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Abstract

Application profiling and resource management for MapRe-

duce

Scale of data generated and processed is exponential growth in the Big Data ear. It

poses a challenge that is far beyond the goal of a single computing system. Process-

ing such vast amount of data on a single machine is impracticable in term of time or

cost. Hence, distributed systems, which can harness very large clusters of commod-

ity computers and processing data within restrictive time deadlines, are imperative. In

this thesis, we target two aspects of distributed systems: application profiling and re-

source management. We study a MapReduce system in detail, which is a programming

paradigm for large scale distributed computing, and presents solutions to tackle three

key problems.

Firstly, this thesis analyzes the characteristics of jobs running on the MapReduce

system to reveal the problem—the Application scope of MapReduce has been extended

beyond the original design goal which was large-scale data processing. This problem

enables us to present a Workload Characteristic Oriented Scheduler (WCO), which

strives for co-locating tasks of possibly different MapReduce jobs with complementing

resource usage characteristics.

Secondly, this thesis studies the current job priority mechanism focusing on re-

source management. In the MapReduce system, job priority only exists at scheduling

level. High priority jobs are placed at the front of the scheduling queue and dispatched

v



first. Resource, however, is fairly shared among jobs running at the same worker

node without any consideration for their priorities. In order to resolve this, this thesis

presents a non-intrusive slot layering solution, which dynamically allocates resource

between running jobs based on their priority and efficiently reduces the execution time

of high priority jobs while improves overall throughput.

Last, based on the fact of underutilization of resource at each individual worker

node, this thesis propose a new way, Local Resource Shaper (LRS), to smooth resource

consumption of each individual job by automatically tuning the execution of concur-

rent jobs to maximize resource utilization while minimizing resource contention.
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Chapter 1

Introduction

This chapter presents a high-level overview of this thesis. It first introduces background

knowledge. It then provides the motivation why application profiling and resource

management in distributed computing systems need to be further improved. At last,

the principal research contributions are identified.

1.1 Background

1.1.1 MapReduce Programming Model

As the exponential growth and availability of data, processing “big data” on a single

machine is becoming impracticable in term of time or cost. This trend makes high

demand for distributed computing system that can harness very large clusters of com-

modity computers and processing data within restrictive time deadlines. MapReduce

[1] is a programming paradigm for large scale distributed computing, which is origi-

nally developed by Google for facilitating to process vast amount of data in parallel.

It propose a new abstraction that easily expresses distributed computations on mas-

sive amounts of data but hides the messy details of parallelization, fault tolerance, data

distribution and load balancing in a framework. The execution of a MapReduce job

consists of the map function and the reduce function. Input data sets are modeled as

1



2 CHAPTER 1. INTRODUCTION

collections of key/value pairs. The map function first processes all key/value pairs one

by one and produces a set of intermediate key/value pairs. All intermediate value are

grouped by their key and pass to the reduce function. The reduce function will merge

these values together based on their key and generate the final result which is still in

key/value format. The whole process can be summarized in the following equations:

Map(< k1,v1 >)→ list(< k2,v2 >) (1.1)

Reduce(< k2, list(v2)>)→< k2,v3 > (1.2)

MapReduce programming model is inspired by functional languages. Many large-

scale data problems can be mapped onto this model to take advantage of distributed

computing. As an example that could be implemented as a MapReudce job, consider

the problem of counting the number of occurrences of each word in a book. First, we

need to find out the input key/value pairs for the map function. It depends on your

computing resource. We can use the content of the whole book as a single record to

pass to a map function like Map (<book name, content>) if computing resource is

limited or we can divide the book into smaller blocks like chapters, paragraphs and

even lines as a set of records to pass them to many map functions which are execut-

ing on a distributed environment and each map function processes the input records

like Map (line number, content of the line) in parallel. The map function processes

the records and output the intermediate results like list (<word, 1>). The MapRe-

duce framework will shuffle and sort the outputs based on their key and produce the

input for reduce function like <word, list (1,...,1)>. At last, according to the rule you

configure, one or many reduce functions will be launched to process the intermediate

results and generate the final results like list (<word, the number of occurrences of the

word>). Obviously, MapReduce makes programming easier to extract the capacity of

distributed computations and accelerate for processing vast amounts of data.
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1.1.2 Hadoop

Hadoop [2] is an open source implementation of MapReduce. It has been widely used

in production environment of many companies like Facebook, Yahoo!, etc. Based on

the theory published in [1], Hadoop implements a framework that provides a clear

and simple API to program a MapReduce-sytle job to process vast amounts of data in

parallel on large clusters of commodity hardware in a reliable, fault-tolerant manner.

It divides a job into a large number of small tasks and then run them in parallel to

make the overall job execution time smaller than it would otherwise be if the tasks ran

sequentially. A job usually has a map and a reduce phase (the reduce phase could be

omitted).

In the map phase, the input data set of a job is divided into a large number of

small input splits (default is 64 MB) and distributed on different worker machines.

Each input split is assigned to a map task, which runs the user-defined map function

to handle each record of the input split. The output of user-defined map function,

presented by key/value pairs, is first partitioned based on hashcode of each key (default

configuration) and then is sorted according to the keys. Sorting and Partitioning are

operated in memory at first until a threshold is reached, part of data in memory is

flushed to a separate temporary file stored in local file system. To the end, all temporary

files are merged into an output file for the reduce phase. On the other hand, the reduce

phase is broken into three sub-phases: shuffle, sort and reduce. Each reduce task starts

with shuffle sub-phase, fetching a sorted data partition from output of the map phase

via HTTP, which distribute on the worker machines where the map tasks are executed.

All these received data will be grouped by their keys in sort sub-phase. The sort

and shuffle sub-phases could occur simultaneously. When the needed data partition

is sorted, reduce sub-phase proceeds: the user-define reduce function is executed and

final results are written to the distributed file system (HDFS).

A job in Hadoop framework is divided into smaller grain tasks in order to be dis-

patched across a Hadoop cluster to utilize distributed resource. A Hadoop cluster
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Figure 1.1: The architecture of Hadoop.

complies with the master/slave paradigm as seen in Figure 1.1. A master machine

(JobTracker in Hadoop) is responsible for dispatching tasks according to scheduling

strategies while a set of worker machines (TaskTracker in Hadoop) are in charge of

managing resource and processing tasks assigned by the master. As the capability of

the computer has grown rapidly, more tasks can be executed simultaneously in order

to maximize resources utilization. Hence, Hadoop uses slots as the finest granularity

to manage resources and execution a task. The number of slots across the cluster rep-

resents the cluster’s capacity and the number of slots per TaskTracker determines the

maximum number of concurrent tasks that are allowed to run in the worker machine.

Moreover, the number of slots needs to be statically configured before launching Task-

Tracker and takes effect during the lifetime of the TaskTracker.

1.2 Motivations

As suggested by the thesis title, this PhD work target two aspects of distributed sys-

tems: application profiling and resource management.
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1.2.1 Application profiling

The characteristics of applications need to be detected in order to allocating suitable

resources to execute them. It helps to build a contributed system to achieve efficient

resource utilization and improve its performance. Application profiling is an efficient

approach which provides feasible and reliable methods to extract and evaluate the char-

acteristics. Moreover, most of distributed systems are originally design for a certain

purpose. But due to the complexity of changing a new distributed system that in-

cludes deployment, user experience, compatibility, reliability, etc, users tend to stick

to a familiar distributed system to meet their diverse needs. This could result in a great

decrease in performance when executing applications that are not suitable. Applica-

tion profiling is also a way to know the need of new applications in order to make the

improvement for existing contributing systems. Considering the example of Hadoop,

applications in many areas are increasingly developed and ported using Hadoop to ex-

ploit parallelism. The Application scope of MapReduce has been extended beyond the

original design goal which was large-scale data processing. This extension inherently

makes a need for the MapReduce framework to explicitly take into account characteris-

tics of job for two main goals of efficient resource use and performance improvement.

1.2.2 Resource management

Resource management is the core of distributed systems. In this thesis, we make a

deep study on current Hadoop framework. Hadoop architecture complies with the

master/slave paradigm as described in section 1.1.2. Each worker node uses slots to

manage resource for running tasks. Resource is uniformly partitioned into slots in the

sense that they fairly share the resource. One slot is able to run one task so the number

of slots in a Hadoop cluster worker node specifies the concurrency of task execution.

The number of slots needs to be statically configured before launching the Hadoop

cluster. This design imposes severe limitations in term of resource management partic-

ularly at the worker node level. First the current static slot configuration inaccurately
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represents resource sharing with diverse applications. The number of slots in a worker

node dictates the maximum number of tasks that are allowed to concurrently execute;

and this slot configuration is fixed throughout the lifetime of the TaskTracker residing

in the worker node. In theory, the number of slots is configured in the way that the

best performance is achieved by maximally using resource among slots. In reality,

such static configuration is a bottleneck for efficient resource utilization because it is

impossible to find a rule of thumb when dealing with a diverse set of jobs. Many dy-

namic factors need to be considered like different types of job, different orders of job

and even different sizes of input data for the same job. Clearly, there is a need to find

a better way to manage resource instead of static slot configuration.

Second, resource is shared fairly regardless of job priority. The current scheduler in

Hadoop dispatches tasks in a FIFO manner, and resource is uniformly partitioned based

on slots and allocated to both high-priority/early-submitted tasks and low-priority/late-

submitted tasks at the worker node level. Such way to manage resource brings extra

delay in the execution time of high-priority/early-submitted jobs, and it is also unsuited

to execute ad-hoc query jobs expecting fast response time. Clearly, there is a need to

find a better way to manage resource in consideration of job priority.

Last, as the capability of the computer has grown rapidly, distributed systems are

able to concurrently run more tasks on the same machine. Improvement by efficiently

exploiting this local resource is becoming more valuable for the improvement of over-

all performance. Current operating systems allow multiple jobs (even more than there

are CPUs) to run at a time. This is generally done via time-sharing—each job is given

an equally short CPU time in turn. Although some costs get involved when switching

jobs, this is very useful for these interactive applications, making them have a quick

response. It is also a good approach for concurrently running jobs to fairly share re-

sources on a machine. However, such fair resource sharing is detrimental to distribute

systems running batch jobs like Hadoop. Tasks from the same job usually have the sim-

ilar resource consumption pattern. They tend to be executed at the same time across
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all resource in order to make the job done as soon as possible. This would make these

tasks have more change to use CPU or I/O resource at the same time as the operating

system makes all resource is fairly shared among them. Therefore, resource competi-

tions increase and performance decrease. Clearly, there is a need to find a better way

to efficiently utilize resource among running tasks instead of fair resource sharing that

the operating system makes.

1.3 Contributions

In this thesis, we make the following research contributions towards the understanding

and advance of application profiling and resource management in distributed systems:

• We study Hadoop scheduling strategies to effectively deal with different work-

load characteristics-CPU intensive and I/O intensive. We present a Workload

Characteristic Oriented Scheduler (WCO), which strives for co-locating tasks of

possibly different MapReduce jobs with complementing resource usage charac-

teristics. WCO is characterized by its essentially dynamic and adaptive schedul-

ing decisions using information obtained from its characteristic estimator. Work-

load characteristics of tasks are primarily estimated by sampling with the help

of some static task selection strategies, e.g., Java bytecode analysis. Results ob-

tained from extensive experiments using 11 benchmarks in a 4-node local cluster

and a 51-node Amazon EC2 cluster show 17% performance improvement on av-

erage in term of throughput in the situation of co-existing diverse workloads.

• We study the priority mechanism of Hadoop focusing on resource management

at work node level and present a non-intrusive slot layering solution. Our so-

lution approach in essence uses two tiers of slot (active and passive) to increase

the degree of concurrency with minimal performance interference between them.

Tasks in the passive slots continue their execution when tasks in the active slots

are not fully using (CPU) resource, and tasks/slots in theses tiers are dynamically
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and adaptively managed. To leverage the effectiveness of slot layering, we de-

velop a layering-aware task scheduler. Our non-intrusive slot layering approach

is unique in that (1) it is a generic way to manage resource instead of static slot

configuration and (2) both overall throughput and high-priority job performance

are improved. Our experimental results with 6 representative jobs show 3%-34%

improvement in overall throughput and 13%-48% decrease in the executing time

of high-priority jobs compared with static configurations.

• We present a new way, Local Resource Shaper (LRS), to allocate resource, which

limits fairness in resource sharing between co-located Hadoop tasks. LRS en-

ables Hadoop to maximize resource utilization and minimize resource contention

independently of job type. Co-located Hadoop tasks are often prone to resource

contention (i.e., load peak) due to similar resource usage patterns particularly

with traditional fair resource sharing. In essence, LRS differentiates co-located

tasks through active and passive slots that serve as containers for interchange-

able map or reduce tasks. LRS lets an active slot consume as much resources as

possible, and a passive slot make use of any unused resources. LRS leverages

such slot differentiation with its new scheduler, Interleave. Our results show that

LRS always outperforms the best static slot configuration with three Hadoop

schedulers in terms of both resource utilization and performance.

1.4 Structure of the thesis

The rest of this thesis is organized as follows. Chapter 2 focuses on application pro-

filing. We first describe and discuss the problem due to application diversity based on

the analysis on the characteristic of different types of job running on Hadoop. We then

present our workload estimation module and the WCO scheduler which co-locates

running tasks according to their characteristics to improve the overall performance.

Chapter 3 and 4 target to resource management. Chapter 3 resolves the problem of
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resource allocation based on priorities of running tasks. We present the design, imple-

mentation and validation of the non-intrusive slot layering solution. It uses two tiers

of slot to allocate as much resource as needed to high-priority tasks for reducing their

execution time and make low-priority tasks to take advantage of the unused resource

for improving overall performance. Chapter 4 first gives a deep analysis on resource

usage of distributed systems running batch jobs like Hadoop. It reveals the issues in

fair resource sharing that could result in resource contention and decrease system per-

formance. Then, LRS, a new way to manage resource for running tasks, is presented

and experimental results validate its performance. Finally chapter 5 summarizes the

thesis and point out future directions.



Chapter 2

WCO: a scheduler for MapReduce

based on application profiling

2.1 Introduction

MapReduce [1] has become increasingly popular not only for traditional large-scale

data processing, but also for scientific computing, machine learning, and graph pro-

cessing [3, 4, 5]. Some popular examples are PageRank, Page Indexing, Chukwa,

Hama, Mahout, Hbase, and Hive. This application diversity implies that MapReduce

applications running on the same platform may exhibit different characteristics, i.e.,

I/O intensiveness or CPU intensiveness. Such diversity is largely ignored in the current

scheduler in Hadoop—an open source implementation of MapReduce. The scheduler

simply uses a single job queue to dispatch jobs in a FCFS (First Come First Serve) man-

ner. There is more probability that tasks of the same workload characteristic (resource

usage pattern or resource utilization) are dispatched to the same machine leading to re-

source contention and in turn reducing throughput. For example, if a node in a Hadoop

cluster has two empty map slots, TaskTracker on the node will send a request to sched-

uler. Once the scheduler receives the request, the first two tasks in the job queue are

dispatched to that node. These tasks typically come from the same job. They have most

10
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likely the same workload characteristic since a job is divided into multiple map tasks,

and they are placed in the job queue in sequence. In such a case, the throughput would

be reduced due to resource sharing/contention. Rather, different types of application

should be combined to run on the same node. CPU intensive tasks and I/O intensive

tasks are often complementary since a task that has more I/O operations tends to have

low CPU utilization.

In the recent past, many notable works on MapReduce scheduling and resource

allocation strategies have been reported, e.g., [6, 7, 8]. The primary goal of these

works is high performance/throughput either by minimizing data staging overheads, or

exploiting resource abundance and/or heterogeneity. The fair scheduler [6] uses a delay

strategy to achieve optimal data locality, and provides a policy to allocate resources

fairly for multi-user workloads. The scheduler designed in [7] is aware of resource

heterogeneity, and authors in [8] consider multiple users. One thing in common in

most of these previous efforts, if not all is that MapReduce jobs are simply considered

as a single application type (data or I/O intensive).

Accounting for workload characteristics becomes more complex when Hadoop

clusters are shared by multiple users with diverse (MapReduce) applications. The

scheduler must consider characteristics of running jobs. In this chapter, we examine

different methods and techniques to enhance MapReduce scheduling for Hadoop clus-

ter. To this end, we present the Workload Characteristic Oriented (WCO) scheduler for

MapReduce applications. The WCO scheduler pays fine attention to application diver-

sity. It improves resource utilization and application performance by co-locating jobs

of different workload characteristics, i.e., less resource contention and performance in-

terference. The WCO scheduler incorporates approaches to detect the characteristic of

a job and to balance CPU usage and I/O usage of the whole system by combining dif-

ferent types of job. We also present a task selection submodule, which may contribute

to additional improvement. Experimental results show that our scheduler is able to in-

crease the system throughput by 17% on average in the situation of co-existing diverse
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workloads.

The rest of the chapter is organized as follows. Section 2.2 describes the related

work. Section 2.3 describes and discusses the analysis on the characteristic of different

types of job. Section 2.4 presents our workload estimation module that plays a major

role in our WCO scheduler. Section 2.5 details our scheduler. Section 2.6 presents

experimental results that validate the efficacy of our new scheduler. In Section 2.7 we

draw the conclusion.

2.2 Related Work

MapReduce applications have been increasingly popular as data volume increases dra-

matically and large-scale data processing is a core and crucial business activity. The

original scheduler in Hadoop essentially uses a single job queue with a FCFS strat-

egy. Specifically, tasks of the same characteristic in terms of resource usage pattern

or resource utilization (belonging to a single job) tend to be dispatched to the same

machine; this is clearly prone to resource contention, and in turn reducing throughput.

A number of scheduling strategies (e.g., [6, 8, 9]) have also been proposed to en-

hance the performance of MapReduce with various new features. Authors in [6, 8, 9]

focus on ‘fairness’ for users or resources. Scheduling strategies introduced in [7, 10,

11] are used to exploit the heterogeneity of resource to improve performance. In [7] au-

thors propose a heterogeneity-aware MapReduce scheduling policy that assigns tasks

considering different machine types. The Progress Share is introduced as a metric to

describe the characteristic of a job running on different types of machine. However,

resource contention from co-located tasks of the same type still exists. Our work dif-

fers primarily that we explicitly consider different types of MapReduce application

while these previous works treat MapReduce applications are of a single type (data/IO

intensive) of application.

Since the identification of application characteristics greatly leverages decision

making for scheduling in particular several recent studies have addressed application
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profiling in multi-user environments, e.g., [12, 13]. In [12], authors design a prediction

mechanism based on I/O rate to detect the workload type, and implement a system to

improve the usage of both CPU and disk I/O resource by combining different types of

workload to run on the same machine. But the prediction mechanism cannot provide

accurate estimates due to ignoring intermediate process. The work in [13] modeled

the correlation between application performance and resource usage patterns using a

statistical analysis technique (CCA or cannonical correlation analysis).

Static program/code analysis is yet another well studied technique to identify pro-

gram logic (resource usage patterns). It is generally divided into high level and low

level techniques. High level static analysis focuses on program logic and usually builds

control flow graph (CFG) to identify resource demand [14, 15], whereas low level

static analysis considers the execution time of instructions and cost of runtime, such as

Instruction Level Parallelism (ILP), Memory Level Parallelism (MLP) and branch pre-

dictability [16, 17]. Our static analysis strategy incorporated into the WCO scheduler

balances between efficacy and complexity (analysis overhead) using CFG and relative

computational intensity, and sampling adjustment.

2.3 Characterization of MapReduce Workloads

MapReduce consists of two phases: Map and Reduce (Figure 2.1). In the map phase

the input data set is divided into a large number of small input splits (default is 64MB),

and these input splits are processed by map tasks of a user-defined function across

compute nodes (Figure 2.1(a)). Intermediate results produced by map tasks are then

processed by tasks in the reduce phase for final results (Figure 2.1(b)).

In this chapter, the execution time of a map task is defined as the amount of time

taken from reading the input split to outputting intermediate results to local file system;

and the execution time of a reduce task is defined as the amount of time taken from

fetching the output of map tasks to writing results to HDFS. In the following we de-

couple the time consumption on I/O operations and CPU operations of a MapReduce
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Input
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Map Function
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Sort and partition

Files

Partitions

Output file

(User-defined computation)

(a) Map phase

Shuffle

Buffer in memory

Sort and merge

Reduce Function
(User-defined computation)

Output

Sort Reduce

Fetch map output

(b) Reduce phase

Figure 2.1: MapReduce workflow.

application. The execution time for a map/reduce task is then defined as:

TaskExecutionTime = OT +CT + IOT (2.1)

where OT is the fixed overhead in running a task, and CT and IOT are times taken in

CPU and IO operations, respectively. OT is independent of data size, which mainly in-

cludes JVM (Java virtual machine) initialization overhead, and scheduling time. CPU-

related operations mostly occur in the user-defined map and reduce function. Broadly,

IO operations can be classified into the following: 1. Input and output for a map/reduce

task, 2. Reading and writing for sorting data in a map/reduce task, and 3. Shuffle for a

reduce task (see Figure 2.1).

CT and IOT are two parts, distinguishing from other types of task, to represent
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Characteristic
Estimation

Test TasksRemaining Tasks

Waiting Queue

...Tn Tm+1TnTn Tn Tm+1 Tm+1

Selection
Static Analysis

Random

Pool

Figure 2.2: WCO scheduler overview. Those two queues (Job Q and Waiting Q)

are only conceptually separated to distinguish between running jobs and waiting jobs;

however, they both are part of a single priority queue.

the characteristic of a task. The ratio between them are denoted by computing rate

(CR) and I/O rate, respectively. The I/O rate of a task is the total amount of input and

output of a task divided by task execution time. Since the Hadoop framework uses

cache mechanism and temporary files for sorting, the accurate total amount of input

and output of a task is difficult to be counted. Thus, in this chapter, we adopt CR to

represent the characteristic of a task, which is defined as:

CR =
CT

OT +CT + IOT
=

CT
TaskExecutionTime

(2.2)

If a task’s CR reaches to 1, the task is regarded CPU intensive, or I/O intensive if CR

is close to 0.
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2.4 Workload Characteristic Estimation

In this section, we present our workload characteristic estimation module incorporated

into our WCO scheduler (Figure 2.2).

To estimate the characteristic of a job, values of some variables in Equation 2.2

must be known in advance. One way to obtain these values is to derive from prior

executions of the job. However, there are some potential problems: 1. we cannot

guarantee that the historical data exist from prior executions of the same job; 2. prior

executions of the same job were likely performed over different input data sets and

may therefore have completely different characteristics; 3. noisy historical data may

exist because of prior execution environments—if prior executions were concurrently

run with jobs having the similar characteristics, the result would be different due to

resource contention.

Therefore, we design a module as part of our scheduler to estimate workload char-

acteristics. The estimation process consists of two phases: sampling and adjustment.

2.4.1 Sampling

In the sampling phase, we take advantage of the fact that MapReduce jobs are divided

into small tasks. When a job is submitted, one of map tasks is selected (and run) to

estimate the execution time and CPU usage; and sampling result can represent the

characteristic of the rest of map tasks in the job as discussed in later of this section.

This sampling also applies to reduce tasks.

2.4.1.1 Task Selection

Our scheduler targets a highly dynamic environment, in which new jobs can be sub-

mitted at any time, and in which resources of a node are shared by slots to concurrently

execute tasks. In such an environment, a sampling task tends to be combined with other

tasks to run on a node. If the running tasks have similar characteristic, the execution
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time will be longer than expected because of resource contention. It is an overhead

introduced by our sampling phase. If the number of tasks in a job is very large, this

overhead is insignificant. However, actual Hadoop systems could be quite contrary

as observed in [6] that 70% jobs only have less than 20 tasks. Considering this kind

of high proportion of execution time taken by the sampling task, we need to find an

efficient strategy to select tasks.

In our scheduler, we adopt a ‘user-definable’ selection submodule as an assistant

approach to reduce the impact of such sampling noise. This submodule allows users to

(design and) specify a task selection strategy based on their actual execution environ-

ment.

In this work, we implement two strategies: random and static analysis. The random

strategy simply selects tasks based on the order of their arrival. The static analysis

strategy exploits inherent attributes of jobs in Hadoop, i.e., Java bytecode.

The static analysis takes more time to select a sampling task than the random. For

a given task, the static analysis first build CFG and identify the longest path length

(LPL) to represent application characteristic, i.e., amount of computation. LPL is most

likely the worst case execution path. The longer the LPL, the higher the computing

rate. Thus, LPL is a good measure to estimate computing rate prior to task execution.

To validate our LPL-based static analysis, we have run 19 benchmarks—including

machine learning jobs, web search jobs and some typical MapReduce benchmark

jobs—in a 4-node local Hadoop cluster and compared them in terms of CR and LPL.1

Results for map tasks are shown in Figures 2.3. We define a job as I/O intensive if its

CR is less than 0.2 and LPL is fewer than 500. Based on this, map tasks in 16 jobs

of those 19 benchmarks (84%) are classified correctly. The definition of characteristic

for reduce tasks is a little different because reduce tasks involve more I/O intensive

operations (Shuffle and Sort steps both are I/O intensive). In Figure 2.4, we define a

job as I/O intensive if its CR less than 0.2 and LPL fewer than 1,000. Now, reduce

1Detailed experimental setup can be found in Section 2.6.1.
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Figure 2.3: Relationship between CR and LPL for map tasks of 19 jobs.



2.4. WORKLOAD CHARACTERISTIC ESTIMATION 19

0

0.1

0.2

0.3

0.4

0.5
C

om
pu

tin
g 

R
at

e 
(C

R
)

(a) Computing rate

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

L
on

ge
st

 P
at

h 
L

en
gt

h

(b) Longest path lengths

Figure 2.4: Relationship between CR and LPL for reduce tasks of 17 jobs.
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tasks in 16 jobs of 17 benchmarks 2 (94%) are able to be reflected correctly.

It is obvious that the static analysis strategy can provide more accurate task selec-

tion than the random strategy, but it introduces more overhead.

2.4.1.2 Generalization of Workload Characteristic

Now, we need to answer the following question: can the characteristic of one map/reduce

task represent the characteristic of the rest of map/reduce tasks belonging to the same

job? The characteristic of a task (or workload characteristic) in this chapter indicates

a tendency of resource utilization for the task because we acknowledge the fact that

map or reduce tasks vary in their execution characteristics depending on the input data

set they process. Note that we do not expect CR for each task is perfectly accurate.

Rather, we expect CR to represent a tendency of resource utilization for map/reduce

tasks belonging to the same job.

In the map phase, all map tasks deal with the input data of the same size, and they

have the same user-defined map function to process their workload. The patterns of

workload are uniformly distributed among all input splits. Each map task consequently

has the approximate execution time. Although some extreme cases exist, these cases

are very rare. We take Grep job as an example of such extreme cases: all words in a

split are matched with the pattern for the Grep while no one word is found in another

split. These two tasks could have completely different execution times because the

divergence of their workloads. Because the frequency of occurrence of these cases is

very low, there is no major impact on our scheduler even if they happen. Therefore, in

this chapter we consider that each map task of a job has the same characteristic.

The reduce phase is similar. Each reduce task has the same user-defined reduce

function. Because workload patterns of map tasks are uniformly distributed and the

algorithm in the Partitioner, the output of map tasks tends to be well-proportioned and

consequently the input of each reduce task is approximate. Thus, reduce tasks of a job

2Note that two benchmarks (Input Driver and KMeans Driver running clusterData) only

have the Map phase
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When a heartbeat is received from worker n:

if n has a free slot then
/* Dispatch a new job in Pool (Fig. 2.2) for sampling */

Find new jobs in Pool

for j in jobs do
Launch a task in j using task selection strategy

end for
Find jobs in Pool that have CR

for j in jobs do
Let newCR = (CR of j + total CR of tasks running on n) / #tasks running on n
if newCR < average CR for all running jobs + threshold then

Launch task of j on n
end if

end for
/* # resources is larger than # running tasks*/

Find jobs in Pool

for j in jobs do
Launch a task of j using task selection strategy

end for
end if

Figure 2.5: Pseudo-code of the scheduler

have the same characteristic. Moreover, Shuffle and Sort (Figure 2.1(b)) both are I/O

intensive; hence, most reduce tasks are I/O intensive.

2.4.2 Adjustment

After the sampling of a job the rest of tasks in that job are dispatched to run with tasks

of other jobs that were thought to have complementary workload characteristics. In the

adjustment phase sampling results are further calibrated with actual runtime data, e.g.,

task execution time and CR. This phase is necessary because sampling results may be

impacted by unpredicted facts, such as resource contention, and diversity of input data.

Our scheduler keeps track of every finished task in order to calculate average CR to

represent the characteristic for the rest of tasks.
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2.5 WCO Scheduling

In this section we detail the actual scheduling of MapReduce jobs using the WCO

scheduler.

Our scheduler resides in JobTracker of master node and is triggered by heartbeats

sent from TaskTrackers on worker nodes. This mechanism is the same as the FIFO

scheduler in Hadoop but the heartbeats include CR information for tasks running (and

completed after the last heartbeat) on the worker. Tasks of all submitted jobs are orga-

nized in a priority queue (Figure 2.2), and tasks that need to be tested (sampling) have

high priority. Once a heartbeat arrives, the scheduler first selects test tasks according

to the result of the task selection strategy, and then selects the rest of tasks based on

CR (the first two for loops in Figure 2.5).

Once a task finishes, the CR of the task is retrieved from a heartbeat and collected

by the Characteristic Estimation module for adjustment purposes as described in Sec-

tion 2.4.2. When a heartbeat indicating free slots is received, our scheduler dispatches

complementing tasks based on workload characteristics. Our scheduler uses the aver-

age CR of all running tasks to measure which tasks can be complementary for each

other to run on the same node. The workings of WCO scheduler are shown in Figure

2.5.

The case for ample resource capacity (i.e., the number of available resources is

larger than the number of submitted tasks) may happen, and it has been considered in

our scheduling strategy (the last for loop in Figure 2.5). In such case, the scheduler

directly dispatches tasks based on results from the selection submodule to use resource

as much as possible instead of the approach of sampling one task and then dispatching

the rest of tasks. In addition, as our scheduler is designed for dynamic environments

in which new jobs constantly arrive, sampling tasks with high priority may occupy all

resources, i.e., a classic scheduling problem of starvation. To avoid this problem, we

adopt a user-defined threshold that sets the maximum number of concurrently running

jobs in Pool (in Figure 2.2). The rest of jobs have to wait in the queue, and one or more
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jobs are added to Pool if the number of running jobs deceases below the threshold.

2.6 Experiments

In this section, we describe experimental setup with 11 benchmarks and two testbeds,

and present results.

2.6.1 Experimental Setup and Applications

We have used two testbeds for our experiments: a small private cluster with 4 nodes

and a large cluster with 51 EC2 nodes (m1.small). In both environments Hadoop-1.0.0

with a block size of 64 MB was running; and each node has either two map slots or

two reduce slots (i.e., 4 map slots and 4 reduce slots in the 4-node cluster, and 50 map

slots and 50 reduce slots in the 51-node cluster). In the 4-node cluster, we used Xen to

deploy four nodes on two physical machines, and each node was configured with one

3GHz core and 1.5 GB RAM. One of the nodes was configured to run the JobTracker,

the TaskTracker, the NameNode and the Datanode. The rest of nodes were set to run

TaskTrackers and DataNodes. The 51-node EC2 cluster was similarly configured, but

one of the nodes was configured to be both the JobTracker and the NameNode, and the

50 remaining nodes were used as TaskTrackers and DataNodes.

The set of applications we used for our experiments was diverse. In addition to

typical MapReduce benchmarks—Sort, WordCount, TeraSort, Grep, Crypto and Pi

Estimator—we used 5 additional jobs from a benchmark suite [18], which includes two

web applications: Nutch Indexing and PageRank, two machine learning applications:

Bayesian Classification and K-means Clustering, and one HDFS Benchmark applica-

tion: DFSIO. There are 11 benchmarks (jobs), and some contain sub jobs; hence 19

jobs in total (Table 2.1).
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Table 2.1: benchmark applications

Type Job Sub-job

Typical

Sort

WordCount

TeraSort

Grep
Grep-search

Grep-sort

Crypto

Pi Estimator

Web application

Nutch Indexing

PageRank

PageRank1

PageRank2

PageRank3

Machine learning

TfIdf Driver running

Bayesian Bayes Weight Summer Driver

Classification Bayes Theta Normalizer Driver

Bayes Feature Driver running

K-means Input Driver

Clustering KMeans Driver running runIteration over clusters

KMeans Driver running clusterData

HDFS DFSIO

2.6.2 Experiment One: Job Characteristic Analysis

The aim of the first experiment is to evaluate our analysis on generalization of workload

characteristics. The experiment was carried out in the 4 node cluster. The input data

is 512 MB for each job except Pi Estimator. 3 The size of input data leads eight map

tasks for each job and we manually set eight reduce tasks.

We have verified the similarity in the characteristic of tasks in an individual bench-

mark. For simplicity’s sake, We only present six representative applications among

3There is no input data needed for Pi Estimator. The numbers of map tasks and reduce tasks are

decided by configuration.
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19 benchmarks. Those six benchmarks are WordCount, Pi Estimator, Grep-search,

Sort, TeraSort and Crypto. The selection is based on their relativeness to CR. That

is, while the latter three can represent I/O intensive, the first three are relatively more

CPU intensive. We separately ran each of these six benchmarks in isolation to iden-

tify the computing rate and the execution time of each (map/reduce) task in a given

benchmark (Figures 2.6(a) and 2.6(b)). Apparently, there is no significant variation for

tasks belonging to the same job in terms of both CR and execution time. The variation

of reduce tasks tends to be greater than of map tasks. It is because the input data of

reduce tasks, outputted by map tasks, is probably not partitioned evenly. However, the

variation of execution time for map tasks and reduce tasks in the same job still remains

in a very similar level. Therefore, we can use the characteristic of a task to represent

the characteristic of the rest of tasks.

2.6.3 Experiment Two: Scheduling With the 4 Node Cluster

In this experiment, we used all 11 benchmarks on the 4 node cluster, and the static

analysis technique as a task selection strategy was used in our scheduler. The rest of

experimental settings were the same as those in the first experiment (Section 2.6.2).

We used three different combinations of workload: I/O intensive, CPU intensive, and

mixed (I/O + CPU) to simulate the environment with application diversity. It is feasi-

ble because our scheduler is mainly based on a job queue. If all resources of the cluster

are used, subsequent jobs have to wait in the queue and no immediate impact on run-

ning tasks. In our experiments, we submitted jobs at the same time to simulate the

workload at a certain moment of the system (snapshot). The order of job submission

is not very important for our scheduler because the scheduler dispatches jobs based on

characteristics first, and then the order (if characteristics are the same).

The snapshot with mixed workload simulates the moment when multiple types of

job are in the job queue. We set four different test cases with all 11 jobs, the mixture of

WordCount (CPU intensive) and TeraSort (I/O intensive), two I/O intensive workloads
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Figure 2.6: Characteristic analysis for 6 typical benchmarks. Computing rate and

execution time both have no sharp variation (similar) between map/reduce tasks of the

same job.
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Table 2.2: execution time (sec) with respect to different schedulers. Task selection is

not applicable in the case with 2 jobs.

Scheduler 11 jobs CPU+I/O 2 I/Os 2 CPUs

4 nodes

Hadoop FIFO 4,668 1,412 2,489 1,805

WCO (random) 3,763 - - -

WCO (static anls.) 3,575 1,269 2,440 1,719

51 nodes

Hadoop FIFO 3,008 634 868 2,065

WCO (random) 2,711 - - -

WCO (static anls.) 2,672 547 859 2,286

(Sort and TeraSort), and two CPU intensive workloads (WordCount and Grep). We see

that WCO scheduler has a negligible effect when the workload has a similar charac-

teristic (Figure 2.7(a) and Table 2.2). However, significant speedups are seen for the

mixed workload, 23% faster with 11 jobs and 10% faster with the mixture of a CPU

and an I/O intensive job, compared with the FIFO scheduler.

2.6.4 Experiment Three: Scheduling With the 51 Node Cluster

The third experiment was conducted on the 51 node cluster. Workload combinations,

task selection strategy and benchmark jobs remained the same as those in Experiment

two (Section 2.6.3). The difference is the input data (2GB) that resulted in 32 map

tasks for each job. We manually configured 32 reduce tasks for each job. Because

the disks and network are shared with others users’ VMs on EC2, test results are not

stable. In our experiments, we used the average value of multiple tests to reduce the

interference of the shared I/O. Experimental results are similar to those in Experiment

two. We got 11% improvement with the 11 job workload, 13% improvement with the

mixture of a CPU and an I/O intensive job (Figure 2.7(b) and Table 2.2).
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Figure 2.7: Comparison on three types of workload mixture: mixed, I/O intensive and

CPU intensive. Results have been normalized against WCO.

2.6.5 Experiment Four: Comparisons and Discussion

In the fourth experiment, we conducted a more in-depth analysis on our scheduling

performance. In previous experiments 11 job workload was used, but the size of input

data was varied, 512 MB for the 4 node cluster and 2 GB for the 51 node cluster, re-

spectively. Results are shown in Table 2.2. In the 4 node cluster, the WCO scheduler

with the static analysis strategy is 23% faster than the FIFO scheduler. If we use the

random strategy to select tasks during the sampling phase instead of the static analysis,

the scheduler is 19% faster than the FIFO scheduler. In 51 node cluster, the WCO

scheduler with the static analysis strategy has 11% improvement, and the scheduler

with the random strategy obtained a similar experimental result, 10% improvement.



2.6. EXPERIMENTS 29

Based on these results, we raise two questions. The first one is why the 4 node cluster

gains more benefit with the static analysis strategy compared with the 51 node cluster.

It is because of the resource proportion for the sampling phase. In order to keep simple,

we assume that map and reduce tasks of a job have the same execution time and the

capacity of each node for both clusters is identical. We define the resource consump-

tion for a node that provides resource R to process a task per unit time as the product

of task execution time (Equation 2.1) and R. The ratio of the resource consumed in the

sampling phase to the resource consumed by all jobs is:

β =
2×R×∑k

n=1 T Tn

R×∑k
n=1 ∑m

n=1 T Tn
(2.3)

=
2×R×∑k

n=1 T Tn

R×N ×a∑k
n=1 ∑m

n=1 T Tn
(2.4)

where TT is the task execution time, m is the number of tasks in a jobs, k is the num-

ber of jobs, a is an task execution parallelism coefficient which makes that the total

time taken to finish all jobs equals a∑k
n=1 ∑m

n=1 T Tn , N is the number of nodes in a

cluster. For both clusters, the task input split is 64 MB and the number of submitted

jobs is the same. This enables the resource consumption for the sampling phase is

approximate. Based on Equation 2.4, if k is fixed, increasing m and/or N results in

decrease of proportion of the resource consumed by the sampling phase. Typically,

resource consumption and execution time have linear relationship. Therefore, simi-

larly, the proportion of the time taken by the sampling phase reduces with increasing

m and/or N. Apparently, the improvement of performance caused by the accuracy of

task selection strategy can be ignored if m and N are relative large. In such a case,

we can choose the strategy which is simple and introduces the minimum overhead.

Conversely, for the 4 node cluster, we should take advantage from the accuracy of the

static analysis strategy to get additional improvement.

The second question is why we obtain different improvement rates in these two

clusters with the same workload. It is due to the ratio of CPU intensive tasks and I/O
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intensive tasks. If the ratio is 1:1 (50% and 50%), we can always combine one CPU

intensive task with one I/O intensive task to run on the same node, and consequently

the result would be the best. In these two clusters, the ratio is different. The size of

input data partly decides how many tasks we can have. Hence, the speedup is different.

Based on our experimental results, the performance of our scheduler heavily relies

on workload. If the workload is diverse and the ratio of CPU intensive tasks and

I/O intensive tasks is approximately even, the speedup of our scheduling strategy is

significantly high. Moreover, if there are relatively more jobs and fewer resources,

additional benefit can be obtained from a more sophisticated task selection strategy.

2.7 Conclusions

In this chapter we have presented a MapReduce scheduler that has been implemented

on top of Hadoop. The scheduler with its characteristic estimation module dynamically

and adaptively dispatches tasks of MapReduce application in the way that tasks with

complementing resource usage are co-located to improve performance/throughput.

The estimation module adopts a task selection strategy in addition to sampling and

runtime adjustment. Our experiments have demonstrated that our scheduler effectively

exploits workload diversity. Moreover, our ‘simply’ static analysis technique can con-

tribute to reducing sampling overhead particularly when there are relatively more jobs

than resources. The experimental results have validated our approach with static anal-

ysis and verified our claims on the efficacy of our scheduler.



Chapter 3

Non-intrusive slot layering in Hadoop

3.1 Introduction

MapReduce [1] is a compelling parallel and distributed computing solution to harness

large-scale commodity machines for processing big data. It makes programming eas-

ier to extract the capacity of distributed computations and accelerates to process vast

amounts of data. Hadoop [2], an open source implementation of MapReduce, has been

widely used. In the Hadoop framework, a job is divided into smaller grain tasks and

they are dispatched to multiple machines to be executed simultaneously in order to

reduce job execution time. Resource in Hadoop clusters is also uniformly partitioned

into slots in the sense that they fairly share the resource.

The Hadoop architecture complies with the master/slave paradigm. A master (Job-

Tracker in Hadoop) is responsible for dispatching tasks according to scheduling strate-

gies while a set of worker machines (TaskTrackers in Hadoop) are in charge of man-

aging resource and processing tasks assigned by the master. In such a design, MapRe-

duce presents a splendid mechanism to harness large-scale commodity machines to

process big data that has been done by supercomputer traditionally. However, as the

capacity of a single machine rapidly increases (e.g., #cores), the original Hadoop de-

sign imposes two severe limitations in term of resource management particularly at

31



32 CHAPTER 3. NON-INTRUSIVE SLOT LAYERING IN HADOOP

the worker level. First, the current static slot configuration inaccurately represents re-

source sharing with diverse applications. The number of slots in a worker machine

dictates the maximum number of tasks that are allowed to concurrently execute; and

this slot configuration is fixed throughout the lifetime of the TaskTracker residing in

the worker machine. In theory, the number of slots is configured in the way that the

best performance is achieved by maximally using resource among slots. In reality,

such static configuration is a bottleneck for efficient resource utilization because it is

impossible to find a rule of thumb when dealing with a diverse set of jobs. Clearly, an

inappropriate slot configuration easily leads to severe overall performance degradation

(up to 37% performance decrease in our experiments) as resource contention tends to

be aggravated if there are too many slots, or on the contrary resource sharing is not

fully realized if there are too few slots.

Second, resource is shared fairly regardless of job priority. The current scheduler

in JobTracker dispatches tasks in a FIFO manner, and resource is uniformly parti-

tioned and allocated to both high-priority/early-submitted tasks and low-priority/late-

submitted tasks at the worker level. Clearly, such fair resource sharing brings extra

delay in the execution time of high-priority/early-submitted jobs, and it is also un-

suited to execute ad-hoc query jobs expecting fast response time. In our pilot study

it is observed that the execution time of a high-priority job with the current Hadoop

scheduler is almost 3 times longer compared with its execution time in a dedicated

environment, i.e., a single slot per core.

Apparently, these limitations reduce overall throughput and high-priority job per-

formance, and therefore the explicit consideration of them is crucial for the further

development of MapReduce programming paradigm. Some previous efforts ([19, 20,

10, 21]) have been made to mitigate the detrimental impact. The studies in [19, 20, 10]

focus on a single job performance, whereas [21] consolidates tasks in term of their

characteristics for improving resource utilization and overall throughput. Nevertheless,

these previous studies are still based on using slots to uniformly partition resource and
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therefore suffer from the aforementioned limitations.

In this work we propose a non-intrusive slot layering approach with the goal of

improving both overall throughput and high-priority job performance. It unifies Map

slots and Reduce slots as task slots and prioritizes them into two tiers—Active and

Passive—using cgroups [22]. Sufficient resource is dynamically allocated to tasks

running in Active slots according to the variation of their resource usage pattern, and

tasks running in Passive slots are executed exploiting the unused resource of Active

slots; hence the name non-intrusive slot layering. In addition, we devise a layering-

aware scheduler which arranges and schedules jobs based on priority to make effective

use of two priority tiers. To the best of our knowledge, this is the first work in MapRe-

duce that uses two tiers of slots (layering) based on job priority. Our approach advances

the state of the art in several ways:

• Leverages slot layering to achieve better resource utilization, 1%-36% improve-

ment for overall throughput,

• Extends job priority from JobTracker to TaskTracker; high-priority jobs are al-

located sufficient resource on each worker; and as a result their execution time

significantly decreases by 13%-52%,

• Eases the configuration burden of the system administrator by setting the num-

bers of Active/Passive slots to be the same as the number of cores, respectively,

and

• Improves data locality (placing tasks on workers that contain their input data).

The rest of the chapter is organized as follows. Section 3.2 discusses related work.

Section 3.3 describes the design and implementation for our system. Section 3.4

presents experimental results that validate the efficacy of our approach followed by

detailed analysis and discussion of such an efficacy in Section 3.5. In Section 3.6 we

draw the conclusion.



34 CHAPTER 3. NON-INTRUSIVE SLOT LAYERING IN HADOOP

3.2 Related Work

The original scheduler in Hadoop essentially uses a single job queue with a FIFO

strategy to dispatch tasks to slots. Resource of each worker is uniformly partitioned

into slots, and the number of slots is statically configured before launching the Hadoop

system.

As the number of users sharing a MapReduce cluster increases, efficient resource

sharing is essential. Schedulers presented in [23, 6, 9] strive for more efficient cluster

sharing. The Capacity scheduler in [23] enables resource to be separately partitioned

for each user or organization while schedulers in [6, 9] pay more attention to fairness.

Much of the recent work has shown interest in either increasing a single job perfor-

mance or overall resource utilization. Works in [19, 20] use job profiling techniques

to determine the size of resource in order to finish a job with specific performance

goals. However, techniques used in [20] do not pay much attention to the performance

degradation caused by over-utilized or under-utilized resource between slots, and con-

sequently, performance improvement for a single job may be achieved at the cost of

reducing overall throughput. J. Polo et al. in [19] present techniques to dynamically

allocate slots instead of the original approach of static configuration. These techniques

decouple the resource sharing between map and reduce slots. But the profiling tech-

niques it used only take into account the case for over-utilized resource, detecting the

upper bound of resource utilization of a job to determine the best number of collocating

slots at a worker. This approach is able to efficiently avoid resource contention and yet,

resource could be under-utilized if the upper bound only appears at a certain time. By

contrast, the WCO scheduler in [21] collocates tasks of possibly different MapReduce

jobs with complementing resource usage characteristics to improve overall through-

put with sacrifice of a single job performance to a certain degree. Apparently, all these

works have to achieve improvements at the cost of one or more other performance goal.

The main reason is that they are still based on slots of uniformly partition resource. In

this work we provide the non-intrusive slot layering approach to improve both a single
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Figure 3.1: Overview of non-intrusive slot layering.

job performance and overall resource utilization.

3.3 Non-intrusive Slot Layering

In this section, we present a non-intrusive slot layering approach, which has been im-

plemented on top of Hadoop.

3.3.1 Overview

Hadoop tasks often do not fully utilize CPU resource during their execution and ex-

hibit certain CPU usage patterns [18]. Resource sharing between two tasks running

on the same processor (core) as an attempt to maximize utilization is a primary source

of performance interference/degradation due to resource contention. In essence, our

approach, non-intrusive slot layering, isolates resource (a processor core or simply

core)1 into two tiers with different resource sharing priorities: Active and Passive.

That is, there are two slots on a core with different resource usage priorities. More-

over, Hadoop introduced two-type of slots (Map slots and Reduce slots) to run tasks in

different phases. This way is easier to lead to an inaccurate configuration to represent

1In this work, we only consider to isolate CPU capacity within each TaskTracker. Note that extend-

ing our current work to accommodate for other resource, e.g. disk bandwidth, network bandwidth, is

straightforward. Hereafter, resource refers to CPU resource.
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resource sharing among a worker and possibly aggravates the performance interfer-

ence/degradation. For example, we can configure 2 Map slots and 2 Reduce slots for

a single core machine in order to share CPU resource between two running tasks. Ac-

cordingly, two tasks at most (two Map tasks or two Reduce tasks) are concurrently

executed on the worker when running a job. However, four tasks (two Map tasks and

two Reduce tasks) could be executed at the same time once there are multiple jobs.

Therefore, in order to have a finer-grained resource model, we extend such slots based

on type to unified task slots which are used as container to run both Map and Reduce

tasks. In the rest of the chapter we will use the terms ‘task slot’ and ‘slot’ interchange-

ably.

In this work, we use two components to implement non-intrusive slot layering as

shown in Figure 3.1: Slot Layering Manager and Layering-aware Scheduler. The for-

mer, working with a TaskTracker, is used to dynamically prioritize slots into two tiers

for isolating resource based on priorities of running tasks. The latter residing in the

JobTracker of master machine is used to decide task placement on TaskTrackers ex-

plicitly taking into account two slot tiers.

3.3.2 Slot Layering Manager

The slot layering manager dynamically manages tasks with different tiers. It works

with TaskTracker of each worker machine and is triggered by new tasks assigned by

JobTracker of the master machine. After a TaskTracker is initialized, the slot layering

manager automatically collects the CPU information of current worker machine using

the lscpu Linux command to determine the number of slots in Active and Passive,

respectively. We adopt cgroups—that is capable of limiting, accounting and isolating

resource usage—for managing two slot tiers. This Linux kernel feature enables for

two concurrent tasks on a single core to complement resource usage contributing to

utilization improvement.

The maximum number of task slots allocated to the Active tier is automatically
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Algorithm 1: Task scheduling run at each scheduling cycle.

When a heartbeat is received from worker n:

/* Reduce task scheduling */

if n has free Active/Passive slots then
for j in jobs do

if priority of j is greater than the lowest priority in Active slots then
assign unassigned reduce task t of j on n

/* Map task scheduling */

/* Stage 1: assigning map tasks to Active slots */

for slot in Active slots do
if number of running and assigned map tasks on n is less than T R then

for j in jobs do
if j has unassigned map task t with data on n then

assign t on n
else if j has unassigned map task t then

assign t on n

/* Stage 2: assigning high-priority or data-local map tasks to Passive slots */

if n has free Passive slots & no map task is assigned to Active slots in this
scheduling cycle then

for slot in Passive slots do
if number of running and assigned map tasks on n is less than T R then

for j in jobs do
if priority of j is greater than the lowest priority in Active slots
then

assign unassigned map task t of j on n
else if j has unassigned map task t with data on n then

assign t on n

/* Stage 3: assigning map tasks to Passive slots */

if n has free Passive slots & no map task is assigned to Active slots in this
scheduling cycle then

for slot in Passive slots do
if number of running and assigned map tasks on n is less than T R then

for j in jobs do
assign unassigned map task t of j on n

determined by the number of cores. The maximum number of task slots in the Passive

tier has the same number as that in the Active tier or is manually configured. The total
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number of task slots is twice as the number of cores by default. The CPU resource

sharing ratio between the two tiers is 100:1; this enables that tasks running in Active

slots take the priority of utilizing CPU to keep their original CPU usage pattern as much

as possible while tasks running in Passive slots use as much unused CPU resource as

possible; hence, the resource usage between slots is non-intrusive. Clearly, our non-

intrusive slot layering approach is able to improve resource utilization and reduce the

overhead caused by process switching latency.

When receiving new tasks from JobTracker, high-priority tasks are assigned to

Active slots and the rest in Passive slots. If all the tasks have the same priority, the

slot layering manager follows a FIFO manner, placing early-assigned tasks to Active

slots. Furthermore, the transition of a task across these two tiers could occur during

its execution. If a high-priority task arrives later and all Active slots are occupied, the

lowest-priority or latest-assigned task in an Active slot is switched to a Passive slot

in order to free up an Active slot for the high-priority task. If one of tasks running

in Active slots finishes, the highest-priority or earliest-assigned task in Passive slot is

switched to the Active slot. This transition takes place constantly.

3.3.3 Layering-aware Scheduler

The layering-aware scheduler resides in JobTracker and it is triggered by heartbeats

sent from TaskTrackers. This mechanism is the same as the FIFO scheduler in Hadoop

but each heartbeat includes the lowest priority in Active slots and the number of free

slots on the worker machine grouped by Active slots and Passive slots. Tasks of all

submitted jobs are organized in a priority queue (Figure 3.1). Users can give a job

a specific priority when submitting the job or the system will assign a timestamp as

its priority. Users also can change the priority during the lifetime of the job. Map

and Reduce tasks have the same priority as the job they belong to has. The layering-

aware scheduler dispatches tasks according to priorities and is data locality aware. The

scheduler consists of two phases: map task scheduling and reduce tasks scheduling.
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The task scheduling is outlined in Algorithm 1. The first part is reduce tasks

scheduling. We allocate reduce tasks first because reduce tasks usually have higher

priority than map tasks. Only a highest-priority reduce task is allocated per heartbeat.

This makes reduce tasks are distributed to as many workers as possible and thus re-

duces I/O resource contention (mainly existing in Shuffle and Sort phases) between

reduce tasks.

The second part is map tasks scheduling. which has three stages. First, we assign

tasks to run on Active slots. In this stage, the scheduler strictly respects priority se-

lecting the highest-priority job considering data locality. In Stage 2, we implement an

algorithm to improve the response time for late-arriving but high-priority jobs and in-

crease the number of data-local tasks. In this way, those high-priority jobs assigned to

Passive slots in this stage are switched to Active slots by the slot layering manager on

that worker. If there is no high-priority job, we select data-local tasks from all submit-

ted jobs in order to improve data locality. The remaining Passive slots if any are filled

by tasks in our priority queue in their order (Stage 3). Note that we never dispatch map

tasks to both Active slots and Passive slots in the same scheduling cycle, which enables

that high-priority jobs are evenly distributed across TaskTrackers to maximize resource

utilization within a cluster. A threshold TR in the three stages, which is calculated by

a ratio of map tasks to all tasks, is used to limit the maximum number of running map

tasks on the current worker. It can help the scheduler to reserve sufficient idle slots for

unassigned reduce tasks.

Preemption can’t be supported in this scheduler. High-priority jobs have to wait un-

til any slot becomes available. As to supporting preemption, there is a tradeoff between

overall performance and waiting time for a high-priority job: whether to kill running

tasks in order to free up slots for the high-priority job or to wait until they finish. In

this work, we have proposed the slot layering manager, which can allocate more slots

per worker while reducing the execution time of tasks running in Active slots. With

a sufficient cluster size, more slots means higher possibility to obtain a free slot for a
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high-priority task, and non-intrusive slot layering guarantees resource provisioning for

Active slots. Moveover, recall the design in Hadoop, a job is divided into small tasks

to run in parallel for reducing the overall job execution time and consequently, the

execution time of a task should be relatively much shorter compared to the execution

time of a job. Based on these reasons, the time for waiting slots will make up a small

percentage of the total execution time of a high-priority job. Therefore, we prefer the

overall utilization in this work.

3.4 Experiment

In this section, we describe results from two experiments that validate our claims of

improvement of overall resource utilization (overall throughput) and the reduction in

the execution time of high-priority jobs.

3.4.1 Experimental Setup and Applications

We have used two testbeds composed of EC2 m1.large instances for our experiments:

a small cluster with 4 nodes and a large cluster with 40 nodes. In both environments

Hadoop-1.0.0 with a block size of 128 MB was running. In the 4-node cluster, one node

was configured to run JobTacker, TaskTracker, NameNode and DataNode, whereas the

rest were set to run only TaskTrackers and DataNodes. The 40-node cluster was simi-

larly configured, but one of the nodes was dedicated to run JobTracker and NameNode,

and the 39 remaining nodes were used as TaskTrackers and DataNodes. Based on the

common practice provided in [24], we varied the slot configuration from 2 map slots

and 2 reduce slots (2m2r) to 4 map slots and 4 reduce slots (4m4r) in our experiments.

The set of applications we used for the two testbeds was 6 typical MapReduce bench-

marks: Crypto, Grep, Sort, TeraSort, WordCount and DFSIO.

Note that disks and network could be shared with other users’ VMs on EC2, which

may result in unstable results. Therefore, all the experimental results presented in this
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chapter are averaged over at least three tests to reduce the interference of such I/O

sharing.

3.4.2 Experiment One: Scheduling with a 4-node cluster

There are three objectives for the first experiment:

• Proof of that there is no rule of thumb to statically configure slot count,

• Evaluation of the overall performance improved by non-intrusive slot layering

for a small-size cluster and,

• Validation of the effectiveness of our approach for high-priority jobs in a small-

size cluster.

We first separately ran the 6 benchmark jobs with 2GB or 10GB input data (writing

100MB data per map task for DFSIO), and varied the maximum number of slots per

TaskTracker from 2m2r to 4m4r. The execution time of each job is shown in Table

3.1. The best performance is observed for jobs with non-intrusive slot layering. Those

execution times in Table 3.1 are plotted in a normalized form for more effective com-

parisons (Figure 3.2). Specifically, job execution times of different configurations are

normalized based on the execution time with non-intrusive slot layering. It is observed

that each configuration can be the best configuration for a certain job, e.g., 2m2r is the

best configuration for Crypto with 2GB input data, 3m3r is for TeraSort with 10GB

input data, and 4m4r is for Grep with 2GB or 10GB input data. Note that variation of

input size could also make the best configuration different. 4m4r is the best for Sort

with 2GB but 2m2r for Sort with 10GB. Therefore, there is no rule of thumb to set the

best static configuration for a particular job and an inappropriate static configuration

results in up to 21% performance degradation in the experiment.

Further, we ran jobs with different workload combinations. The results are shown

in Table 3.2 and Figure 3.3. The size of input data for each job is 1GB except the last

combination with 2GB input data. The jobs were submitted by an interval of 2 seconds,
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so that they were executed in a certain order. Obviously, the best configuration always

changes along with job characteristics, order, frequency and the size of input data.

There is also no rule of thumb to set the best static configuration for multiple jobs and

an inappropriate static configuration results in up to 37% performance degradation in

the experiment.

These two experiments prove that there is no absolute best static configuration

for a dynamic environment and the overall throughput certainly decreases due to an

inappropriate configuration.

As with overall performance, our non-intrusive slot layering approach performs the

best in all situations. More importantly, our approach not only removes the configu-

ration burden, but also delivers its performance close to or even beyond the overall

performance with the best static configuration. As seen in Tables 3.1 and 3.2, our ap-

proach obtains up to 12% and 36% improvement compared with the best configuration

and other configurations, respectively. Moreover, the rate of data-local tasks (Figure

3.4) increases 6%-13% using our layering-aware scheduler.2

To evaluate the execution time of high-priority jobs, we used two users to simulate

a typical scenario: ad-hoc query jobs are submitted with a high priority when long-

time routine jobs keep running. In this test, one user kept submitting jobs. After

all task (Map and Reduce) slots were occupied, the other one randomly submitted a

high-priority job 10 times to get an average execution time. For simplicity, we only

used WordCount jobs. The results are presented in Table 3.3. The execution time

of a WordCount job with the dedicated resource is 80 seconds. Running with static

configurations is 103%-139% slower and our system is 76% slower. Moreover, since

high-priority jobs are executed in Active slots, our average Map and Reduce tasks

execution time is the closest one to the execution time running on dedicated resource,

5% increase for Map tasks and 13% increase for Reduce tasks. Apparently, Running

with non-intrusive slot layering is the best because tasks running in slots can be finished

2Data replication was configured as 2.
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Figure 3.2: Normalized execution time comparisons for 6 jobs with 2GB or 10GB

input in 4-node.
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cluster.
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Figure 3.4: Percentages of data local tasks in 4-node cluster.

more quickly and there are more slots in the cluster (compared with 2m2r).



44 CHAPTER 3. NON-INTRUSIVE SLOT LAYERING IN HADOOP

Table 3.1: Jobs execution time (Sec) in 4-node cluster.

2GB / 10GB

Slot Layering 2m2r 3m3r 4m4r

Crypto 128 / 578 130 / 641 141 / 615 132 / 607

Grep 326 / 1267 362 / 1465 398 / 1418 329 / 1300

Sort 108 / 471 116 / 484 118 / 535 110 / 489

TeraSort 115 / 449 125 / 489 135 / 471 117 / 479

WordCount 125 / 430 135 / 470 153 / 474 129 / 459

DFSIO 127 / 133 136 / 166 144 / 149 128 / 148

Table 3.2: Jobs execution time (Sec) in 4-node cluster. The order of 6 jobs combination

is Crypto, WordCount, DFSIO, Grep, TeraSort and Sort.

Combination Slot Layering 2m2r 3m3r 4m4r

DFSIO+Grep 209 237 270 325

Grep+DFSIO 237 239 239 238

2*Grep 349 376 428 357

4*Grep 610 673 671 617

6 jobs with 1GB input data 365 393 418 445

6 jobs with 2GB input data 620 686 708 637

Table 3.3: Average jobs execution time (Sec), average Map tasks execution time (Sec)

and average Reduce tasks execution time (Sec) comparisons for a high-priority job

(WordCount) in 4-node cluster.

Job Map Task Reduce Task

time inc. time inc. time inc.

Dedicated Resource 80 - 40 - 15 -

Slot Layering 141 76% 42 5% 17 13%

2m2r 162 103% 68 70% 20 33%

3m3r 181 126% 108 170% 22 47%

4m4r 191 139% 128 220% 26 73%
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Figure 3.5: Comparisons for 6 jobs execution time in 40-node cluster.

3.4.3 Experiment Two: Scheduling with a 40-node cluster

Experiment One presents the improvements achieved by our non-intrusive slot layer-

ing approach for a small-size cluster. In this experiment, we further validate that our

approach is able to be widely used for any cluster size. We used a bigger-size cluster

(40-node), and the 6 benchmark jobs with 5GB and 10GB input data for each were sub-

mitted in a random order with an interval of 2 seconds. We tested each configuration

for 10 times and results were averaged. Job execution time and rate of data-local tasks

are shown in Figures 3.5 and 3.6. Our approach still outperforms others by 5%-21%

in term of execution time, and increases the rate of data-local tasks by 3%-9%3.

Experimental results (Figure 3.7) for high-priority jobs are similar to those in Ex-

periment one. Running a high-priority job with our approach is 27% slower than run-

ning it in the dedicated resource, but 23%-52% faster than the original scheduler in

Hadoop.

3.5 Analysis and Discussion

In this section, we show and discuss in depth how our approach overcomes shortcom-

ings of the current way in Hadoop to represent resource capacity.

3Data replication was configured as 4.
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Figure 3.7: Comparisons for a high-priority job in 40-node cluster.

3.5.1 Best static slot configuration

One of goals of our approach presented in this chapter is to remove the static slot

configuration burden without performance degradation. A necessary indicator we need

to compare with is the performance with the “best” static slot configuration. However,

there is no rule of thumb [24]. The best slot configuration varies in a range according

to the capacity of machines and the characteristic of jobs. In order to narrow down the

range for our experiments in this chapter, we use two-core machines (EC2 m1.large)

to run the same job (WordCount) on a 4-node cluster with different slot configurations,

varying the maximum number of slots per TaskTracker from 1 map slot and 1 reduce

slot (1m1r) to 8 map slots and 8 reduce slots (8m8r). As can be seen in Figure 3.8, the

best static configuration is using 4 concurrent map tasks and 4 concurrent reduce tasks

per TaskTracker. Apparently, the configuration of 1 map slot and 1 reduce slot leads to

very poor resource utilization while the configuration with more than 4 map slots and
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4 reduce slots causes over-utilized resource. We also found the same behavior in other

jobs we used in this chapter. The best static slot configuration only varies from 2 map

slots and 2 reduce slots to 4 map slots and 4 reduce slots.

3.5.2 Efficacy of non-intrusive slot layering

In Figures 3.9(a) and 3.9(b) we separately show the details of CPU utilization and sys-

tem context switches among four configurations during the execution of 8 map tasks

(WordCount) on a worker. The average CPU utilization and the number of system

context switches in total can be seen in Figure 3.9(c). The non-intrusive slot layer-

ing approach has the best CPU utilization (as CPU usage pattern of tasks running in

Active and Passive can complement to keep the maximum CPU utilization) and fewer

context switches among these four configurations (as the tasks running in Active slots

take the priority of utilizing CPU and can run longer without interruption), and con-

sequently it delivers the shortest execution time as seen in Figure 3.8. In addition to

this performance improvement, the number of slots is determined by the number of

processors or cores. There is no more need to figure out a rule of thumb and stat-

ically configure the slot count. Moreover, because tasks running in Active slots are

provisioned sufficient resource, their execution time is very close to that in the dedi-

cated resource (2 map slots) as seen in Table 3.4. Meanwhile, the task execution in

Passive slots is carried out taking advantage of unused resource; hence, the execution

time of 75 seconds compared 80 seconds with 4 map slots. This non-intrusive layer-

ing of slots enables the scheduler to give more resource to high-priority jobs without

reducing overall throughput (Section 3.3.2). It also remedies the violation against the

scheduling strategy—high-priority or early-submitted tasks fairly share resource with

low-priority or late-submitted tasks.
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Figure 3.8: Comparison of executing a WordCount job with different static slot con-

figurations and non-intrusive slot layering.

3.5.3 Benefit of task slots

Coexistence of Map and Reduce slots easily produces wrong configuration to represent

the resource capacity of a worker and accordingly decreases overall system throughput.

As shown in Figure 3.10, we configure 2 Map slots and 2 Reduce slots for a worker and

submit a Wordcount and TeraSort job in order, including 2 Map tasks and 2 Reduce

tasks for each of them. If we assume 4 concurrently running tasks is the best situation

to maximize resource utilization on the worker, area B in Figure 3.10 is an ideal case

to take fully advantage of the capacity of the worker. However, in area A, although

part of resource is idle, TeraSort Map tasks still have to wait. It is because there are

only two Map slots occupied by two WordCount Map tasks. On the other hand, if we

assume 2 concurrently running tasks is the best situation, area A becomes the ideal

case while area B possibly over-utilizes the resource since there are 4 simultaneously

running tasks. Apparently, the current approach based on separate Map and Reduce

slots could represent inaccurate resource capacity in some cases and thus results in

performance decrease. In our work, we combine Map and Reduce slots as task slots to

run both Map and Reduce tasks. It can properly represent the resource capacity in all

of the above situations.
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static slot configurations and non-intrusive slot layering.
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Table 3.4: Map task execution time with different static slot configurations and non-

intrusive slot layering.

Configuration Map Task Execution Time (Sec)

2 map slots 42

3 map slots 60

4 map slots 80

4 map slots
2 Active Slots 45

2 Passive Slots 75

0 20 40 60 80 100 120

WordCount Map task WordCount Reduce task
TeraSort Map task TeraSort Reduce task

A B C

Map Slot

Map Slot

Reduce Slot

Reduce Slot

Figure 3.10: Slot usage when running WordCount and Terasort

3.6 Conclusions

In this chapter we have proposed a non-intrusive slot layering approach that aims to

improve both overall throughput and high-priority job performance. Its slot layering

manager efficiently isolates resource for slots in Active and Passive tiers. Resource

is no longer fairly shared by running tasks. Instead, high-priority tasks take needed

resource to perform as if they run in dedicated resource while the unused resource

by those high-priority tasks is utilized by low-priority tasks. Such a way can im-

prove overall resource utilization as well as resolve limitations in the original Hadoop

design.The layering-aware scheduler in our approach further helps leverage the im-

provement delivered by our non-intrusive slot layering approach taking into account

job priority and data locality. Our experiments in two different cluster sizes with rep-

resentative MapReduce jobs have validated our goals of efficient overall resource use



3.6. CONCLUSIONS 51

and high-priority job performance improvement.



Chapter 4

Local Resource Shaper for

MapReduce

4.1 Introduction

The underutilization of resources remains a major issue in computer systems. The

term “resource consumption shaping” was originally coined by James Hamilton [25]

to name the idea of smoothing the resource consumption otherwise alternating between

peaks and valleys. At internet scale, this alternance is explained by the time-of-day that

sweeps around the world, with the load valleys corresponding to periods of day-time

in the least populated regions of the globe (such as the Pacific ocean). The key idea be-

hind resource consumption shaping, or resource shaping for short, is to smooth spikes

by “knocking off peaks” and “filling valleys” [26]. The fact that resource utilization

in data centers is usually lower than 10% [27] promises great potential for resource

shaping in reducing the amount of required resources.

In this chapter, we tackle the problem of shaping resource consumption at each

individual node. We identify peaks and valleys peaks and valleys in the utilization of

local resources, like CPU or I/O. In response to this observation, we smooth resource

consumption by automatically tuning the execution of concurrent tasks to increase

52
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performance without over-provisioning. The main challenge is twofold as it consists of

characterizing concurrent local tasks and scheduling them appropriately to maximize

resource utilization while minimizing resource contention.

Our focus lies on MapReduce applications, where each task processes a chunk of

data using the same predefined (map/reduce) function. Processes of a single node are

usually fairly treated, in that each receives an identical CPU time slice (quantum),

without the explicit consideration of its resource usage pattern. We argue that this fair

resource sharing is detrimental to MapReduce applications. In particular, the inherent

synchronous nature of map/reduce rounds forces these tasks with similar resource uti-

lization patterns to occur almost simultaneously, thus increasing contention. Typically,

I/O-bound tasks incur significant contention at concomitant periods of time when try-

ing to access the same disk, translating into idle CPU time. By filling valleys where

one resource is underutilized, one can reduce contention and overall job duration.

Our solution to this problem is called Local Resource Shaper (LRS). LRS inter-

laces the resource usage of multiple workloads to maximize resource utilization with

low resource contention. LRS is a novel resource management solution in the fol-

lowing ways: (1) LRS tackles a different problem from global resource consumption

shaping. It aims at reducing resource contention, rather than resource usage. By con-

trast, it makes sense to lower peaks at internet scale to reduce, for example, the power

consumption of a data center. (2) The main novelty of LRS lies in its differentiation

of slots, rather than in its scheduler, and is aimed at speeding up the execution of tasks

within a single job, whereas others [28, 29, 30, 19, 6] guarantee fair resource shar-

ing. (3) As opposed to reactive solutions [31, 32, 33] that react to resource contention

a posteriori by migrating the load, LRS takes a preventive approach by minimizing

resource contention.

We illustrate LRS and its new MapReduce scheduler (Interleave) by implementing

them in the Hadoop framework. We first demonstrate LRS capability without Inter-

leave by combining it with three well-known Hadoop schedulers: FIFO, Fair, and
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Table 4.1: A summary of the 6 MapReduce benchmarks.

# Benchmark Resource Description

1 Grep CPU-bound Search text matching

regular expression

2 PiEst CPU-bound Estimate Pi using

Monte Carlo method

3 WordCount Moderate CPU Count words

(WC) in the input file

4 Crypto Moderate CPU Decrypt cipher text

(Crpt) in the input file

5 Sort I/O-bound Sort input data

6 TeraSort I/O-bound Sort input data

(TS)

Capacity. This implementation deals with two slot priorities: Active and Passive, the

latter being able to use resources only when the former is not using them. Slots can

be viewed as the container of a single task. As MapReduce tasks typically consume

more than 50% of a CPU resource [28], this simple two-tier solution is enough to

fully leverage the resources. Hence, Active/Passive slots can effectively deal with the

tradeoff between resource utilization and resource contention.

We then incorporate Interleave as a complementary MapReduce scheduler to lever-

age the Active/Passive slots differentiation. This scheduler adopts a dual-purpose ‘task

slot’, which serves as a container for interchangeable map and reduce tasks. Interleave

implements two components, a slot manager and a task dispatcher. The slot manager

is in charge of adaptive allocation of Passive slots when it detects spare resources at

runtime, while the task dispatcher implements a scheduling algorithm that exploits the

Active/Passive differentiation with the consideration of task slots.

We have conducted an extensive analysis of MapReduce to evaluate LRS. Our

platform consists of a Hadoop cluster of 11 nodes in Amazon EC2. We have compared

LRS against existing Hadoop alternatives on the six MapReduce benchmarks depicted

in Table 4.1. These benchmarks are specialized in text retrieval, decryption, sorting,

scientific computation, etc., and all are taken from the MapReduce literature [21, 19,
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34, 20]. In addition, we have also compared LRS to a recently proposed Hadoop

scheduler, called Delay [6], in treating a Facebook workload. Our results indicate that

LRS improves these Hadoop-based alternatives in three main ways:

1. Increasing CPU usage. LRS allows us to achieve CPU utilization of up to 89%

when considering both system and user CPU times. Even without Interleave,

LRS (with the default Hadoop FIFO scheduler) still achieves an average CPU

utilization of 85% which remains higher than the peak CPU utilization one could

obtain without LRS with any of the three Hadoop schedulers.

2. Lowering I/O contention. Our MapReduce scheduler, Interleave, exploits the

Active/Passive slots differentiation to reduce I/O contention by filling the valleys

where I/O do not occur. This reduces the time each task spends waiting on

I/O. Specifically, LRS benefits from Interleave by halving the I/O wait time of

Hadoop.

3. Reducing job duration. We have experimentally tested LRS against Delay [6],

which was shown to perform well under a Facebook workload. We thus have

evaluated the job completion time using LRS against Hadoop using Delay and

observed that LRS reduces the job duration by up to 20% under the Facebook

workload.

An interesting conclusion of our work is that the constraints of Hadoop slot con-

figuration seemingly impact performance. We have tested all possible static config-

urations of map/reduce slots, as recommended by Yahoo! [35], and have observed a

performance variation of 22% based on the configuration the user could choose, hence

motivating the search for the best configuration. LRS relieves the programmer from

the burden of finding such a best configuration. We have also observed that LRS, with

the adoption of task slot, always outperforms the best static slot configuration both

in terms of resource utilization and performance. In that respect, our work tends to

support the recent attempt of developers to trade map/reduce slots for containers [36].
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(a) 4m4r (exec: 1279)
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(b) 6m6r (exec: 1198)
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(c) 8m8r (exec: 1118)

Figure 4.1: CPU utilization for Grep with different slot configurations. Execution

times (in seconds) shown in parentheses. CPU resource utilization towards the end

is deteriorating and heavily fluctuating because reduce tasks mostly complete their

execution in a short time and only one reduce task is assigned in a scheduling cycle.

0

50

100

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

C
PU

 u
til

iz
at

io
n

Time

Used CPU I/OWait

(a) 4m4r (exec: 464)
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Figure 4.2: CPU utilization for WordCount with different slot configurations.

The rest of this chapter is organized as follows. Section 4.2 describes issues in fair

resource sharing that motivate our work on shaping local resource consumption. Sec-

tion 4.3 presents LRS and describes its implementation in Hadoop. In Section 4.4, we

evaluate LRS, with and without Interleave, against existing alternatives. We discuss

related work in Section 4.5 and present the conclusions in Section 4.6. Appendix A

depicts the resource utilization and job duration of the benchmarks omitted in Sec-

tion 4.2.
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Figure 4.3: Resource usage patterns of WordCount. Write rate is in bytes.

4.2 On the Problem of Fair Resource Sharing

To illustrate the problem of allowing MapReduce tasks to fairly share resources, we

analyzed the resulting resource usage pattern of Hadoop when running benchmarks

from Table 4.1. We use a 4-core node and set each job to have 4 GB of input data

(PiEst is configured with 64 map tasks). We only plot results for Grep and WordCount

in this section and defer the remaining results to Appendix A.

Hadoop is an open-source implementation of MapReduce that follows the mas-

ter/slave paradigm where the master machine (JobTracker) executes a job by schedul-

ing its different tasks, or sub-processes, and a set of slave machines (TaskTrackers)

manage resources and perform tasks based on fair resource sharing. The default sched-

uler in Hadoop uses a FIFO queue to dispatch tasks to slots. The maximum number of

tasks running concurrently is upper-bounded by the number of slots. The resources of
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each worker are uniformly partitioned into slots, and the number of slots is statically

configured before launching the Hadoop system. Unfortunately, adequately making

such a static choice remains an open problem [35].

Following Yahoo!’s recommendation of choosing the number of slots between half

and twice the number of cores [35] , we perform experiments using the Hadoop FIFO

scheduler with three distinct configurations: 4m4r (4 map slots and 4 reduce slots),

6m6r, and 8m8r. Figure 4.1 depicts the CPU utilization and execution time of a Grep

job running on a 4-core node. As expected, we observe that the idle CPU time de-

creases as the number of slots increases, resulting in a decrease in execution time.

However, Figure 4.2 illustrates degrading performance when running a WordCount

job, which experiences significant I/O activity, in the same settings. This degradation

is due to the dramatic increase in wasted CPU time spent waiting for I/O as the number

of slots increases. An interesting observation is that the decrease in job duration be-

tween 6m6r and 8m8r is most likely due to the higher CPU utilization of 8m8r paying

off. However, both 6m6r and 8m8r have higher durations than 4m4r due to their I/O

contention.

To confirm our contention hypothesis, in Figure 4.3 we report the write rate (i.e., the

number of bytes written, or expected to be written, to disk per second as returned by the

Linux command pidstat) for a short time window. In both configurations, each core

executes four tasks (for a total of 16 tasks). The 4m4r slot configuration makes tasks

run sequentially, while the 8m8r slot configuration always runs two tasks concurrently.

Figure 4.3(b) indicates that task1 and task2 have a similar CPU usage pattern (they both

sort and merge at the same time), resulting in I/O contention (confirmed by high and

bulky I/O wait in Figure 4.2(c)). Although the CPU utilization is increased with 8m8r,

I/O contention increases; specifically, CPU I/O wait time accounts for 9.01% compared

to 0.11% with 4m4r (despite disk scheduling or network command queuing). This

poses the issue of incompatibility between resource utilization and resource contention

exacerbated by the fair resource sharing. Note that there are more than one hundred
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Figure 4.4: The architecture of LRS.

parameters in Hadoop and changing the values of some of them like io.sort.mb,

io.file.buffer.size and io.sort.record.percent may affect the performance.

As the tuning of Hadoop parameters is out of the scope of this chapter, we simply

selected the default values for the parameters.

4.3 The Local Resource Shaper

In this section, we present LRS (Figure 4.4) with its two main components: Splitter and

Interleave. Splitter at the core of LRS defines Active/Passive slots to shape resource

consumption. Interleave encompasses the slot manager, to adapt the number of passive

slots dynamically in order to maximize CPU usage, and the task dispatcher, to dispatch

tasks to the appropriate Active and Passive slots.



60 CHAPTER 4. LOCAL RESOURCE SHAPER FOR MAPREDUCE

4.3.1 Splitter

A major issue with the current slot configuration is that the best choice is subject to

job characteristics, and thus there is no rule of thumb. Moreover, resource utilization is

essentially limited by the underlying fair resource sharing strategy even with the “best”

slot configuration. To tackle the problem of slot configuration, LRS uses Splitter as a

‘pluggable’ resource manager. Splitter pairs up slots in two priority modes: Active slot

and Passive slot. A task in an Active slot takes up as much resources as possible to

keep its original usage, and a task in a Passive slot makes use of any unused resources

while the task in the Active slot is either waiting I/O operations to be completed, or

has completed its execution. Active and Passive slots are realized using cgroups and

their resource sharing ratio (for CPU and I/O resources) is 100:1.

Splitter works with TaskTracker to allocate resources to slots. Before a TaskTracker

is launched, Splitter collects the CPU information of the current worker machine using

the lscpu Linux command to determine the numbers of Active and Passive slots, re-

spectively. In our implementation, we have configured two slots per core and layered

them in Active and Passive priority modes. We adopt this two-slot-priority approach

as most MapReduce tasks consume more than 50% of available CPU resources [28].

Splitter is triggered by a change in the status of a running task. When receiving new

tasks from JobTracker, Splitter follows a FIFO policy to first fill Active slots and then

Passive slots. The transition of a task from a Passive slot to an Active slot takes place

when a task running in the Active slot finishes. The early-assigned task in Passive is

switched to the idle Active slot and that Passive slot is allocated to a new task. This

transition takes place repeatedly.

The focus of this chapter is on CPU and disk I/O. Other resources, like memory

or network bandwidth, are not considered but LRS can easily incorporate previous

work, including Capacity scheduler [37], Mantri [34] and Sailfish [38]. The Capacity

scheduler enforces a limit on the percentage of memory allocated to a user/job. Delay

scheduler delays a task to favor high data-locality and reduce network usage. Mantri
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and Sailfish avoid network hotspots by decreasing intermediate data transmission.

4.3.2 The Interleave MapReduce Scheduler

The Interleave scheduler implements a slot manager (SM) and a task dispatcher (TD)

on top of Splitter (Figure 4.4), with the adoption of a ‘task slot’. As the coexistence of

map and reduce slots leads to resource contention when both map and reduce tasks are

running concurrently on a core, we merge the map slot and reduce slot into an undif-

ferentiated and dual-purpose task slot. The incorporation of task slots with LRS helps

eliminate such resource contention. A task slot takes any task at a time, regardless of

task type (map or reduce). We refer to task slot when we use the term ‘slot’ in the

context of Interleave.

Before a TaskTracker starts to work, its corresponding Splitter configures the num-

ber of slots as described in Section 4.3.1. SM keeps track of the overall resource usage.

Once it detects spare resources (i.e., the CPU is underutilized) in its worker machine, it

notifies TaskTracker to increase the maximum number of Passive slots to obtain more

tasks from TD in JobTracker. TD dispatches tasks accounting for the existence of

dual-purpose task slots.

4.3.2.1 Slot Manager

The slot manager seeks to further increase resource utilization by dynamically con-

figuring (expanding and shrinking) the maximum number of Passive slots. As the

resource usage for Active slots is guaranteed and the resource contention between Pas-

sive slots is a lesser concern, an increase in the maximum number of Passive slots on

a particular worker node helps make use of every spare resource (particularly with I/O

intensive jobs). Such an increase has no impact on the resource usage of Active slots

as all Passive slots must wait so long as Active slots are using resources.

SM uses 3 seconds as a monitoring cycle, the same interval as the cycle of heart-

beat. For each cycle, we calculate the (average) effective CPU utilization (i.e., CPUeff
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= user mode + system mode) and average I/O wait (IOwait). The actual usage of CPU (

CPUused ) is then defined as the summation of CPUeff and IOwait . If all slots are occu-

pied but there is some spare resource, SM calculates the number of additional Passive

slots as follows:

N =

⎧⎪⎨
⎪⎩
� 1−CPUused

CPUused∗#cores/SlotMAX � if CPUeff < 0.9 ∧ IOwait ≤ T

1 if IOwait > T

where SlotMAX is the maximum number of allocated slots. T is a threshold configured

by the user to determine the characteristic of running tasks. The empirical value for T

that we have obtained from our experiments is 30%. Note that if this threshold is too

high, there is no performance impact on a single node but resource usage spikes may

make the slot manager ask for too many tasks, hence potentially raising the issue of

stragglers [1, 11]

4.3.2.2 Task Dispatcher

The LRS-aware task dispatcher resides in JobTracker and is triggered by heartbeats

sent from TaskTrackers. For each worker, TD dispatches tasks to either Active slots or

Passive slots, but not both at any given scheduling event. Tasks of all submitted jobs

are organized in a FIFO queue. The dispatcher processes tasks in order and is data

locality aware. The dispatcher consists of two phases: reduce task scheduling and map

task scheduling.

The behavior of TD is presented in Algorithm 2. The first part is the reduce task

scheduling. Since slots in Interleave are able to run either map tasks or reduce tasks,

reduce tasks need to be first dispatched in case map tasks of the latest jobs keep occu-

pying all slots and earliest jobs hang due to insufficient slots to run reduce tasks. Only

one reduce task is dispatched per heartbeat, as in the original design of Hadoop.

The second part is map task scheduling, which has two stages. Stage 1 assigns

tasks to run on Active slots in a FIFO manner. Stage 2 assigns tasks to run on Passive
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Algorithm 2: LRS-aware Task Dispatcher

When a heartbeat is received from worker n:

/* Reduce task scheduling */

if n has free Active/Passive slots then
for j in jobs do

if j has unassigned reduce task t then
assign t on n

/* Map task scheduling */

/* Stage 1: assigning map tasks to Active slots */

for slot in Active slots do
for j in jobs do

if j has unassigned map task t then
assign t on n

/* Stage 2: assigning map tasks to Passive slots */

if no map task is assigned to Active slots in this scheduling cycle then
for slot in Passive slots do

for j in jobs do
if j has unassigned map task t with data on n then

assign t on n

for slot in Passive slots do
for j in jobs do

if j has unassigned map task t then
assign t on n

slots but data-local tasks from all submitted jobs take priority in order to improve data

locality. Note that we never dispatch map tasks to both Active slots and Passive slots

in the same scheduling cycle, which enables tasks to be evenly distributed across all

workers when the number of tasks is less than the number of slots in the cluster.

4.4 Evaluation

In this section, we evaluate LRS extensively with five different schedulers (three

Hadoop built-in schedulers, Delay [6] and our own Interleave scheduler), and under

seven different benchmarks. Each of the first six benchmarks has been previously used
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to evaluate MapReduce [21, 19, 34, 20]. The last benchmark is based on a workload

from Facebook [6].

In Section 4.4.1, we show that LRS, even without our Interleave scheduler,1 ad-

dresses our motivating problem by shaping resource consumption. In Section 4.4.2,

we observe that this resource shaping translates into performance improvements re-

gardless of the underlying scheduler used. In Section 4.4.3, we measure how our LRS

(with Interleave scheduler from Section 4.4.3 onward) further reduces the I/O utiliza-

tion. In Section 4.4.4, we show that LRS effectively alleviates the need for manual slot

configuration. Finally, in Section 4.4.5, we compare LRS to a solution that was proved

efficient in handling Facebook workloads [6].

We performed all our experiments on a Hadoop cluster consisting of 11 EC2

m1.xlarge instances. Each instance has four cores, 15 GB RAM, and is running

Hadoop-1.0.0 with a block size of 64MB. The cluster was configured such that one

node is dedicated to run JobTracker and NameNode, and each of the remaining 10

nodes hosts a TaskTracker and a DataNode. Based on the empirical rule provided in

[35], we varied the slot configuration from 4 map slots and 4 reduce slots (4m4r) to 8

map slots and 8 reduce slots (8m8r) in our experiments. This makes the capacity of

our tested cluster equal to 80-160 slots.

4.4.1 Shaping Resources with Active/Passive Slots

To observe the effect of local resource consumption shaping, we reproduce the same

motivating experiments of Figures 4.1 and 4.2 but with our LRS solution. As Splitter

essentially enables such shaping, we simply integrate it with the FIFO scheduler in

Hadoop, i.e., LRSFIFO. In the rest of this section, we refer to LRS as LRSFIFO.

The results are depicted in Figures 4.5 and 4.6. All results for the single node

experiment with concrete values are presented in Figure 4.7. These results show that

Splitter alone substantially improves resource utilization.

1We use the notation LRSFIFO to denote LRS when it uses the Hadoop FIFO scheduler (instead of
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Figure 4.5: CPU utilization using LRSFIFO.
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Figure 4.6: Resource usage pattern of WordCount when running two tasks concur-

rently on a single core using LRSFIFO. In comparison with resource usage patterns

based on fair resource sharing (Figure 4.3(b)), resource consumption using LRSFIFO is

well shaped resulting in performance improvement (job execution times: 69 vs. 60).

An immediate observation is that LRS maximizes CPU resource utilization (Fig-

ure 4.5); i.e., effective CPU utilization is 95.71% for Grep and 89.15% for WordCount

(Figure 4.7). In particular, LRS utilizes CPU resources similarly to the 8m8r config-

uration for a CPU-bound application (8m8r has 94.42% effective CPU utilization for

Grep). By contrast, LRS always exploits two different slots per core (Active and Pas-

sive), and thus ensures maximum CPU resource utilization in the general case. Note

that more than two slots per core would not bring much CPU utilization improvement

Interleave).



66 CHAPTER 4. LOCAL RESOURCE SHAPER FOR MAPREDUCE

4m4r 6m6r 8m8r 4m4r 6m6r 8m8r 4m4r 6m6r 8m8r 4m4r 6m6r 8m8r 4m4r 6m6r 8m8r 4m4r 6m6r 8m8r
exec 177 192 177 164 1279 1198 1118 1090 464 496 479 435 412 425 439 393 349 330 308 292 461 426 472 384
idle 22.8 28.4 20.5 14.9 9.23 6.66 5.53 4.26 16.4 14.6 11.6 9.99 10.6 12.7 11.5 11.2 24.2 20.4 13.9 12.6 17.8 15.0 15.6 11.0
iowait 0.05 0.03 0.03 0.01 0.04 0.02 0.02 0.01 0.11 9.07 9.01 0.86 8.45 6.95 10.4 5.88 12.8 9.22 10.1 8.30 12.3 11.6 15.7 7.27
system 5.10 4.81 5.47 5.60 2.44 2.78 3.12 3.01 4.64 4.16 4.51 4.95 18.3 21.1 19.5 18.6 15.6 18.0 20.2 19.8 15.1 15.6 15.4 16.9
user 72.0 66.7 73.9 79.4 88.2 90.5 91.3 92.7 78.8 72.1 74.8 84.2 62.5 59.1 58.4 64.2 47.2 52.2 55.6 59.2 54.6 57.6 53.2 64.7

0
20
40
60
80

100

C
PU

 u
til

iz
at

io
n

TeraSortWordCount SortCryptoGrepPiEst

LRSFIFO LRSFIFO LRSFIFO LRSFIFO LRSFIFO LRSFIFO
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Figure 4.8: Normalized job execution time comparisons for different schedulers. Job

execution times are normalized due to their large differences between different bench-

marks. The actual execution times can be found in the data table in Figure 4.7.

as it is known that a MapReduce task generally exploits more than half of the CPU

resource [28].

On non-CPU-bound applications, LRS tends to obtain higher CPU resource utiliza-

tion than the 8m8r slot configuration. More precisely, on WordCount, the 8m8r config-

uration only achieves 79.31% effective CPU utilization while LRS achieves 89.15%.

The reason for this disparity is that, when LRS is not used, the adequate number of

slots to use while ensuring fair resource sharing changes depending on various param-

eters, such as the type of running tasks and the size of input data, and thus creates

valleys in CPU utilization (Figure 4.2).

By contrast, LRS achieves high CPU utilization while incurring a low amount of
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resource contention. In particular, we can see in Figure 4.5 that the I/O wait dura-

tion with LRS remains lower in both experiments than in the motivating Section 4.2,

regardless of the chosen slot configuration.

To better illustrate that CPU utilization valleys may arise from I/O resource con-

tention, Figure 4.6 depicts the CPU and disk resource utilization of a single core run-

ning WordCount (cf. Figure 4.3 for comparison). By distinguishing between Active

and Passive slots, LRS lets the task in the Active slot fully exploit the CPU resource,

while the task in the Passive slot keeps waiting until the active task shows usage valleys

due to, for example, I/O wait. Once the active task’s CPU consumption decreases as

it terminates, LRS switches the oldest passive task to active mode to keep leveraging

the CPU resource. This behavior is reproduced cyclically (a third incoming task would

become passive until the active task finishes, and so on) and it contributes to fewer con-

text switches compared to fair resource sharing. Local resource shaping is illustrated

by the complementary variations in CPU utilization of the 4 tasks in Figure 4.6(a); as

expected, this harmonious shape contrasts significantly with the disharmony present

without LRS (Figure 4.3(b)).

LRS also shapes I/O resource consumption in the same way as CPU consumption.

In fact, this I/O resource shaping allows LRS to decrease the portion of CPU time

spent waiting for I/O from 9.07% with a 6m6r configuration, to 0.86%. Thus, LRS

helps minimize the contention of simultaneous disk writes as depicted in Figure 4.6(b),

which would otherwise significantly limit performance.

To conclude, the combination of low I/O resource contention with increased CPU

resource utilization translates directly into performance improvement. We observe

that LRS can decrease by 10 times the I/O waiting time, and can achieve 13% higher

CPU utilization over a seemingly appropriate slot configuration (6m6r) on the same

non-CPU-bound application (WordCount). As a result, LRS outperforms by 12% the

execution time of WordCount running with 6m6r (i.e., 435 vs. 496 seconds, see Figure

4.7).
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Figure 4.9: CPU utilization using LRS (with Interleave). The adaptive passive slot

allocation of SM is shown in Figure 4.9(c). The maximum values on x-axes are in-

tentionally set to 450, 450 and 350 for effective comparisons with other figures in

Appendix A.
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Figure 4.11: CPU utilization for job combinations running on a cluster.

4.4.2 Boosting Performance of Existing Schedulers

In this section, we show that the core component of LRS (Splitter) is complementary

to its scheduler. To this end, we incorporate three state-of-the-art Hadoop schedulers

into LRS: the FIFO scheduler, the Fair scheduler and the Capacity scheduler. Since
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these schedulers still use separate map and reduce slots, their incorporation with LRS

is realized by configuring 4m4r for Active and 4m4r for Passive. The schedulers were

run on our 11-node cluster with the 6 jobs in Table 4.1. We compare job execution

time using Splitter to manage resources with 3 optimal configurations based on the

number of cores. Results (Figure 4.8) are normalized based on job execution time with

LRS. Even though we did not modify these schedulers, Splitter improves the overall

performance by managing resources more effectively. The FIFO scheduler achieves

performance improvement of 8% on average for the 6 jobs compared with 3 differ-

ent configurations. The Fair scheduler and Capacity scheduler achieve, on average,

performance improvements of 7% and 5%, respectively.

4.4.3 An LRS-Specific Scheduler to Limit I/O Contention

For Crypto and the I/O-bound jobs in Table 4.1, part of the unused CPU resources

caused by resource contention still exist when using LRS’s core resource shaping com-

ponent, Splitter (please refer to Appendix A for details). The Interleave scheduler is

used to alleviate this by supplementing LRS with its slot manager and task dispatcher

(Figure 4.9). Interleave further improves resource utilization by 4% on average for

effective CPU utilization for Crypto and the I/O-bound jobs (Sort and TeraSort), and

further decreases I/O wait by half for Crypto, 23% for Sort and 29% for TeraSort, com-

pared to the case when the FIFO scheduler (LRSFIFO) is used. Due to small amounts

of unused CPU resources, results for PiEst, Grep and WordCount using the Interleave

scheduler are similar to that using LRS without Interleave (see LRSFIFO results in Ap-

pendix A), and thus are not presented.

In Figure 4.9(c), we use Sort with the Interleave scheduler as an example to show

the variation in resource usage and the change in the maximum number of slots. In the

first 80 seconds, the maximum number of slots is 8 and the number of concurrently

running tasks varies. Although unused CPU resources appear around 70 seconds, the

maximum number of slots is still 8 because the number of currently running tasks is
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Figure 4.12: Normalized execution time comparisons for jobs running on a cluster.

The actual execution times can be found in the data tables in Figures 4.10 and 4.11,

respectively.

less than the maximum number of slots. However, the number of concurrently run-

ning tasks reaches 10 and 9 from 70 seconds to 120 seconds because unused CPU

resources still exist when the number of concurrently running tasks reaches the maxi-

mum number of slots. All map tasks finish at 120 seconds and, after that, the number

of concurrently running reduce tasks gradually increases as only one reduce task is

assigned in a scheduling cycle.

4.4.4 Improving the Performance of Slot Configurations

In another experiment, we validate LRS with the Interleave scheduler (simply LRS)

on our 11-node cluster with the same benchmarks as that of Section 4.4.1, except that

we increased the input data to 20 GB and the number of tasks for each job to 320 map

tasks and 160 reduce tasks. Additional test cases for multiple job combinations were

added to make this experiment more comprehensive. Results are shown in Figures

4.10, 4.11, and 4.12. We compare Interleave against the default FIFO scheduler and

observe that the job execution time with the Interleave scheduler (LRS) remains lower

than with the default FIFO scheduler (LRSFIFO) with the optimal slot configuration by

9% on average and by up to 17%. We also observe that the effective CPU utilization

increases by 11% on average, and by up to a 22% (for the combination of Crypto and

WordCount). Finally, I/O wait for moderate CPU jobs and I/O-bound jobs is reduced
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Table 4.2: Distribution of benchmark jobs.

# maps % # benchmarks (# maps)

1-2 54% 8 WordCount (1) 6 TeraSort (2)

3-20 14% 2 Sort (8) 2 WordCount (16)

21-150 15% 1 Crypto (80) 2 TeraSort (120)

151-300 6% 1 WordCount (240)

301-500 4% 1 PiEst (400)

>500 7% 1 TeraSort (520) 1 Grep (640)

by a factor of 2 on average and by up to a factor of 5 (for the combination of Sort and

WordCount).

As the capability of Splitter to improve resource utilization and performance has

been shown in Section 4.4.1 (Figures 4.5 and 4.6) and the Interleave scheduler achieves

yet more improvement, we only present the performance of Interleave scheduler (LRS)

in the following sections.

We observe for all experiments that each configuration is best suited to execute

a certain job. For example, in our 11-node cluster, 8m8r is the best configuration

for Grep, 6m6r is the best for the combination of Sort and WordCount, and 4m4r is

the best for Sort. As workloads change over time in real systems, any one of these

static configurations will cause performance degradation. Even if we try to profile

a job to get a best configuration before we ran it on a production system, the best

configuration still could be wrong. For example, 8m8r is the best for Sort with small

input data size on a single node, but it performs the worst with large input data on

our cluster. Moreover, job combinations will make the problem more complex. In our

experiments, we observed an average slowdown of 9% (up to 22%) caused by different

configurations. LRS allows us to overcome this problem.
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Figure 4.13: Facebook workload results.

4.4.5 When Running the Facebook Workload Model

In this experiment, we evaluate LRS through a set of benchmarks based on the work-

load trace from Facebook, which was reported in [6]. We scaled down the total number

of jobs based on our cluster’s scale and generated a job submission scheduler of 25

jobs. According to the Facebook trace, the distribution of job inter-arrival times was

roughly exponential with a mean of 14 seconds. This makes our submission sched-

ule 373 seconds long. The 6 benchmark jobs are mixed with different job input sizes

(64 MB input block for a map task) and the job input sizes was generated based on

the Facebook workload model. Table 4.2 lists the number of map tasks per job in the

Facebook workload trace, the percentage of the total jobs, benchmark name and the

actual number of running benchmarks.

We compare LRS (with Interleave) against the FIFO scheduler and the Delay

scheduler [6]. Besides the optimal slot configuration range we used before, we added

a 4m2r configuration according to the original configuration [6]. The results are shown

in Figure 4.13. LRS outperforms these two schedulers with all configurations. More

precisely, it decreases jobs execution time by 12% on average and by up to 20% com-

pared with the Delay scheduler with 4m4r. Additionally, effective CPU utilization

increases by 9% on average and I/O wait is about two times lower with LRS than with

others.
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4.5 Related Work

Efficient resource management has been studied for different purposes, such as maxi-

mizing resource utilization and minimizing resource contention [26, 27, 31, 32, 33, 39,

40, 41, 42, 19, 43, 21]. These results span across various granularities including data

center, server, virtual machine (VM) and job level. Maximizing resource utilization is

often sought by intensifying workload consolidation (concurrency), and thus tends to

cause high resource contention and, in turn, performance degradation. The incompat-

ibility of resource utilization and resource contention hinders the identification of the

optimal concurrency level.

Resource consumption shaping was proposed as an extension to network-traffic

shaping for data center utilization [26, 27]. The underlying idea behind resource con-

sumption shaping is that resource consumption in data centers can be smoothened by

deferring non time critical workloads in the peak usage period. Although our work is

inspired by this work, our focus is at the finer node level.

VM placement and scheduling strategies (e.g., [31, 32, 33]) are probably the most

common way to improve resource utilization. They essentially consolidate work-

loads/VMs in the way that the number of active servers is minimized. This consol-

idation is facilitated by the use of VM migration [39]. Previous works is still coarser

grain (virtual machine monitor level) than ours. In the meantime, resource manage-

ment approaches [40, 41, 42] are designed with the awareness of performance inter-

ference among co-located workloads. Unlike the preventive approach in our work,

these works are concrete and reactive focusing on the exclusiveness and isolation of

resource use between co-located applications by explicitly controlling resource usage.

Unless the resource usage of co-located applications perfectly complement each other,

when using previous solutions, resource contention and performance degradation is

inevitable.

There were attempts to maximize resource utiliztion by profiling jobs in advance

to find the resource bottleneck [44, 19, 45] and Cake [43] uses a two-level scheduling
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scheme to dynamically adjusts the level of concurrency based on measured resource

contention (device latency). In order to fully utilize one type of resource, they tend to

face the underutilization of other resources. The WCO scheduler [21] combines work-

loads with different characteristics to reduce resource contention whereas Choosy [46]

aims at satisfying job placement constraints. These previous results are all limited in

their resource management capacity by fair resource sharing. By contrast, LRS enables

multiple workloads to harmoniously share resources by non-uniformly interlacing their

resource usage. This is markedly distinct from fair resource sharing.

Hadoop is very popular for large-scale distributed computing particularly to pro-

cess ever-increasing data volumes, hence managing resources within Hadoop has been

a challenge of practical importance. There is a large body of work on resource manage-

ment [37, 6, 34, 38, 47, 28], especially at the scheduling level. In contrast with these

solutions, our Interleave scheduler exploits the fact that LRS trades map/reduce slots

off for Active/Passive slots. The developers of Hadoop have recently decided to get

rid of map/reduce slots [36]. The beta version of Hadoop 2.x does not aim at shaping

local resources, but instead relies on the user to leverage “containers” appropriately.

Map/reduce slots will most likely not be part of the next stable release of Hadoop in

part because of the constraints they impose on schedulers.

The Capacity scheduler [37] supports job memory resource requirement. Jobs are

able to be dispatched in a way to reduce memory interference between running tasks.

The Delay scheduler [6] takes into account data locality of map tasks. It replaces

relatively slow-speed network I/O with local disk I/O to achieve efficient resource uti-

lization for performance improvement. More recently, Mantri [34] and Sailfish [38]

achieve performance improvement by decreasing intermediate data transmission be-

tween map and reduce tasks to avoid network hotspots. Even automatic solutions [47]

that tune Hadoop parameters to improve performance cannot disable fair resource shar-

ing and existing resource allocation techniques, like DRF [28], share various resources

but always in a fair manner. We thus believe that these solutions could also benefit
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from LRS to reduce their job duration by shaping their resource consumption instead

of fairly consuming them.

4.6 Conclusions

Local resource consumption shaping aims at leveraging the resources of each node

of a distributed system, despite unpredictable workload usage. Our LRS solution

maximizes resource utilization and minimizes resource contention by exploiting Ac-

tive/Passive slots to reduce job duration.

We conducted an extensive analysis of LRS on a cluster of machines using 7

MapReduce benchmarks and evaluating their performance with 4 different state-of-

the-art schedulers. We draw a number of interesting conclusions:

− The homogeneous nature of map tasks and reduce tasks make them prone to resource

contention. LRS starts improving performance by limiting fairness, whereas fair re-

source sharing forces homogeneous tasks to acquire similar resources in overlapping

periods of time, leading to contention peaks.

− The problem of local resource consumption shaping is orthogonal to the scheduling

problem in that simply differentiating Active from Passive slots leads to performance

improvements regardless of the scheduler. A scheduler, like ours, can leverage this

differentiation to reduce I/O contention substantially.

− Letting tasks run on any slot gives room for optimization: in our experiments, LRS

always outperformed the most efficient static slot configuration both in terms of per-

formance and resource utilization. Interestingly, the concomitant development on

Hadoop [36] seems to confirm our observation as the stable release of Hadoop 2.x

will seemingly get completely rid of map/reduce slots.



Chapter 5

Conclusions and future work

5.1 Summary and conclusions

This thesis focuses on application profiling and resource management in distributed

systems. We identify and study a series of existing problems by investigating one of

the most popular distributed systems - Hadoop. Meanwhile, solutions that overcome

these problems are presented.

In Chapter 2, we find that the application scope of MapReduce has been extend be-

yond the original design goal which was large-scale date processing. Besides I/O inten-

sive applications, more CPU intensive applications start to take advantage of MapRe-

duce to utilize distributed computing resource for reducing execution time. Such ap-

plication diversity reveals the possibility to improve the performance based on char-

acteristics of applications. Therefore, we present the workload characteristic oriented

scheduler. The scheduler with its characteristic estimation module dynamically and

adaptively dispatches MapReduce applications in the way that tasks with complement-

ing resource usage are co-located to improve overall performance. Our experimental

results show it outperforms existing approaches.
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In Chapter 3, we present a new way, non-intrusive slot layering, to manage re-

source at worker node level. It resolves two limitations derived from the origi-

nal design in Hadoop: 1. the static slot configuration with dynamic resource us-

age of workloads results in inefficient resource utilization. 2. Job priority only

exists in scheduling algorithms, not extending down to worker node level-resource

of workers is fairly shared between high-priority/early-submitted tasks and low-

priority/late-submitted tasks. These limitations reduce overall throughput as well as

high-priority/early-submitted jobs performance. In our solution, we dynamically al-

locate resource at worker node level to improve resource utilization and give high-

priority/early-submitted tasks as much resource as they need to reduce their execution

time. Our experimental results obtained with six benchmark applications validate these

objectives.

During our investigation in Chapter 3, we notice currently running tasks, especially

from the same job, have the similar resource usage pattern. Fairly sharing resource be-

tween them could make them to reach their peak or valley of resource consumption at

the same time that increase resource contention and decrease resource utilization. In

Chapter 4, we propose Local Resource Shaper (LRS), a resource management tech-

nique (as an alternative to traditional fair resource sharing) that aims at maximizing

resource utilization with minimal resource contention. LRS enables multiple work-

loads to non-uniformly and harmoniously interlace their resource usage on a single

worker node. LRS is best suited for distributed systems that are concerned more about

job-level performance than that of individual tasks. We implement LRS on top of

Hadoop implementation of LRS and demonstrate its capability by integrating it with

three well-known Hadoop schedulers: FIFO, Fair, and Capacity. LRS avoids the need

for static slot configuration in Hadoop and always outperforms the best static slot con-

figuration. We also develop the interleave scheduler to take full advantage of LRS.

Experiments run in Amazon EC2 using six MapReduce benchmarks, with jobs based

on the Facebook workload model, confirm that our solution improves both resource
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utilization and performance.

5.2 Future directions

Throughout the project, we investigate a series of problems existing in application

profiling and resource management. While this project scrutinized problems and de-

veloped a set of solutions to them, other issues remain, and there are opportunities for

extending our advances.

The target clusters in Chapter 2 make assumption that all worker nodes are ho-

mogeneous. Although such an environment is easy to be established by virtual tech-

nologies or a cloud service provider like Amazon, this constraint still narrows down

its applicability. Further research could take into account the cluster with hardware

heterogeneity like GPU, Solid State Drives (SSD) to remove this constraint.

We develop and present two approaches for improvement of resource management

in Chapter 3 and Chapter 4. There is still potential to extend them in following two

ways: (1) Resource management in this thesis focuses on CPU and I/O resource. Ex-

tending it to other resource like network bandwidth and memory is able to further

improve the system performance. (2) We implement and validate our solutions based

on Hadoop clusters. Extending them to operating system kernel level is able to make

other distributed systems to directly take advantage of the improvement we make.
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CPU Utilization with Different Slot

Configurations and LRS
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Figure A.1: CPU utilization for PiEst.
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Figure A.2: CPU utilization for Crypto.
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Figure A.3: CPU utilization for Sort.
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Figure A.4: CPU utilization for TeraSort.
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