
Copyright and use of this thesis

This thesis must be used in accordance with the 
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright 
may be an infringement of copyright and 
copyright owners may be entitled to take 
legal action against persons who infringe their 
copyright.

Section 51 (2) of the Copyright Act permits 
an authorized officer of a university library or 
archives to provide a copy (by communication 
or otherwise) of an unpublished thesis kept in 
the library or archives, to a person who satisfies 
the authorized officer that he or she requires 
the reproduction for the purposes of research 
or study. 

The Copyright Act grants the creator of a work 
a number of moral rights, specifically the right of 
attribution, the right against false attribution and 
the right of integrity. 

You may infringe the author’s moral rights if you:

- �fail to acknowledge the author of this thesis if 
you quote sections from the work 

- attribute this thesis to another author 

- �subject this thesis to derogatory treatment 
which may prejudice the author’s reputation

For further information contact the 
University’s Copyright Service.

sydney.edu.au/copyright



M U LT I - S U P P O RT G A U S S I A N

P R O C E S S E S F O R C O N T I N U O U S

O C C U PA N C Y M A P P I N G

carlos e . o. vido

A thesis submitted in fulfillment

of the requirements for the degree of

Master of Philosophy

school of information technology

faculty of engineering and information technology

the university of sydney

12 November 2015





D E C L A R AT I O N

I hereby declare that this submission is my own work and that, to the best

of my knowledge and belief, it contains no material previously published or

written by another person nor material which to a substantial extent has been

accepted for the award of any other degree or diploma of the University or

other institute of higher learning, except where due acknowledgement has

been made in the text.

Carlos E. O. Vido

Sydney, 12 November 2015

iii





A B S T R A C T

Carlos E. O. Vido Master of Philosophy

The University of Sydney 12 November 2015

Multi-Support Gaussian Processes

for Continuous Occupancy Mapping

Robotic mapping enables an autonomous agent to build a representation of

its environment based upon sensorial information. In particular, occupancy

mapping aims at classifying regions of space according to whether or not

they are occupied—and, therefore, inaccessible to the agent. Traditional tech-

niques rely on discretisation to perform this task.

The problems tackled by this thesis stem from the discretisation of continu-

ous phenomena and from the inherently inaccurate and large datasets typ-

ically created by state-of-the-art robotic sensors. To approach this challenge,

we make use of statistical modelling to handle the noise in the data and create

continuous occupancy maps.

The proposed approach makes use of Gaussian processes, a non-parametric

Bayesian inference framework that uses kernels, to handle sensor noise and

learn the dependencies among data points. The main drawback is the method’s
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computational complexity, which grows cubically with the number of input

points.

The contributions of this work are twofold. First, we generalise kernels to be

able to handle inputs in the form of areas, as well as points. This allows groups

of spatially correlated data points to be condensed into a single entry, consid-

erably reducing the size of the covariance matrix and enabling the method

to deal efficiently with large amounts of data. Then, we create a mapping al-

gorithm that makes use of Gaussian processes equipped with this kernel to

build continuous occupancy maps.

Experiments were conducted, using both synthetic and publicly available real

data, to compare the presented algorithm with a similar previous method.

They show it to be comparably accurate, yet considerably faster when dealing

with large datasets.
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Chapter 1

I N T R O D U C T I O N

Robotic mapping concerns itself with enabling an autonomous

agent to build a representation of its environment based solely on

sensorial information. As a fundamental part of any interaction be-

tween a robot and its surroundings, advances in mapping impact

numerous other fields.

a

This chapter discusses the motivations, objectives and contribu-

tions of this thesis.



Excuse me sir, but might I inquire as to what’s going on?

— C3PO

1.1 M O T I VAT I O N

In the dawn of their existence, autonomous systems were confined to indus-

trial environments where they worked in assembly lines performing repetitive

tasks. This was an early presage of the kinds of tasks they would be perform-

ing in modern society: nowadays, robots are widely used for tasks perceived

as too dirty (e. g. sewage pipe maintenance), dangerous (e. g. defusing bombs

or exploring hazardous environments) or dull (e. g. domestic robots) for hu-

mans.

In modern times, there is a growing trend to remove robots from controlled

industrial environments and bring them to the outside world. Such is the case

not only with self-driven cars, but also vacuum cleaning or security robots, for

example. In all of those situations, the robots are in unknown environment,

where they must be able to localise themselves while negotiating moving ob-

stacles (such as living beings or other vehicles) and obscured regions.

In most of these applications, it is impossible to pre-program robots with the

maps they need. Rather, they should be equipped to build this maps them-

selves, based on available sensory information. The need for robust and reli-

able mapping algorithms to provide robots with a good notion of what their

surroundings are like is greater than it has ever been. With mapping being

a very fundamental task in robotics, improvements in this field can impact

several applications.
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1.2 P R O B L E M D E S C R I P T I O N

It is essential for a robot expected to interact physically with its surround-

ings to have a reliable spatial representation of them. Possible interactions in-

clude navigation, object recognition and manipulation or simply determining

its own position relative to known landmarks. That means spatial modelling

is arguably one of the most fundamental tasks in robotics. The amount of

research in this field in the past decades makes this conclusion even more

evident.

The terrain mapping problem may be more simply expressed as the task of

spatially modelling the robot’s environment. This can be done in two main

ways. The first is through a graph-like representation of important landmarks,

connected via arcs that may contain information on how to get from a node

to another. This is called a topological map of terrain. This however isn’t very

readily applied to navigation.

The second approach are metric maps, which aim at capturing geometric in-

formation about the environment. To achieve this, the area to be mapped is

generally represented as a grid. In natural or otherwise unstructured spaces,

which frequently lack regular and easily recognisable structures, digital eleva-

tion maps (DEMs) (Bares et al., 1989) are a popular approach. In this method,

the mapped terrain is represented by a 2D grid where each cell contains the

approximate elevation at the corresponding coordinates.

This work is concerned with structured terrain, such as occurs inside a build-

ing or other manmade structure. An archetypical technique is the occupancy

grid map (OGM) (Moravek and Elfes, 1985, 1988; 1989). In this method, the
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grid that overlays the terrain, rather than storing elevation, contains informa-

tion relative to whether or not that part of space is occupied.

Both DEMs and occupancy grids have the problems associated with discreti-

sation: they may misrepresent a continuous phenomenon and the space and

processing power needed to create and analyse the grid scale with the num-

ber of cells.

(a) Input data and ground truth. (b) Occupancy grid map.

(c) Continuous occupancy map. (d) Associated variance.

Figure 1.1: Comparison: occupancy grid map (b) and continuous occupancy map (c)
with associated variance plot (d) generated from the same dataset (a). Con-
tinuous maps were sampled at the same resolution as the OGM. Taken
from O’Callaghan (2012)

A continuous occupancy map is a non-discretised representation of the envi-

ronment. It can overcome the difficulties of OGMs that stem from discretisation.
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The technique developed in this work falls within this category.

To perform continuous mapping, we use a Bayesian learning technique known

as Gaussian process (GP). It can be thought of as a generalisation of a Gaussian

distribution. Much as the latter characterises a distribution of values through

a mean and a covariance, the GP uses a pair of mean and covariance functions

to characterise a distribution over a space of possible functions. It learns these

properties from the dataset.

1.3 C H A L L E N G E S A N D C O N T R I B U T I O N S

There are two main challenges to the technique proposed:

input uncertainty As is the case with any technique that depends on

sensor readings, noise is inevitable. If the model fails to take input un-

certainty into consideration, the maps generated will suffer in quality

and potentially endanger the robot that uses them.

large datasets Another consequence of using sensors is the sheer volume

of data provided by them. Modern laser rangefinders can generate thou-

sands of readings per minute, which is a challenge to GPs, that scale

cubically with the number of inputs.

In addressing the aforementioned challenges, the proposed algorithm offers

the following contributions to the field:

novel multi-support kernel The kernel developed in this thesis is able

to aggregate spatial data into generic geometric elements, reducing the
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number of inputs generated. Thanks to this, the algorithm can handle

even the large amount of data produced by modern sensors with greater

ease than state-of-the-art techniques.

novel mapping technique We propose a continuous mapping technique

that uses a GP equipped with the kernel described above. This allows

the method to deal simultaneously with the size of the datasets and the

inaccuracy of sensors.

1.4 T H E S I S O V E RV I E W

This thesis is divided as follows:

Chapter 2 presents the theoretical background that lays the foundation for

this work. Robotic mapping is introduced and occupancy grid mapping,

arguably the most popular metric mapping technique in use, explained

in detail. Gaussian processes are introduced as a candidate to deal with

the shortcomings in grid-based techniques, and their own drawbacks

are presented.

Chapter 3 is where the main contribution of this thesis is laid out. A brief

review of related works is offered. Multi-support kernels are introduced

and their use for continuous occupancy mapping demonstrated.

Chapter 4 conveys the result of the experiments made. The effect of each

parameter on the output is analysed. The proposed algorithm is also

benchmarked against the GPOMIK (O’Callaghan, 2012) algorithm with

synthetic and real datasets.

Chapter 5 concludes this work. The contributions made are restated and

summarised. Possibilities of future research on this topic are outlined.
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Chapter 2

B A C K G R O U N D

Most widespread mapping representations rely on occupancy grids.

As a result, a number of the shortcomings of these techniques

stem from discretisation. Machine learning techniques, in partic-

ular Gaussian processes, are well-suited to infer continuous func-

tions from the data, which could avoid these problems. Their exe-

cution, however, tends to be slow in applications with large datasets.

a

In this chapter we discuss the theoretical background that lays the

foundation for this work. An overview of robotic mapping is of-

fered, and occupancy grid mapping is addressed in more detail.

Gaussian processes are introduced as a technique to deal with the

drawbacks in grid mapping, and their own shortcomings are ex-

posed.



One has studied your history.

— Andrew Martin

2.1 R O B O T I C M A P P I N G

Creating an accurate representation of its environment is an essential step

for any autonomous system to efficiently interact with it. As such, mapping

plays a role of central importance in robotic navigation and path planning.

Maps are generated from sensorial data collected by the robot from its sur-

roundings, which is condensed into a representation that can be more easily

manipulated by navigation algorithms. Mapping is a challenging task for a

number of reasons. Thrun, Burgard, and Fox (2005, chap. 9) name a few:

3 The robot is inside the environment it is trying to model, for which

reason mapping is frequently coupled with localisation, in what is re-

ferred to as the simultaneous localisation and mapping (SLAM) problem.

It must be noted that localisation within a given map is a relatively

simple task for which there are several algorithms—Monte-Carlo locali-

sation being a popular example.

3 It is also relatively easy to build maps given the exact location of the

robot. Unfortunately, noise intrinsic to robot actuators make the avail-

able information unreliable. The error generated by this noise is incre-

mental: along the robot’s path, each estimation is affected not only by

the noise at the current position, but also by the error accrued on previ-

ous readings. This is easy to show: imagine a robot that moves by steps,

which it measures as being one meter in length. For illustrational pur-

poses, let us say it actually moves 99 centimetres. After one step it will
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be within one centimetre of where it assumes to be, though after ten

steps this error builds up to ten centimetres. In real applications, where

robots can slip or skid unpredictably, modelling this error can become

extremely complex.

3 Odometry noise generates other problems. As the environment grows

larger, longer paths are required to fully map it. Using other sensors or

forcing the robot to return through a path it used before can compen-

sate for the errors generated. Similar repetitive features (like doors or

columns in a hallway) and cycles around obstacles can further compli-

cate the task.

3 The most significant challenge is perhaps the dimension of the hypothe-

sis space (i. e. , the space of all possible maps). The environments mapped

are continuous, because such is the nature of the real world, meaning

there are infinite dimensions to this modelling problem. But even in dis-

crete approximations the number of variables easily reaches high orders

of magnitude. This problem becomes worse as maps increase in size or

resolution, making Bayesian approaches for localisation ineffective for

this task.

The mapping task can be summarised as that of identifying and modelling

important features in the robot’s environment. Features are any distinct sta-

tionary aspects of the environment that are relevant to the robot. The manner

in which features are represented and stored divides the field between topo-

logical and metric mapping.

Topological mapping aims at representing the environment through a list

of features of topological or functional importance. Information can be stored

about the relations between then, such as distance or navigational information.

The resulting maps are coarse, with features stored on nodes and relations on

the arcs that connect these nodes. A pure topological approach, however, dis-

9



Figure 2.1: A simple example of a topological map used for localisation. Features in
this map correspond to doors. The size of each node corresponds to the
probability of the robot occupying that node (as calculated by the robot).
(a) The initial probability is equal for all doors, as the robot has no means
of telling them apart. (b) As the robot moves right and detects a second
door, it becomes unlikely that it could be in the leftmost node, so the
probabilities are adjusted to reflect this. Figure taken from Thrun, Burgard,
and Fox (2005, chap. 8).

cards valuable information about the space in between the features (Thrun,

2003a). A simple example of this kind of map is offered in Figure 2.1.

Metric mapping, on the other hand, is more akin to the related field of cartog-

raphy: it aims at creating a scaled representation of the environment, with the

features being geometric features placed in fixed coordinates. The archetypi-

cal metric representation is the occupancy grid map, explained in detail in the

next section.

2.1.1 occupancy grid mapping

One of the most widespread methods used for metric mapping, occupancy

grid maps (OGMs) were developed in the 80s by Moravek and Elfes (1985,

1988; 1989). They are versatile, easy to implement and computationally effi-

cient, which accounts for their widespread use, especially in two-dimensional
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mapping. They deal with the unavoidable effects of noise in sensors and actu-

ators by using a probabilistic framework.

This approach can be intuitively interpreted as such: imagine a grid laid over

the environment to be mapped. The map should be a two-dimensional array

with the same number of rows and columns as the grid, so that each element

in the first corresponds to a cell (at the same relative position) in the latter.

Once calculated, the array stores the probabilities of each cell to be occupied,

that is, inaccessible to the robot. The map is an orthographic projection of the

environment, similar to a floor plan. In a more mathematically strict defini-

tion, the objective of OGMs is to use the poses of the robot for all time steps

elapsed and their corresponding sensory information, denoted by z1:t, to cal-

culate the posterior probability

p(m | z1:t), (2.1)

where m = {mi} is a map composed of a finite number of cells. However, as

mentioned in the Section 2.1, the hypothesis space contains 2i possible states,

so the calculation of Equation 2.1 quickly becomes intractable as the number

of cell grows. To address this issue, an approximation must be made: that the

posterior over maps can be approximated as the product of its marginals?,

p(m | z1:t) =
∏
i

p(mi | z1:t), (2.2)

and the hypothesis space contains a mere 2i states. This approximation is

called grid decomposition, and it relies on a highly constraining assumption:

that the cells in the grid are independent and identically distributed (iid) or,

in other words, random. This ignores a property of the system studied: objects

in the real world, especially in structured environments, have a regular and

? For convenience, p(mi) is used in all equations that follow as a shorthand for p(mi = 1),
which denotes a probability of 1 that the cell mi is occupied.
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fairly predictable physical structure. Ignoring this property impoverishes the

model, as it discards information that would aid in its prediction.

In spite of this loss, a simple example helps understand the magnitude of the

change in complexity allowed by Equation 2.2. If we were to map a square

area 5m in side, even using a very coarse grid of square cells 0.5m in side, the

hypothesis space of Equation 2.1 contains 2100 (more than 1030) possible maps.

After the approximation, this number is reduced to a mere 200.

From this point, we can apply Bayes’ rule to calculate the probability of occu-

pancy for each cell given the observations,

p(mi | z1:t) =
p(zt | z1:t−1,mi)p(mi | z1:t−1)

p(zt | z1:t−1)
. (2.3)

A common assumption in robotic mapping is that the environment being

mapped is static, which allows us to state that any observation zt is indepen-

dent of any previous observation given knowledge of the map m:

p(zt | z1:t−1,m) = p(zt |m). (2.4)

Due to the grid decomposition, we need to make another strong assumption:

that Equation 2.4 is also valid for each individual cell, regardless of the occu-

pancy of the neighbouring cells (Thrun, 2003b). This allows us to adapt this

equation, yielding

p(zt | z1:t−1,mi) = p(zt | mi) =
p(mi | zt)p(zt)

p(mi)
. (2.5)

This assumption is fundamentally incorrect: even in a static world, observa-

tions frequently encompass more than one cell, and the results for all of them

would have to be known at once for the independence to hold. However the

resulting approximation is convenient, because it allows us to express the
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probability of occupancy of each cell using a single observation. Furthermore,

it can be used to simplify Equation 2.3 to

p(mi | z1:t) =
p(zt | mi)p(mi | z1:t−1)

p(zt | z1:t−1)
=
p(mi | zt)p(zt)p(mi | z1:t−1)

p(mi)p(zt | z1:t−1)
, (2.6)

which computes the probability that mi is occupied. An analogous derivation

allows to calculate the probability that mi is free, denoted by p(m̄i):

p(m̄i | z1:t) =
p(zt | m̄i)p(m̄i | z1:t−1)

p(zt | z1:t−1)
=
p(m̄i | zt)p(zt)p(m̄i | z1:t−1)

p(m̄i)p(zt | z1:t−1)
. (2.7)

Dividing Equation 2.6 by Equation 2.7, we eliminate several terms:

p(mi | z1:t)

p(m̄i | z1:t)
=
p(mi | zt)p(m̄i)p(mi | z1:t−1)

p(m̄i | zt)p(mi)p(m̄i | z1:t−1)
. (2.8)

The result is an odds ratio, which can be verified by simply noting that by

definition p(mi) = 1−p(m̄i), since one is merely the complement of the other.

Therefore, Equation 2.8 can be rewritten as:

p(mi | z1:t)

1− p(mi | z1:t)
=

p(mi | zt)

1− p(mi | zt)

1− p(mi)

p(mi)

p(mi | z1:t−1)

1− p(mi | z1:t−1)
. (2.9)

Taking the log of Equation 2.9 yields an interesting result:

lti = log
p(mi | z1:t)

1− p(mi | z1:t)
. (2.10)

This is the log odds ratio of p(mi | z1:t). This quantity is defined in the in-

terval (−∞,∞) rather than [0, 1], which is desirable from an implementation

viewpoint, since it reduces the numerical instabilities of the algorithm. Fur-

thermore, substituting the right side of Equation 2.9 in Equation 2.10 yields
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an equation that can be used to update the map generated by a previous

collection of observations z1:t−1 using a new observation zt:

lti = log
p(mi | zt)

1− p(mi | zt)
+ log

1− p(mi)

p(mi)
+ log

p(mi | z1:t−1)

1− p(mi | z1:t−1)
. (2.11)

This result allows us to calculate the desired posterior using two probabili-

ties defined a priori. One is p(mi), our initial guess at the probability of oc-

cupancy before any observations are made. Thrun, Burgard, and Fox (2005)

suggest this value initially be set to a value in the range [0.2, 0.5]. The other is

p(mi | zt), the inverse sensor model, which maps sensor data back to its cause.

Contrast this with a forward sensor model, which models the probability of

acquiring the observations given a certain cause, represented by p(zt | mi).

Figure 2.2: An example of a simple inverse sensor model. (a) A robot with a wide
beam sensor (such as a sonar) detects an obstacle in its path. (b) The
inverse sensor model generated from the observation. Figure taken from
O’Callaghan (2012, chap. 2).
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Equation 2.10 can be used to create an update algorithm (Algorithm 2.1, as

given by Thrun 2003b) that takes a map and a collection of observations and

returns an updated version of the map. Its simplicity is one of the reasons

behind the popularity of OGMs,

Algorithm 2.1: Occupancy grid map update algorithm, after Thrun 2003b.

1 input : p(m0), z
# map hypothesis for time 0, observations from time 1..t

2 for all grid cells i:
# Convert map hypothesis to log odds

3 l[i] := log(p(m0[i])) - log(1 - p(m0[i]))

4 for all time steps t:

5 for all grid cells i within the perceptual range of z[t]:
# Grid calculation using log-odds

6 l[i] += log(p(m0[i] | z[t]))

7 l[i] -= log(1 - p(m0[i] | z[t]))

8 l[i] -= log(p(m0[i]))

9 l[i] += log(1 - p(m0[i]))

10 for all grid cells i:
# Convert log odds to updated map hypothesis

11 p(m[i]) := 1 - (1 / exp(l[i]))

12 output : p(m)
# updated map hypothesis for time t

Figure 2.3 illustrates the OGM algorithm applied to a synthetic dataset. Fig-

ure 2.3a shows the ground truth (i. e. the boundaries the robot needs to learn),

a series of poses and sensor readings taken from each and the trajectory be-

tween poses. In this example, a sensor with a narrow sensor beam (such as a

laser rangefinder) was simulated. The occupancy map generated is presented

in Figure 2.3b.

2.1.2 shortcomings of occupancy grid mapping

In the last section we described the OGM algorithm, and exposed the calcula-

tions behind it. We also discussed the grid decomposition that must be made
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Figure 2.3: (a) Data from a robot with a narrow beam sensor (such as a LIDAR) mov-
ing around an unknown environment. (b) The map created from this data.
Figure taken from O’Callaghan (2012, chap. 2).

to lead to Equation 2.2 and Equation 2.5; both lie at the core of the algorithm’s

simplicity.

Paradoxically, the same assumption that arguably gives the algorithm its

widespread popularity is one of its greatest shortcomings. Assuming that the

environment is composed of randomly distributed regions of occupancy ig-

nores a fundamental property of the real world, where objects frequently have

a regular physical structure. This oversimplification leads to poor predictions

in regions where taking into account contextual information could help de-

termine occupancy, such as between sensor readings or in occluded regions.

Given that occupancy grids are frequently used in structured environments,

it is fair to say that this approximation ignores a large amount of useful infor-

mation.

Storing the map as a grid brings forth other drawbacks. The cells in an OGM

have to be of pre-defined size, which means that the map has a fixed resolu-

tion. This is not a problem when a single robot is using the map, but a map

created by a large robot may not be adequate for a smaller one. The only

ways to change the resolution of an OGM are to store it as a quadtree (Li and

Ruichek, 2013) or to rebuild it from scratch each time.
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Grid methods is also subject to discretisation errors. In Figure 2.3 this becomes

evident. At the top door, the robot is uncertain about the occupancy of two

cells it actually crosses, where it should be obvious that any cells the robot

can move through are free. At the bottom door the opposite happens: despite

numerous sensor beams hitting a wall, its occupancy is also uncertain for the

robot.

Even though problems discussed up to this point have been two-dimensional,

some applications actually require three-dimensional maps. Once again, dis-

cretisation pays a toll: due to the curse of dimensionality, occupancy grids in

three dimensions require massive amounts of memory to represent the envi-

ronment, and this requirement requirement rises as the resolution increases.

All of these problems in effect stem from discretising a continuous problem.

But this is not strictly necessary. In the next section, we will discuss Gaussian

processes, a machine learning technique for regression, particularly useful for

spatial modelling.

2.2 G A U S S I A N P R O C E S S E S

In his book Information Theory, Inference, and Learning Algorithms, David MacKay

describes a Gaussian process (GP) as the generalisation of a Gaussian distri-

bution over a finite vector space to a function space of infinite dimension

(MacKay, 2003, chapter 45). To enable this generalisation, instead of deriving

its properties from a mean and covariance matrix, a GP is characterised by a

pair of analogous and homonymous functions.

Figure 2.4 offers a visual intuition of GPs through a simple regression problem.
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It represents sample functions drawn from the prior and posterior distribution

of a GP which favours smooth functions, a property that is specified by the

covariance function. For the prior, the mean function is taken to be the zero

function. After data points are introduced, the mean prediction is adjusted

accordingly. Notice that the standard deviation, indicated in Figure 2.4 as a

shaded grey area, is proportional to the distance to points for which the target

value is known.

It is important to notice that more data points can always be added as they

Figure 2.4: An intuitive visual representation of GPs. (a) Four samples drawn from
the prior distribution. (b) After two data points have been observed, the
model is changed accordingly and four new samples are drawn. In both
panels, the solid line represents the mean function and dashed lines rep-
resent sample functions in the distribution, randomly chosen. The shaded
regions denote twice the standard deviation at each input value x. Taken
from Rasmussen and Williams (2006).

become available without worry about whether the model can still fit the

data, since GPs are non-parametric. Thanks to this property, even after adding

a large number of observations the model can still produce a collection of

candidate functions that reflect the new information provided. In comparison,

parametric models require new parameters to be added in order to capture

detail from additional data points.

We move on to formalise the concepts above. Rasmussen and Williams define

a GP as such:

definition : A Gaussian process is a collection of random variables, any finite
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number of which have a joint Gaussian distribution. 2

Let D = {(xi,yi) | i = [1,n] : n ∈N} be a dataset containing n data points x ∈

RD (the inputs) and their corresponding observed values y ∈ R (the outputs),

defined by an unknown underlying function f(x) that we desire to model. It

is important to note that y is a measurement; it differs from f(x) by the noise

inherent to any measurements. We can then define the mean function m(x)

and covariance function k(x, x ′) to be:

m(x) = E(f(x)),

k(x, x ′) = cov(f(x), f(x) ′) = E((f(x) −m(x))(f(x ′) −m(x ′))),
(2.12)

and the GP determined by them can be indicated by

f(x) ∼ N(m(x),k(x, x ′)). (2.13)

In regression problems?, for simplicity, m(x) is often taken to be zero. It must

be noted that this does not mean that the mean value of each function in the

distribution is zero—rather, it means that for a fixed xi, as we draw different

functions from the sample, the mean value of these functions calculated at

that point approaches zero.

The covariance function is what determines the behaviour of the functions in

the distribution. It is frequently chosen to favour smooth continuous functions,

but this of course is not mandatory. In Section 2.2.2, we will discuss different

covariance functions and the kinds of behaviour they can specify.

? Regression problems are those in which f(x) assumes real values. Contrast those to classifi-
cation problems, where x is assigned to one of several classes. The archetypical example is
written digit recognition, where the objective is to classify an image of a handwritten digit
into one of ten classes, 0-9. Gaussian processes are equally suited to deal with both tasks, and
have been extensively used for both. This work, however, will focus on regression techniques.
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An advantage of using GPs is that they allow us to calculate the posterior,

p(f(x) | y, x) =
p(y | f(x), x)p(f(x))

p(y | x)
, (2.14)

without having to parameterise f, by placing the prior directly on the infinite

space of functions. Thanks to this property, no assumptions have to be made

over the output function properties, setting GPs apart from approaches that

require parameterisation (MacKay, 2003). Beyond that, unlike other Bayesian

methods, Gaussian processes normally return functions which are analytically

solvable.

2.2.1 gaussian process regression

The objective of Gaussian process regression is to use the framework outlined

in the previous section to generate predictive models out of the dataset pro-

vided. That is, a GP model must be able to take a set of test points and output

a set of predicted values for each. In other words: the interest is not to model

the distribution of the inputs, but rather the conditional distribution of the

targets given the inputs.

Given the dataset D defined in the previous section, we can aggregate the n

D-dimensional input points into a single D× n matrix X, and do the same

for the observed scalar outputs to generate a column vector y. For now we

assume a noiseless model, such that y = f.

We want our model to be able to predict the outputs f∗ from a set of m inputs

x∗, our test points, which are similarly aggregated into the test matrix X∗ and

corresponding output point f∗. The relation between f∗ and f that allows us
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to infer the first from the latter is that we assume both were drawn from the

same GP. Therefore they are jointly distributed according to the same prior:

 f
f∗

 ∼ N

0,

 K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)


 , (2.15)

where K(A,B) denotes the covariance matrix generated by calculating the

element-wise covariance between matrices A and B. At this point we intro-

duce, for convenience, a shorthand notation: K = K(X,X), K∗ = K(X,X∗) =

K(X∗,X)> and K∗∗ = K(X∗,X∗). We can then condition the joint Gaussian prior

distribution on the observations, yielding

f∗ | X∗,X, f ∼ N(m∗,Σ∗), where:

m∗ = K
>
∗ K

−1f,

Σ∗ = K∗∗ −K
>
∗ K

−1K∗.

(2.16)

At this stage, we can evaluate the mean and covariance matrix from the above

equation. Note that while Σ∗ = cov(f∗) is a fully populated covariance matrix

for m > 1, it is common practice to evaluate only its diagonal to obtain a

variance vector.

Until this point we have assumed noiseless measurements for simplicity. In

real applications, however, this is an unlikely scenario. The observations more

often carry along noise, which we assume to be Gaussian:

y = f(x) + ε and

ε ∼ N(0,σ2n), therefore

Σ = K+ σ2n I,

(2.17)
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where Σ = cov(y). Equation 2.15 and Equation 2.16 are now recast using y

instead of f, yielding slightly different formulations:

 y
f∗

 ∼ N

0,

 K+ σ2n I K∗

K>∗ K∗∗


 , (2.18)

f∗ | X∗,X,y ∼ N(m∗,Σ∗), where:

m∗ = K
>
∗ (K+ σ2n I)

−1y,

Σ∗ = K∗∗ −K
>
∗ (K+ σ2n I)

−1K∗.

(2.19)

This Bayesian formulation for inference is also well suited to machine learn-

ing, because the Gaussian prior in Equation 2.15 and Equation 2.18 allow the

training of the algorithm, as will be discussed in Section 2.2.3.

We now shall look at the case where we have a single test point x∗. We intro-

duce the notation k∗ = (̨x, x∗) and k∗∗ = k(x∗, x∗). Then Equation 2.19 becomes

f∗ | X∗,X,y ∼ N(m∗,σ∗), where:

m∗ = k∗
>(K+ σ2n I)

−1y,

σ∗ = k∗∗ − k∗
>(K+ σ2n I)

−1k∗.

(2.20)

The mean function in the equation above is a product between a line and a

column vector of equal dimensions. This makes sense: since we have a single

test point, the mean function evaluates to a scalar, and can thus be rewritten

as:

m∗ =
n∑
i=1

αik(xi), where:

α = (K+ σ2n I)
−1y.

(2.21)
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An implementation of GP regression, based on the one from Rasmussen and

Williams (2006), is shown in Algorithm 2.2. It includes the calculation of the

log marginal likelihood, which will be addressed in Section 2.2.3. Notice the

use of a Cholesky decomposition to deal with the need for a matrix inversion,

as this is a faster and more stable method.

Algorithm 2.2: Gaussian process regression algorithm, after Rasmussen and
Williams 2006.

1 input : X, y, k(), par0, x
# inputs, targets, covariance function, hyperparameters
# and test point

2 [par, sig] := par0

3 K := k(X,X, par)

4 L := cholesky(K + sig * I)

# Cholesky decomposition, L := cholesky(A) so that L*L
> = A

5 alpha := L> \ (L \ y)

6 kXx := k(X, x, par)

7 m := kXx> * alpha

8 v := L\kXx

9 var := k(x, x, par) - v> * v

10 lml := 0.5 * (y> * alpha - n * log(2 * pi)) - sum(diag(log(L)))

11 output : m, var, lml
# mean, variance, log marginal likelihood

2.2.2 covariance functions

As mentioned in Section 2.2, it is the covariance function that encodes our as-

sumptions about the behaviour of the functions in the distribution generated

by a Gaussian process. The choice of function determines basic properties

(e. g. smoothness or stationarity), while Bayesian learning is employed to fine-

tune others (e. g. periodicity or amplitude). We will discuss hyperparameters

along with learning in Section 2.2.3.

At this stage, we can introduce the concept of kernels. Kernels are functions

that, given two inputs xi and xj, return a measure of the similarity between

23



them (Schölkopf and Smola, 2002). Choosing this measure is a very funda-

mental question in machine learning (ML). If we have a kernel k and a set

of inputs X = {xi | i = [1,n] : n ∈N}, we can compute the Gram matrix of X,

denoted by K. Its entries are given by Kij = k(xi, xj).

Covariance functions are a particular case of kernels, and their Gram matri-

ces are called covariance matrices. By definition, they must be symmetric, i. e. ,

it is strictly necessary that k(x, x ′) = k(x ′, x). By virtue of the Cholesky de-

composition performed in Algorithm 2.2, they must generate positive semi-

definite (PSD) Gram matrices; and therefore be PSD themselves. To obey this

property, they must satisfy the inequality:

∫
k(x, x ′)f(x)f(x) ′dµ(x)dµ(x ′) > 0, (2.22)

where µ denotes a measure. Bearing in mind this restriction, from this point

onwards, the terms "kernel" and "covariance function" will be used inter-

changeably

It is important to notice that in a GP, the covariance between two outputs is

written as a function of the inputs (see Equation 2.12). This is an interesting

observation: we are linking the behaviour of the outputs to the similarity be-

tween the inputs, which is useful for us as we are trying to predict the output

for unknown inputs using that of known ones. Measuring similarity between

outputs is relatively easy. We can illustrate this with a simple example with

binary classification: two labels either are the same or they are not. Kernels

allow to make this measurement by looking at the inputs instead.

Scattered across the ML literature is a plethora of different kernels. Notwith-

standing this fact, new kernels can also be created from existing ones by linear

combination, point-wise product, dot product, tensor product, direct sum, it-

eration or convolution (Rasmussen and Williams, 2006). This richness allows

us to model an immense range of functions.
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The existing covariance functions can be divided in classes, some of which are

of special interest for this work, either for their popularity or for their appro-

priateness for the task at hand. In the remainder of this section, we will look

at two of them.

a. Stationary covariance functions

A kernel or covariance function is said to be stationary when it is a function

of the difference between inputs, x− x ′, as this makes them invariant to trans-

lations in the input space. A particular case are isotropic kernels, which are

functions of the distance |x− x ′|. Examples of widely used stationary kernels

are the squared exponential (which sometimes appears in the literature by the

name of radial basis function or RBF kernel) and those in the Matérn class of

covariance functions.

The squared exponential function is defined by the following equation:

kSE(xp, xq) = σ2f exp
(
−
|x− x ′|2

2l2

)
, (2.23)

where σ2f is the signal variance and l the length-scale, two hyperparameters. It

is easy to see the exponential’s value is one when p = q and approaches zero

as the distance between the inputs grows. The role of the hyperparameters

then becomes explicit: σ2f changes the maximum value the function can have,

while l determines how fast this value decays with distance. If the length-scale

is one-dimensional, the decay happens at the same rate in all dimensions. A

D-dimensional length-scale allows for different decay rates along each dimen-

sion.

This covariance function is infinitely divisible: ktSE is a valid kernel for any pos-

itive value of the exponent, and the only effect of exponentiation is to rescale
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l. It is also infinitely differentiable, which is why it favours smooth functions.

Stein (1999, chapter 2) argues that smoothness is not an adequate assumption

to make in some practical applications, as the behaviour is not frequently ob-

served in physical processes. He proposes a few alternatives. One of them is

what he calls the Matérn class of covariances, the general case of which is

defined by the equation:

kMat(xp, xq) =
1

Γ(ν)2ν−1

(√
2ν

|x− x ′|

l

)ν
Kν

(√
2ν

|x− x ′|

l

)
, (2.24)

where Kν(z) is a modified Bessel function that tends to zero as |z| → ∞. It

assumes real and positive values for ν > −1 and z > 0 (Abramowitz and

Stegun, 1965, chapter 9). The parameter ν determines the differentiability of

the function, and as ν raises, the functions determined by this kernel become

smoother. When it takes values of the form ν = i+ 1/2 : i ∈ N, Equation 2.24

assumes much more convenient forms. The most widely used are ν = 3/2 and

ν = 5/2, sometimes called Matérn 3 and Matérn 5:

kMat3/2(xp, xq) =

(
1+

√
3|x− x ′|

l

)
exp

(
−

√
3|x− x ′|

l

)
,

kMat5/2(xp, xq) =

(
1+

√
5|x− x ′|

l
+
5|x− x ′|2

3l2

)
exp

(
−

√
5r

l

)
.

(2.25)

Although values of ν > 7/2 are possible, the functions generated become

harder to distinguish from each other and, as ν approaches ∞, from the

squared exponential kernel. This behaviour is to be expected, as infinite differ-

entiability leads to smoothness. Therefore, the use of larger values of ν than

the ones exemplified in Equation 2.25 is discouraged unless it reflects explicit

prior knowledge of the existence of higher order derivatives.
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b. Non-stationary Covariance Functions

For several processes, stationarity is not a desirable property, as the charac-

teristics of the underlying function change upon traversing the input space.

Non-stationary covariance functions are those in which the absolute position

of an input is relevant, such as those dependant on the dot product x>x ′. An

example is the general version of the polynomial kernel?:

kd(xp, xq) =
(
α x>p xq + σ

2
0

)d
. (2.26)

The hyperparameters are the slope α and the bias σ20. The polynomial kernel

is homogeneous when the bias is zero and inhomogeneous otherwise. The poly-

nomial degree is d, and for the special case where d = 1, the above equation

describes the linear kernel. Using it in kernel techniques often leads to their

"non-kernel" counterpart, e. g. kernel principal component analysis (PCA) us-

ing a linear kernel is the same as standard PCA (Schölkopf et al., 1999). Dot

product kernels are not the only type of non-stationary covariance function

though.

Neal (1996, chapter 2) proposes deriving a kernel from a multilayer percep-

tron, composed of a single hidden layer containing NH hidden units, that

takes an input x. The output of this perceptron is combined with a bias b,

yielding

f(x) = b+

NH∑
j=1

vjh(x;uj), (2.27)

where v indicates the weights between the hidden units and the outputs, u are

the weights between the input and the hidden units, and h is a bounded trans-

? Not to be confused with the piecewise polynomial kernel, which is stationary.
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fer function. As NH →∞, this network becomes a universal approximator, as

shown by Hornik (1993). If we assume iid weights u and

b ∼ N(0,σ2b),

v ∼ N(0,σ2v),
(2.28)

we obtain:

Ew(f(x)) = 0,

Ew(f(x)f(x
′)) = σ2b +

∑
j

σ2v Eu(h(x;uj)h(x ′;uj))

= σ2b +NHσ
2
v Eu(h(x;u)h(x ′;u)),

(2.29)

where w denotes the collection of all weights. By setting σ2v = ω/NH
we then

arrive at σ2b +ω Eu(h(x;u)h(x ′;u)) for the covariance of f(x). Because the

weights u are iid and the transfer function is bounded, the central limit theo-

rem applies, so in the limit as NH →∞, the stochastic process converges to a

Gaussian process.

Finally, choosing a valid transfer function and evaluating Eu(h(x;u)h(x ′;u))

allows us to obtain what is known as the neural network (NN) covariance func-

tion. For example, taking h to be the error function erf(z) = 2/√π
∫z
0 exp(−t

2)dt

and choosing u ∼ N(0,Σ), we arrive at

kNN(xp, xq) =
2

π
arcsin

 2ẋ>pΣ ẋq√
(1+ 2ẋ>pΣ ẋp)(1+ 2ẋ

>
qΣ ẋq)

 , (2.30)

where ẋ = (1, x1, . . . , xD)> is an augmented input vector. These results were

obtained by Williams (1998). Samples from a GP that uses this as its covari-

ance function can be viewed as superpositions of sigmoid functions erf(u0 +

u1x1+ · · ·+udxd). If we set Σ = diag(σ20,σ1, . . . ,σD), where σi controls ui, we

observe that σ0 determines the offset of the sample functions from the origin,
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while the remaining σi determine their slope (that is, how fast they vary).

The covariance functions listed in this section are the ones used in this work or

useful for explanation purposes. For a more comprehensive list of classifica-

tions, examples and analyses of individual kernels, the reader is encouraged

to refer to Genton (2002), Hofmann, Schölkopf, and Smola (2008) or Schölkopf

and Smola (2002). The latter also provides a thorough explanation of kernels

and kernel methods.

2.2.3 gaussian process learning

In previous sections, it was mentioned several times that the covariance func-

tion dictates the behaviour of the functions in a GP sample. In Section 2.2.2

we discussed a few different covariance functions, and the types of behaviour

they specify. We also introduced the concept of hyperparameters. While the

choice of kernel determines what general aspect the output functions will

have, the hyperparameters are responsible for fine tuning the output func-

tions. A poor choice of hyperparameters can nullify the effect of a covariance

function perfectly tailored for a task.

It should then become obvious that some form of metric to estimate the per-

formance of the model is necessary. One such metric is the marginal likelihood,

that measures the probability of a model given the data. One of its key proper-

ties is that it incorporates a tradeoff between complexity and fit. The marginal

likelihood is calculated as the integral of the likelihood times the prior,

p(f∗ | x∗,D) =

∫
p(f∗ | x∗,θ,D)p(θ | D)dθ, (2.31)

in which f∗ is the prediction for the test point x∗, D is the dataset containing

all the input points (X) and corresponding measured outputs (y) and θ are
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the hyperparameters of the model. In this section we follow the notation used

by MacKay (2003, section 45.5) because of the way it makes explicit the partic-

ipation of the hyperparameters. MacKay remarks that Equation 2.34 is often

intractable. He highlights two approaches that can be used:

a. We can determine the most probable values of the hyperparameters,

denoted by θ+, and use them to approximate the value of the integral,

p(f∗ | x∗,D) ∼ p(f∗ | x∗,D,θ+). (2.32)

b. We can use numerical methods to perform the integration.

In both approaches, knowledge of the gradient of the posterior probability

of θ is useful from an implementation standpoint. The posterior probability

itself is given by

p(θ | D) ∝ p(y | X,θ)p(θ). (2.33)

In Section 2.2.1, we mentioned that one of the outputs of Algorithm 2.2 is the

log marginal likelihood, given by the first term of Equation 2.33 in log form:

log(p(y | X,θ) = −
1

2
y>(C)−1y−

1

2
log|C|−

n

2
log2π. (2.34)

For convenience, we introduce the notation C = K+ σ2n I. We can now differ-

entiate Equation 2.34 with respect to each hyperparameter θi:

∂

∂θi
log(p(y | X, θi)) =

1

2
y>C−1 ∂C

∂θi
C−1y−

1

2
tr(C−1 ∂C

∂θi
). (2.35)

The gradients in Equation 2.35 can therefore be used to optimise the hyperpa-

rameters of the model, through methods such as gradient descent.
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2.2.4 shortcomings of gaussian processes

Gaussian processes are an extremely versatile machine learning method. They

are not, however, without shortcomings. The most obvious one is the need to

invert the covariance matrix, the number of elements of which is proportional

to the square of input points. A matrix inversion is a costly operation, with

at a computational complexity O(n3), even using a Cholesky decomposition.

This is a problem for data-rich applications. Robotic mapping, in particular,

often depends on data coming from sensors such as laser rangefinders. Such

equipment generates readings at extremely high rates.

2.3 S U M M A RY

In this chapter, we have taken a very brief look at the two fields of research

that are vital for the development of this work: robotic mapping and Gaus-

sian processes. Each of them is the subject of intensive research efforts by the

scientific community, and thus replete with extensive literature. Rather than

to provide an in-depth review, the objective here was to expose a few open

problems that will be tackled in this thesis.

Robotic mapping has received a lot of attention in the past few decades, due

to developments in robotics as a whole. Several of the applications of robots

nowadays rely on autonomous navigation, raising the need for accurate maps.

We have explored occupancy grid maps, arguably the most widespread algo-

rithm employed for this task, and discussed some of their shortcomings.

The quest for increasingly autonomous systems has also stimulated develop-
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ments in the field of machine learning. We have reviewed Gaussian process

modelling, which was presented as a candidate to address the problems raised

in OGM. The main drawback of using the method for this problem was found

to be that their computational complexity depends on the size of the input

dataset.

In the next chapter, the specific literature addressing these problems will be

reviewed, and the technique proposed to face them will be exposed.
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Chapter 3

M A P P I N G W I T H M U LT I - S U P P O RT K E R N E L S

Gaussian processes can be used to aggregate spatial relations and

create continuous occupancy maps. Although they use covariance

functions calculated between points in the data, they can be adapted

to work with geometrical elements of higher complexity, such as

lines, areas and volumes. This transformation is called change of

support. It not only incorporates contextual information that would

be otherwise unavailable, but can also help deal with the compu-

tational complexity of the algorithm for data-rich applications.

a

In this chapter, we briefly review the literature for change of sup-

port in GPs and for occupancy mapping using GPs. A framework

for the use of complex support kernels for mapping is introduced

and demonstrated.



Now I have a headache. . .

— Marvin

3.1 I N T R O D U C T I O N

In Chapter 2, we have reviewed the occupancy grid map (OGM) algorithm,

and established that its shortcomings stem mainly from the discretisation of

a continuous domain. Gaussian processes (GPs) have been proposed as a way

to address this, given their ability to infer contextual information from input

data. This has been done before, and a previous mapping algorithm based on

GPs will be reviewed in this chapter.

The greatest drawback of GPs is their complexity, which comes from the need

for a matrix inversion. Although this cannot be prevented, there are other

techniques to make the algorithm run faster. Algorithm 2.2 incorporates one

such technique, a Cholesky decomposition of the matrix. This is not enough,

though: robotic rangefinders take thousands of readings for each second of

activity, and since inverting the covariance matrix scales at O(N3) with the

number of inputs N, the operation becomes unmanageable fast.

Discarding information would be one way to deal with this. The data collected

from sensors could be filtered, and information about regions already mapped

with high certainty could be discarded with minimal losses. But even then, as

the environment being mapped grows, the covariance matrix inevitably grows

with it.

An alternative we will explore in this chapter is changing the support of the

kernel functions. Traditional kernels use as support D-dimensional points. If
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they could be grouped in more complex geometric structures (like lines or

areas), this could reduce drastically the size of the covariance matrix. We will

next review previous work done using integral kernels for robotic mapping.

3.2 R E L AT E D W O R K

3.2.1 change of support in gaussian processes

Gaussian processes, as introduced in Section 2.2, are very versatile tools able

to infer underlying functions from the data. Normally, they deal with func-

tions calculated over points. However, this is not the best approach for every

situation. In some applications, data can come from higher-dimensional ele-

ments of the domain, such as lines, areas and volumes. In particular, this is

true in robotic mapping, where it is more interesting to determine if a partic-

ular area or volume is occupied, rather than a single point.

Inference made using higher-dimensional geometrical elements is what Gelfand,

Zhu, and Carlin (2001) call the change of support problem. They exemplify this

concept with an application that requires combining geographic data about

ozone levels—which comes from fixed monitoring sites that can be considered

as points in a map—to the proportion of hospital visits due to asthma—which

is grouped by zip code, and therefore must be considered as areas.

Without using complex support kernels (in this particular case, area kernels),

the problem can be solved with traditional GPs by using the ozone data to fit

an ozone level surface over the map, then using the estimation at the centroid

of a particular zip code to represent the readings at the whole area (Carlin
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et al., 1999). Gelfand et al. argue that this approximation fails to capture spa-

tial association and variability by treating a GP estimate as an observed value.

Instead, they assumed that the variable observed is continuous and comes

from an underlying spatial process. We can denote this process by Y(p), for

points p ∈ D (where D is our region of interest). For data observed in discrete

locations, as is the case of ozone levels in the example they present, this is

the process to be inferred. However, patient information comes from averages

over regions of space. That is, for each region A ∈ D,

Y(A) = |A|−1
∫
A
Y(p)dp, (3.1)

where |A| represents the area of region A. This integral is an average of ran-

dom variables, therefore the assumption of an underlying spatial process is

only appropriate if the area data can be seen as averaging over point data.

Valid examples are continuous environmental measurements, such as temper-

ature, pressure or elevation. Conversely, this assumption is inappropriate for

discrete measurements, like population, as a particular point of space can-

not hold any population. Proportions are also usually inappropriate, because

even though they take values from a continuous range, the corresponding

point data could be discrete (for instance: the proportion of unemployed peo-

ple is continuous over the population of an area, but binary for each person).

Reid, in his doctoral thesis (2011), formulates a way of using geometrical ele-

ments as support for a GP kernel, illustrated in Figure 3.1.
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(a) Colored rectangles and points are the input data, grey surface is the prediction.

(b) Ground truth (c) Estimate

Figure 3.1: Example of Gaussian process using kernels supported on areas and points.
Taken from Reid (2011, section 3.3).
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Besides points x, the higher-dimensional elements that Reid uses are lines L

(when the domain is one-dimensional) or areas A (when two-dimensional),

such that Equation 3.1 becomes:

Y(L) = |L|−1
∫
x∈L

Y(x)dx and

Y(A) = |A|−1
∫∫
x∈A

Y(x)dx.
(3.2)

Having established the relationships between points and lines or areas, Reid

Figure 3.2: Schematic representation of kernels using points, lines and areas. Reid
(2011, section 3.3).

proceeds to define covariance functions that accept these elements as input.

The equations for these kernels, illustrated in Figure 3.2, are:

Kx,x ′ = k(x, x ′),

KL,x ′ = k(L, x ′) =
1

|L|

∫
x∈L

k(x, x ′)dx,

KL,L ′ = k(L,L ′) =
1

|L||L ′|

∫
x∈L

∫
x ′∈L ′

k(x, x ′)dxdx ′,

KA,x ′ = k(A, x ′) =
1

|A|

∫∫
x∈A

k(x, x ′)dx,

KA,A ′ = k(A,A ′) =
1

|A||A ′|

∫∫
x∈A

∫∫
x ′∈A ′

k(x, x ′)dxdx ′.

(3.3)
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Analysing the above integrals makes it easy to see that, due to their being in-

versely proportional to the size of the higher-dimension element, the complex

support kernels tend to zero as |L| or |A| are increased—that is, as the resolu-

tion becomes coarser. A quick look through the covariance functions shown

in Section 2.2.2 shows that it can be challenging to integrate analytically sev-

eral of them. Reid chooses the squared exponential function to demonstrate

the technique, for two reasons. The first is that it is fairly easy to integrate to

obtain the line-to-point and line-to-line integral kernels. If L is taken to be a

line segment between points xl and xr, we obtain:

Kx,x ′ = σ
2
f exp

(
−
|x− x ′|

2l2

)
,

KL,x ′ =
σ2f

xr − xl

∫xl
xr

Kx,x ′dx

=

√
π

2

(
σ2fl

xr − xl

)[
erf
(
x− xr√
2l

)
− erf

(
x− xl√
2l

)]
,

KL,L ′ =
σ2f

(xr − xl)(x ′r − x
′
l)

∫x ′l
x ′r

KL,x ′dx
′

=

√
π

2

(
σ2fl

(xr − xl)(x ′r − x
′
l)

)[
(xr − x

′
l)erf

(
xr − x

′
l√

2l

)
− (xl − x

′
l)erf

(
xl − x

′
l√

2l

)

+ (xl − x
′
r)erf

(
xl − x

′
r√

2l

)
− (xr − x

′
r)erf

(
xr − x

′
r√

2l

)]

+
l2

2(xr − xl)(x ′r − x
′
l)

[
exp

(
−
|xr − x

′
l|

2l2

)
− exp

(
−
|xl − x

′
l|

2l2

)

+ exp
(
−
|xl − x

′
r|

2l2

)
− exp

(
−
|xr − x

′
r|

2l2

)]
.

(3.4)

The second reason is that the function is separable in a two-dimensional Eu-

clidean space; that is,

Kx,x ′ = exp(|x− x ′|2)

= exp((x1 − x ′1)
2) exp((x2 − x ′2)

2).
(3.5)
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This property means that the area-to-point and area-to-area functions for a

rectangular region can be represented as the cross product of its diagonals. If

we take an input vector x containing both rectangles A (with diagonals D1

and D2) and points p, we obtain:

x =

A
p

 ,

k(x, x ′) =

k(D1,D ′1) k(D1,p ′)

k(p,D ′1) k(p,p ′)

×
k(D2,D ′2) k(D2,p ′)

k(p,D ′2) k(p,p ′)


(3.6)

We have noted, however, that the computation of covariance functions is the

most computationally demanding part of the GP algorithm. Reid lessens this

burden by using a piecewise approximation to the isotropic squared expo-

nential kernel. However, an isotropic kernel is not a good option for robotic

mapping, since it presumes equal variation of the observed phenomenon in

the direction of each axis which does not always correspond to the way obsta-

cles are distributed in real world.

The method outlined above requires extra calculations, since we need to cal-

culate two full covariance matrices, and this represents an increase in compu-

tational cost. Besides that, the mathematical equations involved in one- and

two-dimensional kernels are long and complicated (see Equations 3.4 and 3.6),

representing a challenge to implementation.. Moreover, were the work in this

thesis to be extended to three-dimensional data (as is intended), the equations

would become even larger, making this approach impractical.
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3.2.2 gaussian process occupancy mapping

As discussed in Section 2.1, discrete representations of space bring a number

of shortcomings with them. Their efficiency relies on a highly restrictive as-

sumption about the environment: that cells are independent and identically

distributed (iid). This assumption disregards spatial correlations that might

be useful in inferring occupation in unobserved regions. In order to avoid this

problem, O’Callaghan (2012) proposed a mapping approach using GPs, trans-

forming the mapping task to a continuous spatial classification problem. The

method developed is called Gaussian process occupancy map (GPOM).

GPOMs are GP classifiers that take rangefinder sensor data and use it to classify

regions of space as occupied or free. Figure 3.3 illustrates the method with a

simple synthetic dataset. It is important to notice that the GP outputs a con-

tinuous surface of probability (Figure 3.3e), which is then filtered to obtain a

map (Figure 3.3f) that can be compared to a traditional OGM (Figure 3.3c).

The input points, though, cannot be limited to the laser hits—as those only

indicate obstacles and give no information about the free areas. In order to

indicate free areas, a sensor beam can be, for instance, represented as a col-

lection of free-space points. However, that would cause the training set to be

inflated very fast, and make the algorithm run even slower, since its complex-

ity grows cubically with the number of input points.

In order to represent the free areas without inflating the input set, O’Callaghan

uses Gaussian processes with covariance functions supported on lines instead

of points, as discussed in the previous chapter. This allows modelling the

rangefinder beam as a continuous line segment between the robot’s pose and

the point where each beam taken from this location hit an obstacle.

In order to allow for online learning, the covariance matrix can be stored
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(a) Ground truth (b) Laser returns and robot pose

(c) Traditional OGM (d) Predictive variance of Gaussian process

(e) Probability of occupancy versus location (f) Classified GPOM. Black = occupied
(p(Occupied) > 0.65), white = free
(p(Occupied) 6 0.35), grey = unsure.

Figure 3.3: GPOM demonstration with simulated 2D dataset. O’Callaghan (2012).

and applied to multiple query points. Therefore, matrix inversion need not be

performed more than once, which removes the O(n3) cost from further itera-

tions. Instead, the covariance matrix is updated through a O(n2) operation. A

comparison of performance with, and without, this optimisation is shown in
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Figure 3.4a. To allow online learning, this optimisation is aided by an active

sampling technique and by splitting the covariance matrix once it grows too

large.

(a) (b)

Figure 3.4: Time (a) and accuracy (b) comparison between the GPOMIK and the
GPOM on the 3D simulated dataset. GPOMIK "from scratch" indicates the
method where the kernel is recalculated in each iteration, while "stored
K" represents optimised update. O’Callaghan and Ramos (2011).

Table 3.1: Quantitative comparison of experimental results. False positive rates are
calculated for a 90% true positive rate. O’Callaghan and Ramos (2011).

Area under
the curve

False
positive rate

GPOMIK 0.9441 10.1%
Previous GP Method 0.9162 79.57%

Occupancy Grid 0.8938 21.9%
No Discrimination 0.5 90%

Experiments with real and simulated data in two and three dimensions com-

pare the GPOMs with and without integral kernels, as well as regular OGMs.

The results are displayed in Figure 3.4 and Table 3.1. Gaussian process occu-

pancy maps using integral kernels (GPOMIKs) were shown to perform better:

they run faster then GPOMs and generate less false positives than both com-

peting methods.
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3.3 M U LT I - S U P P O RT K E R N E L S

One objective of this work is to propose a kernel that can use higher-dimensional

support elements—lines, rectangles and hyperrectangles—for robotic map-

ping. Instead of integrating over the laser beams, however, the objective is

to integrate over elements of the same dimension of the map. In other words,

we’ll use areas (when building 2D maps) and volumes (in 3D maps) as sup-

port to the covariance functions. It is also desirable that the method is able

to handle arrays containing these geometrical features as well as points, or

any combination between them—hence the chosen name, multi-support ker-

nel (MSK).

The kernels obtained by the method described in Section 3.2.1 would, theo-

retically, fulfil these requirements. However, analytically integrating a more

complicated kernel, such as the neural network (NN) or those of the Matérn

class, can be exceedingly difficult. Numerical methods, on the other hand,

can be computationally demanding and unstable. An alternative must be pre-

sented that is both easy to implement and allows to draw upon the richness

and abundance of existing kernel functions.

In the next section, we propose a novel method to allow kernels to be calcu-

lated using data about complex geometrical shapes. From here onwards, these

will be referred to as elements of support or elements, to differentiate them from
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data points.

3.3.1 proposed kernel

To fulfil all the criteria priorly discussed, instead of integrating the traditional

kernels as the methods discussed in Section 3.2, the element kernels are ap-

proximated by sampling the data points inside the element and calculating

the mean of the kernels between all of them. Following that, for generic geo-

metrical elements, Equation 3.3 can be restated as:

Kx,x ′ = k(x, x ′),

KE,x ′ = k(E, x ′) =
1

|E|

∫
x∈E

k(x, x ′)dx,

KE,E ′ = k(E,E ′) =
1

|E||E ′|

∫
x∈E

∫
x ′∈E ′

k(x, x ′)dxdx ′,

(3.7)

which, given a finite number of measurements x ∈ E, can be approximated as:

Kx,x ′ = k(x, x ′),

KE,x ′ = k(E, x ′) =
1

nE

∑
x∈E

k(x, x ′),

KE,E ′ = k(E,E ′) =
1

nEnE ′

∑
x∈E

∑
x ′∈E ′

k(x, x ′),

(3.8)

where E is a geometrical element of any dimension and nE indicates the num-

ber of data points sampled from E. Being constructed by direct sum, it is

a valid positive semi-definite (PSD) kernel (Hastie and Tibshirani, 1990; Ras-

mussen and Williams, 2006, section 4.2.4). A similar and more rigorous deriva-

tion can also be found in Gelfand, Zhu, and Carlin (2001, section 2), and an

analogous approach was also used by Muandet and Schölkopf (2013, section

3.2) to calculate kernels over probability distributions.
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We call the kernel described in Equation 3.8 a multi-support kernel (MSK),

because it allows us to calculate element-to-element and element-to-point co-

variances. Their algorithmic forms are rather simple?:

Algorithm 3.1: Element-to-element kernel algorithm.

1 input : E1, E2, k(), par
# element, point, covariance function and parameters

2 Kpp := []

3 Kep := [] # empty arrays

4 for all p1 in E1:

5 for all p2 in E2:

6 Kpp.append(k(p1, p2))

7 Kep.append(mean(Kpp))

8 K := mean(Kep)

9 output : K
# covariance between E1 and E2

Algorithm 3.2: Element-to-point kernel algorithm.

1 input : E1, p2, k(), par
# element, point, covariance function and parameters

2 Kpp := [] # empty array

3 for all p1 in E1:

4 Kpp.append(k(p1, p2))

5 K := mean(Kpp)

6 output : K
# covariance between E1 and p2

The above algorithms clearly use elements for support, however each alone

is constrained to a single support. In order to enable them to calculate a full

covariance matrix between two sets of observations containing any combi-

? Worthy of mention is that, although the way these algorithms are written here suggests a
calculation between a single element and a single point, both of them can be vectorised,
allowing the input of arrays of elements and points.
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nation of supports (and thus making it truly multi-support), we return to

Equation 3.6, which now takes a much simpler form:

x =

E
p

 , x ′ =

E ′
p ′

 ,

k(x, x ′) =

k(E,E ′) k(E,p ′)

k(p,E ′) k(p,p ′)

 .

(3.9)

We can use this result to build, using Algorithms 3.2 and 3.1, a novel multi-

support covariance function able to handle inputs containing both elements

and points:

Algorithm 3.3: Multi-support kernel algorithm.

1 input : x1, x2, k(), par
# array, array, covariance function and parameters.
# arrays are assumed to be of the format x := [E, p]>

2 Kee := kee(x1.E, x2.E, k(), par) # element-to-element covariance

3 Kep := kep(x1.E, x2.p, k(), par) # element-to-point covariance

4 Kpe := kep(x1.p, x2.E, k(), par)> # point-to-element covariance

5 Kpp := k(x1.p, x2.p, par) # point-to-point covariance

6 K := [[Kee, Kep],
[Kpe, Kpp]]

7 output : K
# covariance between x1 and x2

The greatest advantage of the proposed kernel is that we can now aggregate

several input points into a single element. When we use it as a covariance

function for a GP, it can significantly reduce the size of the covariance matrix,

which directly impacts the cost of its inversion.
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3.4 M A P P I N G W I T H M U LT I - S U P P O RT K E R N E L S

A covariance function able to produce reduced matrices from the input dataset

is a valuable tool. As discussed in Chapter 2, the Gaussian process (GP) algo-

rithm requires a matrix inversion, which has a complexity of O(N3) with

the size of the matrix, and using it for mapping is a challenge because laser

rangefinders can generate thousands of data points per seconds.

By using a multi-support kernel (MSK), points can be grouped together in spa-

tial elements which count as a single input in the array. The effective reduction

in computation time will depend on how many points can be grouped into a

single element, but if we group a dataset containing N entries into elements

containing an average of n points each, the input size becomes roughly N/n.

Since its dependency with the number of entries is cubical, the complexity of

the inversion is n−3 of the original.

It should then become obvious that the way in which the elements are defined

hugely impacts the efficiency of MSK. The more points there are inside each

element, the smaller the covariance matrix will be and the faster the result

will be. However, as the size of the elements grow, the resolution becomes

coarser and the map loses its predictive ability.

Once the elements are generated, they are passed as input to the multi-support

Gaussian process occupancy map (MS-GPOM) algorithm, outputs the probabil-

ity of occupancy in the form of a three-dimensional surface. The occupancy

map is then obtained by generating a point grid and categorising each point,

according to its probability of occupancy, into one of three states: free, occupied

or unknown. The whole process is summarised in Figure 3.5
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Several variables can affect the performance of the algorithm, not all of which

Figure 3.5: Flowchart for MS-GPOM.

can be efficiently optimised through the learning step described above. This

will be discussed in greater detail in Chapter 4. However, for instructional

purposes, each step of the algorithm outlined in Figure 3.5 will first be illus-

trated in the next section.

3.4.1 mapping with a synthetic dataset

In this section, we use simulation to illustrate the main aspects of the pro-

posed algorithm. The simulation models a robot equipped with a rangefinder

moving within a 2 dimensional space. At each time step, the robot performs

a number of rangefinder readings, then updates its pose (i. e. position and ori-
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entation) based on its previous pose and speed. A sample dataset is shown in

Figure 3.6.
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(a) Ground truth
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(b) Rangefinder data: free beams in red and
hits in blue.
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(c) Free points in green, occupied in red.
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(d) Dataset partitioned into elements.

Figure 3.6: Sample synthetic dataset and data preprocessing. A robot equipped with
a laser rangefinder with 180Â◦ field of view moves around in a room (a)
generating a series of readings (b). These are then sampled and divided
into free and occupied points (c). Lastly, these points are used to create
the elements to be used as input by the MS-GP algorithm (d). All units
displayed are arbitrary.

The first step is the pre-processing: from each beam (that is, the line con-

necting the coordinates of each hit to the position where the robot when the

hit was detected), a set of equally spaced free points is generated. The hits

that are at the edge of the perceptual range (that is, the ones where it is

unclear whether or not an obstacle exists) are discarded at this stage. The

50



closest free point to each hit can be discarded to make the element creation

easier, avoiding elements containing both free and occupied points—however,

it also results in wider uncertain boundaries between free and occupied areas,

a trade-off that must be kept in mind.

After the free points have been processed, the elements must be created. An

initial element is defined by a polygon set around the data points. For the

sake of simplicity, this work used exclusively rectangles with sides parallel

to the Cartesian axes, although these restrictions are unnecessary. The initial

element is divided following a logic similar to a quad-tree (Finkel and Bent-

ley, 1974), and two things are taken into consideration before each division:

the size of the element and the type of points inside it. If an element contains

only one type of points inside (hits or free points) it is used as an input. If it

has both free points and hits, it is divided in half perpendicular to its longest

dimension, except if it is smaller than the smallest allowed size, a threshold de-

fined by the user. In this example, we used a threshold of 1.0 (see Figure 3.6)?.

The process is illustrated in Figure 3.7 and Algorithms 3.4 and 3.5. It should

be noted that halving the threshold will generate approximately 2D as many

elements, where D is the number of dimensions.

Algorithm 3.4: Pre-processing algorithm.

1 input : B, thresh
# beams, size threshold

2 [Xf, Xo] = split_beams(B, thresh)
# samples the beams at regular distances and returns one
# vector of free and one of occupied coordinates

3 E = []

4 E0 = [Xf; Xo]> # initial element containing all the data

5 E = find_elements(E0, thresh) # Algorithm 3.5

6 output : E
# list of elements created from the data

? It is important to stress that the threshold does not represent the smallest element dimension
possible. Rather, it means that elements with dimensions larger than those would still be
divided—therefore, a threshold of 1.0means that the smallest dimension found in an element
in the input dataset can be as small as 0.5+ ε.
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Algorithm 3.5: Recursive algorithm to find valid elements.

1 input : E, thresh
# list of elements, size threshold

# this algorithm takes as input elements that are too large or
# contain mixed entries and ultimately returns a list of
# elements that obey all constraints imposed

2 [Xf; Xo] = E

3 if Xf = empty and Xo = empty:

4 E = [] # empty elements are discarded

5 return

6 if E 6 thresh or Xf = empty or Xo = empty:
# elements that contain only one type of entry or are smaller
# than the size threshold do not get divided any further

7 return

8 [E1, E2] := divide(E)
# divides E in half by the longer axis and creates two new
# elements, splitting the free and occupied points accordingly

9 E := [find_elements(E1, thresh), find_elements(E2, thresh)

10 output : E
# list of valid elements

(a) (b) (c) (d) (e)

Figure 3.7: Element generation process demonstration. For this example, we use an
initial dataset (a) spanning a 0.9× 1.0 area and a threshold of 0.25. Since it
contains both free (green) and occupied (red) points, it is divided perpen-
dicular to the longest axis (b). The lower element only contains free points,
so it is marked free and not divided any further; the upper element is di-
vided again (c). The upper right element can be divided one more time
(d), yielding one free and one occupied element. The upper left element,
however, after an additional division (e) yields an empty element (which
is discarded) and an element containing one free and one occupied point
that can’t be divided any further (because it’s longer axis is smaller than
the threshold). Therefore, it is ambiguous, with 50% chance of occupancy
(yellow), as determined by the proportion of occupied and free points.
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This method of division has a desirable property. If we look at a single time

step, since the beams from a rangefinder have diverging trajectories, the free

points are abundant and grouped more densely near the robot’s location,

while the hits are at the edges and further apart. Therefore, the elements

generated near the robot will be larger, so they group more points together

and ultimately have a larger impact in the size of the covariance matrix. At

the same time, closer to the hit, the size of the elements will decrease, which

allows for extra resolution where it matters most.

After the elements are prepared, they are ready to be used to train a GP. In

this example, a squared exponential covariance function is used, trained using

simulated annealing (Kirkpatrick et al., 1983; Černý, 1985) to minimise the log

marginal likelihood. In Chapter 4, we compare these options to the Matérn 3

covariance function, and the Broyden-Fletcher-Goldfarb-Shanno method (BFGS)

(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) is tested as an

optional optimiser.

After the GP is trained, a test dataset composed of points uniformly dis-

tributed over the entire region spanned by the input points can be used to set

a grid, with spacing of 0.5. The outputs of the GP regression are the prediction

and the variance. A sigmoid function then flattens the prediction to confine it

to the interval [0; 1], reflecting the probability of occupancy of each point. The

function used for this purpose in the experiments in this work takes the form:

σ(µ, v) = Φ
(
(α ∗ µ+β)√
1+α2 ∗ v

)
, (3.10)

where µ is the prediction, v is the variance, Φ is the normal cumulative dis-

tribution function and α and β are parameters that can be experimentally

chosen. A pair of thresholds can subsequently be used to classify the grid

between the three occupancy states traditionally used for OGMs. For all maps
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Figure 3.8: Sample output. For the occupancy map (c), if a cell is less than 33% likely
to be occupied, it is marked as "free" (white), and if it’s more than 66%
likely, it is marked as "occupied" (black). All remaining cells are "un-
known" (grey).
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presented in this thesis, unless otherwise stated, a point was considered free

if its predicted occupancy probability was below 33%, and occupied if above

66%. Results can be seen in Figure 3.8, and the algorithm is Algorithm 3.6.

Algorithm 3.6: MS-GPOM algorithm.

1 input : B, par0, x
# beams, parameters, test points

2 [thresh, par, alpha, beta] := par0

3 E := pre_process(B, thresh) # Algorithm 3.4

4 m, var, lml := gp(E, msk(), par, x)
# where gp is Algorithm 2.2, msk is Algorithm 3.3 and
# par contains sig and the kernel’s hyperparameters

5 map := sigmoid(m, var, alpha, beta) # Equation 3.10

6 for all i in map:

7 if map[i] < 0.33:

8 map[i] := 0 # free

9 else if map[i] < 0.66:

10 map[i] := 0.5 # unknown

11 else:

12 map[i] := 1 # occupied

13 output : map, var, lml
# prediction at x, variances and log-marginal likelihood

3.5 S U M M A RY

In this chapter, we have reviewed some previous work on change of sup-

port for kernel methods. Reid’s work on area kernels for image analysis and

O’Callaghan work on line kernels for robotic mapping laid the path for this

work.

Multi-support kernels have been introduced. They offer an easy implementa-

tion that allows any kernel to be supported on multi-dimensional geometrical
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elements rather than points. They do not rely on integration and are able to

generate reduced covariance matrices, making them suitable for applications

that rely on large amounts of spatially correlated data.

These qualities make MSKs well suited for robotic mapping. A procedure for

creating geometrical elements from rangefinder data is described, and the al-

gorithm for mapping with MS-GP is outlined and demonstrated for simulated

data.

In the next chapter, we further explore the MS-GPOM algorithm. Some choices

of parameters and their effects on its performance are demonstrated. It is also

benchmarked against GPOMIK.
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Chapter 4

E X P E R I M E N T S

With the aid of multi-support kernels, spatial elements in the data

set can be used to aggregate several points into a single data entry,

potentially reducing dimensionality and so accelerating the matrix

inversion necessary for Gaussian process modelling and learning.

However, when mapping with MSK-GPs, there are numerous vari-

ables that can affect the performance of the algorithm. Not all of

them are tuned in the GP optimisation, requiring tests to measure

the effects of each.

a

In this chapter, we conduct experiments to measure how each pa-

rameter affects the map generated. The proposed algorithm is also

benchmarked against the GPOMIK algorithm.



Bold, persistent experimentation is the hallmark of good science.

— GLaDOS

4.1 I N T R O D U C T I O N

In Chapter 3, we introduced the concept of change of support for kernel meth-

ods, reviewing an example from the field of image analysis. A novel approach

was proposed for multi-support kernels (MSKs), that does not require integra-

tion of kernel functions and can be used with any existing kernel. We also

reviewed a method for continuous environment mapping using Gaussian pro-

cesses (GPs), and proposed an approach using MSKs to generate Gaussian pro-

cess occupancy maps (GPOMs).

In this chapter, we test the performance of the proposed multi-support Gaus-

sian process occupancy map (MS-GPOM) algorithm under different conditions

to analyse the influence of certain parameters in its predictive ability. The

algorithm’s time performance is also compared to the Gaussian process occu-

pancy map using integral kernels (GPOMIK) algorithm both for synthetic and

real datasets.

system specifications and experimental setup

All the experiments described in this chapter were performed in a computer

equipped with a 3.2GHz Intel CoreTM i5-3470 and 8GB RAM, running Ubuntu

14.04.2 LTS ("Trusty Tahr") 64 bit on a 3.13.0-46 generic GNU/Linux kernel

and MATLAB R© version 8.3.0.532 (R2014a).

For all the experiments, accuracy is measured in terms of the area under the
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receiver operating characteristic (ROC) curve. The false positive rate (FPR) for

a fixed true positive rate (TPR) of 95% is offered as an additional performance

metric.

4.2 PA R A M E T E R S O F T H E M O D E L

There are some user-specified parameters that affect the performance of the

model, interfering with its time efficiency and with the results obtained. We

will demonstrate them in this section, using the same dataset as was used in

the example in Chapter 3. For all the training benchmarks, to avoid the effects

that random initialisation may have on training times, the initial value of all

hyperparameters was set to 1 (i. e. , all-ones vectors of the appropriate dimen-

sion).

a. Element Generation

The key contribution of this work is the addition of predictions supported on

higher-dimension geometrical elements within the dataset. The input points

are divided between these elements, and this allows the number of entries in

the covariance matrix to be reduced, sometimes drastically. However, there is

a tradeoff between the size of the covariance matrix and the predictive accu-

racy of the method.

We discussed in the previous chapter how, as elements become larger, the

number of points contained in each element increases, creating fewer entries

in the matrix. In spite of that, elements can occasionally contain regions that
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have been sparsely probed, and a region’s occupancy cannot always be reli-

ably inferred by the occupancy of the entire element. As the size of the ele-

ments becomes smaller, this problem is alleviated, but at the price of larger

covariance matrices, until the limit where each element contains a single point

is reached (amounting to a traditional GP). Figure 4.1 illustrates the elements

generated at different thresholds.

b. Covariance Function

As discussed in Section 2.2.2, different covariance functions determine differ-

ent properties for the functions in the model. They also differ in the number

of hyperparameters and the computational cost. Therefore, it should come at

no surprise that the choice of covariance function also affects the training time

and the outcomes of the algorithm.

c. Optimiser

To train a GP, there is no standard choice of optimiser, and several can be

used. Since optimisation is not the focus of this work, the optimisers chosen

were the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) cubic line search

built into MATLAB’s fminunc minimisation function, and simulated anneal-

ing, which is the option chosen by O’Callaghan (2012). BFGS is a quasi-Newton

method and the faster of the two, however it is also more likely to get stuck

in local minima. Simulated annealing, while slower, handles problems with a

larger number of local minima more robustly.
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Figure 4.1: Element size threshold impact on geometric element generation.
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results

The influence of the above parameters on the training time of the algorithm

can be seen in Table 4.1. As expected, the training time decreases as the el-

ement size threshold increases. BFGS optimisation runs considerably faster

than simulated annealing, and the Matérn 3 kernel has a small advantage

over the squared exponential. The choice of optimiser did not significantly

influence the performance of the algorithms, and was omitted from the re-

maining analyses.

Table 4.1: Influence of the choice of covariance function, optimiser and element size
threshold on the time it takes to learn the hyperparameters from the
datasets presented in Figure 4.1.

Kernel Element size
threshold

Optimiser
BFGS Annealing

Squared
Exponential

0.5
1

2

4

2.80 ∗ 103s
686.35s
72.19s
28.43s

1.97 ∗ 104s
6.41 ∗ 103s
166.81s
39.40s

Matérn 3

0.5
1

2

4

1.92 ∗ 103s
1.80 ∗ 103s
81.48s
20.98s

2.24 ∗ 104s
6.64 ∗ 103s
157.03s
35.06s

Table 4.2 shows the performance analyses for different choices of covariance

function and element size threshold. We can see that the Matérn 3 kernel

slightly outperforms the squared exponential kernel. Contrary to the expected

result, smaller element size thresholds lead to longer running times and bet-

ter accuracy only to an extent. A drop in performance can be noted once the

smallest allowed elements become smaller than the smallest dimension of the

obstacles, which provides a tentative way to set the element size threshold.
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Table 4.2: Influence of the choice of covariance function and element size threshold on
the time to create a map using parameters previously learned and accuracy
of the resulting map.

Kernel
Element size

threshold
Running time Accuracy

FPR when
TPR = 95%

Squared
Exponential

0.5
1

2

4

11.91s
5.33s
3.69s
3.30s

0.9210

0.9554

0.8545

0.6996

11.50%
8.25%
32.49%
75.33%

Matérn 3

0.5
1

2

4

11.34s
5.63s
3.77s
3.31s

0.9291

0.9767

0.8947

0.7049

12.75%
8.43%
25.58%
74.48%

A step-by-step illustration of the map generation process, from the dataset

to the final map, is displayed for two different threshold sizes from the ta-

ble above in Figures 4.2 and 4.3. They give some insight into the reasons why

the performance drops under thresholds of 1.0: comparing the input elements

(subplot (c)) of each shows that, once the smallest elements become smaller

than the obstacle, the peaks they generate in the prediction (subplot (d)) be-

come less sharp. This provides some intuition for the tuning of this parameter,

which wasn’t provided to the optimisers.
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Figure 4.2: Step-by-step map generation for a MS-GPOM with Matérn 3 kernel. Ele-
ment size threshold is 0.5, training method was simulated annealing.
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Figure 4.3: Step-by-step map generation for a MS-GPOM with Matérn 3 kernel. Ele-
ment size threshold is 1.0, training method was simulated annealing.
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4.3 B E N C H M A R K S

In all the benchmarks described in this section, the proposed algorithm was

compared solely to GPOMIK (O’Callaghan, 2012). The reason behind this choice

is that GPOMIK was the most efficient GPOM algorithm available at the time of

the elaboration of this thesis, and it was shown in O’Callaghan and Ramos

(2011) to outperform all the competing algorithms analysed (see Table 3.1

and Figure 3.4). The following experiments show that MS-GPOM was able to

achieve comparable performance to GPOMIK, so comparison with previous al-

gorithms was deemed unnecessary.

All benchmarks are made using identical test datasets for both methods. Input

datasets differ only in the way each algorithm preprocesses the raw inputs.

4.3.1 synthetic data

For this test, the dataset used was larger than the one used in Section 4.2, but

generated by the same method. It is similar to the one used in O’Callaghan

(2012, chapter 4). For the MS-GPOM, an element size threshold of 1.0 was cho-

sen. For the GPOMIK, the active input sampling method described in O’Callaghan

and Ramos (2011) was used. The dataset and inputs for each can be seen in

Figure 4.4.

Both algorithms were tested with the Matérn 3 and the squared exponential

kernel, each trained through simulated annealing. The runtimes and perfor-

mance analyses for the methods are shown on Table 4.3 and Figure 4.5. The

predictions made by each are shown in figures Figure 4.6 and Figure 4.7.
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Figure 4.4: Benchmark dataset and inputs.
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Table 4.3: Benchmark times for GPOMIK and MS-GPOM, both trained with simu-
lated annealing.

Method Kernel Running time Accuracy
FPR when
TPR = 95%

GPOMIK
Matérn 3

Squared Exponential
79.46s
86.58s

0.9447

0.9415

12.25%
9.76%

MS-GPOM
Matérn 3

Squared Exponential
23.76s
19.33s

0.9416

0.9266

12.34%
16.30%
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Figure 4.5: ROC curves for the synthetic dataset. The curve for MS-GPOM is repre-
sented in blue, GPOMIK in red.
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Figure 4.6: GPOMIK outputs for synthetic dataset. Left column: squared exponential
kernel. Right column: Matérn 3 kernel.
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Figure 4.7: MS-GPOM outputs for synthetic dataset. Left column: squared exponen-
tial kernel. Right column: Matérn 3 kernel.
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4.3.2 real data

Although the benchmarks in the last section suggest the algorithm does in-

deed present an advantage over GPOMIK, synthetic data offers a lot of conve-

niences that in a real setting wouldn’t exist, such as lack of noise. To be able

to truly assess the usability of the MS-GPOM algorithm, we must test it using

datasets taken by real robots.

The raw data were provided by Dirk Haehnel, and contains 395 poses with

361 equally spaced laser readings spanning 180 degrees taken from each. The

data were collected at the Belgioioso Castle, located in Milan. It is made avail-

able on the Robotics Datasets webpage, maintained by Cyrill Stachniss?. The

data are presented both in raw form and after loop closure; the latter was

used in this benchmark.

To test the algorithm, a subset of 52 poses was used, from which 37 equally

spaced laser beams were taken into consideration. These data refer to two ad-

jacent rooms in the castle, and can be seen in Figure 4.8.

The proposed algorithm was trained using BFGS, with an element size thresh-

old of 1.0 on both the squared exponential and the Matérn 3 kernels. For the

contending algorithm, the parameters used were those presented in O’Callaghan

and Ramos (2011), presumably reflecting the algorithm’s best configuration.

Accuracy was measured by using the trained GPs to predict the occupancy

of two thousand points divided evenly between free and occupied, randomly

sampled from the beams that weren’t used to generate the predictions above.

The sample used was the same for all algorithms. Running times and perfor-

mance results are displayed in Table 4.4 and Figure 4.9. The predictions can

be seen in Figure 4.10 and Figure 4.11.

? http://www2.informatik.uni-freiburg.de/~stachnis/datasets/
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(a) Photograph of a room in Belgioioso
Castle, not necessarily where the read-
ings were taken

(b) OGM of the rooms where the readings
were taken (Stachniss)
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Figure 4.8: Tentative ground truth, rangefinder data and inputs for each method.
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Table 4.4: Benchmark times for GPOMIK and MS-GPOM, both trained with anneal-
ing.

Method Kernel Running time Accuracy
FPR when
TPR = 95%

GPOMIK
Matérn 3

Squared Exponential
445.42s
607.93s

0.9751

0.9665

9.60%
8.20%

MS-GPOM
Matérn 3

Squared Exponential
52.07s
37.29s

0.9918

0.9947

3.30%
2.00%
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Figure 4.9: ROC curves for the Belgioioso Castle dataset. MS-GPOM in blue,
GPOMIK in red.
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Figure 4.10: GPOMIK outputs for real dataset. Left column: squared exponential ker-
nel. Right column: Matérn 3 kernel.
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Figure 4.11: MS-GPOM outputs for real dataset. Left column: squared exponential
kernel. Right column: Matérn 3 kernel.
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4.4 S U M M A RY

In this chapter, we have analysed the performance of the MS-GPOM in several

different conditions. A series of experiments was conduced to analyse how

different parameters affect the output of the algorithm. The MS-GPOM was

also compared to a previous technique that performs a similar function.

It is safe to conclude that the method developed has performance comparable

to the GPOMIK algorithm, both in simulated and real scenarios. It was also

shown to be much faster than the latter. This result, however, must be inter-

preted carefully, as the GPOMIK is tailored to do online predictions, while the

MS-GPOM excels at batch mapping, and the experiments reported in this chap-

ter just aimed to provide a proof-of-concept for the viability of the technique

presented in this thesis. In the next chapter, we conclude this work by sum-

marising the contributions made and outlining the future work that should

be done on this algorithm.

76



Chapter 5

C O N C L U S I O N S

This thesis presented a methodology that allows to perform change

of support on any kernel, which was used to develop a framework

for robotic mapping. With the method developed, continuous oc-

cupancy maps can be created in a much shorter time than using

other GP-based methods, yet with comparable accuracy.

a

In this chapter, we review the contributions made in this work and

suggest and discuss future research paths.



Now that I’ve fulfilled my purpose, I don’t know what to do.

— Sonny

5.1 C O N T R I B U T I O N S

In the development of the research described on this thesis, we have inves-

tigated the fundamental field of occupancy mapping for robotics. It was ob-

served that most widespread techniques currently in use rely on discretising

the region to be mapped, which gives rise to a number of problems.

Continuous occupancy mapping techniques have been proposed to overcome

this difficulty in the past. Of those, Gaussian process occupancy maps (GPOMs)

have shown potential, due to the ability of Gaussian processes (GPs) to learn

from uncertain inputs, unavoidable in the field of robotic sensing. However,

this creates a new problem: the complexity of the algorithm scales cubically

with the number of inputs, and modern sensors often generate thousands of

readings every second.

Our aim was to create a method able to reconcile the robust uncertainty han-

dling of GP inference with the speed necessary to efficiently handle massive

datasets. To do so, we investigated change of support kernels, that allow

calculation of covariance between points or higher dimensional geometrical

elements in the dataset. The multi-support kernel created is easily imple-

mentable and allows expansion from traditional kernels. It accepts as input ge-

ometrical elements that condense several data points, but each element counts

as a single entry, reducing drastically the size of the covariance matrices and

allowing GPs to efficiently handle large amounts of spatial data.
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We then developed a mapping framework that uses a multi-support Gaussian

process (MS-GP) to handle laser rangefinder data and create a continuous oc-

cupancy map. The technique was compared to Gaussian process occupancy

maps using integral kernels (GPOMIKs), another GPOM technique using change

of support, and found to have comparable accuracy both on synthetic and real

data, in spite of significantly better scalability properties.

In short, the main contributions of this work are twofold:

a multi-support kernel that is easy to implement and enables traditional

covariance functions to accept as inputs not only points, but also hyper-

rectangles, allowing reduction of the size of covariance matrices and

consequent acceleration of Gaussian process inference and learning.

a continuous occupancy mapping technique using a GP with the

aforementioned kernel to handle uncertainty, with comparable accuracy

in relation to similar state-of-the-art techniques while taking a much

smaller toll on speed when handling large datasets.

5.2 F U T U R E W O R K

There are a number of ways the mapping technique described in this thesis,

as well as the kernel developed for it, could be extended or further tested. The

following is by no means an exhaustive list, but rather a suggestion for a few

immediate research possibilities with which to follow this work.
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multi-support for other kernel methods

Rather than tailored for the task at hand, the multi-support kernel (MSK)

developed was designed to be as generic and flexible as possible. As such,

any method could potentially benefit from its use. It is worth investigating

whether the MSK could bring an advantage to other kernel methods that are

required to deal with large amounts of data.

2 .5d and 3d continuous mapping

Even though all the examples provided on this thesis come from the 2D realm,

the method developed is theoretically able to perform 3D occupancy mapping

with minor changes. It is possible that 2.5D mapping (e. g. digital elevation

mapping) could also be performed after changing the algorithm to predict

height rather than occupancy. Investigating its performance in these tasks

could bring valuable insight to the field of outdoor mapping.

online mapping

The mapping algorithm presented is tailored for batch mapping, requiring all

the data to be acquired beforehand. Online mapping offers the distinct ad-

vantage of allowing map generation during the operation of the autonomous

agent. It may be worthwhile changing the algorithm to investigate whether

the speed advantage demonstrated on this thesis could be extended to online

mapping.

80



conversion between discrete and continuous maps

The method has been shown to perform the trivial conversion from continu-

ous to discrete maps. With small changes, the element generation algorithm

could take as input ready-made occupancy grid maps and convert them to

continuous maps. This would allow for the conversion of pre-existing maps

without requiring new data acquisition.

different data modalities

This work was entirely based on data from laser rangefinders. The algorithm

could be tested and adapted to work with other sensor modalities, such as

sonars, as well as to fuse different modalities of data into its predictions. This

would enhance its versatility and allow use in robotic applications where laser

data is not available.

parallelised implementation

The use of graphical processing units is becoming increasingly popular in

applications that require fast processing of large amounts of data, due to their

massively parallelised architecture being able to deal with matrix operations

in a fraction of the time a traditional processor requires. As such, it is possible

that reimplementing the algorithm to allow the use of such tools would make

for an even faster algorithm.
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You can’t imagine the wealth of information.
Knowledge. . . so much. . . so fast. It’s glorious!

— Cortana
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