

heart failure.14 However although MR-proADM is a powerful predictor of adverse outcomes in 

patients after myocardial infarction 15 and in CHD patients, 16 its importance in long-term 

follow-up of stable CHD patients, especially any association with incident heart failure, still 

needs further examination. Therefore, the aim of the present study was to assess the ability 

of MR-proADM to predict the risk of future major CHD events and heart failure in patients 

who were stable after previous myocardial infarction or unstable angina and also whether 

concentration changes over time translated into differences in risk of subsequent events. In 

both contexts, models adjusted for known prognostic variables including brain natriuretic 

peptide (BNP). 
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Methods 

Study design and patients 

The design and results of the Long-Term Intervention with Pravastatin in Ischaemic Disease 

(LIPID) study has been described elsewhere.17 Briefly, 9,014 patients with an acute 

myocardial infarction or hospitalisation for unstable angina 3-36 months previously were 

enrolled. Participants were aged between 31 and 75 years and were recruited from 87 

centres in Australia and New Zealand. Baseline total cholesterol concentration was required 

to be 4-7 mmol/L (155-271 mg/dL) and fasting triglyceride concentration <5 mmol/L (445 

mg/dL). Patients with a clinically significant medical or surgical event within the three months 

before study entry, current cardiac failure, renal or hepatic disease, or taking lipid-lowering 

agents were excluded from the study. Ejection fraction was not measured routinely prior to 

randomisation, but if this was documented to be <25%, such patients were also excluded. 

Coronary anatomy and whether or not patients had functional evidence of myocardial 

ischaemia was also unknown.  

After an 8-week, single-blinded placebo run-in phase patients were randomised to either 40 

mg pravastatin daily or matching placebo between June 1990 and December 1992. Both 

groups received dietary advice. Patients were followed-up for a median of 6.0 years. Vital 

status was ascertained in all but one patient. 

Baseline data and a multivariate model were used to calculate a “global risk score” for each 

patient to rank the risk of CHD mortality or non-fatal myocardial infarction.18 Total and high-

density lipoprotein (HDL)-cholesterol concentrations, age, gender, smoking status, whether 

myocardial infarction or unstable angina was the qualifying event, previous coronary 

revascularisation procedures, diabetes mellitus, hypertension, and previous stroke were the 

independent significant predictors used to calculate the global risk score. 
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Laboratory methods 

Biomarker measurements were available at baseline in 7,863 patients (6,530 male, 1,333 

female). A total of 6,658 patients also had a MR-proADM assay available at one year after 

their randomisation to either pravastatin or placebo. 

EDTA blood was drawn after a 12 hour fasting period. Samples were stored at –70 °C until 

final analyses. High density lipoprotein -cholesterol and triglyceride levels were measured 

directly. Low-density lipoprotein (LDL)-cholesterol was estimated indirectly, using the 

Friedewald formula.19  

Biomarker samples were analysed in the MORGAM biomarker laboratory. MR-proADM was 

measured by an immunoluminometric assay (BRAHMS, Kryptor) with an assay range of 

0.05-10 nmol/L. The functional assay sensitivity (20% CV interassay-precision) was 0.25 

nmol/L. Precision data were estimated in accordance with CLSI (Clinical and Laboratory 

Standards Institute Guidelines) Guideline EP 5-A2 (Evaluation of Precision Performance of 

Clinical Chemistry Devices). Reference ranges for healthy individuals were 0.52 nmol/L for 

the 95% percentile and0.32 nmol/L for the median. The distribution of MrProADM was 

skewed, and also some values were below the lower limit at baseline and year 1. For these 

reasons and as pre-specified in the biomarker protocol, analyses were performed using 

quartiles. 

BNP was measured using the sandwich-immunoassay/ADVIA Centaur BNP test kit 

(Siemens Healthcare) on an ADVIA Centaur XP with an assay range of 0-5000pg/ml. The 

interassay coefficient of variation was between 2.6 and 5.1%. 

Biochemical analyses were performed blinded to randomised treatment.  

 

Study outcomes 

The primary pre-specified outcome for LIPID biomarker analyses was a composite of CHD 

death and non-fatal myocardial infarction (major CHD events). Additionally, endpoints for the 

present study included incident heart failure (hospitalisation or death from heart failure, as 
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diagnosed by ICD-9 codes (4280, 4281, 4289)), and all-cause mortality. Myocardial infarction 

was diagnosed by development of new pathological Q-waves of ≥0.03 seconds in at least 2 

contiguous electrocardiographic leads or presence of at least two of the following: a history of 

typical ischaemic pain lasting for ≥15 minutes and unresponsive to sublingual nitrates; 

elevation of creatinine kinase MB-isoform >2 times the upper limit of normal; evolution of ST-

T changes. All deaths, myocardial infarctions, and strokes were reviewed by Outcomes 

Assessment Committees whose members were blinded to treatment assignment. All 

analyses were pre-specified in a biomarker protocol. The trial and the biomarker analyses 

were conceived, managed, and analysed independently of the sponsor. 

Informed consent was obtained from each patient prior to randomisation in the LIPID study, 

and also prior to samples being taken for biomarker analyses. The study protocol conforms 

to the Ethical guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval 

by Institutional Human Research Committees.  

 

Statistical Methods 

Continuous variables are described as means (with standard deviations) or medians (with 

25th and 75th percentiles). As pre-specified in the biomarker analysis plan, MR-proADM was 

analysed in quartiles: ≤0.381, 0.381 to ≤0.474, 0.474 to ≤0.578 and >0.578 nmol/L. Change 

in MR-proADM after one year was also categorised in quartiles: ≤-0.0665, -0.06665 to ≤-

0.0029, -0.0029 to ≤0.0565 and >0.0565 nmol/L. Comparisons over these quartiles were 

performed as a test of trend, using a generalised linear model for continuous variables and 

an ordinal or logistic regression for categorical variables. Change in biomarker 

concentrations were compared between treatment groups using a Wilcoxon signed rank test. 

The relationship between baseline MR-proADM and other baseline risk factors was assessed 

using Spearman’s rank correlation coefficient. 

The association between baseline MR-proADM quartiles and outcome was assessed using 

the Cox proportional hazards model after adjustment for treatment and 23 baseline risk 
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factors; gender, prior stroke, diabetes mellitus, current smoking, hypertension, fasting  

glucose, total cholesterol, apolipoprotein B, apolipoprotein A1, HDL-cholesterol, triglycerides,  

age, type of qualifying prior acute coronary syndromes, timing of coronary revascularisation,  

systolic blood pressure, atrial fibrillation, estimated glomerular filtration rate, body mass  

index, dyspnoea class, angina grade, white blood cell count, peripheral vascular disease and  

whether the patient was taking aspirin at baseline. Each of these variables had been shown  

to be an independent predictor of cardiovascular disease events in published LIPID risk  

models. 18  

The relationship between change in biomarker concentration and CHD events after 12  

months was assessed using Cox regression in a landmark model that included baseline risk  

factors and baseline MR-proADM concentration. Whether MR-proADM improved  

discrimination between those who did and those who did not develop events was assessed  

using the C statistic which was calculated from the time-to-event analysis19 , and also Net  

Reclassification Improvement (NRI). To assess risk reclassification following the addition of  

MR-proADM, the categories used were <7.5%, 7.5% to <10%, 10% to <15% and ≥15% risk  

of all endpoints during follow-up at 5 years. Improvement in classification was defined as  

upward movement in risk category in patients who experienced an event, or movement to a  

lower risk category in those who did not experience such an event.   

Finally models testing the prognostic value of both baseline MR-proADM and its change over  

12 months were further adjusted for concentrations of BNP and its change.   

The pre-specified level of significance was 0.05, except in the context of interaction p-values  

where this was instead 0.01 due to the large number of comparisons.  

For the primary endpoint of major CHD events, of which there were 1100, there was 80%  

power to detect a hazard ratio of at least 1.19.   

Analyses were carried out using SAS 9.2 SAS Institute Inc., Cary, NC, USA.  
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Results 

Baseline characteristics stratified by baseline MR-proADM concentrations  

Table 1 shows the baseline demographics, cardiovascular risk factors, and clinical features 

associated with atherosclerotic cardiovascular disease categorised by MR-proADM quartiles. 

Individuals with higher MR-proADM concentrations were significantly older and more 

frequently female (both p<0.001). Further, patients from the higher MR-proADM quartiles 

more often had recognised cardiovascular risk factors (hypertension, obesity, previous 

stroke, lower HDL-cholesterol concentrations) and impaired renal function (lower estimated 

glomerular filtration rate), had a higher estimated global risk score and were less likely to 

have undergone coronary revascularisation (all p<0.001). Those with the highest MR-

proADM concentrations were also more likely to be treated at baseline with antihypertensive 

medication (angiotensin converting enzyme (ACE) inhibitors, beta-blockers, calcium 

antagonists) (all p<0.001) and less likely to be treated with aspirin (p<0.01).  

MR-proADM showed a moderate correlation with BNP (r=0.54), and a modest correlation 

with age at randomisation (r=0.36), serum creatinine (r=0.30), and estimated glomerular 

filtration rate (eGFR) (r=-0.40) (all p<0.001) (Table 2).  

 

Association between baseline MR-proADM concentration and outcomes 

Increasing baseline MR-proADM quartiles were strongly associated with the subsequent risk 

of the composite endpoint of major CHD events (CHD death and non-fatal myocardial 

infarction) (highest quartile compared to first quartile (HR 1.52, 95% CI 1.26–1.84; p<0.001) 

and also CHD death (HR 2.21, 95% CI 1.67-2.92; p<0.001), heart failure (HR 2.30, 95% CI 

1.78-2.97; p<0.001), and all-cause mortality (HR 1.82, 95% CI 1.49-2.23; p<0.001). There 

was no association with non-fatal myocardial infarction alone (HR 1.11, 95% CI 0.86-1.42, 

p=0.43) (Table 3).   
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Table 3 shows that after additional adjustment for BNP concentration, the associations of 

baseline MR-proADM concentration appeared slightly attenuated but still remained 

significant for major CHD events, CHD death, heart failure and all-cause mortality. 

 

Associations with change in MR-proADM concentrations from baseline to one year 

An increase in MR-proADM concentration in the first year >0.0565 nmol/l (the highest quartile 

of change) was associated with a higher risk of major CHD events compared to those 

individuals with the greatest reduction in concentration of MR-proADM ≤-0.0665 nmol/l 

(lowest quartile) (HR 1.34, 95%CI 1.08-1.66; p=0.007). This was primarily due to the 

increased risk of non-fatal myocardial infarction (HR 1.50, 95 % CI 1.12-2.03; p=0.007). 

Strong associations of change in MR-proADM were also observed for incident heart failure 

(HR 1.78, 95% CI 1.37-2.30, p<0.001) and all-cause mortality (HR 1.42, 1.15-1.76, p=0.001) 

(Table 4).  

As shown in Table 4, after additional adjustment for baseline and change in BNP 

concentration, the association of outcome with change of MR-proADM concentration after 

one year remained significant for incident heart failure and all-cause mortality. 

 

Metrics of discrimination and reclassification for baseline MR-proADM and outcomes 

Adding baseline MR-proADM concentration to the set of baseline variables improved 

discrimination and reclassification for CHD death (C statistic 0.735/0.747; NRI 4.61%, 

p=0.07) and heart failure (C statistic 0.740/0.751; NRI 4.70%, p=0.05) but not for major CHD 

events (C statistic 0.665/0.669; NRI 2.36%, p=0.15), non-fatal myocardial infarction (C 

statistic 0.629/0.629; NRI -0.60%, p=0.62) or all-cause mortality (C statistic 0.702/0.712; NRI 

3.69, p=0.06) (Table 5).  

 

Metrics of discrimination and reclassification for change in MR-proADM and outcomes 
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In a landmark model the change of MR-proADM at one year (additionally adjusted for 

baseline MR-proADM concentration) strongly improved discrimination and risk 

reclassification for subsequent heart failure (C statistic 0.737/0.745; NRI 5.60%, p=0.01). For 

subsequent major CHD events, only moderate risk reclassification was observed (C statistic 

0.655/0.659; NRI 3.48%, p=0.02), whereas no significant reclassification was observed for 

the individual endpoints of non-fatal myocardial infarction (C statistic 0.629/0.633; NRI 

1.37%, p=0.43), CHD death (C statistic 0.739/0.742; NRI -1.28%, p=0.50) or all-cause 

mortality (C statistic 0.706/0.712; NRI 1.29, p=0.50) (Table 5). 

 

Interaction with  treatment effect of pravastatin 

Table 6 compares the associations of baseline MR-proADM quartiles with study outcomes in 

both treatment groups. The relative treatment effect of pravastatin was comparable across 

each baseline quartile of MR-proADM concentrations for each outcome measure, with no 

evidence of any significant interaction. This constant relative effect translated into an 

increasing absolute benefit of pravastatin with increasing quartile of MR-proADM, i.e. number 

needed to treat (NNT) over 5 years decreased for all endpoints: major CHD events (NNT: 

lowest quartile versus highest quartile 50 vs. 26), CHD death (NNT: 97 vs. 38), non-fatal 

myocardial infarction (NNT: 84 vs. 54), heart failure (NNT: 184 vs. 65), and all-cause 

mortality (NNT: 58 vs. 25). 

 

Sex-specific differences in baseline MR-proADM concentrations and change in MR-proADM 

concentrations during pravastatin treatment  

Median baseline MR-proADM concentrations were higher in females (placebo: 0.53 nmol/L 

(IQR 0.42,0.65 nmol/L) pravastatin: 0.51 nmol/L (IQR 0.40,0.64 nmol/L) than in males 

(placebo:0.46 nmol/L (IQR 0.38,0.57 nmol/L), pravastatin: 0.47 nmol/L (IQR 

0.36,0.56nmol/L)) (Table 7). After one year of treatment, MR-proADM concentration 

decreased by a small but significantly greater extent in those patients taking pravastatin 
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(p=0.03).There were no differences between genders in the magnitude of this change in MR-

proADM with pravastatin.  

 

Discussion 

The present data from the large, randomised, placebo-controlled LIPID study focussed on 

the predictive value of baseline MR-proADM concentration and the change in its 

concentration after one year in patients with stable CHD. In this prespecified biomarker 

analysis we showed an association between baseline MR-proADM concentrations and the 

incidence of subsequent major clinical events. Higher baseline MR-proADM concentrations 

were an independent predictor of future major CHD events, particularly CHD death, and also 

predicted heart failure and all-cause mortality. In addition, patients who had greater reduction 

in MR-proADM concentrations after one year, had a lower risk of CHD events, primarily due 

to a lower risk for non-fatal myocardial infarction, and also a lower risk of subsequent heart 

failure and all-cause mortality. Despite the correlation of MR-proADM with BNP 

concentration, the associations of baseline MR-proADM concentration persisted after 

additional significant adjustment for baseline BNP. Interestingly, the change in MR-proADM 

after one year was still highly significant for subsequent heart failure hospitalisation or death 

after further adjusting for BNP concentration.  

The findings related to the effect of change in MR-proADM on subsequent events are 

particularly noteworthy. This is a very important and robust test of the relevance of a 

biomarker, but is rarely assessed.  

MR-proADM baseline concentrations added borderline significant discriminative effect 

beyond classical risk factors for CHD death and heart failure, but not for major CHD events 

or myocardial infarction. The absolute changes in C statistic were relatively small. The 

greatest risk reclassification was found for heart failure by adding the change of MR-proADM 

concentration after one year (NRI 5.60%). There were no significant differences in the 

relative treatment effect of pravastatin according to baseline MR-proADM quartiles. 
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Association of baseline MR-proADM with laboratory parameters and classical risk factors 

Our finding that increased MR-proADM concentrations were associated with impaired renal 

function is consistent with previous studies.20 MR-proADM was also associated with 

predictors of CHD mortality, including age, clinical evidence of severe cardiac and 

cerebrovascular disease (previous stroke, higher global risk score), hypertension, obesity, 

diabetes and BNP concentration.13,16, 18, 21 The correlation with BNP concentration is 

consistent with the findings of others.22 

 

Associations of baseline MR-proADM concentrations and change of MR-proADM with 

cardiovascular outcomes 

Results in earlier trials concerning the predictive value of adrenomedullin were ambiguous. 

However, after the establishment of modern assays to detect stable precursors, MR-proADM 

has evolved into an important biomarker in cardiac risk prediction. 23, 24 

Khan et al. assessed the prognostic value of MR-proADM in patients with acute myocardial 

infarction in the Leicester Acute Myocardial Infarction Peptide (LAMP) studies in ST-

Elevation Myocardial Infarction 15 and non–ST-elevation Myocardial Infarction25. Patients with 

higher concentrations of MR-proADM were at increased risk of death and incident heart 

failure. In the LAMP studies, blood samples were drawn as early as 3 to 5 days after the 

qualifying event. In contrast in our present study, baseline blood samples were drawn at a 

median of 13.9 months (IQR 7.9, 25.0) after the qualifying event. Therefore MR-proADM 

concentrations in the LAMP studies may reflect the early pathophysiological and remodelling 

processes after myocardial infarction rather than testing their value as a prognostic marker in 

long-term follow-up in patients with stable CHD.  

The present data showing that baseline MR-proADM concentrations predicted CHD death 

and heart failure, but not non-fatal myocardial infarction are in accordance with the findings 

of the AtheroGene Study which investigated MR-proADM concentrations in a smaller number 
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of individuals (n=2,240) with stable angina or acute coronary syndrome and evaluated their 

prognostic impact on cardiovascular events during a follow-up period of almost 4 years.16 In 

AtheroGene, MR-proADM concentrations were independently associated with fatal or non-

fatal cardiovascular events.  

Sabatine et al. 22 showed that in patients with stable CHD and preserved ejection fraction, 

biomarkers reflecting cardiovascular stress (e.g. MR-proADM, natriuretic peptides) were 

more predictive of CHD death and incident heart failure, than the composite of CHD death 

and myocardial infarction. This is similar to our findings. 

In our study the association of MR-proADM concentrations with subsequent heart failure 

events was even stronger than for the primary endpoint of major CHD events. Since 

reduction in left ventricular function is a common result of the structural changes in the heart 

caused by CHD, our observations may be explained by the different pathophysiological 

processes involved. In animal models, MR-proADM is increased in response to pressure-and 

volume-overload and protects against fibrosis and hypertrophy.26-28 This suggests a potential 

counter-regulatory effect protecting against structural cardiac changes. This is supported by 

our finding that patients who had the greatest reduction in MR-proADM concentration after 

one year compared to those with little change or increasing MR-proADM concentrations 

showed a reduced risk of major CHD events, non-fatal myocardial infarction, heart failure 

and all-cause mortality.  

Of particular note, in the PEACE study22 trandolapril was most effective in those individuals in 

the upper quartile of MR-proADM concentrations. This biomarker/therapy interaction was not 

observed for N-terminal pro-B-type natriuretic peptide. Our findings are also congruent with 

those in the HOPE biomarker study.29  

 

What are the implications of these data?  

Together with our observation that changes in MR-proADM concentrations can impact on 

incident heart failure and other major events even after adjusting for BNP concentration, MR-
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proADM may have the potential to inform therapeutic decision-making in stable CHD  

patients. Single baseline determination of MR-proADM, because it predicts death and heart  

failure as well as recurrent major CHD events, and serial assessment of the change of MR- 

proADM potentially has important clinical utility. Furthermore, MR-proADM concentrations  

predict heart failure beyond clinical variables such as hypertension and body mass index,  

and additionally BNP concentration, and might guide the modification or intensity of therapy  

aimed at preventing or managing heart failure. However, this possibility of MR-proADM  

guided therapy needs to be tested prospectively  

  

Effect of pravastatin therapy  

After one year of treatment with pravastatin, MR-proADM concentration decreased to a small  

but significantly greater extent in those patients taking pravastatin. It is possible but remains  

speculative whether this could partly contribute to the reduced risk for subsequent events in  

patients receiving statins.  

The relative treatment effect of pravastatin on outcomes was very similar across each  

baseline quartile of MR-proADM. However, with increasing MR-proADM quartiles, the NNT  

decreased for all endpoints.  Thus, patients in the higher MR-proADM quartiles experienced  

a greater absolute benefit because of their higher risk. This finding suggests that such  

patients need the most intensive surveillance with regard to modification of cardiovascular  

risk factors and compliance with secondary preventive strategies. Recognising and treating  

aggressively on the basis of these findings may result in major benefits for individuals with  

highly elevated MR-proADM concentrations.  

  

Study limitations  

The LIPID study was conducted some years ago. However the cohort has ongoing major  

relevance to current clinical management since it provides a unique dataset with long-term  

follow-up of a large group of typical CHD patients who had previously been admitted to  
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hospital with myocardial infarction or unstable angina.  Furthermore patients had a broad 

range of cholesterol levels reflecting those in usual clinical practice. Importantly there were 

relatively few exclusion criteria and of just over 11,000 screened patients, 9,014 were 

subsequently randomised to receive pravastatin or placebo. Biomarker levels were available 

in a high proportion, 7,863 patients at baseline and 6,658 after one year.  Background 

therapy was also quite similar to therapies which are currently recommended, although 

usage of angiotensin converting enzyme (ACE) inhibitors or angiotensin receptor blockers 

was less than in contemporary practice. Also use of beta-blockers and ACE inhibitors was by 

chance, higher in those with the highest MR-proADM levels.  Since commencement of the 

LIPID trial the most significant changes in management of coronary heart disease patients 

have been dual antiplatelet therapy and the more frequent use of primary angioplasty in 

acute myocardial infarction. However these advances are less relevant to stable CHD 

patients, as were recruited to the LIPID study. However it is acknowledged that preservation 

of left ventricular function could modulate the impact of the biomarkers investigated. In 

addition, use of implantable cardioverter defibrillators have improved survival of selected 

CHD patients, although those known to have a very low ejection fraction were excluded from 

the LIPID study.  Although diagnostic criteria for myocardial infarction have evolved, the 

LIPID cohort still represents stable CHD patients randomised at a median of 1 year after their 

qualifying event.   

The models used to assess the effects of change in MR-proADM were restricted to events 

after the 12 month sample was taken. Therefore, these data provide no information on very 

high risk patients, who had an event which may have been fatal, within the first 12 months 

after randomisation.  Also the LIPID study included predominantly males (83%). This is of 

particular interest since females had higher MR-proADM concentrations. Gender-specific 

analyses would be of interest in future studies.  

Finally, the diagnosis of heart failure at baseline was based on clinical assessment rather 

than echocardiographic or angiographic parameters. However, incident heart failure during 
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follow-up was diagnosed on the basis of hard end-points, either need for hospitalisation or 

death due to heart failure. 

Despite these limitations, we believe that the observed associations of both baseline MR-

proADM and its change after one year with major clinical outcomes, which importantly 

persisted after adjustment for BNP concentration, have major relevance for contemporary 

patient management and research.  

 

Conclusions 

In conclusion, determining MR-proADM baseline concentration in stable CHD patients with 

previous acute coronary syndromes may be a valuable tool for physicians to identify those at 

particular need for intensified surveillance of risk factors and for potential complications of 

CHD. This could also inform more intensive measures to improve compliance with statins 

and other evidence-based therapies. Evaluating the change of MR-proADM concentration 

during monitoring of patients may also help to identify patients at particular risk of incident 

heart failure beyond use of brain natriuretic peptides for this purpose. 
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Table 1: Baseline characteristics stratified by baseline MR-proADM* concentrations  

 MR-proADM ≤0.381 pg/mL MR-proADM 0.381-0.474 pg/mL MR-proADM 0.474-0.578 pg/mL MR-proADM >0.578 pg/mL 

P values 

(trend) 

N 1961 1971 1969 1962  

MR-proADM (nmol/L) 0.3 (0.1) 0.4 (0.0) 0.5 (0.0) 0.7 (0.1)  

Age at randomisation 58 (51 - 64) 60 (53 - 65) 63.0 (58 - 68) 67 (62 - 70) <0.001 

Female 262 (13%) 262 (13%) 321 (16%) 488 (25%) <0.001 

Baseline characteristics      

Months from qualifying event 14.0 (7.9-25.2) 14.3 (7.9-24.7) 13.5 (7.9-24.5) 14.1 (8.0-25.5) 0.80 

Current smoker 180 (9%) 175 (9%) 182 (9%) 198 (10%) 0.28 

Hypertension 759 (39%) 716 (36%) 801 (41%) 1015 (52%) <0.001 

Diabetes mellitus 157 (8%) 137 (7%) 165 (8%) 217 (11%) <0.001 

Obesity 315 (16%) 299 (15%) 318 (16%) 465 (24%) <0.001 

Previous stroke 54 (3%) 70 (4%) 70 (4%) 128 (7%) <0.001 

Systolic blood pressure 

(mmHg) 

131 (18) 132 (19) 135 (19) 138 (20) <0.001 
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 MR-proADM ≤0.381 pg/mL MR-proADM 0.381-0.474 pg/mL MR-proADM 0.474-0.578 pg/mL MR-proADM >0.578 pg/mL 

P values 

(trend) 

Diastolic blood pressure 

(mmHg) 

80 (11) 80 (11) 81 (11) 81 (11) 0.24 

Baseline lipids      

Total cholesterol (mmol/L) 5.7 (0.8) 5.6 (0.8) 5.7 (0.8) 5.7 (0.8) 0.44 

LDL-cholesterol (mmol/L) 3.9 (0.7) 3.9 (0.7) 3.9 (0.7) 3.9 (0.8) 0.90 

HDL-cholesterol (mmol/L) 1.0 (0.2) 1.0 (0.2) 0.9 (0.2) 0.9 (0.2) <0.001 

Triglycerides (mmol/L) 1.5 (1.1 - 2.2) 1.5 (1.1 - 2.1) 1.6 (1.2 - 2.1) 1.7 (1.2 - 2.3) <0.001 

Total to HDL-cholesterol ratio 6.1 (1.6) 6.2 (1.5) 6.2 (1.5) 6.3 (1.6) <0.001 

Previous coronary 

revascularisation 

     

No revascularisation 1075 (55%) 1160 (59%) 1138 (58%) 1237 (63%) <0.001 

Percutaneous coronary 

intervention only 

287 (15%) 220 (11%) 208 (11%) 155 (8%)  

Coronary artery bypass graft 

only 

526 (27%) 514 (26%) 570 (29%) 531 (27%)  
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 MR-proADM ≤0.381 pg/mL MR-proADM 0.381-0.474 pg/mL MR-proADM 0.474-0.578 pg/mL MR-proADM >0.578 pg/mL 

P values 

(trend) 

Percutaneous coronary 

intervention and coronary 

artery bypass graft 

73 (4%) 77 (4%) 53 (3%) 39 (2%)  

Qualifying event      

No myocardial infarction 704 (36%) 685 (35%) 736 (37%) 718 (37%) 0.17 

Single myocardial infarction 1072 (55%) 1082 (55%) 1003 (51%) 958 (49%)  

Multiple myocardial infarctions 185 (9%) 204 (10%) 230 (12%) 286 (15%)  

Medications      

Aspirin 1632 (83%) 1672 (85%) 1631 (83%) 1566 (80%) <0.01 

ACE inhibitors 241 (12%) 224 (11%) 305 (15%) 484 (25%) <0.001 

Beta-blocker 827 (42%) 932 (47%) 949 (48%) 983 (50%) <0.001 

Calcium antagonist 609 (31%) 602 (31%) 694 (35%) 783 (40%) <0.001 

Global risk score 
8
      

Low risk 804 (41%) 759 (39%) 665 (34%) 482 (25%) <0.001 
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 MR-proADM ≤0.381 pg/mL MR-proADM 0.381-0.474 pg/mL MR-proADM 0.474-0.578 pg/mL MR-proADM >0.578 pg/mL 

P values 

(trend) 

Medium risk 570 (29%) 536 (27%) 477 (24%) 434 (22%)  

High risk 398 (20%) 467 (24%) 553 (28%) 628 (32%)  

Very high risk 189 (10%) 209 (11%) 274 (14%) 418 (21%)  

Mean risk score 5.1 (3.3) 5.4 (3.3) 5.9 (3.5) 6.9 (3.5) <0.001 

Baseline biomarker 

concentrations 

     

eGFR (mL/min/1.73 m²) 77 (66 - 87) 74 (66 - 83) 69 (61 - 78) 60 (51 - 69) <0.001 

White blood cell count 

(cells/µl) 

6.9 (5.9 - 8.1) 6.9 (5.8 - 8.1) 7.1 (6.0 - 8.2) 7.3 (6.2 - 8.5) <0.001 

 BNP (pg/mL) 8.4 (2.0 - 19.1) 20.3 (10.3 - 37.8) 29.6 (15.2 - 54.0) 49.4 (24.8 - 95.4) <0.001 

*MR-proADM = midregional proadrenomedullin 

Statistics presented are mean (standard deviation), median (Q1 – Q3) or N (%) 
P-values for trend for continuous variables are from a generalised linear model, and for categorical variables from an ordinal or logistic regression.
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Table 2: Baseline correlations with MR-proADM concentration 

 MR-proADM 

BNP concentration 0.54 

Troponin I concentration 0.12 

Age  0.36 

Myocardial infarction 0.09 

Systolic blood pressure  0.14 

Diastolic blood pressure 0.01 

Global Risk score 
18

 0.19 

White blood cell count 0.08 

Serum creatinine 0.30 

Estimated glomerular filtration rate -0.40 

Total cholesterol 0.01 

 

The relationship between baseline MR-proADM concentration and other baseline risk factors 
was assessed using Spearman’s rank correlation coefficient. All baseline correlations were 
highly significant (p<0.001), except for diastolic blood pressure (p=0.18) and total cholesterol 
(p=0.40)
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Table 3: Cox regression models for various endpoints with baseline MR-proADM quartiles 

 Event rates Adjusted for other variables only^ Adjusted for BNP and other variables^ 

Endpoint MR-proADM Events/Total 5 yr event rate HR (95% CI) p value** HR (95% CI) p value** 

Major CHD events <= 0.381 204/1961 8.5 1 <.001 1 0.03 

 0.381-0.474 220/1971 9.2 1.05 (0.87, 1.27)  0.99 (0.81, 1.21)  

 0.474-0.578 280/1969 11.8 1.26 (1.05, 1.52)  1.14 (0.93, 1.39)  

 > 0.578 396/1962 17.4 1.52 (1.26, 1.84)  1.27 (1.03, 1.57)  

Non-fatal myocardial  <= 0.381 136/1961 6 1 0.43 1 0.33 

infarction 0.381-0.474 150/1971 6.3 1.09 (0.86, 1.38)  1.12 (0.88, 1.43)  

 0.474-0.578 157/1969 7.1 1.11 (0.88, 1.41)  1.16 (0.90, 1.49)  

 > 0.578 176/1962 8 1.11 (0.86, 1.42)  1.15 (0.87, 1.52)  

CHD death <= 0.381 79/1961 3.2 1 <.001 1 0.03 

 0.381-0.474 82/1971 3.4 0.97 (0.71, 1.33)  0.80 (0.58, 1.10)  

 0.474-0.578 152/1969 6 1.64 (1.24, 2.18)  1.22 (0.90, 1.64)  

 > 0.578 252/1962 10.9 2.21 (1.67, 2.92)  1.41 (1.04, 1.93)  

Heart Failure <= 0.381 92/1961 4.3 1 <.001 1 0.004 
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 Event rates Adjusted for other variables only^ Adjusted for BNP and other variables^ 

Endpoint MR-proADM Events/Total 5 yr event rate HR (95% CI) p value** HR (95% CI) p value** 

 0.381-0.474 111/1971 4.8 1.24 (0.94, 1.65)  1.05 (0.78, 1.40)  

 0.474-0.578 161/1969 6.7 1.50 (1.15, 1.96)  1.15 (0.86, 1.52)  

 > 0.578 326/1961 14.9 2.30 (1.78, 2.97)  1.52 (1.15, 2.03)  

All-cause mortality <=0.381 157/1961 6.2 1 <.001 1 0.03 

 0.381-0.474 148/1971 5.9 0.88 (0.70, 1.10)  0.76 (0.60, 0.96)  

 0.474-0.578 251/1969 9.3 1.31 (1.07, 1.61)  1.04 (0.84, 1.30)  

 >0.578 417/1962 17.2 1.82 (1.49, 2.23)  1.28 (1.02, 1.61)  

 

^HR and 95% CI are adjusted for baseline variables: Gender, treatment, stroke, diabetes, smoking, hypertension, total cholesterol, apo B, apo 
A1, HDL-c, age, Nature of prior ACS, timing of coronary revascularisation, systolic blood pressure, atrial fibrillation, eGFR, BMI, dyspnoea 
class, angina grade, white cell count, peripheral vascular disease, aspirin use at baseline. 

Adjustment for BNP included Baseline BNP quartiles.  
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Table 4: Landmark models with outcomes associated with quartiles of change in MR-proADM 

 

 

Adjusted for baseline variables 

only^ 

Adjusted for baseline BNP, change in 

BNP and other baseline variables^ 

Outcome 

Change in MR-proADM 

(nmol/L) HR (95% CI) p value HR (95% CI) p value 

Major CHD events <= -0.0665 1 0.007 1 0.08 

 -0.0665 - -0.0029 1.10 (0.89, 1.36)  1.07 (0.86, 1.33)  

 -0.0029 - 0.0565 1.12 (0.90, 1.39)  1.06 (0.85, 1.34)  

 > 0.0565 1.34 (1.08, 1.66)  1.23 (0.97, 1.55)  

Non-fatal myocardial infarction <= -0.0665 1 0.007 1 0.06 

 -0.0665 - -0.0029 1.37 (1.03, 1.83)  1.29 (0.96, 1.72)  

 -0.0029 - 0.0565 1.26 (0.93, 1.70)  1.15 (0.84, 1.56)  

 > 0.0565 1.50 (1.12, 2.03)  1.35 (0.98, 1.85)  

CHD death <= -0.0665 1 0.14 1 0.55 
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Adjusted for baseline variables 

only^ 

Adjusted for baseline BNP, change in 

BNP and other baseline variables^ 

Outcome 

Change in MR-proADM 

(nmol/L) HR (95% CI) p value HR (95% CI) p value 

 -0.0665 - -0.0029 0.85 (0.64, 1.14)  0.84 (0.62, 1.14)  

 -0.0029 - 0.0565 0.95 (0.71, 1.27)  0.96 (0.70, 1.30)  

 > 0.0565 1.24 (0.93, 1.65)  1.10 (0.81, 1.50)  

Heart Failure <= -0.0665 1 <.001 1 0.002 

 -0.0665 - -0.0029 1.13 (0.86, 1.48)  1.08 (0.82, 1.43)  

 -0.0029 - 0.0565 1.22 (0.92, 1.61)  1.12 (0.84, 1.50)  

 > 0.0565 1.78 (1.37, 2.30)  1.57 (1.19, 2.07)  

All-cause mortality <= -0.0665 1 0.001 1 0.02 

 -0.0665 - -0.0029 0.92 (0.74, 1.15)  0.89 (0.71, 1.12)  

 -0.0029 - 0.0565 1.09 (0.88, 1.36)  1.05 (0.84, 1.32)  

 > 0.0565 1.42 (1.15, 1.76)  1.31 (1.04, 1.64)  
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^ HR and 95% CI are adjusted for baseline variables: Gender, treatment, stroke, diabetes, smoking, hypertension, total cholesterol, apo B, apo A1, 
HDL-c, age, Nature of prior ACS, timing of coronary revascularisation, systolic blood pressure, atrial fibrillation, eGFR, BMI, dyspnoea class, 
angina grade, white cell count, peripheral vascular disease, aspirin use at baseline, and also baseline Mr-proADM concentration. 

Adjustment for BNP included Baseline BNP quartiles and quartiles of change in BNP. 
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Table 5: Discrimination and reclassification after adding MR-proADM concentrations 

to models at baseline and considering change in MR-proADM after 1 year 

 

Outcome 

NRI C statistic 

NRI (%) p-value 

Without MR-

proADM 

With MR-

proADM 

MR-proADM baseline Major CHD events 2.36 0.15 0.665 0.669 

  Non-fatal 

myocardial 

infarction 

-0.60 0.62 0.629 0.629 

  CHD death 4.61 0.07 0.735 0.747 

 Heart failure 4.39 0.07 0.740 0.751 

 All-cause mortality 3.69 0.06 0.702 0.712 

MR-proADM change  Major CHD events 3.48 0.02 0.655 0.659 

  Non-fatal 

myocardial 

infarction 

1.37 0.43 0.629 0.633 

  CHD death -1.28 0.50 0.739 0.742 

 Heart failure 5.60 0.01 0.737 0.745 

 All-cause mortality 1.29 0.50 0.706 0.710 
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Table 6: Effect of pravastatin on study outcomes in subjects in the different MR-proADM quartiles 

Outcome 

MR-proADM 

quartile (nmol/L) Placebo Pravastatin NNT HR (95% CI) p- trend 

 N (% 5-year events) N (% 5-year events)  

Major CHD events ≤ 0.381 114 (9.5) 90 (7.6) 50 0.74 (0.56, 0.98) 0.94 

 0.381-0.474 123 (10.0) 97 (8.3) 48 0.83 (0.64, 1.08)  

 0.474-0.578 151 (13.0) 129 (10.6) 37 0.80 (0.63, 1.01)  

 > 0.578 222 (19.1) 174 (15.8) 26 0.76 (0.62, 0.93)  

 Non-fatal myocardial infarction ≤ 0.381 71 (6.0) 65 (6.0) 84 0.86 (0.61, 1.20) 0.41 

 0.381-0.474 84 (7.0) 66 (5.5) 72 0.83 (0.60, 1.14)  

 0.474-0.578 85 (7.8) 72 (6.5) 65 0.79 (0.58, 1.09)  

 > 0.578 101 (9.5) 75 (6.6) 54 0.72 (0.54, 0.97)  

 CHD death ≤ 0.381 50 (4.4) 29 (2.0) 97 0.55 (0.35, 0.86) 0.4 

 0.381-0.474 46 (3.6) 36 (3.3) 118 0.84 (0.54, 1.29)  

 0.474-0.578 80 (6.4) 72 (5.6) 68 0.85 (0.61, 1.16)  

 > 0.578 141 (11.6) 111 (10.2) 38 0.77 (0.60, 0.98)  
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Outcome 

MR-proADM 

quartile (nmol/L) Placebo Pravastatin NNT HR (95% CI) p- trend 

 N (% 5-year events) N (% 5-year events)  

Heart failure ≤ 0.381 53 (5.1) 39 (3.5) 184 0.68 (0.45, 1.03) 0.41 

 0.381-0.474 55 (4.8) 56 (4.8) 195 1.09 (0.75, 1.58)  

 0.474-0.578 87 (7.6) 74 (5.8) 125 0.80 (0.59, 1.09)  

 > 0.578 166 (15.3) 161 (14.6) 65 0.94 (0.76, 1.17)  

All-cause mortality ≤ 0.381 88 (7.4) 69 (5.1) 58 0.74 (0.54, 1.02) 0.76 

 0.381-0.474 87 (6.5) 61 (5.4) 66 0.75 (0.54, 1.04)  

 0.474-0.578 140 (10.3) 111 (8.3) 42 0.74 (0.58, 0.95)  

 > 0.578 232 (17.9) 185 (16.4) 25 0.78 (0.64, 0.94)  
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Table 7: Baseline, Year 1 and change in MR-proADM concentration by sex and 

randomised treatment 

 Placebo Pravastatin 

 Females Males Females Males 

Baseline (nmol/L) 0.53 (0.42, 0.65) 0.46 (0.38, 0.57) 0.51 (0.40, 0.64) 0.47 (0.38, 0.56) 

Year 1 (nmol/L) 0.51 (0.40, 0.63) 0.46 (0.37, 0.57) 0.50 (0.40, 0.63) 0.46 (0.36, 0.56) 

Change (nmol/L) -0.00 (-0.08, 0.06) 0.00 (-0.06, 0.06) -0.02 (-0.09, 0.06) -0.00 (-0.07, 0.05) 

 

Data presented are median (IQR). 

 




