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ABSTRACT  

Steroids are endogenous compounds derived from cholesterol which can be divided into five 

families comprising of estrogens, androgens, progestins, mineralocorticoids and 

glucucorticoids. Most circulating steroids are conjugated to a hydrophilic moiety (e.g. 

glucuronide and sulfate) or bound to carrier proteins (e.g. sex hormone binding globulin and 

albumin) with a small proportion in a non-protein bound form. The production of steroids is 

regulated by the pituitary gonadotropins i.e. luteinizing hormone (LH) and follicle 

stimulating hormone (FSH) that mediate their bioactivity by binding to cognate G protein-

coupled receptors expressed on the surface of specific target cells in the gonads – Leydig 

cells for LH and Sertoli cells for FSH. Steroids exert biological activities by binding to their 

specific intracellular receptors in both reproductive and non-reproductive target tissues. 

Accurate measurement of reproductive hormones is vital to evaluate neonatal disorders of 

sexual differentiation, pubertal status, gonadal function, and hormonal doping in sports. 

Steroids from biological fluids, notably serum and urine, can be measured using 

immunoassays and gas chromatography mass spectrometry (GC-MS); however, these 

traditional assays have significant limitations. The advent of liquid chromatography tandem 

mass spectrometry (LC-MS/MS) coupled with soft ionization (e.g. atmospheric pressure 

photo ionization: APPI) method has expanded the scope for measurement of small molecules 

from biological matrices with higher accuracy, specificity, sensitivity and requires less 

sample preparation. The overall aim of this study is to develop and validate LC-MS/MS 

methods to measure steroids from biological samples for clinical research studies.   

The first part of this thesis was to develop methodologies and analysis of androgens i.e. 

testosterone (T) and nandrolone (N) from dried blood spot (DBS) samples using LC-MS/MS. 

Conventionally T esters are used as replacement therapy for T deficient men and is usually 
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administered by intramuscular (im) injections to produce long-acting depots which is more 

convenient in sustaining T release for weeks to months and thereby assists in maintaining 

long-term adherence to treatment. However, administration of androgen esters via deep im 

injections into the gluteal muscle requires medical personnel (to give the injection at the right 

site) and yet the injectate is often deposited into subcutaneous (sc) fat due to the thick sc fat 

layer in most men. IM injections are also associated with local pain and discomfort, injection 

site infection or bleeding and may not be suitable for patients with bleeding disorders or 

using anti-coagulants. Thus, the aim of this clinical study was to investigate the feasibility 

and pharmacology of sc injection (at a single abdominal site) of nandrolone decanoate (ND), 

as a typical androgen ester in an oil vehicle, in healthy men and to collect whole blood 

samples from finger pricks onto filter cards at home for 21 days to investigate the 

pharmacokinetics of single sc injection of ND and its pharmacodynamic effects on 

endogenous T. A LC-MS/MS method was developed to enable measurement of serum T and 

N from the whole blood spot. This bypassed using a subsample to avoid non-homogenous 

distribution of blood and hematocrit effect on the filter paper. The assay had lower limits of 

quantitation of 50 (T) and 156 (N) pg/mL, respectively using 50 μL of blood. In the clinical 

study, daily serum N peaked 2.50 ± 0.25 (SEM) ng/mL at a median (range) of 6 (4-13) days 

causing a reduction in serum T from 3.50 ± 0.57 ng/mL at baseline to a nadir of 0.38 ± 0.13 

(SEM) ng/mL (89 ± 3% suppression) at a median (range) of 8 (5-16) days. This study 

demonstrates that (a) DBS sampling with LC-MS/MS steroid assays achieves frequent time 

sampling in the community without requiring clinic visits, venesection or frozen serum 

storage and (b) an androgen ester in oil vehicle can be delivered effectively by sc injection 

avoiding the need for medically supervised deep im injections. 

The second part of this thesis evaluated the measurement of urinary LH immunoreactivity 

using immunofluorometric (IF) and immunochemiluminometric (ICL) LH assays after 
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prolonged frozen storage. These commercially available LH immunoassays are developed 

and validated for human blood samples but not urine thus LH assays intended for use with 

urine samples needs thorough validation. LH was measured in serial urine samples following 

administration of a single injection of one of two doses of recombinant human chorionic 

hormone (rhCG) with assays run at the end of study (2008) and again after 4 years of frozen 

(-20 °C) storage where samples were stored without adding preservatives. The ICL assay 

showed quantitatively reproducible LH measurements after prolonged -20 °C storage. 

However, the IF immunoassay gave consistently lower LH levels relative to ICL (2008) with 

a further proportionate reduction after 4 years of sample storage (2012). Yet, both the assays 

displayed similar patterns of the time-course of urine LH measurement both before and after 

4 years of frozen storage. We found that both immunoassays are suitable for urinary LH 

measurements with ICL assay being more robust for quantitative urinary LH measurement 

such as for anti-doping purpose whereas the IF could be applicable for research studies where 

urine LH levels are compared within-study but not in absolute terms. 

Urinary hormone concentrations are often adjusted to correct for hydration status. The third 

part of this thesis investigated whether first morning void urine hormones in growing 

adolescents require adjustments for urine dilution/concentration and, if so, whether urinary 

creatinine or specific gravity (SG) are better adjustments. The study population was 

adolescents aged 10.1 to 14.3 years initially who provided fasting morning blood samples at 0 

and 12 months (n=343) and first morning urine every three months (n=644). LC-MS/MS 

method was developed and validated to measure unconjugated T, estradiol (E2), 

dihydrotestostorone (DHT) and dehydroepiandrosterone (DHEA) in human urine. In 

addition, urine LH was measured using the previously validated ICL assay. Unadjusted, 

creatinine and SG-adjusted hormonal concentrations were compared by Deming regression 

and Bland-Altman analysis and grouped according to self-rated Tanner stage or chronological 
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age. Correlations of paired serum and urinary hormonal concentration of unadjusted and 

creatinine and SG adjusted were also compared. Fasting first morning void hormone 

concentrations correlated well and were unbiased between unadjusted or adjusted by either 

creatinine or SG. Urine creatinine concentration increases with Tanner stages, age and male 

gender whereas, urine SG was not influenced by Tanner stage, age or gender. Adjustment by 

creatinine or SG of urinary LH, E2, T, DHT and DHEA concentrations did not improve 

correlation with paired serum concentrations. The study demonstrates that urine steroid and 

LH concentrations in first morning void samples of adolescents are not significantly 

influenced by hydration status and may not require adjustments; however, if desired, both 

creatinine and SG adjustments are equally suitable. 

The final part of this thesis aimed to describe the longitudinal relationships of within-

individual hormone and anthropometric changes during puberty. Temporal changes in urine 

and serum hormones over 12 months to standard measures of pubertal development were 

assessed. A community sample of 104 adolescents (57 female) was studied over 12 months 

with annual anthropometric assessment, blood sampling and self-rated Tanner staging and 

urine collected every 3 months. Serum and urine sex steroids (T, E2) were measured by the 

developed and validated LC-MS/MS method and LH by ICL assay. A high proportion (92%) 

of scheduled samples were obtained with low attrition rate of 6.7% over the 12 months. The 

study demonstrated that the urine hormone measurements correlated cross-sectionally and 

longitudinally with age, anthropometry and Tanner stage. This study successfully developed 

a feasible and valid sampling methodology and measurements for puberty hormones in urine, 

which allows a sufficiently intensive sampling frequency to monitor individual pubertal 

progression in adolescents. 
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Chapter 1 Literature Review 

1.1 Steroid hormones 

1.1.1 Structure and classification  

Steroids can be classified into five families depending on its structural and biological basis. 

These comprise estrogens, androgens, progestins, mineralocorticoids and glucocorticoids. 

Vitamin D, bile acids and thyroid hormones also have close structural resemblance to the 

steroid family of molecules. Steroids are lipophilic compounds derived from cholesterol, a 

sterol which is made up of three hexagonal carbon rings (A, B and C) and a pentagonal 

carbon ring (D) to which a side chain is attached (Figure 1.1). This four-membered 

hydrocarbon core has two important methyl groups are attached at position 18 (attached to 

C13) and 19 (attached to C10). The carbon rings fused in a trans orientation to form a planar 

structure. The orientation of the substituent groups on the steroid skeleton is either above (β) 

or below (α) the plane. According to the chemical structure, steroids are divided into cholane, 

cholestane, androstane, estrane and pregnane. Cholanes (bile acids) and cholestanes (vitamin 

D and cholesterol) are known as sterols with long and branched hydrocarbon side chains 

attached to D ring. Partial cleavage of the cholestane, C27 sterol side chain (ring-D) produces 

pregnane C21 series steroids (progestins and corticosteroids), whereas the total cleavage of 

the side chain yields androstane C19 series steroids (androgens). Finally, removal of the 

methyl group between the A- and B-rings results in production of estrane C18 series steroids 

(estrogens). The structures of the three classes of steroids are shown in Figure 1.2. Various 

functional groups such as hydroxy, keto and methyl-groups are located at different positions 

of the carbon backbone in all series depending on the compound.  

Each steroid has common alike structure and stereochemistry. However, each class of 

steroids displays distinct physiologic activities depending on the family of nuclear 

transcription factors the molecules activate via its cognate (steroid hormone receptor) 
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(Strauss 2014). Progestagens, androgens and estrogens are classified as sex steroids whereas 

corticosteroids and mineralocorticoids are adrenal steroids (Figure 1.2). The ovary, testis, 

adrenal cortex and placenta are the endocrine organs that specialize in steroid hormone 

production. The ovaries secrete estrogens and progestagens, the testis produces mainly 

androgens and the adrenal produces both corticosteroids (mineralo- and glucucorticoids) and 

sex steroid precursors. During pregnancy, the placenta produces progestagens and estrogens.  

 

 

 

Figure 1.1 Cholesterol structure 

The rings are identified with capital letters and carbon atoms are numbered. The bold and 

cross-hatched wedges represents the bonds extending above and below the plane, 

respectively. 
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Figure 1.2 Classification of steroids according to basic backbone structure (androstane, estrane and pregnane) and example of steroid 

classes: sex steroids (androgen, estradiol and progesterone), corticosteroids and mineralocorticoid. 
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1.1.2 Physiological action 

The production of steroids occurs in the mitochondria and smooth endoplasmic reticulum of 

cells in the adrenal cortex, the gonads or the placenta. Steroids are hydrophobic molecules 

that can penetrate biological membrane of lipophilic cells and are not stored in intracellular 

vesicles like peptide hormones. They are then transported rapidly in the bloodstream to reach 

targeted cells where the steroids bind to its specific receptor, which acts as transcriptional 

activators of steroid-responsive genes. Besides genomic response which may take between a 

few hours to days to manifest, steroids also regulate non-genomic responses (or ‘rapid 

actions’) that occurs within seconds to an hour (Norman et al. 2004). The pathway of steroid 

hormone biological responses is shown in the schematic diagram below (Figure 1.3).  

In biological fluid, small proportion of steroids circulate in unbound form (2-3%) and 

the remaining are in conjugated form with a hydrophilic moiety such as glucuronide or 

sulfate or they are bound to 50-60 kd carrier protein glycoproteins, such as sex hormone 

binding globulin (SHBG), corticosteroid binding globulin (CBG) as well as albumin (Dunn et 

al. 1981). Albeit the steroid binding proteins circulate at low concentration compared to 

albumin, they have higher binding affinity to certain steroids. SHBG and CBG have high 

binding affinity towards sex steroids (testosterone and estradiol) and corticosteroids, 

respectively (Kicman 2010). The binding of steroids to the circulating binding proteins serves 

as a reservoir of the hormone, protects the steroids from rapid inactivation or urinary/biliary 

excretion and ensures ubiquitous distribution of the steroids (Kronenberg et al. 2011). 

According to the free hormone hypothesis, the free steroids are physiologically available to 

bind to their target cell, whereas the steroids bound to the carrier proteins are believed to have 

different and limited physiological activity (Mendel 1989). Contrary to this latter concept, 

recent studies have found that the cell membrane endocytic receptors, also known as the 

megalin receptor, expressed in the reproductive tissues mediates cellular uptake of circulating 
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protein-bound sex steroids. Once transported into the cells, lysosomes degrades the carrier 

protein bound and releases the steroids allowing it to bind to its receptor that further induces 

steroid responsive-genes (Hammes et al. 2005). SHBG bound androgens and estrogens are 

involved in the development and maturation of reproductive organs (Hammes et al. 2005, 

Kahn et al. 2008). 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

A. In the genomic pathway, binding of steroids to the nuclear receptors (present either in the 
nucleus, in the cytoplasm complexed to chaperones or in between the cytoplasm and nucleus) 
leads to up- or down regulation of gene transcriptional responses regulating protein synthesis 
within minutes to days. B. Non-genomic biological responses of steroid involves occupancy of 
steroids to the plasma membrane of the cell, which in turn activates direct biological responses by 
intracellular signaling molecules such as mitogen activated protein (MAP) kinase, protein kinase A 
(PKA), cyclic adenosine monophophate (cAMP), and opening of calcium channels or indirect 
biological responses through genomic pathway [adapted from (Norman et al. 2004, Vogeser and 
Parhofer 2007)].  

 

 

 

 

A B 

Figure 1.3 Genomic (A) and non-genomic (B) pathways of steroid hormones 



                                                                                                                                                                   Chapter 1 

   10 
 

1.2 Steroid metabolism 

1.2.1 Steroidogenesis (Biosynthesis of steroids)  

The synthesis of steroids specifically takes place in the adrenal cortex (zona fasciculata, 

reticularis and glomerulosa), testicular Leydig cells, ovarian granulosa and theca cells and the 

placental syntiotrophoblast cells (Miller and Bose 2011). Cholesterol is a starting point for 

biosynthesis of all steroids hormone, bile acids and vitamin D. The three sources of 

cholesterol are from dietary low density lipoprotein (LDL)-uptake, stored cholesterol and de 

novo synthesis. LDL is taken up by the steroidogenic cell via specific receptor-mediated 

endocytosis. Within the cell, stored lipoprotein cholesterol esters are then converted by the 

lysosomal acid lipase into free cholesterol which is the substrate for steroidogenesis (Brown 

et al. 1978, Gwynne and Strauss 1982). Excessive cholesterol uptake by the cell is either 

transferred out as an external lipoprotein or stored within the cell cytoplasm as lipid droplets 

upon cholesterol esterification catalyzed by the acyl-coenzyme A:cholesterol acyltransferase 

(ACAT). As required, the stored lipid droplets are hydrolized by acid lipase to release free 

cholesterol (Miller and Bose 2011). Cholesterol is also synthesized de novo by the smooth 

endoplasmic reticulum of the steroidogenic cells catalyzed by at least 17 enzymes. The 

cellular cholesterol synthesis and lipoprotein uptake by the steroidogenic cells is stimulated 

by the tropic peptide hormones (Miller and Bose 2011).    

The conversion of cholesterol to steroids is regulated by a series of enzyme reactions. 

The two main classes of enzymes involved in the steroids conversion pathway are the 

cytochrome P450 (CYPs) heme containing proteins and hydroxysteroid dehydrogenases 

(HSDs) (Miller and Auchus 2011, Payne and Hales 2004). The CYP enzymes includes type I 

or type II which is located in the mitochondria and endoplasmic reticulum, respectively. 

Whereas the HSD enzymes can be classified into aldo-keto reductase (AKR) and short-chain 

dehydrogenase/reductase (SDR) families (Miller and Auchus 2011). CYP enzymes mediate 
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hydroxylation, aromatization and carbon-carbon bond cleavage using molecular oxygen and 

nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor which irreversibly 

oxidize steroids (Miller 2005). In vitro, the HSD reactions are reversible directing reactions 

to either oxidation of hydroxysteroids or reduction of ketosteroids depending on conditions, 

for example, pH, cofactor and substrate availability. However in vivo, HSD enzymes 

catalyzes unidirectional reactions and are classified as dehydrogenases or reductases where 

pyridine nucleotide acts as cofactors (Agarwal and Auchus 2005).  

Steroidogenesis is first initiated from the conversion cholesterol (C27) to the first 

steroid pregnenolone (C21) via the action of CYP11A (cytochrome P450 side-chain cleavage 

enzyme: P450scc) (removes six carbon units) (Waterman and Simpson 1985) and 

steroidogenic acute regulatory protein (StAR) (Lin et al. 1995). CYP11A is expressed in all 

steroidogenic cells as a rate-limiting step at the start of steroidogenesis (Ishimura and Fujita 

1997, Oonk et al. 1990, Payne and Youngblood 1995, Pelletier et al. 2001, Strauss et al. 

1996). The StAR protein is responsible for transporting the hydrophobic cholesterol substrate 

from the outer to the inner mitochondrial membrane where this reaction takes place (Miller 

and Auchus 2011, Miller and Bose 2011). The CYP11A enzyme reaction introduces hydroxyl 

groups at C20 and C22 and cleaves the cholesterol side chain between these carbons (Payne 

and Hales 2004). After this rate limiting step, pregnenolone is transported out of the 

mitochondria into the endoplasmic reticulum where the remainder of steroidogenesis takes 

place. Pregnenolone further undergoes 17α-hydroxylation to produce 17α-

hydroxypregnenolone in a reaction catalyzed by CYP17 (P450c17). In the adrenal zona 

reticularis, ovarian theca cells and Leydig cells, the CYP17 enzyme also catalyzes cleavage 

of C17 and C20 (lyase) bond to produce dehydroepiandrosterone (DHEA, C19 steroid) 

(Payne and Hales 2004). The 3β-HSD type 2 converts 5-ene-3β-hydoxylated steroids (Δ5
) to 

4-ene-3-oxo steroids (Δ4
), resulting in conversion of DHEA to androstenedione in the gonad 
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and adrenal (Payne and Hales 2004). The 17β-HSD type 3 which is expressed exclusively in 

the testicular Leydig cells converts androstenedione to testosterone (Geissler et al. 1994).  

Whereas, the 17β-HSD type 5 which is the only form of 17β-HSD found the ovarian theca 

cells catalyzes the production of testosterone from androstenedione (Pelletier et al. 1999). 

Testosterone is converted to dihydrotestosterone (DHT) by the irreversible 5α-reductase type 

2 enzyme reaction in the prostate and external genitalia (Thigpen et al. 1993). Additionally, 

DHT can also be generated through the “backdoor pathway” bypassing DHEA, 

androstenedione and testosterone, as intermediates. This pathway involves the conversion of 

17-hydroxyprogesterone (17-OHP) to produce androstanediol which is an immediate 

precursor of DHT. The conversion involves 3α and 5α-reduction activity followed by 

sequential CYP17 and 17β-HSD type 3 enzyme activity. Finally, androstanediol can be back-

converted to DHT by 3α-oxidation reaction (Auchus 2004). Figure 1.4 outlines the classic 

and backdoor pathways involved in DHT biosynthesis. In humans, DHT generated by both 

pathways plays indispensible role in male fetal sexual development but role of the backdoor 

pathway in mature individuals remains unclear (Flück et al. 2011, Greaves et al. 2014).  

In the ovary, the androstenedione produced by the theca cells is later diffused into the 

granulosa cells, where the aromatase enzymes, CYP19 (P450arom) catalyses hydroxylations 

of androstenedione to produce estrone (C18 steroid with phenolic A ring). Estrone is later 

converted to estradiol by the 17β-HSD type 1 (Miller and Auchus 2011). The aromatase 

enzyme also converts testosterone to estradiol in brain, bone and adipose tissues but not liver 

(Perel and Killinger 1979, Sasano et al. 1997). In the adrenal zona fasciculata, the enzyme 

3β-HSD converts 17-hydroxypregnenolone to 17-OHP (Payne and Hales 2004). 

Consequently,  CYP11B1 (P450c11β1) and CYP21 (P450c21) enzymes converts 17-OHP to 

11-deoxycortisol and cortisol. The biosynthesis pathway of androgens, estrogens, 
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corticosteroids (minerolocorticoid and glucocorticoid) and progestogen metabolites are 

outlined in Figure 1.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The classic and backdoor pathways involved in DHT biosynthesis are 

shown on the left and right, respectively. Adapted from (Flück et al. 

2011, Holčapek et al. 2010). 
 

The classic pathway requires the following protein and enzymes: StAR 

(steroidogenic acute regulatory protein), CYP11A (cytochrome P450 side-chain 

cleavage enzyme, P450scc), CYP17A1 (17α-hydroxylase/17,20-lyase, P450c17), 

HSD3B2 (3β-hydroxysteroid dehydrogenase, type 2), HSD3B2 (3β-hydroxysteroid 

dehydrogenase, type 2), HSD17B3 (17β-hydroxysteroid dehydrogenase, type 3) and 

5α reductase, type 2. 

Additional enzymes involved in the backdoor pathway includes: 5a-reductase, type 1 

(5a-reductase 1, 3a-reductase, type 3 and possibly 3a-reductase, type 1 and HSD17B6 

(17β-hydroxysteroid dehydrogenase, type 6).  

 

Steroid abbreviations: 17-OHP: 17-hydroxyprogesterone; 17OH-DHP: 17-hydroxy-

dihydroprogesterone (or 5a-pregnane-17a-ol-3,20-dione); 17OH-allo: 17-hydroxy-

allopregnanolone (or 5a-pregnan-3a,17a-diol-20-one); 5a-DHP: 5a-

dihydroprogesterone (or 5a-pregnane-3,20-dione), and 3a-OH-DHP: 

allopregnanolone (or 3a-hydroxy-dihydroprogesterone or 5a-pregnane-3a-ol-20-one).  

Figure 1.4 Classic and backdoor pathways of DHT synthesis. 
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1.2.2 Phase I metabolism 

 

Phase I metabolism involves converting active steroids into inactive metabolites that are 

substrates for phase II conjugation for eventual excretion in the urine and bile. The 

inactivation primarily occurs in the liver although there are also metabolic enzymes present in 

the steroid target tissues (Strauss 2014). The enzymes that are involved in the phase I steroid 

metabolism include 3α/3β-HSDs, 5β-reductase, 11β-HSDs, 17β-HSDs and 20α-HSDs that 

acts on C3, C5, C11, C17 and C20 positions of steroid, respectively (Rižner and Penning 

2014). However, most of the target tissues also express HSD isoforms that are capable of 

converting the inactive steroids metabolites back into active form (Bélanger et al. 2003). 

Thus, these enzymes acts as ‘switches’ that tightly regulate the receptor occupancy by the 

steroids and balance the synthesis and metabolism of the steroids (Penning 2011). In the liver, 

5α and 5β reductase converts circulating testosterone to form 5α-DHT and 5β-DHT, 

respectively. In the prostate and androgen target tissues, DHT is reduced by 3α-HSD, 3β-

HSD and 17β-HSD forming androsterone, 5α androstan-3α-17β-diol (3α-diol), 5α androstan-

3β-17β-diol (3β-diol), androstanedione and epiandrosterone (Bélanger et al. 2003, Dufort et 

al. 2001). Basically steroids with 3-keto- Δ4,5 
structure may first be 5α-reduced and 

subsequently 3α-reduced to form stereoisomeric tetrahydrosteroids which are later conjugated 

in phase II metabolism and finally excreted in the urine (Jin and Penning 2001). However, the 

17β-HSD type 6 can catalyze oxidation of 3α-diol back to form 5α-DHT in the prostate 

(Penning 2011). In the kidney, the 11β-HSD type 2 catalyzes the oxidation of potent 

glucucorticoid, cortisol into its inactive counterpart cortisone to enable the less abundant 

aldosterone to occupy the mineralocorticoid receptors (Strauss 2014). Conversely in the liver, 

adipose tissue and skeletal muscle, the inactive cortisone is reduced back to the inactive 

moiety cortisol by 11β-HSD type 1 (Strauss 2014). In breast tissues, 17β-HSD type 1 

converts estrone to estradiol whereas 17β-HSD type 2 and type 4 inactivates estradiol by 
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catalyzing the reverse reaction. Progesterone is converted by 20α(3α-)-HSD to a weaker 

progestin metabolite, 20α-hydroxyprogesterone whereas 17β-HSD type 2 directs the reverse 

reaction (Rižner and Penning 2014). Figure 1.6 illustrates the HSD enzymes involved in the 

activation and inactivation of androgens, glucucorticoid, estrogens and progestins. 

 

 

Figure 1.5 Biosynthetic pathway and steroidogenic enzymes involved in the pathway. 

 

 

 

 

 

 

The pathway is divided into colour zones to depict the different classes 

of steroids; androgen (green), estrogen (blue), glucocorticoid (yellow), 

mineralocorticoid (orange) and progestogens metabolites (white) 

[adapted from (Ja ntti et al. 2010)].   
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Figure 1.6 Androgens (5α-DHT and testosterone), glucocorticoid (cortisol), estradiol 

(estrogen) and progestin (progesterone) phase I metabolism by hydroxysteroid 

dehydrogenase enzyme (aldo-keto reductase; AKRs and short-chain dehydrogenase; 

SDRs). 

 

 

 

The enzymes act in pairs to regulate the steroid occupancy towards the specific 

receptor at target tissues. The steroids are activated and deactivated by the 

specific enzymes to form potent steroids weak steroids, respectively which the 

latter is readily available for phase II metabolism. Adapted from (Penning 

2011). 
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1.2.3 Phase II metabolism (conjugate formation) 

 

Steroid hydroxyl metabolites from phase I metabolism further undergo conjugation reactions 

to form hydrophilic conjugates with lower affinity for cognate receptor and plasma proteins 

compared to their parent steroid (Andrew 2001, Tukey and Strassburg 2000). This metabolic 

pathway is catalyzed by enzymes which inactivate steroidal biological activity and increases 

the polarity of the steroids to aid their excretion (urine and bile). Phase II metabolism 

involves conjugation of steroids with glucuronides or sulfates which are the most abundant 

conjugated derivatives. Other cholesterol metabolite conjugates involved in phase II 

metabolism includes N-acetylglucosamine (GlcNAc), amino acids, glucose and galactose 

(Goto et al. 2005, Marschall et al. 1989, Vessey 1978, Wietholtz et al. 1991). Only small 

amount of steroids are excreted in unconjugated form in urine (e.g. less than 3% of urinary 

androgens secreted in free form) (Dehennin and Matsumoto 1993). Generally steroid 

conjugates are regarded inactive, however there are conjugated steroids that remain in 

circulation (e.g. DHEA sulfate) or stored locally in tissues (e.g. estrone sulfate) serving as a 

reservoir for back conversion to its active hormones or as steroid hormone precursor, 

reactions catalyzed by sulfatase enzyme (Andrew 2001, Hobkirk 1985, Reed et al. 1996, Zhu 

and Conney 1998).    

Glucuronidation: This is a major route of steroid elimination. This reaction involves covalent 

linkage (conjugation) of glucuronic acid moiety (glycosyl group) derived from uridine 

diphosphate-glucuronic acid (UDPGA) co-substrate to lipophilic substrates that commonly 

contains hydroxyl, carboxyl or nitrogen group. This mechanism is catalyzed by an 

endoplasmic reticulum membrane enzyme, uridine diphosphate (UDP)-

glucuronosyltransferases (UGTs) (Figure 1.7) (Court 2014, King et al. 2000, Tukey and 

Strassburg 2000). The co-substrate UDPGA is formed in the cytosol from the oxidation of 

UDP-glucose catalyzed by the UDP-glucose dehydrogenase (Zamek-Gliszczynski et al. 
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2006). The human genome encodes 19 UGT enzymes which are most abundant in the liver, 

although some are also expressed in other tissues such as the intestine, kidney, mammary 

gland and prostate (Gaganis et al. 2007, Mackenzie et al. 2005, Ohno and Nakajin 2009). The 

distribution of the enzyme varies in  tissues according to age, gender, hormonal status, 

genetic factors and environmental exposure (Ritter 2000). Based on the homology of primary 

structure, UGTs can be divided into four families: UGT1, UGT2, UGT3 and UGT8 

(Mackenzie et al. 1997). UGT1 and UGT2 are the two main enzyme families involved in 

steroid glucuronidation comprising of three subfamilies: UGT1A, UGT2A and UGT2B 

(Barbier and Bélanger 2003, Hum et al. 1999, Mackenzie et al. 1992). The UGT1 isoforms 

have specificity for bilirubin, amines and phenolic compounds as substrate, whereas the 

UGT2 targets the elimination of steroids, bile acids and opioids (You 2004). Metabolism of 

most estrogens and androgens are catalysed by subfamily UGT1A and UGT2B, respectively. 

All of the UGT1A isoforms members specificity (with exception to UGT1A6) are mainly 

directed towards C18 steroid substrates such as estradiol, estrone (UGT1A1; UGT1A10), 2-

hydroxyestrone (UGT1A3) and 4-hydroxyestrone (UGT1A9) (Albert et al. 1999, Basu et al. 

2004, Cheng et al. 1998, Mojarrabi et al. 1996, Strassburg et al. 1998). In humans, there are 

seven UGT2B isoforms isolated namely UGT2B4, UGT2B7, UGT2B10, UGT2B11, 

UGT2B15, UGT2B17 and UGT2B28 with broad overlapping substrate specificities (Girard 

et al. 2003, Riedy et al. 2000). All of the UGT2B isoforms are involved in the 

glucuronidation of steroids with exception to UGT2B10 and UGT2B11 (Turgeon et al. 2001). 

The UGTB4 catalyzes the conjugation of 3α-diol, estriol and hydroxyestrone (Lévesque et al. 

1999). Whereas, UGT2B7 is involved in conjugation of different classes of steroids which 

includes the 5α-reduced metabolites of cortisol, progestins and androgens (Girard et al. 

2003). UGT2B7, UGT2B15 and UGT2B17 enzymes catalyzes glucuronidation of major 

circulating C19 steroid metabolites at 17β-hydroxy position (e.g. DHT, testosterone and 3α-
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diol). The UGT2B7 and UGT2B17 enzymes (but not UGT2B15) also catalyzes the C19 

steroid metabolites at 3α hydroxy position (e.g. androsterone) (Beaulieu et al. 1996, Chen et 

al. 1993, Turgeon et al. 2001). The UGT2B28 type 1 catalyzes the conjugation of 3α-diol, 

estradiol, androstane and testosterone (Lévesque et al. 2001). Androsterone glucuronide 

circulates 20 times higher compared to 3α-diol glucuronide concentration in the circulation 

and both the glucuronide forms are indicators of androgen metabolism in peripheral tissues 

(Bélanger et al. 1986, Horton and Lobo 1986). Table 1.1 summarizes glucuronidation of 

various steroids by UGT conjugating enzymes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UGT 
isoform 

Steroid substrate 

1A1 Estradiol, estrone 

1A3 2-hydroxyestrone, estrone 

1A4 16α-OHP 

1A7 Estriol, 2-hydroxyestradiol 

1A8 2-methoxyestradiol, 4-hydroxyestrone, 16,17-epiestriol 

1A9 4-hydroxyestrone, 11α-OHP 

1A10 Estradiol, estrone, estriol, 2-hydroxyestradiol, 4-hydroxyestrone, androsterone 

2B4 3α-diol, estriol, hydroxyestrone 

2B7 
Cortisol, progestins, DHT, testosterone, androsterone, 3α-diol, estradiol, estriol, 
11α-OHP 

2B15 DHT, testosterone, 3α-diol, 16α-OHP 

2B17 DHT, testosterone, androsterone, 3α-diol, 16α-OHP 

2B28 Estradiol, androsterone, testosterone, 3α-diol 

 
Abbreviations: OHP: hydroxyprogesterone; 3α-diol: 5α androstan-3α-17β-diol; DHT: 
dihydrotestosterone 
References are given in text. 

Table 1.1 List of steroid substrates metabolized by UGT enzymes. 
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Sulfation: Sulfate conjugation (also called sulphonation) is another important conjugation 

reaction that modulate the pharmacological activity of steroids. This reaction is catalysed by 

cytosolic sulphotransferases (SULTs) that attaches a sulfonate group (SO3
-
) from an enzyme 

cofactor, 3’ phosphoadenosine-5’-phosphosulfate (PAPS) to an acceptor group (O-, N- or S-) 

(Figure 1.7) (Mulder et al. 1990). The formation of PAPS involves two reactions: first the 

conjugation of the cytosolic inorganic sulphate with adenosine monophosphate catalyzed by 

ATP sulfurylase to form adenosine 5’-phosphosulfate (APS)  followed by the 

phosphorylation  of APS by the APS kinase to form PAPS (Zamek-Gliszczynski et al. 2006). 

The sulfation and glucuronidation reaction have overlapping substrates, with the sulfation 

reaction occuring at low substrate concentration due to its high affinity, whereas at high 

substrate concentration, the activation of the glucuronidation reaction occurs as the SULT 

enzymes saturates or its cofactor PAPS are exhausted (Pang et al. 1994, Zamek-Gliszczynski 

et al. 2006). The SULT enzymes display unique tissue distribution with varying degree of 

activity. SULT enzymes for steroid metabolism are located in the cytosol, mainly in cells of 

the liver and gastrointestinal tract, although they are also found in the brain, kidney, lung, 

prostate and placenta (Coughtrie 2002). Four families of SULTs namely, SULT1, SULT2, 

SULT4 and SULT6 have been identified in human with at least 13 distinct members 

(Gamage et al. 2006, Li et al. 2008). The SULT1 members (or known as phenol SULT), are 

involved in sulfation of various estrogens such as estrone and 17β-estradiol (SULT1A1 and 

SULT1E1) (Falany 1997, Falany et al. 1994, Pasqualini 2009). Whereas SULT2 members (or 

known as hydroxysteroid SULT) are divided into SULT2A1, SULT2B1a and SULT2B1b. 

SULT2A1 also referred as DHEA sulfotransferase catalyses a broad range of steroids 

including the 3α, 3β, and 17β-hydroxyl groups as well as 3-phenolic hydroxyl estrogens 

(Falany 1997, Falany et al. 1994). SULT2B1a and SULT2B1b sulfonates pregnenolone, DHT 

and DHEA. However, SULT2B1b has higher cholesterol sulfation activity compared to 
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pregnenolone (Meloche and Falany 2001, Strauss 2014). Table 1.2 listed the sulfate isoforms 

involved in steroid metabolism.   

 

Table 1.2 List of steroid substrates metabolized by sulfate isoforms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SULT isoform  Steroid substrate 

1A1 Estradiol, estrone, 2-hydroxyestradiol, 4-hydroxyestradiol, 4-hydroxyestrone  

1E1 Estradiol, estrone, DHEA, pregnenolone and androstenediol 

2A1 
DHEA, testosterone, androsterone, epiandrosterone, androstenediol, pregnenolone, 
etiocholanolone, estrone and estradiol  

2B1a Pregnenolone, DHT, epiandrosterone, DHEA, androstenediol  

2B1b Pregnenolone, DHT and DHEA 

Abbreviations: DHT: dihydrotestosterone; DHEA: dehydroepiandrosterone 
References are given in text. 
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UGT 

Testosterone 

SULT 

PA
PS

Testosterone sulfate 

+ UDP  
+ H2O 

Testosterone glucuronide 

UDP

GA 

PAPS 

Glucuronidation and sulfation reactions catalyzed by UDP-glucuronosyltransferases (UGTs) 

and sulphotransferases (SULTs). 

 

Figure 1.7 Phase II metabolism of testosterone. 
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1.3 Gonadotropin structure and regulation  

The pituitary luteinizing hormone (LH), follicle-stimulating hormone (FSH) and placental 

human chorionic hormone (hCG) are gonadotropins that, together with thyroid stimulating 

hormone (TSH), comprise the glycoprotein hormone family (Pierce and Parsons 1981). The 

glycoprotein hormones are large proteins with a molecular mass of 30 – 40 kDa. They are 

heterodimers featuring a common α-subunit with a specific β-subunit that confers biological 

specificity by binding to their specific G protein-coupled receptors. Although the subunits 

(mainly α) exist in “free” form in the pituitary or circulation, they are biologically inactive. 

Thus, both subunits must be combined as α/β heterodimers and form a strong and specific 

noncovalent interaction complex that enables hormonal activation (Pierce and Parsons 1981). 

The α-subunit contains 92 amino acid residues whereas the LHβ, FSHβ and hCGβ have 121, 

110 and 145 amino acids residues respectively (Stenman et al. 1997, Themmen and 

Huhtaniemi 2000). Each glycoprotein has specific oligosaccharide structure bound on the β-

subunit that determines its physiological specificity and differentiates the members of the 

glycoprotein hormones (Robinson et al. 2007, Ulloa-Aguirre et al. 2001). However, more 

than 85% of the first 114 amino acids sequence of LH and hCG β-subunit are significantly 

similar which is potentially responsible for the similar biologic activity of their respective 

dimers (Garcia-Campayo et al. 1997). Figure 1.8 illustrates the specific location of the 

oligosaccharide glycosylation of the four glycoprotein hormones. The α-subunit consists of 

two N-linked oligosaccharides, positioned at asparagine (Asn)-52 and Asn-78. Study on the 

mutagenesis of hCGα oligosaccharides revealed that they have distinct functions; the Asn-52 

is involved in the formation of intact glycoprotein dimer whereas the Asn-78 is important for 

the protein stability (Fares 2006, Matzuk and Boime 1988). Studies have also reported 

disruption in the glycoprotein secretion with the absence of the β-subunit N-linked 

oligosaccharides (Lash et al. 1992, Matzuk and Boime 1988). The carbohydrate portion is 
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also involved in the folding, assembly and clearance of the gonadotropin (Thotakura and 

Blithe 1995).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The hCG is distinct from the other glycoprotein due to the O-linked glycosylation to a 

carboxyl terminal peptide (CTP) extension of the hCGβ subunit (Figure 1.8) which prolong 

the half-life and enhance the in vivo bioactivity of the hormone (Fares 2006, Kalyan and Bahl 

1983, Matzuk et al. 1990). Studies have shown insertion of CTP domain of the hCGβ subunit 

into other glycoproteins β-subunit (e.g. FSH and TSH) resulting in increase of the CTP-

 

The horizontal bar and the branched-like structures represent the amino acids and the N-

linked oligosaccharides, respectively. The subunits contains one (LHβ and TSHβ) or two 

(the common α-subunit, FSHβ and hCGβ) N-glycosidically linked oligosaccharides attached 

to the amino acids residues (locations of the oligosaccharides attachment to the amino 

acids are indicated with the numbers). Additionally, the hCGβ-subunit consists of four O-

glycosidically linked oligosaccharides in the carboxyl terminal extension (adapted from 

(Ulloa-Aguirre et al. 2001). 

Figure 1.8 Location of glycosylation sites in the human 

glycoprotein hormone α and β-subunits. 
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modified hormones’ half-life which proved to be beneficial for therapeutic purposes 

(Bouloux et al. 2001, Fares et al. 1992, Joshi et al. 1995). For in vitro fertilization, CTP-

modified FSH is used to induce the development of ovarian follicle maturation with only a 

single dose due to its long half-life in contrast to multiple doses using recombinant human 

FSH analog (Balen et al. 2004).  

The oligosaccharide contains side chains that terminate with sialic acid, galactose, 

fucose as well as sulfated N-acetylgalactosamine (only in LH). These complex carbohydrate 

side chains influences the glycoprotein hormones’ bioactivity and clearance rates by the liver 

and kidney (Ulloa-Aguirre et al. 2001). The glycoprotein hormones with highly sialylated or 

more acidic oligosaccharides (e.g. FSH and hCG) have longer plasma half-life but reduced in 

potency and lower receptor binding activity in vitro compared to the galactose and sulfated or 

more basic oligosaccharides (e.g. LH) which are cleared rapidly from the plasma by specific 

hepatic receptors (Fiete and Baenziger 1997, Fiete et al. 1991, Ulloa-Aguirre and Timossi 

2000). The glycosylation patterns of the glycoprotein hormones are variable depending on 

various physiological changes that occur according to age and sex (Ulloa-Aguirre et al. 

2001). Studies have shown that the secretion of gonadotropin glycosylated variants with low 

sialic acid or sulfate content during the preovulatory phase of the menstrual cycle compared 

to the early, mid-follicular and luteal phases which are believed to be influenced by high 

estrogen secretion (Birken et al. 2007, Padmanabhan et al. 1988, Wide and Bakos 1993). In 

males and postmenopausal women, the gonadotropins circulate in more acidic/sialylated 

isoforms (Veldhuis et al. 1989, Wide 1985, Wide 1989). Other examples include the release 

of the less sialyted FSH isoforms which are more biologically active during the mid-puberty 

in boys compared to other stages of puberty (Campo et al. 2007).  Due to the heterogeneity of 

the gonadotropin carbohydrate side-chains (microheterogeniety), many assays fail to either 

detect or differentiate between these isoforms. For example, throughout pregnancy the hCG 
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isoforms changes and a common hCG immunoassay employing monoclonal antibodies was 

unable to detect certain hCG isoforms produced during the early stages of pregnancy (Birken 

et al. 2001, Kovalevskaya et al. 1999).  

The cross-linked disulfide bond existing between the subunits stabilizes the 

glycoprotein structure and is responsible in maintaining the three-dimensional structure to the 

subunits which is important in maintaining the biological activity of the dimeric structure 

(Ulloa-Aguirre and Timossi 2000). Figure 1.9 illustrates the known crystal structures of hCG 

and human FSH.   

  

 

 

 

 

 

 

 

 

 

The gonadotropin-releasing hormone (GnRH) (previously known as luteinizing 

releasing hormone), regulates the release of LH and FSH. GnRH is a decapeptide hormone 

synthesized by the cell body of the hypothalamic neurons that projects axon to the median 

The α-subunit (yellow) and the β-subunit (hCG in green; hFSH in blue) have similar folding forming highly 

elongated molecules. Both the subunits intertwined with a 20 amino acid residue region of the β-subunit 

known as seatbelt (white region) wraps around and latched a portion of the α-subunit. The two 

gonadotropins exhibit differences in the conformation at the C-terminal portions of the seatbelt. As for 

the LH and TSH, no structures are yet available. However, it is believed that the conformation of LH and 

TSH are closely related to the known structures. Adapted from (Ascoli and Narayan 2014) 

 

Figure 1.9 Crystal structure of human chorionic gonadotropin (hCG; 

left) and human follicle-stimulating hormone (hFSH; right). 
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eminence of the brain. Regardless of the developmental stage, the secretion of GnRH from 

their terminals into the pituitary-portal blood supply is in a pulsatile or episodic manner. This 

pattern of release is absolutely critical as continuous release of GnRH causes desensitization 

of the GnRH receptors which further supresses the release of LH and FSH by the 

gonadotrope cells (Belchetz et al. 1978). Additionally the ratios of the LH and FSH released 

are also infuenced by the GnRH pulse frequency. High GnRH frequencies leads to higher LH 

secretion but lower FSH secretion, thus the LH/FSH ratio is high. However, the ratio 

decreases with the lowering of GnRH frequencies, due to increase in FSH and lower LH 

secretion (Wildt et al. 1981). Thus the GnRH pulse frequency and amplitude plays a pivotal 

role in the regulation of episodic release of LH and FSH into the general circulatory system. 

These gonadotropins binds to the glycoprotein hormone receptors to regulate hormonal and 

reproductive function of the gonads. The gonadotropin receptors are characterized by the 

large N-terminal extracellular domain that determines the recognition and binding affinity of 

their appropriate hormones (Braun et al. 1991). Both LH and hCG mediates their bioactivity 

through a single LH/CG receptor which is expressed in Leydig, theca, granulosa and luteal 

cells whereas FSH binds to its specific follicle stimulating hormone receptors expressed in 

the granulosa and Sertoli cells (Caltabiano et al. 2008, Pierce and Parsons 1981).  

In males, the placental hCG plays an important role to stimulate fetal steroidogenesis 

and Leydig cell growth and differentiation after the initial gonadotropin-independent phase 

(Huhtaniemi et al. 1977). hCG also circulates at very low concentrations in men (produced by 

testes) and nonpregnant women which increases around menopause (produced by the ovaries) 

(Handelsman 2006, Stenman et al. 1997). Meanwhile, the circulating concentration of LH 

stimulates the activity of steroidogenic enzymes including CYP11A and CYP17α-

hydroxylase in the testicular Leydig cells for the production of testosterone (Wu et al. 2007). 

LH is also responsible in maintaining high intratesticular testosterone levels required for 
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spermatogenesis. Testosterone binds to the androgen receptors (ARs) expressed in the 

somatic cell in the testes (Sertoli, Leydig and peritubular) but not germ cells to initiate 

spermatogenesis (Verhoeven et al. 2010). The FSH is also involved in the initiation and 

maintenance of spermatogenesis but is not essential to spermatogenesis (Singh et al. 1995). 

Studies on transgenic FSH mice revealed that both the FSH and testosterone binds to their 

specific receptors expressed in Sertoli cells in order to initiate and maintain spermatogenesis 

(Allan and Handelsman 2005).  

In females, LH regulates ovarian steroid synthesis. LH stimulates the thecal cells and 

the luteinized granulosa cells of the corpus luteum to produce androgen and precursors as 

well as progesterone, respectively. The androgen precursors then move to the neighboring 

granulosa cells where they are aromatized into corresponding estrogens under the control of 

FSH (Themmen and Huhtaniemi 2000). LH is also involved in regulating cholesterol 

availability for steroidogenesis and stimulates the activity of CYP11A to catalyze formation 

of pregnenolone from cholesterol. LH stimulates the gene expression and production of 

enzymes involved in steroidogenesis (Kaiser 2011). Mid-cycle peak of LH terminates 

preovulatory follicle growth and triggers ovulation and stimulates the corpus luteum to 

synthesize progesterone in the second half of the ovulatory cycle (Themmen and Huhtaniemi 

2000). In the ovary, granulosa cells express FSH receptors and are the only target cells of the 

FSH action. FSH is required for granulosa cell differentiation, modulates LH receptor 

expression in granulosa cells and regulates the estrogen production (Richards and Pangas 

2010). FSH is also important for follicular recruitment, selection and growth (Zeleznik and 

Pohl 2006).    

Taken together, the regulation of gonadotropins secretion is under positive control of 

the hypothalamic GnRH. The gonadotropins in turn regulate the gonadal secretion of 

androgen, estrogen and progesterone that exert their effects by binding to their specific 
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receptors. These are expressed in both reproductive and nonreproductive target tissues 

including the reproductive tract and genitalia, breast, fat, bone, muscle, liver and kidney. The 

sex steroid hormone receptors are also expressed in the central nervous system and pituitary 

gland to enable steroid feedback regulatory mechanisms by the hypothalamic-pituitary-

gonadal (HPG) axis. The gonadal steroids and peptide (inhibin) exert negative and 

stimulatory (positive) effects on the gonadotropin regulation and release, either directly at the 

level of pituitary gonadotrophs by the modulating the genes encoding LHβ and FSHβ or 

indirectly at the hypothalamus level to modulate patterned GnRH secretion.   

1.4 Steroid hormone production and action 

1.4.1 Androgens 

Androgens are produced by the gonads and androgen precursors by the adrenal glands in 

response to LH and adrenocorticotropin (ACTH), respectively, in both sexes. Testosterone 

and DHT are the two major and most potent androgens, both of which have a 17β-hydroxyl 

group and 3-oxo group (Figure 1.10). DHEA, dehydroepiandrosterone sulphate (DHEAS) 

and androstenedione are steroids with minimal androgenic activities but are pro-androgens 

(Mo et al. 2006). Testosterone is the most abundant androgen in mammalian males whereas 

the other weaker androgen precursors circulate at the same concentration in male and female. 

Testosterone is primarily produced by the testicular Leydig cells in men (approximately 

95%), the thecal and stroma cells of the ovaries in women (25% through direct secretion and 

25% through peripheral conversion of androgen precursors) and at a lesser amount in the 

adrenal zona reticularis and peripheral tissues (liver, skin and adipose) from conversion of 

androstenedione (Kicman 2008, Palacios 2007). Daily production of testosterone in 

eugonadal men is approximately 3-7 mg per day whereas only 0.1-0.3 mg is produced in 

women (Burger 2002, Kicman 2010). Approximately half of the circulating testosterone in 

women is produced peripherally by androstenedione conversion (Bardin and Lipsett 1967).   



                                                                                                                                                                   Chapter 1 

   30 
 

As described previously, circulating testosterone also acts as a pro-hormone at the 

target tissues when converted into DHT by 5α-reductase and into estradiol by aromatase 

(Figure 1.5) (Kicman 2008). Approximately 50% of the DHT production in men originates 

from this peripheral conversion and the remaining is secreted by the testes (Hammond et al. 

1977, Saez et al. 1972). Although testosterone circulates at 10-fold higher concentration than 

DHT, the potency of DHT is approximately 3-10 fold greater than testosterone (Barbier and 

Bélanger 2008, Wright et al. 1996). Testosterone and DHT binds to the same AR under 

physiological conditions. However, DHT binds with a higher affinity than testosterone 

resulting in activation of target genes even at lower concentrations compared to testosterone 

(Kicman 2008, Wright et al. 1996). Despite binding to the same AR, testosterone and DHT 

have different physiological roles in males. During sexual differentiation, testosterone 

stimulates the urogenital sinus and Wolfian duct development that leads to formation of 

internal male genitalia (epididymis, seminal vesicle and vas deferens) (Themmen and 

Huhtaniemi 2000). Postnatally, testosterone maintains spermatogenesis, maturation of sexual 

characteristics, and plays a role in masculization and libido. During embryogenesis, DHT is 

responsible for development of urogenital sinus (the male external genitalia, urethra and 

prostate) (Marchetti and Barth 2013). During puberty, DHT is involved in the development of 

phallus and prostate, and the appearance of virilizing features such as body and facial hair. In 

adults, DHT is also associated with modulation of prostatic function, and is believed together 

with other androgens to be involved in the homeostasis between cell proliferation and cell 

apoptosis (Carson III and Rittmaster 2003, Isaacs 1984).  

  Androstenedione and DHEA are major androgen precursors. The adrenal glands 

and gonads produces large amount of androstenedione. DHEA and its sulfated analog 

(DHEAS) are primarily produced by the adrenal cortex and lesser amount by the gonadal 

tissues (Labrie et al. 1995). DHEA and DHEAS are also known as neurosteroids, whereby 
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the production of these steroids occurs locally by the neurons and glia of the brain (Lazaridis 

et al. 2011). These steroids are postulated to regulate brain function. For example, the DHEA 

acts on γ-aminobutyric acid type A (GABA) receptors as an agonist whereas DHEAS acts on 

the same receptor as an antagonist (Park-Chung et al. 1999). DHEAS circulates in the 

bloodstream at a higher concentration (250-500 times) compared to its unconjugated form 

and is the most abundant androgen in human circulating 20 times higher than other steroid 

hormone (Ebeling and Koivisto 1994, Kroboth et al. 1999, Labrie et al. 1997). The enzyme 

steroid sulfatase acts on DHEAS to produce DHEA and further converted into other 

androgenic and estrogenic compounds in reproductive (endometrium, ovary, prostate, testis) 

and non-reproductive tissues (bone, breast, skin and brain) (Reed et al. 2005). During 

gestation, the sulfatase enzyme is highly expressed in the placental syncytiotrophoblast 

regulating the production of estrogen in the placenta from the sulfated DHEA produced by 

the fetal adrenal (Salido et al. 1990).  

 

 

 

 

 

 

 

 

 

Figure 1.10 Chemical structure of four main androgenic steroids: 

testosterone, dihydrotestosterone, dehydroepiandrosterone and 

androstenedione. 
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1.4.2 Estrogens  

 

The only naturally occurring estrogen is estradiol (or 17β estradiol) with one pro-estrogen 

(estrone) and phase I metabolite estriol (Figure 1.11). Typically estradiol and estrone 

circulate at higher concentration compared to estriol (Wiren 2007). Aromatase is expressed 

primarily in the ovarian granulosa cells (premenopausal women) and placental 

syncytiotrophoblast (pregnant women) to catalyze the synthesis of estrogen from androgens. 

Testosterone is aromatized into the potent estrogen, estradiol whereas the adrenal precursor 

androstenedione and DHEA are converted into the weaker pro-estrogen, estrone (Nawata et 

al. 1995). The aromatase enzyme is also expressed in the peripheral tissues (adipose and skin) 

which are the primary site for estrogen formation from C19 steroids precursor in both men 

and postmenopausal women (Simpson and Davis 2001, Simpson et al. 1994). The aromatase 

enzyme is also expressed in the muscle, brain, testicular Sertoli and Leydig cells and the 

osteoblast (Frieden et al. 1968, Longcope et al. 1978, Roselli et al. 1987, Saez et al. 1972, 

Sasano et al. 1997). Approximately 80% of the daily estradiol production in eugonadal men is 

produced peripherally from testosterone and the remainder is secreted directly by the testes 

(Baird et al. 1965). Estradiol has high affinity for estrogen receptors (ER) compared to the 

other pro-estrogens, hence known as the only potent bioactive estrogen (Jones 1992). In 

premenopausal women, the circulating level of estradiol is between 68 and 107 pg/mL across 

the menstrual cycle with higher levels during ovulation and is reduced in postmenopausal 

women to less than 5 pg/mL (Rothman et al. 2011). Although the levels of estradiol decrease 

dramatically in postmenopausal women, its metabolite estrone produced from the conversion 

of androstenedione in the adipose tissue remains unchanged (Ruggiero and Likis 2002). In 

men, the mean concentration of estradiol is about 20-30 pg/mL and its daily blood production 

rate is approximately 30-40 µg (Vermeulen et al. 2002). 



                                                                                                                                                                   Chapter 1 

   33 
 

Although throughout adulthood, men have plasma estradiol levels equivalent to 

postmenopausal women, estrogen action plays a pivotal role in the regulation of LH 

feedback. Recent studies have shown that testosterone and estradiol act independently on the 

LH regulation presumably via AR and ERα (Pitteloud et al. 2008). Studies have reported that 

estrogens act in the regulation of LH through the aromatization of testosterone at the pituitary 

level but testosterone does not require aromatization at the hypothalamic level to regulate LH 

secretion (Hayes et al. 2000, Pitteloud et al. 2008, Rochira et al. 2005). The role of estradiol 

on negative feedback regulation was demonstrated through studies conducted in normal or 

GnRH-deficient men where administration of aromatase inhibitor resulted in elevated of LH 

(Finkelstein et al. 1991, Marynick et al. 1979). In female, during the menstrual cycle, the 

concentration of estradiol regulates the negative or positive feedback action on 

gonadotropins. The serum estradiol levels gradually increase with the progression of 

follicular phase which resulted in inhibition of the gonadotropins secretion via the negative 

feedback. As the serum estradiol begins to rise rapidly during the late follicular phase, the 

positive feedback action leads to a preovulatory surge of LH and FSH. Thus estrogens play 

an important role in the gonadotropin regulation for ovulation (Ulloa-Aguirre and Timossi 

2000). Estrogens are also involved in the bone maturation, mineralization, prevention of 

osteoporosis and maintenance of cardiovascular health in both men and women (De Ronde et 

al. 2003, Grumbach and Auchus 1999). During puberty, estrogens are responsible in the 

development of secondary sex characteristics in females which includes breast development 

by stimulating alveolar growth, subcutaneous adipose tissue distribution, typical female body 

proportion and estrogen dependent changes of the genital tract (external genitalia, uterus, 

vagina, fallopian tubes and ovaries) (Dösch et al. 2001).   
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Estradiol is the most potent estradiol in non-pregnant women predominately 

produced by the granulosa cells from androgens. Estrone is produced via 

conversion of androstenedione in the adipose tissue. Estriol, a phase 1 

metabolite of estradiol is produced peripherally and by the placenta during 

pregnancy.  

Figure 1.11 Structures of estrone, estradiol and estriol. 
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1.5 Puberty 

1.5.1 Hormonal changes in puberty 

Puberty is a biological event that results in physical and reproductive maturity. This process 

is coordinated by a complex cascade of neuroendocrine changes which initiates secondary 

sexual characteristics, maturation of the genitalia, increase in growth velocity and ends with 

the acquisition of reproductive capability and attainment of adult body habitus and height 

(Plant and Barker‐Gibb 2004, Styne and Grumbach 2011). The pubertal transition involves 

two independent but temporarily overlapping physiological processes namely, adrenarche and 

gonadarche. 

Adrenarche refers to substantial increase of adrenal androgens, firstly DHEAS 

followed by DHEA and androstenedione, in response to ACTH (Styne and Grumbach 2011). 

The stimulus for this adrenal androgen steroidogenesis is unclear. The event of adrenarche 

only occurs in human and higher primates (chimpanzee, gorilla). Thus studies on its 

development in lower animals model are regarded as uninformative (Dorn and Biro 2011). 

The maturation of the adrenal cortex occurs from the age of about 6 to 7 years onwards in 

girls and 7 to 8 years onwards in boys (Ducharme et al. 1976, Korth-Schutz et al. 1976). The 

increase of adrenal androgens production occurs between 1 to 2 years before the changes of 

other pubertal hormones (Rogol et al. 2002) with higher levels reported in girls than in boys 

(Apter et al. 1979, Courant et al. 2010). The rise of adrenal androgens continues during 

gonadarche, with higher DHEAS levels in males compared to females after the age of 15 (de 

Peretti and Forest 1978). Adrenal androgen continues to increase on until the third decade of 

life and thereafter DHEAS levels gradually decline in both sexes (Ibáñez et al. 2000).  

Adrenarche is associated with the appearance of sexual hair (pubarche), axillary hair, adult 

apocrine odor and appearance of acne in some individuals (Rogol et al. 2002).  
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Gonadarche refer to the reactivation of the HPG axis at the end of the prepubertal 

phase resulting in dramatic surge in gonadal steroid production and initiation of 

folliculogenesis and ovulation in female and spermatogenesis in male (Witchel and Plant 

2014). Gonadarche also leads to the final maturation of primary sex organs (ovaries and 

testis) and external signs of puberty. The stages of sexual development have been well 

defined by Tanner and Marshall as a predictable and ordered sequence of event (Marshall and 

Tanner 1969, Marshall and Tanner 1970). This clinical assessment of pubertal maturation 

known as Tanner staging remains the primary system used as the descriptive standards for 

assessing pubertal development. Other measures of puberty status includes Petersen Pubertal 

Development Scale (PDS) which is a self-report that focuses on physical changes in growth 

and development (Petersen et al. 1988). Morris and Udry (Morris and Udry 1980) also 

introduced self-report method along with line drawings of external physical changes. Other 

groups combined method of physical examinations for pubertal staging and pubertal hormone 

concentrations to define pubertal status. Tanner stages are divided into five anatomically 

defined stages which include pubic hair growth, development of breast in females and the 

development of phallus in male (Carel and Leger 2008). Figure 1.12 illustrates the Tanner 

stages of both girls and boys. Overall, girls usually enter and complete each stages of puberty 

before boys. The timing (onset) and tempo (rate) is affected by many factors including 

genetic factors although it even varies among individual from the same ethnicity and gender 

(Clark and Rogol 1996, Euling et al. 2008).  

In girls, the appearance of breast buds (thelarche) underneath the areola is the initial 

sign of gonadarche (Tanner stage 2) which occurs between the age of 8 and 13 years 

indicating increased ovarian estrogen production (Jenner et al. 1972). As puberty progresses, 

the areola size, erectility and colour changes. Estrogen action is also demonstrated by the 

production of vaginal secretion and the enlargement of labia minora and majora. The adrenal 
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and ovarian androgen secretion leads to the development of pubic hair. Approximately 2.5 

years after the appearance of breast buds, the first menstrual cycle (menarche) takes place 

(Marshall and Tanner 1969). The duration of pubertal development in girls and boys 

normally takes between 3-3.5 years to complete or in some cases occur earlier (within 2 

years) or later (5 years) (Dorn et al. 2006).  

In boys, the first sign of gonadarche is associated with the enlargement of the testes 

and a thinning and reddening of scrotum which occurs between the age of 9 and 13 years 

(Rogol 2002). The volume of testes increases from 1-2 mL (prepubertal) to 4 mL at the onset 

of puberty (Tanner stage 2) coincides with the increase of testicular androgen production 

(August et al. 1972). The testicular volume dramatically increases to about 10-fold by the end 

of pubertal development with the initiation of spermatogenesis and proliferation and 

differentiation of the Sertoli cells (Marshall 1975).  Adrenal and testicular androgen secretion 

reflects the manifestation of pubic and axillary hair and development of acne (Greiner and 

Kerrigan 2006). As stated above, the two main hormones that mediate the biological 

manifestations of puberty are estradiol and testosterone, in girls and boys, respectively. 

However, most studies in the past have utilized assay methodologies that are considered 

inaccurate to measure low levels of these hormones in early and mid-puberty (Ankarberg-

Lindgren and Norjavaara 2008, Moal et al. 2007, Taieb et al. 2003).  

Adrenarche and gonadarche are two separate maturational events (Sklar et al. 1980). 

This is evident as the increase in adrenal androgens occurs when HPG axis is still inactive 

before the initiation of gonadarche. However, absence of adrenarche does not prevent 

gonadarche and vice versa. Girls with Turner’s syndrome, despite the absence of functioning 

ovaries, have normal adrenarche (Saenger 1996) but does not result in reproductive 

maturation. This was also noted in patients with hypogonadotropic hypogonadism (Counts et 
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al. 1987). Additionally normal onset of gonadarche was noted in boys with primary adrenal 

insufficiency condition (Urban et al. 1980).  

 

 

 

 

 

 

 

 

 

Panel A demonstrates the development of breast and pubic hair in girls rated 

from stage 1 (preadolescent) to 5 (mature). The development of breast buds 

(stage 2) marks the onset of gonadarche. Adrenarche begins at stage 2. 

Panel B illustrates the genital development and pubic hair development in 

boys rating from stage 1 (preadolescent) to 5 (adult). Stage 2 genital 

development marks the onset of gonadarche, which is characterized by 

enlargement of the testis and scrotum accompanied by changes in scrotal 

skin texture and color (reddening). The onset of pubic hair growth begins in 

stage 2.  

Here the pubic hair and genital/breast development is illustrated 

simultaneously; however it should be scored separately as they do not 

necessarily take place at the same time. Adapted from (Carel and Leger 

2008).   

Figure 1.12 Pubertal rating according to Tanner stages. 
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1.5.2 Activation of hypothalamus-pituitary-gonadal axis during development 

In humans, the activation of the HPG axis first occurs in utero. The diffusely distributed 

network of hypothalamic neurons expressing gonadotropin releasing hormone-I (GnRH-I) 

gene known as GnRH pulse generator activates the release of fetal pituitary LH and FSH. The 

fetal pituitary contains detectable levels of gonadotropins at the 10
th

 week of gestation and 

the gonadotropins are detectable in fetal circulation by 12-14
th

 week of gestation in response 

to the decreasing placental estrogen (Seminara et al. 1998, Styne and Grumbach 2011, 

Witchel and Plant 2014). The fetal testes expresses LH/hCG receptors that activates the 

Leydig cell to synthesize testosterone important for male gonadal maturation in utero (Biro 

and Dorn 2005) whereas at this stage the ovary development of female fetuses remains 

quiescent (Witchel and Plant 2014). The fetal ovary apparently does not express 

gonadotropin receptors and appears to be independent of gonadotropins and gonadal function 

(Huhtaniemi et al. 1987, Themmen and Huhtaniemi 2000). The circulating gonadotropins 

concentrations are much higher in female compared to male fetus. It is postulated that the 

male fetus have early development of negative feedback by testosterone (Grumbach and 

Gluckman 1994). At the end of pregnancy, the fetal LH and FSH levels decline progressively 

and the GnRH pulses are inhibited with the increase of maternal and fetal estrogen levels and 

the development of negative feedback mechanism (Grumbach 2004, Nagata et al. 2006).  

In male neonates, within a couple of minutes after birth, LH secretion surges 

approximately 10 times greater than the cord blood concentration resulting in secretion of 

testosterone which lasts for about 12 hours (Corbier et al. 1990, De Zegher et al. 1992). 

However, this LH surge is absent in female neonates (Grumbach 2005). After the first few 

days of birth, as the placental sex steroids inhibition is removed, the HPG axis activity 

commences. The circulating levels of LH and FSH rise intermittently to adult values or even 

occasionally higher at 2-3 months age and then declines to prepubertal levels between 6 to 9 
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months of age in boys and 2 to 3 years of age in girls (Andersson et al. 1998, Kuiri-Hänninen 

et al. 2011, Wright et al. 1996). This period is known as the neonatal surge or minipuberty. 

After this period of postnatal gonadotropin surge, the GnRH pulse generator becomes 

quiescent until its reactivation before onset of puberty. However, studies utilizing sensitive 

assays have shown that gonadotropins are released at low levels in pulsatile pattern primarily 

at night in prepubertal children with greater amplitude of FSH than LH pulses (Albertsson-

Wikland et al. 1997, Apter et al. 1989, Wu et al. 1991). Low levels of gonadal steroids 

circulate during this childhood period (Rogol 2010).      

Puberty represents the final step in the maturational process of the HPG axis. The 

onset of puberty is referred as (re)activation of the previously quiescent neuroendocrine 

reproductive axis which is reflected by increase in GnRH secretion (Ojeda and Skinner 2006, 

Plant and Skinner 2006). During this period, the reactivation of GnRH secretion transforms 

from low-level irregular pattern to a regular and pulsatile pattern which is detectable even 

prior to the exhibition of pubertal external signs (Harris and Levine 2003, Watanabe and 

Terasawa 1989). Marked increase in the amplitude and frequency of GnRH secretion 

enhanced the release of gonadotropin. At early progression of puberty, the pulses occur 

predominantly at night resulting in augmented LH secretion which in turn stimulates early 

morning release of gonadal steroids. Once again the gonadal steroid is able to inhibit GnRH 

secretion that cause decline in the gonadotropin and gonadal steroid levels throughout the 

day. As puberty progresses the gonadotropin pulses occurs both during the night and day as 

the negative feedback sensitivity of the hypothalamus decreases resulting in a more stable 

elevation of gonadal steroids hormones (Grumbach 2004, Grumbach 2005). At each pubertal 

stage, overnight LH values are approximately the same in both the genders but girls have 

higher FSH values (Manasco et al. 1997).  
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The specific neural and molecular mechanism that regulates the activation of the 

GnRH neuron during the initiation of puberty is not fully understood. However, previous 

studies have associated neurotransmitter and neuropeptide such as glutamate (Plant et al. 

1989), γ-amino butyric acid (GABA) (Keen et al. 1999), neurokinin B (Topaloglu et al. 

2008), leptin (Cheung et al. 2001), neuropeptide Y (El Majdoubi et al. 2000) and glial cell 

regulatory system (Grumbach 2004) with activation of GnRH neurons at puberty. In the last 

decade, neuropeptide kisspeptin has emerged as an important regulator of GnRH neurons in a 

number of mammalian species which led to the perception that kisspeptin signaling controls 

the timing of puberty (Terasawa et al. 2013). The involvement of kisspeptin in regulating 

reproductive axis was first reported by two independent groups in 2003. Their studies have 

shown that mutation or deletion of kisspeptin receptor, Gpr54 (G-protein receptor 54) 

recently renamed as Kiss1 receptor (Kiss1R) in humans and mice resulted in striking deficits 

in reproductive function, including failure to initiate puberty and infertility (de Roux et al. 

2003, Seminara et al. 2003). In the following years, many studies have emerged unraveling 

the role of kisspeptin in regulation of puberty and fertility. Exogenous treatment of kisspeptin 

accelerates the age of puberty in prepubertal rats by early activation of gonadotropic axis 

(Matsui et al. 2004). Studies also demonstrated increase in LH and FSH levels in adult 

rodents and primates (including human) with administration of kisspeptin (Dhillo et al. 2005, 

Kinoshita et al. 2005). This suggests that the secretion of kisspeptin is necessary not only for 

puberty to occur, but required for the maintenance of reproductive function. The increase in 

kisspeptin expression in the hypothalamic region immediately before the onset of puberty 

further elucidates the role of this neuropeptide in the maturation of the reproductive axis 

(Navarro et al. 2004, Silveira et al. 2010). Kisspeptin plays a critical role in the control of 

reproductive axis at different stages of life including postnatal, pubertal development and 
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adulthood. Figure 1.13 illustrates a model demonstrating the role of kisspeptin signaling in 

controlling the timing of puberty in primates.   

 

 

Figure 1.13 A proposed model for the control of the timing of puberty in primates. 

 

 

 

 

 

 

 

 

During infancy (left panel), the robust activity of GnRH pulse generator leads to the 
intermittent release of kisspeptin in the ME, that causes corresponding pattern of GnRH 
release in the portal circulation. This further leads to the secretion of LH and FSH by the AP.  

During the developmental progression from infancy to juvenile stage, a neurobiological brake 
results in inhibition of pulse generation by GnRH (reduce production of GnRH) and reduces the 
pulsatile release of kisspeptin into the ME (middle panel).  

Puberty is initiated when this neurological brake is release which then triggers reactivation of 
GnRH pulse generator and release of kisspeptin in the ME (right panel). However, the nature 
of the neurobiological brake during infancy and its release at the end of juvenile 
developmental phase is not well understood.  

The thickness of the arrows marked in blue (T, male) and gold (E2, female) indicates the degree 
of negative feedback by the gonadal steroids produced by the gonads (testis and ovaries) on 
LH secretion at the different developmental stages. Adapted from (Hu et al. 2005, Terasawa et 
al. 2013) 

Abbreviations: T: testosterone; E2: estradiol: AC: anterior commissure; AP: anterior pituitary 
gland; ARC: arcuate nucleus; OC: optic chiasm; ME: median eminence; MMB: mamillary body. 
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More recent genetic studies of familial central precocious puberty have linked 

another possible gene known as makorin ring finger 3 (MKRN3) with initiation of puberty 

(Abreu et al. 2013, Settas et al. 2014).  MKRN3 is a maternally imprinted gene that contains 

no introns and is located on chromosome 15q11.2 in Prader-Willi syndrome critical region. 

Mutations in MKRN3 gene has been associated with acceleration of puberty initiation leading 

to development of pubertal signs in both sexes which supports MKRN 3 role as a 

physiological inhibitor of hypothalamic activity during childhood (Abreu et al. 2013, Macedo 

et al. 2014, Schreiner et al. 2014). Studies have suggested that the MKRN 3 might function as 

a silencer of downstream genes that controls the activation of puberty such as kisspeptin 

(Hagen et al. 2015, Ojeda and Lomniczi 2014).  

1.5.3 Growth and skeletal maturation during puberty 

Puberty is accompanied by rapid sexually dimorphic changes in body composition, size and 

shape. Growth spurt is a major physical change that occurs during puberty which encompass 

15-20% of the final adult height (Juul 2001). During childhood, growth is relatively stable 

primarily depending on the dietary intake, hormonal balance (growth and thyroid hormone), 

general health and adequate psychosocial environment (Rogol 2010). Generally, in the first 

year of life, a child grows 25 cm and 12 to 13 cm the following year. After this age, the child 

growth is stable about 5 to 6 cm until puberty (Rogol et al. 2002). The stable growth rate 

slows to a nadir (preadolescent dip) just before the onset of puberty and thereafter accelerates 

during mid-puberty. Although pubertal development in both genders takes about 4.5 years to 

complete, there is a marked difference in the timing of pubertal growth spurt between males 

and female. In girls, growth spurt occurs earlier compared to boys. However the growth spurt 

in girls does not reach the same magnitude of that in boys (Clark and Rogol 1996).  

In girls, the growth spurt is commonly detected with the first sign of puberty (breast 

development and pubic hair) (Pinyerd and Zipf 2005). Peak height velocity occurs between 
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Tanner stage 2 and 3 (breast stage 2 [B2] and breast stage 3 [B3]) at about 11 to 12 years of 

age that averages about 9 cm annually with about 25 cm of total height gained (Marshall and 

Tanner 1969). However, peak height velocity varies between individual around this median 

pattern; 40% occurring at B2, 30% at B3, 20% at B4 and 10% at B1 (Coste et al. 2002). As 

the peak height velocity is about a year before menarche, the growth slows down to about 2.5 

cm in height until completion of growth although it varies among individuals (Styne and 

Grumbach 2011). In males, peak growth velocity is observed at the Tanner genital stage 3 to 

4 between the age of 13 and 14 years with an average of 10.3 cm per year, gaining about 28 

cm of height during the pubertal growth period (Marshall and Tanner 1970). In boys, peak 

height velocity also varies between individuals with 60% occurring at genital stage 3 (G3), 

28% at G4 and less than 8% at G2 and G5 (Coste et al. 2002). 95% of boys complete height 

velocity by Tanner genital stage 5 (Styne and Grumbach 2011). The pubertal growth rate 

decreases rapidly after the gender-specific peak in height velocity with increase of 1 cm per 

year or less in height after the age of 14.5 and 17 years in girls and boys, respectively 

(Veldhuis et al. 2005). In boys, the combination of higher peak velocity and for a longer 

duration of growth compared to girls results in an average height difference of 13 cm 

between men and women (Greiner and Kerrigan 2006). Peak height velocity is also greater in 

youths who mature earlier (Veldhuis et al. 2005).  

Pubertal growth spurt is marked by the significant increase of growth hormone (GH), 

insulin-like growth factor l (IGF-1), estrogens and androgens. During childhood, the GH 

hormone secretion rates are stable and secretion pattern is similar in both genders with 

striking day-night rhythm (Martha et al. 1989). The secretion of GH is highest at early hours 

of sleep followed by small episodic bursts throughout the night/day (Finkelstein et al. 1972). 

The GH pulses are also released during the day, however at low levels (Miller et al. 1982).  
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During puberty, the activation of GH/IGF-1 axis and gonadal sex steroids not only 

demonstrates independent effects on growth, but the synergistic effect between them alters 

linear growth and body composition. Normal growth is attained with the presence of both GH 

and gonadal sex steroids. The growth spurt is impaired in conditions when either hormone is 

absent (Rogol et al. 2002). The increase in GH/IGF-1 axis during puberty is influenced by 

sex steroids. Elevated concentration of sex steroids especially estrogens stimulate 24-hours 

GH levels in a maximal pulse amplitude and increase in mass of GH released per burst which 

subsequently stimulate the hepatic IGF-1 production (Mauras 2001). Pulsatile secretion of 

GH increases between 1.5 and 3 fold which is accompanied by more than 3 fold serum IGF-1 

concentration increase during puberty (Juul et al. 1994). The secretion of GH differs between 

genders that are parallel with the pattern of height velocity. In girls, the GH/IGF-1 levels rise 

significantly at Tanner B2 and peaks at Tanner B3-B4. Meanwhile in boys the increase of 

GH/IGF-1 occurs later during the pubertal development, peaking at Tanner G4 (Albertsson-

Wikland et al. 1994). At the end of pubertal stage and adulthood, the levels of GH and IGF-1 

reduces significantly even though the gonadal steroids levels are high (Martha et al. 1989).      

The growth plate of bones undergoes functional and structural changes during growth. 

The growth plate contains chondrocytes and is divided into three zones; resting (containing 

immature cells close to the epiphyseal bone), proliferative (containing replicating and mature 

chondrocytes) and hypertropic (containing large chondrocytes). In both boys and girls, 

estrogens play an important role to modulate the secretion of GH and act directly on the 

growth plate maturation and fusion that leads to termination of longitudinal growth rates 

(Nilsson et al. 2005). During early puberty, low circulating levels of estradiol increases GH 

secretion followed by IGF-1 synthesis that stimulate chondrocyte growth in the proliferation 

zone of the growth plate and initiates pubertal growth spurt. As puberty progresses, 

augmentation of estradiol leads to apoptosis of hypertropic chondrocytes and stimulates 
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invasion of the growth plate by osteoblast. The completion of growth depends on estrogen 

action via ERα that induces exhaustion of chondrocytes proliferation that leads to fusion of 

the epiphyseal plate (Lazar and Phillip 2012, Weise et al. 2001). In conditions such as 

precocious puberty when premature exposure of estrogen occurs, skeletal growth accelerates 

leading to early epiphyseal fusion and decreased in final height (Carel et al. 2004). On the 

contrary, conditions featuring lack of estrogens (e.g. hypogonadism) causes delay in 

epiphyseal fusion and tall stature (Sedlmeyer and Palmert 2002).  

Testosterone requires aromatization to estradiol in order to influence the GH/IGF-1 

axis. This is evident in patients with aromatase deficiency where lack of estradiol lead to 

reduced epiphyseal closure, lack of pubertal growth spurt and the linear growth continues 

even after reaching adulthood (Morishima et al. 1995). Other studies have also shown 

administration of a non-aromatized androgen (DHT) in pre- and peripubertal boys does not 

increase GH secretion (Eakman et al. 1996, Veldhuis et al. 1997). Testosterone exerts its 

effect indirectly by enhancing the abundance and responsive of IGF-1 receptors in the growth 

plate chondrocytes (Lazar and Phillip 2012). Although non-aromatized androgens do not alter 

the GH/IGF-1 axis, they may have direct effects on bone growth independent of estrogens as 

AR expression is present within the growth plate cartilage (Nilsson et al. 2003).  

1.5.4 Body composition during puberty 

Dramatic changes in body composition occur in utero, across infancy, childhood and puberty. 

Endocrine factors play a key role in these dimorphic changes regulating the increase in bone 

density, fat free mass (lean mass) and the distribution and amount of adipose tissue. In early 

development, infant boys are heavier than girls due to greater lean mass whereas the fat mass 

are unchanged between the sexes (De Bruin et al. 1996). Thus proportionally newborn female 

have more subcutaneous fat than males with slightly higher mean skin-fold thickness 

(Rodriguez et al. 2005, Rodríguez et al. 2004). During prepubertal years, the differences in 



                                                                                                                                                                   Chapter 1 

   47 
 

body composition in both sexes are modest compared to postpubertal. Boys and girls weigh 

approximately 23 kg and 22 kg respectively by the age of 7 years (Veldhuis et al. 2005).  

As puberty progresses, the body composition markedly changes. In girls, the total 

body fat increases steadily with the mean of approximately 5.5 kg at the age of 8 years to 

about 15 kg at 16 years. The increase beyond this stage is considerably slow. In boys, the 

total body fat increases from 5.5 kg to 11 kg between the age of 8 and 14 years and falls 

beyond this stage to approximately 9 kg at the age of 16 years and reaches a plateau 

(Siervogel et al. 2000). The fat free mass increases in girls by the age of 6 years and attain 

stability by the age of 15 to 16 years. Boys acquire fat free mass more quickly and for longer 

duration than girls during puberty with a steady increase between the age of 8 and 18 years 

(Siervogel et al. 2000, Veldhuis et al. 2005). The pattern of higher fat distribution and lower 

fat free mass in girls is not only hormonally driven but is also related to lower energy 

expenditure during puberty (Goran et al. 1998). Body mass index (BMI) calculated as weight 

(kg) divided with the square of stature (m
2
) provides useful information to define over-weight 

and obesity (Siervogel et al. 2000).  
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1.6 Analytical measurements of LH and FSH. 

The importance of gonadotropin measurement as biochemical indicator of endocrinological 

status and for therapy monitoring has led to development of various specific and sensitive 

assays. The measurement of LH and FSH can be divided into two assay systems. The first 

type of measurement is the immunoassays that quantitate the mass of immunoreactive 

hormone molecules of the sample. This assay includes the radioimmunoassay (RIA), 

immunofluorometric assay (IF) and immunochemiluminometric assay (ICL). The second 

type of assay measures the biological activity of the gonadotropin such as receptor binding 

assay and bioassays that quantitate functional aspects of gonadotropins. The bioactive to 

immunoactive ratio provides a useful index to assess qualitative changes in the gonadotropin 

for clinical diagnostics (Jaakkola et al. 1990).    

RIA: The first immunoassay was developed by Yalow and Benson for peptide hormones 

measurements in the late 1950s, for which their work was awarded a Nobel Prize in Medicine 

to Yalow in 1972 (Yalow and Berson 1959). The development of RIA proved to be beneficial 

in studying gonadotropin regulation in health and disease conditions (Jaffe and Midgley Jr 

1969). The RIA technique is based on competitive binding of unlabeled gonadotropin in 

biologic fluid and radiolabelled gonadotropin to a limited number of binding sites on a 

specific antibody. As the amount of unlabeled hormone increases, the binding of radioactive 

labeled hormone binding to the antibody decreases. Immunoradiometric assays (IRMA) on 

the other hand are a variation of RIA in which the antibody is labeled instead of antigen. For 

LH RIA, antisera from hCG were initially used based on the resemblance in structure and 

immunologic properties (Wide et al. 1961). However, the hCG antisera were replaced with 

the availability of highly purified human LH and its antibodies (Odell et al. 1967, Odell et al. 

1966). Although this assay for gonadotropin measurement is known to be robust and is 

extensively employed for endocrine research, there are a number of limitations associated 
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with it. This includes considerable cross-reactivity of the free α-subunit of LH in some RIAs 

system (Dahl and Sarkissian 1993). RIA is also limited in sensitivity to measure low levels of 

gonadotropins. This hampers the assay application for measurement of low or suppressed 

gonadotropin levels for physiological or clinical assessment. Some IRMA and RIA were  

unable to measure LH pulses in prepubertal children (Clark et al. 1997). Studies have also 

shown discrepancy in the gonadotropin values measured by polyclonal antibodies in RIA 

compared to monoclonal antibodies immunoassays (enzyme linked immunoassay) possibly 

due to the differences in the antibody specificity (Olivares et al. 2000). Other disadvantages 

such as radiation hazard associated with, short half-life of the iodine tracer and costly gamma 

counter gradually lead to the replacement of RIA methods with new non-radioactive 

immunoassays such as IF and ICL (Munro et al. 1991).   

IF and ICL assays: These immunometric assays make use of two antibodies forming a 

sandwich. The first antibody bound to solid phase is used to capture the antigen. Whereas the 

second antibody labeled to signal transducer, commonly fluorescence (IF assay) or 

luminescence (ICL assay) is used to measure the concentration of the analyte. No 

radioactivity is involved in these assays. The gonadotropin molecules present in the sample 

will be enclosed (“sandwiched”) between the antibodies. The development of commercially 

available two-site-directed assays has overcome the limitation of gonadotropin RIAs 

associated with sensitivity and cross-reactivity of the α-subunit. IF assays are able to measure 

low serum LH and FSH during early puberty development that was difficult to obtain with 

the RIA assays (Apter et al. 1989).  

The dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) is a 

commercially available IF assay that utilizes europium as a label and time-resolved 

fluorescents as the detection method. This solid-phase assay is based on two site sandwich 

technique with high affinity monoclonal antibody. The monoclonal capture antibody is 
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immobilized on the plate which is directed against the specific β subunit of the glycoprotein 

hormone. The europium labeled detector monoclonal antibody is directed against the 

common α subunit (Lövgren et al. 1984). The long fluorescent decay time of the europium 

label enhances the sensitivity of the assay (Hemmilä et al. 1984).  

Immulite is another widely used automated immunoassay technology which utilizes the 

enzyme-amplified chemiluminescent technology. The solid phase of the system consists of a 

polystyrene bead sealed in the test unit and coated with a capture monoclonal antibody 

against LH or FSH.  The gonadotropin standard or sample binds to the monoclonal antibody 

coating the bead. A detector polyclonal antibody which is conjugated to alkaline phosphatase 

enzyme binds to the gonadotropin bound to the monoclonal antibody forming a sandwich. 

Finally, the chemiluminescent substrate added to the complex undergoes hydrolysis through 

the action of the alkaline phosphatase enzyme creating unstable anion that emits sustained 

light which is then measured using a luminometer (Reimers et al. 1996).    

FSH Bioassay: The Steelman-Pohley was the earlier in vivo assay to assess FSH. For this 

assay, immature female rats are pretreated with hCG to increase sensitivity to exogenous 

FSH. This is detected by measuring its response to exogenous FSH which results in a linear 

dose-response increase in mean ovarian weight (Steelman and Pohley 1953). The problems 

associated with this ovarian augmentation assay includes that it is too susceptible to serum 

interference, lacks sensitivity and is cumbersome for routine clinical studies (Wang 1988). 

The granulosa cell aromatase bioassay (GAB) and Sertoli cell aromatase assay are in vitro 

FSH bioassays that provide sufficient sensitivity for measurement of serum FSH. This non-

species-specific assay is based on stimulation of estrogens production by the rat ovarian 

granulosa cell primary culture to measure biologically active FSH. Serum samples are 

pretreated with polyethylene glycol to remove inhibitory substances prior to assay (Dahl et al. 
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1988, Jia and Hsueh 1986). Meanwhile, the Sertoli cell bioassay is based on measurement of 

estradiol production from exogenous testosterone in the presence of FSH (Van Damme et al. 

1979). 

LH/hCG Bioassays: The mouse interstitial cell testosterone assay (MICT) or the rat 

interstitial cell testosterone assay (RICT) are in vitro bioassays commonly used by 

laboratories for LH and hCG bioactivity measurements. These assays are based on the 

stimulation of testosterone from dispersed Leydig cells and the assays measure all LH/hCG 

like bioactivity but do not cross-react with the biologically inactive free subunits of the 

gonadotropins (Dufau et al. 1976).     

Receptor-binding assays: These assays are competitive protein binding assays similar to RIA 

but using a binding protein other than antibody, typically a receptor that utilizes radioligand 

gonadotropin (
125

I-hCG/
125

I-LH or 
125

I-FSH) as a ligand and crude rat homogenate from rat 

testes or corpora lutea which is rich in LH/CG and FSH receptors, respectively (Catt et al. 

1972, Leidenberger and Reichert Jr 1972, Sanzo and Reichert 1982). 
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1.7 Analytical techniques of steroid measurement  

Steroid hormone analysis plays an indispensable role for the diagnosis of endocrinological 

disorder or gonadal function in clinical laboratories. Steroid hormones and their metabolites 

can be measured in various biological fluids such as plasma, serum, urine, amniotic fluid, 

saliva and tissue extracts (Table 1.3). Generally, binding assays or chromatographic methods 

are used for steroid quantitation. Quantitation of steroids using gas chromatography-mass 

spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) are superior 

to immunoassays with regards to specificity and sensitivity (Krone et al. 2010). Rapid growth 

in the mass spectrometry (MS) technology has enabled routine analyses of steroids in clinical 

and research laboratories (Stanczyk and Clarke 2010). Table 1.4 shows comparison studies 

between immunoassays and GC/LC-MS for testosterone and estradiol measurements.  

1.7.1 Immunoassay 

RIA to measure steroid was first developed in 1969 for estradiol analysis in serum/plasma 

(Abraham 1969). The ‘indirect’ RIA method involves extraction of steroid with organic 

solvent (to remove conjugated steroids and denature the SHBG or CBG protein bound to the 

steroids) and Celite or Sephadex column chromatography separation (to remove possible 

interfering structurally related precursor or metabolites) prior to RIA quantitation that 

increases the specificity of the assay (Abraham et al. 1972, Giton et al. 2009). Since steroid 

molecules are too small to be antigenic, they are covalently attached to carrier protein such as 

bovine serum albumin forming hapten (Abraham 1974). The specificity of the assay antibody 

increases when the binding of protein to the steroid is distant from the functional groups 

(Honour 2010).  

The antibodies used for RIAs are available commercially for many but not all 

steroids. Tritiated steroid were used in earlier RIA methods which was then replaced with 
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iodinated derivatives that increased the assay sensitivity (Stanczyk 2004). The assay involves 

displacement of radioactively labelled steroid from the antibody binding site by steroid in the 

assay sample. Then the antibody-bound and the unbound steroid are separated either by 

activated charcoal where the unbound steroids is adsorbed (Wu and Lundy 1971) or by 

precipitation of the antibody-bound steroid complex forming a pellet upon centrifugation 

(Honour 2010). The liquid scintillant fluid is then added to the radioactive sample (only for 

the tritiated label) that produces light which is then measured using a photomultiplier (beta 

counter).   

The RIA has high throughput of samples. Pre-assay purification method removes 

interfering metabolites so as to provide accurate and reliable steroid measurements. However, 

RIAs are cumbersome, requires prolonged incubation and time-consuming purification steps. 

Large sample volume is also required especially when quantifying samples with low steroid 

concentrations (Stanczyk and Clarke 2010). Due to all these disadvantages, direct (non-

extracted) immunoassay such as IF, ICL or enzymatic assays were developed. These assays 

do not require radioactive ligands and steroid purification prior to steroid analysis. 

Additionally the direct immunoassays are simple, rapid and more affordable. However, 

steroid immunoassays generally lack in specificity because the antibodies cross-react with 

steroids having or sharing structural similarities, especially when present at higher 

concentration than the steroid of interest. For example in women and children, high DHEAS 

concentration may cross-react with testosterone measurements and in such condition there 

will be an overestimation of testosterone steroid concentrations (Heald et al. 2006, Moal et al. 

2007). Cross-reactivity also occurs due to conjugated metabolites of the steroid of interest 

resulting in erroneous steroid measurement (Yarrow et al. 2013). Other inherent problem of 

using immunoassays includes inaccuracy and limited sensitivity to measure steroids at low 

concentrations. These immunoassays are unsuitable for steroids quantitation below the assay 



                                                                                                                                                                   Chapter 1 

   54 
 

validated range for example quantitation of estradiol in children, postmenopausal women and 

men (Stanczyk et al. 2010, Taieb et al. 2002) and testosterone measurement in children and 

women (Moal et al. 2007, Rothman et al. 2011, Taieb et al. 2003). Assay comparison studies 

demonstrated large inter-assay variability for testosterone and estradiol measurements (Table 

1.4) (Handelsman et al. 2014, Sikaris et al. 2005).  

The presence of heterophilic and auto-antibodies that form complexes with the 

reagent antibodies may also interfere with the immunoassays giving false negative or positive 

measurements (Boscato and Stuart 1988, Boscato and Stuart 1986). Additionally, direct 

immunoassays utilizing samples without extraction, chromatographic separation or authentic 

tracers (H
3
, C

14
) are susceptible to matrix and SHBG interference (Handelsman et al. 2014, 

Sikaris et al. 2005, Taieb et al. 2003). Removing the pre-immunoassay purification step was 

reported to falsely underestimate or overestimate analyte measurements (Marks 2002). 

Immunoassay performance was improved with extraction method prior to assay for samples 

with low estradiol in children (Ankarberg-Lindgren and Norjavaara 2008). However, studies 

have also reported positive bias in assays involving extraction and chromatographic 

separation methodologies compared to reference methods (Cawood et al. 2005, Wang et al. 

2004). Furthermore, the presence of endogenous compounds such hydrophobic and 

amphiphatic lipids in serum samples has been reported to interfere with the RIA assays by 

interacting with the steroids or the antigen-antibody reaction (Rash et al. 1980).  

1.7.2 Gas chromatography- mass spectrometry   

The first gas chromatography (GC) to measure steroids was developed in 1960 which 

preceded the use of immunoassay in endocrine studies (Sweeley and Horning 1960, Vanden 

Heuvel et al. 1960). The coupling of GC and MS to measure sterols was first carried out in 

1964 (Eneroth et al. 1964) followed by the GC-MS steroids analysis in the late 1960s in 

biological matrices (Sjövall and Vihko 1968).  
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GC-MS is a robust and widely used method for detection and analysis of major 

steroids and their metabolites in complex matrices such as urine (Weykamp et al. 1989). The 

GC consists of flexible silica-based column (approximately 30 m in length) that utilizes large 

gas volumes (normally helium) with high pressure as mobile phase and for chromatographic 

separation. Samples injected into the column are vaporized upon reaching the analyte boiling 

point which is about 300°C for steroids. The volatile analytes then move into the vacuum 

detector such as flame ionization detector (FID), electron-capture detector (ECD) or the mass 

spectrometer (MS). The MS detector is preferred for steroid analysis as it provides highly 

sensitive and selective detection.  

The GC-MS is capable of providing baseline separation of steroids with structural 

similarities or α/β stereoisomers (Krone et al. 2010). However, prior to GC-MS analysis, non-

volatile and thermolabile analytes have to be chemically derivatized, for example, using 

methyloxime-trimethylsilyl ether (MO-TMS) to enhance volatility and to withstand the GC 

high temperature during vaporization. Derivatization with suitable reagents increases the 

ionization efficiency by changing the steroid physical and chemical property by forming 

covalent linkage to the specific functional group of the analyte. Common concerns with 

derivatization includes incomplete derivatization, nonspecific derivatization and production 

of multiple products (Liberato et al. 1987). Steroids in conjugated form have to be 

enzymatically or chemically hydrolyzed before analysis as steroid conjugates have low 

volatility and degrade at high temperature (Caulfield et al. 2002). There are two types of 

enzyme solutions normally used for steroid deconjugation which includes Escherichia coli 

and Helix pomatia. β-glucuronidase extracted from E.coli deconjugates the glucuronide 

moiety from steroids whereas the β-glucuronidase/arylsulfatase extracted from H. pomatia 

hydrolyses both the glucuronide and sulfate conjugates. However, the use of H. pomatia 

yields unwanted steroid by-product (e.g. conversion of DHEA to androst-4-ene-3,17-dione) 
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and incomplete deconjugation (e.g. androsterone-3-sulfate and testosterone-17-sulfate) 

(Messeri et al. 1984, Vanluchene et al. 1982, Venturelli et al. 1995). This is not a problem 

with the enzymatic hydrolysis using the enzyme from E.coli. The GC-MS run time for 

multiple steroid profile analysis is also commonly very long thereby limiting the sample 

throughput. Although only small volume of sample is required for GC-MS analysis (1-5 μL), 

it requires extensive sample cleanup before analysis.  

1.7.3 Liquid chromatography-mass spectrometry 

In the 1980s, the development of liquid chromatography (LC)  technology coupled with MS 

provided a much simpler and faster analysis of steroid compared to the GCMS (Liberato et al. 

1987). To date, LC-MS/MS is now considered the most accurate method to measure small 

molecules from variety of biological matrices (Xu et al. 2007). The LC consists of pumps that 

delivers mobile phase under high pressure to maintain a constant flow rate thereby ensuring 

reproducible chromatography. Mobile phase for steroids separation consist of a mixture of 

organic solvents (e.g. methanol and acetonitrile) and water with modifiers (e.g. formic acid, 

ammonium acetate, ammonium formate). Samples injected into the column (stationary phase) 

separates the steroids and the effluent is then transferred into the MS. The LC separation is 

dependent on the physical or chemical characteristics of the analytes such as molecular size 

and presence of functional groups.   

LC-MS analysis is highly sensitive and specific for steroid quantitations. A robust 

LC-MS method to quantitate steroids requires high quality chromatography to separate the 

steroid of interest from isobaric compounds (i.e. identical nominal mass to charge ratios) 

(Keevil 2013). Examples of isobaric compound pairs include cortisone/prednisolone, 

testosterone/DHEA and 11-deoxycortisol/corticosterone. However, separating these isobaric 

or interfering compounds may increase the assay runtime and requires more mobile phase. 

Multiple analytes can be measured with lesser sample preparation compared to GC-MS. 
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Additionally LC-MS steroid profile provides more useful data than single steroid 

measurement such as from using immunoassay. With the LC-MS system, the analysis 

operates at low temperature which is beneficial for measurement of unstable analytes such as 

conjugated steroids and thermolabile steroids (Borts and Bowers 2000, Bowers 1996). 

Derivatization step is added to increase the sensitivity of LC-MS methods for certain steroids 

analysis especially for analytes that are not effectively ionized such as estradiol and DHEA 

(Kushnir et al. 2008) (Table 1.3). Derivatization reagent reacts with a functional group (eg 

hydroxyl) to improve column retention and ionization efficiency (Xu et al. 2011). Dansyl 

chloride is commonly used for hydroxyl group to esterify estrogens (Nelson et al. 2004, Xu et 

al. 2005). However, derivatization for LC-MS adds complexity to the method, possibility of 

artifact formation and requires certain functional groups (Ja  ntti et al. 2010, Xu et al. 2010). 

Unlike GC-MS, the LC-MS has generally shorter run time and is not limited to measurement 

of volatile compounds and is able to measure heat-labile steroidal compounds.  

The LC is combined with ionization source that ionizes compounds delivered by the 

LC in liquid droplet. The atmospheric pressure ionization (API) which was introduced in the 

1980s facilitates ionization for MS analysis. Ionization techniques commonly used for 

steroids LC-MS/MS analysis includes electrospray ionization (ESI), atmospheric pressure 

chemical ionization (APCI) and atmospheric pressure photo ionization (APPI) (refer section 

1.8.2 for details on ionization interface). The ESI, APCI and APPI are considered as “soft” 

ionization technique as they form protonated or de-protonated molecules without 

fragmentation (Souverain et al. 2004). This type of ionization is achieved by transferring 

minimum internal energy to the analytes during ionization (El-Aneed et al. 2009). However, 

conjugated steroids could be fragmented by the ion source (Field 2013). 

The ionization technique selected for LC-MS method is dependent on the molecular 

weight and the polarity of the analytes (Figure 1.14). APCI and APPI are known to be less 
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susceptible to ion suppression or enhancement due to matrix effect as the ionization occurs in 

gas phase compared to ESI (liquid phase ionization) (Elviri et al. 2010, Holčapek et al. 2010). 

However, ionization with APCI is not completely free from ion suppression for certain 

compounds and the analyst should perform through investigation on ionization technique 

selection during method development (Sangster et al. 2004). Table 1.3 shows different 

ionization techniques used in previous studies to determine free and conjugated steroids 

measurement using MS. 

 

 

 

 

 

 

 

  

Figure 1.14 Ionization capabilities of ESI, APPI and APCI according to the 

molecular weight and polarity of the analytes (Holčapek et al. 2010).  
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Table 1.3 Examples of endogenous steroids analysis by GC/LC-MS. 

Analyte Analytical 

method 

Biological 

Matrix 

Sample preparation Derivatization Deconjugation Assay 

validation 

LOD/LOQ Reference 

T,  ET,  A, Etio, DHEA 

(Sulfates and 

glucuronides )  

LC-ESI-

MS/MS 

(- mode) 

Urine 

(human) 

SPE (Oasis WAX) No No Yes Not reported  (Strahm et 

al. 2008) 

T, E, DHEA, DHT, 

5α3α17β, 5β3α17β, 

5A3β17α, 5A3β17β, 

EpiA, A, Etio  

GC-MS Urine (human) SPE (C18) ITMS/MSTFA Chemical and 

Enzymatic 

(E.coli) 

Partial Not reported   (Dehennin 

et al. 1996) 

ADT, CORT, E1, E2, 

E3, T,  5AD, ALD, 

17OHPreg, DHEA, 

5αDHT, 5βDHT, P5, 

THS, DOC, 5a-THB, 

HC, S, M, 2-OH E1; 

16α-OH E1, 17-OHP, 

A4  

LC-ESI-

MS/MS 

(+ mode) 

Urine (human) SPE (Oasis HLB) DMAB (all 

steroids accept 

for P5, 17-OHP, 

A4) 

No No LOD:  5-500 

pg/mL  

(Dai et al. 

2012)  

15 estrogen and 

estrogen 

metabolites  

LC-ESI-

MS/MS 

(+ mode) 

Urine (human) LLE 

(dichloromethane) 

Dansyl chloride Enzymatic 

(H. pomatia) 

Partial LOQ: 0.04 

ng/mL  

(Xu et al. 

2005)  

23 estrogens, 

androgens and 

pregnanes  

(free/glucuronide 

conjugated)  

LC-ESI-

MS/MS 

(+ mode for 

all steroids 

except 

pregnandiol) 

Urine (primate) LLE 

(MTBE) 

No Chemical and 

Enzymatic 

(E.coli) 

Yes LOQ: 0.3-3 

ng/mL  

(Hauser et 

al. 2008)  
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E1, E2, E3, P4, P5 LC-ESI-

MS/MS 

(+ mode for 

P4 and P5, - 

mode for 

estrogens) 

Urine (human) Online SPE (C18) No Enzymatic 

(E.coli) 

Partial 6-61 pg on 

column  

(Alvarez 

Sanchez et 

al. 2008)  

T, ET, DHEA, A, Etio 

(free, sulfates and 

glucuronides)  

LC-MS/MS (+ 

mode for free 

steroids and 

– mode for 

sulfates and 

glucuronide 

staeroids) 

Urine (bovine 

and human) 

SPE (Strata X) No No No LOD: 80-100 

ng/mL  

(Buiarelli et 

al. 2004)  

TG, ETG, AG, EtioG  LC-ESI-

MS/MS 

Urine (human) Filtration or LLE (ethyl 

acetate) 

No No Yes Filtration 

method: 0.25-

1 ng/mL  

LLE method: 

0.05-0.25 

ng/mL  

(Pozo et al. 

2008)  

AG, TG, E23G, E2-

17G, E2-3G,17diG, 

DHEAS, TS, E1S, E2S, 

E2-3G17S, E2-

3S17G, CRLG, CRLS, 

CRNS 

LC-ESI-

MS/MS 

(-mode) 

Urine (human) SPE No No No Not reported  (Antignac et 

al. 2005)  

E1, E2  LC-APPI-

MS/MS 

(- mode) 

Tissues, serum 

(human) 

Tissue homogenization 

(water), LLE 

(hexane:ethylacetate) 

No No Yes LOQ: 2.5-5.0 

pg/mL  

(Huhtinen 

et al. 2012)  
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T, DHT, 3α-diol, 3β-

diol,  E2, E1  

LC-APPI-

MS/MS 

(- mode: 

estrogens; 

+ mode: 

androgens) 

Tissues 

(Mouse testis, 

prostate, 

ovary, uterus 

Tissue homogenization 

(EDTA in PBS), LLE 

(hexane:ethyl acetate) 

No No Yes LOQ: 0.3-40 

pg  

(McNamara 

et al. 2010)  

E1, E2, E3, 17βT, 

17αT, 5βDHT, 

5αDHT, A, Etio  

GC-MS/MS 

(- mode: 

estrogens; + 

mode: 

androgens) 

Serum (human) LLE (ether), 

SPE (ChromP), SiOH SPE 

column, HPLC 

MSTFA-TNIS-

DTT mixture 

  

Enzymatic 

(H.pomatia) 

Yes LOD: 0.03-1.8 

pmol/L 

LOQ: 0.07-3.7 

pmol/L  

(Courant et 

al. 2010) 

DHEAS, A, 

F, CORT, S  

A4, E2, T, 17α-OHP, 

DHEA, P4  

LC-APPI-

MS/MS 

(- mode: A; + 

mode:  all 

other 

steroids 

studied) 

Serum 

(human) 

PP (ACN) No No Yes LOD: 1.5-10 

pg/mL  

(Guo et al. 

2006) 

Seven C-21 adrenal 

steroids 

LC-APCI-

MS/MS (+ 

mode) 

Serum 

(human) 

PP (ZnSO4/MeOH) 

Online extraction C18 

silica monolithic  pre-

column 

No No Yes LOD: 0.10-

2.75 nmol/L) 

LOQ: 0.30-

12.40 nmol/L)  

(Carvalho et 

al. 2008)  

DHEAS, F, A4, E3, P4, 

DHEA, S, 17α-OHP, 

E2  

LC-APPI-

MS/MS (+ 

mode) 

Serum 

(human) 

PP (ACN) No No Yes Not reported  (Guo et al. 

2004) 

E1, E1S, E2, E13G, 

E2, 2MeOE1,  

2MeOE2  

TS-LC-MS/MS  

(- mode) 

Serum (human) LLE and SPE (Strata X) No No Partial Not reported (Caron et 

al. 2009)  
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17OHP, T, A4 LC-APCI-

MS/MS 

(+ mode) 

Plasma/ 

Serum 

(human) 

Online SPE (Oasis HLB) No No Yes LOD: 0.14-

0.17nmol/L 

LOQ: 0.30-

0.35 nmol/L  

(Rauh et al. 

2006) 

A4, T, DHT LC-ESI-

MS/MS 

(+ mode) 

Plasma SPE (Oasis MAX) No No Yes LOQ: 0.29 

ng/dL  

(Kulle et al. 

2010)  

A4, T, DHT  LC-ESI-

MS/MS 

(+ mode) 

Cultured 

human cell 

lines 

Online SPE (C4-alkyl-diol 

silica) 

No No Yes Not reported  (Chang et 

al. 2003) 

T, DHEA  LC-ESI-

MS/MS 

(+ mode) 

Saliva (human) SPE (Strata-X) HMP No Yes LOQ: 10 

pg/mL  

(Shibayama 

et al. 2009) 

17OHPreg, 17OHP  LC-ESI-

MS/MS 

(+ mode) 

DBS 

(human) 

SPE (Strata-X) HP No Yes LOQ: 0.5-1 

ng/mL  

(Higashi et 

al. 2008)  

CORT, DOC, P4, 17α-

OHP, F, DF, A4, T, 

DHT, F  

LC-ESI-

MS/MS 

(+ mode) 

DBS 

(human) 

LLE (acetone/ACN) No No Yes LOQ: 0.75-6.3 

nmol/L  

(Janzen et 

al. 2008) 

 

 

 

 

 

Abbreviations: HMP: 2-hydazino-1-methylpyridine; HP: 2-hydrazinopyridine; DMAB: 4-Dimethlamino-benzoic acid; ACN: acetonitrile; MTBE: methyl tert-butyl ether; MSTFA-TNIS-DTT: N-methyl-

N-(trimethylsilyl-trifluoroacetamide/trimethyliodosilane/dithiothreitol; T: testosterone; ET: epitestosterone; A: androsterone; M: mesterolone; Etio: etiocholanolone; DHEA: 

dehydroepiandrosterone; E1: estrone; E2: Estradiol; E3: estriol; 2-OH E1: 2-hydroxyestrone; 16α –OH E1; 16α-hydroxyestrone ; E1S: Estrone sulfate; E13G: Estrone glucorunide; 2MeOE1: 2-

methoxy estrone; 2MeOE2: 2-methoxy estradiol: CORT: corticosterone; A4: Androstenedione; ADT: Androsterone; ALD: Aldosterone; P5: pregnenolone; 17α-OHP: 17α-hydroxyprogesterone; 

17OHPreg: 17αhydroxypregnenolone; P4: progesterone; S: 11-Deoxycortisol; 21-Deoxycortisol: DF ; deoxycorticosterone: DOC; F:Cortisol;  THS: tetrahydrodeoxycortisol; 5a-THB: 5a-

tetrahydrocorticosterone; HC: Hydrocortisone; 17α-OHP: 17α-hydroxyprogesterone; E: epitestosterone; 5AD: 5-androstenediol; 5α3α17β: 5α -androstane-3 α,17β-diol; 5β3α17β: 5β-

androstane-3 α,17β-diol ; 5A3β17α: 5androstane-3 β;17α –diol; 5A3β17β: 5androstane-3 β,17 β –diol; EpiA: epiandrosterone; AG: 5-androstane-17-glucuronide; TG: testosterone-17-

glucuronide; E2-3G: 17-estradiol-3-glucuronide; E2-17G: estradiol-17-glucuronide; E23,17diG: estradiol-3,17-diglucuronide; DHEAS: dehydroepiandrosterone sulfate; TS: testosterone-17-sulfate; 

E2-3S: 17-estradiol-3-sulfate; E2-3G17S: estradiol-3-glucuronide,17-sulfate; E2-3S17G: estradiol-3-sulfate,17-glucuronide; CRLG: cortisol 21-glucuronide; CRLS: cortisol 21-sulfate; CRNS: cortisone 

21-sulfate; TS: Turbo IonSpray; ESI: electrospray ionization; APCI: atmospheric pressure chemical ionization; APPI: atmospheric pressure photoionization; LC: liquid chromatography; GC: gas 

chromatography; MS: mass spectrometry; SPE: solid phase extraction; LLE: liquid-liquid extraction; PP: protein precipitation; LOD: lower limit of detection; LOQ: lower limit of quantitation: 

HPLC: High performance liquid chromatography; DBS: dried blood spot 
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Table 1.4 Examples of immunoassay and GC/LC-MS comparative studies for quantitation of testosterone (T) and estradiol (E2). 

Analyte Analysis technique 

comparisons 

Samples 

(number) 

Findings Reference 

T GC-MS versus 10 

immunoassay (8 direct  

non-isotopic immunoassays 

and 2 direct RIAs) 

Serum from 

normal 50 men, 

55 women and 

11 children 

• Men: Immunoassays underestimate T with 12% below GC-MS measurement.  

• Women: Degree of bias significantly higher in women with 46% above GC-MS 

concentration.  

• Children: Immunoassays measured higher T concentration for undetectable  GC-MS levels 

(< 4.3 ng/dL).  

(Taieb et al. 

2003)  

T LC-API- MS/MS versus 6 

immunoassays (4 

automated and 2 RIAs) 

Serum from 62 

normal and 60 

hypogonadal 

male. 

• Deming regression demonstrated variability (underestimation or overestimation) of T 

measurements with most of the immunoassays studied compared to LC-MS/MS. 

• 90% of the samples measured with immunoassays demonstrated T concentrations of more 

than 20% from LC-MS/MS measurements.      

(Wang et al. 

2004) 

T LC-ESI- MS/MS versus 5 

immunoassays (2 

automated non-isotopic and 

3 RIAs) 

Serum from 28 

children and 31 

women 

• Immunoassays overestimated T concentration and unreliable for T below 100 ng/dL.  (Moal et al. 

2007) 

T LC-APCI- MS/MS versus 

one automated 

immunoassay 

Serum/plasma 

from 107 

children  

• Immunoassay underestimated T for samples with concentrations >5 nmol/L. 

• High variability samples with T <5 nmol/L determined by immunoassay. 
(Rauh et al. 

2006) 

T GC-MS versus 7 automated 

immunoassays 

Serum from 124 

healthy men 

• Deming and Passing-Bablok regression demonstrated variability in six immunoassays with 

significant difference in slope and intercept when compared to GC-MS measurements.  

• Reported wide variability in immunoassay performance against valid healthy young men 

reference population. 

(Sikaris et al. 

2005) 

E2 LC-APPI-MS/MS versus 5 

direct non-isotopic 

immunoassays 

Serum from 101 

healthy older 

men 

• Only three immunoassays were able to measure E2 concentrations in all the samples.  

• Upward bias ranging between 6 and 74% for E2 measured with immunoassays compared 

LC-MS/MS (method certified with 3 certified reference materials).  

(Handelsman 

et al. 2014) 

E2 GC-MS/MS versus 7 

immunoassays (3 indirect 

and 4 direct assays) 

Serum from 40 

postmenopausal 

women 

• The three indirect assays that involve extraction prior to assays demonstrated better 

correlation (0.94, 0.91 and 0.88) with GC-MS/MS measurements compared to the 4 direct 

assays (without extraction).  

(Lee et al. 

2006) 
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1.8 Mass spectrometry 

All MS comprise of four basic components - the inlet, ion source, mass analyzer and detector 

(Figure 1.15). Six basic types of mass analyzers are currently available. These includes 

quadrupole, ion trap, time-of-flight (TOF), Orbitrap, double focusing magnetic analyzer and 

Fourier transform ion cyclotron resonance (FT ICR) (Holčapek et al. 2010). Each has 

different mass accuracy, mass resolution parameters and capability to measure different of 

mass-to-charge (m/z) range (Holčapek et al. 2010). Recent advancement to the MS with 

higher mass resolution allowed separation of co-eluting isobaric compounds that have the 

same nominal masses but different exact masses (Xian et al. 2012). The mass analyzer 

measures gas phase ions according to their m/z ratio, where the charge is produced by 

addition or loss of proton(s), cation(s), anion(s) or electron(s). Utilizing electrical fields, these 

charged molecules are separated according to their m/z that further allows its mass 

measurements. Table 1.5 lists the basic principles of the six mass analyzers in use today. The 

most common mass analyzer for quantitative steroid analysis is the triple quadrupole 

instrumentation which is also known as tandem MS (Keevil 2013, Rauh 2010).  

1.8.1 Triple quadrupole mass spectrometer 

The triple quadrupole MS consists of two resolving quadrupoles (Q1 and Q3) and a collision 

cell positioned in between the quadrupole (Q2) (Kushnir et al. 2011). Sample steroids 

separated by the LC are first ionized by the ion source before further transfer into the mass 

spectrometer where the first quadrupole monitors the precursor ions. The analyte(s) of 

interest (precursor ion) is selected at Q1 according to the m/z ratio and all other compounds 

are filtered out. Then, the second quadrupole (collision cell) performs the collision between 

the collision gas (e.g. argon, helium and nitrogen) and the introduced steroids producing 

fragmented or product ions. Finally, the third quadrupole monitors the product ions of the 
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steroids according to the radiofrequency set and removes the unwanted fragment ion. The 

targeted precursor and product ion finally reaches the ion detector (Figure 1.15).    

New LC-MS/MS method development requires infusion of the standard steroid 

reference and its isotope labeled internal standard separately using a syringe pump and a ‘tee 

mixer’ to introduce the analyte into the LC mobile phase and the ion source. Analyte 

quantitation can be carried out by two common techniques, selected-ion-monitoring (SIM) or 

multiple-reaction-monitoring (MRM), which are commonly used for a single or triple 

quadrupole mass spectrometer, respectively. MRM (also known as selected-reaction-

monitoring; SRM) mode provides high selectivity and sensitivity compared to SIM. High 

background chemical noise in SIM mode caused by isobaric compounds and impurities leads 

to lower signal to noise ratio (S/N) for the target analyte (Bakhtiar and Majumdar 2007). The 

analyte of interest should be tested in positive or negative ion modes to determine the most 

suitable and efficient ionization conditions with highest S/N ratio. For MRM, the specific ion 

transition for each analyte is selected based on precursor ion and product ions pairs, which is 

then used for quantitation of steroids from the biological samples (Shibata et al. 2014). 

During the method development, other MS parameters such as ion source voltage and 

temperature, collision cell energy, declutering potential, entrance potential, collision cell exit 

potential and dwell time are optimized. Biological samples have to be pretreated prior to 

sample quantitation by MS and the method has to be validated for limit of quantitation (lower 

and upper), accuracy and precision, recovery, reproducibility, stability and matrix effect 

according to the appropriate guidelines such as US Food and Drug Administration guidance 

(FDA 2001) or European Medicines Agency (EMA 2011).    
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Mass analyzer                  Main principles 

Quadrupole  •   Consist of four metal rods installed in parallel orientation 
•   RF and DC voltages applied to rods guide the ions with desired m/z ratios to pass through and move towards the detector while  

  other molecules are guided out and neutralized 
•   Mass range: <4000 Da; Resolution: <4000 

Ion trap  •   Consist of three hyperbolic electrodes: ring, entrance and exit end cap electrode 
•   RF and DC potential applied to the ring electrode produces 3-dimensional quadrupolar potential field 
•   The ions losses kinetic energy and are trapped forming an ion “cloud” 
•   Ions are ejected according to their m/z ratios into the detector 
•   Mass range: <4000 Da; Resolution: <4000 

Time-of-flight  
(TOF)  

•   Ion generated by ion source is accelerated into flight-tube 
•   Smaller ions travel faster compared to molecules with higher mass 
•   Molecules with different m/z travel at different time intervals into the detector  
•   Mass range: >1 MDa; Resolution: 4000  

Orbitrap  •   Consist of two electrodes: outer electrode (barrel shape) and inner electrode (spindle shape) 
•   DC voltage applied  
•   Ions are pulsed into the orbitrap, rotates around the central electrode and oscillate along the horizontal line   
•   m/z of different ions are determined from different frequencies of the oscillation by Fourier transform  
•   Mass range: <6000 Da; Resolution: 150,000 

Double focusing  
magnetic analyzer  

•   Involves two sectors: electrostatic and magnetic 
•   Ions with same kinetic energy are directed from electrostatic sector (act as a kinetic energy selector) to the   

                  magnetic sector before ion separation and detection  
•   Mass range: 10,000 Da; Resolution: 60,000  

Fourier transform  
ion cyclotron resonance 
(FT ICR)  

•   Consist of an analyzer cell (or known as Penning trap) with two excitation, detection and trapping plates each 
•   Analyzer cell is located within strong magnetic field 
•   Ions generated by ion source moves into the analyzer cell and RF applied to the excitation plates causes excitation of the ions  
•   Ions starts to precess in center of magnetic field resulting it to orbit (known as cyclotron motion) 
•   Ions with lower m/z have higher cyclotron frequencies compared to ions with higher m/z 
•   Ion packets frequencies are detected by the detection plates and the frequency analysis is performed using Fourier transformation 
•   Frequencies are converted to m/z to give a mass spectrum.  
•   Mass range:  10,000 Da; Resolution: >500,000  

 Abbreviations: RF: radiofrequency; DC: direct current; m/z: mass/charge  

Table 1.5 Basic principles of different types of mass analyzers 

(Barrow et al. 2005, El-Aneed et al. 2009, Glish and Vachet 2003, Ho et al. 2003, Hu et al. 2005, Moens and Jakubowski 1998, Nikolaev et al. 2014, Vogeser and Parhofer 2007).  
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Figure 1.15 Representation of precursor ion and product ion selection of MS1 and MS2, 

respectively in the tandem mass spectrometer 

 

1.8.2 Ionization interfaces 

The eluent from the LC column must be effectively converted into gaseous phase before 

being measured by the MS. Since the introduction of electrospray ionization (ESI), 

atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization 

(APPI), LC-MS/MS has become widely used for steroid analysis with superior sensitivity and 

specificity (Table 1.3).  

1.8.2.1 Electrospray ionization (ESI) 

This ionization method, developed by Fenn and co-workers in 1988 (Fenn et al. 1989), led to 

award of a Nobel Prize in Chemistry to Fenn in 2002. ESI technique is based on the 

production of ions from liquid phase into gas phase by the dispersal of highly charged 

droplets at near atmospheric pressure followed by the formation of evaporated droplet. The 

LC mobile phase is sprayed from the tip of the metal capillary. The needle is applied with 

high voltage typically between 3-5 kV that leads to the formation of Taylor cone (Taylor 

1964) (Figure 1.16). A fine spray of highly charged droplets is generated which then 

undergoes rapid evaporation due to heat and dry nitrogen (desolvation gas). The ion polarity 

is controlled by adjusting the capillary voltage that forms either positive or negative charged 

(El-Aneed et al. 2009). 
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ions. Evaporation of the solvent further reduces the droplet diameter and increases the droplet 

surface charge density. The parent droplets undergoes “Coulomb explosion” or “Coulomb 

fission” when the electrostatic forces overcome the surface tension of the droplets (Rayleigh 

limit is reached) forming smaller offspring droplets. This process continues until the charged 

analyte molecules escapes the droplets by field desorption and these analyte ions are guided 

into the mass analyzer by the electric field gradient (Banerjee and Mazumdar 2012, Gomez 

and Tang 1994) (Figure 1.16). To facilitate ionization, the presence of ionic solution is 

important. Mobile phase consisting of methanol/water or acetonitrile/water containing weak 

acids such as formic or acetic facilitate protonation (for positive mode ionization), whereas 

diluted ammonium hydroxide in aqueous solution or diluted volatile buffers (ammonium 

acetate or formate) facilitates deprotonation (for negative mode ionization) (Cech and Enke 

2001). ESI is a soft ionization technique (i.e. non-disintegrating) suitable for polar 

compounds such as labile conjugates (glucuronides and sulfates) (Figure 1.14)  (Kostiainen et 

al. 2003) or compound that forms charged adduct with ammonium or alkali cations 

(Himmelsbach 2012). The LC-ESI-MS/MS method is able to measure steroids in free and 

conjugated forms simultaneously (Moeller and Stanley 2012). However, steroids are 

commonly measured after hydrolysis, which is enzymatic or chemical deconjugation. 

Steroids with high proton affinity such as androgens, glucocorticoids and mineralocorticoids 

are easily ionized with ESI source due to the 3-oxo-4ene structure (Shibata et al. 2014). 

Derivatization is commonly carried out to improve ESI ionization efficiency and sensitivity 

for trace steroids or steroids with low ionization potential. Although derivatization may 

increase the sensitivity of steroids measurement for LC-ESI-MS methods (1-10,000 fold) 

(Dai et al. 2012) (Table 1.3), the derivatization step increases sample preparation time, causes 

loss or degradation of target steroids and increases “noise” (Higashi and Shimada 2004, Mao 

et al. 2004, Santa 2011).  
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Figure 1.16 Schematic diagram of ESI source. 

 

 

1.8.2.2 Atmospheric pressure chemical ionization (APCI)   

This is a chemical ionization process that ionizes analytes in gas phase. Mobile phase and 

analytes are first vapourized in the ion source with heat (from the nebulizer probe) and 

nebulizing gas flow. A sharp needle is positioned directly in the forming gas cloud and this 

needle generates electron from corona discharge which bombards the vapour. Solvent 

molecules become charged and the electrical charge is transferred to the analyte molecules 

(Figure 1.17). The LC mobile phase commonly used is a mixture of water and organic 

solvent (e.g. methanol and acetonitrile) which forms either protonated or deprotonated ions of 

these solvents that transfers their charge to ionizable analytes. APCI is preferred over ESI for 

steroid analysis as it is capable of ionizing non-polar or poorly ionized compounds (Kushnir 

et al. 2010) (Figure 1.14). 

 

 

 

The highly charged capillary releases charged droplets. Size of the droplets decreases with the 

desolvation process and further droplet fission produces the gas phase analyte ions (Banerjee 

and Mazumdar 2012, Robb and Blades 2008).   
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1.8.2.3 Atmospheric pressure photoionization (APPI) 

This is a newer API source for LC-MS that also operates by chemical ionization in gas phase. 

Similarly to APCI, the solvent first undergo vaporization as it passes the heated nebulizer. 

Instead of the corona discharge needle used in APCI source, krypton lamp produces 

ultraviolet (UV) light that induce ionization via emission of photons in vacuum (Figure 1.18). 

The analyte ionization in this system is enhanced with the addition of dopant such as toluene 

and acetone that is involved in the chemical ionization (Robb and Blades 2006). Krypton 

lamp delivers photons energy (hv) of 10.0 and 10.6 eV and only ionizes ions with lower 

ionization energy (IE) including the dopant (e.g. toluene IE: 8.82 eV). Common LC mobile 

phase such as water (12.61 eV), methanol (10.85 eV) and acetonitrile (12.19 eV) with IE 

above the lamp photons hv are not ionized therefore do not aid analyte ionization (Robb and 

Blades 2008). APPI produces charged ions via two mechanisms: (1) direct photoionization of 

analyte by absorbing a photon of light from Krypton emission, (2) the dopant ionized by the 

UV lamp form free radicals followed by the reaction with the analyte by charge exchange 

(non-polar compounds) or proton transfer (polar compounds) (Robb and Blades 2006) 

(Figure 1.19). APPI ionization is more suitable for compounds with mid to low-polarity that 

 

Figure 1.17 Schematic diagram of APCI source (Grebe and Singh 2011). 
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cannot be ionized by ESI and APCI (Figure 1.14). The sensitivity of APPI for steroid 

measurement in biological matrices is 3-5 fold higher than APCI (Alary 2001). Table 1.6 

summarizes the properties of ESI, APCI and APPI.   

 

Figure 1.18 Schematic diagram of APPI source 

 

 

 (Robb and Blades 2008). 

 

Figure 1.19 Schematic diagram of APPI ionization mechanism. 

Adapted from http://www.chem.agilent.com/Library/technicaloverviews/Public/5990--

7413EN.pdf 



                                                                                                                                                                                                                                                                      Chapter 1 
 

        72 
 

Table 1.6 Summary of ionization techniques (ESI, APCI and APPI) commonly used for steroid LC-MS/MS analysis 

 ESI APCI APPI 

Ionization reaction phase  Liquid Gas Gas 

Compound suitability  
(common mass range)  

Polar and ionic compound  
(less than 100,000 Da) 

Neutral or less polar 
(less than 1500 Da) 

Mid to low polarity 
(less than 1500 Da) 

Ideal compounds  non-volatile chargeable large 
molecules e.g. protein, peptide, 

polysaccharide, bile acids, steroid 
conjugates 

Volatile, thermally stable and small 
molecules 

e,g. non-polar lipids, pesticides, 
drugs, steroids with conjugated 

double bond or keto group 

Volatile, thermally stable and small 
molecules 

e.g. polycyclic aromatic 
hydrocarbons, drugs, non-polar 
lipids, pesticides, steroids with 

conjugated double bond and low 
polarity (pregnanes) 

Matrix interference  More prevalent compared to APCI 
and APPI 

 

Less prevalent compared to ESI 
 

Less prevalent compared to ESI and 
APCI 

Suitable flow rate  Few µL/min (operates at very low 
flow rate) 

Up to 2 mL/min Suitable for both low and high flow 
rates 

Suitable solvents  Polar and medium polar Polar and  non-polar Polar and  non-polar 

Abbreviations: ESI: electrospray ionization; APCI: atmospheric pressure chemical ionization and APPI: atmospheric pressure photoionization 

(Bakhtiar et al. 2002, Bos et al. 2006, Cech and Enke 2001, Kostiainen and Kauppila 2009).  
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1.8.3 Matrix effect 

Urine, whole blood, serum, plasma and saliva are matrices commonly used for bioanalytical 

analysis. These matrices contain endogenous (e.g. phospholipids, salts, urea, amines and 

metabolites) and exogenous substances (e.g. buffers, anticoagulants, polymers from 

collection tubes, drugs and chemicals) that may co-elute with the compound of interest that 

may lead to ion suppression or enhancement (Antignac et al. 2005, Matuszewski et al. 1998, 

Mei et al. 2003). This phenomenon, known as matrix effect is defined as “The direct or 

indirect alteration or interference in response due to the presence of unintended analytes (for 

analysis) or other interfering substances in the samples” (Shah et al. 2000). It is important to 

identify and eliminate matrix effect using adequate validation procedure for bioanalytical 

method development as matrix effect dramatically affects the LC-MS method performance 

(especially for quantitative analysis) in terms of detection capabilities, reproducibility, 

linearity, selectivity, accuracy and limit of quantitation, leading to erroneous results (Gosetti 

et al. 2010, Trufelli et al. 2011).   

For LC-MS analysis, matrix effects can be assessed either by post-column infusion 

(qualitative), post-extraction spike method (quantitative) or assessment of “relative” matrix 

effect (also known as standard line-slope method). The post-column infusion assessment 

involves simultaneous injection of sample extract and continuous infusion of analyte into the 

LC-MS/MS system. This assessment allows identification of the chromatographic region that 

could possibly be affected by matrix effects and appropriate changes should be made to the 

elution condition to shift the analyte of interest retention time away from the area affected in 

the chromatogram (Bonfiglio et al. 1999). However, this assessment does not provide the 

degree of matrix effect that is affecting the analyte quantitatively and is time consuming 

especially for optimizing a method with multiple analytes.  
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Post-extraction spike method is based on the response of analyte spiked after sample 

preparation against neat standard solution and is expressed as a percentage, with values above 

or below 100% indicates ion enhancement or suppression, respectively  (Matuszewski et al. 

2003). This method allows quantitative assessment for ion suppression or enhancement of 

multiple analytes simultaneously. The presence of matrix effect can also be determined by 

“relative” matrix effect assessment by directly comparing standard line slopes (made from 

five different lots of a biofluid) constructed using identical compound, IS, sample preparation 

and chromatographic conditions. The standard line slopes and precision of the slopes were 

calculated to determine the absence or presence of “relative” matrix effect on the 

quantification of the analytes assessed. For a method to be acceptable (free from matrix 

effect), the precision value of the standard line slopes should not exceed a cut-off value of 3-

4% (Matuszewski 2006). Figure 1.20 illustrates the block diagram and MS chromatogram for 

the two most commonly used matrix effect assessments: post-column infusion and post-

extraction spike.  

The degree of interference caused by matrix effect in LC-MS analysis does not only depend 

on the sample matrix. Selection of sample preparation, mobile phase, reagents, 

chromatographic separation and ionization interface used for the LC-MS method developed 

also influences the extent of matrix effect (Annesley 2007, Chambers et al. 2007). There are 

steps that can be taken to overcome matrix effects such as appropriate modification to a 

cleaner sample preparation technique, sample dilution (limited by the method sensitivity and 

not suitable for monitoring trace compound), use of smaller sample volume (also limited by 

the method sensitivity) and utilization of stable labelled internal standard. Matrix effect can 

also be minimized by using lower LC flow rate, so that the ion source is exposed to lesser 

amount of contaminants. Other strategies include to separate the interfering compound from 

target analyte(s) by changing the chromatographic conditions and if possible, use other 
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ionization technique that minimizes matrix effects (Chambers et al. 2007, Van Eeckhaut et al. 

2009). Selection of appropriate MS ionization source (ESI, APPI, APCI) and mode (positive 

or negative) may also eliminate matrix effects (Hsieh et al. 2001, Janzen et al. 2008, 

Matuszewski et al. 1998, Mei et al. 2003).  

Ion sources are prone to different degree of signal suppression or enhancement mainly 

because of difference in the ionization mechanisms (Himmelsbach 2012). A comparative 

study of LC-MS/MS method using three different ion sources, ESI, APCI and APPI for 

estradiol analysis in human serum and endometrial tissue demonstrated that ESI efficiently 

ionizes estradiol in negative polarity but estradiol is highly susceptible to ion suppression 

compared to the latter two ion sources (Keski-Rahkonen et al. 2013). APCI is also susceptible 

to signal suppression due to matrix effect but at a lower degree compared to ESI especially in 

the presence of hydrophobic interferences (Dams et al. 2003, Matuszewski 2006). For ESI, it 

is postulated that the signal suppression occurs when the analyte of interest competes for 

charge with co-eluting analyte. The co-analyte that has higher gas-phase proton affinity will 

be protonated first therefore reducing the intensity of the target analyte (Matuszewski et al. 

2003). This is not the case for APPI, where its ionization mechanism is not based on charge 

affinity, therefore is less susceptible to ion suppression compared to ESI and APCI (Chen et 

al. 2009, Chu and Letcher 2008). The presence of high concentration non-volatile compounds 

(e.g. salts, ion-pairing agents, drugs) in the extracted sample matrix also lead to ion 

suppression by decreasing the ESI efficiency to form droplet and prevent evaporation (King 

et al. 2000). Furthermore, ESI is more susceptible to ion suppression in the presence of more 

polar analytes and the presence of molecules with higher mass that suppresses the signal of 

smaller molecules (Bonfiglio et al. 1999, Sterner et al. 2000). On the contrary, ion 

enhancement is caused by overlap of ions with specific m/z ratios, thus proper fragment ions 

selection with different combination of m/z may resolve the problem (Trufelli et al. 2011). 
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The degree of ion suppression differs between sample, compound and sample preparation 

(Bonfiglio et al. 1999).  

 

Figure 1.20 Matrix effects evaluation (a) post-column infusion and (b) post-extraction 

spike. 

  

 

 

 

 

 

a) For the post-column infusion, the analyte is infused into the LC stream using a ‘tee-mixer’ at a 

stable and constant flow to the MS ion source using an infusion pump. Sample extract (blank 

matrix) is injected via autosampler after extraction into the LC column. Elution of endogenous 

compound that interferes with the infused analyte will result in negative or positive peaks in 

the MS response due to ion suppression or enhancement, respectively. The arrow in the 

example above indicates ion suppression.  

b) In the post-extraction spike method, comparison is made between the signal response of 

standard in sample extract (indicated as full peak in the chromatogram above) against the 

response obtained from standards in neat solution (dashed line). A reduction or increase in the 

response indicates ion suppression or enhancement, respectively. Adapted from (El-Aneed et 

al. 2009, Van Eeckhaut et al. 2009) 

 

a. Post-column infusion 

b. Post-extraction spike 
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1.8.4 Sample preparation 

Sample pretreatment prior to LC-MS is required to reduce the complexity of the sample. 

Sample preparation is necessary for the development of highly sensitive, accurate and 

specific steroid LC-MS/MS analysis (Shibata et al. 2014). Sample preparation involves 

extraction of the steroids typically with an organic solvent followed by purification step to 

remove unwanted matrix component from biological samples. Protein precipitation (PP), 

liquid-liquid extraction (LLE) and solid phase extraction (SPE) are common methods to 

separate analytes from sample matrix. However, it is important to evaluate whether the 

sample preparation technique selected: (1) provides a cleaner extract instead of magnifying 

(pre-concentrate) matrix effect and (2) is appropriate for the biofluids analyzed (Dams et al. 

2003).  

 PP is achieved by adding solvent (e.g. acetonitrile, methanol and acetone) with low 

solubility and the precipitate of insoluble compounds is then separated from the soluble phase 

(e.g. centrifugation). The supernatant can be directly injected for analyte analysis or 

reconstituted in LC mobile phase before LC/MS analysis (Bakhtiar et al. 2002).  PP is 

generally preferred for MS analysis for its simplicity but generally does not provide clean 

extract as many endogenous compounds such as fatty acids, lipids, phospholipids and 

endogenous peptides remains in the extract (Chambers et al. 2007). This is particularly a 

problem for ESI where the interfering compounds competes and co-elute with the target 

analyte by interfering with the droplet desolvation process (Bakhtiar and Majumdar 2007, 

Chambers et al. 2007). This co-eluting compound may also form adducts or react with the 

analyte of interest and interfere with the signal intensity (Gosetti et al. 2010). Studies have 

combined PP with other sample preparation to achieve cleaner samples (refer Table 1.3 for 

examples) (Carvalho et al. 2008). Some laboratories utilize a LC divert valve to elute early 

eluting compounds such as unwanted endogenous substances and salts to waste before the 
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extract is directed to the MS that may reduces matrix effect and MS contamination (Harwood 

and Handelsman 2009).  

 SPE is also widely used sample extraction method and provide cleaner extracts in 

comparison to PP (Chambers et al. 2007, Dams et al. 2003). This method involves separation 

of compounds between mobile and stationary phases which can be carried out either off-line 

(manual extraction) or on-line (automated extraction that is directly connected to the 

chromatographic system). On-line separation is less labour-intensive and time consuming 

compared to off-line SPE. The separation mechanism for SPE is similar to analytical 

chromatography where the analytes are retained in the stationary phase through the reverse-

phase or ion exchanged SPE than removal of sample matrix followed by eluting the analyte 

with a strong organic solvent at the appropriate pH (Berrueta et al. 1995). Although SPE 

provides a cleaner extract compared to PP, studies have shown occurrence of matrix effect 

with this sample preparation method (Souverain et al. 2004). This is due to the pre-

concentration step that increases unwanted interfering substance together with the target 

analyte(s). Possible alternative to remove the pre-concentration step (i.e. direct injection or 

dilution) but this will reduce the sensitivity (Dams et al. 2003).  

 LLE is widely used for extraction of small molecules such as drugs and hormones 

which gives clean extracts with high reproducibility (Janzen et al. 2008, Souverain et al. 

2004, Xu et al. 2005). Besides being cost effective and highly selective, LLE sample 

extraction method is less susceptible to matrix effects compared to PP and SPE for common 

API ionization sources (Souverain et al. 2004). However, recovery of polar compounds has 

been reported to be low using LLE extraction depending on solvent pairs (Chambers et al. 

2007). This extraction method involves separation of analytes from biological sample based 

on two different solubility properties. Non-polar analytes in aqueous sample (biological fluid) 

are extracted using an immiscible solvent (e.g. ethyl acetate, methy tert-butyl ether and 
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hexane), with phase separation leaving the salts and proteins in the aqueous phase. Samples 

are normally vortex-mixed with the organic solvents followed by centrifugation to separate 

the solvent from aqueous phase. The organic solvent is recovered by freezing the aqueous 

phase or pipette. The organic layer is then dried and the residue that consist the analyte is 

reconstituted in the LC mobile phase. However, in some cases, the hydrophobic extract is 

directly injected upon method optimization (Medvedovici et al. 2011). The drawbacks of 

using LLE include low recovery for polar analyte and ionic compounds, multiple extraction 

steps may be required, difficulty to automate the extraction method and formation of 

emulsion in samples containing high levels of phospholipids that may affect the accuracy and 

extraction recovery of the target analyte (Leung and Fong 2014, Van Eeckhaut et al. 2009). 

Neutralizing compound with ionizable functional groups by adjusting the pH prior to organic 

solvent extraction helps to achieve high extraction recovery (Hendriks et al. 2007). Examples 

of studies utilizing different sample purification methods for MS steroid analysis are listed in 

Table 1.3. 
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1.9 Aims of study 

The overall aim of this study is to develop and validate sensitive LC-MS/MS assays for 

quantitative endogenous and exogenous steroids analysis from various biological matrices for 

specific clinical applications. Androgens (testosterone, DHT, nandrolone), pro-androgens 

(DHEA) and estrogen (17β-estradiol) were measured in various biological matrices including 

urine, serum and dried blood spots (DBS). LH was measured using validated ICL and IF 

assays for urine and serum. Urine is a preferred sample collection method as it provides 

convenience and is less intrusive especially for longitudinal field studies in children and 

adolescents. Urine sampling also avoids impracticality of multiple blood sampling for healthy 

volunteers and provides an integrated measurement especially for hormones secreted in 

pulsatile (LH) or diurnal (sex steroids in early puberty) manner. DBS is also a less invasive 

sampling method that requires only small volume of blood, simplified sample processing and 

is cost effective (i.e. shipping and sample storage without needing refrigeration). DBS 

sampling method is suitable for long-term pharmacological studies because the samples can 

be collected by the patients themselves with minimum training without the need of frequent 

visits to the clinic.  

The specific aims of this thesis were: 

I. To determine whether an androgen ester (nandrolone decanoate) marketed for 

intramuscular injection can be delivered effectively and safely as subcutaneous 

injection. To achieve this aim, DBS sampling method was optimized and LC-MS/MS 

method was developed and validated to measure testosterone and nandrolone from 

DBS.  
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II. To determine whether commercially available IF and ICL LH immunoassays 

optimized for blood samples can be used for urine samples kept after prolonged 

frozen storage.  

III. To determine whether first morning void hormonal assessments in growing 

adolescents at various stages of pubertal progression requires adjustment to correct for 

hydration status and, if so, to determine whether creatinine or specific gravity are 

better adjustments. 

IV. To validate the feasibility of frequent urine sampling regimen and urine assay 

methodology for LH and sex steroids measurements using ICL and LC-MS/MS, 

respectively. Samples were collected from growing adolescents for a longitudinal 

study to assess changes in urine LH, estradiol and testosterone over 12 months by 

reference to contemporaneous changes in anthropometry and self-reported Tanner 

stages.    
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Chapter 2 Materials and Methods 

The chemicals, sample preparation and instrument settings used in this study are described in 

this section.  

2.1 LC-MS/MS assay 

2.1.1 Chemicals 

The chemicals and reagents used are listed in Table 2.1 and Table 2.2. All reagents used were 

analytical and chromatographic grade.  

2.1.2 Instrumentation 

LC analysis was carried out on a Shimadzu Nexera UHPLC system (Shimadzu Scientific 

Instruments, Columbia, MD). MS/MS analysis was performed on an API-5000 triple-

quadrupole mass spectrometer (Applied Biosystem/MDS SCIEX, Ontario, Canada) equipped 

with an APPI source. The MS/MS nitrogen gas was supplied by a nitrogen gas generator 

(Peak Scientific Instruments Ltd, Scotland).  

2.1.3 LC-MS/MS method for DBS steroids analysis 

2.1.3.1 Preparation of calibration standards and quality control  

Calibration standards and quality controls (QCs) were made from artificial blood according to 

a modified method described previously (Higashi et al. 2008). Briefly, venous whole blood 

was collected from a volunteer in a lithium heparin tube (Vacuette
®
, Greiner Bio-one). The 

plasma separated from red blood cells by centrifugation at 1500 x g (at 4°C, 15 min) was 

discarded and the red blood cells were washed with 30 mL of saline (0.9% NaCl in distilled 

water) (to remove remaining plasma), centrifuged at 1500 x g for 15 min at 4 °C followed by 

discarding the supernatant; this step was repeated four times to remove any remaining 

plasma. Charcoal treated plasma was prepared by adding 50 mg of activated charcoal (BDH
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 Table 2.1 List of chemicals for steroid LC-MS/MS assay. 

Chemical Chemical name Type MW 
(g/mol) 

Manufacturer  

Testosterone 17β-hydroxyandrost-4-en-3-one Standard 288.4 NMI, Sydney, Australia  

Nandrolone                                                              17β-hydroxy-19nor-4-andro-sten-3-one Standard 274.4 Steraloids, Newport, RI, USA 

17β-Estradiol 17β-estra-1,3,5(10)-estratriene Standard 272.4 Steraloids, Newport, RI, USA 

Dihydrotestosterone 17β-hydroxy-5α-androstan-3-one Standard 290.4 NMI, Sydney, Australia  

Dehydroepiandrosterone 5-androsten-3β-ol-17-one Standard 288.4 NMI, Sydney, Australia 

Testosterone glucuronide 17β-3-oxoandrost-4-en-17-yl b-D-glucopyranosiduronic acid Standard 464.6 NMI, Sydney, Australia  

17β-Estradiol glucuronide 1,3,5(10)-estratrien-3, 17β-diol 17-glucosiduronate Standard 448.5 Steraloids, Newport, RI, USA 

Dihydrotestosterone glucuronide 3-oxo-5α-androstan-17β-yl glucosiduronic acid Standard 466.6 NMI, Sydney, Australia 

Dehydroepiandrosterone glucuronide 5-androsten-3β-ol-17-one glucosiduronate Standard 464.5 Steraloids, Newport, RI, USA 

d3-Testosterone 16,16,17-d3-17β-hydroxyandrost-4-ene-3-one Internal standard 291.4 NMI, Sydney, Australia  

d4-Estradiol 2,4,16,16-d4-17β-estra-1,3,5(10)-estratriene Internal standard 276.4 Cambridge Isotope Laboratory, USA 

d3-Dihydrotestosterone 5α-(16,16,17α-
2
H3)-5α-Androstan-17β-ol-3-one Internal standard 293.5 NMI, Sydney, Australia 

d2-Dehydroepiandrosterone 16,16- d2-5-androsten-3β-ol-17-one Internal standard 290.4 Steraloids, Newport, RI, USA 

 

Table 2.2 List of reagents for steroid LC-MS/MS assay. 

 

 

 

 

 

 

Reagent Type MW 
(g/mol) 

Manufacturer 

Methanol  Solvent (HPLC grade) 32.04 RCI LabScan, Bangkok, Thailand 

Toluene Solvent (HPLC grade) 92.14 RCI LabScan, Bangkok, Thailand 

Methyl tert-butyl ether Solvent (AR grade) 88.15 RCI LabScan, Bangkok, Thailand 

Potassium carbonate (K2CO3) Buffer 138.21 Sigma-Aldrich, St Louis, MO, USA 

Disodium hydrogen phosphate 
(NaHPO4 anhydrous)  

Buffer 141.98 Sigma-Aldrich, St Louis, MO, USA 

Sodium dihydrogen phosphate 
(NaH2PO4.2H2O)  

Buffer 156.01 UNIVAR Analytical Reagent, NSW, Australia  

Sodium chloride (NaCl) Salt   58.44 UNIVAR Analytical Reagent, NSW, Australia 

Sodium azide (NaN3) Preservative 65.01 Ajax Chemical, Sydney, Australia 

Abbreviations: NMI: National Measurement Institute; MW: molecular weight; d: deuterated; AR: analytical reagent; HPLC: high performance liquid chromatography. 
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Chemicals, Victoria, Australia) to every milliliter of plasma. The mixture was stirred gently 

for an hour at room temperature followed by centrifugation at 1200 x g for 30 min. The 

supernatant was then filtered (filter paper #1, Advantec Co, Tokyo, Japan) to remove the 

remaining charcoal. The steroid-free plasma (tested with LC-MS/MS assay to ensure the 

plasma is free from endogenous testosterone) was added to the washed red blood cells to 

obtain a hematocrit of 0.45. The artificial blood prepared was then spiked with stock solution 

of testosterone (T) and nandrolone (N) to attain final concentrations of 0.05-32 ng/mL for T 

and 0.156-10 ng/mL for N. QCs were made up from a separate lot of artificial blood at low, 

medium and high concentrations (0.1, 1, and 16 ng/mL for T; 0.3, 1.25 and 5 for N). Fifty 

microliters of standards and QCs was spotted onto filter card (Whatman 903 protein saver 

cards, WHAT10534612; GE Healthcare, Westborough, MA), allowed to dry overnight at 

room temperature and stored in a sealed plastic bag at room temperature until analysis. 

2.1.3.2 DBS sample preparation 

Steroids were extracted from the whole DBS which were cut and transferred into 15 mL 

disposable borosilicate glass tubes (16×150 mm). One milliliter of methanol:water (1:1) was 

added followed by 10 µL of internal standard (25 ng/mL d3-T). The mixture was shaken 

mechanically for 30 min and then again for another 20 min after addition of methyl tert-butyl 

ether (MTBE) (1.5 mL). The tubes were centrifuged at 300 x g for 5 min and followed by the 

transfer of the organic layer into 5 mL disposable borosilicate glass tubes tube (12 × 75 mm). 

The solvent was evaporated to dryness in heating block at 50 °C overnight in a fume hood. 

The dried residue was reconstituted in 70 μL of 50% methanol in water, transferred into 96-

well polypropylene V-bottom microtiter plate (PerkinElmer, MA, USA) and 45 μL was 

injected into the LC-MS/MS system.  

Abbreviations: MW: molecular weight; AR: analytical reagent; HPLC: high performance liquid chromatography. 
Abbreviations: MW: molecular weight; AR: analytical reagent; HPLC: high performance liquid chromatography. 
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2.1.3.3 Blood volume determination 

We aimed to use the whole capillary blood volume on the filter card rather than taking a 

subsample (e.g. by a punch) as that risked non-homogenous distribution of blood 

impregnation on the filter paper. To determine the capillary blood volume on the filter card, a 

linear equation was derived from a plot of weight of blood on filter card (weight of blood-

impregnated filter paper minus weight of unused filter paper) versus volume of blood spotted 

on filter card (R
2
= 0.997) (Figure 2.1). To generate this calibration, venous blood was 

collected from a volunteer (hematocrit, 0.45) and immediately a set of increasing volume of 

blood (10-250 µL) was spotted using a calibrated pipette onto filter cards with five replicates. 

The spots were dried overnight, cut out and weighed. To determine the accuracy of this 

equation, known volumes (40, 50, 60, 70 µL) of whole venous samples collected from 10 

male volunteers (hematocrits 0.40-0.50) were spotted onto filter cards in triplicate and dried 

overnight. The estimated weight of the blood spot on the filter card (using a Mettler balance 

AE240) was then compared with the nominal volume of blood and accuracy (nominal 

volume x 100/actual volume) was 95-106% with coefficient of variation (CV) of 0.2-7.1% 

for all volumes tested.  
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Figure 2.1 Relationship between amount of blood and weight of filter card (n=5). 

 

 

2.1.3.4 Comparison between whole DBS and fixed-sized disc 

To determine the variation using whole DBS and fixed-sized paper disc, correlation between 

T venous DBS concentration obtained from two different sampling methods (1) whole blood 

spot and (2) 6 mm punch disc, were compared against plasma T concentration. For this 

purpose, venous blood was collected in lithium heparin tube from twenty male volunteers 

(hematocrit, 0.40-0.51). Fifty microliters of blood was spotted directly on the filter card using 

a calibrated pipette and the remaining blood was centrifuged at 1500 x g for 15 min at 4 °C to 

separate plasma. Plasma was extracted according to method described in Section 2.1.5.1. 

After overnight drying at room temperature, the DBS was either cut out entirely using a pair 

scissors or discs were punched out using a 6 mm puncher (n=3) from the same blood sample 

To determine the capillary blood volume on the card, a linear equation derived from a plot; 

weight of blood on filter card versus volume of blood spotted on filter card (y= 0.629x + 1.748; 

R2= 0.997) was used.  
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followed by extraction and measured using LC-MS/MS assay. The plasma and DBS T 

concentration were correlated according to the formula [plasmaT = DBST/(1-hematocrit)]. 

Venous whole DBS T was unbiased in relation to plasma T (standard deviation 6.3 ± 7.2 

(SD) % in Bland-Altman analysis; Pearson correlation r=0.98) whereas the punch disc 

produced an upward bias (deviation 28 ± 9.2 %; r=0.97) (Figure 2.2). The finding indicates 

that the venous whole DBS T measurements correlate well with the corresponding plasma T 

levels. However, the punch disc overestimates the T concentration in comparison to plasma T 

levels. All further DBS measurements used whole blood spotted on the filter card and the 

volume of blood was determined by first cutting the whole DBS and weighing the blood spot 

followed by calculation using the equation from Figure 2.1 and adjusted for hematocrit.  

 

Figure 2.2 Bland-Altman plots for comparison of testosterone (T) concentration 

obtained from whole DBS versus plasma (left panel) and 6 mm punch disc versus 

plasma (right panel). 

 

 

 

 

The Bland-Alman plots represent the difference between two sampling methods: 1) whole blood spot 

and 2) 6 mm punch disc against plasma T concentration. The solid and the dashed lines represents the 

observed average and 95% limit of confidence (± 1.96 SD), respectively.  
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2.1.3.5 LC-MS/MS parameters 

The LC column was an Ascentis
®
 Express Phenyl-Hexyl column (10 cm x 2.1 mm, 2.7 µm; 

Supelco, Sigma-Aldrich, PA; Cat. no. 53336-U) equipped with an Ascentis
®
 Express Phenyl-

Hexyl guard cartridge (0.5 cm x 2.1 mm, 2.7 µm; Supelco, Sigma-Aldrich, PA; Cat. no. 

53524-U). The column temperature and autosampler were set at 35 and 4 °C, respectively. 

The elution solvents were water (A) (18MΩ quality; Millipore Milli-Q system, Bedford, MA, 

USA) and methanol (B). The gradient elution was performed at the flow rate of 0.75 mL/min 

with the organic solvent started with 10% B (0-0.10 min), 55-65% B (0.11-4.99 min), 100% 

B (5.00-5.70 min), 10% B (5.71-6.50 min). Toluene was used as the APPI dopant, delivered 

at the flow rate of 0.07 mL/min. T and N MS/MS analysis was carried out in positive ion 

mode. The MS conditions of N, T and d3T are listed in Table 2.3. N, T and d3T eluted at 3.62, 

4.15 min and 4.19 min, respectively (Figure 2.3). The following MS parameters were used: 

ion source gas 1: 55 psi; ion source gas 2: 50 psi; curtain: 12 psi; collision gases: 6 psi; ion 

source temperature: 500 °C; ion spray voltage: 750V. Data were quantified using Analyst 

software (version 1.6, AB Sciex). 

Table 2.3 Mass spectrometry parameters for nandrolone, testosterone and d3-

testosterone measurements. 

Steroid 

Ion Fragmented 

 

MRM 
transition 
Q1→Q3 

Dwell time 
(msec) 

DP EP CE CXP 

N [M+H]+ 275.2→109.1 500 190 10 40 12 

T [M+H]+ 289.3→109.1 500 190 10 35 12 

d3T [M+H]+ 292.3→109.1 250 190 10 35 12 

 

 
Abbreviations: N: nandrolone; T: testosterone; d3T: deuterated testosterone; MRM: multiple-reaction-

monitoring; DP: declustering potential; EP: entrance potential; CE: collision energy; CXP: collision cell exit 

potential. 
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2.1.3.6 Method validation  

Linearity, lower limit of quantification (LLOQ), recovery, process efficiency, within and 

between day precision and accuracy were evaluated during the validation of the analytical 

method according to FDA guidance (FDA 2001). The linearity was evaluated on the basis of 

three calibration curves. Response of peak area ratio of T and N to internal standard (d3T) 

was plotted against known steroid concentrations. The assay acceptance criterion for each 

back-calculated standard concentration was 15% CV from the nominal value. The LLOQ was 

evaluated by five replicates of the lowest concentrations of the calibration curve with the 

accepted deviation values of 20%. The calibration curve was quadratic for both T and N with 

1/x weighing with correlation coefficient (r) greater than 0.999. The LLOQ was 50 pg/mL for 

T and 156 pg/mL for N using a 50 µL blood sample.  

For within and between-day assay validation, QC samples were prepared in artificial blood as 

described in Section 2.1.3.1 with the T and N at three concentration levels of low, medium 

and high (0.1, 1, and 16 ng/mL for T; 0.3, 1.25 and 5 ng/mL for N) in five separate runs. The 

within-day precision (% CV) was 2.5-4.4% with accuracies of 95-108% and the between-day 

precision was 4.9-13.5% with accuracies of 100-106% at all QC levels (Table 2.4). 

The recovery, matrix effect and process efficiency of the method was carried out according to 

the method described previously (Matuszewski et al. 2003) at low, medium and high 

concentrations of each compound. All extraction recoveries and process efficiencies were 

between 96-107% with no ion suppression or enhancement for either analyte (matrix effect 

recoveries between 96-102%). Refer Table 2.4 for the detailed validation data.  

Specificity of T against isomers with same molecular weight, DHEA and epitestosterone (16 

ng/mL) were evaluated. The retention time of these compounds did not co-elute with the 

retention time of T. 
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Stability of T and N on DBS was evaluated at 4°C, room temperature and 37°C for short term 

(42 days) and long term (742 days) at low, medium and high concentrations (0.1, 1, and 16 

ng/mL for T; 0.3, 1.25 and 5 ng/mL for N) measured against fresh calibration spotted onto 

filter card and extracted immediately after overnight drying.  

The stability of T on DBS was well maintained at 3 temperatures and all QCs tested with 

accuracies of 79.2-113.7% (CV 0.4 -11.8%) (Table 2.4). N was also stable on DBS at all 3 

conditions and all QCs tested up to 42 days (accuracies 82.5-110.7%; CV 0.4-13%). Long 

term storage of DBS showed a decline in N stability at room temperature and 37°C in the 

medium and high QCs (accuracies 65.6-75.7%; CV 0.9-9.6%). The N stability was well 

maintained at 4°C for all QCs up to 742 days with accuracies of 99.9-116.6% (CV 4.2-7.7%) 

(Table 2.5). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Dried blood spot method analytes chromatogram. 
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Table 2.4 LC-MS/MS DBS method validation data. 

 

 

Analyte LLOQ 

(pg/ml) 
QC 

Within-day (%) Between-day (%) 

ER 

(%) 

ME 

(%) 

PE 

(%) Accuracy CV Accuracy CV 

T 

 

 

50 

 

 

Low 99.8 4.4 100.3 13.5 104.2 99.8 104.0 

Medium 98.4 3.0 103.1 5.2 106.4 95.6 101.7 

High 107.5 2.5 105.9 4.9 106.3 96.3 102.4 

N 

 

 

156 

 

 

Low 95.0 3.0 101.5 10.6 106.5 95.8 102.0 

Medium 105.8 4.1 102.6 8.4 96.4 100.9 97.3 

High 105.2 3.8 103.8 5.7 99.5 101.7 101.2 

Abbreviations: LLOQ: lower limit of quantitation; QC: quality control; ER: extraction recovery; ME: matrix 

effect; PE: process efficiency; CV: coefficient of variation  
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Table 2.5 Stability data of testosterone and nandrolone on DBS at three different storage conditions for short (42 days) and long term storage (742 

days). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Testosterone Nandrolone 

Time (days) 
Storage condition 

Low Medium High Low Medium High 

Accuracy CV Accuracy CV Accuracy CV Accuracy CV Accuracy CV Accuracy CV 

3 

RT 90.9 7.4 106.7 3.0 105.6 5.3 105.3 5.5 105.7 4.2 106.3 6.2 

4C 97.6 3.1 101.1 3.4 107.3 5.5 110.7 2.8 93.8 9.2 105.5 7.0 

37C 94.4 3.5 96.7 1.6 108.7 3.7 98.6 6.2 107.0 2.4 107.7 3.9 

7 

RT 91.8 9.0 98.7 4.0 103.9 4.0 99.4 6.8 94.6 5.2 96.3 2.2 

4C 101.3 5.5 104.7 3.9 105.3 0.6 108.3 0.9 103.3 4.3 100.7 1.2 

37C 94.0 11.6 99.5 3.5 108.3 0.9 90.4 4.5 103.2 3.6 101.7 1.4 

14 

RT 96.5 7.1 94.8 4.4 98.2 1.9 103.8 6.9 87.6 1.1 88.7 0.9 

4C 104.6 5.7 99.9 4.5 98.7 3.5 91.4 5.2 98.1 6.0 98.1 1.0 

37C 93.2 6.0 97.5 5.8 93.7 5.0 88.3 2.9 85.7 5.2 85.5 3.2 

28 

RT 99.0 8.0 97.0 1.5 101.5 4.7 85.7 2.1 86.6 12.2 91.5 3.8 

4C 88.1 8.1 103.0 8.3 106.0 2.4 94.2 9.5 94.8 2.6 97.0 4.6 

37C 87.0 11.8 95.0 4.4 95.6 4.4 86.4 13.0 82.5 8.1 88.4 6.4 

42 

RT 105.0 11.0 89.9 3.1 91.1 4.2 87.0 3.0 85.7 2.3 91.2 6.4 

4C 101.4 6.8 99.5 10.1 98.3 0.4 99.9 7.5 92.8 11.0 98.1 0.4 

37C 93.8 2.3 86.3 2.1 87.9 5.2 86.3 3.6 83.0 7.3 85.0 7.0 

742 

RT 107.0 8.1 92.9 1.4 94.4 0.7 101.4 4.3 75.7 9.6 74.0 4.0 

4C 109.3 6.7 104.3 2.4 107.7 2.9 111.6 7.7 109.63 7.4 99.9 4.2 

37C 113.7 5.2 89.2 4.3 79.2 3.9 106.7 3.0 74.1 6.6 65.6 0.9 

Abbreviations: RT: room temperature; CV: coefficient of variation  
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2.1.4 LC-MS/MS method for urinary steroids analysis 

2.1.4.1 Urine sample preparation  

Urine samples were extracted by LLE. Urine (500 µL) was transferred into 15 mL disposable 

borosilicate glass tubes (16×150 mm), spiked with 10 μL of internal standards (25 ng/mL 

d3T, 75 ng/mL d4E2, 200 ng/mL d2DHEA and 250 ng/mL d3DHT) and had 500 μL of 0.1M 

phosphate buffer (pH 6.2) and 10 μL β-glucuronidase from Escherichia coli K12 (Roche 

Diagnostic, Mannheim, Germany; Cat. no.: 03707598001) added. After overnight incubation 

at room temperature, 100 μL of potassium carbonate (20%: w/v) was added followed by 1.5 

mL of MTBE. The mixture was shaken mechanically for 15 min, centrifuged at 2700 x g for 

15 min followed by transfer of the organic layer into clean 5 mL disposable borosilicate glass 

tubes tube (12×75 mm) and evaporated to dryness in a heating block at 50 C overnight in a 

fume hood. The dried residue was reconstituted in 75 μL of 20% methanol in water, 

transferred into 96-well polypropylene V-bottom microtiter plate and 50 μL was injected into 

the LC-MS/MS system.  

2.1.4.2 LC-MS/MS parameters 

The LC elution solvents were water (A) and methanol (B). For urine extracts, separation was 

achieved on a Ascentis
®

 Express Phenyl-Hexyl column (10 cm x 2.1 mm, 2.7 µm) equipped 

with a Ascentis
®
 Express Phenyl-Hexyl guard cartridge (0.5 cm x 2.1 mm, 2.7 µm). The 

gradient elution was performed at the flow rate of 0.6 mL/min with the organic solvent 

starting with 10% B (0-0.10 min), 55% B (0.11-4.99 min), 65% B (5.00-6.50 min), 65-100% 

B (6.50-7.00 min), 100% B (7.01-8.00 min), 10% B (8.01- 9.50 min). The column 

temperature and autosampler were set at 40 and 4 C, respectively. Toluene was used as the 

APPI dopant, delivered at the flow rate of 0.06 mL/min. 
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Following LC separation, samples were subjected to MS/MS analysis. E2 was detected in 

negative ion mode whereas the androgens (T, DHT and DHEA) were detected in positive ion 

mode. The optimization of MRM settings and LC-MS/MS system conditions for each analyte 

have been listed in Table 2.6. The following MS parameters were used: ion source gas 1: 55 

psi; ion source gas 2: 50 psi; curtain: 12 psi; collision gases: 6 psi; ion source temperature: 

500 °C; ion spray voltage: 750V (for positive mode) and -750V (for negative mode).  

 

Table 2.6 Mass spectrometry parameters for estradiol, testosterone, 

dihydrotestosterone, dehydroepiandrosterone and its corresponding isotopically labeled 

internal standards. 

 

 

 

 

Steroid 

Ion Fragmented 

 

MRM 
transition 
Q1→Q3 

Dwell time 
(msec) 

DP EP CE CXP 

E2 [M-H]- 271.1→145.0 100 -100 -10 -57 -15 

d4E2 [M-H]- 275.1→147.0 75 -100 -10 -57 -15 

T [M+H]+ 289.3→109.1 100 80 10 35 15 

d3T [M+H]+ 292.3→109.1 75 80 10 35 15 

DHT [M-H2O+H]+ 273.3→123.3 100 80 10 31 15 

d3DHT [M-H2O+H]+ 276.3→123.3 75 80 10 31 15 

DHEA [M-2H2O+H]+ 253.1→197.1 100 80 10 30 15 

d2DHEA [M-2H2O+H]+ 255.3→197.2 75 80 10 30 15 

Abbreviations: E2: estradiol; d4E2: deuterated estradiol T: testosterone; d3T: deuterated testosterone; 

DHT: dihydrotestosterone; d3DHT: deuterated dihydrotestosterone; DHEA: dehydroepiandrosterone; 

d2DHEA: deuterated dehydroepiandrosterone; MRM: multiple-reaction-monitoring; DP: declustering 

potential; EP: entrance potential; CE: collision energy; CXP: collision cell exit potential; Q1: first 

quadrupole; Q3: third quadrupole.  
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2.1.4.3 Method validation 

The LC-MS/MS method for urinary steroid quantitation was validated for linearity, LLOQ, 

recovery, matrix effects, process efficiency, within and between day precision and accuracy 

according to FDA guidance for bioanalytical method validation (FDA 2001). For the 

validation and calibration, blank urine comprised a pool of urine from two children aged 3-4 

years of age was used. The linearity was evaluated on the basis of three calibration curves. 

Response of peak area ratio of the steroids to internal standard was plotted against known 

steroid concentrations using quadratic regression with 1/x weighing. The assay acceptance 

criterion for each back-calculated standard concentration was 15% CV from the nominal 

value. The LLOQ was evaluated by five replicates of the lowest concentrations of the 

calibration curve with the accepted deviation values of 20% using 500 µL of urine.  

The calibration curves fitted quadratic functions ranging from; 0.05-32 ng/mL E2, 0.025-32 

ng/mL T, 0.1-32 ng/mL DHT and 0.2-128 ng/mL DHEA, with correlation coefficient (r) 

greater than 0.999. The precision was 2.6-7.2% (within-day) and 4.8-9.7% (between-day) 

with accuracies of 97-110% (within-day) and 95-108% (between-day) for all QC levels 

(steroids spiked as glucuronides at 0.2, 4 and 32 ng/mL for T; 0.8, 4 and 32 ng/mL for E2, 

DHT and DHEA) (Table 2.8).  

The recovery, matrix effects and process efficiency were quantified as described previously 

(Matuszewski et al. 2003) at low (0.4 ng/mL), medium (1.6 ng/mL) and high (16 ng/mL) 

concentrations of each compound. The extraction recovery and process efficiency were 

between 91-118%, whereas the matrix effect recoveries were between 92-119% for all the 

analytes spiked at low, medium and high concentrations (Table 2.8).  

The β-glucuronidase enzyme was evaluated for hydrolysis efficiency at room temperature 

(overnight). Five replicates were spiked with testosterone glucuronide (TG), estradiol 
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glucuronide (E2G), dihydrotestosterone glucuronide (DHTG) and dehydroepiandrosterone 

glucuronide (DHEAG) at 40 ng/mL and another five replicates were spiked with the 

unconjugated steroid at the equivalent amount (25 ng/mL of T, DHT and DHEA; 24 ng/mL 

of E2). The samples were then extracted according to the method described in section 2.1.4.1. 

The area ratios of the analyte to internal standards were compared and the enzyme 

deconjugation efficiency was between 88-102% after overnight incubation at room 

temperature for all the analytes. 

For specificity, structurally related compounds that potentially may interfere with the method 

were also evaluated (Table 2.7). All the steroids listed did not interfere with the retention 

time of E2, T, DHT and DHEA.  

 

Table 2.7 List of possible interfering compounds for LC-MS/MS urinary and serum 

methods. 

Analyte Possible interfering compound(s) Manufacturer 

E2 Estrone (1,3,5[10]-estratrien-3-ol-17-one) Steraloids, 

Newport, RI, 

USA 

T Epitestosterone (17α-hydroxyandrost-4-ene-3-one) 

Dehydroepiandrosterone (5-androsten-3β-ol-17-one) 

National 

Measurement 

Institute, Sydney 

Australia 

DHT Androsterone (17β-hydroxy-5α-androstan-3-one), 

3α-diol (5α-androstane-3α,17β-diol) 

3β-diol (5α-androstane-3β,17β-diol) 

National 

Measurement 

Institute, Sydney 

Australia 

Etiocholanolone (5β-Androstan-3α-ol-17-one), 

Epietiocholanolone (5β-Androstan-3β-ol-17-one), 

5-androstenediol (5-androsten-3β,17β-diol), 

Epiandrosterone (5α-androstan-3β-ol-17-one), 

Steraloids, 

Newport, RI, 

USA 

 

 

 



                                                                                                                                                                   Chapter 2 
 

   97 
 

 

 

 

 

 

 

 

 

 

 

 

Table 2.8 LC-MS/MS urinary steroids method validation data. 

 

Analyte 
LLOQ 

(pg/ml) 
QC 

Within-day (%) Between-day (%) 
ER 

(%) 

ME 

(%) 

PE 

(%) Accuracy CV Accuracy CV 

 
 

E2 
 
 

 
 

50 
 
 

Low 99.9 4.5 95.4 6.3 97.0 106.4 103.2 

Medium 104.4 3.4 100.1 5.6 96.0 101.6 97.5 

High 105.0 2.6 104.2 9.7 95.1 106.3 101.1 

 
T 
 

 
25 

 

Low 97.2 3.6 103.2 7.2 97.3 103.9 101.1 

Medium 100.7 4.4 104.3 7.8 94.4 106.0 100.0 

High 102.4 2.8 95.6 6.7 92.7 107.9 100.0 

DHT 100 

Low 103.4 7.2 99.1 6.6 100.5 105.0 105.6 

Medium 102.6 3.7 99.7 5.8 103.3 91.7 94.7 

High 102.6 4.4 95.6 7.7 90.6 107.7 97.6 

DHEA 200 

Low 110.2 5.2 97.3 4.8 97.5 118.6 115.6 

Medium 101.1 5.5 101.4 7.8 101.7 117.3 118.1 

High 99.3 5.6 107.9 6.4 98.5 111.5 109.8 

 

Figure 2.4 Urinary steroids method chromatogram. 

Abbreviations: LLOQ: lower limit of quantitation; QC: quality control; ER: extraction recovery; ME: matrix effect; PE: 

process efficiency; CV: coefficient of variation.  
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 2.1.5 LC-MS/MS method for serum steroids analysis 

2.1.5.1 Serum sample preparation 

Serum samples were extracted by LLE. Serum aliquots (200 µL) were transferred into 5mL 

disposable borosilicate glass tubes (12×75 mm), spiked with 50 μL of internal standard (5 ng/mL d3T 

and d4E2; 6.25 ng/mL d3DHT; 7.5 ng/mL d2DHEA) and had 1 mL of MTBE added. The tubes were 

vortex mixed for 1 min, allowed to phase separate at 4 °C for 1 h before being placed in a −80 °C 

freezer for 30 min to freeze the lower aqueous layer. The upper organic layer was decanted into clean 

glass tubes and the solvent evaporated overnight at 50 °C in a fume hood. The residue was then 

reconstituted in 75 μL of 20% methanol in water, transferred into 96-well polypropylene V-

bottom microtiter plate and 50 μL was injected into the LC-MS/MS system.  

2.1.5.2 LC-MS/MS parameters 

LC separation was achieved on a Phenomenex Kinetex XB-C18 column (5 cm x 2.1 mm, 1.7 µm; 

Cat. no. OOB-4498-AW) protected by Phenomenex C18 guard cartridge (Cat. no. AJO-8782). The 

LC column temperature and autosampler were set at 40 and 4 °C, respectively. The elution solvents 

were water (A) and methanol (B). A gradient elution was performed at a flow rate of 0.5 mL/min with 

25% B (0-0.10 min), 52-62% B (0.11-4.30 min), 100% B (4.31-5.45 min), 25% B (5.46-7.00 min). 

Toluene was used as the APPI dopant, delivered at the flow rate of 0.05 mL/min. The 

optimization of LC-MS/MS MRM settings and system conditions for serum assay was 

identical with the urine assay. Please refer section 2.1.4.2 for the MS/MS parameters.   

2.1.5.3 Method validation 

The LC-MS/MS method for urinary steroid quantitation was validated for linearity, LLOQ, 

recovery, matrix effects, process efficiency, within and between day precision and accuracy 

according to FDA guidance for bioanalytical method validation (FDA 2001). For the 

validation and calibration, 4% bovine serum albumin in phosphate buffer was used. The 

linearity was evaluated on the basis of three calibration curves. Response of peak area ratio of 
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the steroids to internal standard was plotted against known steroid concentrations using 

quadratic/linear regression (according to analyte) with 1/x weighing. The assay acceptance 

criterion for each back-calculated standard concentration was 15% CV from the nominal 

value. The LLOQ was evaluated by five replicates of the lower concentrations of the 

calibration curve with the accepted deviation values of 20% using 200 µL of serum. 

The calibration curves were quadratic for T and DHEA (ranging between 0.01-16 ng/mL and 

0.02-32 ng/mL, respectively) and linear for E2 and DHT (ranging between 5-800 pg/mL and 

0.01-16 ng/mL, respectively) with the r greater than 0.999. The precision was 5.3-13.5% 

(within-day) and 8.1-15.0% (between-day) with accuracies of 90-113% (within-day) and 95-

111% (between-day) for all QC levels (0.01, 0.04 and 0.4  ng/mL for E2; 0.025, 0.8, and 8 

ng/mL for T; 0.2, 0.8 and 8 ng/mL for DHT; 0.05, 1.6, and 16 ng/mL for DHEA) (Table 2.9). 

The recovery, matrix effects and process efficiency were quantified as described previously 

(Matuszewski et al. 2003) at low, medium and high concentrations of each compound (0.005, 

0.08 and 0.4  ng/mL for E2; 0.05, 0.4, and 8 ng/mL for T and DHT; 0.02, 0.8, and 16 ng/mL 

for DHEA). All the extraction recovery and process efficiency were within the range of 79-

113%, whereas, the matrix effect were between the range of 81-107% for all the analytes 

spiked at low, medium and high concentrations (Table 2.9).  

For specificity, structurally related compounds that potentially may interfere with the method 

were also evaluated (Refer Table 2.7 for compound list). All the steroids listed did not 

interfere with the retention time of E2, T, DHT and DHEA. 
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Table 2.9 LC-MS/MS serum steroids method validation data. 

 

 

 

 

 

 

 

 

 

 

Analyte 
LLOQ 

(pg/ml) 
QC 

Within-day (%) Between-day (%) 
ER 
(%) 

ME 
(%) 

PE 
(%) 

Accuracy CV Accuracy CV 

 
 

E2 
 
 

 
 

5 
 
 

Low 96 13.0 101 14.5 79 101 80 

Medium 90 11.2 104 11.0 103 93 96 

High 103 7.7 104 9.9 111 81 89 

 
T 
 

 
25 

 

Low 104 13.4 103 15.0 92 87 91 
Medium 97 5.3 103 9.0 92 83 83 

High 113 8.4 105 11.0 100 103 105 

DHT 100 

Low 101 13.5 111 12.9 89 88 91 
Medium 102 8.9 95 10.4 112 107 113 

High 107 8.9 100 11.3 87 102 89 

DHEA 50 

Low 99 12.5 106 14.6 98 97 100 
Medium 110 7.1 106 8.1 99 104 95 

High 107 5.6 107 9.7 91 91 100 

Abbreviations: LLOQ: lower limit of quantitation; QC: quality control; ER: extraction recovery; ME: matrix effect; PE: 
process efficiency; CV: coefficient of variation.  

 

Figure 2.5 Serum steroids method chromatogram. 
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2.2 LH immunoassay 

Urine and serum LH were measured by commercially available immunoassays an ICL 

immunoassay system: IMMULITE
®
 1000 LH, Siemens and IF assay: Delfia hLH assay, 

Perkin Elmer, Rowville, Melbourne, Victoria. The within-assay CV were <10%. Urine FSH 

assays (Immulite, DELFIA) did not pass validity tests (dilutional linearity, quantitative spike 

recovery) and were not used in this study.  

2.2.1 Immulite  

The ICL is a solid-phase two-site chemiluminescent immunometric assay that detects intact 

LH and LHβ subunit. The solid phase of the system consists of a polystyrene bead sealed in 

the test unit and coated with a capture monoclonal antibody against LH. The standards or 

samples (approximately 100 µL) were first aliquot in the disposable sample cups. Each 

sample cup was loaded on the loading rack followed by a test unit containing the bead. The 

sample (50 µL) and alkaline phosphatase (conjugated to polyclonal goat anti-LH) were 

automatically pipetted into the test unit by the programmed Immulite system. Following 

incubation (with intermittent agitation), the reaction fluid was removed by high speed mixing 

followed by series of washing to remove the unbound material. Chemiluminescent substrate 

added to the complex undergoes hydrolysis through the action of the alkaline phosphatase 

enzyme creating unstable anion that emits sustained light emission measured by the photon 

counter.  

2.2.2 DELFIA 

The IF assay utilizes the immobilized monoclonal human LHβ subunit as capture antibody 

and europium-labeled human LHβ subunit as detector antibody. The assay was carried out 

according to the manufacturer instructions. Briefly, 25 µL of standards and samples were 

aliquot in microtitration strip coated with mouse monoclonal anti-hLH followed by 200 µL of 
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assay buffer. The strips were incubated for an hour on a plate shaker (Wallac 1296-001 

Plateshaker) at room temperature. The strips were then aspirated and each strip was washed 

with a plate washer (Wallac 1296-026 Platewasher). Two hundred microliter of tracer 

solution (europium labeled anti-β human LH IgG) was added followed by 15 min incubation 

on a shaker at room temperature. The strips were aspirated and washed before adding 200 µL 

of enhancement solution. The fluorescence was read using a time-resolved fluorometer 

(Perkin Elmer Multimode Plate Reader Enspire).  

2.3 Urine creatinine measurement 

Creatinine concentrations were determined by the colorimetric alkaline-picrate (Jaffé) 

method (CREJ2, Roche Diagnostics, Cat. No. 04810716 190) on a Cobas C501 analyzer 

(Roche Diagnostics GmbH, Indianapolis, IN). Calibrators (Roche Diagnostics, Cat. No. 

10759350 190) were used for this automated system to generate a linear curve ranging 

between 375 and 55000 µmol/L and the limit of detection of 375 µmol/L. The assay requires 

13 µL of potassium hydroxide (900 mmol/L, phosphate 135 mmol/L, pH > 13.5) and 17 µL 

of picric acid (38 mmol/L, pH 6.5) diluted in 77 µL and 30 µL of distilled water, respectively 

for sample volume of  10 µL. All reagents were from ready to use cassettes and were handled 

automatically by the analyzer.   

2.4 Urine specific gravity measurement 

Urine specific gravity (SG) was measured by immersing a reagent strip (ChoiceLine 10, 

Roche Diagnostics) in freshly voided urine sample. Dipstick color changes were compared 

visually with the color chart to estimate the SG (range between 1.000 and 1.030; 0.005 unit 

difference between consecutive colour). 
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Metabolism 2014, 99: 2592-2598
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Chapter 3 Pharmacokinetic-Pharmacodynamic Study of 

Subcutaneous Injection of Depot Nandrolone Decanoate Using 

Dried Blood Spots Sampling Coupled With LC-MS/MS Assays 

 

3.1 Introduction 

Since the first clinical use of T in 1937 (Hamilton 1937), two years after its Nobel Prize-

winning discovery as the primary mammalian androgen (Butenandt and Hanisch 1935, David 

et al. 1935, Ruzicka and Wettstein 1935), its sole unequivocal therapeutic indication remains 

as replacement therapy for T deficiency states due to usually life-long hypothalamic, pituitary 

or testicular disorders (Handelsman 2010). Although exogenous T can be administered by 

implantable, transdermal or oral products, depot injectable formulations have long been the 

most widely used and affordable products for delivering T treatment aiming to maintain long-

term adherence and sustained effective T replacement therapy for many years.  

 

Depot injectable T products consist of T esterified to fatty acid side-chains with the length 

increasing hydrophobicity for partitioning into the vegetable oil vehicle as a depot for deep 

intramuscular (im) injection. These injections require skilled medical personal for slow 

administration, usually into the upper outer quadrant of gluteal muscle. While self-injection is 

feasible for the dexterous, most patients consider it too difficult so self-administration is rare. 

Im injections cause local pain or discomfort (Mackey et al. 1995, Sartorius et al. 2010), risk 

local injection site infection or bruising and, rarely, pulmonary oil micro-embolisation (Gu et 

al. 2009, Mackey et al. 1995, Svendsen and Aaes-Jorgensen 1979, Svendsen et al. 1980). 

Among patients with bleeding disorders or those taking anti-coagulants or antiplatelet 

therapy, deep im injections may be less suitable due to risk of im hematoma. In those 

situations daily-use oral or transdermal T products can be substituted; however, they have 
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high rates of discontinuation (Schoenfeld et al. 2013) as they lack the convenience of low-

demand reliability of long-acting depot T products. Hence, a more convenient, self-

administered method to inject T esters would be advantageous and cost-saving.  

 

Clinical pharmacological studies to define drug pharmacokinetics and pharmacodynamics 

requires frequent blood sampling to generate sufficient data to define the time of peak and 

peak concentrations as well as circulating half-times and other derived pharmacological 

variables (Gibaldi and Perrier 1982, Minto et al. 1997). For long-acting depot products, this 

makes necessary many clinic visits for venesection followed by sample processing to separate 

serum for frozen storage until assay. These features add greatly to cost and complexity of 

conducting such pharmacological studies. We previously validated DBS technology for field 

studies of steroid pharmacology (Howe and Handelsman 1997) and now apply this remote 

sampling technology for repeated blood sampling at convenient times in the participants own 

home. This eliminate the need for medical professional to take blood samples, process and 

freeze samples while reducing the total blood sampled. As the time course of subcutaneous 

(sc) injections of steroids in an oil vehicle is not reported and may differ from the im route of 

administration (Handelsman et al. 1995, Minto et al. 1997), we investigated the 

pharmacokinetics of a single sc injection of nandrolone decanoate (ND) and the 

pharmacodynamics of its effects on endogenous serum T. As a generic androgen ester in an 

oil vehicle, this may demonstrate the feasibility of sc injection of T esters in an oil vehicle 

with potential to simplify injectable T replacement therapy. Nandrolone (N), also known as 

19-nortestosterone has structural similarities with T but lacking a methyl group at the 19
th

 

position (Hemmersbach and Grobe 2009) (Figure 3.1). ND consists of a long aliphatic side 

chain (10 carbons) (Figure 3.1) that provides sustained release of this steroid into the 

circulation. ND is further hydrolyzed into its active steroid, N which inhibits the pituitary 
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gonadotropin release through the negative feedback loop resulting in decrease of endogenous 

T production (Minto et al. 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Study Design 

Healthy eugonadal volunteer men (n=8, age 31 ± 10 (SD) year, height 175 ± 7 cm, weight 

80.7 ± 0.8 kg, BMI 26.3 ± 3.0 kg/m
2
) were administered 100 mg ND in 2 mL arachis oil 

vehicle (MSD, Australia) by sc injection (21 gauge needle (0.8x25mm) Becton Dickinson 

Medical) into a single subdermal abdominal site. Participants were instructed in collecting 

capillary blood by finger prick using a single-use lancet (BD Microtainer, Contact-Activated 

Lancet 2.0x1.5mm; Becton Dickinson, Franklin Lakes NJ  07417) and applying blood onto 

filter cards (McDade 2014). Blood spots were applied to the 1
st
, 3

rd
 and 5

th
 of the five pre-

 

Nandrolone Nandrolone 

decanoate 

Nandrolone decanoate, a synthetic anabolic steroid has a long duration of action due to its 

10-carbon aliphatic side chain. Nandrolone decanoate is released into the extracellular fluid 

gradually with oil/water partitioning of the steroid ester from the oil vehicle with rapid 

hydrolysis of the ester to form active steroid (nandrolone) in the bloodstream (Minto et al. 

1997). 

Figure 3.1 Structures of nandrolone and nandrolone decanoate. 



                                                                                                                                                                   Chapter 3 
 

   107 
 

marked rings allowing for a gap to avoid overlap of blood samples. Capillary blood was 

obtained before and daily for 21 days recording the exact time of sampling. Venous blood 

was also sampled before and at weekly intervals to store serum and to spot venous blood 

directly onto filter cards. Serum samples were stored at -20°C until assayed. The dried blood 

spots were allowed to dry overnight at room temperature and were then stored in a sealed 

paper bag at room temperature until extracted. The participants provided written informed 

consent and the study was approved by the Sydney Local Health District Human Ethics 

Committee within National Health and Medical Research Council Guidelines for Human 

Experimentation (NHMRC) guideline for human experimentation. Volunteers received $200 

for their time and effort on completing the full study (5 visits, 22 finger-prick blood samples). 

3.3 Data analysis 

Comparison of T and N concentrations in different fluids (serum, capillary blood, venous 

blood) was performed by non-parametric (Passing-Bablok) regression, deviance analysis of 

differences (modified Bland-Altman) and Spearman rank correlation using NCSS and 

MedCalc software. Peak or nadir concentrations and time of peak or nadir were determined 

directly from the serial daily hormone concentrations as well as from population 

pharmacokinetic/pharmacodynamic modelling using the exact time of finger-prick sampling 

(rather than nominal day) by non-linear curve fitting (Gibaldi and Perrier 1982, Minto et al. 

1997). Data were expressed as mean and standard error of mean (SEM) for data with a 

Gaussian distribution and median (range) otherwise. 

 

 



                                                                                                                                                                   Chapter 3 
 

   108 
 

3.4 Results 

All scheduled samples (finger-prick, venous) were collected without complaints about finger-

prick blood collection. There were no complaints of discomfort following the injections. 

Hematocrit was unchanged by participation in the study (pre 0.45 ± 0.01, post 0.45 ± 0.01, 

difference 0.0 ± 0.01 or -0.5 ± 2.4 % of baseline, paired t-test p>0.8).   

Capillary T and N concentration displayed a high correlation (r=0.95, 0.96, respectively) and 

was unbiased (mean deviation -2.5 ± 60(SD) %, -27 ± 39 %) compared with measurements in 

serum for T (Figure 3.2) and for N (Figure 3.3). Similar findings were obtained with high 

correlation (r=0.97 for all) and lack of bias between venous whole blood spot and serum or 

capillary T and N.  

Serum N rose to a peak concentration of 2.50 ± 0.25 (SEM) ng/mL at a median (range) of 6 

(4-13) days (Figure 3.4). Serum T declined from 3.50 ± 0.57 ng/mL at baseline to a nadir of 

0.38 ± 0.13 (SEM) ng/mL representing 89 ± 3% maximal suppression at a median (range) of 

8 (5-16 days) (Figure 3.5). Using non-linear curve fitting, N peaked at 1.72 ng/ml at 6.4 days 

while serum T reached a nadir of 0.53 ng/ml (suppressed by 2.9 ng/ml) at 10.3 days (Figure 

3.5). Capillary T and N displayed virtually identical patterns following sc ND injection 

(Figure 3.6). Serum LH and FSH were both suppressed maximally at day 7 (median 7 days, 

range 7-14 days) to reach a nadir of 1.2 IU/L (LH) and 1.1 IU/L (FSH) after injection, 

representing a median 60% and 49% suppression from baseline, respectively, and recovered 

towards, but not full reaching, baseline by day 21 (Figure 3.6). 
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Figure 3.2 Plot of correlation (Passing-Bablok-upper panel) and deviance 

(modified Bland-Altman-lower panel) of individual capillary and serum 

testosterone in 32 samples obtained from 8 participants before and weekly for 3 

weeks after sc injections of ND 

 Line of best fit is shown as a solid line with upper and lower 95% confidence 

intervals in dashed lines and the line of identity shown as a dotted line. Inset are the 

(Passing-Bablok) regression formula and 95% confidence limits on intercept and 

slop. The deviance (modified Bland-Altman) plot show the deviation of capillary 

from serum testosterone expressed as a percentage. For further details see text. 
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Figure 3.3 Plot of correlation (Passing-Bablok-upper panel) and 

deviance (modified Bland-Altman-lower panel) of individual capillary 

and serum nandrolone in 32 samples obtained from 8 participants 

before and weekly for 3 weeks after sc injections of ND. 

 Line of best fit is shown as a solid line with upper and lower 95% confidence intervals in 

dashed lines and the line of identity shown as a dotted line. Inset are the (Passing-Bablok) 

regression formula and 95% confidence limits on intercept and slop. The deviance (modified 

Bland-Altman) plot showing the deviation of capillary from serum nandrolone expressed as a 

percentage. For further details see text. 
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Figure 3.4 Plot of mean and SEM of capillary nandrolone, testosterone and change in 

testosterone from pre-injection baseline in 8 participants before and daily for 21 days 

after subcutaneous injections of 100 mg nandrolone decanoate in 2 mL arachis oil. 

 Note: Some SEM are not visible when smaller than the data symbol.  
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Figure 3.5 Plots of non-linear curve fitting of T (left panel), N (right panel) and T 

suppression (lower panel) of capillary blood collection from 8 participants before and 

daily according to exact individual collection time points after SC injection of ND 
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Figure 3.6 Plot of mean and SEM of capillary, serum and venous nandrolone (left 

panel), testosterone (right panel) and serum LH and FSH (lower panel) in 8 participants 

before and weekly for 3 weeks after subcutaneous injections of 100 mg ND 
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3.5 Discussion 

DBS technology has been used for over 50 years mostly to measure individual analytes at a 

single time-point in screening assays or cross-sectional studies (McDade 2014, McDade et al. 

2007) for its simplified sample collection, processing and storage. It has been extended to 

measuring multiple analytes from a single filter spot (Edelman et al. 2007, Magnisali et al. 

2011, Worthman and Stallings 1997) but few studies have reported serial DBS sampling of 

ambulatory, community-dwelling individuals (Howe and Handelsman 1997) and its 

feasibility has been doubted (Kissinger 2011). This study shows that this advantageous 

feature is feasible for pharmacological studies of depot steroids, where remote sampling at 

home is more convenient than requiring repeated clinic visits for venipuncture as well as 

centrifugation for separating serum or plasma and bulky, frozen sample storage until assay 

and decreases in hemoglobin from frequent venesection. Furthermore, the use of population 

PK/PD modelling employing the exact time of finger-prick sampling also relaxed the 

stringency of time of day requirements for remote sampling. By reducing cost and 

complexity, thereby features facilitate community-based studies involving steroid 

measurements such as for the pharmacology of long-acting depot steroids and drugs.  

For over 6 decades, injectable T esters have been administered in a vegetable oil vehicle 

marketed solely for im injection (Junkman 1957). The pharmacokinetics and 

pharmacodynamics are primarily determined by ester chain side-length, volume of oil vehicle 

and injection site, all determining the hydrophobic physicochemical partitioning between the 

oil vehicle and aqueous extracellular fluid wherein ubiquitous esterases liberate the free 

steroids from their esters (Minto et al. 1997). However, there are no reports of the 

pharmacology of sc injections of androgen esters in an oil vehicle, other than a pilot study of 

22 hypogonadal men where blood T was measured by immunoassay a day before and a day 

after sc injection of low dose of T enanthate (mean 55 mg weekly, <0.3 ml oil) (Al-Futaisi et 
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al. 2006). No adverse effects or discontinuations were reported but the data provides minimal 

insight into the pharmacology of sc injection of androgen esters. In the present study using 

DBS technology to facilitate intensive and yet simplified blood collection from participants at 

home, we provide the first detailed pharmacological analysis of sc injection of ND in arachis 

oil vehicle. The present finding of sustained depot-like effects is expected given the known 

pharmacology of im N esters (Bagchus et al. 2005, Howe and Handelsman 1997, Minto et al. 

1997) together with the observations that most im injections are actually sc (see below). 

Using prior pharmacological data of im ND injections with  steroids measured by 

immunoassays, sc injection of 100 mg in 2 mL oil most closely resembles gluteal injection of 

100 mg in 4mL (rather than gluteal or deltoid in 1  mL) in pharmacokinetics (time of peak 6.0 

vs 5.0 days; peak concentration 2.5 vs 3.7 ng/mL) and pharmacodynamics (time of nadir 8.0 

vs 9.2 days; nadir concentration 0.38 vs 0.69 ng/mL) (Minto et al. 1997). Another study of 

gluteal im injection of 100 mg ND in 1 mL oil reported higher peak N concentrations (4.9 

ng/mL) and earlier (1.25 days) peak time (Bagchus et al. 2005) consistent with the reported 

effects of injection volume (Minto et al. 1997).  

Nevertheless, inadvertent and unrecognized sc injection of T and N esters in oil vehicle is 

common. It has been known for decades that sc fat is so thick that gluteal im injections 

frequently deposit the injectate into sc fatty tissue rather than muscle tissue (Cockshott et al. 

1982). Using computed tomography or ultrasound scanning to measure sc fat thickness and 

placement of injectate or comparison with length of injection needles, it is estimated that 12-

85% of im injections in men and 55-95% in women are actually sc (Boyd et al. 2013, 

Burbridge 2007, Chan et al. 2006, Cockshott et al. 1982, Haramati et al. 1994, Joo and Sohng 

2010, Nisbet 2006), the higher estimate in women corresponding to their greater sc fat 

thickness. This may also explain our observation that im T injections were less painful in 

overweight or obese men (Sartorius et al. 2010). Experimental studies in pigs show that sc 
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and im injections of drugs in an oil vehicle have similar pharmacokinetics (Perry et al. 1997, 

Svendsen et al. 1985). Although injection site granulomata have been reported more 

frequently  in sc fat compared with muscle (Baumann 2012, Cockshott et al. 1982), this 

observation is derived from hospital-based im injections, usually non-steroids in aqueous 

solutions, rather than the smaller minority of less toxic, oil vehicle based im injections 

typically administered in ambulatory care settings (Svendsen 1983, Svendsen et al. 1985).  

Although the tolerability of sc injections of androgen esters in an oil vehicle requires more 

extensive validation through further pharmacological studies of T esters as well as experience 

in its use, it is likely to be safe and tolerable. Extensive experience with T pellets indicates 

that sc implantation of pure crystalline T is safe and acceptable for months to years, marred 

only by a low rate of extrusions (Handelsman et al. 1997) due to a sterile reaction to 

implantation which is unrelated to mechanical factors (Kelleher et al. 2001, Kelleher et al. 

1999) or prevented by antibiotic cover (Kelleher et al. 2002). Similarly, the vegetable oils 

used as injection vehicles (e.g. sesame, arachis, castor, cottonseed and mellaleuca oils) for 

androgen esters are well tolerated clinically when administered intramuscularly (Mackey et 

al. 1995). They are better tolerated than mineral oils which are much more irritating when 

injected subdermally (Darsow et al. 2000, McWillams 1927, Rollins et al. 1997, Symmers 

1955) whereas vegetable oils also reduce local muscular damage compared with aqueous 

injections (Svendsen 1983, Svendsen et al. 1985). Previous studies have already shown that 

the pharmacology of androgen esters depends on site and volume of injection (Minto et al. 

1997) and further studies using T esters in men with differing body weight and after repeated 

injections are required to evaluate duration of action and usefulness in clinical practice of sc 

relative to im injections.  

The present study suggests that sc injections of T esters may prove safe and tolerable. If so, 

this would make self-injection of T esters feasible with the potential benefits of reducing 
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medical care costs, demand on medical personnel time and injection site pain or bruising as 

well as allowing freer use among those with bleeding disorders or on anticoagulants to use 

this more convenient long-acting depot form of T delivery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   118 
 

 

 

 

 

 

 

 

Chapter 4 

 

 

 

 
Immunoreactive LH in long-term  

frozen human urine samples  
 

 

 

 

 

 

 

 

 

 

The content in this chapter has been published in Drug Testing and Analysis 2014, 6: 336-

341



                                                                                                                                                                   Chapter 4 
 

   119 
 

Chapter 4  Immunoreactive LH in long-term frozen human urine 

samples. 

4.1 Introduction 

LH together with FSH are principal pituitary hormones exerting dynamic neuroendocrine 

control of the initiation and maintenance of mature reproductive functions. In addition to 

initiating puberty, in women LH drives follicle maturation and ovulation while in men it 

governs Leydig cell production and secretion of T. Consequently measuring LH is 

fundamental to understanding of reproductive neuroendocrinology. Urine has always been 

the preferred sampling format for anti-doping testing as well as for long-term and field 

studies such as neonatal (Kuijper et al. 2006), adolescent (Hayes and Johanson 1972, 

McNeilly et al. 2012), occupational (Kesner et al. 1999, Whelan et al. 2002) or toxicological 

(Kesner et al. 1999, Kuijper et al. 2006, Whelan et al. 2002) cohort studies where urine 

collections avoid the need for repeated venipuncture. Urinary LH measurement has a role in 

confirming androgen doping because exogenous androgens suppress urinary LH (Cowan et 

al. 1991, Goebel et al. 2009, Handelsman et al. 2009, Kicman et al. 1990). Furthermore, 

abuse of anti-estrogens, GnRH analogs and recombinant LH (Handelsman 2006) may also be 

detected by increased urinary LH levels. 

One limitation is that modern commercial human LH immunoassays have been established 

and validated solely for blood samples and not urine sample, unlike hCG immunoassays 

which were always developed for qualitative urine pregnancy testing as well as for blood 

samples although quantitative urinary hCG assays are described (Cole and Khanlian 2009). 

Urine LH immunoreactivity may depend on urine sample storage conditions as well as 

immunoassay epitope specificity. For example, pre-storage extraction by acetone 

precipitation (Reiter et al. 1973, Saketos et al. 1994) or by addition of glycerol or albumin 
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(Kesner et al. 1995, Livesey et al. 1983, Saketos et al. 1994) stabilize immunoreactivity. 

Furthermore, whereas two-site assays with epitopes on different subunit of the heterodimer 

optimizes detection of intact LH (Alonso-Whipple et al. 1988, Nilsson et al. 2001, Pettersson 

et al. 1991), dissociation of LH into its subunits, influenced by exposure to high urinary 

concentrations of urea (Lempiainen et al. 2012), may be reflected in loss of immunoreactivity 

whether or not the subunit remain intact especially at -20 °C storage (Lempiainen et al. 

2012). This is consistent with the stability of a urinary LH assay based on a different strategy 

of pre-assay dissociation into subunits with detection aimed at the LHβ subunit (Brindle et al. 

2006), an assay displaying prolonged stability during frozen storage (Brindle et al. 2006, 

O'Connor et al. 2006). However, it is simpler for field studies to implement urine LH 

immunoassays that do not require pre-storage manipulation. In addition, as glycerol is on the 

World Anti-Doping Prohibited List as a banned chemical for athletes, it cannot be used with 

urine samples collected for anti-doping testing. Therefore, this study aimed to evaluate the 

stability of urinary LH immunoreactivity using two commercially available immunoassays, 

an immunofluorometric (IF, Delfia, Perkin-Elmer) and an immunochemiluminometric (ICL, 

Immulite, Siemens) assay, before and after 4 years of storage at -20 °C without addition of 

any preservatives. 

4.2 Study Design 

Urine samples were obtained from a previous study that evaluated the potential of 

recombinant hCG (rhCG, Ovidrel, MerckSerono Pty Ltd) as an indirect androgen doping 

agent (Handelsman et al. 2009). The effects of two doses of rhCG, with or without 

concomitant administration of ND (Deca-Durabolin, Organon Australia Pty Ltd, Lane Cove, 

Sydney) to suppress endogenous LH and T (Minto et al. 1997), on urine and serum LH and 

testosterone were examined in 24 healthy young men aged 18-45 years who received a single 

sc injection of rhCG (250 or 750 μg). Spot urine samples were collected before and daily for 
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8 days after dosing and stored frozen at -20 °C until analysis in a single batch at the end of 

study (2008) and then again (2012) after 4 years of unthawed storage at -20 °C. At both 

times, the full batch was analysed in duplicate by ICL (Immulite 1000 LH, Siemens) and IF 

(Delfia hLH assay, Perkin Elmer, Rowville, Melbourne, Victoria) assays (refer Chapter 2 for 

assay details). Urinary SG was measured by a refractometer and urine LH values were 

adjusted to a standard SG of 1.020. Prior to assay, urine samples were thawed and warmed at 

37°C in a sealed container for 10-15 minutes with shaking to redissolve sediments.  

4.3 Data analysis 

Results are expressed as mean ± SEM. The LH concentrations measured in either assay at 

each time were compared by Passing-Bablok non-parametric regression and deviance (Bland-

Altman plot) analysis using MedCalc software. 

4.4 Results 

The comparison of urinary LH concentrations measured using IF and ICL immunoassays, 

adjusted to standard SG, when run in either 2008 or after 4 years frozen storage (2012) is 

shown in Figure 4.1. The comparison between the two LH assays when both were run in 

2008 and then again when both were run in 2012 after 4 years frozen storage, is shown in 

Figure 4.2. The details of the Passing-Bablok regression equations to compare urinary LH 

using the IF and ICL at both times is given in Table 4.1.  

The urine LH concentrations measured using the ICL assay when comparing measurements 

in 2008 and 2012 shows good correlations (Figure 4.1, Table 4.1). By contrast, the IF assay 

showed marked reduction (~70%) in LH concentration when measured in 2012 compared to 

2008 (Figure 4.1, Table 4.1).  

When comparing LH assays performed in 2008, and then again after 4 years frozen storage, 

the two LH assays were discrepant. In 2008 the IF assay provided LH measurements which 
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were ~50% of those in the concurrent ICL LH assay (Figure 4.2, Table 4.1). In 2012, the IF 

LH assay was reduced to ~30 % compared with the contemporaneous ICL assay (Figure 4.2, 

Table 4.1).  

The mean urinary LH concentration (adjusted for urine SG) in the original study measured 

with IF and ICL in year 2008 and 2012 is depicted in Figure 4.3. The pattern of the urinary 

LH profile was very similar but not identical using either immunoassays at the end of study 

(2008) and again after 4 years of frozen (-20 °C) storage. Despite loss of immunoreactivity 

according to one (IF) but not the other (ICL) assays in all series the suppression of urine LH 

was clearly evident.  

The details of the Passing-Bablok regression equations to compare urinary (ICL and IF) and 

serum LH (IF) is given in Table 4.2. The intercept of all the four comparisons was not 

significantly different from 0 although there were variations in the slope and correlations 

(Table 4.2). 
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Figure 4.1 Comparison of urinary LH concentrations obtained using IF (left panels) and 

ICL (right panels) measured before and after four years of storage at -20 °C. 

 

Levels of urinary LH between the same assays were compared using Passing and Bablok 

regression analysis (upper panels). The slope (solid line) is calculated with 95% confidence 

bands (dotted lines) and line of identity (fine dotted line). The Bland-Altman plots (lower 

panels) represent urinary LH differences against averages of the two measurements. The solid 

line and the dotted line represent the observed average agreement and 95% limit of 

confidence respectively. 
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Figure 4.2 Comparison of urinary LH concentrations measured by IF and ICL in 2008 

(left panels) and 2012 (right panels). 

 

Levels of urinary LH between the two assays were compared using Passing and Bablok 

regression analysis (upper panels). The slope (solid line) is calculated with 95 % confidence 

bands (dotted lines) and line of identity (fine dotted line). The Bland-Altman plots (lower 

panels) represent urinary LH differences against averages of the two measurements. The solid 

line and the dotted line represent the observed average agreement and 95 % limit of 

confidence respectively. 
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Figure 4.3 Plot of urine LH assayed with Delfia (left panels) and Immulite (right panels) 

for year 2008 (upper panels) and 2012 (lower panels). 

Data represents the mean and SEM of spot urine collected before and after dosing of hCG 

(with or without nandrolone suppression). Note all LH concentrations are adjusted to 

standard urine SG of 1.020.  
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Table 4.1 Comparison of urine LH determined using two immunoassays. 

The number of urine samples (n) with the slope, intercept and correlation coefficient (r) and 

their 95% confidence intervals in parentheses determined by Passing-Bablok regression. 

Assays compared n Slope  Intercept  r  

Delfia 2008 vs 2012 156 0.30 (0.27, 0.36) 0.04 (-0.01, 0.10) 0.72 (0.63, 0.78) 

Immulite 2008 vs 2012 180 1.06 (0.94, 1.19) -0.25 (-0.57, 0.15) 0.70 (0.61, 0.76) 

Immulite vs Delfia 2008 156 0.49 (0.45, 0.53) -0.11 (-0.41, -0.02) 0.84 (0.79, 0.88) 

Immulite vs Delfia 2012 156  0.16 (0.14, 0.18) -0.03 (-0.07, 0.00) 0.78 (0.71, 0.83) 

 

Table 4.2 Comparison of urine LH determined using Immulite and Delfia (2008 and 

2012) versus serum LH determined using Delfia (2008). 

The number of samples (n) with the slope, intercept and correlation coefficient (r) and their 

95% confidence intervals in parentheses determined by Passing-Bablok regression. 

Urine LH  vs  
Serum LH (Delfia 2008) n Slope  Intercept   r 

* Delfia 2008 156 0.34 (0.28, 0.40) 0.02 (-0.05, 0.09) 0.70 (0.61,0.77) 

Delfia 2012 180 1.22 (1.04, 1.41) -0.03 (-0.11, 0.04) 0.61 (0.51, 0.69) 

*Immulite 2008 180 0.16 (0.13, 0.19) -0.03 (-0.08,0.02) 0.64 (0.54, 0.72) 

Immulite 2012 180 0.15 (0.11, 0.19) 0.03 (-0.05,0.07) 0.43 (0.30, 0.54) 

 
* Note: Data obtained from (Handelsman et al. 2009) 
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4.5 Discussion  

The present study demonstrated that two available commercial LH immunoassays optimized 

for blood samples can also be used for urinary LH measurement. However, the performance 

of both LH assay with urine samples differed markedly. The ICL immunoassay showed 

quantitatively reproducible LH measurement even after prolonged storage at -20 °C for 4 

years without addition of preservatives. By contrast, the IF immunoassay demonstrated 

consistently but proportionately lower LH measurements relative to the ICL assay both 

initially and then exhibited a further decrease after 4 years of frozen storage. Yet, despite the 

reduced absolute LH measurements by the IF immunoassay, both LH immunoassays 

displayed sufficiently similar patterns of urine LH measurements to confirm the findings of 

the original study that hCG administration produces LH suppression (Handelsman et al. 

2009). Hence either assay used before or after prolonged frozen storage may be sufficient for 

a research study whereas only one provides quantitative results after frozen storage as might 

be required for look-back of stored anti-doping samples, an application which requires 

reproducible quantification of absolute levels. Similar findings were reported for serum LH 

measurements where the performance of the ICL was reported to be more sensitive and 

accurate compared to the IF immunoassay for the determination of reference range during 

sexual development in normal children (Resende et al. 2007). 

Commercially available immunoassays designed for serum or plasma LH measurements 

require careful validation for use with urine samples particularly when inference is to be 

drawn from suppressed urine LH values (Cowan et al. 1991, Goebel et al. 2009, Kicman et al. 

1990, Mareck et al. 2010, Palonek et al. 1995, Perry et al. 1997). In addition to the two LH 

immunoassays in this study, thorough validation has been published for two LH 

immunoassays (Access and Elecsys) (Robinson et al. 2007) and indirectly for a third 

(Axsym) (Llouquet et al. 2013, Perry et al. 1997). Other studies reported good correlation of 
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urine and serum LH in children and cycling women as determined by IF immunoassay 

(Demir et al. 1994, Saketos et al. 1994). Validation after prolonged frozen conditions has not 

been evaluated by available commercial immunoassays.  

These discrepancies between LH immunoassays most probably reflect the diversity of 

immunoreactive LH species in human urine compared with the bloodstream (Birken et al. 

2001, Birken et al. 2007, Stenman et al. 2008). This diversity reflects the metabolism of the 

gonadotropins which produces nicked dimers and free subunits including the core fragment. 

Like hCG where the metabolism is more fully characterized (Bristow et al. 2005), the 

homologous LH heterodimer is metabolized and excreted in the urine in various fragments 

which are largely in the forms of free subunits and fragmented forms of LHβ (Birken et al. 

1996, Kovalevskaya et al. 1995). The differences between the two LH assays presumably 

reflect on the capability of the two-site immunoassays to detect various LH epitopes 

(O'Connor et al. 1998). Both the assays detect intact LH and some fragmented forms 

probably including the core beta fragment. It is possible that the ICL immunoassay detects 

other unknown fragment(s) which are not detected by the IF immunoassay. This could 

explain the consistently lower LH levels measured by the IF assay than the ICL assay. Earlier 

studies have also reported IF immunoassays meant to detect intact LH failed to detect variant 

forms either in urine or serum samples that lead in discrepancies in measurements of LH 

using different immunoassays (Nilsson et al. 2001, Pettersson et al. 1991). LH immunoassays 

with both β-directed monoclonal antibodies are reported to give higher urinary LH 

concentrations compared to assays that only detect intact LH (Nilsson et al. 2001). Assays 

that have highly specific antibodies may also be problematic in that they may not measure all 

forms of LH (Pettersson et al. 1991, Pettersson et al. 1992, Pettersson and Soderholm 1991). 
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Loss in urinary LH and hCG immunoreactivity after 7 to 70 days of storage at -20 °C 

(unpreserved) measured with the IF immunoassay (Lempiainen et al. 2012, Saketos et al. 

1994), RIA (Livesey et al. 1983) and immunoenzymatic assay (Robinson et al. 2007) was 

also reported previously which was attributed to the dissociation of the heterodimeric 

glycoprotein into its subunits in the presence of urinary urea in specimens (Lempiainen et al. 

2012, Livesey et al. 1983). Loss of immunoreactivity of urinary LH (measured with IF 

immunoassay) was also reported after 24 weeks of -80 °C storage (Kesner et al. 1995). 

Acetone extraction and addition of preservatives such as bovine serum albumin and glycerol 

was reported to stabilize LH immunoreactivity in frozen storage (Kesner et al. 1995, Livesey 

et al. 1983, Saketos et al. 1994). However, using sample preservatives for research sample 

collection is inconvenient and adds to time and expense (Brindle et al. 2006) and similarly 

some preservatives such as glycerol are unsuitable for anti-doping purpose. Previous studies 

have reported that plasma LH is stable after storage for 8 and 14 days after refrigeration (4 

°C) (Kubasik et al. 1982, Livesey et al. 1980), for 14 days stored frozen (-6 °C) (Kubasik et 

al. 1982) and for up to 9 months after -20 or -70 °C storage (Tsatsoulis et al. 1988). 

The quantitative reproducibility of the ICL immunoassay indicates it is more robust for 

measurements of urinary LH for anti-doping purposes compared with the IF assay. 

Nevertheless despite the quantitative reduction in urine LH by the IF assay, the reduction was 

proportionate over the four years frozen storage. Consequently the IF assay remains 

applicable in research studies where, rather than absolute quantification, relative 

measurements confined to within-study inference, may still be useful. 
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Chapter 5 Requirement for Specific Gravity and Creatinine 

Adjustments for Urinary Steroids and Luteinizing Hormone 

Concentrations in Adolescents 

5.1 Introduction 

Measurements of urinary gonadotropins and steroids in children and adolescents emerged as 

methods to estimate pubertal development and gonadal function early in the immunoassay era 

(Kulin and Santner 1977, Raiti et al. 1969, Vestergaard et al. 1966). Subsequently, urine 

sampling was replaced by serum or plasma immunoassays due to preferences for blood 

collection over cumbersome and time-consuming urine collections (e.g. 24 hr sampling) and 

extraction procedures required to assess urine solute concentrations. In recent years, however, 

measurements of urinary gonadotropins and steroids have reappeared with the development 

of highly sensitive assays that can measure urinary gonadotropins without extraction (Brindle 

et al. 2006).  

Urine may be collected either as untimed spot collection at random times, first morning void 

or timed (e.g. 24 hours urine collection) collections. Urine sampling provides an integrated 

measurement especially for hormones secreted in pulsatile manner such as LH (Kulin et al. 

1975) or diurnally like sex steroids in early puberty, and is more acceptable to children and 

adolescents than venipuncture. Further, for longitudinal studies, spot urine hormone 

measurements are more convenient and/or less intrusive than blood or saliva collections, a 

simplification which enhances the feasibility and participant compliance with repeated 

sampling over time. The relatively high hormone concentrations in urine compared with 

blood or saliva, together with the ability to concentrate urine, is advantageous for assays with 

low sensitivity or analytes at low concentrations. However, an inherent problem of using 

urine is the wide and unregulated variation reflecting the individual’s fluid status.  
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Urine dilution or concentration creates corresponding changes in urine solute concentrations 

so that adjustment of urine concentration may be required to avoid misinterpreting hormone 

excretion due to variation in hydration (Cone et al. 2009). Osmolality, SG and creatinine 

measurements are used to adjust for hydration (Barr et al. 2005). Although measurement of 

osmolality by freezing point depression is considered the reference method (Chadha et al. 

2001), it is laborious, time consuming and expensive so is usually replaced by SG and 

creatinine measurements particularly for large scale, field studies. Urinary SG is measured 

using a refractometer to compare light refraction of a urine sample against pure water 

standard or by reagent strips which measure the ionic strength of urine by color changes. 

Urine SG of sample is normalized to a population reference value. While SG measurement 

has been largely superseded by urine creatinine adjustment in clinical laboratories, SG 

adjustment for urine dilution remains standard in anti-doping laboratories and is used in some 

toxicology studies (Aylward et al. 2014). Creatinine adjustment is based on the assumption 

that (a) this end-product formed endogenously from muscle creatine is released into the 

bloodstream and excreted in urine at a constant rate depending only on total muscle mass 

(Boeniger et al. 1993) and (b) endogenous hormones and creatinine undergo renal excretion 

at the same rate (Barr et al. 2005). Yet, creatinine excretion rate may be influenced by the 

growing muscle mass during puberty leading to potential systemic errors in using creatinine 

adjustments (Heavner et al. 2006).  

Some (Denari et al. 1981, Haddow et al. 1994) but not other (Alessio et al. 1985, Berlin et al. 

1985, Jatlow et al. 2003, Thompson et al. 1990, Zacur et al. 1997) studies suggest creatinine 

or SG adjustment for measurement of urinary substances although such adjustments may be 

either unnecessary or even introduce additional measurement errors. Furthermore, none have 

focused on situations where creatinine is changing systematically due to somatic growth. 

Thus the present study aimed to determine whether the first morning void hormonal 
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assessments carried out in growing young adolescents at various stages of pubertal 

progression require adjustments and, if so, to determine whether creatinine or SG adjustment 

was better.   

5.2 Study Design 

Urine samples were from the Adolescent Rural Cohort, Hormones, Health, Education and 

Relationships (ARCHER) study, a three year longitudinal study aiming to determine how temporal 

changes in pubertal hormones influence the physical status, behavior and mental health of 

adolescents. The details of the study design have been published previously (Steinbeck et al. 2012). 

Briefly, the study involves a total of 342 adolescents from the regional towns Dubbo, Orange and 

their surrounding rural region in western NSW, Australia. The samples reported in the present study 

were from those collected in the first year of the study (n=644; age distribution ranging between 10.1 

and 14.3 years at initial sampling). Ethical approval was obtained from the Human Research 

Ethics Committee, University of Sydney (HREC 13094). Fasting morning blood samples 

were collected at 0 and 12 months (n=343) and first morning urine collected three monthly 

after 12 hr fasting at home by the adolescents between 7.00 am and 8.30 am (n=644). Post-

menarcheal girls provided samples in the mid-follicular phase (day 7-10) with the assumption 

of 28-32 day cycle. Serum and urine samples were stored at -80 C until analysis. The 

adolescents also provided a self-rating of puberty using line drawings based on the Tanner 

stages at 0 and 12 months. 

The LH and steroid concentrations were adjusted to standard SG of 1.020 according to the 

formula [hormone concentrationsample X (1.020-1)/(SGsample-1)] (Wallis et al. 1985) and to 

standard CR measurement of the present study adolescent population (12.40 mmol/L [n=644; 

F 331]) using the formula [hormone concentrationsample X (Creatininepopulation/Creatininesample)] 

where Creatininepopulation was defined as the mean of the urinary creatinine of the whole 

sample. 
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5.3 Data Analysis 

The steroid and LH concentrations unadjusted and adjusted for SG or creatinine were 

compared by Deming (orthogonal) regression and deviance (Bland-Altman) analysis using 

MedCalc software. Based on using the same analyte with different adjustments, the variance 

ratio in the Deming regression was assumed to be unity. Non-independence according to 

variations in the number of samples provided by each individual was ignored in this analysis. 

Descriptive statistics including mean, SD and SEM were performed by SPSS version 21. The 

F- ratios of age and Tanner stage group comparison for each hormone were calculated by 

one-way ANOVA separately for each gender.  

5.4 Results 

In first morning urine void samples (n=644), the mean (SD, range) creatinine concentration 

was 12.4 (4.5, 1.4 - 31.5) mmol/L with an overall gender difference being higher in males 

(P<0.05). The SG was 1.020 (0.0054, 1.005 - 1.030) without significant gender difference 

(P=0.054). Urine creatinine concentrations were progressively increased according to 

chronological age and to Tanner stage (Figure 5.1) for both genders. Pooling genders, there 

were significant differences in urine creatinine concentrations by age and Tanner stage 

(P<0.05, two-way ANOVA) but not for urine SG according to age (P=0.29) or Tanner stages 

(P=0.22).  

Urinary LH, E2, T, DHT and DHEA concentrations, adjusted for either SG or creatinine, are 

compared according to Deming regression line and the deviance plots are shown in Figure 

5.2. For each urinary hormone concentration, there was a good correlation between the SG 

and creatinine adjusted concentrations (correlation of determination-R
2
: 0.69 - 0.85) free 

from proportional bias between adjustment methods.  
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Similarly, Deming regression and Bland-Altman comparison between the unadjusted and 

adjusted hormone concentrations with either SG or creatinine (Table 5.1) also demonstrate 

lack of bias whether adjusted or not by either creatinine or SG.  

The mean, SD and F-ratios of the unadjusted, SG adjusted and creatinine adjusted hormones 

according to Tanner stages and age groups in females and males are shown in Tables 5.2-5.3 

and Table 5.4-5.5, respectively. The results show consistent estimates and progression 

according to age and Tanner stage of unadjusted, SG adjusted and creatinine adjusted urine 

LH and steroid concentrations. The mean, SD and F-ratios of serum hormones according to 

Tanner stage and age groups are shown in Table 5.6 and 5.7.  

The r of paired urinary and serum hormone concentrations is given in Table 5.8. The 

unadjusted and adjusted (creatinine and SG) urinary LH, E2, T, DHT and DHEA 

concentration showed similar correlation against serum. The samples were also grouped into 

three creatinine and SG percentile ranges (up to 25th percentile, between 25th to 75th 

percentile and above 75th percentile) and regression analysis was performed between 

unadjusted/adjusted urine hormone concentrations against serum hormone concentrations. 

There were no improvements in the r values within the groups. Dividing the same percentiles 

according to gender also did not improve the correlations between the urine 

unadjusted/adjusted hormones against serum hormones concentrations. 
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Figure 5.1 Plot of urinary creatinine measurements of adolescents groups according to 

age (upper panel) and Tanner stage (lower panel). 
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Data represents the creatinine mean and SEM. For the age plot, samples were from 3-

monthly intervals (n=644) whereas for the Tanner stage plot, samples were from 0 and 12 

months (n=359). 
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Comparisons were made according to Deming regression analysis (left panels) and Bland-Altman plots (right panels). 

For the Deming plots, the slope is shown as a solid line and line of identity in fine dotted line. Insets are the regression 

formula and 95% confidence limits on the intercept and slope. The Bland-Altman plots represent the differences 

between creatinine and SG adjusted hormone concentrations against the averages of the hormone concentrations 

adjusted with the two-correction method. The solid line and the dashed lines represent the observed average and the 

95% limit of confidence (± 1.96 SD), respectively. Note: A small number (n=6) of outliers were removed for graphical 
purposes. For the Deming regression, the variance ratio was assumed to be unity. To convert steroids from ng/mL to 

nmol/L multiply 3.47 for T and DHEA, 3.67 for E2 and 3.44 for DHT  
 

 

 

Figure 5.2 Comparison of urinary LH, E2, T, DHT and DHEA concentrations adjusted by SG and creatinine. 
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Table 5.1 Comparison of unadjusted against SG and CR adjusted urinary hormone 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The slope, intercept and 95% confidence interval (CI) were determined by Deming regression. 

The mean and 95% CI (± 1.96 SD) were derived from the Bland-Altman plots.  

 

 

Note: UA- unadjusted; SG- specific gravity adjusted; CR- creatinine adjusted; R2-correlation of 

determination. For the Deming regression, the variance ratio was assumed to be unity. 
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Table 5.2 Comparison of mean urinary hormone measurements (unadjusted, SG 

adjusted and CR adjusted) and F- ratios according to Tanner stage in female. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*All the P values were <0.05 unless indicated in parentheses  
(n)# Indicates number of samples  
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Table 5.3 Comparison of mean urinary hormone measurements (unadjusted, SG 

adjusted and CR adjusted) and F- ratios according to Tanner stage in male. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*All the P values were <0.05 unless indicated in parentheses  
(n)# Indicates number of samples  
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Table 5.4 Comparison of mean urinary hormone measurements (unadjusted, SG 

adjusted and creatinine adjusted) and F- ratios according to age groups in female. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*All the P values were <0.05 unless indicated in parentheses.  
(n)# indicates number of samples  
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Table 5.5 Comparison of mean urinary hormone measurements (unadjusted, SG 

adjusted and creatinine adjusted) and F- ratios according to age groups in male. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*All the P values were <0.05 unless indicated in parentheses.  
(n)# indicates number of samples  
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Table 5.6 Comparison of mean serum hormone measurements and F- ratios according 

to Tanner stage in female and male. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*All the P values were <0.05 unless indicated in parentheses  
(n)# indicates number of samples  
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Table 5.7 Comparison of mean serum hormone measurements and F- ratios according 

to age groups in female and male. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

*All the P values were <0.05 unless indicated in parentheses  
(n)# indicates number of samples  



                                                                                                                                                                   Chapter 5 
 

   145 
 

Table 5.8 Pearson’s correlation coefficient and confidence intervals (in parentheses) of 

paired urinary and serum LH, E2, T, DHT and DHEA (n=343). 

 

 

 

 

 

 

 

5.5 Discussion  

Urinary measurement of reproductive hormones is a convenient means to evaluate pubertal 

status and gonadal function for field population studies. In clinical settings, adjustment based 

on the assumption of stable urine creatinine excretion is commonly used to adjust for 

variations in hydration although other techniques such as regression normalization or log 

transformation are proposed (Gaines et al. 2010, Heavner et al. 2006). As an end metabolite 

of muscle creatine, urine creatinine is determined by total muscle mass in addition to other 

factors such as age, gender, diet (meat consumption), physical activity, and BMI some of 

which exert their effects via changes in muscle mass (Alessio et al. 1985, Barr et al. 2005, 

Carrieri et al. 2000, Suwazono et al. 2005). Hence one aim of the present study was to 

determine for the first time whether creatinine adjustment was valid or required for 

longitudinal studies of growing adolescents.  

Our findings confirm that the first morning urine creatinine concentration increases with age 

and Tanner stages and was higher among males. However, adjustment for urine creatinine 

was no better or worse than adjustment for SG or even no adjustment. This may reflect the 

fact that we studied first morning void urine samples which control hydration, whereas 

similar interpretation may not apply to urine sampled at random when hydration state may 

 

Note: UA- unadjusted; SG- specific gravity adjusted; CR- creatinine adjusted.   
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vary more. Our findings are consistent with previous studies showing prominent intra- and 

inter-individual variability in creatinine excretion of second morning and 24h urine samples 

in adults due to variable fluid intake (Alessio et al. 1985). Significantly higher creatinine 

levels in morning versus afternoon (Colombi et al. 1983), in evening spot samples (Barr et al. 

2005) and creatinine loss due to multiple freeze-thaw cycles have also been reported (Garde 

et al. 2003, Schneider et al. 2002) all of which introduce systematic errors in use of urine 

creatinine for dilution adjustments. Thus, although studies have suggested alternative 

adjustment based on SG in adult humans and primates (Miller et al. 2004, White et al. 2010), 

none have focused on the need for SG adjustments in first morning voids of growing 

adolescents.   

SG is readily measured by reagent strip for field studies without needing a laboratory. 

Previous studies demonstrate good agreement between SG measurements by reagent strip 

versus refractometer (Frew et al. 1982, Moore Jr et al. 1997) or osmolality (Dorizzi et al. 

1987, Frew et al. 1982, Gounden and Newall 1983). SG measurement by reagent strip is 

widely used in clinical applications (Burkhardt et al. 1982, Gounden and Newall 1983). 

Although refractometer urine SG may be influenced by disease states leading to high serum 

protein or glycosuria,(Chadha et al. 2001, Voinescu et al. 2002)  reagent strip SG is not 

affected by glucose, only minimally by urea and albumin, but may be affected by the rare 

instances of alkaline urine (Dorizzi et al. 1987). Urine SG reading may also be influenced by 

diet, environment and the renal reabsorption capacity (Trevisan 1990). Among adolescents, 

we find that urine SG measured with reagent strips is systematically not influenced by age or 

gender consistent with previous reports (Nermell et al. 2008, Suwazono et al. 2005). 

Limits of acceptable creatinine and SG measurements vary between studies. Generally, urine 

is considered too dilute when the SG and creatinine levels are lower than 1.010 and 0.5 g/l 

(4.4 mmol/L), respectively, and too concentrated where SG and creatinine levels higher than 
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1.030 (or 1.035) and 3 g/l (26.5 mmol/L), respectively (Alessio et al. 1985, Trevisan 1990). 

However, due to the standardized method of collection and hydration (first morning void), 

the present study did not discard any samples as too dilute or too concentrated. 

 The present study demonstrated that the fasting first morning void urine hormone 

concentrations adjusted by creatinine correlated well with those adjusted by SG in this 

adolescent population. This is consistent with previous reports that used randomly collected 

or timed urine collection from children and adults showing good correlations when creatinine 

and SG adjustments were compared directly (Carrieri et al. 2000, Cone et al. 2009, Gaines et 

al. 2010, Haddow et al. 1994, Parikh et al. 2002, Trevisan 1990) or with adjustment 

according to both (Cone et al. 2009, Miller et al. 2004, White et al. 2010) including a reduced 

variation using these adjustments in some studies (Haddow et al. 1994, Heavner et al. 2006). 

However, the present study shows that neither of the adjustment methods for first morning 

void urine sample of adolescents were significantly improved compared to unadjusted 

hormone concentrations. These observations are consistent with previous reports for 

creatinine adjustment of urine steroid measurements in adult women (Hakim et al. 1994, 

Miyakawa et al. 1981).  

In studies where the urinary hormone concentrations were correlated with paired circulating 

serum concentrations, the urinary unadjusted concentration or concentration expressed by 

volume of urine correlates better than the adjustment based on analyte to creatinine ratios 

(Demir et al. 1994, Denari et al. 1981, Zacur et al. 1997), although some studies have shown 

improved correlation with creatinine adjustments (Munro et al. 1991, Seki et al. 1985). The 

present study demonstrated that the urinary hormone concentrations adjusted with creatinine 

and SG did not improve the correlation with paired serum concentrations. These samples 

were also grouped into three creatinine and SG percentile ranges (25th, 25-75th and 75th) to 

replicate non-fasting conditions with wider variation in hydration status. However, no 
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improvement was observed in terms of correlation between the unadjusted or adjusted urine 

hormone and paired serum concentrations. These findings further support that the 

adjustments may not be necessary for first morning void urine samples. 

In conclusion, the present study shows that adjustment of urinary steroid and LH 

concentration for hydration state may not be required for first morning void specimens of 

even growing adolescents. If adjustments are required, then either creatinine or SG are 

equally suitable and provide comparable results. Reagent strip SG measurements are simple 

and sufficiently reliable, economical and time-saving for large numbers of urine sampling in 

long-term field studies. 
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Chapter 6  Urinary Sex Steroids, Luteinizing Hormone and 

Anthropometric Markers of Puberty 
 

6.1 Introduction 

The circulating gonadotropin,  T and E2 changes that drive the external manifestations of 

puberty are well described from cross-sectional studies according to chronological age or 

Tanner staging interpreted quasi-longitudinally (Dorn et al. 2006, Lee and Houk 2006). Such 

cross-sectional analysis artificially smooths longitudinal data due to a low resolution in 

temporal sampling, markedly underestimating the underlying within-subject variability. 

Hence the large, normal variability in both time of onset and tempo of completing puberty 

has been insufficiently considered as important intermediate factors in the marked physical 

and psychological changes wrought by puberty. Furthermore previous studies have relied 

upon older methods of often direct (unextracted) sex steroid immunoassays, an inaccurate 

technology especially at low circulating steroid levels concentrations (Handelsman and 

Wartofsky 2013), which is now being supplanted by more sensitive and specific MS-based 

steroid assays (Handelsman and Wartofsky 2013, Sikaris et al. 2005). Similar more sensitive 

MS-based methods have been recently described for serum sex steroids in pre-pubertal 

children (Courant et al. 2010). 

 

In clinical settings the usual methods to appraise pubertal development comprise hormone 

measurements and anthropometry, with emphasis on timing of the height growth spurt, 

clinical inspection and bone age (Biro et al. 1995, Bordini and Rosenfield 2011). In 

epidemiological studies the definition of puberty has to be simplified to be based on 

adolescent self-report or parental report against either Tanner stage line drawings (Marshall 

and Tanner 1969, Marshall and Tanner 1970) or Petersen’s Pubertal Development Scale 
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(Dorn et al. 2006). Self-rated Tanner staging is less intrusive and more feasible than clinician 

assessment for epidemiological studies despite some loss of reliability, especially in early 

puberty, which can be overcome by larger sample size (Bonat et al. 2002, Desmangles et al. 

2006, Hergenroeder et al. 1999, Morris and Udry 1980). Menarche (a late pubertal event), 

spermarche (Ji 2001, Nielsen et al. 1986) which is difficult to evaluate (Sivananthan et al. 

2012), semenarche, and voice breakage have all  been described in relation to age and/or 

Tanner stage (Laron 2010, Sun et al. 2012) but as solitary time points provide minimal 

information on either timing of onset or tempo of puberty. To date there have been no reports 

describing individual puberty hormone change with sufficient measurement frequency to 

adequately capture individual variation, which is necessary to adequately describe onset and 

tempo of puberty for a community-based study. 

The first aim of this study is to validate the feasibility of the frequent urine sampling regimen 

and the urine assay methodology for LH, E2 and T. The second aim is to validate the changes 

in urine LH, E2 and T over 12 months by reference to contemporaneous changes in 

anthropometry and self-reported Tanner stage. 

6.2 Study design 

Adolescents between the ages of 10 and 12 years were recruited from local schools of two 

regional towns in the state of New South Wales (NSW), Australia. Fasting morning blood 

samples were collected at 0 and 12 months for the measurement of LH, E2 and T, and first 

morning (fasting) urine collected three monthly for the same measures. No participants had 

an endocrine disorder or were on any type of gonadal steroid hormone therapy. Height was 

measured using a portable stadiometer (to 0.1 cm). Weight was measured in light clothing 

using a Tanita TBF-300 Pro Body Composition Analyzer (Kettaneh et al. 2005). Height, 

weight and BMI (kg/m
2
) were expressed as z-scores using the Centres for Disease Control 



                                                                                                                                                                   Chapter 6 
 

   152 
 

(CDC 2000) and World Health Organization (WHO 2006) standard age and gender reference 

charts. The adolescents provided a self-rating of puberty using line drawings based on the 

Tanner stages (Marshall and Tanner 1969, Marshall and Tanner 1970). Self-report of Tanner 

stage (Bonat et al. 2002, Desmangles et al. 2006, Hergenroeder et al. 1999, Morris and Udry 

1980) was the only feasible and ethically acceptable measure of pubertal staging available to 

the investigators. 

First morning urine following a 12 hour fast was collected at home before blood samples 

were collected between 7:00 am and 8:30 am to minimise the effects of diurnal hormone 

variation (Bremner et al. 1983, Dorn et al. 2006). Serum and urine were stored at -80 °C. 

Post-menarcheal girls provided urine and blood specimens in the mid-follicular phase (Day 7-

10) of their menstrual cycle. Serum and urine steroids were measured by LC-MS/MS assay 

(Chapter 2). Blood and urine samples with hormone values less than the LLOQ for E2 and T 

were taken as half the LLOQ. 

Serum and urine LH were measured by Immulite 1000 LH (Chapter 2). The within-assay 

coefficients of variation were <10%. Serum and urine LH values below the detection limit 

(0.1 IU/L) were set at zero. Urine FSH assays (Immulite, Delfia) did not pass validity tests 

(dilutional linearity, quantitative spike recovery) and were not used in this study. All urine 

hormone concentrations were adjusted for urine SG measured by reagent strip (Chapter 2) to 

a standard SG of 1.020.  

The study has ethical approval from the Human Research Ethics Committee, University of 

Sydney (HREC 13094) within the NHMRC, which are consistent with the Declaration of 

Helsinki. All participants assented, and a parent provided written informed consent prior to 

commencing the study. 
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6.3 Data analysis 

Two-way ANOVA was used to determine effects of gender and scheduled sampling time and 

their interaction on anthropometric and hormone outcomes. ANCOVA was used to assess the 

relationship between serum hormones with changes in anthropometric variables. Mixed 

models linear regression was used to assess the relationship between longitudinal changes in 

urinary hormones and changes in anthropometric values. Baseline hormone values and 

baseline anthropometric measurements were covariates. All statistical analyses were 

conducted using Stata 12.1 (StataCorp, Texas, USA). Statistical significance was set at the 

0.05 level. 

6.4 Results 

6.4.1 Cohort characteristics 

One hundred and four participants were recruited. The mean ages (SD) for the study 

participants at baseline were 12.5 (0.93) years for males and 11.8 (0.98) years for females. At 

follow-up, the ages were 13.5 (0.94) years for males and 12.9 (0.97) years for females. For 

the females, 22 (39%) had menarche prior to the study and one additional girl experienced 

menarche during the follow-up year. Post-menarcheal girls were significantly older than their 

pre-menarcheal counterparts (12.9 years vs. 11.9 years, p<0.001). A high proportion of 

scheduled samples were collected for urine (484, 92%) and serum (194, 93%). There was a 

low loss to follow-up (7, 6.7%). 

Mean anthropometric measurements, other than BMI, increased significantly over 12 months 

(Table 6.1) whereas age- and gender-standardized z-scores did not change over the 12 months 

follow-up (Table 6.2). Pre-menarcheal girls significantly increased their age-standardized 

weight (p<0.001) and height z-scores (p = 0.002), whereas these z-scores did not change for 
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post-menarcheal girls. Rate of change in anthropometric measurements were similar between 

genders (interaction p>0.05).  

Self-rated Tanner staging increased with fewer in stage 1 and more in stage 5 at 12-month 

follow-up. During the year, 14 participants (13.5%) progressed two Tanner stages, 43 

(41.3%) progressed one stage and 41 (39.4%) did not change in their self-rated Tanner stage 

(Table 6.3). Six (5.8%) participants (three boys) provided a lower self-rated Tanner stage at 

follow-up than baseline. One participant (1%, 1 boy) did not provide baseline Tanner staging 

and seven (6.7%, 1 boy, 6 girls) did not provide follow-up Tanner staging. 

Table 6.1 Baseline and 12-month follow-up anthropometry measurements. 

 

 

 

 

Table 6.2 Baseline and 12 month follow-up WHO and CDC z-scores (for age). 

 

 

 

 

 

 

 

 Baseline 12 Months ANOVA F-statistic (p-value) 

Mean  

(SD) 

M 

(n=47) 

F  

(n=57) 

M  

(n=47) 

F  

(n=57) 

Gender Time Gender x 

Time 

Height 

(cm) 

156.8 

(9.9) 

150.8 

(8.5) 

163.8 

(10.1) 

157.1 

(7.9) 

25.7 

(<0.001) 

27.6 

(<0.001) 

0.08 

(0.78) 

Weight 

(kg) 

49.3 

(12.0) 

44.1 

(10.9) 

55.2 

(13.2) 

50.1 

(11.4) 

9.7  

(0.002) 

13.2 

(<0.001) 

0.00 

(0.99) 

BMI 

(kg/m
2
) 

19.7  

(3.5) 

20.4 

(3.8) 

19.3  

(3.7) 

20.3  

(4.0) 

0.29  

(0.59) 

2.84 

(0.09) 

0.08 

(0.77) 

 

Mean 

(SD) 

Baseline 12 months 

Two-Way ANOVA  

F-statistic (p-value) 

Gender Time 
Gender x 

Time M F M F 

Height z 

(CDC) 

0.50 

(1.05) 

0.16 

(0.87) 

0.50 

(1.08) 

0.25 

(0.91) 

4.81 

(0.03) 

0.13 

(0.72) 

0.12 

(0.73) 

Weight z 

(CDC) 

0.43 

(1.12) 

0.19 

(0.96) 

0.46 

(1.11) 

0.35 

(0.91) 

1.46 

(0.23) 

0.44 

(0.51) 

0.19 

(0.67) 

BMI z 

(CDC) 

0.28 

(1.03) 

0.18 

(1.00) 

0.27 

(1.04) 

0.27 

(0.98) 

0.12 

(0.73) 

0.09 

(0.76) 

0.12 

(0.72) 

Height z 

(WHO) 

0.56 

(1.11) 

0.14 

(0.92) 

0.58 

(1.12) 

0.30 

(0.93) 

6.18 

(0.02) 

0.40 

(0.53) 

0.25 

(0.62) 

BMI z 

(WHO) 

0.51 

(1.24) 

0.29 

(1.18) 

0.42 

(1.21) 

0.32 

(1.18) 

0.91 

(0.34) 

0.03 

(0.87) 

0.14 

(0.71) 
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Table 6.3 Self-Rated Tanner staging at baseline and 12 month follow-up. 

 

 

 

6.4.2 Hormone measurements 

Serum: Of the 194 serum collections, nine (5%) LH assays and two (1%) T (all in separate 

individuals) were below the LLOQ. No E2 samples were below LLOQ. Those with LH 

samples below the limits of detection were significantly younger than their peers (mean 

difference = 1.47 years 95% CI 0.81-2.14 p<0.001). No difference in age was observed for 

those with serum T or E2 samples below LLOQ. Hormone values all significantly increased 

over the 12-month period and were significantly different between genders, but rate of 

change was not statistically significant between gender (interaction p>0.05) (Table 6.4). 

Table 6.4 Baseline and 12-month follow-up serum LH, E2 and T. 

 

 

 

 

 

 

N Baseline 12 Months 

Tanner M F M F 

1 6 14 0 3 

2 8 17 7 13 

3 9 16 6 15 

4 18 7 18 12 

5 5 3 14 8 

Total 46 57 45 51 

 

 
Baseline 12 months ANOVA F-statistic (p-value) 

Mean (SD) 

 M 

(n=47) 

F  

(n=57) 

M 

(n=47) 

F 

(n=57) 

Gender Time Gender x 

Time  

LH  

(IU/L) 

1.7 

(1.3) 

2.3 

(2.4) 

2.5  

(1.8) 

3.6 

(2.7) 

9.4 

(0.002) 

11.2 

(0.001) 

0.70 

(0.402) 

E2  

(pg/mL) 

19.1 

(8.5) 

43.4  

(29) 

24.9  

(9) 

54.7 

(30) 

73.5 

(<0.001) 

6.4 

(0.012) 

0.74 

(0.390) 

T  

(ng/mL) 

2.4 

(2.3) 

0.16 

(0.10) 

3.4  

(2.55) 

0.2 

(0.12) 

130.1 

(<0.001) 

 5.0 

(0.027) 

3.80  

(0.052) 
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Figure 6.1 shows serum LH, E2 and T at baseline and follow-up, stratified by Tanner stages. 

Data stratified by chronological age were similar. Hormone concentrations increased through 

each Tanner stage and each year of age, although ordinal groupings overlap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Cross-sectional plots of serum LH (top), E2 (centre) and T (bottom) at 

baseline and 12-month follow-up, by self-rated Tanner stage. 
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Urine: For the 484 urine collections, five (1%) LH assays, 14 (3%) E2 and nine (2%) T assays 

were below the LLOQ. For LH, these participants were younger than the rest of the cohort 

(mean difference 1.35 years; 95% CI 0.41-2.30; p=0.005), but there was no age difference 

between those with urine E2 or T samples below or above the LLOQ. In five such cases (one 

urine and serum LH, one urine E2, one urine E2 and T, one urine T, one serum LH) the 

participant provided a Tanner stage 1 at baseline. 

Figure 6.2 shows within-person changes from baseline over the 12-month collection period 

and Table 6.5 shows the mean three monthly values for urinary LH, E2 and T over 12 months. 

There is a significant increase from baseline to follow-up in E2, T and LH. The same pattern 

is seen in females when stratified by menarcheal status (Table 6.6). Urine hormone levels 

were not strictly progressive and in some instances decreased over time, though there was an 

overall increase in mean levels for all three hormones for males and females overall. For 

serum hormones, a decline from baseline to follow-up was observed in 26 adolescents (18 

female) for LH, 22 adolescents (11 female) for E2 and 19 (13 female) for T. Overall declines 

in urinary LH were observed in 48 adolescents (30 female), 23 (9 female) for urinary E2, and 

24 (14 female) for urinary T. 

Urinary LH, E2 and T all positively correlated with Tanner staging at baseline and 12-month 

follow-up (p<0.001 for all). Urinary LH, E and T all increased across Tanner stages. 
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Figure 6.2 Plots of mean and SEM of individual changes from baseline (0) in urine LH, 

E2 and T concentrations in female (left panels) and male (right panels) at 3, 6, 9 and 12 

months. 
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Table 6.5 Mean urine LH, E2 and T. 

Mean 

(SD) 
Baseline 3 Months 6 Months 9 Months 

12 Months 

(Follow-Up) 

Two Way ANOVA 

F-statistic (p-value) 

 M F M F M F M F M F Gender Time 
Gender x 

Time 

LH  

(IU/L) 

8.7 

(7.4) 

9.6 

(10.0) 

8.4 

(5.9) 

10.2 

(10.1) 

9.6 

(7.4) 

11.5 

(11.4) 

9.8 

(6.1) 

13.3 

(16.6) 

10.1 

(7.9) 

10.1 

(9.9) 

3.2 

(0.074) 

0.9 

(0.438) 
0.4 (0.802) 

E2 

(ng/mL) 

0.7 

(0.9) 

1.8 

(2.0) 

0.7 

(0.9) 

2.1 

(2.8) 

1.1 

(1.6) 

2.5 

(3.1) 

0.9 

(1.1) 

3.5 

(4.8) 

1.0 

(1.0) 

2.7 

(2.8) 

52.4 

(<0.001) 

2.3 

(0.059) 
1.3 (0.255) 

T (ng/mL) 
23.3 

(35) 

3.9 

(3.8) 

19.9 

(26.1) 

5.0 

(6.2) 

35.1 

(80) 

5.0 

(4.1) 

26.4 

(34) 

6.0 

(4.1) 

26.2 

(28) 

5.4 

(5.1) 

57.9 

(<0.001) 

0.9 

(0.4870) 
0.8 (0.548) 

 

          Table 6.6 Mean urine hormone measurements for girls by menarcheal status. 

Mean 

(SD) 

Baseline 3 Months 6 Months 9 Months 
12 Months 

(Follow-Up) 

Two-way ANOVA F-statistic (p-

value) 

Menarcheal 

Status 
Time  

Menarcheal 

Status x 

Time 
Pre Post Pre Post Pre Post Pre Post Pre Post 

LH 

(IU/L) 

6.5 

(7.48) 

14.6 

(11.53) 

6.8 

(7.55) 

16.1 

(11.25) 

7.6 

(7.21) 

17.4 

(14.10) 

9.0 

(8.48) 

19.2 

(22.69) 

9.5 

(8.90)  

11.0 

(11.34) 

30.34 

(<0.001) 

1.05 

(0.384) 

1.34 

(0.255) 

E2 

(pg/mL) 

0.7 

(0.67) 

3.4 

(2.19) 

0.9 

(0.84) 

4.1 

(3.70) 

1.1 

(0.80) 

4.7 

(4.03) 

1.5 

(1.39) 

6.4 

(6.32) 

1.7 

(1.90) 

4.3 

(3.16) 

95.54 

(<0.001) 

3.20 

(0.014) 

1.50 

(0.201) 

T 

(ng/mL) 

2.4 

(2.00) 

6.3 

(4.70) 

2.7 

(2.03) 

8.9 

(8.70) 

3.2 

(2.72) 

7.7 

(4.48) 

4.5 

(2.99) 

8.0 

(4.53) 

4.3 

(3.16) 

6.9 

(4.38) 

57.21 

(<0.001) 

1.41 

(0.232) 

1.33 

(0.258) 
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6.4.3 Association between Serum and Urine Hormone Measurements and 

Anthropometry 

 

Change in serum LH was significantly positively associated with change in height and weight 

for females, but with neither in males (Table 6.7). Serum T was significantly positively 

associated with height changes in both sexes. Change in height was positively associated with 

urinary E2 and T in females and urinary E2 in males. No other significant associations were 

observed between urinary hormones and anthropometry over 12 months (Table 6.7). 

Table 6.7 Regression results for serum (left) and urine (right) hormones and 

anthropometric markers of puberty. 

 

 

 

 

 

 

 

 

 

 

 

Serum β 95% CI F-statistic p-value  Urine β 95% CI p-value 

Change in Height 

Female 

LH 0.53 0.21, 0.84 11.50 0.001  LH 0.01 -0.47, 0.48 0.979 

E2 -0.001 -0.04, 0.03 0.01 0.943  E2 -0.25 -0.38, -0.12 <0.001 
T 10.19 0.77, 19.61 4.73 0.035  T -0.25 -0.44, -0.06 0.011 

Male 

LH -0.16 -0.92, 0.61 0.17 0.681  LH 0.31 -0.11, 0.72 0.149 

E2 0.09 -0.02, 0.21 2.61 0.115  E2 -0.10 -0.16, -0.03 0.004 

T 0.89 0.48, 1.31 19.26 <0.001  T -1.05 -3.74, 1.64 0.446 

Change in Weight 

Female 

LH 0.45 0.10, 0.81 6.67 0.013  LH -0.13 -0.55, 0.28 0.535 

E2 -0.01 -0.05, 0.03 0.20 0.656  E2 -0.02 -0.14, 0.09 0.695 

T 11.81 1.15, 22.48 4.96 0.031  T -0.14 -0.30, 0.03 0.110 

Male 

LH -0.10 -1.74, 1.54 0.02 0.900  LH 0.07 -0.13, 0.27 0.492 

E2 0.07 -0.18, 0.31 0.31 0.583  E2 0.01 -0.02, 0.04 0.505 

T 0.21 -0.86, 1.28 0.16 0.688  T 0.81 -0.48, 2.10 0.218 

Change in BMI 

Female 

LH 0.03 -0.10, 0.16 0.24 0.625  LH -0.79 -2.03, 0.45 0.214 

E2 0.001 -0.01, 0.01 0.01 0.921  E2 0.03 -0.31, 0.37 0.858 

T 2.18 -1.73, 6.09 1.25 0.269  T -0.47 -0.97, 0.02 0.062 

Male 

LH -0.10 -0.46, 0.26 0.31 0.580  LH -0.03 -0.89, 0.82 0.940 

E2 -0.02 -0.07, 0.03 0.69 0.412  E2 -0.02 -0.16, 0.11 0.737 

T -0.01 -0.24, 0.23 0.00 0.963  T 1.33 -4.19, 6.86 0.636 

Change in Self-Rated Tanner Stage 

Female 

LH 0.07 -0.04, 0.17 1.51 0.225  LH 0.46 -1.19, 2.11 0.583 

E2 0.002 -0.01, 0.01 0.12 0.730  E2 -0.24 -0.70, 0.22 0.310 

T 1.59 -1.25, 4.44 1.28 0.265  T 0.11 -0.56, 0.78 0.757 

Male 

LH -0.08 -0.33, 0.17 0.44 0.510  LH -0.10 -1.23, 1.03 0.863 

E2 0.03 -0.003, 0.07 3.38 0.075  E2 -0.15 -0.33, 0.03 0.100 

T 0.16 0.02, 0.29 5.40 0.026  T -0.27 -7.64, 7.09 0.942 
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6.5 Discussion 

The two major findings of this study are the validation of a MS assay for pubertal urine 

steroids in a young adolescent population and the demonstration that it is feasible to collect 

urine samples from a community-based adolescent cohort at three-monthly intervals, with 

high compliance (93% serum and 92% urine collections completed) and low follow-up 

attrition rate.  

In order to demonstrate the specific effects of puberty hormones on any biological aspect of 

adolescent development and health, a methodology that allows more frequent biological 

sampling than has been previously reported for epidemiological studies is essential. Urine 

samples have the advantage over blood samples that these are more acceptable both ethically 

and practically by adolescents, and each overnight sample provides a more time-integrated 

hormone measure. This is particularly true in early puberty when pubertal hormones 

commence pulsatile secretion nocturnally (Dorn et al. 2006), so that a morning overnight 

urine sample may be more informative than a serum sample at any single time point. Urine 

collections also allow for more frequent collection than repeated venepuncture would be 

tolerated (Aksglaede et al. 2009). Salivary samples are potentially easier to collect, but blood 

contamination and influence of flow-rate on measurements seriously limits validity and 

accuracy.  

Anthropometric and serum hormone changes in our study revealed the anticipated increases 

over the course of one year in a cohort of young adolescents. The urine data also revealed 

anticipated hormone increases over the 12-months of observation. However, mean and 

individual urinary hormone changes were not strictly progressive; suggesting within-subject 

variability in early and mid-pubertal hormone levels may contain hitherto unexploited 

information on determinants of biological aspects of pubertal progression. This finding also 
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suggests that three monthly urine collections over an extended period have the capacity to 

provide new insights into the biology of puberty.  

The cross-sectional associations between chronological age and self-reported Tanner stage 

and both serum and urinary hormones reveal considerable overlap between hormone levels at 

each age or stage, and emphasise the need to have better descriptors of puberty hormone 

change. Both Tanner stage and anthropometric change lag behind hormonal change. Using 

the former as surrogates for puberty hormone change will less accurately describe the 

relationship between hormone changes and the resultant physical changes, as well as any 

other adolescent health or developmental change of interest, such as mood or behaviour. 

Previous work has questioned the validity of self-rated Tanner staging (Bonat et al. 2002, 

Desmangles et al. 2006, Dorn et al. 2006, Hergenroeder et al. 1999, Morris and Udry 1980); 

however, our data support the validity of self-rated Tanner staging as a high proportion of 

adolescents completed the scales with findings of consistent or advanced Tanner stage at 12 

months follow-up in all but 6% of adolescents and with the self-rated Tanner staging 

corresponding well with conventional anthropometric measures of puberty.  

In conclusion, our work has used a robust methodology of urine sex steroid hormone 

measurement, using LC tandem mass spectrometry measurements for urine sex steroids 

(Handelsman and Wartofsky 2013), which display the high sensitivity and specificity to 

detect the lower levels of sex hormones, a particular challenge to the study of pubertal 

progression (Courant et al. 2010, Rosner et al. 2013). Based on previously recorded 

longitudinal growth data (Marceau et al. 2011, Steinbeck et al. 2012), it is anticipated that 

frequently measured urine samples over the two to three year window of puberty will not 

only provide a firmer biological basis for clinically observed patterns of puberty, such as 

early or late onset and rapid or slow tempo, but also allow determination of the true 

biological effects of puberty hormones on adolescent health and development.
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Chapter 7  Conclusions 

In this thesis, we successfully developed suitable sample preparation techniques and LC-

MS/MS assays to measure steroids in various biological samples. The methods were further 

applied for clinical research studies including remote sampling and field studies. We also 

demonstrated that previously validated LH immunoassays for human blood samples are also 

suitable with qualifications for urine samples. This thesis consists of four research chapters as 

summarized in the sections below. 

7.1 Blood spot sampling after sc steroid injection 

This study was to assess the feasibility and pharmacology of sc injection of androgen ester in 

healthy men using DBS for frequent sampling. A sensitive and specific LC-MS/MS assay 

was developed and validated to measure steroids from DBS samples. To avoid common 

problems of using DBS samples such as non-homogenous distribution of blood on the filter 

card and hematocrit effect, we developed a novel sampling method which used the whole 

blood spotted onto the filter card instead of using a subsample (e.g. by a punch). The DBS 

technology provided intensive and simplified blood collection by the study participants at 

home without the need of clinic visit. This study provided a detailed pharmacological 

analysis of sc injection of ND in oil vehicle. We found a sustained release of this androgen 

ester which suggests that sc injections of T esters may prove to be safe and tolerable. This 

would make self-injection of long-acting depot form of T delivery more feasible with the 

potential benefits of reducing medical care costs demand on medical personnel time. 

Additionally this delivery method may also reduce injection site pain or bruising as well as 

allowing freer use among those with bleeding disorders or on anticoagulants. Further studies 

using T esters in men with differing body weight and after repeated injections are required to 

evaluate duration of action and usefulness in clinical practice of sc relative to im injections. 
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7.2 Urinary LH immunoassays in stored samples 

This study was to assess whether commercially available LH immunoassays (ICL and IF) 

previously validated for human blood samples is suitable for urine samples kept at prolonged 

frozen storage (4 years) without addition of any preservative. Urinary LH may be dissociated 

into its subunits due to high urinary concentrations of urea that may cause loss in 

immunoreactivity after prolonged frozen storage. Using samples from a clinical study 

completed in 2008 and aliquots of the same samples stored frozen at -20 °C without added 

preservatives, this study describes the deviations in performance of ICL and IF 

immunoassays and their ultimate applicability for reliability clinical research and for anti-

doping purposes. The study demonstrated that the two LH immunoassays optimized for blood 

samples can also be used for urinary LH measurement but the performance of both the assay 

differed markedly. The ICL immunoassay showed quantitatively reproducible LH 

measurement even after prolonged storage at -20 °C for 4 years without addition of 

preservatives. By contrast, the IF immunoassay demonstrated consistently but proportionately 

lower LH measurements relative to the ICL assay both initially (2008) and then exhibited a 

further decrease after 4 years of frozen storage (2012). Yet, both the assays displayed similar 

patterns of the time-course of urine LH measurement both before and after 4 years of frozen 

storage. In conclusion, we found that both immunoassays are suitable for urinary LH 

measurements with ICL assay being more robust for quantitative urinary LH measurement 

such as for anti-doping purpose whereas the IF could be applicable for research studies where 

urine LH levels are compared within-study but not in absolute terms. 
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7.3 SG and creatinine adjustments for urinary hormones 

The study aimed to determine whether first morning void hormonal assessments carried out 

in growing young adolescents require adjustments to correct for variation due to hydration, 

and if so, to determine the best adjustment method based either on urinary creatinine or SG. 

While previous studies have examined broadly the issue of how to adjust urinary hormonal 

measurements none have focused on the specific situation where creatinine is changing 

systematically due to growth, hence this study contains novel information on whether urinary 

hormonal concentration adjustments are required in the setting of repeated serial sampling of 

a large adolescent population at various stages of pubertal progression. The present study 

demonstrated that unadjusted urinary steroids and LH concentration corresponded well with 

the concentration adjusted either with creatinine or SG when using first morning void urine 

samples, reflecting an overnight fast, even in growing adolescents. Based on these findings 

we suggest the possibility that the first morning void urine samples are not heavily influenced 

by the hydration status of study participants and may not require adjustments compared with 

randomly collected spot or timed urine collection methods. However, if the dilution 

adjustment is desired for the urine specimen, both the creatinine and SG appear equally 

suitable using first morning void urine samples. We also show that reagent strip SG 

measurements are simpler alternative to a refractometer and sufficiently reliable, economical 

and time-saving for large numbers of urine sampling in long-term field studies. 

7.4 Urinary puberty hormones 

The aim of this study was to develop and validate LC-MS/MS assay to measure urinary T and 

E2 in adolescents and subsequently to relate the changes in the urinary sex hormones over 12 

months to the standard anthropometric markers of puberty (height, weight, BMI, self-rate 

Tanner stage). Longitudinal relationships of within-individual hormone and anthropometric 

changes during puberty have not been fully described previous. Urine provides a more time-
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integrated hormone measure compared to blood samples and is particularly important as 

pulsatile secretion during early progression of puberty occurs nocturnally. The study 

demonstrated feasibility of urine samples collection from a community based-adolescent 

cohort at three-monthly intervals with high compliance and low follow-up attrition rate. Both 

urine and serum hormone data showed anticipated increase over 12 months. This study 

successfully developed a robust LC-MS/MS method to measure urinary steroids that display 

high sensitivity and specificity. The study preliminary findings demonstrate the feasibility of 

intensive collection of urine samples together with validated urine assays for sex steroids and 

LH. These will allow a more accurate and sensitive, individual assessment of puberty timing 

and tempo. Currently, three monthly urine and a yearly blood collection for the ARCHER 

longitudinal study over three years is being carried out to better understand the role of 

puberty hormones on adolescent events. This longitudinal study aims to determine how 

temporal changes in T and E2 independently affect physical status, social and emotional well-

being, education, sleep, risk behaviours, and mental health in adolescents. 
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Appendix  
 

Chapter 3: 

Gurmeet KS Singh was responsible to optimize the DBS sampling method, LC-MS/MS assay 

development and conducting the assays, as well as statistical analyses and involved in writing 

and editing the manuscript. Leo Turner is a nurse at the Andrology clinic, Concord Hospital 

that was responsible for recruiting of the volunteers, administrating the drug, monitoring, 

sample collection and editing the manuscript. Reena Desai was involved in the assay 

development and editing of the manuscript. Mark Jimenez conducted the gonadotropin assays 

and was involve in the editing of the manuscript. David J Handelsman was responsible for 

study design, assay development, statistical analyses, writing and editing the manuscript. 

Chapter 4: 

Gurmeet KS Singh was responsible for the statistical analyses and involved in writing the 

first draft and editing the manuscript. Mark Jimenez conducted the LH assays and was 

involved in the editing of the manuscript. Ron Newman was involved in the editing of the 

manuscript. David J Handelsman was responsible for study design, statistical analyses, 

writing and editing the manuscript. 

Chapter 5: 

Gurmeet KS Singh was responsible for assay development and conducting the assays, as well 

as statistical analyses, writing the first draft and editing the manuscript. Ben WR Belzer, 

Reena Desai and Mark Jimenez were involved in the writing and editing of the manuscript. 

Reena Desai was also involved in the assay development. Katharine S Steinbeck was 

involved in study design, study oversight, writing, and editing this manuscript. David J 
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Handelsman was responsible for study design, assay development, statistical analyses, 

writing and editing the manuscript. 

Chapter 6: 

Gurmeet KS Singh and Ben WR Balzer share equal authorship of this paper. Gurmeet KS 

Singh was responsible for assay development and conducting the assays, as well as 

authorship and editing the manuscript. Ben WR Balzer performed statistical analyses, wrote 

the first draft and contributed to the editing of the manuscript. Patrick J Kelly performed 

statistical analyses and contributed to editing the manuscript. Karen Paxton was involved in 

study design, sample collection, performed anthropometry assessments and edited the 

manuscript. Catherine I Hawke was involved in study design and oversight, as well as 

contributing to the writing and editing of the manuscript. David J Handelsman was involved 

in assay development and conduct, as well as statistical analyses and writing and editing the 

manuscript. Katharine S Steinbeck is the chief investigator of the ARCHER Study and was 

involved in study design, study oversight, writing, and editing this manuscript. 

 

 

 

 

 


