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Abstract

The Basel II internal ratings-based (IRB) approach to capital adequacy for credit risk plays
an important role in protecting the Australian banking sector against insolvency. We outline
the mathematical foundations of regulatory capital modelling for credit risk, and extend the
model specification of the IRB approach to a more general setting than the usual Gaussian
case. It rests on the proposition that quantiles of the distribution of conditional expectation of
portfolio percentage loss may be substituted for quantiles of the portfolio loss distribution. We
present a more compact proof of this proposition under weaker assumptions. The IRB approach
implements the so-called asymptotic single risk factor (ASRF) model, an asset value factor model
of credit risk. The robustness of the model specification of the IRB approach to a relaxation in
model assumptions is evaluated on a portfolio that is representative of the credit exposures of the
Australian banking sector. We measure the rate of convergence, in terms of number of obligors, of
empirical loss distributions to the asymptotic (infinitely fine-grained) portfolio loss distribution;
and we evaluate the sensitivity of credit risk capital to dependence structure as modelled by asset
correlations and elliptical copulas. A separate time series analysis takes measurements from the
ASRF model of the prevailing state of Australia’s economy and the level of capitalisation of its
banking sector. These readings find general agreement with macroeconomic indicators, financial
statistics and external credit ratings. However, given the range of economic conditions, from
mild contraction to moderate expansion, experienced in Australia since the implementation of
Basel II, we cannot attest to the validity of the model specification of the IRB approach for its
intended purpose of solvency assessment. With the implementation of Basel II preceding the time
when the effect of the financial crisis of 2007–09 was most acutely felt, our empirical findings offer
a fundamental assessment of the impact of the crisis on the Australian banking sector. Access
to internal bank data collected by the prudential regulator distinguishes our research from other
empirical studies on the IRB approach and recent crisis.
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Preface

Risk capital models serve management functions including capital allocation, performance attri-
bution, risk pricing, risk identification and monitoring, strategic business planning, and solvency
assessment (i.e., capital adequacy). However, model characteristics best suited for different
purposes may conflict. For example, models for solvency assessment require precision in the
measurement of absolute risk levels under stressed economic conditions, whereas models for
capital allocation need only be accurate in the measurement of relative risk under “normal” eco-
nomic conditions (Basel Committee on Banking Supervision et al. 2010). While economic capital
models may serve several management functions, the sole purpose of regulatory capital models
is solvency assessment.

Under the Basel II Accord (Basel Committee on Banking Supervision 2006), authorised
deposit-taking institutions (ADIs) are required to assess capital adequacy for credit, market
and operational risks. ADIs determine regulatory capital for credit risk using either the stan-
dardised approach or, subject to approval, the internal rating-based (IRB) approach. The latter
is more expensive to administer, but usually produces lower regulatory capital requirements than
the former. As a consequence, ADIs using the IRB approach may deploy their capital in pur-
suit of more (profitable) lending opportunities. This postgraduate research examines the model
specification of the IRB approach, the so-called asymptotic single risk factor (ASRF) model.

The Australian Prudential Regulation Authority (APRA) regulates deposit-taking institu-
tions, insurance companies and superannuation funds. Upon implementation of Basel II in 2008,
APRA had granted the four largest Australian banks, designated “major” banks, approval to
use the IRB approach to capital adequacy for credit risk. Since then, the four major banks
have accounted for approximately three-quarters of total assets on the balance sheet of ADIs
regulated by APRA. Furthermore, of the regulatory capital reported by the major banks, nearly
90% has been held against unexpected credit losses, and of that more than two-thirds has been
assessed using the ASRF model prescribed under the IRB approach. The market dominance
of the major banks, when coupled with the concentration of their regulatory capital assessed
under the IRB approach, is indicative of the significance of the ASRF model in protecting the
Australian banking sector against insolvency.

The financial crisis of 2007–09, also known as the global financial crisis, precipitated the
worst global recession since the Great Depression of the 1930s. Prompted by the severity of the
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Preface

crisis, regulators have since pursued macroprudential tools and policies to measure and manage
systemic risk (Financial Stability Board et al. 2011). While difficult to define precisely, systemic
risk refers to “the contagion-induced threat to the financial system as a whole, due to the default
of one (or more) of its component institutions” (Gleeson et al. 2013). It is usual to model
systemic risk in the banking system by subjecting it to exogenous credit shocks, amplifying them
as liquidity deteriorates, and propagating them across the banking system through a network
of interbank obligations (Eisenberg and Noe 2001; Cifuentes et al. 2005). Models of systemic
risk simulate fundamental defaults resulting from exogenous shocks affecting banks’ claims on
non-banks, and contagion default due to failure to meet interbank obligations (Drehmann and
Tarashev 2011; Gauthier et al. 2012). Clearly credit risk, which has dominated the assessment of
minimum capital requirements under the Basel II regime, is integral to modelling systemic risk.

More concretely, the so-called Basel 2.5 package and Basel III Accord introduce reforms to
address deficiencies in the Basel II framework exposed by the recent crisis. The Basel 2.5 reforms
enhance minimum capital requirements, risk management practices and public disclosures in
relation to risks arising from trading activities, securitisation and exposure to off-balance sheet
vehicles. The Basel III reforms raise the quality and minimum required level of capital; promote
the build up of capital buffers; establish a back-up minimum leverage ratio; improve liquidity and
stabilise funding; and assess a regulatory capital surcharge on systemically important financial
institutions. These reforms complement, rather than supersede, Basel II. In particular, the
ASRF model prescribed under the Basel II IRB approach is unaltered by the introduction of
Basel 2.5 and Basel III. It remains as relevant to solvency assessment today as it has been since
its implementation in 2008.

The academic contribution of this thesis is both theoretical and empirical. On a theoretical
level, we provide a rigorous mathematical exposition of the foundations of the IRB approach.
The model specification of the IRB approach, an asset value factor model of credit risk, has its
roots in the classical structural approach of Merton (1974). Adapting the single asset model of
Merton to a portfolio of credits, Vasicek (2002) derived a function that calculates probabilities
of default conditional on a single systematic risk factor explaining dependence across obligors.
An expression for conditional expectation of portfolio percentage loss then follows immediately.
In assessing regulatory capital charges the IRB approach applies credit value-at-risk (VaR) —
an extreme quantile of the portfolio loss distribution that is rarely exceeded — to assign a single
numerical value to a random credit loss. Its model specification employs an analytical approx-
imation of credit VaR, which follows from the proposition, due to Gordy (2003), that quantiles
of the distribution of conditional expectation of portfolio percentage loss may be substituted
for quantiles of the portfolio loss distribution. Here, our contribution is a proof that is more
compact starting from weaker assumptions. In drawing on the insights of Merton, Vasicek and
Gordy to develop the ASRF model, the Basel Committee on Banking Supervision (2005) adopts
the standard model of asset values, geometric Brownian motion. More broadly, our theoret-
ical contribution extends the mathematical foundations of the IRB approach to a more general
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setting than the usual Gaussian case.

In effect, the IRB approach implements the one-factor Gaussian copula, popularised by Li
(2000), which combines marginal distributions of constituent credits into a multivariate portfolio
loss distribution with a chosen default dependence structure. Accordingly, we derive the one-
factor Gaussian copula from the single-factor copula model for the general case. It is generally
acknowledged that models which assume that financial data follow a Gaussian distribution tend
to underestimate tail risk. Addressing this concern, we examine the dependence induced by
elliptical copulas, including Gaussian and Student’s t copulas.

The empirical component of this postgraduate research has been supported by APRA. Their
support includes access to internal bank data collected by APRA from the institutions that it
supervises, which distinguishes our research from other empirical studies on the IRB approach.
It forms the basis of our empirical contribution. Constructing a portfolio that is representative of
the credit exposures of the major Australian banks, we measure the rate convergence of empirical
loss distributions to the asymptotic portfolio loss distribution, and evaluate the robustness of the
ASRF model to parameter variations and model misspecification. Then, we render a fundamental
assessment of the IRB approach by taking measurements from the ASRF model. Realisations of
the single systematic risk factor, interpreted as describing the prevailing state of the Australian
economy, are recovered from the ASRF model and compared with macroeconomic indicators.
Similarly, estimates of distance-to-default, reflecting the capacity of the Australian banking sector
to absorb credit losses, are recovered from the ASRF model and compared with financial statistics
and external credit ratings. While our fundamental assessment makes observations about the
prevailing state of Australia’s economy and the solvency of its banking sector, we do not propose
model enhancements, nor draw policy implications. Although, our observations may open a
debate on the model specification of the IRB approach or related regulatory policies.

From our empirical analysis emerges a methodology for regulators to monitor the prevailing
state of the economy as described by the single systematic risk factor, and the capacity of
supervised banks to absorb credit losses as measured by distance-to-default. Measurements
from the ASRF model signalling an overheating economy and procyclical movements in capital
bases, corroborated by macroeconomic performance indicators including rapidly accelerating
credit growth, would prompt supervisors to lean against the prevailing winds by, for example,
instructing banks to build up their countercyclical capital buffer introduced under Basel III.

With the implementation of Basel II preceding the time when the effect of the financial crisis
of 2007-09 was most acutely felt, we measure the impact of the crisis on the Australian banking
sector using internal bank data collected by APRA. We are not the first to attempt to measure
the effects of the recent crisis, but we believe that we are the first to do so using regulatory
data. Other studies on the financial crisis rely on market data, macroeconomic indicators or
published financial statistics. We proceed to compare the market’s assessment of the solvency
of the Australian banking sector with our fundamental assessment. Accordingly, we estimate
distance-to-default analytically using the Merton model, and numerically using the “first passage”
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approach. The overreaction of market participants, which is reflected in market prices, explains
the divergence of the market’s assessment from our fundamental assessment.

The empirical component of this postgraduate research, in effect, applies a single-period,
one-factor Gaussian copula sequentially on quarterly time series of internal bank data available
since the implementation of Basel II. A natural extension of this thesis that we’ve explored
would model credit defaults, or survival times, in a multi-period framework. Indeed, the path
dependent nature of many risks and the requirement to measure portfolio risk over different time
horizons leads to a multi-period simulation. It is practical then to simulate all variables, including
defaults and survivals, in each time period. In order to consistently represent dependence between
multivariate survival times in each period of the simulation, Brigo et al. (2013) model survival
times using a continuous-time Markov chain with multivariate exponential distribution (i.e.,
Marshall-Olkin copula). While the challenge remains to develop an efficient implementation of
this dynamic Markovian model for measuring the credit risk of portfolios of large banks, we
intend to pursue research on this topic in a postdoctoral capacity.

This thesis is divided into two parts: the theoretical framework of, and empirical findings
from the postgraduate research. Part I begins in Chapter 1 with a preliminary discourse that
puts the concern of this research in the broader context of risk management topics including risk
measures, regulation of ADIs, economic and regulatory capital, and asset value factor models of
credit risk.

Chapter 2 derives the theoretical foundations, drawn from the literature, of the ASRF model.
The classical structural approach to credit risk modelling, originally developed by Merton (1974),
formulates liabilities of a firm as contingent claims on its assets. Adapting the single asset model
of Merton to a portfolio of credits, Vasicek (2002) derived a function that transforms uncondi-
tional probabilities of default into probabilities of default conditional on a single systematic risk
factor. We extend Vasicek’s model of conditional independence to a more general setting, one
not restricted to Gaussian processes. Gordy (2003) established that conditional on a single sys-
tematic risk factor, the portfolio percentage loss converges to its conditional expectation as the
portfolio approaches asymptotic granularity — no single credit exposure accounts for more than
an arbitrarily small share of total portfolio exposure. Then, assuming conditional independence
given a single systematic risk factor, we derive a limiting form of the portfolio loss distribution for
the general case. It generalises Vasicek’s (2002) formulation of the loss distribution function of an
asymptotic, homogeneous portfolio, which models default dependence as a multivariate Gaussian
process. The model specification of the IRB approach employs an analytical approximation of
credit VaR. It rests on the proposition, due to Gordy (2003), that quantiles of the distribution
of conditional expectation of portfolio percentage loss may be substituted for quantiles of the
portfolio loss distribution. We present a more economical proof of this proposition under weaker
assumptions.

In generating a portfolio loss distribution we are, in effect, combining marginal loss distribu-
tions of constituent credits into a multivariate distribution capturing default dependence between
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obligors. An approach to modelling default dependence, popularised by Li (2000), uses copula
functions. Drawing from Nelsen (2006) and Embrechts, Lindskog, et al. (2003), Chapter 3 intro-
duces the theory of copulas, which combine marginal distributions into a multivariate distri-
bution with a chosen dependence structure. On this basis, we derive the single-factor copula
model describing default dependence for the general case. Then, we deal with the special case
of the one-factor Gaussian copula, the most commonly applied copula function in credit risk
modelling, which is usually cast in the frame of survival time, or time-until-default. Recognising
that Gaussian distributions in financial applications tend to underestimate tail risk, we proceed
to outline procedures for generating empirical loss distributions described by elliptical copulas,
including Gaussian and Student’s t copulas. Moreover, we illustrate the dependence induced by
elliptical copulas.

In its implementation of the IRB approach to capital adequacy for credit risk, APRA requires
that ADIs set aside provisions for absorbing expected losses, and hold capital against unexpected
losses. Assuming that portfolios are infinitely fine-grained so that idiosyncratic risk is fully diver-
sified away, and a single systematic risk factor explains dependence across obligors, Chapter 4
describes an analytical approximation for assessing ratings-based capital charges. While real-
world portfolios are not infinitely fine-grained, as a practical matter, credit portfolios of large
banks exhibit sufficient granularity to adequately satisfy the asymptotic granularity condition,
so it need not pose an impediment to assessing ratings-based capital charges. Again, our contri-
bution extends the model specification of the IRB approach to a more general setting than the
usual Gaussian case. We show that ASRF models are portfolio invariant, an important criterion
for meeting supervisory needs. Portfolio invariance guarantees that “the capital charge on a given
instrument depends only on its characteristics, and not on the characteristics of the portfolio in
which it is held” (Gordy 2003).

Upon implementation of Basel II in the first quarter of 2008, APRA had granted the four
major Australian banks approval to use the IRB approach to capital adequacy for credit risk.
Part II begins in Chapter 5 with a description of data reported to APRA by the major banks on
a quarterly basis since the implementation of Basel II. Our fundamental assessment of the model
specification of the IRB approach is rendered on the basis of these internal bank data sourced
from the statement of financial performance, capital adequacy form and IRB credit risk forms.
We contend that these data are representative of the Australian banking sector on the basis of
the market dominance of the major banks, and the concentration of their regulatory capital held
against unexpected credit losses assessed under the IRB approach. For the purpose of testing
the robustness of the ASRF model we proceed to construct a portfolio that is representative of
the credit exposures of the major Australian banks.

Chapter 6 evaluates the robustness of the model specification of the IRB approach to a relax-
ation in model assumptions. We measure the rate of convergence, in terms of number of obligors,
of empirical loss distributions to the distribution of conditional expectation of portfolio percent-
age loss representing an infinitely fine-grained portfolio. In the process we demonstrate that the
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proposition, due to Gordy (2003), that underpins the IRB approach holds for a representative
credit portfolio that exhibits sufficient granularity. The IRB approach applies the one-factor
Gaussian copula, in which default dependence is described by the matrix of pairwise correlations
between obligors’ asset values. We proceed to evaluate model robustness to parameter variations
and model misspecification. In particular, we measure the sensitivity of credit risk capital to
dependence structure, as modelled by asset correlations and elliptical copulas. While credit risk
capital is quite sensitive to estimates of asset correlation, its sensitivity to the choice of copula
function can be much greater.

Chapter 7 renders a fundamental assessment of the model specification of the IRB approach
by taking readings of the Australian banking sector since the implementation of Basel II. Firstly,
we contextualises the Australian economy over the past decade by comparing its performance
with that of the United States and United Kingdom on macroeconomic indicators and financial
statistics. Explanations proffered for the recent performance of the Australian economy and its
resilience to the financial crisis are discussed in some detail. From the ASRF model prescribed
under the IRB approach we recover realisations of the single systematic risk factor describing
the prevailing state of Australia’s economy, and estimates of distance-to-default reflecting the
capacity of its banking sector to absorb credit losses. These readings find general agreement
with signals from macroeconomic indicators, financial statistics and external credit ratings. This
leads to a favourable assessment of the ASRF model in the context of some of the aforementioned
management functions generally served by economic capital models. However, the range of
economic conditions, from mild contraction to moderate expansion, experienced in Australia
since the first quarter of 2008 translate into observations away from the tail of the portfolio loss
distribution. So, we cannot attest to the validity of the ASRF model for the purpose of solvency
assessment, and hence regulatory capital modelling. The relatively short quarterly time series
available leads to an intuitive assessment of the ASRF model rather than any formal testing of its
efficacy. The effects of the financial crisis of 2007–09 were not felt evenly across the globe, and the
Australian economy was largely spared. With the implementation of Basel II preceding the time
when the effect of the crisis was most acutely felt, our empirical analysis reveals that the crisis
imparted a mild stress on the Australian banking sector. Evaluating the model specification of
the IRB approach for its intended purpose of solvency assessment would involve taking readings
of north Atlantic banking jurisdictions that experienced the full force of the recent crisis. It
would supplement the findings of this study. Finally, in a variation on the evaluation of distance-
to-default, we employ reverse stress testing to explore stress events that would trigger material
supervisory intervention.

In a more or less self-contained chapter, we infer the market’s assessment of the capacity of
the major Australian banks, in aggregate, to absorb credit losses. Firstly, Chapter 8 imputes the
value and volatility of assets from equity prices using the iterative procedure adopted by Vassalou
and Xing (2004). Assuming that a firm defaults if the value of its assets falls below a critical
threshold, its default point, at a given risk measurement horizon, the analytical Merton model

xii



assesses solvency in terms of default likelihood indicator (DLI), which is translated into distance-
to-default. Then, redefining default as the value of a firm’s assets falling below its default point at
any time during the risk measurement horizon, we estimate DLI and distance-to-default using the
“first passage” approach. Here, we simulate the time evolution of asset values using Monte Carlo
methods, and set the barrier equal to the default point. Obviously, DLI is higher and distance-to-
default is narrower under the first passage approach than the corresponding results analytically
calculated by the Merton model. The market’s assessment of the solvency of the major banks, in
aggregate, is directly comparable with our fundamental assessment recovered by the ASRF model
prescribed under the IRB approach. The former, which is much more volatile than the latter,
does not comport with signals from macroeconomic indicators, financial statistics or external
credit ratings. We contend that this is explained by the overreaction of market participants,
which is reflected in market prices. During periods when market participants are gripped by
fear (respectively, driven by greed), their perception of risk is heightened (lessened), and markets
become undervalued (overpriced).

The electronic submission of this thesis for the degree of Doctor of Philosophy includes:

• LATEX2ε manuscript and supporting files including figures, bibliography and glossary.

• Software developed to undertake the empirical analysis of Part II. Programs are coded
in C language on a MacBook Pro (2010) computer. MacPorts, an open source package
management system for Mac OS X, is used to install and upgrade ports: GNU C compiler;
GNU Make; GNU Scientific Library; and gnuplot.

• Files containing data reported quarterly to APRA by the major banks on their state-
ment of financial performance, capital adequacy form and IRB credit risk forms. These
data have been fetched from APRA’s data warehouse and aggregated using SQL database
programming. They are input to programs developed for the empirical analysis.

• Data files output by the programs developed for the empirical analysis. Either data con-
tained in these output files are reported in tables presented in the thesis, or the output
data files are read by scripts executed by the gnuplot graphing utility.

• Gnuplot scripts that generate figures, or charts, presented in the thesis.

• Statement of financial position, capital adequacy form and IRB credit risk forms, in spread-
sheet format, that ADIs submit to APRA as part of their lodgement of statutory returns.
Note that the major Australian banks automate their secure electronic data submissions
using XBRL (eXtensible Business Reporting Language).
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CHAPTER 1
Preliminaries

The topic of this thesis is regulatory capital modelling for credit risk, and more particularly, the
Basel II internal-ratings based (IRB) approach. Some preliminaries introduce topics that provide
a broader context for the focus of this postgraduate research. They include: risk measures
(Section 1.1), regulation of ADIs (Section 1.2), economic and regulatory capital (Section 1.3),
and asset value factor models of credit risk (Section 1.4).

1.1 Risk Measures

Generally speaking, a financial risk measure assigns a single numerical value to a random variable
representing portfolio profit and loss (P&L). Naturally, relying on a single number to summarise
a P&L distribution involves a significant loss of information, so prudent risk management would
counsel the use of a range of summary statistics to assess risk. However, in some cases there is
little choice but to quantify risk with a single number; for example, the determination of regu-
latory capital requirements. Before listing desirable properties of a risk measure and examining
some common ones, we formally define a risk measure.

Definition 1.1. Let Ω be the set of possible states of a portfolio of assets at a given risk
measurement horizon, and let G be the set of random variables (real-valued functions) on Ω

representing portfolio P&L. Then, risk measure % is a mapping from G to R.

In their seminal paper, Artzner et al. (1999) use economic reasoning to define a set of desirable
properties of financial risk measures, and refer to measures satisfying these properties as coherent.
Where positive, we interpret %(X) assigned by risk measure % to random variable X ∈ G as the
capital injection required to make the position acceptable to an internal or external risk controller,
for example, the prudential regulator. If %(X) is negative, capital in the amount of −%(X) may
be withdrawn from the position and still remain acceptable to the risk controller. In order to
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1. Preliminaries

simplify the presentation, and not inconsistent with the convention adopted in the determination
of regulatory capital requirements, we set the return on the reference instrument, or discount
rate, equal to zero. Coherent risk measures satisfy the following four axioms (Artzner et al.
1999):

Axiom 1 (Translation invariance) For all X ∈ G and all a ∈ R, %(X + a) = %(X) + a.

Axiom 2 (Subadditivity) For all X and Y ∈ G, %(X + Y ) ≤ %(X) + %(Y ).

Axiom 3 (Positive homogeneity) For all X ∈ G and λ ≥ 0, %(λX) = λ%(X).

Axiom 4 (Monotonicity) For all X and Y ∈ G with X ≤ Y , %(Y ) ≤ %(X).

Translation invariance means that adding (respectively, subtracting) the sure amount a to
an initial position and investing it in the reference instrument reduces (increases) the capital
charge by a. Subadditivity reflects the principle that diversification reduces risk. It implies that
merging positions into a portfolio does not create additional risk; conversely, dividing a portfolio
into sub-portfolios does not reduce risk. If subadditivity holds, then %(nX) ≤ n%(X) for n ∈ N.
Since there is no diversification in this portfolio, it is natural that equality holds, which leads
to positive homogeneity. However, positive homogeneity does not penalise the concentration
of risk and lack of liquidity that may accompany large positions. Note that a risk measure %
that satisfies subadditivity and positive homogeneity is convex on G. Monotonicity is a natural
economic property requiring positions that lead to greater losses in every state to incur higher
capital charges.

Remark 1.2. Throughout this section we consider the general case where possible states of a
portfolio of assets at a given risk measurement horizon include profits and losses, which take
positive and negative signs, respectively. This is in keeping with the convention adopted by
Artzner et al. (1999). In Chapter 2, however, we define a measure of credit risk while adopting
the convention that a loss is a positive number. Under this convention, which is common for
credit portfolios, the axiom of monotonicity is expressed as:

Axiom 4 (Monotonicity) For all X and Y ∈ G with X ≤ Y , %(X) ≤ %(Y ).

Remark 1.3. The larger class of convex risk measures relaxes the axioms of subadditivity and
positive homogeneity. The weaker property of convexity is satisfied if for all X and Y ∈ G:

%
(
λX + (1− λ)Y

)
≤ λ%(X) + (1− λ)%(Y ), λ ∈ [0, 1]. (1.1)

Risk reduction through diversification provides the economic rationale for the properties of sub-
additivity and convexity.

The axiomatic characterisation of coherent risk measures based on economic reasoning has
attracted strong adherents. Yet, more recent research highlights the shortcomings of coherent
risk measures, which should not be neglected. In particular, coherent risk measures have been
shown to lack elicitability and robustness, in general.
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Remark 1.4. Point forecasting methods are typically evaluated and compared by an error mea-
sure or scoring function, such as mean squared error or mean absolute error. Gneiting (2011)
demonstrates that this common practice can lead to misguided inferences. The author argues
that effective point forecasting requires that: (i) the scoring function be disclosed a priori; or
(ii) the forecaster receives a directive in the form of statistical functional, such as the mean or
quantile of the predictive distribution, and any scoring function applied is consistent with the
functional. A functional is elicitable if there exists a scoring function that is strictly consistent
for it.

Remark 1.5. While relaxing the subadditivity property, Kou et al. (2011) propose a set of axioms
for a class of risk measures they call natural risk statistics, which includes a subclass characterised
by its robustness to model misspecification and small changes in data. A risk measure is said to
be robust if: (i) it can accommodate a degree of model misspecification and perform well across
a set of alternative models; and (ii) it is insensitive to small changes in all observations or large
changes in a few observations.

Before discussing a couple of commonly used risk measures in the financial industry, we first
define quantiles of a distribution.

Definition 1.6. Let X be a random variable, and let α ∈ (0, 1). Then the α quantile of the
distribution of X is

qα(X) = inf{x ∈ R : P(X ≤ x) ≥ α}. (1.2)

Remark 1.7. If X has a continuous and strictly increasing distribution function F , then the α
quantile of the distribution of X is given by

qα(X) = F−1(α), (1.3)

where F−1(α), the inverse distribution function evaluated at α, is the number qα(X) ∈ R such
that F (qα(X)) = α.

Value-at-risk (VaR) is probably the most widely used financial risk measure. It measures
the maximum loss which is not exceeded with a typically high probability over a given risk
measurement horizon. Its prevalence in the financial industry is partially explained by “its ease
of communication as it is ‘well understood by senior management’ as well as quantitative experts”
(Basel Committee on Banking Supervision et al. 2010).

Definition 1.8. Value-at-risk of portfolio P&L random variable X at the confidence level
α ∈ (0, 1) over a given risk measurement horizon is the α quantile of −X:

VaRα(X) = inf{x ∈ R : P(−X ≤ x) ≥ α}. (1.4)

VaR is often criticised because at the α confidence level VaR does not give any information
about the severity of losses which occur with probability less than 1−α. Another common
criticism is that it does not satisfy the subadditivity property, in general, and is therefore not a
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coherent risk measure. However, VaR is subadditive for elliptical distributions, which we formally
define in Appendix 3.A. We denote elliptical distributions by X ∼ En(µ,Σ, ψ), and refer to µ as
the location vector, Σ as the dispersion (covariance) matrix and ψ as the characteristic generator
of the distribution.

Theorem 1.9 (Embrechts, McNeil, et al. 2002, Theorem 7.1). Suppose that X ∼ En(µ,Σ, ψ),
where X = (X1, . . . , Xn) with Var(Xi) <∞ for i = 1, . . . , n. Let

H =

{
Z =

n∑
i=1

λiXi, λi ∈ R

}

be the set of all linear portfolios. Then for any two portfolios Z1, Z2 ∈ H and 0.5 ≤ α < 1,

VaRα(Z1 + Z2) ≤ VaRα(Z1) + VaRα(Z2) .

Expected shortfall (ES), a coherent risk measure, is generally regarded as a superior measure
of financial risk. While VaR is prevalent in the financial industry, a number of firms are replacing
or supplementing VaR with ES to better measure tail risk (Basel Committee on Banking Super-
vision et al. 2010). Sometimes referred to as tail conditional expectation or conditional VaR, ES
at the α confidence level is the average of the 100(1− α) percent worst losses.

Definition 1.10. Expected shortfall of portfolio P&L random variable X at the confidence level
α ∈ (0, 1) over a given risk measurement horizon is given by

ESα(X) =
1

1− α

∫ 1

α

VaRu(X) du. (1.5)

ES is not subject to the aforementioned criticisms levelled at VaR. It is subadditive, in general,
and accounts for the severity of losses beyond the confidence threshold. On the other hand, ES
has been shown to lack elicitability (Remark 1.4) and robustness (Remark 1.5). Gneiting (2011)
finds that scoring functions that are consistent for the functional ES do not exist, so ES is not
elicitable, despite its popularity in finance. However, the mean and quantiles, and hence VaR,
are elicitable risk measures. Kou et al. (2011) show that ES, which is sensitive to modelling
assumptions of heaviness of tail distribution and to outliers in the data, lacks the property of
robustness. They provide a theoretical basis for using VaR with scenario analysis as a robust
external risk measure for prudential regulation.

The Basel Committee on Banking Supervision (BCBS) chose VaR as the risk measure to assess
regulatory capital charges under the IRB approach, which models losses on a credit portfolio as
a multivariate Gaussian distribution with default dependence described by a matrix of pairwise
correlations between obligors’ asset values (i.e, an elliptical distribution). Accordingly, the lack
of subadditivity of VaR is rendered moot under the model specification of the IRB approach.
Moreover, BCBS (2005) sets regulatory capital for credit risk at the 99.9% confidence level in
order “to protect against estimation error” in model inputs as well as “other model uncertainties.”
The margin for error and uncertainties implicit in setting a very high confidence threshold on
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an elliptical loss distribution arguably blunts the criticism that VaR does not account for the
severity of losses beyond the confidence threshold. In Chapter 6 we measure the sensitivity of
credit risk capital to dependence structure as modelled by a variety of elliptical copulas. We
believe that financial stability would be better served by research on modelling the tail of the
portfolio loss distribution, rather than building the case for a coherent risk measure, such as
ES, to replace VaR. Since the concern of this thesis is the theoretical foundations and empirical
analysis of the IRB approach, we conduct our research using VaR.

1.2 Regulation of Authorised Deposit-Taking Institutions

The Australian Prudential Regulation Authority (APRA) is the prudential regulator of the
financial services industry in Australia. It supervises deposit-taking institutions (i.e., banks,
credit unions and building societies), general and life insurance companies, and superannuation
funds. This section puts the focus of this postgraduate research into the broader context of the
regulation of authorised deposit-taking institutions, as practised in Australia.

APRA has largely adopted the supervisory standards and guidelines developed by BCBS.
The 1988 Capital Accord, commonly referred to as Basel I, had the twin objectives of protecting
depositors and strengthening financial stability. Over time banks exploited its simplicity by
engaging in regulatory arbitrage, undermining the objectives of Basel I. In order to counter the
growing problem of regulatory arbitrage and encourage banks to adopt sounder risk management
practices, the Basel II Accord promotes greater convergence between regulatory and economic
capital. In response to the financial crisis of 2007–09, the Basel 2.5 package and Basel III Accord
introduce reforms to address deficiencies in the Basel II framework exposed by the crisis. The
reforms complement, rather than supersede, Basel II.

Basel I

In establishing the 1988 Capital Accord, BCBS (1988) sought to arrest the gradual erosion of
capital relative to exposures in the banking system. Faced with declining margins in the preceding
years, banks were increasing volume, and hence leverage, to maintain their return on capital. But,
with higher leverage came narrower capital bases and a lower capacity to absorb losses. Basel I
instituted the Cooke ratio to establish a minimum capital requirement, set at 8% of risk-weighted
assets (RWA). The numerator of the Cooke ratio was defined broadly to include shareholders’
equity (core or tier 1 capital), and deeply subordinated claims (supplementary or tier 2 capital).
The denominator was the sum of a bank’s exposures multiplied by risk weights: 0% for OECD
government securities, 20% for claims on OECD banks, and 100% for other exposures. Credit
equivalent amounts of off-balance sheet assets were also included.

Initially targeted at large, internationally active banks in G10 countries, Basel I was eventually
adopted by nearly all countries and extended to all banks. The simplicity of the Cooke ratio,
initially considered its strength, became a drawback. The risk weights assigned under Basel I did
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not adequately differentiate levels of risk, encouraging banks to engage in regulatory arbitrage
— expanding riskier, and thus higher margin, lending while moving less risky, and thus less
remunerative, loans off balance sheet through securitisation in order to boost return on regulatory
capital. As a consequence of this practice, the exposure-weighted risk on banks’ balance sheet
increased without a commensurate increase in capital, undermining the objectives of Basel I.
The Cooke ratio had become a widely accepted metric for assessing banks’ performance and
soundness. Its adoption for purposes for which it was not originally intended, however, could
have misled unsophisticated users (Tiesset and Troussard 2005).

Basel II

A fundamental objective of the Basel II Accord “has been to develop a framework that would
further strengthen the soundness and stability of the international banking system while main-
taining sufficient consistency that capital adequacy regulation will not be a significant source of
competitive inequality among internationally active banks” (Basel Committee on Banking Super-
vision 2006). Subject to supervisory approval, Basel II permits institutions to use their internal
credit ratings and internal models of market and operational risks to assess regulatory capital
charges. As expressed by Gordy and Howells (2006), it promotes “better alignment of regulatory
capital requirements with ‘economic capital’ demanded by investors and counterparties.” The
Basel II framework consists of three mutually reinforcing pillars:

(1) Minimum capital requirements.

(2) Supervisory review process.

(3) Market discipline.

The Basel II framework was implemented in Australia on 1 January 2008 through prudential
standards established by APRA.

Minimum Capital Requirements

In its implementation of Pillar 1 of Basel II, APRA requires ADIs to determine minimum capital
requirements for credit risk, operational risk and market risk. For each of these risk classes, ADIs
determine regulatory capital using the standardised approach or, subject to APRA’s approval, an
advanced internal method. The former is straightforward to administer and produces a relatively
conservative estimate of regulatory capital, while the latter is more expensive to administer but
usually produces lower regulatory capital requirements.

In relation to capital adequacy for credit risk, ADIs determine regulatory capital using either
the standardised approach or IRB approach. The standardised approach (Australian Prudential
Regulation Authority 2010a) directly calculates RWA by assigning risk weights to on-balance
sheet assets and credit equivalent amounts of off-balance sheet assets. Assigned risk weights are
based on credit rating grades, which are broadly aligned with the probability of counterparty

8



1.2. Regulation of Authorised Deposit-Taking Institutions

default. Under the IRB approach (Australian Prudential Regulation Authority 2008a) regulatory
capital is calculated to cover credit losses at the 99.9% confidence level over a one-year horizon.
ADIs that have been granted approval to use the IRB approach generate internal estimates of
obligor specific parameters: probability of default, loss given default and exposure at default.
The conversion of minimum capital requirements to RWA assumes an 8.0% minimum capital
ratio.

ADIs determine regulatory capital for operational risk using either the standardised approach
or advanced measurement approach. Under the standardised approach (Australian Prudential
Regulation Authority 2008b) an ADI divides its activities into three business lines: retail banking,
commercial banking, and all other activities. Regulatory capital for operational risk is calcu-
lated as the sum of the 3-year average of assessed capital charges for each of the business lines.
Gross outstanding loans and advances for retail and commercial banking, and adjusted gross
income are input to this calculation. The advanced measurement approach (Australian Pruden-
tial Regulation Authority 2008c) computes regulatory capital for operational risk to cover losses
for event types including: internal fraud; external fraud; employment practices and workplace
safety; clients products and business practices; damage to physical assets; business disruption;
and execution, delivery and process management. An ADI must demonstrate that regulatory
capital “meets a soundness standard comparable to a one-year holding period and a 99.9 per cent
confidence level.”

ADIs are required to hold capital against market risk arising from trading book positions in
fixed income and equity securities, and banking and trading book positions in foreign exchange
and commodities. Prudential standards do not distinguish, in principle, between market risk aris-
ing from positions in the physical and derivative instruments. Minimum capital requirements for
market risk are determined using either the standardised approach or internal model approach
(Australian Prudential Regulation Authority 2008d). The standardised approach applies pre-
scriptive capital charges for specific and general market risks. Under the internal model approach
regulatory capital is equal to the higher of: (i) the average daily VaR over the preceding sixty
trading days multiplied by a scaling factor (>= 3.0) set by APRA; or (ii) the previous day’s
VaR. Daily VaR is calculated at the 99% confidence level over a 10-day holding period. An ADI
that employs the IRB approach to capital adequacy for credit risk or the advanced measurement
approach for operational risk must seek approval from APRA to use the internal model approach
for interest rate risk in the banking book (IRRBB) — a component of market risk. Under the
internal model approach, ADIs calculate regulatory capital for IRRBB to cover losses arising
from repricing, yield curve, basis and optionality risks associated with banking book items at the
99% confidence level over a one-year holding period (Australian Prudential Regulation Authority
2008e).

The conversion of Pillar 1 capital to RWA assumes an 8.0% minimum capital ratio (Australian
Prudential Regulation Authority 2008f). An ADI’s RWA under Pillar 1 is equal to the sum of:
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• RWA calculated by the standardised or IRB approach to capital adequacy for credit risk;
and

• 12.5 (= 1.0/0.08) times the sum of regulatory capital charges for operational risk, market
risk and IRRBB.

Supervisory Review Process

APRA implements Pillar 2 of the Basel II Accord through its supervisory review process (Aus-
tralian Prudential Regulation Authority 2007). ADIs are responsible for developing and main-
taining an internal capital adequacy assessment process (ICAAP) proportional to the size, busi-
ness mix and complexity of their operations. Supervisors review and evaluate ADIs internal cap-
ital adequacy assessments and business strategies, and monitor their compliance with regulatory
capital requirements. APRA’s probability and impact rating system (PAIRS) and supervisory
oversight and response system (SOARS) are designed to support the supervisory review process.

As part of the supervisory review process, and subject to a minimum of 8.0% of risk-weighted
assets, APRA sets a prudential capital ratio (PCR) for each ADI, which must be maintained
at all times. An ADI is required to hold at least half of the capital satisfying its PCR in the
form of tier 1 capital, and APRA reserves the right to raise the proportion of tier 1 capital. In
setting the PCR for an ADI, APRA takes into account the ADI’s exposure to Pillar 2 risks,
and qualitative factors such as corporate governance, senior management, and risk management
systems and controls. Pillar 2 risks are divided into three categories:

(a) Pillar 1 inherent risks that are not fully captured by the minimum capital requirement, for
example, credit concentration risk.

(b) Inherent risks that are not covered by Pillar 1 such as liquidity, strategic and reputation
risks, as well as the benefits of risk diversification. Given that even during times of serious
economic stress, credit risk, operational risk, market risk and other material risks are
unlikely to be perfectly correlated, diversification benefits may be recognised in the form
of a capital reduction.

(c) Risks arising from external factors such as macroeconomic risk and systemic risk.

Consistent with their treatment of credit risk under Pillar 1, ADIs are required to deter-
mine regulatory capital requirements for securitisation exposures using either the standardised
approach or IRB approach (Australian Prudential Regulation Authority 2011). Broadly speak-
ing, risk-weighted assets for securitisation exposures are calculated by applying risk weights,
which depend on assigned credit ratings, to on-balance sheet exposures and credit equivalent
amounts of off-balance sheet exposures. RWA for securitisation exposures are added to RWA
determined under Pillar 1 to arrive at total RWA for an ADI (Australian Prudential Regulation
Authority 2008f).
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Based on supervisors’ qualitative assessments of the inherent risks taken by an ADI, and the
effectiveness of its risk management through policies, procedures, systems and controls, PAIRS
produces a rating for the ADI which maps to an indicative PCR (Australian Prudential Regula-
tion Authority 2010b). In setting the PCR for an ADI, supervisors exercise their judgement and
may adjust the indicative PCR to account for institution specific factors that are not reflected
in the PAIRS rating. Finally, to achieve consistency across PCR outcomes, PCRs for ADIs are
reviewed collectively by senior management in APRA’s frontline supervisory division. Note that
an ADI’s ICAAP is a crucial input to APRA’s supervisory review process, which ultimately
determines the PCR assigned to an ADI. The regulatory capital requirement for an ADI then
becomes the product of its PCR and total RWA.

Market Discipline

Disclosure requirements under Pillar 3 encourage transparency and enhance market discipline.
Information, qualitative and quantitative, covers capital structure, risk exposures, and risk
management procedures for determining and maintaining capital adequacy. The standardised
disclosure framework facilitates comparisons across institutions, allowing market participants to
reward those that manage their risks prudently.

Basel 2.5

The so-called Basel 2.5 reform package (Basel Committee on Banking Supervision 2009a) seeks
to ensure that minimum capital requirements, risk management practices and public disclosures
adequately reflect risks arising from trading activities, securitisation and exposures to off-balance
sheet vehicles. The Basel 2.5 reforms came into effect in Australia on 1 January 2012.

Basel III

The objective of the Basel III Accord (Basel Committee on Banking Supervision 2011) is “to
improve the banking sector’s ability to absorb shocks arising from financial and economic stress,
whatever the source, thus reducing the risk of spillover from the financial sector to the real
economy.” As with the Basel 2.5 package, the Basel III Accord is intended to address lessons of
the financial crisis of 2007–09. The reforms:

(1) Raise the quality and minimum required level of capital (1 January 2013).

(2) Promote the build up of capital buffers through a mandatory conservation buffer (1 January
2016) and a discretionary countercyclical buffer.

(3) Establish a back-up minimum leverage ratio, equal to tier 1 capital divided by average total
consolidated assets (1 January 2018).
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(4) Improve liquidity and stabilise funding by introducing a liquidity coverage ratio (1 January
2015) and net stable funding ratio (1 January 2018).

(5) Assess a regulatory capital surcharge on global systemically important banks and domestic
systemically important banks (1 January 2016).

In parentheses are the dates when the reforms came into effect, or are scheduled to come into
effect in Australia. Presently, no Australian bank is on the list of global systemically important
banks. APRA determines which domestic banks are systemically important on the basis of size,
interconnectedness, substitutability and complexity. They are: Commonwealth Bank of Aus-
tralia, Westpac Banking Corporation, National Australia Bank, and Australia and New Zealand
Banking Group. The four largest banks in Australia, domestically they are designated “major”
banks. APRA is developing a methodology to ensure that any domestic systemically impor-
tant bank has higher loss absorbency, commensurate with its systemic importance (Australian
Prudential Regulation Authority 2013a).

1.3 Economic and Regulatory Capital

Conceptually, economic and regulatory capital reflect the needs of distinct stakeholders, and
therefore serve different objectives. In this section we focus on deposit-taking institutions, which
we refer to generically as banks. For economic capital the primary stakeholders are the bank’s
shareholders, and the objective is to maximise shareholders’ return on invested capital. Economic
capital trades off the costs of funding the bank with expensive equity against the benefits of
reducing the probability of losing its franchise value. All else being equal, a higher level of
shareholders’ equity increases the probability of survival leading to a stronger external credit
rating, lower cost of debt financing and access to banking business for which a high quality
credit rating is a condition of eligibility. Elizalde and Repullo (2007) define economic capital
as “the capital that shareholders would choose in the absence of capital regulation.” Banks use
economic capital in capital allocation, performance attribution, risk pricing, risk identification
and monitoring, strategic business planning, and solvency assessment (capital adequacy).

For regulatory capital the primary stakeholders are the bank’s depositors, and the objective
is to minimise the possibility of losses to these depositors. If deposit insurance applies, then the
insurer has a major stake as well. In Australia deposit insurance is provided by the government,
so the taxpayer has a stake. Regulatory capital is defined as the minimum capital required to
meet standards of capital adequacy imposed on all institutions by the prudential regulator. Its
sole purpose is to absorb losses and protect against insolvency.

As highlighted in Section 1.2, the Basel II Accord sought to counter regulatory arbitrage by
encouraging convergence between economic and regulatory capital through the use of internal
credit ratings and internal models of market and operational risks to assess regulatory capital
charges. However, economic and regulatory capital are not intended to be equivalent. Indeed
perfect alignment would not be desirable. The adoption of standardised, advanced techniques by

12



1.3. Economic and Regulatory Capital

all institutions for assessing economic and regulatory capital would increase the risk of contagion,
undermining financial stability. In the event of a financial crisis each institution, using the same
underlying risk models, would interpret and respond to the economic shock in an identical manner
(Tiesset and Troussard 2005). Important differences between economic and regulatory capital
remain, often justified by their distinct objectives:

• Eligible regulatory capital includes shareholders’ equity (tier 1 capital) and deeply sub-
ordinated claims (tier 2 capital), whereas economic capital comprises tier 1 capital alone
(Allen 2006).

• The IRB approach implements an asset value factor model to assess regulatory capital
charges for credit risk. It assumes that portfolios are infinitely fine-grained so that idio-
syncratic risk is fully diversified away, and a single systematic risk factor explains depen-
dence across obligors. Economic capital assessments may use more sophisticated multi-
factor models (e.g., country and industry factors), and include individual exposures to
account for credit concentration risk.

• Regulatory and economic capital models measure risk from different bases. The former
is determined under book value accounting, while the latter is assessed on the basis of
mark-to-market valuation (Giese 2003).

• In practice an institution’s management set its level of economic capital to achieve a target
external credit rating that supports its business or competitive strategy. Most large, inter-
nationally active banks choose a target rating of around AA–, which corresponds to a
99.97% target survival probability, or 0.03% probability of default over a one-year hori-
zon (Tiesset and Troussard 2005). The one-year horizon corresponds to the frequency of
financial statements, and the management horizon for tapping public debt markets and dis-
posing of assets. The 99.9% target survival probability over a one-year horizon set under
the Basel II IRB approach, coupled with the recognition of deeply subordinated claims
towards regulatory capital, translates into a target external credit rating of approximately
BBB– (Gordy and Howells 2006).

• Credit risk parameters and variables of regulatory and economic capital models are likely to
differ, as illustrated in the following examples. The IRB approach to capital adequacy for
credit risk takes through-the-cycle (unconditional) probabilities of default as input. By con-
trast, an economic capital model used to price risk competitively would take point-in-time
(conditional) probabilities of default as input. Under the IRB approach asset correlation is
a constant or a function of through-the-cycle probability of default depending on the asset
class categorisation of the credit exposure. Economic capital models may classify credit
exposures differently and produce different estimates of asset correlation (Allen 2006). The
model specification of the IRB approach incorporates a maturity adjustment, and APRA
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sets a floor on the loss given default (under recessionary conditions) assigned to credit
exposures, but neither would necessarily apply in the calculation of economic capital.

• The predominant practice in economic capital modelling follows a compartmentalised, top-
down approach that first calculates economic capital for individual risk classes or types
(e.g., credit risk, market risk, operational risk, underwriting risk, etc.) separately, and then
aggregates capital charges across risk classes in a manner that allows for the recognition of
inter-risk diversification benefits (Basel Committee on Banking Supervision 2009b). The
variance-covariance approach to inter-risk aggregation is relatively simple and tractable,
and widely employed, although its suitability for the purpose of assessing capital adequacy
is contested. It uses a matrix of pairwise linear correlations between risk classes to calcu-
late aggregate economic capital from estimates for individual risk classes. Assuming less
than perfect pairwise correlations, the variance-covariance approach yields an inter-risk
diversification benefit (Giese 2003). Consistent with the predominant practice in economic
capital modelling, the Basel II Accord requires banks to first determine regulatory capital
for Pillar 1 risks separately, but it does not recognise inter-risk diversification benefits,
prescribing the simple addition of regulatory capital charges. Recognition of inter-risk
diversification benefits is possible under Pillar 2 through the supervisory review process.

• Economic capital models endeavour to cover all material risks: credit, market, operational,
underwriting, liquidity, strategic, reputation and concentration risks. Regulatory capital
charges are assessed for credit, market and operational risks under Pillar 1 of the Basel II
Accord. Inherent risks not covered by Pillar 1 are addressed under Pillar 2. There is no
requirement that specific capital add-ons be modelled for any Pillar 2 risks (Allen 2006).
Under its supervisory review process, APRA takes account of a bank’s exposure to Pillar 2
risks and other qualitative factors when setting its prudential capital ratio.

• Whereas regulatory capital is assessed for each licensed entity, economic capital is often
modelled for a consolidated group, which may include a number of separately licensed
entities. At the consolidated group level, aggregate economic capital can reflect concentra-
tion, netting and diversification of risks that do not arise at the stand-alone licensed entity
level (Allen 2006).

Elizalde and Repullo (2007) employ a numerical procedure to show that economic and regu-
latory capital do not depend on the same variables. Economic capital depends on intermediation
margin and cost of bank capital, while regulatory capital depends on the confidence level set
by the prudential regulator. In their empirical study these variables are key to explaining the
difference between economic and regulatory capital. Note that both are increasing in proba-
bility of default and loss given default. They conclude that the prospect of material supervisory
intervention is an effective inducement for banks to hold capital buffers, while policies aimed at
increasing market discipline, such as Pillar 3 of the Basel II Accord, have a marginal effect.
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Given that the minimum capital requirement under the IRB approach translates into a target
external credit rating of approximately BBB–, and most large, internationally active banks target
an external credit rating of around AA–, BCBS (2006) contends that “[s]upervisors should expect
banks to operate above the minimum regulatory capital ratios and should have the ability to
require banks to hold capital in excess of the minimum.” Indeed, this appears to be the experience
in Australia since the implementation of Basel II.

1.4 Asset Value Factor Models of Credit Risk

The Basel II IRB approach implements an asset value factor model of credit risk. Asset value
models posit that default or survival of a firm depends on the value of its assets at a given risk
measurement horizon. If the value of its assets falls below a critical threshold, its default point,
the firm defaults, otherwise it survives. Asset value models have their roots in Merton’s seminal
paper published in 1974. Moody’s KMV, RiskMetrics and most (bank) internal models of credit
risk are of the asset value variety. Like the model specification of the IRB approach, they too are
generally factor models — a well established, computationally efficient technique for explaining
dependence between variables. The classical structural approach of Merton, and the single factor
conditional independence model that forms the basis of the IRB approach are explained in detail
in Chapter 2. Here we sketch the basic structure of asset value factor models.

Consider a portfolio comprising n obligors, and assume that the time evolution of obligors’
asset values is modelled as geometric Brownian motion. Then, log-returns on obligors’ asset
values are normally distributed with factor model representation

ri = βiΨi + εi (1.6)

for i = 1, . . . , n. In multi-factor models Ψi is the composite factor of obligor i, a weighted sum
of several factors (Bluhm et al. 2010). Notice that (1.6) is a linear regression equation, where
coefficient βi is the sensitivity of ri to Ψi, and εi is the residual. It is assumed that residuals εi
are uncorrelated with one another and independent of composite factors Ψi. Accordingly, Ψi

and εi are normally distributed. Coefficient βi captures the correlation between ri and Ψi, that
is, log-returns on obligors’ asset values are correlated only through exposure to their composite
factors. For this reason Ψi is referred to as the systematic component of ri, whereas εi is termed
the specific or idiosyncratic component.

Multi-factor models decompose every composite factor Ψi into m risk indices ψk:

Ψi =

m∑
k=1

ui,kψk, (1.7)

where ui,k are risk index weights for obligor i, with
∑m
k=1 ui,k = 1 for i = 1, . . . , n, and ui,k ≥ 0

for all i and k. Moody’s KMV, for example, decomposes each obligor’s composite factor into
country and industry indices (Bluhm et al. 2010). In expanded form (1.6) is analogous to the
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1. Preliminaries

multi-factor arbitrage pricing theory. For single factor models (1.6) reduces to

ri = βiΨ + εi (1.8)

for i = 1, . . . , n, where Ψ is the systematic factor common to all obligors, analogous to the capital
asset pricing model.

Denote by Ai(τ) the value of assets of obligor i at risk measurement horizon τ > 0. Suppose
that obligor i defaults in the period [0, τ ] if Ai(τ) falls below a critical threshold Bi specific
to each obligor. Observing that ri = log

(
Ai(τ)/Ai(0)

)
, we give equivalent formulations of the

default condition:

Ai(τ) < Bi,

βiΨi + εi < log
Bi
Ai(0)

,

εi < logBi − logAi(0)− βiΨi. (1.9)

The representation of asset value log-returns with respect to underlying systematic and idio-
syncratic risk factors is typically expressed in a standardised form. Denote by E[ri] and Var(ri)

the expected value and variance, respectively, of log-returns on asset values of obligor i, and
let σi =

√
Var(ri) . Then, standardising asset value log-returns, representation (1.6) may be

expressed as

r̃i =
ri − E[ri]

σi
=
βi
σi

Ψ̃i + ε̃i, (1.10)

where r̃i and Ψ̃i are normally distributed with mean zero and unit variance, r̃i ∼ N (0, 1) and
Ψ̃i ∼ N (0, 1). It follows that ε̃i ∼ N

(
0, 1− β2

i /σ
2
i

)
. The coefficient of determination, R2,

of regression equation (1.10) is the proportion of the variability in r̃i explained by its linear
relationship with Ψ̃i, equal to β2

i /σ
2
i . The correlation between r̃i and Ψ̃i is equal to

√
R2 , or

βi/σi. Moreover, if dependence is explained by a single factor Ψ̃ common to all obligors, then
the pairwise correlation between obligors’ asset values is given by

Corr(r̃i, r̃j) =
Cov(r̃i, r̃j)√

Var(r̃i) Var(r̃j)
=

E[r̃ir̃j ]− E[r̃i]E[r̃j ]√
Var(r̃i) Var(r̃j)

= E[r̃ir̃j ] =
βiβj
σiσj

E[Ψ̃2] =
βiβj
σiσj

, (1.11)

where Cov(r̃i, r̃j) is the covariance of r̃i and r̃j . Let ci be the critical threshold corresponding to
Bi in (1.9) after exchanging Ai(τ) for r̃i. Then, the default condition may be formulated as

r̃i < ci,

ε̃i < ci −
βi
σi

Ψ̃i. (1.12)

In Chapter 2 we deduce a standardised1 default condition for the single factor conditional
independence model that forms the basis of the IRB approach, and proceed to derive a function
that transforms unconditional probabilities of default into probabilities of default conditional on
a single systematic risk factor.

1 Normalised to have mean zero and unit variance.
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CHAPTER 2
Foundations of the Asymptotic

Single Risk Factor Model

Under the Basel II IRB approach to capital adequacy for credit risk, regulatory capital charges
are assessed to absorb “unexpected” losses, which we define in Chapter 4, on a portfolio of
credits over a given risk measurement horizon at a very high confidence level. In this chapter we
derive the theoretical foundations of the model specification of the IRB approach, the so-called
asymptotic single risk factor (ASRF) model. The model is described in Chapter 4, which outlines
minimum capital requirements under the IRB approach. Before dealing with the complications
that arise with a portfolio of credits, we first consider a single credit, or loan, and introduce some
basic terminology and formulae. Define set D, abstractly, as the event of default. Then, credit
loss is a random quantity given by

Loss = EAD× LGD× 1D,

where:

• exposure at default (EAD) is the sum of outstanding (i.e., already drawn) exposures and
expected drawdowns on commitments;

• loss given default (LGD) is the percentage of exposure that is not recovered in the event
of default; and

• indicator function 1D =

1 if the event represented by set D occurs,

0 otherwise.

Assuming that EAD and LGD are deterministic quantities,

Expected Loss = EAD× LGD× E[1D] = EAD× LGD× PD,
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2. Foundations of the Asymptotic Single Risk Factor Model

where the expectation of the indicator function is the probability of the associated event, that
is, the probability of default (PD).

The portfolio loss is simply the sum of losses on constituent credits. If default events in a
credit portfolio were independent, then given EAD, LGD and PD estimates for the constituent
credits, we could generate independent, uniformly distributed random variables and simulate
the portfolio loss distribution. Unfortunately, for the typical credit portfolio default events are
not independent, so correlations play a fundamental role in credit risk modelling. An obvious
solution to simulating the loss distribution of a credit portfolio is to generate random variables
with a correlation matrix that describes default correlations. The usual technique for generat-
ing correlated random variables involves the Cholesky decomposition1 of the correlation matrix.
Although Cholesky decomposition is a computationally intensive matrix factorisation for a large
portfolio comprising thousands of credits, tuned linear algebra routines perform matrix factori-
sations rather efficiently. A greater challenge of this approach, however, is estimating default
correlations, since defaults do not occur often and the limited data available indicate that corre-
lations change over time. Accordingly, in generating the empirical loss distribution of a credit
portfolio, we adopt the conventional approach of modelling asset correlations.2

The IRB approach implements an asset value factor model of credit risk. Asset value models
posit that default or survival of a firm depends on the value of its assets at (the end of) a given
risk measurement horizon. If the value of its assets falls below a critical threshold, its default
point, the firm defaults, otherwise it survives. Asset value models have their roots in the classical
structural approach of Merton. Factor models are a well established, computationally efficient
technique for explaining dependence between variables. Section 2.1 introduces the classical struc-
tural approach to credit risk modelling, originally developed by Merton (1974), which formulates
liabilities of a firm as contingent claims on its assets. Adapting the single asset model of Merton
to a portfolio of credits, Vasicek (2002) derived a function that transforms unconditional PDs
into PDs conditional on a single systematic risk factor. This function, derived in Section 2.2, is
the kernel of the model specification of the IRB approach. In Section 2.3 we extend Vasicek’s
model of conditional independence to a more general setting, one not restricted to Gaussian pro-
cesses. Gordy (2003) established that conditional on a single systematic risk factor, the portfolio
percentage loss converges to its conditional expectation as the portfolio approaches asymptotic
granularity — no single credit exposure accounts for more than an arbitrarily small share of total
portfolio exposure. The proof is given in Section 2.4. Assuming conditional independence given a
single systematic risk factor, Section 2.5 derives a limiting form of the portfolio loss distribution
for the general case. It generalises Vasicek’s (2002) formulation of the loss distribution function

1 Let X = (X1, . . . , Xn) be a vector of independent standard Gaussian random variables, X ∼ N (0, In). Let
Y = (Y1, . . . , Yn) = LX, where L ∈ Rn×n is a linear transformation and Y ∼ N (0,Γ). Then,

Γ = E[YYT ] = E[(LX)(LX)T ] = E[L(XXT )LT ] = LE[XXT ]LT = LInL
T = LLT ,

where L is the Cholesky factor of Γ.
2 An alternative to structural and reduced form approaches employs a multivariate intensity-based model of

correlated defaults.
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2.1. Classical Structural Approach

of an asymptotic, homogeneous portfolio, which models default dependence as a multivariate
Gaussian process. The model specification of the IRB approach employs an analytical approx-
imation of credit value-at-risk (VaR), which is defined in Section 2.6. It rests on the proposition,
due to Gordy (2003), that quantiles of the distribution of conditional expectation of portfolio
percentage loss may be substituted for quantiles of the portfolio loss distribution. We present a
more compact proof of this proposition starting from weaker assumptions.

2.1 Classical Structural Approach

The structural approach to credit risk modelling, originally developed by Merton (1974), for-
mulates liabilities of a firm as contingent claims on its assets.3 Suppose that a firm with asset
value A(t) at time t is financed by equity and a zero-coupon bond with face value B and maturity
date τ . If the firm cannot meet its contractual obligation to pay investors the principal amount
of the bond at maturity, then the bondholders take over the firm. That is, the firm defaults if
the value of its assets falls below the principal amount of its debt at maturity, wiping out the
firm’s equity.

We describe the time evolution of asset values in terms of adapted stochastic processes measur-
able with respect to a filtration on a probability space. These concepts are formally defined in
Appendix 2.C. The standard model of stock prices, and asset values, is geometric Brownian
motion. Expressly for the purpose of describing the stochastic differential equation for asset
values and its solution, Appendix 2.D defines Brownian motion and an Itô process, and states
Itô’s formula for Itô processes.

Let F(t), t ≥ 0, be an associated filtration, and let µ(t) and σ(t) be adapted stochastic
processes. Define the Itô process

X(t) =

∫ t

0

(
µ(s)− 1

2σ
2(s)

)
ds+

∫ t

0

σ(s) dW (s),

which may be expressed in differential form as

dX(t) =
(
µ(t)− 1

2σ
2(t)

)
dt+ σ(t) dW (t).

Then, consider the integral form of generalised geometric Brownian motion modelling the time-
evolution of asset values:

A(t) = A(0) exp

{∫ t

0

(
µ(s)− 1

2σ
2(s)

)
ds+

∫ t

0

σ(s) dW (s)

}
,

where A(0) is deterministic and positive. We may express A(t) as a function of X(t), writing
A(t) = f

(
X(t)

)
= A(0) eX(t). Differentiating with respect to X(t) yields f ′

(
X(t)

)
= A(0) eX(t),

3 The structural approach to credit risk modelling relates default to the value of the underlying assets of the
obligor, while the reduced form approach prices credit instruments off observable term structures of interest rates
for alternative credit qualities.
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2. Foundations of the Asymptotic Single Risk Factor Model

and f ′′
(
X(t)

)
= A(0) eX(t). Next, applying Itô’s formula (Remark 2.52) we obtain

dA(t) = df
(
X(t)

)
= f ′

(
X(t)

)
dX(t) +

1

2
f ′′
(
X(t)

)
d[X,X](t)

= A(0) eX(t) dX(t) +
1

2
A(0) eX(t) σ2(t) dt

= A(t)
[(
µ(t)− 1

2σ
2(t)

)
dt+ σ(t) dW (t)

]
+

1

2
A(t)σ2(t) dt

= µ(t)A(t) dt+ σ(t)A(t) dW (t).

This equation describes, in differential form, the time evolution of asset values A(t) with instan-
taneous mean rate of return µ(t) and volatility σ(t). In the case of constant µ and σ, the solution
to the stochastic differential equation is geometric Brownian motion:

A(t) = A(0) exp
{(
µ− 1

2σ
2
)
t+ σW (t)

}
. (2.1)

Taking the natural logarithm of both sides of (2.1) yields

logA(t) = logA(0) + µt− 1
2σ

2t+ σW (t). (2.2)

According to the self-similarity property of Brownian motion, W (t) ∼ N (0, t) is distributionally
equivalent to

√
tW (1), which we write

√
tW . Latent random variable W is standard Gaussian,

W ∼ N (0, 1). Then, we may write

logA(t) = logA(0) + µt− 1
2σ

2t+ σ
√
tW. (2.3)

Under the postulate that a firm defaults if the value of its assets A(τ) falls below the principal
amount of its debt B at maturity τ , the unconditional PD is given by

p = P(D) = P
(
A(τ) < B

)
= P

(
logA(τ) < logB

)
= P

(
logA(0) + µτ − 1

2σ
2τ + σ

√
τ W < logB

)
= P

(
W <

logB − logA(0)− µτ + 1
2σ

2τ

σ
√
τ

)
= Φ

(
logB − logA(0)− µτ + 1

2σ
2τ

σ
√
τ

)
, (2.4)

where Φ is the standard Gaussian distribution function (Giesecke 2004). Thus, the event of
default is more precisely defined by set

D =

{
W <

logB − logA(0)− µτ + 1
2σ

2τ

σ
√
τ

}
. (2.5)

We proceed to define distance-to-default as the negative of the right-hand side of the inequality
in (2.5):

d =
logA(0)− logB + µτ − 1

2σ
2τ

σ
√
τ

. (2.6)
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2.2. Conditional Independence Model

2.2 Conditional Independence Model

Adapting the single asset model of Merton to a portfolio of credits, Vasicek (2002) derived a
function that transforms unconditional PDs into PDs conditional on a single systematic risk
factor. This function is the kernel of the model specification of the IRB approach.

Remark 2.1. Vasicek (2002) considered a portfolio consisting of n loans with equal dollar ex-
posure, and assumed that the probability of default of any one loan is p and asset correlation
between borrowers is ρ. In developing the model specification of the IRB approach, BCBS
(2005) extended Vasicek’s model of conditional independence to accommodate obligor specific
EAD, LGD, unconditional PD and asset correlation.

Let the sequence of random variables {Ln} be the percentage loss on a credit portfolio com-
prising n ∈ N obligors over a given risk measurement horizon [0, τ ], τ > 0. We make the assump-
tion that the number of credits in the portfolio equals the number of distinct obligors. This can
be achieved by aggregating multiple credits of an individual obligor into a single credit by cal-
culating exposure weighted unconditional PDs and LGD rates. Assume that EAD and LGD are
deterministic quantities, and denote by δi ∈ R+ and ηi ∈ [0, 1] the EAD and LGD, respectively,
assigned to obligor i. Also, define set Di, abstractly, as the event that obligor i defaults during
the risk measurement horizon. Then, the portfolio percentage loss is given by

Ln =

n∑
i=1

wiηi1Di , (2.7)

where wi = δi/
∑n
j=1 δj is the exposure weight of obligor i, and

∑n
i=1 wi = 1. Clearly, wi depends

on n and could be denoted wi(n), but we adopt the more concise, and more common, notation
for exposure weight.

Remark 2.2. Define random variable Λk = δkηk1Dk . If {Λk}k∈N were a sequence of independent
identically distributed random variables, then the portfolio loss distribution would converge, by
the central limit theorem (Theorem 2.64), to a Gaussian distribution as the number of credits
in the portfolio increases. Firstly, the distributions of Λk, for k = 1 . . . n, are not identical. The
dollar loss on a portfolio comprising n obligors may be interpreted as the partial sum of order n
of the infinite series with terms Λk — Poisson trials4 weighted by their respective EAD and LGD,
which may vary from credit to credit. While not identical, the variation in distributions of the
sequence of random variables {Λk}1≤k≤n for the typical credit portfolio is small enough that the
portfolio loss distribution would be approximately Gaussian if default events were independent.

Default dependence, however, has a much greater effect on the portfolio loss distribution.
Figure 6.1 plots the empirical loss distribution for a representative credit portfolio in which
obligors’ asset values are correlated, and hence defaults are not independent. Illustrating the

4 Poisson trials are independent repeated trials of an experiment with two possible outcomes labelled “success”
and “failure”. Define random variables Xi so that Xi takes the value 1 if the outcome of the experiment is success,
and 0 otherwise. The probability function is P(X = 1) = pi and P(X = 0) = 1 − pi, pi ∈ (0, 1), and random
variables Xi are all independent.
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2. Foundations of the Asymptotic Single Risk Factor Model

fundamental role of correlation in credit risk modelling, Figure 6.3 plots the empirical loss distri-
bution for the same representative credit portfolio, except that obligors’ asset values are assumed
to be uncorrelated, and hence defaults independent. In the latter case the portfolio loss distri-
bution is approximately Gaussian.

It follows from (2.2) that asset values at time t of obligors constituting a credit portfolio may
be expressed in logarithmic form as

logAi(t) = logAi(0) + µit− 1
2σ

2
i t+ σiWi(t) (2.8)

for i = 1, . . . , n. Dependence across obligors is described by the pairwise correlation between
Brownian motions W1(t), . . . ,Wn(t) modelling the variability in obligors’ asset values. In the
conditional independence model that emerges, dependence across obligors is induced by the
quadratic covariation between Brownian motion Wi(t), 1 ≤ i ≤ n, and correlated Brownian
motion Y (t) common to all obligors.

Firstly, we decompose Brownian motion Wi(t) into Itô processes, one with respect to corre-
lated Brownian motion Y (t), another which we characterise in Proposition 2.3. Then, assum-
ing constant asset correlations, Proposition 2.5 deduces the pairwise asset correlation between
obligors’ asset values. Next, applying the self-similarity property of Brownian motion, we reduce
Wi(t) to a standard Gaussian random variable, which is decomposed into systematic and idio-
syncratic risk factors. Finally, substituting this representation into the set defining the event of
default, we follow Vasicek (2002) in deriving a function that transforms unconditional PDs into
PDs conditional on a single systematic risk factor.

Proposition 2.3. LetWi(t) and Y (t) be correlated Brownian motions with quadratic covariation
d[Wi, Y ](t) =

√
ρi(t) dt, where ρi(t) ∈ (0, 1) is an adapted stochastic process. Define stochastic

process Zi(t), where Zi(0) = 0, such that

Wi(t) =

∫ t

0

√
ρi(s) dY (s) +

∫ t

0

√
1− ρi(s) dZi(s). (2.9)

Then, Y (t) and Zi(t) are independent Brownian motions.

The proof uses the one-dimensional Lévy theorem to establish that Zi(t) is a Brownian
motion, and the two-dimensional Lévy theorem to show that Y (t) and Zi(t) are independent. The
one-dimensional Lévy theorem characterises a Brownian motion as a martingale with continuous
paths whose quadratic variation is [W,W ](t) = t. Appendix 2.D defines a martingale, enumerates
properties of the Itô integral, and states the one- and two-dimensional Lévy theorems.

Proof of Proposition 2.3. Equation (2.9) may be written in differential form as

dWi(t) =
√
ρi(t) dY (t) +

√
1− ρi(t) dZi(t). (2.10)

Rearranging (2.10),

dZi(t) =
−
√
ρi(t)√

1− ρi(t)
dY (t) +

1√
1− ρi(t)

dWi(t). (2.11)
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Zi(t) is a Brownian motion if it satisfies the conditions of Theorem 2.55:

(1) By hypothesis, Zi(0) = 0.

(2) Writing (2.11) in integral form yields

Zi(t) = Zi(0)−
∫ t

0

√
ρi(s)√

1− ρi(s)
dY (s) +

∫ t

0

1√
1− ρi(s)

dWi(s), (2.12)

where Zi(0) = 0. By the continuity property of Theorem 2.54, the Itô integrals on the
right-hand side of (2.12) are continuous. It follows that Zi(t) has continuous paths.

(3) By the martingale property of Theorem 2.54, the Itô integrals on the right-hand side of
(2.12) are martingales. Accordingly, Zi(t) is a martingale.

(4) The quadratic variation of Zi(t) is calculated as

d[Zi, Zi](t) =
ρi(t)

1− ρi(t)
d[Y, Y ](t) +

1

1− ρi(t)
d[Wi,Wi](t)−

2
√
ρi(t)

1− ρi(t)
d[Wi, Y ](t)

=
ρi(t)

1− ρi(t)
dt+

1

1− ρi(t)
dt− 2ρi(t)

1− ρi(t)
dt

= dt.

It follows that [Zi, Zi](t) = t for all t ≥ 0.

Thus, Zi(t) is a Brownian motion.
Finally, by Theorem 2.56, Y (t) and Zi(t) are independent Brownian motions if their quadratic

covariation is zero:

d[Zi, Y ](t) =
−
√
ρi(t)√

1− ρi(t)
d[Y, Y ](t) +

1√
1− ρi(t)

d[Wi, Y ](t)

=
−
√
ρi(t)√

1− ρi(t)
dt+

√
ρi(t)√

1− ρi(t)
dt

= 0.

In the case of constant ρi ∈ (0, 1), (2.9) may be expressed as

Wi(t) =
√
ρi Y (t) +

√
1− ρi Zi(t), (2.13)

where Y (t) and Zi(t) are independent Brownian motions, and Wi(t) and Y (t) are correlated
Brownian motions with quadratic covariation [Wi, Y ](t) =

√
ρi t. In a credit portfolio comprising

n obligors we suppose that Brownian motions Z1(t), . . . , Zn(t) and Y are mutually indepen-
dent, and correlation parameters ρ1, . . . , ρn ∈ (0, 1). Using (2.13) we verify that, consistent with
Definition 2.47, Brownian motions W1(t), . . . ,Wn(t) have expectation

E[Wi(t)] =
√
ρi E[Y (t)] +

√
1− ρi E[Zi(t)] = 0,
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2. Foundations of the Asymptotic Single Risk Factor Model

and variance

Var(Wi(t)) = ρi Var(Y (t)) + (1− ρi) Var(Zi(t)) = ρit+ (1− ρi)t = t

for i = 1, . . . , n.

Remark 2.4. Equation (2.13), governing correlated Brownian motions, is usually expressed in
the form Wi(t) = ρiY (t) +

√
1− ρ2

i Zi(t), where ρi ∈ (−1, 1). The formulation we’ve adopted,
which assumes that Brownian motions are positively correlated, is borrowed from Vasicek (2002)
and employed in the model specification of the IRB approach. We follow the same convention
as the IRB approach for the Gaussian case, because the concern of our research is the IRB
approach. In Section 2.3 we extend the conditional independence model developed here to a
more general setting, and adopt a formulation of stochastic processes that admits positive and
negative correlation.

Proposition 2.5. Let the variability in obligors’ asset values be described by (2.13), where
Y (t) and Zi(t) are independent Brownian motions, and Wi(t) and Y (t) are correlated Brownian
motions with quadratic covariation [Wi, Y ](t) =

√
ρi t, ρi ∈ (0, 1). Assume that for the pair

(Wi(t),Wj(t)), i 6= j, Brownian motions Zi(t) and Zj(t) are independent. Then, the pairwise
correlation between obligors’ assets values Corr(Wi(t),Wj(t)) =

√
ρiρj .

The proof uses Itô’s product rule, which is the result of an application of Itô’s formula in
two-dimensions, where X(t) and Y (t) are Itô processes and f(t, x, y) = xy. Appendix 2.D states
Itô’s formula in two-dimensions and product rule.

Proof of Proposition 2.5. The pair of Brownian motions (Wi(t),Wj(t)), i 6= j may be represented
in differential form as

dWi(t) =
√
ρi dY (t) +

√
1− ρi dZi(t),

and
dWj(t) =

√
ρj dY (t) +

√
1− ρj dZj(t).

Then, applying Itô’s product rule (Corollary 2.58) we have

d
(
Wi(t)Wj(t)

)
= Wj(t) dWi(t) +Wi(t) dWj(t) + d[Wi,Wj ](t)

= Wj(t) dWi(t) +Wi(t) dWj(t) +
√
ρiρj dt.

Integrating and taking expectations of both sides yields

E[Wi(t)Wj(t)] = E
[∫ t

0

Wj(s) dWi(s)

]
+ E

[∫ t

0

Wi(s) dWj(s)

]
+ E

[∫ t

0

√
ρiρj ds

]
=
√
ρiρj t.

Note that the first two terms on the right-hand side of the first equality are Itô integrals, which
have expectation zero since they are martingales. So, the covariance of Wi(t) and Wj(t) is

Cov(Wi(t),Wj(t)) = E[Wi(t)Wj(t)]− E[Wi(t)]E[Wj(t)] =
√
ρiρj t
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2.2. Conditional Independence Model

with E[Wi(t)] = E[Wj(t)] = 0. Finally, the correlation between Wi(t) and Wj(t) is given by

Corr(Wi(t),Wj(t)) =
Cov(Wi(t),Wj(t))√

Var(Wi(t)) Var(Wj(t))
=

√
ρiρj t√
t2

=
√
ρiρj . (2.14)

Corollary 2.6. Let the variability in obligors’ asset values be described as in Proposition 2.5.
Assume that ρi = ρj = ρ for i, j ∈ N. Then obligors’ asset values are equicorrelated, and the
pairwise correlation between obligors’ assets values Corr(Wi(t),Wj(t)) = ρ, i 6= j.

Proof. Substituting for ρi and ρj in (2.14) yields Corr(Wi(t),Wj(t)) =
√
ρ2 = ρ.

In our exposition of the structural approach we assume that an obligor defaults if the value
of its assets at a given risk measurement horizon falls below its contractual obligations payable.
Equation (2.8) expresses the time-evolution of asset values in logarithmic form. By the self-
similarity property of Brownian motion, Wi(t) is distributionally equivalent to

√
tWi(1), which

we write
√
tWi. Hence, the value of assets of obligor i at risk measurement horizon τ may be

expressed in logarithmic form as

logAi(τ) = logAi(0) + µiτ − 1
2σ

2
i τ + σi

√
τ Wi, (2.15)

where latent random variable Wi is standard Gaussian, Wi ∼ N (0, 1). It follows from (2.4) that
the unconditional probability of default of obligor i is given by

pi = P(Di) = P(Ai(τ) < Bi)

= P(Wi < ci)

= Φ(ci), (2.16)

where

ci =
logBi − logAi(0)− µiτ + 1

2σ
2
i τ

σi
√
τ

= Φ−1(pi). (2.17)

Then, assuming that unconditional PDs are published as market data, the event that obligor i
defaults during the risk measurement horizon is more precisely defined by set

Di =
{
Wi < Φ−1(pi)

}
. (2.18)

Notice that unconditional PD, given by (2.16), is a function of τ . In the conditional independence
model that follows, we fix τ , say a one-year horizon, and conditional PD is a function of y.

Now, applying the self-similarity property of Brownian motion to (2.13) we may represent
latent random variables W1, . . . ,Wn in (2.15) as

Wi =
√
ρi Y +

√
1− ρi Zi, (2.19)

where random variables Z1, . . . , Zn and Y are standard Gaussian and mutually independent, and
ρ1, . . . , ρn ∈ (0, 1) are correlation parameters calibrated to market data. Thus, W1, . . . ,Wn are
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2. Foundations of the Asymptotic Single Risk Factor Model

conditionally independent given random variable Y , which is common to all obligors. System-
atic risk factor Y may be interpreted as an underlying risk driver or economic factor, with each
realisation describing a scenario of the economy. Random variables Z1, . . . , Zn represent idio-
syncratic, or obligor specific, risk. As highlighted in Remark 2.4, we follow the same convention
as the IRB approach and adopt representation (2.19) for the Gaussian case.

Conditional independence of obligors’ asset values implies that, given Y = y, observations of
the indicator function are independent — Poisson trials with parameter pi(y) = E[1Di |Y = y].
Substituting representation (2.19) into set (2.18) representing the event of default, the PD of
obligor i conditional on realisation y ∈ R of systematic risk factor Y , or conditional probability
of default, may be expressed as

pi(y) = P(Di |Y = y) = P
(
Wi < Φ−1(pi) |Y = y

)
= P

(√
ρi y +

√
1− ρi Zi < ci

)
= P

(
Zi <

ci −
√
ρi y√

1− ρi

)
= Φ

(
Φ−1(pi)−

√
ρi y√

1− ρi

)
, (2.20)

where pi = E
[
E[1Di |Y ]

]
is the unconditional PD of obligor i. Equation (2.20) transforms

unconditional PDs into PDs conditional on a single systematic risk factor.
Let

ζi(y) =
Φ−1(pi)−

√
ρi y√

1− ρi
= Φ−1

(
pi(y)

)
(2.21)

for i = 1, . . . , n. Then, given Y = y, the portfolio percentage loss is calculated as

Ln =

n∑
i=1

wiηi1{Zi<ζi(y)}. (2.22)

Equation (2.22), which is motivated by the classical structural approach, is widely employed in
the simulation of portfolio loss distributions using market data — unconditional PDs, LGD rates
and asset correlations published by the likes of Moody’s KMV and RiskMetrics.

In the sequel we refer to the model developed in this section as the Gaussian conditional
independence model of a credit portfolio.

2.3 A More General Setting

We proceed to extend the Gaussian conditional independence model to a more general setting. In
Section 2.2 we assume that: (i) defaults are conditionally independent given a single systematic
risk factor; and (ii) obligors’ asset values are modelled by geometric Brownian motion. The
latter assumption implies that latent random variables modelling the variability in obligors’
asset values, and their component systematic and idiosyncratic risk factors, are Gaussian. By
relaxing this assumption, we describe a more general setting for stochastic processes. Firstly, we
define self-similar stochastic processes.
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2.3. A More General Setting

Definition 2.7 (Embrechts, Klüppelberg, et al. 2000, Definition 8.9.1). A stochastic process
{X(t), t ∈ [0,∞)}, is said to be self-similar with index H > 0 (H-s.s.) if its finite-dimensional
distributions satisfy the relation

{X(at)} D= {aHX(t)}

for any a > 0.

Assume that stochastic processesW1(t), . . . ,Wn(t) are correlated with stochastic process Y (t),
and admit representation

Wi(t) = γiY (t) +
√

1− γ2
i Zi(t).

Note that in the general setting developed in this section, stochastic processes W1(t), . . . ,Wn(t),
and hence Z1(t), . . . , Zn(t) and Y (t), are no longer Brownian motions, in general. Suppose,
too, that stochastic processes W1(t), . . . ,Wn(t) are self-similar with index b > 0. Then, by
Definition 2.7 we may write

tbWi(1) = γit
bY (1) +

√
1− γ2

i t
bZi(1).

Fixing t, say equal to risk measurement horizon τ , and writing Wi for Wi(1), we have

Wi = γiY +
√

1− γ2
i Zi, (2.23)

where Z1, . . . , Zn and Y are mutually independent random variables, and γ1, . . . , γn ∈ (−1, 1) are
correlation parameters calibrated to market data. Again, systematic risk factor Y is commonly
interpreted as the state of the economy, while Z1, . . . , Zn represent idiosyncratic, or obligor
specific, risk. Note that here asset values may be positively or negatively correlated. The self-
similarity property allows us to standardise the representation of stochastic processes to the unit
time interval. For stochastic processes, in general, (2.23) provides a correct representation for
any fixed time horizon.

Remark 2.8. Since Brownian motion Wi(t) of Proposition 2.5 is a special case of the general
setting in which Wi(t) is a stochastic process, Proposition 2.5 does not determine pairwise corre-
lation between stochastic processes, in general.

Remark 2.9. We may continue to interpret the event that obligor i defaults during a given risk
measurement horizon as the event that the value of its assets at the risk measurement horizon
falls below its contractual obligations payable. However, as indicated previously, we no longer
imply that the unconditional PD assigned to obligor i, denoted by pi, is derived from fundamental
analysis by applying the structural approach. Instead, in the sequel, we assume that pi, scaled
to a given risk measurement horizon, is a model input determined by the market.

Formalising representation (2.23) of conditionally independent random variables, and recast-
ing set (2.18) representing the event of default for the general case, we define a conditional
independence model of a credit portfolio. Unless otherwise stated, results in the sequel apply to
the conditional independence model for the general case defined here.
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2. Foundations of the Asymptotic Single Risk Factor Model

Definition 2.10. A conditional independence model of a credit portfolio comprising n ∈ N
obligors over a given risk measurement horizon [0, τ ], τ > 0, takes the form:

(1) Let δi ∈ R be the EAD assigned to obligor i, and wi = δi/
∑n
j=1 δj its exposure weight.

Let ηi ∈ [0, 1], γi ∈ (−1, 1) and pi ∈ (0, 1) be the LGD, asset correlation and unconditional
PD, respectively, assigned to obligor i.

(2) Suppose that latent random variablesW1, . . . ,Wn are conditionally independent, and admit
representation

Wi = γiY +
√

1− γ2
i Zi, (2.24)

where Z1, . . . , Zn and Y are mutually independent random variables. Systematic risk
factor Y is common to all obligors, while Z1, . . . , Zn represent idiosyncratic, or obligor
specific, risk. Denote by F1, . . . , Fn, G1, . . . , Gn and H the continuous and strictly in-
creasing distribution functions of W1, . . . ,Wn, Z1, . . . , Zn and Y , respectively. Clearly, Fi
depends on Gi and H for i = 1, . . . , n.

(3) The event that obligor i defaults during the time interval [0, τ ] is defined by the set

Di =
{
Wi < F−1

i (pi)
}

(2.25)

for i = 1, . . . , n.

Portfolio percentage loss Ln is calculated by (2.7) where, for the general case, 1Di is the
indicator function of the default event defined by (2.25). Recasting argument (2.21) of the
default indicator function and conditional probability function (2.20) for the general case, we
deduce a formula for portfolio percentage loss conditional on realisation y ∈ R of systematic
risk factor Y . Thus, given Y = y, portfolio percentage loss under the conditional independence
model of Definition 2.10 is calculated as:

Ln =

n∑
i=1

wiηi1{Zi<ζi(y)}, (2.26)

where

ζi(y) =
F−1
i (pi)− γiy√

1− γ2
i

= G−1
i

(
pi(y)

)
, (2.27)

and

pi(y) = P(Di |Y = y) = Gi

(
F−1
i (pi)− γiy√

1− γ2
i

)
(2.28)

for i = 1, . . . , n.

Remark 2.11. In the abstract case where conditional PD, as well as unconditional PD and asset
correlation, are known and the state of the economy is sought, we take the inverse of (2.28).
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2.4. Conditional Expectation of Portfolio Percentage Loss

Conditional probability function pi : R→ (0, 1), given by (2.28), is continuous and strictly de-
creasing in y — conditional PD falls (respectively, rises) as the economy improves (deteriorates).
Hence, its inverse p−1

i : (0, 1)→ R is strictly decreasing too. In particular,

y = p−1
i (x) =

F−1
i (pi)−

√
1− γ2

i G
−1
i (x)

γi
(2.29)

for all x ∈ (0, 1).

Remark 2.12. Let y = H−1(1−α), where α ∈ (0, 1). Then, the PD of obligor i conditional on
Y = y may be interpreted as the probability of default of obligor i is no greater than

P
(
Di |Y = H−1(1−α)

)
= pi

(
H−1(1−α)

)
= Gi

(
F−1
i (pi)− γiH−1(1−α)√

1− γ2
i

)
(2.30)

in (α× 100)% of economic scenarios.

2.4 Conditional Expectation of Portfolio Percentage Loss

The model specification of the IRB approach calculates the expectation of portfolio credit losses
conditional on realisation y ∈ R of systematic risk factor Y . Taking expectations of (2.7)
and (2.26), respectively, we define the expected portfolio percentage loss as

E[Ln] =

n∑
i=1

wiηipi, (2.31)

and the conditional expectation of portfolio percentage loss as

E[Ln |Y = y] =

n∑
i=1

wiηipi(y). (2.32)

Remark 2.13. Conditional expectation function E[Ln |Y ] : R→ (0, 1), given by (2.32), is con-
tinuous and strictly decreasing in y — conditional expectation of portfolio percentage loss falls
(respectively, rises) as the economy improves (deteriorates).

Key propositions underpinning the model specification of the Basel II IRB approach are
derived for an asymptotic portfolio, often described as infinitely fine-grained, in which no single
credit exposure accounts for more than an arbitrarily small share of total portfolio exposure.
Accordingly, our derivation of the model specification of the IRB approach requires a mathemat-
ically more precise definition of asymptotic granularity.

Definition 2.14. Let ∆ =
∑∞
k=1 δk be an infinite series whose terms δk ∈ R+ represent EAD

assigned to obligors constituting a credit portfolio:

(1) The partial sums of ∆ of order n, are defined for n ∈ N as

∆n =

n∑
k=1

δk.
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2. Foundations of the Asymptotic Single Risk Factor Model

(2) An asymptotic portfolio satisfies
∞∑
n=1

(
δn
∆n

)2

<∞.

Remark 2.15. An application of Kronecker’s lemma (Lemma 2.66) shows that exposure weights
of credits constituting a portfolio shrink very rapidly as the number of obligors, n, tends to
infinity:

∞∑
k=1

(
δk
∆k

)2

<∞ =⇒ 1

∆2
n

n∑
k=1

δ2
k =

n∑
k=1

w2
k → 0 as n→∞, (2.33)

where wk depends on n.

Remark 2.16. Suppose that a ≤ δk ≤ b where 0 < a ≤ b <∞ for all k ∈ N. Then,

∆n =

n∑
k=1

δk ≥ na→∞ as n→∞, (2.34)

and
∞∑
n=1

(
δn
∆n

)2

=

∞∑
n=1

δ2
n

(
∑n
k=1 δk)

2 ≤
∞∑
n=1

b2

(na)2
=
b2

a2

∞∑
n=1

1

n2
<∞, (2.35)

where (2.35) converges by the p-series test (Theorem 2.59). Assuming that EAD assigned to
individual obligors is bounded, an entirely uncontroversial claim, total EAD of an asymptotic
portfolio diverges, but (2.35) satisfies the definition of an asymptotic portfolio (Bluhm et al.
2010, Example 2.5.3).

Remark 2.17. Since LGD is bounded, ηk ∈ [0, 1] for k ∈ N, we could define an asymptotic port-
folio mathematically on the basis of infinite series

∑∞
k=1 ηkδk. Adopting a practitioner’s rather

than theoretician’s orientation, we choose to retain the distinction between EAD and LGD
throughout our mathematical treatment of credit risk modelling. Also, defining an asymp-
totic portfolio on the basis of infinite series

∑∞
k=1 δk leads to the more natural interpretation of

Remark 2.15, which expresses asymptotic granularity in terms of the convergence of an infinite
series whose terms are a function of exposure weight.

Many of the results in this chapter are established under different modes of convergence.
Some proofs, too, rely on results established under different modes of convergence. Appendix 2.E
provides a digest of definitions and theorems (and lemmas, corollaries, etc.) on the convergence of
sequences of random variables and measurable functions. Gordy (2003, Proposition 1) established
that, conditional on a single systematic risk factor, the portfolio percentage loss converges, almost
surely (Definition 2.61), to its conditional expectation as the portfolio approaches asymptotic
granularity.

Proposition 2.18. Assume a conditional independence model of an asymptotic credit portfolio.
Then,

lim
n→∞

(
Ln −

n∑
i=1

wiηipi(Y )

)
= 0, P-a.s. (2.36)
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2.4. Conditional Expectation of Portfolio Percentage Loss

Proof. It relies on a variant of the strong law of large numbers (Theorem 2.65) based on Kol-
mogorov’s convergence criterion and Kronecker’s lemma.

For a credit portfolio comprising n obligors, wi = δi/∆n is the exposure weight of obligor i.
Firstly, observe that given realisation y ∈ R of systematic risk factor Y , conditional variances
satisfy

∞∑
i=1

Var

(
δiηi1{Zi<ζi(y)}

∆i

)
=

∞∑
i=1

(
δi
∆i

)2

η2
i pi(y)(1− pi(y)) ≤

∞∑
i=1

(
δi
∆i

)2

<∞,

where Var
(
1{Zi<ζi(y)}

)
= pi(y)(1− pi(y)). Recall that E

[
1{Zi<ζi(y)}

]
= pi(y), and the sequence

of random variables {δkηk1{Zk<ζk(y)}/∆k} is independent with respect to Py. Then,

∞∑
i=1

δiηi
∆i

(
1{Zi<ζi(y)} − pi(y)

)
(2.37)

converges Py-almost surely by Kolmogorov’s convergence criterion (Theorem 2.67). Notice that
{δkηk(1{Zk<ζk(y)} − pk(y))} constitutes a sequence of random variables, and the sequence of real
numbers {∆k} is positive and strictly increasing to infinity. Next, applying Kronecker’s lemma
(Lemma 2.66) to infinite series (2.37) yields

1

∆n

n∑
i=1

δiηi
(
1{Zi<ζi(y)} − pi(y)

) a.s.−→ 0 as n→∞,

which implies that

lim
n→∞

(
Ln −

n∑
i=1

wiηipi(y)

)
= 0,

Py-almost surely for all y ∈ R. Accordingly, (2.36) holds P-almost surely.

Remark 2.19. The sequence {Ln}n∈N is bounded, but it is not monotone. Indicator function
1{Zi<ζi(y)} ∈ {0, 1} and ηi ∈ [0, 1] for i = 1, . . . , n, and

∑n
i=1 wi = 1 for all n ∈ N, where wi

depends on n. The dependence of exposure weights on the number of obligors is clear when
expressed as wi = δi/

∑n
j=1 δj . Consequently, Ln, and hence

∑n
i=1 wiηipi(y), may not converge

as n→∞.

Remark 2.20. In an asymptotic portfolio idiosyncratic risk is fully diversified away, so portfolio
percentage loss Ln depends only on systematic risk factor Y . Appendix 2.B illustrates the
vanishing idiosyncratic risk through diversification.

Remark 2.21. As a practical matter, credit portfolios of large banks are typically near the asymp-
totic granularity of Definition 2.14. Thus, given Y = y, (2.32) provides a statistically accurate
estimate of percentage loss on a portfolio containing a large number of credits without concen-
tration in a few names dominating the rest of the portfolio.
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2. Foundations of the Asymptotic Single Risk Factor Model

2.5 Limiting Form of Portfolio Loss Distribution

Risk capital for a credit portfolio is determined from its parametric or empirical loss distribution.
Assuming conditional independence given a single systematic risk factor, Vasicek (2002) derived
the parametric loss distribution function of an asymptotic, homogeneous credit portfolio. In
Section 2.4 we define an asymptotic portfolio, here we define a homogeneous portfolio.

Definition 2.22. Assume a conditional independence model of a credit portfolio. A homogeneous
portfolio comprising n obligors satisfies:

(1) Parameters γi = γ for i = 1, . . . , n in representation (2.24) of latent random variables
W1, . . . ,Wn.

(2) Random variables Z1, . . . , Zn are drawn from the same distribution described by the con-
tinuous and strictly increasing distribution function G. Also, denote by F the common
distribution function of W1, . . . ,Wn.

(3) Obligors are assigned equal unconditional PD and LGD, that is, pi = p and ηi = η for
i = 1, . . . , n.

Remark 2.23. From the properties of a homogeneous credit portfolio we infer that pi(y) = p(y)

for i = 1, . . . , n, and all realisations y ∈ R of systematic risk factor Y .

Remark 2.24. A homogeneous portfolio is often defined as one where constituent credits are
assigned equal dollar exposure so that wi = 1/n for i = 1, . . . , n. Key propositions underpinning
the Basel II IRB approach do not require the restrictive assumption of equal exposure weights.
Rather they rely on the asymptotic granularity of Definition 2.14. Accordingly, Definition 2.22
does not place conditions on the exposure weight of constituent credits.

The following result, derived for the general case, is a corollary of Proposition 2.18.

Corollary 2.25. Assume a conditional independence model of an asymptotic, homogeneous
credit portfolio. Then,

lim
n→∞

Ln = ηp(Y ), P-a.s. (2.38)

Accordingly, the portfolio loss distribution satisfies

lim
n→∞

P(Ln ≤ l) = 1−H

(
F−1(p)−

√
1− γ2G−1(l/η)

γ

)
(2.39)

for all l ∈ (0, 1).

Proof. For the homogeneous case of Definition 2.22, let

ζ(y) =
F−1(p)− γy√

1− γ2
= G−1

(
p(y)

)
.
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2.5. Limiting Form of Portfolio Loss Distribution

Then, conditional on realisation y ∈ R of systematic risk factor Y , the portfolio percentage loss
is calculated as

Ln =

n∑
i=1

wiη1{Zi<ζ(y)}, (2.40)

where 1{Zi<ζ(y)} are independent identically distributed Bernoulli random variables with finite
mean and variance. By the strong law of large numbers (Theorem 2.65), 1{Zi<ζ(y)} converges
to its conditional expectation p(y) as n → ∞, Py-almost surely for all y ∈ R. Observing that∑n
i=1 wi = 1 for all n ∈ N, and η ∈ [0, 1], (2.38) holds P-almost surely.
It follows from (2.38) that given Y = y,

lim
n→∞

Ln = ηp(y),

which is a deterministic quantity. Hence,

lim
n→∞

P(Ln ≤ l |Y = y) = 1{0<ηp(y)≤l} = 1{p−1(l/η)≤y<∞}.

Then, integrating over systematic risk factor Y with density function h(y), yields the limiting
form of the portfolio loss distribution:

lim
n→∞

P(Ln ≤ l) = lim
n→∞

∫ ∞
−∞

P(Ln ≤ l, Y = y) dy = lim
n→∞

∫ ∞
−∞

P(Ln ≤ l |Y = y)h(y) dy

=

∫ ∞
−∞

lim
n→∞

P(Ln ≤ l |Y = y)h(y) dy =

∫ ∞
−∞

1{p−1(l/η)≤y<∞}h(y) dy

=

∫ ∞
p−1(l/η)

h(y) dy = 1−
∫ p−1(l/η)

−∞
h(y) dy

= 1−H
(
p−1(l/η)

)
= 1−H

(
F−1(p)−

√
1− γ2G−1(l/η)

γ

)
.

The dominated convergence theorem (Theorem 2.63) provides conditions under which the limit
of integrals of a sequence of functions is the integral of the limiting function. It justifies the third
equality, while the last equality follows from (2.29).

The following corollary, derived by Vasicek (2002), deals with the special case of an asymp-
totic, homogeneous portfolio in which default dependence is modelled as a multivariate Gaussian
process. We present an alternative proof for the Gaussian case, rather than appealing to Corol-
lary 2.25 and directly substituting into (2.39).

Corollary 2.26. Assume a Gaussian conditional independence model of an asymptotic, homo-
geneous credit portfolio. Then, the portfolio loss distribution satisfies

lim
n→∞

P(Ln ≤ l) = Φ

(√
1− ρΦ−1(l/η)− Φ−1(p)

√
ρ

)
(2.41)

for all l ∈ (0, 1).
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Proof. In the homogeneous case (2.19) is recast as

Wi =
√
ρ Y +

√
1− ρZi.

Reformulating (2.20) for the homogeneous case, the PD of any obligor conditional on realisation
y ∈ R of systematic risk factor Y is given by

p(y) = Φ

(
Φ−1(p)−√ρ y
√

1− ρ

)
.

Its inverse is the Gaussian case of the homogeneous version of (2.29). More precisely,

y = p−1(x) =
Φ−1(p)−

√
1− ρΦ−1(x)
√
ρ

(2.42)

for all x ∈ (0, 1). The limiting form of the portfolio loss distribution is deducible:

lim
n→∞

P(Ln ≤ l) = P
(

lim
n→∞

Ln ≤ l
)

= P
(
ηp(Y ) ≤ l

)
= P

(
Y ≥ p−1(l/η)

)
= P

(
Y ≤ −p−1(l/η)

)
= Φ

(
−p−1(l/η)

)
= Φ

(√
1− ρΦ−1(l/η)− Φ−1(p)

√
ρ

)
.

Since the inverse function p−1
i : (0, 1)→ R is strictly decreasing, the inequality sign in the proba-

bility statement is reversed upon its application. The fourth equality is justified by the symmetry
of the standard Gaussian density function, and the last equality follows from (2.42).

2.6 Credit Value-at-Risk

In determining regulatory capital, the Basel II IRB approach applies a risk measure to assign a
single numerical value to a random credit loss. The chosen risk measure is VaR (Definition 1.8),
one of the most widely used measures in risk management. VaR is an extreme quantile of a loss,
or P&L, distribution that is rarely exceeded. Adopting the convention that a loss is a positive
number, which differs from that of Definition 1.8, we now define credit VaR.

Definition 2.27. Credit VaR at the confidence level α ∈ (0, 1) over a given risk measurement
horizon is the largest portfolio percentage loss l such that the probability of a loss Ln exceeding l
is at most (1−α):

VaRα(Ln) = inf{l ∈ R : P(Ln > l) ≤ 1−α}. (2.43)

In probabilistic terms, VaRα(Ln) is simply the α quantile (Definition 1.6) of the portfolio loss
distribution. Although computationally expensive, Monte Carlo simulation is routinely employed
to generate the empirical loss distribution and determine VaR of a credit portfolio. Suppose that
we generate the loss distribution of a credit portfolio comprising n obligors by simulation of
(2.26) parameterised by (2.27). Let Monte Carlo simulation perform N iterations. For each
iteration we draw from their respective distributions random variable Y representing systematic
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2.6. Credit Value-at-Risk

risk, and random variables Z1, . . . , Zn representing obligor specific risks. Then, conditional on
realisation yk ∈ R of systematic risk factor Y describing a scenario of the economy, the portfolio
percentage loss over the risk measurement horizon is computed as

Ln,k =

n∑
i=1

wiηi1{Zi,k<ζi(yk)} (2.44)

for iterations k = 1, . . . , N . Monte Carlo simulation computes N portfolio percentage losses
constituting the empirical loss distribution described by the function (Bluhm et al. 2010, pp. 30–
32):

F (l) =
1

N

N∑
k=1

1{0≤Ln,k≤l}. (2.45)

VaRα(Ln), the α quantile of the empirical loss distribution, is the maximum credit loss at
the α confidence level over a given risk measurement horizon. Expected loss is estimated by
calculating the average portfolio percentage loss over N iterations of the simulation:

E[Ln] =
1

N

N∑
k=1

Ln,k. (2.46)

An analytical model of the portfolio loss distribution, on the other hand, facilitates the
fast calculation of credit VaR. In the limiting case of an asymptotic, homogeneous credit port-
folio, VaRα(Ln) may be determined analytically from distribution function (2.39). However,
the assumptions of Corollary 2.25 are too restrictive for real-world credit portfolios. The risk
factor model for ratings-based capital charges derived by Gordy (2003) relaxes the homogeneity
assumption. His analysis proceeds assuming that:

(1) Portfolios are infinitely fine-grained so that idiosyncratic risk is fully diversified away.

(2) A single systematic risk factor explains dependence across obligors.

Under these weaker assumptions, and subject to additional technical conditions, Gordy estab-
lished that quantiles of the distribution of conditional expectation of portfolio percentage loss
may be substituted for quantiles of the portfolio loss distribution. The statement and proof of
Proposition 5 of Gordy (2003), which leads to an analytical approximation of credit VaR, is rele-
gated to Appendix 2.A. Here, we present a version of this proposition that relaxes the additional
technical conditions imposed by Gordy, resulting in a more economical, or parsimonious, proof.

Proposition 2.28. Assume a conditional independence model of a credit portfolio compris-
ing n obligors. Denote by ϕn(y) the conditional expectation function E[Ln | y] : R→ (0, 1) given
by (2.32), and assume that the sequence {ϕn}n∈N of real-valued functions satisfies:
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2. Foundations of the Asymptotic Single Risk Factor Model

(1) For every n ∈ N, function ϕn is strictly monotonic.

(2) For every y ∈ R and ε > 0 there is a δ(ε) ∈ R \ {0} and N(δ, ε) ∈ N such that n > N(δ, ε)

implies [
ϕn(y)− ε, ϕn(y) + ε

]
⊂
[
ϕn
(
y − δ(ε)

)
, ϕn

(
y + δ(ε)

)]
,

where δ depends on ε, and N depends on δ and ε, in general. While δ depends on ε, and
may also depend on y, we assume that it is independent of n.

(3) For every ξ > 0 there is an ε > 0 such that 0 <
∣∣δ(ε)∣∣ < ξ, that is, δ(ε) tends to zero as ε

tends to zero.

(4) For every y ∈ R and ε > 0 there is a δ(ε) ∈ R \ {0} and N(δ, ε) ∈ N such that n > N(δ, ε)

implies [
ϕn
(
y − δ(ε)

)
, ϕn

(
y + δ(ε)

)]
⊂
[
ϕn(y)− ε, ϕn(y) + ε

]
,

where δ is independent of n.

Then,

lim
n→∞

(
Ln − ϕn(y)

)
= 0, P-a.s. ⇒ lim

n→∞

∣∣ qα(Ln)− ϕn(q1−α(Y ))
∣∣ = 0 (2.47)

for all α ∈ (0, 1).

Remark 2.29. We argue that Conditions (1)–(4) of Proposition 2.28 are quite reasonable assump-
tions for real-world credit portfolios. Observe that the conditional expectation function ϕn, given
by (2.32), is continuous and strictly decreasing in y by Remark 2.13. Therefore, it satisfies Con-
dition (1), which is also a condition of Lemma 2.31 and Corollary 2.32, both used in the proof
of Proposition 2.28.

For Conditions (2)–(4) to hold, the curve of ϕn cannot have horizontal or vertical segments in
the neighbourhood of q1−α(Y ). This is guaranteed by constraints δ(ε) ∈ R \ {0}, 0 <

∣∣δ(ε)∣∣ < ξ,
and δ(ε) ∈ R \ {0}. By inspection of (2.28), Conditions (2)–(4) are satisfied if pi and γ2

i are
bounded away from zero and one for i = 1, . . . , n. Otherwise, ϕn would no longer depend on y,
thus violating Condition (1). As a practical matter, if pi were equal to zero, then the capital
charge assessed on credit i would be zero; and if pi were equal to one, then the product of EAD
and LGD assigned to obligor i would be charged against profit and loss.

Remark 2.30. If on some open interval I containing q1−α(Y ), ϕn were also differentiable on I,
then Conditions (2)–(4) would be satisfied if

−∞ < −Θ ≤ ϕ′n(y) ≤ −θ < 0

for all y ∈ I, with θ > 0 and Θ > 0 independent of n. Indeed, Proposition 2.34 (Gordy 2003,
Proposition 5) assumes that this condition holds on an open interval I containing q1−α(Y ).
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Recall that VaRα(Ln) = qα(Ln). So, Proposition 2.28 asserts that the α quantile of the
distribution of E[Ln |Y ], which is associated with the (1−α) quantile of the distribution of Y ,
may be substituted for the α quantile of the distribution of Ln (i.e., credit VaR at the α confidence
level over a given risk measurement horizon). The IRB approach rests on Proposition 2.28. Its
proof, presented below, relies on the following lemmas and corollary. Note that in this section,
F1, . . . , Fn denote a sequence of distribution functions, as distinct from the notation adopted in
Section 2.3.

Lemma 2.31. Let {gn}n∈N be a sequence of real-valued functions gn : R→ R that satisfies Con-
ditions (1)–(3) of Proposition 2.28. Then, for every b ∈ R,

lim
n→∞

(
an − gn(b)

)
= 0 ⇒ lim

n→∞
g−1
n (an) = b. (2.48)

Proof. The sufficient condition for the conclusion in (2.48) states that for every ε > 0 there is an
N0(ε) ∈ N such that n > N0(ε) implies ∣∣an − gn(b)

∣∣ ≤ ε,
which may be expressed as

an ∈ [gn(b)− ε, gn(b) + ε] ⊂
[
gn
(
b− δ(ε)

)
, gn
(
b+ δ(ε)

)]
,

where the subset relation holds when Condition (2) is satisfied. Observe that since gn is strictly
monotonic for every n ∈ N by hypothesis, gn is one-to-one and g−1

n

(
gn(b)

)
= b. Also, δ(ε) > 0

if gn is strictly increasing, and δ(ε) < 0 if gn is strictly decreasing. Then, an application of the
inverse function g−1

n yields

g−1
n (an) ∈

[
b−

∣∣δ(ε)∣∣, b+
∣∣δ(ε)∣∣] ⊂ [b− ξ, b+ ξ],

where the subset relation holds when Condition (3) is satisfied. Choosing N(δ, ε) = N0(ε)

such that ξ is arbitrarily close to zero establishes the necessary condition of the hypothesis
in (2.48).

Corollary 2.32. Let Xn and Y be random variables defined on a common probability space with
distribution functions Fn and H, respectively. If a sequence {gn}n∈N of real-valued functions
gn : R→ R satisfies Conditions (1)–(3) of Proposition 2.28, then

lim
n→∞

(
Xn − gn(y)

)
= 0, P-a.s. ⇒ lim

n→∞
g−1
n (Xn) = Y. (2.49)

Moreover, if H is continuous, then for every realisation y ∈ R of Y ,

lim
n→∞

Fn
(
gn(y)

)
= H(y) (2.50)

when functions gn are strictly increasing, and

lim
n→∞

Fn
(
gn(y)

)
= 1−H(y) (2.51)

when functions gn are strictly decreasing.
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2. Foundations of the Asymptotic Single Risk Factor Model

Proof. Random variables are real-valued functions on some probability space, so (2.49) is an
immediate consequence of Lemma 2.31.

The almost sure convergence of the sufficient condition for the conclusion in (2.49) implies
pointwise convergence (Definition 2.60) of the sequence of distribution functions of g−1

n (Xn)

to the distribution function of Y at every point of continuity of H. If H is continuous, then
convergence occurs for every realisation y ∈ R of Y . It follows from the necessary condition of
the hypothesis in (2.49) that

P
(
g−1
n (Xn) ≤ y

)
= P

(
Xn ≤ gn(y)

)
= Fn

(
gn(y)

)
converges to P(Y ≤ y) = H(y) as n → ∞ if functions gn are strictly increasing, which estab-
lishes (2.50). Similarly,

P
(
g−1
n (Xn) ≤ y

)
= P

(
Xn ≥ gn(y)

)
= 1− P

(
Xn ≤ gn(y)

)
= 1− Fn

(
gn(y)

)
converges to P(Y ≤ y) = H(y) as n → ∞ if functions gn are strictly decreasing, which estab-
lishes (2.51).

Lemma 2.33. Let Y be a random variable with continuous and strictly increasing distribution
function H, and let g : R → R be a strictly monotonic function. Then, the α quantile of the
distribution function of g(Y ) is

qα(g(Y )) = g
(
H−1(α)

)
(2.52)

if g is strictly increasing, and

qα(g(Y )) = g
(
H−1(1− α)

)
(2.53)

if g is strictly decreasing.

Proof. By Definition 1.6, the α quantile of g(Y ) is

qα(g(Y )) = inf
{
g(y) ∈ R : P

(
g(Y ) ≤ g(y)

)
≥ α

}
. (2.54)

Since H is continuous and strictly increasing by hypothesis, the α quantile of the distribution
of Y is given by

qα(Y ) = H−1(α), (2.55)

where H−1(α) is the inverse distribution function evaluated at α (Remark 1.7). Observe that if
g is strictly increasing, then

P
(
g(Y ) ≤ g(qα(Y ))

)
= P

(
g(Y ) ≤ g(H−1(α))

)
= P

(
Y ≤ H−1(α)

)
= α,
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2.A. Proposition due to Gordy (2003, Proposition 5)

where the first equality is a consequence of (2.55), and the second equality is the result of an
application of inverse function g−1. Hence, (2.52) follows from (2.54). By a parallel argument,
if g is strictly decreasing, then

P
(
g(Y ) ≤ g(q1−α(Y ))

)
= P

(
g(Y ) ≤ g(H−1(1−α))

)
= P

(
Y ≥ H−1(1−α)

)
= 1− P

(
Y ≤ H−1(1−α)

)
= α,

which establishes (2.53).

Proof of Proposition 2.28. Fix α ∈ (0, 1), set ϕn(y) = qα(ϕn(Y )), and denote by Fn the distri-
bution function of Ln. By appealing to results due to Corollary 2.32 and Lemma 2.33 for strictly
decreasing functions ϕn, observe that

lim
n→∞

Fn
(

qα(ϕn(Y ))
)

= lim
n→∞

Fn
(
ϕn(H−1(1−α))

)
= lim
n→∞

Fn
(
ϕn(q1−α(Y ))

)
= 1−H

(
q1−α(Y )

)
= 1−H

(
H−1(1−α)

)
= α. (2.56)

The first equality follows from (2.53), the second from (2.55), the third from (2.51), and the
fourth from (2.55) again. Notice that δ(ε) > 0 if ϕn is strictly increasing, and δ(ε) < 0 if ϕn
is strictly decreasing. By Remark 2.13, ϕn(y) = E[Ln | y] is strictly decreasing, thus satisfying
Condition (1). Then, on the basis of (2.56) and subject to Condition (4), lower and upper
bounds, respectively, on the α quantile of Ln are deduced:

lim
n→∞

Fn
(
ϕn(q1−α(Y )− δ(ε))

)
= 1−H

(
q1−α(Y ) +

∣∣δ(ε)∣∣) < α,

and
lim
n→∞

Fn
(
ϕn(q1−α(Y ) + δ(ε))

)
= 1−H

(
q1−α(Y )−

∣∣δ(ε)∣∣) > α,

which may be expressed as

qα(Ln) ∈
[
ϕn
(

q1−α(Y )− δ(ε)
)
, ϕn

(
q1−α(Y ) + δ(ε)

)]
.

Finally, by Condition (4), for every ε > 0 there is a δ(ε) ∈ R and N(δ, ε) ∈ N such that
n > N(δ, ε) implies

qα(Ln) ∈
[
ϕn
(

q1−α(Y )
)
− ε, ϕn

(
q1−α(Y )

)
+ ε
]
,

which establishes the necessary condition of the hypothesis in (2.47).

2.A Proposition due to Gordy (2003, Proposition 5)

The Basel II IRB approach rests on Proposition 5 of Gordy (2003) that quantiles of the distri-
bution of conditional expectation of portfolio percentage loss may be substituted for quantiles
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2. Foundations of the Asymptotic Single Risk Factor Model

of the portfolio loss distribution. It leads to an analytical approximation of credit VaR. In Sec-
tion 2.6 we present a version of this proposition that relaxes the technical conditions imposed
by Gordy, resulting in a more compact proof. Here, the statement and proof of Proposition 2.34
closely follow that of Gordy (2003).

Proposition 2.34. Consider a credit portfolio comprising n obligors, and denote by Ln the
portfolio percentage loss. Let Y be a random variable with continuous and strictly increasing
distribution function H, and denote by ϕn(Y ) the conditional expectation of portfolio percentage
loss E[Ln |Y ]. Assume that the following conditions hold:

(1) lim
n→∞

(
Ln −

n∑
i=1

ϕn(Y )

)
= 0, P-a.s.

(2) There is an open interval I containing H−1(1−α), α ∈ (0, 1), and N0 ∈ N such that when-
ever n > N0 the conditional expectation of portfolio percentage loss, ϕn(y) = E[Ln |Y = y],
is strictly decreasing in y and differentiable on I.

(3) There is an N0 ∈ N such that whenever n > N0,

−∞ < −Θ ≤ ϕ′n(y) ≤ −θ < 0 (2.57)

for all y ∈ I, with θ > 0 and Θ > 0 independent of n, and where ϕ′n(y) denotes the
derivative of E[Ln |Y = y] with respect to y.

Then,
lim
n→∞

P
(
Ln ≤ ϕn

(
H−1(1−α)

))
= α, (2.58)

and
lim
n→∞

∣∣VaRα(Ln)− ϕn
(
H−1(1−α)

)∣∣ = 0. (2.59)

Remark 2.35. Proposition 2.34 applies more generally than to the conditional independence
model of Definition 2.10. However, we are not aware of competing models for which the condi-
tional expectation function ϕn satisfies Condition (1).

Remark 2.36. Condition (1) of Proposition 2.34 postulates that portfolio percentage loss con-
verges, almost surely, to its conditional expectation as the portfolio approaches asymptotic gran-
ularity. The proof of Proposition 2.34 only requires convergence in probability, but we assume
almost sure convergence consistent with Proposition 2.18. For an asymptotic credit portfolio
(Definition 2.14), the conditional independence model of Definition 2.10 satisfies Condition (1)
by Proposition 2.18.

Conditions (2) and (3) are more technical in nature. Condition (2) postulates that the
conditional expectation of portfolio percentage loss rises “smoothly” as the economy deteriorates
for a set of states of the economy associated with the tail of the portfolio loss distribution,
which is the concern of solvency assessment. In relation to the conditional independence model
of Definition 2.10, we quite reasonably assume that the conditional expectation function ϕn
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2.A. Proposition due to Gordy (2003, Proposition 5)

satisfies Condition (2). By inspection of (2.28) we observe that Condition (3) holds if pi and γ2
i

are bounded away from zero and one for i = 1, . . . , n.

The proof of Proposition 2.34, presented below, requires a result due to Petrov (1995), which
we proceed to state and prove. Note that in Lemma 2.38, variables X and Z and functions F
and G denote arbitrary random variables and distribution functions, and in Proposition 2.34, Fn
and Gn denote distribution functions distinct from the notation adopted in Section 2.3. Also,
the proof of Proposition 2.34 uses the mean value theorem, which we state here for completeness
and convenience.

Theorem 2.37 (Mean value [Wade 2004, Theorem 4.15]). If function f is continuous on [a, b]

and differentiable on (a, b), then there exists c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Lemma 2.38. Let X and Z be random variables defined on a common probability space with
distribution functions F and G, respectively. For all a ∈ R and ε > 0,∣∣F (a)−G(a)

∣∣ ≤ P
(
|X − Z| > ε

)
+ max {G(a+ε)−G(a), G(a)−G(a−ε)} . (2.60)

Proof. For all a, b ∈ R, we have

P(X < a) = P(X < a,Z < a+ b) + P(X < a,Z ≥ a+ b)

= P(X < a,Z < a+ b) + P(X < a, a− Z ≤ −b)

≤ P(Z < a+ b) + P(X − Z < −b).

Substituting ε > 0 for b, it follows that

P(X < a) ≤ P(Z < a+ ε) + P(|X − Z| > ε).

Then, subtracting P(Z < a) from both sides of the inequality and rearranging yields

P(X < a)− P(Z < a) ≤ P(|X − Z| > ε) + P(Z < a+ ε)− P (Z < a),

F (a)−G(a) ≤ P(|X − Z| > ε) +G(a+ ε)−G(a). (2.61)

By a similar argument, we have

P(Z < a− b) = P(Z < a− b,X < a) + P(Z < a− b,X ≥ a)

= P(Z < a− b,X < a) + P(a− Z > b,X ≥ a)

≤ P(X < a) + P(X − Z > b).

Hence,

P(Z < a− ε) ≤ P(X < a) + P(|X − Z| > ε),

P(Z < a)− P(X < a) ≤ P(|X − Z| > ε) + P(Z < a)− P(Z < a− ε),

− (F (a)−G(a)) ≤ P(|X − Z| > ε) +G(a)−G(a− ε). (2.62)

Thus, (2.60) follows from (2.61) and (2.62).
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Proof of Proposition 2.34. Denote by Fn and Gn the distribution functions of Ln and ϕn(Y ),
respectively. Firstly, by appealing to Lemma 2.38, we show that∣∣Fn(ϕn(y)

)
−Gn

(
ϕn(y)

)∣∣→ 0 as n→∞,

for all y ∈ I, and deduce (2.58). Set X = Ln, Z = ϕn(Y ) and a = ϕn(y) in Lemma 2.38. Then,
for any ε > 0,∣∣Fn(ϕn(y)

)
−Gn

(
ϕn(y)

)∣∣
≤ P

(∣∣Ln − ϕn(Y )
∣∣ > ε

)
+ max

{
Gn
(
ϕn(y) + ε

)
−Gn

(
ϕn(y)

)
, Gn

(
ϕn(y)

)
−Gn

(
ϕn(y)− ε

)}
. (2.63)

The almost sure convergence asserted by Condition (1) implies convergence in probability
(Theorem 2.62). By the definition of convergence in probability (Definition 2.61), for any ξ > 0

and ε > 0, choose an N1 ∈ N (which in general depends on ε and ξ) such that n > N1 implies

P
(∣∣Ln − ϕn(Y )

∣∣ > ε
)
<
ξ

2
(2.64)

for all y ∈ I.
The convergence of Gn in the neighbourhood of ϕn

(
H−1(1−α)

)
does not immediately follow

from the assumption that ϕn(y) is differentiable on I. By hypothesis, ϕn(y) is differentiable on
I and ϕ′n(y) has an upper bound −θ on I whenever n > N0. By the mean value theorem, for
any ε > 0 satisfying (y − ε/θ, y + ε/θ) ⊂ I, there is a y∗ ∈ (y − ε/θ, y) such that

ϕn(y − ε/θ)− ϕn(y) = ϕ′n(y∗)(−ε/θ) ≥ −θ(−ε/θ) = ε

for n > N0. Similarly, there is a y∗ ∈ (y, y + ε/θ) such that

ϕn(y)− ϕn(y + ε/θ) = ϕ′n(y∗)(−ε/θ) ≥ −θ(−ε/θ) = ε

for n > N0. By hypothesis, ϕn(y) is strictly decreasing in y on I whenever n > N0, implying
that ϕn(Y ) ≤ ϕn(y) if and only if Y ≥ y. Moreover, H is continuous and strictly increasing.
Accordingly,

Gn
(
ϕn(y)

)
= P(Y ≥ y) = 1−H(y). (2.65)

Hence,

Gn
(
ϕn(y) + ε

)
≤ Gn

(
ϕn(y − ε/θ)

)
= P(Y ≥ y − ε/θ)

and

Gn
(
ϕn(y)− ε

)
≥ Gn

(
ϕn(y + ε/θ)

)
= P(Y ≥ y + ε/θ)

for n > N0. It follows that the continuity of H(y) on I implies convergence. That is, for any
ξ > 0 and ε > 0, there is an N0 ∈ N (which in general depends on ε and ξ) such that n > N0
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implies

max
{
Gn
(
ϕn(y) + ε

)
−Gn

(
ϕn(y)

)
, Gn

(
ϕn(y)

)
−Gn

(
ϕn(y)− ε

)}
≤ max {P(Y ≥ y − ε/θ)− P(Y ≥ y),P(Y ≥ y)− P(Y ≥ y + ε/θ)}

= max {H(y)−H(y − ε/θ), H(y + ε/θ)−H(y)} < ξ

2
(2.66)

for any y ∈ I. Combining (2.64) and (2.66) to evaluate (2.63), we claim that for any ξ > 0,
whenever n > N = max{N0, N1},∣∣Fn(ϕn(y)

)
−Gn

(
ϕn(y)

)∣∣ =
∣∣P(Ln ≤ ϕn(y)

)
− P

(
ϕn(Y ) ≤ ϕn(y)

)∣∣ < ξ

2
+
ξ

2
= ξ (2.67)

for any y ∈ I. Substituting for Gn
(
ϕn(y)

)
in (2.67) from (2.65), and setting y = H−1(1−α) ∈ I,

(2.67) may be expressed as

lim
n→∞

∣∣P (Ln ≤ ϕn(H−1(1−α)
))
− P

(
Y ≥ H−1(1−α)

)∣∣ = 0. (2.68)

Now, observing that P
(
Y ≥ H−1(1−α)

)
= α establishes (2.58), and completes the first part of

the proof.
It remains to deduce (2.59). Notice that whenever n > N , (y−ε/Θ, y+ε/Θ) ⊆ (y−ε/θ, y+ε/θ)

and ϕ′n(y) has a lower bound −Θ on I. Again, by the mean value theorem, for any ε > 0 satisfying
(y − ε/Θ, y + ε/Θ) ⊂ I, there is a y∗ ∈ (y − ε/Θ, y) such that

ϕn(y − ε/Θ)− ϕn(y) = ϕ′n(y∗)(−ε/Θ) ≤ −Θ(−ε/Θ) = ε

for n > N . Similarly, there is a y∗ ∈ (y, y + ε/Θ) such that

ϕn(y)− ϕn(y + ε/Θ) = ϕ′n(y∗)(−ε/Θ) ≤ −Θ(−ε/Θ) = ε

for n > N . Setting y = H−1(1−α) ∈ I, corresponding to the α confidence level in Definition 2.27,
yields

Fn
(
ϕn(H−1(1−α)) + ε

)
≥ Fn

(
ϕn(H−1(1−α)− ε/Θ)

)
= Gn

(
ϕn(H−1(1−α)− ε/Θ)

)
= P

(
Y ≥ H−1(1−α)− ε/Θ

)
> α. (2.69)

The first equality is a consequence of (2.68), the second of (2.65). It follows from Definition 2.27
and (2.69) that whenever n > N ,

VaRα(Ln) < ϕn
(
H−1(1−α)

)
+ ε. (2.70)

By a parallel argument, whenever n > N ,

Fn
(
ϕn(H−1(1−α))− ε

)
≤ Fn

(
ϕn(H−1(1−α) + ε/Θ)

)
= Gn

(
ϕn(H−1(1−α) + ε/Θ)

)
= P

(
Y ≥ H−1(1−α) + ε/Θ

)
< α, (2.71)
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and

VaRα(Ln) > ϕn
(
H−1(1−α)

)
− ε. (2.72)

Together, (2.70) and (2.72) may be expressed as∣∣VaRα(Ln)− ϕn
(
H−1(1−α)

)∣∣ < ε.

Setting ε arbitrarily close to zero establishes (2.59), and completes the proof.

2.B Vanishing Idiosyncratic Risk Through Diversification

The Basel II IRB approach rests on Proposition 2.28, which assumes, inter alia, that portfolios
are infinitely fine-grained so that idiosyncratic risk is fully diversified away, and a single sys-
tematic risk factor explains dependence across obligors. Under these assumptions, idiosyncratic
risk vanishes and portfolio percentage loss depends only on systematic risk (Luenberger 1998,
pp. 200–201). We demonstrate this proposition using returns on asset values modelled by geo-
metric Brownian motion, and the Gaussian conditional independence model of a credit portfolio
that forms the basis of the IRB approach. It is extendable to the general setting adopted in
Definition 2.10, in which (2.24) decomposes latent random variables, modelling the variability in
obligors’ asset values, into systematic and idiosyncratic components.

Recall that the Gaussian conditional independence model of a credit portfolio is motivated
by the structural approach to credit risk modelling, which assumes that an obligor defaults if the
values of its assets at a given risk measurement horizon falls below its contractual obligations
payable. Substituting representation (2.19) for latent random variable Wi in (2.15), we may
express the log-return on the assets of obligor i over the risk measurement horizon [0, τ ], τ > 0,
as

ri = log

(
Ai(τ)

Ai(0)

)
= µiτ − 1

2σ
2
i τ + σi

√
τ
(√

ρi Y +
√

1− ρi Zi
)
, (2.73)

where Y and Zi are independent standard Gaussian random variables, and ρi ∈ (0, 1). Then,
standardising the log-return on the assets of obligor i, we have

r̃i =
ri − E[ri]√

Var(ri)
=
√
ρi Y +

√
1− ρi Zi, (2.74)

where r̃i has mean zero and unit variance.
It follows that for a credit portfolio comprising n obligors, the standardised log-return is given

by

r̃ =

n∑
i=1

wir̃i =

n∑
i=1

wi
√
ρi Y +

n∑
i=1

wi
√

1− ρi Zi, (2.75)

where wi is the portfolio weight of obligor i, and
∑n
i=1 wi = 1. Observing that random vari-

ables Z1, . . . , Zn and Y are standard Gaussian and mutually independent, it is clear that:
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Var(Y ) = E[Y 2] = 1; Var(Zi) = E[Z2
i ] = 1 and Cov(Y,Zi) = E[Y Zi] = 0 for i = 1, . . . , n; and

Cov(Zi, Zj) = E[ZiZj ] = 0 for 1 ≤ i < j ≤ n. Then, the expected value of (2.75) is

E[r̃] =

n∑
i=1

wiE[r̃i] =

n∑
i=1

wi
√
ρi E[Y ] +

n∑
i=1

wi
√

1− ρi E[Zi] = 0, (2.76)

and its variance is given by

Var(r̃) = Var

(
n∑
i=1

wir̃i

)

= Var

(
n∑
i=1

wi
√
ρi Y

)
+ Var

(
n∑
i=1

wi
√

1− ρi Zi

)

=

(
n∑
i=1

wi
√
ρi

)2

Var(Y ) + E

( n∑
i=1

wi
√

1− ρi Zi

) n∑
j=1

wj
√

1− ρj Zj


=

(
n∑
i=1

wi
√
ρi

)2

Var(Y ) +

n∑
i=1

w2
i (1− ρi) Var(Zi) . (2.77)

Variances in the second equality are additive, since Y is independent of Z1, . . . , Zn. The last
equality uses the facts that Cov(Zi, Zj) = E[ZiZj ] = 0 for i 6= j, and Var(Zi) = E[Z2

i ].
Notice that in deducing (2.74) we recover (2.19). Substituting into (2.18), the event that

obligor i defaults may be redefined as the set

Di =
{
r̃i < Φ−1(pi)

}
. (2.78)

Then, the portfolio percentage loss is calculated as

Ln =

n∑
i=1

wiηi1{r̃i<Φ−1(pi)}. (2.79)

Having expressed the standardised portfolio log-return, r̃, and portfolio percentage loss, Ln, as
functions of random quantities r̃i ∼ N (0, 1), 1 ≤ i ≤ n, we proceed to show that idiosyncratic risk
vanishes for infinitely fine-grained portfolios. That is, the variance of standardised log-returns on
an asymptotic portfolio is a function of systematic risk factor Y and independent of idiosyncratic
risks, and hence portfolio percentage loss depends only on Y .

Proposition 2.39. Assume a Gaussian conditional independence model of an asymptotic credit
portfolio. Then, assuming that the limits exist, the variance of standardised portfolio log-returns
is

lim
n→∞

Var(r̃) = lim
n→∞

Var

(
n∑
i=1

wir̃i

)
= Var(Y ) lim

n→∞

(
n∑
i=1

wi
√
ρi

)2

, (2.80)

where r̃i is the return on asset values of obligor i standardised to mean zero and unit variance,
and

∑n
i=1 wi = 1 for all n ∈ N. Thus, portfolio percentage loss, Ln =

∑n
i=1 wiηi1{r̃i<Φ−1(pi)},

depends only on systematic risk factor Y as n→∞.
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Proof. The variance of standardised log-returns on a credit portfolio comprising n obligors is
given by (2.77). Observing that wi ∈ (0, 1), ρi ∈ (0, 1) and Var(Zi) = 1 for i = 1, . . . , n, a com-
parison test shows that the second term on the right-hand side of (2.77) converges as n→∞:

0 ≤ lim
n→∞

n∑
i=1

w2
i (1− ρi) Var(Zi) ≤ lim

n→∞

n∑
i=1

w2
i = 0, (2.81)

where Remark 2.15 establishes that
∑n
i=1 w

2
i → 0 as n→∞ using Kronecker’s lemma (Lemma

2.66). Taking the limit as n→∞ of (2.77) yields

lim
n→∞

Var(r̃) = lim
n→∞

(
n∑
i=1

wi
√
ρi

)2

Var(Y ) + lim
n→∞

n∑
i=1

w2
i (1− ρi) Var(Zi)

= lim
n→∞

(
n∑
i=1

wi
√
ρi

)2

Var(Y ) + 0

= Var(Y ) lim
n→∞

(
n∑
i=1

wi
√
ρi

)2

.

Since the variance of r̃ for an infinitely fine-grained portfolio is a function of systematic risk
factor Y and independent of idiosyncratic risks, indicator function 1{r̃i<Φ−1(pi)} depends only
on Y , and so does Ln.

Remark 2.40. Observing that under the Gaussian conditional independence model of a credit
portfolio, systematic risk factor Y ∼ N (0, 1), (2.80) reduces to

lim
n→∞

Var(r̃) = lim
n→∞

(
n∑
i=1

wi
√
ρi

)2

. (2.82)

Corollary 2.41. Assume a Gaussian conditional independence model of an asymptotic, homo-
geneous credit portfolio. Let ρ be the exposure, or sensitivity, of each obligor to systematic risk
factor Y (i.e., the asset correlation parameter assigned to each obligor), and suppose that equal
dollar EAD is assigned to each obligor. Then, the variance of standardised portfolio log-returns
is

lim
n→∞

Var(r̃) = ρ. (2.83)

Proof. Let wi = 1/n for i = 1, . . . , n, and recall that random variables Z1, . . . , Zn and Y are
standard Gaussian and mutually independent. Then, taking the limit as n→∞ of (2.77) yields

lim
n→∞

Var(r̃) = lim
n→∞

(
n∑
i=1

1

n

√
ρ

)2

Var(Y ) + lim
n→∞

n∑
i=1

1

n2
(1− ρ) Var(Zi)

= lim
n→∞

(
√
ρ )

2
Var(Y ) + lim

n→∞

1− ρ
n

= ρVar(Y ) + 0

= ρ.
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2.C Probability Spaces

In the lexicon of stochastic calculus, this chapter describes the time-evolution of asset values in
terms of adapted stochastic processes measurable with respect to a filtration on a probability
space. Here, we formally define these concepts.

Definition 2.42 (Shreve 2004, Definition 1.1.1). Let sample space Ω be a non-empty set of all
possible outcomes ω of an experiment. A σ-algebra, or σ-field, F is a collection of subsets of Ω

satisfying:

(1) The empty set ∅ and the sample space Ω belong to F .

(2) Whenever set A belongs to F , its complement Ac belongs to F .

(3) Whenever a sequence of sets A1, A2, . . . belongs to F , their union
⋃∞
n=1An and intersection⋂∞

n=1An also belong to F .

Definition 2.43 (Shreve 2004, Definition 1.1.2). Let F be a σ-algebra on sample space Ω. A
probability measure P is a function that, to every set A ∈ F , assigns a value in [0, 1], called the
probability of A and written P(A). A probability measure P on (Ω,F) satisfies:

(1) P(∅) = 0 and P(Ω) = 1.

(2) Whenever A1, A2, . . . is a sequence of disjoint sets in F , then P
(⋃∞

n=1An
)

=
∑∞
n=1 P(An).

The triple (Ω,F ,P) is called a probability space.

Definition 2.44 (Shreve 2004, Definition 2.1.1). Fix τ > 0, and assume that for each t ∈ [0, τ ]

there is a σ-algebra F(t) on sample space Ω. Assume further that if s ≤ t, then every set in F(s)

is also in F(t). We call the collection of σ-algebras F(t), 0 ≤ t ≤ τ , a filtration.

Definition 2.45 (Shreve 2004, Definition 2.1.5). Let X be a random variable defined on sample
space Ω, and let G be a σ-algebra of the subsets of Ω. Denote by σ(X) the σ-algebra generated
by X. If every set in σ(X) is also in G, we say that X is G-measurable.

Definition 2.46 (Shreve 2004, Definition 2.1.6). Let Ω be a sample space equipped with a
filtration F(t), 0 ≤ t ≤ τ , and let X(t) be a collection of random variables indexed by t ∈ [0, τ ].
We say that this collection of random variables is an adapted stochastic process if, for each t,
the random variable X(t) is F(t)-measurable.
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2.D Stochastic Calculus

Definition 2.47 (Shreve 2004, Definition 3.3.1). Let (Ω,F ,P) be a probability space. For each
ω ∈ Ω, suppose there is a continuous function W (t) that satisfies W (0) = 0, and that depends
on ω. Then W (t), t ≥ 0, is a Brownian motion if for all 0 = t0 < t1 < . . . < tm the increments

W (t1) = W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tm)−W (tm−1)

are independent, and each of these increments is normally distributed with

E[W (ti+1)−W (ti)] = 0,

Var(W (ti+1)−W (ti)) = ti+1 − ti.

Definition 2.48 (Shreve 2004, Definition 4.4.3). Let W (t), t ≥ 0, be a Brownian motion, and
let F(t), t ≥ 0, be an associated filtration. An Itô process is a stochastic process of the form

X(t) = X(0) +

∫ t

0

b(s) ds+

∫ t

0

σ(s) dW (s),

where X(0) is deterministic, and b(s) and σ(s) are adapted stochastic processes.

Remark 2.49. In differential notation, an Itô process may be expressed as

dX(t) = b(t) dt+ σ(t) dW (t).

Remark 2.50. Itô process X(t) has drift rate b(t) and variance rate a(t) = σ2(t). Adapted
stochastic processes b(t) and σ(t) may, and often do, depend on X(t) as well.

Theorem 2.51 (Itô formula [Shreve 2004, Theorem 4.4.6]). Let X(t), t ≥ 0, be an Itô process
as described in Definition 2.48, and let f(t, x) be a function for which the partial derivatives
ft(t, x), fx(t, x) and fxx(t, x) are defined and continuous. Then, for every τ ≥ 0,

f
(
τ,X(τ)

)
= f

(
0, X(0)

)
+

∫ τ

0

ft
(
t,X(t)

)
dt+

∫ τ

0

fx
(
t,X(t)

)
dX(t)

+
1

2

∫ τ

0

fxx
(
t,X(t)

)
d[X,X](t)

= f
(
0, X(0)

)
+

∫ τ

0

ft
(
t,X(t)

)
dt+

∫ τ

0

fx
(
t,X(t)

)
b(t) dt+

∫ τ

0

fx
(
t,X(t)

)
σ(t) dW (t)

+
1

2

∫ τ

0

fxx
(
t,X(t)

)
σ2(t) dt.

Remark 2.52. Itô’s formula may be expressed in differential form as

df
(
t,X(t)

)
= ft

(
t,X(t)

)
dt+ fx

(
t,X(t)

)
dX(t) +

1

2
fxx
(
t,X(t)

)
d[X,X](t)

= ft
(
t,X(t)

)
dt+ fx

(
t,X(t)

)
b(t) dt+ fx

(
t,X(t)

)
σ(t) dW (t)

+
1

2
fxx
(
t,X(t)

)
σ2(t) dt.
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Definition 2.53 (Shreve 2004, Definition 2.3.5). Let (Ω,F ,P) be a probability space, and fix
τ > 0. Let F(t), 0 ≤ t ≤ τ , be a filtration of σ-algebras of F . Consider an adapted stochastic
process M(t), 0 ≤ t ≤ τ . If

E[M(t) | F(s)] = M(s) for all 0 ≤ s ≤ t ≤ τ,

we say this process is a martingale. It has no tendency to rise or fall.

Theorem 2.54 (Shreve 2004, Theorem 4.3.1). Fix τ > 0, and let σ(t), 0 ≤ t ≤ τ , be an adapted
stochastic process that satisfies E

[ ∫ τ
0
σ2(t) dt

]
<∞. Then, the Itô integral I(t) =

∫ t
0
σ(s) dW (s)

has the following properties:

(1) (Continuity) As a function of the upper limit of integration t, the paths of I(t) are con-
tinuous.

(2) (Adaptivity) For every t, I(t) is F(t)-measurable.

(3) (Linearity) If I(t) =
∫ t

0
σ(s) dW (s) and J(t) =

∫ t
0
φ(s) dW (s), then for every constant c,

cI(t) =
∫ t

0
c σ(s) dW (s); and I(t)± J(t) =

∫ t
0

(
σ(s)± φ(s)

)
dW (s).

(4) (Martingale) I(t) is a martingale.

(5) (Itô isometry) E
[
I2(t)

]
= E

[ ∫ t
0
σ2(s) ds

]
.

(6) (Quadratic variation) [I, I](t) =
∫ t

0
σ2(s) ds.

Theorem 2.55 (Lévy, one dimension [Shreve 2004, Theorem 4.6.4]). Let M(t), t ≥ 0, be a
martingale relative to a filtration F(t), t ≥ 0. Assume that M(0) = 0, M(t) has continuous
paths, and [M,M ](t) = t for all t ≥ 0. Then, M(t) is a Brownian motion.

Theorem 2.56 (Lévy, two dimension [Shreve 2004, Theorem 4.6.5]). Let M1(t) and M2(t),
t ≥ 0, be a martingales relative to a filtration F(t), t ≥ 0. Assume that for i = 1, 2, Mi(0) = 0,
Mi(t) has continuous paths, and [Mi,Mi](t) = t for all t ≥ 0. If, in addition, [M1,M2](t) = 0

for all t ≥ 0, then M1(t) and M2(t) are independent Brownian motions.

Theorem 2.57 (Two-dimensional Itô formula [Shreve 2004, Theorem 4.6.2]). Let f(t, x, y),
t ≥ 0, be a function whose partial derivatives ft, fx, fy, fxx, fxy, fyx and fyy are defined and con-
tinuous. Let X(t) and Y (t) be Itô processes as described in Definition 2.48. The two-dimensional
Itô formula in differential form is

df
(
t,X(t), Y (t)

)
= ft

(
t,X(t), Y (t)

)
dt+ fx

(
t,X(t), Y (t)

)
dX(t) + fy

(
t,X(t), Y (t)

)
dY (t)

+
1

2
fxx
(
t,X(t), Y (t)

)
d[X,X](t) + fxy

(
t,X(t), Y (t)

)
d[X,Y ](t)

+
1

2
fyy
(
t,X(t), Y (t)

)
d[Y, Y ](t).
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Corollary 2.58 (Itô product rule [Shreve 2004, Corollary 4.6.3]). Let X(t) and Y (t), t ≥ 0, be
Itô processes as described in Definition 2.48. Then,

d
(
X(t)Y (t)

)
= X(t) dY (t) + Y (t) dX(t) + d[X,Y ](t)

= X(t) dY (t) + Y (t) dX(t) + dX(t) dY (t).

2.E Convergence of Sequences

Many of the results in this chapter are established under different modes of convergence. Some
proofs, too, appeal to results established under different modes of convergence. Here, we provide
a digest of definitions and theorems (and lemmas, corollaries, etc.), previously referenced in this
chapter, on the convergence of sequences of random variables and measurable functions.

Theorem 2.59 (p-series test [Wade 2004, Corollary 6.13]). The series

∞∑
k=1

1

kp

converges if and only if p > 1.

Definition 2.60 (Wade 2004, Definition 7.1). Let I be a nonempty subset of R. A sequence of
functions fn : I → R is said to converge pointwise on I if and only if f(x) = limn→∞fn(x) exists
for each x ∈ I.

Definition 2.61 (Grimmett and Stirzaker 2001, Definition 7.2.1). Let X,X1, X2, . . . be random
variables on some probability space (Ω,F ,P). We say:

(1) Xn converges to X almost surely, written Xn
a.s.−→ X, if

{ω ∈ Ω: Xn(ω)→ X(ω) as n→∞}

is an event whose probability is 1.

(2) Xn converges to X in probability, written Xn
P→ X, if

P
(∣∣Xn −X

∣∣ > ε
)
→ 0 as n→∞ for all ε > 0.

(3) Xn converges to X in distribution, written Xn
D→ X, if

P(Xn ≤ x)→ P(X ≤ x) as n→∞

for all points x at which the function FX(x) = P(X ≤ x) is continuous.

Theorem 2.62 (Grimmett and Stirzaker 2001, Theorem 7.2.3). The following implications hold:

(Xn
a.s.−→ X) =⇒ (Xn

P→ X) =⇒ (Xn
D→ X).
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Theorem 2.63 (Dominated convergence [Shreve 2004, Theorem 1.4.9]). Let f1, f2, . . . be a
sequence of Borel-measurable functions on R converging almost everywhere to a function f . If
there is another non-negative function g such that

∫∞
−∞ g(x) dx <∞ and |fn| ≤ g almost every-

where for all n, then

lim
n→∞

∫ ∞
−∞

fn(x) dx =

∫ ∞
−∞

f(x) dx.

Theorem 2.64 (Central limit [Grimmett and Stirzaker 2001, Theorem 5.10.4]). Let X1, X2, . . .

be a sequence of independent identically distributed random variables with finite mean µ and finite
non-zero variance σ2, and let Sn = X1 +X2 + . . .+Xn. Then

Sn − nµ
σ
√
n

D→ N (0, 1) as n→∞.

Theorem 2.65 (Strong law of large numbers [Grimmett and Stirzaker 2001, Theorem 7.5.1]).
Let X1, X2, . . . be independent identically distributed random variables. Then

1

n

n∑
i=1

Xi → µ a.s., as n→∞,

for some constant µ, if and only if E[|X1|] <∞. In this case µ = E[X1].

Lemma 2.66 (Kronecker [Gut 2005, Lemma 6.5.1]). Suppose that {Xn}n≥1 is a sequence of
random variables, and let {an}n≥1 be a sequence of real numbers such that 0 < an ↑ ∞ as
n→∞. Then,

∞∑
k=1

Xk

ak
converges a.s. =⇒ 1

an

n∑
k=1

Xk
a.s.−→ 0 as n→∞.

Theorem 2.67 (Kolmogorov’s convergence criterion [Gut 2005, Theorem 6.5.2]). Let {Xn}n≥1

be a sequence of independent random variables. Then,

∞∑
n=1

Var(Xn) <∞ =⇒
∞∑
n=1

(Xn − E[Xn]) converges a.s.
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CHAPTER 3
Copula Approach to Modelling

Default Dependence

In generating a portfolio loss distribution we are, in effect, combining marginal loss distributions
of constituent credits into a multivariate distribution capturing default dependence between
obligors. An approach to modelling default dependence, popularised by Li (2000), uses copula
functions — a statistical technique for combining marginal distributions into a multivariate
distribution with a chosen dependence structure.

Drawing from Nelsen (2006) and Embrechts, Lindskog, et al. (2003), Section 3.1 introduces
the theory of copulas. On this basis, Section 3.2 derives the single-factor copula model describing
default dependence for the general case introduced in Section 2.3. In generating the empirical
loss distribution of a credit portfolio by simulation of the conditional independence model of
Definition 2.10, we are implicitly applying the single-factor copula model using Monte Carlo
methods. Section 3.3 returns to the special case in which defaults are modelled as conditionally
independent Gaussian random variables. We derive the one-factor Gaussian copula, the most
commonly applied copula function in credit risk modelling. Then, Section 3.4 casts the Gaussian
copula in the frame of survival time, or time-until-default. Section 3.5 proceeds to examine tail
dependence in portfolio loss distributions described by a variety of elliptical copulas. We outline
procedures for generating empirical loss distributions described by Gaussian and Student’s t
copulas.

3.1 Copula Theory

Our introduction to copulas provides a digest of definitions, theorems and corollaries pertinent
to the application of copula functions to modelling default dependence. This material is drawn
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primarily from texts by Nelsen (2006) and Embrechts, Lindskog, et al. (2003). Throughout this
section, functions F, F1, . . . , Fn and G denote arbitrary distribution functions.

Definition 3.1. An n-dimensional copula (or n-copula) is a function C : [0, 1]n → [0, 1] with the
following properties:

(1) For every (u1, . . . , un) ∈ [0, 1]n, C(u1, . . . , un) = 0 if at least one element uk is zero; and
C(u1, . . . , un) = uk if all elements of (u1, . . . , un) are equal to 1 except uk.

(2) For any n-box B = [u1, v1]× . . .× [un, vn] ⊆ [0, 1]n,

Vc(B) =
∑

sgn(w1, . . . , wn)C(w1, . . . , wn) ≥ 0,

where the sum is taken over all vertices (w1, . . . , wn) of B, and

sgn(w1, . . . , wn) =

1 if wk = uk for an even number of coordinates k,

−1 if wk = uk for an odd number of coordinates k.

The function Vc(B) is called the C-volume of n-box B. Informally, an n-copula is a multi-
variate distribution function on the unit box [0, 1]n whose margins are uniformly distributed on
the unit interval [0, 1]. As such, an n-copula induces a probability measure on [0, 1]n via

Vc([0, u1]× . . .× [0, un]) = C(u1, . . . , un).

Remark 3.2. For any n-copula C, n ≥ 3, each k-margin of C is a k-copula, 2 ≤ k < n.

Sklar’s theorem, first published in 1959, is central to the theory of copulas, and is employed in
most applications of copulas. In the sequel, let R denote the extended real number line [−∞,∞],
and DomG and RanG denote the domain and range of function G, respectively.

Theorem 3.3 (Sklar). Let F be an n-dimensional distribution function with margins F1, . . . , Fn.
Then there exists an n-copula C such that for all (x1, . . . , xn) ∈ Rn,

F (x1, . . . , xn) = C
(
F1(x1), . . . , Fn(xn)

)
. (3.1)

If F1, . . . , Fn are all continuous, then C is unique; otherwise, C is uniquely determined on
RanF1 × . . .× RanFn. Conversely, if C is an n-copula and F1, . . . , Fn are distribution func-
tions, then F is an n-dimensional distribution function with margins F1, . . . , Fn.

Proof. Refer to Nelsen (2006, Theorem 2.10.9).

Definition 3.4. Let G be a distribution function. Then the quasi-inverse of G is any function
G(−1) with domain [0,1] satisfying:

(1) If t ∈ RanG, then G(−1)(t) is any number x ∈ R such that G(x) = t; that is, for all
t ∈ RanG, G

(
G(−1)(t)

)
= t.

(2) If t /∈ RanG, then G(−1)(t) = inf{x ∈ R : G(x) ≥ t}, using the convention inf ∅ = −∞.
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3.1. Copula Theory

Remark 3.5. If G is strictly increasing, then G has a single quasi-inverse, the ordinary inverse
denoted G−1.

Corollary 3.6. Let F, F1, . . . , Fn and C be as in Theorem 3.3, and let F (−1)
1 , . . . , F

(−1)
n be

quasi-inverses of F1, . . . , Fn, respectively. Then for any (u1, . . . , un) ∈ [0, 1]n,

C(u1, . . . , un) = F
(
F

(−1)
1 (u1), . . . , F (−1)

n (un)
)
. (3.2)

Consider the copula functions Mn,Πn and Wn defined on [0, 1]n as:

Mn(u1, . . . , un) = min(u1, . . . , un),

Πn(u1, . . . , un) = u1 . . . un,

Wn(u1, . . . , un) = max(u1 + . . .+ un − n+ 1, 0).

Mn and Wn are the Fréchet-Hoeffding upper and lower bounds, respectively, and Πn is the
product copula. Functions Mn and Πn are n-copulas for n ≥ 2, whereas Wn is not an n-copula
for n > 2.

Theorem 3.7. If C is any n-copula, then for every (u1, . . . , un) ∈ [0, 1]n,

Wn(u1, . . . , un) ≤ C(u1, . . . , un) ≤Mn(u1, . . . , un). (3.3)

Proof. For the two-dimensional case, refer to Nelsen (2006, Theorem 2.2.3).

Although the Fréchet-Hoeffding lower bound in not an n-copula for n > 2, the left-hand
inequality in (3.3) is best possible in the following sense.

Theorem 3.8. For any (u1, . . . , un) ∈ [0, 1]n and n ≥ 3, there is an n-copula C, which depends
on (u1, . . . , un), such that

C(u1, . . . , un) = Wn(u1, . . . , un).

Proof. Refer to Nelsen (2006, Theorem 2.10.13).

Theorem 3.9. Let (X1, . . . , Xn) be a vector of continuous random variables with n-copula C.
Then X1, . . . , Xn are independent if and only if C = Πn.

Proof. Follows from Theorem 3.3, and the observation that X1, . . . , Xn are independent if and
only if F (x1, . . . , xn) = F1(x1) . . . Fn(xn) for all (x1, . . . , xn) ∈ Rn.

Random variables with copula Mn are often called comonotonic.

Theorem 3.10. Let (X1, . . . , Xn) be a vector of continuous random variables with n-copula C.
Then each of the random variables X1, . . . , Xn is almost surely a strictly increasing function of
any of the others if and only if C = Mn.

Proof. For the two-dimensional case, refer to Wang and Dhaene (1998).
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3. Copula Approach to Modelling Default Dependence

One of the key properties of copulas is that for strictly monotone transformations of contin-
uous random variables, copulas are either invariant or change in predictable and simple ways.
Note that a random variable is continuous if its distribution function is continuous. Also, if
the distribution function of a random variable X is continuous, and if ϕ is a strictly monotone
function whose domain contains RanX, then the distribution function of ϕ(X) is continuous too.
We now consider the case of strictly increasing transformations of random variables.

Theorem 3.11. Let (X1, . . . , Xn) be a vector of continuous random variables with n-copula C. If
ϕ1, . . . , ϕn are strictly increasing on RanX1, . . . ,RanXn, respectively, then

(
ϕ(X1), . . . , ϕ(Xn)

)
has the same copula C. Thus, C is invariant under strictly increasing transformations of
(X1, . . . , Xn).

Proof. Refer to Embrechts, Lindskog, et al. (2003, Theorem 8.2.6).

3.2 Single-Factor Copula Model

Consider a credit portfolio comprising n obligors, and let (2.25) define the event that obligor i
defaults. We may express the unconditional PD of obligor i, for the general case introduced in
Section 2.3, as

P(Di) = P
(
Wi < F−1

i (pi)
)
, (3.4)

and the joint default probability as

P
(
1D1

= 1, . . . ,1Dn = 1
)

= P
(
W1 < F−1

1 (p1), . . . ,Wn < F−1
n (pn)

)
. (3.5)

Let (u1, . . . , un) = (p1, . . . , pn) be a vector in [0, 1]n, and (W1, . . . ,Wn) a vector of latent random
variables with continuous and strictly increasing distribution functions F1, . . . , Fn, respectively.
Suppose that F is an n-dimensional distribution function with margins F1, . . . , Fn. Then, by
Theorem 3.3, there is a unique n-copula C such that for all (w1, . . . , wn) ∈ Rn,

F (w1, . . . , wn) = C
(
F1(w1), . . . , Fn(wn)

)
. (3.6)

Now, by Corollary 3.6, for any (u1, . . . , un) ∈ [0, 1]n,

C(u1, . . . , un) = F
(
F−1

1 (u1), . . . , F−1
n (un)

)
= P

(
W1 < F−1

1 (u1), . . . ,Wn < F−1
n (un)

)
. (3.7)

Assuming that defaults are conditionally independent given systematic risk factor Y , latent
random variables W1, . . . ,Wn may be represented as in (2.24):

Wi = γiY +
√

1− γ2
i Zi,

where Z1, . . . , Zn and Y are mutually independent random variables with continuous and strictly
increasing distribution functionsG1, . . . , Gn andH, respectively, and γi ∈ (−1, 1) for i = 1, . . . , n.
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3.2. Single-Factor Copula Model

Lemma 3.12. Assume a conditional independence model of a credit portfolio comprising n

obligors. Then, default dependence may be described by the single-factor copula function associ-
ated with (W1, . . . ,Wn):

C(u1, . . . , un) =

∫ ∞
−∞

(
n∏
i=1

Gi

(
F−1
i (ui)− γiy√

1− γ2
i

))
dH(y) (3.8)

for any (u1, . . . , un) ∈ [0, 1]n.

Proof. Integrating conditional marginal distribution functions over systematic risk factor Y ,
copula (3.7) may be expressed as

C(u1, . . . , un) = P
(
W1 < F−1

1 (u1), . . . ,Wn < F−1
n (un)

)
=

∫ ∞
−∞

P
(
W1 < F−1

1 (u1), . . . ,Wn < F−1
n (un) |Y = y

)
dH(y)

=

∫ ∞
−∞

P
(
W1 < F−1

1 (u1) |Y = y
)
. . .P

(
Wn < F−1

n (un) |Y = y
)

dH(y).

(3.9)

The integrand in the last equality is the product of obligors’ PDs conditional on realisation y ∈ R
of systematic risk factor Y . Substituting the probability statements in this integrand with the
expression for conditional PD in (2.28), and observing that ui = pi for i = 1, . . . , n establishes
(3.8).

Remark 3.13. Equation (3.8) holds for any distribution function H. However, other results in
this thesis rely on the assumption that H is continuous and strictly increasing.

The copula application of interest here is the generation of the portfolio loss distribution. We
first adapt Lemma 3.12 to measure the probability of k defaults in a credit portfolio comprising
n obligors. Then, using this result, we deduce an expression for the cumulative probability that
the portfolio percentage loss does not exceed a given threshold.

Proposition 3.14. Assume a conditional independence model of a credit portfolio comprising
n obligors, each assigned equal EAD and LGD. That is, wi = 1/n and ηi = η for i = 1, . . . , n.
Define a permutation π of the set {1, . . . , n} as the one-to-one mapping of the set onto itself.
Denote by P the set of all such permutations, and π(j) the jth element of a permutation π. Then,
for k = 0, 1, . . . , n,

P
(
Ln =

ηk

n

)
=

1

k!(n− k)!

∑
π∈P

∫ −∞
−∞

Gπ(1)

(
ζπ(1)(y)

)
. . . Gπ(k)

(
ζπ(k)(y)

)
(
1−Gπ(k+1)(ζπ(k+1)(y))

)
. . .
(
1−Gπ(n)(ζπ(n)(y))

)
dH(y),

(3.10)

where

ζπ(j)(y) =
F−1
π(j)(pπ(j))− γπ(j)y√

1− γ2
π(j)

.
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3. Copula Approach to Modelling Default Dependence

Proof. There are n! permutations of the set {1, . . . , n}, so(
n

k

)
=

n!

k!(n− k)!
=

1

k!(n− k)!

∑
π∈P

1.

The expression for ζπ(j)(y) follows from (2.27). Notice that

P
(
Wπ(j) < F−1

π(j)(uπ(j)) |Y = y
)

= P
(
Zπ(j) < ζπ(j)(y)

)
,

where uπ(j) = pπ(j), and apply (3.9) to measure the probability of k defaults in a credit portfolio
comprising n obligors. Hence,

P
(
Ln =

ηk

n

)
=

1

k!(n− k)!

∑
π∈P

P(1Dπ(1)
= 1, . . . ,1Dπ(k)

= 1,1Dπ(k+1)
= 0, . . . ,1Dπ(n)

= 0)

=
1

k!(n− k)!

∑
π∈P

∫ −∞
−∞

P
(
Zπ(1) < ζπ(1)(y)

)
. . .P

(
Zπ(k) < ζπ(k)(y)

)
P
(
Zπ(k+1) ≥ ζπ(k+1)(y)

)
. . .P

(
Zπ(n) ≥ ζπ(n)(y)

)
dH(y).

Observing that Gπ(j) is the distribution function of Zπ(j) establishes (3.10).

Corollary 3.15. Under the assumptions of Proposition 3.14, the portfolio loss distribution func-
tion is given by

P (Ln ≤ l) =

bln/ηc∑
k=0

P
(
Ln =

ηk

n

)
, (3.11)

where bln/ηc is the largest integer not greater than ln/η.

Remark 3.16. Vasicek (1987, 1991) derived the Gaussian equivalent of (3.10) and (3.11), before
recoveries, for a homogeneous credit portfolio.

Remark 3.17. Monte Carlo simulation computes the portfolio percentage loss for a very large
sample of realisations y ∈ R of systematic risk factor Y . For each realisation y we use (2.26)
to determine the number of defaults k, and calculate portfolio percentage loss by summing the
product of exposure weight and LGD for credits that have defaulted. This simulation procedure
is discussed in some detail in Section 6.1. In generating the empirical loss distribution of a credit
portfolio by simulation (2.44), we are implicitly applying the single-factor copula model using
Monte Carlo methods.

3.3 One-Factor Gaussian Copula

Throughout this section, as the title implies, we restrict our attention to the special case in which
default dependence is modelled as a multivariate Gaussian process. Consider a credit portfolio
comprising n obligors. Substituting the inverse standard Gaussian distribution function into (3.4)
and (3.5), the unconditional PD of obligor i becomes

P(Di) = P
(
Wi < Φ−1(pi)

)
, (3.12)
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3.3. One-Factor Gaussian Copula

and the joint default probability is given by

P
(
1D1

= 1, . . . ,1Dn = 1
)

= P
(
W1 < Φ−1(p1), . . . ,Wn < Φ−1(pn)

)
. (3.13)

Let (u1, . . . , un) = (p1, . . . , pn) be a vector in [0, 1]n, and choose a dependence structure described
by correlation matrix Γ. Then, the unique Gaussian copula associated with (W1, . . . ,Wn) is a
particular case of (3.7):

CΓ(u1, . . . , un) = ΦΓ

(
Φ−1(u1), . . . ,Φ−1(un)

)
(3.14)

= P
(
W1 < Φ−1(u1), . . . ,Wn < Φ−1(un)

)
,

for any (u1, . . . , un) ∈ [0, 1]n, where ΦΓ is the multivariate standard Gaussian distribution func-
tion with correlation matrix Γ.

Now suppose that defaults are conditionally independent given a single systematic risk factor.
Then, default dependence is described by correlation matrix:

Γ̂ =


1

√
ρ1ρ2 · · · √ρ1ρn

√
ρ1ρ2 1 · · · √ρ2ρn
...

...
. . .

...
√
ρ1ρn

√
ρ2ρn · · · 1

 (3.15)

where√ρiρj = Corr(Wi,Wj) is the pairwise correlation between obligors’ asset values by Propo-
sition 2.5, and√ρi is the exposure of obligor i to systematic risk factor Y in (2.19). This special
case of the Gaussian copula is the so-called one-factor Gaussian copula, the most commonly
applied copula function in credit risk modelling (MacKenzie and Spears 2012). The multi-
variate distribution induced by the one-factor Gaussian copula is an elliptical one. We formally
define spherical and elliptical distributions in Appendix 3.A. The following result, a corollary of
Lemma 3.12, provides an expression for the one-factor Gaussian copula.

Corollary 3.18. Assume a Gaussian conditional independence model of a credit portfolio com-
prising n obligors with pairwise asset correlations defined by matrix (3.15). Then, default depen-
dence may be described by the one-factor Gaussian copula associated with (W1, . . . ,Wn):

CΓ̂(u1, . . . , un) = ΦΓ̂

(
Φ−1(u1), . . . ,Φ−1(un)

)
=

∫ ∞
−∞

(
n∏
i=1

Φ

(
Φ−1(ui)−

√
ρi y√

1− ρi

))
φ(y) dy (3.16)

for any (u1, . . . , un) ∈ [0, 1]n.

Proof. Substituting the operands of the product operator in (3.8) with the expression for condi-
tional PD in (2.20), and observing that dΦ(y) = φ(y) dy establishes (3.16).

Remark 3.19. Appealing to Proposition 2.28, the Basel II IRB approach applies the one-factor
Gaussian copula to calculate the α quantile of the distribution of E[Ln |Y ], an analytical approx-
imation of the α quantile of the distribution of Ln, or VaRα(Ln).
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3. Copula Approach to Modelling Default Dependence

3.4 Copula of Survival Times

It is usual to cast Gaussian copula (3.14) in the frame of survival time, or time-until-default.
Assume that marginal distributions of obligors’ survival times are known — a typical assump-
tion is that survival times follow an exponential distribution. For a credit portfolio comprising
n obligors, let (T1, . . . , Tn) be a vector of survival times with continuous and strictly increas-
ing distribution functions FT1

, . . . , FTn . The event that obligor i defaults during a given risk
measurement horizon is defined by (2.25). We now recast this event as set

Di = {Ti ≤ τi},

where the interval [0, τi], τi > 0, is the risk measurement horizon assigned to obligor i. Then,
the unconditional PD of obligor i, which is a function of the risk measurement horizon, may be
reformulated as

pi = P(Di) = P(Ti ≤ τi) = FTi(τi),

and the joint default probability as

P
(
1D1

= 1, . . . ,1Dn = 1
)

= P(T1 ≤ τ1, . . . , Tn ≤ τn).

Notice that the model accommodates varying risk measurement horizons for different credits.
However, the usual practice is to assign the same risk measurement horizon to all constituent
credits of the portfolio.

Let (u1, . . . , un) = (p1, . . . , pn) be a vector in [0, 1]n. Then, it follows from Corollary 3.6 that
default dependence may also be described by a unique n-copula associated with (T1, . . . , Tn):

CT (u1, . . . , un) = FT
(
F−1
T1

(u1), . . . , F−1
Tn

(un)
)

(3.17)

= P
(
T1 ≤ F−1

T1
(u1), . . . , Tn ≤ F−1

Tn
(un)

)
,

for any (u1, . . . , un) ∈ [0, 1]n, where FT is the multivariate distribution function of the vector of
survival times. Since higher realisations of random variables T1, . . . , Tn and W1, . . . ,Wn corre-
spond to wider estimates of distance-to-default, we postulate that there exist strictly increasing
functions ϕ1, . . . , ϕn on RanW1, . . . ,RanWn, respectively, such that

(T1, . . . , Tn) =
(
ϕ1(W1), . . . , ϕn(Wn)

)
.

Then, by Theorem 3.11, (T1, . . . , Tn) and (W1, . . . ,Wn) share the same copula. That is, (3.7)
and (3.17) are equivalent formulations of default dependence:

P
(
W1 < F−1

1 (u1), . . . ,Wn < F−1
n (un)

)
= P

(
T1 ≤ F−1

T1
(u1), . . . , Tn ≤ F−1

Tn
(un)

)
,

F
(
F−1

1 (u1), . . . , F−1
n (un)

)
= FT

(
F−1
T1

(u1), . . . , F−1
Tn

(un)
)
,

C(u1, . . . , un) = CT (u1, . . . , un).
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3.4. Copula of Survival Times

Remark 3.20. Suppose that we choose the one-factor Gaussian copula CΓ̂ to model default
dependence, and assume that the vector of survival times (T1, . . . , Tn) is the image of the vector
of latent random variables (W1, . . . ,Wn) under strictly increasing transformations ϕ1, . . . , ϕn.
Then, observing that

P(Di) = P
(
Wi < Φ−1(pi)

)
= P

(
Wi < Φ−1(FTi(τi))

)
,

we may substitute correlation matrix Γ̂ and distribution function FTi(τi) into (3.14) to obtain
an expression for the joint default probability in terms of survival times:

P(T1 ≤ τ1, . . . , Tn ≤ τn) = ΦΓ̂

(
Φ−1(FT1(τ1)), . . . ,Φ−1(FTn(τn))

)
. (3.18)

Thus, the Gaussian copula defined by (3.18) with asset correlation matrix (3.15) allows us to
generate survival times of constituent credits (Li 2000).

Remark 3.21. Generation of the single-period, or static, loss distribution of a credit portfolio by
simulation of (2.26) parameterised by (2.21) is an application of the one-factor Gaussian copula
described by (3.16), which cast in terms of survival times is equivalent to (3.18). Portfolios of
large banks contain financial instruments that are influenced by a multitude of underlying risk
factors. Internal and external risk controllers, such as the prudential regulator, require risks
to be measured over varying holding periods for different risk classes (e.g., one-day or 10-day
for market risk, and one-year for credit and operational risks). The path dependent nature of
many risks and the requirement to measure portfolio risk over different time horizons leads to
a multi-period simulation. It is practical then to simulate all variables, including defaults and
survivals, in each time period.

Brigo et al. (2013) demonstrate the pitfalls of iterating marginal survival times with depen-
dence modelled by the Gaussian copula at each time step of a multi-period simulation. This
common industry practice may not be consistent with the overall default monitoring of a single-
period (through to the terminal horizon) simulation of default times. In order to consistently
represent dependence between multivariate survival times in each period of a multi-period simu-
lation, the authors model survival times using a continuous-time Markov chain with multivariate
exponential distribution (i.e., Marshall-Olkin copula). This approach borrows from the fatal
shock model of reliability theory (Barlow and Proschan 1981; Gupta et al. 2010; Lindskog and
McNeil 2001). Survival times are modelled as a matrix differential equation in the transition
matrix for the embedded Markov chain. The solution involves the eigendecomposition of the
infinitesimal generator of the continuous-time Markov chain. An efficient implementation of this
Markovian credit risk model remains a challenge in building a feasible multi-period simulation
for measuring risk in massive portfolios.
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3. Copula Approach to Modelling Default Dependence

3.5 Elliptical Copulas

In applying the one-factor Gaussian copula to calculate regulatory capital for credit risk, the IRB
approach implicitly assumes that a multivariate Gaussian distribution accurately models tail risk
of credit portfolios. But, it is generally acknowledged that models which assume that financial
data follow a Gaussian distribution tend to underestimate tail risk. For one, Gaussian copulas
do not exhibit tail dependence — the tendency for extreme observations (i.e., credit defaults)
to occur simultaneously for all random variables. Under a Gaussian copula defaults are said to
be asymptotically independent in the upper tail (Embrechts, McNeil, et al. 2002). Section 6.3
examines the effect of tail dependence by measuring the sensitivity of credit risk capital to de-
pendence structure as modelled by elliptical copulas, including Gaussian and Student’s t copulas.
We abbreviate the latter by t-copula.

Firstly, we recall some properties of basic probability distributions (Bluhm et al. 2010,
pp. 103–105):

• Chi-square distribution. Let Z1, . . . , Zν ∼ N (0, 1) be independent standard Gaussian ran-
dom variables. Then, random variable X = Z2

1 + . . .+ Z2
ν is said to be chi-square dis-

tributed with ν degrees of freedom, X ∼ χ2(ν).

• Student’s t distribution. Let Z ∼ N (0, 1) and V ∼ χ2(ν), Z independent of V . Then,
random variable X = Z

√
ν/V is said to t-distributed with ν degrees of freedom, X ∼ t(ν).

The Student’s t distribution converges to the standard Gaussian distribution as the number
of degrees of freedom increases.

• Multivariate Student’s t distribution. Given a multivariate vector (Z1, . . . , Zn) ∼ N (0,Γ)

with correlation matrix Γ, let V ∼ χ2(ν), V independent of (Z1, . . . , Zn). Then, random
vector (X1, . . . , Xn) =

√
ν/V (Z1, . . . , Zn) is said to be t-distributed with ν degrees of free-

dom, (X1, . . . , Xn) ∼ t(ν,Γ). Note that (X1, . . . , Xn) inherits its correlation matrix Γ from
(Z1, . . . , Zn). That is, Corr(Xi, Xj) = Corr(Zi, Zj) for 1 ≤ i < j ≤ n.

Now, let (X1, . . . , Xn) be a vector of latent random variables modelling default dependence of
a portfolio comprising n obligors. We proceed to illustrate the dependence induced by a variety
of elliptical copulas, and outline procedures for randomly generating observations drawn from
the resultant multivariate distributions (Bluhm et al. 2010, pp. 106–108):

• One-factor Gaussian copula. Observations X1, . . . , Xn are randomly generated with

Xi =
√
ρi Y +

√
1− ρi Zi, (3.19)

where random variables Z1, . . . , Zn and Y are standard Gaussian and mutually indepen-
dent, and correlation parameters ρ1, . . . , ρn ∈ (0, 1). That is, we sample (X1, . . . , Xn) from
the distribution induced by Gaussian copula (3.14) with correlation matrix (3.15). Note
that (3.19) is simply the conditionally independent representation expressed in (2.19).
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3.5. Elliptical Copulas

• Product copula with Gaussian margins. By Theorem 3.9 the product copula generates inde-
pendent, and therefore uncorrelated, standard Gaussian random variables. So, observations
X1, . . . , Xn are independently drawn from the standard Gaussian distribution. That is, we
sample (X1, . . . , Xn) from the distribution induced by Gaussian copula (3.14) with corre-
lation matrix In, the n-by-n identity matrix.

• t-copula with ν degrees of freedom and t-distributed margins. Observations X1, . . . , Xn are
randomly generated with

Xi =

√
ν

V

(√
ρi Y +

√
1− ρi Zi

)
, (3.20)

where Z1, . . . , Zn and Y ∼ N (0, 1), V ∼ χ2(ν), and Z1, . . . , Zn, Y and V are mutually
independent. Scaling (2.19) by

√
ν/V transforms standard Gaussian random variables

into t-distributed random variables with ν degrees of freedom. Vector (X1, . . . , Xn) inherits
correlation matrix (3.15).

• t-copula with ν degrees of freedom and Gaussian margins. The procedure enumerated below
samples (X1, . . . , Xn) from the resultant multivariate distribution.

(1) Generate a vector of conditionally independent t-distributed random variables with ν
degrees of freedom using (3.20):

X̃i =

√
ν

V

(√
ρi Y +

√
1− ρi Zi

)
,

for i = 1, . . . , n.

(2) Apply the Student’s t distribution function to coordinates of vector (X̃1, . . . , X̃n):

(u1, . . . , un) =
(

Φν(X̃1), . . . ,Φν(X̃n)
)
,

where Φν is the Student’s t distribution function with ν degrees of freedom, and
(u1, . . . , un) ∈ [0, 1]n.

(3) Apply the inverse standard Gaussian distribution function to coordinates of vector
(u1, . . . , un):

(X1, . . . , Xn) =
(
Φ−1(u1), . . . ,Φ−1(un)

)
.

In sum, observations X1, . . . , Xn are randomly generated with

Xi = Φ−1

(
Φν

(√
ν

V

(√
ρi Y +

√
1− ρi Zi

)))
. (3.21)

The resultant multivariate distributions are spherical or elliptical, which we formally define
in Appendix 3.A. The bivariate scatter plots in Figure 3.1 illustrate the dependence induced
by the elliptical copulas described above. For each copula, except the product copula, we set
ρ1 = ρ2 = 0.170, the exposure-weighted asset correlation of the representative credit portfolio
described in Section 5.2.
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3. Copula Approach to Modelling Default Dependence

Figure 3.1: Bivariate scatter plots illustrate the dependence induced by a variety of elliptical copulas.
Each point corresponds to an ordered pair (X1, X2). Except for the product copula where X1 and X2

are uncorrelated, ρ1 = ρ2 = 0.170, the exposure-weighted average asset correlation of the representative
credit portfolio described in Section 5.2.
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Remark 3.22. The dependence exhibited by the one-factor Gaussian copula becomes apparent
when compared with the product copula, which generates uncorrelated standard Gaussian ran-
dom variables. In contrast to Gaussian copulas, t-copulas admit tail dependence with fewer
degrees of freedom producing stronger dependence. When the t-copula is applied to combine
Gaussian margins and t-distributed margins, respectively, the former is more tightly distributed.

Assuming that asset values follow a log-normal distribution, the distribution of (X1, . . . , Xn)

is determined by the copula function chosen to combine its margins. Section 2.6 outlines the
procedure for generating the loss distribution of a credit portfolio comprising n obligors by sim-
ulation of (2.26). In an implementation of the one-factor Gaussian copula, the default indicator
function of (2.26) is parameterised by (2.21). Monte Carlo simulation performs N iterations,
(2.44) calculates the portfolio percentage loss for each iteration, and (2.45) describes the empirical
loss distribution.

In relation to the t-copula with Gaussian margins, we continue to assume that unconditional
PDs scaled to a given risk measurement horizon are published as market data. Substituting (3.20)
into (2.25), we define the event that obligor i defaults during the risk measurement horizon by
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3.A. Spherical and Elliptical Distributions

the set

Di =

{√
ν

V

(√
ρi Y +

√
1− ρi Zi

)
< Φ−1

ν (pi)

}
. (3.22)

Then, the PD of obligor i conditional on Y = y and V = v is deducible (Bluhm et al. 2010,
pp. 109–111):

pi(y, v) = P(Di |Y = y, V = v)

= P
(√

ν

V

(√
ρi Y +

√
1− ρi Zi

)
< Φ−1

ν (pi) |Y = y, V = v

)
= P

(√
ν

v

(√
ρi y +

√
1− ρi Zi

)
< Φ−1

ν (pi)

)
= P

(
Zi <

√
v/ν Φ−1

ν (pi)−
√
ρi y√

1− ρi

)

= Φ

(√
v/ν Φ−1

ν (pi)−
√
ρi y√

1− ρi

)
. (3.23)

Let

ζi(y, v) =

√
v/ν Φ−1

ν (pi)−
√
ρi y√

1− ρi
(3.24)

for i = 1, . . . , n. Now, given Y = y and V = v, the portfolio percentage loss is calculated as

Ln =

n∑
i=1

wiηi1{Zi<ζi(y,v)}. (3.25)

Suppose that we generate the loss distribution of a portfolio comprising n obligors by sim-
ulation of (3.25), an implementation of the t-copula with Gaussian margins. Let Monte Carlo
simulation perform N iterations. For each iteration we draw from the standard Gaussian distri-
bution random variables Z1, . . . , Zn and Y , and from the chi-square distribution with ν degrees
of freedom random variable V . Then, given Y = yk and V = vk, the portfolio percentage loss
over the risk measurement horizon is computed as

Ln,k =

n∑
i=1

wiηi1{Zi,k<ζi(yk,vk)} (3.26)

for iterations k = 1, . . . , N . Again, (2.45) describes the empirical loss distribution.

3.A Spherical and Elliptical Distributions

In Chapters 3 and 6 we examine, theoretically and empirically, tail dependence in portfolio loss
distributions described by a variety of elliptical copulas. Firstly, we formally define spherical dis-
tributions, distributions of uncorrelated random variables. Then, we define elliptical distributions
from the spherical.
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3. Copula Approach to Modelling Default Dependence

Definition 3.23 (McNeil et al. 2005, Definition 3.18). A random vector X = (X1, . . . , Xn)′ has
a spherical distribution if, for every orthogonal map U ∈ Rn×n,

UX
d
= X.

Remark 3.24. An orthogonal map U ∈ Rn×n satisfies UU ′ = U ′U = In, the n-by-n identity
matrix. Equivalently, U preserves lengths, that is, for every v ∈ Rn, ‖Uv‖ = ‖v‖. Therefore,
spherical random vectors are distributionally invariant under rotations.

Theorem 3.25 (McNeil et al. 2005, Theorem 3.19). The following statements are equivalent:

(1) X is spherical.

(2) There exists a function ψ of a scalar variable such that, for all t ∈ Rn,

φX(t) = E
[

eit
′X
]

= ψ(t′t) = ψ(t21 + . . .+ t2n),

where φX(t) is the characteristic function of X.

(3) For every t ∈ Rn,
t′X

d
= ‖t‖X1,

where ‖t‖2 = t′t = t21 + . . .+ t2n.

Remark 3.26. Random vector X is said to have an n-dimensional spherical distribution with
characteristic generator ψ, denoted X ∼ Sn(ψ).

Example 3.27. A random vectorX drawn from the standard uncorrelated Gaussian distribution
N (0, In) is spherical with characteristic function

φX(t) = E
[

eit
′X
]

= e−
1
2 t
′t .

By Theorem 3.25, X ∼ Sn(ψ) with characteristic generator ψ(t) = e−
1
2 t.

Remark 3.28. Among the spherical distributions, N (0, In) is the only distribution of independent
random variables.

Definition 3.29 (McNeil et al. 2005, Definition 3.26). A random vector X = (X1, . . . , Xn)′ has
an elliptical distribution if

X
d
= µ+AY,

where Y ∼ Sk(ψ), and A ∈ Rn×k and µ ∈ Rn are a matrix and vector of constants, respectively.

Remark 3.30. The characteristic function of an elliptical distribution is

φX(t) = E
[

eit
′X
]

= E
[

eit
′(µ+AY)

]
= eit

′µ E
[

ei(A
′t)′Y

]
= eit

′µ ψ(t′Σt),

where Σ = AA′. We denote elliptical distributions by X ∼ En(µ,Σ, ψ), and refer to µ as the
location vector, Σ as the dispersion (covariance) matrix and ψ as the characteristic generator of
the distribution.
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CHAPTER 4
Basel II Capital Requirements

Under the Internal Ratings-Based
Approach

Under the Basel II Accord (Basel Committee on Banking Supervision 2006), ADIs assess capital
adequacy for credit risk using either the standardised approach or, subject to approval, the
IRB approach. Our concern is with the theoretical foundations and empirical analysis of the
latter approach. In keeping with the Basel II IRB approach to capital adequacy for credit risk,
the relevant prudential standard of APRA (2008a) requires that ADIs set aside provisions for
absorbing expected losses, and hold capital against unexpected losses.

Definition 4.1. Unexpected loss on a credit portfolio at the α confidence level over a given risk
measurement horizon is the difference between credit VaR (with the same confidence level and
time horizon) and expected loss.

Recall that Ln denotes the portfolio percentage loss on a credit portfolio comprising n obligors,
and let Ln be the dollar loss on the same portfolio. Then, VaRα(Ln) (respectively, VaRα(Ln))
denotes the portfolio percentage (dollar) loss at the α confidence level over a given risk measure-
ment horizon, and E[Ln] (respectively, E[Ln]) the expected portfolio percentage (dollar) loss.
We define credit risk capital consistent with the IRB approach of the Basel II Accord and the
relevant prudential standard of APRA.

Definition 4.2. Let credit risk capital be held against unexpected losses. Then,

Kα(Ln) = VaRα(Ln)− E[Ln] (4.1)
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4. Basel II Capital Requirements Under the IRB Approach

is the capital charge (at the α confidence level over a given risk measurement horizon) as a
percentage of EAD on a credit portfolio comprising n obligors, and

Kα(Ln) = VaRα(Ln)− E[Ln] (4.2)

is the capital charge in dollars.

In Section 4.1 we formulate the IRB approach, and extend its model specification to the gen-
eral setting of Section 2.3. Then, Section 4.2 examines the conformity of the so-called asymptotic
single risk factor (ASRF) model with the property of portfolio invariance, an important criterion
for meeting supervisory needs.

4.1 Model Specification of the Internal Ratings-Based Approach

Appealing to Definition 4.2 and Proposition 2.28, we deduce a function for calculating capital
held against unexpected losses on an asymptotic credit portfolio.

Proposition 4.3. Assume a conditional independence model of an asymptotic credit portfolio.
Then,

lim
n→∞

Kα(Ln) = lim
n→∞

n∑
i=1

wiηiGi

(
F−1
i (pi)− γiH−1(1−α)√

1− γ2
i

)
− lim
n→∞

n∑
i=1

wiηipi, (4.3)

assuming that the limits on the right-hand side of (4.3) are well defined.

Proof. By Definition 4.2, capital held against unexpected losses on an asymptotic credit portfolio
may be expressed as

lim
n→∞

Kα(Ln) = lim
n→∞

VaRα(Ln)− lim
n→∞

E[Ln], (4.4)

assuming that the limits on the right-hand side are well defined. By hypothesis, defaults are
modelled as conditionally independent random variables given systematic risk factor Y . So,
adding and subtracting the α quantile of the distribution of conditional expectation of portfolio
percentage loss yields

lim
n→∞

Kα(Ln) = lim
n→∞

(
VaRα(Ln)− E

[
Ln |Y = H−1(1−α)

])
+ lim
n→∞

E
[
Ln |Y = H−1(1−α)

]
− lim
n→∞

E[Ln]

= lim
n→∞

E
[
Ln |Y = H−1(1−α)

]
− lim
n→∞

E[Ln], (4.5)

where the limits on the right-hand side of (4.5) are well defined by hypothesis. Recall that in
probabilistic terms, VaRα(Ln) is the α quantile of the portfolio loss distribution, qα(Ln). Hence,
the second equality in (4.5) follows from Proposition 2.28, with the α quantile of the distribution
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4.1. Model Specification of the IRB Approach

of E[Ln |Y ], in effect, being substituted for VaRα(Ln). Expanding (4.5) using (2.31) and (2.32)
yields

lim
n→∞

Kα(Ln) = lim
n→∞

n∑
i=1

wiηipi
(
H−1(1−α)

)
− lim
n→∞

n∑
i=1

wiηipi. (4.6)

Finally, setting y = H−1(1−α) in (2.28) and substituting into (4.6) establishes (4.3).

Proposition 4.3 applies to the abstract case of an infinitely fine-grained credit portfolio for
which total EAD diverges to ∞ (Remark 2.16). However, in the real world a credit portfolio
contains a finite number of obligors, each assigned a positive and finite EAD. Hence, portfolio
EAD is positive and finite, and so is the assessed capital charge, which may be expressed as a
percentage of EAD. In Section 4.2 we elaborate on this tension between asymptotic and real-world
portfolios in the context of portfolio invariance. Remark 2.21 highlights that while real-world
portfolios are not infinitely fine-grained, as a practical matter, credit portfolios of large banks
are typically near the asymptotic granularity of Definition 2.14. For the practical application
of Proposition 4.3 we redefine credit risk capital for finite portfolios that exhibit “sufficient”
granularity.

Definition 4.4. Let credit risk capital be held against unexpected losses. Then, in practice, the
capital charge (at the α confidence level over a given risk measurement horizon) as a percentage
of EAD on a credit portfolio comprising n obligors that “adequately” satisfies the asymptotic
granularity condition of Definition 2.14 may be assessed as

K̃α(Ln) = E
[
Ln |Y = H−1(1−α)

]
− E[Ln], (4.7)

and the capital charge in dollars may be assessed as

K̃α(Ln) = E
[
Ln |Y = H−1(1−α)

]
− E[Ln]. (4.8)

Expanding (4.7), the capital charge as a percentage of EAD on a credit portfolio containing
a finite number of obligors, n, that exhibits sufficient granularity is calculated as

K̃α(Ln) =

n∑
i=1

wiηipi
(
H−1(1−α)

)
−

n∑
i=1

wiηipi

=

n∑
i=1

wiηiGi

(
F−1
i (pi)− γiH−1(1−α)√

1− γ2
i

)
−

n∑
i=1

wiηipi. (4.9)

The ASRF model developed by BCBS describes default dependence as a multivariate Gaussian
process. Recasting (4.9) for the Gaussian case, the capital charge (at the α confidence level
over a given risk measurement horizon) on a near asymptotic portfolio comprising n obligors is
calculated as

K̃α(Ln) =

n∑
i=1

wiηiΦ

(
Φ−1(pi)−

√
ρi Φ−1(1−α)

√
1− ρi

)
−

n∑
i=1

wiηipi

=

n∑
i=1

wiηiΦ

(
Φ−1(pi) +

√
ρi Φ−1(α)

√
1− ρi

)
−

n∑
i=1

wiηipi. (4.10)
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4. Basel II Capital Requirements Under the IRB Approach

The second equality follows from the symmetry of the standard Gaussian density function. Note
that the kernel of ASRF model (4.10) transforms unconditional PDs into PDs conditional on
systematic risk factor Y using (2.20).

Under the Basel II IRB approach regulatory capital is determined at the 99.9% confidence
level over a one-year horizon — a 0.1% probability that credit losses will exceed provisions and
capital over the subsequent year. In practice, it incorporates a maturity adjustment to account
for the greater likelihood of downgrades for longer-term claims, the effects of which are stronger
for claims with higher credit ratings. We omit the maturity adjustment from our development
of the theoretical framework (Part I), and evaluation of the robustness of the ASRF model
(Chapter 6). It is introduced later when taking measurements from the ASRF model of the
Australian banking sector (Chapter 7). Thus, regulatory capital for a near asymptotic credit
portfolio comprising n obligors is assessed as

K̃99.9%(Ln) =

n∑
i=1

wiηiΦ

(
Φ−1(pi) +

√
ρi Φ−1(0.999)

√
1− ρi

)
−

n∑
i=1

wiηipi. (4.11)

Remark 4.5. In view of Remark 2.12, but with reference to (2.20), the default probability of
obligor i is no greater than

P
(
Di |Y = Φ−1(0.001)

)
= pi(−3.090) = Φ

(
Φ−1(pi) +

√
ρi Φ−1(0.999)

√
1− ρi

)
(4.12)

in 99.9% of economic scenarios.

Remark 4.6. BCBS (2005) claims that the IRB approach sets regulatory capital for credit risk
at a level where losses exceed it, “on average, once in a thousand years.” Qualifying this informal
statement of probability, BCBS cautions that the 99.9% confidence level was chosen because
tier 2 capital “does not have the loss absorbing capacity of tier 1”, and “to protect against
estimation error” in model inputs as well as “other model uncertainties.” With provisions and
capital amounting to as little as 2.0–3.0% of EAD under the IRB approach, perhaps the claim
of protection against insolvency due to credit losses at the 99.9% confidence level should be
interpreted as providing a margin for misspecification of the ASRF model, and not literally
protection against a “one in a thousand year” event. The choice of confidence level for the ASRF
model may also have been influenced by the desire to produce regulatory capital requirements
that are uncontroversial vis-à-vis Basel I. These qualifying remarks warn against the complacency
engendered by the high confidence level chosen for the IRB approach.

4.2 Portfolio Invariance

An important criterion for meeting supervisory needs in the model specification of the IRB
approach is portfolio invariance. The property of portfolio invariance guarantees that “the capital
charge on a given instrument depends only on its characteristics, and not on the characteristics
of the portfolio in which it is held” (Gordy 2003). Formally, we define this property in terms of
the capital charge contribution of a given instrument or asset to any credit portfolio.
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4.2. Portfolio Invariance

Definition 4.7. Denote by Πk the “characteristics” of instruments constituting an arbitrary
portfolio comprising k obligors, and let ϕ : Πk → R be a real-valued function that assesses
capital charges in dollars. Let ΠA

n and ΠB
m describe the characteristics of instruments consti-

tuting portfolios A and B comprising n and m obligors, respectively. Suppose that equal dollar
exposures of asset a0 are added to both portfolios constructing portfolios described by ΠA

n+1 and
ΠB
m+1, respectively. We say that ϕ satisfies portfolio invariance if

ϕ(ΠA
n+1)− ϕ(ΠA

n ) = ϕ(ΠB
m+1)− ϕ(ΠB

m) (4.13)

for any ΠA
n , ΠB

m and a0.

Definition 4.7 expresses the capital charge contribution of a given instrument to any portfolio
in dollars. Expanding (4.8) of Definition 4.4, the capital charge in dollars on a credit portfolio
containing a finite number of obligors, n, that exhibits sufficient granularity is assessed as

K̃α(Ln) =

n∑
i=1

δiηipi
(
H−1(1−α)

)
−

n∑
i=1

δiηipi (4.14)

= K̃α(Ln)

n∑
i=1

δi

= ∆n K̃α(Ln) ,

where ∆n =
∑n
i=1 δi is the portfolio EAD.

Remark 4.8. In Definition 4.7 ϕ is defined generically as a real-valued function of the “character-
istics” of instruments constituting a given portfolio. Those characteristics may take the form of a
vector of variables and parameters describing the instruments constituting the portfolio. Consider
a credit portfolio comprising n obligors. Then, with respect to ASRF model (4.14), Πn would be
represented as vector (δ1, . . . , δn, η1, . . . , ηn, p1, . . . , pn, p1(y), . . . , pn(y)) where y = H−1(1−α).
Note that the conditional PD of obligor i, pi(y), is given by (2.28), so Πn could also be represented
as vector (δ1, . . . , δn, η1, . . . , ηn, p1, . . . , pn, γ1, . . . , γn, y).

A corollary of Proposition 4.3 states that the property of portfolio invariance is preserved
under ASRF model (4.9), and hence models (4.10) and (4.11). The proof uses (4.14), which
converts (4.9) from percentage of EAD to dollars.

Corollary 4.9. ASRF model (4.9) is portfolio invariant.

Proof. Let ΠA
n describe the characteristics of instruments constituting portfolio A comprising n

obligors that adequately satisfies the asymptotic granularity condition of Definition 2.14. The
capital charge in dollars on portfolio A is assessed using (4.14):

K̃α

(
LAn
)

=

n∑
i=1

δiηipi
(
H−1(1−α)

)
−

n∑
i=1

δiηipi.
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4. Basel II Capital Requirements Under the IRB Approach

Now assign LGD η0, unconditional PD p0 and correlation parameter γ0 to asset a0, and add
exposure δ0 of a0 to portfolio A. Then, the capital charge on the resultant portfolio described
by ΠA

n+1 is assessed as

K̃α

(
LAn+1

)
=
(
δ0η0p0

(
H−1(1−α)

)
− δ0η0p0

)
+

n∑
i=1

δiηipi
(
H−1(1−α)

)
−

n∑
i=1

δiηipi.

Hence, the capital charge contribution of asset a0 to portfolio A is

K̃α

(
LAn+1

)
− K̃α

(
LAn
)

= δ0η0p0

(
H−1(1−α)

)
− δ0η0p0.

By a parallel argument the capital charge contribution of exposure δ0 of asset a0 to near asymp-
totic portfolio B is given by

K̃α

(
LBm+1

)
− K̃α

(
LBm
)

= δ0η0p0

(
H−1(1−α)

)
− δ0η0p0

= K̃α

(
LAn+1

)
− K̃α

(
LAn
)
.

Thus, ASRF model (4.9), which converted to dollars is expressed as (4.14), is portfolio invariant
by Definition 4.7.

We conclude that the capital charge contribution of asset a0 to a credit portfolio, as assessed
by ASRF model (4.9), is the same for any portfolio. Or in the parlance of Gordy (2003), the
capital charge on asset a0 depends only on its characteristics, and not on the characteristics of
the portfolio in which it is held. The proof of Corollary 4.9, which refers specifically to (4.9),
is almost trivial. Bearing in mind that (4.9) follows from Definition 4.4, we infer that portfolio
invariance is satisfied if:

(1) Portfolios are sufficiently fine-grained to adequately satisfy the asymptotic granularity con-
dition of Definition 2.14, and diversify away idiosyncratic risk.

(2) A single systematic risk factor explains dependence across obligors, that is, defaults are
conditionally independent given a single systematic risk factor.

Condition (1) recognises that prudential regulators require that capital charges be assessed
on credit portfolios, which in the real world are not infinitely fine-grained. In Section 6.1 we
examine the rate of convergence, in terms of number of obligors, of empirical loss distributions to
the asymptotic portfolio loss distribution (i.e., the loss distribution of an infinitely fine-grained
portfolio). It quantifies the imprecise notion of a credit portfolio “adequately” satisfying the
asymptotic granularity condition, or exhibiting “sufficient” granularity. Our findings support the
anecdotal evidence of Remark 2.21 that credit portfolios of large banks are typically near the
asymptotic granularity of Definition 2.14. So, ASRF model (4.9) is a pragmatic solution for
assessing capital charges on finite, real-world credit portfolios. Furthermore, Basel II admits a
“granularity adjustment”, which assesses a capital charge for the contribution of name concen-
trations (i.e., undiversified idiosyncratic risk) to portfolio risk through the supervisory review
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4.2. Portfolio Invariance

process (Pillar 2). Therefore, moderate departures from asymptotic granularity need not pose
an impediment to assessing ratings-based capital charges.

Remark 4.10. In the context of the model specification of the IRB approach, the granularity
adjustment estimates the difference between VaR99.9%(Ln) and E

[
Ln |Y = Φ−1(0.001)

]
. The

first order granularity adjustment derived by Gordy and Lütkebohmert (2007) is an extension
of the one-factor CreditRisk+ model. Classified as an actuarial model, CreditRisk+ is essen-
tially a Poisson mixture model with a factor (sector) structure. The approach of Gordy and
Lütkebohmert (2007) is methodologically similar to that of Emmer and Tasche (2005). The
latter developed a function for calculating a granularity adjustment based on the one-factor
RiskMetrics model in default mode. As with Moody’s KMV and the ASRF model, RiskMetrics
is an extension of the asset value model of Merton (1973).

Remark 4.11. Proposition 4.3, which appeals to Proposition 2.28, assumes that credit portfolios
satisfy the asymptotic granularity condition of Definition 2.14, rather than the imprecisely formed
Condition (1). Could we instead show that ASRF model (4.3), the limiting case of model (4.9),
is portfolio invariant? Suppose that portfolios A and B of Definition 4.7 were infinitely fine-
grained. Then, in view of Remark 2.16, portfolio EAD diverges to∞ for A and B, and asymptotic
granularity is preserved upon adding positive and finite exposures δ0 of asset a0 to both portfolios.
Now, divide the exposure of each portfolio to asset a0 into k exposures δ0/k with the same
instrument characteristics (i.e., LGD, unconditional PD and asset correlation). Then, as k →∞,
(4.3) assesses capital charges on finite exposure δ0 to asset a0. The problem with this neat
mathematical construct that attempts to accommodate the finiteness of real-world portfolios is
that (4.3) assumes that defaults are conditionally independent given a single systematic risk
factor. But, given a realisation y ∈ R of systematic risk factor Y , defaults on infinitely divisible
exposures to asset a0 are clearly not independent, thus violating Condition (2). Unfortunately, in
order to assess capital charges on finite, real-world credit portfolios we must settle for a pragmatic
solution, ASRF model (4.9).

Condition (2) above, on the other hand, is more stringent; if relaxed, the property of portfolio
invariance no longer holds, in general. The following examples illustrate the rigidity of the latter
condition.

Example 4.12. Assume that dependence across obligors is explained by a global risk factor
Y , describing the general level of economic activity, with continuous and strictly increasing
distribution function H. That is, defaults are modelled as conditionally independent ran-
dom variables given global risk factor Y . Moreover, assume that the conditional expectation
of portfolio percentage loss E[Ln |Y ] is strictly decreasing in y. Then, by Proposition 2.28,
E[Ln |Y = H−1(1−α)] provides an analytical approximation of VaRα(Ln) for an asymptotic
portfolio. Now, suppose that for a sub-portfolio dependence across obligors is also influenced by
a local risk factor X, say, the price of some commodity. Then, conditional on a realisation y

of global risk factor Y , obligors constituting the sub-portfolio would no longer be independent,
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4. Basel II Capital Requirements Under the IRB Approach

violating the assumptions of Proposition 2.18. That is, the additivity of capital charges on credits
constituting the sub-portfolio would fail to hold. So long as credit exposures in the sub-portfolio
affected by the local risk factor X, in aggregate, account for an arbitrarily small share of total
portfolio exposure, the dependence of obligors on X can be ignored.

Example 4.13. A multi-factor model may offer greater explanatory power for dependence across
obligors. Rather than a single systematic risk factor describing the general level of economic
activity, a multi-factor model may include independent variables such as industrial production,
retail sales, employment, inflation, interest rates, commodities prices, and consumer and business
confidence. Without loss of generality, suppose that dependence across obligors is explained by
the index of industrial production X and the short rate Y , which we assume are not perfectly
comonotonic. Denote by HX,Y (x, y) the joint distribution function of risk factors X and Y .
Consider two portfolios with widely different characteristics: portfolio A with high exposure to
X and low exposure to Y ; and portfolio B with low exposure to X and high exposure to Y .
Credit VaR at the α confidence level over a given risk measurement horizon for the respective
portfolios would be associated with widely different realisations of pair (x, y) drawn from HX,Y .
Furthermore, for a given increment of exposure, we expect that an obligor with high exposure
to X and low exposure to Y would incur a higher capital charge when added to portfolio A than
when added to portfolio B — its addition to portfolio B would provide a greater diversification
benefit. Tasche (2005) illustrates this diversification benefit, as measured by a multi-factor model,
with a numerical example. Therefore, in the case of a multi-factor model of default dependence
the capital charge on an instrument depends not only on its characteristics, but also on the
characteristics of the portfolio in which it is held. That is, the property of portfolio invariance is
not preserved.

Remark 4.14. By Theorem 3.10 random variables X and Y with distribution functions HX and
HY , respectively, are comonotonic if and only if X is almost surely a strictly increasing function
of Y . In the case of continuous distribution functions HX and HY , X = ψ(Y ) almost surely, with
ψ = H−1

X ◦ HY increasing (Embrechts, McNeil, et al. 2002, Definition 7.5). Comonotonic risk
factors may, in effect, be reduced to a single risk factor explaining dependence across obligors.
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CHAPTER 5
Empirical Data

Under its implementation of Basel II, APRA requires ADIs to assess capital adequacy for credit,
market and operational risks. ADIs determine regulatory capital for credit risk using either the
standardised approach or, subject to approval, the IRB approach. The former applies prescribed
risk weights to credit exposures based on asset class and credit rating grade to arrive at an
estimate of RWA. Then, the minimum capital requirement is simply 8% of RWA. The standard-
ised approach, which is an extension of Basel I, is straightforward to administer and produces
a relatively conservative estimate of regulatory capital. The IRB approach, which implements
the ASRF model described in Section 4.1, is a more sophisticated method requiring more input
data estimated at higher precision. Its greater complexity makes it more expensive to adminis-
ter, but usually produces lower regulatory capital requirements than the standardised approach.
As a consequence, ADIs using the IRB approach may deploy their capital in pursuit of more
(profitable) lending opportunities.

Upon implementation of Basel II in the first quarter of 2008, APRA had granted the four
largest Australian banks, designated “major” banks, approval to use the IRB approach to capital
adequacy for credit risk. They include: Commonwealth Bank of Australia (CBA), Westpac
Banking Corporation (WBC), National Australia Bank (NAB), and Australia and New Zealand
Banking Group (ANZ). WBC acquired St. George Bank (SGB) on 1 December 2008, and CBA
acquired Bank of Western Australia (BWA) on 19 December 2008. Putting them in a global
context, all four major Australian banks have been ranked in the top 20 banks in the world by
market capitalisation, and top 50 by assets during 2013. Since the implementation of Basel II,
the major banks have accounted for, on average, 74.6% of total assets on the balance sheet of
ADIs regulated by APRA. Furthermore, of the regulatory capital reported by the major banks,
on average, 88.0% has been assessed for credit risk, 6.9% for operational risk and 4.4% for market
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risk, with other capital charges applied by APRA accounting for the remaining 0.7%.1, 2

As discussed in Section 1.2, the Basel 2.5 package and Basel III Accord introduce reforms to
address deficiencies in the Basel II framework exposed by the financial crisis of 2007–09. The
Basel 2.5 reforms enhance minimum capital requirements, risk management practices and public
disclosures in relation to risks arising from trading activities, securitisation and exposure to off-
balance sheet vehicles. The Basel III reforms raise the quality and minimum required level of
capital; promote the build up of capital buffers; establish a back-up minimum leverage ratio;
improve liquidity and stabilise funding; and assess a regulatory capital surcharge on systemically
important financial institutions. These reforms supplement Basel II. In particular, the model
specification of the IRB approach under Basel II, described in Section 4.1, is unaltered by the
implementation of Basel 2.5 and Basel III. The empirical analysis conducted in Part II examines
the ASRF model prescribed under the IRB approach, and hence remains relevant today.

The primary contribution of our empirical analysis is to render a fundamental assessment of
the model specification of the IRB approach. Section 5.1 describes the data reported to APRA
by the major banks on a quarterly basis since the implementation of Basel II. Using these data we
recover from the ASRF model measurements of the prevailing state of Australia’s economy and
the capacity of its banking sector to absorb credit losses. In Section 5.2 we construct a portfolio
that is representative of the credit exposures of the major Australian banks. Characteristics of
the representative credit portfolio are used to measure the rate of convergence to the asymptotic
portfolio loss distribution, and evaluate model robustness to parameter variations and model
misspecification.

5.1 Capital Adequacy Reporting

Our fundamental assessment of the model specification of the IRB approach is rendered on the
basis of internal bank data that is input to the ASRF model, which assesses regulatory capital
charges for credit risk. The internal bank data is sourced from statutory returns lodged by ADIs
with APRA. Chapter 7 uses these data to recover from ASRF model (4.10) realisations of the
single systematic risk factor describing the prevailing state of Australia’s economy, and estimates
of distance-to-default reflecting the capacity of its banking sector to absorb credit losses.

ADIs lodge their statutory returns with APRA using a secure electronic data submission
system (Australian Prudential Regulation Authority 2014). A return is a collection of related
forms covering the same reporting period. A form is a dataset containing information on a
specific topic (e.g., capital, risk class/sub-class, financial statement, etc.). For reference purposes,
forms in spreadsheet format and instructions are available at www.apra.gov.au. Given the
volume of data processed in preparing statutory returns, the major Australian banks automate

1 Average of figures for quarters ending 31 March 2008 through 30 June 2013 published by APRA (2013b) in
its quarterly issue of ADI performance statistics.

2 Data are reported for the major Australian banks, in aggregate, so as not to violate confidentiality agree-
ments.
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5.1. Capital Adequacy Reporting

Figure 5.1: EAD and RWA, respectively, of IRB credit exposures of the major Australian banks are
decomposed by sector (business, government and household).
Source: Australian Prudential Regulation Authority.

0

10

20

30

40

50

60

70

80

90

100

Ju
n-
08

D
ec
-0
8

Ju
n-
09

D
ec
-0
9

Ju
n-
10

D
ec
-1
0

Ju
n-
11

D
ec
-1
1

Ju
n-
12

D
ec
-1
2

% Exposure at default by sector

Business Government Household

0

10

20

30

40

50

60

70

80

90

100

Ju
n-
08

D
ec
-0
8

Ju
n-
09

D
ec
-0
9

Ju
n-
10

D
ec
-1
0

Ju
n-
11

D
ec
-1
1

Ju
n-
12

D
ec
-1
2

% Risk-weighted assets by sector

Business Government Household

their electronic data submissions using XBRL (eXtensible Business Reporting Language) — an
XML-based language for preparing, publishing, extracting and exchanging business and financial
information. Once forms are validated and returns submitted, data are stored in APRA’s data
warehouse. We use SQL programming to fetch and aggregate data reported to APRA by the
major banks on a quarterly basis from 31 March 2008 through 30 June 2013.3 Specifically, data
reported on the statement of financial performance, capital adequacy form, and IRB credit risk
forms.4

Banking book exposures are reported on credit risk forms5 by IRB asset class: corporate (non-
financial), small- and medium-sized enterprises (SME), bank, sovereign, residential mortgages,
retail qualified revolving, and other retail.6 For presentation purposes we merge IRB asset
classes, and report credit exposures as business, government or household. Henceforth, we refer
to these banking book exposures as IRB credit exposures. Figure 5.1 decomposes EAD and
RWA, respectively, of IRB credit exposures into business, government and household sectors.
Since the implementation of Basel II, RWA for credit risk reported by the major Australian
banks has been divided, on average, 71.9/28.1 between IRB credit exposures and other banking
book exposures. The market dominance of the major banks, coupled with the concentration
of their regulatory capital held against unexpected losses on IRB credit exposures, convey the
significance of the ASRF model in protecting the Australian banking sector against insolvency.

3 NAB did not adopt the IRB approach to capital adequacy for credit risk until the second quarter of 2008.
Therefore, in measuring the effect of the financial crisis, we omit NAB from our major banks’ aggregate for the
quarter ending 31 March 2008.

4 For a number of quarters after the acquisitions of BWA and SGB by CBA and WBC, respectively, BWA and
SGB reported credit risk using the IRB approach in parallel with the consolidated reporting of CBA and WBC,
which determined RWA for credit risk in the banking books of BWA and SGB using the standardised approach.
In our analysis we have included the parallel IRB credit risk forms submitted by BWA and SGB, and deducted
the corresponding RWA, as determined by the standardised approach, from the consolidated RWA reported by
CBA and WBC, respectively.

5 Reporting forms and instructions for ADIs available at www.apra.gov.au: ARF_113_1A, ARF_113_1B,
ARF_113_1C, ARF_113_1D, ARF_113_3A, ARF_113_3B, ARF_113_3C, and ARF_113_3D.

6 APRA (2008a) provides a full definition of IRB asset classes.
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Figure 5.2: Risk characteristics of credit portfolios (IRB credit exposures) of the major Australian banks, rebalanced quarterly, by sector (business,
government and household), as well as for the whole portfolio. Credit risk variables and parameters include: exposure-weighted unconditional PD,
economic-downturn LGD, asset correlation and maturity adjustment.
Sources: Australian Prudential Regulation Authority.
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5.1. Capital Adequacy Reporting

Accordingly, we contend that, while focussing exclusively on IRB credit exposures of the major
banks, our empirical analysis draws a representative sample of the credit risk assumed by the
Australian banking sector.

Under the IRB approach, ADIs assign their on- and off-balance sheet credit exposures to
internally-defined obligor grades reflecting PD bands, and LGD bands. Between 2008 and 2013
RWA of IRB credit exposures held in the banking book of the major Australian banks has been
divided, on average, 75.4/24.6 between on-balance sheet assets and off-balance sheet exposures.
EAD, RWA, expected loss, and exposure weighted LGD, unconditional PD, maturity and firm
size are reported for each obligor grade. We assign IRB credit exposures reported by the major
banks to standardised PD bands (i.e., consistent across the major banks), and calculate risk
parameters characterising each of these standardised obligor grades. The ASRF model incorpo-
rates a maturity adjustment, which is a function of maturity and unconditional PD, for business
and government credit exposures. Asset correlation is constant for residential mortgages and
retail qualified revolving credit exposures; a function of unconditional PD for corporate, bank,
sovereign and other retail credit exposures; and a function of firm size and unconditional PD
for SME credit exposures (Basel Committee on Banking Supervision 2005). We construct a
commingled credit portfolio by pooling obligor grades across IRB asset classes. Figure 5.2 plots
exposure-weighted PD, LGD, asset correlation and maturity adjustment for commingled credit
portfolios, rebalance quarterly, by sector (business, government and household), as well as for
the whole portfolio.

Prudential standards published by APRA instruct ADIs to assign one-year unconditional
(through-the-cycle) PDs and economic-downturn (stressed) LGD rates to IRB credit exposures.
If the major banks were reporting unconditional PDs, one would expect that temporal varia-
tions in reported PDs would be explained exclusively by changes in portfolio composition. In
reality though, the prevailing state of the economy likely affects reported PDs to a degree. That
is, reported PDs are the result of perturbations of through-the-cycle estimates by point-in-time
influences. Figure 5.2 shows the variation in reported exposure-weighted PD for the whole port-
folio ranging from 0.91% to 1.18%. Assuming that portfolio composition was unchanged between
2008 and 2013, and using an exposure-weighted asset correlation of 16.8%,7 the corresponding
range of realisations of the single systematic risk factor describing the state of the economy is
less than one-quarter of one standard deviation. This is a fraction of the range of realisations of
the single systematic risk factor recovered from the ASRF model in Section 7.2. Accordingly, we
don’t believe that our conclusions are materially effected by point-in-time influences on reported
PDs.

During an economic downturn losses on defaults are likely to be higher than under “normal”
economic conditions. In developing the IRB approach to capital adequacy for credit risk, BCBS
considered implementing a function that translates average, or through-the-cycle, LGD rates into

7 The exposure-weighted asset correlation of the IRB credit exposures of the major Australian banks averaged
0.168 for quarters ending 31 March 2008 through 30 June 2013.
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downturn LGD rates, similar to (2.20) which transforms unconditional PDs into conditional PDs.
In principle, this function could depend on several factors including the state of the economy,
magnitude of the average LGD, and asset class of the exposure. Given the evolving nature of
LGD modelling and practices for estimating LGD at the time, BCBS elected to instruct ADIs
to provide estimates of downturn LGD rates (Basel Committee on Banking Supervision 2005).
There is no inconsistency here when assessing regulatory capital charges, since capital is held
against unexpected losses arising under recessionary conditions. However, using downturn LGD
rates to recover realisations of the single systematic risk factor from the ASRF model yields
a prevailing state of the economy that is more expansionary than would be recovered using
point-in-time LGD rates, assuming that the economy was not experiencing a (severe) downturn.
The empirical analysis of Section 7.2 addresses this complication by recovering realisations of
the single systematic risk factor describing the prevailing state of the Australian economy using
downturn and through-the-cycle LGD rates. Note that distance-to-default, which measures the
level of capitalisation, reflects the capacity to absorb credit losses under stressed economic condi-
tions. So, it is appropriate to use downturn LGD rates when translating realisations of the single
systematic risk factor recovered from the ASRF model into estimates of distance-to-default.

In a criticism of the “quasi” state dependence of the model specification of the IRB approach,
Jarrow (2007) argues that the concern that making regulatory capital state dependent would
be procyclical and exacerbate the business cycle is overstated and perhaps unwarranted. It is
known that PD and LGD are state dependent (e.g., dependent on the state of the economy).

Figure 5.3: Risk-based capital ratio (capital / RWA) of the major Australian banks decomposed into
tier 1 and tier 2 capital.
Source: Australian Prudential Regulation Authority.
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5.2. A Representative Credit Portfolio

Recasting (2.30) for the Gaussian case, Remark 2.12 infers that the PD of obligor i conditional
on Y = Φ−1(1−α) may be interpreted as the probability of default of obligor i is no greater than
pi
(
Φ−1(1−α)

)
in (α× 100)% of economic scenarios. It follows from Remark 4.5 that PD is state

dependent in so far as α = 0.999. Similarly, LGD is state dependent in so far as BCBS instructs
regulated institutions to provide estimates of economic-downturn LGD rates. Regulatory cap-
ital, though, serves the sole purpose of solvency assessment, so the 99.9% confidence level and
downturn LGD rates appear to be prudent choices for reducing the risk of bank failures.

RWA, capital and provisions are reported on the capital adequacy form.8 RWA are reported
by risk class, and within the credit risk class, for IRB asset classes and the standardised approach.
These data are aggregated across capital adequacy forms submitted by the major Australian
banks. Note that the minimum capital requirement is simply 8% of RWA. Then, subject to a
minimum 8% of RWA, APRA sets a prudential capital ratio for each ADI, and an ADI typically
holds a capital buffer above its prudential capital requirement (Australian Prudential Regulation
Authority 2007). Figure 5.3 decomposes the aggregate capital base of the major banks, measured
as a percentage of RWA, into tier 1 and tier 2 capital.

Finally, we take credit losses as charges for bad and doubtful debts reported on the statement
of financial performance,9 or income statement. Credit losses are aggregated across income
statements reported to APRA by the major banks.

5.2 A Representative Credit Portfolio

The robustness of the model specification of the IRB approach to a relaxation in model assump-
tions is evaluated on a portfolio that is representative of the IRB credit exposures of the major
Australian banks as at 31 December 2012. That is, exposure weight of each PD band within an
IRB asset class is equal to the corresponding EAD reported by major banks as a percentage of
IRB credit exposures. Credits assigned the same obligor grade share the same risk characteristics:
LGD, unconditional PD and asset correlation. For presentation purposes Table 5.1 categorises
credit exposures as business, government or household, and groups them into credit rating grades
on the basis of obligors’ unconditional PD.10 It reports EAD, and exposure weighted LGD, un-
conditional PD and asset correlation for each credit rating grade by sector. Chapter 6 uses
characteristics of this representative credit portfolio to measure the rate of convergence, in terms
of number of obligors, to the asymptotic portfolio loss distribution, and evaluate the sensitivity
of credit risk capital to dependence structure as modelled by asset correlations and elliptical
copulas.

8 Reporting form ARF_110_0_2 and instructions for ADIs available at www.apra.gov.au.
9 Reporting form ARF_330_0_C and instructions for ADIs available at www.apra.gov.au.

10 We use the mapping of S&P credit rating grades to KMV expected default frequency values derived by
Lopez (2002).
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Table 5.1: Characteristics (EAD and exposure-weighted LGD, unconditional PD and asset correlation)
of a portfolio that is representative of the IRB credit exposures of the major Australian banks as at 31
December 2012 are reported for each credit rating grade by sector (business, government and household)
and for the whole portfolio.

Credit rating grade
Total AAA AA A BBB BB B Ca

Business EAD, δi ($) 3,552 7 549 1,001 874 728 327 66

LGD, ηi 0.429 0.219 0.519 0.474 0.418 0.356 0.339 0.412

Unconditional PD, pi (%) 1.02 0.02 0.03 0.11 0.41 1.24 3.08 18.56

Asset correlation, ρi 0.198 0.239 0.238 0.231 0.206 0.159 0.112 0.091

Government Exposure at default, δi ($) 785 538 203 18 10 13 3

Loss given default, ηi 0.102 0.088 0.085 0.223 0.496 0.387 0.408

Unconditional PD, pi (%) 0.07 0.01 0.03 0.09 0.40 1.74 3.00

Asset correlation, ρi 0.237 0.239 0.238 0.235 0.218 0.171 0.149

Household Exposure at default, δi ($) 5,663 2,581 1,725 919 291 147

Loss given default, ηi 0.244 0.233 0.225 0.264 0.357 0.324

Unconditional PD, pi (%) 0.99 0.08 0.39 1.10 3.68 17.80

Asset correlation, ρi 0.143 0.144 0.147 0.143 0.123 0.127

Portfolio Exposure at default, δi ($) 10,000 545 752 3,600 2,609 1,660 621 213

Loss given default, ηi 0.299 0.090 0.402 0.300 0.291 0.306 0.348 0.350

Unconditional PD, pi (%) 0.93 0.01 0.03 0.09 0.40 1.16 3.36 18.03

Asset correlation, ρi 0.170 0.239 0.238 0.169 0.167 0.150 0.117 0.116

aCCC, CC and C credit ratings.
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CHAPTER 6
Robustness of the Asymptotic

Single Risk Factor Model

Regulatory capital models, which serve the sole purpose of solvency assessment, require precision
in the measurement of absolute risk levels under stressed economic conditions. In this chapter
we evaluate the robustness of the ASRF model prescribed under the Basel II IRB approach
to a relaxation of model assumptions using a portfolio that is representative of the IRB credit
exposures of the major Australian banks. Section 6.1 measures the rate of convergence, in terms
of number of obligors, of empirical loss distributions to the asymptotic portfolio loss distribution
(i.e., the distribution of conditional expectation of portfolio percentage loss representing an in-
finitely fine-grained portfolio). In the process we demonstrate that Proposition 2.28 holds for
a credit portfolio that exhibits sufficient granularity. The IRB approach applies the one-factor
Gaussian copula with default dependence described by the matrix of pairwise correlations be-
tween obligors’ asset values. We proceed to evaluate model robustness to parameter variations
and model misspecification. Section 6.2 measures the sensitivity of credit risk capital to de-
pendence structure as described by asset correlations. Section 6.3 examines the effect of tail
dependence by measuring the sensitivity of credit risk capital to dependence structure, as mod-
elled by a variety of elliptical copulas.

6.1 Rate of Convergence to the Asymptotic Distribution

Before measuring the rate of convergence to the asymptotic portfolio loss distribution, we demon-
strate that Proposition 2.28, on which the IRB approach is premised, holds for a representative
credit portfolio within a static (i.e., single-period) framework. Table 5.1 describes the repre-
sentative credit portfolio. In order to construct a portfolio that exhibits sufficient granularity
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we impose the constraint that no credit accounts for more than one basis point exposure. This
exercise demonstrates that the α quantile of the distribution of E[Ln |Y ], which is associated
with the (1−α) quantile of the distribution of Y , may be substituted for the α quantile of
the distribution of Ln. Firstly, capital held against unexpected losses at the 99.9% confidence
level over a one-year horizon, K̃99.9%(Ln), is calculated analytically by ASRF model (4.11). The
expectation of portfolio percentage loss over a one-year horizon conditional on a state of the
economy that is worse than at most 99.9% of economic scenarios, E

[
Ln |Y = Φ−1(0.001)

]
, is

readily calculated by the first term on the right-hand side of (4.11). Expected loss, E[Ln], is
given by the second term of the right-hand side of (4.11). And K̃99.9%(Ln) is the difference
between E

[
Ln |Y = Φ−1(0.001)

]
and E[Ln].

Next, K99.9%(Ln) is determined by computationally intensive simulation (2.44). Credit VaR
at the 99.9% confidence level over a one-year horizon, VaR99.9%(Ln), is determined from the
empirical loss distribution of the representative credit portfolio, which is generated by simulation
of (2.26) parameterised by (2.21).1 Monte Carlo simulation performs 1,000,000 iterations to
generate the empirical loss distribution (Figure 6.1). Equation (2.44) calculates the portfolio
percentage loss for each iteration, and credit VaR is the 99.9% quantile of the empirical loss

1 Gaussian random variables are generated using GNU Scientific Library routine gsl_ran_gaussian. It im-
plements the Box-Muller algorithm, which make two calls to the MT19937 generator of Makoto Matsumoto and
Takuji Nishimura.

Figure 6.1: The empirical loss distribution of the representative credit portfolio described in Table 5.1
is generated by Monte Carlo simulation. The portfolio is constructed such that no credit accounts for
more than one basis point exposure, and credit losses are reported as a percentage of EAD.
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6.1. Rate of Convergence to the Asymptotic Distribution

Table 6.1: Capital charges, at the 99.9% confidence level over a one-year horizon, assessed on the
representative credit portfolio described in Table 5.1. The portfolio is constructed such that no credit
accounts for more than one basis point exposure. Credit VaR at the 99.9% confidence level is computed
numerically by Monte Carlo simulation, and its analytical approximation is calculated by the ASRF
model.

% of EAD
ASRF Simulation

E
[
Ln |Y = Φ−1(0.001)

]
2.18 2.19 VaR99.9%(Ln)

E[Ln] 0.31 0.31 E[Ln]

K̃99.9%(Ln) 1.87 1.88 K99.9%(Ln)

distribution described by (2.45). Expected loss, E[Ln], is given by (2.46). And K99.9%(Ln) is
the difference between VaR99.9%(Ln) and E[Ln].

It remains to compare the estimates produced by the analytical and simulation models. Given
that this representative portfolio contains a large number of credits without concentration in a
few names dominating the rest of the portfolio, we anticipate that as the number of simulation
iterations increases, its empirical loss distribution will converge to the distribution of conditional
expectation of portfolio percentage loss. Confirming our intuition, Table 6.1 reports that esti-
mates from the ASRF model and Monte Carlo simulation are within one basis point of one
another. Recall that ASRF model (4.11) describes defaults as conditionally independent Gauss-
ian random variables, and the Monte Carlo simulation of (2.26), parameterised by (2.21), draws
random variables representing the single systematic risk factor and obligor specific risks from a
Gaussian distribution. So, it would be surprising if this convergence did not occur. Indeed, for
a number of iterations large enough and a portfolio exhibiting sufficient granularity, the simula-
tion does little more than demonstrate that the expectation of indicator function 1{Zi<ζi(y)} is
conditional PD pi(y). Our findings provide empirical support for Proposition 2.28.

Evidently, the representative credit portfolio described in Table 5.1, with no credit accounting
for more that one basis point exposure, adequately satisfies the asymptotic granularity condi-
tion of Definition 2.14, an assumption of Proposition 2.28. But how large need the number of
credits, or obligors, constituting a portfolio be for E[Ln |Y = Φ−1(1−α)] to produce a statis-
tically accurate estimate of VaRα(Ln)? We proceed to address this question by constructing
portfolios comprising obligors ranging in number from 50 to 2000. For each portfolio we assign
its constituent obligors equal dollar EAD, and exposure weighted LGD, unconditional PD and
asset correlation as calculated for exposures to the business sector of the representative credit
portfolio described in Table 5.1. We choose to conduct this exercise on portfolios representative
of IRB credit exposures of the major banks to the business sector, because corporate loans are
typically “lumpier” than residential mortgages.

We generate empirical loss distributions, one for each of the constituted portfolios contain-
ing a finite number of obligors, by simulation of (2.26) parameterised by (2.21). Monte Carlo
simulation performs 1,000,000 iterations to generate an empirical loss distribution for each of
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6. Robustness of the ASRF Model

Figure 6.2: Credit VaR at the α confidence level, 99.0% ≤ α < 100.0%, for portfolios comprising obligors
ranging in number from 50 to 2000. The portfolios are representative of IRB credit exposures of the
major Australian banks to the business sector reported in Table 5.1. The curves illustrate the rate
of convergence in the tail of empirical loss distributions, VaRα(Ln), to the distribution of conditional
expectation of portfolio percentage loss, E[Ln |Y = Φ−1(1−α)], representing the loss distribution of an
infinitely fine-grained portfolio.
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the constituted portfolios. The distribution of conditional expectation of portfolio percentage
loss represents the loss distribution of an infinitely fine-grained portfolio. Solvency assessment
is concerned with the tail of the portfolio loss distribution, so we examine the confidence inter-
val bounded by 99.0% ≤ α < 100.0%. VaRα(Ln) for each of the constituted portfolios is the α
quantile of the empirical loss distributions described by (2.45). E[Ln |Y = Φ−1(1−α)] is given
by the first term on the right-hand side of ASRF model (4.10). Figure 6.2 plots the tail of each
of the empirical loss distributions along with the tail of the distribution of conditional expec-
tation of portfolio percentage loss, illustrating the rate of convergence in terms of number of
obligors. By inspection we argue that a statistically accurate estimate of VaRα(Ln) is given by
E[Ln |Y = Φ−1(1−α)] for portfolios comprising 1,000 obligors or more, without concentration
in a few names dominating the rest of the portfolio.

In a numerical exercise Gordy and Lütkebohmert (2007) applied their granularity adjustment
to German bank portfolios, which they classify as large (more than 4,000 credit exposures),
medium (between 1,000 and 4,000 exposures), small and very small. By comparison with
Figure 6.2, they estimated a granularity adjustment of 12–14 basis points for large portfolios and
14–36 basis points for medium portfolios. In view of Remark 2.21, we argue that the commingled
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6.2. Sensitivity to Dependence As Described by Asset Correlations

credit portfolios constructed by pooling IRB credit exposures of the major Australian banks, as
outlined in Section 5.1, for the purpose of undertaking the empirical analysis of Chapter 7 would
approach the asymptotic granularity of Definition 2.14.

6.2 Sensitivity to Dependence As Described by Asset Correlations

The IRB approach, in effect, applies the one-factor Gaussian copula of Corollary 3.18 with
matrix (3.15) describing pairwise correlations between obligors’ asset values. Choosing the one-
factor Gaussian copula to model default dependence, we evaluate the sensitivity of credit risk
capital to dependence structure as described by asset correlations.

To illustrate the fundamental role of correlation in credit risk modelling, Figure 6.3 plots the
empirical loss distribution of the representative credit portfolio described in Table 5.1, except
that obligors’ asset values are assumed to be uncorrelated. That is, Figure 6.3 assumes that
default events are independent. Vis-à-vis the empirical loss distribution plotted in Figure 6.1,
in which the exposure-weighted asset correlation is 0.170, E[Ln] is unchanged at 0.31% of EAD,
but VaR99.9%(Ln) falls from 2.19% to 0.42% of EAD. So, the effect of asset correlation on the
representative credit portfolio described in Table 5.1 is to increase credit VaR, at the 99.9%
confidence level over a one-year horizon, more than five times the credit VaR had default events

Figure 6.3: The empirical loss distribution, generated by Monte Carlo simulation, of the representative
credit portfolio described in Table 5.1, except that default events are assumed to be independent. The
portfolio is constructed such that no credit accounts for more than one basis point exposure, and credit
losses are reported as a percentage of EAD.
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6. Robustness of the ASRF Model

been independent.
Recall from Section 5.1 that the IRB approach models asset correlation as a constant for

residential mortgages and retail qualified revolving credit exposures; a function of unconditional
PD for corporate, bank, sovereign and other retail credit exposures; and a function of firm size
and unconditional PD for SME credit exposures. Parameters of the asset correlation functions
prescribed under the IRB approach were derived from an analysis of times series collected by
G10 supervisors. Even if the dependence described by parameters derived from this time series
analysis continues to hold, the actual asset correlation will lie in some distribution around the es-
timate given by the model specification of the IRB approach. So, some measure of the sensitivity
of credit risk capital to the error in asset correlation estimates would be informative.

Figure 6.4 plots the sensitivity of E
[
Ln |Y = Φ−1(1−α)

]
, and hence credit risk capital, to

dependence structure as described by asset correlations. Here, we adopt the credit risk capital
interpretation of Definition 4.4, which applies to portfolios that adequately satisfy the asymp-
totic granularity condition of Definition 2.14. E

[
Ln |Y = Φ−1(1−α)

]
, given by the first term

on the right-hand side of (4.10), is calculated for the representative credit portfolio described
in Table 5.1, and then recalculated after adjusting the asset correlation assigned to constituent
obligors by ±10% and ±20%. Since solvency assessment is concerned with the tail of the portfolio
loss distribution, we examine the confidence interval bounded by 90.0% ≤ α < 100.0%. Condi-
tional expectation of portfolio percentage loss becomes more sensitive to asset correlation as

Figure 6.4: E
[
Ln |Y = Φ−1(1−α)

]
, 90.0% ≤ α < 100.0%, for the representative credit portfolio de-

scribed in Table 5.1. The sensitivity of E
[
Ln |Y = Φ−1(1−α)

]
to default dependence structure is mea-

sured by adjusting the asset correlation assigned to constituent obligors by ±10% and ±20%.
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6.3. Sensitivity to Dependence As Modelled by Elliptical Copulas

one moves further into the tail of the portfolio loss distribution. At the 99.9% confidence level
the relative error in asset correlation estimates affects the calculation of credit risk capital by
a similar magnitude. Naturally, this heuristic for the sensitivity of credit risk capital to asset
correlation only applies deep in the tail of the loss distribution of near asymptotic portfolios with
characteristics (viz., unconditional PDs and asset correlations) not very different from those
described in Table 5.1.

As noted above, BCBS has calibrated the level of correlation parameter ρi in (4.10) by IRB
asset class. Our test of the robustness of the model specification of the IRB approach to vari-
ations in the correlation parameter takes asset correlations assigned under the IRB approach
and adjusts them ±10% and ±20%. We make no attempt to recalibrate the asset correlation
parameter. Using time series of pooled credit loss observations Fitch Ratings (2008) empirically
estimated asset correlations for each IRB asset class. They find that across asset classes, corre-
lation parameters assigned under the IRB approach are conservative relative to their empirically
derived estimates. Fitch Ratings contend that this conservatism provides a margin for error
during periods of economic distress when correlations tend to spike. Moreover, it accommodates
observed geographic variations in correlation parameters.

6.3 Sensitivity to Dependence As Modelled by Elliptical Copulas

While it’s generally acknowledged that models which assume that financial data follow a Gauss-
ian distribution tend to underestimate tail risk, the IRB approach to solvency assessment does
apply the one-factor Gaussian copula. As discussed in Section 3.5, Gaussian copulas do not
exhibit tail dependence — the tendency for extreme observations (i.e., credit defaults) to occur
simultaneously for all random variables. We examine the effect of tail dependence by measuring
the sensitivity of credit risk capital to dependence structure as modelled by elliptical copulas,
including Gaussian and Student’s t copulas. The latter, which we abbreviate by t-copula, admits
tail dependence with fewer degrees of freedom producing stronger dependence (Figure 3.1).

In order to evaluate the sensitivity of credit risk capital to default dependence structure, we
generate empirical loss distributions of the representative credit portfolio described in Table 5.1
using elliptical copulas: one-factor Gaussian copula, and t-copulas with 30, 10 and 3 degrees of
freedom and Gaussian margins. Again, the portfolio is constructed such that no credit accounts
for more than one basis point exposure. Assuming that asset values follow a log-normal distri-
bution, distributional differences are attributed to the copula function modelling default depen-
dence. The one-factor Gaussian copula is implemented by simulation of (2.26) parameterised
by (2.21), and generates the empirical loss distribution plotted in Figure 6.1. t-copulas with
Gaussian margins are implemented by simulation of (3.25) parameterised by (3.24).2 Monte
Carlo simulation performs 1,000,000 iterations.

2 Normally and chi-square distributed random variables are generated using GNU Scientific Library routines
gsl_ran_gaussian and gsl_ran_chisq, respectively.

91



6. Robustness of the ASRF Model

Figure 6.5: VaRα(Ln), 90.0% ≤ α < 100.0%, for the representative credit portfolio described in Table 5.1.
The portfolio is constructed such that no credit accounts for more than one basis point exposure. The
sensitivity of VaRα(Ln) to default dependence structure is measured by generating empirical loss distri-
butions using elliptical copulas and assuming that asset values follow a log-normal distribution.
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Figure 6.5 plots the sensitivity of credit VaR, and hence credit risk capital, to default de-
pendence structure as modelled by the one-factor Gaussian copula and t-copulas with Gaussian
margins. As in Section 6.2, we examine the confidence interval bounded by 90.0% ≤ α < 100.0%.
At the 90.0% confidence level there is little difference in estimates of credit VaR computed by
the respective elliptical copulas. However, as one moves further into the tail of the empirical loss
distribution estimates of credit VaR diverge at an accelerating rate. At the 99.9% confidence
level credit VaR computed by the t-copula with ν = 10 is more than double that computed by
the Gaussian copula; and the t-copula with ν = 3 estimates credit VaR to be more than four
times the estimate produced by the Gaussian copula. Unfortunately, the calibration of degrees of
freedom is not easy and to some extent subjective, which may explain why the one-factor Gauss-
ian copula prevails in practice. The sensitivity of credit risk capital to the choice of elliptical
copula can be much greater than its sensitivity to asset correlation.

We reach a similar conclusion to that of Frey et al. (2001), who examine model misspeci-
fication. They simulated empirical loss distributions for a range of correlation parameters and
obligor default probabilities assuming that default dependence is modelled by multivariate Gauss-
ian and Student’s t distributions. As noted in Section 3.5, a multivariate t distribution admits
tail dependence with fewer degrees of freedom producing stronger dependence, and it inherits
the correlation matrix of the multivariate Gaussian distribution that it generalises. Assuming
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6.3. Sensitivity to Dependence As Modelled by Elliptical Copulas

that default dependence is modelled by a multivariate Gaussian distribution, credit losses at high
quantiles of the empirical loss distribution would be seriously understated if the true model of
dependence were a multivariate t distribution. Frey et al. (2001) argue that asset correlations are
not enough to describe default dependence, and “[a]n assumption of multivariate normality may
not model the potential extreme risk in the portfolio.” However, they also recommend the use
of historical default data to estimate true default correlations and calibrate credit risk models.

Hamerle and Rösch (2005) demonstrate the robustness of the Gaussian copula, which under-
lies the IRB approach, to model misspecification. They simulated empirical loss distributions
assuming that default dependence is modelled by the Student’s t copula, and then empirically
estimated correlation parameters using the misspecified Gaussian copula. While parameter esti-
mates for asset correlation exhibit large biases, quantiles of empirical loss distributions subse-
quently generated by the misspecified Gaussian copula with the overestimated asset correlations
no longer seriously underestimate true credit losses. However, the economic damage wrought by
the financial crisis of 2007–09 in the north Atlantic suggests that parameter estimation errors
did not conveniently offset model uncertainties during the recent crisis.
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CHAPTER 7
Measurements from the Asymptotic

Single Risk Factor Model of the
Australian Banking Sector

Our empirical analysis renders a fundamental assessment of the model specification of the Basel II
IRB approach on the basis of evidence from Australia. We take measurements from the ASRF
model, described in Section 4.1, of the Australian banking sector. Accordingly, we make obser-
vations about the prevailing state of Australia’s economy and the solvency of its banking sector,
which inform our fundamental assessment. But, we do not propose model enhancements, nor
do we draw policy implications from these observations. Although, our observations may open
a debate on the model specification of the IRB approach or related regulatory policies.

The ASRF model prescribed under the IRB approach is an asset value factor model. Other
asset value models include: Moody’s KMV, RiskMetrics, and most internal bank models. They
too are generally factor models. Note that multi-factor asset value models typically express
asset values as a function of a composite factor obtained by the superposition of underlying
independent risk indices (Bluhm et al. 2010). We believe that the empirical findings presented
in this chapter are applicable to the broader class of asset value factor models of credit risk.

The financial crisis of 2007–09, also known as the global financial crisis, precipitated the worst
global recession since the Great Depression of the 1930s. With the implementation of Basel II
preceding the time when the effect of the crisis was most acutely felt, our empirical analysis
produces a fundamental evaluation of the impact of the crisis on the Australian banking sector
using internal bank data collected by APRA. We are not the first to attempt to measure the
effects of the recent crisis, but we believe that we are the first to do so using regulatory data.
Other studies on the financial crisis rely on market data, macroeconomic indicators or published
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7. Measurements from the ASRF Model of the Australian Banking Sector

financial statistics.1 In arguing the resilience of the Australian economy to the crisis, McDonald
and Morling (2011), and Brown and Davis (2010) describe its performance primarily in terms
of macroeconomic indicators and financial statistics. Our measurements from the ASRF model
of the Australian banking sector corroborate their observations. Allen and Powell (2012), on
the other hand, rely on market data and reach a markedly different conclusion regarding the
condition of the Australian banking sector during the financial crisis. We submit that their
results are biased by plummeting market prices and spiking volatility reflecting the overreaction
of market participants gripped by fear at the depth of the crisis.

There are many more international studies on the causes, effects and implications of the
financial crisis. For instance, Jagannathan et al. (2013) argue that conditions for the crisis were
created by the transformation of global labour markets through technical innovation, capital flows
induced by current account imbalances, and weaknesses in financial regulation and governance.
Cecchetti et al. (2011) examine whether the macroeconomic performance of countries during
the recent crisis was due to pre-crisis policy decisions. They conclude that national economies
that exhibited a better capitalised banking sector, low loan-to-deposit ratios, a current account
surplus, high level of foreign exchange reserves, and low levels and growth of private sector
credit-to-GDP were less vulnerable. Introducing the financial crisis as a shock to the supply
of credit, Laeven and Valencia (2013) study the effect of public policy interventions on firm
growth in 50 countries. They find that bank recapitalisations and discretionary fiscal policy
supported the growth of firms that were more dependent on external financing. Flannery et al.
(2013) analyse the market response during the crisis to the information asymmetry of banks.
They observe that banks’ microstructure properties (specifically, stock bid-ask spreads and price
impacts) were significantly higher than those for non-banks during the crisis, which is consistent
with a sharp increase in the relative opacity of banks. Suh (2012) proposes a factor-augmented
correlated default model to measure the systemic risk of large US financial institutions using stock
market data. With time-varying asset correlations rising during periods of financial distress, he
estimates that systemic risk reached historically high levels during the recent crisis. We reiterate
that access to internal bank data collected by the prudential regulator distinguishes our research
from other studies on the financial crisis.

From our assessment of the model specification of the IRB approach emerges a methodology
for regulators to monitor the prevailing state of the economy as described by the single systematic
risk factor, and the capacity of supervised banks to absorb credit losses as measured by distance-
to-default. While confidentiality agreements preclude us from publishing results for individual
banks, regulators would be at liberty to conduct their analysis on an individual bank basis.
Measurements from the ASRF model signalling an overheating economy and procyclical move-
ments in capital bases, corroborated by macroeconomic performance indicators, would prompt
supervisory intervention. For example, banks could be instructed to build up their countercyclical
capital buffer introduced under Basel III in order to rein in rapidly accelerating credit growth.

1 Measures of financial position (stocks) and performance (flows), national and company level.
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Furthermore, a longer history of the time series of the prevailing state of the economy recovered
from the ASRF model could serve to validate and calibrate macroeconomic-based models for
estimating conditional (point-in-time) PDs. Macroeconomic-based models for estimating point-
in-time PDs usually express the single systematic risk factor as a function of macroeconomic
variables and a random economic shock (Chan-Lau 2006). This time series could also inform the
development of economic scenarios for stress testing, a standard tool of prudential supervision.

This chapter begins in Section 7.1 by comparing the performance of the Australian economy
over the past decade with that of the United States and United Kingdom on macroeconomic
indicators and financial statistics. Both the latter economies experienced the full force of the
financial crisis of 2007–09. Then, applying the ASRF model, with appropriate substitutions, to
internal bank data collected by APRA since the implementation of Basel II, our empirical analysis
generates quarterly time series of: (i) the single systematic risk factor describing the prevailing
state of Australia’s economy; and (ii) distance-to-default measuring the capacity of its banking
sector to absorb credit losses. The former is plotted in Section 7.2, while the latter is reported in
Section 7.3. Comparing these time series with macroeconomic indicators, financial statistics and
external credit ratings we render a fundamental assessment of the model specification of the IRB
approach. The relatively short quarterly time series available leads to an intuitive assessment of
the ASRF model rather than any formal testing of its efficacy. Since the depths of the financial
crisis were reached after the implementation of Basel II, this time series analysis measures the
impact of the crisis on the Australian banking sector. Finally, in a variation on the evaluation of
distance-to-default, Section 7.4 employs reverse stress testing to explore stress events that would
trigger material supervisory intervention.

7.1 Recent Performance of the Australian Economy

In conducting our fundamental evaluation of the model specification of the Basel II IRB approach,
we use internal bank data collected by APRA to solve for realisations of the single systematic
risk factor describing the prevailing state of the Australian economy. These readings of the
Australian banking sector are then compared with signals from macroeconomic indicators and
financial statistics to render our assessment. Here, we describe the performance of the Australian
economy over the past decade, a period which includes the financial crisis of 2007–09. While
the crisis precipitated the worst global recession since the Great Depression, its effects were not
evenly felt across the globe. In order to contextualise the Australian economy we compare its
performance with that of the United States and United Kingdom, economies that experienced
the full force of the recent crisis. The resilience of the Australian economy to the crisis is evident
from a review of macroeconomic indicators and financial statistics that portend or reflect credit
stresses: real GDP growth, unemployment rate, house prices, and return on equity of the banking
sector.

A number of explanations for the resilience of the Australian economy have been proffered:
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Figure 7.1: Resilience of the Australian economy to the financial crisis of 2007–09. Its performance is compared with that of the United States
and United Kingdom on macroeconomic indicators and financial statistics: real GDP growth, unemployment rate, house price index, and return
on equity of the banking sector.
Sources: Australian Bureau of Statistics; Australian Prudential Regulation Authority; US Bureau of Economic Analysis; US Bureau of Labor Statistics; US
Federal Reserve Economic Data; Standard & Poor’s; UK Office of National Statistics.
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• Since the mid 2000s Australia has benefited from a favourable movement in terms of trade
driven by the strong global demand for commodities, much of it coming from Asia. An
appreciating foreign exchange rate over the same period has been a key factor in the
relatively smooth adjustment of the economy to the increase in terms of trade (Bishop et
al. 2013). Inflation has been consistent with the target set by the Reserve Bank of Australia
(RBA), unemployment has remained relatively low, and economic growth has mostly been
around trend — the economy registered a mild contraction in the fourth quarter of 2008,
but did not experience a recession. These economic fundamentals have shielded Australia
from the financial crisis.

• Residential mortgages, typically floating rate with full recourse to the borrower, have
accounted for 50–60% of loans on the balance sheet of Australian banks over the past
decade. With the vast bulk of residential mortgages originated by the banks and held to
maturity, the risks associated with the banks’ residential mortgage portfolios are compara-
tively small. Other notable structural factors of the Australian financial sector which serve
to constrain excessive risk taking include: the government’s “four pillars” policy precluding
mergers between the four major banks, which dominate the Australian financial sector; and
the ability of the Australian banks to pay fully-franked dividends to shareholders (Lewis
2013). The attention to risk quantification and management by the major banks, in order
to achieve Basel II IRB approval in 2008, arguably helped discourage excessive risk-taking
too (Brown and Davis 2010).

• APRA, which is responsible for the regulation of deposit-taking institutions, insurance com-
panies and superannuation funds, distinguishes prudential supervision in Australia by its
active, risk-based approach (Lewis 2013). BCBS (2012) calls for greater focus on risk-based
supervision in its core principles for effective banking supervision: “[t]his risk-based process
targets supervisory resources where they can be utilised to the best effect, focussing on out-
comes as well as processes, moving beyond passive assessment of compliance rules.” There
were significant failures of non-bank financial companies during the financial crisis with
investors, rather than taxpayers, bearing the losses. The list of failed companies includes:
Absolute Capital, Allco Finance Group, Babcock and Brown, Opes Prime, RAMS Home
Loans and Storm Financial. Australia’s banking sector, on the other hand, experienced
no failures. Indeed, while banks’ profitability declined during the crisis, it remained quite
healthy. Also, the major Australian banks maintained their AA credit rating through the
crisis (Brown and Davis 2010; D’Aloisio 2010).

• In October 2008 the Australian government introduced two schemes, announced with a
three-year duration, to guarantee bank funding. Under the Financial Claims Scheme, all
deposits up to $1 million with locally-incorporated ADIs were automatically guaranteed
by the government with no fee payable. Under the Funding Guarantee Scheme, the gov-
ernment provided a guarantee, for a fee, on deposits over $1 million and wholesale funding
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7. Measurements from the ASRF Model of the Australian Banking Sector

with maturity out to five years. The RBA believes that these schemes achieved their
goal of maintaining public confidence in the Australian banking sector (Senate Standing
Committees on Economics 2011).

• At the onset of the financial crisis, in October 2007, the RBA sought to restore liquid-
ity to dysfunctional credit markets by expanding the range of securities it would accept
as collateral for repurchase agreements to include residential mortgage-backed securities
and asset-backed commercial paper (Debelle 2007). Then, as the crisis spread to the real
economy, the RBA slashed its target cash rate from 7.25% in August 2008 to 3.0% in April
2009. Importantly, much of the monetary policy easing was passed through to borrowers.
With most household and business loans in Australia being variable, lower interest rates
translated into higher disposable incomes. Falling interest rates coupled with rising incomes
improved housing affordability somewhat, and helped avert a sharp correction in the hous-
ing market, which had boomed over the previous decade (McDonald and Morling 2011).

• Between October 2008 and February 2009 the Australian government announced substan-
tial fiscal stimulus packages: $10.4 billion Economic Security Strategy; $15.2 billion Council
of Australian Governments funding package; $4.7 billion Nation Building package; and
$42 billion Nation Building and Jobs Plan. The Treasury estimates that, absent the fiscal
stimulus, GDP growth would have been negative for three consecutive quarters (McDonald
and Morling 2011).

• Finally, the “lucky” country was probably not without a dose of good fortune.

The charts in Figure 7.1 clearly indicate that the Australian economy was largely cushioned
from the adverse effects of the recent crisis. Putting the mild contraction experienced by the
Australian economy during the financial crisis of 2007–09 in an historical context, we compare
it with Australia’s most recent recession in 1990. During the financial crisis real GDP growth
in Australia fell 0.7% in the fourth quarter of 2008, and unemployment peaked at 5.9% in June
2009. By comparison, during the 1990 recession the Australian economy contracted 1.7% and
unemployment rose to 10.8%. A number of financial institutions failed including the State Bank
of Victoria, the State Bank of South Australia, the largest credit union (Teachers Credit Union of
Western Australia), the second largest building society (Pyramid Building Society), and several
merchant banks. Moreover, two of the four major Australian banks incurred heavy losses and
had to be recapitalised. The 1990 recession is considered similar in magnitude to those of 1974
and 1961, but not as severe as the recession of 1982 when the economy contracted 3.7% and
unemployment rose to 10.5% (Macfarlane 2006).

7.2 Prevailing State of the Australian Economy

Taking measurements from the ASRF model of the Australian banking sector requires internal
bank data collected by APRA under Basel II. Data reported on IRB credit risk forms by the
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major banks are available since the first quarter of 2008 on a quarterly basis. Recall that IRB
credit risk forms assign credit exposures to an obligor grade identifying a PD band within an
IRB asset class. Pooling obligor grades, reported as at the end of a given quarter, across IRB
asset classes constitutes a commingled credit portfolio in which each obligor grade is represented
as a single credit. The quarterly observations between 31 March 2008 and 30 June 2013 establish
a time series of commingled credit portfolios.

Recall that δi(t), ηi(t), pi(t) and ρi(t) denote the EAD, LGD, unconditional PD and asset
correlation assigned to credit i as at the end of quarter t. Now, for the purpose of taking readings
of the Australian banking sector we introduce the maturity adjustment previously omitted from
our exposition in Section 4.1 of the ASRF model developed by BCBS (2005). Denote by νi(t)
the maturity adjustment assigned to credit i as at the end of quarter t. Prudential standards
published by APRA instruct ADIs to assign one-year unconditional (through-the-cycle) PDs to
IRB credit exposures. Accordingly, δi(t), ηi(t), pi(t), ρi(t) and νi(t) reported as at the end of
quarter t are input to the ASRF model, which makes projections of losses on IRB credit exposures
over the subsequent four-quarter interval [t+1, t+4]. As noted in Section 5.1, these parameters
and variables are reported on IRB credit risk forms submitted to APRA by the majors banks on
a quarterly basis.

The model specification of the IRB approach assesses regulatory capital charges by calculating
the expectation of credit losses conditional on a realisation of the single systematic risk factor.
Substituting losses incurred on IRB credit exposures into the ASRF model, we recover realisations
of the single systematic risk factor describing states of the Australian economy experienced since
the implementation of Basel II. Then, applying the standard Gaussian distribution function
yields the quantile of the distribution of economic scenarios.

For any one-year horizon over which the ASRF model makes projections of credit losses, we
choose to associate the model inputs with the realisation of the single systematic risk factor as
at the midpoint of the corresponding risk measurement horizon. So, measuring time in quarterly
increments, realisation y(t) of systematic risk factor Y describing the state of the economy as at
the end of quarter t is associated with credit losses projected over the time interval [t−1, t+2]

using credit risk parameters and variables reported as at the end of quarter t−2.

Suppose that for each quarter in the time series, there is a total of r banking book exposures
subject to credit risk, of which n IRB credit exposures are held in the aforementioned commingled
portfolio, where n ≤ r. Denote byRn(t), Rr(t) andR(t) the RWA of IRB credit exposures, RWA
for credit risk and total RWA, respectively, as at the end of quarter t. Let Lr(s) be the total credit
losses incurred during quarter s, which is reported on the statement of financial performance. We
do not observe Ln(s), losses incurred on IRB credit exposures during quarter s. Therefore, we
choose to allocate total credit losses incurred during the four-quarter interval [s−1, s+2] between
IRB credit exposures and other banking book exposures in proportion to RWA as at the end of
the quarter t−2. So, losses on IRB credit exposures incurred during quarters s−1, s, s+1 and
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s+2 is given by
Rn(t−2)

Rr(t−2)

(
Lr(s−1) + Lr(s) + Lr(s+1) + Lr(s+2)

)
. (7.1)

In taking measurements from the ASRF model of the Australian banking sector, we assume
that there is no delay in the recognition of bad debts. (Later, we allow for delays in the recognition
of bad debts.) Setting s = t, projected credit losses over any one-year horizon are compared
with credit losses incurred during the same one-year interval. Then, applying the formula for
conditional expectation of portfolio credit losses:

Rn(t−2)

Rr(t−2)

(
Lr(t−1) + Lr(t) + Lr(t+1) + Lr(t+2)

)
=

n∑
i=1

δi(t−2)ηi(t−2)νi(t−2)Φ

(
Φ−1

(
pi(t−2)

)
−
√
ρi(t−2) y(t)√

1− ρi(t−2)

)
, (7.2)

we solve for realisation y(t) of systematic risk factor Y .2 Repeating this static analysis for each
quarter t from 30 September 2008 through 31 December 2012 generates a time series of systematic
risk factor Y . The ASRF model assumes that the conditional expectation of portfolio credit losses
rises as the economy deteriorates — a strictly decreasing function of the single systematic risk
factor. It follows from Lemma 2.33 that the α quantile of the distribution of E[Ln |Y ] is associated
with the 1−α quantile of the distribution of Y . Hence, confidence level α(t) corresponding to
realisation y(t) of systematic risk factor Y is given by

α(t) = 1− Φ
(
y(t)

)
. (7.3)

As discussed in Section 5.1, prudential standards published by APRA instruct ADIs to assign
economic downturn (stressed) LGD rates to IRB credit exposures. Denote by ηi(t) the downturn
LGD assigned to credit i as at the end of quarter t. Setting ηi(t) = ηi(t) for i = 1, . . . , n in
(7.2) and solving for realisation y(t) of systematic risk factor Y yields a prevailing state of the
economy that is more expansionary than would be recovered using point-in-time LGD rates,
assuming that the economy was not experiencing a (severe) downturn. In solving for realisations
of the single systematic risk factor describing the prevailing state of the economy, we also examine
the effect of adjustments to downturn LGD rates. Recognising that banks may not be able to
produce internal estimates of downturn LGD, the Office of the Comptroller of the Currency et al.
(2007) proposed a “linear supervisory mapping function” for translating through-the-cycle LGD
rates into downturn LGD rates: ηi(t) = 0.08 + 0.92η̄i(t), where η̄i(t) is the through-the-cycle
LGD assigned to credit i at the end of quarter t. The adjustment varies between zero and eight
percent, decreasing linearly from low to high through-the-cycle LGD rates. Using historical LGD
rates from their database, Moody’s derived an adjustment method to meet the downturn LGD
requirement imposed under the IRB approach. Their adjustment to through-the-cycle LGD

2 We use the GNU Scientific Library routine gsl_root_fsolver_falsepos, which implements the false position
algorithm, to solve for y(t). A root bracketing algorithm based on linear interpolation, its convergence is linear,
but it is usually faster than the bisection method.
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7.2. Prevailing State of the Australian Economy

Figure 7.2: Realisations of the single systematic risk factor describing the prevailing state of the Aus-
tralian economy, and the effect of adjustments to downturn LGD. Confidence level α is the probability of
the state of the economy being better than the economic scenario described by realisation y. For credits
i = 1, . . . , n constituting the commingled portfolio at the end of quarter t:
(a) ηi(t) = ηi(t), where ηi(t) is downturn LGD.
(b) ηi(t) = η̄i(t), where η̄i(t) is through-the-cycle LGD and ηi(t) = 0.08 + 0.92η̄i(t).
(c) ηi(t) = 1

3
ηi(t).

(d) ηi(t) = 1
2
ηi(t).
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rates depends on the seniority of the obligations, with the magnitude also varying from zero to
eight percent (Emery 2007). We demonstrate the effect of adjustments to downturn LGD rates
by solving (7.2) using four definitions of LGD: ηi(t) = ηi(t), ηi(t) = η̄i(t), ηi(t) = 1

3ηi(t), and
ηi(t) = 1

2ηi(t) for i = 1, . . . , n.
Figure 7.2 plots realisations of the single systematic risk factor describing the prevailing state

of the economy. On the basis of downturn LGD rates, as reported by the major banks, the
economic shock imparted by the financial crisis of 2007–09 propagated through the Australian
banking system inflicting credit losses incurred, on average, once every five years. That is, at
the depths of the crisis, the prevailing state of the Australian economy as recovered from (7.2)
is summarised by realisation y = −0.81 on 31 December 2008. Appealing to Proposition 2.28,
y = −0.81 translates into the 79.1% quantile of the portfolio loss distribution — credit losses
incurred were no greater than expected in 79.1% of economic scenarios, which we characterise
informally as (approximately) a one-in-five-year event. We argue that the single systematic risk
factor is a germane measure of the impact of the financial crisis, because the IRB approach chooses
realisation y = −3.090 of systematic risk factor Y to assess regulatory capital charges that are
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7. Measurements from the ASRF Model of the Australian Banking Sector

expected to absorb credit losses in 99.9% of economic scenarios. Bear in mind, though, that
measurements from the ASRF model describing the prevailing state of the Australian economy
capture policy responses of government departments and agencies (i.e., The Treasury, RBA and
APRA) designed to mitigate the recent crisis. Naturally, it is not possible to isolate these policy
responses in order to ascribe a value to their mitigating effects.

Translating downturn LGD rates into through-the-cycle LGD rates using the linear super-
visory mapping function proposed by Office of the Comptroller of the Currency et al. (2007),
realisations of the single systematic risk factor recovered from (7.2) indicate that the recent crisis
inflicted credit losses on the Australian banking system incurred, on average, once every seven
years. Given that the Australian economy contracted during the financial crisis, and assuming
that through-the-cycle LGD rates obtained from downturn LGD rates using the linear super-
visory mapping function are good estimates, we would argue that the shock experienced by
the Australian economy at the depths of the crisis was between a one-in-five-year and one-in-
seven-year event. This seems consistent with the perception that Australian banks weathered
the recent crisis quite well, reporting good profitability and high capital ratios, and maintaining
strong credit ratings.

For reference, Figure 7.2 also plots realisations of the single systematic risk factor recovered
from (7.2) using LGD estimates that are one-third less than, and half of downturn LGD rates.
Under these assumptions for point-in-time LGD at the depths of the crisis, the shock experience
by the Australian economy was a one-in-ten-year and one-in-twenty-year event, respectively. In
the analysis that follows we use the time series of the single systematic risk factor recovered from
(7.2) using downturn LGD rates, as reported by the major Australian banks. We would reach
broadly the same conclusions using point-in-time LGD rates.

Real GDP growth, plotted for the Australian economy in Figure 7.1, is conventionally reported
as seasonally adjusted, quarter-over-quarter. Quarterly realisations of the single systematic risk
factor are recovered by equating credit losses projected over a one-year horizon with credit losses
incurred during the same one-year interval. Accordingly, we restate quarterly observations of real
GDP growth for the Australian economy as year-over-year. Figure 7.3 plots time series of the
single systematic risk factor describing the prevailing state of the Australian economy and real
GDP growth, year-over-year. The time series are quite strongly correlated (+0.60), suggesting
that the single systematic risk factor serves as a reasonable proxy for the relative state of the
economy. Indeed the correlation between the time series rises to +0.72 when realisations of the
single systematic risk factor are lagged by one or two quarters. Arguably, realisation y(t) of
systematic risk factor Y leads real GDP growth, but realisation y(t) cannot be computed until
credit losses Lr(t+2) are recognised in profit and loss for quarter t+2. Overall, observations of
the prevailing state of the Australian economy recovered from (7.2), and plotted in Figures 7.2
and 7.3, agree rather well with the macroeconomic indicators and financial statistics plotted in
Figure 7.1.

As noted above, we do not observe losses on IRB credit exposures. Hence, we choose to allo-
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7.2. Prevailing State of the Australian Economy

Figure 7.3: Realisations y(t) of systematic risk factor Y describing the prevailing state of the Australian
economy and real GDP growth, y-o-y. The time series exhibit a moderately strong correlation (+0.60).
Source: Australian Bureau of Statistics.
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cate total credit losses incurred between IRB credit exposures and other banking book exposures
in proportion to RWA. Figure 7.4 illustrates that even if we were to attribute credit losses entirely
to IRB credit exposures and use downturn LGD rates in (7.2), the financial crisis of 2007–09
would have inflicted credit losses on the Australian banking system not exceeding those incurred,
on average, once every eight years — a lower bound on the severity of the crisis in Australia.

The model specification of the IRB approach was developed for the purpose of solvency
assessment, or capital adequacy. A credit risk model of capital adequacy requires precision in
the measurement of absolute risk levels under stressed economic conditions associated with the
tail of the portfolio loss distribution (Basel Committee on Banking Supervision et al. 2010).
Recognising that realisations of the single systematic risk factor describing states of the Aus-
tralian economy experienced since the implementation of Basel II correspond to observations
away from the tail of its distribution, we cannot attest to the validity of the ASRF model for
regulatory capital modelling. However, we argue that our findings support a favourable assess-
ment of the ASRF model, and asset value factor models of credit risk in general, for the purposes
of capital allocation, performance attribution and risk monitoring. These management func-
tions, generally served by economic capital models, need only be accurate in the measurement
of relative risk under “normal” economic conditions.

An evaluation of the ASRF model for the purpose of solvency assessment, would involve
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7. Measurements from the ASRF Model of the Australian Banking Sector

Figure 7.4: Impact of the financial crisis of 2007–09 on the credit portfolios of the major Australian
banks. Realisation y of systematic risk factor Y describes the prevailing state of the economy. Confidence
level α is the probability of the state of the economy being better than the economic scenario described
by realisation y.
(a) Credit losses are allocated between IRB credit exposures and other banking book exposures in
proportion to RWA.
(b) Credit losses are allocated entirely to IRB credit exposures providing a lower bound on Y .
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taking readings of north Atlantic banking jurisdictions that experienced the full force of the
financial crisis of 2007–09. It is unlikely to be as favourable as the qualified evaluation presented
here. The UK banking sector, which has operated under the Basel II framework since 2008,
experienced losses during the crisis on a scale that led to the failure or nationalisation of large
banks including Bradford & Bingley, HBOS, Lloyds Banking Group, Northern Rock and Royal
Bank of Scotland. Moreover, the Basel 2.5 and Basel III reform packages have been developed
by BCBS to address deficiencies of the Basel II framework exposed by the recent crisis.

It could be argued that delays in the recognition of bad debts warrant introducing a lag in
the association of projected credit losses with credit losses incurred. Figure 7.5 plots the time
series of the prevailing state of the economy (i.e., realisations of the single systematic risk factor)
assuming no delay in the recognition of bad debts (s = t), along with time series assuming delays
of one quarter (s = t+ 1) and two quarters (s = t+ 2). Introducing lags to account for possible
delays in the recognition of bad debts does not materially alter our measurement of the impact
of the financial crisis on the credit portfolios of the major Australian banks at the depths of the
crisis — it remains, informally speaking, a one-in-five-year event (using downturn LGD rates).

This empirical analysis begins with the initial submission of capital adequacy and IRB credit
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7.2. Prevailing State of the Australian Economy

Figure 7.5: Impact of the financial crisis of 2007–09 on the credit portfolios of the major Australian
banks. Sensitivity of the single systematic risk factor describing the prevailing state of the economy to
delays in the recognition of bad debts. Confidence level α is the probability of the state of the economy
being better than the economic scenario described by realisation y of systematic risk factor Y .

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25
D
ec
-0
8

Ju
n-
09

D
ec
-0
9

Ju
n-
10

D
ec
-1
0

Ju
n-
11

D
ec
-1
1

Ju
n-
12

90

84

77

69

60

50

40

31

23

16

10

Sy
st
em

at
ic

ri
sk

fa
ct
or
Y

C
on

fid
en
ce

le
ve
lα

,%

No delay in recognition of bad debts
One-quarter delay
Two-quarter delay

risk forms as at 31 March 2008 and credit losses recognised in profit and loss between 1 April 2008
and 31 March 2009, and solves for the single systematic risk factor describing the state of the
economy as at 30 September 2008. Our measurement of the impact of the financial crisis on the
Australian banking sector is necessarily predicated on the assumption that the effect of the crisis
was most acutely felt after 31 March 2008. Figure 7.6 indicates that credit losses incurred by
the major Australian banks peaked in the fourth quarter of 2008 and remained elevated through
2009, and global equity indices plumbed their lows during the first quarter of 2009 — S&P ASX
200 index fell 54% between November 2007 and March 2009.

Our measurement of the impact of the financial crisis on the Australian banking sector is
buttressed by the macroeconomic stress test administered by APRA on the major Australian
banks in 2012. The three-year economic scenario developed for the stress test by APRA in
conjunction with the RBA and Reserve Bank of New Zealand, was designed to be comparable
with the actual experience of the United States and United Kingdom during the recent crisis. In
particular, the macroeconomic stress test envisaged: real GDP contracting 5%; unemployment
rising to 12%; house prices falling 35%; and commercial property prices falling 40%. None of the
major Australian banks would have failed under this severe but plausible economic scenario, nor
would any of the major banks have breached the 4% minimum tier 1 capital requirement of the
Basel II Accord (Laker 2012).
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7. Measurements from the ASRF Model of the Australian Banking Sector

Figure 7.6: Dating the inception of the financial crisis of 2007–09. Credit losses incurred by Australian
banks peaked, and global equity indices plumbed their lows, after the implementation of Basel II.
Sources: Australian Prudential Regulation Authority; Bloomberg.
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7.3 Australian Banks’ Capacity to Absorb Credit Losses

Distance-to-default, which measures the level of capitalisation, reflects the capacity to absorb
credit losses. Substituting provisions set aside for absorbing expected losses and capital held
against unexpected losses on IRB credit exposures into the ASRF model, and translating real-
isations of the single systematic risk factor into distance-to-default, we measure the level of
capitalisation of the major Australian banks, in aggregate,3 since the implementation of Basel II.

Suppose that a bank sets aside provisions and holds capital that are sufficient to absorb credit
losses at the α confidence level. Denote by Qr(t) provisions set aside for absorbing expected
credit losses as at the end of quarter t, and K(t) the capital base as at the end of quarter t,
both reported on the capital adequacy form. Recall that APRA sets a prudential capital ratio,
subject to a minimum 8% of RWA, for each ADI, and an ADI typically holds a capital buffer above
its prudential capital requirement. Since we observe neither provisions set aside for absorbing
expected losses nor capital held against unexpected losses on IRB credit exposures, we choose an
allocation procedure. Provisions are allocated between IRB credit exposures and other banking
book exposures in proportion to expected losses over the subsequent four quarters as projected
at the end of quarter t:

Qn(t) =
E
[
Ln(t+1) + Ln(t+2) + Ln(t+3) + Ln(t+4)

]
E
[
Lr(t+1) + Lr(t+2) + Lr(t+3) + Lr(t+4)

] Qr(t). (7.4)

Capital is allocated between IRB credit exposures and other risk exposures (i.e., non-IRB credit
exposures, and operational, market and securitisation risks) in proportion to RWA as at the end
of quarter t:

Kn(t) =
Rn(t)

R(t)
K(t). (7.5)

3 Results are reported for the major Australian banks, in aggregate, so as not to violate confidentiality
agreements.
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7.3. Australian Banks’ Capacity to Absorb Credit Losses

Hence, provisions set aside for absorbing expected losses and capital held against unexpected
losses on IRB credit exposures as at the end of quarter t is equal to Qn(t) +Kn(t).

We estimate distance-to-default by solving for realisation ỹ(t) of systematic risk factor Y that
equates the sum of (7.4) and (7.5) to the conditional expectation of portfolio credit losses:4

Qn(t) +Kn(t) =

n∑
i=1

δi(t)ηi(t)νi(t)Φ

(
Φ−1

(
pi(t)

)
−
√
ρi(t) ỹ(t)√

1− ρi(t)

)
. (7.6)

Recall that APRA’s prudential standards instruct ADIs to assign unconditional PDs and down-
turn LGD rates to IRB credit exposures. Since distance-to-default reflects the capacity to absorb
credit losses, usually under stressed economic conditions, it is appropriate to use downturn LGD
rates to estimate distance-to-default. Hence, ηi(t) = ηi(t) for i = 1, . . . , n and for all t in (7.6).
Note that the sum of provisions set aside for absorbing expected credit losses and capital held
against unexpected credit losses in (7.6), replaces the sum of expected losses and regulatory
capital in the ASRF model described in Section 4.1. Denote by d̃(t) the distance-to-default as
at the end of quarter t. Then,

d̃(t) = −ỹ(t), (7.7)

which translates into confidence level

α̃(t) = 1− Φ
(
− d̃(t)

)
= Φ

(
d̃(t)

)
. (7.8)

It follows from (7.5) that the risk-based capital ratio as at the end of quarter t, plotted in
Figure 5.3, is given by

κ(t) =
K(t)

R(t)
=
Kn(t)

Rn(t)
. (7.9)

Table 7.1 reports quarterly risk-based capital ratio of the major banks, in aggregate, along
with implied distance-to-default. Since 2008 they have maintained a capital base that is con-
sistent with targeting a credit rating between A and AA (i.e., a target confidence level between
99.96% and 99.99%). Note that, under the prudential standards of APRA (2008a), if provisions
set aside are insufficient to absorb expected credit losses, the shortfall is deducted from capital.
The general agreement of our estimates of distance-to-default with credit ratings issued by ex-
ternal rating agencies seemingly lends further support to a favourable assessment of the model
specification of the IRB approach. However, distance-to-default is a measure of capital adequacy,
and Section 7.2 argues that we cannot attest to the suitability of the ASRF model for the purpose
of solvency assessment, because realisations of the single systematic risk factor experienced in
Australia since the implementation of Basel II correspond to observations away from the tail of
its distribution. Therefore, we report estimates of distance-to-default with the caveat that (7.6)
models default dependence in the tail of the portfolio loss distribution as a multivariate Gauss-
ian process. It is generally acknowledged that models which assume that financial data follow a

4 We use the GNU Scientific Library routine gsl_root_fsolver_falsepos, which implements the false position
algorithm, to solve for ỹ(t).
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Table 7.1: As reported risk-based capital ratio κ(t), and implied distance-to-default d̃(t) of the major Australian banks, in aggregate. The reverse
stress test uncovers the weakest economic shock ŷ(t) that would result in a breach of the capital ratio floor κ. Realisation y(t) describes the
prevailing state of the economy.

Reverse stress test Prevailing state
of the economyAs reported κ = 4.0% κ = 8.0%

t κ(t), % d̃(t) α̃(t), % ŷ(t) α̂(t), % ŷ(t) α̂(t), % y(t) α(t), %

31-Mar-2008 10.67 3.504 99.977 −2.915 99.822 −1.90 97.10
30-Jun-2008 10.73 3.413 99.968 −2.845 99.778 −1.87 96.94
30-Sep-2008 10.98 3.508 99.978 −2.946 99.839 −2.01 97.78 −0.58 71.9
31-Dec-2008 11.51 3.588 99.983 −3.044 99.883 −2.17 98.49 −0.81 79.1
31-Mar-2009 11.38 3.621 99.985 −3.044 99.883 −2.12 98.29 −0.74 77.1
30-Jun-2009 11.10 3.620 99.985 −3.018 99.873 −2.04 97.94 −0.51 69.4
30-Sep-2009 11.52 3.682 99.988 −3.095 99.902 −2.17 98.51 −0.39 65.1
31-Dec-2009 11.85 3.732 99.991 −3.160 99.921 −2.28 98.88 −0.16 56.3
31-Mar-2010 11.82 3.717 99.990 −3.145 99.917 −2.26 98.82 0.11 45.5
30-Jun-2010 11.51 3.677 99.988 −3.090 99.900 −2.17 98.48 0.30 38.4
30-Sep-2010 11.50 3.680 99.988 −3.092 99.901 −2.16 98.48 0.56 28.7
31-Dec-2010 11.27 3.653 99.987 −3.057 99.888 −2.10 98.20 0.71 23.8
31-Mar-2011 11.49 3.682 99.989 −3.098 99.902 −2.17 98.49 0.75 22.7
30-Jun-2011 11.42 3.660 99.987 −3.076 99.895 −2.14 98.38 0.81 21.0
30-Sep-2011 11.48 3.647 99.987 −3.083 99.897 −2.18 98.54 0.79 21.5
31-Dec-2011 11.42 3.642 99.986 −3.077 99.895 −2.17 98.51 0.73 23.4
31-Mar-2012 11.48 3.637 99.986 −3.077 99.896 −2.18 98.55 0.52 30.2
30-Jun-2012 11.44 3.633 99.986 −3.075 99.895 −2.18 98.54 0.46 32.2
30-Sep-2012 11.72 3.659 99.987 −3.121 99.910 −2.28 98.86 0.54 29.3
31-Dec-2012 11.75 3.663 99.988 −3.126 99.911 −2.29 98.89 0.57 28.5
31-Mar-2013 11.69 3.698 99.989 −3.165 99.923 −2.34 99.04
30-Jun-2013 11.42 3.657 99.987 −3.118 99.909 −2.27 98.83
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Gaussian distribution tend to underestimate tail risk. If we were to model default dependence
by heavier-tailed distributions, we would recover narrower estimates of distance-to-default. Also,
credit losses incurred at the depths of the financial crisis would correspond to a quantile of the
portfolio loss distribution further from the tail, and thus associated with a less contractionary,
or more expansionary, state of the economy.

In contrast to our evaluation of the capacity of the major banks to absorb credit losses during
the financial crisis, Allen and Powell (2012) argue that Australian banks did not fare much
better than their global counterparts. They compared the distance-to-default of the Australian
banking sector with that of the banking sectors in the United States, Europe and Canada.
In their implementation of the KMV/Merton structural methodology, distance-to-default is a
function of implied market value and volatility of assets imputed from equity prices. Allen
and Powell observed that the distance-to-default for Australian banks narrowed sharply from
a peak of 11.31 in 2005 to 0.60 in 2008. Note that a distance-to-default of 0.60 translates
into roughly a one-in-four chance of bank failure, but in reality there were none. An implicit
assumption of their analysis is that security markets consistently price risk fairly. But it’s not
uncommon for markets to exhibit bouts of manic-depressive behaviour. During periods when
market participants are gripped by fear (respectively, driven by greed), their perception of risk
is heightened (lessened), and markets become undervalued (overpriced). We submit that their
results are biased by plummeting equity prices and spiking volatility reflecting the overreaction
of market participants gripped by fear at the depths of the crisis — the S&P ASX 200 Banks
index fell 58% between November 2007 and January 2009. With access to internal bank data
collected by APRA, we produce a fundamental evaluation of the effect of the recent crisis and
solvency of Australian banks that differs markedly from the stock market’s assessment.

7.4 Reverse Stress Testing

Stress testing is an important risk management tool promoted by supervisors through the Basel II
framework. In its principles for sound stress testing, BCBS (2009c) recommends that supervisors
make regular and comprehensive assessments of banks’ stress testing programs, and encourages
supervisors to conduct stress tests based on common scenarios for banks in their jurisdiction.

A key principle of APRA’s supervisory review is that regulated institutions are responsible
for developing and maintaining an internal capital adequacy assessment process (ICAAP) pro-
portional to the size, business mix and complexity of their operations. ICAAP is an integrated
and documented approach to risk and capital management that assesses the risk appetite of an
institution and establishes the commensurate level and quality of capital. As part of ICAAP,
institutions are expected to conduct their own and supervisory-led stress tests. APRA believes
that stress testing goes beyond assessing capital adequacy to informing risk appetite, setting risk
limits, identifying vulnerabilities and developing mitigating actions. The results of stress tests
are used by supervisors “to anchor expectations for the level of capital that an institution should

111



7. Measurements from the ASRF Model of the Australian Banking Sector

hold in normal times to provide a sufficient buffer to withstand a challenging environment.”
The results also serve “to inform our [supervisors’] risk assessment of institutions as part of the
development of supervisory action plans” (Laker 2012).

Usually, a stress test begins with the development of an economic scenario that is the man-
ifestation of some stress event or economic shock. It is then translated into conditional (point-
in-time) PDs assigned to obligors constituting a bank’s credit portfolio. Finally, an analytical or
simulation model estimates portfolio credit losses subject to the stress event, which are charged
against provisions and capital to produce an assessment of the bank’s solvency. A variation on
this methodology is reverse stress testing — a technique in which “losses that would render an
institution unviable or subject to material regulatory intervention are identified and attention
then focussed on the types of scenarios that would generate these losses” (Laker 2010).

Clearly, realisation ỹ(t) = −d̃(t), recovered from (7.6), describes an economic scenario that
would render the major banks, in aggregate, insolvent at the end of quarter t if the associated
credit losses were incurred and recognised instantaneously. We extend this rudimentary form of
reverse stress testing to uncover economic scenarios that would cause the major banks to breach
some designated capital ratio floor κ, and consequently trigger material supervisory intervention.
Suppose that the expectation of portfolio credit losses conditional on stress event ŷ(t) is instan-
taneously incurred and recognised in profit and loss at the end of quarter t. Then, the capital
ratio floor would be breached at the end of quarter t if credit losses exceeded

Qn(t) +Kn(t)− κRn(t). (7.10)

Economic scenarios worse than that described by realisation ŷ(t) of systematic risk factor Y
satisfying (7.11) would result in a breach of the capital ratio floor at the end of quarter t:5

Qn(t) +Kn(t)− κRn(t) =

n∑
i=1

δi(t)ηi(t)νi(t)Φ

(
Φ−1

(
pi(t)

)
−
√
ρi(t) ŷ(t)√

1− ρi(t)

)
. (7.11)

Then, the probability of the state of the economy being better than the economic scenario
described by realisation ŷ(t) is a most

α̂(t) = 1− Φ
(
ŷ(t)

)
. (7.12)

Finally, macroeconomic-based models would translate realisations of the single systematic risk
factor into observations of macroeconomic indicators (e.g., real GDP growth, unemployment
rate, house prices, etc.). This final translation is beyond the scope of this paper.

Our rudimentary stress testing methodology has its limitations: it is static; focusses exclu-
sively on credit risk, assuming away market, liquidity and operational risks; fails to consider
diversification benefits or compounding effects arising from the interaction between risk classes;
excludes net interest income earned during the period in which credit losses are incurred; and

5 We use the GNU Scientific Library routine gsl_root_fsolver_falsepos, which implements the false position
algorithm, to solve for ŷ(t).
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does not consider the possibility of raising fresh capital. Yet it puts the severity of the financial
crisis, as experienced by the Australian banking sector, in perspective by comparing it with stress
events that would trigger material supervisory intervention.

Table 7.1 reports the weakest economic shock ŷ(t) imparted at the end of quarter t that would
result in a breach of capital ratio floors set at 4.0% and 8.0% if credit losses were instantaneously
incurred and recognised in profit and loss. Section 7.2 made reference to the macroeconomic
stress test administered by APRA on the major banks in 2012, describing the severe and plau-
sible economic scenario under which none of the major banks would have breached the 4%
minimum tier 1 capital requirement. Table 7.1 indicates that with κ = 4.0%, approximately
99.9% of economic scenarios, presumably including the severe but plausible one developed for
the macroeconomic stress test administer by APRA, would not have resulted in the major banks,
in aggregate, breaching the capital ratio floor in 2012. Even with κ = 8.0%, fewer than 1.5%

of economic scenarios would have resulted a breach of the capital ratio floor in 2012. During
the recent crisis the capacity of the major banks, in aggregate, to absorb credit losses appears
to have been “stretched” to the point where 0.22% (respectively, 3.06%) of economic scenarios
would have resulted in a breach of the 4.0% (8.0%) capital ratio floor during the quarter end-
ing 30 June 2008. For comparison, Table 7.1 also reports the prevailing state of the economy
described by quarterly realisations y(t) recovered from (7.2) using downturn LGD rates, and
plotted in Figures 7.2 and 7.3.
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CHAPTER 8
Market Assessment of the Solvency

of the Australian Banking Sector

The theoretical framework of Part I underpins the primary contribution of our empirical analysis,
which renders a fundamental assessment of the model specification of the Basel II IRB approach.
In Chapter 7 we argue that measurements from the ASRF model of the prevailing state of
Australia’s economy and the level of capitalisation of its banking sector find general agreement
with macroeconomic indicators, financial statistics and external credit ratings. Moreover, we
submit that the market’s assessment of the solvency of the Australian banking sector during the
financial crisis of 2007–09 is biased by plummeting prices and spiking volatility reflecting the
overreaction of market participants gripped by fear at the depths of the crisis. Using market
data, Allen and Powell (2012) find that Australian banks did not fair much better than their
global counterparts during the recent crisis. In this more or less self-contained chapter, we
broadly follow their methodology to infer the market’s assessment of the capacity of the major
Australian banks, in aggregate, to absorb credit losses. The results are then directly comparable
with our fundamental assessment.

The structural approach to credit risk modelling (Merton 1974) formulates liabilities of a firm
as contingent claims on its assets. Contingent claims analysis is a generalisation of the option
pricing theory developed by Black and Scholes (1973) and Merton (1973). When applied to credit
risk, it is commonly referred to as the “Merton model.” Section 8.3 applies this analytical model
to infer the market’s assessment of the solvency of the major Australian banks, in aggregate.
Assuming that a firm defaults if the value of its assets falls below its default point at the risk
measurement horizon, solvency is assessed in terms of default likelihood indicator (DLI), which
is translated into distance-to-default. We borrow the term DLI from Vassalou and Xing (2004)
to distinguish this measure of default risk from conditional PD given by the function derived by
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Vasicek (2002). The Merton model uses the market value of equity, which presumably contains
forward-looking information, to estimate default risk. Market models are commonly regarded
as superior to accounting models, which use information derived from financial statements, and
are therefore inherently backward looking. Section 8.1 describes the market data, along with the
financial statement data, used to infer the market’s assessment. The Merton model takes into
account the volatility of implied asset values in its estimate of default risk. Implied asset values
are imputed from equity prices using the iterative procedure adopted by Vassalou and Xing
(2004) and described in Section 8.2. Assuming that a firm defaults if the value of its assets falls
below its default point at any time during the risk measurement horizon, Section 8.4 estimates
DLI and distance-to-default of the major banks, in aggregate, using the “first passage” approach.
The stochastic time evolution of asset values is simulated using Monte Carlo methods, and the
barrier is set to the default point. Finally, the market’s assessment of the solvency of the major
Australian banks, as inferred by the Merton model and first passage approach, is compared with
our fundamental assessment recovered from the model specification of the IRB approach.

8.1 Market Data

Chapters 6 and 7, respectively, use internal bank data collected by the prudential regulator to
evaluate the robustness of the ASRF model, and render an assessment on the IRB approach.
In the latter case, our fundamental assessment recovers from the ASRF model the prevailing
state of Australia’s economy and the capacity of its banking sector to absorb credit losses. By
contrast, this chapter applies the Merton model and first passage approach using market data
to infer the market’s assessment of the capacity of Australia’s banking sector to absorb credit
losses. As with Chapters 6 and 7, the empirical analysis presented in this chapter is conducted
on the major Australian banks.

The Merton model expresses the equity value, or market capitalisation, of a firm as a Euro-
pean call option on the value of its assets with the strike price equal to the value of its liabilities,
or contractual obligations payable. Closing stock price, shares outstanding and market capitali-
sation of the major Australian banks are downloaded from Bloomberg for each trading day from
31 December 2004 through 31 December 2013. A daily time series of equity value is generated
by summing the market capitalisation of the major banks. Also, we construct a capitalisation-
weighted index of the major banks. Using daily closing stock prices and shares outstanding, we
calculate daily closing prices for this index in accordance with the index methodology described
in S&P Dow Jones Indices (2014).

The strike price of the European call option for the Merton model is set to the book value
of contractual obligations payable. The major Australian banks report their liabilities on the
statement of financial position, or balance sheet.1 Aggregate liabilities of the major banks are
published by APRA (2013b) in its quarterly issue of ADI performance statistics. We extract

1 Reporting form ARF_322_0 and instructions for ADIs available at www.apra.gov.au.
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time series of aggregate total liabilities, decomposed into current liabilities and long-term debt,
from the quarter ending 31 December 2004 through the quarter ending 31 December 2013.

The market value of assets is not observed. So, using the numerical procedure described in
Section 8.2, which solves the Black-Scholes formula for a European call option, implied asset
values are imputed from equity prices. As well as equity value and strike price, the risk-free
interest rate is input to this numerical procedure. We proxy the risk-free interest rate with the
Australian Government 2-year bond rate. The Reserve Bank of Australia publishes tables of
historical yields on Australian Government bonds. We download Australian Government 2-year
bond rates for each trading day from 31 December 2004 through 31 December 2013.

Using these time series data, Section 8.3 infers the market’s assessment of the solvency of the
major Australian banks, in aggregate, since the beginning of 2006, which predates the financial
crisis of 2007–09. From 2006 the major banks have accounted for between 88% and 98% of the
weight of banks2 in the ASX All Ordinaries index, which includes an eight percent jump on
the acquisition of St. George Bank by Westpac Banking Corporation in the fourth quarter of
2008. Again, we argue that as a consequence of the market dominance of the major banks, the
empirical findings presented in this chapter are reflective of the Australian banking sector.

8.2 Implied Asset Values

The Merton model expresses the equity market capitalisation of a firm as a European call option
on the market value of its assets with strike price equal to the face value of a zero-coupon
bond representing the firm’s contractual obligations payable, and expiration coinciding with the
maturity of the bond (Giesecke 2004). If the firm cannot meet its contractual obligation to pay
investors the principal amount of the bond at maturity, the bondholders take over the firm.
That is, the firm defaults if the value of its assets falls below the principal amount of its debt at
maturity, wiping out shareholders’ equity.

The Merton model assumes that Itô process A(t) describing the time evolution of asset values
is expressed in differential form as

dA(t) = µAA(t) dt+ σAA(t) dW (t), (8.1)

where A(t) has constant drift rate µA and volatility σA, and W (t) ∼ N (0, t) is a Brownian
motion. The solution to stochastic differential equation (8.1) is geometric Brownian motion:

A(t) = A(0) exp
{(
µA − 1

2σ
2
A

)
t+ σAW (t)

}
. (8.2)

Let B(t) be the face value of a zero-coupon bond, representing the firm’s contractual obligations
payable, with maturity t+τ , τ > 0, which coincides with the time to expiration for the European
call option. Denote by r the constant risk-free interest rate. Then, the equity value E(t), or

2Classified as Banks under FTSE ICB (Industry Classification Benchmark) sectors.
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market capitalisation, of a firm at time t satisfies

E(t) = A(t)Φ
(
d1(t)

)
− e−rτ B(t)Φ

(
d2(t)

)
, (8.3)

where

d1(t) =
log
(
A(t)/B(t)

)
+
(
r + 1

2σ
2
A

)
τ

σA(t)
√
τ

,

d2(t) = d1(t)− σA
√
τ ,

and Φ is the standard Gaussian distribution function.
The market value of assets is not observed, so A(t) and σA in (8.3) are unknowns. The

standard model of equity values, or stock prices, is geometric Brownian motion. Analogously to
(8.1), the time evolution of equity values is expressed in differential form as

dE(t) = µEE(t) dt+ σEE(t) dW (t), (8.4)

where E(t) has constant drift rate µE and volatility σE . Expressing E(t) as a function of A(t),
we may write E(t) = f

(
A(t)

)
. Applying Itô’s formula (Remark 2.52) yields

dE(t) = f ′
(
A(t)

)
dA(t) +

1

2
f ′′
(
A(t)

)
d[A,A](t)

=
∂E(t)

∂A(t)
dA(t) +

1

2

∂2E(t)

∂A(t)2
d[A,A](t)

=

(
∂E(t)

∂A(t)
µAA(t) +

1

2

∂2E(t)

∂A(t)2
σ2
AA

2(t)

)
dt+

∂E(t)

∂A(t)
σAA(t) dW (t), (8.5)

where dA(t) is given by (8.1), and d[A,A](t) = σ2
AA

2(t) dt. Equating coefficients of dW (t) in
(8.4) and (8.5), we obtain an expression that relates asset volatility to equity volatility:

σE =

(
A(t)

E(t)

)
∂E(t)

∂A(t)
σA

=

(
A(t)

E(t)

)
Φ
(
d1(t)

)
σA. (8.6)

It can be shown that the partial derivative of E(t) with respect to A(t), or the delta of a
European call option, is equal to Φ

(
d1(t)

)
by differentiating (8.3) with respect to A(t) — a

tedious calculation using the chain rule.
In the preceding theoretical outline we introduce continuous-time models of asset and equity

values indexed by t. For consistency, we proceed to express A(t), E(t) and B(t) in (8.3) as
functions of time, which serves our empirical analysis of monthly data from 2006 to 2013. But
we judiciously refrained from explicitly expressing r, µA and σA in (8.3) as functions of time, since
the Merton model assumes that these parameters are constant over the option’s term τ . In the
remainder of this section we generate monthly time series of market value, drift rate and volatility
of assets by applying an iterative procedure that solves (8.3) using daily historical market data.
Section 8.3 applies the Merton model to the monthly time series data to analytically calculate
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DLI. Section 8.4 simulates the continuous-time evolution of asset values, parameterised by the
monthly time series data, to compute DLI using the first passage approach. Accordingly, in the
sequel r, µA and σA are indexed by time when dealing with daily or monthly time series data,
while assuming that for each execution of (8.8), (8.12) or (8.14) these parameters are constant
over the option’s term, or time to maturity of the zero-coupon bond, τ .

As discussed in Section 8.1, daily equity market capitalisation and quarterly contractual
obligations payable are available for the major Australian banks. E(t) represents the sum of
market capitalisation of the major banks at the close of trading day t. For each trading day t,
B(t) is the face value of a zero-coupon bond with maturity t + τ representing the aggregate
contractual obligations payable of the major banks reported on their quarterly statement of
financial position as at the end of the previous fiscal quarter. In other words, B(t) is the default
point of the major banks, in aggregate, on trading day t. Time to maturity τ of the zero-coupon
bond, which coincides with the risk measurement horizon, is set to one year. We estimate DLI
for three definitions of default point based on book values of: (i) total liabilities; (ii) current
liabilities plus one-half of long-term debt; and (iii) current liabilities. In assessing the effect of
default risk on equity returns, Vassalou and Xing (2004) set B(t) to current liabilities plus one-
half of long-term debt. They argue that it is important to include long-term debt, which matures
beyond the risk measurement horizon, because a firm needs to service its long-term debt whose
interest payments are current liabilities, and a firm’s long-term debt affects its ability to rollover
its current liabilities. Their choice of setting the default point to current liabilities plus one-half
of long-term debt is consistent with KMV, who argue that it adequately captures the financing
constraints of firms. Bharath and Shumway (2008) compare the forecasting performance of the
Merton model with a “naïve” alternative, where they too set the default point to current liabilities
plus one-half of long-term debt; as do Allen and Powell (2012) in evaluating the default risk of
Australian banks during the financial crisis of 2007–09.

With the risk measurement horizon, which coincides with the time to maturity of the zero-
coupon bond and time to expiration of the European call option, set to one year, our implemen-
tation of (8.3) calls for the one-year risk-free interest rate. The RBA publishes time series of the
monthly cash rate and daily yield on the Australian Government 2-year bond. The objective
of this chapter is not to obtain a precise measure of default risk, but to compare the market’s
assessment of the solvency of the major Australian banks with our fundamental assessment from
Section 7.3. Choosing the cash rate, yield on the Australian Government 2-year bond or some
interpolated yield does not alter our conclusions. We set the risk-free interest rate, r(t), to the
yield on the Australian Government 2-year bond as at the close of trading day t.

The numerical procedure (Vassalou and Xing 2004) for estimating monthly time series of
the value of assets A(s) and asset volatility σA(s) proceeds as follows. Firstly, adopting the
convention of 252 trading days per year (m = 252), we use closing equity values of the major
Australian banks, in aggregate, from the current month-end trading day s and preceding m

trading days to estimate equity volatility σE(s) — annualised standard deviation of the daily
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continuously compounded rate of change in equity values. The initial guess for asset volatility3

is then set to

σA(s) =
E(s)

E(s) +A(s)
σE(s). (8.7)

Next, for each trading day t = {s−m, . . . , s−1, s} during the past year, we solve for A(t) given
E(t), B(t), r(t), τ and our initial guess for σA(s):4

E(t) = A(t)Φ
(
d1(t)

)
− e−r(t)τ B(t)Φ

(
d2(t)

)
, (8.8)

where

d1(t) =
log
(
A(t)/B(t)

)
+
(
r(t) + 1

2σ
2
A(s)

)
τ

σA(s)
√
τ

,

d2(t) = d1(t)− σA(s)
√
τ .

Then, we calculate the annualised standard deviation of the daily continuously compounded rate
of change in asset values,

{
log
(
A(s−m− 1)/A(s−m)

)
, . . . , log

(
A(s)/A(s−1)

)}
, which becomes

the value of σA(s) used for the next iteration. This step is iterated until estimates of σA(s) from
consecutive iterations converge.5 The drift rate of asset values, µA(s) = log

(
A(s)/A(s−m)

)
,

is calculated from daily asset values recovered from (8.8) in the (last) iteration that achieves

3 Setting the initial guess for asset volatility using the daily time series of either equity value (equity market
capitalisation) or price of our index of the major Australian banks works equally well.

4 We use the GNU Scientific Library routine gsl_root_fdfsolver_newton, which implements Newton’s method
to solve for A(t) in function (8.8). Newton’s method uses the derivative of function (8.8), ∂E(t)

∂A(t)
= Φ

(
d1(t)

)
, to

find each iterate. It exhibits quadratic convergence locally.
5 Convergence is achieved when the absolute difference in values of σA(s) from consecutive iterations is less

than 1E−4. It usually only takes a few iterations for σA(s) to converge.

Figure 8.1: Book and market value of assets of the major Australian banks. Implied (market) value of
assets are imputed from equity prices with contractual obligations payable represented by a zero-coupon
bond with face value equal to: (a) total liabilities; (b) current liabilities plus one-half of long-term debt;
and (c) current liabilities. Financial leverage ratio is measured on book value (total assets / shareholders’
equity) and market value (implied value of assets / equity market capitalisation) bases.
Sources: Australian Prudential Regulation Authority; Bloomberg.
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8.2. Implied Asset Values

Figure 8.2: Drift rate (trailing 12-month continuously compounded rate of change) and volatility (annual-
ised standard deviation of the daily continuously compounded rate of change for the last 12 months) of
the market value of assets and equity of the major Australian banks. Implied (market) value of assets
are imputed from equity prices with contractual obligations payable represented by a zero-coupon bond
with face value equal to current liabilities plus one-half of long-term debt. The value of equity is the sum
of market capitalisation of the major banks. The risk-free interest rate is the yield on the Australian
Government 2-year bond.
Sources: Australian Prudential Regulation Authority; Bloomberg, Reserve Bank of Australia.
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convergence, and the month-end asset value A(s) is also from the last iteration. This proce-
dure is repeated for each month-end trading day from December 2005 through December 2013,
generating monthly time series of A(s), σA(s) and µA(s).

With reference to Figures 8.1 and 8.2, we make some observations from the monthly time
series between 2006 and 2013 generated by the procedure outlined above.

• The jump in the book value of assets in the fourth quarter of 2009 is the result of acquisi-
tions: Westpac Banking Corporation acquired St. George Bank, and Commonwealth Bank
of Australia acquired Bank of Western Australia.

• With the financial leverage ratio (total assets / shareholders’ equity) averaging 17.0 on a
book value basis, market and book value of assets are broadly in line with each other for
the case where the default point is set to total liabilities.

• The market value of equity, or equity market capitalisation, has averaged 1.95 times share-
holders’ equity. Consequently, the financial leverage ratio on a market value basis (implied
value of assets / equity market capitalisation) has averaged 9.0.

• Drift rate and volatility of the implied value of assets varies little between definitions of
default point. We choose to plot drift rate and volatility for the case where the default
point is set to current liabilities plus one-half of long-term debt.

• Drift rate (trailing 12-month continuously compounded rate of change) of the implied
value of assets remains positive (1.8%–26.5%) as major banks expanded their balance sheet
through the financial crisis, while the drift rate of the market value of equity, driven by
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stock prices, ranges from -19.3% to 22.7%. Both time series are volatile relative to the
risk-free interest rate.

• As implied by expression (8.6) relating asset volatility to equity volatility, and the naïve
estimate of asset volatility given by (8.7) (Bharath and Shumway 2008), asset volatility
averages around one-third equity volatility on a market value basis.

8.3 Default Likelihood Indicator

In assessing the effect of default risk on equity returns, Vassalou and Xing (2004) deduce an
analytical expression for default probability from the assumptions of the Merton model, which
underlie asset value models of credit risk, in general. They contend that default probabilities
calculated in this manner are not true default probabilities in the manner of default probabilities
estimated by KMV from an empirical distribution of defaults. Accordingly, they choose not to
call their measure default probability, but rather default likelihood indicator (DLI). Conceding
their argument, we adopt the term DLI, with the added clarity brought by distinguishing this
measure of default risk from conditional PD given by (2.20) and (2.28).

Recall that by the self-similarity property of Brownian motion,W (t) is distributionally equiv-
alent to

√
tW (1), which we write

√
tW . Adapting (8.2) for the risk measurement horizon [s, s+τ ],

taking natural logarithms, and applying the self-similarity property of Brownian motion yields

logA(s+τ) = logA(s) + µAτ − 1
2σ

2
Aτ + σA

√
τ W, (8.9)

where W ∼ N (0, 1).
The Merton model assumes that a firm defaults if the market value of its assets falls below

a critical threshold, its default point, at a given risk measurement horizon. Denote by λ(s) the
default likelihood indicator (DLI) at time s over the risk measurement horizon [s, s+ τ ]. Then,

λ(s) = P
(
A(s+τ) < B(s)

)
= P

(
logA(s+τ) < logB(s)

)
= P

(
logA(s) + µAτ − 1

2σ
2
Aτ + σA

√
τ W < logB(s)

)
= P

(
W <

logB(s)− logA(s)− µAτ + 1
2σ

2
Aτ

σA
√
τ

)
= Φ

(
logB(s)− logA(s)− µAτ + 1

2σ
2
Aτ

σA
√
τ

)
, (8.10)

where the firm’s default point B(s) corresponds to the face value of a zero-coupon bond with
maturity s + τ representing the firm’s contractual obligations payable. Denote by d(s) the
distance-to-default at time s. Then, taking the negative of the inverse standard distribution
function translates DLI into distance-to-default:

d(s) = −Φ−1(λ(s)) (8.11)

=
logA(s)− logB(s) + µAτ − 1

2σ
2
Aτ

σA
√
τ

.
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8.3. Default Likelihood Indicator

DLI is estimated for three definitions of default point B(s) based on book values of: (i) total
liabilities; (ii) current liabilities plus one-half of long-term debt; and (iii) current liabilities.
While the Merton model assumes that the market value of a firm’s assets A(t) follows a geometric
Brownian motion with constant drift rate µA and volatility σA over the risk measurement horizon
[s, s+ τ ], the drift rate and volatility change every month for which DLI is estimated by (8.10)
using monthly time series data generated in Section 8.2. Accordingly, for each month-end trading
day s from December 2005 through December 2013, DLI and distance-to-default are calculated as

λ(s) = Φ

(
logB(s)− logA(s)− µA(s)τ + 1

2σ
2
A(s)τ

σA(s)
√
τ

)
, (8.12)

and

d(s) = −Φ−1(λ(s)),

respectively, where τ is set to one year.
Figure 8.3 plots the monthly time series of DLI as calculated by (8.12), and its distance-to-

default translation, for our three definitions of default point. While the market value of assets is
a function of default point (Figure 8.1), distance-to-default tends to narrow as the default point
increases from current liabilities to total liabilities. DLI (respectively, distance-to-default) is a
volatile time series ranging from less than one-in-a-billion (6.034) in March 2006 to 19.3% (0.866)
in November 2008 for the case where the default point is set to current liabilities plus one-half of

Figure 8.3: Default likelihood indicator and distance-to-default of the major Australian banks implied
by the Merton model. The default point is set to: (a) total liabilities; (b) current liabilities plus one-half
of long-term debt; and (c) current liabilities.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

5.0

6.0

7.0

8.0

20
07

20
08

20
09

20
10

20
11

20
12

20
13

50

25

10
5.0
2.0
1.0
0.50
0.10

0.0100

0.0010
0.0001

D
is
ta
nc
e
to

de
fa
ul
t

D
ef
au

lt
lik

el
ih
oo

d
in
di
ca
to
r,

%

(a)
(b)
(c)

123



8. Market Assessment of the Solvency of the Australian Banking Sector

Figure 8.4: Default likelihood indicator and distance-to-default of the major Australian banks implied
by the Merton model. Default point is equal to current liabilities plus one-half of long-term debt. Drift
rate of asset values is set to: (a) trailing 12-month continuously compounded rate of change in asset
values; and (b) yield on the Australian Government 2-year bond.
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long-term debt. The volatility of DLI is explained by the variability in drift rate and volatility
of implied asset values (Figure 8.2).

Notice that the drift rate of assets, µA, does not appear in (8.3), an example of the risk-
neutral valuation principle of option pricing. However, DLI and distance-to-default depend on
the future value of assets, and hence µA appears in (8.10) and (8.11). In Figure 8.3 the expected
annual drift rate µA(s) in (8.12) is set to the trailing 12-month continuously compounded rate of
change in asset values, a volatile time series. Figure 8.4 compares DLI calculated by (8.12) with
that calculated by substituting the comparatively steady risk-free interest rate r(s) for µA(s) in
(8.12). For much of the time from 2006 to 2013, the trailing 12-month continuously compounded
rate of change in asset values exceeded the yield on the Australian Government 2-year bond
(Figure 8.2) as the major Australian banks, in aggregate, expanded their balance sheet. During
periods when µA(s) exceeds r(s), DLI calculated by (8.12) is further from default than that
calculated by substituting r(s) for µA(s) in (8.12). Both time series remain volatile on account
of the variability in asset volatility σA(s) (Figure 8.2).
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8.4. First Passage Approach

8.4 First Passage Approach

Assuming that a firm defaults if the market value of its assets A(s+τ) falls below its default point
B(s), at a given risk measurement horizon s+ τ , analytical equations (8.10) and (8.11) calculate
DLI and distance-to-default, respectively. Under these assumptions, (8.3) models equity market
capitalisation of a firm as a European call option on the market value of its asset with strike
price equal to its default point and term τ . The default point of the firm corresponds to the
face value a zero-coupon bond B(s) with maturity s+ τ representing its contractual obligations
payable.

Redefining default as the market value of a firm’s assets A(t) falling below a barrier equal to
B(s) at any time during the interval [s, s+ τ ], Giesecke (2004) deduces an analytical expression
for the default probability of the firm.6 The default probability, or DLI, under this “first passage”
approach is obviously higher than the corresponding DLI under the classical structural approach
of Section 8.3. Under the first passage approach the equity market capitalisation of a firm is
modelled as a European down-and-out call option on the market value of its asset with strike
price equal to the barrier. The barrier is set to the face value of a zero-coupon bond representing
the firm’s contractual obligations payable, and option expiration coincides with the maturity of
the bond. Giesecke (2004) remarks that the down-and-out call option is worth no more than the
corresponding vanilla call option.

In this section we implement the first passage approach using Monte Carlo simulation. From
Section 8.2 we have time series of A(s), µA(s) and σA(s) for month-end trading days from
December 2005 through December 2013. For each month-end trading day s we simulate asset
values A(t) as at the close of each of the m trading days during the risk measurement horizon
[s, s+ τ ], where τ is set to one year. If at any time during the interval [s, s+ τ ], A(t) falls below
the barrier B(s) set to the face value of a zero-coupon bond with maturity s+ τ representing the
firm’s contractual obligations payable, the firm defaults. Itô process (8.1) describing the time
evolution of asset values may be expressed as a stochastic differential equation in logA(t):

d logA(t) =
dA(t)

A(t)
= µA dt+ σA dW (t). (8.13)

Discretising (8.13) for the kth iteration of the Monte Carlo simulation parameterised by the
monthly time series data generated in Section 8.2, we obtain the difference equation

logAk(t+1) = logAk(t) + µA(s)∆t+ σA(s)
√

∆t εk(t−s), (8.14)

6 Under the first passage approach with the barrier B(s) set to the face value of a zero-coupon bond with
maturity s+ τ representing the firm’s contractual obligations payable, the default probability of the firm is given
by

p̆(s) = Φ

(
logB(s)− logA(s)− µAτ + 1

2
σ2
Aτ

σA
√
τ

)
+

(
B(s)

A(s)

) 2µA−σ
2
A

σ2
A Φ

(
logB(s)− logA(s) + µAτ − 1

2
σ2
Aτ

σA
√
τ

)
.
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8. Market Assessment of the Solvency of the Australian Banking Sector

where t = {s, s+1, . . . , s+m− 1}, ∆t = τ/m, and εk(t−s) is the (t−s)th random variable drawn
from the standard Gaussian distribution7 for the kth iteration of the simulation (Luenberger
1998, pp. 308–312).

For each month-end trading day s, we simulate N = 10,000,000 asset value paths. Then, for
each asset value path we check whether A(t) < B(s) as at the close of any of the m trading days
during the risk measurement horizon [s, s + τ ], and increment the count n of asset value paths
on which default occurs accordingly. DLI by the first passage approach is calculated as

λ̆(s) =
n

N
, (8.15)

and
d̆(s) = −Φ−1(λ̆(s)) (8.16)

translates DLI into distance-to-default.

7 Gaussian random variables are generated using GNU Scientific Library routine gsl_ran_gaussian. It im-
plements the Box-Muller algorithm, which make two calls to the MT19937 generator of Makoto Matsumoto and
Takuji Nishimura.

Figure 8.5: Market and fundamental assessments of the solvency of the major Australian banks, as
measured by default likelihood indicator and distance-to-default. The market’s assessment imputes
asset values from equity prices, and represents contractual obligations payable by a zero-coupon bond
with face value equal to current liabilities plus one-half of long-term debt. Our fundamental assessment
uses internal bank data collected by the prudential regulator.
(a) Market assessment is calculated analytically using the Merton model.
(b) Market assessment is computed by Monte Carlo simulation using the first passage approach.
(c) Fundamental assessment is recovered from the ASRF model prescribed under the IRB approach.
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8.4. First Passage Approach

Figure 8.5 plots DLI of the major Australian banks, in aggregate, computed by Monte Carlo
simulation using the first passage approach. As highlighted above, distance-to-default simulated
by the first passage approach plots below (i.e., is narrower than) that calculated by the Merton
model under the classical structural approach. Figure 8.5 also compares the market’s assess-
ment of the solvency of the major banks with our fundamental assessment recovered from the
ASRF model prescribed under the IRB approach. In the latter case, distance-to-default, reported
in Table 7.1, is estimated from internal bank data collected by the prudential regulator. The
market’s assessment, which is much more volatile than our fundamental assessment, does not
comport with the state of Australia’s economy as described by macroeconomic indicators, nor
the condition of its banking sector as reflected by financial statistics and external credit ratings.
We reiterate that markets do not consistently price risk fairly, but rather reflect the overreaction
of market participants. During periods when market participants are gripped by fear (respec-
tively, driven by greed), their perception of risk is heightened (lessened), and markets become
undervalued (overpriced).
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Notation Index

ω Outcome of an experiment 49
Ω Sample space of all possible outcomes of an experiment 49
F Collection of subsets of the sample space called a σ-algebra, or

σ-field
49

P(A) Probability of set A ∈ F 49
(Ω,F ,P) Probability space 49
F(t) Collection of σ-algebras called a filtration 49

N (0, 1) Standard normal distribution with mean zero and unit variance 21
Φ Standard normal distribution function 21
t(ν) Student’s t distribution with ν degrees of freedom 62
Φν Student’s t distribution function with ν degrees of freedom 63
χ2(ν) Chi-square distribution with ν degrees of freedom 62

ri Log-return on asset values of obligor i 15, 46
r̃i Standardised log-return on asset values of obligor i 16, 46
r̃ Portfolio standardised log-return 46
E[r̃] Expected value of r̃ 47
Var(r̃) Variance of r̃ 47

τ Risk measurement horizon, bond maturity, or option term 22, 113
A(t) Implied value of assets of a firm at time t 20, 113
µ(t) Instantaneous mean rate of return at time t 21
σ(t) Instantaneous volatility of returns at time t 21
W (t) Brownian motion 19, 113
W Standard Gaussian random variable 21
B Face value of zero-coupon bond, representing the debt of a firm,

with maturity τ
21

B(t) Face value of zero-coupon bond, representing contractual obli-
gations payable of a firm, with maturity t+ τ

113
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Glossary

E(t) Market value of equity of a firm at time t 113
µA Drift rate of asset values 113
µE Drift rate of equity values 114
σA Volatility of asset values 113
σE Volatility of equity values 114
D Set representing the event of default 21
d Distance-to-default 21

δi Exposure at default assigned to obligor i 22, 30
∆n Exposure at default of a credit portfolio comprising n obligors 31, 71
wi Exposure (portfolio) weight of obligor i 22, 30
ηi Loss given default assigned to obligor i 22, 30
Di Event that obligor i defaults 27, 30
1Di Indicator function of the event represented by set Di 22
Ln Random variable representing loss as a percentage of exposure

at default on a credit portfolio comprising n obligors over a given
risk measurement horizon

28, 30

Ln,k Portfolio percentage loss computed for the kth iteration of a
simulation

37, 65

Ln Random variable representing dollar loss on a credit portfolio
comprising n obligors over a given risk measurement horizon

67

Wi(t) Brownian motion modelling the variability in asset values of
obligor i

25

Y (t) Brownian motion correlated with Wi(t) and common to all
obligors

25

Zi(t) Brownian motion that is a component ofWi(t), but independent
of Y (t)

25

E[Wi(t)] Expectation of Wi(t) 25
Var(Wi(t)) Variance of Wi(t) 25
[Wi, Y ](t) Quadratic covariation of Wi(t) and Y (t) 25
Cov(Wi(t),Wj(t)) Covariance of Wi(t) and Wj(t), i 6= j 26
Corr(Wi(t),Wj(t)) Correlation between Wi(t) and Wj(t) (i.e., correlation between

asset values of obligors i and j), i 6= j

26

Wi Latent random variable modelling the variability in asset values
of obligor i

27, 30

Zi Random variable representing idiosyncratic risk factor specific
to obligor i

27, 30
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Glossary

Y Random variable representing the single (systematic) risk factor
common to all obligors

27, 30

y Realisation of systematic risk factor Y 28
Fi Distribution function of Wi in the general setting 30
Gi Distribution function of Zi in the general setting 30
H Distribution function of Y in the general setting 30

ρi Asset correlation assigned to obligor i for the Gaussian case 25
γi Asset correlation assigned to obligor i in the general setting 30
pi Unconditional (through-the-cycle) probability of default of

obligor i, P(Di)

27, 30

pi(y) Conditional (point-in-time) probability of default of obligor i,
P(Di |Y = y)

28, 30

ζi(y) Argument of the indicator function of default of obligor i 28, 30
E[Ln] Expected portfolio percentage loss 31, 67
E[Ln |Y = y] Conditional expectation of portfolio percentage loss given Y = y 31

X Random variable representing portfolio profit and loss (P&L) 3
α Confidence level 5, 36
%(X) Value assigned by risk measure % to X 3
qα(X) α quantile of the distribution of X 5
qα(Ln) α quantile of the portfolio loss distribution expressed as a per-

centage of exposure at default
39

VaRα(X) Value-at-risk of X at the α confidence level over a given risk
measurement horizon

5

VaRα(Ln) Credit value-at-risk of portfolio percentage loss at the α confi-
dence level over a given risk measurement horizon

36, 67

ESα(X) Expected shortfall of X at the α confidence level over a given
risk measurement horizon

6

C(u1, . . . , un) n-dimensional copula 55
Mn(u1, . . . , un) Fréchet-Hoeffding upper bound 55
Wn(u1, . . . , un) Fréchet-Hoeffding lower bound 55
Πn(u1, . . . , un) Product copula 55
Ti Random variable representing survival time of obligor i 60
Γ̂ Correlation matrix of the one-factor Gaussian copula 59
CΓ̂(u1, . . . , un) One-factor Gaussian copula 59
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Glossary

Kα(Ln) Capital charge (at the α confidence level over a given risk mea-
surement horizon) assessed on a credit portfolio comprising n
obligors

67

K̃α(Ln) Capital charge (at the α confidence level over a given risk mea-
surement horizon) assessed on a credit portfolio comprising n
obligors that exhibits sufficient granularity

69

δi(t) Exposure at default assigned to credit i at the end of quarter t 98
ηi(t) Loss given default assigned to credit i at the end of quarter t 98
ηi(t) Economic downturn (stressed) loss given default assigned to

credit i at the end of quarter t
100

η̄i(t) Through-the-cycle loss given default assigned to credit i at the
end of quarter t

100

ρi(t) Asset correlation assigned to credit i at the end of quarter t 98
pi(t) Unconditional probability of default of credit i at the end of

quarter t
98

νi(t) Maturity adjustment assigned to credit i at the end of quarter t 98

Rn(t) Risk-weighted assets of IRB credit exposures as at the end of
quarter t

99

Rr(t) Risk-weighted assets for credit risk as at the end of quarter t 99
R(t) Total risk-weighted assets as at the end of quarter t 99
Lr(s) Credit losses incurred during quarter s 99
Qr(t) Provisions set aside for absorbing expected credit losses as at

the end of quarter t
106

K(t) Capital base as at the end of quarter t 106
κ(t) Risk-based capital ratio as at the end of quarter t 107
κ Capital ratio floor 109
y(t) Realisation of systematic risk factor Y as at the end of quarter t 100
d̃(t) Distance-to-default as at the end of quarter t 107

r(t) Risk-free interest rate as at the close of trading day t 115
λ(s) Default likelihood indicator at time s over the risk measurement

horizon [s, s+ τ ]

118

d(s) Distance-to-default at time s 118
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