

### COPYRIGHT AND USE OF THIS THESIS

This thesis must be used in accordance with the provisions of the Copyright Act 1968.

Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright.

Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study.

The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity.

You may infringe the author's moral rights if you:

- fail to acknowledge the author of this thesis if you quote sections from the work
- attribute this thesis to another author
- subject this thesis to derogatory treatment which may prejudice the author's reputation

For further information contact the University's Copyright Service.

### sydney.edu.au/copyright



# Pain related genes in endometriosis: A meta-analysis

by

Manika Saxena

A thesis submitted to the Sydney Medical School in fulfilment of the requirement for the degree of Master of Philosophy in Science

2015

Queen Elizabeth II Research Institute for Mothers and Infants Department of Obstetrics, Gynaecology and Neonatology Sydney Medical School The University of Sydney, NSW, 2006 Australia © Manika Saxena, 2015

## Declaration

I, Manika Saxena hereby declare that the contents of this thesis consist of original work carried out by the author unless otherwise stated and duly acknowledged. To the best of my knowledge no part of this thesis has been submitted in whole or part for the award of any other degree of the university or other institution.

Signature

Manika Saxena

Date 5.03.2015

#### Abstract

Endometriosis is a benign gynaecological disorder characterised by the presence of endometrial-like glands and stroma occurring outside the uterine cavity. It affects 6-10% women of reproductive age and is often associated with chronic pelvic pain which can be extremely debilitating. Chronic pain in endometriosis may be of nociceptive, neuropathic and/or inflammatory origin. Processes involved in pain generation include neuronal development, peripheral sensitisation due to inflammation, signal transduction, conduction and pain modulation. A range of genes are known to play important roles in these processes and their expression levels are altered in other pain conditions. Dysregulated genes may contribute to pain generation in women with endometriosis. Therefore, the aim of this study was to investigate the expression of pain related genes in women with endometriosis compared to women without the disease by conducting a meta-analysis of available microarray gene expression data and associated clinical information.

Suitable studies and data were identified from electronic databases, gene expression repositories and within a University Obstetrics and Gynaecology department, by limiting the search to peer-reviewed, English language studies. Sixteen published full-text studies and one unpublished thesis were included. Included studies were case-control or cross-sectional design evaluating gene expression of eutopic endometrium from women with and without endometriosis and/or of endometriotic lesions. Study participants were pre-menopausal with regular menstrual cycles and surgically proven to have or not have endometriosis. RNA hybridisation with whole human genome microarray data were extracted and dysregulated gene expression determined through meta-analyses of microarray data.

ii

This study has shown that in the eutopic endometrium from women with endometriosis and endometriotic lesions, pain related genes were significantly upregulated. Genes involved in pain generation were also upregulated in the secretory phase of the menstrual cycle in endometriosis. In particular, genes involved in neuronal development, inflammation leading to sensitisation, signal transduction, conduction and modulation were upregulated.

Upregulation of genes involved in pain generation likely contributes to pain symptoms in women with endometriosis. Increased neuronal development and sensory innervation in the eutopic endometrium and endometriotic lesions may contribute to increased neuronal sensitisation due to the inflammatory microenvironment. This may lead to enhanced signal transduction and conduction of pain signals as well as promotion of pain by pain modulation. An improved understanding of the underlying molecular pain mechanisms may aid in identifying candidate genes for managing endometriosis-associated pain.

#### Acknowledgements

I would like to thank my supervisor, Dr. Alison Hey-Cunningham for her knowledge, guidance, constructive criticism and enormous support in all the stages of my project. Her suggestions have greatly enhanced this thesis. I am also thankful to my supervisor Dr. Emily Miller for her constant guidance and support throughout. I am grateful to Dr. Robert Markham for his kind support.

I am grateful to Dr. Gillian Begg, my academic editor who spent her holiday time on editing and giving thoughtful comments on my thesis chapters. I am also grateful to Dr. Azmat Riaz for thoughtful discussion, support and encouragement in the last two years.

Most importantly, I am forever grateful to my family for their unconditional support and encouragement in all the stages of my life.

## **Table of Contents**

| Chapter 1                                       | 1  |
|-------------------------------------------------|----|
| Endometriosis                                   | 1  |
| 1.1 Introduction                                | 1  |
| 1.1.1 Heritability                              | 2  |
| 1.2 Symptoms                                    | 3  |
| 1.3 Diagnosis                                   | 3  |
| 1.4 Theories of pathogenesis                    | 4  |
| 1.4.1 Coelomic metaplasia                       | 4  |
| 1.4.2 Retrograde menstruation                   | 5  |
| 1.5 Eutopic endometrial anomalies               | 6  |
| 1.5.1 Decreased apoptosis                       | 6  |
| 1.5.2 Ineffective immune response               | 7  |
| 1.5.3 Increased cell adhesion and proliferation | 8  |
| 1.5.4 Angiogenesis                              | 8  |
| 1.5.5 Local oestrogen production                | 9  |
| 1.5.6 Neurogenesis                              |    |
| 1.6 Endometriotic lesions                       |    |
| 1.6.1 Angiogenesis                              |    |
| 1.6.2 Hormone production and responsiveness     |    |
| 1.6.3 Immune alterations                        | 14 |
| 1.6.4 Neurogenesis                              | 14 |
| Chapter 2                                       |    |
| Pain in Endometriosis                           |    |
| 2.1 Introduction                                |    |
| 2.2 Nervous system                              | 16 |
| 2.2.1 Female pelvic innervation                 |    |
| 2.3 Pain                                        | 20 |
| 2.3.1 The pain matrix                           | 21 |
| 2.3.1.1 Neuronal development                    |    |
| 2.3.1.2 Sensitisation due to inflammation       |    |
| 2.3.1.3 Transduction                            |    |

| 2.3.1.4 Conduction and transmission                                | 26 |
|--------------------------------------------------------------------|----|
| 2.3.1.5 Pain modulation                                            |    |
| 2.4 Current understanding of pain in endometriosis                 |    |
| 2.4.1 Nociceptive pain in endometriosis                            | 31 |
| 2.4.2 Inflammatory pain                                            | 32 |
| 2.4.3 Neuropathic pain                                             |    |
| 2.4.4 Central pain processing in endometriosis                     | 34 |
| 2.5 Impact of pain on women's lives                                | 35 |
| 2.6 Pain management                                                |    |
| Aims and Hypotheses                                                |    |
| Aims                                                               | 43 |
| Hypotheses                                                         | 43 |
| Chapter 3                                                          | 44 |
| Methodology                                                        | 44 |
| 3.1 Introduction                                                   | 44 |
| 3.2 Criteria for considering studies for the review                | 47 |
| 3.3 Search methods                                                 | 49 |
| 3.4 Study selection and data assessment                            | 51 |
| 3.4.1 Selection of studies                                         | 51 |
| 3.4.2 Data extraction                                              | 56 |
| 3.4.3 Assessment of risk bias in included studies                  | 56 |
| 3.4.4 Measures of effect                                           | 57 |
| 3.4.5 Dealing with unavailable data                                | 58 |
| 3.4.6 Assessment of heterogeneity                                  | 58 |
| 3.4.7 Assessment of reporting bias                                 | 58 |
| 3.5 Data analysis                                                  | 59 |
| 3.5.1 Meta-analysis of individual participant gene expression data | 61 |
| 3.5.1.1 Data pre-processing and normalisation                      | 61 |
| 3.5.1.2 Quality assessment of datasets                             | 63 |
| 3.5.1.3 Cross-platform integration of datasets                     | 66 |
| 3.5.1.4 Clustering of samples                                      | 68 |
| 3.5.1.5 Detection of dysregulated genes                            | 69 |
| 3.5.1.6. Interactions amongst dysregulated genes                   | 70 |

| 3.5.1.7 Detection of dysregulated pathways                                    | ysregulated pathways71 |  |
|-------------------------------------------------------------------------------|------------------------|--|
| 3.5.2 Meta-analysis of published gene lists                                   | 72                     |  |
| 3.5.2.1 Extraction and standardisation of published gene lists                | 72                     |  |
| 3.5.2.2 Gene list integration and detection of dysregulated genes             | 72                     |  |
| 3.5.2.3 Detection of dysregulated pathways                                    | 73                     |  |
| 3.6 Convergence of results                                                    | 73                     |  |
| Chapter 4                                                                     | 75                     |  |
| Results                                                                       | 75                     |  |
| 4.1 Individual participant gene expression data                               | 75                     |  |
| 4.1.1 Eutopic endometrium from women with and without endometriosis           | 75                     |  |
| 4.1.1.1 Proliferative phase                                                   | 78                     |  |
| 4.1.1.2 Secretory phase                                                       | 80                     |  |
| 4.1.1.3 Eutopic endometrium from women with endometriosis: Secretory vs.      |                        |  |
| proliferative phase                                                           | 81                     |  |
| 4.1.2 Endometriotic lesions compared to eutopic endometrium from women with   | -                      |  |
| endometriosis                                                                 | 83                     |  |
| 4.1.2.1 Proliferative phase                                                   | 86                     |  |
| 4.1.2.2 Secretory phase                                                       | 88                     |  |
| 4.1.2.3 Endometriotic lesions from women with endometriosis: Secretory vs.    |                        |  |
| proliferative phase                                                           | 88                     |  |
| 4. 2 Published gene lists                                                     | 90                     |  |
| 4.2.1 Eutopic endometrium from women with and without endometriosis           | 90                     |  |
| 4.2.2 Eutopic endometrium and endometriotic lesions from women with endometri | osis                   |  |
|                                                                               | 91                     |  |
| 4.3 Convergence of gene list results                                          | 91                     |  |
| Chapter 5                                                                     |                        |  |
| Discussion                                                                    | 93                     |  |
| 5.1 Introduction                                                              | 93                     |  |
| 5.2 Neuronal development in endometriosis                                     | 93                     |  |
| 5.3 Sensitisation due to inflammation in endometriosis                        |                        |  |
| 5.4 Signal transduction and conduction in endometriosis                       | 99                     |  |
| 5.5 Pain modulation in endometriosis                                          |                        |  |

| 5.6 Implications for pain management in endometriosis |  |
|-------------------------------------------------------|--|
| Conclusions and Future Directions                     |  |
| Conclusions                                           |  |
| Future directions                                     |  |
| Appendices                                            |  |

## **List of Figures**

| Fig. 1.1: Common sites of endometriosis                                         | 2            |
|---------------------------------------------------------------------------------|--------------|
| Fig. 2.1: Organisation of the nervous system                                    | 17           |
| Fig 2.2.: Female pelvic innervation.                                            | 19           |
| Fig. 2.3: Figure illustrating pain pathways and processes from the site of inju | ury through  |
| the spinal cord to the brain; as well as the genes involved in the transduction | 1,           |
| conduction, transmission and modulation of pain                                 | 22           |
| Fig. 2.4: Schematic presentation of conduction and transmission of pain imp     | ulses from   |
| the site of injury to the brain                                                 | 27           |
| Fig 3.1: Flow-chart illustrating an overview of the present meta-analyses       | 46           |
| Fig. 3.2: Summary of search results.                                            | 50           |
| Fig. 3.3: Flow-chart illustrating an overview of the steps undertaken in the p  | oresent      |
| meta-analysis                                                                   | 59           |
| Figs. 3.4 a-h: Box plots illustrating sample-wise log-2 transformed probe into  | ensity       |
| values of normalised data from individual participant gene expression studi     | es65         |
| Fig. 3.5: Box plot illustrating uniform probe intensity values for individual p | oarticipant  |
| gene expression data of all datasets obtained after convergence                 | 66           |
| Fig. 3.6. Figure illustrating clustering of genes by hierarchical clustering me | thod with    |
| gene clusters on the left and gene names on the right                           | 71           |
| Fig. 4.1: Interactions among upregulated pain related genes in the eutopic en   | ndometrium   |
| of women with endometriosis                                                     | 78           |
| Fig. 4.2: Interactions among upregulated pain related genes in endometriotic    | c lesions85  |
| Fig. 4.3: Venn diagram illustrating one upregulated pain related gene comm      | ion across   |
| gene list results obtained from meta-analyses of individual patient gene expr   | ression data |
| and published gene list, comparing eutopic endometrium from women with          | and without  |
| endometriosis                                                                   | 92           |

## List of Tables

| Table 1.1: Types of endometriotic lesions                                          | 12      |
|------------------------------------------------------------------------------------|---------|
| Table 2.1: Types of nociceptors                                                    | 25      |
| Table 2.2: Pain symptoms associated with endometriosis                             |         |
| Table 2.3: Types of available progestins                                           | 40      |
| Table 3.1: Study inclusion and exclusion criteria                                  | 47      |
| Table 3.2: Studies included in meta-analysis                                       | 53      |
| Table 4.1: Upregulated pain related genes in the eutopic endometrium of women      | with    |
| endometriosis compared to endometrium from women without endometriosis             | 76      |
| Table 4.2: Upregulated pain related genes in the proliferative phase of the eutopi | с       |
| endometrium of women with endometriosis compared to women without endome           | triosis |
|                                                                                    | 79      |
| Table 4.3: Upregulated pain related genes in the secretory phase of the eutopic    |         |
| endometrium of women with endometriosis compared to women without endome           | triosis |
|                                                                                    | 80      |
| Table 4.4: Upregulated pain related genes in the secretory phase of eutopic        |         |
| endometrium of women with endometriosis                                            |         |
| Table 4.5: Upregulated pain related genes in the endometriotic lesions compared    | to      |
| eutopic endometrium from women with endometriosis                                  |         |
| Table 4.6: Upregulated pain related genes in the proliferative phase of the        |         |
| endometriotic lesions compared to eutopic endometrium of women with endomet        | riosis  |
|                                                                                    | 87      |
| Table 4.7: Upregulated pain related genes in the secretory phase of endometriotic  | C       |
| lesions                                                                            |         |
| Table 4.8: Significantly upregulated genes in the eutopic endometrium of women     | with    |
| endometriosis                                                                      | 90      |
| Table 4.9: Significantly upregulated genes in endometriotic lesions                | 91      |

## List of Abbreviations

**17β-HSD-1:** 17β-Hydroxysteroid dehydrogenase-1 **17β-HSD-2:** Hydroxysteroid dehydrogenase-2 **5-HT:** Serotonin **ASIC:** Acid sensing ion channels **AVIL:** Adivilin **BDNF:** Brain-derived neurotrophic factor **Ca**<sup>2+</sup>**:** Calcium ions CNS: Central nervous system **COX-2:** Cyclo-oxygenase-2 **DAVID:** Database for Annotation, Visualization and Integrated Discovery **DIE:** Deep infiltrating endometriosis DRG: Dorsal root ganglion **EGF:** Epidermal growth factor **ER-α:** Oestrogen receptor-α **ER-** $\beta$ : Oestrogen receptor  $\beta$ FDR: False discovery rate FGF: Fibroblast growth factor GABA: Gamma-aminobutyric acid GABBAB: Gamma-aminobutyric acid type B GABRA2: Gamma-aminobutyric acid A receptor, alpha 2 GAP: Growth associated protein GEO: Gene expression omnibus GnRH: Gonadotropin-releasing hormone **GO:** Gene ontology Gp130: Glycoprotein 130 HCL: Hierarchical clustering method **HGF:** Hepatocyte growth factor **HPSE:** Heparanase HTR1D: 5-hydroxytryptamine (serotonin) receptor 1D ICAM-1: Intracellular adhesion molecule-1 IL-1: Interleukin-1 IL-11: Interlukin-11

**IL-15:** Interleukin-15 **IL6ST:** Interleukin 6 signal transducer **IL-8:** Interlukin-8 JUNB: Jun B proto-oncogene KCNC1: Potassium voltage-gated channel, Shaw-related subfamily, member 1 KCND3: Potassium voltage-gated channel, Shal-related subfamily, member 3 LIF: Leukaemia-inhibiting factor MAD: Median absolute deviation MAPK: Mitogen activated protein kinases mRNA: Messanger ribonucleic acid MS: Manika Saxena NCAM: Neural cell adhesion molecule NGF: Nerve growth factor **NK:** Natural killer NSAID: Non-steroidal anti-inflammatory drugs NT-3: Neurotrophin-3 NT-4/5: Neurotrophin-4/5 **OCs:** Oral contraceptives **OSM:** Oncostatin M **PNS:** Peripheral nervous system **PR:** Progesterone receptor **RANTES:** Regulated on activation normal T expressed and secreted **RMA:** Robust multi-array analysis **RNA:** Ribonucleic acid **SE:** Standard error **TNF-α:** Tumor necrosis factor-α Treg cells: Regulatory T lymphocytes TRP: Transient receptor potential TRPM8: Transient receptor potential M8 **TRPV1:** Transient receptor potential vallinoid UNC45A: Unc-45 homolog A (C. elegans) VCAM-1: Vascular cell adhesion molecule-1 **VEGF-A:** Vascular endothelial growth factor-A

#### **Chapter 1**

#### Endometriosis

#### **1.1 Introduction**

Endometriosis is a benign gynaecological disorder characterised by the presence of endometrial-like glands and stroma outside the uterine cavity (Rahmioglu et al., 2012, Fraser, 2008). It affects approximately 6-10% of women of reproductive age (Fraser, 2008, McLeod and Retzloff, 2010, Simoens et al., 2012). The primary symptoms include pain and infertility (Giudice and Kao, 2004, Fauconnier et al., 2013). It is highly variable in the age of onset; presentation; severity of symptoms; site and extent of pathology; and in the response to treatment, such as recurrence of the disease, alleviation of symptoms and restoration of fertility (Fraser, 2008, McLeod and Retzloff, 2010, Okeke et al., 2011, Kennedy et al., 2005). It is often a debilitating condition, significantly affecting the lives of patients in a variety of ways (Mehedintu et al., 2014).

Endometriotic lesions are an important feature of endometriosis. They usually grow on the peritoneum lining the pelvic/abdominal cavity; occurring on the pelvic/abdominal wall, ovaries, fallopian tubes, outer wall of the uterus and intestines (see Fig. 1.1; Brosens and Benagian, 2011, Koninckx, 1994, Olive and Pritts, 2001). In rare cases, lesions have been observed on the pancreas, pleura, thorax, kidneys, vertebrae and sciatic nerve roots (Fraser, 2008, Olive and Pritts, 2001). Despite extensive research, the aetiology of endometriosis remains poorly understood. Abnormalities of the uterine endometrium as well as changes in the microenvironment around endometriotic lesions may contribute to the development and

maintenance of endometriosis as well as its related symptoms (Ulukus et al., 2006, Jiang and Wu, 2012).

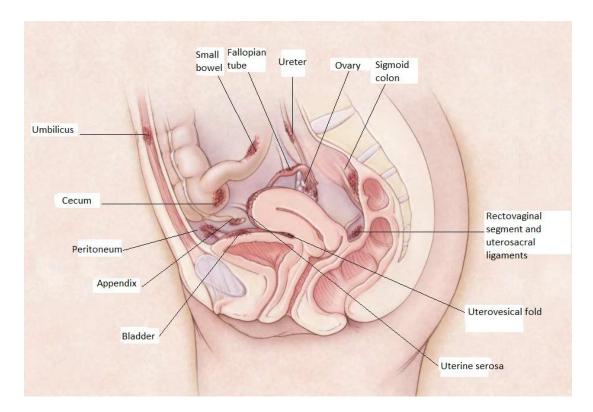



Fig. 1.1: Common sites of endometriosis (Olive and Pritts, 2001).

#### 1.1.1 Heritability

Genetic predisposition plays a role in endometriosis (Speroff, 2005). Although it does not show a clear Mendelian pattern of inheritance, there is a strong familial component (Treloar et al., 1999, Stefansson et al., 2001, Ward et al., 2004, Vigano et al., 2007). There is a six times increased risk of developing endometriosis in first-degree relatives of women with the disease (Coxhead and Thomas, 1993, Moen and Magnus, 1993, Simpson et al., 1980, Kennedy et al., 1995, dos Reis et al., 1999, Augoulea et al., 2012, Simpson and Bischoff, 2002). Specifically, chromosome alterations in arms 5q, 6q, 9p, 11q and 22q and on chromosome 17 have been shown to be associated with endometriosis (Jiang, 1998, Bischoff and Simpson, 2004, Bischoff et al., 2002). A number of gene expression microarray studies

have also identified a range of candidate genes involved in regulating steroid metabolism, neurogenesis, angiogenesis, inflammation and immune response that may be dysregulated in endometriosis, contributing to its development and associated symptoms (Bischoff and Simpson, 2004, Burney et al., 2007, Crispi et al., 2013, Kao et al., 2003, Zondervan et al., 2001, Nyholt et al., 2012, Albertsen et al., 2013).

#### 1.2 Symptoms

The most common symptoms of endometriosis are infertility and pelvic pain. Although a proportion of women with endometriosis may be asymptomatic, women with endometriosis often present with pain. Pain (thoroughly reviewed in Chapter 2) can manifest non-cyclic chronic pelvic pain, dysmenorrhea (menstrual pain), dyspareunia (pain with intercourse) and dyschezia (pain with defecation;Kennedy et al., 2005, Mehedintu et al., 2014). Other associated symptoms may include dysfunctional uterine bleeding, abdominal bloating, pre-menstrual spotting, constipation and chronic fatigue (Bellelis et al., 2010).

#### **1.3 Diagnosis**

The complex and highly variable nature of endometriosis makes its diagnosis difficult. A delay in diagnosis is very common as endometriosis shows symptomatic commonalities with other diseases and its diagnosis is invasive (surgical; Mehedintu et al., 2014). A laparoscopy combined with histological confirmation is the gold standard for the diagnosis of endometriosis (Kennedy et al., 2005, Fraser, 2008, Mehedintu et al., 2014). Laparoscopy is a procedure in which an incision is made in the abdomen and the laparoscope (telescopic camera) is inserted, to allow visualisation of the pelvic cavity and biopsies to be taken (Jacobson et al., 2010). Trans-vaginal ultrasound and MRI imaging can diagnose deep infiltrating endometriosis (Marcal et al., 2010, Holland et al., 2010, Bazot et al., 2004). These

techniques are operator-dependent and require both experience and skill to minimise diagnostic error (Fraser, 2008, Valle and Sciarra, 2003, Kennedy et al., 2005). There is an ongoing need for the development of novel non-invasive tools for diagnosis of endometriosis.

#### **1.4 Theories of pathogenesis**

Various theories have been put forth to explain the development of endometriosis (Linden, 1996); including, but not limited to, Sampson's retrograde menstruation theory, theory of coelomic metaplasia, theory of lymphatic and vascular induction, and composite theory (Sampson, 1940, Meyer, 1919, Sampson, 1927b, Gazvani and Templeton, 2002). However, no single theory satisfactorily explains the development of endometriosis. The two most popular theories, retrograde menstruation and coelomic metaplasia, are discussed in Sections 1.4.1 and 1.4.2.

#### 1.4.1 Coelomic metaplasia

Metaplasia is a process in which one cell type changes into a different form that is abnormal for that tissue (Iwanoff, 1989, Vercellini et al., 2004, Cullen, 1896). The theory of coelomic metaplasia was proposed by Iwanoff (1989) and then developed by Meyer (1919). It states that normal peritoneal cells may develop into ectopic endometrial cells (Iwanoff, 1989, Meyer, 1919). Evidence linking metaplasia and endometriosis is lacking, but the ultrastructure of pelvic peritoneal tissue from women undergoing surgery suggests that there might be a metaplastic change of peritoneal mesothelial cells into endometrial glandular cells before the establishment of endometriosis in the peritoneum (Matsuura et al., 1999, Nap et al., 2004, Vinatier et al., 2001). An extension to the theory of metaplasia is the induction theory which proposes that one or more endogenous, biochemical or immunological factors

secreted by menstrual endometrium may promote differentiation of peritoneal cells to endometrial-like cells (Nap et al., 2004, Burney and Giudice, 2012).

#### **1.4.2 Retrograde menstruation**

In 1927, Sampson proposed the theory of retrograde menstruation, also known as the implantation theory (Sampson, 1927a). According to this theory, endometriosis develops through the retrograde flow of viable endometrial fragments into the peritoneal cavity during menstruation, which then implant on the peritoneum and form lesions (Sampson, 1940). In retrograde menstruation, menstrual fluid flows through the fallopian tubes instead of leaving through the vagina (Nap et al., 2004, Halme et al., 1984).

This theory is currently the most widely accepted as clinical findings suggest that endometriotic lesions tend to cluster around structures closer to the distal ends of the fallopian tubes (Dmowski and Radwanska, 1984, Al-Fozan and Tulandi, 2003). Women with anatomical variations or abnormalities obstructing the menstrual outlet, such as cervical stenosis and other mullerian anomalies, have a higher risk of developing endometriosis due to increased volume of retrograde menstruation (Sanfilippo et al., 1986, Barbieri, 1998, Fallas, 1956). Furthermore, viable endometrial cells are present in the menstrual and peritoneal fluid of women with endometriosis; these cells have the capability to adhere to the peritoneum, followed by implantation (Koninckx et al., 1980, Koks et al., 1997, Nisolle et al., 2007). However, Sampson's theory does not explain why endometriosis does not develop in all women with retrograde flow, as retrograde menstruation happens in 90% of all women with patent fallopian tubes (Vercellini et al., 2004, Nap et al., 2004, Halme et al., 1984). It is becoming increasingly evident that other molecular and biochemical factors are involved in the pathogenesis of endometriosis.

#### **1.5 Eutopic endometrial anomalies**

The eutopic endometrium of women with endometriosis shows differences in physiology and biochemistry compared to the endometrium of women without endometriosis (Meresman et al., 2000). Increasing evidence indicates that anomalies of the endometrium such as decreased apoptosis, evasion of immune surveillance, increased cell adhesion and proliferation, increased angiogenesis and neurogenesis and local oestrogen production may contribute to lesion establishment, disease progression and associated symptoms (Agic et al., 2009, Tabibzadeh, 1998, Giudice and Kao, 2004, Sharpe-Timms, 2001, Khoufache et al., 2012).

#### **1.5.1 Decreased apoptosis**

Apoptosis is a physiological process of programmed cell death whereby excess and dysfunctional cells are eliminated by a regulated sequence of molecular events without eliciting an inflammatory response (Taniguchi et al., 2011, Kerr et al., 1972, Alison and Sarraf, 1992). During menstruation, apoptosis plays a regulatory role by removing senescent cells from the lining of the endometrium (Nasu et al., 2011, Taniguchi et al., 2011). In women with endometriosis, apoptosis in the endometrium is greatly reduced (Beliard et al., 2004, Taniguchi et al., 2011, Liu and Lang, 2011). This may be attributed to the increased expression of bcl-2, which blocks the apoptotic pathways and decreased expression of bax, which promotes apoptosis, in the eutopic endometrium from women with endometriosis compared to women without the disease (Jones et al., 1998a, Meresman et al., 2000, Harada et al., 2004, Nasu et al., 2011). Moreover, there is dysregulation of genes involved in apoptosis in the eutopic endometrium of women with endometriosis which further inhibits apoptosis (Zubor et al., 2009). This leads to entry of viable endometrial cells into the peritoneal cavity (Beliard et al., 2004, Harada et al., 2004).

#### **1.5.2 Ineffective immune response**

Local immune cells facilitate the clearance of endometrial fragments following menstrual shedding (Liu and Lang, 2011, Ulukus et al., 2006). Several immune cell populations are disturbed both in function and numbers in the eutopic of women with endometriosis (Sharpe-Timms, 2001, Berbic et al., 2009, Matarese et al., 2003). Cytotoxicity of natural killer (NK) cells is decreased and T lymphocyte function is defective (Christodoulakos et al., 2007, Giudice et al., 1994, Helvacioglu et al., 1997). Regulatory T lymphocytes (Treg cells) are increased during the secretory phase and suppress the action of other immune cell populations (Berbic et al., 2010). Increased immature dendritic cell density in the eutopic endometrium with decreased presence of mature dendritic cells indicates impaired recognition of foreign or displaced cells (Braun and Dmowski, 1998, Matarese et al., 2003). Moreover, macrophage numbers are decreased during menstruation (Sharpe-Timms, 2001, Sharpe-Timms et al., 2002). In endometriosis, the endometrial immune system appears unable to contain shed endometrial fragments, indicating that more viable shed endometrial cells reach the peritoneal cavity subsequently leading to establishment of the lesions (Sharpe-Timms et al., 2002, Christodoulakos et al., 2007, Ulukus et al., 2006). The resident immune populations endometrium produce pro-inflammatory cell of the eutopic also cytokines/chemokines (Sinaii et al., 2002, Herington et al., 2011). Furthermore, the mRNA levels of genes encoding for immune cells as well as inflammatory cytokines are increased in the eutopic endometrium of women with endometriosis (Chand et al., 2007, Kyama et al., 2008, Akoum et al., 1995). This may trigger an intense inflammatory response and contribute to pain in endometriosis (Berkley et al., 2005).

#### 1.5.3 Increased cell adhesion and proliferation

In the eutopic endometrium of women with endometriosis, both protein and mRNA expression levels of cell adhesion molecules such as integrin- $\alpha\nu\beta$ 3, cadherins, intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), CD166, annexin A2, interlukin-11 (IL-11) and leukaemia-inhibiting factor (LIF) are increased (Sundqvist et al., 2012, Dimitriadis et al., 2006, Fowler et al., 2007, Al Jefout et al., 2009, Somigliana et al., 1996, Abu-Asab et al., 2011, Burney et al., 2007). This is thought to lead to the attachment of refluxed endometrial tissue on to the peritoneal surface and promote lesion establishment (Ulukus et al., 2006, Al Jefout et al., 2009, Witz et al., 1999).

Increased cell proliferation has also been observed in the eutopic endometrium of women with endometriosis (Johnson et al., 2005, von Rango et al., 1998, Jones et al., 1998b). For example, there is an increased number of endothelial, epithelial and stromal cells in the eutopic endometrium of women with endometriosis when compared to women without endometriosis (Wingfield et al., 1995, Jones et al., 1998b, Jiang and Wu, 2012). Increased proliferation in the eutopic endometrium likely contributes to endometrial cell survival, implantation and growth in ectopic locations (Lawson et al., 2008, Lessey et al., 1994, Wingfield et al., 1995, Johnson et al., 2005, Kyama et al., 2008).

#### **1.5.4 Angiogenesis**

Angiogenesis is the process of formation of new blood vessels from pre-existing blood vessels (Xu et al., 2013). It is an important process for the progression of endometriosis as the lodged endometrial fragments on the peritoneum require blood supply for survival (Liu and Lang, 2011). The eutopic endometrium of women with endometriosis is highly angiogenic compared to the endometrium from women without endometriosis (Laschke and Menger,

2007, Torry and Torry, 1997, Groothuis et al., 2005, Hur et al., 2006). In the eutopic endometrium of women with endometriosis, there is a higher protein and gene expression of angiogenic factors, such as vascular endothelial growth factor-A (VEGF-A), interlukin-8 (IL-8), fibroblast growth factor (FGF), hepatocyte growth factor (HGF) and epidermal growth factor (EGF) compared to endometrium from women without endometriosis (Bourlev et al., 2006, Nisolle et al., 1993, Mihalich et al., 2003, Sugawara et al., 1997, Fukaya et al., 1999, Jiang and Wu, 2012, Mueller et al., 2000, Takehara et al., 2004, Huang and Yeh, 1994). These findings indicate that increased angiogenic capacity of the eutopic endometrium may facilitate establishment of a blood supply for ectopically implanted endometrial fragments and therefore initiation and progression of endometriosis.

#### **1.5.5 Local oestrogen production**

In the eutopic endometrium of women with endometriosis, there is evidence of excessive oestrogen production (Dassen et al., 2007, Bukulmez et al., 2008, Aghajanova et al., 2009, Kitawaki et al., 1997). Aromatase, an essential enzyme for oestrogen production, not expressed in normal endometrium, is highly expressed in the eutopic endometrium of women with endometriosis (Kitawaki et al., 1997, Kyama et al., 2008). There are increased levels of  $17\beta$ -hydroxysteroid dehydrogenase-1 ( $17\beta$ -HSD-1) and decreased levels of  $17\beta$ -HSD-2 which catalyse the activation and inactivation of oestradiol, respectively (Zeitoun et al., 1998, Andersson and Moghrabi, 1997, Dassen et al., 2007). Aberrant aromatase gene and protein expressions along with defective oestradiol metabolism may increase local oestrogen levels, which correspond with elevated oestradiol concentrations in the menstrual blood of women with endometriosis (Lessey et al., 1988, Nisolle and Donnez, 1997, Attia et al., 2000, Al-Sabbagh et al., 2012, Ulukus et al., 2006, Kyama et al., 2008). Excessive oestrogen

production favours the inflammatory characteristics of endometriosis and lesion growth and persistence (Tsai et al., 2001, Bulun et al., 2001).

#### 1.5.6 Neurogenesis

Neurogenesis is the formation of nervous tissue occurring under the control of neurotrophic factors and their receptors (Asante and Taylor, 2011). In eutopic endometrium from women with endometriosis, there is increased protein and gene expression of neurotrophic factors, such as nerve growth factor (NGF), neurotrophin-3 and neurotrophin-4/5 (NT-3, NT-4/5), and brain-derived neurotrophic factor (BDNF) compared to women without endometriosis (Browne et al., 2012, Tokushige et al., 2008). Increased density of neuroendocrine cells has also been identified in the eutopic endometrium of women with endometriosis, which produce neuromodulatory substances in response to chemical stimulation (Tischler, 1989, Wang et al., 2010). In addition, in the eutopic endometrium of women with endometriosis, nerve fibres have been identified in the functional layers of endometrium and myometrium of women with endometriosis, not found otherwise in the endometrium from women without endometriosis (Tokushige et al., 2007, Tokushige et al., 2006a, Zhang et al., 2009, Aghaey Meibody et al., 2011). These nerve fibres are sensory C, adrenergic and cholinergic, responsible for transmitting dull, throbbing and diffuse pain (Al-Jefout et al., 2009, Al Jefout et al., 2009). Increased neurogenesis as well as the presence of nerve fibres in the eutopic endometrium of women with endometriosis may be responsible for increased peripheral sensitisation contributing to the pain-related symptoms of endometriosis (Bloski and Pierson, 2008, Tokushige et al., 2006a).

Endometriosis remains an enigmatic gynaecological disorder. It is becoming increasingly evident that fundamental changes in the eutopic endometrium of women with endometriosis may contribute to development of the disease. The presence of aberrantly expressed apoptotic, immuno-modulatory, adhesive, proliferative, hormonal, angiogenic and neurogenic factors within the eutopic endometrium may contribute to the development of the endometriosis and its associated symptoms. The pro-inflammatory microenvironment of the eutopic endometrium along with the presence of small unmyelinated sensory nerve fibres may also contribute to the associated pain symptoms. However, it should be noted that exact mechanisms of pain generation remain unknown and require in-depth study of the involved molecular mechanisms (discussed further in Chapter 2).

#### **1.6 Endometriotic lesions**

There are three broad types of endometriotic lesions: superficial peritoneal endometriosis, ovarian endometriomas and deep infiltrating endometriosis (DIE; described in more detail in Table 1.1). Typical endometriotic lesions show histological features similar to the endometrium, with stroma and glandular epithelium that respond to hormonal stimuli and exhibit characteristics of cyclic growth (Weitzman and Buttram, 1989). However, there are many differences between the cells of endometriotic lesions and those of the surrounding/normal peritoneum or the eutopic endometrium, including differences related to angiogenesis, hormone production and responsiveness, immune environment and neurogenesis.

11

| Lesion type                                                                                          | Appearance                         | Characteristics                                                                                                                                                                                                                                 | Location                                                                                                      |
|------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Peritoneal endometriotic lesions <sup>1</sup>                                                        | Clear                              | Papules that resemble<br>normal endometrium                                                                                                                                                                                                     | Around the<br>peritoneum,<br>fallopian tubes<br>and bowel                                                     |
|                                                                                                      | Red flare                          | Considered the most<br>"active"; highly<br>vascularised                                                                                                                                                                                         |                                                                                                               |
|                                                                                                      | Blue-black<br>White                | Puckered; presence of<br>pigmented<br>haemosiderin deposits<br>from "old blood";<br>older, more advanced<br>than red flare and<br>considered less active<br>Surrounded by dense<br>collagen and<br>connective tissue<br>deposits; thought to be |                                                                                                               |
|                                                                                                      |                                    | older and the least active                                                                                                                                                                                                                      |                                                                                                               |
| Ovarian endometriomas <sup>2</sup>                                                                   | Brown tar-<br>like filled<br>cysts | Contain shed<br>menstrual debris; arise<br>after endometrial<br>ectopic implantation                                                                                                                                                            | On the ovaries                                                                                                |
| Deep-infiltrating endometriosis <sup>3</sup><br>1(Brosens et al., 2012, Nisolle et al., 1997, Donnez | Nodular in<br>appearance           | Firm, solid, tumour-<br>like mass that extends<br>more than 5 mm from<br>peritoneal surface into<br>adjacent structures                                                                                                                         | Posterior cul-<br>de-sac,<br>uterosacral<br>ligaments,<br>bowel, bladder<br>and the<br>rectovaginal<br>septum |

1(Brosens et al., 2012, Nisolle et al., 1997, Donnez et al., 2003) 2(Nisolle et al., 1997)

3(Nisolle et al., 1997)

#### 1.6.1 Angiogenesis

Angiogenesis is essential for the growth and persistence of endometriotic lesions, as lesions derive their blood supply from the surrounding vasculature (Xu et al., 2013). A number of angiogenic factors are synthesised by endometriotic lesions, the most potent and strongly expressed being VEGF-A (Donnez et al., 1998, Machado et al., 2008, Tan et al., 2002,

Takehara et al., 2004). VEGF-A gene and protein expression has been observed to be higher in endometriotic lesions compared to eutopic endometrium (Di Carlo et al., 2009, Donnez et al., 1998, Bourlev et al., 2006, Tan et al., 2002). Angiogenic properties also tend to differ between lesion types, for example, active, early-developing, red flare lesions show greater vascularisation compared to less active black or white scarred lesions (Matsuzaki et al., 2001). In general, peritoneal lesions have greater expression of VEGF-A compared to ovarian (Tan et al., 2002, Takehara et al., 2004). Furthermore, deep infiltrating lesions show higher expression of VEGF-A and greater blood vessel density compared to peritoneal or ovarian lesions (Machado et al., 2008).

#### 1.6.2 Hormone production and responsiveness

Oestrogen is the key hormone that regulates growth and development of endometriotic lesions (Jones et al., 1995). Oestradiol, biologically active oestrogen, is locally produced within lesions (Bulun et al., 2012), attributable to increased aromatase at both transcriptional and protein levels (Kitawaki et al., 1997, Zeitoun et al., 1998, Vinatier et al., 2000, Kyama et al., 2008, Bukulmez et al., 2008). In lesions, cyclo-oxygenase-2 (COX-2) which stimulates oestrogen production (and vice versa) is also upregulated, creating a positive feedback loop favouring continuous oestrogen production (Attar and Bulun, 2006, Tsai et al., 2001). Increased expression of enzymes such as  $17\beta$ -HSD-1 in endometriotic lesions also contributes to local oestrogen production (Huhtinen et al., 2012, Rižner, 2009, Smuc et al., 2007, Cheng et al., 2008, Borghese et al., 2010).

The actions of oestrogen and progesterone are mediated through their receptors, oestrogen receptor (ER- $\alpha$  and - $\beta$ ) and progesterone receptor (PR) (Bulun et al., 2012, Bukulmez et al., 2008, Bulun et al., 2010). Significantly lower transcriptional and protein levels of

progesterone receptors and ER- $\alpha$  have been observed in endometriotic lesions compared to the eutopic endometrium from women with endometriosis (Attia et al., 2000, Bulun et al., 2006, Bukulmez et al., 2008). These changes may contribute to the loss of control of oestrogen production and resistance to progesterone observed in women with endometriosis, thought to facilitate development and progression of the disease (Bulun et al., 2010, Xue et al., 2007, Attia et al., 2000).

#### **1.6.3 Immune alterations**

Macrophages, immature dendritic cells, natural killer cells and T cells are recruited directly to the site of endometriotic lesions, possibly in an attempt to clear the lesion (Tran et al., 2009, Jones et al., 2002, Schulke et al., 2009, Berbic and Fraser, 2011). However, the local immune environment is dysfunctional and lesions persist (Herington et al., 2011, Berbic and Fraser, 2011). These immune cells produce cytokines, chemokines, growth factors and potent angiogenic factors which actually contribute to the survival and ectopic growth of endometrial tissue fragments (Lebovic et al., 2001). An inflammatory response is initiated and mediators are released which stimulate blood flow and extravasation of leukocytes (neutrophils and monocytes) from blood vessels into the tissue, further favouring lesion persistence (Berbic and Fraser, 2011, Christodoulakos et al., 2007, Sidell et al., 2002).

#### 1.6.4 Neurogenesis

Neuronal growth has been observed in endometriotic lesions (Wang et al., 2009, Guo and Wang, 2006, Mechsner et al., 2007). The protein and mRNA expressions of NGF and other neurotrophins; such as NT-3, NT-4 and BDNF; and their receptors are increased in endometriotic lesions (Tokushige et al., 2010, Tokushige et al., 2006a, Anaf et al., 2002, Abu-Asab et al., 2011). Increased angiogenesis and immune cell populations produce

neuroattractant cytokines which promote nerve fibre growth into lesions (Tokushige et al., 2006a, Tlandi et al., 2001, Tamburro et al., 2003, Anaf et al., 2006, Asante and Taylor, 2011, Berbic et al., 2009). Moreover, abnormal hormonal environment promotes higher expression of neurotrophic factors and neuronal growth (Anaf et al., 2002, Tokushige et al., 2006b).

Furthermore, nerve fibres have been observed in all types of endometriotic lesions (Tokushige et al., 2006b, Tokushige et al., 2010, Herington et al., 2011, Mechsner et al., 2007, Anaf et al., 2002). These nerve fibres are a mixture of sensory Aô, sensory C, adrenergic and cholinergic (Tokushige et al., 2006b, Mechsner et al., 2007). Presence of sensory nerve fibres in the endometriotic lesions may contribute to the pain symptoms associated with endometriosis (Tokushige et al., 2006a, Morotti et al., 2014b). Interestingly, higher densities of nerve fibres and neurotrophins have been observed in DIE lesions compared to peritoneal or ovarian lesions, which correlates with increased pain in women with DIE (Herington et al., 2011, Vercellini et al., 2007, Stratton and Berkley, 2011, Gruppo Italiano per lo Studio, 2001). A recent study also suggests that women who complain of moderate to severe pain have higher densities of endometriosis-associated nerve fibres (Mechsner et al., 2009).

Overall, it appears that abnormal eutopic endometrium predisposes susceptible women to develop endometriosis. In addition, it is likely the presence of endometriotic lesions further regulates the eutopic endometrium. Ongoing processes in endometriotic lesions not only contribute to disease progression, but apparently also to the development of associated symptoms such as pain. However, mechanisms of pain generation in women with endometriosis are not well understood (further explored in Chapter 2).

#### Chapter 2

#### **Pain in Endometriosis**

#### **2.1 Introduction**

The most common symptom of endometriosis is pain, however pain mechanisms in endometriosis remain poorly understood (Taylor et al., 1999, Ozkan et al., 2008, Martinez-Roman et al., 1997, Kao et al., 2003, Triolo et al., 2013, Kobayashi et al., 2013, Morotti et al., 2014b). As introduced in Chapter 1, pain associated with endometriosis can be broadly described as the common triad of dysmenorrhoea (painful menses), dyspareunia (painful sexual intercourse) and dyschezia (pain with defecation; Nasir and Bope, 2004, Fraser, 2008). Pain intensity does not correspond with the anatomical severity or other parameters of endometriosis (Mathias et al., 1996, Fraser, 2008). It has been linked to the presence of unmyelinated sensory nerve fibres in the eutopic endometrium and endometriotic lesions; interaction between peripheral nerves, the peritoneal environment and the central nervous system; as well as to altered hormonal, immune and inflammatory environments in the pelvis (Evans et al., 2007, Tokushige et al., 2006a, Reis et al., 2013, Morotti et al., 2014b, Stratton and Berkley, 2011, Asante and Taylor, 2011).

#### 2.2 Nervous system

The nervous system is divided into the central nervous system (CNS) and peripheral nervous system (PNS). The CNS consists of the brain and spinal cord; the PNS of sensory neurons, ganglia and nerves, which connect to the CNS (Amann and Constantinescu, 1990, Barker, 1901). The divisions and functions of the CNS and PNS are summarised in Fig. 2.1.

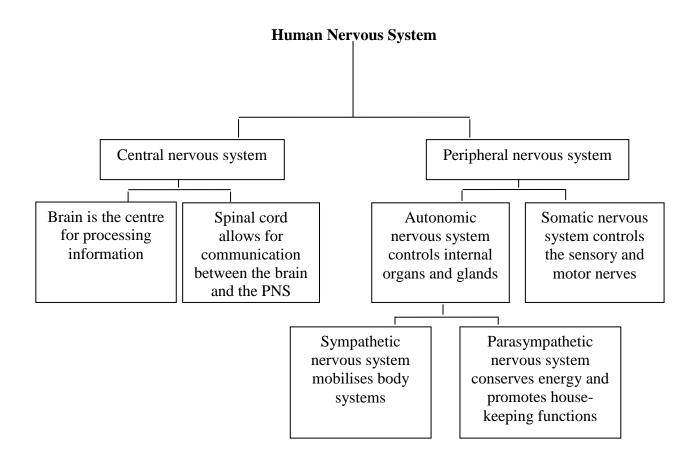



Fig. 2.1: Organisation of the nervous system (adapted from Barker, 1901).

Neurons are the basic units of the nervous system, connecting to form neural networks (Luse, 1956, DeFelipe, 1997). Each neuron consists of dendrites (projections that receive electric stimuli), a cell body and axons (Bohler et al., 2007). Axons are specialised structures that conduct and transmit action potentials to adjacent neurons via synapses (Liu and Bahu, 1975). Once the signal reaches the axon terminal a neurotransmitter is released which rapidly crosses over to the receptor site of the next neuron (DeFelipe, 1997).

Specialised neurons are triggered by specific stimuli (Dubin and Patapoutian, 2010). Sensory neurons, also known as afferent neurons, respond to stimuli such as sound, touch, light and changes in the pH. The A $\delta$  and C afferent sensory neurons that respond to painful stimuli are known as nociceptors (Barker, 1901, Dubin and Patapoutian, 2010). Nociceptors have high

sensitivity and are sensitised by mechanical, thermal or chemical stimuli leading to pain generation (Dubin and Patapoutian, 2010, Basbaum et al., 2009, Millan, 1999).

#### 2.2.1 Female pelvic innervation

The female pelvis is a complex structure and any dysfunction within it can lead to pelvic pain (Wasnik et al., 2011). The female pelvis has both sympathetic and parasympathetic nerve supplies (Ferner, 1964, Keast, 2006). Furthermore, the pelvic viscera are innervated with both sensory and motor fibres. The motor nerve fibres extend from the spinal cord or the brain to the organ and sensory fibres bring information back to the spinal cord or brain (Frank and Netter, 2006). The complex innervation of the pelvis comes from the superior hypogastric plexus, sympathetic chain (L1–L5), parasympathetic fibres (S2–S4) and sacral plexus (sacral splanchnic nerves, S1–S5; see Fig. 2.2; Cervero, 1994, Keast, 2006). Visceral sensory nerve fibres respond to noxious stimuli and can evoke the sensation of pain which is generally poorly localised (Cervero, 2010, Cervero, 1991). Most visceral sensory nerve fibres are Að and C unmyelinated fibres, as observed in the eutopic endometrium and endometriotic lesions of women with endometriosis (Cervero and Laird, 2004, Tokushige et al., 2006a, Tokushige et al., 2007, Wang et al., 2009). These fibres are responsible for transmitting dull, throbbing pain (Bielefeldt et al., 2006).

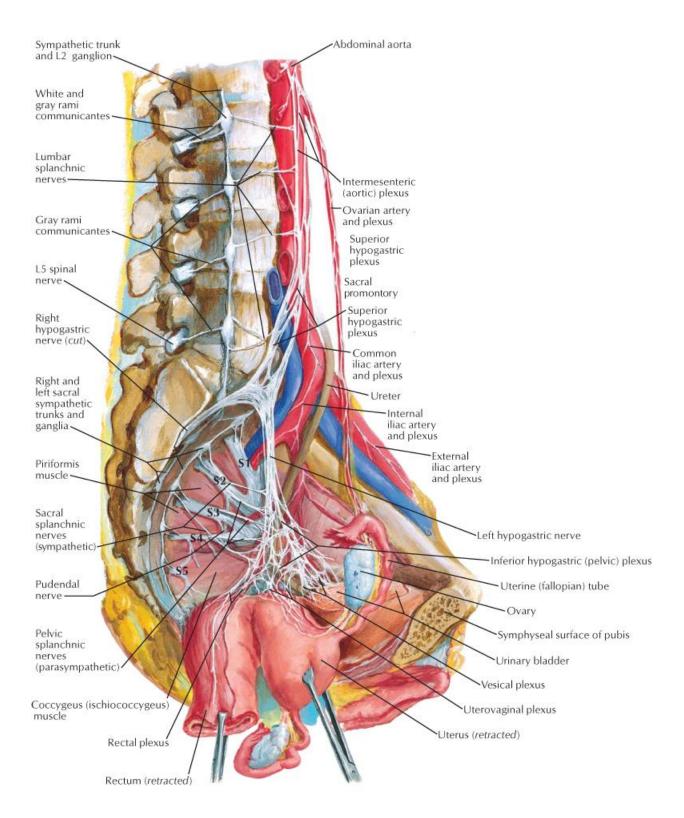



Fig 2.2.: Female pelvic innervation (Frank and Netter, 2006).

#### 2.3 Pain

According to the International Association for the Study of Pain, pain is defined as an unpleasant emotional and sensory experience due to noxious stimuli associated with actual or potential tissue damage (Merskey and Bogduk, 1994, Anand and Craig, 1996, Schaible, 2007, Howard, 2009). Pain can be acute or chronic. Acute pain is the normal processing that warns the body against noxious stimuli. In contrast, chronic pain is caused by disease or when noxious stimuli persist for longer periods (six months or more; Schaible, 2007, Calvino and Grilo, 2006, Russo and Brose, 1998). Pain is also influenced by social and psychological factors (Merskey, 1994, Chapman and Gavrin, 1999, Kendall, 1999) and can promote a stress response leading to fatigue, impaired mental and physical function (Chapman and Gavrin, 1999, Kendall, 1999).

Pain is generated when potentially noxious stimuli sensitise the surrounding specialised sensory neurons known as nociceptors responsible for transmitting painful signals, thus generating an action potential which is conducted along the nerve axons to the spinal cord and the CNS (Latremoliere and Woolf, 2009, Schaible, 2007, Ji and Woolf, 2001). The CNS then processes the received information and generates responses of pain recognition such as discrimination and localization, arousal and aversive reactions due to the noxious event (Schaible, 2007, Cervero, 1995, Cervero and Laird, 2004). Application of noxious stimuli can either lead to spontaneous pain (pain in the absence of any intentional stimulation), hyperalgesia (extreme pain from a stimulus that evokes pain) and/or allodynia (pain due to a stimulus that does not usually provoke pain; Jensen and Finnerup, 2014).

Pain can be further classified into nociceptive, neuropathic and inflammatory. Nociceptive pain typically originates from the peripheral tissue to warn of potentially noxious stimuli

(Asante and Taylor, 2011, Cervero, 1988, Fraser, 2010, Grimm et al., 2011, Howard, 2009). It includes four basic processes: transduction, transmission, modulation and perception (described in detail in Section 2.4; Howard, 2009). It may be somatic or visceral in origin. Somatic pain is localised and is often recognised as sharp pain, whereas visceral pain is diffuse and often difficult to assess (Vercellini et al., 2009, Gebhart, 2000). Neuropathic pain is caused by damage to the central or peripheral nervous system (Latremoliere and Woolf, 2009, Campbell and Meyer, 2006). It generally does not trigger an acute event but leads to a state of chronic pain (Howard, 2009, Sivilotti and Woolf, 1994). Following nerve injury, persistent axonal discharges set up abnormal neural circuits via the spinal cord resulting in persistent, prolonged or intermittent signals to the brain and even after the original stimulus has been removed (Wu et al., 2001, Djouhri et al., 2006, Obata et al., 2003). In inflammatory pain, sensitisation lowers the threshold of polymodal nociceptors as well as recruits insensitive nociceptor which evokes an intense response and renders non-painful stimuli to be painful (Schaible, 2007, Voscopoulos and Lema, 2010, Staud, 2011). However, pain may not strictly be nociceptive, neuropathic or inflammatory as all three may contribute to one another (Schaible, 2007).

#### 2.3.1 The pain matrix

The pathways and processes in the body associated with pain perception are complex and may collectively be referred to as the pain matrix (Tracey and Mantyh, 2007). The processes involved in pain generation include neuronal development, peripheral sensitisation due to inflammation, transduction, conduction via synaptic transmission and modulation (see Fig. 2.3; Foulkes and Wood, 2008). These processes are described in more detail below in Sections 2.3.1.1-2.3.1.5.

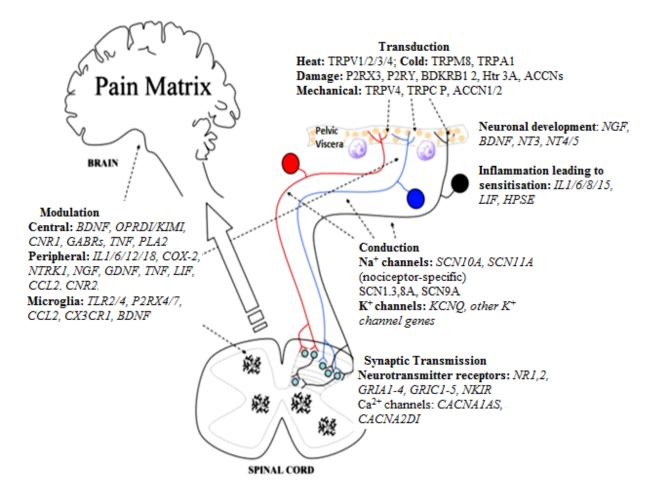



Fig. 2.3: Figure illustrating pain pathways and processes from the site of injury through the spinal cord to the brain; as well as the genes involved in the transduction, conduction, transmission and modulation of pain (adapted from Foulkes and Wood, 2008).

Briefly, in the periphery, enhanced neuronal remodelling and development may lead to increased peripheral sensitisation due to pro-inflammatory mediators produced following a noxious event (Schaible, 2007). This activates the nociceptors on the peripheral nerves to create action potentials, causing depolarisation of the local membranes and transmission along the axons (Foulkes and Wood, 2008, Cervero and Laird, 2004). Synaptic transmission takes place in the spinal cord. Cytokines, released in response to injury, alter the excitability of sensory neurons leading to pain modulation (Cervero and Laird, 2004, Sivilotti and Woolf, 1994). From the spinal cord, information is transmitted to the brain and processed (Foulkes

and Wood, 2008, Apkarian et al., 2005, Gangadharan and Kuner, 2013, Kuner, 2010, Kitahata, 1993, Willis, 1985, Millan, 1999, Derbyshire, 2000).

Pathways and processes in chronic pain are more complex. Chronic pain persists even after the original injury heals, and is influenced by an individual's genetically determined pain sensitivity combined with changes in the neuroplasticity of the CNS (Phillips and Clauw, 2011, Sarzi-Puttini et al., 2011, Staud, 2011). Individuals with chronic pain have enhanced sensitisation to stimuli and increased levels of pro-inflammatory mediators involved in pain modulation (Vincent et al., 2011, Kaya et al., 2013).

# 2.3.1.1 Neuronal development

Neurotrophic factors such as NGF and BDNF are responsible for the development, survival and maintenance of sensory neurons in the periphery (Lindsay, 1996, Huang and Reichardt, 2001). Both protein and mRNA expressions of these growth factors are known to be increased during pain generation, which may contribute to increased neuronal development in the periphery (Cho et al., 1997b, Zhu et al., 2001, Hinsby et al., 2004, Lin et al., 2011, McKelvey et al., 2013). The sensitisation of the peripheral sensory neurons by pro-inflammatory mediators contributes to pain generation (Cervero, 1995, Voscopoulos and Lema, 2010, Gangadharan and Kuner, 2013).

Persistent noxious stimulation leads to remodelling of the neurons as well as neuronal synapses which intensify signal transmission (Voscopoulos and Lema, 2010, Treede, 1999). This leads to the sensory neurons becoming more sensitive to noxious stimulation and evoking a stronger response to even non-painful stimuli (Russo and Brose, 1998, Schachner, 1997, Voscopoulos and Lema, 2010). Moreover, the remodelled neurons tend to develop

more connections with the neurons in the dorsal root ganglion (DRG) of the spinal cord and CNS in order to transmit more painful signals contributing to the development of chronic pain (Ji and Woolf, 2001, Woolf and Salter, 2000).

### 2.3.1.2 Sensitisation due to inflammation

Peripheral sensitisation leads to lowering of threshold of peripheral sensory neurons and activating the nociceptors at the peripheral nerve ends (Gangadharan and Kuner, 2013, Kitahata, 1993, Staud, 2011, Schaible, 2007). This generates an action potential which is transferred from the nerves to the spinal cord and the brain (Schaible, 2007, Voscopoulos and Lema, 2010). Following a noxious event, the pro-inflammatory mediators such as cytokines and growth factors, released by the damaged cells directly sensitise the nociceptors (Sommer and Kress, 2004, Kawasaki et al., 2008, Pezet and McMahon, 2006). Furthermore, inflammatory mediators such as prostaglandins, serotonin and bradykinin alter the sensitivity of the sensory neurons to mechanical and thermal stimuli (Dray and Perkins, 1993, Bardin, 2011, Voscopoulos and Lema, 2010).

Due to persistent sensitisation due to inflammation, the threshold of the peripheral sensory neurons lowers to an extent that innocuous stimuli can activate the nociceptors (Schaible, 2007). Moreover, mechano-insensitive nerve fibres become mechano-sensitive fibres leading to a much more pronounced input to the spinal cord (Schaible, 2007, Russo and Brose, 1998, Voscopoulos and Lema, 2010). Following injury, both protein and gene levels of inflammatory mediators upregulate contributing to increased peripheral sensitisation thereby leading to pain generation (Banner and Patterson, 1994, Gadient and Patterson, 1999, Page et al., 2005, Homma et al., 2013).

# 2.3.1.3 Transduction

Transduction is the conversion of noxious stimuli to electrical impulses. It takes place when nerve endings of nociceptors (C and A $\delta$  fibres) respond to noxious stimuli (Foulkes and Wood, 2008, Xu et al., 2008, Cervero and Laird, 2004, Treede, 1999). Nociceptors are distributed in the skin, muscles, connective tissue, bones, joints and viscera. Their characteristics and functions are detailed in Table 2.1 (Millan, 1999, Binshtok, 2011). Once a noxious stimulus is received by the nociceptor, an action potential is generated due to the opening of ion channels and a flux of ions across cell membranes within the afferent sensory neurons (Foulkes and Wood, 2008). Information regarding the intensity and site of injury is sent to the CNS via these action potentials (Gangadharan and Kuner, 2013, Dussor et al., 2009).

| Type of                 | Type of stimuli                   | Receptors                        | Acute or     | Type of nerve |
|-------------------------|-----------------------------------|----------------------------------|--------------|---------------|
| nociceptor              |                                   |                                  | chronic pain | fibre         |
| Thermal <sup>1</sup>    | Noxious heat (~40-                | TRPV1, TRPM8                     | Acute pain   | Small         |
|                         | 45°C); cold (10-15°C)             |                                  |              | diameter,     |
|                         |                                   |                                  |              | myelinated Aδ |
|                         |                                   |                                  |              | fibres        |
| Mechanical <sup>2</sup> | Change in pressure;               | TRPV4, Vesicular                 | Acute pain   | Small         |
|                         | distension; cuts; blows           | glutamate transporter            |              | diameter,     |
|                         |                                   |                                  |              | myelinated Aδ |
|                         |                                   |                                  |              | fibres        |
| Chemical <sup>3</sup>   | Changes in pH;                    | Acid sensing ion                 | Chronic pain | Small         |
|                         | inflammatory mediators;           | channels (ASIC),                 | -            | diameter,     |
|                         | capsaicin                         |                                  |              | unmyelinated  |
|                         | -                                 |                                  |              | C fibres      |
| Polymodal <sup>4</sup>  | Change in temperature,            | TRPA1, tachykinin                | Chronic pain | Small         |
| -                       | pressure and pH;                  | NK1 receptor                     | -            | diameter,     |
|                         | inflammatory mediators            | -                                |              | unmyelinated  |
|                         | outian 2010 Foulkes and Wood 2008 | Lee et al. 2005h Levine and Ales |              | C fibres      |

#### Table 2.1: Types of nociceptors

1 (Dubin and Patapoutian, 2010, Foulkes and Wood, 2008, Lee et al., 2005b, Levine and Alessandri-Haber, 2007, Liu et al., 2013)

2 (Dubin and Patapoutian, 2010, Lee et al., 2005b)

3 (Dubin and Patapoutian, 2010, Lee et al., 2005b, DeFelipe, 1997)

4 (Dubin and Patapoutian, 2010, Lee et al., 2005b, Treede, 1999)

Genes involved in transduction are expressed in the primary sensory neurons (Treede, 1999, Foulkes and Wood, 2008, Zakir et al., 2012, Urano et al., 2012). Some genes are specifically expressed following tissue damage, mediate the release of soluble mediators following sensitisation and increase the excitability of sensory neurons (Trang et al., 2006, Chessell et al., 2005, Binshtok, 2011, Lee et al., 2005b).

### **2.3.1.4** Conduction and transmission

Pain impulses are conducted from the site of transduction along sensory nerve fibres and transmitted to the dorsal horn neurons of the spinal cord via synapses, and then to the brain (see Fig. 2.4; Schaible, 2007, Foulkes and Wood, 2008, Argoff, 2011, Gangadharan and Kuner, 2013, Lee et al., 2005b).

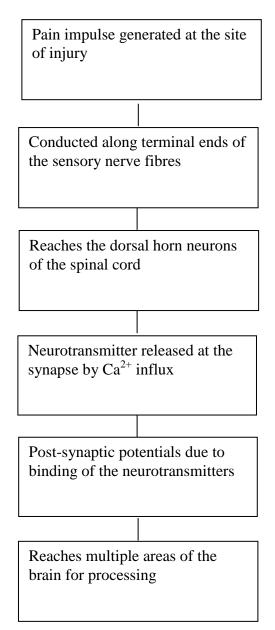



Fig. 2.4: Schematic presentation of conduction and transmission of pain impulses from the site of injury to the brain.

Voltage-gated sodium ion channels conduct action potentials along the axons to the spinal cord (Waxman et al., 1999, Lee et al., 2005b, Wood, 2004, Foulkes and Wood, 2008). In response to depolarisation of local membranes, sodium channels open and allow an influx of sodium ions generating a potential in the terminal ends of the sensory neurons and conducting them along the axons (Dib-Hajj et al., 2010, Binshtok, 2011, Waxman, 2010, Waxman et al., 1999, Lee et al., 2005b).

The action potential is transmitted from the peripheral nerve fibres to the DRG of the spinal cord (Foulkes and Wood, 2008, Kitahata, 1993, Argoff, 2011), which is mediated by the influx of calcium ions (Ca<sup>2+</sup>) through the voltage dependent calcium ion channels (Rahman and Dickenson, 2013). This leads to the release of neurotransmitters from the presynaptic membrane of the neuron transmitting the action potential by interacting with the receptors of postsynaptic membrane of the receiving neuron (Kitahata, 1993, Cervero and Laird, 2004, Schaible, 2007). Synaptic transmission is modulated by neurotransmitters and may either inhibit or enhance the signal transmission (Schaible, 2007).

The genes involved in conduction of action potentials include gated sodium-ion channel genes (*SCN10A*, *SCN9A*, *SCN3*, and *SCN11A*) and gated potassium ion genes (*KCNQ*). Their expressions have been shown to be altered during pain (Dib-Hajj et al., 2013, Black et al., 2004, Wang et al., 2011, Rahman and Dickenson, 2013, Yoshimura and de Groat, 1999, Waxman, 2010, Lee et al., 2005b). Moreover, inflammatory mediators such as cytokines, NGF, tumor necrosis factor- $\alpha$  (TNF- $\alpha$ ) and prostaglandins can increase the expression of sodium ion channels (Gould et al., 2000, Black et al., 2004) and may contribute to increased action potential generation and conduction.

## 2.3.1.5 Pain modulation

Pain modulation is the alteration of the excitability of sensory neurons, leading to promotion or inhibition of ascending or descending pain impulses (Gangadharan and Kuner, 2013, Yarnitsky, 2010, Schaible, 2007, Millan, 1999, Kitahata, 1993). Changes in neuronal function following persistent nociceptive activity can contribute to the enhancement of signal transmission as well as increased neuronal excitation, leading to persistent pain (Ossipov et al., 2010, Millan, 2002, Tracey and Mantyh, 2007). Receptors involved in determining enhancement and inhibition of signal transmission include ligand gated ion channels, G-protein coupled receptors and receptor tyrosine kinases, serotonin (5-HT) receptors 1A and 5A, norepinephirine receptors, gamma-aminobutyric acid (GABA) receptors and adrenergic receptors (Ahmad and Dray, 2004, Bolay and Moskowitz, 2002, Pan et al., 2008, Yarnitsky, 2010, Ossipov, 2012, Ossipov et al., 2010, Lindstedt et al., 2011, Treister et al., 2011, Lambe et al., 2011). Genes encoding for these receptors may have both enhancing and inhibitory effects on the ongoing pain pathways. For example, genes encoding for serotonin receptor 1A and 5A, inhibit pain, whereas genes encoding for serotonin receptors 2A and 7A promote pain (Treister et al., 2011, Foulkes and Wood, 2008, Lambe et al., 2011). Moreover, inhibitory receptors may become excitatory in cases of intense activation, such as following axonal injury and contribute to chronic pain (Staley et al., 1995, Owens et al., 1996, Cho et al., 1997a).

The pain modulating receptors are activated by a number of neurotransmitters which are released by sensory nerve fibres following persistent noxious stimulation (Woolf and Salter, 2000). An upregulation in the expression of excitatory receptors may contribute to maintenance of pain. Neurotransmitters involved in excitatory pain modulation include brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), cytokines such as interleukin-1 (IL-1), prostaglandins and substance P (Foulkes and Wood, 2008, Kitahata, 1993). These factors not only sensitise the sensory neurons directly but also modulate them to respond to low-intensity stimuli (Foulkes and Wood, 2008, Millan, 1999, Schaible, 2007). Gene expression of excitatory neurotransmitters upregulates in chronic pain conditions (di Mola et al., 2000, Obata et al., 2003, Lin et al., 2011, Browne et al., 2012).

### 2.4 Current understanding of pain in endometriosis

Pain symptoms often debilitate women with endometriosis for years (see Table 2.2). The compression of the nerve fibres by endometriotic lesions and/or sensitisation of the infiltrating nerve fibres in the lesion may contribute to endometriosis pain (Triolo et al., 2013, Morotti et al., 2014b, Neziri et al., 2014, McKinnon et al., 2015). Peripheral sensitisation in endometriosis may be promoted due to increased production of pro-inflammatory mediators by eutopic endometrium and endometriotic lesions, enhancing signal transduction, conduction and modulation which may contribute to the associated pain symptoms (Stratton and Berkley, 2011, Triolo et al., 2013). Moreover, pain in endometriosis may be due to nociceptive, inflammatory and/or neuropathic mechanisms (Howard, 2009, Fraser, 2010, Grimm et al., 2011).

| Symptoms               | Description and characteristics                                                                                                                                                                                 | Prevalence            |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Chronic pelvic<br>pain | • Non-cyclic pain lasting more than six months                                                                                                                                                                  | (34-90%) <sup>1</sup> |  |
| Dysmenorrhoea          | <ul> <li>Uterine pain during menstruation</li> <li>Sharp pelvic cramps at the start of menstrual flow radiating to the lower back or thighs or deep, dull aches</li> </ul>                                      | (40-90%) <sup>2</sup> |  |
| Dyspareunia            | <ul> <li>Pain during sexual intercourse</li> <li>May be at the vaginal canal, at the level of the cervix or in the pelvic/uterine/abdominal region or the vulvar region and/or the vaginal introitus</li> </ul> | (24-80%) <sup>3</sup> |  |
| Dyschezia              | <ul><li>Pain in defecating</li><li>Can worsen with menstruation</li></ul>                                                                                                                                       | (7-51%) <sup>4</sup>  |  |
| Dysuria                | • Pain and burning sensation during urination in the absence of urinary tract infection                                                                                                                         | $(5-27\%)^5$          |  |

Table 2.2: Pain symptoms associated with endometriosis.

I(De Graaff et al., 2013, Fauconnier et al., 2002, Mahmood et al., 1991, Porpora et al., 1999, Milingos et al., 2006, Leng et al., 2007, Ling, 1999)

2(De Graaff et al., 2013, Fauconnier et al., 2002, Mahmood et al., 1991, Porpora et al., 1999, Chapron et al., 2003, Milingos et al., 2006)
3(Bernuit et al., 2011, Denny and Mann, 2007, Ferrero et al., 2005, De Graaff et al., 2013, Fauconnier et al., 2002, Mahmood et al., 1991, Porpora et al., 1999)

4(Fauconnier et al., 2002, Roman et al., 2012, Hao et al., 2009, Leng et al., 2007, Dai et al., 2012, MacDonald et al., 1999)

5(Gabriel et al., 2011, Camanni et al., 2009, MacDonald et al., 1999)

**6**(Preciado Ruiz et al., 2005, Schrager et al., 2013, Meuleman et al., 2009, Khawaja et al., 2009, Holoch and Lessey, 2010, Ozkan et al., 2008)

## 2.4.1 Nociceptive pain in endometriosis

Pain in endometriosis involves the pelvic viscera, evidence for which includes high density of unmyelinated C fibres in the eutopic endometrium and endometriotic lesions (Tokushige et al., 2006a, Tokushige et al., 2010, Wang et al., 2009). Also, chemical mediators, such as cytokines, released by local immune cell populations may contribute to the activation of nociceptors (Fraser, 2010, Cervero and Laird, 2004, Cervero, 1995, Simone and Kajander, 1997, Perl, 2007, Basbaum et al., 2009, Giudice and Kao, 2004, Schmidt et al., 1995). Typical nociceptive pain ceases when noxious stimuli are removed. Studies have shown significant improvement in pain symptoms after surgical removal of endometriotic lesions (Grimm et al., 2011, Howard, 2009, Sutton et al., 1994, Abbott et al., 2004). However, in some cases total pain relief is not achieved and some degree of pelvic pain persists, indicating

that pain in endometriosis is not only nociceptive but may also be of inflammatory and/or neuropathic origin (Howard, 2009).

### 2.4.2 Inflammatory pain

Inflammatory pain occurs due to tissue injury and is a major cause of visceral pain. Many processes in endometriosis increase the production of pro-inflammatory mediators (Costigan et al., 2002, Cakmak et al., 2009, Hirata et al., 2008, Anaf et al., 2002, Noble et al., 1997). For example, macrophage migration inhibitory factor, TNF- $\alpha$ , IL-1 $\beta$ , IL-6, IL-8, regulated on activation normal T expressed and secreted (RANTES) and monocyte chemotactic protein-1 have increased levels in the eutopic endometriosis (Hille, 1992, Mannion et al., 1999, Bedaiwy et al., 2007, Bersinger et al., 2006, Velasco et al., 2010, Arici, 2002, Akoum et al., 2001, Morin et al., 2005). These may contribute to sensitisation of peripheral sensory neurons leading to pain generation.

Pro-inflammatory factors released by the eutopic endometrium as well as endometriotic lesions may contribute to inflammatory pain (Longhurst and Dittman 1987; Bulmer, Lunny et al. 1988; Bennett 2001; Malcangio and Lessmann 2003; Antsiferova, Sotnikova et al. 2005; Tegeder, Costigan et al. 2006; Merighi, Salio et al. 2008; Borghese, Vaiman et al. 2010; Tremblay and Hamet 2010; Browne, Yu et al. 2012). For example, NGF contributes to inflammatory pain by inducing the expression of neuropeptides and modulating central pain transmission (Gould et al., 2000, Pezet and McMahon, 2006). Excessive oestrogen production leads to production of prostaglandins, which can directly activate nerve endings thereby aiding in inflammatory pain generation (Kauppila et al., 1979, Koike et al., 1992). Although the number of studies indicating that pain in endometriosis is inflammatory is

increasing, it remains to be determined whether the inflammatory microenvironment is causal or a consequence of endometriosis.

### 2.4.3 Neuropathic pain

The presence of nerve fibres both in the eutopic endometrium and endometriotic lesions as well as their association with endometriosis-associated pain has been reported (Anaf et al., 2002, Tokushige et al., 2007, Berkley et al., 2005). Direct evidence for neuropathic pain in endometriosis is lacking; however, there are studies to support this (McAllister et al., 2012, Bajaj et al., 2003, Pacchiarotti et al., 2013). For example, Anaf et al. (2000) reported that pain in endometriosis may be due to the physical interaction between nerve fibres and endometriotic lesions. However, these findings have been limited to only DIE lesions (Anaf et al., 2002). Moreover, women with peritoneal lesions associated with high nerve fibre densities reported more pain than women with peritoneal lesions not associated with nerve fibres (McKinnon et al., 2012).

In peritoneal lesions, there is an increased expression of markers for sensory, sympathetic and parasympathetic nerves compared to normal peritoneum (Tokushige et al., 2006b). Studies have confirmed the innervation of endometriotic lesions by slow unmyelinated sensory C and the faster myelinated  $A\delta$  nerve fibres which are responsible for mediating painful stimuli (Berkley et al., 2004, Tokushige et al., 2006b). Research by Mechsner et al. (2007) has shown growth associated protein (GAP) 43, a marker for neural outgrowth and regeneration, to be strongly expressed in nerve fibres associated with endometriotic lesions. All these suggest that endometriosis may have neuropathic properties that can lead to changes in the nervous system, however the exact mechanisms remain unclear (Howard, 2009, McKinnon et al., 2015).

### 2.4.4 Central pain processing in endometriosis

It has been observed that in chronic pelvic pain conditions such as endometriosis, women exhibit enhanced pain processing by the CNS (Bajaj et al., 2003, Weiwei He et al., 2010, Laursen et al., 2005, As-Sanie et al., 2012, Neziri et al., 2014). Chronic pain, as experienced by many women with endometriosis, is a consequence of deficits in conditioned pain modulation, which inhibits pain by the descending pathways, and increased sensitivity to noxious stimulation (Calvino and Grilo, 2006, Fornasari, 2012).

In endometriosis, the pro-inflammatory microenvironment together with hyper sensory innervation in the pelvic viscera may lead to intense nociception, which contributes to increased sensitisation of the neurons in the DRG and CNS, also known as central hyper-excitability (Triolo et al., 2013, Evans et al., 2007, Kobayashi et al., 2013). The central hyper-excitability involves loss of inhibitory mechanisms, contributing to increased pain and enlarged referred areas, which is pain perceived at a site distant from the site of painful stimulus (Dubner, 1991, Dubner, 1994, Bajaj et al., 2003). Central hyper-excitability is further aggravated during menstruation due to abrupt changes in hormonal production and increased production of pro-inflammatory neuropeptides such as prostaglandins, leading to decreased threshold of the neurons to pressure and heat (Bajaj et al., 2003, Bajaj et al., 2002, Brawn et al., 2014). The aggravated central hyper-excitability may lead to persisting pain even after the surgical removal of endometriotic lesions (Bajaj et al., 2003). Furthermore, women with endometriosis-associated pain demonstrate increased sensitivity to noxious stimulation due to inflammation than women without endometriosis (Bajaj et al., 2003, Brawn et al., 2014, Neziri et al., 2010).

In addition to central hyper-excitability, women with endometriosis show changes in the brain that relate to pain processing. Morphological changes in the brain such as reduced grey matter volume have been observed in chronic pain (Rodriguez-Raecke et al., 2009, Baliki et al., 2011). In a recent study by As-Sanie et al. (2012), a reduction in the volume of brain grey matter was demonstrated in women with endometriosis-associated pain compared to women with endometriosis but no pain. Reduced volume of grey matter, which processes the sensory signals from the viscera, means that noxious stimulation is no longer required for pain generation and the constant pain experience is being driven by the brain itself (Rodriguez-Raecke et al., 2009, As-Sanie et al., 2012, Baliki et al., 2011). Longer duration of noxious stimulation and neuronal remodelling of the pain network contributes to reduced grey matter volume and transition to a chronic pain state (As-Sanie et al., 2012).

In summary, pain in endometriosis ranges from mild to severe with some women being asymptomatic. Complex mechanisms, along with genetic and environmental factors and prior experiences may contribute to variability in pain experiences by women with endometriosis. Pain in endometriosis may be of nociceptive, inflammatory or neuropathic origin. However, pain mechanisms in endometriosis remain poorly understood due to lack of research as well as the multifaceted nature of the disease and associated molecular mechanisms. Studies focusing on elucidating pain mechanisms have generally been hampered by factors such as insufficient sample size, loss to follow up and improper study designs.

### 2.5 Impact of pain on women's lives

Endometriosis pain has a negative impact on women's professional and personal lives (Mathias et al., 1996, Huntington and Gilmour, 2005, Oehmke et al., 2009, Culley et al., 2013). It is entwined with a wide range of other symptoms such as bowel problems, being

generally unwell, fatigue and depression (Huntington and Gilmour, 2005). Delay in diagnosis as well as uncertainty of response to treatment impacts the duration and severity of the pain experienced by these women (Denny, 2004, Oehmke et al., 2009). Absenteeism from work, reduced productivity, financial hardship due to lost work hours, cost of treatment and lack of understanding by employers and colleagues often hampers professional lives of women with endometriosis (Denny, 2004, Culley et al., 2013, Huntington and Gilmour, 2005).

In terms of their personal lives, many women are embarrassed to talk about endometriosis pain due to the taboos surrounding menstruation, sexual problems and pelvic pain, leading to social isolation (Huntington and Gilmour, 2005, Gilmour et al., 2008, Jones et al., 2004, Denny, 2004). Women may not be able to participate in daily chores due to pain associated with endometriosis (Oehmke et al., 2009). Endometriosis pain impacts not only women with the disease but also those who surround them, and society as a whole. The combined annual costs of healthcare and loss of productivity associated with pain due to endometriosis have been estimated at AUD 12,094.25 (approximately  $\notin$ 9579) per patient (Simoens et al., 2012).

### 2.6 Pain management

The complex and highly variable nature of endometriosis pain makes its successful management difficult. Conservative surgery for treating pain in endometriosis provides relief in 60-80% patients (Abbott et al., 2004). This type of surgery includes endometriotic lesion excision and ablation, with both providing same level of pain relief (Healey et al., 2010). In women with ovarian endometriosis, excision of the endometrioma cyst wall results in reduced pain rates compared to ablation (Hart et al., 2008). Complete removal of lesions may provide relief from pain symptoms, however pain symptoms can recur after surgery. Almost

half of women relapse within five years of the surgery and almost half of these patients require further surgery (Sutton et al., 1997, Fauconnier and Chapron, 2005, Medicine, 2006).

Disruption of neural pathways serving the pelvis may also provide relief from pain due to endometriosis (Hansen et al., 2010, The Practice Committee of the American Society for Reproductive, 2014, Lee and Yang, 2008, Yuan, 2006). These include laparoscopic uterosacral nerve ablation, the disruption of efferent nerve fibres in the uterosacral ligaments and presacral neurectomy, interruption of sympathetic innervations at the level of superior hypogastric plexus (Howe et al., 2010, Medicine, 2006, Valle and Sciarra, 2003, Kennedy et al., 2005). Laparoscopic uterosacral nerve ablation provides no significant pain relief when compared to conservative surgery (The Practice Committee of the American Society for Reproductive, 2014, Davis, 1996). On the other hand, presacral neurectomy has been proposed for treating midline pain, however it is a technically challenging procedure and involves significant risk of bleeding from the adjacent venous plexus so is unpopular (Valle and Sciarra, 2003, Howe et al., 2010, Kennedy et al., 2005, Hansen et al., 2010).

Radical surgery may be offered to women who do not wish to conceive or for whom all other therapies for relieving pain have failed (Hansen et al., 2010, The Practice Committee of the American Society for Reproductive, 2014). This includes hysterectomy, bilateral oophorectomy and removal of all endometriotic implants. Radical surgery is generally thought to provide definitive pain relief, however if ovaries are not removed at the time of surgery pain may recur (Hansen et al., 2010).

Currently available medical management approaches for endometriosis pain include analgesics and hormonal suppression (Bruner-Tran et al., 2013, Huang, 2008). When investigations reveal no definite diagnosis, analgesics and non-steroidal anti-inflammatory drugs (NSAIDs), available over the counter or through prescription, are offered for controlling pain symptoms (Kennedy et al., 2005). Analgesics such as Paracetamol, the daily dose for which is 4000 mg or 1000 mg four hourly, reduce pain by blocking existing pain however do not alter any disease mechanism in the body (Huang, 2008, Bruner-Tran et al., 2013, Nasir and Bope, 2004, Kennedy et al., 2005). In cases where these are not able to alleviate endometriosis pain, stronger pain killers such as co-analgesics, dihydrocodeine or opioids may be prescribed (Kennedy et al., 2005). However, these cannot be used for long term as they have side effects such as dependency (Medicine, 2014, Kennedy et al., 2005). NSAIDS such as ibuprofen, naproxen sodium, ketoprofen and mefenamic acid alleviate pain symptoms by blocking cyclooxygenase and therefore the production of prostaglandins (Lethaby et al., 2007). They must be taken 24 hours before the expected pain experience as well as six-hourly in order to be effective (Lethaby et al., 2007). Although effective, they can have serious side effects such as nausea, vomiting, diarrhoea, irritation of the stomach and stomach ulcers (Medicine, 2014).

Hormonal treatment involves providing a steady hormonal environment that suppresses eutopic endometrium and endometriotic lesions to provide relief from the associated pain. It is used as primary medical therapy as well as in conjunction with surgical resection for managing endometriosis pain (Surrey, 2006, Brown et al., 2012, Zito et al., 2014, Angioni et al., 2014, Schweppe, 2001). Hormonal treatment includes the combined oral contraceptive (OCs); progestins taken as tablet, injection once in three months or continuously as a rod inserted under the skin or released from an intrauterine system (levonorgestrel-releasing intrauterine system; LNG-IUD); and gonadotropin-releasing hormone (GnRH) analogues (Prentice et al., 2004, Moore et al., 2004, Kennedy et al., 2005). Combined oral contraceptive pills alleviate pain symptoms by suppressing endometriotic lesion growth as well as reducing production of prostaglandins thereby decreasing inflammation (Moore et al., 2004, Moore et al., 2000). Both traditional OCs containing androgenic progestogens (19-nortestosterone derivatives) as well as new generation OCs containing progestogen and desogestrel provide relief from endometriosis pain symptoms in up to 75% patients (Moore et al., 2004, Hansen et al., 2010, Proctor et al., 2001, Harada et al., 2008). Continuous low dose OCs are more effective in controlling pain symptoms than cyclic doses (Zorbas et al., 2015, Vercellini et al., 2003, Seracchioli et al., 2010).

Progestins relieve endometriosis pain symptoms by creating a state of pseudopregnancy and atrophy of endometriotic lesions (Schweppe, 2001). The variety of available agents have varying pros and cons (see Table 2.3), however no single agent can be considered more efficacious than another (Schweppe, 2001, Zito et al., 2014, Surrey, 2006, Bahamondes et al., 2007, Fedele and Berlanda, 2004). This may be due to lack of appropriate randomised controlled trials and standardised evaluation of pain in women with endometriosis (Surrey, 2006, Fedele and Berlanda, 2004). All available progestins have similar side effects such as weight gain, acne, increased hair growth, breast tenderness, cramps and mood swings (Schweppe, 2001).

| Name                                                 | Form                               | Dosage                                                                                   | Advantages                                                                                                                                                                            |
|------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dienogest <sup>1</sup>                               | Tablet                             | 2 mg/day                                                                                 | <ul> <li>Fewer side effects than<br/>Danazol and GnRH<br/>analogues</li> <li>Safe</li> </ul>                                                                                          |
| Dydrogesterone <sup>2</sup>                          | Tablet                             | 10-30 mg/day                                                                             | <ul><li>Compatible with conception</li><li>Reduces bleeding</li></ul>                                                                                                                 |
| Medroxyprogesterone acetate <sup>3</sup>             | Tablet                             | 30-60 mg/day                                                                             | • Fewer side effects than<br>Danzol and GnRH<br>analogues                                                                                                                             |
| Norethisterone <sup>4</sup>                          | Tablet                             | 2.5-5 mg/day                                                                             | <ul> <li>Controls uterine bleeding</li> <li>Positive effect on calcium metabolism</li> <li>No negative effects on lipoprotein metabolism at low dosages</li> </ul>                    |
| Depot<br>medroxyprogesterone<br>acetate <sup>5</sup> | Long-<br>acting<br>injection       | 50 mg injection/week<br>or 100 mg injection/2<br>weeks or 150 mg<br>injection/2-3 months | <ul> <li>Fewer side effects than<br/>Danzol and GnRH<br/>analogues</li> <li>Compliance with long-<br/>term administration</li> </ul>                                                  |
| Levonorgestrel<br>intrauterine system <sup>6</sup>   | T-shaped<br>intrauterine<br>device | 52 mg levonorgestrel<br>released into the uterus<br>over a period of 5 years             | <ul> <li>Avoidance of repeated<br/>administrations</li> <li>Increase of compliance in<br/>long-term administration</li> <li>Greater efficacy compare<br/>to GnRH analogues</li> </ul> |

2 (Brown et al., 2012, Fedele and Berlanda, 2004, Zito et al., 2014, Schweppe, 2001)

3 (Schlaff et al., 2006, Fedele and Berlanda, 2004)

4 (Morotti et al., 2014a, Schweppe, 2001)

5 (Schlaff et al., 2006)

6 (Bahamondes et al., 2007, Petta et al., 2005, Vercellini et al., 2005, Lockhat et al., 2005)

GnRH analogues provide pain relief by inducing amenorrhea and progressive endometrial atrophy (Huang, 2008, Medicine, 2006, Zito et al., 2014). They are administered either by a calibrated nasal spray of nafarelin acetate two times a day, or by injection of a short-acting formulation daily or a longer acting formulation every 1-3 months (Brown et al., 2010, Sagsveen et al., 2003). They are as effective as progestins or OCs in providing relief from

endometriosis pain symptoms and they are particularly effective in providing relief from dysmenorrhea since they cause amenorrhea (Medicine, 2014, Vercellini et al., 1993). Side effects of GNRH analogues include hot flushes, vaginal dryness, decreased libido, mood swings, headache and bone mineral depletion, hence they are not widely recommended (Sagsveen et al., 2003, Zito et al., 2014). Although hormonal treatment can be effective in providing relief, pain relapses at suspension of treatment as the endometriotic lesions become active again (Vercellini et al., 2008, Minjarez and Schlaff, 2000, Medicine, 2006).

Pain symptoms in some patients persist even after medical and/or surgical treatment. Overall, there is 10-50% recurrence rate of endometriosis pain symptoms and up to 20% of women do not respond to any treatment (Davis and McMillan, 2003, Abbott et al., 2004, Lindsay et al., 2015). Therefore, individualised and multidisciplinary approaches may be required in the treatment of endometriosis pain (Kennedy et al., 2005). For example, since the efficacy of available pain treatments is similar, women need to be informed regarding the expense, side-effects and invasiveness of therapy to make an informed decision regarding the approach most appropriate for them (The Practice Committee of the American Society for Reproductive, 2014, Kennedy et al., 2005, Dunselman et al., 2014).

Problematic pain due to endometriosis can call for a multidisciplinary treatment approach (Rocha et al., 2012, Greco, 2003, Metzger, 1997). This may combine medical therapy, counselling and alternative therapies in order to improve women's responses to treatment (Greco, 2003, Kames et al., 1990, Ortiz, 2008). Counselling should be offered to certain patients so they can return to their routine social and family lives (Greco, 2003, Townsend et al., 2006, Gilmour et al., 2008). Alternative therapies such as acupuncture, herbal medicines, dietary changes and yoga have also been successful in reducing endometriosis-associated

pain (Medicine, 2014, Kennedy et al., 2005). The complexities and inadequacies of pain management in endometriosis indicate the importance of understanding molecular mechanisms underlying pain generation in women with the disease. Improved understanding of mechanisms will facilitate development of better pain management techniques.

# **Aims and Hypotheses**

### Aims

The overall aim of this thesis was to investigate the expression of pain related genes in women with endometriosis compared to women without the disease.

This thesis also aimed to investigate the relationship between endometrial and endometriotic lesion gene expression and menstrual cycle phase.

# Hypotheses

- 1. Pain related genes are dysregulated in eutopic endometrium from women with endometriosis and in endometriotic lesions.
- 2. The endometrial and endometriotic lesion expression levels of pain related genes vary during different phases of the menstrual cycle.
- 3. The expression levels of different pain related genes correlate with each other in the eutopic endometrium from women with endometriosis and in endometriotic lesions.

# Chapter 3

# Methodology

## **3.1 Introduction**

In order to gain insights into the mechanisms involved in pain generation in women with endometriosis, a meta-analysis of microarray gene expression was conducted between eutopic endometrium from women with and without endometriosis; and endometriotic lesions. Microarray technology is a powerful tool for analysing expression of numerous genes simultaneously in a single tissue specimen in a highly efficient manner (Ramasamy et al., 2008). A number of studies have used this technology to understand the underlying biological mechanisms in endometriosis (Burney et al., 2007, Hurst et al., 2014, Kao et al., 2003, Khan et al., 2012). Through a meta-analysis, the statistical power for obtaining a more precise estimate of differential gene expression increases (Ramasamy et al., 2008, Taminau et al., 2014). This may aid in developing a more accurate picture of the biological pathways underlying pain generation in women with endometriosis.

This meta-analysis will utilise the primary two types of microarray gene expression data:

- individual participant raw or normalised data which represent measurement of expression for every gene in a sample (Ioannidis et al., 2002, Stewart and Parmar, 1993); and
- lists of dysregulated genes published in the studies (Miller and Stamatoyannopoulos, 2010, Cahan et al., 2007, Griffith et al., 2006).

Figure 3.1 provides an overview of the present meta-analyses highlighting the type of data used, number of included studies, tissue types being compared, primary outcomes of the meta-analyses and results convergence. This meta-analysis was conducted by separately

analysing individual participant gene expression data and published gene lists. For both data types, comparisons were made between eutopic endometrium from women with and without endometriosis as well as between eutopic endometrium and endometriotic lesions from women with endometriosis. Individual participant gene expression data were adjusted for menstrual cycle phase. However, this could not be done for the published gene list data as lists of genes dysregulaed in different menstrual cycle phases were not available. The primary outcome measure for all the analyses was dysregulated genes involved in pain generation. In order to find genes that are consistently dysregulated throughout the datasets, results comparing gene expression of eutopic endometrium from women and without endometriosis as well as of eutopic endometrium from women with endometriosis and endometriotic lesions from both the individual participant gene expression data and published gene lists were converged.

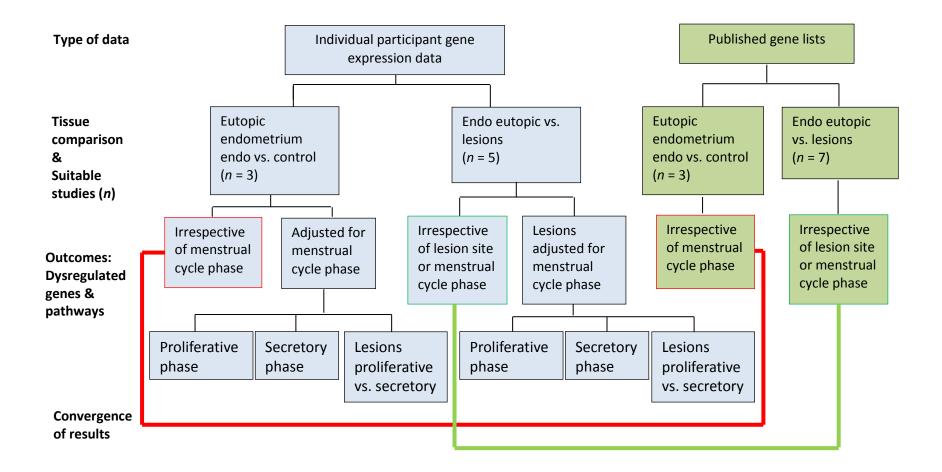



Fig 3.1: Flow-chart illustrating an overview of the present meta-analyses highlighting the data type used, the no. of suitable studies (*n*), the tissue type being compared, the groups being compared to get the outcomes and result convergence. Data for published gene lists could not be adjusted for menstrual cycle phase since related information and data were not available. Endo = endometriosis

# **3.2** Criteria for considering studies for the review

Inclusion and exclusion criteria for study selection are summarised in Table 3.1. Further details regarding criteria for study design, participant characteristics, study methods and outcome measures are provided below.

| Inclusion criteria                       | Exclusion criteria                 |
|------------------------------------------|------------------------------------|
| • Studies investigating gene expression  | Participants on hormonal treatment |
| profiles in endometrium and              | • Individual participant gene      |
| endometriotic lesions                    | expression data or published gene  |
| • Participants: premenopausal with       | lists unavailable                  |
| normal menstrual cycles                  |                                    |
| • Presence or absence of endometriosis   |                                    |
| confirmed laparoscopically               |                                    |
| • Eutopic endometrial and endometriotic  |                                    |
| lesion specimens obtained through        |                                    |
| endometrial biopsy/curetting/excision    |                                    |
| • Use of whole human genome              |                                    |
| microarray chips                         |                                    |
| • Availability of individual participant |                                    |
| gene expression data or published gene   |                                    |
| lists                                    |                                    |
| • Peer-reviewed studies                  |                                    |
|                                          |                                    |

# Table 3.1: Study inclusion and exclusion criteria

### Study design

Studies included in the meta-analysis were one of two designs: (1) case-control type studies that recruited women with a confirmed diagnosis of endometriosis and women without endometriosis, and compared gene expression of eutopic endometrial tissue samples; or (2) cross-sectional type studies that either recruited women with a confirmed diagnosis of endometriosis and compared gene expression of endometriotic lesions and eutopic endometrial samples, or recruited women without endometriosis and profiled gene expression of the endometrium.

#### Participant characteristics

Within the studies, premenopausal women with regular menstrual cycles and laparoscopic evidence of being with or without endometriosis were suitable for inclusion. Women taking hormonal treatment were excluded.

### *Types of interventions (study methods)*

In the included studies, endometrial samples of the participants with or without endometriosis were obtained by biopsy or curettage. Samples for endometriotic lesions from women with endometriosis were obtained by surgical excision. Tissues were processed for ribonucleic acid (RNA) extraction and hybridisation with whole human genome microarray chips.

### **Outcome measures**

The primary outcome measure for the included studies was dysregulated gene expression along with availability of either individual participant gene expression data or published lists of genes declared to be dysregulated in the eutopic endometrium from women with and without endometriosis as well as in endometriotic lesions. Secondary outcome measures from included studies of particular interest were

- expression of genes involved in pain generation;
- gene expression in different menstrual cycle phases; and
- dysregulated biological pathways revealed by gene ontology analyses.

### Adverse outcomes

Adverse outcomes were not applicable in this meta-analysis since treatment effects were not being considered.

### 3.3 Search methods

Literature and gene database searches were conducted from 1/8/2013 to 30/11/2013 and 4/9/2014 to 6/10/2014. Searches were limited to studies in peer-reviewed scientific journals published in English. Of the 116 studies found, 24 studies analysing microarray gene expression of whole eutopic endometrium from women with and without endometriosis as well as endometriotic lesions were further reviewed. Out of these, 16 were suitable as per the inclusion criteria (see Fig. 3.2 and Table 3.1). The excluded studies were either not peer reviewed, had insufficient data or had compared data from single cell types.

An in-house departmental search was also conducted in order to look for suitable studies that could be included in this meta-analysis. The search revealed one study by Zevallos (2012) which compared the expression of neurotrophins in the eutopic endometrium of women with and without endometriosis. The study was suitable for inclusion as per the inclusion criteria (Table 3.1) and had individual participant gene expression data available.

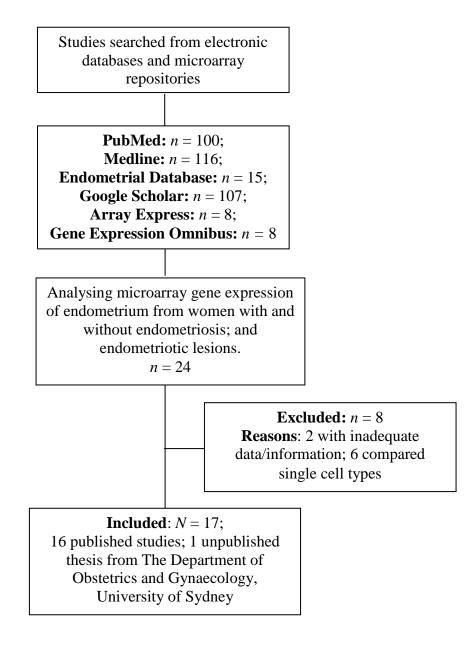



Fig. 3.2: Summary of search results.

### Electronic searches

The following electronic databases were searched for eligible studies using the search terms endometriosis, endometrium, eutopic, ectopic, endometriotic lesion, microarray and gene expression.

- Medline via Ovid (<u>http://www.nlm.nih.gov/pubs/factsheets/medline.html</u>)
- Pubmed (<u>www.ncbi.nlm.nih.gov/pubmed/</u>)
- Google Scholar (<u>http://scholar.google.com.au/</u>)
- Endometrium Database Resource

(http://edr.research.bcm.edu/edr/ui\_home.seam?cid=76228)

### Other resources

Reference lists of relevant publications and included studies were also explored to ensure all relevant manuscripts were identified. In addition, a search for microarray gene expression data was performed; using the terms endometriosis, endometrium, eutopic, ectopic and endometriotic lesion, and limiting the search to species *Homo sapiens*; in the following repositories:

- Array express (available from <u>http://www.ebi.ac.uk/arrayexpress/</u>)
- Gene expression omnibus (GEO; available from http://www.ncbi.nlm.nih.gov/geo/).

### 3.4 Study selection and data assessment

## **3.4.1 Selection of studies**

A single reviewer (MS) scanned all 116 article titles and abstracts retrieved from the searches. Studies that did not conduct a microarray analysis were removed. Full text manuscripts of 24 studies were retrieved out of which those that did not analyse gene expression of whole tissue samples or had inadequate information available were removed.

The reviewer assessing the relevance was not blinded to the information about the articles, such as the publishing journal, names of authors, institution and results. Studies that did not meet the inclusion criteria (criteria summarised previously in Table 3.1) were discarded. See Table 3.2 and Appendix 1 for characteristics of included studies and Appendix 2 for those of excluded studies.

# Table 3.2: Studies included in meta-analysis.

| Citation                | Tissue                                        | Data type (available from/accession no.)                                                     | Type of<br>microarray<br>used                 | Sample<br>#                | Age-<br>group<br>(years) | Study<br>type       |
|-------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------|--------------------------|---------------------|
| Hull et al.<br>(2008)   | Eutopic<br>endometrium;<br>peritoneal lesions | Individual participant gene expression data<br>(Pubmed accession no.: GSE11691)              |                                               | EU = 9;<br>EL = 9          | 20-46                    | Cross-<br>sectional |
| Hever et al.<br>(2007)  | Eutopic<br>endometrium;<br>ovarian lesions    | Individual participant gene expression data<br>(Pubmed accession no.: GSE7305)               | HG U133A plus<br>2.0                          | EU =10;<br>EL = 10         | Not given                | Cross-<br>sectional |
| Burney et al. (2007)    | Eutopic<br>endometrium                        | Individual participant gene expression data<br>(Pubmed accession no.: GDS2737)               | HG U133A plus<br>2.0                          | EU = 21;<br>EL = 16        | 22-44                    | Case-<br>control    |
| Khan et al.<br>(2012)   | Eutopic<br>endometrium;<br>ovarian lesions    | Individual participant gene expression data<br>(Pubmed accession no.: GSE 37837)             | Agilent Whole<br>Human Genome<br>60-mer 4X44K | EU = 18; EL<br>= 18        | 24-45                    | Cross-<br>sectional |
| Talbi et al.<br>(2006)  | Eutopic<br>endometrium                        | Individual participant gene expression data<br>(Pubmed accession no.: GDS2052)               | HG U133A plus<br>2.0                          | EU = 27                    | 22-50                    | Cross-<br>sectional |
| Zevallos<br>(2012)      | Eutopic<br>endometrium                        | Individual participant gene expression data<br>(http://pwbc.garvan.unsw.edu.au/caarray)      | HuGene 1.0 ST<br>array                        | EU = 12<br>NE = 18         | 25-43                    | Case-<br>control    |
| Crispi et al.<br>(2013) | Eutopic<br>endometrium;<br>peritoneal lesions | Individual participant gene expression data<br>(Pubmed accession no.: GSE25628)              | HG U133A plus<br>2.0                          | EU = 8<br>EC = 8<br>NE = 6 | 22-46                    | Case-<br>control    |
| Sohler et al. (2013)    | Eutopic<br>endometrium;<br>peritoneal lesions | Individual participant gene expression data<br>(Array Express accession no.: E-MTAB-<br>694) | HG U133A plus<br>2.0                          | EU = 27<br>EC =27          | 21-52                    | Cross-<br>sectional |

| Citation                  | Tissue                                                     | Data type (available from/accession no.)                  | Type of<br>microarray<br>used                                                                 | Sample<br>#        | Age-<br>group<br>(years) | Study<br>type       |
|---------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------|--------------------------|---------------------|
| Sherwin et<br>al. (2008)  | Eutopic<br>endometrium                                     | Prioritised gene list (Pubmed accession<br>no.: 18353903) | Custom made<br>(containing<br>oligonucleotides<br>specific for<br>22000 human<br>transcripts) | EU = 10<br>NE = 6  | Not given                | Case-<br>control    |
| Kao et al.<br>(2003)      | Eutopic<br>endometrium                                     | Prioritised gene list (Pubmed accession<br>no.: 12810542) | Affymetrix<br>Genechip<br>Hu95A                                                               | EU = 8<br>NE = 7   | 28-39                    | Case-<br>control    |
| Hurst et al. (2014)       | Eutopic<br>endometrium                                     | Prioritised gene list (Pubmed accession no.: 24292148)    | Affymetrix<br>8500 array                                                                      | EU = 10<br>NE = 5  | 18-40                    | Case-<br>control    |
| Zafrakas et<br>al. (2008) | Eutopic<br>endometrium;<br>ovarian lesions                 | Prioritised gene list (Pubmed accession<br>no.: 18288381) | Affymetrix<br>Gene Chip HG-<br>U133                                                           | EU = 4<br>EC = 4   | Not given                | Case-<br>control    |
| Gaetje et al.<br>(2007)   | Eutopic<br>endometrium;<br>peritoneal lesions              | Prioritised gene list (Pubmed accession no.: 17952761)    | HG U133A                                                                                      | EU = 3<br>EC = 3   | Not given                | Case-<br>control    |
| Eyster et al. (2007)      | Eutopic<br>endometrium;<br>ovarian &<br>peritoneal lesions | Prioritised gene list (Pubmed accession<br>no.: 17462640) | CodeLink<br>Whole Human<br>Genome<br>Bioarrays                                                | EU = 11<br>EC = 11 | 28-45                    | Cross-<br>sectional |
| Borghese et<br>al. (2008) | Eutopic<br>endometrium;<br>ovarian lesions                 | Prioritised gene list (Pubmed accession<br>no.: 18818281) | Institut Cochin<br>HG18 60mer<br>expression array<br>47K                                      | EU = 12<br>EC = 12 | Not given                | Cross-<br>sectional |
| Mettler et al. (2007)     | Eutopic<br>endometrium;<br>ovarian lesions                 | Prioritised gene list (Pubmed accession<br>no.: 17333364) | Atlas Human<br>1,2 array                                                                      | EU = 5<br>EC = 5   | 22-40                    | Cross-<br>sectional |

| Citation           | Tissue                                     | Data type (available from/accession no.)                  | Type of<br>microarray<br>used                        | Sample<br>#       | Age-<br>group<br>(years) | Study<br>type       |
|--------------------|--------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|-------------------|--------------------------|---------------------|
| Sun et al. (2014)  | Eutopic<br>endometrium;<br>ovarian lesions | Prioritised gene list (Pubmed accession<br>no.: 24502888) | SurePrint G3<br>Human Gene<br>Expression<br>8x60K v2 | EU = 4<br>EC = 4  | 24-45                    | Cross-<br>sectional |
| Vouk et al. (2011) | Eutopic<br>endometrium;<br>Ovarian lesions | Prioritised gene list (Pubmed accession<br>no.: 21397694) | TaqMan low-<br>density array                         | EU = 9<br>EC = 11 | 24-50                    | Cross-<br>sectional |

\*EU= Eutopic endometrium from women with endometriosis; EC= Endometriotic lesions; NE= No endometriosis

### 3.4.2 Data extraction

According to the type of available data, information from the included studies was extracted. Individual participant gene expression data were downloaded from public repositories - GEO and Array Express. Data for individual participants were extracted from eligible studies, including (where available) participant identification code, age, menstrual cycle phase, surgically confirmed diagnosis/exclusion of endometriosis and whether the participant was taking any hormonal treatment. Appendix 3 shows participant characteristics from studies with individual participant gene expression data.

Published gene lists were collected from the included studies for which individual participant gene expression data were not available. Information extracted for gene lists included information regarding the groups being compared for gene expression, gene symbols, unique identifiers (Accession ID, Affymetrix probe ID, UniGene ID, etc.), fold change and significance values. All data extraction was conducted by a single person (MS).

# **3.4.3** Assessment of risk bias in included studies

Bias is a systematic error which can over- or under-estimate the results of a study. In order to anticipate the validity of the included studies in this meta-analysis, the methodology of each study was critically assessed. Factors that were assessed to evaluate potential sources of bias in the studies included: sample size of the studies, blind histological assessment of tissue samples to determine stage of endometriosis, established criteria for assessing menstrual cycle phase, quality of RNA sample used for microarray hybridisation, validation of microarray results and unavailable participant information.

All these factors were evaluated for every individual study by a single reviewer (MS). The sample size of the studies was considered to be adequate if the number of participants in each group was more than 20, as this is thought of as acceptable for small qualitative research projects (Mason, 2010, Guest et al., 2006, Hedges and Bliss-Holtz, 2006). The histological assessment of the endometrial samples was required to be conducted by a histopathologist who was not aware of the participant's history and other details. The criteria for assessing the menstrual cycle phase of the endometrial samples were published such as the Noyes criteria. The quality of RNA used for hybridisation with the microarray chips should have been assessed by either gel electrophoresis or Agilent's Bioanalyzer. The results obtained by microarray analysis should have been further validated by RT-PCR. The clinical characteristics of the individual participants should have been available.

After assessing the methodology of every individual study included in this meta-analysis for the above-mentioned factors it was found that all the studies had potential risk of bias. However, the potential for risk was low for the studies; hence all the studies were included in the meta-analysis.

## **3.4.4 Measures of effect**

In this meta-analysis of gene expression data comparing eutopic endometrium from women with and without endometriosis and endometriotic lesions, the fold-change values of genes were considered to be the measures of effect. Gene expression and dysregulation data were continuous. For individual participant gene expression data, the results were expressed as mean difference  $\pm$  standard error (SE). For published gene lists, the results were continuous and expressed as ranks given to the genes (Kolde et al., 2012).

### **3.4.5 Dealing with unavailable data**

Information regarding menstrual cycle phase was unavailable for Hull et al. (2008). Individual participant data describing menstrual cycle phase was required for sub-group analyses to determine dysregulated genes in different menstrual cycle phases in women with and without endometriosis. Corresponding author was contacted in an attempt to obtain the unavailable participant data, but unfortunately no replies were received. Therefore, Hull et al. (2008) was excluded from menstrual cycle sub-group analyses.

### **3.4.6** Assessment of heterogeneity

Participant characteristics from different studies were reviewed for heterogeneity to explore their influence on the results of the meta-analysis. The characteristics for which information was available, such as severity or stage of endometriosis and parity, are not known to impact pain and so were not formally assessed for heterogeneity (Vercellini et al., 2007, Gruppo Italiano per lo Studio, 2001, Fauconnier and Chapron, 2005). Moreover, participant characteristics were not available for all of the included studies; therefore, were not assessed for heterogeneity.

### **3.4.7** Assessment of reporting bias

Reporting bias may arise when dissemination of studies gets influenced by the nature of the results. Positive and significant results increase the likelihood of such studies to be published quicker, in English, in significant journals and occasionally more than once. In order to reduce the chances of reporting bias, a comprehensive literature review, including searching of microarray data repositories, for eligible studies was conducted to minimise any potential reporting bias. Care was taken not to include data that have been published more than once.

#### 3.5 Data analysis

Analyses of data are detailed below. Briefly, analyses were conducted by grouping the studies according to the type of data available, i.e. individual participant gene expression data or published gene lists, analysing for dysregulated genes and pathways, and then converging the results from both the analyses to determine consistently dysregulated genes. Figure 3.2 provides an overview of the steps undertaken in this meta-analysis.

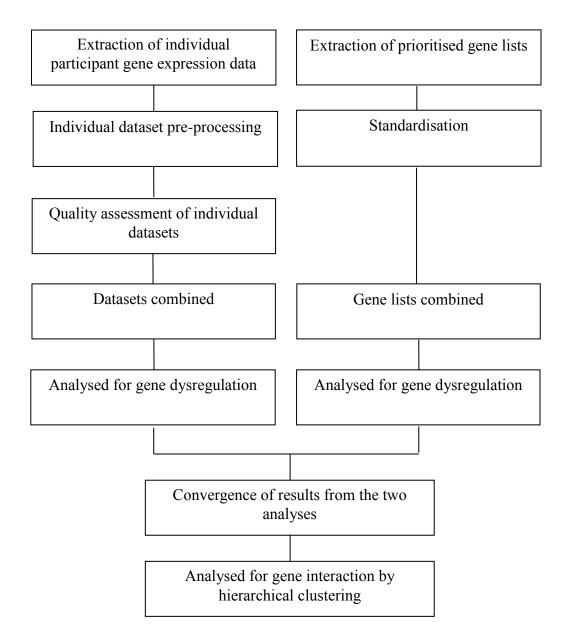



Fig. 3.3: Flow-chart illustrating an overview of the steps undertaken in the present metaanalysis.

For both the individual participant gene expression data and published gene lists, gene expression was compared between eutopic endometrium from women and without endometriosis as well as endometriotic lesions and eutopic endometrium from women with endometriosis. For individual participant gene expression data, the groups were further analysed after adjusting for menstrual cycle phases. This could not be done for published gene lists as the required information and data were not available.

For every study, the individual participant gene expression data were extracted from their respective accession sites, pre-processed and assessed for quality. All the datasets were then integrated into one global dataset and analysed for dysregulated genes and pathways. The dysregulated genes were further analysed to determine the correlation amongst their expression levels.

The published gene lists were extracted from their respective studies, standardised and integrated for analysis of dysregulated genes. The dysregulated gene were further analysed to determine the pathways most affected by them. Lists of dysregulated genes obtained from both the analyses of individual participant gene expression data and published gene lists were then converged to determine gene that are consistently dysregulated across the datasets.

#### 3.5.1 Meta-analysis of individual participant gene expression data

In conducting a gene expression meta-analysis, individual participant gene expression data are preferable as this allows for consistent handling of all the datasets by standardised preprocessing (Ioannidis et al., 2002, Stewart and Parmar, 1993). Another advantage of using individual participant gene expression data is that along with published data, unpublished data can be also included (for example, the Zevallos 2012 dataset included in this meta-analysis). Array quality can also be evaluated and the poorer quality ones subsequently removed from further analyses (Ramasamy et al., 2008).

#### **3.5.1.1 Data pre-processing and normalisation**

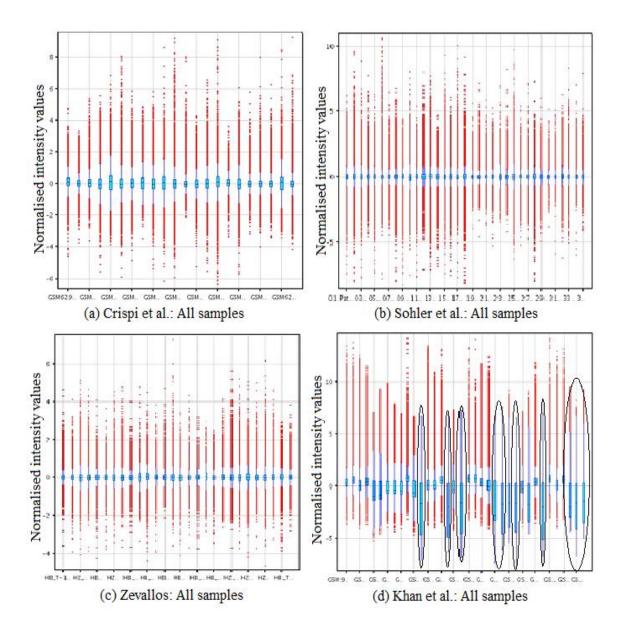
Pre-processing of all individual datasets was performed using GeneSpring version 12.6.2. This is an essential step in microarray analyses as it allows the assessment of data quality and conversion of microarray data to gene expression values which can be further analysed. It also minimises any differences that might occur due to technical reasons, also known as noise, and ensures that results attained are of highest quality (Zhang et al., 2006, Lu et al., 2012, Agilent, 2013).

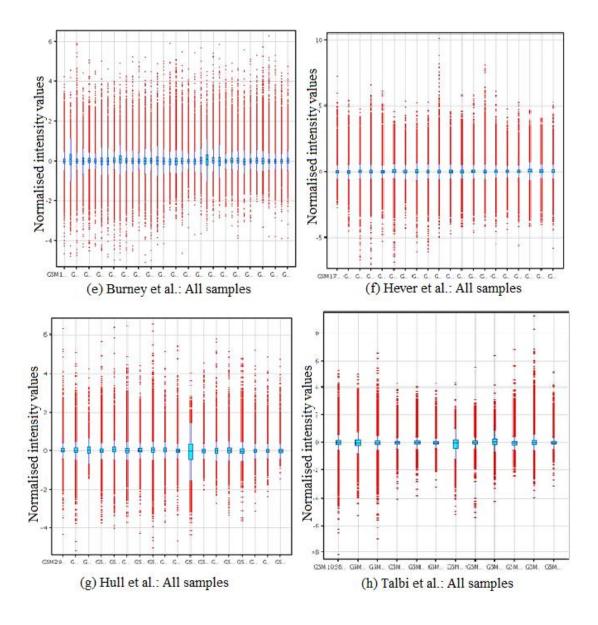
Data uploaded to GeneSpring, were automatically pre-processed depending on the type of microarray used (see Appendix 4). Pre-processing consists of the following steps:

- background correction to ensure accurate measures of intensity for each spot on the microarray chip by reducing affects arising due to non-specific sources;
- normalisation to ensure that any differences that exist between samples are due to biological rather than technical variations;
- correction for non-specific binding to ensure that all the miss-matched spots are removed; and
- summarisation of the data into an expression value for the gene in question (Agilent, 2013, Wu, 2009).

For Affymetrix platform data, pre-processing was performed using robust multi-array analysis (RMA) algorithm. RMA algorithm converts probe-level data to measures of gene expression using positive signal intensities for probe-level normalisation, and reduces noise in the data (Irizarry et al., 2003). The probe intensities are corrected using a global model for probe intensity distribution. Observed probes are modelled as the sum of a normal noise component *N* (normal with mean  $\mu$  and variance  $\sigma$ 2) and an exponential signal component *s* (exponential with mean  $\alpha$ ). To avoid any possibilities of getting any negative values the normal is truncated at zero. Given there are *O* observed intensities, the following adjustment is applied:

$$E(s / 0 = 0) = a + b \frac{\varphi\left(\frac{a}{b}\right) - \varphi\left(\frac{0-a}{b}\right)}{\Phi\left(\frac{a}{b}\right) + \varphi\left(\frac{0-a}{b}\right) - 1}$$


where  $a = s - \mu - \sigma 2\alpha$  and  $b = \sigma$ . Note that  $\varphi$  and  $\Phi$  are the standard normal distribution density and distribution functions, respectively. The log2 transformed value of each background corrected, perfect-matched probe is obtained and these values are normalised using quantiles normalisation method which makes the array comparable against each other and gives an expression measure for each probe (Irizarry et al., 2003). RMA is then carried out on the expression measures obtained. RMA16 was used for Affymetrix Exon Expression platform data - this involves the addition 16 to expression values prior to log-transformation to stabilise the data (provides the required stabilisation effect without changing or suppressing true signal values as values smaller than 16 are due to noise; Agilent, 2013).


Pre-processing for Agilent single colour platform data was by percentile shift. Percentile shift adjusts the locations of all spot intensities in an array. Each column in an experiment is taken independently and the *n*th percentile (where n = 0 to 100) of the expression values for an array is computed across all spots. This value is then subtracted from the expression value of each entity. The percentile is subtracted from the expression value to give the normalised intensity value. A

default value of 75 was chosen for normalisation as this value is more robust and makes sure that only genes that are expressed are reported (Agilent, 2013).

#### **3.5.1.2** Quality assessment of datasets

Box plots obtained after pre-processing of individual datasets were assessed in order to evaluate the dataset quality. Box plots were constructed using log2 transformed probe intensity values. Each boxplot from a dataset represents the distribution of probe intensity values for an individual sample, with the middle line representing the median, the whiskers indicating the variability outside the upper and lower quantiles, and the outliers represented by the individual points outside the whiskers (as shown in Fig. 3.4).





Figs. 3.4 a-h: Box plots illustrating sample-wise log-2 transformed probe intensity values of normalised data from individual participant gene expression studies: (a) Crispi et al. 2013; (b) Sohler et al. 2013; (c) Zevallos 2008; (d) Khan et al. 2012; (e) Burney et al. 2007; (f) Hever et al. 2007; (g) Hull et al. 2008; (h) Talbi et al. 2006. Each boxplot represents the distribution of probe intensity values for an individual sample, the middle line representing the median, the whiskers indicating the variability outside the upper and lower quantiles, and individual points outside the whiskers, the outliers. Encircled box plots in (d) represent problematic array which may be discarded from further analysis.

The box plots with a uniform spread of probe intensity values for individual samples across dataset in each study indicate ideal sample quality. However, Figure 3.4 (d) does not have a uniform spread of normalised log2-transformed intensity values, especially for samples 5, 6, 10, 12, 16 and 18. This indicates that these samples may be of poor quality and should be removed

from further analysis. However, te box plot created after convergence of all the individual participant gene expression datasets shows a uniform spread of probe intensity values for all the samples; therefore all the samples were retained for further analysis (Fig. 3.5).

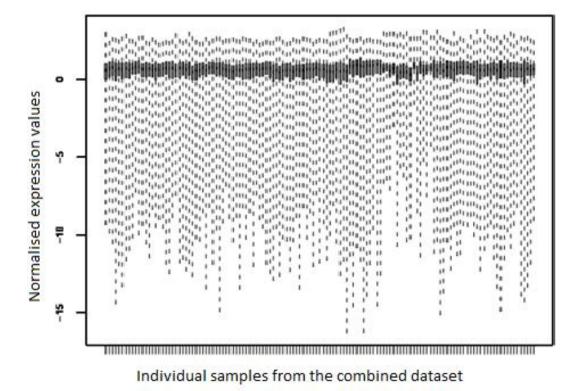



Fig. 3.5: Box plot illustrating uniform probe intensity values for individual participant gene expression data of all datasets obtained after convergence. Each boxplot represents the distribution of probe intensity values for an individual sample, the middle line representing the median, the whiskers indicating the variability outside the upper and lower quantiles, and individual points outside the whiskers, the outliers.

#### 3.5.1.3 Cross-platform integration of datasets

ArrayMining was chosen to conduct individual participant gene expression data meta-analysis as it offers cross-platform integration of data (Glaab et al., 2009). ArrayMining conducts statistical microarray analyses and generates output webpages with downloadable results in the form of plots and tables. Pre-processed data obtained from GeneSpring (in tab-delimited text-file format) were uploaded to ArrayMining as per the programme's instructions (Glaab et al., 2009). ENTREZ gene IDs were selected as common identifiers across datasets as they are stable and regularly updated (Maglott et al., 2011). Each sample of the dataset was labelled according to the group it belonged to, with '0' for endometrium from women without endometriosis, '1' for endometrium from women with endometriosis, '2' for endometriotic lesions, 'P' for proliferative phase and 'S' for secretory phase. Any missing values in the data files were labelled as 'NA'. Two data files at a time were uploaded in compressed zip formats and integrated by XPN method.

The XPN method for cross-platform integration, devised by Shabalin et al. (2008), integrates gene expression data from different studies by clustering together samples and genes with similar expression characteristics to produce a unified dataset which can be statistically analysed. This is done in two steps. The first step is to find clusters of similar genes and samples across datasets by k-means clustering. In the second step, with in each of these clusters, a combination of weighted averages of the platform parameters is applied to normalise the data across platforms (Deshwar and Morris, 2014, Sirbu et al., 2010, Tsiliki et al., 2011). This procedure runs multiple times in order to account for all possible clustering patterns. The output generated is a unified dataset containing genes/probes that are common across all datasets (Tsiliki et al., 2011, Deshwar and Morris, 2014).

Before starting the method three parameters are required to be set: number of gene clusters, numbers of sample clusters and number of iterations. Although the method is robust to these parameters, however it is recommended that the number of genes clusters should be between 10 and 30, number of sample clusters should be between 5 and 8, and number of iteration should be between 10 and 30. Choosing values that are too low or too high can degrade the performance of the method (Shabalin et al., 2008). In the present meta-analysis, default values of the parameters were chosen.

#### **3.5.1.4** Clustering of samples

After all the individual datasets were integrated into a single dataset, samples were clustered into discrete groups according to their disease status (with or without endometriosis) or menstrual cycle phase (proliferative or secretory phase). This helps in visualising how the samples are grouped together based on similarity of gene expression and provides an integrated understanding of the association between the condition (endometriosis) and the gene expression (Makretsov et al., 2004, Eisen et al., 1998, Alberts et al., 2002). For this, Hierarchical Clustering method (HCL) in ArrayMining was chosen. It joins together the most similar pair of samples, and then identifies and pairs the next most similar samples, repeating the procedure till all the samples in the dataset are merged into one cluster (Makretsov et al., 2004, Alberts et al., 2002). It calculates the similarity between samples by assigning each sample its own cluster and averaging the distance between all the members of the two closest clusters (Eisen et al., 1998). It also increases the robustness and reliability of the statistical tests applied to the dataset (Glaab et al., 2009).

The gene expression values for each sample in the integrated dataset were standardised by choosing the Robust Median Absolute Deviation from the drop down menu (MAD; Gentleman et al., 2005) in order to better distinguish samples into separate groups based on gene expression pattern (Glaab et al., 2009). For each row, Robust MAD subtracts the median gene expression value from the expression value of the particular gene and divides it by the median absolute deviation (Gentleman et al., 2005). A variance filter was also applied to standardised data to retain 2000 genes with the highest variance across samples. This removes all irrelevant genes with low variance across samples as well as improves the interpretability of the results (Tritchler et al., 2009).

#### 3.5.1.5 Detection of dysregulated genes

Gene expression output from the hierarchical clustering of samples was analysed within ArrayMining to identify dysregulated genes in endometriosis. To evaluate gene dysregulation following comparisons were made:

- Eutopic endometrium from women with and without endometriosis
  - $\circ$  overall
  - o proliferative phase of menstrual cycle
  - o secretory phase of the menstrual cycle
  - proliferative phase vs. secretory phase of the menstrual cycle in eutopic endometrium from women with endometriosis
- Eutopic endometrium and endometriotic lesions from women with endometriosis
  - overall
  - o proliferative phase of menstrual cycle
  - o secretory phase of the menstrual cycle
  - proliferative phase vs. secretory phase of the menstrual cycle in endometriotic lesions

This was conducted using moderated t-statistics, which has the same interpretation as an ordinary t-test but is more likely to have a moderate value based on a more reliable variance estimate with higher number of degrees of freedom. This often gives a more significant *p*-value which is adjusted by controlling the false discovery rate (FDR; Smyth, 2004).

The Benjamini and Hochberg (1995) method, which tests thousands of hypotheses simultaneously, was applied for the strong control of false discovery rate (FDR). The resulting outcome was a list of genes with known gene identifiers (ENTREZ gene IDs). Genes with an

FDR-based significance score (P score) < 0.05 and fold-change in expression >1.5 were considered as significant.

#### 3.5.1.6. Interactions amongst dysregulated genes

The expression values of pain related genes obtained from analysing individual participant gene expression data for all the sub-groups were uploaded to Cluster 3.0. The data were imported as a tab-delimited text file with rows representing the genes and columns representing their expression values. This was done in order to determine if the genes involved in neuronal development, sensitisation due to inflammation, signal transduction, conduction and modulation influence expression levels of one another, which may contribute to the enhanced pain generation observed in women with endometriosis. To compute these interactions, Pearson's correlation coefficient was calculated. The correlation coefficient provides a measure of the linear association between two continuous variables, ranging from -1 to +1. A negative value indicates that the expression of one gene increases with an increase in expression of the other gene. A positive value indicates that the expression of one gene increases with an increase in expression of the other. A value of zero indicates no association.

The most correlated genes were then clustered together by hierarchical clustering. In hierarchical clustering, the distance matrix between gene expression data is calculated. To compute the distance matrix, average linkage clustering was applied in which each gene is assigned its own cluster. Then, the distance between two clusters x and y is the mean of all pair wise distances between all the items contained in x and y. The genes closest to each other are clustered together and this process continues until all the genes have been incorporated in a single cluster. The output, a dendogram showing clustered genes (see Fig. 3.6) was visualised using Tree View software (©1998-2000, Stanford University, written by Michael Eisen).

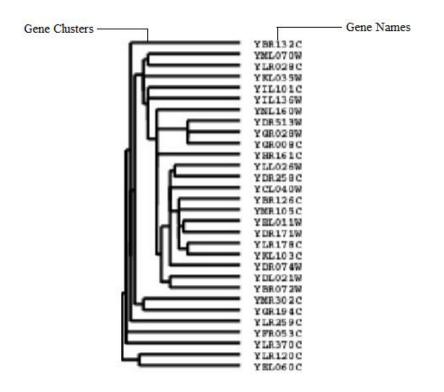



Fig. 3.6. Figure illustrating clustering of genes by hierarchical clustering method with gene clusters on the left and gene names on the right. The smaller the dendograms the more correlated are the genes.

#### **3.5.1.7 Detection of dysregulated pathways**

The dysregulated genes were aggregated into functionally related genes to form gene sets using ArrayMining. Within the program, dysregulated pathways were annotated using the Gene Ontology database, which identifies functionally related genes in a dataset. The parametric analysis of gene set enrichment method was chosen to detect dysregulated pathways. It is a robust method which requires less computation and detects dysregulated gene sets across different platforms. It uses a parametric statistical model to define significantly expressed gene sets and employs a fold change between the groups and calculates a *z*-score, the measure of dysregulation and a significance score (*P* value), respectively for a gene set (Kim and Volsky, 2005). Pathways with a *P* value < 0.05 were considered significant.

#### **3.5.2 Meta-analysis of published gene lists**

Individual participant gene expression data was unavailable for some gene expression studies. Using published analyses of datasets and integrating the available gene lists provides an alternative approach for meta-analysis of gene expression data (Kolde et al., 2012, Miller and Stamatoyannopoulos, 2010, Cahan et al., 2007, Al-Ejeh et al., 2014, Peri et al., 2013). However, gene expression data usually contains a significant proportion of technical variation, hence a robust method is required to find accurate ranking even if the lists contain only top-most dysregulated genes (Kolde et al., 2012). Rank aggregation based on ordered statistics is a meta-analysis method for published gene lists (Stuart et al., 2003, Aerts et al., 2006).

# 3.5.2.1 Extraction and standardisation of published gene lists

Published gene lists consist of up or downregulated genes with a measure of significance and fold change showing the difference of expression between disease and control groups (Vosa et al., 2013). For the present meta-analysis, published gene lists from all relevant studies (see Table 3.2) were extracted, and up and downregulated genes listed separately. Gene names across different lists were standardised with the gene annotation tool Database for Annotation, Visualization and Integrated Discovery (DAVID) which systematically combines functionally descriptive data with graphical displays (Huang da et al., 2009). Each gene list was uploaded into DAVID, the type of identifier selected and submitted for mapping to obtain standardised gene names.

#### **3.5.2.2** Gene list integration and detection of dysregulated genes

The robust rank aggregation, proposed by Kolde et al. (2012) integrates published gene lists into a single list of commonly dysregulated genes. It can even be used in cases where the datasets are from different platforms and cover different sets of genes (Ma et al., 2013b). This method assumes that the number of genes in the lists is known and the ranks of the genes are according to their

dysregulation in the disease (endometriosis). Then, the corresponding rank vectors for every gene rank are calculated and assigned a significance score under a null mode. The null model assumes that all the studies produce uncorrelated, irrelevant lists of genes. Since the gene ranks are solely based on the expression measurements, the null model becomes equivalent to a permutation test (Kolde et al., 2012). The significance scores provide a rigorous way of keeping only statistically relevant genes in the final list. This method is implemented as a GNU R package ROBUSTRANKAGGREG (step wise description of the procedure is given in Appendix 5).

# **3.5.2.3 Detection of dysregulated pathways**

The dysregulated genes detected in the published gene lists meta-analysis were further analysed for detection of pathways most affected by them. This was conducted by the Gene Ontology (GO) enrichment analysis tool of the GO consortium (available from <u>http://geneontology.org/</u>). For a group of genes, the enrichment analysis tool finds GO terms that are over- or under-represented. The gene names were pasted, one per row, in the designated area. Then, the name of the species (*H. sapiens*) and the ontology (biological processes) where the enrichment is required to be calculated were chosen from the drop-down menu. The results were displayed as a list of significant GO terms, background frequency (the number of genes annotated to a GO term in the entire background), sample frequency (the number of genes annotated to that GO term in the input list) and the corresponding p values. In addition, the criteria used and any unresolved gene names in the analysis were also listed on the top of the table.

#### **\3.6** Convergence of results

The dysregulated genes detected in the meta-analyses of individual participant gene expression as well as the published gene lists comparing gene expression of eutopic endometrium from women with and without endometriosis as well as endometriotic lesions were converged by using Venn diagrams. Venn diagrams provide multiple circles with overlapping regions which illustrate relations among datasets. This is conducted by calculating all possible logical relations between the given datasets and representing them in the same diagram (Li and Ghosh, 2014, Michael et al., 2011, Granlund et al., 2013).

NetVenn software was applied to converge the results of analysing individual participant gene expression data and published gene lists for this meta-analysis (Wang et al., 2014; freely available from http://probes.pw.usda.gov/NetVenn or http://wheat.pw.usda.gov/NetVenn). It compares and analyses gene expression datasets and provides information regarding the biological function of the genes by interactively annotating each element with their potential biological networks annotation databases such as Gene Ontology (Wang et al., 2014). The lists to be converged were pasted on to the designated columns and submitted for analysis. An output with interactive graphs is the generated which illustrates overlapping circles showing overlapping genes from the provided lists.

# **Chapter 4**

# Results

#### 4.1 Individual participant gene expression data

# 4.1.1 Eutopic endometrium from women with and without endometriosis

Overall, 32 genes involved in neuronal development, sensitisation due to inflammation, signal transduction, conduction and modulation (the pain matrix) were significantly upregulated in the eutopic endometrium of women with endometriosis compared to women without the disease (Table 4.1). The downregulated genes in the eutopic endometrium from women with endometriosis were involved in processes such as, embryogenesis, tumorogenesis, general cell development and cell cycle regulation. A list of the 35 most significantly upregulated and downregulated genes in the eutopic endometriosis (overall) are provided in Appendices 6 and 7, respectively.

| Fold        |                 |                                                                          |        |                                                |  |  |  |  |
|-------------|-----------------|--------------------------------------------------------------------------|--------|------------------------------------------------|--|--|--|--|
| Entrez Id   | Gene symbol     | Gene name                                                                | change | P value                                        |  |  |  |  |
| Neuronal    | development     |                                                                          |        |                                                |  |  |  |  |
| 1942        | EFNA1           | Ephrin-A1                                                                | 2.64   | 0.4 X 10 <sup>-22</sup>                        |  |  |  |  |
| 1808        | DPYSL2          | Dihydropyrimidinase-like 2                                               | 1.91   | $0.1 \ge 10^{-14}$                             |  |  |  |  |
| 10397       | NDRG1           | N-myc downstream regulated 1                                             | 2.11   | 0.1 X 10 <sup>-14</sup>                        |  |  |  |  |
| 8495        | PPFIBP2         | PTPRF interacting protein, binding protein 2                             | 1.8    | 0.1 X 10 <sup>-13</sup>                        |  |  |  |  |
| 604         | BCL6            | B-cell CLL/lymphoma 6                                                    | 2.86   | 0.3 X 10 <sup>-13</sup>                        |  |  |  |  |
| 91          | ACVR1B          | Activin A receptor, type IB                                              | 1.69   | 0.4 X 10 <sup>-13</sup>                        |  |  |  |  |
| 81631       | MAP1LC3B        | Microtubule-associated protein 1 light chain 3 beta                      | 1.52   | 0.1 X 10 <sup>-12</sup>                        |  |  |  |  |
| 10677       | AVIL            | Advillin                                                                 | 1.95   | 0.1 X 10 <sup>-12</sup>                        |  |  |  |  |
|             | on due to infla |                                                                          |        | 10                                             |  |  |  |  |
| 1052        | CEBPD           | CCAAT/enhancer binding protein                                           | 3.14   | $0.2 \times 10^{-18}$                          |  |  |  |  |
| 3600        | IL15            | Interleukin 15                                                           | 2.98   | $0.2 \ge 10^{-16}$                             |  |  |  |  |
| 1438        | CSF2RA          | Colony stimulating factor 2 receptor, alpha, low-affinity                | 2.02   | 0.2 X 10 <sup>-16</sup>                        |  |  |  |  |
| 7132        | TNFRSF1A        | Tumor necrosis factor receptor superfamily, member 1A                    | 1.55   | 0.2 X 10 <sup>-15</sup>                        |  |  |  |  |
| 26253       | CLEC4E          | C-type lectin domain family 4, member E                                  | 1.7    | 0.3 X 10 <sup>-14</sup>                        |  |  |  |  |
| 718         | C3              | Complement component 3                                                   | 2.93   | 0.2 X 10 <sup>-13</sup>                        |  |  |  |  |
| 9252        | RPS6KA5         | Ribosomal protein S6 kinase, 90kDa, polypeptide 5                        | 2.13   | 0.2 X 10 <sup>-13</sup>                        |  |  |  |  |
| 7099        | TLR4            | Toll-like receptor 4                                                     | 1.75   | 0.1 X 10 <sup>-12</sup>                        |  |  |  |  |
| 3601        | IL15RA          | Interleukin 15 receptor, alpha                                           | 1.49   | 0.2 X 10 <sup>-12</sup>                        |  |  |  |  |
| Signal trai | nsduction       |                                                                          |        |                                                |  |  |  |  |
| 4217        | MAP3K5          | Mitogen-activated protein kinase kinase 5                                | 3.15   | 0.3 X 10 <sup>-17</sup>                        |  |  |  |  |
| 347902      | AMIGO2          | Adhesion molecule with Ig-like domain 2                                  | 3.09   | 0.3 X 10 <sup>-15</sup>                        |  |  |  |  |
| 5597        | MAPK6           | Mitogen-activated protein kinase 6<br>Signal transducer and activator of | 1.95   | 0.8 X 10 <sup>-13</sup>                        |  |  |  |  |
| 6774        | STAT3           | transcription 3                                                          | 1.42   | 0.2 X 10 <sup>-12</sup>                        |  |  |  |  |
| Conductio   |                 |                                                                          |        |                                                |  |  |  |  |
| 2040        | STOM            | Stomatin                                                                 | 1.73   | 0.3 X 10 <sup>-13</sup>                        |  |  |  |  |
| 3752        | KCND3           | Potassium voltage-gated channel, Shal-<br>related subfamily, member 3    | 1.76   | 0.2 X 10 <sup>-12</sup>                        |  |  |  |  |
| Modulatio   |                 |                                                                          |        | //                                             |  |  |  |  |
| 6505        | SLC1A1          | Solute carrier family 1 member 1                                         | 4.71   | $0.5 \times 10^{-21}$                          |  |  |  |  |
| 6539        | SLC6A12         | Solute carrier family 6 member 12                                        | 2.53   | 0.6 X 10 <sup>-20</sup>                        |  |  |  |  |
| 54463       | FAM134B         | Family with sequence similarity 134, member B                            | 1.98   | 0.3 X 10 <sup>-16</sup>                        |  |  |  |  |
| 3976        | LIF             | Leukemia inhibitory factor                                               | 2.74   | 0.1 X 10 <sup>-14</sup>                        |  |  |  |  |
| 9846        | GAB2            | GRB2-associated binding protein 2                                        | 1.99   | 0.3 X 10 <sup>-14</sup>                        |  |  |  |  |
| 5533        | PPP3CC          | Protein phosphatase 3, catalytic subunit, gamma isozyme                  | 1.49   | 0.9 X 10 <sup>-14</sup>                        |  |  |  |  |
| 3572        | IL6ST           | Interleukin 6 signal transducer                                          | 2.41   | 0.4 X 10 <sup>-13</sup>                        |  |  |  |  |
| 80736       | SLC44A4         | Solute carrier family 44, member 4                                       | 2.35   | $0.5 \times 10^{-13}$                          |  |  |  |  |
| 81539       | SLC38A1         | Solute carrier family 38, member 1                                       | 2.09   | $0.3 \times 10^{-12}$<br>$0.2 \times 10^{-12}$ |  |  |  |  |
| 01000       | SLUJUAI         | Solute carrier failing 50, member 1                                      | 2.07   | 0.4 / 10                                       |  |  |  |  |

Table 4.1: Upregulated pain related genes in the eutopic endometrium of women with endometriosis compared to endometrium from women without endometriosis.

*Dysregulated pathways.* Overall, the most significantly dysregulated pathways were related to inflammatory and immune responses (top-20 most dysregulated pathways in Appendix 8).

*Interactions amongst genes.* Formation of clusters amongst genes involved in sensitisation due to inflammation, neuronal development and pain generation is illustrated in the figure (see Fig. 4.1). In the figure, the dendograms on the left represent correlations between the gene expression values. The smaller the dendogram, the more correlated are the expression values of the genes. This implies that these genes are functionally related and may regulate each other's expression, thereby contributing to increased pain generation observed in women with endometriosis.

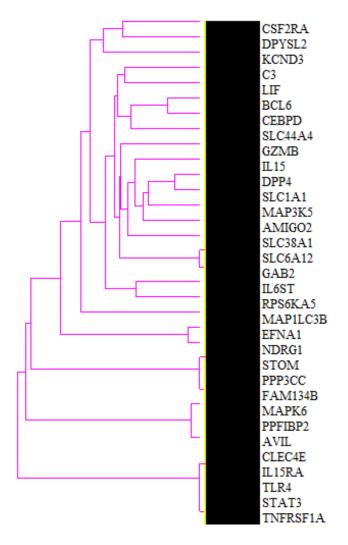



Fig. 4.1: Interactions among upregulated pain related genes in the eutopic endometrium of women with endometriosis. The dendograms on the left illustrate correlation amongst genes expression values. The shorter the dendograms, the more correlated are the genes.

#### **4.1.1.1 Proliferative phase**

Twenty genes involved in the pain matrix were significantly upregulated in the eutopic endometrium of women with compared to women without endometriosis (see Table 4.2). The downregulated genes were mostly involved in cell cycle regulation, tumorogenesis, apoptosis and transcription. A list of top-35 upregulated and downregulated genes in the proliferative phase is provided in Appendices 9 and 10, respectively.

| Nouronal   |                 | Gene name                                                                 | Change | P value |
|------------|-----------------|---------------------------------------------------------------------------|--------|---------|
| I tui unai | development     | t                                                                         |        |         |
| 1942       | EFNA1           | Ephrin-A1                                                                 | 1.95   | 0.0006  |
| 604        | BCL6            | B-cell CLL/lymphoma 6                                                     | 2.15   | 0.004   |
| 10397      | NDRG1           | N-myc downstream regulated 1                                              | 1.71   | 0.011   |
| 2026       | ENO2            | Enolase 2 (gamma, neuronal)                                               | 1.4    | 0.023   |
| Sensitisat | tion due to inf | flammation                                                                |        |         |
| 9510       | ADAMTS1         | ADAM metallopeptidase with thrombospondin type 1 motif, 1                 | 1.92   | 0.009   |
| 6347       | CCL2            | Chemokine (C-C motif) ligand 2                                            | 1.63   | 0.021   |
| 1051       | CEBPB           | CCAAT/enhancer binding protein (C/EBP), beta                              | 1.37   | 0.004   |
| 1052       | CEBPD           | CCAAT/enhancer binding protein (C/EBP), delta                             | 2.17   | 0.005   |
| 1999       | ELF3            | E74-like factor 3 (ets domain transcription factor, epithelial-specific)  | 1.83   | 0.007   |
| 5732       | PTGER2          | Prostaglandin E receptor 2 (subtype EP2), 53kDa                           | 1.45   | 0.02    |
| 54210      | TREM1           | Triggering receptor expressed on myeloid cells 1                          | 1.85   | 0.01    |
| Signal tra | ansduction      |                                                                           |        |         |
| 4217       | MAP3K5          | Mitogen-activated protein kinase kinase kinase 5                          | 1.79   | 0.02    |
| 1326       | MAP3K8          | Mitogen-activated protein kinase kinase kinase 8                          | 1.45   | 0.02    |
| 2872       | MKNK2           | MAP kinase interacting serine/threonine kinase 2                          | 1.29   | 0.004   |
| 9961       | MVP             | Major vault protein                                                       | 1.43   | 0.02    |
| Conducti   | on              |                                                                           |        |         |
| 6533       | SLC6A6          | Solute carrier family 6 (neurotransmitter transporter, taurine), member 6 | 1.47   | 0.004   |
| Modulati   | on              |                                                                           |        |         |
| 23529      | CLCF1           | Cardiotrophin-like cytokine factor 1                                      | 1.36   | 0.008   |
| 3659       | IRF1            | Interferon regulatory factor 1                                            | 1.38   | 0.02    |
| 3976       | LIF             | Leukemia inhibitory factor (cholinergic differentiation factor)           | 1.87   | 0.02    |
| 80736      | SLC44A4         | Solute carrier family 44, member 4                                        | 1.71   | 0.02    |

Table 4.2: Upregulated pain related genes in the proliferative phase of the eutopic endometrium of women with endometriosis compared to women without endometriosis.

*Dysregulated pathways.* Processes involved in immune and inflammatory responses were among the top dysregulated pathways in the proliferative phase of the eutopic endometrium from women with endometriosis (see Appendix 8 for 20-top most dysregulated pathways).

#### 4.1.1.2 Secretory phase

Seventeen genes involved in neuronal development, sensitisation due to inflammation, signal transduction and modulation in the secretory phase eutopic endometrium of women with endometriosis were significantly upregulated when compared to women without endometriosis (see Table 4.3). The downregulated genes in the secretory phase were those involved in embryogenesis, apoptosis, cell growth and differentiation as well as muscle contraction. A list of top-35 upregulated and downregulated genes in the secretory phase is provided in Appendices 11 and 12, respectively.

| Entrez   | Gene           | Gene name                                                    | Fold   | P value                  |
|----------|----------------|--------------------------------------------------------------|--------|--------------------------|
| ID       | Symbol         |                                                              | Change |                          |
| -        | al developme   |                                                              |        | 14                       |
| 1942     | EFNA1          | Ephrin-A1                                                    | 2.4    | 0.6 X10 <sup>-14</sup>   |
| 10397    | NDRG1          | N-myc downstream regulated 1                                 | 1.9    | 0.4 X10 <sup>-12</sup>   |
| 8495     | PPFIBP2        | PTPRF interacting protein, binding protein 2 (liprin beta 2) | 2      | 0.3 X10 <sup>-11</sup>   |
| 604      | BCL6           | B-cell CLL/lymphoma 6                                        | 2.1    | 0.7 X10 <sup>-10</sup>   |
| Sensitis | ation due to i | nflammation                                                  |        |                          |
| 145741   | C2CD4A         | C2 calcium-dependent domain containing 4A                    | 7.1    | 0.1 X10 <sup>-14</sup>   |
| 9547     | CXCL14         | Chemokine (C-X-C motif) ligand 14                            | 9      | $0.3 \text{ X}10^{-11}$  |
| 718      | C3             | Complement component 3                                       | 3.3    | $0.1 \text{ X} 10^{-10}$ |
| 1052     | CEBPD          | CCAAT/enhancer binding protein (C/EBP), delta                | 2.4    | 0.1 X10 <sup>-9</sup>    |
| Signal t | ransduction    |                                                              |        |                          |
| 4217     | MAP3K5         | Mitogen-activated protein kinase kinase kinase 5             | 3.3    | 0.9 X10 <sup>-14</sup>   |
| 347902   | AMIGO2         | Adhesion molecule with Ig-like domain 2                      | 2.8    | 0.7 X10 <sup>-13</sup>   |
| Conduc   | tion           |                                                              |        |                          |
| No. of g | enes : 0       |                                                              |        |                          |
| Modula   | tion           |                                                              |        |                          |
|          |                | Solute carrier family 1 (neuronal/epithelial high            |        |                          |
| 6505     | SLC1A1         | affinity glutamate transporter, system Xag),<br>member 1     | 7.4    | 0.1 X10 <sup>-14</sup>   |
| 54463    | FAM134B        | Family with sequence similarity 134, member B                | 2.2    | $0.4 \text{ X} 10^{-11}$ |
| 9180     | OSMR           | Oncostatin M receptor                                        | 2.2    | 0.1 X10 <sup>-10</sup>   |
| 3976     | LIF            | Leukemia inhibitory factor                                   | 2.6    | $0.2 \text{ X} 10^{-10}$ |
| 80736    | SLC44A4        | Solute carrier family 44, member 4                           | 2.1    | $0.3 X 10^{-10}$         |
| 81539    | SLC38A1        | Solute carrier family 38, member 1                           | 2.5    | 0.1 X10 <sup>-9</sup>    |
| 3572     | IL6ST          | Interleukin 6 signal transducer                              | 2.1    | 0.2 X10 <sup>-9</sup>    |

Table 4.3: Upregulated pain related genes in the secretory phase of the eutopic endometrium of women with endometriosis compared to women without endometriosis.

*Dysregulated pathways.* The top dysregulated pathways involved processes such as immune and inflammatory responses (see Appendix 8 for 20-top most dysregulated pathways).

#### 4.1.1.3 Eutopic endometrium from women with endometriosis: Secretory vs. proliferative

#### phase

In the eutopic endometrium from women with endometriosis, 30 genes involved in the pain matrix were significantly upregulated in the secretory phase when compared to the proliferative phase of the menstrual cycle (see Table 4.4). Genes involved in processes, such as cellular proliferation and cell cycle regulation were downregulated. A list of top-35 upregulated and downregulated genes in the secretory phase is provided in Appendices 13 and 14, respectively.

| Entrez<br>ID | Gene<br>symbol | Gene name                                                                                               | Fold<br>change | P value                |
|--------------|----------------|---------------------------------------------------------------------------------------------------------|----------------|------------------------|
|              | l developme    | nt                                                                                                      | 8*             |                        |
| 4684         | NCAM1          | Neural cell adhesion molecule 1                                                                         | 2.79           | 0.7 X10 <sup>-12</sup> |
| 10397        | NDRG1          | N-myc downstream regulated 1                                                                            | 2.76           | 0.2 X10 <sup>-8</sup>  |
| 1808         | DPYSL2         | Dihydropyrimidinase-like 2                                                                              | 2.17           | 0.1 X10 <sup>-7</sup>  |
| Sensitisa    | tion due to i  | nflammation                                                                                             |                |                        |
| 5578         | PRKCA          | Protein kinase C, alpha                                                                                 | 1.8            | 0.4 X10 <sup>-9</sup>  |
| 10855        | HPSE           | Heparanase                                                                                              | 3.07           | 0.8 X10 <sup>-9</sup>  |
| 1116         | CHI3L1         | Chitinase 3-like 1 (cartilage glycoprotein-39)                                                          | 3.46           | 0.2 X10 <sup>-8</sup>  |
| 2532         | DARC           | Duffy blood group, chemokine receptor                                                                   | 2.85           | 0.4 X10 <sup>-8</sup>  |
| 1435         | CSF1           | Colony stimulating factor 1 (macrophage)                                                                | 2.35           | 0.6 X10 <sup>-8</sup>  |
| 2268         | FGR            | Gardner-Rasheed feline sarcoma viral (v-fgr)                                                            | 2.77           | 0.3 X10 <sup>-7</sup>  |
| 2208         | FUK            | oncogene homolog                                                                                        | 2.11           | 0.5 A10                |
| Signal ti    | ansduction     |                                                                                                         |                |                        |
| 5791         | PTPRE          | Protein tyrosine phosphatase, receptor type, E                                                          | 3.01           | 0.1 X10 <sup>-10</sup> |
| 7223         | TRPC4          | Transient receptor potential cation channel, subfamily C, member 4                                      | 3.38           | 0.4 X10 <sup>-9</sup>  |
| 916          | CD3E           | CD3e molecule, epsilon (CD3-TCR complex)                                                                | 2.41           | 0.5 X10 <sup>-8</sup>  |
| 79054        | TRPM8          | Transient receptor potential cation channel,<br>subfamily M, member 8                                   | 2.71           | 0.7 X10 <sup>-7</sup>  |
| 3718         | JAK3           | Janus kinase 3                                                                                          | 1.72           | 0.1 X10 <sup>-6</sup>  |
| 6777         | STAT5B         | Signal transducer and activator of transcription 5B                                                     | 1.56           | 0.1 X10 <sup>-6</sup>  |
| Conduct      |                |                                                                                                         |                |                        |
| 3777         | KCNK3          | Potassium channel, subfamily K, member 3                                                                | 2.64           | 0.3 X10 <sup>-8</sup>  |
| 3749         | KCNC4          | Potassium voltage-gated channel, Shaw-related subfamily, member 4                                       | 1.83           | 0.3 X10 <sup>-7</sup>  |
| 6548         | SLC9A1         | Solute carrier family 9 (sodium/hydrogen exchanger), member 1                                           | 1.92           | 0.9 X10 <sup>-7</sup>  |
| 3756         | KCNH1          | Potassium voltage-gated channel, subfamily H (eag-related), member 1                                    | 1.76           | 0.1 X10 <sup>-6</sup>  |
| 55117        | SLC6A15        | Solute carrier family 6 (neutral amino acid transporter), member 15                                     | 2.11           | 0.1 X10 <sup>-6</sup>  |
| Modulat      | tion           |                                                                                                         |                |                        |
| 6539         | SLC6A12        | Solute carrier family 6 (neurotransmitter transporter, betaine/GABA), member 12                         | 3.02           | 0.3 X10 <sup>-8</sup>  |
| 6812         | STXBP1         | Syntaxin binding protein 1                                                                              | 2.53           | 0.9 X10 <sup>-8</sup>  |
| 9180         | OSMR           | Oncostatin M receptor                                                                                   | 2.36           | 0.1 X10 <sup>-7</sup>  |
| 6505         | SLC1A1         | Solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member 1 | 4.23           | 0.4 X10 <sup>-7</sup>  |
| 27092        | CACNG4         | Calcium channel, voltage-dependent, gamma subunit 4                                                     | 2.28           | 0.1 X10 <sup>-6</sup>  |
|              |                |                                                                                                         |                |                        |

 Table 4.4: Upregulated pain related genes in the secretory phase of eutopic endometrium of women with endometriosis.

*Dysregulated pathways*. Pathways involved in cytokine activity as well as potassium ion channel activity were amongst the most upregulated (see Appendix 8 for a list of top-20 dysregulated pathways).

# 4.1.2 Endometriotic lesions compared to eutopic endometrium from women with endometriosis

Thirty genes involved in the pain matrix were significantly upregulated in the endometriotic lesions when compared to eutopic endometrium from women with endometriosis, overall (see Table 4.5). The downregulated genes were involved in proton conductance, embryonic development, DNA repair and cancer-related processes. A list of top-35 up and downregulated genes is given in Appendices 15 and 16, respectively.

| Entrez   | Gene            | Fold                                                                                                          | P value |                           |
|----------|-----------------|---------------------------------------------------------------------------------------------------------------|---------|---------------------------|
| Id       | symbol          | Gene name                                                                                                     | Change  | 1 value                   |
|          | al development  |                                                                                                               |         | 1.4                       |
| 1942     | EFNA1           | Ephrin-A1                                                                                                     | 1.83    | $0.4 \text{ X10}^{-14}$   |
| 10397    | NDRG1           | N-myc downstream regulated 1                                                                                  | 1.79    | $0.9 \times 10^{-9}$      |
| 10677    | AVIL            | Advillin                                                                                                      | 1.63    | 0.5 X10 <sup>-8</sup>     |
| 91       | ACVR1B          | Activin A receptor, type IB                                                                                   | 1.5     | 0.1 X10 <sup>-6</sup>     |
|          | ation to inflam |                                                                                                               |         | 10                        |
| 9547     | CXCL14          | Chemokine (C-X-C motif) ligand 14                                                                             | 4.03    | $0.9  \mathrm{X10^{-10}}$ |
| 7099     | TLR4            | Toll-like receptor 4                                                                                          | 1.6     | 0.9 X10 <sup>-9</sup>     |
| 3600     | IL15            | Interleukin 15                                                                                                | 2.11    | $0.1 \times 10^{-8}$      |
| 9180     | OSMR            | Oncostatin M receptor                                                                                         | 1.86    | 0.2 X10 <sup>-8</sup>     |
| 4982     | TNFRSF11B       | Tumor necrosis factor receptor superfamily,<br>member 11b                                                     | 1.76    | 0.3 X10 <sup>-7</sup>     |
| 10855    | HPSE            | Heparanase                                                                                                    | 1.91    | 0.3 X10 <sup>-7</sup>     |
| 9252     | RPS6KA5         | Ribosomal protein S6 kinase, 90kDa, polypeptide 5                                                             | 1.65    | 0.4 X10 <sup>-7</sup>     |
| 2150     | F2RL1           | Coagulation factor II (thrombin) receptor-like 1                                                              | 1.83    | 0.4 X10 <sup>-7</sup>     |
| 1116     | CHI3L1          | Chitinase 3-like 1 (cartilage glycoprotein-39)                                                                | 2.68    | 0.5 X10 <sup>-7</sup>     |
| 7127     | TNFAIP2         | Tumor necrosis factor, alpha-induced protein 2                                                                | 1.55    | 0.6 X10 <sup>-7</sup>     |
| 9173     | IL1RL1          | Interleukin 1 receptor-like 1                                                                                 | 1.75    | 0.1 X10 <sup>-6</sup>     |
| Signal t | ransduction     | *                                                                                                             |         |                           |
| 55890    | GPRC5C          | G protein-coupled receptor, family C, group 5, member C                                                       | 1.56    | 0.2 X10 <sup>-9</sup>     |
| 266977   | GPR110          | G protein-coupled receptor 110                                                                                | 2.02    | 0.9 X10 <sup>-9</sup>     |
| 4217     | MAP3K5          | Mitogen-activated protein kinase kinase kinase 5                                                              | 1.99    | 0.3 X10 <sup>-8</sup>     |
| 302      | ANXA2           | Annexin A2                                                                                                    | 1.56    | 0.1 X10 <sup>-6</sup>     |
| 6775     | STAT4           | Signal transducer and activator of transcription 4                                                            | 1.54    | 0.2 X10 <sup>-6</sup>     |
| Conduc   | tion            |                                                                                                               |         |                           |
| 6505     | SLC1A1          | Solute carrier family 1 (neuronal/epithelial high<br>affinity glutamate transporter, system Xag),<br>member 1 | 3.81    | 0.1 X10 <sup>-17</sup>    |
| 6533     | SLC6A6          | Solute carrier family 6 (neurotransmitter transporter, taurine), member 6                                     | 1.76    | 0.4 X10 <sup>-8</sup>     |
| 3775     | KCNK1           | Potassium channel, subfamily K, member 1                                                                      | 1.5     | 0.4 X10 <sup>-6</sup>     |
| Modula   | tion            |                                                                                                               |         |                           |
| 6564     | SLC15A1         | Solute carrier family 15 (oligopeptide transporter), member 1                                                 | 2.79    | 0.2 X10 <sup>-12</sup>    |
| 6539     | SLC6A12         | Solute carrier family 6 (neurotransmitter transporter, betaine/GABA), member 12                               | 2.05    | 0.3 X10 <sup>-12</sup>    |
| 3976     | LIF             | Leukemia inhibitory factor                                                                                    | 2.28    | 0.1 X10 <sup>-8</sup>     |
| 80736    | SLC44A4         | Solute carrier family 44, member 4                                                                            | 2.11    | 0.4 X10 <sup>-8</sup>     |
| 2643     | GCH1            | GTP cyclohydrolase 1                                                                                          | 1.71    | 0.8 X10 <sup>-7</sup>     |
| 6571     | SLC18A2         | Solute carrier family 18 (vesicular monoamine), member 2                                                      | 2.47    | 0.1 X10 <sup>-6</sup>     |
| 2555     | GABRA2          | Gamma-aminobutyric acid (GABA) A receptor, alpha 2                                                            | 2.15    | 0.3 X10 <sup>-6</sup>     |

Table 4.5: Upregulated pain related genes in the endometriotic lesions compared to eutopic endometrium from women with endometriosis.

*Dysregulated pathways.* The pathways involved in both neuron development and pain modulation were found to be significantly upregulated compared to the eutopic endometrium from women with endometriosis (see Appendix A17 for a list of top-20 dysregulated pathways).

*Interaction amongst genes.* It can be seen from the figure that genes involved in the pain matrix are functionally related and may regulate the expression of one another (see Fig. 4.2). The clustering amongst the genes illustrates that the expression values of the genes are positively correlated with each other. The dendograms on the left show clustering amongst correlated genes. The shorter the dendograms, the more correlated are the expression values of the genes.

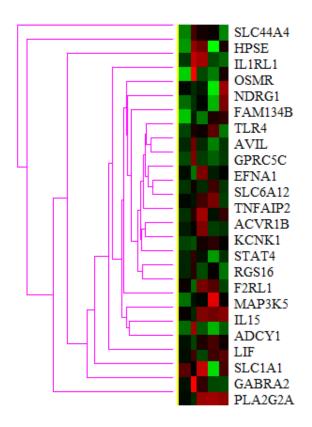



Fig. 4.2: Interactions among upregulated pain related genes in endometriotic lesions. The dendograms on the left illustrate correlation amongst genes expression values. The shorter the dendograms, the more correlated are the genes.

#### **4.1.2.1** Proliferative phase

In the proliferative phase, 28 genes involved in the pain matrix were found to be significantly upregulated in endometriotic lesions compared to the eutopic endometrium from women with endometriosis (Table 4.6). The significantly downregulated genes were involved in immune responses, embryogenesis, tumorogenesis and in encoding proteins for various metabolic processes. For a list of top-35 up and downregulated genes, see Appendices 18 and 19, respectively.

| Entrez<br>ID | Gene symbol        | Gene name                                                                                      | Fold<br>Change | P value                 |
|--------------|--------------------|------------------------------------------------------------------------------------------------|----------------|-------------------------|
| Neurona      | l development      |                                                                                                |                |                         |
| 1729         | DIAPH1             | Diaphanous homolog 1 (Drosophila)                                                              | 1.2            | $0.6 \mathrm{X10^{-4}}$ |
| 1906         | EDN1               | Endothelin 1                                                                                   | 1.5            | $0.3 \times 10^{-3}$    |
| 10677        | AVIL               | Advillin                                                                                       | 1.3            | 0.5 X10 <sup>-3</sup>   |
| Sensitisa    | tion due to inflar | nmation                                                                                        |                |                         |
| 728          | C5AR1              | Complement component 5a receptor 1                                                             | 2.2            | 0.1 X10 <sup>-4</sup>   |
| 1051         | CEBPB              | CCAAT/enhancer binding protein (C/EBP), beta                                                   | 1.5            | 0.1 X10 <sup>-4</sup>   |
| 3553         | IL1B               | Interleukin 1, beta                                                                            | 2.3            | $0.2 \text{ X}10^{-4}$  |
| 3576         | IL8                | Interleukin 8                                                                                  | 3.9            | 0.2 X10 <sup>-4</sup>   |
| 1116         | CHI3L1             | Chitinase 3-like 1 (cartilage glycoprotein-39)                                                 | 2.9            | $0.1 \text{ X} 10^{-3}$ |
| 9173         | IL1RL1             | Interleukin 1 receptor-like 1                                                                  | 1.6            | $0.2 \text{ X}10^{-3}$  |
| 6696         | SPP1               | Secreted phosphoprotein 1                                                                      | 2.9            | $0.2 \text{ X}10^{-3}$  |
| 2921         | CXCL3              | Chemokine (C-X-C motif) ligand 3                                                               | 2.2            | 0.3 X10 <sup>-3</sup>   |
| 3569         | IL6                | Interleukin 6 (interferon, beta 2)                                                             | 1.9            | 0.3 X10 <sup>-3</sup>   |
| 3269         | HRH1               | Histamine receptor H1                                                                          | 1.4            | 0.3 X10 <sup>-3</sup>   |
| 3659         | IRF1               | Interferon regulatory factor 1                                                                 | 1.4            | 0.3 X10 <sup>-3</sup>   |
| 4067         | LYN                | v-yes-1 Yamaguchi sarcoma viral related<br>oncogene homolog                                    | 1.3            | 0.3 X10 <sup>-3</sup>   |
| 9516         | LITAF              | Lipopolysaccharide-induced TNF factor                                                          | 1.3            | 0.3 X10 <sup>-3</sup>   |
| 10859        | LILRB1             | Leukocyte immunoglobulin-like receptor,<br>subfamily B (with TM and ITIM domains),<br>member 1 | 1.2            | 0.3 X10 <sup>-3</sup>   |
| 834          | CASP1              | Caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, convertase)              | 1.3            | 0.4 X10 <sup>-3</sup>   |
| 30817        | EMR2               | egf-like module containing, mucin-like, hormone receptor-like 2                                | 1.6            | 0.4 X10 <sup>-3</sup>   |
| 4982         | TNFRSF11B          | Tumor necrosis factor receptor superfamily, member 11b                                         | 1.5            | 0.6 X10 <sup>-3</sup>   |
| Signal tra   | ansduction         |                                                                                                |                |                         |
| 5791         | PTPRE              | Protein tyrosine phosphatase, receptor type, E                                                 | 1.5            | 0.2 X10 <sup>-4</sup>   |
| 1326         | MAP3K8             | Mitogen-activated protein kinase kinase kinase kinase 8                                        | 1.6            | 0.3 X10 <sup>-4</sup>   |
| 1366         | CLDN7              | Claudin 7                                                                                      | 1.4            | 0.3 X10 <sup>-3</sup>   |
| 5873         | RAB27A             | RAB27A, member RAS oncogene family                                                             | 1.3            | 0.3 X10 <sup>-3</sup>   |
| 80232        | WDR26              | WD repeat domain 26                                                                            | 1.2            | $0.5 \text{ X}10^{-3}$  |
| Conduct      | ion                |                                                                                                |                |                         |
| 3775         | KCNK1              | Potassium channel, subfamily K, member 1                                                       | 1.5            | 0.9 X10 <sup>-6</sup>   |
| Modulati     |                    | <b>پ</b>                                                                                       |                |                         |
| 3976         | LIF                | Leukemia inhibitory factor                                                                     | 2.4            | 0.4 X10 <sup>-5</sup>   |
| 6539         | SLC6A12            | Solute carrier family 6 (neurotransmitter transporter, betaine/GABA), member 12                | 1.7            | 0.5 X10 <sup>-4</sup>   |

 Table 4.6: Upregulated pain related genes in the proliferative phase of the endometriotic lesions compared to eutopic endometrium of women with endometriosis.

*Dysregulated pathways*. In endometriotic lesions, pathways involved in inflammatory and immune responses were among the top upregulated pathways (see Appendix 17 for a list of top-20 dysregulated pathways).

#### 4.1.2.2 Secretory phase

In the secretory phase, none of the significantly upregulated genes were involved in the pain matrix , however genes involved in cell adhesion, proliferation and anti-apoptosis were found to be significantly upregulated. A progesterone receptor gene *unc-45 homolog A (C. elegans)* (UNC45A) was significantly downregulated. For a list of top-35 up and down-regulated genes, see Appendix 20, respectively.

*Dysregulated pathways.* There were no significantly upregulated pathways during the secretory phase in endometriotic lesions.

# 4.1.2.3 Endometriotic lesions from women with endometriosis: Secretory vs. proliferative

#### phase

Twenty-five genes involved in neuronal development, signal transduction, conduction and pain modulation were significantly upregulated in the secretory phase endometriotic lesions when proliferative and secretory phases of the menstrual cycle were compared (Table 4.7). The dowregulated genes were mostly involved in cytokinesis, antigen presentation, cancer development, apoptosis and immune responses. For a list of top-35 up and downregulated genes, see Appendices 21 and 22, respectively.

| Entrez    | Gene           | Fold                                               | P value |         |
|-----------|----------------|----------------------------------------------------|---------|---------|
| Id        | symbol         | Gene name                                          | Change  | 1 vulue |
|           | al developme   |                                                    |         |         |
| 4684      | NCAM1          | Neural cell adhesion molecule 1                    | 4.8     | 0.00046 |
| 5098      | PCDHGA8        | Protocadherin gamma subfamily A, 8                 | 2.7     | 0.00067 |
| 157922    | CAMSAP1        | Calmodulin regulated spectrin-associated protein 1 | 2.5     | 0.00069 |
| 5354      | PLP1           | Proteolipid protein 1                              | 4.3     | 0.00081 |
| 4133      | MAP2           | Microtubule-associated protein 2                   | 2.6     | 0.00084 |
| 2047      | EPHB1          | EPH receptor B1                                    | 3.7     | 0.00086 |
| 9752      | PCDHA9         | Protocadherin alpha 9                              | 2.7     | 0.00089 |
| 5365      | PLXNB3         | Plexin B3                                          | 2.7     | 0.00106 |
| 63974     | NEUROD6        | Neurogenic differentiation 6                       | 2.5     | 0.00107 |
| Sensitisa | ation due to i | inflammation                                       |         |         |
| No gene   | s              |                                                    |         |         |
| Signal t  | ransduction    |                                                    |         |         |
| 51208     | CLDN18         | Claudin 18                                         | 2.6     | 0.00081 |
| 607       | BCL9           | B-cell CLL/lymphoma 9                              | 2.4     | 0.00082 |
| 7275      | TUB            | Tubby homolog (mouse)                              | 2.3     | 0.00086 |
| 1432      | MAPK14         | Mitogen-activated protein kinase 14                | 2.3     | 0.00089 |
| 10178     | ODZ1           | odz, odd Oz/ten-m homolog 1(Drosophila)            | 3       | 0.00102 |
| 5567      | PRKACB         | Protein kinase, cAMP-dependent, catalytic, beta    | 2.1     | 0.00106 |
| Conduc    | tion           |                                                    |         |         |
| 10479     | SLC9A6         | Solute carrier family 9 (sodium/hydrogen           | 3.1     | 0.0008  |
| 10479     | SLC9A0         | exchanger), member 6                               | 5.1     | 0.0008  |
| 3778      | KCNMA1         | Potassium large conductance calcium-activated      | 2.7     | 0.00082 |
| 5110      | KUNWAI         | channel, subfamily M, alpha member 1               | 2.1     | 0.00082 |
| 6543      | SLC8A2         | Solute carrier family 8 (sodium/calcium            | 4.3     | 0.00086 |
| 0545      | SLC0A2         | exchanger), member 2                               | 4.5     | 0.00080 |
| 57419     | SLC24A3        | Solute carrier family 24                           | 3.9     | 0.00092 |
| 57417     | SLC24AJ        | (sodium/potassium/calcium exchanger), member 3     | 5.7     | 0.00092 |
| 3750      | KCND1          | Potassium voltage-gated channel, Shal-related      | 3.3     | 0.00098 |
|           |                | subfamily, member 1                                | 5.5     | 0.00070 |
| Modula    |                |                                                    |         |         |
| 7166      | TPH1           | Tryptophan hydroxylase 1                           | 4.3     | 0.00046 |
| 6581      | SLC22A3        | Solute carrier family 22 (extraneuronal monoamine  | 3.4     | 0.00086 |
|           |                | transporter), member 3                             |         |         |
| 2897      | GRIK1          | Glutamate receptor, ionotropic, kainate 1          | 2.3     | 0.00103 |
| 2550      | GABBR1         | Gamma-aminobutyric acid type B receptor subunit    | 2.7     | 0.00106 |
|           |                | 1                                                  |         |         |
| 79664     | NARG2          | NMDA receptor regulated 2                          | 2.2     | 0.00106 |

Table 4.7: Upregulated pain related genes in the secretory phase of endometriotic lesions.

*Dysregulated pathways.* In the secretory phase endometriotic lesions compared to proliferative phase lesions, pathways involved in ion and neurotransmitter transport were among the top 10 upregulated pathways (see Appendix 17 for a list of top-20 dysregulated pathways).

#### 4. 2 Published gene lists

#### 4.2.1 Eutopic endometrium from women with and without endometriosis

There were 16 significantly upregulated genes involved in the pain matrix (see Table 4.8). In total,

there were 45 upregulated genes and 37 downregulated genes across the three datasets (see

Appendices 23 and 24).

| Table 4.8: Significantly | upregulated | genes | in | the | eutopic | endometrium | of | women | with |
|--------------------------|-------------|-------|----|-----|---------|-------------|----|-------|------|
| endometriosis.           |             |       |    |     |         |             |    |       |      |

| Gene Symbol      | Gene name                                            | P value  |  |  |  |  |  |
|------------------|------------------------------------------------------|----------|--|--|--|--|--|
| Neuronal develo  | Neuronal development                                 |          |  |  |  |  |  |
| JUNB             | Jun B proto-oncogene                                 | 0.0009   |  |  |  |  |  |
| ASCL1            | Achaete-scute complex homolog 1 (Drosophila)         | 0.0018   |  |  |  |  |  |
| efnb1            | Ephrin B1                                            | 0.009213 |  |  |  |  |  |
| POU3F4           | Brain 4 mRNA                                         | 0.013459 |  |  |  |  |  |
| Sensitisation du | e to inflammation                                    |          |  |  |  |  |  |
| CPE              | Carboxypeptidase E                                   | 0.002699 |  |  |  |  |  |
| CCL21            | Chemokine (C–C motif) ligand 21                      | 0.005846 |  |  |  |  |  |
| Signal transduct | tion                                                 |          |  |  |  |  |  |
| PTPRR            | Protein tyrosine phosphatase, receptor type, R       | 0.00045  |  |  |  |  |  |
| CASP5            | Cysteine protease (ICErel-III)                       | 0.000709 |  |  |  |  |  |
| SNCG             | Synuclein, gamma                                     | 0.002249 |  |  |  |  |  |
| PDE9A            | Phosphodiesterase 9A                                 | 0.002249 |  |  |  |  |  |
| TSPAN15          | Tetraspanin 15                                       | 0.003599 |  |  |  |  |  |
| FOS              | V-fos FBJ murine osteosarcoma viral oncogene homolog | 0.004947 |  |  |  |  |  |
| Conduction       |                                                      |          |  |  |  |  |  |
| ATP1A2           | ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide | 0.00045  |  |  |  |  |  |
| Modulation       |                                                      |          |  |  |  |  |  |
| IL6ST            | Interleukin-6 signal transducer                      | 0.003599 |  |  |  |  |  |
| GPR56            | G-Protein coupled receptor                           | 0.004498 |  |  |  |  |  |
| MAP3K1           | Mitogen activate protein kinase kinase 1             | 0.009921 |  |  |  |  |  |

Dysregulated pathways. Pathways related to signal transduction, response to stimuli were

significantly upregulated which may contribute to increased signal transduction in the eutopic

endometrium from women with endometriosis (for a list of top-20 dysregulated pathways see

Appendix 25).

#### 4.2.2 Eutopic endometrium and endometriotic lesions from women with endometriosis

In endometriotic lesions compared to eutopic endometrium from women with endometriosis, there was one gene involved in conduction and two genes involved in inflammation (see Table 4.9). The meta-analysis of published gene lists from seven studies revealed 43 down-regulated and 37 upregulated genes in the endometriotic lesions when compared to the eutopic endometrium from women with endometriosis (see Appendices 26 and 27).

| Table 4.9: Significantly upregulated genes in endometriotic lesions |                                                        |           |  |  |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------|-----------|--|--|--|--|
| Gene Symbol                                                         | Gene Name                                              | P value   |  |  |  |  |
| Neuronal development                                                | nt                                                     |           |  |  |  |  |
| No genes                                                            |                                                        |           |  |  |  |  |
| Sensitisation due to in                                             | nflammation                                            |           |  |  |  |  |
| PLA2G5                                                              | Phospholipase A2, group V                              | 0.000068  |  |  |  |  |
| CPVL                                                                | Carboxypeptidase, vitellogenic-like                    | 0.001065  |  |  |  |  |
| Signal transduction                                                 |                                                        |           |  |  |  |  |
| No genes                                                            |                                                        |           |  |  |  |  |
| Conduction                                                          |                                                        |           |  |  |  |  |
| SCN7A                                                               | Sodium channel, voltage-gated, type VII, alpha subunit | 0.0000268 |  |  |  |  |
| Pain modulation                                                     |                                                        |           |  |  |  |  |
| No genes                                                            |                                                        |           |  |  |  |  |

Differentially regulated pathways. No pathways involved in pain generation were significantly dysregulated in endometriotic lesions compared to eutopic endometrium from women with endometriosis. Pathways involved in reproduction and cellular organisation were amongst the top dysregulated pathways in endometriotic lesions compared to eutopic endometrium from women with endometriosis (for a list of top-20 dysregulated pathways see Appendix 25).

# **4.3** Convergence of gene list results

The converged list of upregulated genes involved in pain generation from both meta-analyses of individual participant gene expression data and published genes lists, comparing eutopic endometrium from women with and without endometriosis revealed only one gene, interleukin 6

signal transducer, *IL6ST* (see Fig. 4.3). No genes involved in pain generation were revealed to be common in the lists comparing gene expression in endometriotic lesions with eutopic endometrium from women with endometriosis.

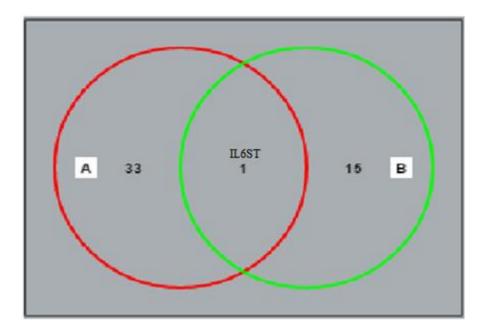



Fig. 4.3: Venn diagram illustrating one upregulated pain related gene common across gene list results obtained from meta-analyses of individual patient gene expression data and published gene list, comparing eutopic endometrium from women with and without endometriosis. A: List of upregulated pain related genes from the meta-analysis of individual participant gene expression data; B: List of upregulated pain genes from metaanalysis of published gene lists. The overlap of the two lists resulted in one common gene: Interleukin 6 signal transducer gene (IL6ST).

# **Chapter 5**

# Discussion

#### **5.1 Introduction**

This study has demonstrated an upregulation of pain related genes and pathways in both the eutopic endometrium and lesions as well as in the secretory compared to proliferative menstrual cycle phase in women with endometriosis. Genes involved in neuronal development, inflammation and sensitisation, signal transduction, signal conduction and pain modulation were all implicated in endometriosis. An upregulation of pain related genes may enhance peripheral sensitisation thereby leading to increased pain generation observed in women with endometriosis.

#### 5.2 Neuronal development in endometriosis

In both the individual gene expression and published gene list meta-analyses, genes involved in neuronal development were upregulated in the eutopic endometrium from women with endometriosis as well as in endometriotic lesions. Neurogenesis is a well-known phenomenon in endometriosis and has been implicated in the progression of the disease as well as its related pain symptoms (Bokor et al., 2009, Anaf et al., 2002, Arnold et al., 2012, Greaves et al., 2014, Asante and Taylor, 2011, Abu-Asab et al., 2011, Chen et al., 2014, McKinnon et al., 2015, Eyster et al., 2007, Hull et al., 2008).

As an example, in the eutopic endometrium from women with endometriosis, *Jun B protooncogene (JUNB)* was significantly upregulated. *JUNB* is a member of a family of transcription factors (Jun) and is promoted by growth factors and cytokines such as NGF and IL6 (Ransone and Verma, 1990, Angel and Karin, 1991, Dutta et al., 2011, Lord et al., 1993), which are also found to be at increased levels in the eutopic endometrium, peritoneal fluid and endometriotic lesions of women with endometriosis (Anaf et al., 2002, Akoum et al., 1996, Barcena de Arellano et al., 2011). *JUNB* functions by decreasing neuronal apoptosis in conjunction with NGF to promote neuronal survival (Lee et al., 2005a). Its mRNA and protein expression levels are high in cancerous cells (Lee et al., 2005a). *JUNB* expression is also known to be increased in neurons which respond to noxious stimuli and contribute to pain (Morgan and Curran, 1991, Naranjo et al., 1991). Recently, Hurst et al. (2014) have demonstrated increased *JUNB* gene expression in the eutopic endometrium of women with endometriosis compared to women without the disease. Furthermore, there is an increase in NGF mRNA and protein expression in the eutopic endometrium. Together, they may increase sensory innervation in the eutopic endometrium. Together, they may increase sensory innervation in the eutopic endometrium of women with endometriosis (Aghaey Meibody et al., 2011, Kobayashi et al., 2013, Cervero, 1994, Triolo et al., 2013, Tokushige et al., 2007).

In endometriotic lesions, gene encoding for adivilin (*AVIL*) was upregulated compared to the eutopic endometrium. This gene is a member of the Gelsolin superfamily of actin binding proteins and is predominantly expressed in the peripheral somatosensory neurons which innervate peripheral organs and transmit pro-nociceptive painful signals (Hasegawa et al., 2007, Marks et al., 1998, Ravenall et al., 2002). Advillin is involved in axonal remodelling, regrowth of the peripheral sensory neurons and responding to cellular stress (Hasegawa et al., 2007, Zurborg et al., 2011, Marks et al., 1998, Shibata et al., 2004). In endometriotic lesions, upregulation of this gene may lead to the hyper-innervation of the endometriotic lesions and also to increased pronociceptive signalling, thereby contributing to increased pain generation in women with endometriosis (Wang et al., 2009, Kobayashi et al., 2013, Anaf et al., 2002, Triolo et al., 2013). Furthermore, in endometriotic lesions, neuronal development pathways such as those involved in the development of synapses between neurons as well as those involved in formation of the post-

synaptic membrane were also upregulated compared to the eutopic endometrium from women with endometriosis. Upregulation of these genes and the related pathways in endometriotic lesions may contribute to pain by increased lesion innervation which may lead to increased peripheral sensitisation (Asante and Taylor, 2011, Wang et al., 2009, Anaf et al., 2002, Arnold et al., 2012, Stratton and Berkley, 2011).

There was an upregulation of neuronal development genes in the secretory compared to the proliferative phase in both the eutopic endometrium and lesions from women with endometriosis. For example, in the secretory phase compared to the proliferative phases, in both the eutopic endometrium and endometriotic lesions from women with endometriosis, neural cell adhesion molecule (NCAM) gene NCAM-1 was significantly upregulated. NCAM-1 encodes for a glycoprotein which is involved in intercellular adhesions (Francavilla et al., 2007, Hinsby et al., 2004, Rønn et al., 1998) and mediates neuronal migration, proliferation and survival, as well as synapse formation and plasticity (Delling et al., 2002, Murase and Schuman, 1999, Schachner, 1997). It is also known to be involved in perineural invasion which damages the nerve cells and generates pain (Ben et al., 2010, Bapat et al., 2011). Odagiri et al. (2008) and Yu et al. (2009) have also demonstrated increased NCAM-1 gene expression in both eutopic endometrium and endometriotic lesions. An upregulation of NCAM-1 may increase innervation of the eutopic endometrium and endometriotic lesions, and may also generate pain by promoting nerve cell damage. Upregulation of neuronal development genes in the secretory phase in endometriosis correlates with increased pain in women during the late secretory phase of the menstrual cycle (Barbosa Mde et al., 2013, de Tommaso, 2011, Hellstrom and Anderberg, 2003).

During chronic pain conditions, there is an upregulation of genes involved in neuronal development (Costigan et al., 2009, Costigan et al., 2002). In endometriosis, upregulation of genes

involved in neuronal development in the eutopic endometrium and endometriotic lesions may contribute to the high density of sensory nerve fibres observed in women with endometriosis and to pain in the disease (Tokushige et al., 2006a, Wang et al., 2009, Tokushige et al., 2007). The importance of this for pain in endometriosis is supported by a correlation between nerve fibre density in lesions with pain intensity in endometriosis (Stratton and Berkley, 2011).

#### 5.3 Sensitisation due to inflammation in endometriosis

Genes involved in inflammation leading to peripheral sensitisation were upregulated in the eutopic endometrium from women with endometriosis as well as in endometriotic lesions in both metaanalyses. Increased expression of these genes is known to be linked to pain (Black et al., 2004, Di Sebastiano et al., 2003, Homma et al., 2013, Yukhananov and Kissin, 2008). Inflammatory mediators sensitise peripheral sensory neurons, lowering their threshold for generating an action potential (Chen et al., 2009, Schaible, 2007, Voscopoulos and Lema, 2010).

Increased expression of genes involved in inflammation in both the eutopic endometrium of women with endometriosis and endometriotic lesions is supported by the included studies (Vouk et al., 2011, Burney et al., 2007, Eyster et al., 2007) as well as the broader literature (Kyama et al., 2006, Chand et al., 2007, Bertschi et al., 2013, Tseng et al., 1996, Abu-Asab et al., 2011, Nikoo et al., 2014, Lin et al., 2014, Li et al., 2013). Genes involved in inflammation have been implicated in the pathogenesis of endometriosis and in related pain symptoms (Scholl et al., 2009). Moreover, this study has found that the most highly dsyregulated pathways in the eutopic endometrium and lesions from women with endometriosis were those involved in inflammatory and immune responses such as acute inflammatory response, activation of cytokines and chemokines as well as promoting a response to stimulus. This correlates with findings of immune dysfunction and an inflammatory microenvironment in endometriosis, leading to disease progression and

development of associated pain symptoms (Braun and Dmowski, 1998, Matarese et al., 2003, Bloski and Pierson, 2008, Herington et al., 2011, Ahn et al., 2015. In press).

In the eutopic endometrium from women with endometriosis compared to endometriotic lesions, upregulated genes involved in inflammation included interleukin 6 signal transducer (IL6ST). *IL6ST*, also known as glycoprotein 130 (gp130), was the only gene found to be common amongst the converged results of the two meta-analyses. This gene may play an important role in endometriosis-related pain. It is expressed by peripheral sensory neurons and has been implicated in pathological pain (Andratsch et al., 2009, Langeslag et al., 2011). IL6ST leads to the sensitisation of peripheral sensory neurons by activating MAPK pathways as well as through the activation of thermal nociceptive receptor transient receptor potential vallinoid (TRPV1; Langeslag et al., 2011, Andratsch et al., 2009, Dominguez et al., 2008). A variety of proinflammatory cytokines, such as IL-6, IL-11, leukemia inhibitory factor (LIF), and oncostatin M (OSM) are known to bind to *IL6ST* for activation as well as for signalling the production of mast cells, macrophages and other immune cells (Andratsch et al., 2009). Of these, IL6 is the most notable as it is extremely elevated in chronic inflammatory conditions such as in the peritoneal fluid and eutopic endometrium of women with endometriosis (Tseng et al., 1996, Akoum et al., 1996, Kyama et al., 2006, Velasco et al., 2010, Slater et al., 2006) and causes peripheral sensitisation due to thermal and mechanical stimuli, contributing to pain (Langeslag et al., 2011, Malsch et al., 2014, Punnonen et al., 1996). Increased expression levels of *IL6ST* may increase the cytokine levels secreted by the immune cells which in turn are excessively produced by the eutopic endometrium of women with endometriosis (Schulke et al., 2009, Anaf et al., 2006) and ultimately to sensitisation of peripheral neurons (Howard, 2009, Scholl et al., 2009, Neziri et al., 2014, Cakmak et al., 2009, Bloski and Pierson, 2008).

In both the eutopic endometrium and endometriotic lesions, interleukin-15 (*IL-15*) was significantly upregulated. *IL-15* is a pro-inflammatory cytokine which is important for protective immune responses (Perera et al., 2012, Perera, 2000, Liew and McInnes, 2002). Its levels positively correlate with the severity of pain in chronic pain conditions (Scanzello et al., 2009, Sun et al., 2013). High concentration of IL-15 favours the production of other pro-inflammatory cytokines such as IL-1, IL-6, IL-8 and TNF- $\alpha$  as well as the recruitment of immune cells, thereby amplifying the inflammatory reaction (Alleva et al., 1997, Cassatella and McDonald, 2000, Ren and Dubner, 2010, Sun et al., 2013). In women with endometriosis, IL-15 levels are elevated in endometriotic lesions and peritoneal fluid compared to women without the disease and have been implicated in mediating an early immune response (Arici et al., 2003, Chegini et al., 2003). Upregulation of IL-15 in both the eutopic endometrium and endometriotic lesions may contribute to peripheral sensitisation by increasing local cytokine production and immune cell recruitment (Gomez-Nicola et al., 2008, Chegini et al., 2003).

Genes involved in inflammation were also upregulated in the secretory compared to the proliferative phase in the eutopic endometrium in endometriosis, for example heparanase (*HPSE*). It encodes for a degradation enzyme leading to extracellular matrix remodelling and release of pro-inflammatory mediators such as VEGF and cytokines (Lerner et al., 2011). *HPSE* is upregulated in inflammation and controls many inflammatory and immune responses (Meirovitz et al., 2013, Goldberg et al., 2013). *HPSE* stimulates macrophage activation which in turn induces heparanase production (Lerner et al., 2011, Vlodavsky et al., 2012, Edovitsky et al., 2006). The modulation of macrophage activation and pro-inflammatory cytokine and growth factor production leads to inflammation which may lead to the sensitisation of the peripheral neurons (Vlodavsky et al., 2012, Kidd and Urban, 2001, Meirovitz et al., 2013, Goldberg et al., 2013).

cytokine production observed in women with endometriosis (Hassa et al., 2009, Scholl et al., 2009, Berbic et al., 2009), thus contributing to peripheral sensitisation and pain generation (Liew and McInnes, 2002, Sun et al., 2013). Significant upregulation of genes involved in inflammation in secretory phase eutopic endometrium from women with endometriosis indicates increased peripheral sensitisation within the uterus in the lead up to menstrual pain (Hellstrom and Anderberg, 2003, de Tommaso, 2011, Tousignant-Laflamme and Marchand, 2009).

#### 5.4 Signal transduction and conduction in endometriosis

Genes involved in signal transduction and conduction were significantly upregulated in both the eutopic endometrium and lesions from women with endometriosis. Studies included in this metaanalysis (Khan et al., 2012, Eyster et al., 2007, Sohler et al., 2013, Hurst et al., 2014) as well as those from the broader literature have reported increased expression of genes involved in signal transduction and conduction in both eutopic endometrium and lesions in women with endometriosis (Liu et al., 2012, Greaves et al., 2014, Abu-Asab et al., 2011, Makker et al., 2012, Poli-Neto et al., 2009, Pelch et al., 2010, Wren et al., 2007). Enhanced expression of these genes increases the excitability of sensory neurons and signal conduction, leading to increased pain signal transfer (Ossipov, 2012, Basbaum et al., 2009, Foulkes and Wood, 2008).

As an example from the current study, in both eutopic endometrium of women with endometriosis and endometriotic lesions, genes encoding for members of the mitogen activated protein kinases (MAPK; involved in signal transduction) family such as *mitogen-activated protein kinase 5* (*MAP3K5*), *mitogen-activated protein kinase 6* (*MAPK6*) and *mitogen-activated protein kinase 8* (*MAP3K8*) were significantly upregulated. MAPK are a family of intracellular signalling molecules expressed by peripheral nociceptive neurons (Ji et al., 2009, Ji and Woolf, 2001). They are activated following intense noxious stimulation (Ji et al., 2009, Adwanikar et al., 2004,

Voscopoulos and Lema, 2010, Imbe et al., 2011, Impey et al., 1999, Gao and Ji, 2008, Kumar et al., 2003, Ji and Woolf, 2001). Their activation leads to impulse generation contributing to pain (Ji et al., 2009). In endometriosis, increased MAPK expression may contribute to increased signal transduction by getting activated following noxious stimuli and generating action potential leading to initiation of painful nerve impulses (Tarek et al., 2001, Bukulmez et al., 2008, Yoshino et al., 2004).

In both the eutopic endometrium of women with endometriosis and endometriotic lesions genes involved in signal transduction were upregulated in the secretory phase of the menstrual cycle when compared to the proliferative phase. In the endometriotic lesions, MAPK family genes were upregulated whereas in the eutopic endometrium, *transient receptor potential M8 (TRPM8)* was one of the significantly upregulated genes. *TRPM8* is a member of the transient receptor potential channel family that responds to noxious stimuli by initiating transient elevations of intracellular Ca ion concentration (Gees et al., 2010, Nilius and Owsianik, 2011). Its expression levels increase following injury and lower the threshold of peripheral sensory neurons leading to generation of impulses (Proudfoot et al., 2006, McKemy et al., 2002, Levine and Alessandri-Haber, 2007). *TRPM8* is activated by noxious cold or chemical agents as well as modulated by cell stress (Morgan et al., 2014). Increased secretion of pro-inflammatory mediators such as cytokines, during the secretory phase in the eutopic endometrium (Ma et al., 2013a, Wolff et al., 2000) may increase the expression of *TRPM8* leading to enhanced signal transduction thereby contributing to dysmenorrhea.

In both the eutopic endometrium and endometriotic lesions, signal conducting genes encoding for potassium ion gated channels such as *potassium voltage-gated channel*, *Shal-related subfamily*, *member 3 (KCND3)* and *potassium voltage-gated channel*, *Shaw-related subfamily*, *member 1* 

(*KCNC1*) were upregulated. Electrical impulses generated in excited neurons are conducted along the axons via potential gradients (Schaible, 2007). Potassium ion gated channels generate potential gradient by allowing selective flow of potassium ions across cell membranes (Moldovan et al., 2013, Wulff et al., 2009, Takeda et al., 2011, Hayashi et al., 2014). They conduct currents in order to regulate the sensitisation of the sensory neurons, for example *KCND3* encodes for a channel conducting fast-inactivating currents and *KCNK1* encodes for a channel conducting slow-inactivating current (Tsantoulas and McMahon, 2014, Takeda et al., 2011). In case of intense noxious stimulation, potassium ion channels contribute to enhanced signal conduction by increasing the frequency of impulse firing (Takeda et al., 2011). The intense inflammatory microenvironment in endometriosis (Bloski and Pierson, 2008, Bruner-Tran et al., 2013, Scholl et al., 2009, Neziri et al., 2014) may lead to increased impulse conduction via potassium ion gated channels contributing to pain generation (Sommer and Kress, 2004).

Pathways related to signal transduction and conduction, such as MAPK cascades, activity of ligand gated ion channels and calcium ion homeostasis were among the top upregulated pathways in both eutopic endometrium and endometriotic lesions. The upregulation of genes and pathways involved in signal transduction and conduction in both the eutopic endometrium and endometriotic lesions may be linked to increased sensory innervation and peripheral sensitisation as a result of increased production of pro-inflammatory mediators in the pelvic viscera. Neuronal sensitisation modulates activation of voltage-gated ion channels and thereby excitability, generation and conduction of action potentials (Schaible, 2007, Kitahata, 1993, Binshtok, 2011). Information is then sent from the pelvic viscera to the brain, contributing to perception of pain (Morotti et al., 2014b).

#### **5.5 Pain modulation in endometriosis**

In both tissue types included in the meta-analyses, genes involved in pain modulation were upregulated. Certain pain modulating genes are known to be upregulated during chronic pain conditions (Gangadharan and Kuner, 2013, Schaible, 2007, Foulkes and Wood, 2008, Millan, 2002). Pain modulating genes may enhance or inhibit pain generation pathways. They contribute to pain by enhancing the release of neurotransmitters which increase the excitability of sensory neurons and facilitate the transfer of painful signals from the periphery to the CNS (Foulkes and Wood, 2008, Mogil et al., 2000). Included as well as other studies have also shown expression of genes involved in pain modulation is increased in women with endometriosis.

In both the eutopic endometrium of women with endometriosis and endometriotic lesions, *LIF* was one of the significantly upregulated genes involved in pain modulation. *LIF* is a cytokine, the expression levels of which are known to increase following injury (Banner and Patterson, 1994, Banner et al., 1998, Curtis et al., 1994, Oshima et al., 2007, Knight, 2001). It promotes sprouting of cholinergic neurons and modulates pain by enhancing neuropeptide expression (Wang and Lehky, 2012, Banner et al., 1998, Rao et al., 1993, Gadient and Patterson, 1999, Geisterfer and Gauldie, 1996). In endometriosis, increased expression of *LIF* (Tawfeek et al., 2012, Dimitriadis et al., 2006) may contribute to sprouting of sensory neurons that are more sensitive to stimuli. Increased innervation of eutopic endometrium and endometriotic lesions is implicated in pain generation (Tokushige et al., 2006a, Wang et al., 2009, Kobayashi et al., 2013). Moreover, increased *LIF* expression may lead to increased expression of cytokines and neuropeptides, also observed in women with endometriosis (Bokor et al., 2009, Scholl et al., 2009, Tokushige et al., 2006b), thereby contributing to enhancement of peripheral sensitisation.

In endometriotic lesions, the upregulated pain modulating genes included *gamma-aminobutyric acid A receptor, alpha 2* (*GABRA2*). This gene encodes for the member of the GABA family which are major inhibitors of neuronal activity (Rea et al., 2007, Jasmin et al., 2003, Lau and Vaughan, 2014). In chronic pain conditions, GABA receptors (GABA<sub>A</sub> and GABA<sub>B</sub>) actually facilitate pain transmission by increasing the threshold of neurons that inhibit neurotransmission and inactivating them (Enna and McCarson, 2006). Increased expression of GABA encoding genes in endometriotic lesions may enhance pain generation by inactivating the inhibitory neurons.

In the secretory phase, genes involved in pain modulation were upregulated in both endometriotic lesions as well as the eutopic endometrium of women with endometriosis. In the endometriotic lesions, gene encoding for gamma-aminobutyric acid type B (GABBAB) was upregulated which facilitates pain by inactivating inhibitory neurons. In the eutopic endometrium serotonin receptor *5-hydroxytryptamine (serotonin) receptor 1D (HTR1D)* was one of the upregulated pain modulating genes. In the periphery, serotonin receptors are present on sensory nerve endings and following noxious stimulation, enhance or inhibit the activation of gated ion channels (Ossipov et al., 2010, Bardin, 2011, Lindstedt et al., 2011, Treister et al., 2011, Sommer, 2004). Serotonin receptors facilitate pain by sensitising peripheral sensory neurons directly (Tegeder and Lötsch, 2009, Wei et al., 2010, Suzuki and Dickenson, 2005, Hooten et al., 2013, Oliveira et al., 2007). *HTR1D* encodes for a serotonin receptor which contributes to inflammatory pain (Ahn and Basbaum, 2006, Manteniotis et al., 2013, Tepper et al., 2002). In endometriosis, increased expression of pain modulating genes in the secretory phase may contribute to dysmenorrhea by modulating neuronal conductance as well as directly sensitising the peripheral sensory neurons.

Pain modulation in endometriosis is complex, as are the other interrelated aspects of the pain matrix in the disease. Indeed, generally speaking, pain generation is a complex process, involving interactions between the peripheral and central nervous systems (Ossipov et al., 2010). In endometriosis, alteration in both the peripheral and central nervous systems may contribute to pain symptoms (Stratton and Berkley, 2011, Triolo et al., 2013). Neuronal development and sensory innervation are locally increased in the eutopic endometrium and endometriotic lesions. The sensory nerve fibres are sensitised by the inflammatory microenvironment which leads to signal transduction and generation of action potential (Morotti et al., 2014b, Berkley et al., 2005, Triolo et al., 2013). The sensitised peripheral sensory neurons conduct action potentials via the DRG of the spinal cord to the CNS (Schaible, 2007, Porpora et al., 1999, Stratton and Berkley, 2011). Once the CNS processes the sent information, descending impulses are sent to the spinal cord to dampen the excitatory impulses (Bolay and Moskowitz, 2002, Kitahata, 1993, Ossipov et al., 2010, Neziri et al., 2014, Triolo et al., 2013). However, in case of chronic pain conditions such as endometriosis, persistent sensitisation may lead to descending impulses to become excitatory and contribute to development of chronic pain (Bolay and Moskowitz, 2002, Kwon et al., 2013, Voscopoulos and Lema, 2010, Morotti et al., 2014b, Triolo et al., 2013, Neziri et al., 2014, Stratton and Berkley, 2011).

### 5.6 Implications for pain management in endometriosis

There is almost certainly a relationship between variable responses to pain management and complexity of pain mechanisms in endometriosis (Neziri et al., 2014, Evans et al., 2007, Howard, 2009, Kobayashi et al., 2013, Triolo et al., 2013, Bloski and Pierson, 2008). The current pain management techniques are ineffective for a proportion of women with endometriosis and pain symptoms generally have high recurrence rates, in addition to treatments being associated with some unpleasant side effects (Huang, 2008, Bruner-Tran et al., 2013, Kennedy et al., 2005, Nasir

and Bope, 2004, Sutton et al., 1994, Medicine, 2014, Bloski and Pierson, 2008, Culley et al., 2013). Hence, identifying and targeting candidate genes involved in pain generation in endometriosis may aid in better management of pain associated with the disease (Dun et al., 2010).

Gene therapy has been used for managing chronic pain and works by targeting candidate genes known to be involved in pain generation (Goins et al., 2012, Jain, 2008, Wilson and Yeomans, 2000). Delivery of potent bioactive molecules either interrupts nociceptive signalling, or interferes with the plasticity in the nervous system underlying the development or persistence of chronic pain (Jain, 2008, Mata et al., 2008). In gene therapy, genes are delivered through vectors to peripheral tissues from where they are transported through natural mechanisms to the targeted neurons (Goins et al., 2012). A vector is a virus which infects the targeted cells and transports its genome to the nucleus where the candidate gene can be expressed for various desired durations (Wilson and Yeomans, 2000, Tavares and Martins, 2013, Jain, 2008, Goins et al., 2012).

Several gene targets are being tested on animal models for their application to chronic pain management. For example, targeting of primary sensory neurons by modulating signal transducing channels such as TRPV1 alleviates pain symptoms by toxic flood of Ca<sup>2+</sup> ions. This damages the nociceptive TPRV1 containing axons (Brederson et al., 2013), which has been successfully applied to animal models and is now under Phase I clinical trial on patients with advanced cancer pain (Smith, 2008). Delivering immune modulatory genes have demonstrated a reduction in not only pain, but also in the expression of pro-inflammatory mediators such as TNF- $\alpha$ , IL-6 and IL-1 (Zhou et al., 2008, Ledeboer et al., 2007, Hao et al., 2007). Currently, genes for neuronal growth factors such as NGF and BDNF, modulators of inflammatory cytokines such as IL-2, IL-4 and IL-10, signal transduction such as TRPV1, repolarisation of sensory neurons and inhibitory

neuromodulators such as GABA, opioids are being employed for managing pain (Yao et al., 2002, Yao et al., 2003, Hao et al., 2007, Hao et al., 2006, Milligan et al., 2005).

Gene therapy for managing endometriosis and endometriotic lesions such as delivering negative oestrogen receptors to endometriotic cells for abrogating oestrogen action has been successful in inhibiting angiogenesis, suppressing inflammatory factors and inducing apoptosis (Othman et al., 2007). Similarly in rodent models, the size of endometriotic lesions was significantly reduced along with levels of VEGF in the serum with endostatin gene therapy (Zhang et al., 2012, Ma and He, 2014). Delivery of genes which promote an immunogenic response to endometriotic lesions are being explored for treating endometriosis (Shubina et al., 2013). Application of gene therapy to block NGF by utilising anti-NGF antibodies which will in turn block NGF-dependent neuronal survival is being analysed for treating endometriosis-associated pain (Shubina et al., 2013, Howe et al., 2010). In the future, candidate pain related genes that are dysregulated in endometriosis, may be novel gene therapy targets for treatment of pain symptoms.

# **Conclusions and Future Directions**

## Conclusions

Pain related genes were significantly upregulated in the eutopic endometrium of women with endometriosis compared to women without endometriosis, and in endometriotic lesions compared to eutopic endometrium from women with endometriosis. In both eutopic endometrium and endometriotic lesions from women with endometriosis, pain related genes were also significantly upregulated in the secretory compared to the proliferative phase of the menstrual cycle. The expression levels of different pain related genes positively correlated with each other in both the eutopic endometrium and lesions of women with endometriosis.

In conclusion, upregulation of a range of pain related genes may be associated with pain symptoms in endometriosis, particularly in the time leading up to menstruation (secretory phase of the menstrual cycle), specifically, genes involved in neuronal development, sensitisation due to inflammation, signal transduction, conduction and modulation. This, combined with previously described nociceptive, inflammatory and neuropathic pain generation mechanisms in endometriosis indicates the complexity of pain processes in the disease. Improved understanding of the molecular mechanisms underlying generation of pain in endometriosis may in future aid the development of therapeutic approaches.

## **Future directions**

Molecular pain mechanisms associated with endometriosis are very complex and require further in-depth understanding. This study has provided some information about local gene dysregulations which may contribute to pain symptoms in women with endometriosis. However, a variety of possible further studies are of interest which may improve our current understanding of pain mechanisms in endometriosis. Listed below are some of the investigations which may be considered a priority:

- A range of datasets are required to be explored to identify candidate dysregulated genes involved in pain generation. For example, analysing differential gene expression in blood samples of women with and without endometriosis may provide insights about molecular mechanisms that make women susceptible to endometriosis.
- Identifying differential gene expression between different lesion types (peritoneal, ovarian and deep) may contribute to improved understanding of pain related mechanisms.
- Pain in endometriosis is experienced most during pre-menstrual and menstrual phases, hence profiling endometrial gene expression from women with endometriosis these times in the cycle may shed some light on pain mechanisms.
- Improving understanding of pain in endometriosis may be accomplished by conducting studies focussing on how endometriosis affects the PNS and CNS, and examining these studies in context of mechanisms underlying other chronic pain conditions.
- Understanding mechanisms of nerve fibre stimulation in fibres innervating the eutopic endometrium and endometriotic lesions may further the understanding of mechanisms underlying pain in endometriosis.

Basic studies and clinical trials are required to evaluate treatment options for endometriosis pain. For example, application of immunomodulators and anti-inflammatory mediators in the treatment of endometriosis requires further investigation. Additionally, genes involved in pain generation in other chronic painful conditions as well as those that have been identified in endometriosis should be further explored to for their application in gene therapy for endometriosis-associated pain.

# Appendices

| Appendix 1: Characteristics of included studies 111                                               |
|---------------------------------------------------------------------------------------------------|
| Appendix 2: Characteristics of excluded studies                                                   |
| Appendix 3: Participant characteristics for studies included in the meta-analysis with individual |
| patient gene expression data available124                                                         |
| Appendix 4: Steps for normalisation of individual patient gene expression data by GeneSpring      |
|                                                                                                   |
| Appendix 5: Steps for the meta-analysis and analysis of dysregulated genes for published gene     |
| lists                                                                                             |
| Appendix 6: Top-35 upregulated genes in eutopic endometrium from women with endometriosis         |
| compared to from women without endometriosis $\dots 132$                                          |
| Appendix 7: Top-35 downregulated genes in eutopic endometrium from women with                     |
| endometriosis compared to from women without endometriosis $\dots 133$                            |
| Appendix 8: Top 20 dysregulated pathways in the eutopic endometrium from women with               |
| endometriosis as compared to from women without endometriosis $\dots 134$                         |
| Appendix 9: Top-35 upregulated genes in eutopic endometrium from women with endometriosis         |
| compared to from women without endometriosis in the proliferative phase of the menstrual cycle    |
|                                                                                                   |
| Appendix 10: Top-35 downregulated genes in eutopic endometrium from women with                    |
| endometriosis compared to from women without endometriosis in the proliferative phase of the      |
| menstrual cycle                                                                                   |
| Appendix 11: Top-35 upregulated genes in eutopic endometrium from women with endometriosis        |
| compared to from women without endometriosis in the secretory phase of the menstrual cycle        |
|                                                                                                   |
| Appendix 12: Top-35 downregulated genes in eutopic endometrium from women with                    |
| endometriosis compared to from women without endometriosis in the secretory phase of the          |
| menstrual cycle                                                                                   |
| Appendix 13: Top-35 upregulated genes in eutopic endometrium from women with endometriosis        |
| in the proliferative vs. secretory phase of the menstrual cycle $140$                             |

Appendix 18: Top-35 upregulated genes in the proliferative phase endometriotic lesions compared to eutopic endometrium from women with endometriosis ...... 146

| Appendix 22: Top-35 downregulated genes in the secretory phase endometriotic lesions        |
|---------------------------------------------------------------------------------------------|
| compared to proliferative phase endometriotic lesions from women with endometriosis $150$   |
| Appendix 23: Upregulated genes in the eutopic endometrium from women with compared to       |
| women without endometriosis                                                                 |
| Appendix 24: Downregulated genes in the eutopic endometrium from women with compared to     |
| women without endometriosis                                                                 |
| Appendix 25: Top 20 up- and down-regulated pathways in endometriosis                        |
| Appendix 26: Upregulated genes in the endometriotic lesions compared to eutopic endometrium |
| from women with endometriosis                                                               |

 Appendix 1: Characteristics of included studies.

|               | Hull et al. 2008                                                     |
|---------------|----------------------------------------------------------------------|
| Methods       | Cross-sectional study                                                |
|               | Individual patient gene expression data available                    |
| Participants  | Women with endometriosis (age 20-46 years) that have regular         |
|               | menstrual cycles and are not using hormonal treatment $(N = 9)$ .    |
|               | Endometriosis was confirmed by laparoscopy.                          |
| Interventions | Endometrial biopsies collected using Pipelle suction curettes; RNA   |
|               | extracted from endometrial tissue; Hybridisation with U133A          |
|               | Affymetrix cDNA arrays containing ~23,000 probe sets in total;       |
|               | compared gene expression of eutopic and ectopic endometrial samples. |
| Outcomes      | • Genes found to be significantly up-regulated and down-             |
|               | regulated in ectopic lesions relative to eutopic endometrium         |
|               | were 292 and 390, respectively.                                      |
|               | Biological processes significantly over- or under- represented       |
|               | were inflammatory response, response to wounding, cell               |
|               | adhesion, calcium-independent cell adhesion, primary                 |
|               | metabolic process, and DNA metabolic process.                        |

| Risk of Bias               |           |                                                          |
|----------------------------|-----------|----------------------------------------------------------|
| Item                       | Judgement | Description                                              |
| Small sample size          | Yes       | <i>N</i> = 9                                             |
| Blind assessment of        | Unclear   | Information not provide in the study.                    |
| samples by the pathologist |           |                                                          |
| Use of established         | Yes       | Noyes criteria were used to confirm the cycle phase from |
| criteria for assessing     |           | all the biopsies of endometrial tissue.                  |
| menstrual cycle phase      |           |                                                          |
| Quality check of RNA       | Yes       | RNA integrity was assessed using an Agilent-2100         |
|                            |           | Bioanalyzer.                                             |
| Validation of              | Unclear   | Method unclear.                                          |
| microarray results         |           |                                                          |
| Other potential sources    | Yes       | Clinical characteristics of participants not provided.   |

| Hever et al. 2007 |                                                                         |  |
|-------------------|-------------------------------------------------------------------------|--|
| Methods           | Cross-sectional study                                                   |  |
|                   | Individual patient gene expression data available.                      |  |
| Participants      | Women with endometriosis (age: missing) that have normal menstrual      |  |
| _                 | cycles and are not using hormonal treatment ( $N = 10$ ). Endometriosis |  |
|                   | was confirmed by laparoscopy.                                           |  |
| Interventions     | Endometrial biopsies; RNA extracted from the endometrial tissue;        |  |
|                   | hybridisation with Affymetrix Human Genome U133 Plus 2.0 gene           |  |
|                   | array; compared gene expression of eutopic and ectopic endometrial      |  |
|                   | samples.                                                                |  |
| Outcomes          | Fifty-three up-regulated genes associated with immune responses,        |  |
|                   | cell-to-cell signaling/interaction, and hematological system            |  |
|                   | development/function; inflammatory diseases, immune responses, and      |  |
|                   | cellular movement were found to be up-regulated.                        |  |

|                         | Risk of Bias |                                                       |
|-------------------------|--------------|-------------------------------------------------------|
| Item                    | Judgement    | Description                                           |
| Small sample size       | Yes          | <i>N</i> = 10                                         |
| Blind assessment of     | No           | Stage of endometriosis not assessed.                  |
| samples by the          |              |                                                       |
| pathologist             |              |                                                       |
| Use of established      | Unclear      | Information not provided.                             |
| criteria for assessing  |              |                                                       |
| menstrual cycle phase   |              |                                                       |
| Quality check of RNA    | Unclear      | Information not provided.                             |
| Validation of           | Yes          | Quantitative PCR was used to validate the microarray  |
| microarray results      |              | results.                                              |
| Other potential sources | Yes          | Clinical characteristic of patients regarding age not |
|                         |              | provided.                                             |

| Burney et al. 2007 |                                                                         |  |
|--------------------|-------------------------------------------------------------------------|--|
| Methods            | Case-control study                                                      |  |
|                    | Individual patient gene expression data available.                      |  |
| Participants       | Women with endometriosis (age 22-44 years) that have normal             |  |
| _                  | menstrual cycles and are not using hormonal treatment ( $N = 21$ ).     |  |
|                    | Endometriosis was confirmed by laparoscopy.                             |  |
| Interventions      | Endometrial biopsies collected from Pipelle catheters or curette from   |  |
|                    | the uterine fundus under sterile conditions; RNA extraction;            |  |
|                    | Hybridisation with Affymetrix Human Genome U133 Plus 2.0 gene           |  |
|                    | array; Compared gene expression of eutopic and normal endometrial       |  |
|                    | samples.                                                                |  |
| Outcomes           | Significantly differentially expressed genes in different phases of the |  |
|                    | menstrual cycle in endometrium of women with endometriosis              |  |
|                    | compared to women without endometriosis.                                |  |
|                    | Risk of Rias                                                            |  |

| Risk of Bias                                                          |           |                                                                                                     |
|-----------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------|
| Item                                                                  | Judgement | Description                                                                                         |
| Small sample size                                                     | No        | N = 21 (women with endometriosis) $N = 16$ (women without endometriosis)                            |
| Blind assessment of samples by the                                    | Yes       | Blind assessment was done by up to four independent histopathologists.                              |
| pathologist                                                           |           |                                                                                                     |
| Use of established<br>criteria for assessing<br>menstrual cycle phase | Yes       | Noyes criteria were used to confirm the cycle phase<br>from all the biopsies of endometrial tissue. |
| Quality check of RNA                                                  | Yes       | RNA quality was confirmed by assessing the A260/A280 ratio and agarose gel electrophoresis.         |
| Validation of microarray results                                      | Yes       | Quantitative PCR was used to validate the microarray results.                                       |
| Other potential sources                                               | No        | None.                                                                                               |

| Khan et al. 2012 |                                                             |
|------------------|-------------------------------------------------------------|
| Methods          | Cross-sectional study                                       |
|                  | Individual patient gene expression data available.          |
| Participants     | Women with endometriosis (age 24-45 years) that have normal |

| Interventions | menstrual cycles and are not using hormonal treatment ( $N = 26$ ).<br>Endometriosis was confirmed by laparoscopy.<br>Endometrial biopsies collected from Pipelle suction curette from the<br>uterine fundus; ; RNA extracted from the endometrial tissue;<br>Hybridisation with Agilent Whole Human Genome 60-mer 4X44K;<br>Compared gene expression of eutopic and ectopic endometrial |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outcomes      | <ul> <li>samples.</li> <li>Several genes associated with immunological, neuracrine and endocrine functions were found to be differentially expressed.</li> <li>Twenty-eight genes as potential markers for ovarian endometriosis in fertile women were discovered.</li> </ul>                                                                                                            |

|                                                                       | •         | Risk of Bias                                                                                                             |
|-----------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------|
| Item                                                                  | Judgement | Description                                                                                                              |
| Small sample size                                                     | No        | <i>N</i> = 26                                                                                                            |
| Blind assessment of<br>samples by the<br>pathologist                  | No        | Severity stages were defined at the time of surgery.                                                                     |
| Use of established<br>criteria for assessing<br>menstrual cycle phase | Yes       | Noyes criteria was used to confirm the cycle phase from<br>all the biopsies of endometrial tissue.                       |
| Quality check of RNA                                                  | Yes       | RNA quality was confirmed by Agilent 2100<br>Bioanalyzer, RNA 6000 Nano LabChip kit and Agilent<br>2100 Expert Software. |
| Validation of microarray results                                      | Yes       | Quantitative PCR was used to validate the microarray results.                                                            |
| Other potential sources                                               | No        | None.                                                                                                                    |

| Crispi et al. 2013 |                                                                     |  |
|--------------------|---------------------------------------------------------------------|--|
| Methods            | Case-control study                                                  |  |
|                    | Individual patient gene expression data available.                  |  |
| Participants       | Women with endometriosis (age 22-46 years) that have normal         |  |
|                    | menstrual cycles and are not using hormonal treatment ( $N = 27$ ). |  |
|                    | Endometriosis was confirmed by laparoscopy. Women without           |  |
|                    | endometriosis that have normal menstrual cycle ( $N = 6$ ).         |  |
| Interventions      | Endometrial; RNA extraction; Hybridisation with Affymetrix          |  |
|                    | HGU133A 2.0 arrays Arrays; Compared gene expression of eutopic,     |  |
|                    | ectopic and healthy endometrial samples.                            |  |
| Outcomes           | Dysregulated genes involved in gonad developmental or wound         |  |
|                    | healing process.                                                    |  |

| Item                                                                  | Judgement | Risk of Bias<br>Description                                             |
|-----------------------------------------------------------------------|-----------|-------------------------------------------------------------------------|
| Small sample size                                                     | Yes       | N = 9 (women with endometriosis); $N = 6$ (women without endometriosis) |
| Blind assessment of<br>samples by the<br>pathologist                  | No        | Diagnosis was made during laparoscopy.                                  |
| Use of established<br>criteria for assessing<br>menstrual cycle phase | Unclear   | Method not mentioned in the paper.                                      |

| Quality check of RNA             | Yes | RNA quality was assessed by Experion RNA StdSens<br>Kit (Bio-Rad Laboratories, Hercules, CA). |
|----------------------------------|-----|-----------------------------------------------------------------------------------------------|
| Validation of microarray results | Yes | Quantitative PCR was used to validate the microarray results .                                |
| Other potential sources          | Yes | Limited clinical characteristic information of control participants.                          |

| Sohler et al. 2013 |                                                                     |  |  |
|--------------------|---------------------------------------------------------------------|--|--|
| Methods            | Cross-sectional study                                               |  |  |
|                    | Individual patient gene expression data available.                  |  |  |
| Participants       | Women with endometriosis (age 21-52 years) that have normal         |  |  |
|                    | menstrual cycles and are not using hormonal treatment ( $N = 27$ ). |  |  |
|                    | Endometriosis was confirmed by laparoscopy.                         |  |  |
| Interventions      | Endometrial biopsy; RNA extraction; Hybridisation with Affymetrix   |  |  |
|                    | HGU133Plus2.0 arrays which contain 54 675 probe sets; Compared      |  |  |
|                    | gene expression of eutopic and ectopic endometrial samples.         |  |  |
| Outcomes           | • Gene dysregulation in ectopic endometrium compared to             |  |  |
|                    | eutopic endometrium in women with endometriosis.                    |  |  |
|                    | Gene expression differed in different menstrual cycle phases        |  |  |
|                    | in eutopic endometrium but not in ectopic endometrium.              |  |  |

| Risk of Bias                                                          |           |                                                                                                                                                           |  |
|-----------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Item                                                                  | Judgement | Description                                                                                                                                               |  |
| Small sample size                                                     | No        | <i>N</i> = 27                                                                                                                                             |  |
| Blind assessment of                                                   | Unclear   | Blind assessment by the pathologist was not mentioned.                                                                                                    |  |
| samples by the pathologist                                            |           |                                                                                                                                                           |  |
| Use of established<br>criteria for assessing<br>menstrual cycle phase | Yes       | Out of the six criteria used to determine the menstrual cycle phase, one was based on published histological criteria to identify menstrual cycle phases. |  |
| Quality check of RNA                                                  | Yes       | RNA quality was assessed by Agilent Bioanalyzer 2100<br>and the concentration was assessed on a Nanodrop<br>spectrophotometer.                            |  |
| Validation of microarray results                                      | Yes       | Quantitative PCR was used to validate the microarray results.                                                                                             |  |
| Other potential sources                                               | No        | None.                                                                                                                                                     |  |

|               | Zevallous et a            | <mark>l. 2012</mark>                                              |  |
|---------------|---------------------------|-------------------------------------------------------------------|--|
| Methods       | Case-control study        |                                                                   |  |
|               | Individual patient gene e | expression data available.                                        |  |
| Participants  | Women with endometric     | osis (age 25-43 years) that have normal                           |  |
| -             | menstrual cycles and are  | e not using hormonal treatment ( $N = 28$ ).                      |  |
|               | Endometriosis was confi   | irmed by laparoscopy.                                             |  |
| Interventions | Endometrial biopsy; RN    | Endometrial biopsy; RNA extraction; Hybridisation with Affymetrix |  |
|               | HU Gene 1.0 ST arrays;    | Compared gene expression of eutopic and                           |  |
|               | normal endometrial sam    | ples.                                                             |  |
| Outcomes      | Gene dysregulation in et  | topic endometrium compared to normal                              |  |
|               | endometrium in women      | with and without endometriosis.                                   |  |
|               | Risk of B                 | ias                                                               |  |
| Item          | Judgement                 | Description                                                       |  |

| Small sample size                                                     | Yes | N = 12 (women with endometriosis); $N = 18$ (women without endometriosis)                                                    |
|-----------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------|
| Blind assessment of<br>samples by the<br>pathologist                  | Yes | Stage of endometriosis was blind assessed by the pathologist.                                                                |
| Use of established<br>criteria for assessing<br>menstrual cycle phase | Yes | Histological dating was done by haematoxylin staining<br>and eosin staining by an experienced gynaecological<br>pathologist. |
| Quality check of RNA                                                  | Yes | RNA quality was assessed by Agilent Bioanalyzer 2100 and the concentration was assessed on a Nanodrop spectrophotometer.     |
| Validation of microarray results                                      | Yes | Quantitative PCR was used to validate the microarray results.                                                                |
| Other potential sources                                               | No  | None.                                                                                                                        |

| Talibi et al. 2006                                   |                                                                       |  |
|------------------------------------------------------|-----------------------------------------------------------------------|--|
| Methods                                              | Cross-sectional study                                                 |  |
|                                                      | Individual patient gene expression data available.                    |  |
| Participants                                         | Women without endometriosis (age 23-50 years) that have normal        |  |
|                                                      | menstrual cycles and are not using hormonal treatment ( $N = 45$ ).   |  |
|                                                      | Endometriosis was confirmed by laparoscopy.                           |  |
| Interventions                                        | Endometrial biopsies collected from Pipelle catheter or curetting the |  |
| endometrium from hysterectomy specimens; RNA extract |                                                                       |  |
|                                                      | Hybridisation with Affymetrix HG U133 Plus 2.0 Arrays; profiled       |  |
|                                                      | gene expression of endometrial samples.                               |  |
| Outcomes                                             | Gene expression varies across different phases of the menstrual       |  |
|                                                      | cycle.                                                                |  |
| Dials of Diag                                        |                                                                       |  |

| Risk of Bias                |           |                                                      |
|-----------------------------|-----------|------------------------------------------------------|
| Item                        | Judgement | Description                                          |
| Small sample size           | No        | <i>N</i> = 45                                        |
| Blind assessment of         | No        | Not required as the women did not have               |
| samples by the              |           | endometriosis.                                       |
| pathologist                 |           |                                                      |
| Use of established criteria | Yes       | Noyes criteria was used to confirm the cycle phase   |
| for assessing menstrual     |           | from all the biopsies of endometrial tissue.         |
| cycle phase                 |           | -                                                    |
| Quality check of RNA        | Yes       | RNA quality was analysed by assessing the 260/280    |
| ~ · ·                       |           | absorbance ratio and gel electrophoresis.            |
| Validation of microarray    | Yes       | Quantitative PCR was used to validate the microarray |
| results                     |           | results.                                             |
| Other potential sources     | No        | None.                                                |

| Sherwin et al. 2008 |                                                                         |  |  |
|---------------------|-------------------------------------------------------------------------|--|--|
| Methods             | Case-control study                                                      |  |  |
|                     | Published gene list available                                           |  |  |
| Participants        | Women with and without endometriosis that have regular menstrual        |  |  |
|                     | cycles and are not using hormonal treatment ( $N = 16$ ). Endometriosis |  |  |
|                     | presence or absence was confirmed by laparoscopy.                       |  |  |
| Interventions       | Endometrial biopsies collected using Pipelle suction curettes; RNA      |  |  |

|                                                      | extracted from endometrial tissue; Hybridisation with custom made cDNA arrays containing $\sim$ 22,000 probe sets in total; compared gene expression of eutopic endometrial samples with and without endometriosis. |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Outcomes                                             | • Genes found to be significantly up-regulated and down-                                                                                                                                                            |  |
| regulated in eutopic endometrium from women with and |                                                                                                                                                                                                                     |  |
|                                                      | without endometriosis were 8 and 1, respectively.                                                                                                                                                                   |  |
|                                                      |                                                                                                                                                                                                                     |  |

| Risk of Bias                |           |                                                        |
|-----------------------------|-----------|--------------------------------------------------------|
| Item                        | Judgement | Description                                            |
| Small sample size           | Yes       | <i>N</i> = 16                                          |
| Blind histological          | Unclear   | Information not provide in the study.                  |
| assessment of samples       |           |                                                        |
| Use of established criteria | Yes       | Noyes criteria were used to confirm the cycle phase    |
| for assessing menstrual     |           | from all the biopsies of endometrial tissue.           |
| cycle phase                 |           |                                                        |
| Quality check of RNA        | Yes       | RNA integrity was assessed using an Agilent-2100       |
|                             |           | Bioanalyzer.                                           |
| Validation of microarray    | Yes       | By RT-PCR                                              |
| results                     |           | -                                                      |
| Other potential sources     | Yes       | Clinical characteristics of participants not provided. |

| Kao et al. 2003 |                                                                       |  |  |
|-----------------|-----------------------------------------------------------------------|--|--|
| Methods         | Case-control study                                                    |  |  |
|                 | Published gene list available                                         |  |  |
| Participants    | Women with and without endometriosis (age 28-39 years) that have      |  |  |
|                 | regular menstrual cycles and are not using hormonal treatment ( $N =$ |  |  |
|                 | 20). Endometriosis presence or absence was confirmed by               |  |  |
|                 | laparoscopy.                                                          |  |  |
| Interventions   | Endometrial biopsies collected using Pipelle suction curettes; RNA    |  |  |
|                 | extracted from endometrial tissue; Hybridisation with Affymetrix      |  |  |
|                 | Genechip Hu95A oligonucleotide microarray containing 12686 probe      |  |  |
|                 | sets in total; compared gene expression of eutopic endometrial        |  |  |
|                 | samples with and without endometriosis.                               |  |  |
| Outcomes        | • Genes found to be significantly up-regulated and down-              |  |  |
|                 | regulated in eutopic endometrium from women with and                  |  |  |
|                 | without endometriosis were 91 and 115, respectively.                  |  |  |

| Risk of Bias                        |           |                                       |  |  |
|-------------------------------------|-----------|---------------------------------------|--|--|
| Item                                | Judgement | Description                           |  |  |
| Small sample size                   | Yes       | <i>N</i> = 15                         |  |  |
| Blind histological                  | Unclear   | Information not provided in the       |  |  |
| assessment of samples               |           | study.                                |  |  |
| Use of established criteria         | Unclear   | Information not provided in the       |  |  |
| for assessing menstrual cycle phase |           | study                                 |  |  |
| Quality check of RNA                | Unclear   | Information not provided in the study |  |  |
| Validation of microarray results    | Yes       | By RT-PCR and Northern blot analysis  |  |  |

| Other potential sources | Yes              | Clinical characteristics of participants not provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Hurst et al. 201 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Methods                 | Case-cont        | rol study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | Published        | gene list available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Participants            | Women w          | ith and without endometriosis (age 18-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         | years) that      | t have regular menstrual cycles and are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         | not using        | hormonal treatment ( $N = 15$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | Endometr         | iosis present or absent was confirmed by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         | laparosco        | ру.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Interventions           |                  | ial biopsies collected using Pipelle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         |                  | rettes; RNA extracted from endometrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         |                  | bridisation with Affymetrix 8500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | Ū.               | eotide microarray containing 8500 probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         |                  | pared gene expression of eutopic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         |                  | al samples with and without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | endometri        | osis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Outcomes                | • Ge             | enes found to be significantly up-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | reg              | gulated and down-regulated in eutopic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | en               | dometrium from women with and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | wi               | thout endometriosis were 26 and 32,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                  | spectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | 104              | poor of the second seco |

| Risk  | 0                | f R              | ias |
|-------|------------------|------------------|-----|
| ILION | $\boldsymbol{v}$ | $\boldsymbol{D}$ | us  |

| Item                                                            | Judgement | Description                                                                             |
|-----------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------|
| Small sample size                                               | Yes       | <i>N</i> = 15                                                                           |
| Blind histological assessment of samples                        | No        | The surgeon<br>judged the<br>stage of<br>endometriosis<br>at the time of<br>the surgery |
| Use of established criteria for assessing menstrual cycle phase | Unclear   | Information not<br>provided in the<br>study                                             |
| Quality check of RNA                                            | Unclear   | Information not<br>provided in the<br>study                                             |
| Validation of microarray results                                | Yes       | By RT-PCR                                                                               |
| Other potential sources                                         | Yes       | Clinical<br>characteristics<br>of participants<br>not provided.                         |

| Zafrakas et al. 2008 |                                                                 |  |
|----------------------|-----------------------------------------------------------------|--|
| Methods              | Cross-sectional study                                           |  |
|                      | Published gene list available                                   |  |
| Participants         | Women with endometriosis that have regular menstrual cycles and |  |
|                      | are not using hormonal treatment $(N = 4)$ . Endometriosis was  |  |

|               | confirmed by laparoscopy.                                             |
|---------------|-----------------------------------------------------------------------|
| Interventions | Endometrial biopsies as well as endometriotic lesions collected using |
|               | Pipelle suction curettes; RNA extracted from endometrial tissue;      |
|               | Hybridisation with Affymetrix HG-U133 gene chip containing 40000      |
|               | probe sets; compared gene expression of eutopic endometrial and       |
|               | endometriotic lesion samples with endometriosis.                      |
| Outcomes      | Genes found to be significantly up-regulated and down-regulated in    |
|               | the endometriotic lesions compared to eutopic endometrium from        |
|               | women with endometriosis were 26 and 32, respectively.                |

| Rick | of        | Rias |
|------|-----------|------|
| KISK | <i>UI</i> | Bias |

| Item                        | Judgement | Description                                            |
|-----------------------------|-----------|--------------------------------------------------------|
| Small sample size           | Yes       | N = 4                                                  |
| Blind histological          | Unclear   | Information not provided in the study                  |
| assessment of samples       |           | · ·                                                    |
| Use of established criteria | No        | Information not provided in the study                  |
| for assessing menstrual     |           |                                                        |
| cycle phase                 |           |                                                        |
| Quality check of RNA        | Unclear   | Information not provided in the study                  |
| Validation of microarray    | Yes       | By RT-PCR                                              |
| results                     |           |                                                        |
| Other potential sources     | Yes       | Clinical characteristics of participants not provided. |

| Gaetje et al. 2007 |                                                                        |  |
|--------------------|------------------------------------------------------------------------|--|
| Methods            | Cross-sectional study                                                  |  |
|                    | Published gene list available                                          |  |
| Participants       | Women with and without endometriosis that have regular menstrual       |  |
|                    | cycles and are not using hormonal treatment ( $N = 3$ ). Endometriosis |  |
|                    | was confirmed by laparoscopy.                                          |  |
| Interventions      | Endometrial biopsies as well as endometriotic lesions collected using  |  |
|                    | Pipelle suction curettes; RNA extracted from endometrial tissue;       |  |
|                    | Hybridisation with Affymetrix HG U133A microarray containing           |  |
|                    | 22283 probe sets; compared gene expression of eutopic endometrial      |  |
|                    | and endometriotic lesion samples with endometriosis.                   |  |
| Outcome            | Genes found to be significantly up-regulated and down-regulated in     |  |
|                    | endometriotic lesions as compared to eutopic endometrium from          |  |
|                    | women with endometriosis were 15 and 2, respectively.                  |  |
| Risk of Bias       |                                                                        |  |

| Risk of Bias                |           |                                                        |
|-----------------------------|-----------|--------------------------------------------------------|
| Item                        | Judgement | Description                                            |
| Small sample size           | Yes       | <i>N</i> = 3                                           |
| Blind histological          | Unclear   | Information not provided in the study                  |
| assessment of samples       |           |                                                        |
| Use of established criteria | No        | The menstrual cycle phase was not assessed in the      |
| for assessing menstrual     |           | study                                                  |
| cycle phase                 |           |                                                        |
| Quality check of RNA        | Unclear   | Information not provided in the study                  |
| Validation of microarray    | Yes       | By RT-PCR and immunofluorescence                       |
| results                     |           |                                                        |
| Other potential sources     | Yes       | Clinical characteristics of participants not provided. |

| Eyster et al. 2007                                                    |  |  |
|-----------------------------------------------------------------------|--|--|
| Cross-sectional study                                                 |  |  |
| Published gene list available                                         |  |  |
| Women with endometriosis that have regular menstrual cycles and       |  |  |
| are not using hormonal treatment ( $N = 11$ ). Endometriosis was      |  |  |
| confirmed by laparoscopy.                                             |  |  |
| Endometrial biopsies as well as endometriotic lesions collected using |  |  |
| Hysteroscopy and dilatation and curettage; RNA extracted from         |  |  |
| endometrial tissue; Hybridisation with CodeLink Whole Human           |  |  |
| Genome Bioarrays containing 54359 probe sets; compared gene           |  |  |
| expression of eutopic endometrial and endometriotic lesion samples    |  |  |
| with endometriosis.                                                   |  |  |
| Genes found to be significantly up-regulated or down-                 |  |  |
| regulated in endometriotic lesions as compared to eutopic             |  |  |
| endometrium from women with endometriosis were 717 in                 |  |  |
| total.                                                                |  |  |
| • Genes found to be significantly dysregulated in ovarian             |  |  |
| compared to peritoneal lesions                                        |  |  |
| • Genes found to be significantly dysregulated in mild                |  |  |
| endometriosis compared to all other patients in the study             |  |  |
| • Genes found to be significantly dysregulated in peritoneal          |  |  |
| endometriosis compared to all other patients in the study             |  |  |
| • Genes found to be significantly dysregulated in proliferative       |  |  |
| phase of the menstrual cycle compared to all other patients in        |  |  |
| the study.                                                            |  |  |
|                                                                       |  |  |

|                             |           | Risk of Bias                                           |
|-----------------------------|-----------|--------------------------------------------------------|
| Item                        | Judgement | Description                                            |
| Small sample size           | Yes       | <i>N</i> = 11                                          |
| Blind histological          | Unclear   | Information not provided in the study                  |
| assessment of samples       |           |                                                        |
| Use of established criteria | Unclear   | Information not provided in the study                  |
| for assessing menstrual     |           |                                                        |
| cycle phase                 |           |                                                        |
| Quality check of RNA        | Yes       | RNA quality was assessed by RNA 6000 Nano              |
|                             |           | LabChip kit in an Agilent Bioanalyzer                  |
| Validation of microarray    | Yes       | By RT-PCR                                              |
| results                     |           |                                                        |
| Other potential sources     | Yes       | Clinical characteristics of participants not provided. |

| Borghese et al. 2008      |                                                                    |  |
|---------------------------|--------------------------------------------------------------------|--|
| Methods                   | Cross-sectional study                                              |  |
|                           | Published gene list available                                      |  |
| Participants              | Women with endometriosis that have regular menstrual cycles and    |  |
| _                         | are not using hormonal treatment ( $N = 12$ ). Endometriosis was   |  |
| confirmed by laparoscopy. |                                                                    |  |
| Interventions             | Endometrial biopsies as well as endometriotic lesions collected;   |  |
|                           | RNA extracted from endometrial tissue; Hybridisation with Institut |  |

|          | Cochin HG18 60mer expression array containing 47633 probe sets;   |
|----------|-------------------------------------------------------------------|
|          | compared gene expression of eutopic endometrial and endometriotic |
|          | lesion samples with endometriosis.                                |
| Outcomes | Genes found to be significantly up-regulated or down-             |
|          | regulated in endometriotic lesions as compared to eutopic         |
|          | endometrium from women with endometriosis were 2823 and           |
|          | 2782, respectively.                                               |
|          | • 27 groups were upregulated and 28 groups were                   |
|          | downregulated in the endometriotic lesions compared to the        |
|          | eutopic endometrium from women with endometriosis                 |
|          | Risk of Rigs                                                      |

|                             |           | Risk of Bias                                           |  |
|-----------------------------|-----------|--------------------------------------------------------|--|
| Item                        | Judgement | Description                                            |  |
| Small sample size           | Yes       | <i>N</i> = 11                                          |  |
| Blind histological          | Unclear   | Information not provided in the study                  |  |
| assessment of samples       |           | -                                                      |  |
| Use of established criteria | No        | Menstrual cycle phase was not assessed in the study    |  |
| for assessing menstrual     |           |                                                        |  |
| cycle phase                 |           |                                                        |  |
| Quality check of RNA        | Yes       | RNA quality was assessed by agarose gel                |  |
| ~ ~ ~                       |           | electrophoresis and spectrophotometry                  |  |
| Validation of microarray    | Yes       | By RT-PCR                                              |  |
| results                     |           |                                                        |  |
| Other potential sources     | Yes       | Clinical characteristics of participants not provided. |  |

|               | Mettler et al. 2006                                                    |  |  |
|---------------|------------------------------------------------------------------------|--|--|
| Methods       | Cross-sectional study                                                  |  |  |
|               | Published gene list available                                          |  |  |
| Participants  | Women with endometriosis (age 22-40) that have regular menstrual       |  |  |
|               | cycles and are not using hormonal treatment ( $N = 5$ ). Endometriosis |  |  |
|               | was confirmed by laparoscopy.                                          |  |  |
| Interventions | Endometrial biopsies as well as endometriotic lesions collected; RNA   |  |  |
|               | extracted from endometrial tissue; Hybridisation with Atlas Human      |  |  |
|               | 1,2 array containing 1176 probe sets; compared gene expression of      |  |  |
|               | eutopic endometrial and endometriotic lesion samples with              |  |  |
|               | endometriosis.                                                         |  |  |
| Outcome       | Genes found to be significantly up-regulated or down-                  |  |  |
|               | regulated in endometriotic lesions as compared to eutopic              |  |  |
|               | endometrium from women with endometriosis were 9and 4,                 |  |  |
|               | respectively.                                                          |  |  |

|                        |           | Risk of Bias                                        |
|------------------------|-----------|-----------------------------------------------------|
| Item                   | Judgement | Description                                         |
| Small sample size      | Yes       | N = 11                                              |
| Blind histological     | Unclear   | Information not provided in the study               |
| assessment of samples  |           |                                                     |
| Use of established     | No        | Menstrual cycle phase was not assessed in the study |
| criteria for assessing |           |                                                     |
| menstrual cycle phase  |           |                                                     |
| Quality check of RNA   | Yes       | RNA quality was assessed by agarose gel             |
|                        |           | 120                                                 |

|                                    |     | electrophoresis                                        |
|------------------------------------|-----|--------------------------------------------------------|
| Validation of microarray           | No  | Information not provided in the study                  |
| results<br>Other potential sources | Yes | Clinical characteristics of participants not provided. |

|                                  | S                                                                                                                                                                                                                                                                                                                                       | un et al. 2014                                                                                                                                                                                            |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Methods                          | Cross-section                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                           |  |
|                                  |                                                                                                                                                                                                                                                                                                                                         | ne list available                                                                                                                                                                                         |  |
| Participants                     | 0                                                                                                                                                                                                                                                                                                                                       | endometriosis (age 24-45) that have regular menstrual                                                                                                                                                     |  |
|                                  | cycles and are not using hormonal treatment $(N = 4)$ . Endometriosis                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |  |
|                                  |                                                                                                                                                                                                                                                                                                                                         | d by laparoscopy.                                                                                                                                                                                         |  |
| Interventions                    | Endometrial biopsies as well as endometriotic lesions collected by<br>curettage; RNA extracted from endometrial tissue; Hybridisation<br>with SurePrint G3 Human Gene Expression 8x60K v2 array<br>containing 32776 probe sets; compared gene expression of eutopic<br>endometrial and endometriotic lesion samples with endometriosis. |                                                                                                                                                                                                           |  |
| Outcomes                         |                                                                                                                                                                                                                                                                                                                                         | found to be significantly up-regulated or down-                                                                                                                                                           |  |
|                                  | U                                                                                                                                                                                                                                                                                                                                       | ted in endometriotic lesions as compared to eutopic                                                                                                                                                       |  |
|                                  | endor                                                                                                                                                                                                                                                                                                                                   | netrium from women with endometriosis were 527 and                                                                                                                                                        |  |
|                                  | 421, re                                                                                                                                                                                                                                                                                                                                 | espectively.                                                                                                                                                                                              |  |
|                                  | • Dysre                                                                                                                                                                                                                                                                                                                                 | gulated pathways in the endometriotic lesions by Gene                                                                                                                                                     |  |
|                                  | -                                                                                                                                                                                                                                                                                                                                       | ogy analysis                                                                                                                                                                                              |  |
|                                  |                                                                                                                                                                                                                                                                                                                                         | Risk of Bias                                                                                                                                                                                              |  |
| Item                             | Judgement                                                                                                                                                                                                                                                                                                                               | Description                                                                                                                                                                                               |  |
| Small sample size                | Yes                                                                                                                                                                                                                                                                                                                                     | N = 4                                                                                                                                                                                                     |  |
| Blind histological               | Unclear                                                                                                                                                                                                                                                                                                                                 | Information not provided in the study                                                                                                                                                                     |  |
| assessment of samples            |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                           |  |
| Use of established criteria      | No                                                                                                                                                                                                                                                                                                                                      | Menstrual cycle phase was not assessed in the study                                                                                                                                                       |  |
| for assessing menstrual          |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                           |  |
| cycle phase                      |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                           |  |
| Quality check of RNA             | Yes                                                                                                                                                                                                                                                                                                                                     | RNA yield was assessed by NanoDrop ND-2000<br>spectrophotometer (Thermo Fisher Scientific) and<br>RNA quality was assessed by Agilent 2100<br>bioanalyzer and RNA 6000 Nano kit (Agilent<br>Technologies) |  |
| Validation of microarray results | Yes                                                                                                                                                                                                                                                                                                                                     | Results verified by RT-PCR                                                                                                                                                                                |  |
| Other potential sources          | No                                                                                                                                                                                                                                                                                                                                      | Clinical characteristics of participants provided.                                                                                                                                                        |  |

|               | Vouk et al. 2011                                                        |  |  |
|---------------|-------------------------------------------------------------------------|--|--|
| Methods       | Cross-sectional study                                                   |  |  |
|               | Published gene list available                                           |  |  |
| Participants  | Women with endometriosis (age 24-50) that have regular menstrual        |  |  |
| _             | cycles and are not using hormonal treatment ( $N = 20$ ). Endometriosis |  |  |
|               | was confirmed by laparoscopy.                                           |  |  |
| Interventions | Endometrial biopsies as well as endometriotic lesions collected by      |  |  |
|               | hysterectomy or biopsy; RNA extracted from endometrial tissue and       |  |  |
|               | endometriotic lesions; Hybridisation with TaqMan low-density array      |  |  |

| Outcomes                                                                                       | <ul> <li>containing 172 probe sets; compared gene expression of eutopic endometrial and endometriotic lesion samples with endometriosis.</li> <li>Genes found to be significantly up-regulated or down-regulated in endometriotic lesions as compared to eutopic endometrium from women with endometriosis were 60 and 18, respectively.</li> </ul> |                                                     |  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
|                                                                                                | • Dysreg                                                                                                                                                                                                                                                                                                                                            | gulated pathways in the endometriotic lesions from  |  |
|                                                                                                | womer                                                                                                                                                                                                                                                                                                                                               | n with endometriosis                                |  |
|                                                                                                | Risk of Bias                                                                                                                                                                                                                                                                                                                                        |                                                     |  |
| Item                                                                                           | Judgement                                                                                                                                                                                                                                                                                                                                           | Description                                         |  |
| Small sample size                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                 | <i>N</i> = 20                                       |  |
| Blind histological                                                                             | Unclear                                                                                                                                                                                                                                                                                                                                             | Information not provided in the study               |  |
| assessment of samples<br>Use of established criteria<br>for assessing menstrual<br>cycle phase | No                                                                                                                                                                                                                                                                                                                                                  | Menstrual cycle phase was not assessed in the study |  |
| Quality check of RNA                                                                           | Yes RNA quality was assessed by Agilent bioanalyzer                                                                                                                                                                                                                                                                                                 |                                                     |  |
| Validation of microarray<br>results                                                            | Yes                                                                                                                                                                                                                                                                                                                                                 | Results verified by RT-PCR                          |  |
| Other potential sources                                                                        | No                                                                                                                                                                                                                                                                                                                                                  | Clinical characteristics of participants provided.  |  |

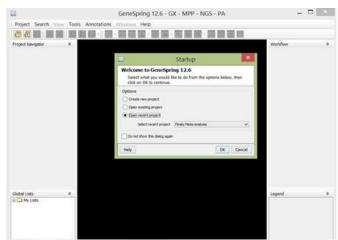
| Appendix 2: Cl | haracteristics of | f excluded studies. |  |
|----------------|-------------------|---------------------|--|
|----------------|-------------------|---------------------|--|

| Study                    | Reason for exclusion                                   |
|--------------------------|--------------------------------------------------------|
| Sha et al. (2007)        | Endometrial endothelial cells from eutopic             |
|                          | endometrium from women with and without                |
|                          | endometriosis used                                     |
| Wu et al. (2006)         | Epithelial cells from eutopic endometrium and          |
|                          | endometriotic lesions from women with endometriosis    |
|                          | were used                                              |
| Matsuzaki et al. (2005)  | Epithelial and stromal cells from eutopic endometrium  |
|                          | and deep rectovaginal endometriotic lesions from       |
|                          | women with endometriosis                               |
| Matsuzaki et al. (2004)  | Epithelial and stromal cells from eutopic endometrium  |
|                          | and rectovaginal endometriotic lesions from women      |
|                          | with endometriosis by laser capture micro-dissection   |
| Arimoto et al. (2003)    | Epithelial cells isolated from eutopic endometrium and |
|                          | ovarian lesions from women with endometriosis          |
| Fassbender et al. (2012) | Published gene lists with menstrual cycle phase        |
|                          | adjusted data for women with endometriosis and for     |
|                          | women without endometriosis                            |
| Roth et al. (2007)       | Study has not been peer-reviewed as yet. Only          |
|                          | individual patient gene expression data was available  |

| Patient ID              | Age           | Menstrual phase            | Diagnosed<br>endometriosis<br>(E/NE) <sup>++</sup> | Hormone<br>treatment<br>(Y/N) |
|-------------------------|---------------|----------------------------|----------------------------------------------------|-------------------------------|
| Hull et al. 2008        | : Unavailable | e participant characterist |                                                    | ()                            |
| Hever et al.200         |               | <b>1 1</b>                 |                                                    |                               |
| 01-M                    | Missing       | Proliferative              | Е                                                  | Ν                             |
| 02-M                    | Missing       | Proliferative              | Е                                                  | Ν                             |
| 04-M                    | Missing       | Secretory                  | Е                                                  | Ν                             |
| 05-M                    | Missing       | Secretory                  | Е                                                  | Ν                             |
| 06-M                    | Missing       | Secretory                  | Е                                                  | Ν                             |
| 02-G                    | Missing       | Secretory                  | Е                                                  | Ν                             |
| 03-G                    | Missing       | Secretory                  | Е                                                  | Ν                             |
| 05-G                    | Missing       | Secretory                  | Е                                                  | Ν                             |
| 06-G                    | Missing       | Secretory                  | Е                                                  | Ν                             |
| 08-G                    | Missing       | Secretory                  | Е                                                  | Ν                             |
| Khan et al. 201         | <u> </u>      | J                          |                                                    |                               |
| E17                     | 29            | Proliferative              | Е                                                  | Ν                             |
| E20                     | 40            | Proliferative              | Е                                                  | Ν                             |
| E23                     | 33            | Proliferative              | Ē                                                  | N                             |
| E26                     | 45            | Proliferative              | Е                                                  | Ν                             |
| E31                     | 24            | Proliferative              | Е                                                  | Ν                             |
| E32                     | 28            | Proliferative              | Е                                                  | Ν                             |
| E33                     | 28            | Secretory                  | Е                                                  | Ν                             |
| E40                     | 25            | Proliferative              | Ē                                                  | N                             |
| E43                     | 40            | Proliferative              | Ē                                                  | N                             |
| E48                     | 31            | Proliferative              | Е                                                  | Ν                             |
| E49                     | 37            | Secretory                  | Е                                                  | Ν                             |
| E52                     | 30            | Proliferative              | Ē                                                  | N                             |
| E56                     | 30            | Proliferative              | Ē                                                  | N                             |
| E57                     | 37            | Secretory                  | Ē                                                  | N                             |
| E68                     | 31            | Secretory                  | Е                                                  | Ν                             |
| E70                     | 34            | Secretory                  | Е                                                  | Ν                             |
| E73                     | 25            | Proliferative              | Е                                                  | Ν                             |
| E75                     | 40            | Proliferative              | Ē                                                  | N                             |
| <b>Falbi et al. 200</b> |               |                            |                                                    |                               |
| 598                     | 33            | Proliferative              | NE                                                 | N                             |
| M182                    | 34            | Proliferative              | NE                                                 | N                             |
| M165                    | 31            | Proliferative              | NE                                                 | N                             |
| M169                    | 32            | Proliferative              | NE                                                 | N                             |
| 455*                    | 39            | Proliferative              | NE                                                 | N                             |
| 562                     | 50            | Proliferative              | NE                                                 | N                             |
| 629                     | 46            | Secretory                  | NE                                                 | N                             |
| 650                     | 48            | Secretory                  | NE                                                 | N                             |
| 664                     | 44            | Secretory                  | NE                                                 | N                             |
| 610                     | 49            | Secretory                  | NE                                                 | N                             |
| 617                     | 42            | Secretory                  | NE                                                 | N                             |

Appendix 3: Participant characteristics for studies included in the meta-analysis with individual patient gene expression data available.

| Patient ID               | Age      | Menstrual phase        | Diagnosed<br>endometriosis | Hormone<br>treatment |  |
|--------------------------|----------|------------------------|----------------------------|----------------------|--|
| (2)(                     | 42       | <b>C</b>               | (E/NE) <sup>++</sup>       | (Y/N)                |  |
| 626                      | 42       | Secretory              | NE                         | N                    |  |
| M153                     | 34       | Secretory              | NE                         | N                    |  |
| 659                      | 46       | Secretory              | NE                         | N                    |  |
| G98A                     | 30       | Secretory              | NE                         | N                    |  |
| M158                     | 23       | Secretory              | NE                         | N                    |  |
| M163                     | 33       | Secretory              | NE                         | N                    |  |
| 442                      | 43       | Secretory              | NE                         | N                    |  |
| 449                      | 39       | Secretory              | NE                         | N                    |  |
| 462                      | 39       | Secretory              | NE                         | Ν                    |  |
| 614                      | 43       | Secretory              | NE                         | Ν                    |  |
| 576                      | 41       | Secretory              | NE                         | Ν                    |  |
| 619                      | 44       | Secretory              | NE                         | Ν                    |  |
| Burney et al. 200        |          |                        |                            |                      |  |
| 26A                      | 31       | Proliferative          | E                          | Ν                    |  |
| 587                      | 37       | Proliferative          | Е                          | Ν                    |  |
| 647                      | 39       | Proliferative          | E                          | Ν                    |  |
| 594                      | 38       | Proliferative          | E                          | Ν                    |  |
| 651                      | 37       | Proliferative          | E                          | Ν                    |  |
| 508                      | 25       | Proliferative          | E                          | Ν                    |  |
| 489                      | 39       | Secretory              | E                          | Ν                    |  |
| 496                      | 37       | Secretory              | E                          | Ν                    |  |
| 599                      | 35       | Secretory              | Е                          | Ν                    |  |
| 27A                      | 22       | Secretory              | Е                          | Ν                    |  |
| 517                      | 35       | Secretory              | Е                          | Ν                    |  |
| 575                      | 26       | Secretory              | Е                          | Ν                    |  |
| 33A                      | 27       | Secretory              | Е                          | Ν                    |  |
| 7A/97A                   | 35       | Secretory              | Е                          | Ν                    |  |
| 73A                      | 26       | Secretory              | Е                          | Ν                    |  |
| 516                      | 34       | Secretory              | Е                          | Ν                    |  |
| 540                      | 37       | Secretory              | Е                          | Ν                    |  |
| 543                      | 38       | Secretory              | Е                          | Ν                    |  |
| 678                      | 44       | Secretory              | Е                          | Ν                    |  |
| 72A                      | 31       | Secretory              | Ē                          | N                    |  |
| 645                      | 39       | Secretory              | Ē                          | N                    |  |
| Zevallos 2012            |          |                        | 2                          |                      |  |
| PECN T-047               | 25       | Secretory              | Е                          | N                    |  |
| PECN T-061               | 29<br>29 | Secretory              | E                          | N                    |  |
| PECN T-126               | 29       | Proliferative          | E                          | N                    |  |
| PECN T-145               | 43       | Proliferative          | E                          | N                    |  |
| PECN T-143               | 38       | Proliferative          | E                          | N                    |  |
| PECN T-147               | 36       | Proliferative          | E                          | N                    |  |
| PECN T-148<br>PECN T-169 | 30<br>34 | Secretory              | E                          | N<br>N               |  |
| PECN T-109<br>PECN T-174 | 34<br>39 | •                      | E                          | N<br>N               |  |
|                          |          | Secretory              | E<br>E                     |                      |  |
| PECN T-186<br>PECN T-215 | 38<br>37 | Secretory              | E<br>E                     | N<br>N               |  |
| PECN T-215<br>PECN T-244 | 37<br>31 | Secretory<br>Secretory | E<br>E                     | N<br>N               |  |


| Patient ID        | <b>D</b> Age Menstrual phase |                            | Diagnosed<br>endometriosis<br>(E/NE) <sup>++</sup> | Hormone<br>treatment<br>(Y/N) |  |
|-------------------|------------------------------|----------------------------|----------------------------------------------------|-------------------------------|--|
| PECN T-271        | 34                           | Secretory                  | E                                                  | N                             |  |
| <b>PECN T-013</b> | 34                           | Secretory                  | NE                                                 | Ν                             |  |
| <b>PECN T-078</b> | 32                           | Secretory                  | NE                                                 | Ν                             |  |
| <b>PECN T-089</b> | 34                           | Secretory                  | NE                                                 | Ν                             |  |
| PECN T-124        | 32                           | Proliferative              | NE                                                 | Ν                             |  |
| <b>PECN T-136</b> | 33                           | Secretory                  | NE                                                 | Ν                             |  |
| <b>PECN T-139</b> | 28                           | Proliferative              | NE                                                 | Ν                             |  |
| PECN T-156        | 25                           | Proliferative              | NE                                                 | Ν                             |  |
| <b>PECN T-160</b> | 34                           | Proliferative              | NE                                                 | Ν                             |  |
| PECN T-164        | 35                           | Secretory                  | NE                                                 | Ν                             |  |
| <b>PECN T-167</b> | 37                           | Secretory                  | NE                                                 | Ν                             |  |
| PECN T-184        | 29                           | Secretory                  | NE                                                 | N                             |  |
| PECN T-192        | 42                           | Proliferative              | NE                                                 | N                             |  |
| PECN T-223        | 40                           | Secretory                  | NE                                                 | N                             |  |
| PECN T-231        | 32                           | Proliferative              | NE                                                 | N                             |  |
| PECN T-224        | 39                           | Secretory                  | NE                                                 | N                             |  |
| PECN T-257        | 43                           | Secretory                  | NE                                                 | N                             |  |
|                   |                              | ble no endometriosis part  |                                                    | 11                            |  |
| 1                 | 31                           | Proliferative              | E                                                  | Ν                             |  |
| 2                 | 30                           | Proliferative              | Е                                                  | Ν                             |  |
| 3                 | 32                           | Proliferative              | Ē                                                  | N                             |  |
| 4                 | 35                           | Proliferative              | Ē                                                  | N                             |  |
| 5                 | 30                           | Proliferative              | Ē                                                  | N                             |  |
| 6                 | 30                           | Proliferative              | Ē                                                  | N                             |  |
| 7                 | 22                           | Proliferative              | Ē                                                  | N                             |  |
| 8                 | 42                           | Proliferative              | Ē                                                  | N                             |  |
| Sohler et al. 201 |                              | Tiomorative                | Ľ                                                  | 11                            |  |
| 1                 | 40                           | Proliferative              | Е                                                  | N                             |  |
| 2                 | 43                           | Secretory                  | E                                                  | N                             |  |
| 3                 | 33                           | Proliferative              | E                                                  | N                             |  |
| 4                 | 23                           | Secretory                  | E                                                  | N                             |  |
| 5                 | 29<br>29                     | Proliferative              | E                                                  | N                             |  |
| 6                 | 25                           | Secretory                  | E                                                  | N                             |  |
| 7                 | 25<br>36                     | Secretory                  | E                                                  | N                             |  |
| 8                 | 50<br>52                     | Secretory                  | E                                                  | N                             |  |
| 9                 | 30                           | Proliferative              | E                                                  | N                             |  |
| 10                | 30<br>30                     | Proliferative              | E                                                  | N                             |  |
| 10                | 30<br>37                     |                            | E                                                  | N                             |  |
| 11                | 37                           | Secretory<br>Proliferative | E                                                  | N                             |  |
| 12                | 35<br>35                     |                            | E<br>E                                             |                               |  |
|                   |                              | Secretory                  |                                                    | N                             |  |
| 14                | 38                           | Secretory                  | E                                                  | N                             |  |
| 15                | 29<br>22                     | Proliferative              | E                                                  | N                             |  |
| 16                | 33                           | Secretory                  | E                                                  | N                             |  |
| 17                | 21                           | Proliferative              | E                                                  | N                             |  |
| 18                | 47                           | Proliferative              | E                                                  | N                             |  |
| 22                | 38                           | Proliferative              | Е                                                  | Ν                             |  |

| Patient ID Age |    | Menstrual phase | Diagnosed<br>endometriosis<br>(E/NE) <sup>++</sup> | Hormone<br>treatment<br>(Y/N) |  |
|----------------|----|-----------------|----------------------------------------------------|-------------------------------|--|
| 25             | 36 | Secretory       | Е                                                  | Ν                             |  |
| 27             | 33 | Not known       | Е                                                  | Ν                             |  |
| 31             | 34 | Not known       | Е                                                  | Ν                             |  |
| 32             | 22 | Secretory       | Е                                                  | Ν                             |  |
| 35             | 36 | Not known       | Е                                                  | Ν                             |  |
| 36             | 29 | Proliferative   | Е                                                  | Ν                             |  |
| 37             | 26 | Mid-cycle       | Е                                                  | Ν                             |  |
| 38             | 46 | Secretory       | Е                                                  | Ν                             |  |

E: Endometriosis; NE: No endometriosis

# **Appendix 4: Steps for normalisation of individual patient gene expression data by GeneSpring.**

1. A new project was created in the start-up dialogue box.



2. From under the "Project" option, "New Experiment" option was chosen to create a new experiment.

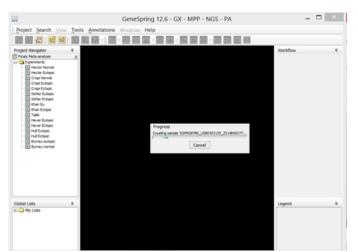
|                         |                |         |                     |          |         |         |   |          | _ |   |
|-------------------------|----------------|---------|---------------------|----------|---------|---------|---|----------|---|---|
| 8                       |                | GeneSp  | ring 12             | 2.6 - GX | - MPP - | NGS - P | A |          |   | × |
| Project Search View Too | ls Annotations | Windows | Help                |          |         |         |   |          |   |   |
| New Project             | Ctrl+N - I -   |         | <b>1</b> - <b>1</b> |          |         | · 🖂 🛛   |   |          |   |   |
| Open Project            | Ctrl+O         |         |                     |          |         |         |   | Workflow |   |   |
| Becent Projects         |                |         |                     |          |         |         |   |          |   |   |
| Import Project          |                |         |                     |          |         |         |   |          |   |   |
| Inspect Project         |                |         |                     |          |         |         |   |          |   |   |
| Close Project           |                |         |                     |          |         |         |   |          |   |   |
| Delete Project          |                |         |                     |          |         |         |   |          |   |   |
| Export Project          | •              |         |                     |          |         |         |   |          |   |   |
| Share Project           |                |         |                     |          |         |         |   |          |   |   |
| Change Project Owner    |                |         |                     |          |         |         |   |          |   |   |
| Refresh Project         |                |         |                     |          |         |         |   |          |   |   |
| New Experiment          |                |         |                     |          |         |         |   |          |   |   |
| Add Experimen New exp   | eriment        |         |                     |          |         |         |   |          |   |   |
| Exit                    | Ctrl+X         |         |                     |          |         |         |   |          |   |   |
|                         |                |         |                     |          |         |         |   |          |   |   |
|                         |                |         |                     |          |         |         |   |          |   |   |
|                         |                |         |                     |          |         |         |   |          |   |   |
|                         |                |         |                     |          |         |         |   |          |   |   |
| Global Lists 0          |                |         |                     |          |         |         |   | Legend   |   | 0 |
| 🕀 🋄 My Lists            |                |         |                     |          |         |         |   |          |   |   |
|                         |                |         |                     |          |         |         |   |          |   |   |
|                         |                |         |                     |          |         |         |   |          |   |   |
|                         |                |         |                     |          |         |         |   |          |   |   |

3. The experiment was named accordingly and analysis chosen depending on the type of platform used. *Data Import* work flow was chosen.

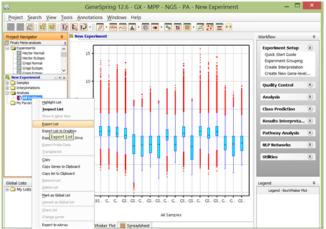
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GeneSpring 12                                                                | .6 - GX - MPP - NGS - PA                                                                                        |         |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------|---|
| Project Search View Tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Annotations Westews Help                                                     |                                                                                                                 |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                                                 |         |   |
| A REAL PROPERTY AND A REAL PROPERTY AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                            | New Experiment                                                                                                  | ariflow |   |
| Project Navigator  Project Navigator  Project Navigator  Protect Navid  Protect Navid Protect Navid  Protect Na | guide you through a statistical sign<br>guide you through experiment creater | or and the second se | and bow | • |
| I Analos<br>Antonio Entraci<br>Antonio<br>Antonio<br>Antonio<br>Antonio<br>Antonio<br>Antonio<br>Antonio<br>Antonio<br>Antonio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dipervent type<br>Wookflow type<br>Expervent notes                           | Agent Expension The Cells                                                                                       |         |   |
| Clobal Lists 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | American Contraction                                                         | Concession in the concession                                                                                    | Legend  |   |
| 🗇 🛄 My Lists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                                                                                                 |         |   |

4. Once the experiment was set up, the data was loaded on to the programme.

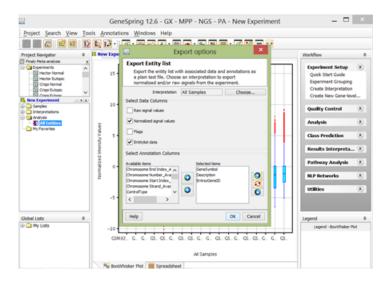



5. Proceed on to the next step once data has been loaded.

| Project Navigator                                                                                                                                                 | •    | New Experiment (Step 1 of 5)                                                                                                                                                                                      | ×    | Workflow |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|--|
| Prody Heta analyse     Prody Heta analyse     Depensent     Prector Normal     Prector Dutopc     Origo Normal     Origo Normal     Origo Normal     Origo Normal | Loa  | d Data<br>to can choose data files, previously used samples or both to use in this<br>genroter. Once a data file has been imported and used as a sample, it<br>ill be available for use in any future experiment. |      |          |  |
| Sohler Butapic                                                                                                                                                    | Туре | Selected files and samples                                                                                                                                                                                        |      |          |  |
| Sofier Ectopic                                                                                                                                                    |      | GSM928780_US80303135_251485027703_501_E17_EC.bt                                                                                                                                                                   | 1    |          |  |
| - Contraction                                                                                                                                                     |      | GSM928782_US90303135_251485027704_501_620_6C.bd                                                                                                                                                                   | 100  |          |  |
| Talbi                                                                                                                                                             |      | GSM928784_US80303135_251485027704_501_623_6C.6d                                                                                                                                                                   |      |          |  |
| Hever Butapic                                                                                                                                                     |      | GSM928786_US80303135_251485026151_501_E26_EC.bd                                                                                                                                                                   |      |          |  |
| - TE Hul Eutopic                                                                                                                                                  |      | G5M928788_U580303135_251485026162_501_E31_EC.txt                                                                                                                                                                  |      |          |  |
| HAR ECTORE                                                                                                                                                        |      | GSM928790_US80303135_251485026161_501_E32_EC.bd                                                                                                                                                                   |      |          |  |
| 0.mey evilop:                                                                                                                                                     |      | GSM928792_US80303135_251485042665_S01_E33_RC.bd                                                                                                                                                                   |      |          |  |
| Durney normal                                                                                                                                                     |      | G5M928794_U580303135_251485042672_501_E40_EC.6d                                                                                                                                                                   |      |          |  |
|                                                                                                                                                                   |      | GSM928796_US80303135_251485026153_501_E43_EC.bd                                                                                                                                                                   |      |          |  |
|                                                                                                                                                                   |      | GSM928798_U580303135_251485042672_501_E48_EC.bt                                                                                                                                                                   |      |          |  |
|                                                                                                                                                                   |      | GSM928800_US80303135_251485025935_501_E49_EC.bd                                                                                                                                                                   | - 11 |          |  |
|                                                                                                                                                                   |      | GSM928002_US80303135_251485042673_501_E52_EC.bd                                                                                                                                                                   | 10.0 |          |  |
|                                                                                                                                                                   |      | G5M928804_U580303135_251485027705_501_E56_EC.bd                                                                                                                                                                   |      |          |  |
|                                                                                                                                                                   |      | GSM928806_US80303135_251485025936_501_E57_EC.bd                                                                                                                                                                   | 100  |          |  |
|                                                                                                                                                                   |      | GSM928808_US80303135_251485027703_501_E68_EC.bd                                                                                                                                                                   |      |          |  |
| Global Lists                                                                                                                                                      | •    | GSM928810_US80303135_251485025944_502_E70_EC.bd                                                                                                                                                                   | Y .  | Legend   |  |
| in 🖓 My Uds                                                                                                                                                       |      | Occuse Files         Occuse Samples         Reorder         Remove           sep         << Exct                                                                                                                  | si   |          |  |


6. For preproceesing, "baseline to median of all samples" was chosen.

| The instant of the set of the se  | methos  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Project residence     Provide Spectroment (Step 5 of 5)     Provide Spectroment     Provide Spect      | matthes |  |
| Twen to solution     Year      | matthee |  |
| Constrainer     Progroccss Raseline Options     Once option     Once option     Once option     Once option     Once option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |  |
| Crup Enger<br>Crup Enger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |  |
| Even Examp     Conceptor Facility and the standard strandard       |         |  |
| There for an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |  |
| - Adhan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |
| References and a second s                                                                                                                                                                                                                                             |         |  |
| 12 Sec. 17 He (1815)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |  |
| - 2012/2017 (Control of Control o |         |  |
| A CONTRACTOR AND A CONT |         |  |
| Assign titing Char                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |  |
| OM/Dec 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lepend  |  |
| a Care sure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (append |  |
| sets ve lack sod or front [pecer]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |  |
| and a set of the set o |         |  |


7. The programme then runs the pre-processing and normalisation.



8. Once normalisation is finished the programme gives the boxplots and the entity list of the normalised data. The normalised entity list can be exported to another drive for further analysis by right clicking on the "entity list" option under the experiment and then choosing "export list" option.



9. The information that is required to be included in the list, such as Entrez gene ID, Gene name, etc., can be chosen.



## Appendix 5: Steps for the meta-analysis and analysis of dysregulated genes for published gene lists.

- 1. Install R version 3.1.2 using standard installation procedures.
- 2. Create an analysis folder in your hard drive to store the input and output files as well as the R analysis script.
- 3. Install the RobustRankAggreg package by going to "Packages" and then to "Install packages". The package containing functions for RRA analysis is downloaded from CRAN website and installed the system.
- 4. Load the previously installed RobustRankAggreg package to use the functions defined by it by running the command in the R console: library(RobustRankAggreg)
- 5. Define the working directory for the analysis. setwd("C:/Name of the Working Directory/")
- 6. To read the data from the constructed file into R, use the command meta <- read.delim("up\_regulated.txt", na = "") This command reads in the aforementioned file and assigns it to the data frame named "meta". The argument na = "" defines that empty cells in the table are recognized as "not available" in the data frame "meta".</p>
- 7. Convert the data to a list format as required by RobustRankAggreg meta <- as.list(meta)
- To get rid of the "not available" positions in the list, we use custom helper function: for (i in 1: length(meta)){meta[[i]] <- meta[[i]] [!is.na(meta[[i]])] meta[[i]] <- as.character(meta[[i]])}</li>
- 9. Define the vector count , which stores the data about how many genes each study was able to detect:

```
count <- c(x, y, z,)
```

where x,y and Z denote the total number of a genes detectable by the study or the microarray platform being used.

- 10. Construct the matrix of normalized ranks using rankMatrix command: rankmat <- rankMatrix(meta, N = count) This command uses the list consisting of dysregulated genes as an input (previously constructed list meta). The argument N is used to define the number of genes each study was able to profile (previously defined vector count)
- 11. Run RRA analysis using the "aggregateRanks" command to obtain a significance score pscore

ranks<- aggregateRanks(rmat=rankmat)</pre>

- 12. Apply a multiple testing correction. Conservative Bonferroni correction is used by multiplying all the ρ-scores with the number of studies or the number of gene lists ranks\$adjustedPval <- apply(cbind(ranks\$Score \* max(count), 1), 1, min)
- 13. Filter the results by significance results <- ranks[ranks\$adjustedPval < 0.05,] Results can be displayed by running the command results, which displays the outcome of the analysis
- 14. Export the results table out of R with the following command: write.table(results, "results.txt", sep = "\t") This command creates a tab-delimited results file into the analysis folder.

| Entrez | Gene      |                                                                                   | Fold   |                          |
|--------|-----------|-----------------------------------------------------------------------------------|--------|--------------------------|
| ID     | Symbol    | Gene name                                                                         | Change | P value                  |
| 384    | ARG2      | Arginase, type II                                                                 | 2.65   | $1.8 \text{X} 10^{-24}$  |
| 4837   | NNMT      | Nicotinamide N-methyltransferase                                                  | 4.48   | $3X10^{-23}$             |
| 23710  | GABARAPL1 | GABA(A) receptor-associated protein like 1                                        | 2.51   | 8.5X10 <sup>-23</sup>    |
| 9547   | CXCL14    | Chemokine (C-X-C motif) ligand 14                                                 | 10.7   | $1X10^{-22}$             |
| 1612   | DAPK1     | Death-associated protein kinase 1                                                 | 2.61   | $1.2 \times 10^{-22}$    |
| 1942   | EFNA1     | Ephrin-A1                                                                         | 2.64   | 3.9X10 <sup>-22</sup>    |
| 6564   | SLC15A1   | Solute carrier family 15 member 1                                                 | 4.38   | 7.2X10 <sup>-22</sup>    |
| 1910   | EDNRB     | Endothelin receptor type B                                                        | 3.22   | 1.6X10 <sup>-21</sup>    |
| 6505   | SLC1A1    | Solute carrier family 1 member 1                                                  | 4.71   | $4.9 \times 10^{-21}$    |
| 53630  | BCMO1     | Beta-carotene 15,15'-monooxygenase 1                                              | 2.45   | 6.8X10 <sup>-21</sup>    |
| 1604   | CD55      | CD55 molecule, decay accelerating factor<br>for complement (Cromer blood group)   | 3.73   | 6.8X10 <sup>-21</sup>    |
| 7042   | TGFB2     | Transforming growth factor, beta 2                                                | 2.64   | 6.8X10 <sup>-21</sup>    |
| 347    | APOD      | Apolipoprotein D                                                                  | 3.32   | 8.6X10 <sup>-21</sup>    |
| 79838  | TMC5      | Transmembrane channel-like 5                                                      | 3.31   | $1.8 \times 10^{-20}$    |
| 54762  | GRAMD1C   | GRAM domain containing 1C                                                         | 3.71   | 6.1X10 <sup>-20</sup>    |
| 6539   | SLC6A12   | Solute carrier family 6 (neurotransmitter transporter, betaine/GABA), member 12   | 2.53   | 6.2X10 <sup>-20</sup>    |
| 8531   | CSDA      | Cold shock domain protein A                                                       | 1.78   | 9.7X10 <sup>-20</sup>    |
| 6696   | SPP1      | Secreted phosphoprotein 1                                                         | 5.35   | $2.1 \mathrm{X10}^{-19}$ |
| 1356   | СР        | Ceruloplasmin (ferroxidase)                                                       | 4.89   | $8.8 \mathrm{X10}^{-19}$ |
| 10370  | CITED2    | Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 | 2.57   | 9.8X10 <sup>-19</sup>    |
| 3914   | LAMB3     | Laminin, beta 3                                                                   | 3.49   | $1.2 \mathrm{X10}^{-18}$ |
| 1052   | CEBPD     | CCAAT/enhancer binding protein (C/EBP), delta                                     | 3.14   | 2 X10 <sup>-18</sup>     |
| 7849   | PAX8      | Paired box 8                                                                      | 2.33   | $2.1 \mathrm{X10}^{-18}$ |
| 1647   | GADD45A   | Growth arrest and DNA-damage-inducible $\alpha$                                   | 3.21   | $2.2 \text{X} 10^{-18}$  |
| 5047   | PAEP      | Progestagen-associated endometrial protein                                        | 10     | 2.3X10 <sup>-18</sup>    |
| 1803   | DPP4      | Dipeptidyl-peptidase 4                                                            | 3.32   | 3X10 <sup>-18</sup>      |
| 79722  | ANKRD55   | Ankyrin repeat domain 55                                                          | 2.49   | $4.8 \text{X} 10^{-18}$  |
| 22996  | TTC39A    | Tetratricopeptide repeat domain 39A                                               | 2.56   | $5.2 \times 10^{-18}$    |
| 1311   | COMP      | Cartilage oligomeric matrix protein                                               | 4.58   | 6.9X10 <sup>-18</sup>    |
| 107    | ADCY1     | Adenylate cyclase 1 (brain)                                                       | 2.59   | $1 X 10^{-17}$           |
| 3026   | HABP2     | Hyaluronan binding protein 2                                                      | 3      | 2.5X10 <sup>-17</sup>    |
| 4217   | MAP3K5    | Mitogen-activated protein kinase kinase kinase                                    | 3.15   | 2.9X10 <sup>-17</sup>    |
| 9829   | DNAJC6    | DnaJ (Hsp40) homolog, subfamily C, member 6                                       | 3.2    | 3.3X10 <sup>-17</sup>    |
| 6947   | TCN1      | Transcobalamin I                                                                  | 4.86   | 3.3X10 <sup>-17</sup>    |
| 1824   | DSC2      | Desmocollin 2                                                                     | 2.09   | 4.1X10 <sup>-17</sup>    |

Appendix 6: Top-35 upregulated genes in eutopic endometrium from women with endometriosis compared to from women without endometriosis.

| Entrez | Gene      |                                                                 | Fold   |                          |
|--------|-----------|-----------------------------------------------------------------|--------|--------------------------|
| ID     | Symbol    | Gene name                                                       | Change | P value                  |
| 6424   | SFRP4     | Secreted frizzled-related protein 4                             | 0.2    | 3X10 <sup>-23</sup>      |
| 1307   | COL16A1   | Collagen, type XVI, alpha 1                                     | 0.4    | $3.9 \times 10^{-22}$    |
| 2735   | GLI1      | GLI family zinc finger 1                                        | 0.6    | 8.3X10 <sup>-20</sup>    |
| 9770   | RASSF2    | Ras association (RalGDS/AF-6) domain family member 2            | 0.4    | 2.1X10 <sup>-19</sup>    |
| 891    | CCNB1     | Cyclin B1                                                       | 0.4    | $4.10 \mathrm{X10}^{19}$ |
| 1908   | EDN3      | Endothelin 3                                                    | 0.3    | $4.8 \text{X} 10^{-19}$  |
| 10857  | PGRMC1    | Progesterone receptor membrane component 1                      | 0.4    | $4.8 \text{X} 10^{-19}$  |
| 9493   | KIF23     | Kinesin family member 23                                        | 0.4    | 6.6X10 <sup>-19</sup>    |
| 9315   | C5orf13   | Chromosome 5 open reading frame 13                              | 0.3    | $7.2 \times 10^{-18}$    |
| 11065  | UBE2C     | Ubiquitin-conjugating enzyme E2C                                | 0.4    | $9.2 \times 10^{-18}$    |
| 55244  | SLC47A1   | Solute carrier family 47, member 1                              | 0.3    | $1.2 \mathrm{X10}^{-17}$ |
| 10234  | LRRC17    | Leucine rich repeat containing 17                               | 0.4    | $1.3 \text{X} 10^{-17}$  |
| 332    | BIRC5     | Baculoviral IAP repeat-containing 5                             | 0.5    | $1.9 \mathrm{X10}^{-17}$ |
| 9133   | CCNB2     | Cyclin B2                                                       | 0.4    | $2.2 \text{X} 10^{-17}$  |
| 7298   | TYMS      | Thymidylate synthetase                                          | 0.4    | $2.8 \text{X} 10^{-17}$  |
| 5241   | PGR       | Progesterone receptor                                           | 0.4    | $3.1 \times 10^{-17}$    |
| 6240   | RRM1      | Ribonucleotide reductase M1                                     | 0.6    | $4.5 \mathrm{X10}^{-17}$ |
| 26227  | PHGDH     | Phosphoglycerate dehydrogenase                                  | 0.5    | $4.5 \text{X} 10^{-17}$  |
| 701    | BUB1B     | Budding uninhibited by benzimidazoles 1<br>homolog beta (yeast) | 0.4    | 4.7X10 <sup>-17</sup>    |
| 4675   | NAP1L3    | Nucleosome assembly protein 1-like 3                            | 0.4    | 4.9X10 <sup>-17</sup>    |
| 5111   | PCNA      | Proliferating cell nuclear antigen                              | 0.5    | 5.4X10 <sup>-17</sup>    |
| 58189  | WFDC1     | WAP four-disulfide core domain 1                                | 0.4    | 7.1X10 <sup>-17</sup>    |
| 140465 | MYL6B     | Myosin, light chain 6B, alkali, smooth muscle and non-muscle    | 0.6    | 1.6X10 <sup>-16</sup>    |
| 55872  | PBK       | PDZ binding kinase                                              | 0.3    | 2.7X10 <sup>-16</sup>    |
| 64388  | GREM2     | Gremlin 2                                                       | 0.3    | 3.3X10 <sup>-16</sup>    |
| 8395   | PIP5K1B   | Phosphatidylinositol-4-phosphate 5-kinase, type I, beta         | 0.4    | 3.7X10 <sup>-16</sup>    |
| 7083   | TK1       | Thymidine kinase 1, soluble                                     | 0.5    | 4.6X10 <sup>-16</sup>    |
| 10112  | KIF20A    | Kinesin family member 20A                                       | 0.4    | 5.3X10 <sup>-16</sup>    |
| 4678   | NASP      | Nuclear autoantigenic sperm protein (histone-<br>binding)       | 0.6    | 6.6X10 <sup>-16</sup>    |
| 3479   | IGF1      | Insulin-like growth factor 1 (somatomedin C)                    | 0.4    | 9.9X10 <sup>-16</sup>    |
| 24141  | C20orf103 | Chromosome 20 open reading frame 103                            | 0.5    | $1X10^{-15}$             |
| 3033   | HADH      | Hydroxyacyl-CoA dehydrogenase                                   | 0.6    | $1.2 \times 10^{-15}$    |
| 991    | CDC20     | Cell division cycle 20 homolog (S. cerevisiae)                  | 0.5    | $1.4 \mathrm{X10}^{-15}$ |
| 7153   | TOP2A     | Topoisomerase (DNA) II alpha 170kDa                             | 0.3    | $1.4 \mathrm{X10}^{-15}$ |
| 9833   | MELK      | Maternal embryonic leucine zipper kinase                        | 0.4    | 1.6X10 <sup>-15</sup>    |

Appendix 7: Top-35 downregulated genes in eutopic endometrium from women with endometriosis compared to from women without endometriosis.

| Pathway ID    | Pathway name                                                                                                                    | P value                | F<br>score |
|---------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|
| Overall       |                                                                                                                                 |                        |            |
| GO:0045087    | Innate immune response                                                                                                          | 1.9X10 <sup>-6</sup>   | 16.53      |
| GO:0005275    | Amine transmembrane transporter activity                                                                                        | 5.7X10 <sup>-6</sup>   | 14.92      |
| GO:0002526    | Acute inflammatory response                                                                                                     | 7.4X10 <sup>-6</sup>   | 14.08      |
| GO:0019724    | B cell mediated immunity                                                                                                        | $1 X 10^{-5}$          | 13.44      |
|               | Immunoglobulin mediated immune response                                                                                         | 1X10 <sup>-5</sup>     | 13.43      |
| GO:0004896    | Hematopoietin/interferon-class (D200-domain) cytokine receptor activity                                                         | 1.2X10 <sup>-5</sup>   | 13.03      |
| GO:0050817    | 0                                                                                                                               | _                      |            |
|               | Blood coagulation                                                                                                               | $1.3 \times 10^{-5}$   | 12.59      |
| GO:0006935    |                                                                                                                                 | $1.3 \times 10^{-5}$   | 12.54      |
| GO:0042330    |                                                                                                                                 | 1.3X10 <sup>-5</sup>   | 12.54      |
| GO:0002253    | Activation of immune response                                                                                                   | 2X10 <sup>-5</sup>     | 12.12      |
| GO:0002460    | Adaptive immune response based on somatic<br>recombination of immune receptors built from<br>immunoglobulin superfamily domains | 2.1X10 <sup>-5</sup>   | 11.99      |
| GO:0002250    | Adaptive immune response                                                                                                        | $2.3 \times 10^{-5}$   | 11.83      |
|               | Elevation of cytosolic calcium ion concentration                                                                                | $2.3 \text{X} 10^{-5}$ | 11.76      |
|               | Cytosolic calcium ion homeostasis                                                                                               | 2.3X10 <sup>-5</sup>   | 11.76      |
|               | Regulation of immune response                                                                                                   | $2.4 \text{X} 10^{-5}$ | 11.49      |
|               | Amino acid transmembrane transporter activity                                                                                   | $2.9 \text{X} 10^{-5}$ | 11.29      |
| GO:0007599    |                                                                                                                                 | $2.9 \times 10^{-5}$   | 11.25      |
| GO:0046943    | Carboxylic acid transmembrane transporter activity                                                                              | 3.8X10 <sup>-5</sup>   | 11.01      |
| GO:0006959    | Humoral immune response                                                                                                         | 4.4X10 <sup>-5</sup>   | 10.76      |
| Proliferative | phase                                                                                                                           |                        |            |
| GO:0006935    |                                                                                                                                 | 5.6X10 <sup>-4</sup>   | 563.24     |
| GO:0042330    | Taxis                                                                                                                           | 5.6X10 <sup>-4</sup>   | 563.24     |
|               | Positive regulation of immune system process                                                                                    | 5.6X10 <sup>-4</sup>   | 472.76     |
|               | Response to bacterium                                                                                                           | 5.6X10 <sup>-4</sup>   | 465.51     |
|               | Chemokine receptor binding                                                                                                      | 7.5X10 <sup>-4</sup>   | 460.02     |
|               | Lymphocyte activation                                                                                                           | 8.5X10 <sup>-4</sup>   | 457.74     |
|               | Chemokine activity                                                                                                              | 7.5X10 <sup>-4</sup>   | 455.66     |
|               | G-Protein-coupled receptor binding                                                                                              | 1X10 <sup>-3</sup>     | 438.23     |
|               | MAPKKK cascade                                                                                                                  | 5.6X10 <sup>-4</sup>   | 438.17     |
|               | Hemopoiesis                                                                                                                     | $5.6 \times 10^{-4}$   | 416.35     |
|               | Hemopoietic or lymphoid organ development                                                                                       | $5.6 \times 10^{-4}$   | 391.78     |
|               | Locomotory behaviour                                                                                                            | $1.2 \times 10^{-3}$   | 382.76     |
|               | Leukocyte differentiation                                                                                                       | 5.3X10 <sup>-5</sup>   | 373.21     |
|               | T cell activation                                                                                                               | 8.2X10 <sup>-4</sup>   | 369.29     |
|               | Regulation of cell differentiation                                                                                              | $5.6 \times 10^{-4}$   | 348.41     |
|               | Positive regulation of response to stimulus                                                                                     | 2.9X10 <sup>-3</sup>   | 346.79     |
|               | Immune effector process                                                                                                         | $3.2 \times 10^{-3}$   | 341.76     |
| 20.0001202    |                                                                                                                                 | 2.2.110                | 2.1170     |

Appendix 8: Top 20 dysregulated pathways in the eutopic endometrium from women with endometriosis as compared to from women without endometriosis.

| Pathway ID               | Pathway name                                 | P value                  | F<br>score     |
|--------------------------|----------------------------------------------|--------------------------|----------------|
| GO:0048583               | Regulation of response to stimulus           | $1.1 \text{X} 10^{-3}$   | 332.09         |
|                          | Antigen processing and presentation          | $5.4 \times 10^{-3}$     | 330.89         |
| GO:0051347               | Positive regulation of transferase activity  | $2.6 \times 10^{-3}$     | 327.04         |
| Secretory ph             | ase                                          |                          |                |
| GO:0045087               | Innate immune response                       | 3.9X10 <sup>-12</sup>    | 800.29         |
|                          | Activation of immune response                | $1.9 \mathrm{X10}^{-11}$ | 731.01         |
|                          | Regulation of response to stimulus           | 1X10 <sup>-9</sup>       | 727.45         |
| GO:0050776               | Regulation of immune response                | $1.6 \text{X} 10^{-11}$  | 727.08         |
|                          | Positive regulation of immune system process | $9.8 \times 10^{-10}$    | 718.7          |
|                          | Positive regulation of response to stimulus  | $4.2 \times 10^{-10}$    | 703.8          |
|                          | Acute inflammatory response                  | $2.5 \text{X} 10^{-10}$  | 702.86         |
|                          | Positive regulation of immune response       | $1.4 \text{X} 10^{-10}$  | 676.53         |
|                          | B cell mediated immunity                     | $1.5 \mathrm{X10^{-10}}$ | 668.52         |
|                          | Humoral immune response                      | $2.5 \text{X} 10^{-10}$  | 646.26         |
|                          | Immunoglobulin mediated immune response      | $2.2 \text{X} 10^{-10}$  | 645.13         |
| GO:0006935               |                                              | $1.3 \text{X} 10^{-4}$   | 617.04         |
| GO:0042330               |                                              | $1.3 X 10^{-4}$          | 617.04         |
|                          | Adaptive immune response based on somatic    |                          |                |
| GO:0002460               | recombination of immune receptors built from | 1X10 <sup>-9</sup>       | 607.88         |
|                          | immunoglobulin superfamily domains           | 0                        |                |
|                          | Adaptive immune response                     | $1X10^{-9}$              | 600.73         |
| GO:0002252               | Immune effector process                      | $2X10^{-8}$              | 599.32         |
| GO:0002449               | Lymphocyte mediated immunity                 | $3.1 \times 10^{-10}$    | 529.1          |
| GO:0002443               | Leukocyte mediated immunity                  | $9.2 \times 10^{-10}$    | 514.51         |
|                          | Regulation of cell adhesion                  | $4.9 \times 10^{-7}$     | 502.69         |
|                          | Anti-apoptosis                               | 3.8X10 <sup>-5</sup>     | 449.56         |
| Eutopic endo             | ometrium: Proliferative Vs Secretory phase   |                          |                |
|                          | Regulation of cytokine biosynthetic process  | 9.7X10 <sup>-8</sup>     | 21.65          |
|                          | Voltage-gated potassium channel activity     | 9.7X10 <sup>-8</sup>     | 21.2           |
|                          | Cytokine metabolic process                   | $1.6 \times 10^{-7}$     | 20.03          |
|                          | Potassium ion binding                        | $1.6 \times 10^{-7}$     | 19.78          |
|                          | Cytokine biosynthetic process                | $1.7 \text{X} 10^{-7}$   | 19.34          |
|                          | Voltage-gated cation channel activity        | $1.7 \mathrm{X} 10^{-7}$ | 19.29          |
|                          | Amine receptor activity                      | $2.7 \text{X} 10^{-7}$   | 18.56          |
|                          | External side of plasma membrane             | 3.5X10 <sup>-7</sup>     | 18.11          |
|                          | Cytokine production                          | 3.5X10 <sup>-7</sup>     | 18             |
|                          | Peptide receptor activity                    | 3.6X10 <sup>-7</sup>     | 17.73          |
|                          | Peptide receptor activity, G-protein coupled | 3.6X10 <sup>-7</sup>     | 17.73          |
|                          | Anchored to membrane                         | 4.7X10 <sup>-7</sup>     | 17.33          |
|                          | Cellular defense response                    | 4.7X10 <sup>-7</sup>     | 17.25          |
|                          | Heart process                                | 5.4X10 <sup>-7</sup>     | 16.95          |
|                          | Heart contraction                            | $5.4 \times 10^{-7}$     | 16.95          |
|                          | Cellular calcium ion homeostasis             | 5.7X10 <sup>-7</sup>     | 16.82          |
|                          | Calcium ion homeostasis                      | 5.8X10 <sup>-7</sup>     | 16.7           |
|                          | Myosin complex                               | 5.8X10 <sup>-7</sup>     | 16.66          |
| GO:0010439<br>GO:0005819 | • •                                          | 6X10 <sup>-7</sup>       | 16.56          |
|                          | Solute:sodium symporter activity             | 6.1X10 <sup>-7</sup>     | 16.30<br>16.49 |
| 00.0013370               | soluce.socium sympolici acuvity              | 0.1A10                   | 10.49          |

| Entrez<br>Id | Gene<br>symbol | Gene name                                                                          | Fold<br>change | P value |
|--------------|----------------|------------------------------------------------------------------------------------|----------------|---------|
| 1942         | EFNA1          | Ephrin-A1                                                                          | 1.95           | 0.00058 |
| 50486        | G0S2           | G0/G1switch 2                                                                      | 2.78           | 0.00058 |
| 9052         | GPRC5A         | G protein-coupled receptor, family C, group 5, member A                            | 1.88           | 0.00058 |
| 3034         | HAL            | Histidine ammonia-lyase                                                            | 2.66           | 0.00058 |
| 3557         | IL1RN          | Interleukin 1 receptor antagonist                                                  | 2.75           | 0.00058 |
| 10221        | TRIB1          | Tribbles homolog 1 (Drosophila)                                                    | 2.24           | 0.00058 |
| 23764        | MAFF           | v-Maf musculoaponeurotic fibrosarcoma oncogene<br>homolog F (avian)                | 2.08           | 0.00065 |
| 6696         | SPP1           | Secreted phosphoprotein 1                                                          | 3.61           | 0.00086 |
| 1356         | СР             | Ceruloplasmin (ferroxidase)                                                        | 3.58           | 0.00116 |
| 4791         | NFKB2          | Nuclear factor of kappa light polypeptide gene<br>enhancer in B-cells 2 (p49/p100) | 1.24           | 0.00117 |
| 1890         | TYMP           | Thymidine phosphorylase                                                            | 1.67           | 0.00135 |
| 1364         | CLDN4          | Claudin 4                                                                          | 2.21           | 0.0017  |
| 1647         | GADD45A        | Growth arrest and DNA-damage-inducible, alpha                                      | 1.86           | 0.00187 |
| 56649        | TMPRSS4        | Transmembrane protease, serine 4                                                   | 2.06           | 0.00209 |
| 1316         | KLF6           | Kruppel-like factor 6                                                              | 2.14           | 0.00219 |
| 9258         | MFHAS1         | Malignant fibrous histiocytoma amplified sequence 1                                | 1.35           | 0.00238 |
| 5801         | PTPRR          | Protein tyrosine phosphatase, receptor type, R                                     | 2              | 0.00242 |
| 2114         | ETS2           | v-Ets erythroblastosis virus E26 oncogene homolog 2<br>(avian)                     | 1.4            | 0.00247 |
| 8714         | ABCC3          | ATP-binding cassette, sub-family C (CFTR/MRP), member 3                            | 2              | 0.00248 |
| 7849         | PAX8           | Paired box 8                                                                       | 1.54           | 0.00259 |
| 3914         | LAMB3          | Laminin, beta 3                                                                    | 2.62           | 0.00274 |
| 124044       | SPATA2L        | Spermatogenesis associated 2-like                                                  | 1.34           | 0.00319 |
| 8553         | BHLHE40        | Basic helix-loop-helix family, member e40                                          | 1.9            | 0.00329 |
| 6928         | HNF1B          | HNF1 homeobox B                                                                    | 1.54           | 0.00338 |
| 2634         | GBP2           | Guanylate binding protein 2, interferon-inducible                                  | 1.9            | 0.00348 |
| 1051         | CEBPB          | CCAAT/enhancer binding protein (C/EBP), beta                                       | 1.37           | 0.00356 |
| 6533         | SLC6A6         | Solute carrier family 6 (neurotransmitter transporter, taurine), member 6          | 1.47           | 0.00395 |
| 604          | BCL6           | B-cell CLL/lymphoma 6                                                              | 2.15           | 0.00396 |
| 2872         | MKNK2          | MAP kinase interacting serine/threonine kinase 2                                   | 1.29           | 0.00396 |
| 3400         | ID4            | Inhibitor of DNA binding 4, dominant negative helix-<br>loop-helix protein         | 1.48           | 0.00415 |
| 8878         | SQSTM1         | Sequestosome 1                                                                     | 1.31           | 0.00424 |
| 10158        | PDZK1IP1       | PDZK1 interacting protein 1                                                        | 2.39           | 0.00425 |
| 2810         | SFN            | Stratifin                                                                          | 1.59           | 0.00455 |
| 79838        | TMC5           | Transmembrane channel-like 5                                                       | 1.98           | 0.00466 |
| 1604         | CD55           | CD55 molecule, decay accelerating factor for complement (Cromer blood group)       | 2.57           | 0.00489 |

Appendix 9: Top-35 upregulated genes in eutopic endometrium from women with endometriosis compared to from women without endometriosis in the proliferative phase of the menstrual cycle.

| Entrez<br>Id | Gene<br>symbol | Gene name                                                                                          | Fold<br>change | P value |
|--------------|----------------|----------------------------------------------------------------------------------------------------|----------------|---------|
| 2200         | FBN1           | Fibrillin 1                                                                                        | 0.69           | 0.00065 |
| 4628         | MYH10          | Myosin, heavy chain 10, non-muscle                                                                 | 0.69           | 0.00219 |
| 539          | ATP5O          | ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit                                 | 0.77           | 0.00263 |
| 79712        | GTDC1          | Glycosyltransferase-like domain containing 1                                                       | 0.79           | 0.00263 |
| 5213         | PFKM           | Phosphofructokinase, muscle                                                                        | 0.83           | 0.00343 |
| 1289         | COL5A1         | Collagen, type V, alpha 1                                                                          | 0.62           | 0.00396 |
| 56945        | MRPS22         | Mitochondrial ribosomal protein S22                                                                | 0.86           | 0.00455 |
| 6424         | SFRP4          | Secreted frizzled-related protein 4                                                                | 0.38           | 0.00497 |
| 273          | AMPH           | Amphiphysin                                                                                        | 0.69           | 0.00521 |
| 64943        | NT5DC2         | 5'-Nucleotidase domain containing 2                                                                | 0.58           | 0.0059  |
| 1036         | CDO1           | Cysteine dioxygenase, type I                                                                       | 0.71           | 0.00603 |
| 54875        | CNTLN          | Centlein, centrosomal protein                                                                      | 0.74           | 0.0064  |
| 4052         | LTBP1          | Latent transforming growth factor beta binding protein 1                                           | 0.54           | 0.00667 |
| 292          | SLC25A5        | Solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5        | 0.8            | 0.00702 |
| 2184         | FAH            | Fumarylacetoacetate hydrolase (fumarylacetoacetase)                                                | 0.78           | 0.00708 |
| 1009         | CDH11          | Cadherin 11, type 2, OB-cadherin (osteoblast)                                                      | 0.69           | 0.00729 |
| 10763        | NES            | Nestin                                                                                             | 0.69           | 0.00735 |
| 3151         | HMGN2          | High-mobility group nucleosomal binding domain 2                                                   | 0.74           | 0.00749 |
| 1307         | COL16A1        | Collagen, type XVI, alpha 1                                                                        | 0.63           | 0.00782 |
| 8270         | LAGE3          | L antigen family, member 3                                                                         | 0.79           | 0.00782 |
| 5125         | PCSK5          | Proprotein convertase subtilisin/kexin type 5                                                      | 0.51           | 0.00786 |
| 9            | NAT1           | N-Acetyltransferase 1 (arylamine N-<br>acetyltransferase)                                          | 0.62           | 0.0079  |
| 8975         | USP13          | Ubiquitin specific peptidase 13 (isopeptidase T-3)                                                 | 0.76           | 0.0079  |
| 2735         | GLI1           | GLI family zinc finger 1                                                                           | 0.7            | 0.00859 |
| 4192         | MDK            | Midkine (neurite growth-promoting factor 2)                                                        | 0.64           | 0.00859 |
| 3232         | HOXD3          | Homeobox D3                                                                                        | 0.74           | 0.00867 |
| 26227        | PHGDH          | Phosphoglycerate dehydrogenase                                                                     | 0.64           | 0.00867 |
| 5001         | ORC5           | Origin recognition complex, subunit 5                                                              | 0.82           | 0.00904 |
| 991          | CDC20          | Cell division cycle 20 homolog (S. cerevisiae)                                                     | 0.52           | 0.00911 |
| 3202         | HOXA5          | Homeobox A5                                                                                        | 0.54           | 0.00916 |
| 7372         | UMPS           | Uridine monophosphate synthetase                                                                   | 0.81           | 0.01031 |
| 2201         | FBN2           | Fibrillin 2                                                                                        | 0.46           | 0.01061 |
| 10962        | MLLT11         | Myeloid/lymphoid or mixed-lineage leukemia<br>(trithorax homolog, Drosophila); translocated to, 11 | 0.65           | 0.01082 |
| 8507         | ENC1           | Ectodermal-neural cortex 1 (with BTB-like domain)                                                  | 0.55           | 0.0112  |
| 23085        | ERC1           | ELKS/RAB6-interacting/CAST family member 1                                                         | 0.78           | 0.0112  |

Appendix 10: Top-35 downregulated genes in eutopic endometrium from women with endometriosis compared to from women without endometriosis in the proliferative phase of the menstrual cycle.

Appendix 11: Top-35 upregulated genes in eutopic endometrium from women with endometriosis compared to from women without endometriosis in the secretory phase of the menstrual cycle.

| Entrez<br>Id | Gene<br>symbol | Gene name                                                                                                              | Fold<br>Chang | e P value                 |
|--------------|----------------|------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------|
| 5047         | PAEP           | Progestagen-associated endometrial protein                                                                             | 16.23         | 6.3X10 <sup>-15</sup>     |
| 145741       | C2CD4A         | C2 calcium-dependent domain containing 4A                                                                              | 7.07          | $1.1 \text{X} 10^{-14}$   |
|              |                | Solute carrier family 1 (neuronal/epithelial high                                                                      |               |                           |
| 6505         | SLC1A1         | affinity glutamate transporter, system Xag),                                                                           | 7.43          | $1.1 \mathrm{X} 10^{-14}$ |
|              |                | member 1                                                                                                               |               |                           |
| 1942         | EFNA1          | Ephrin-A1                                                                                                              | 2.43          | 6.1X10 <sup>-14</sup>     |
| 307          | ANXA4          | Annexin A4                                                                                                             | 2.85          | $8.6 \mathrm{X10}^{-14}$  |
| 1356         | СР             | Ceruloplasmin (ferroxidase)                                                                                            | 5.43          | $8.6 \mathrm{X10}^{-14}$  |
| 2886         | GRB7           | Growth factor receptor-bound protein 7                                                                                 | 2.08          | $8.6 \mathrm{X10}^{-14}$  |
| 4217         | MAP3K5         | Mitogen-activated protein kinase kinase kinase 5                                                                       | 3.26          | $8.6 \mathrm{X10}^{-14}$  |
| 3321         | IGSF3          | Immunoglobulin superfamily, member 3                                                                                   | 1.71          | $9.7 \mathrm{X10}^{-14}$  |
| 84159        | ARID5B         | AT rich interactive domain 5B (MRF1-like)                                                                              | 2.24          | $1.3 \times 10^{-13}$     |
| 710          | SERPING1       | Serpin peptidase inhibitor, clade G (C1 inhibitor), member 1                                                           | 3.21          | 1.4X10 <sup>-13</sup>     |
| 2634         | GBP2           | Guanylate binding protein 2, interferon-inducible                                                                      | 3.07          | $2.1 \times 10^{-13}$     |
| 4233         | MET            | Met proto-oncogene                                                                                                     | 3.36          | 2.9X10 <sup>-13</sup>     |
|              |                | Solute carrier family 15 (oligopeptide transporter),                                                                   |               |                           |
| 6564         | SLC15A1        | member 1                                                                                                               | 4.49          | 2.9X10 <sup>-13</sup>     |
| 91404        | SESTD1         | SEC14 and spectrin domains 1                                                                                           | 2.49          | $3.7 \times 10^{-13}$     |
| 120224       | TMEM45B        | Transmembrane protein 45B                                                                                              | 2.59          | 3.7X10 <sup>-13</sup>     |
| 10451        | VAV3           | vav 3 guanine nucleotide exchange factor                                                                               | 2.15          | $3.7 \times 10^{-13}$     |
| 8714         | ABCC3          | ATP-binding cassette, sub-family C, member 3                                                                           | 2.66          | $3.9 \times 10^{-13}$     |
| 85415        | RHPN2          | Rhophilin, Rho GTPase binding protein 2                                                                                | 3.6           | $4.1 \times 10^{-13}$     |
| 3026         | HABP2          | Hyaluronan binding protein 2                                                                                           | 3.31          | 6.2X10 <sup>-13</sup>     |
| 79838        | TMC5           | Transmembrane channel-like 5                                                                                           | 3.75          | $6.2 \times 10^{-13}$     |
| 23555        | TSPAN15        | Tetraspanin 15                                                                                                         | 2.26          | $6.2X10^{-13}$            |
| 347902       | AMIGO2         | Adhesion molecule with Ig-like domain 2                                                                                | 2.77          | 6.8X10 <sup>-13</sup>     |
| 3914         | LAMB3          | Laminin, beta 3                                                                                                        | 3.48          | $6.8 \times 10^{-13}$     |
| 1604         | CD55           | CD55 molecule, decay accelerating factor for complement (Cromer blood group)                                           | 5             | 6.9X10 <sup>-13</sup>     |
| 28231        | SLCO4A1        | Solute carrier organic anion transporter family,<br>member 4A1                                                         | 2.51          | 6.9X10 <sup>-13</sup>     |
| 722          | C4BPA          | Complement component 4 binding protein, alpha                                                                          | 5.7           | 8.8X10 <sup>-13</sup>     |
| 3620         | IDO1           | Indoleamine 2,3-dioxygenase 1                                                                                          | 3.26          | $8.8 \times 10^{-13}$     |
| 2308         | FOXO1          | Forkhead box O1                                                                                                        | 1.98          | $1.1 \text{X} 10^{-12}$   |
| 6990         | DYNLT3         | Dynein, light chain, Tctex-type 3                                                                                      | 2.34          | $1.4 X 10^{-12}$          |
| 1910         | EDNRB          | Endothelin receptor type B                                                                                             | 3.21          | $1.8 \times 10^{-12}$     |
| 121260       | SLC15A4        | Solute carrier family 15, member 4                                                                                     | 2.63          | $1.8 \times 10^{-12}$     |
| 64114        | TMBIM1         | Transmembrane BAX inhibitor motif containing 1                                                                         | 1.77          | $1.8 \times 10^{-12}$     |
| 9249         | DHRS3          | Dehydrogenase/reductase (SDR family) member 3                                                                          | 2.5           | $2X10^{-12}$              |
| 10509        | SEMA4B         | Sema domain, immunoglobulin domain (Ig),<br>transmembrane domain (TM) and short<br>cytoplasmic domain, (semaphorin) 4B | 1.63          | 2.3X10 <sup>-12</sup>     |

Appendix 12: Top-35 downregulated genes in eutopic endometrium from women with endometriosis compared to from women without endometriosis in the secretory phase of the menstrual cycle.

| Entrez<br>Id | Gene<br>symbol | Gene name                                                                                 | Fold<br>change | P value                   |
|--------------|----------------|-------------------------------------------------------------------------------------------|----------------|---------------------------|
| 8395         | PIP5K1B        | Phosphatidylinositol-4-phosphate 5-kinase, type Ι,β                                       | 0.4            | 1.1X10 <sup>-14</sup>     |
| 1908         | EDN3           | Endothelin 3                                                                              | 0.4            | $5.9 \times 10^{-14}$     |
| 10439        | OLFM1          | Olfactomedin 1                                                                            | 0.26           | 8.6X10 <sup>-14</sup>     |
| 10234        | LRRC17         | Leucine rich repeat containing 17                                                         | 0.34           | $2.7 \times 10^{-13}$     |
| 744          | MPPED2         | Metallophosphoesterase domain containing 2                                                | 0.34           | 6.2X10 <sup>-13</sup>     |
| 79695        | GALNT12        | UDP-N-acetyl-alpha-D-galactosamine:polypeptide<br>N-acetylgalactosaminyltransferase       | 0.39           | 6.8X10 <sup>-13</sup>     |
| 25803        | SPDEF          | SAM pointed domain containing ets transcription factor                                    | 0.41           | 1.4X10 <sup>-12</sup>     |
| 79695        | GALNT12        | UDP-N-acetyl-alpha-D-galactosamine:polypeptide<br>N-acetylgalactosaminyltransferase       | 0.42           | 4.6X10 <sup>-12</sup>     |
| 6565         | SLC15A2        | Solute carrier family 15 member 2                                                         | 0.19           | $5.4 \text{X} 10^{-12}$   |
| 3112         | HLA-DOB        | Major histocompatibility complex, class II, DOβ                                           | 0.39           | $7.4 \text{X} 10^{-12}$   |
| 9770         | RASSF2         | Ras association (RalGDS/AF-6) domain family member 2                                      | 0.42           | 9.3X10 <sup>-12</sup>     |
| 249          | ALPL           | Alkaline phosphatase, liver/bone/kidney                                                   | 0.36           | $1 X 10^{-11}$            |
| 9493         | KIF23          | Kinesin family member 23                                                                  | 0.58           | $1.1 \mathrm{X} 10^{-11}$ |
| 64388        | GREM2          | Gremlin 2                                                                                 | 0.39           | $1.7 \mathrm{X} 10^{-11}$ |
| 80010        | RMI1           | RMI1, RecQ mediated genome instability 1, homolog (S. cerevisiae)                         | 0.61           | 1.7X10 <sup>-11</sup>     |
| 29091        | STXBP6         | Syntaxin binding protein 6 (amisyn)                                                       | 0.47           | $1.8 \text{X} 10^{-11}$   |
| 201164       | PLD6           | Phospholipase D family, member 6                                                          | 0.66           | $2.1 \text{X} 10^{-11}$   |
| 580          | BARD1          | BRCA1 associated RING domain 1                                                            | 0.63           | 2.2X10 <sup>-11</sup>     |
| 6424         | SFRP4          | Secreted frizzled-related protein 4                                                       | 0.23           | $2.2 \times 10^{-11}$     |
| 9687         | GREB1          | Growth regulation by estrogen in breast cancer 1                                          | 0.47           | 2.6X10 <sup>-11</sup>     |
| 148327       | CREB3L4        | cAMP responsive element binding protein 3-like 4                                          | 0.51           | 3X10 <sup>-11</sup>       |
| 83690        | CRISPLD1       | Cysteine-rich secretory protein LCCL domain containing 1                                  | 0.43           | 3.1X10 <sup>-11</sup>     |
| 3248         | HPGD           | Hydroxyprostaglandin dehydrogenase 15-(NAD)                                               | 0.34           | $3.2 \times 10^{-11}$     |
| 146456       | TMED6          | Transmembrane emp24 protein transport domain containing 6                                 | 0.38           | 3.6X10 <sup>-11</sup>     |
| 10512        | SEMA3C         | Sema domain, immunoglobulin domain (Ig), short<br>basic domain, secreted, (semaphorin) 3C | 0.47           | 4.1X10 <sup>-11</sup>     |
| 10346        | TRIM22         | Tripartite motif-containing 22                                                            | 0.57           | $4.4 \mathrm{X10}^{-11}$  |
| 79366        | HMGN5          | High-mobility group nucleosome binding domain 5                                           | 0.62           | 5X10 <sup>-11</sup>       |
| 25878        | MXRA5          | Matrix-remodelling associated 5                                                           | 0.5            | 5.1X10 <sup>-11</sup>     |
| 155066       | ATP6V0E2       | ATPase, H+ transporting V0 subunit e2                                                     | 0.53           | 6.1X10 <sup>-11</sup>     |
| 128239       | IQGAP3         | IQ motif containing GTPase activating protein 3                                           | 0.7            | $6.1 \times 10^{-11}$     |
| 55283        | MCOLN3         | Mucolipin 3                                                                               | 0.52           | $7.2 \times 10^{-11}$     |
| 57447        | NDRG2          | NDRG family member 2                                                                      | 0.53           | $7.4 \text{X} 10^{-11}$   |
| 359845       | FAM101B        | Family with sequence similarity 101, member B                                             | 0.62           | $8.3 \times 10^{-11}$     |
| 8654         | PDE5A          | Phosphodiesterase 5A, cGMP-specific                                                       | 0.58           | 9X10 <sup>-11</sup>       |
| 84189        | SLITRK6        | SLIT and NTRK-like family, member 6                                                       | 0.4            | 9.7X10 <sup>-11</sup>     |

| Entrez<br>Id           | Gene<br>symbol | Gene name                                                                          | Fold<br>change | P value                 |
|------------------------|----------------|------------------------------------------------------------------------------------|----------------|-------------------------|
| 4684                   | NCAM1          | Neural cell adhesion molecule 1                                                    | 2.79           | 6.5X10 <sup>-12</sup>   |
| 5627                   | PROS1          | Protein S (alpha)                                                                  | 3.09           | $2.5 \text{X} 10^{-11}$ |
| 5791                   | PTPRE          | Protein tyrosine phosphatase, receptor type, E                                     | 3.01           | 1.6X10 <sup>-10</sup>   |
| 54438                  | GFOD1          | Glucose-fructose oxidoreductase domain containing 1                                | 3.07           | 2.6X10 <sup>-10</sup>   |
| 5271                   | SERPINB8       | Serpin peptidase inhibitor, clade B (ovalbumin), member 8                          | 2.43           | 3.5X10 <sup>-10</sup>   |
| 81855                  | SFXN3          | Sideroflexin 3                                                                     | 2.35           | $4X10^{-10}$            |
| 80303                  | EFHD1          | EF-hand domain family, member D1                                                   | 3.02           | $5X10^{-10}$            |
| 4862                   | NPAS2          | Neuronal PAS domain protein 2                                                      | 2.32           | $9.2 \times 10^{-10}$   |
| 1890                   | TYMP           | Thymidine phosphorylase                                                            | 3.28           | $1.8 \text{X} 10^{-9}$  |
| 7035                   | TFPI           | Tissue factor pathway inhibitor (lipoprotein-<br>associated coagulation inhibitor) | 2.35           | 2.2X10 <sup>-9</sup>    |
| 5918                   | RARRES1        | Retinoic acid receptor responder (tazarotene induced) 1                            | 2.98           | 2.4X10 <sup>-9</sup>    |
| 57214                  | KIAA1199       | KIAA1199                                                                           | 4.15           | $2.8 \text{X} 10^{-9}$  |
| 23476                  | BRD4           | Bromodomain containing 4                                                           | 1.97           | 3.9X10 <sup>-9</sup>    |
| 1803                   | DPP4           | Dipeptidyl-peptidase 4                                                             | 4.47           | 3.9X10 <sup>-9</sup>    |
| 3690                   | ITGB3          | Integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61)                        | 2.15           | 3.9X10 <sup>-9</sup>    |
| 8714                   | ABCC3          | ATP-binding cassette, sub-family C (CFTR/MRP), member 3                            | 3.81           | 4.1X10 <sup>-9</sup>    |
| 9846                   | GAB2           | GRB2-associated binding protein 2                                                  | 2.45           | 4.1X10 <sup>-9</sup>    |
| 5578                   | PRKCA          | Protein kinase C, alpha                                                            | 1.8            | 4.1X10 <sup>-9</sup>    |
| 710                    | SERPING1       | Serpin peptidase inhibitor, clade G (C1 inhibitor), member 1                       | 3.06           | 4.1X10 <sup>-9</sup>    |
| 3855                   | KRT7           | Keratin 7                                                                          | 4.52           | 4.2X10 <sup>-9</sup>    |
| 7223                   | TRPC4          | Transient receptor potential cation channel, subfamily C, member 4                 | 3.38           | 4.4X10 <sup>-9</sup>    |
| 415                    | ARSE           | Arylsulfatase E (chondrodysplasia punctata 1)                                      | 2.87           | 5.4X10 <sup>-9</sup>    |
| 11030                  | RBPMS          | RNA binding protein with multiple splicing                                         | 1.93           | 5.7X10 <sup>-9</sup>    |
| 1521                   | CTSW           | Cathepsin W                                                                        | 3.19           | 5.9X10 <sup>-9</sup>    |
| 3026                   | HABP2          | Hyaluronan binding protein 2                                                       | 4              | 6.2X10 <sup>-9</sup>    |
| 978                    | CDA            | Cytidine deaminase                                                                 | 2.59           | 6.5X10 <sup>-9</sup>    |
| 7378                   | UPP1           | Uridine phosphorylase 1                                                            | 2.48           | 6.8X10 <sup>-9</sup>    |
| 579                    | NKX3-2         | NK3 homeobox 2                                                                     | 2.37           | 7.3X10 <sup>-9</sup>    |
| 10855                  | HPSE           | Heparanase                                                                         | 3.07           | 8.9X10 <sup>-9</sup>    |
| 113146                 | AHNAK2         | AHNAK nucleoprotein 2                                                              | 3.26           | $1 \times 10^{-8}$      |
| 8534                   | CHST1          | Carbohydrate (keratan sulfate Gal-6) sulfotransferase                              | 2.36           | 1X10 <sup>-8</sup>      |
| 1824                   | DSC2           | Desmocollin 2                                                                      | 2.63           | 1X10 <sup>-8</sup>      |
| 4524                   | MTHFR          | Methylenetetrahydrofolate reductase (NAD(P)H)                                      | 2.03<br>2.67   | $1.3X10^{-8}$           |
| 4 <i>32</i> 4<br>11067 | C10orf10       | Chromosome 10 open reading frame 10                                                | 2.07           | $1.5 \times 10^{-8}$    |
| 3034                   | HAL            | Histidine ammonia-lyase                                                            | 2.97<br>3.97   | $1.0 \times 10^{-8}$    |
| 3034                   | HAL            | misuume ammonia-iyase                                                              | 3.71           | 1/10                    |

Appendix 13: Top-35 upregulated genes in eutopic endometrium from women with endometriosis in the proliferative vs. secretory phase of the menstrual cycle.

| Entrez<br>Id | Gene<br>symbol | Gene name                                                                                      | Fold<br>change | P value                  |
|--------------|----------------|------------------------------------------------------------------------------------------------|----------------|--------------------------|
| 53407        | STX18          | Syntaxin 18                                                                                    | 0.32           | $2X10^{-12}$             |
| 26275        | HIBCH          | 3-Hydroxyisobutyryl-CoA hydrolase                                                              | 0.37           | $4X10^{-10}$             |
| 983          | CDK1           | Cyclin-dependent kinase 1                                                                      | 0.39           | $8.7 \mathrm{X10}^{-10}$ |
| 9232         | PTTG1          | Pituitary tumor-transforming 1                                                                 | 0.37           | 1.3X10 <sup>-9</sup>     |
| 10455        | PECI           | Peroxisomal D3,D2-enoyl-CoA isomerase                                                          | 0.33           | $1.8 \mathrm{X10}^{-9}$  |
| 5241         | PGR            | Progesterone receptor                                                                          | 0.3            | 1.9X10 <sup>-9</sup>     |
| 8836         | GGH            | Gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase)                         | 0.41           | 2.1X10 <sup>-9</sup>     |
| 3251         | HPRT1          | Hypoxanthine phosphoribosyltransferase 1                                                       | 0.51           | $2.2 \times 10^{-9}$     |
| 29127        | RACGAP1        | Rac GTPase activating protein 1                                                                | 0.48           | 3.6X10 <sup>-9</sup>     |
| 2146         | EZH2           | Enhancer of zeste homolog 2 (Drosophila)                                                       | 0.44           | 3.9X10 <sup>-9</sup>     |
| 3655         | ITGA6          | Integrin, alpha 6                                                                              | 0.46           | 3.9X10 <sup>-9</sup>     |
| 5111         | PCNA           | Proliferating cell nuclear antigen                                                             | 0.46           | 3.9X10 <sup>-9</sup>     |
| 3838         | KPNA2          | Karyopherin alpha 2 (RAG cohort 1, importin alpha 1)                                           | 0.44           | 4.4X10 <sup>-9</sup>     |
| 6240         | RRM1           | Ribonucleotide reductase M1                                                                    | 0.45           | 5.5X10 <sup>-9</sup>     |
| 3148         | HMGB2          | High-mobility group box 2                                                                      | 0.35           | 7.7X10 <sup>-9</sup>     |
| 7514         | XPO1           | Exportin 1 (CRM1 homolog, yeast)                                                               | 0.49           | 8.2X10 <sup>-9</sup>     |
| 9133         | CCNB2          | Cyclin B2                                                                                      | 0.37           | $1.2 \times 10^{-8}$     |
| 57535        | KIAA1324       | KIAA1324                                                                                       | 0.34           | 1.3X10 <sup>-8</sup>     |
| 29880        | ALG5           | Asparagine-linked glycosylation 5, dolichyl-<br>phosphate beta-glucosyltransferase             | 0.53           | $1.4X10^{-8}$            |
| 7298         | TYMS           | Thymidylate synthetase                                                                         | 0.34           | 1.4X10 <sup>-8</sup>     |
| 3161         | HMMR           | Hyaluronan-mediated motility receptor (RHAMM)                                                  | 0.42           | 1.7X10 <sup>-8</sup>     |
| 54431        | DNAJC10        | DnaJ (Hsp40) homolog, subfamily C, member 10                                                   | 0.34           | 1.8X10 <sup>-8</sup>     |
| 3479         | IGF1           | Insulin-like growth factor 1 (somatomedin C)                                                   | 0.42           | 1.8X10 <sup>-8</sup>     |
| 4487         | MSX1           | Msh homeobox 1                                                                                 | 0.39           | 1.8X10 <sup>-8</sup>     |
| 9493         | KIF23          | Kinesin family member 23                                                                       | 0.39           | 1.9X10 <sup>-8</sup>     |
| 56547        | MMP26          | Matrix metallopeptidase 26                                                                     | 0.15           | 1.9X10 <sup>-8</sup>     |
| 5955         | RCN2           | Reticulocalbin 2, EF-hand calcium binding domain                                               | 0.41           | 1.9X10 <sup>-8</sup>     |
| 79084        | WDR77          | WD repeat domain 77                                                                            | 0.38           | 2.4X10 <sup>-8</sup>     |
| 9709         | HERPUD1        | Homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1 | 0.39           | 2.6X10 <sup>-8</sup>     |
| 4678         | NASP           | Nuclear autoantigenic sperm protein (histone-<br>binding)                                      | 0.51           | 2.8X10 <sup>-8</sup>     |
| 8395         | PIP5K1B        | Phosphatidylinositol-4-phosphate 5-kinase, type I, beta                                        | 0.39           | 2.8X10 <sup>-8</sup>     |
| 9055         | PRC1           | Protein regulator of cytokinesis 1                                                             | 0.35           | 3.2X10 <sup>-8</sup>     |
| 3015         | H2AFZ          | H2A histone family, member Z                                                                   | 0.49           | 3.6X10 <sup>-8</sup>     |
| 6430         | SRSF5          | Serine/arginine-rich splicing factor 5                                                         | 0.46           | 3.7X10 <sup>-8</sup>     |
| 515          | ATP5F1         | ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1                            | 0.52           | 4.6X10 <sup>-8</sup>     |

Appendix 14: Top-35 downregulated genes in eutopic endometrium from women with endometriosis in the proliferative vs. secretory phase of the menstrual cycle.

| Entrez<br>Id | Gene<br>symbol | Gene name                                                                    | Fold<br>change | P value                  |
|--------------|----------------|------------------------------------------------------------------------------|----------------|--------------------------|
|              | <i>.</i>       | Solute carrier family 1 (neuronal/epithelial high                            | 0              |                          |
| 6505         | SLC1A1         | affinity glutamate transporter system Xag)<br>member1                        | 3.81           | 1.1X10 <sup>-17</sup>    |
| 7042         | TGFB2          | Transforming growth factor, beta 2                                           | 2.28           | 1.1X10 <sup>-16</sup>    |
| 3026         | HABP2          | Hyaluronan binding protein 2                                                 | 3.04           | 1.8X10 <sup>-16</sup>    |
| 79838        | TMC5           | Transmembrane channel-like 5                                                 | 2.38           | 2.3X10 <sup>-14</sup>    |
| 79820        | CATSPERB       | Cation channel, sperm-associated, beta                                       | 2.11           | $2.4 \text{X} 10^{-14}$  |
| 1604         | CD55           | CD55 molecule, decay accelerating factor for complement (Cromer blood group) | 2.87           | 2.7X10 <sup>-14</sup>    |
| 54762        | GRAMD1C        | GRAM domain containing 1C                                                    | 2.98           | 5.8X10 <sup>-14</sup>    |
| 6947         | TCN1           | Transcobalamin I (vitamin B12 binding protein)                               | 4.93           | 1.8X10 <sup>-13</sup>    |
| 1803         | DPP4           | Dipeptidyl-peptidase 4                                                       | 2.95           | 3.4X10 <sup>-13</sup>    |
| 3034         | HAL            | Histidine ammonia-lyase                                                      | 3.11           | 5.3X10 <sup>-13</sup>    |
| 1591         | CYP24A1        | Cytochrome P450, family 24, subfamily A, polypeptide 1                       | 3.28           | 5.3X10 <sup>-13</sup>    |
| 486          | FXYD2          | FXYD domain containing ion transport regulator 2                             | 2              | 1.3X10 <sup>-12</sup>    |
|              |                | Solute carrier family 15 (oligopeptide transport regulator 2)                |                | $1.5X10^{-12}$           |
| 6564         | SLC15A1        | member 1                                                                     | 2.79           |                          |
| 79722        | ANKRD55        | Ankyrin repeat domain 55                                                     | 2.1            | $1.7 \times 10^{-12}$    |
| 6539         | SLC6A12        | Solute carrier family 6 member 12                                            | 2.05           | $2.9 \times 10^{-12}$    |
| 28231        | SLCO4A1        | Solute carrier organic anion transporter family, member 4A1                  | 2.49           | 4X10 <sup>-12</sup>      |
| 1311         | COMP           | Cartilage oligomeric matrix protein                                          | 3.73           | $4.6 \times 10^{-12}$    |
| 53630        | BCMO1          | Beta-carotene 15,15'-monooxygenase 1                                         | 1.89           | 5.2X10 <sup>-12</sup>    |
| 5271         | SERPINB8       | Serpin peptidase inhibitor, clade B (ovalbumin), member 8                    | 1.77           | 6.2X10 <sup>-12</sup>    |
| 1577         | CYP3A5         | Cytochrome P450, family 3, subfamily A, polypeptide 5                        | 2.27           | 7.7X10 <sup>-12</sup>    |
| 9829         | DNAJC6         | DnaJ (Hsp40) homolog, subfamily C, member 6                                  | 2.51           | $2.9 \times 10^{-11}$    |
| 10045        | SH2D3A         | SH2 domain containing 3A                                                     | 1.63           | $3.4 \text{X} 10^{-11}$  |
| 6097         | RORC           | RAR-related orphan receptor C                                                | 1.6            | 3.8X10 <sup>-11</sup>    |
| 6542         | SLC7A2         | Solute carrier family 7 member 2                                             | 2.07           | 3.9X10 <sup>-11</sup>    |
| 1942         | EFNA1          | Ephrin-A1                                                                    | 1.83           | 3.9X10 <sup>-11</sup>    |
| 22996        | TTC39A         | Tetratricopeptide repeat domain 39A                                          | 2.19           | 4.6X10 <sup>-11</sup>    |
| 54463        | FAM134B        | Family with sequence similarity 134, member B                                | 1.88           | $4.7 \mathrm{X10}^{-11}$ |
| 722          | C4BPA          | Complement component 4 binding protein, alpha                                | 3.57           | 4.8X10 <sup>-11</sup>    |
| 22904        | SBNO2          | Strawberry notch homolog 2 (Drosophila)                                      | 1.93           | 4.9X10 <sup>-11</sup>    |
| 8714         | ABCC3          | ATP-binding cassette, sub-family C (CFTR/MRP), member 3                      | 2.38           | 5.3X10 <sup>-11</sup>    |
| 9001         | HAP1           | Huntingtin-associated protein 1                                              | 1.65           | 6.6X10 <sup>-11</sup>    |
| 1910         | EDNRB          | Endothelin receptor type B                                                   | 2.05           | $7X10^{-11}$             |
| 6690         | SPINK1         | Serine peptidase inhibitor, Kazal type 1                                     | 2.17           | $1.7 \mathrm{X10}^{-10}$ |
| 1824         | DSC2           | Desmocollin 2                                                                | 1.79           | 2.6X10 <sup>-10</sup>    |
| 11138        | TBC1D8         | TBC1 domain family, member 8                                                 | 1.63           | 2.8X10 <sup>-10</sup>    |

Appendix 15: Top-35 upregulated genes in endometriotic lesions compared to eutopic endometrium from women with endometriosis.

| Entrez<br>Id                    | Gene<br>symbol                     | Gene name                                                                                                                                             | Fold<br>change               | P value                                                                                         |
|---------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------|
| 3151                            | HMGN2                              | High-mobility group nucleosomal binding domain 2                                                                                                      | 0.61                         | 1.8X10 <sup>-13</sup>                                                                           |
| 51596                           | CUTA                               | CutA divalent cation tolerance homolog (E. coli)                                                                                                      | 0.53                         | 1.6X10 <sup>-11</sup>                                                                           |
| 27018                           | NGFRAP1                            | Nerve growth factor receptor (TNFRSF16) associated protein 1                                                                                          | 0.6                          | $1.4 X 10^{-10}$                                                                                |
| 9791                            | PTDSS1                             | Phosphatidylserine synthase 1                                                                                                                         | 0.6                          | 1.6X10 <sup>-10</sup>                                                                           |
| 9770                            | RASSF2                             | Ras association (RalGDS/AF-6) domain family member 2                                                                                                  | 0.52                         | $2.1 \text{X} 10^{-10}$                                                                         |
| 9500<br>26227<br>10857<br>57570 | MAGED1<br>PHGDH<br>PGRMC1<br>TRMT5 | Melanoma antigen family D, 1<br>Phosphoglycerate dehydrogenase<br>Progesterone receptor membrane component 1<br>TRM5 tRNA methyltransferase 5 homolog | 0.45<br>0.65<br>0.59<br>0.64 | 2.7X10 <sup>-10</sup><br>5.2X10 <sup>-10</sup><br>9.2X10 <sup>-10</sup><br>1.9X10 <sup>-9</sup> |
| 140465                          | MYL6B                              | Myosin, light chain 6B, alkali, smooth muscle and non-muscle                                                                                          | 0.67                         | 4.2X10 <sup>-9</sup>                                                                            |
| 1628                            | DBP                                | D site of albumin promoter (albumin D-box)<br>binding protein                                                                                         | 0.63                         | 6.3X10 <sup>-9</sup>                                                                            |
| 5955                            | RCN2                               | Reticulocalbin 2, EF-hand calcium binding domain                                                                                                      | 0.6                          | 7.2X10 <sup>-9</sup>                                                                            |
| 9324                            | HMGN3                              | High mobility group nucleosomal binding domain 3                                                                                                      | 0.63                         | 1.1X10 <sup>-8</sup>                                                                            |
| 23475                           | QPRT                               | Quinolinate phosphoribosyltransferase                                                                                                                 | 0.59                         | 1.3X10 <sup>-8</sup>                                                                            |
| 5501                            | PPP1CC                             | Protein phosphatase 1, catalytic subunit, gamma isozyme                                                                                               | 0.64                         | 1.7X10 <sup>-8</sup>                                                                            |
| 64710                           | NUCKS1                             | Nuclear casein kinase and cyclin-dependent kinase substrate 1                                                                                         | 0.63                         | 5.3X10 <sup>-8</sup>                                                                            |
| 201254                          | STRA13                             | Stimulated by retinoic acid 13 homolog (mouse)                                                                                                        | 0.76                         | 6.3X10 <sup>-8</sup>                                                                            |
| 10234                           | LRRC17                             | Leucine rich repeat containing 17                                                                                                                     | 0.5                          | 7X10 <sup>-8</sup>                                                                              |
| 1278                            | COL1A2                             | Collagen, type I, alpha 2                                                                                                                             | 0.62                         | 7.5X10 <sup>-8</sup>                                                                            |
| 64110                           | MAGEF1                             | Melanoma antigen family F, 1                                                                                                                          | 0.78                         | $8.1 \times 10^{-8}$                                                                            |
| 6424                            | SFRP4                              | Secreted frizzled-related protein 4                                                                                                                   | 0.41                         | $1.1 \times 10^{-7}$                                                                            |
| 3945                            | LDHB                               | Lactate dehydrogenase B                                                                                                                               | 0.56                         | $1.2 \times 10^{-7}$                                                                            |
| 1163                            | CKS1B                              | CDC28 protein kinase regulatory subunit 1B                                                                                                            | 0.72                         | $1.4 \text{X} 10^{-7}$                                                                          |
| 9315                            | C5orf13                            | Chromosome 5 open reading frame 13                                                                                                                    | 0.54                         | $1.6 \mathrm{X} 10^{-7}$                                                                        |
| 55830                           | GLT8D1                             | Glycosyltransferase 8 domain containing 1                                                                                                             | 0.69                         | $1.8 \mathrm{X} 10^{-7}$                                                                        |
| 8270                            | LAGE3                              | L antigen family, member 3                                                                                                                            | 0.62                         | $1.9 \mathrm{X} 10^{-7}$                                                                        |
| 4192                            | MDK                                | Midkine (neurite growth-promoting factor 2)                                                                                                           | 0.63                         | $2X10^{-7}$                                                                                     |
| 3033                            | HADH                               | Hydroxyacyl-CoA dehydrogenase                                                                                                                         | 0.65                         | 2.2X10 <sup>-7</sup>                                                                            |
| 6297                            | SALL2                              | Sal-like 2 (Drosophila)                                                                                                                               | 0.71                         | 2.2X10 <sup>-7</sup>                                                                            |
| 11331                           | PHB2                               | Prohibitin 2                                                                                                                                          | 0.71                         | 2.4X10 <sup>-7</sup>                                                                            |
| 5985                            | RFC5                               | Replication factor C (activator 1) 5, 36.5kDa                                                                                                         | 0.75                         | $2.4 \times 10^{-7}$                                                                            |
| 6117                            | RPA1                               | Replication protein A1, 70kDa                                                                                                                         | 0.62                         | $2.5 \times 10^{-7}$                                                                            |
| 10575                           | CCT4                               | Chaperonin containing TCP1, subunit 4 (delta)                                                                                                         | 0.72                         | $2.7 \times 10^{-7}$                                                                            |
| 10455                           | PECI                               | Peroxisomal D3,D2-enoyl-CoA isomerase                                                                                                                 | 0.63                         | 2.7X10 <sup>-7</sup>                                                                            |
| 79017                           | GGCT                               | Gamma-glutamylcyclotransferase                                                                                                                        | 0.59                         | 3X10 <sup>-7</sup>                                                                              |

Appendix 16: Top-35 downregulated genes in endometriotic lesions compared to eutopic endometrium from women with endometriosis.

| Pathway ID      | Pathway name                                          | P value                  | F score |
|-----------------|-------------------------------------------------------|--------------------------|---------|
| Overall         | ·                                                     |                          |         |
| GO:0045087      | Innate immune response                                | 1.9X10 <sup>-6</sup>     | 16.53   |
| GO:0005275      | Amine transmembrane transporter activity              | 5.7X10 <sup>-6</sup>     | 14.92   |
| GO:0002526      | Acute inflammatory response                           | 7.4X10 <sup>-6</sup>     | 14.08   |
| GO:0019724      | B cell mediated immunity                              | 1X10 <sup>-5</sup>       | 13.44   |
| GO:0016064      | Immunoglobulin mediated immune response               | 1X10 <sup>-5</sup>       | 13.43   |
|                 | Hematopoietin/interferon-class (D200-domain) cytokine | 1.2X10 <sup>-5</sup>     |         |
| GO:0004896      | receptor activity                                     |                          | 13.03   |
| GO:0050817      | Coagulation                                           | 1.3X10 <sup>-5</sup>     | 12.6    |
| GO:0007596      | Blood coagulation                                     | 1.3X10 <sup>-5</sup>     | 12.59   |
| GO:0006935      | Chemotaxis                                            | 1.3X10 <sup>-5</sup>     | 12.54   |
| GO:0042330      | Taxis                                                 | 1.3X10 <sup>-5</sup>     | 12.54   |
| GO:0002253      | Activation of immune response                         | 2X10 <sup>-5</sup>       | 12.12   |
|                 | Adaptive immune response based on somatic             | 2.1X10 <sup>-5</sup>     |         |
| GO:0002460      | recombination of immune receptors built from          |                          | 11.99   |
|                 | immunoglobulin superfamily domain                     |                          |         |
| GO:0002250      | Adaptive immune response                              | 2.3X10 <sup>-5</sup>     | 11.83   |
| GO:0007204      | Elevation of cytosolic calcium ion concentration      | 2.3X10 <sup>-5</sup>     | 11.76   |
| GO:0051480      | Cytosolic calcium ion homeostasis                     | 2.3X10 <sup>-5</sup>     | 11.76   |
| GO:0050776      | Regulation of immune response                         | $2.4 \text{X} 10^{-5}$   | 11.49   |
| GO:0015171      | Amino acid transmembrane transporter activity         | 2.9X10 <sup>-5</sup>     | 11.29   |
| GO:0007599      | Hemostasis                                            | $2.9 \text{X} 10^{-5}$   | 11.25   |
| GO:0046943      | Carboxylic acid transmembrane transporter activity    | 3.8X10 <sup>-5</sup>     | 11.01   |
| GO:0006959      | Humoral immune response                               | 4.4X10 <sup>-5</sup>     | 10.76   |
| Proliferative p | hase                                                  |                          |         |
| GO:0009617      | Response to bacterium                                 | $1.4 \times 10^{-5}$     | 11.05   |
| GO:0002521      | Leukocyte differentiation                             | 1.4X10 <sup>-5</sup>     | 11.06   |
| GO:0019955      | Cytokine binding                                      | $1.4 \times 10^{-5}$     | 10.43   |
| GO:0006935      | Chemotaxis                                            | $2X10^{-5}$              | 9.85    |
| GO:0042330      | Taxis                                                 | 2X10 <sup>-5</sup>       | 9.23    |
| GO:0030098      | Lymphocyte differentiation                            | $2.8 \times 10^{-5}$     | 9.37    |
| GO:0006968      | Cellular defence response                             | $4.1 \mathrm{X} 10^{-5}$ | 8.58    |
| GO:0042742      | Defence response to bacterium                         | $4.1 \mathrm{X10}^{-5}$  | 7.67    |
| GO:0019882      | Antigen processing and presentation                   | 5.5X10 <sup>-5</sup>     | 7.23    |
| GO:0002696      | Positive regulation of leukocyte activation           | $5.5 \times 10^{-5}$     | 6.64    |
| GO:0050867      | Positive regulation of cell activation                | 5.5X10 <sup>-5</sup>     | 6.02    |
| GO:0004896      | Hematopoietin/interferon-class (D200-domain) cytokine | 5.5X10 <sup>-5</sup>     | 5.92    |
|                 | receptor activity                                     | E                        |         |
| GO:0007626      | Locomotory behaviour                                  | $7.3 \times 10^{-5}$     | 5.06    |
| GO:0045087      | Innate immune response                                | 8X10 <sup>-5</sup>       | 4.82    |
| GO:0042110      | T cell activation                                     | 8X10 <sup>-5</sup>       | 4.32    |
| GO:0051251      | Positive regulation of lymphocyte activation          | $1.1 \text{X} 10^{-4}$   | 3.89    |

Appendix 17: Top 20 dysregulated pathways in the endometriotic lesions compared eutopic endometrium from women with endometriosis.

| Pathway ID    | Pathway name                                             | P value                 | F score |
|---------------|----------------------------------------------------------|-------------------------|---------|
| GO:0002684    | Positive regulation of immune system process             | 1.2X10 <sup>-4</sup>    | 3.53    |
| GO:0030155    | Regulation of cell adhesion                              | $1.2 \times 10^{-4}$    | 3.32    |
| GO:0042035    | Regulation of cytokine biosynthetic process              | $1.9 \times 10^{-4}$    | 2.89    |
| GO:0031401    | Positive regulation of protein modification process      | 3X10 <sup>-4</sup>      | 2.5     |
| Secretory pha | se: No significant pathways                              |                         |         |
| Endometriotio | e lesions: Proliferative Vs Secretory phase              |                         |         |
| GO:0006816    | Calcium ion transport                                    | $1.5 \times 10^{-7}$    | 26.05   |
| GO:0044456    | Synapse part                                             | $1.5 \mathrm{X10}^{-7}$ | 25.41   |
| GO:0045211    | Postsynaptic membrane                                    | $1.7 \times 10^{-7}$    | 24.57   |
| GO:0015276    | Ligand-gated ion channel activity                        | $2X10^{-7}$             | 23.45   |
| GO:0022834    | Ligand-gated channel activity                            | $2X10^{-7}$             | 23.45   |
| GO:0006836    | Neurotransmitter transport                               | 2.7X10 <sup>-7</sup>    | 22.64   |
| GO:0015674    | Di-, tri-valent inorganic cation transport               | 8.1X10 <sup>-7</sup>    | 20.52   |
| GO:0005230    | Extracellular ligand-gated ion channel activity          | 8.1X10 <sup>-7</sup>    | 20.48   |
| GO:0005262    | Calcium channel activity                                 | 1.1X10 <sup>-6</sup>    | 19.82   |
| GO:0001505    | Regulation of neurotransmitter levels                    | 1.4X10 <sup>-6</sup>    | 19.32   |
| GO:0030594    | Neurotransmitter receptor activity                       | 2X10 <sup>-6</sup>      | 18.6    |
| GO:0042165    | Neurotransmitter binding                                 | $2X10^{-6}$             | 18.52   |
| GO:0030136    | Clathrin-coated vesicle                                  | $2.4 \text{X} 10^{-6}$  | 18.19   |
| GO:0007187    | G-Protein signaling, coupled to cyclic nucleotide second | 2.9X10 <sup>-6</sup>    | 17.79   |
|               | messenger                                                | 3.6X10 <sup>-6</sup>    | 17.37   |
| GO:0008509    | Anion transmembrane transporter activity                 |                         |         |
| GO:0022843    | Voltage-gated cation channel activity                    | $3.6 \times 10^{-6}$    | 17.26   |
| GO:0006813    | Potassium ion transport                                  | 3.6X10 <sup>-6</sup>    | 17.22   |
| GO:0030135    | Coated vesicle                                           | 3.9X10 <sup>-6</sup>    | 17.03   |
| GO:0005267    | Potassium channel activity                               | $4X10^{-6}$             | 16.85   |
| GO:0060249    | Anatomical structure homeostasis                         | 4X10 <sup>-6</sup>      | 16.85   |

| Entrez<br>ID | Gene<br>symbol | Gene name                                                                        | Fold<br>change | P value                |
|--------------|----------------|----------------------------------------------------------------------------------|----------------|------------------------|
| 4783         | NFIL3          | Nuclear factor, interleukin 3 regulated                                          | 1.95           | 3.9X10 <sup>-6</sup>   |
| 3775         | KCNK1          | Potassium channel, subfamily K, member 1                                         | 1.5            | 9.4X10 <sup>-6</sup>   |
| 23764        | MAFF           | v-Maf musculoaponeurotic fibrosarcoma oncogene<br>homolog F (avian)              | 2.11           | 1.1X10 <sup>-5</sup>   |
| 9473         | C1orf38        | Chromosome 1 open reading frame 38                                               | 1.58           | 1.3X10 <sup>-5</sup>   |
| 10221        | TRIB1          | Tribbles homolog 1 (Drosophila)                                                  | 1.91           | 1.7X10 <sup>-5</sup>   |
| 7127         | TNFAIP2        | Tumor necrosis factor, alpha-induced protein 2                                   | 1.39           | 3X10 <sup>-5</sup>     |
| 3976         | LIF            | Leukemia inhibitory factor (cholinergic differentiation factor)                  | 2.35           | 3.8X10 <sup>-5</sup>   |
| 28984        | C13orf15       | Chromosome 13 open reading frame 15                                              | 1.81           | 4.1X10 <sup>-5</sup>   |
| 4973         | OLR1           | Oxidized low density lipoprotein (lectin-like) receptor 1                        | 1.71           | 4.3X10 <sup>-5</sup>   |
| 64092        | SAMSN1         | SAM domain, SH3 domain and nuclear localization signals 1                        | 1.68           | 6.7X10 <sup>-5</sup>   |
| 728          | C5AR1          | Complement component 5a receptor 1                                               | 2.18           | $1.1 \text{X} 10^{-4}$ |
| 1051         | CEBPB          | CCAAT/enhancer binding protein (C/EBP), beta                                     | 1.46           | $1.2X10^{-4}$          |
| 3914         | LAMB3          | Laminin, beta 3                                                                  | 2.31           | 1.2X10 <sup>-4</sup>   |
| 79838        | TMC5           | Transmembrane channel-like 5                                                     | 2.12           | $1.4 \text{X} 10^{-4}$ |
| 597          | BCL2A1         | BCL2-related protein A1                                                          | 2.59           | $1.5 \text{X} 10^{-4}$ |
| 9766         | KIAA0247       | KIAA0247                                                                         | 1.34           | $1.5 \text{X} 10^{-4}$ |
| 1316         | KLF6           | Kruppel-like factor 6                                                            | 1.87           | $1.5 \text{X} 10^{-4}$ |
| 5791         | PTPRE          | Protein tyrosine phosphatase, receptor type, E                                   | 1.51           | $1.5 \text{X} 10^{-4}$ |
| 6781         | STC1           | Stanniocalcin 1                                                                  | 2.05           | $1.5 \text{X} 10^{-4}$ |
| 10123        | ARL4C          | ADP-ribosylation factor-like 4C                                                  | 1.84           | 1.6X10 <sup>-4</sup>   |
| 55765        | C1orf106       | Chromosome 1 open reading frame 106                                              | 1.85           | 1.6X10 <sup>-4</sup>   |
| 3553         | IL1B           | Interleukin 1, beta                                                              | 2.31           | 1.7X10 <sup>-4</sup>   |
| 6774         | STAT3          | Signal transducer and activator of transcription 3 (acute-phase response factor) | 1.29           | 1.7X10 <sup>-4</sup>   |
| 3576         | IL8            | Interleukin 8                                                                    | 3.92           | $2X10^{-4}$            |
| 5055         | SERPINB2       | Serpin peptidase inhibitor, clade B (ovalbumin), member 2                        | 1.63           | 2.1X10 <sup>-4</sup>   |
| 1992         | SERPINB1       | Serpin peptidase inhibitor, clade B (ovalbumin),<br>member 1                     | 1.37           | 2.6X10 <sup>-4</sup>   |
| 6692         | SPINT1         | Serine peptidase inhibitor, Kunitz type 1                                        | 1.76           | 2.6X10 <sup>-4</sup>   |
| 9123         | SLC16A3        | Solute carrier family 16, member 3 (monocarboxylic acid transporter 4)           | 1.48           | 3.1X10 <sup>-4</sup>   |
| 2114         | ETS2           | v-Ets erythroblastosis virus E26 oncogene homolog 2<br>(avian)                   | 1.43           | 3.2X10 <sup>-4</sup>   |
| 1326         | MAP3K8         | Mitogen-activated protein kinase kinase kinase 8                                 | 1.64           | 3.2X10 <sup>-4</sup>   |
| 6364         | CCL20          | Chemokine (C-C motif) ligand 20                                                  | 3.3            | 3.3X10 <sup>-4</sup>   |
| 9518         | GDF15          | Growth differentiation factor 15                                                 | 2.41           | 3.4X10 <sup>-4</sup>   |
| 29909        | GPR171         | G protein-coupled receptor 171                                                   | 1.34           | $3.4 \text{X} 10^{-4}$ |
| 3383         | ICAM1          | Intercellular adhesion molecule 1                                                | 1.68           | 3.5X10 <sup>-4</sup>   |
| 10135        | NAMPT          | Nicotinamide phosphoribosyltransferase                                           | 1.57           | 3.5X10 <sup>-4</sup>   |

Appendix 18: Top-35 upregulated genes in the proliferative phase endometriotic lesions compared to eutopic endometrium from women with endometriosis.

| Entrez<br>Id | Gene<br>symbol | Gene name                                                         | Fold<br>change | P value                |
|--------------|----------------|-------------------------------------------------------------------|----------------|------------------------|
| 40           | ACCN1          | Amiloride-sensitive cation channel 1, neuronal                    | 0.68           | 2.1X10 <sup>-3</sup>   |
| 8309         | ACOX2          | Acyl-CoA oxidase 2, branched chain                                | 0.71           | $2.8 \times 10^{-4}$   |
| 118          | ADD1           | Adducin 1 (alpha)                                                 | 0.84           | $2.7 \times 10^{-3}$   |
| 501          | ALDH7A1        | Aldehyde dehydrogenase 7 family, member A1                        | 0.83           | 3.6X10 <sup>-3</sup>   |
| 11041        | B3GNT1         | UDP-GlcNAc:betaGal beta-1,3-N-<br>acetylglucosaminyltransferase 1 | 0.71           | 5.4X10 <sup>-5</sup>   |
| 576          | BAI2           | Brain-specific angiogenesis inhibitor 2                           | 0.76           | $3.6 \times 10^{-3}$   |
| 8815         | BANF1          | Barrier to autointegration factor 1                               | 0.82           | 6.1X10 <sup>-3</sup>   |
| 54987        | C1orf123       | Chromosome 1 open reading frame 123                               | 0.83           | $2.7 \times 10^{-3}$   |
| 79000        | C1orf135       | Chromosome 1 open reading frame 135                               | 0.77           | $2.1 \times 10^{-3}$   |
| 92342        | C1orf156       | Chromosome 1 open reading frame 156                               | 0.74           | $1.7 \times 10^{-3}$   |
| 51161        | C3orf18        | Chromosome 3 open reading frame 18                                | 0.79           | $5.6 \times 10^{-3}$   |
| 55319        | C4orf43        | Chromosome 4 open reading frame 43                                | 0.77           | $2.2 \times 10^{-3}$   |
| 63920        | C5orf54        | Chromosome 5 open reading frame 54                                | 0.7            | $1.6 \times 10^{-3}$   |
| 729515       | C6orf35        | Chromosome 6 open reading frame 35                                | 0.84           | $1.3 \times 10^{-4}$   |
| 65265        | C8orf33        | Chromosome 8 open reading frame 33                                | 0.82           | 5.9X10 <sup>-3</sup>   |
| 23066        | CAND2          | Cullin-associated and neddylation-dissociated 2 (putative)        | 0.69           | 2.1X10 <sup>-3</sup>   |
| 9994         | CASP8AP2       | Caspase 8 associated protein 2                                    | 0.73           | 6.8X10 <sup>-3</sup>   |
| 869          | CBLN1          | Cerebellin 1 precursor                                            | 0.55           | $3.7 \times 10^{-3}$   |
| 10574        | CCT7           | Chaperonin containing TCP1, subunit 7 (eta)                       | 0.84           | $5.5 \times 10^{-3}$   |
| 51293        | CD320          | CD320 molecule                                                    | 0.76           | $3.4 \text{X} 10^{-4}$ |
| 1031         | CDKN2C         | Cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)         | 0.67           | 2X10 <sup>-3</sup>     |
| 1307         | COL16A1        | Collagen, type XVI, alpha 1                                       | 0.62           | $1.2 \times 10^{-3}$   |
| 22894        | DIS3           | DIS3 mitotic control homolog (S. cerevisiae)                      | 0.84           | $7X10^{-3}$            |
| 56986        | DTWD1          | DTW domain containing 1                                           | 0.78           | $5.5 \times 10^{-3}$   |
| 8665         | EIF3F          | Eukaryotic translation initiation factor 3, subunit F             | 0.9            | 7X10 <sup>-3</sup>     |
| 2135         | EXTL2          | Exostoses (multiple)-like 2                                       | 0.73           | $3.1 \times 10^{-3}$   |
| 83989        | FAM172A        | Family with sequence similarity 172, member A                     | 0.82           | $2.7 \times 10^{-3}$   |
| 91775        | FAM55C         | Family with sequence similarity 55, member C                      | 0.74           | 6.5X10 <sup>-3</sup>   |
| 80204        | FBXO11         | F-box protein 11                                                  | 0.82           | 6.8X10 <sup>-3</sup>   |
| 2318         | FLNC           | Filamin C, gamma                                                  | 0.73           | 6.7X10 <sup>-4</sup>   |
| 79068        | FTO            | Fat mass and obesity associated                                   | 0.85           | 6.2X10 <sup>-4</sup>   |
| 5348         | FXYD1          | FXYD domain containing ion transport regulator 1                  | 0.64           | 6.7X10 <sup>-5</sup>   |
| 51659        | GINS2          | GINS complex subunit 2 (Psf2 homolog)                             | 0.71           | 6.8X10 <sup>-3</sup>   |
| 2736         | GLI2           | GLI family zinc finger 2                                          | 0.71           | 5.9X10 <sup>-3</sup>   |
| 9737         | GPRASP1        | G protein-coupled receptor associated sorting<br>protein 1        | 0.68           | 3.2X10 <sup>-3</sup>   |

Appendix 19: Top-35 downregulated genes in the proliferative phase endometriotic lesions compared to eutopic endometrium from women with endometriosis.

| Entrez<br>ID | Gene<br>symbol | Gene name                                                                              | Fold<br>change | P value |
|--------------|----------------|----------------------------------------------------------------------------------------|----------------|---------|
|              | •              | Upregulated genes                                                                      | 0              |         |
| 71           | JUND           | Jun D proto-oncogene                                                                   | 1.7            | 0.00078 |
| 165          | SRSF3          | Serine/arginine-rich splicing factor 3                                                 | 1.37           | 0.00078 |
| 83692        | CYB5R3         | Cytochrome b5 reductase 3                                                              | 1.41           | 0.00132 |
| 1307         | UBC            | Ubiquitin C                                                                            | 1.51           | 0.00557 |
| 1277         | CD99L2         | CD99 molecule-like 2                                                                   | 1.28           | 0.00931 |
| 1291         | PTRF           | Polymerase I and transcript release factor                                             | 1.57           | 0.01020 |
| 1293         | HNRNPM         | Heterogeneous nuclear ribonucleoprotein M                                              | 1.35           | 0.01231 |
| 1385         | LAMP1          | Lysosomal-associated membrane protein 1                                                | 1.47           | 0.02249 |
| 1434         | COL1A1         | Collagen, type I, alpha 1                                                              | 1.69           | 0.02337 |
| 6387         | RPS12          | Ribosomal protein S12                                                                  | 1.46           | 0.02580 |
| 1727         | EEF1D          | Eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein) | 1.34           | 0.03132 |
| 1634         | COL16A1        | Collagen, type XVI, alpha 1                                                            | 2              | 0.03189 |
| 10395        | FMOD           | Fibromodulin                                                                           | 1.65           | 0.03240 |
| 3301         | SRSF3          | Serine/arginine-rich splicing factor 3                                                 | 1.34           | 0.03281 |
| 29940        | U2AF1          | U2 small nuclear RNA auxiliary factor 1                                                | 1.3            | 0.03322 |
| 1843         | FBLN1          | Fibulin 1                                                                              | 1.87           | 0.03614 |
| 1936         | AEBP1          | AE binding protein 1                                                                   | 1.57           | 0.03614 |
| 1938         | NR4A1          | Nuclear receptor subfamily 4, group A, member 1                                        | 2.35           | 0.03746 |
| 30845        | NDUFAF3        | NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 3                  | 1.25           | 0.04246 |
| 10209        | COL6A1         | Collagen, type VI, alpha 1                                                             | 2.01           | 0.04956 |
|              |                | Downregulated genes                                                                    |                |         |
| 55898        | UNC45A         | Unc-45 homolog A (C. elegans)                                                          | 0.82           | 0.00572 |

Appendix 20: Significantly dysregulated genes in the secretory phase endometriotic lesions compared to eutopic endometrium from women with endometriosis.

| Entrez<br>Id | Gene<br>symbol | Gene name                                                            | Fold<br>change | P value |
|--------------|----------------|----------------------------------------------------------------------|----------------|---------|
| 7705         | ZNF146         | Zinc finger protein 146                                              | 2.57           | 0.0004  |
| 22794        | CASC3          | Cancer susceptibility candidate 3                                    | 2.77           | 0.00046 |
| 1387         | CREBBP         | CREB binding protein                                                 | 2.77           | 0.00046 |
| 342096       | GOLGA6A        | Golgin A6 family, member A                                           | 4.65           | 0.00046 |
| 7166         | TPH1           | Tryptophan hydroxylase 1                                             | 4.33           | 0.00046 |
| 253959       | RALGAPA1       | Ral GTPase activating protein, alpha subunit 1 (catalytic)           | 2.78           | 0.00046 |
| 84162        | KIAA1109       | KIAA1109                                                             | 4.11           | 0.00046 |
| 23230        | VPS13A         | Vacuolar protein sorting 13 homolog A (S. cerevisiae)                | 2.89           | 0.00046 |
| 55888        | ZNF167         | Zinc finger protein 167                                              | 3              | 0.00046 |
| 4684         | NCAM1          | Neural cell adhesion molecule 1                                      | 4.77           | 0.00046 |
| 9825         | SPATA2         | Spermatogenesis associated 2                                         | 2.64           | 0.00046 |
| 9668         | ZNF615         | Zinc finger protein 615                                              | 3.55           | 0.00046 |
| 56154        | TEX15          | Testis expressed 15                                                  | 4.22           | 0.00046 |
| 54806        | AHI1           | Abelson helper integration site 1                                    | 2.37           | 0.00064 |
| 1859         | DYRK1A         | Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A    | 4.47           | 0.00064 |
| 374354       | NHLRC2         | NHL repeat containing 2                                              | 2.92           | 0.00064 |
| 23648        | SSBP3          | Single stranded DNA binding protein 3                                | 2.4            | 0.00064 |
| 4598         | MVK            | Mevalonate kinase                                                    | 2.06           | 0.00064 |
| 55291        | PPP6R3         | Protein phosphatase 6, regulatory subunit 3                          | 3.03           | 0.00064 |
| 9373         | PLAA           | Phospholipase A2-activating protein                                  | 2.31           | 0.00064 |
| 254394       | MCM9           | Minichromosome maintenance complex<br>component 9                    | 2.19           | 0.00064 |
| 10472        | ZNF238         | Zinc finger protein 238                                              | 2.77           | 0.00067 |
| 5098         | PCDHGA8        | Protocadherin gamma subfamily A, 8                                   | 2.67           | 0.00067 |
| 157922       | CAMSAP1        | Calmodulin regulated spectrin-associated protein 1                   | 2.48           | 0.00069 |
| 9611         | NCOR1          | Nuclear receptor corepressor 1                                       | 2.46           | 0.00069 |
| 3980         | LIG3           | Ligase III, DNA, ATP-dependent                                       | 3.39           | 0.00069 |
| 9831         | ZNF623         | Zinc finger protein 623                                              | 2.69           | 0.00069 |
| 8675         | STX16          | Syntaxin 16                                                          | 2.49           | 0.0007  |
| 8708         | B3GALT1        | UDP-Gal:betaGlcNAc beta 1,3-<br>galactosyltransferase, polypeptide 1 | 2.89           | 0.00073 |
| 80184        | CEP290         | Centrosomal protein 290kDa                                           | 2.56           | 0.00073 |
| 9362         | CPNE6          | Copine VI (neuronal)                                                 | 2.51           | 0.00073 |
| 27332        | ZNF638         | Zinc finger protein 638                                              | 2.64           | 0.00073 |
| 152006       | RNF38          | Ring finger protein 38                                               | 2.69           | 0.00073 |
| 9569         | GTF2IRD1       | GTF2I repeat domain containing 1                                     | 2.33           | 0.00073 |
| 23390        | ZDHHC17        | Zinc finger, DHHC-type containing 17                                 | 3.25           | 0.00073 |

Appendix 21: Top-35 upregulated genes in the secretory phase endometriotic lesions compared to proliferative phase endometriotic lesions from women with endometriosis.

| Entrez<br>Id | Gene<br>symbol | Gene name                                                                                      | Fold<br>change | P value |
|--------------|----------------|------------------------------------------------------------------------------------------------|----------------|---------|
| 397          | ARHGDIB        | Rho GDP dissociation inhibitor (GDI) beta                                                      | 0.38           | 0.0005  |
| 1622         | DBI            | Diazepam binding inhibitor (GABA receptor modulator, acyl-CoA binding protein)                 | 0.28           | 0.0005  |
| 2512         | FTL            | Ferritin, light polypeptide                                                                    | 0.26           | 0.0005  |
| 4792         | NFKBIA         | Nuclear factor of kappa light polypeptide gene<br>enhancer in B-cells inhibitor, alpha         | 0.23           | 0.0005  |
| 9144         | SYNGR2         | Synaptogyrin 2                                                                                 | 0.24           | 0.0005  |
| 301          | ANXA1          | Annexin A1                                                                                     | 0.31           | 0.0006  |
| 55615        | PRR5           | Proline rich 5 (renal)                                                                         | 0.29           | 0.0006  |
| 7905         | REEP5          | Receptor accessory protein 5                                                                   | 0.32           | 0.0006  |
| 8407         | TAGLN2         | Transgelin 2                                                                                   | 0.37           | 0.0006  |
| 837          | CASP4          | Caspase 4, apoptosis-related cysteine peptidase                                                | 0.28           | 0.0007  |
| 1729         | DIAPH1         | Diaphanous homolog 1 (Drosophila)                                                              | 0.34           | 0.0007  |
| 50848        | F11R           | F11 receptor                                                                                   | 0.37           | 0.0007  |
| 4836         | NMT1           | N-myristoyltransferase 1                                                                       | 0.33           | 0.0007  |
| 8673         | VAMP8          | Vesicle-associated membrane protein 8 (endobrevin)                                             | 0.25           | 0.0007  |
| 6574         | SLC20A1        | Solute carrier family 20 (phosphate transporter), member 1                                     | 0.33           | 0.0008  |
| 6720         | SREBF1         | Sterol regulatory element binding transcription factor 1                                       | 0.33           | 0.0008  |
| 6890         | TAP1           | Transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)                                    | 0.37           | 0.0008  |
| 26472        | PPP1R14B       | Protein phosphatase 1, regulatory (inhibitor) subunit 14B                                      | 0.41           | 0.0008  |
| 9709         | HERPUD1        | Homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1 | 0.32           | 0.0008  |
| 9592         | IER2           | Immediate early response 2                                                                     | 0.18           | 0.0008  |
| 3936         | LCP1           | Lymphocyte cytosolic protein 1 (L-plastin)                                                     | 0.37           | 0.0008  |
| 10899        | JTB            | Jumping translocation breakpoint                                                               | 0.4            | 0.0008  |
| 10490        | VTI1B          | Vesicle transport through interaction with t-SNAREs homolog 1B (yeast)                         | 0.41           | 0.0008  |
| 10577        | NPC2           | Niemann-Pick disease, type C2                                                                  | 0.26           | 0.0009  |
| 527          | ATP6V0C        | ATPase, H+ transporting, lysosomal 16kDa, V0 subunit c                                         | 0.31           | 0.0009  |
| 2896         | GRN            | Granulin                                                                                       | 0.24           | 0.0009  |
| 3059         | HCLS1          | Hematopoietic cell-specific Lyn substrate 1                                                    | 0.32           | 0.0009  |
| 3106         | HLA-B          | Major histocompatibility complex, class I, B                                                   | 0.35           | 0.0009  |
| 8519         | IFITM1         | Interferon induced transmembrane protein 1 (9-27)                                              | 0.26           | 0.0009  |
| 10410        | IFITM3         | Interferon induced transmembrane protein 3 (1-8U)                                              | 0.32           | 0.0009  |
| 6888         | TALDO1         | Transaldolase 1                                                                                | 0.32           | 0.0009  |
| 23585        | TMEM50A        | Transmembrane protein 50A                                                                      | 0.4            | 0.0009  |
| 840          | CASP7          | Caspase 7, apoptosis-related cysteine peptidase                                                | 0.49           | 0.0009  |
| 7184         | HSP90B1        | Heat shock protein 90kDa beta (Grp94), member 1                                                | 0.25           | 0.0009  |
| 57136        | C20orf3        | Chromosome 20 open reading frame 3                                                             | 0.36           | 0.0009  |

Appendix 22: Top-35 downregulated genes in the secretory phase endometriotic lesions compared to proliferative phase endometriotic lesions from women with endometriosis.

| Entrez ID | Gene name                                                                   | P value  |
|-----------|-----------------------------------------------------------------------------|----------|
| TGFB3     | Transforming growth factor $\beta$ -3                                       | 0.000018 |
| PTPRR     | Protein tyrosine phosphatase, receptor type, R                              | 0.00045  |
| CASP5     | Cysteine protease                                                           | 0.000709 |
| PCDH17    | Protocadherin 17                                                            | 0.0009   |
| ATP1A2    | ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide                        | 0.001059 |
| BAIAP2    | BAI1-associated protein 2                                                   | 0.00135  |
| ART3      | Putative mono-ADP-ribosyltransferase                                        | 0.001419 |
| FN1       | Fibronectin 1                                                               | 0.0018   |
| JUNB      | Jun B proto-oncogene                                                        | 0.002117 |
| CELF1     | RNA-binding protein CUG-BP/hNab50 (NAB50)                                   | 0.002128 |
| SNCG      | Synuclein, gamma                                                            | 0.002249 |
| CPE       | Carboxypeptidase E                                                          | 0.002699 |
| abcb11    | Bile salt export pump                                                       | 0.002837 |
| CYP2J2    | Cytochrome P450, Family 2, Subfamily J, polypeptide 2                       | 0.003149 |
| DPT       | Dermatopontin                                                               | 0.003175 |
| ZIC2      | ZIC2 protein                                                                | 0.003546 |
| IL6ST     | Interleukin-6 signal transducer                                             | 0.003599 |
| ASCL1     | Achaete-scute complex homolog 1 (Drosophila)                                | 0.004233 |
| CA1       | Carbonic anhydrase XII                                                      | 0.004255 |
| PMS2L2    | PMS7 mRNA (yeast mismatch repair gene PMS1 homologue)                       | 0.004963 |
| PDE9A     | Phosphodiesterase 9A                                                        | 0.005291 |
| PRIM2     | DNA primase (subunit p58)                                                   | 0.005672 |
| DDX58     | DEAD (Asp-Glu-Ala-Asp) box polypeptide 58                                   | 0.006348 |
| IFNA21    | Leukocyte ( $\alpha$ ) interferon                                           | 0.00638  |
| SCQ2      | Secretogranin II gene                                                       | 0.007797 |
| TSPAN15   | Tetraspanin 15                                                              | 0.008463 |
| Vhl       | von Hippel-Lindau tumor suppressor (VHL) gene                               | 0.008505 |
| efnb1     | ELK receptor tyrosine kinase ligand                                         | 0.009213 |
| PLEKHB1   | Pleckstrin homology domain containing, family B (evectins) member 1         | 0.009519 |
| MEKK1     | MEK kinase 1                                                                | 0.009921 |
| GPR56     | G-protein-coupled receptor 56                                               | 0.010576 |
| MG2       | Mucin                                                                       | 0.010629 |
| CD1E      | CD1 R2 gene for MHC-related antigen                                         | 0.011337 |
| FOS       | V-fos FBJ murine osteosarcoma viral oncogene homolog                        | 0.011632 |
| ANK2      | Ankyrin, Brank-2 protein                                                    | 0.012044 |
| ITGA2     | Integrin $\alpha$ -2 subunit                                                | 0.012752 |
| POU3F4    | Brain 4 mRNA                                                                | 0.013459 |
| CCL21     | Chemokine (C–C motif) ligand 21                                             | 0.013744 |
| ATF6B     | G13 protein                                                                 | 0.014167 |
| PGF       | Placental growth factor, vascular endothelial growth factor-related protein | 0.014799 |
| DNAJB4    | Heat shock protein hsp40 homolog                                            | 0.014874 |
| KLK1      | Kallikrein                                                                  | 0.015581 |
| C11orf9   | Chromosome 11 open reading frame 9                                          | 0.015854 |

Appendix 23: Upregulated genes in the eutopic endometrium from women with compared to women without endometriosis.

| <b>Entrez ID</b> | Gene name                                                     | P value  |
|------------------|---------------------------------------------------------------|----------|
| OGN              | Osteoglycin                                                   | 0.00045  |
| APC2             | APCL protein                                                  | 0.000709 |
| HSPBP1           | Hsp70 binding protein HspBP1                                  | 0.001419 |
| LGTN             | Ligatin                                                       | 0.002117 |
| NPHP1            | Nephrocystin                                                  | 0.002128 |
| LAT              | 36-kDa Phosphothyrosine protein                               | 0.002837 |
| KIT              | V-kit Hardy–Zuckerman 4 feline sarcoma viral oncogene homolog | 0.003175 |
| IFP35            | Interferon-induced leucine zipper protein                     | 0.003546 |
| CALR             | Calreticulin                                                  | 0.004233 |
| IER3             | IEX-1: radiation-inducible immediate-early gene               | 0.004255 |
| ICAM2            | Cell adhesion ligand for LFA-1                                | 0.004963 |
| SNUPN            | Snurportin 1                                                  | 0.005291 |
| SOD2             | Manganese superoxide dismutase                                | 0.005672 |
| PDCD4            | Programmed cell death 4 (neoplastic transformation inhibitor) | 0.006348 |
| WASP             | Wiskott-Aldrich syndrome protein                              | 0.00638  |
| IL15             | IL-15 precursor                                               | 0.007089 |
| AP2              | Cytoplasmic antiproteinase 2                                  | 0.007406 |
| GABBR2           | GABA-B receptor mRNA                                          | 0.007797 |
| ALDH7A1          | Aldehyde dehydrogenase 7 family, member A1                    | 0.008463 |
| PP14             | Human placental protein 14                                    | 0.008505 |
| FBLN2            | Fibulin-2                                                     | 0.009213 |
| DMD              | Dystrophin (muscular dystrophy, Duchenne and Becker types)    | 0.009519 |
| VCAN             | Chondroitin sulphate proteoglycan versican, V1 splice-variant | 0.009921 |
| EPHX2            | Epoxide hydrolase 2, cytoplasmic                              | 0.010576 |
| PLA2G16          | HREV107-like protein                                          | 0.010629 |
| PNP              | Purine nucleoside phosphorylase                               | 0.011337 |
| LOC388796        | Small nucleolar RNA, H/ACA box 71C                            | 0.011632 |
| DHRS3            | Retinal short-chain dehydrogenase/reductase retSDR1 mRNA      | 0.012044 |
| PFN2             | Profilin 2                                                    | 0.012688 |
| CLDN10           | Claudin-10                                                    | 0.012752 |
| PIM1             | pim-1 Oncogene                                                | 0.013459 |
| GPSM2            | G-protein signaling modulator 2 (AGS3-like, C. elegans)       | 0.013744 |
| G0S2             | G0S2 protein                                                  | 0.014167 |
| RAD17            | Rad17-like protein                                            | 0.014874 |
| PAEP             | Pregnancy-associated endometrial α2-globulin                  | 0.015581 |
| FGF13            | Fibroblast growth factor 13                                   | 0.015854 |
| MITF             | A-type microphthalmia associated transcription factor         | 0.016288 |

Appendix 24: Downregulated genes in the eutopic endometrium from women with compared to women without endometriosis.

| Pathway ID           | Pathway name                                       | P value                  |
|----------------------|----------------------------------------------------|--------------------------|
| Eutopic endom        | etrium from women with and without endometriosis   |                          |
| GO:0042221           | Response to chemical                               | 6.8X10 <sup>-6</sup>     |
| GO:0010033           | Response to organic substance                      | 9.9X10 <sup>-6</sup>     |
| GO:0050896           | Response to stimulus                               | $1.2 \times 10^{-5}$     |
| GO:0009605           | Response to external stimulus                      | $1.2 \times 10^{-5}$     |
| GO:0048856           | Anatomical structure development                   | 3.8X10 <sup>-5</sup>     |
| GO:0051716           | Cellular response to stimulus                      | $5.7 \text{X} 10^{-5}$   |
| GO:0044767           | Single-organism developmental process              | $5.8 \times 10^{-5}$     |
| GO:0032502           | Developmental process                              | $7.1 \text{X} 10^{-5}$   |
| GO:0009612           | Response to mechanical stimulus                    | $7.4 \text{X} 10^{-5}$   |
| GO:0044763           | Single-organism cellular process                   | 8.6X10 <sup>-5</sup>     |
| GO:0007275           | Multicellular organismal development               | 1.6X10 <sup>-4</sup>     |
| GO:0048869           | Cellular developmental process                     | $1.8 \times 10^{-4}$     |
| GO:0014070           | Response to organic cyclic compound                | $2.7 \text{X} 10^{-4}$   |
| GO:0007165           | Signal transduction                                | $3.7 \text{X} 10^{-4}$   |
| GO:0044700           | Single organism signaling                          | $3.9 \mathrm{X10}^{-4}$  |
| GO:0023052           | Signaling                                          | 3.9X10 <sup>-4</sup>     |
| GO:0044707           | Single-multicellular organism process              | 3.9X10 <sup>-4</sup>     |
| GO:0008150           | Biological process                                 | 4.610 <sup>-4</sup>      |
| GO:0030154           | Cell differentiation                               | $4.7 \mathrm{X10}^{-4}$  |
| <b>Endometriotic</b> | lesions vs. Eutopic endometrium from women with en | dometriosis              |
| GO:0008584           | Male gonad development                             | 4.1X10 <sup>-8</sup>     |
| GO:0046546           | Development of primary male sexual characteristics | $4.1 \mathrm{X10^{-8}}$  |
| GO:0046661           | Male sex differentiation                           | $1.7 \mathrm{X} 10^{-7}$ |
| GO:0008406           | Gonad development                                  | $1.1 \mathrm{X10}^{-6}$  |
| GO:0045137           | Development of primary sexual characteristics      | $1.2 \times 10^{-6}$     |
| GO:0007548           | Sex differentiation                                | $6.5 \times 10^{-6}$     |
| GO:0048608           | Reproductive structure development                 | $1.6 \mathrm{X10}^{-4}$  |
| GO:0061458           | Reproductive system development                    | $1.7 \mathrm{X10^{-4}}$  |
| GO:0060008           | Sertoli cell differentiation                       | $2.8 \times 10^{-4}$     |
| GO:0007530           | Sex determination                                  | $4.3 \times 10^{-4}$     |
| GO:0030325           | Adrenal gland development                          | 6.3X10 <sup>-4</sup>     |
| GO:0048856           | Anatomical structure development                   | $9.7 \mathrm{X10}^{-4}$  |
| GO:0030154           | Cell differentiation                               | $1.2 \times 10^{-3}$     |
| GO:0044707           | Single-multicellular organism process              | $1.2 \times 10^{-3}$     |
| GO:0044767           | Single-organism developmental process              | $1.2 \times 10^{-3}$     |
| GO:0032502           | Developmental process                              | $1.4 \times 10^{-3}$     |
| GO:0003006           | Developmental process involved in reproduction     | $1.7 \times 10^{-3}$     |
| GO:0048869           | Cellular developmental process                     | $1.9 \times 10^{-3}$     |
| GO:0032501           | Multicellular organismal process                   | $2.1 \times 10^{-3}$     |
| GO:0048731           | System development                                 | $3.3 \times 10^{-3}$     |

Appendix 25: Top 20 up- and down-regulated pathways in endometriosis.

| Entrez ID | Gene name                                                | P value                 |
|-----------|----------------------------------------------------------|-------------------------|
| C7        | Complement factor 7                                      | 5.1X10 <sup>-9</sup>    |
| CLDN11    | Claudin 11                                               | $2.4 \text{X} 10^{-8}$  |
| VIT       | Vitirin                                                  | $4.5 \times 10^{-8}$    |
| MYH11     | Myosin heavy chain 11, smooth muscle                     | 5.5X10 <sup>-8</sup>    |
| PNOC      | Prepronociceptin                                         | $3.1 \times 10^{-6}$    |
| RARRES1   | Retinoic acid receptor responder 1                       | $4.5 \times 10^{-6}$    |
| DLK1      | Delta-like 1 homolog (Drosophila)                        | $6.5 \times 10^{-6}$    |
| PLA2G2A   | Phospholipase A2, group IIA (platelets, synovial fluid)  | $1.1 \times 10^{-5}$    |
| IGKC      | Immunoglobulin κ constant                                | $1.6 \times 10^{-5}$    |
| KLHDC8A   | Kelch domain containing 8A                               | 2X10 <sup>-5</sup>      |
| GATA4     | GATA binding protein 4                                   | $2.3 \times 10^{-5}$    |
| SCN7A     | Sodium channel, voltage-gated, type VII, alpha subunit   | $2.7 \text{X} 10^{-5}$  |
| TCF21     | Transcription factor 21                                  | $3.1 \times 10^{-5}$    |
| SPRR2A    | Small proline-rich protein 2A                            | 5.6X10 <sup>-5</sup>    |
| GSTA1     | Glutathione S-transferase A1                             | 5.8X10 <sup>-5</sup>    |
| WISP2     | WNT1 inducible signaling pathway protein 2               | 6.1X10 <sup>-5</sup>    |
| PLA2G5    | Phospholipase A2, group V                                | 6.8X10 <sup>-5</sup>    |
| HSD11B1   | Hydroxysteroid (11-beta) dehydrogenase 1                 | $8.7 \mathrm{X10}^{-5}$ |
| IGJ       | Immunoglobulin J polypeptide, linker for alpha and mu    | $9.2 \times 10^{-5}$    |
| HOXC9     | Homeobox C9 (HOXC9)                                      | 0.000301                |
| SYNPO2    | Synaptopodin 2                                           | 0.000514                |
| LTBP2     | Latent transforming growth factor beta binding protein 2 | 0.000676                |
| CYP17A1   | Cytochrome P450, family 17, subfamily A, polypeptide 1   | 0.001029                |
| CPVL      | Carboxypeptidase, vitellogenic-like                      | 0.001065                |
| SFRP2     | Secreted frizzled-related protein 2                      | 0.001803                |
| INSL3     | Insulin-like 3 (Leydig cell)                             | 0.002057                |
| SMR3B     | Submaxillary gland androgen regulated protein 3B         | 0.002199                |
| MGC27165  | Hypothetical protein MGC27165                            | 0.00245                 |
| FABP4     | Fatty acid-binding protein 4                             | 0.002704                |
| ITLN1     | Intelectin 1 (galactofuranose binding)                   | 0.002989                |
| FLJ38894  | FLJ38894                                                 | 0.003086                |
| TAGLN     | Transgelin                                               | 0.003674                |
| NELL1     | NEL-like 1 (chicken)                                     | 0.004397                |
| THBS1     | Thrombospondin 1                                         | 0.004506                |
| NR0B1     | Nuclear receptor subfamily 0, group B, member 1          | 0.005978                |
| NR5A1     | Nuclear receptor subfamily 5, group A, member 1          | 0.00617                 |
| HP        | Haptoglobin                                              | 0.006307                |

Appendix 26: Upregulated genes in the endometriotic lesions compared to eutopic endometrium from women with endometriosis.

| Entrez ID | Gene name                                                            | P value              |
|-----------|----------------------------------------------------------------------|----------------------|
| MMP26     | Matrix metalloproteinase 26                                          | 2.8X10 <sup>-7</sup> |
| C9orf152  | Chromosome 9 open reading frame 152                                  | 7.8X10 <sup>-6</sup> |
| SCGB2A1   | Secretoglobin, family 2A, member 1                                   | 1.1X10 <sup>-5</sup> |
| FOXA2     | Forkhead box A2                                                      | 1.3X10 <sup>-5</sup> |
| DLX6      | Distal-less homeobox 6                                               | 3.6X10 <sup>-5</sup> |
| KIAA1324  | KIAA1324                                                             | 5.8X10 <sup>-5</sup> |
| SCGB1D4   | Secretoglobin, family 1D, member 4                                   | 6.2X10 <sup>-5</sup> |
| SCGB1D2   | Secretoglobin, family 1D, member 2                                   | 6.6X10 <sup>-5</sup> |
| CKS2      | CDC28 protein kinase regulatory subunit 2                            | 0.000197             |
| FEN1      | Flap structure-specific endonuclease 1                               | 0.000446             |
| TYMS      | Thymidylate synthetase                                               | 0.000494             |
| CCNB1     | Cyclin B1                                                            | 0.000847             |
| MCCC2     | Methylcrotonoyl-coenzyme A carboxylase 2 (beta)                      | 0.00090              |
| MSX1      | Msh homeobox homolog 1                                               | 0.000926             |
| TOP2A     | Topoisomerase (DNA) II alpha                                         | 0.001124             |
| ASPM      | Asp (abnormal spindle)-like, microcephaly associated (Drosophila)    | 0.001225             |
| CDC2      | Cell division cycle 2, G1 to S and G2 to M                           | 0.00149              |
| MSX2      | Msh homeobox homolog 2                                               | 0.001559             |
| SPDEF     | SAM pointed domain containing ets transcription factor               | 0.00157              |
| ENPP3     | Ectonucleotide pyrophosphatase/phosphodiesterase 3                   | 0.001665             |
| UGT8      | UDP glycosyltransferase 8                                            | 0.00175              |
| CRB3      | Crumbs homolog 3 (CRB3)                                              | 0.001803             |
| CLDN3     | Claudin 3                                                            | 0.001869             |
| PRSS8     | Protease, serine, 8 (prostasin)                                      | 0.001927             |
| IHH       | Indian hedgehog homolog                                              | 0.00192              |
| GABRP     | Gamma-aminobutyric acid (GABA) A receptor, pi                        | 0.001966             |
| TRH       | Thyrotropin releasing hormone                                        | 0.00198              |
| PKHD1L1   | Polycystic kidney and hepatic disease 1 (autosomal recessive)-like 1 | 0.002057             |
| EHF       | ets homologous factor                                                | 0.00206              |
| AIPL1     | Aryl hydrocarbon receptor interacting protein-like 1                 | 0.002199             |
| GJD3      | Gap junction protein, chi 1(connexin 31.9)                           | 0.002704             |
| RBM35A    | RNA binding motif protein 35A                                        | 0.003080             |
| PCDH19    | Protocadherin 19                                                     | 0.003605             |
| DLG7      | Discs, large homolog 7 (Drosophila)                                  | 0.003674             |
| FLJ21511  | FLJ21511                                                             | 0.004114             |
| RPL12L2   | Ribosomal protein L12 pseudogene 11                                  | 0.004397             |
| TPD52     | Tumor protein D52                                                    | 0.004506             |
| HSD17B2   | Hydroxysteroid (17-beta) dehydrogenase 2                             | 0.005142             |
| ELMO3     | Engulfment and cell motility 3 (ced-12 homolog)                      | 0.00540              |
| SCGB1D1   | Secretoglobin, family 1D, member 1                                   | 0.005978             |
| KIAA0101  | KIAA0101                                                             | 0.006123             |
| SH3YL1    | SH3 domain containing, Ysc84-like 1                                  | 0.006307             |

Appendix 27: Downregulated genes in the endometriotic lesions compared to eutopic endometrium from women with endometriosis.

## REFERENCES

- ABBOTT, J., HAWE, J., HUNTER, D., HOLMES, M., FINN, P. & GARRY, R. 2004. Laparoscopic excision of endometriosis: a randomized, placebo-controlled trial. *Fertil Steril*, 82, 878-884.
- ABU-ASAB, M., ZHANG, M., AMINI, D., ABU-ASAB, N. & AMRI, H. 2011. Endometriosis gene expression heterogeneity and biosignature: a phylogenetic analysis. *Obstet Gynecol Int*, 2011, 719059.
- ADWANIKAR, H., KARIM, F. & GEREAU, R. W. T. 2004. Inflammation persistently enhances nocifensive behaviors mediated by spinal group I mGluRs through sustained ERK activation. *Pain*, 111, 125-135.
- AERTS, S., LAMBRECHTS, D., MAITY, S., VAN LOO, P., COESSENS, B., DE SMET, F., TRANCHEVENT, L. C., DE MOOR, B., MARYNEN, P., HASSAN, B., CARMELIET, P. & MOREAU, Y. 2006. Gene prioritization through genomic data fusion. *Nat Biotechnol*, 24, 537-544.
- AGHAEY MEIBODY, F., MEHDIZADEH KASHI, A., ZARE MIRZAIE, A., GHAJARIE BANI AMAM, M., SHARIATI BEHBAHANI, A., ZOLALI, B. & NAJAFI, L. 2011. Diagnosis of endometrial nerve fibers in women with endometriosis. *Arch Gynecol Obstet*, 284, 1157-1162.
- AGHAJANOVA, L., HAMILTON, A., KWINTKIEWICZ, J., VO, K. C. & GIUDICE, L. C. 2009. Steroidogenic enzyme and key decidualization marker dysregulation in endometrial stromal cells from women with versus without endometriosis. *Biol Reprod*, 80, 105-114.
- AGIC, A., DJALALI, S., DIEDRICH, K. & HORNUNG, D. 2009. Apoptosis in endometriosis. *Gynecol Obstet Invest*, 68, 217-223.
- AGILENT. 2013. User Manual [Online]. Available: <u>http://genespring-support.com/files/gs\_12\_6/GeneSpring-manual.pdf</u>.
- AHMAD, S. & DRAY, A. 2004. Novel G protein-coupled receptors as pain targets. *Curr Opin Investig Drugs*, 5, 67-70.
- AHN, A. H. & BASBAUM, A. I. 2006. Tissue injury regulates serotonin 1D receptor expression: implications for the control of migraine and inflammatory pain. *J Neurosci*, 26, 8332-8338.
- AHN, S. H., MONSANTO, S. P., MILLER, C., SINGH, S. S., THOMAS, R. & TAYADE, C. 2015. In press. Pathophysiology and immune dysfunction in endometriosis. *BioMed Res Int.*
- AKOUM, A., LAWSON, C., MCCOLL, S. & VILLENEUVE, M. 2001. Ectopic endometrial cells express high concentrations of interleukin (IL)-8 in vivo regardless of the menstrual cycle phase and respond to oestradiol by up-regulating IL-1-induced IL-8 expression in vitro. *Mol Hum Reprod*, 7, 859-866.
- AKOUM, A., LEMAY, A., BRUNET, C. & HEBERT, J. 1995. Secretion of monocyte chemotactic protein-1 by cytokine-stimulated endometrial cells of women with endometriosis. *Fertil Steril*, 63, 322-328.
- AKOUM, A., LEMAY, A., PARADIS, I., RHEAULT, N. & MAHEUX, R. 1996. Secretion of interleukin-6 by human endometriotic cells and regulation by proinflammatory cytokines and sex steroids. *Hum Reprod*, 11, 2269-2275.
- AL-EJEH, F., SIMPSON, P. T., SANUS, J. M., KLEIN, K., KALIMUTHO, M., SHI, W., MIRANDA, M., KUTASOVIC, J., RAGHAVENDRA, A., MADORE, J., REID, L., KRAUSE, L., CHENEVIX-TRENCH, G., LAKHANI, S. R. & KHANNA, K. K. 2014. Meta-analysis of the global gene expression profile of triple-negative breast cancer identifies genes for the prognostication and treatment of aggressive breast cancer. *Oncogenesis*, 3, e100.

- AL-FOZAN, H. & TULANDI, T. 2003. Left lateral predisposition of endometriosis and endometrioma. *Obstet Gynecol*, 101, 164-166.
- AL-JEFOUT, M., DEZARNAULDS, G., COOPER, M., TOKUSHIGE, N., LUSCOMBE, G., MARKHAM, R. & FRASER, I. 2009. Diagnosis of endometriosis by detection of nerve fibres in an endometrial biopsy: a double blind study. *Hum Reprod* 24, 3019-3024.
- AL-SABBAGH, M., LAM, E. & BROSENS, J. 2012. Mechanisms of endometrial progesterone resistance. *Mol Cell Endocrinol*, 358, 208-215.
- AL JEFOUT, M., TOKUSHIGE, N., HEY-CUNNINGHAM, A., MANCONI, F., NG, C., SCHULKE, L., MARKHAM, R. & FRASER, I. 2009. Microanatomy and the function of the eutopic endometrium in women with endometriosis. *Expert Rev Obst Gynecol*, 4, 61-79.
- ALBERTS, B., JOHNSON, A., LEWIS, J., RAFF, M., ROBERTS, K. & WALTER, P. 2002. *Studying Gene Expression and Function*, New York, Garland Science.
- ALBERTSEN, H. M., CHETTIER, R., FARRINGTON, P. & WARD, K. 2013. Genome-wide association study link novel Loci to endometriosis. *PLoS One*, 8, e58257.
- ALISON, M. R. & SARRAF, C. E. 1992. Apoptosis: a gene-directed programme of cell death. *J R Coll Physicians Lond*, 26, 25-35.
- ALLEVA, D. G., KASER, S. B., MONROY, M. A., FENTON, M. J. & BELLER, D. I. 1997. IL-15 functions as a potent autocrine regulator of macrophage proinflammatory cytokine production: evidence for differential receptor subunit utilization associated with stimulation or inhibition. *J Immunol*, 159, 2941-2951.
- AMANN, J. F. & CONSTANTINESCU, G. M. 1990. The anatomy of the visceral and autonomic nervous systems. *Semin Vet Med Surg (Small Anim)*, 5, 4-11.
- ANAF, V., CHAPRON, C., NAKADI, I. E., MOOR, V. D., SIMONART, T. & NOËL, J. 2006. Pain, mast cells, and nerves in peritoneal, ovarian, and deep infiltrating endometriosis. *Fertil Steril*, 86, 1336-1343.
- ANAF, V., SIMON, P., EL NAKADI, I., FAYT, I., BUXANT, F., SIMONART, T., PENY, M. O. & NOEL, J. C. 2000. Relationship between endometriotic foci and nerves in rectovaginal endometriotic nodules. *Hum Reprod*, 15, 1744-1750.
- ANAF, V., SIMON, P., EL NAKADI, I., FAYT, I., SIMONART, T., BUXANT, F. & NOEL, J.-C. 2002. Hyperalgesia, nerve infiltration and nerve growth factor expression in deep adenomyotic nodules, peritoneal and ovarian endometriosis. *Hum Reprod*, 17, 1895-1900.
- ANAND, K. J. & CRAIG, K. D. 1996. New perspectives on the definition of pain. Pain, 67, 3-6.
- ANDERSSON, S. & MOGHRABI, N. 1997. Physiology and molecular genetics of 17 betahydroxysteroid dehydrogenases. *Steroids*, 62, 143-147.
- ANDRATSCH, M., MAIR, N., CONSTANTIN, C. E., SCHERBAKOV, N., BENETTI, C., QUARTA, S., VOGL, C., SAILER, C. A., UCEYLER, N., BROCKHAUS, J., MARTINI, R., SOMMER, C., ZEILHOFER, H. U., MULLER, W., KUNER, R., DAVIS, J. B., ROSE-JOHN, S. & KRESS, M. 2009. A key role for gp130 expressed on peripheral sensory nerves in pathological pain. *J Neurosci*, 29, 13473-13483.
- ANGEL, P. & KARIN, M. 1991. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. *Biochim Biophys Acta*, 1072, 129-157.
- ANGIONI, S., COFELICE, V., PONTIS, A., TINELLI, R. & SOCOLOV, R. 2014. New trends of progestins treatment of endometriosis. *Gynecological Endocrinology*, 30, 769-773.
- APKARIAN, A. V., BUSHNELL, M. C., TREEDE, R. D. & ZUBIETA, J. K. 2005. Human brain mechanisms of pain perception and regulation in health and disease. *Eur J Pain*, 9, 463-484.
- ARGOFF, C. 2011. Mechanisms of pain transmission and pharmacologic management. *Curr Med Res Opin*, 27, 2019-2031.

- ARICI, A. 2002. Local cytokines in endometrial tissue: the role of interleukin-8 in the pathogenesis of endometriosis. *Ann NY Acad Sci*, 955, 101-109.
- ARICI, A., MATALLIOTAKIS, I., GOUMENOU, A., KOUMANTAKIS, G., VASSILIADIS, S., SELAM, B. & MAHUTTE, N. G. 2003. Increased levels of interleukin-15 in the peritoneal fluid of women with endometriosis: inverse correlation with stage and depth of invasion. *Hum Reprod*, 18, 429-432.
- ARNOLD, J., BARCENA DE ARELLANO, M. L., RUSTER, C., VERCELLINO, G. F., CHIANTERA, V., SCHNEIDER, A. & MECHSNER, S. 2012. Imbalance between sympathetic and sensory innervation in peritoneal endometriosis. *Brain Behav Immun*, 26, 132-141.
- AS-SANIE, S., HARRIS, R. E., NAPADOW, V., KIM, J., NESHEWAT, G., KAIRYS, A., WILLIAMS, D., CLAUW, D. J. & SCHMIDT-WILCKE, T. 2012. Changes in regional gray matter volume in women with chronic pelvic pain: a voxel-based morphometry study. *Pain*, 153, 1006-1014.
- ASANTE, A. & TAYLOR, R. 2011. Endometriosis: the role of neuroangiogenesis. *Annu Rev Physiol*, 73, 163-182.
- ATTAR, E. & BULUN, S. E. 2006. Aromatase and other steroidogenic genes in endometriosis: translational aspects. *Hum Reprod Update*, 12, 49-56.
- ATTIA, G. R., ZEITOUN, K., EDWARDS, D., JOHNS, A., CARR, B. R. & BULUN, S. E. 2000. Progesterone receptor isoform A but not B is expressed in endometriosis. *J Clin Endocrinol Metab*, 85, 2897-2902.
- AUGOULEA, A., ALEXANDROU, A., CREATSA, M., VRACHNIS, N. & LAMBRINOUDAKI, I. 2012. Pathogenesis of endometriosis: the role of genetics, inflammation and oxidative stress. *Arch Gynecol Obstet*, 286, 99-103.
- BAHAMONDES, L., PETTA, C. A., FERNANDES, A. & MONTEIRO, I. 2007. Use of the levonorgestrel-releasing intrauterine system in women with endometriosis, chronic pelvic pain and dysmenorrhea. *Contraception*, 75, S134-9.
- BAJAJ, P., BAJAJ, P., MADSEN, H. & ARENDT-NIELSEN, L. 2003. Endometriosis is associated with central sensitization: a psychophysical controlled study. *The Journal of Pain*, 4, 372-380.
- BAJAJ, P., MADSEN, H. & ARENDT-NIELSEN, L. 2002. A comparison of modality-specific somatosensory changes during menstruation in dysmenorrheic and nondysmenorrheic women. *Clin J Pain*, 18, 180-190.
- BALIKI, M. N., SCHNITZER, T. J., BAUER, W. R. & APKARIAN, A. V. 2011. Brain morphological signatures for chronic pain. *PLoS One*, *6*, e26010.
- BANNER, L. R. & PATTERSON, P. H. 1994. Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia. *Proc Natl Acad Sci U S A*, 91, 7109-7113.
- BANNER, L. R., PATTERSON, P. H., ALLCHORNE, A., POOLE, S. & WOOLF, C. J. 1998. Leukemia inhibitory factor is an anti-inflammatory and analgesic cytokine. *J Neurosci*, 18, 5456-5462.
- BAPAT, A. A., HOSTETTER, G., VON HOFF, D. D. & HAN, H. 2011. Perineural invasion and associated pain in pancreatic cancer. *Nat Rev Cancer*, 11, 695-707.
- BARBIERI, R. L. 1998. Stenosis of the external cervical os: an association with endometriosis in women with chronic pelvic pain. *Fertil Steril*, 70, 571-573.
- BARBOSA MDE, B., GUIRRO, E. C. & NUNES, F. R. 2013. Evaluation of sensitivity, motor and pain thresholds across the menstrual cycle through medium-frequency transcutaneous electrical nerve stimulation. *Clinics (Sao Paulo)*, 68, 901-908.
- BARCENA DE ARELLANO, M. L., ARNOLD, J., VERCELLINO, F., CHIANTERA, V., SCHNEIDER, A. & MECHSNER, S. 2011. Overexpression of nerve growth factor in

peritoneal fluid from women with endometriosis may promote neurite outgrowth in endometriotic lesions. *Fertil Steril*, 95, 1123-1126.

- BARDIN, L. 2011. The complex role of serotonin and 5-HT receptors in chronic pain. *Behav Pharmacol*, 22, 390-404.
- BARKER, L. F. 1901. *The Nervous system and its constituent neurones*, D. Appleton & Company.
- BASBAUM, A. I., BAUTISTA, D. M., SCHERRER, G. & JULIUS, D. 2009. Cellular and molecular mechanisms of pain. *Cell*, 139, 267-284.
- BAZOT, M., THOMASSIN, I., HOURANI, R., CORTEZ, A. & DARAI, E. 2004. Diagnostic accuracy of transvaginal sonography for deep pelvic endometriosis. *Ultrasound Obstet Gynecol*, 24, 180-185.
- BEDAIWY, M. A., EL-NASHAR, S. A., SHARMA, R. K. & FALCONE, T. 2007. Effect of ovarian involvement on peritoneal fluid cytokine concentrations in endometriosis patients. *Reprod Biomed Online*, 14, 620-625.
- BELIARD, A., NOEL, A. & FOIDART, J. M. 2004. Reduction of apoptosis and proliferation in endometriosis. *Fertil Steril*, 82, 80-85.
- BELLELIS, P., DIAS, J. A., JR., PODGAEC, S., GONZALES, M., BARACAT, E. C. & ABRAO, M. S. 2010. Epidemiological and clinical aspects of pelvic endometriosis: a case series. *Rev Assoc Med Bras*, 56, 467-471.
- BEN, Q. W., WANG, J. C., LIU, J., ZHU, Y., YUAN, F., YAO, W. Y. & YUAN, Y. Z. 2010. Positive expression of L1-CAM is associated with perineural invasion and poor outcome in pancreatic ductal adenocarcinoma. *Ann Surg Oncol*, 17, 2213-2221.
- BENJAMINI, Y. & HOCHBERG, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J R Stat Soc Ser*, 57, 289-300.
- BERBIC, M. & FRASER, I. 2011. Regulatory T cells and other leukocytes in the pathogenesis of endometriosis. J Reprod Immunol, 88, 149-155.
- BERBIC, M., HEY-CUNNINGHAM, A. J., NG, C., TOKUSHIGE, N., GANEWATTA, S., MARKHAM, R., RUSSELL, P. & FRASER, I. S. 2010. The role of Foxp3+ regulatory Tcells in endometriosis: a potential controlling mechanism for a complex, chronic immunological condition. *Hum Reprod*, 25, 900-907.
- BERBIC, M., SCHULKE, L., MARKHAM, R., TOKUSHIGE, N., RUSSELL, P. & FRASER, I. S. 2009. Macrophage expression in endometrium of women with and without endometriosis. *Hum Reprod*, 24, 325-332.
- BERKLEY, K. J., DMITRIEVA, N., CURTIS, K. S. & PAPKA, R. E. 2004. Innervation of ectopic endometrium in a rat model of endometriosis. *Proc Natl Acad Sci U S A*, 101, 11094-11098.
- BERKLEY, K. J., RAPKIN, A. J. & PAPKA, R. E. 2005. The pains of endometriosis. *Science*, 308, 1587-1589.
- BERNUIT, D., EBERT, A., HALIS, G., STROTHMANN, A., GERLINGER, C., GEPPERT, K. & FAUSTMANN, T. 2011. Female perspectives on endometriosis: findings from the uterine bleeding and pain women's research study. *J Endometriosis*, 3, 73-85.
- BERSINGER, N. A., VON ROTEN, S., WUNDER, D. M., RAIO, L., DREHER, E. & MUELLER, M. D. 2006. PAPP-A and osteoprotegerin, together with interleukin-8 and RANTES, are elevated in the peritoneal fluid of women with endometriosis. *Am J Obstet Gynecol*, 195, 103-108.
- BERTSCHI, D., MCKINNON, B. D., EVERS, J., BERSINGER, N. A. & MUELLER, M. D. 2013. Enhanced inflammatory activity of endometriotic lesions from the rectovaginal septum. *Mediators Inflamm*, 2013, 450950.

- BIELEFELDT, K., LAMB, K. & GEBHART, G. F. 2006. Convergence of sensory pathways in the development of somatic and visceral hypersensitivity. *Am J Physiol Gastrointest Liver Physiol*, 291, G658-G665.
- BINSHTOK, A. M. 2011. Mechanisms of nociceptive transduction and transmission: a machinery for pain sensation and tools for selective analgesia. *In:* MASAYUKI KOBAYASHI, N. K. K. I. & JOHN, L. W. (eds.) *International Review of Neurobiology*. Academic Press.
- BISCHOFF, F. & SIMPSON, J. 2004. Genetic basis of endometriosis. *Ann N Y Acad Sci*, 1034, 284-299.
- BISCHOFF, F. Z., HEARD, M. & SIMPSON, J. L. 2002. Somatic DNA alterations in endometriosis: high frequency of chromosome 17 and p53 loss in late-stage endometriosis. *J Reprod Immunol*, 55, 49-64.
- BLACK, J. A., LIU, S., TANAKA, M., CUMMINS, T. R. & WAXMAN, S. G. 2004. Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. *Pain*, 108, 237-247.
- BLOSKI, T. & PIERSON, R. 2008. Endometriosis and chronic pelvic pain: unraveling the mystery behind this complex condition. *Nurs Womens Health*, 12, 382-395.
- BOHLER, H., GERCEL-TAYLOR, C., LESSEY, B. & TAYLOR, D. 2007. Endometriosis markers: immunoligical alterations as diagnostic indicators for endometriosis. *Reprod Sci*, 15, 595-604.
- BOKOR, A., KYAMA, C. M., VERCRUYSSE, L., FASSBENDER, A., GEVAERT, O., VODOLAZKAIA, A., DE MOOR, B., FÜLÖP, V. & D'HOOGHE, T. 2009. Density of small diameter sensory nerve fibres in endometrium: a semi-invasive diagnostic test for minimal to mild endometriosis. *Hum Reprod*, 24, 3025-3032.
- BOLAY, H. & MOSKOWITZ, M. A. 2002. Mechanisms of pain modulation in chronic syndromes. *Neurology*, 59, S2-S7.
- BORGHESE, B., MONDON, F., NOEL, J. C., FAYT, I., MIGNOT, T. M., VAIMAN, D. & CHAPRON, C. 2008. Gene expression profile for ectopic versus eutopic endometrium provides new insights into endometriosis oncogenic potential. *Mol Endocrinol*, 22, 2557-2562.
- BORGHESE, B., VAIMAN, D., MONDON, F., MBAYE, M., ANAF, V. & NOEL, J. 2010. Neurotrophines et douleur: étude d'expression et de corrélation dans l'endométriose. *Gynecol Obstet Fertil*, 38, 442-446.
- BOURLEV, V., VOLKOV, N., PAVLOVITCH, S., LETS, N., LARSSON, A. & OLOVSSON, M. 2006. The relationship between microvessel density, proliferative activity and expression of vascular endothelial growth factor-A and its receptors in eutopic endometrium and endometriotic lesions. *Reproduction*, 132, 501-509.
- BRAUN, D. & DMOWSKI, W. 1998. Endometriosis: abnormal endometrium and dysfunctional immune response. *Curr Opin Obstet Gynecol*, 10, 365-369.
- BRAWN, J., MOROTTI, M., ZONDERVAN, K. T., BECKER, C. M. & VINCENT, K. 2014. Central changes associated with chronic pelvic pain and endometriosis. *Hum Reprod Update*, 20, 737-747.
- BREDERSON, J. D., KYM, P. R. & SZALLASI, A. 2013. Targeting TRP channels for pain relief. *Eur J Pharmacol*, 716, 61-76.
- BROSENS, I. & BENAGIAN, G. 2011. Endometriosis, a modern syndrome. *Indian J Med Res*, 133, 581-593.
- BROSENS, I., BROSENS, J. & BENAGIANO, G. 2012. The eutopic endometrium in endometriosis: are the changes of clinical significance? *Reprod Biomed Online*, 24, 496-502.
- BROWN, J., KIVES, S. & AKHTAR, M. 2012. Progestagens and anti-progestagens for pain associated with endometriosis. *Cochrane Database Syst Rev*, 3, CD002122.

- BROWN, J., PAN, A. & HART, R. J. 2010. Gonadotrophin-releasing hormone analogues for pain associated with endometriosis. *Cochrane Database Syst Rev*, CD008475.
- BROWNE, A. S., YU, J., HUANG, R. P., FRANCISCO, A. M. C., SIDELL, N. & TAYLOR, R. N. 2012. Proteomic identification of neurotrophins in the eutopic endometrium of women with endometriosis. *Fertil Steril*, 98, 713-719.
- BRUNER-TRAN, K. L., HERINGTON, J. L., DULEBA, A. J., TAYLOR, H. S. & OSTEEN, K. G. 2013. Medical management of endometriosis: emerging evidence linking inflammation to disease pathophysiology. *Minerva Ginecol*, 65, 199-213.
- BUKULMEZ, O., HARDY, D. B., CARR, B. R., WORD, R. A. & MENDELSON, C. R. 2008. Inflammatory status influences aromatase and steroid receptor expression in endometriosis. *Endocrinology*, 149, 1190-1204.
- BULUN, S. E., CHENG, Y. H., PAVONE, M. E., XUE, Q., ATTAR, E., TRUKHACHEVA, E., TOKUNAGA, H., UTSUNOMIYA, H., YIN, P., LUO, X., LIN, Z., IMIR, G., THUNG, S., SU, E. J. & KIM, J. J. 2010. Estrogen receptor-beta, estrogen receptor-alpha, and progesterone resistance in endometriosis. *Semin Reprod Med*, 28, 36-43.
- BULUN, S. E., CHENG, Y. H., YIN, P., IMIR, G., UTSUNOMIYA, H., ATTAR, E., INNES, J. & JULIE KIM, J. 2006. Progesterone resistance in endometriosis: link to failure to metabolize estradiol. *Mol Cell Endocrinol*, 248, 94-103.
- BULUN, S. E., MONSAVAIS, D., PAVONE, M. E., DYSON, M., XUE, Q., ATTAR, E., TOKUNAGA, H. & SU, E. J. 2012. Role of estrogen receptor-beta in endometriosis. *Semin Reprod Med*, 30, 39-45.
- BULUN, S. E., YANG, S., FANG, Z., GURATES, B., TAMURA, M., ZHOU, J. & SEBASTIAN, S. 2001. Role of aromatase in endometrial disease. J Steroid Biochem Mol Biol, 79, 19-25.
- BURNEY, R. & GIUDICE, L. 2012. Pathogenesis and pathophysiology of endometriosis. *Fertil Steril*, 98, 511-519.
- BURNEY, R. O., TALBI, S., HAMILTON, A. E., VO, K. C., NYEGAARD, M., NEZHAT, C. R., LESSEY, B. A. & GIUDICE, L. C. 2007. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. *Endocrinology*, 148, 3814-3826.
- CAHAN, P., ROVEGNO, F., MOONEY, D., NEWMAN, J. C., ST LAURENT, G., 3RD & MCCAFFREY, T. A. 2007. Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization. *Gene*, 401, 12-8.
- CAKMAK, H., GUZELOGLU-KAYISLI, O., KAYISLI, U. A. & ARICI, A. 2009. Immuneendocrine interactions in endometriosis. *Front Biosci (Elite Ed)*, 1, 429-443.
- CALVINO, B. & GRILO, R. M. 2006. Central pain control. Joint Bone Spine, 73, 10-16.
- CAMANNI, M., BONINO, L., DELPIANO, E. M., BERCHIALLA, P., MIGLIARETTI, G., REVELLI, A. & DELTETTO, F. 2009. Laparoscopic conservative management of ureteral endometriosis: a survey of eighty patients submitted to ureterolysis. *Reprod Biol Endocrinol*, 7, 109.
- CAMPBELL, J. N. & MEYER, R. A. 2006. Mechanisms of neuropathic pain. Neuron, 52, 77-92.
- CASSATELLA, M. A. & MCDONALD, P. P. 2000. Interleukin-15 and its impact on neutrophil function. *Curr Opin Hematol*, 7, 174-177.
- CERVERO, F. Visceral pain. *In:* R DUBNER, G. G., MR BOND, ed. Proceedings of the Vth World Congress on pain, 1988 Amsterdam. Elsevier, 216-226.
- CERVERO, F. 1991. Mechanisms of acute visceral pain. Br Med Bull, 47, 549-560.
- CERVERO, F. 1994. Sensory innervation of the viscera: peripheral basis of visceral pain. *Physiol Rev*, 74, 95-124.
- CERVERO, F. 1995. Visceral pain: mechanisms of peripheral and central sensitization. *Ann Med*, 27, 235-239.

CERVERO, F. 2010. Visceral versus somatic pain: similarities and differences. Dig Dis, 27, 3-10.

- CERVERO, F. & LAIRD, J. M. 2004. Understanding the signaling and transmission of visceral nociceptive events. *J Neurobiol*, 61, 45-54.
- CHAND, A. L., MURRAY, A. S., JONES, R. L., HANNAN, N. J., SALAMONSEN, L. A. & ROMBAUTS, L. 2007. Laser capture microdissection and cDNA array analysis of endometrium identify CCL16 and CCL21 as epithelial-derived inflammatory mediators associated with endometriosis. *Reprod Biol Endocrinol*, *5*, 18.
- CHAPMAN, C. R. & GAVRIN, J. 1999. Suffering: the contributions of persistent pain. *Lancet*, 353, 2233-2237.
- CHAPRON, C., FAUCONNIER, A., DUBUISSON, J. B., BARAKAT, H., VIEIRA, M. & BRÉART, G. 2003. Deep infiltrating endometriosis: relation between severity of dysmenorrhoea and extent of disease. *Hum Reprod*, 18, 760-766.
- CHEGINI, N., ROBERTS, M. & RIPPS, B. 2003. Differential expression of interleukins (IL)-13 and IL-15 in ectopic and eutopic endometrium of women with endometriosis and normal fertile women. *Am J Reprod Immunol*, 49, 75-83.
- CHEN, Y.-J., HUANG, C.-W., LIN, C.-S., CHANG, W.-H. & SUN, W.-H. 2009. Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain. *Mol Pain*, 5, 39.
- CHEN, Y., LI, D., ZHANG, Z., TAKUSHIGE, N., KONG, B. H. & WANG, G. Y. 2014. Effect of siRNA against beta-NGF on nerve fibers of a rat model with endometriosis. *Reprod Sci*, 21, 329-339.
- CHENG, Y.-H., YIN, P., XUE, Q., YILMAZ, B., DAWSON, M. I. & BULUN, S. E. 2008. Retinoic acid (RA) regulates 17β-hydroxysteroid dehydrogenase type 2 expression in endometrium: interaction of RA receptors with specificity protein (SP) 1/SP3 for estradiol metabolism. *J Clin Endocrinol Metab*, 93, 1915-1923.
- CHESSELL, I. P., HATCHER, J. P., BOUNTRA, C., MICHEL, A. D., HUGHES, J. P., GREEN, P., EGERTON, J., MURFIN, M., RICHARDSON, J., PECK, W. L., GRAHAMES, C. B., CASULA, M. A., YIANGOU, Y., BIRCH, R., ANAND, P. & BUELL, G. N. 2005. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. *Pain*, 114, 386-396.
- CHO, H. J., KIM, D. S., LEE, N. H., KIM, J. K., LEE, K. M., HAN, K. S., KANG, Y. N. & KIM, K. J. 1997a. Changes in the alpha 2-adrenergic receptor subtypes gene expression in rat dorsal root ganglion in an experimental model of neuropathic pain. *Neuroreport*, 8, 3119-3122.
- CHO, H. J., KIM, S. Y., PARK, M. J., KIM, D. S., KIM, J. K. & CHU, M. Y. 1997b. Expression of mRNA for brain-derived neurotrophic factor in the dorsal root ganglion following peripheral inflammation. *Brain Res*, 749, 358-362.
- CHRISTODOULAKOS, G., AUGOULEA, A., LAMBRINOUDAKI, I., SIOULAS, V. & CREATSAS, G. 2007. Pathogenesis of endometriosis: the role of defective 'immunosurveillance'. *Eur J Contracept Reprod Health Care*, 12, 194-202.
- COSTIGAN, M., BEFORT, K., KARCHEWSKI, L., GRIFFIN, R. S., D'URSO, D.,
  ALLCHORNE, A., SITARSKI, J., MANNION, J. W., PRATT, R. E. & WOOLF, C. J.
  2002. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of
  regulated genes in the dorsal root ganglion after peripheral nerve injury. *BMC Neurosci*, 3, 16.
- COSTIGAN, M., SCHOLZ, J. & WOOLF, C. J. 2009. Neuropathic pain: a maladaptive response of the nervous system to damage. *Annu Rev Neurosci*, 32, 1-32.
- COXHEAD, D. & THOMAS, E. 1993. Familial inheritance of endometriosis in a British population. A case control study. *J Obstet Gynecol*, 13, 42-44.

- CRISPI, S., PICCOLO, M. T., D'AVINO, A., DONIZETTI, A., VICECONTE, R., SPYROU, M., CALOGERO, R. A., BALDI, A. & SIGNORILE, P. G. 2013. Transcriptional profiling of endometriosis tissues identifies genes related to organogenesis defects. *J Cell Physiol*, 228, 1927-1934.
- CULLEN, T. 1896. Adenomyoma of the round ligament. Bull Johns Hopkins Hosp, 7, 112.
- CULLEY, L., LAW, C., HUDSON, N., DENNY, E., MITCHELL, H., BAUMGARTEN, M. & RAINE-FENNING, N. 2013. The social and psychological impact of endometriosis on women's lives: a critical narrative review. *Hum Reprod Update*, 19, 625-639.
- CURTIS, R., SCHERER, S. S., SOMOGYI, R., ADRYAN, K. M., IP, N. Y., ZHU, Y., LINDSAY, R. M. & DISTEFANO, P. S. 1994. Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve. *Neuron*, 12, 191-204.
- DAI, Y., LENG, J. H., LANG, J. H., LI, X. Y. & ZHANG, J. J. 2012. Anatomical distribution of pelvic deep infiltrating endometriosis and its relationship with pain symptoms. *Chin Med J* (*Engl*), 125, 209-213.
- DASSEN, H., PUNYADEERA, C., KAMPS, R., DELVOUX, B., VAN LANGENDONCKT, A., DONNEZ, J., HUSEN, B., THOLE, H., DUNSELMAN, G. & GROOTHUIS, P. 2007. Estrogen metabolizing enzymes in endometrium and endometriosis. *Hum Reprod*, 22, 3148-3158.
- DAVIS, C. J. & MCMILLAN, L. 2003. Pain in endometriosis: effectiveness of medical and surgical management. *Curr Opin Obstet Gynecol*, 15, 507-12.
- DAVIS, G. D. 1996. Uterine prolapse after laparoscopic uterosacral transection in nulliparous airborne trainees. A report of three cases. *J Reprod Med*, 41, 279-82.
- DE GRAAFF, A. A., D'HOOGHE, T. M., DUNSELMAN, G. A. J., DIRKSEN, C. D., HUMMELSHOJ, L., CONSORTIUM, W. E. & SIMOENS, S. 2013. The significant effect of endometriosis on physical, mental and social wellbeing: results from an international cross-sectional survey. *Hum Reprod*, 28, 2677-2685.
- DE TOMMASO, M. 2011. Pain perception during menstrual cycle. *Curr Pain Headache Rep*, 15, 400-406.
- DEFELIPE, J. 1997. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. *J Chem Neuroanat*, 14, 1-19.
- DELLING, M., WISCHMEYER, E., DITYATEV, A., SYTNYK, V., VEH, R. W., KARSCHIN, A. & SCHACHNER, M. 2002. The neural cell adhesion molecule regulates cell-surface delivery of G-protein-activated inwardly rectifying potassium channels via lipid rafts. J *Neurosci*, 22, 7154-7164.
- DENNY, E. 2004. Women's experience of endometriosis. J Adv Nurs, 46, 641-648.
- DENNY, E. & MANN, C. H. 2007. Endometriosis-associated dyspareunia: the impact on women's lives. *J Fam Plan Reprod Health Care*, 33, 189-193.
- DERBYSHIRE, S. W. 2000. Exploring the pain "neuromatrix". Curr Rev Pain, 4, 467-477.
- DESHWAR, A. G. & MORRIS, Q. 2014. PLIDA: cross-platform gene expression normalization using perturbed topic models. *Bioinformatics*, 30, 956-61.
- DI CARLO, C., BONIFACIO, M., TOMMASELLI, G. A., BIFULCO, G., GUERRA, G. & NAPPI, C. 2009. Metalloproteinases, vascular endothelial growth factor, and angiopoietin 1 and 2 in eutopic and ectopic endometrium. *Fertil Steril*, 91, 2315-2323.
- DI MOLA, F. F., FRIESS, H., ZHU, Z. W., KOLIOPANOS, A., BLEY, T., DI SEBASTIANO, P., INNOCENTI, P., ZIMMERMANN, A. & BUCHLER, M. W. 2000. Nerve growth factor and Trk high affinity receptor (TrkA) gene expression in inflammatory bowel disease. *Gut*, 46, 670-679.

- DI SEBASTIANO, P., DI MOLA, F. F., BOCKMAN, D. E., FRIESS, H. & BÜCHLER, M. W. 2003. Chronic pancreatitis: the perspective of pain generation by neuroimmune interaction. *Gut*, 52, 907-911.
- DIB-HAJJ, S. D., CUMMINS, T. R., BLACK, J. A. & WAXMAN, S. G. 2010. Sodium channels in normal and pathological pain. *Annu Rev Neurosci*, 33, 325-347.
- DIB-HAJJ, S. D., YANG, Y., BLACK, J. A. & WAXMAN, S. G. 2013. The Na(V)1.7 sodium channel: from molecule to man. *Nat Rev Neurosci*, 14, 49-62.
- DIMITRIADIS, E., STOIKOS, C., STAFFORD-BELL, M., CLARK, I., PAIVA, P., KOVACS, G. & SALAMONSEN, L. 2006. Interlukin-11, IL-11, receptor-alpha, and leukemia inhibitory factors are dysregulated in endoometrium of infertile women with endometriosis during implantation window. *J Reprod Immunol*, 69, 53-64.
- DJOUHRI, L., KOUTSIKOU, S., FANG, X., MCMULLAN, S. & LAWSON, S. N. 2006. Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. *J Neurosci*, 26, 1281-1292.
- DMOWSKI, W. P. & RADWANSKA, E. 1984. Current concepts on pathology, histogenesis and etiology of endometriosis. *Acta Obstet Gynecol Scand Suppl*, 123, 29-33.
- DOMINGUEZ, E., RIVAT, C., POMMIER, B., MAUBORGNE, A. & POHL, M. 2008. JAK/STAT3 pathway is activated in spinal cord microglia after peripheral nerve injury and contributes to neuropathic pain development in rat. *J Neurochem*, 107, 50-60.
- DONNEZ, J., SMOES, P., GILLEROT, S., CASANAS-ROUX, F. & NISOLLE, M. 1998. Vascular endothelial growth factor (VEGF) in endometriosis. *Hum Reprod*, 13, 1686-1690.
- DONNEZ, J., SQUIFFLET, J., CASANAS-ROUX, F., PIRARD, C., JADOUL, P. & LANGENDONCKT, A. V. 2003. Typical and subtle atypical presentations of endometriosis. *Obstet Gynecol Clin North Am*, 30, 83-93.
- DOS REIS, R. M., DE SA, M. F., DE MOURA, M. D., NOGUEIRA, A. A., RIBEIRO, J. U., RAMOS, E. S. & FERRIANI, R. A. 1999. Familial risk among patients with endometriosis. *J Assist Reprod Genet*, 16, 500-503.
- DRAY, A. & PERKINS, M. 1993. Bradykinin and inflammatory pain. *Trends Neurosci*, 16, 99-104.
- DUBIN, A. E. & PATAPOUTIAN, A. 2010. Nociceptors: the sensors of the pain pathway. J Clin Invest, 120, 3760-3772.
- DUBNER, R. 1991. Pain and hyperalgesia following tissue injury: new mechanisms and new treatments. *Pain*, 44, 213-214.
- DUBNER, R. 1994. Spinal cord neuronal plasticity: mechanisms of persistent pain following tissue damage and nerve injury. *In:* STANLEY, T. H. & ASHBURN, M. A. (eds.) *Anesthesiology and pain management.* The Netherlands: Springer
- DUN, E. C., TAYLOR, R. N. & WIESER, F. 2010. Advances in the genetics of endometriosis. *Genome Med*, 2, 75.
- DUNSELMAN, G. A. J., VERMEULEN, N., BECKER, C., CALHAZ-JORGE, C., D'HOOGHE, T., DE BIE, B., HEIKINHEIMO, O., HORNE, A. W., KIESEL, L., NAP, A., PRENTICE, A., SARIDOGAN, E., SORIANO, D. & NELEN, W. 2014. ESHRE guideline: management of women with endometriosis. *Human Reproduction*, 29, 400-412.
- DUSSOR, G., KOERBER, H. R., OAKLANDER, A. L., RICE, F. L. & MOLLIVER, D. C. 2009. Nucleotide signaling and cutaneous mechanisms of pain transduction. *Brain Res Rev*, 60, 24-35.
- DUTTA, P., KOCH, A., BREYER, B., SCHNEIDER, H., DITTRICH-BREIHOLZ, O., KRACHT, M. & TAMURA, T. 2011. Identification of novel target genes of nerve growth factor (NGF) in human mastocytoma cell line (HMC-1 (V560G c-Kit)) by transcriptome analysis. *BMC Genomics*, 12, 196.

- EDOVITSKY, E., LERNER, I., ZCHARIA, E., PERETZ, T., VLODAVSKY, I. & ELKIN, M. 2006. Role of endothelial heparanase in delayed-type hypersensitivity. *Blood*, 107, 3609-3616.
- EISEN, M. B., SPELLMAN, P. T., BROWN, P. O. & BOTSTEIN, D. 1998. Cluster analysis and display of genome-wide expression patterns. *Proc Nat Acad Sci*, 95, 14863-14868.
- ENNA, S. J. & MCCARSON, K. E. 2006. The role of GABA in the mediation and perception of pain. *In:* ENNA, S. J. (ed.) *Advances in pharmacology*. Academic Press.
- EVANS, S., MOALEM-TAYLOR, G. & TRACEY, D. J. 2007. Pain and endometriosis. *Pain*, 132 Suppl 1, S22-S25.
- EYSTER, K. M., KLINKOVA, O., KENNEDY, V. & HANSEN, K. A. 2007. Whole genome deoxyribonucleic acid microarray analysis of gene expression in ectopic versus eutopic endometrium. *Fertil Steril*, 88, 1505-1533.
- FALLAS, R. 1956. Endometriosis: demonstration for the Sampson theory by a human anomaly. *Am J Obstet Gynecol*, 72, 557-561.
- FAUCONNIER, A. & CHAPRON, C. 2005. Endometriosis and pelvic pain: epidemiological evidence of the relationship and implications. *Hum Reprod Update*, 11, 595-606.
- FAUCONNIER, A., CHAPRON, C., DUBUISSON, J. B., VIEIRA, M., DOUSSET, B. & BRÉART, G. 2002. Relation between pain symptoms and the anatomic location of deep infiltrating endometriosis. *Fertil Steril*, 78, 719-726.
- FAUCONNIER, A., STARACI, S., HUCHON, C., ROMAN, H., PANEL, P. & DESCAMPS, P. 2013. Comparison of patient- and physician-based descriptions of symptoms of endometriosis: a qualitative study. *Hum Reprod*, 28, 2686-2694.
- FEDELE, L. & BERLANDA, N. 2004. Emerging drugs for endometriosis. *Expert Opinion on Emerging Drugs*, 9, 167-177.
- FERNER, H. 1964. Pernkopf atlas der topographischen und angewandten anatomie des menschen, Berlin, Urban & Schwarzenberg.
- FERRERO, S., ESPOSITO, F., ABBAMONTE, L. H., ANSERINI, P., REMORGIDA, V. & RAGNI, N. 2005. Quality of sex life in women with endometriosis and deep dyspareunia. *Fertil Steril*, 83, 573-579.
- FORNASARI, D. 2012. Pain mechanisms in patients with chronic pain. *Clin Drug Invest*, 32, 45-52.
- FOULKES, T. & WOOD, J. N. 2008. Pain genes. PLoS Genet, 4, e1000086.
- FOWLER, P., TATTUM, J., BHATTACHARYA, S., KLONISCH, T., HOMBACH-KLONISCH, S., GAZVANI, R., LEA, R., MILLER, I., SIMPSON, W. & CASH, P. 2007. An investigation on the proteome of human eutopic endometrium: a heterogenous tissue with a complex disease. *Proteomics*, 7, 130-142.
- FRANCAVILLA, C., LOEFFLER, S., PICCINI, D., KREN, A., CHRISTOFORI, G. & CAVALLARO, U. 2007. Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor. *J Cell Sci*, 120, 4388-4394.
- FRANK, H. & NETTER, M. 2006. Atlas of human anatomy, Elsevier.
- FRASER, I. 2008. Recognising, understanding and managing endometriosis. *J Hum Reprod Sci*, 1, 56-64.
- FRASER, I. 2010. Mysteries of endometriosis pain: Chien-Tien Hsu Memorial Lecture 2009. J Obstet Gynaecol Res, 36, 1-10.
- FUKAYA, T., SUGAWARA, J., YOSHIDA, H., MURAKAMI, T. & YAJIMA, A. 1999. Intercellular adhesion molecule-1 and hepatocyte growth factor in human endometriosis: original investigation and a review of literature. *Gynecol Obstet Invest*, 47 Suppl 1, 11-16.
- GABRIEL, B., NASSIF, J., TROMPOUKIS, P., BARATA, S. & WATTIEZ, A. 2011. Prevalence and management of urinary tract endometriosis: a clinical case series. *Urology*, 78, 1269-1274.

- GADIENT, R. A. & PATTERSON, P. H. 1999. Leukemia inhibitory factor, interleukin 6, and other cytokines using the GP130 transducing receptor: roles in inflammation and injury. *Stem Cells*, 17, 127-137.
- GAETJE, R., HOLTRICH, U., ENGELS, K., KOURTIS, K., CIKRIT, E., KISSLER, S., RODY, A., KARN, T. & KAUFMANN, M. 2007. Expression of membrane-type 5 matrix metalloproteinase in human endometrium and endometriosis. *Gynecol Endocrinol*, 23, 567-573.
- GANGADHARAN, V. & KUNER, R. 2013. Pain hypersensitivity mechanisms at a glance. *Dis Model Mech*, 6, 889-895.
- GAO, Y. J. & JI, R. R. 2008. Activation of JNK pathway in persistent pain. *Neurosci Lett*, 437, 180-183.
- GAZVANI, R. & TEMPLETON, A. 2002. Peritoneal environment, cytokines and angiogenesis in the pathophysiology of endometriosis. *Reproduction*, 123, 217-226.
- GEBHART, G. F. 2000. J.J. Bonica Lecture 2000: physiology, pathophysiology, and pharmacology of visceral pain. *Reg Anesth Pain Med*, 25, 632-638.
- GEES, M., COLSOUL, B. & NILIUS, B. 2010. The role of transient receptor potential cation channels in Ca2+ signaling. *Cold Spring Harb Perspect Biol*, 2, a003962.
- GEISTERFER, M. & GAULDIE, J. 1996. Regulation of signal transducer, GP13O and the LIF receptor in acute inflammation in vivo. *Cytokine*, 8, 283-287.
- GENTLEMAN, R., SCHOLTENS, D., DING, B., CAREY, V. & HUBER, W. 2005. *Case studies using graphs on biological data*, NY, Springer.
- GILMOUR, J., HUNTINGTON, A. & WILSON, H. 2008. The impact of endometriosis on work and social participation. *Int J Nurs Pract*, 14, 443-448.
- GIUDICE, L. & KAO, L. 2004. Endometriosis. Lancet, 364, 1789-1799.
- GIUDICE, L. C., DSUPIN, B. A., GARGOSKY, S. E., ROSENFELD, R. G. & IRWIN, J. C. 1994. The insulin-like growth factor system in human peritoneal fluid: its effects on endometrial stromal cells and its potential relevance to endometriosis. *J Clin Endocrinol Metab*, 79, 1284-1293.
- GLAAB, E., GARIBALDI, J. M. & KRASNOGOR, N. 2009. ArrayMining: a modular webapplication for microarray analysis combining ensemble and consensus methods with cross-study normalization. *BMC Bioinformatics*, 10, 358.
- GOINS, W. F., COHEN, J. B. & GLORIOSO, J. C. 2012. Gene therapy for the treatment of chronic peripheral nervous system pain. *Neurobiol Dis*, 48, 255-270.
- GOLDBERG, R., MEIROVITZ, A., HIRSHOREN, N., BULVIK, R., BINDER, A., RUBINSTEIN, A. M. & ELKIN, M. 2013. Versatile role of heparanase in inflammation. *Matrix Biol*, 32, 234-240.
- GOMEZ-NICOLA, D., VALLE-ARGOS, B., SUARDIAZ, M., TAYLOR, J. S. & NIETO-SAMPEDRO, M. 2008. Role of IL-15 in spinal cord and sciatic nerve after chronic constriction injury: regulation of macrophage and T-cell infiltration. *J Neurochem*, 107, 1741-1752.
- GOULD, H. J., 3RD, GOULD, T. N., ENGLAND, J. D., PAUL, D., LIU, Z. P. & LEVINSON, S. R. 2000. A possible role for nerve growth factor in the augmentation of sodium channels in models of chronic pain. *Brain Res*, 854, 19-29.
- GRANLUND, A. V. B., FLATBERG, A., ØSTVIK, A. E., DROZDOV, I., GUSTAFSSON, B. I., KIDD, M., BEISVAG, V., TORP, S. H., WALDUM, H. L., MARTINSEN, T. C., DAMÅS, J. K., ESPEVIK, T. & SANDVIK, A. K. 2013. Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn's disease and ulcerative colitis. *PLoS One*, 8, e56818.

- GREAVES, E., GRIEVE, K., HORNE, A. W. & SAUNDERS, P. T. 2014. Elevated peritoneal expression and estrogen regulation of nociceptive ion channels in endometriosis. *J Clin Endocrinol Metab*, 99, E1738-E1743.
- GRECO, C. D. 2003. Management of adolescent chronic pelvic pain from endometriosis: a pain center perspective. *J Pediatr Adolesc Gynecol*, 16, S17-9.
- GRIFFITH, O. L., MELCK, A., JONES, S. J. & WISEMAN, S. M. 2006. Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol, 24, 5043-5051.
- GRIMM, C., ANEIROS, E. & DE GROOT, M. 2011. Dissecting TRPV1: lessons to be learned? *Channels (Austin)*, 5, 201-204.
- GROOTHUIS, P., NAP, A., WINTERHAGER, E. & GRÜMMER, R. 2005. Vascular development in endometriosis. *Angiogenesis*, 8, 147-156.
- GRUPPO ITALIANO PER LO STUDIO, D. E. 2001. Relationship between stage, site and morphological characteristics of pelvic endometriosis and pain. *Hum Reprod*, 16, 2668-2671.
- GUEST, G., BUNCE, A. & JOHNSON, L. 2006. How Many Interviews Are Enough?: An Experiment with Data Saturation and Variability. *Field Methods*, 18, 59-82.
- GUO, S. & WANG, Y. 2006. The prevalence of endometriosis in women with chronic pelvic pain. *Gynecol Obstet Invest* 62, 121-130
- HALME, J., HAMMOND, M., HULKA, J., RAJ, S. & TALBERT, L. 1984. Retrograde menstruation in healthy women and in patients with endometriosis. *Obstet Gynecol*, 64, 151-154.
- HANSEN, K. A., CHALPE, A. & EYSTER, K. M. 2010. Management of endometriosisassociated pain. *Clin Obstet Gynecol*, 53, 439-48.
- HAO, M., ZHAO, W. H. & WANG, Y. H. 2009. [Correlation between pelvic adhesions and pain symptoms of endometriosis]. *Zhonghua Fu Chan Ke Za Zhi*, 44, 333-336.
- HAO, S., MATA, M., GLORIOSO, J. C. & FINK, D. J. 2006. HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain. *Mol Pain*, 2, 6.
- HAO, S., MATA, M., GLORIOSO, J. C. & FINK, D. J. 2007. Gene transfer to interfere with TNFalpha signaling in neuropathic pain. *Gene Ther*, 14, 1010-1016.
- HARADA, T., KAPONIS, A., IWABE, T., TANIGUCHI, F., MAKRYDIMAS, G., SOFIKITIS, N., PASCHOPOULOS, M., PARASKEVAIDIS, E. & TERAKAWA, N. 2004. Apoptosis in human endometrium and endometriosis. *Hum Reprod Update*, 10, 29-38.
- HARADA, T., MOMOEDA, M., TAKETANI, Y., HOSHIAI, H. & TERAKAWA, N. 2008. Lowdose oral contraceptive pill for dysmenorrhea associated with endometriosis: a placebocontrolled, double-blind, randomized trial. *Fertil Steril*, 90, 1583-1588.
- HARADA, T. & TANIGUCHI, F. 2010. Dienogest: a new therapeutic agent for the treatment of endometriosis. *Womens Health (Lond Engl)*, 6, 27-35.
- HART, R. J., HICKEY, M., MAOURIS, P. & BUCKETT, W. 2008. Excisional surgery versus ablative surgery for ovarian endometriomata. *Cochrane Database Syst Rev*, CD004992.
- HASEGAWA, H., ABBOTT, S., HAN, B. X., QI, Y. & WANG, F. 2007. Analyzing somatosensory axon projections with the sensory neuron-specific Advillin gene. *J Neurosci*, 27, 14404-14414.
- HASSA, H., TANIR, H. M., TEKIN, B., KIRILMAZ, S. D. & SAHIN MUTLU, F. 2009. Cytokine and immune cell levels in peritoneal fluid and peripheral blood of women with early- and late-staged endometriosis. *Arch Gynecol Obstet*, 279, 891-895.
- HAYASHI, H., IWATA, M., TSUCHIMORI, N. & MATSUMOTO, T. 2014. Activation of peripheral KCNQ channels attenuates inflammatory pain. *Mol Pain*, 10, 15.

- HEALEY, M., ANG, W. C. & CHENG, C. 2010. Surgical treatment of endometriosis: a prospective randomized double-blinded trial comparing excision and ablation. *Fertil Steril*, 94, 2536-40.
- HEDGES, C. & BLISS-HOLTZ, J. 2006. Not too big, not too small, but just right: the dilemma of sample size estimation. *AACN Adv Crit Care*, 17, 341-4.
- HELLSTROM, B. & ANDERBERG, U. M. 2003. Pain perception across the menstrual cycle phases in women with chronic pain. *Percept Mot Skills*, 96, 201-211.
- HELVACIOGLU, A., AKSEL, S. & PETERSON, R. D. 1997. Endometriosis and autologous lymphocyte activation by endometrial cells. Are lymphocytes or endometrial cell defects responsible? *J Reprod Med*, 42, 71-75.
- HERINGTON, J. L., BRUNER-TRAN, K. L., LUCAS, J. A. & OSTEEN, K. G. 2011. Immune interactions in endometriosis. *Expert Rev Clin Immunol*, 7, 611-626.
- HEVER, A., ROTH, R. B., HEVEZI, P., MARIN, M. E., ACOSTA, J. A., ACOSTA, H., ROJAS, J., HERRERA, R., GRIGORIADIS, D., WHITE, E., CONLON, P. J., MAKI, R. A. & ZLOTNIK, A. 2007. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. *Proc Natl Acad Sci U S A*, 104, 12451-12456.
- HILLE, B. 1992. Ionic channels of excitable membranes, Sunderland, MA, Sinauer.
- HINSBY, A. M., BEREZIN, V. & BOCK, E. 2004. Molecular mechanisms of NCAM function. *Front Biosci*, 9, 2227-2244.
- HIRATA, T., OSUGA, Y., HAMASAKI, K., YOSHINO, O., ITO, M., HASEGAWA, A., TAKEMURA, Y., HIROTA, Y., NOSE, E., MORIMOTO, C., HARADA, M., KOGA, K., TAJIMA, T., SAITO, S., YANO, T. & TAKETANI, Y. 2008. Interleukin (IL)-17A stimulates IL-8 secretion, cyclooxygensase-2 expression, and cell proliferation of endometriotic stromal cells. *Endocrinology*, 149, 1260-1267.
- HOLLAND, T. K., YAZBEK, J., CUTNER, A., SARIDOGAN, E., HOO, W. L. & JURKOVIC, D. 2010. Value of transvaginal ultrasound in assessing severity of pelvic endometriosis. *Ultrasound Obstet Gynecol*, 36, 241-248.
- HOLOCH, K. J. & LESSEY, B. A. 2010. Endometriosis and infertility. *Clin Obstet Gynecol*, 53, 429-438.
- HOMMA, Y., NOMIYA, A., TAGAYA, M., OYAMA, T., TAKAGAKI, K., NISHIMATSU, H.
   & IGAWA, Y. 2013. Increased mRNA expression of genes involved in pronociceptive inflammatory reactions in bladder tissue of interstitial cystitis. *J Urol*, 190, 1925-1931.
- HOOTEN, W., HARTMAN, W., BLACK, J., LAURES, H. & WALKER, D. 2013. Associations between serotonin transporter gene polymorphisms and heat pain perception in adults with chronic pain. *BMC Med Genet*, 14, 78.
- HOWARD, F. 2009. Endometriosis and mechanisms of pelvic pain. *J Minim Invasive Gynecol*, 16, 540-550.

HOWE, D., PULLEN, N. & SHELTON, D. 2010. Treatment of endometriosis.

- HUANG DA, W., SHERMAN, B. T. & LEMPICKI, R. A. 2009. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res*, 37, 1-13.
- HUANG, E. J. & REICHARDT, L. F. 2001. Neurotrophins: roles in neuronal development and function. *Annu Rev Neurosci*, 24, 677-736.
- HUANG, H. Y. 2008. Medical treatment of endometriosis. Chang Gung Med J, 31, 431-440.
- HUANG, J. C. & YEH, J. 1994. Quantitative analysis of epidermal growth factor receptor gene expression in endometriosis. *J Clin Endocrinol Metab*, 79, 1097-1101.
- HUHTINEN, K., STAHLE, M., PERHEENTUPA, A. & POUTANEN, M. 2012. Estrogen biosynthesis and signaling in endometriosis. *Mol Cell Endocrinol*, 358, 146-154.
- HULL, M. L., ESCARENO, C. R., GODSLAND, J. M., DOIG, J. R., JOHNSON, C. M., PHILLIPS, S. C., SMITH, S. K., TAVARE, S., PRINT, C. G. & CHARNOCK-JONES, D.

S. 2008. Endometrial-peritoneal interactions during endometriotic lesion establishment. *Am J Pathol*, 173, 700-715.

- HUNTINGTON, A. & GILMOUR, J. 2005. A life shaped by pain: women and endometriosis. J Clin Nurs, 14, 1124-1132.
- HUR, S. E., LEE, J. Y., MOON, H.-S. & CHUNG, H. W. 2006. Angiopoietin-1, angiopoietin-2 and Tie-2 expression in eutopic endometrium in advanced endometriosis. *Mol Hum Reprod*, 12, 421-426.
- HURST, B. S., SHIMP, K. E., ELLIOT, M., MARSHBURN, P. B., PARSONS, J. & BAHRANI-MOSTAFAVI, Z. 2014. Molecular evaluation of proliferative-phase endometrium may provide insight about the underlying causes of infertility in women with endometriosis. *Arch Gynecol Obstet*, 289, 1119-1124.
- IMBE, H., SENBA, E., KIMURA, A., DONISHI, T., YOKOI, I. & KANEOKE, Y. 2011. Activation of mitogen-activated protein kinase in descending pain modulatory system. J Signal Transduct, 2011, 10.
- IMPEY, S., OBRIETAN, K. & STORM, D. R. 1999. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. *Neuron*, 23, 11-14.
- IOANNIDIS, J. P., ROSENBERG, P. S., GOEDERT, J. J. & O'BRIEN, T. R. 2002. Commentary: meta-analysis of individual participants' data in genetic epidemiology. *Am J Epidemiol*, 156, 204-210.
- IRIZARRY, R. A., BOLSTAD, B. M., COLLIN, F., COPE, L. M., HOBBS, B. & SPEED, T. P. 2003. Summaries of Affymetrix GeneChip probe level data. *Nucleic Acids Res*, 31, e15.
- IWANOFF, N. 1989. Dusiges cystenhaltiges uterufybromyom compliciert durch sarcom und carcinoma (Adenofibromyonma cysticum sarcomatodes carcinomatosum). *Monatsch Geburteshilfe Gynakol*, 7, 295-300.
- JACOBSON, T. Z., DUFFY, J. M., BARLOW, D., FARQUHAR, C., KONINCKX, P. R. & OLIVE, D. 2010. Laparoscopic surgery for subfertility associated with endometriosis. *Cochrane Database Syst Rev*, CD001398.
- JAIN, K. K. 2008. Gene therapy for pain. Expert Opin Biol Ther, 8, 1855-1866.
- JASMIN, L., RABKIN, S. D., GRANATO, A., BOUDAH, A. & OHARA, P. T. 2003. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. *Nature*, 424, 316-320.
- JENSEN, T. S. & FINNERUP, N. B. 2014. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. *Lancet Neurol*, 13, 924-935.
- JI, R.-R., GEREAU, R. W., MALCANGIO, M. & STRICHARTZ, G. R. 2009. MAP kinase and pain. *Brain Res Rev*, 60, 135-148.
- JI, R. R. & WOOLF, C. J. 2001. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. *Neurobiol Dis*, 8, 1-10.
- JIANG, Q. Y. & WU, R. J. 2012. Growth mechanisms of endometriotic cells in implanted places: a review. *Gynecol Endocrinol*, 28, 562-567.
- JIANG, X. 1998. Allelotyping of endometriosis with adjacent ovarian carcinoma reveals evidence of a common lineage. *Cancer Res*, 58, 1707-1711.
- JOHNSON, M. C., TORRES, M., ALVES, A., BACALLAO, K., FUENTES, A., VEGA, M. & BORIC, M. A. 2005. Augmented cell survival in eutopic endometrium from women with endometriosis: expression of c-myc, TGF-beta1 and bax genes. *Reprod Biol Endocrinol*, 3, 45.
- JONES, G., JENKINSON, C. & KENNEDY, S. 2004. The impact of endometriosis upon quality of life: a qualitative analysis. *J Psychosom Obstet Gynecol*, 25, 123-133.
- JONES, K., OWEN, E., BERRESFORD, A. & SUTTON, C. 2002. Endometrial adenocarcinoma arising from endometriosis of the rectosigmoid colon. *Gynecol oncol* 86, 220-222.

- JONES, R. K., BULMER, J. N. & SEARLE, R. F. 1995. Immunohistochemical characterization of proliferation, oestrogen receptor and progesterone receptor expression in endometriosis: comparison of eutopic and ectopic endometrium with normal cycling endometrium. *Hum Reprod*, 10, 3272-3279.
- JONES, R. K., SEARLE, R. F. & BULMER, J. N. 1998a. Apoptosis and bcl-2 expression in normal human endometrium, endometriosis and adenomyosis. *Hum Reprod*, 13, 3496-3502.
- JONES, R. K., SEARLE, R. F., STEWART, J. A., TURNER, S. & BULMER, J. N. 1998b. Apoptosis, bcl-2 expression, and proliferative activity in human endometrial stroma and endometrial granulated lymphocytes. *Biol Reprod*, 58, 995-1002.
- KAMES, L. D., RAPKIN, A. J., NALIBOFF, B. D., AFIFI, S. & FERRER-BRECHNER, T. 1990. Effectiveness of an interdisciplinary pain management program for the treatment of chronic pelvic pain. *Pain*, 41, 41-6.
- KAO, L. C., GERMEYER, A., TULAC, S., LOBO, S., YANG, J. P., TAYLOR, R. N., OSTEEN, K., LESSEY, B. A. & GIUDICE, L. C. 2003. Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility. *Endocrinology*, 144, 2870-2881.
- KAUPPILA, A., PUOLAKKA, J. & YLIKORKALA, O. 1979. Prostaglandin biosynthesis inhibitors and endometriosis. *Prostaglandins*, 18, 655-661.
- KAWASAKI, Y., ZHANG, L., CHENG, J. K. & JI, R. R. 2008. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci, 28, 5189-5194.
- KAYA, S., HERMANS, L., WILLEMS, T., ROUSSEL, N. & MEEUS, M. 2013. Central sensitization in urogynecological chronic pelvic pain: a systematic literature review. *Pain Physician*, 16, 291-308.
- KEAST, J. R. 2006. Plasticity of pelvic autonomic ganglia and urogenital innervation. *Int Rev Cytol*, 248, 141-208.
- KENDALL, N. A. 1999. Psychosocial approaches to the prevention of chronic pain: the low back paradigm. *Baillieres Best Pract Res Clin Rheumatol*, 13, 545-554.
- KENNEDY, S., BERGQVIST, A., CHAPRON, C., D'HOOGHE, T., DUNSELMAN, G., GREB, R., HUMMELSHOJ, L., PRENTICE, A. & SARIDOGAN, E. 2005. ESHRE guideline for the diagnosis and treatment of endometriosis. *Hum Reprod*, 20, 2698-2704.
- KENNEDY, S., MARDON, H. & BARLOW, D. 1995. Familial endometriosis. J Assist Reprod Genet, 12, 32-34.
- KERR, J. F., WYLLIE, A. H. & CURRIE, A. R. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. *Br J Cancer*, 26, 239-257.
- KHAN, M. A., SENGUPTA, J., MITTAL, S. & GHOSH, D. 2012. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis. *Reprod Biol Endocrinol*, 10, 84.
- KHAWAJA, U. B., KHAWAJA, A. A., GOWANI, S. A., SHOUKAT, S., EJAZ, S., ALI, F. N., RIZVI, J. & NAWAZ, F. H. 2009. Frequency of endometriosis among infertile women and association of clinical signs and symptoms with the laparoscopic staging of endometriosis. *J Pak Med Assoc*, 59, 30-34.
- KHOUFACHE, K., MICHAUD, N., HARIR, N., BONDZA, P. K. & AKOUM, A. 2012. Anomalies in the inflammatory response in endometriosis and possible consequences: a review. *Minerva Endocrinol*, 37, 75-92.
- KIDD, B. L. & URBAN, L. A. 2001. Mechanisms of inflammatory pain. Brit J Anaes, 87, 3-11.
- KIM, S. Y. & VOLSKY, D. J. 2005. PAGE: parametric analysis of gene set enrichment. *BMC Bioinformatics*, 6, 144.

KITAHATA, L. M. 1993. Pain pathways and transmission. Yale J Biol Med, 66, 437-442.

- KITAWAKI, J., NOGUCHI, T. & AMATSU, T. 1997. Expression of aromatase cytochrome P450 protein and messenger ribonucleic acid in human endometriotic and adenomyotic tissues but not in normal endometrium. *Biol Reprod*, 57, 514-519.
- KNIGHT, D. 2001. Leukaemia inhibitory factor (LIF): a cytokine of emerging importance in chronic airway inflammation. *Pulm Pharmacol Ther*, 14, 169-176.
- KOBAYASHI, H., YAMADA, Y., MORIOKA, S., NIIRO, E., SHIGEMITSU, A. & ITO, F. 2013. Mechanism of pain generation for endometriosis-associated pelvic pain. Arch Gynecol Obstet, 289, 13-21.
- KOIKE, H., EGAWA, H., OHTSUKA, T., YAMAGUCHI, M., IKENOUE, T. & MORI, N. 1992. Correlation between dysmenorrheic severity and prostaglandin production in women with endometriosis. *Prostaglandins Leukot Essent Fatty Acids*, 46, 133-137.
- KOKS, C. A., DUNSELMAN, G. A., DE GOEIJ, A. F., ARENDS, J. W. & EVERS, J. L. 1997. Evaluation of a menstrual cup to collect shed endometrium for in vitro studies. *Fertil Steril*, 68, 560-564.
- KOLDE, R., LAUR, S., ADLER, P. & VILO, J. 2012. Robust rank aggregation for gene list integration and meta-analysis. *Bioinformatics*, 28, 573-80.
- KONINCKX, P., IDE, P., VANDENBROUCKE, W. & BROSENS, I. 1980. New aspects of the pathophysiology of endometriosis and associated infertility. *J Reprod Med*, 24, 257-260.
- KONINCKX, P. R. A. M., D. 1994. Treatment of deeply infiltrating endometriosis. *Curr Opin Obstet Gynecol*, 6, 231-241.
- KUMAR, S., BOEHM, J. & LEE, J. C. 2003. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. *Nat Rev Drug Discov*, 2, 717-726.
- KUNER, R. 2010. Central mechanisms of pathological pain. Nat Med, 16, 1258-1266.
- KWON, M., ALTIN, M., DUENAS, H. & ALEV, L. 2013. The role of descending inhibitory pathways on chronic pain modulation and clinical implications. *Pain Pract*.
- KYAMA, C. M., OVERBERGH, L., DEBROCK, S., VALCKX, D., VANDER PERRE, S., MEULEMAN, C., MIHALYI, A., MWENDA, J. M., MATHIEU, C. & D'HOOGHE, T. M. 2006. Increased peritoneal and endometrial gene expression of biologically relevant cytokines and growth factors during the menstrual phase in women with endometriosis. *Fertil Steril*, 85, 1667-1675.
- KYAMA, C. M., OVERBERGH, L., MIHALYI, A., MEULEMAN, C., MWENDA, J. M., MATHIEU, C. & D'HOOGHE, T. M. 2008. Endometrial and peritoneal expression of aromatase, cytokines, and adhesion factors in women with endometriosis. *Fertil Steril*, 89, 301-310.
- LAMBE, E. K., FILLMAN, S. G., WEBSTER, M. J. & SHANNON WEICKERT, C. 2011. Serotonin receptor expression in human prefrontal cortex: balancing excitation and inhibition across postnatal development. *PLoS One*, 6, e22799.
- LANGESLAG, M., CONSTANTIN, C., ANDRATSCH, M., QUARTA, S., MAIR, N. & KRESS, M. 2011. Oncostatin M induces heat hypersensitivity by gp130-dependent sensitization of TRPV1 in sensory neurons. *Mol Pain*, 7, 102.
- LASCHKE, M. W. & MENGER, M. D. 2007. In vitro and in vivo approaches to study angiogenesis in the pathophysiology and therapy of endometriosis. *Hum Reprod Update*, 13, 331-342.
- LATREMOLIERE, A. & WOOLF, C. J. 2009. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. *J Pain*, 10, 895-926.
- LAU, B. K. & VAUGHAN, C. W. 2014. Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. *Curr Opin Neurobiol*, 29, 159-164.

- LAURSEN, B. S., BAJAJ, P., OLESEN, A. S., DELMAR, C. & ARENDT-NIELSEN, L. 2005. Health related quality of life and quantitative pain measurement in females with chronic non-malignant pain. *Eur J Pain*, 9, 267-275.
- LAWSON, C., BOURCIER, N., AL-AKOUM, M., MAHEUX, R., NAUD, F. & AKOUM, A. 2008. Abnormal interleukin 1 receptor types I and II gene expression in eutopic and ectopic endometrial tissues of women with endometriosis. *J Reprod Immunol*, 77, 75-84.
- LEBOVIC, D. I., MUELLER, M. D. & TAYLOR, R. N. 2001. Immunobiology of endometriosis. *Fertil Steril*, 75, 1-10.
- LEDEBOER, A., JEKICH, B. M., SLOANE, E. M., MAHONEY, J. H., LANGER, S. J., MILLIGAN, E. D., MARTIN, D., MAIER, S. F., JOHNSON, K. W., LEINWAND, L. A., CHAVEZ, R. A. & WATKINS, L. R. 2007. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. *Brain Behav Immun*, 21, 686-698.
- LEE, S., NAKAMURA, E., YANG, H., WEI, W., LINGGI, M. S., SAJAN, M. P., FARESE, R. V., FREEMAN, R. S., CARTER, B. D., KAELIN JR, W. G. & SCHLISIO, S. 2005a. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. *Cancer Cell*, 8, 155-167.
- LEE, T. T. & YANG, L. C. 2008. Pelvic denervation procedures: a current reappraisal. *Int J Gynaecol obstet*, 101, 304-8.
- LEE, Y., LEE, C. H. & OH, U. 2005b. Painful channels in sensory neurons. *Mol Cells*, 20, 315-324.
- LENG, J. H., LANG, J. H., DAI, Y., LI, H. J. & LI, X. Y. 2007. [Relationship between pain symptoms and clinico-pathological features of pelvic endometriosis]. *Zhonghua Fu Chan Ke Za Zhi*, 42, 165-168.
- LERNER, I., HERMANO, E., ZCHARIA, E., RODKIN, D., BULVIK, R., DOVINER, V., RUBINSTEIN, A. M., ISHAI-MICHAELI, R., ATZMON, R., SHERMAN, Y., MEIROVITZ, A., PERETZ, T., VLODAVSKY, I. & ELKIN, M. 2011. Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest, 121, 1709-1721.
- LESSEY, B., CASTELBAUM, A., SAWIN, S., BUCK, C., SCHINNAR, R., BILKER, W. & STROM, B. 1994. Aberrant integrin expression in the endometrium of women with endometriosis. *J Clin Endocrinol Metab*, 79, 643-649.
- LESSEY, B., KILLAM, A., METZGER, D., HANEY, A., GREENE, G. & MCCARTY, K. J. 1988. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. *J Clin Endocrinol Metab*, 67, 334-340.
- LETHABY, A., AUGOOD, C., DUCKITT, K. & FARQUHAR, C. 2007. Nonsteroidal antiinflammatory drugs for heavy menstrual bleeding. *Cochrane Database Syst Rev*, CD000400.
- LEVINE, J. D. & ALESSANDRI-HABER, N. 2007. TRP channels: targets for the relief of pain. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1772, 989-1003.
- LI, X., LARGE, M. J., CREIGHTON, C. J., LANZ, R. B., JEONG, J. W., YOUNG, S. L., LESSEY, B. A., PALOMINO, W. A., TSAI, S. Y. & DEMAYO, F. J. 2013. COUP-TFII regulates human endometrial stromal genes involved in inflammation. *Mol Endocrinol*, 27, 2041-2054.
- LI, Y. & GHOSH, D. 2014. Meta-analysis based on weighted ordered P-values for genomic data with heterogeneity. *BMC Bioinformatics*, 15, 226.
- LIEW, F. Y. & MCINNES, I. B. 2002. Role of interleukin 15 and interleukin 18 in inflammatory response. *Ann Rheum Dis*, 61, ii100-ii102.

- LIN, S. C., LI, Y. H., WU, M. H., CHANG, Y. F., LEE, D. K., TSAI, S. Y., TSAI, M. J. & TSAI, S. J. 2014. Suppression of COUP-TFII by proinflammatory cytokines contributes to the pathogenesis of endometriosis. *J Clin Endocrinol Metab*, 99, E427-E437.
- LIN, Y. T., RO, L. S., WANG, H. L. & CHEN, J. C. 2011. Up-regulation of dorsal root ganglia BDNF and trkB receptor in inflammatory pain: an in vivo and in vitro study. *J Neuroinflammation*, 8, 126.
- LINDEN, P. V. D. 1996. Theories on the pathogenesis of endometriosis. *Hum Reprod*, 11 Suppl 3, 53-65.
- LINDSAY, R. M. 1996. Role of neurotrophins and trk receptors in the development and maintenance of sensory neurons: an overview. *Philos Trans R Soc Lond B Biol Sci*, 351, 365-373.
- LINDSAY, S. F., LUCIANO, D. E. & LUCIANO, A. A. 2015. Emerging therapy for endometriosis. *Expert Opin Emerg Drugs*, 1-13.
- LINDSTEDT, F., BERREBI, J., GREAYER, E., LONSDORF, T. B., SCHALLING, M., INGVAR, M. & KOSEK, E. 2011. Conditioned pain modulation is associated with common polymorphisms in the serotonin transporter gene. *PLoS One*, 6, e18252.
- LING, F. W. 1999. Randomized controlled trial of depot leuprolide in patients with chronic pelvic pain and clinically suspected endometriosis. Pelvic Pain Study Group. *Obstet Gynecol*, 93, 51-58.
- LIU, B., FAN, L., BALAKRISHNA, S., SUI, A., MORRIS, J. B. & JORDT, S.-E. 2013. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. *Pain*, 154, 2169-2177.
- LIU, H. & BAHU, R. 1975. Ultrastructure of the nervous system. Ann Clin Lab Sci, 5, 348-354.
- LIU, H. & LANG, J. 2011. Is abnormal eutopic endometrium the cause of endometriosis? The role of eutopic endometrium in pathogenesis of endometriosis. *Med Sci Monit*, 17, RA92-RA99.
- LIU, J., LIU, X., DUAN, K., ZHANG, Y. & GUO, S. W. 2012. The expression and functionality of transient receptor potential vanilloid 1 in ovarian endometriomas. *Reprod Sci*, 19, 1110-1124.
- LOCKHAT, F. B., EMEMBOLU, J. O. & KONJE, J. C. 2005. The efficacy, side-effects and continuation rates in women with symptomatic endometriosis undergoing treatment with an intra-uterine administered progestogen (levonorgestrel): a 3 year follow-up. *Hum Reprod*, 20, 789-93.
- LORD, K. A., ABDOLLAHI, A., HOFFMAN-LIEBERMANN, B. & LIEBERMANN, D. A. 1993. Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation. *Mol Cell Biol*, 13, 841-851.
- LU, C., NIU, X., XIAO, C., CHEN, G., ZHA, Q., GUO, H., JIANG, M. & LU, A. 2012. Networkbased gene expression biomarkers for cold and heat patterns of rheumatoid arthritis in traditional chinese medicine. *Evid Based Complement Alternat Med*, 2012, 203043.
- LUSE, S. 1956. Electron microscopic observations of the central nervous system. *J Biophys Biochem Cytol*, 2, 531-542.
- MA, H., HONG, M., DUAN, J., LIU, P., FAN, X., SHANG, E., SU, S., GUO, J., QIAN, D. & TANG, Y. 2013a. Altered cytokine gene expression in peripheral blood monocytes across the menstrual cycle in primary dysmenorrhea: a case-control study. *PLoS One*, 8, e55200.
- MA, M. Z., KONG, X., WENG, M. Z., CHENG, K., GONG, W., QUAN, Z. W. & PENG, C. H. 2013b. Candidate microRNA biomarkers of pancreatic ductal adenocarcinoma: metaanalysis, experimental validation and clinical significance. J Exp Clin Cancer Res, 32, 71.
- MA, Y. & HE, Y. L. 2014. Study of an antiangiogenesis gene therapy with endostatin on endometriosis in the nude mouse model. *Clin Exp Obstet Gynecol*, 41, 328-334.

- MACDONALD, S. R., KLOCK, S. C. & MILAD, M. P. 1999. Long-term outcome of nonconservative surgery (hysterectomy) for endometriosis-associated pain in women <30 years old. *Am J Obstet Gynecol*, 180, 1360-1363.
- MACHADO, D. E., ABRAO, M. S., BERARDO, P. T., TAKIYA, C. M. & NASCIUTTI, L. E. 2008. Vascular density and distribution of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 (Flk-1) are significantly higher in patients with deeply infiltrating endometriosis affecting the rectum. *Fertil Steril*, 90, 148-155.
- MAGLOTT, D., OSTELL, J., PRUITT, K. D. & TATUSOVA, T. 2011. Entrez Gene: genecentered information at NCBI. *Nucleic Acids Res*, 39, D52-D57.
- MAHMOOD, T. A., TEMPLETON, A. A., THOMSON, L. & FRASER, C. 1991. Menstrual symptoms in women with pelvic endometriosis. *Br J Obstet Gynaecol*, 98, 558-563.
- MAKKER, A., GOEL, M. M., DAS, V. & AGARWAL, A. 2012. PI3K-Akt-mTOR and MAPK signaling pathways in polycystic ovarian syndrome, uterine leiomyomas and endometriosis: an update. *Gynecol Endocrinol*, 28, 175-181.
- MAKRETSOV, N. A., HUNTSMAN, D. G., NIELSEN, T. O., YORIDA, E., PEACOCK, M., CHEANG, M. C. U., DUNN, S. E., HAYES, M., VAN DE RIJN, M., BAJDIK, C. & GILKS, C. B. 2004. Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma. *Clinical Cancer Research*, 10, 6143-6151.
- MALSCH, P., ANDRATSCH, M., VOGL, C., LINK, A. S., ALZHEIMER, C., BRIERLEY, S. M., HUGHES, P. A. & KRESS, M. 2014. Deletion of interleukin-6 signal transducer gp130 in small sensory neurons attenuates mechanonociception and down-regulates TRPA1 expression. *J Neurosci*, 34, 9845-9856.
- MANNION, R. J., COSTIGAN, M., DECOSTERD, I., AMAYA, F., MA, Q. P., HOLSTEGE, J. C., JI, R. R., ACHESON, A., LINDSAY, R. M., WILKINSON, G. A. & WOOLF, C. J. 1999. Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. *Proc Natl Acad Sci USA*, 96, 9385-9390.
- MANTENIOTIS, S., LEHMANN, R., FLEGEL, C., VOGEL, F., HOFREUTER, A., SCHREINER, B. S. P., ALTMÜLLER, J., BECKER, C., SCHÖBEL, N., HATT, H. & GISSELMANN, G. 2013. Comprehensive RNA-seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in trigeminal ganglia. *PLoS One*, 8, e79523.
- MARCAL, L., NOTHAFT, M. A., COELHO, F. & CHOI, H. 2010. Deep pelvic endometriosis: MR imaging. *Abdom Imaging*, 35, 708-715.
- MARKS, P. W., ARAI, M., BANDURA, J. L. & KWIATKOWSKI, D. J. 1998. Advillin (p92): a new member of the gelsolin/villin family of actin regulatory proteins. *J Cell Sci*, 111, 2129-2136.
- MARTINEZ-ROMAN, S., BALASCH, J., CREUS, M., FABREGUES, F., CARMONA, F., VILELLA, R. & VANRELL, J. A. 1997. Immunological factors in endometriosisassociated reproductive failure: studies in fertile and infertile women with and without endometriosis. *Hum Reprod*, 12, 1794-1799.
- MASON, M. 2010. Sample Size and Saturation in PhD Studies Using Qualitative Interviews.
- MATA, M., HAO, S. & FINK, D. J. 2008. Applications of gene therapy to the treatment of chronic pain. *Curr Gene Ther*, 8, 42-48.
- MATARESE, G., DE PLACIDO, G., NIKAS, Y. & ALVIGGI, C. 2003. Pathogenesis of endometriosis: natural immunity dysfunction or autoimmune disease. *Trends Mol Med*, 9, 223-228.
- MATHIAS, S., KUPPERMANN, M. & LIBERMAN, R. 1996 Chronic pelvic pain: Prevalence, health-related quality of life, and economic correlates. *Obstet Gynecol*, 87, 321-327.

- MATSUURA, K., OHTAKE, H., KATABUCHI, H. & OKAMURA, H. 1999. Coelomic metaplasia theory of endometriosis: evidence from in vivo studies and an in vitro experimental model. *Gynecol Obstet Invest*, 47, 18-20.
- MATSUZAKI, S., CANIS, M., MURAKAMI, T., DECHELOTTE, P., BRUHAT, M. A. & OKAMURA, K. 2001. Immunohistochemical analysis of the role of angiogenic status in the vasculature of peritoneal endometriosis. *Fertil Steril*, 76, 712-716.
- MCALLISTER, S. L., DMITRIEVA, N. & BERKLEY, K. J. 2012. Sprouted innervation into uterine transplants contributes to the development of hyperalgesia in a rat model of endometriosis. *PLoS One*, 7, e31758.
- MCKELVEY, L., SHORTEN, G. D. & O'KEEFFE, G. W. 2013. Nerve growth factor-mediated regulation of pain signalling and proposed new intervention strategies in clinical pain management. *J Neurochem*, 124, 276-289.
- MCKEMY, D. D., NEUHAUSSER, W. M. & JULIUS, D. 2002. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. *Nature*, 416, 52-58.
- MCKINNON, B., BERSINGER, N. A., WOTZKOW, C. & MUELLER, M. D. 2012. Endometriosis-associated nerve fibers, peritoneal fluid cytokine concentrations, and pain in endometriotic lesions from different locations. *Fertil Steril*, 97, 373-380.
- MCKINNON, B. D., BERTSCHI, D., BERSINGER, N. A. & MUELLER, M. D. 2015. Inflammation and nerve fiber interaction in endometriotic pain. *Trends Endocrinol Metab*, 26, 1-10.
- MCLEOD, B. S. & RETZLOFF, M. G. 2010. Epidemiology of endometriosis: an assessment of risk factors. *Clin Obstet Gynecol*, 53, 389-396.
- MECHSNER, S., KAISER, A., KOPF, A., GERICKE, C., EBERT, A. & BARTLEY, J. 2009. A pilot study to evaluate the clinical relevance of endometriosis-associated nerve fibers in peritoneal endometriotic lesions. *Fertil Steril*, 92, 1856-1861.
- MECHSNER, S., SCHWARZ, J., THODE, J., LODDENKEMPER, C., SALOMON, D. S. & EBERT, A. D. 2007. Growth-associated protein 43-positive sensory nerve fibers accompanied by immature vessels are located in or near peritoneal endometriotic lesions. *Fertil Steril*, 88, 581-587.

MEDICINE 2006. Treatment of pelvic pain associated with endometriosis. *Fertil Steril*, 86, S18-S27.

- MEDICINE 2014. Treatment of pelvic pain associated with endometriosis: a committee opinion. *Fertil Steril*, 101, 927-935.
- MEHEDINTU, C., PLOTOGEA, M., IONESCU, S. & ANTONOVICI, M. 2014. Endometriosis still a challenge. *J Med Life*, 7, 349-357.
- MEIROVITZ, A., GOLDBERG, R., BINDER, A., RUBINSTEIN, A. M., HERMANO, E. & ELKIN, M. 2013. Heparanase in inflammation and inflammation-associated cancer. *FEBS J*, 280, 2307-2319.
- MERESMAN, G., VIGHI, S., BUQUET, R., CONTRERAS-ORTIZ, O., TESONE, M. & RUMI, L. 2000. Apoptosis and expression of Bcl-2 and Bax in eutopic endometrium from women with endometriosis. *Fertil Steril*, 74, 760-766.
- MERSKEY, H. 1994. Logic, truth and language in concepts of pain. *Qual Life Res*, 3 Suppl 1, S69-S76.
- MERSKEY, H. & BOGDUK, N. (eds.) 1994. Classification of chronic pain, Seattle: IASP Press.
- METTLER, L., SALMASSI, A., SCHOLLMEYER, T., SCHMUTZLER, A. G., PUNGEL, F. & JONAT, W. 2007. Comparison of c-DNA microarray analysis of gene expression between eutopic endometrium and ectopic endometrium (endometriosis). *J Assist Reprod Genet*, 24, 249-258.
- METZGER, D. A. 1997. Treating endometriosis pain: a multidisciplinary approach. *Semin Reprod Endocrinol*, 15, 245-50.

- MEULEMAN, C., VANDENABEELE, B., FIEUWS, S., SPIESSENS, C., TIMMERMAN, D. & D'HOOGHE, T. 2009. High prevalence of endometriosis in infertile women with normal ovulation and normospermic partners. *Fertil Steril*, 92, 68-74.
- MEYER, R. 1919. Uber den staude der frage der adenomyosites adenomyoma in allgemeinen und adenomyometritis sarcomastosa. *Zentralb Gynakol*, 36, 745.
- MICHAEL, P., BENOÎT, D., BERTRAND, D., ERIC, B., SOPHIE, D., CARINE, M. & ERIC, D. 2011. Enhanced meta-analysis highlights genes involved in metastasis from several microarray datasets. *J Proteom Bioinfo*, 4.
- MIHALICH, A., REINA, M., MANGIONI, S., PONTI, E., ALBERTI, L., VIGANO, P., VIGNALI, M. & DI BLASIO, A. M. 2003. Different basic fibroblast growth factor and fibroblast growth factor-antisense expression in eutopic endometrial stromal cells derived from women with and without endometriosis. J Clin Endocrinol Metab, 88, 2853-2859.
- MILINGOS, S., PROTOPAPAS, A., KALLIPOLITIS, G., DRAKAKIS, P., LOUTRADIS, D., LIAPI, A. & ANTSAKLIS, A. 2006. Endometriosis in patients with chronic pelvic pain: is staging predictive of the efficacy of laparoscopic surgery in pain relief? *Gynecol Obstet Invest*, 62, 48-54.
- MILLAN, M. J. 1999. The induction of pain: an integrative review. Prog Neurobiol, 57, 1-164.
- MILLAN, M. J. 2002. Descending control of pain. Prog Neurobiol, 66, 355-474.
- MILLER, B. G. & STAMATOYANNOPOULOS, J. A. 2010. Integrative meta-analysis of differential gene expression in acute myeloid leukemia. *PLoS One*, 5, e9466.
- MILLIGAN, E. D., LANGER, S. J., SLOANE, E. M., HE, L., WIESELER-FRANK, J., O'CONNOR, K., MARTIN, D., FORSAYETH, J. R., MAIER, S. F., JOHNSON, K., CHAVEZ, R. A., LEINWAND, L. A. & WATKINS, L. R. 2005. Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10. *Eur J Neurosci*, 21, 2136-2148.
- MINJAREZ, D. A. & SCHLAFF, W. D. 2000. Update on the medical treatment of endometriosis. *Obstet Gynecol Clin North Am*, 27, 641-651.
- MOEN, M. & MAGNUS, P. 1993. The familial risk of endometriosis. *Acta Obstet Gynecol Scand*, 72, 560-564.
- MOGIL, J. S., YU, L. & BASBAUM, A. I. 2000. Pain genes: natural variation and transgenic mutants. *Annu Rev Neurosci*, 23, 777-811.
- MOLDOVAN, M., ALVAREZ, S., ROMER ROSBERG, M. & KRARUP, C. 2013. Axonal voltage-gated ion channels as pharmacological targets for pain. *Europ J Pharmacol*, 708, 105-112.
- MOORE, J., KENNEDY, S. & PRENTICE 2004. A modern combined oral contraceptives for pain associated with endometriosis (Cochrane Review). *The Cochrane Library*. Chichester, UK: John Wiley & Sons Ltd.
- MOORE, J., KENNEDY, S. & PRENTICE, A. 2000. Modern combined oral contraceptives for pain associated with endometriosis. *Cochrane Database Syst Rev*, CD001019.
- MORGAN, J. I. & CURRAN, T. 1991. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. *Annu Rev Neurosci*, 14, 421-451.
- MORGAN, K., SADOFSKY, LAURA R., CROW, C. & MORICE, ALYN H. 2014. Human TRPM8 and TRPA1 pain channels, including a gene variant with increased sensitivity to agonists (TRPA1 R797T), exhibit differential regulation by SRC-tyrosine kinase inhibitor. *Biosci Rep*, 34, e00131.
- MORIN, M., BELLEHUMEUR, C., THERRIAULT, M. J., METZ, C., MAHEUX, R. & AKOUM, A. 2005. Elevated levels of macrophage migration inhibitory factor in the peripheral blood of women with endometriosis. *Fertil Steril*, 83, 865-872.

- MOROTTI, M., SOZZI, F., REMORGIDA, V., VENTURINI, P. L. & FERRERO, S. 2014a. Dienogest in women with persistent endometriosis-related pelvic pain during norethisterone acetate treatment. *Eur J Obstet Gynecol Reprod Biol*, 183, 188-92.
- MOROTTI, M., VINCENT, K., BRAWN, J., ZONDERVAN, K. T. & BECKER, C. M. 2014b. Peripheral changes in endometriosis-associated pain. *Hum Reprod Update*, 20, 717-736.
- MUELLER, M. D., VIGNE, J. L., MINCHENKO, A., LEBOVIC, D. I., LEITMAN, D. C. & TAYLOR, R. N. 2000. Regulation of vascular endothelial growth factor (VEGF) gene transcription by estrogen receptors alpha and beta. *Proc Natl Acad Sci U S A*, 97, 10972-10977.
- MURASE, S. & SCHUMAN, E. M. 1999. The role of cell adhesion molecules in synaptic plasticity and memory. *Curr Opin Cell Biol*, 11, 549-553.
- NAP, A., GROOTHUIS, P., DEMIR, A., EVERS, J. & DUNSELMAN, G. 2004. Pathogenesis of endometriosis. *Best Pract Res Clin Obstet Gynaecol*, 18, 233-244.
- NARANJO, J. R., MELLSTROM, B., ACHAVAL, M., LUCAS, J. J., DEL RIO, J. & SASSONE-CORSI, P. 1991. Co-induction of jun B and c-fos in a subset of neurons in the spinal cord. *Oncogene*, 6, 223-227.
- NASIR, L. & BOPE, E. T. 2004. Management of pelvic pain from dysmenorrhea or endometriosis. *J Am Board Fam Prac*, 17, S43-S47.
- NASU, K., NISHIDA, M., KAWANO, Y., TSUNO, A., ABE, W., YUGE, A., TAKAI, N. & NARAHARA, H. 2011. Aberrant expression of apoptosis-related molecules in endometriosis: a possible mechanism underlying the pathogenesis of endometriosis. *Reprod Sci*, 18, 206-218.
- NEZIRI, A. Y., BERSINGER, N. A., ANDERSEN, O. K., ARENDT-NIELSEN, L., MUELLER, M. D. & CURATOLO, M. 2014. Correlation between altered central pain processing and concentration of peritoneal fluid inflammatory cytokines in endometriosis patients with chronic pelvic pain. *Reg Anesth Pain Med*, 39, 181-184.
- NEZIRI, A. Y., HAESLER, S., PETERSEN-FELIX, S., MULLER, M., ARENDT-NIELSEN, L., MANRESA, J. B., ANDERSEN, O. K. & CURATOLO, M. 2010. Generalized expansion of nociceptive reflex receptive fields in chronic pain patients. *Pain*, 151, 798-805.
- NIKOO, S., EBTEKAR, M., JEDDI-TEHRANI, M., SHERVIN, A., BOZORGMEHR, M., VAFAEI, S., KAZEMNEJAD, S. & ZARNANI, A. H. 2014. Menstrual blood-derived stromal stem cells from women with and without endometriosis reveal different phenotypic and functional characteristics. *Mol Hum Reprod*, 20, 905-918.
- NILIUS, B. & OWSIANIK, G. 2011. The transient receptor potential family of ion channels. *Genome Biol*, 12, 218.
- NISOLLE, M., ALVAREZ, M. L., COLOMBO, M. & FOIDART, J. M. 2007. [Pathogenesis of endometriosis]. *Gynecol Obstet Fertil*, 35, 898-903.
- NISOLLE, M., CASANAS-ROUX, F., ANAF, V., MINE, J. M. & DONNEZ, J. 1993. Morphometric study of the stromal vascularization in peritoneal endometriosis. *Fertil Steril*, 59, 681-684.
- NISOLLE, M., CASANAS-ROUX, F. & DONNEZ, J. 1997. Immunohistochemical analysis of proliferative activity and steroid receptor expression in peritoneal and ovarian endometriosis. *Fertil Steril*, 68, 912-919.
- NISOLLE, M. & DONNEZ, J. 1997. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. *Fertil Steril*, 68, 585-596.
- NOBLE, L. S., TAKAYAMA, K., ZEITOUN, K. M., PUTMAN, J. M., JOHNS, D. A., HINSHELWOOD, M. M., AGARWAL, V. R., ZHAO, Y., CARR, B. R. & BULUN, S. E. 1997. Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. *J Clin Endocrinol Metab*, 82, 600-606.

- NYHOLT, D. R., LOW, S. K., ANDERSON, C. A., PAINTER, J. N., UNO, S., MORRIS, A. P., MACGREGOR, S., GORDON, S. D., HENDERS, A. K., MARTIN, N. G., ATTIA, J., HOLLIDAY, E. G., MCEVOY, M., SCOTT, R. J., KENNEDY, S. H., TRELOAR, S. A., MISSMER, S. A., ADACHI, S., TANAKA, K., NAKAMURA, Y., ZONDERVAN, K. T., ZEMBUTSU, H. & MONTGOMERY, G. W. 2012. Genome-wide association metaanalysis identifies new endometriosis risk loci. *Nat Genet*, 44, 1355-1359.
- OBATA, K., YAMANAKA, H., DAI, Y., TACHIBANA, T., FUKUOKA, T., TOKUNAGA, A., YOSHIKAWA, H. & NOGUCHI, K. 2003. Differential activation of extracellular signalregulated protein kinase in primary afferent neurons regulates brain-derived neurotrophic factor expression after peripheral inflammation and nerve injury. *J Neurosci*, 23, 4117-4126.
- ODAGIRI, K., KONNO, R., FUJIWARA, H., NETSU, S., YANG, C. & SUZUKI, M. 2008. Smooth muscle metaplasia and innervation in interstitium of endometriotic lesions related to pain. *Fertil Steril*, 92, 1525-1531.
- OEHMKE, F., WEYAND, J., HACKETHAL, A., KONRAD, L., OMWANDHO, C. & TINNEBERG, H. R. 2009. Impact of endometriosis on quality of life: a pilot study. *Gynecol Endocrinol*, 25, 722-725.
- OKEKE, T. C., IKEAKO, L. C. & EZENYEAKU, C. C. 2011. Endometriosis. *Niger J Med*, 20, 191-199.
- OLIVE, D. L. & PRITTS, E. A. 2001. Treatment of endometriosis. N Engl J Med, 345, 266-275.
- OLIVEIRA, M. C., PELEGRINI-DA-SILVA, A., PARADA, C. A. & TAMBELI, C. H. 2007. 5-HT acts on nociceptive primary afferents through an indirect mechanism to induce hyperalgesia in the subcutaneous tissue. *Neuroscience*, 145, 708-714.
- ORTIZ, D. D. 2008. Chronic pelvic pain in women. Am Fam Physician, 77, 1535-42.
- OSHIMA, K., TEO, D. T., SENN, P., STARLINGER, V. & HELLER, S. 2007. LIF promotes neurogenesis and maintains neural precursors in cell populations derived from spiral ganglion stem cells. *BMC Dev Biol*, 7, 112.
- OSSIPOV, M. H. 2012. The perception and endogenous modulation of pain. Scientifica, 2012, 25.
- OSSIPOV, M. H., DUSSOR, G. O. & PORRECA, F. 2010. Central modulation of pain. *J Clin Invest*, 120, 3779-3787.
- OTHMAN, E.-E. R., SALAMA, S., ISMAIL, N. & AL-HENDY, A. 2007. Toward gene therapy of endometriosis: adenovirus-mediated delivery of dominant negative estrogen receptor genes inhibits cell proliferation, reduces cytokine production, and induces apoptosis of endometriotic cells. *Fertil Steril*, 88, 462-471.
- OWENS, D. F., BOYCE, L. H., DAVIS, M. B. & KRIEGSTEIN, A. R. 1996. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. *J Neurosci*, 16, 6414-6423.
- OZKAN, S., MURK, W. & ARICI, A. 2008. Endometriosis and infertility. *Annals NY Acad Sci*, 1127, 92-100.
- PACCHIAROTTI, A., MILAZZO, G. N., BIASIOTTA, A., TRUINI, A., ANTONINI, G., FRATI, P., GENTILE, V., CASERTA, D. & MOSCARINI, M. 2013. Pain in the upper anterior-lateral part of the thigh in women affected by endometriosis: study of sensitive neuropathy. *Fertil Steril*, 100, 122-126.
- PAGE, A. J., BRIERLEY, S. M., MARTIN, C. M., PRICE, M. P., SYMONDS, E., BUTLER, R., WEMMIE, J. A. & BLACKSHAW, L. A. 2005. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. *Gut*, 54, 1408-1415.
- PAN, H. L., WU, Z. Z., ZHOU, H. Y., CHEN, S. R., ZHANG, H. M. & LI, D. P. 2008. Modulation of pain transmission by G-protein-coupled receptors. *Pharmacol Ther*, 117, 141-161.

- PELCH, K. E., SCHRODER, A. L., KIMBALL, P. A., SHARPE-TIMMS, K. L., DAVIS, J. W. & NAGEL, S. C. 2010. Aberrant gene expression profile in a mouse model of endometriosis mirrors that observed in women. *Fertil Steril*, 93, 1615-1627 e18.
- PERERA, L. P. 2000. Interleukin 15: its role in inflammation and immunity. *Arch Immunol Ther Exp (Warsz)*, 48, 457-464.
- PERERA, P. Y., LICHY, J. H., WALDMANN, T. A. & PERERA, L. P. 2012. The role of interleukin-15 in inflammation and immune responses to infection: implications for its therapeutic use. *Microbes Infect*, 14, 247-261.
- PERI, S., DEVARAJAN, K., YANG, D.-H., KNUDSON, A. G. & BALACHANDRAN, S. 2013. Meta-analysis identifies NF-κB as a therapeutic target in renal cancer. *PLoS One*, 8, e76746.
- PERL, E. R. 2007. Ideas about pain, a historical view. Nat Rev Neurosci, 8, 71-80.
- PETTA, C. A., FERRIANI, R. A., ABRAO, M. S., HASSAN, D., ROSA, E. S. J. C., PODGAEC, S. & BAHAMONDES, L. 2005. Randomized clinical trial of a levonorgestrel-releasing intrauterine system and a depot GnRH analogue for the treatment of chronic pelvic pain in women with endometriosis. *Hum Reprod*, 20, 1993-8.
- PEZET, S. & MCMAHON, S. B. 2006. Neurotrophins: mediators and modulators of pain. *Annu Rev Neurosci*, 29, 507-538.
- PHILLIPS, K. & CLAUW, D. J. 2011. Central pain mechanisms in chronic pain states: maybe it is all in their head. *Best Pract Res Clin Rheumatol*, 25, 141-154.
- POLI-NETO, O. B., FILHO, A. A., ROSA E SILVA, J. C., BARBOSA HDE, F., CANDIDO DOS REIS, F. J. & NOGUEIRA, A. A. 2009. Increased capsaicin receptor TRPV1 in the peritoneum of women with chronic pelvic pain. *Clin J Pain*, 25, 218-222.
- PORPORA, M. G., KONINCKX, P. R., PIAZZE, J., NATILI, M., COLAGRANDE, S. & COSMI, E. V. 1999. Correlation between endometriosis and pelvic pain. J Am Assoc Gynecol Laparosc, 6, 429-434.
- PRECIADO RUIZ, R., TORRES CALLEJA, J., ZUNIGA MONTIEL, J. A., MARTINEZ CHEQUER, J. C., MANTEROLA ALVAREZ, D. & GARCIA LUNA, A. 2005. [Incidence of endometriosis in infertile women: clinical and laparoscopic characteristics]. *Ginecol Obstet Mex*, 73, 471-476.
- PRENTICE, A., DEARY, A., GOLDBECK, W., FARQUHAR, C. & SMITH, S. 2004. Gonadotrophin-releasing hormone analogues for pain associated with endometriosis. *The Cochrane Library*. Chichester, UK: John Wiley & Sons Ltd.
- PROCTOR, M. L., ROBERTS, H. & FARQUHAR, C. M. 2001. Combined oral contraceptive pill (OCP) as treatment for primary dysmenorrhoea. *Cochrane Database Syst Rev*, CD002120.
- PROUDFOOT, C. J., GARRY, E. M., COTTRELL, D. F., ROSIE, R., ANDERSON, H., ROBERTSON, D. C., FLEETWOOD-WALKER, S. M. & MITCHELL, R. 2006. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. *Curr Biol*, 16, 1591-1605.
- PUNNONEN, J., TEISALA, K., RANTA, H., BENNETT, B. & PUNNONEN, R. 1996. Increased levels of interleukin-6 and interleukin-10 in the peritoneal fluid of patients with endometriosis. *Am J Obstet Gynecol*, 174, 1522-1526.
- RAHMAN, W. & DICKENSON, A. H. 2013. Voltage gated sodium and calcium channel blockers for the treatment of chronic inflammatory pain. *Neurosci Lett*, 557 Pt A, 19-26.
- RAHMIOGLU, N., MISSMER, S., MONTGOMERY, G. & ZONDERVAN, K. 2012. Insights into assessing the genetics of endometriosis. *Curr Obstet Gynecol Rep*, 1, 124-137.
- RAMASAMY, A., MONDRY, A., HOLMES, C. C. & ALTMAN, D. G. 2008. Key issues in conducting a meta-analysis of gene expression microarray datasets. *PLoS Med*, 5, e184.
- RANSONE, L. J. & VERMA, I. M. 1990. Nuclear proto-oncogenes fos and jun. *Annu Rev Cell Biol*, 6, 539-557.

- RAO, M. S., SUN, Y., ESCARY, J. L., PERREAU, J., TRESSER, S., PATTERSON, P. H., ZIGMOND, R. E., BRULET, P. & LANDIS, S. C. 1993. Leukemia inhibitory factor mediates an injury response but not a target-directed developmental transmitter switch in sympathetic neurons. *Neuron*, 11, 1175-1185.
- RAVENALL, S. J., GAVAZZI, I., WOOD, J. N. & AKOPIAN, A. N. 2002. A peripheral nervous system actin-binding protein regulates neurite outgrowth. *Eur J Neurosci*, 15, 281-290.
- REA, K., ROCHE, M. & FINN, D. P. 2007. Supraspinal modulation of pain by cannabinoids: the role of GABA and glutamate. *Br J Pharmacol*, 152, 633-648.
- REIS, F. M., PETRAGLIA, F. & TAYLOR, R. N. 2013. Endometriosis: hormone regulation and clinical consequences of chemotaxis and apoptosis. *Hum Reprod Update*, 19, 406-418.
- REN, K. & DUBNER, R. 2010. Interactions between the immune and nervous systems in pain. *Nat Med*, 16, 1267-1276.
- RIŽNER, T. L. 2009. Estrogen metabolism and action in endometriosis. *Mol Cell Endocrinol*, 307, 8-18.
- ROCHA, A. L., REIS, F. M. & PETRAGLIA, F. 2012. New trends for the medical treatment of endometriosis. *Expert Opin Investig Drugs*, 21, 905-19.
- RODRIGUEZ-RAECKE, R., NIEMEIER, A., IHLE, K., RUETHER, W. & MAY, A. 2009. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. *J Neurosci*, 29, 13746-50.
- ROMAN, H., NESS, J., SUCIU, N., BRIDOUX, V., GOURCEROL, G., LEROI, A. M., TUECH, J. J., DUCROTTE, P., SAVOYE-COLLET, C. & SAVOYE, G. 2012. Are digestive symptoms in women presenting with pelvic endometriosis specific to lesion localizations? A preliminary prospective study. *Hum Reprod*, 27, 3440-3449.
- RØNN, L. C. B., HARTZ, B. P. & BOCK, E. 1998. The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. *Exper Gerontol*, 33, 853-864.
- RUSSO, C. M. & BROSE, W. G. 1998. Chronic pain. Annu Rev Med, 49, 123-133.
- SAGSVEEN, M., FARMER, J. E., PRENTICE, A. & BREEZE, A. 2003. Gonadotrophinreleasing hormone analogues for endometriosis: bone mineral density. *Cochrane Database Syst Rev*, CD001297.
- SAMPSON, J. 1927a. Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the peritoneal cavity. *Am J Obstet Gynecol*, 14, 442-469.
- SAMPSON, J. 1940. The development of the implantation theory for the origin of endometriosis. *Am J Obstet Gynecol*, 40, 549-557.
- SAMPSON, J. A. 1927b. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. *Am J Pathol*, 3, 93-110.
- SANFILIPPO, J. S., WAKIM, N. G., SCHIKLER, K. N. & YUSSMAN, M. A. 1986. Endometriosis in association with uterine anomaly. *Am J Obstet Gynecol*, 154, 39-43.
- SARZI-PUTTINI, P., ATZENI, F. & MEASE, P. J. 2011. Chronic widespread pain: from peripheral to central evolution. *Best Prac Res Clin Rheumatol*, 25, 133-139.
- SCANZELLO, C. R., UMOH, E., PESSLER, F., DIAZ-TORNE, C., MILES, T., DICARLO, E., POTTER, H. G., MANDL, L., MARX, R., RODEO, S., GOLDRING, S. R. & CROW, M. K. 2009. Local cytokine profiles in knee osteoarthritis: elevated synovial fluid interleukin-15 differentiates early from end-stage disease. *Osteoarth Cartilage*, 17, 1040-1048.
- SCHACHNER, M. 1997. Neural recognition molecules and synaptic plasticity. *Curr Opin Cell Biol*, 9, 627-634.
- SCHAIBLE, H. G. 2007. Peripheral and central mechanisms of pain generation. *Handb Exp Pharmacol*, 177, 3-28.
- SCHLAFF, W. D., CARSON, S. A., LUCIANO, A., ROSS, D. & BERGQVIST, A. 2006. Subcutaneous injection of depot medroxyprogesterone acetate compared with leuprolide

acetate in the treatment of endometriosis-associated pain. *Fertility and Sterility*, 85, 314-325.

- SCHMIDT, R., SCHMELZ, M., FORSTER, C., RINGKAMP, M., TOREBJORK, E. & HANDWERKER, H. 1995. Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci, 15, 333-341.
- SCHOLL, B., BERSINGER, N. A., KUHN, A. & MUELLER, M. D. 2009. Correlation between symptoms of pain and peritoneal fluid inflammatory cytokine concentrations in endometriosis. *Gynecol Endocrinol*, 25, 701-706.
- SCHRAGER, S., FALLERONI, J. & EDGOOSE, J. 2013. Evaluation and treatment of endometriosis. *Am Fam Physician*, 87, 107-113.
- SCHULKE, L., BERBIC, M., MANCONI, F., TOKUSHIGE, N., MARKHAM, R. & FRASER, I. 2009. Dendritic cell populations in the eutopic and ectopic endometrium of women with endometriosis. *Hum Reprod*, 24, 1695-1703.
- SCHWEPPE, K. W. 2001. Current place of progestins in the treatment of endometriosis-related complaints. *Gynecol Endocrinol*, 15 Suppl 6, 22-8.
- SERACCHIOLI, R., MABROUK, M., FRASCA, C., MANUZZI, L., MONTANARI, G., KERAMYDA, A. & VENTUROLI, S. 2010. Long-term cyclic and continuous oral contraceptive therapy and endometrioma recurrence: a randomized controlled trial. *Fertil Steril*, 93, 52-6.
- SHABALIN, A. A., TJELMELAND, H., FAN, C., PEROU, C. M. & NOBEL, A. B. 2008. Merging two gene-expression studies via cross-platform normalisation. *Bioinformatics*, 24, 1154-1160.
- SHARPE-TIMMS, K. 2001. Endometrial anomalies in women with endometriosis. *Ann NY Acad Sci*, 943, 131-147.
- SHARPE-TIMMS, K. L., ZIMMER, R. L., RICKE, E. A., PIVA, M. & HOROWITZ, G. M. 2002. Endometriotic haptoglobin binds to peritoneal macrophages and alters their function in women with endometriosis. *Fertil Steril*, 78, 810-819.
- SHERWIN, J. R., SHARKEY, A. M., MIHALYI, A., SIMSA, P., CATALANO, R. D. & D'HOOGHE, T. M. 2008. Global gene analysis of late secretory phase, eutopic endometrium does not provide the basis for a minimally invasive test of endometriosis. *Hum Reprod*, 23, 1063-1068.
- SHIBATA, M., ISHII, J., KOIZUMI, H., SHIBATA, N., DOHMAE, N., TAKIO, K., ADACHI, H., TSUJIMOTO, M. & ARAI, H. 2004. Type F scavenger receptor SREC-I interacts with advillin, a member of the gelsolin/villin family, and induces neurite-like outgrowth. J Biol Chem, 279, 40084-40090.
- SHUBINA, A. N., EGOROVA, A. A., BARANOV, V. S. & KISELEV, A. V. 2013. Recent advances in gene therapy of endometriosis. *Recent Pat DNA Gene Seq*, 7, 169-178.
- SIDELL, N., HAN, S. W. & PARTHASARATHY, S. 2002. Regulation and modulation of abnormal immune responses in endometriosis. *Ann NY Acad Sci*, 955, 159-173.
- SIMOENS, S., DUNSELMAN, G., DIRKSEN, C., HUMMELSHOJ, L., BOKOR, A.,
  BRANDES, I., BRODSZKY, V., CANIS, M., COLOMBO, G. L., DELEIRE, T.,
  FALCONE, T., GRAHAM, B., HALIS, G., HORNE, A., KANJ, O., KJER, J. J.,
  KRISTENSEN, J., LEBOVIC, D., MUELLER, M., VIGANO, P., WULLSCHLEGER, M.
  & D'HOOGHE, T. 2012. The burden of endometriosis: costs and quality of life of women
  with endometriosis and treated in referral centres. *Hum Reprod*, 27, 1292-1299.
- SIMONE, D. A. & KAJANDER, K. C. 1997. Responses of cutaneous A-fiber nociceptors to noxious cold. J Neurophysiol, 77, 2049-2060.
- SIMPSON, J., ELIAS, S., MALINAK, L. & BUTTRAM, V. 1980. Heritable aspects of endometriosis I: genetic studies. *Am J Obstet Gynecol*, 137, 327-331.

- SIMPSON, J. L. & BISCHOFF, F. Z. 2002. Heritability and molecular genetic studies of endometriosis. *Ann NY Acad Sci*, 955, 239-251.
- SINAII, N., CLEARY, S. D., BALLWEG, M. L., NIEMAN, L. K. & STRATTON, P. 2002. High rates of autoimmune and endocrine disorders, fibromyalgia, chronic fatigue syndrome and atopic diseases among women with endometriosis: a survey analysis. *Hum Reprod*, 17, 2715-2724.
- SIRBU, A., RUSKIN, H. J. & CRANE, M. 2010. Cross-platform microarray data normalisation for regulatory network inference. *PLoS One*, *5*, e13822.
- SIVILOTTI, L. & WOOLF, C. J. 1994. The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. *J Neurophysiol*, 72, 169-179.
- SLATER, M., COOPER, M. & MURPHY, C. R. 2006. Human growth hormone and interleukin-6 are upregulated in endometriosis and endometrioid adenocarcinoma. *Acta Histochemica*, 108, 13-18.
- SMITH, R. K. 2008. *Resiniferatoxin to treat severe pain associated with advanced cancer* [Online]. Available:

https://clinicaltrials.gov/ct2/show/NCT00804154?term=Resiniferatoxin&rank=1.

- SMUC, T., PUCELJ, M., SINKOVEC, J., HUSEN, B., THOLE, H. & RIZNER, T. L. 2007. Expression analysis of the genes involved in estradiol and progesterone action in human ovarian endometriosis. *Gynecol Endocrinol*, 23, 105-111.
- SMYTH, G. K. 2004. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. *Stat Appl Genet Mol Biol*, 3, Article3.
- SOHLER, F., SOMMER, A., WACHTER, D. L., AGAIMY, A., FISCHER, O. M., RENNER, S. P., BURGHAUS, S., FASCHING, P. A., BECKMANN, M. W., FUHRMANN, U., STRICK, R. & STRISSEL, P. L. 2013. Tissue remodeling and nonendometrium-like menstrual cycling are hallmarks of peritoneal endometriosis lesions. *Reprod Sci*, 20, 85-102.
- SOMIGLIANA, E., VIGANO, P., GAFFURI, B., GUARNERI, D., BUSACCA, M. & VIGNALI, M. 1996. Human endometrial stromal cells as a source of soluble intercellular adhesion molecule (ICAM)-1 molecules. *Hum Reprod*, 11, 1190-1194.
- SOMMER, C. 2004. Serotonin in pain and analgesia: actions in the periphery. *Mol Neurobiol*, 30, 117-125.
- SOMMER, C. & KRESS, M. 2004. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. *Neurosci Lett*, 361, 184-187.
- SPEROFF, L. 2005. Endometrial cancer-surprising reports. *Maturitas*, 51, 329-333.
- STALEY, K. J., SOLDO, B. L. & PROCTOR, W. R. 1995. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. *Science*, 269, 977-981.
- STAUD, R. 2011. Peripheral pain mechanisms in chronic widespread pain. *Best Prac Res Clin Rheumatol*, 25, 155-164.
- STEFANSSON, H., EINARSDOTTIR, A. & GEIRSSON, R. 2001. Endometriosis is not associated with or linked to the GALT gene. *Fertil Steril*, 76, 1019-1022.
- STEWART, L. A. & PARMAR, M. K. 1993. Meta-analysis of the literature or of individual patient data: is there a difference? *Lancet*, 341, 418-422.
- STRATTON, P. & BERKLEY, K. J. 2011. Chronic pelvic pain and endometriosis: translational evidence of the relationship and implications. *Hum Reprod Update*, 17, 327-346.
- STROWITZKI, T., MARR, J., GERLINGER, C., FAUSTMANN, T. & SEITZ, C. 2010. Dienogest is as effective as leuprolide acetate in treating the painful symptoms of endometriosis: a 24-week, randomized, multicentre, open-label trial. *Human Reproduction*, 25, 633-641.

- STUART, J. M., SEGAL, E., KOLLER, D. & KIM, S. K. 2003. A gene-coexpression network for global discovery of conserved genetic modules. *Science*, 302, 249-255.
- SUGAWARA, J., FUKAYA, T., MURAKAMI, T., YOSHIDA, H. & YAJIMA, A. 1997. Increased secretion of hepatocyte growth factor by eutopic endometrial stromal cells in women with endometriosis. *Fertil Steril*, 68, 468-472.
- SUN, J.-M., SUN, L.-Z., LIU, J., SU, B.-H. & SHI, L. 2013. Serum interleukin-15 levels are associated with severity of pain in patients with knee osteoarthritis. *Dis Markers*, 35, 203-206.
- SUN, P. R., JIA, S. Z., LIN, H., LENG, J. H. & LANG, J. H. 2014. Genome-wide profiling of long noncoding ribonucleic acid expression patterns in ovarian endometriosis by microarray. *Fertil Steril*, 101, 1038-1046 e7.
- SUNDQVIST, J., ANDERSSON, K. L., SCARSELLI, G., GEMZELL-DANIELSSON, K. & LALITKUMAR, P. G. 2012. Expression of adhesion, attachment and invasion markers in eutopic and ectopic endometrium: a link to the aetiology of endometriosis. *Hum Reprod*, 27, 2737-2746.
- SURREY, E. S. 2006. The role of progestins in treating the pain of endometriosis. *Journal of Minimally Invasive Gynecology*, 13, 528-534.
- SUTTON, C. J., EWEN, S. P., WHITELAW, N. & HAINES, P. 1994. Prospective, randomized, double-blind, controlled trial of laser laparoscopy in the treatment of pelvic pain associated with minimal, mild, and moderate endometriosis. *Fertil Steril*, 62, 696-700.
- SUTTON, C. J., POOLEY, A. S., EWEN, S. P. & HAINES, P. 1997. Follow-up report on a randomized controlled trial of laser laparoscopy in the treatment of pelvic pain associated with minimal to moderate endometriosis. *Fertil Steril*, 68, 1070-1074.
- SUZUKI, R. & DICKENSON, A. 2005. Spinal and supraspinal contributions to central sensitization in peripheral neuropathy. *Neurosignals*, 14, 175-181.
- TABIBZADEH, S. 1998. Molecular control of the implantation window. *Hum Reprod Update*, 4, 465-471.
- TAKEDA, M., TSUBOI, Y., KITAGAWA, J., NAKAGAWA, K., IWATA, K. & MATSUMOTO, S. 2011. Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain. *Mol Pain*, 7, 5.
- TAKEHARA, M., UEDA, M., YAMASHITA, Y., TERAI, Y., HUNG, Y. C. & UEKI, M. 2004. Vascular endothelial growth factor A and C gene expression in endometriosis. *Hum Pathol*, 35, 1369-1375.
- TALBI, S., HAMILTON, A. E., VO, K. C., TULAC, S., OVERGAARD, M. T., DOSIOU, C., LE SHAY, N., NEZHAT, C. N., KEMPSON, R., LESSEY, B. A., NAYAK, N. R. & GIUDICE, L. C. 2006. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. *Endocrinology*, 147, 1097-1121.
- TAMBURRO, S., CANIS, M., ALBUISSON, E., DECHELOTTE, P., DARCHA, C. & MAGE, G. 2003. Expression of transforming growth factor β1 in nerve fibers is related to dysmenorrhea and laparoscopic appearance of endometriotic implants. *Fertil Steril*, 80, 1131-1136.
- TAMINAU, J., LAZAR, C., MEGANCK, S., NOW, #XE9 & , A. 2014. Comparison of merging and meta-analysis as alternative approaches for integrative gene expression analysis. *ISRN Bioinformatics*, 2014, 7.
- TAN, X. J., LANG, J. H., LIU, D. Y., SHEN, K., LENG, J. H. & ZHU, L. 2002. Expression of vascular endothelial growth factor and thrombospondin-1 mRNA in patients with endometriosis. *Fertil Steril*, 78, 148-153.

- TANIGUCHI, F., KAPONIS, A., IZAWA, M., KIYAMA, T., DEURA, I., ITO, M., IWABE, T., ADONAKIS, G., TERAKAWA, N. & HARADA, T. 2011. Apoptosis and endometriosis. *Front Biosci (Elite Ed)*, 1, 648-682.
- TAREK, A. S., KIMBERLY, A. M., ADAM, S., SARA, B., ANDREW, A., STEPHEN, P., JOSEPH, V. B. & CLIFFORD, J. W. 2001. Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. *Nature*, 410, 471-475.
- TAVARES, I. & MARTINS, I. 2013. Gene therapy for chronic pain management.
- TAWFEEK, M., EID, M., HASAN, A., MOSTAFA, M. & EL-SEROGY, H. 2012. Assessment of leukemia inhibitory factor and glycoprotein 130 expression in endometrium and uterine flushing: a possible diagnostic tool for impaired fertility. *BMC Women's Health*, 12, 10.
- TAYLOR, H. S., BAGOT, C., KARDANA, A., OLIVE, D. & ARICI, A. 1999. HOX gene expression is altered in the endometrium of women with endometriosis. *Hum Reprod*, 14, 1328-1331.
- TEGEDER, I. & LÖTSCH, J. 2009. Current evidence for a modulation of low back pain by human genetic variants. *J Cell Mol Med*, 13, 1605-1619.
- TEPPER, S. J., RAPOPORT, A. M. & SHEFTELL, F. D. 2002. Mechanisms of action of the 5-HT1B/1D receptor agonists. *Arch Neurol*, 59, 1084-1088.
- THE PRACTICE COMMITTEE OF THE AMERICAN SOCIETY FOR REPRODUCTIVE, M. 2014. Treatment of pelvic pain associated with endometriosis: a committee opinion. *Fertil Steril*, 101, 927-935.
- TISCHLER, A. S. 1989. The dispersed neuroendocrine cells: the structure, function, regulation and effects of xenobiotics on this system. *Toxicol Pathol*, 17, 307-316.
- TLANDI, T., FELEMBAN, A. & CHEN, M. 2001. Nerve fibres and histopathilogy of endometriosis-harboring peritoneum. *J AM Assoc Gynecol Laparosc*, 8, 95-98.
- TOKUSHIGE, N., MARKHAM, R., RUSSELL, P. & FRASER, I. 2006a. High density of small nerve fibres in the functional layer of the endometrium in women with endometriosis. *Hum Reprod*, 21, 782-787.
- TOKUSHIGE, N., MARKHAM, R., RUSSELL, P. & FRASER, I. S. 2006b. Nerve fibres in peritoneal endometriosis. *Hum Reprod*, 21, 3001-3007.
- TOKUSHIGE, N., MARKHAM, R., RUSSELL, P. & FRASER, I. S. 2007. Different types of small nerve fibers in eutopic endometrium and myometrium in women with endometriosis. *Fertil Steril*, 88, 795-803.
- TOKUSHIGE, N., MARKHAM, R., RUSSELL, P. & FRASER, I. S. 2008. Effects of hormonal treatment on nerve fibers in endometrium and myometrium in women with endometriosis. *Fertil Steril*, 90, 1589-1598.
- TOKUSHIGE, N., RUSSELL, P., BLACK, K., BARRERA, H., DUBINOVSKY, S., MARKHAM, R. & FRASER, I. 2010. Nerve fibers in ovarian endometriomas. *Fertil Steril*, 94, 1944-1947.
- TORRY, D. S. & TORRY, R. J. 1997. Angiogenesis and the expression of vascular endothelial growth factor in endometrium and placenta. *Am J Reprod Immunol*, 37, 21-29.
- TOUSIGNANT-LAFLAMME, Y. & MARCHAND, S. 2009. Excitatory and inhibitory pain mechanisms during the menstrual cycle in healthy women. *Pain*, 146, 47-55.
- TOWNSEND, C., BRUCE, B., HOOTEN, W. & ROME, J. 2006. The role of mental health professionals in multidisciplinary pain rehabilitation programs. *J Clin Psychol*, 62, 1433 1443.
- TRACEY, I. & MANTYH, P. W. 2007. The cerebral signature for pain perception and its modulation. *Neuron*, 55, 377-391.
- TRAN, L., TOKUSHIGE, N., BERBIC, M., MARKHAM, R. & FRASER, I. 2009. Macrophages and nerve fibres in peritoneal endometriosis. *Hum Reprod*, 24, 835-841.

- TRANG, T., BEGGS, S. & SALTER, M. W. 2006. Purinoceptors in microglia and neuropathic pain. *Pflugers Arch*, 452, 645-652.
- TREEDE, R. D. 1999. Transduction and transmission properties of primary nociceptive afferents. *Ross Fiziol Zh Im I M Sechenova*, 85, 205-211.
- TREISTER, R., PUD, D., EBSTEIN, R. P., LAIBA, E., RAZ, Y., GERSHON, E., HADDAD, M. & EISENBERG, E. 2011. Association between polymorphisms in serotonin and dopamine-related genes and endogenous pain modulation. *J Pain*, 12, 875-883.
- TRELOAR, S., O'CONNOR, D. & O'CONNOR, V. 1999. Genetic influences on endometriosis in an Australian twin sample. *Fertil Steril*, 71, 701-710.
- TRIOLO, O., LAGANA, A. S. & STURLESE, E. 2013. Chronic pelvic pain in endometriosis: an overview. *J Clin Med Res*, 5, 153-163.
- TRITCHLER, D., PARKHOMENKO, E. & BEYENE, J. 2009. Filtering genes for cluster and network analysis. *BMC Bioinformatics*, 10, 193.
- TSAI, S. J., WU, M. H., LIN, C. C., SUN, H. S. & CHEN, H. M. 2001. Regulation of steroidogenic acute regulatory protein expression and progesterone production in endometriotic stromal cells. *J Clin Endocrinol Metab*, 86, 5765-5773.
- TSANTOULAS, C. & MCMAHON, S. B. 2014. Opening paths to novel analgesics: the role of potassium channels in chronic pain. *Trends Neurosci*, 37, 146-158.
- TSENG, J. F., RYAN, I. P., MILAM, T. D., MURAI, J. T., SCHRIOCK, E. D., LANDERS, D. V. & TAYLOR, R. N. 1996. Interleukin-6 secretion in vitro is up-regulated in ectopic and eutopic endometrial stromal cells from women with endometriosis. *J Clin Endocrinol Metab*, 81, 1118-1122.
- TSILIKI, G., ZERVAKIS, M., IOANNOU, M., SANIDAS, E., STATHOPOULOS, E., POTAMIAS, G., TSIKNAKIS, M. & KAFETZOPOULOS, D. 2011. Multi-platform data integration in microarray analysis. *IEEE Trans Inf Technol Biomed*, 15, 806-812.
- ULUKUS, M., CAKMAK, H. & ARICI, A. 2006. The role of endometrium in endometriosis. J Soc Gynecol Investig, 13, 467-476.
- URANO, H., ARA, T., FUJINAMI, Y. & HIRAOKA, B. Y. 2012. Aberrant TRPV1 expression in heat hyperalgesia associated with trigeminal neuropathic pain. *Int J Med Sci*, 9, 690-697.
- VALLE, R. F. & SCIARRA, J. J. 2003. Endometriosis: treatment strategies. *Ann NY Acad Sci*, 997, 229-239.
- VELASCO, I., ACIEN, P., CAMPOS, A., ACIEN, M. I. & RUIZ-MACIA, E. 2010. Interleukin-6 and other soluble factors in peritoneal fluid and endometriomas and their relation to pain and aromatase expression. *J Reprod Immunol*, 84, 199-205.
- VERCELLINI, P., FEDELE, L., AIMI, G., PIETROPAOLO, G., CONSONNI, D. & CROSIGNANI, P. G. 2007. Association between endometriosis stage, lesion type, patient characteristics and severity of pelvic pain symptoms: a multivariate analysis of over 1000 patients. *Hum Reprod*, 22, 266-271.
- VERCELLINI, P., FRONTINO, G., DE GIORGI, O., PIETROPAOLO, G., PASIN, R. & CROSIGNANI, P. G. 2003. Continuous use of an oral contraceptive for endometriosisassociated recurrent dysmenorrhea that does not respond to a cyclic pill regimen. *Fertil Steril*, 80, 560-3.
- VERCELLINI, P., FRONTINO, G., PIETROPAOLO, G., GATTEI, U., DAGUATI, R. & CROSIGNANI, P. 2004. Deep endometriosis: definition, pathogenesis and clinical management. J Am Gynecol Laparosc, 11, 153-161.
- VERCELLINI, P., SOMIGLIANA, E., VIGANO, P., ABBIATI, A., BARBARA, G. & FEDELE, L. 2009. Chronic pelvic pain in women: etiology, pathogenesis and diagnostic approach. *Gynecol Endocrinol*, 25, 149-158.

VERCELLINI, P., SOMIGLIANA, E., VIGANO, P., ABBIATI, A., DAGUATI, R. & CROSIGNANI, P. G. 2008. Endometriosis: current and future medical therapies. *Best Pract Res Clin Obstet Gynaecol*, 22, 275-306.

VERCELLINI, P., TRESPIDI, L., COLOMBO, A., VENDOLA, N., MARCHINI, M. & CROSIGNANI, P. G. 1993. A gonadotropin-releasing hormone agonist versus a low-dose oral contraceptive for pelvic pain associated with endometriosis. *Fertil Steril*, 60, 75-9.

- VERCELLINI, P., VIGANO, P. & SOMIGLIANA, E. 2005. The role of the levonorgestrelreleasing intrauterine device in the management of symptomatic endometriosis. *Curr Opin Obstet Gynecol*, 17, 359-65.
- VIGANO, P., SOMIGLIANA, E., VIGNALI, M., BUSACCA, M. & BLASIO, A. 2007. Genetics of endometriosis: current status and prospects. *Front Biosci*, 1, 3247-3255.
- VINATIER, D., COSSON, M. & DUFOUR, P. 2000. Is endometriosis an endometrial disease? *Eur J Obstet Gynecol Reprod Biol*, 91, 113-125.
- VINATIER, D., ORAZI, G., COSSON, M. & DUFOUR, P. 2001. Theories of endometriosis. *Eur J Obstet Gynecol Reprod Biol*, 96, 21-34.
- VINCENT, K., WARNABY, C., STAGG, C. J., MOORE, J., KENNEDY, S. & TRACEY, I. 2011. Dysmenorrhoea is associated with central changes in otherwise healthy women. *Pain*, 152, 1966-1975.
- VLODAVSKY, I., BECKHOVE, P., LERNER, I., PISANO, C., MEIROVITZ, A., ILAN, N. & ELKIN, M. 2012. Significance of heparanase in cancer and inflammation. *Cancer Microenviron*, 5, 115-132.
- VON RANGO, U., CLASSEN-LINKE, I., KRUSCHE, C. A. & BEIER, H. M. 1998. The receptive endometrium is characterized by apoptosis in the glands. *Hum Reprod*, 13, 3177-3189.
- VOSA, U., VOODER, T., KOLDE, R., VILO, J., METSPALU, A. & ANNILO, T. 2013. Metaanalysis of microRNA expression in lung cancer. *Int J Cancer*, 132, 2884-2893.
- VOSCOPOULOS, C. & LEMA, M. 2010. When does acute pain become chronic? *Brit J Anaes*, 105, i69-i85.
- VOUK, K., SMUC, T., GUGGENBERGER, C., RIBIC-PUCELJ, M., SINKOVEC, J., HUSEN, B., THOLE, H., HOUBA, P., THAETE, C., ADAMSKI, J. & RIZNER, T. L. 2011. Novel estrogen-related genes and potential biomarkers of ovarian endometriosis identified by differential expression analysis. *J Steroid Biochem Mol Biol*, 125, 231-242.
- WANG, G., TOKUSHIGE, N., MARKHAM, R. & FRASER, I. 2009. Rich innervation of deep infiltrating endometriosis. *Hum Reprod*, 24, 827-834.
- WANG, G., TOKUSHIGE, N., RUSSELL, P., DUBINOVSKY, S., MARKHAM, R. & FRASER, I. S. 2010. Neuroendocrine cells in eutopic endometrium of women with endometriosis. *Hum Reprod*, 25, 387-391.
- WANG, W., GU, J., LI, Y. Q. & TAO, Y. X. 2011. Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain? *Mol Pain*, 7, 16.
- WANG, X.-M. & LEHKY, T. J. 2012. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. *Cytokine*, 59, 3-9.
- WANG, Y., THILMONY, R. & GU, Y. Q. 2014. NetVenn: an integrated network analysis web platform for gene lists. *Nucleic Acids Res*.
- WARD, K., FARRINGTON, P., MEADE, M. & AL, E. 2004. The heritability of endometriosis: insights from a large population database. *J Soc Gynecol Investig*, 11.
- WASNIK, A. P., MAZZA, M. B. & LIU, P. S. 2011. Normal and variant pelvic anatomy on MRI. *Magn Reson Imaging Clin N Am*, 19, 547-566.
- WAXMAN, S. G. 2010. Polymorphisms in ion channel genes: emerging roles in pain. *Brain*, 133, 2515-2518.

- WAXMAN, S. G., DIB-HAJJ, S., CUMMINS, T. R. & BLACK, J. A. 1999. Sodium channels and pain. *Proc Natl Acad Sci U S A*, 96, 7635-7639.
- WEI, F., DUBNER, R., ZOU, S., REN, K., BAI, G., WEI, D. & GUO, W. 2010. Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J Neurosci, 30, 8624-8636.
- WEITZMAN, G. & BUTTRAM, V. 1989. Classification of endometriosis. *Obstet Gynecol Clin North Am*, 16, 61-77.
- WEIWEI HE, XISHI LIU, YUQIU ZHANG & GUO, S.-W. 2010. Generalized Hyperalgesia in Women With Endometriosis and Its Resolution Following a Successful Surgery. *Reproductive Sciences*, 17, 1099-1111.
- WILLIS, W. D., JR. 1985. Central nervous system mechanisms for pain modulation. *Appl Neurophysiol*, 48, 153-165.
- WILSON, S. P. & YEOMANS, D. C. 2000. Genetic therapy for pain management. *Curr Rev Pain*, 4, 445-450.
- WINGFIELD, M., MACPHERSON, A., HEALY, D. L. & ROGERS, P. A. 1995. Cell proliferation is increased in the endometrium of women with endometriosis. *Fertil Steril*, 64, 340-346.
- WITZ, C. A., MONOTOYA-RODRIGUEZ, I. A. & SCHENKEN, R. S. 1999. Whole explants of peritoneum and endometrium: a novel model of the early endometriosis lesion. *Fertil Steril*, 71, 56-60.
- WOLFF, M. V., THALER, C. J., STROWITZKI, T., BROOME, J., STOLZ, W. & TABIBZADEH, S. 2000. Regulated expression of cytokines in human endometrium throughout the menstrual cycle: dysregulation in habitual abortion. *Mol Hum Reprod*, 6, 627-634.
- WOOD, J. N. 2004. Recent advances in understanding molecular mechanisms of primary afferent activation. *Gut*, 53, ii9-ii12.
- WOOLF, C. J. & SALTER, M. W. 2000. Neuronal plasticity: increasing the gain in pain. *Science*, 288, 1765-1769.
- WREN, J. D., WU, Y. & GUO, S.-W. 2007. A system-wide analysis of differentially expressed genes in ectopic and eutopic endometrium. *Hum Reprod*, 22, 2093-2102.
- WU, G., RINGKAMP, M., HARTKE, T. V., MURINSON, B. B., CAMPBELL, J. N., GRIFFIN, J. W. & MEYER, R. A. 2001. Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. *J Neurosci*, 21, RC140.
- WU, Z. 2009. A review of statistical methods for preprocessing oligonucleotide microarrays. *Stat Meth Med Res*, 18, 533-541.
- WULFF, H., CASTLE, N. A. & PARDO, L. A. 2009. Voltage-gated potassium channels as therapeutic drug targets. *Nat Rev Drug Discov*, 8, 982-1001.
- XU, F., WEN, T., LU, T. J. & SEFFEN, K. A. 2008. Modeling of nociceptor transduction in skin thermal pain sensation. *J Biomech Eng*, 130, 041013.
- XU, H., ZHANG, T., MAN, G. C., MAY, K. E., BECKER, C. M., DAVIS, T. N., KUNG, A. L., BIRSNER, A. E., D'AMATO, R. J., WONG, A. W. & WANG, C. C. 2013. Vascular endothelial growth factor C is increased in endometrium and promotes endothelial functions, vascular permeability and angiogenesis and growth of endometriosis. *Angiogenesis*, 16, 541-551.
- XUE, Q., LIN, Z., CHENG, Y. H., HUANG, C. C., MARSH, E., YIN, P., MILAD, M. P., CONFINO, E., REIERSTAD, S., INNES, J. & BULUN, S. E. 2007. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. *Biol Reprod*, 77, 681-687.

- YAO, M. Z., GU, J. F., WANG, J. H., SUN, L. Y., LANG, M. F., LIU, J., ZHAO, Z. Q. & LIU, X. Y. 2002. Interleukin-2 gene therapy of chronic neuropathic pain. *Neuroscience*, 112, 409-416.
- YAO, M. Z., GU, J. F., WANG, J. H., SUN, L. Y., LIU, H. & LIU, X. Y. 2003. Adenovirusmediated interleukin-2 gene therapy of nociception. *Gene Ther*, 10, 1392-1399.
- YARNITSKY, D. 2010. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): its relevance for acute and chronic pain states. *Curr Opin Anaesthesiol*, 23, 611-615.
- YOSHIMURA, N. & DE GROAT, W. C. 1999. Increased excitability of afferent neurons innervating rat urinary bladder after chronic bladder inflammation. *J Neurosci*, 19, 4644-4653.
- YOSHINO, O., OSUGA, Y., HIROTA, Y., KOGA, K., HIRATA, T., HARADA, M., MORIMOTO, C., YANO, T., NISHII, O., TSUTSUMI, O. & TAKETANI, Y. 2004. Possible pathophysiological roles of mitogen-activated protein kinases (MAPKs) in endometriosis. *Am J Reprod Immunol*, 52, 306-311.
- YU, C. Q., YU, J., HAN, J., ZHOU, Q. L. & SHEN, W. 2009. [Regulatory mechanism of malignant behavior of endometriosis mediated by puerarin]. *Zhong Xi Yi Jie He Xue Bao*, 7, 41-47.
- YUAN, C. C. 2006. Laparoscopic uterosacral nerve ablation and chronic pelvic pain. *J Chin Med Assoc*, 69, 101-3.
- YUKHANANOV, R. & KISSIN, I. 2008. Persistent changes in spinal cord gene expression after recovery from inflammatory hyperalgesia: a preliminary study on pain memory. *BMC Neurosci*, 9, 32.
- ZAFRAKAS, M., TARLATZIS, B. C., STREICHERT, T., POURNAROPOULOS, F., WOLFLE, U., SMEETS, S. J., WITTEK, B., GRIMBIZIS, G., BRAKENHOFF, R. H., PANTEL, K., BONTIS, J. & GUNES, C. 2008. Genome-wide microarray gene expression, array-CGH analysis, and telomerase activity in advanced ovarian endometriosis: a high degree of differentiation rather than malignant potential. *Int J Mol Med*, 21, 335-344.
- ZAKIR, H. M., MOSTAFEEZUR, R. M., SUZUKI, A., HITOMI, S., SUZUKI, I., MAEDA, T., SEO, K., YAMADA, Y., YAMAMURA, K., LEV, S., BINSHTOK, A. M., IWATA, K. & KITAGAWA, J. 2012. Expression of TRPV1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation. *PLoS One*, 7, e44023.
- ZEITOUN, K., TAKAYAMA, K., SASANO, H., SUZUKI, T., MOGHRABI, N., ANDERSSON, S., JOHNS, A., MENG, L., PUTMAN, M., CARR, B. & BULUN, S. E. 1998. Deficient 17beta-hydroxysteroid dehydrogenase type 2 expression in endometriosis: failure to metabolize 17beta-estradiol. *J Clin Endocrinol Metab*, 83, 4474-4780.
- ZEVALLOS, H. 2012. Genomic analysis of the expression of neurotrophins in the endometrium of women with and without endometriosis Sydney: The University of Sydney.
- ZHANG, T., STILWELL, J. L., GERION, D., DING, L., ELBOUDWAREJ, O., COOKE, P. A., GRAY, J. W., ALIVISATOS, A. P. & CHEN, F. F. 2006. Cellular Effect of High Doses of Silica-Coated Quantum Dot Profiled with High Throughput Gene Expression Analysis and High Content Cellomics Measurements. *Nano letters*, 6, 800-808.
- ZHANG, T. T., FANG, X. L. & GANG, J. 2012. Endostatin gene therapy for endometriosis in rats. *J Int Med Res*, 40, 1840-1849.
- ZHANG, X., LU, B., HUANG, X., XU, H., ZHOU, C. & LIN, J. 2009. Endometrial nerve fibers in women with endometriosis, adenomyosis, and uterine fibroids. *Fertil Steril*, 92, 1799-1801.
- ZHOU, Z., PENG, X., HAO, S., FINK, D. J. & MATA, M. 2008. HSV-mediated transfer of interleukin-10 reduces inflammatory pain through modulation of membrane tumor necrosis factor alpha in spinal cord microglia. *Gene Ther*, 15, 183-190.

- ZHU, Z. W., FRIESS, H., WANG, L., ZIMMERMANN, A. & BUCHLER, M. W. 2001. Brainderived neurotrophic factor (BDNF) is upregulated and associated with pain in chronic pancreatitis. *Dig Dis Sci*, 46, 1633-1639.
- ZITO, G., LUPPI, S., GIOLO, E., MARTINELLI, M., VENTURIN, I., DI LORENZO, G. & RICCI, G. 2014. Medical treatments for endometriosis-associated pelvic pain. *Biomed Res Int*, 2014, 191967.
- ZONDERVAN, K., CARDON, L. & KENNEDY, S. 2001. The genetic basis of endometriosis. *Curr Opin Obstet Gynecol*, 13, 309-314.
- ZORBAS, K. A., ECONOMOPOULOS, K. P. & VLAHOS, N. F. 2015. Continuous versus cyclic oral contraceptives for the treatment of endometriosis: a systematic review. *Arch Gynecol Obstet*, 292, 37-43.
- ZUBOR, P., HATOK, J., GALO, S., DOKUS, K., KLOBUSIAKOVA, D., DANKO, J. & RACAY, P. 2009. Anti-apoptotic and pro-apoptotic gene expression evaluated from eutopic endometrium in the proliferative phase of the menstrual cycle among women with endometriosis and healthy controls. *Eur J Obstet Gynecol Reprod Biol*, 145, 172-176.
- ZURBORG, S., PISZCZEK, A., MARTINEZ, C., HUBLITZ, P., AL BANCHAABOUCHI, M., MOREIRA, P., PERLAS, E. & HEPPENSTALL, P. 2011. Generation and characterization of an Advillin-Cre driver mouse line. *Molecular Pain*, 7, 66.