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Abstract

A new framework named Realized Conditional Autoregressive Expectile (Realized-

CARE) is proposed, through incorporating a measurement equation into the con-

ventional CARE model, in a framework analogous to Realized-GARCH. The Range

and realized measures (Realized Variance and Realized Range) are employed as

the dependent variables of the measurement equation, since they have proven more

efficient than return for volatility estimation. The dependence between Range &

realized measures and expectile can be modelled with this measurement equation.

The grid search accuracy of the expectile level will be potentially improved with in-

troducing this measurement equation. In addition, through employing a quadratic

fitting target search, the speed of grid search is significantly improved. Bayesian

adaptive Markov Chain Monte Carlo is used for estimation, and demonstrates its su-

periority compared to maximum likelihood in a simulation study. Furthermore, we

propose an innovative sub-sampled Realized Range and also adopt an existing scal-

ing scheme, in order to deal with the micro-structure noise of the high frequency

volatility measures. Compared to the CARE, the parametric GARCH and the

Realized-GARCH models, Value-at-Risk and Expected Shortfall forecasting results

of 6 indices and 3 assets series favor the proposed Realized-CARE model, especially

the Realized-CARE model with Realized Range and sub-sampled Realized Range.
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1 INTRODUCTION

In recent decades, quantitative financial risk measurement has become a fundamental tool

for investment decisions, capital allocation and external regulation. The recent Global

Financial Crisis (GFC) has once again emphasized the importance of accurate risk mea-

surement and prediction for financial organizations. Value-at-Risk is a quantitative tool

to measure and control financial risk. It represents the market risk as one number and

has become a standard measurement for capital allocation and risk management since it

was proposed in 1993. However, VaR has been criticised, because it cannot measure the

expected loss for violating returns. Expected Shortfall, which was proposed by Artzner et

al. (1997, 1999), gives the expected loss conditional on returns exceeding a VaR threshold,

because ES is a coherent measure and it has been used widely for tail risk measurement.

Volatility estimation plays key role in calcualting accurate VaR or ES. Since the

introduction of the Auto-Regressive Conditionally Heteroskedastic (ARCH) model of En-

gle (1982) and the generalised (G)ARCH of Bollerslev (1986) employing squared return

as model input, different volatility estimators and GARCH type models were developed

in the past decades. Parkinson (1980) and Garman and Klass (1980) considered the

daily high-low range as an improved volatility estimator compared to the daily return.

The availability of high frequency intra-day data generated several popular and efficient

realized measures, including Realized Variance (RV): Andersen and Bollerslev (1998); An-

dersen et al. (2003), Realized Range (RR): Martens and van Dijk (2007); Christensen

and Podolskij (2007). In order to deal with the micro-structure noisy accompanied by the

high frequency volatility measures, Zhang, Mykland and Aı̈t-Sahalia (2005) and Martens

and van Dijk (2007) designed the subsampled and scaled process respectively. Regarding

the volatility modelling, Hansen et al. (2001) proposed a volatility framework named

Realized-GARCH (Re-GARCH), which incorporated a measurement equation that con-

nects the unobserved volatility with RV. Gerlach and Wang (2015) extended Re-GARCH

model through employing RR (called RR-GARCH) and proved that the proposed RR-

GARCH framework can generate more accurate and efficient VaR and ES forecasts than

that of the traditional GARCH and Re-GARCH.
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However, the performance of parametric GARCH type models heavily depend on the

choice of error distribution. A semi-parametric model named Conditional Autoregressive

Expectile (CARE) was proposed by Taylor (2008). The expectile can be estimated with

Asymmetric Least Square (ALS), then it is transformed into ES through a connection

between expectile and ES (Newey and Powell, 1987). Gerlach, Chen and Lin (2012)

developed non-linear family of the CARE model and the Bayesian estimation framework.

Further, Gerlach and Chen (2015) extended the CARE type models with employing daily

high-low range.

In this paper, we propose a Realized Conditional Autoregressive Expectile (Re-

CARE) framework, which is analogous to the Re-GARCH. Re-CARE adds a measurement

equation that links the latent conditional expectile with Range & realized measures into

the conventional CARE model, and an adaptive Bayesian algorithm is developed to esti-

mate Re-CARE parameters. Comparing to the grid search of calcuating optimal expectile

level in Taylor (2008), the quadratic fitting grid search of expectile level we proposed sig-

nificantly reduces the time of calculation and the maintains the search accuracy. To

evaluate the performance of proposed Re-CARE, the forecasting accuracy of VaR and

ES with Re-CARE employing Range and various realized measures will be assessed and

compared with traditional GARCH and Re-GARCH.

The paper is organized as follows: Section 2 introduces different realized measures

and proposes the sub-sampled RR. The expectile, its connection with, existing CARE

type models and Re-GARCH type models are reviewed in Section3. Section 4 proposes

the Realized-CARE type models, and the adaptive Bayesian for parameters estimation

is presented in Section 5. The simulation and empirical studies are discussed in Section

6 and Section 7 respectively. Finally, Section 8 concludes the paper and discusses about

the future work.

2 REALIZED MEASURES

This section reviews the different volatility estimators and proposes the sub-sampled Re-

alized Range.

For day t, representing the daily high, low and closing prices as Ht, Lt and Ct, the
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most commonly used daily log return is:

rt = log(Ct)− log(Ct−1)

The high-low range (squared) was proposed by Parkinson (1980) and was proved to

be a much more efficient volatility estimator than return, based on the range distribution

theory (Feller, 1951):

Ra2
t =

(logHt − logLt)
2

4 log 2

where 4log(2) scales Ra to be a unbiased return variance estimator. Ra was further

improved in the following decades (Garman and Klass, 1980; Rogers and Satchell, 1991;

Yang and Zhang, 2000), and see Molnár (2012) for a full review regarding the properties

of various volatilities estimator.

Range considering the overnight price jump was proposed in Gerlach and Chen (2015):

Raot = log
(
max(Ht, Ct−1)

)
− log

(
min(Lt, Ct−1) (1)

Supposing that the day t is divided into N equally sized intervals of length ∆, we

have the subscription of each intra-day set Θ = 0, 1, 2, ..., N and can calculate the high

frequency volatility measures. For day t, denoting the i-th interval closing price as Pt−1+i4,

Ht,i = sup(i−1)4<j<i4Pt−1+j and Lt,i = inf(i−1)4<j<i4Pt−1+j will represent the high and

low prices during this time interval. Then RV was proposed as (Andersen and Bollerslev,

1998)):

RV 4t =
N∑
i=1

[log(Pt−1+i4)− log(Pt−1+(i−1)4)]2 (2)

Further, Martens and van Dijk (2007) and Christensen and Podolskij (2007) developed

the Realized Range, which sums the squared intra-day range.

RR4t =

∑N
i=1(logHt,i − logLt,i)

2

4 log 2
(3)

Through theoretical derivation and simulation, Martijns and van Dijk (2007) proved

RR is a more efficient volatility estimator than RV. Gerlach and Wang (2015) confirmed

that RR can provide extra efficiency in empirical tail risk forecasting.
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However, the accuracy of RV and RR is tend to be affected by the microstructure

noise. Martens and van Dijk (2007) presented a scaled process to tackle such noise, as in

Equations (4) and (5).

RV 4S,t =

∑q
l=1RVt−1∑q
l=1RV

4
t−1

RV 4t , (4)

RR4S,t =

∑q
l=1RRt−1∑q
l=1RR

4
t−1

RR4t , (5)

where RVt−1 and RRt−1 represents the daily return square and range square at day t− 1.

This scaling process is inspired by the fact that the daily return and range are less affected

by micro-structure noise than their high frequency counterparts, thus can be used as an

unbiased indicator of the actual level of volatility.

In addition, Zhang, Mykland and Aı̈t-Sahalia (2005) proposed a sub-sampled process

to deal with the micro-structure noise and it will be studied in this paper as well. For

day t, N equally sized samples are grouped into M non-overlapping subsets Θ(m) with

size N/M = nk, which means:

Θ =
M⋃
m=1

Θ(m), where Θ(k) ∩Θ(l) = ∅, when k 6= l.

Then sub-sampling will be implemented on the subsets Θi with nk interval:

Θi = i, i+ nk, ..., i+ nk(M − 2), i+ nk(M − 1), where i = 0, 1, 2..., nk − 1.

Representing the log closing price at the i-th interval of day t as Ct,i = Pt−1+i4, the

RV with the subsets Θi is:

RVi =
M∑
m=1

(Ct,i+nkm − Ct,i+nk(m−1))
2; where i = 0, 1, 2..., nk − 1.

We have the T/M RV with T/N sub-sampling as (supposing there are T minutes per

trading day):

RVT/M,T/N =

∑nk−1
i=0 RVi
nk

, (6)
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Then, denoting the high and low prices during the interval i+nk(m− 1) and i+nkm

as Ht,i = sup(i+nk(m−1))4<j<(i+nkm)4Pt−1+j and Lt,i = inf(i+nk(m−1))4<j<(i+nkm)4Pt−1+j

respectively, we propose the T/M RR with T/N subsampling as:

RRi =
M∑
m=1

(Ht,i − Lt,i)2; where i = 0, 1, 2..., nk − 1. (7)

RRT/M,T/N =

∑nk−1
i=0 RRi

4log2nk
, (8)

For example, the 5 mins RV and RR with 1 min subsampling can be calculated as

below respectively:

RV5,1,0 = (logCt5 − logCt0)2 + (logCt10 − logCt5)2 + ...

RV5,1,1 = (logCt6 − logCt1)2 + (logCt11 − logCt6)2 + ...

RV5,1 =

∑4
i=0RV5,1,i

5

RR5,1,0 = (logHt0≤t≤t5 − logLt0≤t≤t5)2 + (logHt5≤t≤t10 − logLt5≤t≤t10)2 + ...

RR5,1,1 = (logHt1≤t≤t6 − logLt1≤t≤t6)2 + (logHt6≤t≤t11 − logLt6≤t≤t11)2 + ...

RR5,1 =

∑4
i=0RR5,1,i

4log(2)5

3 EXPECTILE AND CARE TYPE MODELS

3.1 Expectile

τ level expectile µτ , defined by Aigner, Amemiya and Poirier (1976), can be used to

estimate the α level quantile Qα, which means the proportion of observations below µτ is

α. µτ can be estimated through minimising the following expection:

E(|τ − I(Y < µτ )|(Y − µτ )2)

where Y is a continuous r.v., τ ∈ [0, 1], I(Y < µτ ) indicates that it equals to 1 when

Y < µτ . If Y = y1, y2, ...yn, the following Asymmetric Least Square (ALS) is employed to

calculate µτ in Taylor (2008):

n∑
t=1

(|τ − I(yt < µτ )|(yt − µτ )2) (9)
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Thus there is no distribution required to calculate µτ . As discussed in Section 1, ES

is defined as ESα = E(Y |Y < Qα), which stands for the expected value of Y conditional

on the set of Y that is more extreme than Qα.

Newey and Powell (1987) found relationship between expectile and ES. If E(Y ) = 0,

Taylor (2008) showed this relationship is formulated as:

ESα = (1 +
τ

(1− 2τ)ατ
)µτ (10)

here µτ = Qα.

3.2 CARE type models and Re-GARCH

Taylor (2008) proposed the CARE type models that have the similar form as the CAViaR

type models (Engle and Manganelli 2004), i.e. symmetric absolute value (SAV), asym-

metric (AS) and indirect GARCH (IG). The CARE type models were extended into fully

nonlinear family in Gerlach, Chen and Lin (2012). Here we only present the CARE-SAV

model:

CARE-SAV:

µt = β1 + β2µt−1 + β3|rt|

where rt is the day t return, and µt is the τ level expectile for day t, while τ is removed from

the notation for the reason of brevity. Further, Gerlach and Chen (2015) employed the

Range in the CARE framework, and the Ra-CARE type models demonstrated superiority

compared to the CARE using return in the tail risk forecasting.

Range-CARE-SAV

rt = µt + εt (11)

µt = β1 + β2µt−1 + β3Rat−1

εt∼AG(τ, 0, σ)

where AG is the Asymmetric Gaussian distribution. However, this AG is only employed

to construct a likelihood function for Bayesian algorithm, while it is not used neither in
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the parameters estimation nor the expectile estimation (Gerlach, Chen, and Lin, 2012;

Gerlach and Chen, 2015).

An innovative Realized-GARCH framework was developed in Hansen et al. (2011).

Comparing to the conventional GARCH model, Re-GARCH employed a measurement

equation which captures the connection between unobserved volatility and the realized

variance. Re-GARCH demonstrates its superiority in the empirical study comparing to

GARCH.

Re-GARCH

rt =
√
htzt, (12)

ht = ω + βht−1 + γxt−1,

xt = ξ + ϕht + τ1zt + τ2(z2
t − 1) + σεεt

(13)

zt
i.i.d.∼ D1(0, 1) and εt

i.i.d.∼ D2(0, 1) and xt = RV ; D1(0, 1) = D2(0, 1) ≡ N(0, 1). Watanabe

(2012), Contino and Gerlach (2014) further extended the model through incorporating

Student-t or skewed-t (Hansen, 1994).

4 MODEL PROPOSED

Inspired by the CARE type models and Re-GARCH framework, we propose the Realized-

CARE-SAV is proposed as following:

Realized-CARE-SAV (Re-CARE-SAV)

rt = µt + εt (14)

µt = β1 + β2µt−1 + β3xt−1

xt = ξ + φ|µt|+ ut

where rt = [log(Ct) − log(Ct−1)] × 100 is the percentage log-return for day t, εt
i.i.d.∼

AG(τ, 0, σ), ut
i.i.d.∼ N(0, σ2

u). The three equations in the Realized-CARE are named as: the
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return equation, the expectile equation and the measurement equation, respectively. The

measurement equation captures the contemporaneous dependence between the expectile

µt and realized measure xt.

Through choosing xt as Rt,
√
RVt and

√
RRt respectively, we proposed the Realized-

CARE-SAV-Range (Re-CARE-SAV-Ra), Realized-CARE-SAV-Realized Variance (Re-CARE-

SAV-RV) and Realized-CARE-SAV-Realized Range (RR-CARE-SAV-RR).

The Re-CARE framework can be easily extended into the asymmetric, indirect GARCH

and nonlinear version (Engle and Manganelli, 2004; Taylor, 2008; Gerlach, Chen and Lin,

2012; Gerlach and Chen, 2015), while we focus on the Re-CARE-SAV in this paer. For

example, the Realized-CARE with indirect GARCH specification:

Realized-CARE-IG (Re-CARE-IG)

rt = µt + εt

µt = −
√
β1 + β2µ2

t−1 + β3x2
t−1

x2
t = ξ + φµ2

t + ut

εt
i.i.d.∼ AG(τ, 0, σ), ut

i.i.d.∼ N(0, σ2
u)

xt = Rt,
√
RVt,

√
RRt,

β1 > 0, β2 > 0, β3 > 0

In order to guarantee that the µt does not diverge, it is logical that a necessary for

Re-CARE-SAV type models is β2 + β3φ < 1. This can be derived through substituting

the measurement equation into the expectile equation in Model (14).

In this paper, we also extended the Realized-GARCH (Hansen et.al (2011)) with

setting the volatility equation in Re-GARCH into an absolute value GARCH specification

(Taylor (1986); Schwert (1989)).
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Realized-GARCH-Abs (Re-GARCH-Abs)

rt = σtε
∗
t

σt = β∗1 + β∗2σt−1 + β∗3xt−1

xt = ξ∗ + φ∗σt + u∗t

ε∗t
i.i.d.∼ N(0, 1), u∗t

i.i.d.∼ N(0, σ2
u∗)

xt = Rt,
√
RVt,

√
RRt,

5 LIKELIHOOD AND BAYESIAN ESTIMATION

5.1 CARE Likelihood Function with AG

With r = (r1, r2, ..., rn)′, the ALS as specified in Equation 15 is employed by Taylor (2008)

to estiamted µτ , and expectile level τ is obtained through a grid search. A set of τ values

on a grid are used to estimated their corresponding µτ with ALS, then τ is chosen to

make the violation rate (VRate) of µτ closest to the quantile level α. If α < 0.5, it means

we are working with the left-tail or negative risk, and on the left-tail we have τ < α or

expectile level is more extreme than the corresponding quantile level.

n∑
t=1

(|τ − I(rt < µτ )|(rt − µτ )2) (15)

Gerlach, Chen, and Lin (2012), Gerlach and Chen (2015) incorporated εt∼AG(τ, 0, σ)

into CARE framework, as specified in (11), which make the construction of likelihood

function (as in 16) and Bayesian estimation feasible. AG distribution assumption is not

used in parameters nor expectile estimation, and the scales factor σ is integrated out

with a Jeffreys prior. Gerlach, Chen, and Lin (2012) also proved that maximizing this

integrated likelihood function will produce identical τ and µτ estimation results as ALS

approach.

L(r; θ) =
( n∑
t=1

|τ − I(rt < µt(β)|(rt − µt(β))2
)−n/2

(16)
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5.2 Realized CARE Log Likelihood

Because the Re-CARE framework has a measurement equation with ut
i.i.d.∼ N(0, σ2

u), the

full log-likelihood function for Re-CARE ( as in 14) equals to the sum of log-likelihood

`(r; θ) of CARE equation and log-likelihood `(x|r; θ) of the measurement equation, where

ut = xt − ξ − φ|µt|. In Re-GARCH framework, the measurement equation contribute to

volatility and thus the GRACH equation in-sample and predictive log-likelihood values

are improved comparing to traditional GARCH. Therefore, we expect the measurement

equation in Re-CARE will also facilitate the grid search of τ and estimation of µτ .

`(r,x; θ) = `(r; θ) + `(x|r; θ)

= (−n/2)log
( n∑
t=1

|τ − I(rt < µt(β)|(rt − µt(β))2
)

︸ ︷︷ ︸
`(r;θ)

−1

2

n∑
t=1

(
log(2π) + log(σ2

u) + u2
t/σ

2
u

)
︸ ︷︷ ︸

`(x|r;θ)

5.3 Quadratic Fitting for the Expectile Level Search

As discussed before, the expectile estimation CARE type model rely on the full grid search

of optimal level of τ , e.g 100 equally spaced τ trial values on [0, α]. During the empirical

study, we discovered that the relationship between τ trial values and their corresponding

violation rate of µτ is close to monotonic, which makes the relationship between τ and

|VRate − α| close to quadratic (as in the top and bottom plots of Figure 1). Thus

we propose the following 2-step quadratic fitting approach to accelerate the grid search

process.

Step 1: 4 equally space τ step 1 trials values are generated between 0.0001 and α/1.5 ,

e.g. 0.0001, 0.0023, 0.0045, 0.0067. Here α/1.5 is used because the empirical study shows

final τ is always found to be smaller than α/1.5 Employing |VRate− α| as the objective

function, we can fit a quadratic function to these points, as is in Figure ... Then the
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Figure 1: Expectile Grid Search VRate Plot.
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stationary point c of these point can be calculated, e.g. c = 0.0018.

Step 2: A focused grid search around c = 0.0018 was incorporated afterwards. Using

grid search step size as 0.0002, 8 points either side of c are used as step 2 τ trial values

(as in Table 1 below) and then the final τ (0.0012) is selected. This approach can save

the original grid search time approximately by 50% to 60%.

Table 1: Step 2 τ trial values of the quadratic fitting of τ grid search

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018

0.002 0.0022 0.0024 0.0026 0.0028 0.0030 0.0032 0.0034

5.4 Bayesian Estimation

Through constructing the likelihood function, now we are able to employ the Bayesian

algorithm to estimate 6 parameters of Re-CARE. A two-step adaptive Bayesian method

that is adapted from Contino and Gerlach (2014) is employed. Firstly, 6 parameters

are dived into two blocks: θ1 = (β1, β2, β3, φ)
′

and θ2 = (ξ, σ)
′
. beta1, β2 and β3 are

in group because they are all in the CARE equation and change with high correlation.

The stationary constraint β2 + β3φ < 1 may make correlated movement among these 3

parameters, thus we put φ in the group θ1 as well. Further, we choose the priors to

be uninformative over the possible stationarity and positivity region, e.g. π(θ) ∝ I(A),

which is a flat prior for θ over the region A.

An adaptive MCMC algorithm, adapted from that in Contino and Gerlach (2014),

employs random walk Metropolis (RW-M) for burn-in period, and independent kernel

Metropolis-Hastings (IK-MH) algorithm (Metropolis et al., 1953; Hastings, 1970) for the

sampling period. The burn-in period uses a Gaussian proposal distribution for the random

walk process of mean vector, for each block of parameters. The covariance matrix of

the proposal distribution in each block is tuned towards a target accept ratio of 23.4%

(Roberts, Gelman and Gilks, 1997). Then the IK-MH sampling period incorporates a

mixture of three Gaussian proposal distributions. The mean of last 10% of the burn-in
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period samples are used as the input of the sampling period, and the varaice-covariance

matrices of three Gaussian proposal distribution are Σ, 10Σ, 100Σ respectively, where Σ

is calculated as the covariance of the last 10% of the burn-in period samples, for each

block.

6 SIMULATION STUDY (new simulation with 5000 replicated datasets)

A simulation study is conducted to present the comparative performance of the MCMC

and ML estimation approaches, and to testify the grid search accuracy with the quadratic

fitting methodology proposed, with respect to the parameter estimation, 1 step ahead

VaR and ES forecasting accuracy. Both the mean and Root Mean Square Error (RMSE)

values are calculated for MCMC (with quadratic fitting target grid search) and ML to

demonstrate the the bias and precision properties of two approaches, and to illustrate

the advantages can be realized through employing the MCMC and quadratic fitting grid

search.

N = 5000 simulated datasets were generated from Realized-GARCH-Abs specified

as Model (17). Two simulation studies are performed, with the sample sizes of simulated

data sets as n=1500 and n=3000 respectively.

rt = σtε
∗
t (17)

σt = 0.02 + 0.75σt−1 + 0.25xt−1

xt = 0.1 + 0.9σt + ut

ε∗t
i.i.d.∼ N(0, 1), ut

i.i.d.∼ N(0, 0.32)

In order to calculate the corresponding Realized-CARE-SAV true values, the param-

eter mapping between the Realized-GARCH-Abs and Realized-CARE-SAV is required.

With VaRt = µt = σtΦ
−1(α), we have σt = µt

Φ−1(α)
= VaRt

Φ−1(α)
, where Φ−1(α) is the stan-

dard Normal inverse at α quantile level. Putting it into the GARCH and measurement

equations of Model (17), we have
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µt
Φ−1(α)

= 0.02 + 0.75
µt−1

Φ−1(α)
+ 0.25xt−1 (18)

xt = 0.1 + 0.9
µt

Φ−1(α)
+ ut

then the corresponding Realized-CARE-SAV specification can be written as:

µt = 0.02Φ−1(α) + 0.75µt−1 + 0.25Φ−1(α)xt−1 (19)

xt = 0.1− 0.9

Φ−1(α)
|µt|+ ut

In each model the true 1-step-ahead α level VaR forecast is then VaRn+1 = σt+1Φ−1(α),

and the true 1-step-ahead α level ES forcast is ESn+1 = σt+1Φ−1(δα), where δα is the quan-

tile level that ES occurs at with the standard normal distribution (Gerlach and Chen,

2015). Following Basel II and Basel III risk management guidelines, the 1% quantile level

is employed (corresponding δα = 0.0038 with the standard normal distribution), then the

true value of VaRn+1 and ESn+1 can be calculated as −4.1872 and −4.7970 respectively.

Through the one to one relationship between VaR and ES (Equation 10), we can derive

the true value of τ as 0.001452. In addition, the quadratic fitting target grid search of τ

is incorporated in the MCMC process, while there is no target search for τ before the ML

estimation, to testify the accuracy of target search.

The Re-CARE-SAV model is then fit to the 5000 datasets generated, with one using

the MCMC method and one using the ML estimator (the ‘fmincon’ constrained optimisa-

tion routine in Matlab software is employed). The MCMC sampler has 10000 iterations

for each data set, with a burn-in of 5000 iterations in each case. Then all iterations in

the independent MH are used to calculate the posterior mean estimate.

Estimation results are summarised in Tables 2. Boxes indicate the preferred measure

comparing MCMC and ML for both bias (Mean) and precision (RMSE). Regarding the

simulation results with n = 1500, we can see both methods generate close to unbiased and
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quite reasonably precise parameter estimates and VaR and ES forecasts. The bias results

slightly favour the ML method, with 4 out of 7 parameter estimates, and VaR and ES

forecasts averaging are quite close their true value. However, the precision clearly favors

the MCMC method in 7 out of 9 parameter estimates and VaR&ES forecasts. Extending

the sample size to 3000, firstly it can be seen that both MCMC and ML observe the

improved bias and precision estimation, while the results are even more in favour of the

MCMC method compared to n = 1500 results. Again both methods generate close to

unbiased and quite reasonably precise parameter estimates and tail risk forecasts. The

bias results favor the MCMC approach in 6 out of 9 parameter estimates and VaR& ES

forecasts, whilst the precision is clearly lower for the MCMC method for 7 parameters and

the tail risk forecasts. Finally, the close to true value estimation results of τ in MCMC

results prove the validity of the quadratic target fitting.

7 DATA and EMPIRICAL STUDY

7.1 Data Description

The daily and high frequency data observed at 1-minute and 5-minute frequency, including

open, high, low and closing prices, were downloaded from Thomson Reuters Tick History.

We collected data for 6 marketing indices S&P500, NASDAQ (both US), Hang Seng

(Hong Kong), FTSE 100 (UK), DAX (Germany) and SMI (Swiss) with time range Jan

2000 to Sep 2015, and 3 individual assets IBM, GE (both US) and BHP (AU)) with time

range Jan 2000 to Dec 2015. The starting data collection time for BHP is July 2001 since

it had a 2: 1 Stock Split in the June 2001, and the starting time for GE is May 2000 due

to similar reason.

The daily return, range and range considering overnight price jump can be then

calculated with the daily data downloaded. With the 5-minute log-return square and

long range square calculated, we can sum them up to get the RV and RR. Then the

scaled and subsampled RV and RR are generated with specifications in Section 2. q = 66

is employed for the scaling process, which is around 3 month time. Thus the final starting

time is 3 months from the starting time of data collection. Figure 2 plots S&P 500
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Table 2: Summary statistics for the two estimators of the Realized-CARE-SAV model, with

data simulated from Model 17.

n = 1500 MCMC-Target Search ML

Parameter True Mean RMSE Mean RMSE

β1 -0.0465 -0.0544 0.1923 -0.0709 0.3258

β2 0.7500 0.7335 0.0417 0.7378 0.0393

β3 -0.5816 -0.6238 0.1485 -0.6045 0.2048

ξ 0.1000 0.0839 0.2830 0.1018 0.7508

ϕ 0.3869 0.3879 0.0723 0.3852 0.1734

σu 0.3000 0.03010 0.0057 0.3005 0.0056

τ 0.001452 0.001304 0.0004 0.001303 0.0004

1% VaRn+1 -4.1872 -4.2392 0.2920 -4.2416 0.3241

1% ESn+1 -4.7970 -4.7911 0.3241 -4.7935 0.3608

n = 3000 True Mean RMSE Mean RMSE

β1 -0.0465 -0.0499 0.1287 -0.0577 0.2059

β2 0.7500 0.7422 0.0272 0.7411 0.0257

β3 -0.5816 -0.6014 0.0976 -0.5925 0.1328

ξ 0.1000 0.0919 0.1947 0.0880 0.4542

ϕ 0.3869 0.3876 0.0503 0.3891 0.1066

σu 0.3000 0.3005 0.0040 0.3002 0.0039

τ 0.001452 0.001378 0.0003 0.001378 0.0003

1% VaRn+1 -4.1872 -4.1970 0.1965 -4.1969 0.2103

1% ESn+1 -4.7970 -4.7759 0.2255 -4.7759 0.2411

Note:A box indicates the favored estimators, based on mean and RMSE.

absulute Return, square root of RV and square root of RR.

7.2 Tail Risk Forecasting

Both Value-at-Risk (VaR) and Expected Shortfall (ES) are tested on the 6 indices and 3

assets series, as recommended in Basel II and III Capital Accord. As discussed in Section
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Figure 2: S&P 500 Abs Return, Sqrt RV and Sqrt RR Plots.
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3, the VaR, which equals to the α level quantile, can be estimated by the corresponding

τ level expectile. Then through employing the one-to-one relationship between expectle

and ES (Equation (10)), ES can be calculated.

In all the tail risk forecasting study, the one-step ahead VaR and ES forecasts are

calculates through the CARE equation of Re-CARE and Equation (10) with rolling and

fixed size in-sample data. In order to see the performance of various models for the

GFC period, the start time of each forecasting experiment is chosen as beginning of 2008.

On average, across the 9 time series, 1684 VaR and ES forecasts are generated with

the proposed Re-CARE type models (estimated with MCMC) with different measures

of volatility, including range, range considering overnight jump, RV & RR, scaled RV &

RR and subsampled RV & RR. The conventional GARCH with Student-t distribution,

CARE-SAV and Re-GARCH with Gaussian or Student-t as the error distributions for its

GARCH equation (estimated with ML), are also included in the study for the purpose of

comparison.

Then we employ the VaR violation rate (VRate) and ES violation rate (ESRate) to

evaluate the VaR and ES forecasting accuracy. VRate and ESRate are simply is the

percentage of returns which exceed the forecasted VaR or ES level in the forecasting

period (Equation (20) and (21)). Models with VRate the closest to quantile level α are

preferred. In addition, Gerlach and Chen (2015) presented the quantile levels where the

1% ES is estimated to fall is between 0.0035% to 0.0038%, for Gaussian and non-Gaussian

distributions, which is the expected ESRate for the ES forecasting study.

VRate =
1

m

n+m∑
t=n+1

I(rt < VaRt), (20)

ESRate =
1

m

n+m∑
t=n+1

I(rt < ESt), (21)

where n is the in-sample size and m is the forecasting sample size.

However, having a VRate or ESRate close to their expected level is not sufficient to

ensure an accurate forecasting model. Thus several accuracy and independency tests are

also employed, e.g. the unconditional coverage (UC) and conditional coverage (CC) tests
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of Kupiec (1995) and Christoffersen (1998) respectively, as well as the dynamic quantile

(DQ) test of Engle and Manganelli (2004) and the VQR test of Gaglione et al. (2011).

With the approach of Gerlach and Chen (2015), the derived expected ES level can be

used to treating ES forecasts as quantile forecasts at appropriate quantile levels.

7.2.1 Value at Risk

Table 3 presents the VRate at the 1% quantile for each model for 9 market or assets

(also mean and median of the 9 VRates). The estimation period sample size for each

forecast is denoted as n, and the forecast sample size is represented with m, in each

market. Box indicates the model in each market that has a violation rate (VRate) closest

to 1%, while bold indicates the model with VRate furthest away from expected. G-t,

CARE-SAVE, Re-GARCH-GG with RV and Re-GARCH-tG with RV are estimated with

ML, and the Realized-CARE type models are estimated with MCMC incorporating the

quadratic fitting target search.

Chang et al. (2011) and McAleer et al. (2013) proposed using forecast combinations

of the VaR series from different models, potentially as a robust combined VaR forecast

to the GFC . This approach is also employed in our empirical study since our forecasting

period includes the GFC. Specifically, the mean, median, minimum and maximum of

each of the VaR forecasts from the 12 models in Table 3 are considered. We consider the

lower tail VaR forecasts in this paper, so ”Min” is the most extreme of the 12 forecasts

(i.e. furthest from 0) and ”Max” is the least extreme. The violation rate for ”Mean”,

”Median”, ”Min” and ”Max”, series are also presented in Table 3.

Clearly, Re-CARE employing sub-sampled RR has VRate that is the closest to the 1%

quantile level based on the mean of VRates on 9 time series studied, and Re-CARE-RR has

the closest to the expected VRate with the median. In addition, we can apparently observe

the generally improved performance of Re-CARE compared to GARCH, Re-GARCH or

CARE-SAV, while Re-GARCH-GG had the VRate that is furthest from that expected,

which is not surprising since it is the only parametric model employing the Gaussian error.

Further, regarding the combination approach, the ”Min” approach is too conservative in

each series, while the ”Max” series produces anti-conservative VaR forecasts that produce
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far too many violations. The ”Mean” and ”Median” of the 12 models produced series

that generated competitive violation rates.

Table 3: 1% VaR Forecasting VRate with different models on 6 indices and 3 assets.

Model S&P 500 NASDAQ HK FTSE DAX SMI IBM GE BHP Mean Median

G-t 1.67% 1.91% 1.59% 1.53% 1.42% 1.62% 1.07% 1.09% 1.19% 1.454% 1.532%

CARE 1.42% 1.61% 0.98% 1.12% 1.24% 1.38% 1.07% 1.60% 0.97% 1.267% 1.242%

RG-RV-GG 2.28% 2.15% 3.00% 1.41% 2.01% 1.86% 1.37% 1.55% 1.36% 1.888% 1.861%

RG-RV-tG 1.60% 1.56% 2.15% 1.18% 1.66% 1.26% 0.66% 0.97% 1.25% 1.366% 1.261%

RC-Ra 1.23% 1.61% 1.10% 1.00% 1.48% 1.62% 0.90% 1.49% 0.80% 1.248% 1.234%

RC-RaO 1.05% 1.79% 1.23% 1.00% 1.42% 1.44% 0.84% 1.43% 0.97% 1.241% 1.226%

RC-RV 1.42% 1.67% 2.39% 1.06% 1.18% 1.38% 0.84% 1.43% 1.02% 1.377% 1.381%

RC-RR 1.17% 1.56% 1.10% 0.88% 1.06% 1.62% 0.72% 1.20% 0.91% 1.136% 1.104%

RC-ScRV 1.30% 1.61% 1.23% 1.12% 1.42% 1.32% 0.90% 1.43% 1.08% 1.268% 1.295%

RC-ScRR 1.48% 1.85% 0.92% 1.00% 1.36% 1.38% 0.72% 1.37% 0.97% 1.228% 1.360%

RC-SubRV 1.60% 1.73% 1.04% 0.94% 1.54% 1.32% 0.72% 1.60% 0.85% 1.260% 1.321%

RC-SubRR 1.23% 1.50% 1.10% 0.71% 1.12% 1.50% 0.72% 1.49% 0.74% 1.123% 1.124%

Mean 1.36% 1.73% 1.35% 1.12% 1.30% 1.32% 0.78% 0.92% 0.85% 1.192% 1.301%

Median 1.42% 1.67% 1.23% 1.12% 1.36% 1.32% 0.66% 1.20% 0.85% 1.204% 1.226%

Min 0.56% 0.48% 0.31% 0.41% 0.47% 0.48% 0.48% 0.34% 0.45% 0.442% 0.473%

Max 2.84% 3.11% 3.37% 2.06% 2.66% 2.76% 1.73% 3.21% 1.93% 2.631% 2.761%

m 1621 1672 1631 1697 1691 1666 1675 1746 1760 1684.33 1675

n 1960 1892 1890 1944 1936 1930 1916 1839 1569 1875.11 1916

Note:A box indicates the favored model based on average VaR VRate, whilst bold indicates the

least favoured model. m is the out-of-sample size, and n is in-sample size. SAV stands for the

CARE-SAV model, RG stands for the Realized-GARCH type models, and RC represents the

Realized-CARE type models.

However, having a VRate close to 1% on average is not sufficient to guarantee an

accurate forecast model. We employed several tests exist in the literature to statistically

test the forecast accuracy and independence of violations, a requirement of a proper risk

model. The tests include the unconditional coverage (UC) Kupiec (1995), conditional

coverage (CC) of Christoffersen (1998), dynamic quantile (DQ) of Engle and Manganelli

(2004) and VaR quantile regression (VQR) test of Gaglianone et al. (2011). Table 4

displays the number of markets&assets in which each 1% VaR forecast model is rejected

for each test, conducted at 5% significance level. We can clearly see that the Re-CARE

type models are generally less likely to be rejected by various back tests, and Re-CARE

with Range got the least number of rejections, following by Re-CARE-RR, Re-CARE-

ScRV, Re-CARE-ScRR and ”Mean” combination approach (rejected by 3 time in total).

The ”Min” and ”Max” combinations are rejected by all 9 series, and G-t and Re-GARCH-

GG are rejected by 8 times respectively.
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Table 4: Counts of 1% VaR rejections with UC, CC, DQ, VQR tests for different models on 6

indices and 3 assets.

Model UC CC DQ VQR Total

G-t 5 3 7 3 8

CARE 2 1 6 0 6

RG-RV-GG 6 5 5 6 8

RG-RV-tG 4 2 2 4 5

RC-Ra 2 2 4 1 4

RC-RaO 1 1 2 1 2

RC-RV 2 2 3 2 5

RC-RR 2 1 3 1 3

RC-ScRV 1 2 2 0 3

RC-ScRR 1 2 3 0 3

RC-SubRV 4 2 4 1 6

RC-SubRR 0 1 3 1 4

Mean 1 2 3 2 3

Median 1 2 2 3 4

Min 9 4 2 5 9

Max 9 9 9 8 9

Note:A box indicates the model with least number of rejections, whilst bold indicates that with

the highest number os rejections. All tests are conducted at 5% significance level.

7.2.2 Expected Shortfall

Employing the VaR forecasts and expectile levels searched in the previous section VaR

empirical study, we can use the ES and VaR one to one relationship (Equation 10) to

directly generate the 1-step-ahead ES forecast for the same 12 models during the forecast

sample in each market&asset. Regarding the expected level of ESRate for different models

and distributions, Chen, Gerlach and Lu (2012) discuss how to treat ES forecasts as

quantile forecasts in parametric models, where the quantile level that ES falls at can be

deduced exactly. Gerlach and Chen (2015) illustrated that the quantile level that the

quantile level that the 1% ES was estimated to fall was between 0.0035% and 0.0038%.

Specifically, they present the expected violation rate of ES is exactly 0.0038% for models

with Gaussian errors, ≈ 0.0036% for non-parametric models and is estimated by the
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quantile level dependent on the degrees of freedom for models with Student-t errors (≈

0.0036% for the time series considered here). With this approach, we can then treat

ES forecasts as quantile forecasts and employ the UC, CC, DQ and VQR tests with

corresponding ES nominal level to test the ES forecasting accuracy and independence of

violations.

Table 5 presents the ESRate in the forecast period at the 1% quantile for each model

in 9 time series. Similar as the VaR study, boxe indicate the model in each market that

has an ES violation rate closest to that desired, and bold indicates the model with ESRate

furthest from the corresponding nominal level.

Clearly, the Re-CARE-RR and Re-CARE-RaO generate the ESRate closest to that

expected for the 1% ES across the six markets and 3 assets, and their ESRate is just lower

than their 0.0036% nominal level, which means the ES forecasts from these two models

are conservative. Also, we can still see that the Re-CARE type models have obviously

better performance than the GARCH, Re-GACCH and CARE-SAV models. The mean,

median, min and max of the 12 models’ 1% ES forecasts are again calculated and their

ES violations are also shown in Table 5. The ”Mean” and ”Median” approaches are again

optimal among the four combination methods, while the ESRates are anti-conservative.

Furthermore, Figure 3 demonstrates the extra efficiency that can be gained by em-

ploying the Re-CARE framework with RR. Specifically, the ESRate of the Gt, CARE-SAV

and Re-CARE-RR are 0.68%, 0.37% and 0.31% respectively. These violation rates mean

Gt generated too anti-conservative ES forecasts that produce far too many violations, and

CARE-SAV is clearly more conservative than Gt and have close to nominal level ESRate,

and Re-CARE-RR is the most conservative model. Through close inspection of Figure 3,

e.g. the close to end of the forecasting period, CARE-SAV have obviously lower level of

ES forecasts than Gt, in order to be conservative, but it also means the capital set aside

by financial institutions to cover extreme losses are more with CARE-SAV than with Gt.

However, we can clearly observe the Re-CARE-RR is less conservative than the other

2 models in the same time period. Thus the efficiency of employing Re-CARE-RR can

be deduced in that this model can produce ES forecasts that have far fewer and close

to expected violations but are simultaneously less extreme than those of the traditional
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GARCH and CARE-SAV model. Since the capital set aside by financial institutions

should be directly proportional to the ES forecast, the Re-CARE-RR model is saving the

company money, by giving more accurate and often less extreme ES forecasts, and this

extra efficiency is frequently observed for Re-CARE type models in other markets/assets.

Further, at times of GFC when there is a persistence of extreme returns, close inspec-

tion of Figure 3 reveals that the Re-CARE-RR ES forecasts ”recover” the fastest among

the 3 model presented, in terms of being marginally the fastest to produce forecasts that

again follow the tail of the data. Also, we can see GARCH models are to over-react to

extreme events and to be subsequently very slow to recover, due to their oft-estimated

very high level of persistence.
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Figure 3: S&P 500 ES Forecasts with Gt, CARE-SAV and Re-CARE-RR.

Similarly, we conducted the back tests on all the ES forecasts and results are shown

in Table 6. The UC, CC, DQ and VQR quantile accuracy tests are applied to the ES

violations from each model, using that model’s nominal 1% ES quantile level. In addition,

the averages of the 1% ES forecast residuals, standardised by the 1% VaR forecasts are

also calculated. Given an accurate 1% ES forecast model should produce standardised
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residuals that average approximately 0, a bootstrap test on whether these averages differ

from 0 is also performed and presented in Table 6. As can be seen, models with least

number of rejections are Re-CARE-RaO and Re-CARE-RV, only rejected 2 out 9 time

series. They are followed by Re-GARCH-tG, Re-CARE-Ra, Re-CARE-ScRV, Re-CARE-

ScRR, Re-CARE-SubRV, ”Mean”, ”Median” and ”Min” approaches (rejected by 3 time

in total).

Table 5: 1% ES Forecasting VRate with different models on 6 indices and 3 assets.

Model S&P 500 NASDAQ HK FTSE DAX SMI IBM GE BHP Mean Median

G-t 0.68% 0.48% 0.49% 0.77% 0.53% 0.96% 0.42% 0.34% 0.80% 0.608% 0.532%

CARE 0.37% 0.78% 0.49% 0.53% 0.30% 0.60% 0.36% 0.40% 0.68% 0.501% 0.490%

RG-RV-GG 1.30% 1.14% 1.96% 0.77% 0.95% 1.02% 0.66% 0.57% 0.57% 0.993% 0.946%

RG-RV-tG 0.37% 0.54% 0.98% 0.41% 0.47% 0.36% 0.30% 0.11% 0.57% 0.457% 0.412%

RC-Ra 0.37% 0.24% 0.49% 0.29% 0.47% 0.90% 0.24% 0.29% 0.40% 0.410% 0.370%

RC-RaO 0.25% 0.36% 0.37% 0.29% 0.35% 0.66% 0.24% 0.23% 0.57% 0.369% 0.355%

RC-RV 0.43% 0.54% 0.86% 0.35% 0.35% 0.60% 0.24% 0.17% 0.40% 0.438% 0.398%

RC-RR 0.31% 0.24% 0.49% 0.12% 0.35% 0.72% 0.36% 0.11% 0.51% 0.357% 0.355%

RC-ScRV 0.56% 0.48% 0.49% 0.29% 0.41% 0.60% 0.24% 0.23% 0.40% 0.411% 0.414%

RC-ScRR 0.49% 0.42% 0.43% 0.35% 0.41% 0.60% 0.36% 0.11% 0.57% 0.416% 0.419%

RC-SubRV 0.43% 0.36% 0.37% 0.35% 0.35% 0.60% 0.24% 0.23% 0.45% 0.376% 0.359%

RC-SubRR 0.43% 0.18% 0.43% 0.18% 0.24% 0.66% 0.24% 0.11% 0.45% 0.324% 0.239%

Mean 0.37% 0.36% 0.55% 0.41% 0.30% 0.54% 0.24% 0.23% 0.57% 0.396% 0.370%

Median 0.43% 0.36% 0.43% 0.41% 0.35% 0.60% 0.24% 0.17% 0.57% 0.396% 0.412%

Min 0.12% 0.18% 0.12% 0.12% 0.18% 0.12% 0.24% 0.11% 0.06% 0.139% 0.123%

max 1.54% 1.56% 2.15% 1.12% 1.06% 1.50% 0.78% 0.80% 0.97% 1.275% 1.120%

Note:A box indicates the favored model based on average ES VRate, whilst bold indicates the

least favoured model.

8 CONCLUSION

In this paper, the Realized-CARE, a new framework to estimate and forecast financial

tail risk, is proposed. Through incorporating intra-day and high frequency volatility

measures, e.g. Ra, RaO, RV, RR, Scaled RV, Scaled RR, Sub-sampled RV and Sub-

sampled RR, we observe significant improvements in the out-of-sample the forecasting

of tail risk measures, compared to Re-GARCH models employing realized volatility, and

traditional GARCH and CARE-SAV models, as well as forecast combinations of these

models. Specifically, Re-CARE models with RR, Sub-sampled RR generate the most

accurate VaR forecasts, and Re-CARE models employing RR, RaO, SubRV are most

accurate for ES forecasting empirical study. In the back testing, Re-CARE type model
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Table 6: Counts of 1% ES rejections with UC, CC, DQ, VQR tests for different models on 6

indices and 3 assets.

Model UC CC DQ4 VQ Boot Total

GARCH-t 3 3 6 3 2 7

CARE 2 1 4 1 0 5

RG-RV-GG 6 6 6 2 2 8

RG-RV-tG 2 1 2 1 0 3

RC-Ra 1 1 3 0 0 3

RC-RaO 0 0 2 0 0 2

RC-RV 1 1 2 1 1 2

RC-RR 2 0 2 1 1 4

RC-ScRV 0 0 3 0 0 3

RC-ScRR 1 0 2 0 0 3

RC-SubRV 0 0 2 0 1 3

RC-SubRR 1 0 2 0 1 4

Mean 0 0 3 0 0 3

Median 0 0 3 0 0 3

Min 2 1 0 1 2 3

Max 9 9 8 6 3 9

Note:A box indicates the model with least number of rejections, whilst bold indicates that with

the highest number os rejections. All tests are conducted at 5% significance level.

are also less likely to be rejected than their counterparts: Re-CARE with RaO is rejected

least for VaR forecasting, and Re-CARE models with RaO, RV are rejected least for ES

forecasting. The Re-CARE type models with range, range considering overnight jump and

realized range should be considered for financial applications when forecasting volatility or

tail risk, and should allow financial institutions to more accurately allocate capital under

the Basel Capital Accord to protect their investments from extreme market movements.

This work can be extended by testing asymmetric and non-linear Re-CARE specification,

and using alternative frequencies of observation for the realized measures.
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