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Abstract

In the domain of data mining and machine learning, researchers have made significant

contributions in developing algorithms handling clustering and classification problems.

We develop algorithms under assumptions that are not met by previous works. (i) In

adversarial learning, which is the study of machine learning techniques deployed in

non-benign environments. We design an algorithm to show how a classifier should be

designed to be robust against sparse adversarial attacks. Our main insight is that sparse

feature attacks are best defended by designing classifiers which use `1 regularizers. (ii)

The different properties between `1 (Lasso) and `2 (Tikhonov or Ridge) regularization

has been studied extensively. However, given a data set, principle to follow in terms of

choosing the suitable regularizer is yet to be developed. We use mathematical properties

of the two regularization methods followed by detailed experimentation to understand

their impact based on four characteristics. (iii) The identification of anomalies is an

inherent component of knowledge discovery. In lots of cases, the number of features

of a data set can be traced to a much smaller set of features. We claim that algorithms

applied in a latent space are more robust. This can lead to more accurate results, and

potentially provide a natural medium to explain and describe outliers. (iv) We also

apply data mining techniques on health care industry. In a lot cases, health insurance

companies cover unnecessary costs carried out by healthcare providers. The potential

adversarial behaviors of surgeon physicians are addressed. We describe a specific con-

text of private healthcare in Australia and describe our social network based approach

(applied to health insurance claims) to understand the nature of collaboration among

doctors treating hospital inpatients and explore the impact of collaboration on cost and

quality of care. (v) We further develop models that predict the behaviors of orthopedic

surgeons in regard to surgery type and use of prosthetic device. An important feature of

these models is that they can not only predict the behaviors of surgeons but also provide

explanation for the predictions.
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Chapter 1

Introduction

With the technological advances during recent years, data scientists are able to obtain

data that are significantly larger, complex and in real time with relatively minimal effort.

Thus, the era of big data has arrived. Besides the need to modify traditional data mining

techniques in order to be scalable to the ever larger data sets, there is a requirement to

relax traditional assumptions associated with data mining tasks. For example, in many

situations practical large scale systems which deploy classifiers, e.g., spam filters are

subject to adversarial reaction. Thus there is a need to design algorithms which are ro-

bust against adversarial attack. The classification problem is one of the most intensively

studied problem in machine learning and data mining. A fundamental assumption un-

derlying most classification problems is that the training and the test data are generated

from the same underlying probability distribution. This assumption underpins both the

research and applied “prediction industry.”

However there are at least two scenarios where the assumption does not hold in

practice.

• Concept drift: In some scenarios, data naturally evolves with time. For example,

suppose a credit card scoring model was built during “good” economic times.

Then it is natural to expect that the performance of this model is likely to deteri-

orate during a recession.

• Adversarial attack: In some other situations an adversarial attack has been ob-

served against the classifier. For example, spam filters (which are classifiers)

routinely have to be retrained as an adversarial reaction causes their performance

to deteriorate.

1
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Furthermore, the role of data mining and machine learning is not just inference but

also discovery and the outlier detection methods can also be an important tool for dis-

covering potentially new and useful patterns in data. In fact it has been often stated that

new scientific paradigms are often triggered by the need to explain outliers [47]. The

availability of large and ever increasing data sets, across a wide spectrum of domains,

provides an opportunity to actively identify outliers with the hope of making new dis-

coveries. The obvious dilemma in outlier detection is whether the discovered outliers

are an artifact of the measurement device or indicative of something more fundamental.

Thus the need is not only to design algorithms to identify complex outliers but also

provide a framework where they can be described and explained.

The adversarial effect can also be found in healthcare domain. To be able to identify

and explain the potential adversary of healthcare providers could save insurance compa-

nies billions of dolors. Social network analysis is commonly used to study relationships

between individuals and communities as they interact with each other. Analysing Face-

book connections is one such classic example. The textbook by Easley and Kleinberg

[27] offers deep insight into the complexity of a connected world. More interesting and

novel applications of network theory are reported in specialised domains [1, 2]. In the

healthcare domain, social network analysis has been used in different settings, for ex-

ample to study collaboration among healthcare professionals in specific healthcare en-

vironments, to understand the impact of team structure on quality of care [80, 48, 10].

In this dissertation we describe our approach of applying social network analysis in

the domain of health insurance claims. In particular, we use data from health insur-

ance claims to design network-based models of collaboration among medical providers

and analyse the impact of social networks and their underlying network structures, to

discover provider communities and analyse the topology of the emerging community

structure (of surgeons, anaesthetists and assistant surgeons) on treatment outcomes for

patients who undergo specific category of surgeries, for example knee surgeries.

The increased demand for high quality and cost-effective delivery of healthcare ser-

vices, brings the entire healthcare sector under close scrutiny. Medical organizations

such as the American College of Physicians [63] have started evaluating the feasibility

of medical interventions for clinicians in terms of long term benefits, potential harms

and monetary considerations. Decisions related to the adoption or discontinuation of

different types of medical interventions are often a collaborative process. Providers

employed by the same hospitals, who share common patients as well as the working
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environment, may influence each other, and social relationships can become a powerful

driver of learning and innovation, as often assumed in social learning theory [7].

1.1 Contributions of this Thesis

In this thesis, we present our recent research on designing robust methods for handling

adversarial situations. Specifically, our main contributions are:

1. We claim in adversarial learning the aim of an adversary is not just to subvert

a classifier but carry out data transformation in a way such that spam continues

to appear like spam to the user as much as possible. We demonstrate that an

adversary achieves this objective by carrying out a sparse feature attack. We

design an algorithm to show how a classifier should be designed to be robust

against sparse adversarial attacks. Our main insight is that sparse feature attacks

are best defended by designing classifiers which use `1 regularizers.

2. We use mathematical properties of the `1 (Lasso) and `2 (Tikhonov or Ridge)

regularization methods followed by detailed experimentation to understand their

impact based on four characteristics: non-stationarity of the data generating pro-

cess; level of noise in the data sensing mechanism; degree of correlation between

dependent and independent variables and the shape of the data set. The practical

outcome of our research is that it can serve as a guide for practitioners of large

scale data mining and machine learning tools in their day-to-day practice.

3. We claim that algorithms for discovery of outliers in a latent space will not only

lead to more accurate results but potentially provide a natural medium to explain

and describe outliers. Specifically, we propose combining Non-Negative Matrix

Factorization (NMF) with subspace analysis to discover and interpret outliers.

We report on preliminary work towards such an approach.

4. We describe a specific context of private healthcare in Australia and describe

our social network analysis (SNA) based approach (applied to health insurance

claims) to understand the nature of collaboration among doctors treating hospital

inpatients and explore the impact of collaboration on cost and quality of care.

In particular, we use network analysis to (a) design collaboration models among
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surgeons, anaesthetists and assistants who work together while treating patients

admitted for specific types of treatments (b) identify and extract specific types

of network topologies that indicate the way doctors collaborate while treating

patients and (c) analyse the impact of these topologies on cost and quality of care

provided to those patients.

5. We develop models that predict the behaviors of orthopedic surgeons in regard

to surgery type and use of prosthetic device. The models utilize data on past

practicing behaviours and take in account the social relationships existing among

surgeons, anaesthetists and assistants. We refer to the models as the Social Re-

lationship Model (SRM) and Positive Social Relationship Model (P-SRM). An

important feature of these models is that they can not only predict the behaviors

of surgeons but they can also provide an explanation for the predictions. Experi-

mental results on both artificial and real hospital data sets show that our proposed

models outperform the baseline model Online Majority Vote (OMV).

1.2 Organization

The remainder of this thesis is organized as follows. In Chapter 2 we review related

literature, key concepts and evaluation metrics used in this thesis. Chapter 3, 4 and 5

respectively depict how we can build more robust models based on existing classifica-

tion, regularization, and outlier detection algorithms etc. Chapter 6 describe our social

network based approach (applied to health insurance claims) to understand the nature

of collaboration among doctors treating hospital inpatients and explore the impact of

collaboration on cost and quality of care. In chapter 7, we develop models that predict

the behaviors of orthopedic surgeons in regard to surgery type and use of prosthetic

devices. We conclude in Chapter 8 with directions for future work.



Chapter 2

Background

In this chapter, we present related literature, key concepts and evaluation metrics. The

evaluation metrics introduced in this chapter are used throughout the thesis.

2.1 Related Literature

We review related work from two perspectives. We first overview the relevant algorith-

mic literature on adversarial learning and robust classification. As one of the important

application domain is health-care analysis, we review important parts of the domain

literature to put our work in an appropriate context.

2.1.1 Algorithm Oriented

Adversarial Classification
Dalvi et al. [24] modelled the interaction between a data miner and an adversary as

a game between two cost sensitive players. The authors made an assumption that both

adversary and data miner have full information of each other. This perfect information

model is not realistic in many online settings . Lowd et al. [53] relaxed the perfect in-

formation assumption and derived an approach known as adversarial classifier reverse

engineering (ACRE) to study the possible attacks the adversary may carry out. While

this framework can help a learner to identify its vulnerability, no solution was proposed

to learn a more robust classifier. Globerson et al. [35] formalized the interaction be-

tween the two players as a minimax game, in which both players know the strategy

space of each other. They made the assumption that the effect of the adversary will be

5
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deletions of features at application time. This feature deletion assumption, however,

fails to capture the scenarios where the adversary is capable of arbitrarily changing the

features.

Liu et al. [52] formulated the interaction between a data miner and an adversary

as a Zero-sum game, where the adversary is the leader and the data miner is the fol-

lower. However, the Zero-sum game indicates that the model assumes the adversary

is being antagonistic against the data miner. The model also assumes the adversary is

able to manipulate the entire feature space. We believe the two assumptions stated will

lead to an overestimation of the adversarial’s malicious behaviour. For example, in the

case of spam email, a classifier’s loss is not necessarily the spammer’s gain, and the

number of features an adversary can manipulate is limited. The model also assumes

the adversary can only temper the positive data samples, which is reasonable and ap-

plied in our study. Brückner et al. [15] modelled the adversarial learning scenario as

a Stackelberg game between two players. However, the leader role is played by the

data miner and the authors assume the payoff of the two players while in conflict, are

not entirely antagonistic. Unlike Liu et al. [52], they made the assumption that the

adversary can manipulate both positive and negative instances. This assumption may

also be an exaggeration of adversary’s influence since in real adversarial environment

the behaviour of legitimate users barely changes. They formulate the game as a bi-level

optimization problem, which, in general, is not amenable to an efficient solution. More-

over, Brückner et al. [15] also made the unstated (but unrealistic) assumption that the

adversary has the ability to change all the features i.e., the adversary engages in a dense

feature attack. Recently, Zhou et al. [90] introduced a model based on support vector

machines that can tackle two kinds of attacks an adversary may carry out. However, the

model is only evaluated on synthetically generated data instead of real world evolved

data under adversarial influence. In a subsequent paper, they enhanced their appraoch

by combining hierarchical mixtures of experts (HME) [91], where more robust classifier

are learned by training the model under adversarial influences. Xu et al. [85] find that

solving lasso is equivalent to solving a robust regression problem. This robust property

of lasso itself highlights the merits of using sparse modelling technique in the presence

of potential adversaries.

Regularization
In terms of regularization, Tikhonov regularization was introduced to address the

situation when the system of equation Ax = b is ill-posed [78]. This can occur, for
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example, when the system can admit infinitely many solutions. To guide the search

for solutions with appropriate properties, the following optimization solution has been

proposed

‖Ax−b‖+‖Γx‖2 (2.1)

When Γ = λ I, optimization problem is biased towards selecting a solution which has

a small `2 norm. The λ controls the trade-off between how much freedom should be

given to the data to dictate the solution versus the apriori constraint to have a solution

with a small norm. From a machine learning and statistical perspective, models with

small `2 norms have lower variance and better generalization properties.

As data sets with large number of features started becoming available, it was ob-

served that `1 instead of `2 regularization can be used to elicit sparse solutions. Thus

models with `1 regularizers can be used both for prediction and feature selection. `1 reg-

ularizers are called Lasso for “least absolute shrinkage and selection operator” [77, 51,

88]. The literature on both Tikhonov and Lasso is immense. Some recent and notable

book level treatments include [56, 16].

Anomaly Detection
In the domain of anomaly detection, the task of extracting genuine and meaningful

outliers has been extensively investigated in Data Mining, Machine Learning, Database

Management and Statistics [19, 11]. Much of the focus, so far, has been on design-

ing algorithms for outlier detection. However the trend moving forward seems to be

on detection and interpretation. While the definition of what constitutes an outlier is

application dependent, there are two methods which gained fairly wide traction. These

are distance-based outlier techniques which are useful for discovering global outliers

and density-based approaches for local outliers [45, 13]. Recently there has been a

growing interest in applying matrix factorization in many different areas, e.g. [39],[46].

To the best of our knowledge, probably the most closest work to ours is by Xiong et

al. [84]. Xiong et al. have proposed a method called Direct Robust Matrix Factoriza-

tion (DRMF) which is based on matrix factorization. DRMF is conceptually based on

Singular Value Decomposition (SVD) and error thresholding.

2.1.2 Healthcare Oriented

In the healthcare sector, collaboration among healthcare professionals has been studied

from several perspectives. Cunningham et al. (2012) [23] have conducted an orderly
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review of 26 studies of professionals’ network structures and analysed factors connected

with network effectiveness and sustainability specifically in relation to the quality of

care and patient safety. They discovered that the more cohesive and collaborative of the

networks among health professionals, the higher the quality and safety of care they can

provide.

For instance, in a classic study, Knaus and his team distinguished a compelling re-

lationship between mortality rate of patient in intensive care units and the degree of

collaboration among nurse-physician (Knaus et al., 1986) [43]. Based on their study of

5,030 intensive care unit admissions, the treatment and outcome indicated that hospitals

where nurse-physician collaboration is widespread indicate a lower mortality rate com-

pared to the predicted number of patient deaths. On the other hand, hospitals which ex-

ceed their predicted number of patient deaths, usually corresponds to insufficient com-

munication among healthcare professionals. Based on a two group quasi-experiment

on 1,207 general medicine patients, Cowan et al. (2006)[22] observed average hospital

length of stay, total hospitalization cost and hospital readmission rate are considerably

lower for patients in the experimental group than the control group (5 versus 6 days,

p < .0001) which contributes a ‘backfill profit’ of USD1,591 per patient to hospitals.

Sommers et al. (2000) [72] examined the impact of an interdisciplinary and collabo-

rative practice intervention involving a principal care physician, a nurse and a social

worker for community-dwelling seniors with chronic diseases. The study carried out

is controlled cohort and based on 543 patients in 18 private office practices of pri-

mary care physicians. The intervention group received care from their primary care

physician working with a registered nurse and a social worker, while the control group

received care as usual from primary care physicians. They noticed that the intervention

group produced better results in relation to readmission rates and average office visits

to all physicians. Moreover, the patients in the intervention group also reported an in-

crease in social activities compared with the control group. The studies which focus

on collaboration among different professional disciplines related to effectiveness of pa-

tient outcomes are also relevant to our study. Another study, by Netting and Williams

(1996) [60], based on data collected from 105 interviews (with 40 physician, 32 case

managers, 23 physician office staff, 8 administrators and 2 case assistants), showed

that there is a growing demand to cooperate and communicate across professional lines

rather than make hypothesises between single professional sector and patient outcomes,
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professional satisfaction and hospital performance. There are other studies that anal-

yse networked collaboration across healthcare specialists to explore different aspects of

professional behaviour and quality of patient care. For example, Fattore et al. (2009)

[28] evaluate the effects of GP network organisation on their prescribing behavior and

(Meltzer et al., 2010) [54] develop a selection criteria of group members in order to

enhance the efficacy of team-based approach to patient care. Other studies include

physician-pharmacist collaboration (Hunt et al., 2008) [42], physician-patient collab-

oration (Arbuthnott & Sharpe, 2009) [5], hospital-physician collaboration (Burns &

Muller, 2008) [17], and inter-professional, interdisciplinary collaboration (Gaboury et

al., 2009) [32].

A common framework for studying how professionals influence and learn from each

other is social learning theory [9, 55, 8]. According to social learning theory people

learn and modify their behaviors not only in response to direct reinforcement but more

generally by observing and responding to stimuli derived from the social context they

live in. An important tenet of social learning theory is that the learner, the behavior, and

the environment can influence each other. Therefore people’s behaviors are influenced

by the behaviors of their peers, their environments and by cognitive, biological and other

personal factors. These notions are well formalized in social network analysis[44, 18],

that uses concepts from network theory to analyze social relationships among a set of

actors.

2.2 Key Concepts and Evaluation Metrics

In this section, we briefly review the elementary and commonly used evaluation metrics.

2.2.1 Non Zero-sum Game

We model the interaction between a classifier and an adversary in a game-theoretic

setting. We assume that we are given a training data set (xi,yi)
n
i=1, where xi is a feature

vector and yi ∈ {−1,1} is a binary class label. In a standard classification problem the

objective is defined as:

w∗ = argmin
w

1
n

n

∑
i=1

`(yi,w,xi)+λw‖w‖p (2.2)
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Table 2.1: Commonly used loss functions for the two players.

`(yi,w,xi)

Square 1
2‖yi−wT xi‖2

Logistic log(1+ exp(−yiwT xi))

Hinge (1− yi(wT xi))+

Here, ` is a suitable (convex) loss function, w is the weight vector, λw is a regularization

parameter and ‖.‖p is `p-norm to encourage generalization. When p = 1,2, the regular-

ization is referred to as `1 regularizer and `2 regularizer respectively. Some examples

of loss functions include square, logistic and hinge loss are shown in Table 4.1.

Now, we bring in an adversary whose objective is to distort the behaviour of the

classifier to meet a pre-defined objective. For example, in a spam setting, the adversary

would like a spam email to be classified as non-spam by the spam-filtering classifier.

We model the adversary action as it controlling a vector α with which it modifies the

training data x. However, it is important to note that the adversary would only like

to change the spam data (which is y = 1) and not the non-spam data. This setting is

a non-zero sum game:, i.e., the gain for a classifier is not necessarily the loss for the

adversary.

In order to formalize the objective of the adversary we separate the data into positive

and negative parts, where the positive data is indexed as (xi,1)
npos
i=1 and the negative data

is indexed as (xi,−1)n
i=npos+1.

After the adversary transforms positive data (xi,1)
npos
i=1 to (xi +α,1)npos

i=1 , the classi-

fier aims to re-build the optimal w denoted by w∗:

w∗ = argmin
w

1
npos

npos

∑
i=1

`(1,w,xi +α
∗)+

1
n−npos

n

∑
i=npos+1

`(−1,w,xi)+λw‖w‖p

subject to the constraint that α∗ is given by

α
∗ = argmin

α

1
npos

npos

∑
i=1

`(−1,w,xi +α)+λα‖α‖p (2.3)

where `(yi,w,xi) can be any of the three loss functions given in Table 4.1. There are
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several points that are worth noting about the above model:

1. The adversary is assumed to apply the vector α to the original positive samples

by minimizing the same loss function, but with a negative label. Actual data does

not exist in this form but this is precisely what the adversary would do: change

feature vectors of the positive data to make it appear as non-spam to the classifier.

Since our objective is to design a classifier which is robust against adversarial

manipulations, we model the behaviour of the adversary in this particular form.

2. Note that we are normalizing the two terms of the classifier’s objective function

by the number of positive samples (npos) and the number of negative sample (n−
npos). The advantage of this particular normalization is that it will automatically

account for any imbalance in the data. If the number of positive sample npos is

small, then effectively there will be higher loss for misclassification.

3. The problem as stated above is an example of a bi-level optimization [81] because

the constraint is a separate (but coupled) optimization problem in its own right.

2.2.2 Logistic regression

Logistic regression are universally favored for its generalization property. Here we

show how the two different regularized logistic functions are derived.

Logistic Loss Function with Gaussian Prior
The logistic loss function is defined as:

N

∑
i

log(1+ e−yi(wtxi+b))

Where yi ∈ {−1,1} is the actual class which a data point xi belongs to, w is the feature

weights and b is the bias. Normally, people intuitively add another term wT w to prevent

over-fitting. Here we give the mathematical explanations of where `2 norm come from.

Normally we assume the values of the elements in a feature vector could be any real

number when we design a loss function, and that is why there exists over-fitting. In

the process of fitting the model, the feature vector will only be changed to best classify

the training data, so it could be formidably big in terms of the element value. People

intuitively add a ‖w‖2 to constrain the weights from deviate too much from zero. This is
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equivalent to assume each w j follows a Gaussian distribution with mean 0 and variance

τ j [33]:

p(w j | τ j) = N(0,τ j) =
1√
2πτ j

exp(
−w2

i
2τ j

), j = 1, ...,d. (2.4)

Here a small value of τ j means w j is close zero, while a bigger τ j means w j will be

further from zero. The maximum likelihood maximization of logistic regression in this

case will be written as:

N

∏
i

1
1+ eyi(wtxi+b)

M

∏
j

1√
2πτ j

exp(
−w2

j

2τ j
),

Which M represent the number of w j. For each w j, we assume τ j is equal to τ:

N

∏
i

1
1+ eyi(wtxi+b)

M

∏
j

1√
2πτ

exp(
−w2

j

2τ
),

Now we take the negative log likelihood, the above equation becomes:

L(w) =
N

∑
i

log(1+ e−yi(wtxi+b))+
M

∑
i

w2
j

2τ
+

M

∑
i
(ln
√

τ +
ln2π

2
) (2.5)

The last part of the above equation is a constant which can be thrown away and we get

the final equation:

L(w) =
N

∑
i

log(1+ e−yi(wtxi+b))+
1

2τ
‖w‖2

Although, adding this regularizer will make the w j close to zero, but does not favor w j

being exactly zero. In many application problems, it is better to get a feature vector

with a lot zeros in it (i.e. a sparse solution). To achieve this, we have to assume another

type of distribution for w j.

Logistic Loss Function with Laplace Prior

Similarly, the mathematical explanation of `1 norm is that besides we assume each

w j follows a Gaussian distribution with mean 0 and variance τ j , we further assume

each τ j follows a exponential distribution with parameter γ:

p(τ j|γ) =
γ

2
exp(−

γ j

2
τ j), γ > 0. (2.6)
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If we combine Equation (2.4) and the above equation we will get Laplace distribution:

p(wi|γ j) =
λ j

2
exp(−λ j|w j|), (2.7)

Again we assume each λ j equals λ we will get:

N

∏
i

1
1+ eyi(wtxi+b)

M

∏
j

λ

2
exp(−λ |w j|), (2.8)

And the log loss will be:

L(w) =
N

∑
i

log(1+ e−yi(wtxi+b))+
M

∑
i

λ |w j|+
M

∑
i
(ln2+ lnλ ) (2.9)

Again, we thrown away the last part and get the final equation:

L(w) =
N

∑
i

log(1+ e−yi(wtxi+b))+λ‖w‖ (2.10a)

2.2.3 Regularizations

The main insight to distinguish between `1 and `2 regularization can be obtained by con-

sidering the one-dimensional linear regression problem solved using the least squares

method. Extensions to higher dimensions and when features are correlated adds to sym-

bol complexity but will be discussed wherever necessary.

Suppose we are given n data points (yi,xi)
n
i=1 and are interested in solving the linear

regression problem. We assume a Gaussian error model which reduces to solving the

least square problem. There are at least three scenarios:

Ordinary Least Square (OLS)

Here our aim is to select a wOLS which minimizes

n

∑
i=1

(yi−wxi)
2 (2.11)
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We take derivative of the above equation and make it equal to zero:

2(y−wT x)x = 0

w = yT x

It can be show that wols is dot product y ·x.

Tichonov or Ridge

Estimate a wridge which minimizes

n

∑
i=1

(yi−wxi)
2 +λw2, (2.12)

where λ > 0. Again, it is straightforward to show that wridge = y·x
1+λ

. This clearly shows

that as λ increases,the magnitude of the estimator wridge scales towards zero.

Lasso

Estimate wlasso which minimizes

f (w) =
n

∑
i=1

(yi−wxi)
2 +λ |w| (2.13)

Now as |w| is not differentiable we have to examine the sub-gradient(∂ ) and work

through all the cases. The sub-gradient of f (w) is given as

∂ ( f (w)) =


w−y ·x−λ if w < 0

[−y ·x−λ ,−y ·x+λ ] if w = 0

w−y ·x+λ if w > 0

(2.14)

We now have to examine under what conditions will 0 ∈ ∂ (w). This can happen under

the following three scenarios which depend upon the strength and direction of the cor-

relation y.x.

wlasso =


y ·x+λ if y ·x <−λ

0 if y ·x ∈ [−λ ,λ ]

y ·x−λ if y ·x > λ

(2.15)

The above result clearly shows that wlasso will be zero when y and x are weakly
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Figure 2.1: Illustration of a star, a line, a circle and a complete graph.

correlated relative to λ . In the multi-dimensional case, this observation has been gen-

eralized known as SafeRule, which is used for pruning variables whose weight in

the solution vector will be zero. In particular, assume that the data is given in the form

(y,X), where X is matrix representing the independent variables. Then the SafeRule

[34] asserts that wi
lasso = 0 if

|XT
i y|< λ −‖Xi‖2‖y‖2

λmax−λ

λmax
, (2.16)

where λmax = ‖XT y‖∞. This has been used to safely remove Xi from the data set as it

will not have any impact on the model.

2.2.4 Network concepts

Degree Centralisation

To explain degree centralisation, we need to first define degree centrality. Being one

of the basic measures of network centrality, degree centrality captures the percentage of

nodes that are connected to a particular node in a network. It highlights the node with

the most connections to other actors in the network, and can be defined by the following

equation for the actor (or node) i in a network carrying N actors (Wasserman and Faust

2003) [74]:

C
′
D =

d(ni)

N−1

The subscript D for ‘degree’ and d(ni) indicates the amount of actors with whom actor i

is adjacent. The maximum value for C
′
D reaches 1 as actor i is linked with everyone else

in the network. Network degree centralisation is measured based on the set of degree

centralities, which represents the collection of degree indices of N actors in a network.

Formally, degree centralisation can be summarised by the following equation (Freeman
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et al. 1979) [31]:

CD =
∑

N
i=1[CD(n∗)−CD(ni)]

[(N−1)][(N−2)]

Where, {CD(ni)} are the degree indices of N actors and CD(n∗) is the largest observed

value in the degree indices. For a network, degree centralisation (i.e. the index CD)

reaches its maximum value of 1 when one actor chooses all other (N−1) actors and the

other actors interact only with this one (i.e. the situation in a star graph as illustrated in

Figure 2.1). On the other hand, CD attains its minimum value of 0 when all degrees are

equal (As portrayed in Figure 2.1, i.e. the setting in a circle graph). Thus, regarding to

both a star and circle graph, CD signifies varying amounts of centralisation of degrees.

Closeness Centralisation

Likewise, closeness centrality needs to be defined before we make clear closeness

centralisation. Being another aspect of actor centrality based on closeness, closeness

centrality focuses on how ‘close’ an actor is to all the other actors in a network (Freeman

et al. 1979) [31]. The idea is that if an actor can instantly interact with all other actors in

a network, then it is of central stand. In the context of a communication relation, actors

with central place need not rely on other actors for the relaying of information. For an

individual actor, it can be represented as a function of shortest distances between that

actor and all other remaining actors in the network. The following equation represents

the closeness centrality for a node i in a network having N actors (Freeman et al. 1979;

Wasserman and Faust 2003) [31, 74]:

C
′
C(ni) =

N−1

∑
N
j=1 d(ni,n j)

Where, the subscript C for ‘closeness’, d(ni,n j) is the number of lines in the shortest

path between actor i and actor j, and the sum is taken over all i 6= j. A higher value of

C
′
C(ni) indicates that actor i is closer to other actors of the network, and will be 1 when

actor i has direct links with all other actors of the network. The set of closeness central-

ities, which represents the collection of closeness indices of N actors in a network, can

be summarised by the following equation to measure network closeness centralisation

(Freeman et al. 1979) [31]:

CC =
∑

N
i=1[C

′
C(n
∗)−C

′
C(ni)]

[N−1][N−2]/[2N−3]
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Where, {C′C(ni)} are the closeness indices of N actors and C
′
C(ni) is the largest recog-

nized value in closeness indices. For a network, closeness centralisation (i.e. the index

CC) reaches its maximum value of unity when one actor chooses all other (N−1) actors

and the other actors have shortest distances (i.e. geodesics) of length 2 to the remaining

(N−2) actors (i.e. the situation in a star graph as illustrated in Figure 2.1). This index

(i.e. CC) can attain its minimum value of 0 when the lengths of shortest distances (i.e.

geodesics) are all equal (i.e. the situation in a complete graph and circle graph as il-

lustrated in Figure 2.1). Thus, indicates varying amounts of centralisation of closeness

compared to star, circle and complete graph.

Betweenness Centralisation

Betweenness centrality will be defined first before explaining betweenness central-

isation. Betweenness centrality is obtained by deciding the frequency of a particular

node being on the shortest path between any pair of actors (or nodes) in the network.

It views an actor as being in a favoured position to the extent that the actor falls on the

shortest paths between other pairs of actors in the network. That is, nodes that occur on

many shortest paths between other pairs of nodes have higher betweenness centrality

than those that do not (Freeman 1978) [30]. Therefore, it can be regarded as a measure

of strategic advantage and information control. In a network of size n, the betweenness

centrality for an actor (or node) i can be defined by the following equation (Wasserman

and Faust 2003) [74]:

C
′
B(ni) =

∑ j<k
gi j(ni)

g jk

[(N−1)(N−2)]/2

Where, i 6= j 6= k; g jk(ni) represents the number of shortest paths linking the two actors

that contain actor i; and g jk is the number of shortest paths linking actor j and k. From

the set of betweenness centralities of N actors in a network betweenness centralisation

can be defined by the following equation:

CB =
∑

N
i=1[CB(n∗)−CB(ni)]

N−1

Where, {C′B(ni)} are the betweenness indices of N actors and CB(n∗) is the largest

observed value in betweenness indices. For a network, betweenness centralisation (i.e.

the index CB) reaches its maximum value of unity when one actor chooses all other

(N − 1) actors and the other actors have shortest distances (i.e. geodesics) of length
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2 to the remaining (N − 2) actors (i.e. the situation in a star graph as illustrated in

Figure 2.1). This index (i.e. CB) can attain its minimum value of 0 when all actors have

exactly the same actor betweenness index (i.e. the situation in a line graph as illustrated

in Figure 2.1). Thus, CB indicates varying amounts of centralisation of betweenness

compared to both star and line graph.

Density

Density measures the connectivity of a graph. For example, if a graph G has N

nodes, V edges then the density DG of the graph G is calculated as :

DG =
2∗V

N(N−1)

DG reaches maximum value as 1 when the graph is fully connected, and reaches mini-

mum value as 0 when there is no edge.

2.2.5 Confusion Matrix

Confusion matrix, also known as contingency matrix, is a popular method for visualiz-

ing performance. Various metrics can be derived from the values in the matrix. We take

binary prediction as an example.

Table 2.2: Representation of Classification Results via a Confusion Matrix

True Label

Negative Positive

Predicted Label
Negative True Negative (TN) False Negative (FN)

Postive False Positive (FP) True Positive (TP)

As shown in Table 2.2, the classification results are grouped into four subsets: true

positives (TP), false positives (FP), false negatives (FN) and true negatives (TN). Eval-

uation metrics are calculated based on the four subset values.

The classification accuracy is calculated as T P+T N
T P+FP+FN+T N . Other classification

metrics include: (i) true positive rate (also known as sensitivity, or recall) which is

defined as T P
T P+FN ; (ii) false positive rate defined as FP

FP+T N ; (iii) true negative rate (also

known as specificity) defined as T N
T N+FP ; and (iv) precision defined as T P

T P+FP .

The metric of F1–measure (harmonic mean of precision and recall) is also widely
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used. F1-measure is defined as the harmonic mean of precision and recall:

F1−measure =
2× precision× recall

precision+ recall
(2.17)

2.2.6 ROC

Receiver operating characteristic (ROC) is a curve for measuring binary classification

performance. The term “receiver operating characteristic” first came from tests of the

ability of World War II radar operators to determine whether a blip on the radar screen

represented an object (signal) or noise. Provided the predicting result is a probabil-

ity between 0 and 1. Each point in the curve is plotted as true positive rate to false

positive rate as one varying the discrimination threshold. A rational behaving classifi-

cation algorithm would have a corresponding curve above the y = x line, which is the

random guess classifier. The better a classifier performs, the closer the corresponding

curve reaches the top left corner. Visually comparing different ROC outcomes can be

subjective and time consuming, Thus the area under the curve (AUC) is a quantitative

measurement of how good the curve is. It is measured as the percentage of the area

under the ROC curve. A perfect prediction would have a AUC value of 1 and a random

guess with a AUC value around 0.5.



Chapter 3

On Sparse Feature Attacks in
Adversarial Learning

This chapter is based on the following publication:

Wang, Fei, Wei Liu, and Sanjay Chawla. On Sparse Feature Attacks in Adver-

sarial Learning. IEEE International Conference on Data Mining series (ICDM), 2014.

3.1 Introduction

The focus of this chapter is to take the adversary into account during the design of classi-

fier. Most existing work on adversarial learning make the assumption that all features of

the training data will be simultaneously attacked (manipulated) by an adversary (which

we call “dense feature attacks”). Here we propose and investigate a model where an

adversary will only choose to manipulate a subset of the features in order to minimize

its manipulation cost (which we call “sparse feature attacks”). But more importantly

this is because the adversary wants to construct spam so that it looks like non-spam to

the classifier and the reader actually consume the spam.

Fig. 3.1 illustrates the difference between dense and sparse feature attacks. This

result is obtained from our experiment results on the famous hand-written digit data,

where we use digits “7” and “9” as positive and negative class labels respectively. While

dense feature attacks (Fig. 1(b)) transforms many of the original pixels (which are the

features) of the original “7” to make it mis-classified as “9”, sparse feature attacks (Fig.

1(c)) only need to transform one pixel to achieve the same misclassification. Therefore

20
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(a) Original 7 as the positive label (b) Dense feature attack on 7

(c) Sparse feature attack on 7 (d) Original 9 as the negative label

Figure 3.1: Sparse feature attack identifies the most significant feature that distinguishes
“7” and “9”, and keeps most original pixels intact after the attack.

a rational adversary is likely to select sparse feature attacks to significantly reduce the

cost of the data transformation and simultaneously make the spam continue to look like

non-spam to the classifier.

How are dense and sparse attacks modelled?

With the help of an example we demonstrate the game theoretic aspects of the two types

of attacks. We use a two-class classification problem in two dimensional feature space

as an example:

(Step 1) The data miner uses an acquired labelled data set to build a classifier (e.g., a

spam filter). Figure 3.2a depicts the distributions of positive and negative data and the

classification boundary.
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ing only feature 2

Figure 3.2: Adversarial classification problems in two dimensional space. Each circle
represents a group of data in the same category. Straight lines represent the classification
boundaries.

(Step 2) An adversary (e.g., a spammer) deliberately transforms the positive data (e.g.,

spam email) towards the negative ones (e.g., legitimate emails) so as to cross the de-

cision boundary. In Figure 3.2b, with dense feature attack, a spammer can manipulate

the whole feature spaces, which may be infeasible. Moreover, the attack transforms the

spam email to look more similar to non-spam email, which will decrease the advertis-

ing utility of the spammer. In Figure 3.2c, assuming sparse feature attack, an adversary

can only transform positive data either horizontally or vertically (by manipulating fea-

tures only along dimension 1 or 2). The sparse attack is reasonable since spammer can

only have a limited budget to manipulate the features. More importantly, by moving

the spams toward the side of the non-spam emails region, adversary keeps a reasonable

advertising utility by keeping the spam distinctive from non-spam and consumed by

users as spams.

(Step 3) Data miner responds by rebuilding the classifier. Under dense feature attack

a classifier with an `2 regularizer moves its boundary towards negative data to adapt to

the new situation, and thus suffers a substantial loss in classification accuracy. How-

ever, under sparse feature attacks, the classifier with an `1 regularizer adapts itself by

changing the slope of the boundary, i.e., the boundary becomes flatter as it is a sparse

vector.

In an adversarial environment with high dimensionality, the three-step game given

here is played repeatedly in time. We claim when both players are utilizing sparse

strategies, a more robust classifier be designed. In summary, we make the following
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contributions:

• We derive a new game-theoretic model which formulates the interactions between

the data miner and the adversary as a non zero-sum game.

• We propose regularized loss functions so that the game is cast into two convex

optimization problems, and propose an algorithm to solve the game.

• We investigate the use and robustness of the `1 and `2 regularizers (both for the

data miner and the adversary) to examine the advantages of sparse models.

• We conduct experiments on two real email spam data sets and a hand-written digit

data set which confirm the superiority of the sparse models against adversarial

manipulation.

The outline of this chapter is as follows. We elaborate on the approach to solve the

game in Section 3.2. Finally, in Section 3.3 we conduct the experiments together with

analysis. Section 3.4 contains conclusions and future work.

3.2 Solving The Non Zero-sum Game

Our sparse model differs from the previous game theoretical models as summarized

in Table 3.1. We note that in the column ‘Adversarial Modification’, only Brückner

et al. [15] has a different formulation, which modifies all the data point in the union

of classification boundary w, where τi is a scalar associated with each data point. In

the column ‘Adversarial attack type’, Liu et al. [52] assume a zero-sum model Zhou

et al. [90] make the assumption that classification boundary w is not disclosed to the

adversary. In the column ‘Adversarial budget’ and ‘attack type’, only our sparse model

incorporates a pre-defined the budget and sparse feature attack.

Table 3.1: Comparisons of our sparse model with previous game theoretic models.

Zero-sum Game Non Zero Sum Game

Paper Liu et al. [52] Brückner et al. [15] Zhou et al. [90] our sparse model
Adversarial Modification xnpos

i = xnpos
i +α xn

i = xn
i + τi ∗w xnpos

i = xnpos
i +α xnpos

i = xnpos
i +α

Adversarial attack type Antagonistic,aware of w Conflict, aware of w Conflict, not aware of w Conflict, aware of w
Adversarial Budget Not defined Not defined Not defined Defined
Attack type Dense feature attack Dense feature attack Dense feature attack Sparse feature attack
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The above non zero-sum game in the case of adversarial classification can be solved

as follows:

Data miner chooses strategy w0 based on the observed samples drawn from the

sample space by minimizing its loss function:

w0 = argminw
1
n ∑

n
i=1 `(yi,wT xi)+λw‖w‖p.

In the following steps, k = 1, ...+∞;

1. Adversary chooses strategy αk, which is the manipulation vector, with the knowl-

edge of data miner’s strategy wk−1,

i.e., αk = argminα
1

npos ∑
npos
i=1 `(−1,wT

k−1(xi +α))+λα‖α‖p.

The manipulation is then applied to the sample space x∗npos
i = xnpos

i +αk.

2. Data miner chooses strategy wk based on the samples drawn from the manipulated

sample space.

wk = argminw
1
n ∑

n
i=1 `(yi,wT x∗i )+λw‖w‖p.

The above two steps are repeated sequentially and the game terminate with the accumu-

lated change applied by the adversary reaches a predefined budget MB>∑k=1,2,...,n ‖αk‖1

(which will be defined in Section 3.2.2). The pseudo-code of this procedure is described

in Algorithm 1.

The goal of the data miner is to determine a decision boundary based on continu-

ously manipulated training data in each step. For the adversary, the goal is to determine

a manipulating vector based on a given budget in each step. What we are interested

is an adapted classifier, i.e., feature weights wk, which has the potential of being more

robust on future adversarially influenced data set. A classifier learnt from the game is

designed to be more robust to future manipulations as shown in Figure 3.3.

3.2.1 Lasso and robust regression

A learning algorithm is robust if the model it is resistant to bounded perturbations in

the data. Robust learning algorithms is an active area of research and the robust linear

regression problem is defined as

min
w∈Rd
{max
|z|≤λ

‖y− (x+ z)w‖2}. (3.1)
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Algorithm 1 Non Zero-sum Game
Input: Training data D = {xi,yi}n

i=1, minimum budget MB, λw, λα and Norm p
Output: w and α

1: // Build the initial classifier using original training data:
2: w = argminw

1
n ∑

n
i=1 `(yi,w,xi)+λw‖w‖p

3: Cost← 0,αSum← 0
4: while Cost <= MB do
5: // Step 1: Adversary attack (see explanation in Section III)
6: // Learn α by assigning negative label to positive samples.
7: α = argminα

1
npos ∑

npos
i=1 `(−1,w,(xi +α))+λα‖α‖p

8: for positive data : x∗npos
i = xnpos

i +α

9: // Step 2: Data miner responds
10: w = argminw

1
n ∑

n
i=1 `(yi,w,x∗i )+λw‖w‖p

11: // Calculate accumulated cost
12: Cost+= ‖α‖1
13: end while
14: return w generated

Training 
Data(x)

Now Future

Test Data

Regular 
classifierTrain

Simulated 
future data
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Figure 3.3: The graph demonstrating the merits of using a game-theoretic classifier.

The key insight about robust regression as defined in [85] can be derived from consid-

ering the one-dimensional case [82], i.e. we assume d = 1. For example, we first notice

that

max
|z|≤λ

|y− (x+ z)w| ≤ |y− xw|+ z|w|.
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Now consider a specific z∗ =−λ sgn(w)sgn(y− xw). One can observed that |z∗| ≤ λ .

max
|z|≤λ

|y− (x+ z)w| ≥ |y− (x+ z∗)w|

= |y− xw|+ |λ sgn(w)sgn(y− xw)w|

= |y− xw|+λ |w|,

thus

max
|z|≤λ

|y− (x+ z)w|= |(y− xw)|+λ |w|. (3.2)

This generalizes to

min
w∈Rd
{max

z∈µ
‖y− (x+ z)w‖2}= min

w∈Rd
‖y−xw‖2 +

d

∑
i=1

λi‖wi‖1, (3.3)

where z ∈ µ is the worst case disturbance of noise and µ has

µ , {(δ1, ...,δd)|‖δi‖2 ≤ λi, i = 1, ...,d},

where δ is the range of disturbance.

This shows solving an `1 regularized least square problem is equivalent to solving

a worst case linear square problem with noise z. In other words, we are assuming

the existence of an adversary with a perturbation matrix of z. More importantly, this

robust regression equivalence provides us a way for setting a reasonable budget for the

adversary.

3.2.2 Robust regression and minimum budget of adversary

Since we know that by adding `1 regularizer, we are practically assuming there is an

adversary that is adding noise to both positive and negative data to maximize the loss

of the classifier according to the classification boundary. The largest perturbation z can

achieve is ‖zi‖2 = ‖δi‖2 = λi, where zi is the i-th column of z. Assume λi = λ ,∀i,
then ‖z‖2 =

√
dλ . Suppose λ ∗(n,d) is tuned with cross validation, where the training and

test portions are ordered in time, not randomly divided. Then the intuition is that real

adversary should have the ability to exert manipulation on data at least as much as the
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corresponding perturbation ‖z∗‖2 =
√

dλ ∗(n,d). Assume

∥∥∥∥∥∥∥∥
α

...

α

∥∥∥∥∥∥∥∥
2

= ‖z∗‖2 =
√

dλ
∗
(n,d)

then we have ‖α‖2 =

√
dλ ∗(n,d)√

n . Since, the budget we defined is `1 norm of vector α , thus

here we assume each element in α is the same, then we will have ‖α‖1=
√

d‖α‖2 =
dλ ∗(n,d)√

n . Thus we have the MB as:

MB =
dλ ∗(n,d)√

n

Notice that the MB is a conservative estimation of an adversary’s ability to influence

the data.

3.2.3 Evaluation of regularizer

One can notice that we have four possible models by combining the two players’ loss

function with different regularizers. ‖w‖p and ‖α‖p can either be `1 or `2 norm. In

the case of ‖w‖p = ‖w‖2 and ‖α‖p = ‖α‖2, we denote this model as Game(`d
2 `a

2).

Similarly we denote the other three sparse models as Game(`d
2 `a

1), Game(`d
1 `a

2) and

Game(`d
1 `a

1). We denote a regular classifier with `2 and `1 regularizer as Regular-`2

and Regular-`1 respectively. Experiments of the non zero-sum game are reported in

Section 3.3.4.

3.3 Experiments

We now report on the experiments carried out to evaluate the effectiveness of the pro-

posed model in adversarial settings. Our main focus is to compare the effectiveness of

our game-theoertic model with `1 and `2 regularizers under both sparse and dense fea-

ture attacks. We use the BMRM [75] solver for logistic loss and CVX [37] for square

and hinge loss. All the data and code is available for result replication1.

1https://www.dropbox.com/sh/tq8gbzzh59d0nu2/AAAB9RlkrKRaufyI2DzNo90ja
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3.3.1 Data set

3.3.1.1 (USPS) Digit Image data set

The US Postal Service (USPS) data set [38] consists of gray scaled images of hand-

written digits from 0 to 9. Each image is of the size 16× 16 (dimension 256). In the

experiments, we pick pairs of digits to illustrate how an adversary can manipulate one

digit (positive class) to look like another (negative class).

3.3.1.2 (Malinglist) Mailinglist data set

The data set is a collection of 128,117 emails arranged in a chronological order. The

emails are extracted from a publicly available mailing lists and are augmented with

spam emails from Bruce Guenter’s spam trap of the same time period (01/04/1999−
31/05/2006). This data set has been used in previous adversarial learning research [15].

The data set obtained is an inverted table of all the words and symbols in the original

spam emails. We carried out feature selection by applying kernel-PCA map [71, 14]

which is defined as:

φPCA : x 7→ Λ
1
2
+

V T [k(x1,x), ...,k(xn,x)]T . (3.4)

Here V is the column matrix of eigenvectors of kernel matrix K, where K is the dot

product of data points k(x,x) = xT x. We use the first 2000 instances (in chronological

order) to formulate the 2000×2000 kernel matrix. Λ is the diagonal eigenvalue matrix

of K such that K =V ΛV T , and Λ
1
2
+

represents the pseudo-inverse of Λ
1
2 .

We use kernel PCA to reduce the dimensionality of the feature space from 266,378

to 50 dimensions. The 50 features are significant enough to fit a regular logistic classi-

fier with an F-measure score of 0.967 on the training data. The model was trained with

the original imbalanced data in order to reflect the true class distribution.

3.3.1.3 Spambase data set

We also used the popular “Spambase” data set [79] to test the robustness of different

classifiers [29]. The data set has 4601 both spam and non-spam emails and has 57

features, out of which 48 are the frequencies of key words, 6 are percentage of key

words.
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3.3.2 Why sparse feature attack for the adversary?

In this section we illustrate three main insights with experimental validations of why a

rational adversary will apply sparse feature attack.

3.3.2.1 A more realistic behavior

With the help of the USPS digit data set we demonstrate why a rational adversary is

likely to mount a sparse attack. We select digit 7 and 9 to be the binary classification

data set. Now we assume an adversary is able to control and manipulate 7 so that it will

be misclassified. We first train a regular classifier with `2 regularizer, then the two types

of attacks (`1 and `2) are performed on the data set. We show the misclassified 7 from

each of the two types of attacks in Figure 3.1.

An example of the original digit 7 and 9 is shown in Figures 3.1(a,d). Under a

sparse feature attack only one pixel is modified (Figure 3.1c) and that is sufficient to

misclassify the image. It turns out that the pixel manipulated by the adversary is the

most important feature to distinguish between 7 an 9. On the other hand a dense fea-

ture attack is shown in (Figure 3.1b) results in several pixels being modified but with

a lower intensity. Thus with a sparse feature an adversary is able to make minimal

observablechanges to the “spam” and circumvent the spam filter.

3.3.2.2 Leads to better classifier

Here we study the relationship between the performance of a game-theoretic classi-

fier with varying attack strength, i.e. Cost as defined in the model. When we train a

classifier on an tempered data set, in our case manipulated positive samples, it is nec-

essary to ask how much will the new classifier differ from a regular classifier trained

on original data set? To answer this question, we evaluate the classifiers using the false

negative to false positive rate. In the Non-Zero sum game model, we have assumed that

an adversary will manipulate the positive data so that it will go across the classifica-

tion boundary. Therefore, the classifier learned in this case will move the classification

boundary backward to the direction of negative samples. Thus, we would expect a clas-

sifier with lower false negative rate, at the same time, a higher false positive rate. The

attack strength decides how far the boundary will move towards the negative samples.

Thus we can vary the attack strength and examine the false negative rate and false posi-

tive rate. The model with a lower false negative rate is preferred. In this experiment we
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test the Non-Zero sum game with classifier using `2 norm, while the adversary uses `2

or `1 norm. We select the first 400 samples from the Malinglist data set as training data,

which represent the older emails. For test data, we select the last 4000 samples from

the data set. As shown in Figure 3.4, with the same false positive rate, classifier with `1
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Figure 3.4: When adversary is assumed to apply sparse feature attack, the learned clas-
sifier has better performance.

regularizer has a lower false negative rate. The experiment illustrates that by modeling

an adversary with `1 regularizer we get overall better performance.

3.3.2.3 The game converges faster with less cost and feature modifications
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Figure 3.5: The game with sparse feature attack reaches a stable state much faster
compared to a dense attack and is associated with lower cost.
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Figure 3.6: The game with sparse feature attack identify and modifies a limited number
of features, in this case, 13 out of 50 features.

As one can anticipate that if we let the game play repeat indefinitely, it will reach

a state where the positive and negative data almost overlap. However we would expect

the classifier learned from such a game will have the least performance. In other words,

this is an extreme case of overestimating the adversary. Still we conduct experiment to

estimate the adversarial cost for reaching such a state. Since we have already concluded

that a sparse attack is a better model for the adversary, we expect the adversary with

sparse feature attack will achieve the overlap state with less cost compared to the one

with dense feature attack.

We compare the the number of iterations required for Game(`d
2 `

a
2) and Game(`d

2 `
a
1)

converge on the mailinglist data set . The Cost of the adversary is evaluated by accumu-

lating the `1 norm of α in each step. We also evaluate the number of features modified

under the sparse feature attack model Game(`d
2 `

a
1) as a function of number of iterations.

For Game(`d
2 `a

2), we know it is likely to modify all the features in each step.

Figure 3.5 shows the cumulative cost of the adversary as a function of the number

of iterations in the game. It is clear that Game(`d
2 `

a
1), i.e., the game where the adversary

carries out a sparse feature attack converges faster to reach a stable state compared to

the dense game Game(`d
2 `a

2). From Figure 3.6, we found the number of features being

modified will also converge to a number far less than the total number of features. This

again suggests that modeling an adversary using an `1 regularizer is a better reflection

of reality.
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3.3.3 Why `1 regularizer for data miner?

As reported in Section 3.2.1, the lasso problem is equivalent to a robust regression

problem. Using a regularizer has always been considered as a method to penalize the

weights to achieve better generalization. Here we find that `1 regularizer is not only a

technique to prevent overfitting, but also a method for building more robust classifica-

tion boundaries. This property itself indicates that classifier learnt with an `1 regularizer

is more robust in the presence of certain data manipulations. Therefore, in the case of

an adversarial environment, a classifier with `1 regularizer is preferred.

Existing literatures [68, 4] indicates that in a classical classification environment,

when `1 regularizer is applied, there will always be a trade-off between the enforced

sparsity and the accuracy obtained. However, depending on the data set itself, the over-

all performance of an `1 regularized classifier can sometimes beat an `2 regularized

classifier [65] in terms of both bias and variance. A deeper discussion of this issue is

beyond the scope of this research. Here, we compare the performance of the two clas-

sifier under the condition that the distribution of the test data is altered by an adversary.

To investigate the influence of the adversarial manipulation, we start by looking at

how the loss of a data miner is increased by the adversary according to the loss function:

L(w)=
n

∑
i

log(1+e−yi〈wT ,xi+α〉)+λw‖w‖p =
n

∑
i

log(1+e−yi〈wT ,xi〉+〈wT ,α〉)+λw‖w‖p

As we can see from this equation, the adversarial influence is captured only in the factor

〈wT ,α〉. This is the dot product of the feature weight vector and the manipulation vec-

tor, which can be expressed as: w1α1+w2α2+ ...+wdαd . One should notice that when

both of the two vectors are dense vectors, 〈wT ,α〉 will always be non-zero. On the

other hand, when both the vectors are sparse vectors, 〈wT ,α〉 will have a high probabil-

ity of being zero. When this factor is zero, the influence of adversary also disappears.

Thus, we can conclude that when adversary is modeled to use a sparse feature attack,

data miner should apply `1 regularization to reduce the adversary’s effect. This analy-

sis can be easily generalized into higher dimensions. We can also hypothesise that the

adversarial influence of the sparse classifier has a negative correlation with its sparsity.

To test the hypothesis we conduct experiments to investigate whether classifier with `1

regularizer have better results under the sparse feature attack. We generate a data set

which is adversarially transformed by an adversary who can only manipulate a limited
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Algorithm 2 Robustness evaluation under sparse feature attack
Input: Original positive data set {xi,yi}npos

i=1 , Feature weights w ∈ Rd+1, Number of
features to be changed {c ∈ N|(0 < c≤ d)} . Attack strength {δ ∈ R|(0 < δ < 1)}
Output: Accuracy of classifier on {x∗i ,yi}npos

i=1

1: // Randomly select c features of the data and index in vector α = {0 < ak ≤ d}c
k=1

2: for i = 1 = i : npos do
3: x∗i ← xi,k← 1
4: while k <= c do
5: if wak > 0 then
6: x∗ak

= x∗ak
(1−δ )

7: else
8: if wk == 0 then
9: do nothing

10: else
11: x∗ak

= x∗ak
(1+δ )

12: end if
13: end if
14: k = k+1
15: end while
16: end for
17: Evaluate classifier (using w) on changed data set {x∗i ,yi}npos

i=1

number of features. We then test the two initial classifiers with different regularizers on

the transformed data set. The detailed procedure is described in Algorithm 2.

Now we report on experiments to compare the performance of `1 and `2 classifiers

in a non-game setting where the classifiers were subject to feature attacks but without

having an opportunity to respond. We use Spambase data set for this experiment. To

simulate the attack, we randomly select twenty percent of the number of features to be

changed, i.e. we set c = 20%× d. We vary the attack strength δ from 0 to 40% with

step size of 0.2%.

As shown in Figure 3.7, both the classifiers start (in terms of accuracy) at nearly

the same place but the classifier with `1 regularizer deteriorates at a much slower rate

compared to the classifier with an `2 regularizer. This clearly demonstrates that the `1

classifier is more robust and is consistent with the theoretical observation that the `1

classifier is equivalent to robust classification.
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(a) F-measure comparison.
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(b) AUC value comparison.

Figure 3.7: Regular-`1 is more robust in both F-measure and AUC value compared to
Regular-`2.

Table 3.2: The classifier achieves best performance when the Cost is close to 1×MB.

Step F measure on future test data Average $Cost$

30/04/2000-
31/05/2001

30/04/2001-
31/05/2002

30/04/2002-
31/05/2003

30/04/2003-
31/05/2004

30/04/2004-
31/05/2005

30/04/2005-
31/05/2006

1 0.973 0.975 0.966 0.942 0.945 0.931 0.955 0.000 ×MB
2 0.972 0.975 0.967 0.944 0.945 0.932 0.956 0.137 ×MB
3 0.971 0.974 0.966 0.938 0.940 0.929 0.953 0.300 ×MB
4 0.972 0.974 0.969 0.944 0.946 0.932 0.956 0.444 ×MB
5 0.969 0.975 0.970 0.951 0.952 0.935 0.959 0.586 ×MB
6 0.971 0.974 0.972 0.948 0.955 0.936 0.959 0.759 ×MB
7 0.970 0.975 0.971 0.949 0.951 0.936 0.959 0.951 ×MB
8 0.970 0.973 0.970 0.954 0.952 0.938 0.960 1.115 ×MB
9 0.968 0.973 0.967 0.952 0.945 0.933 0.956 1.321 ×MB
10 0.969 0.973 0.967 0.954 0.952 0.932 0.958 1.495 ×MB

3.3.4 Evaluation of the budget MB

The budget MB of an adversary should be lower bounded by the value of the regular-

izer obtained using cross-validation. This is because, the value obtained from cross-

validation is assumed to give best generalization performance. We can interpret the test

data as a data set generated by an adversary who is restricted to use the same underlying

probability distribution that generated the training data. As we noted in Section 3.2.1,

using `1 regularization is equivalent to solving the robust regression problem.

We evaluate Algorithm 1 with the sparse model Game(`d
1`

a
1). To study performance

of the learned classifier as a function of Cost, we repeatedly ran the game model until

the Cost had substantially exceeded MB. We show the performance of the classifiers

learned from the first 10 steps in Table 3.2. We first observe, at step 1, the regular
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classifier learnt with 0 adversarial Cost has the best performance on the near future

data. While classifier learned with large adversarial Cost has better performance on

data sets further in the future. We also notice when the Cost is close to MB, the average

F-measure is close to its highest value. Thus we can conclude empirically that MB value

derived in 3.2.2 is an appropriate budget for the adversary.

3.3.5 Evaluating logistic loss with `d
2

Here we compare the game-theoretic and regular classifier when the data miner (d) uses

`d
2 regularizer under logistic loss. More specifically, the three models are denoted as:

Regular-`2, Game(`d
2 `a

2) and Game(`d
2 `a

1). We evaluate all the three models in terms

of F-measure and AUC-value. The results are shown in Figure 3.8. We have further

summarized the results in Table 3.3. We can conclude that game-theoretic classifiers

deteriorate at a much slower rate on future data than the regular classifier. On the

near future data, the regular classifier have a slightly better performance and this can

be expected as the game-theoretic classifier are generalizing for better performance

on future data. On the other hand, the AUC which measures the overall performance

(without considering the time dimension), is nearly equal for all the three approaches.
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(a) F-measure on mailinglist.

Figure 3.8: Game(`d
2 `

a
1) model outperforms Regular-`2 classifier in terms of F-measure

data in further into the future.
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Table 3.3: Data miner modeled with `2 regularizer. Game-theoretic classifier perform
better on data further into the future.

AUC F-measure

Jan 00 - April 03 April 03 - May 06
Regular-`2 0.96 0.968 0.936

Game(`d
2`

a
2) 0.95 0.962 0.939

Game(`d
2`

a
1) 0.96 0.962 0.953
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(a) F-measure on mailinglist.

Figure 3.9: Game(`d
1 `a

2) and Game(`d
1 `a

1) both outperform the initial classifier with `1
regularizer in terms of both F-measure.

Table 3.4: Sparse model Game(`d
1 `a

1) achieves the best performance.

AUC F-measure

Jan 00 to April 03 April 03 to May 06
Regular-`1 0.95 0.961 0.922

Game(`d
1`

a
2) 0.96 0.964 0.951

Game(`d
1`

a
1) 0.96 0.970 0.955

3.3.6 Evaluating logistic loss with `d
1

Here we compare the game-theoretic and regular classifier when the data miner (d)

uses `d
1 regularizer under logistic loss. More specifically, the three models are denoted

as: Regular-`1, Game(`d
1 `a

2) and Game(`d
1 `a

1). The results are shown in Figure 3.9

and Table 3.4. Surprisingly the F-measure results of the two game-theoretic classifiers
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outperform the regular classifier for almost the whole time span. In other words, the

game-theoretic classifiers are both robust to near and far future test data. Furthermore, it

is worth noting that the game-theoretic classifier Game(`d
1 `

a
1) has the best performance.

A similar results hold for the AUC-value as shown in Table 3.4.
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(a) Logistic loss as the loss function
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(b) Square loss as the loss function
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(c) Hinge loss as the loss function

Figure 3.10: Sparse model Game(`d
1 `a

1) has the best F-measure results on data further
into the future.

3.3.7 Comparison of `d
1 and `d

2 on logistic loss

Here compare `d
1 and `d

2 both on game-theoretic and regular classifiers. We also com-

pare with Liu et al. [52]. From Figure 3.10a, it is clear that the use of `d
1 regularizer

significantly outperforms `d
2 on data both near and further into the future.
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3.3.8 Comparison with other methods

Table 3.5: Square loss as the loss function, Game(`d
1 `a

1) performs best on data further
into the future.

F-measure

Jan 00 to April 03 April 03 to May 06
Regular-`1 0.953 0.922

Game(`d
1 `a

1) 0.952 0.937
Liu et al 0.935 0.926

Table 3.6: Hinge loss as the loss function, Game(`d
1 `a

1) performs best on all the future
data.

F-measure

Jan 00 to April 03 April 03 to May 06
Regular-`1 0.968 0.932

Game(`d
1 `a

1) 0.969 0.941
Liu et al 0.933 0.927

Zhou et al 0.939 0.936

We now compare the two proposed game-theoretic classifier but trained using square

and hinge loss functions. The results are shown in Figure 3.10b and 3.10c respectively.

In both cases, we also compare with Liu et al[52]. For hinge loss, we also compare

with free range attack model from Zhou et al. [90], where the adversary is allowed to

manipulate the data with the budget MB.

We first notice that classifier learnt from model Game(`d
1 `a

1) is significantly more

robust to future data in for both the two loss functions. The model of Liu et al[52] and

Zhou et al. [90] exhibits similar phenomenon: they both have reasonable performance

on data further into the future than the regular classifier but suffer significantly on near

future data.

3.4 Summary

In many prediction environments including spam email and fraud detection, it has been

observed that an adversarial phenomenon causes the prediction performance to deteri-

orate over time. This has resulted in a new class of machine learning methods, known
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as adversarial learning, which are robust in such settings. In this chapter we posit that

a rational adversary is likely to employ a sparse feature attack, i.e., selectively change

the features of the spam, in order to circumvent the classifier. Such an approach will

not only cost less but will result in high spam utility, i.e., minimal changes are made on

the spam in order to beat the spam detector. We model sparse feature attacks using an

`1 regularizer. Our results clearly demonstrate that modeling an adversary as engaging

in a sparse feature attack can be used to design more robust classifiers.



Chapter 4

Tikhonov or Lasso Regularization:
Which is Better and When

This chapter is based on the following publication:

Wang, Fei, Sanjay Chawla, and Wei Liu. Tikhonov or Lasso Regularization: Which

Is Better and When. Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th Interna-

tional Conference on. IEEE, 2013.

4.1 Motivation

Crucial properties of a model like robustness and convergence are often related to the

type of regualrizer the model use. One interesting problem addressed in this thesis is

that practitioners of machine learning and data mining are confronted with the follow-

ing situation. They receive or are given a large data set with millions of records and

thousands of features and are interested in carrying out some form of regression, clas-

sification or ranking. For example, researchers working in the consumer internet space

may be asked to predict the click through rates in the context of user, publisher and ad-

vertiser features [40]. In bio-medical settings, researchers want to predict whether MRI

images can be mapped to various forms of disorder [87]. In a health insurance setting

the task is to estimate the claim cost given information about patients and providers

[57]. In all the above examples a practitioner is likely to conduct the following steps:

(i) load and clean the data (ii) use a learning package to carry out some preliminary

analysis and check the accuracy metrics; (iii) start iterating by tweaking the features

40
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Figure 4.1: A map [left to right] to guide practitioners in their choice of a regularizer
for supervised learning tasks

and the different types of regularizers available in the learning package. In this chapter,

we study the different properties of the regularizer and show the principle of choosing

it properly.

4.2 Contributions

While many of these results are known and scattered in the literature. Our contributions

are summarized as follows:

• We first give insights of the difference between `1 and `2 regularizer through a

simple analysis and thus show that why `1 regularizer can result in sparse results.

• We provide a more complete analysis of algorithmic stability based on Xu et al.

[85] Further we verify this with sufficient experiments.

• We provide a concise proof of algorithmic robustness of `1 regularization. We

also verify the resulting claim with ample experiments.

• Then, we show how the existence of the Safe Rule could damage the fitting ac-

curacy of a `1 regularized model. This is also supported by a wide range of

experiments.

• Last but not least, we bring them together under a common mathematical frame-

work and organize them using the decision map shown in Figure 4.1.

Several, somewhat surprising, conclusions can be drawn:

• If the data generating process is non-stationary (not stable), the `2 regularizer will

result in a more stable solution compared to the `1 regularizer.
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• The `1 regularizer is substantially more robust to noise in the data sensing or

capturing mechanism.

• If most of the features in the data have weak correlation with the dependent vari-

able then the use of `2 regularizer will result in superior prediction accuracy com-

pared to `1.

• Finally, there is a strong relationship between the shape of the data, which relates

to the volume and the dimension, and the choice of the regularizer. The shape of

the data can be characterized as the ratio of number of data points to number of

features

The rest of the chapter is organised as follows: In Section 4.3 we introduce the

notation and specify the scope of the problem. Related work is presented in Section

4.4. We describe the “Decision Map” in detail in Section 4.5. We extensively evaluate

the “Decision Map” in Section 4.6. Finally we conclude the chaper in Section 4.7 with

a summary and directions for future work.

4.3 Notation and Setup

A generic supervised learning problem has the following formulation

f (λ ) = min
w

n

∑
i=1

l(yi,wT xi)+λΩ(w), (4.1)

where l() stands for the loss function, w ∈ Rd is the feature weight vector learned from

the training data xi ∈ Rd, i = 1, ...,n and λΩ() is the regularizer with parameter λ . For

simplicity, we can either subsume the intercept term by appending a unit feature, i.e.,

x ≡ [1,x] or by assuming all variables are centered. Common forms of loss functions

(and their conjugate functions) l(yi,wT xi) are given in Table 4.1. Common regularizers

can be `1 or `2 which corresponds to ‖w‖1 and ‖w‖2
2 respectively. In this chapter we will

focus on the square loss for understanding the mathematical properties of the solutions

while in the experiments we will use logistic loss to validate our results. However,

since our focus is on how the choice of the regularizer impacts the resulting solution,

our results are completely general and can be framed at a more abstract level by using

the loss function and its corresponding conjugate function as shown in Table 4.1.
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`(yi,wT xi) `∗(yi,u)
Square 1

2(yi−wT xi)
2 1

2u2 +uyi
Logistic log(1+ exp(−yiwT xi)) (1+uyi) log(1+uyi)

−uyi log(−uyi)
Hinge (1− yiwT xi)+ uyi×1−uyi∈[0,1]

Table 4.1: Commonly used loss functions and their conjugate functions. Since our
focus is on the impact of the regularization, our results are general and are applicable to
other loss functions by matching them with their appropriate conjugate function.

4.4 Related Work

The algorithmic overhead of solving `1 regularized systems is larger than for `2 because

of the non-differentiability of the `1 norm. By analyzing the dual of a least-square

regression problem with an `1 regularizer, El Ghaoui et al. [34] proposed a SafeRule

to prune features which will, for a given value of λ have zero weights. A contribution

of our work is to show the consequences of this property on the relative accuracy of

the `1 and `2 solutions. Using SafeRule as a motivation, Tibishirani et al. [76] has

proposed Strong Rules which are more aggressive in pruning features. However, they

are known to lead to inconsistent models at least in theoretically constructed cases.

Andrew Ng [61] has compared `1 and `2 regularizers in the context of number of

irrelevant features. He has shown that with `1 regularization, the number of training

samples required for learning a good model grows logarithmically in the number of

irrelevant features. With `2 regularization, on the other hand, the size of the training data

needs to grow linearly in the number of irrelevant features. Thus if only a few number of

features are relevant and the size of training data is relatively small, `1 regularization is

preferred. Later developments in compressed sensing also show that only a logarithmic

number of sensing measurements are required to recover a signal using `1 minimization.

Robustness and stability are different properties related to data capturing process,

the data generating mechanism and also algorithms. In a theoretical work, Xu et al.

[85] have recently demonstrated that solving a `1 regularized least square problem is

equivalent to solving a least square problem with a worst case bounded perturbation in

the training data. This suggests that `1 regularization should be the method of choice

when the data capturing process generates data which has a low signal to noise ratio. An

example is the data generated by EEG probes [69] for understanding the functionality



44 CHAPTER 4. TIKHONOV OR LASSO REGULARIZATION

of the brain. Xu et al. [85] also prove a “no free lunch” theorem showing that the `1

regularized models are not stable. In another work by Zhang et al. [89] showed that col-

laborative representation (CR) instead of `1 regularizer truly improves the classification

accuracy.

Finally, it is important to note that there has been work which combines the use of

both `1 and `2 regularizers. For example, the elastic net regularizer [92] can be used

to apply sparsity at the level of groups of features. Consider microarray applications

[67], genes often work together to regulate proteins and their expression levels tend to

be highly correlated. However, for a given task only few groups of genes are relevant.

Thus the elastic net method tends to sparsify at the group level but reduces the norm of

the feature weights inside groups.

4.5 Decision Map

In this section, we will first investigate properties of the `1 regularization in terms of

Stability and Robustness. Then we look into the properties of the data in terms of

correlation and shape. These analysis will form the basis of the decision map shown in

Figure 1.

4.5.1 Algorithmic stability

algorithmic stability is a well studied problem and has been used to re-derive classical

generalization bounds [12, 56]. Intuitively a learning algorithm is stable, when if it

is trained on two similar data sets, the output models should be similar. The formal

definition of uniform stability is defined as [12, 85]:

Definition 1: An algorithm L has uniform stability bound of βn with respect to the

loss function l if the following holds

∀D ∈Z n,∀i ∈ {1, · · ·,n},‖l(LD, ·)− l(LD\i, ·)‖∞ ≤ βn. (4.2)

Here Z n is the sample space, D is a given training sample, LD\i stands for the learned

solution with the ith sample removed from D, l(LD\i, ·) stands for the loss of the solution

on any given test data.

We provide a simplified analysis of the results presented by Xu et al. [85]. Again
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consider the one-dimensional case. Assume

w∗ = argmin
w

n

∑
i=1

l(yi,w · xi)+ |w|, (4.3)

now consider the case where the feature x is replicated, for example, an data point (xi,yi)

becomes ((xi,xi),yi). the loss function will become

(w∗1,w
∗
2) = argmin

w1,w2

n

∑
i=1

l(yi,w1 · xi +w2 · xi)+ |w1|+ |w2|. (4.4)

Now we show that w∗1 +w∗2 = w∗. The key is to notice that the data corresponding to

both w1 and w2 are identical. According to the stationarity condition of the Lagrangian

of lasso [36]

XT
i u∗ ∈


{λ} if w∗i > 0

{−λ} if w∗i < 0

[−λ ,λ ] if w∗i = 0

, i = 1, ...d, (4.5)

we see that w1 and w2 have the same sign. Equation 4.4 can be expressed as

(w∗1,w
∗
2) = argmin

w1,w2

n

∑
i=1

l(yi,w1 · xi +w2 · xi)+ |w1 +w2|. (4.6)

Now consider a new data point ((0,z),0) which is added to D. This leads to a new term

in the loss function.

n

∑
i=1

l(yi,w1 · xi +w2 · xi)+ l(0,0+w2 · z)+ |w1 +w2| (4.7)

Now, (w∗,0) is the optimal solution of Equation 4.7. However, when the point (0,0,z)

is removed, (0,w∗) is an optimal solution. Thus we have showed that for `1 regularizer,

βn ≥ w∗z and the lower bound can increase arbitrarily.

4.5.2 Robustness

A learning algorithm is robust if the model it generates is resistant to bounded perturba-

tions in the data. Robust learning algorithms is an active area of research and the robust
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linear regression problem is defined as

min
w∈Rd
{max
|z|≤λ

‖y− (x+ z)w‖2}. (4.8)

The key insight about robust regression as defined in [85] can be derived from consid-

ering the one-dimensional case. For example, we first notice that

max
|z|≤λ

|y− (x+ z)w| ≤ |y− xw|+ c|w|.

Now consider a specific z∗ =−λ sgn(w)sgn(y− xw). Clearly |z∗| ≤ λ . Furthemore

max
|z|≤λ

|y− (x+ z)w| ≥ |y− (x+ z∗)w|

= |y− xw|+ |λ sgn(w)sgn(y− xw)w|

= |y− xw|+λ |w|,

thus

max
|z|≤λ

|y− (x+ z)w|= |(y− xw)|+λ |w|. (4.9)

This generalizes to

min
w∈Rd
{max
|z|≤λ

‖y− (x+ z)w‖2}= min
w∈Rd
‖y−xw‖2 +λ‖w‖1 (4.10)

This means solving a `1 regularized least square problem is equivalent to solving a worst

case linear square problem with noise |z| ≤ λ .

4.5.3 Correlation

SafeRule itself has only been considered in terms of feature pruning technique, here,

we discuss its influence on the accuracy of the learned model. One can observe that

Equation 2.16 of SafeRule only depends on the correlation of the independent and

dependent variable. Loosely speaking, for a given Xi, the lower the correlation, the

higher the possibility this variable will be pruned. This property makes it undesirable

in the case where all the features are weakly correlated with the dependent variable. i.e.

|yT Xi| ≤ τ for i = 1, ...d, where τ is a small value. In this scenario all the weak features

should be utilized to learn a model, however because of the SafeRule, all the features
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are likely to be pruned with `1 regularizer. The `2 regularizer on the other hand will be

able to combine all the features to produce potentially more accurate model.

Suppose we have a sample set D = (y,X), where Xi are all weakly correlated with

y. Further suppose w∗`2
is the optimal fit with `2 regularization and we define yr as the

residual on training data.

yr = y−XT w∗`2

We can then add a new feature α which has no correlation with Xi while still weakly

correlated with y. Define the new sample set as D∗ = (yr,α), and we have the following

minimization problem:

f (wα) = min
wα

‖yr−α
T wα‖2

2 +
λ

2
‖wα‖2

2.

One should notice α is correlated with yr, i.e. αT yr 6= 0. Suppose w∗α is the optimal fit,

we want to prove that

‖yr−α
T w∗α‖2

2 < ‖yr‖2
2. (4.11)

The proof is as follow: We first notice that f (w∗α) is upper bounded by ‖yr‖2
2, i.e.,

f (w∗α)≤ ‖yr‖2
2 = f (0).

As f (wα) is a convex minimization problem, we have :

f (w∗α)< ‖yr‖2
2 = f (0) if: f

′
(0) 6= 0

Now: f
′
(0) = 2(yr−α

T 0)α +λ0 = α
T yr 6= 0.

Thus:

f (w∗α) =
λ

2
‖w∗α‖2

2 +‖yr−α
T w∗α‖2

2 < ‖yr‖2
2

‖yr−α
T w∗α‖2

2 < ‖yr‖2
2.

Here we can conclude that the new weak feature α improved the fit when using L2

regularization.

In the case of L1 regularization, since the new feature α is weakly correlated with y,
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it is quite possible that the SafeRule, in this case |XT
i y|< λ , will ignore that feature.

Thus w∗α = 0, and we have

‖yr−α
T w∗α‖2

2 = ‖yr‖2
2,

which does not lead to any improvement at all.

In the experiment section we formulate artificial data set ‘AllWeak’ with all features

weakly correlated with dependent variable and show that in this case `2 achieves better

accuracy.

4.5.4 Shape

[61] studied the properties of `1 and `2 regularizer in the presence of irrelevant features,

which is similar to few features are highly correlated with dependent variable. As it

indicated that in this case, a well learned `2 regularizer needs far more training samples.

This also indicates that for `1 regularizer, if the number of training data is sufficient,

for a given λ , the number of zero feature weights also achieves maximum. This will be

clearly visible in the experiment section.

4.5.5 Decision map

Based on the four factors discussed in the previous four sections, we propose the “de-

cision tree” map as depicted in Figure 4.1. Generally speaking, a practitioner should

first consider the data generating process. When the data source is not stable, then

one should stop analysis and choose `2 regularizer. When the data is stable, we then

consider the data capture process. Data captured through instruments like sensors are

intrinsically not robust and in this case we should use `1 regularizer to compensate the

offset by the date. Then, if the data is also robust, we consider the correlation between

dependent and independent variables. Due to the existence of the SafeRule, we know

that `2 regularizer will be better for data sets composed of features all weakly correlated

with dependent variable. Then, when data sets have some strongly correlated feature

dependent variable pairs, we consider the shape of the data set. As indicated by the

study of [61], for large number of training data, `2 and `1 can both learn well. However,

the SafeRule will still come into offset. Thus, in the case of N� P, where N is the
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number of training sample P is the dimension of the data, One should apply `2 regu-

larizer. For the case N ' P and N < P, the number of training sample will be far from

enough to training a `2 regularized model well. Thus we should apply `1 regularizer in

this case.

4.6 Experiments

We present our experimental setup and results to evaluate the decision map shown in

Figure 4.1 here. Note that all experiments used the binary classification problem as a

prototypical data mining task where the use of regularization is important. However, all

our conclusions should hold for other tasks including regression and ranking. Again,

our conclusions hold for other loss functions including the hinge loss. After some

careful deliberation we selected the Vowpal Wabbit (VW) [49] package for both `1

and `2 regularization. Our decision was primarily motivated by the fact that, as data

set size increases, VW scales gracefully in both `1 and `2 situations. However, VW has

several tuning parameters and understanding the full implications of different parameter

settings can lead to a combinatorial explosion of the experimental space. Finally, all

experiments were carried out on a platform with Intel core i5 processor and 4GB RAM.

4.6.1 Data Sets

We constructed three synthetic data sets and used four real data sets:

• ‘AUSUSD’ is the currency exchange rate between Australian dollar and US dollar

during the time period (01/03/2007−01/03/2013) [6].

• ‘AllWeak’ is a synthetically constructed data set. It has one hundred features

which are all weakly correlated with the dependent variable y. Also the features

are partitioned into 50 pairs where features with a pair a strongly correlated with

each other.

• ‘FewStrong’ is a synthetically created data set composed of hundred features with

five of them have a correlation with dependent variable y as 0.1 and the rest are

again weakly correlated with y.
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• ‘MajorityIrrelevant’ is a synthetic data set with one hundred features with only

ten features that are correlated with dependent variable y.

• ‘Mailinglist’ is a real data set which consists of publicly available emails from

mailing lists and spam emails from Bruce Guenter’s spam trap during the time

period (01/04/1999−31/05/2006). The transformed features are not correlated

with each other and each of them is strongly correlated with the dependent vari-

able.

• ‘Spambase’ is also a spam email data set [29]. Spam e-mails came from their

postmaster and individuals who had filed spam and non-spam e-mails from work

and personal e-mails. Most of the features (48 out of 57) are frequency of key

words. In this data set some of the features are highly correlated with the depen-

dent variable.

• ‘WEBSPAM’ consists of link-based features computed from the web graph [86].

The features capture network properties including in-degree, out-degree, page

rank, edge reciprocity.

A summary of the data set is shown in Table 4.2. All features of the data sets are

standardized to have mean zero and standard deviation one.

Data Set Name Samples Features Type
WEBSPAM-UK2007 114,529 40 Real

Mailinglist 128,117 50 Real
Spambase 4,601 57 Real
AllWeak 2000 100 Synthetic

FewStrong 2000 100 Synthetic
MajorityIrrelevant 2000 100 Synthetic

AUDUSD 2000 100 Real

Table 4.2: Four real and three synthetically constructed data sets were used for the
experiments. More detail about the data sets is in the text.

4.6.2 Stability and Robustness

To evaluate the impact of stability and robustness on the regularizers we proceed as

follows. We first describe the stability experiment. Suppose X is a training data set.
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Let the model learnt by using the `1 and `2 regularizer on X be denoted as w1 and

w2 respectively. We randomly remove one data point from X and reconstructed the

model. Denote the model from the i-th run as w1
−i and w2

−i. For example, w1
−i are the

weights of classifier when the i-th point is removed and the model is trained using the

`1 regularizer.

Now form two sets DS1 and DS2 as

DS1 = {‖w1
−i−w1‖2 | i = 1 . . .100} (4.12)

DS2 = {‖w2
−i−w2‖2 | i = 1 . . .100}. (4.13)

We have plotted the distribution of both DS1 and DS2 using three data sets: AllWeak,

SpamBase and AUDUSD. and the results are shown in Figure 4.2. It is clear from the

plots that the values of DS2 are tightly concentrated while those of DS1 are more spread

out. This is especially obvious for the financial data AUDUSD, which has an unstable

data generating process. This confirms our hypothesis that `2 regularizers result in more

stable models than `1.

To test for robustness we need to proceed in a different fashion. We again begin with

a data set X . On each separate run i we add bounded noise ∆Xi. Let w1 be the model

on X using the `1 regularizer and w2 using the `2 regularizer. For each i we compute

the AUC for X +∆Xi for each of the regularizers. Thus f ∆
1 (i) = AUC(X +∆Xi|w1) and

likewise for f2(i). Let f ∆
2 (i) = AUC(X +∆Xi|w2), i.e., the accuracy of the model trained

on the data set X +∆Xi. Like in the case of stability, we form the sets

DR1 = { f ∆
1 (i)− f1(i) | i = 1 . . .1000} (4.14)

DR2 = { f ∆
2 (i)− f2(i) | i = 1 . . .1000}. (4.15)

The results of the distribution of both DR1 and DR2 are shown in Figure 4.3 and clearly

show that the data points of `1 are more tightly concentrated compared to `2. This again

confirms that when the data capturing process is noisy, then `1 leads to more robust

classifiers compared to `2.
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Figure 4.2: (c) shows the Exchange rate of AUDUSD in six years. One can notice
that the data is rather not stable. (a),(b),(d) clearly show that distribution results of `2
regularizer has lower standard deviation and thus more stable,
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Figure 4.3: Robustness: The figures indicate that distribution results of `1 regularizer
has lower standard deviation and thus more robust.

4.6.3 Shape

This experiment evaluate how many samples are required before the learning algorithm

can determine if the features in a given data set are irrelevant. Figure 4.4 shows that

the norm of the irrelevant features using `1 regularizer converges much faster to 0 as a
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function of the number of training points compared to `2.
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(b) Mailinglist.

Figure 4.4: Shape: The figures indicate that `1 regularization ignores the irrelevant
features with much fewer training samples.

4.6.4 Correlation and Shape

In this section we investigate the influence of correlation and again the shape of the data

on the choice of regularizers. Here we use all the four data sets and all the experiments

are averaged over 20 runs. We only consider the accuracy of the model (as measured

by AUC) and omit factors like running time. VW has almost similar time complexity

for both `1 and `2 regularization.

In our experiments we vary the size of the training data and the regularizer value λ

for the two different models. In all cases we start with just twenty instances and then

in each step increase the number of instances by a step size of thirty. The reason we

start from small data sets is to understand the impact of the regularizer when data is

limited. This is partly because the `1 and `2 regularizers can be interpreted as Lapla-

cian and Gaussian priors. For large data sets, the prior effect is often (but not always)

subsumed by the (likelihood term) of the model. We also vary λ between a small range

[10−4,60−4]. Again this choice was determined by the fact that we wanted to gauge the

influence of the regularizer in a transition zone.

Before we describe the results in details we want to provide a small guide to under-

stand Figure 4.5 which contains four plots organized as four by four table. Each row

corresponds to one data set. In all the plots the y-axis is always the AUC value. In the

first two columns we measure the impact of different values of λ ’s as we increase the

training data size. In column three and four, the roles of λ and the training data size are
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reversed. In the x-axis we vary λ and each line in the plot corresponds to a different

training data set size.

4.6.4.1 AllWeak

We start by looking at the first row of Figure 4.5 which is the result of ‘AllWeak’ data

set. From Figure 4.5a we first notice that for small value of λ , AUC value increases

as training data size increases. However, for large value of λ , AUC value decreases

when training data size increases to around 100, which is the number of features. This

is because with more data and thus more information, the SafeRule is taking effect

with large value of λ and potentially informative predictors are being pruned. Since

SafeRule only applies to `1, the effect is only visible in Figure 4.5a. Figure 4.5c

indicates that for `1 regularizer, AUC value is sensitive to the value of λ . This can

also be explained by the effect of the SafeRule. For `2 regularizer, Figure 4.5b and

4.5d indicates AUC value increases in the number of training data and is stable in the

value of λ . This is because all the features are weakly correlated with the dependent

variable and thus all the predictors are supposed to be small. Thus a large value of

λ has no impact. Perhaps the most important conclusion we can draw from the first

row of Figure 4.5 is that `2 regularizer achieves better AUC value when the number

of training data size increases. Again, this is because for `1 regularizer, SafeRule is

taking effect and informative features are being pruned. This experiment validates the

third node in the ‘Decision Map’, where when all the features are weakly correlated

with the dependent variable, a practitioner should use `2 regularizer.

4.6.4.2 FewStrong

Now we look at the second row of Figure 4.5 which is the results of ‘Few Strong’

data set. For `1 regularizer, from Figure 4.5e and 4.5g we observe behavior as in the

’AllWeak’ data set. The difference is that in this case the AUC value is also sensitive to

the size of the training data. This is because only a few features are highly correlated

with the dependent variable, thus more data is needed to learn a model well. Figure 4.5f

and 4.5h convey similar information as in ‘AllWeak’ data set. Comparing `1 and `2,

one can observe that the `1 regularizer achieves better AUC value at some small values

of λ . However for small λ , the model is not likely to be sparse and thus defeating the

one of the strong reasons for using `1. For large values of λ sparsity is achieved but
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the AUC value of `1 regularizer goes down training data size increases. Thus, we can

conclude from this experiments that when the training number is large compared with

the number of features i.e. N� P, a practitioner should use `2 regularizer.

4.6.4.3 SpamBase

The results on the ‘SpamBase’ data set are described in the third row of Figure 4.5 The

features of ‘SpamBase’ are frequency of key words and thus some words can be much

more informative than others. Thus this data set is similar to the ‘FewStrong’ synthetic

data set. When the training data is small , i.e. P≈ N, Figure 4.5i and 4.5j indicate that

`1 regularizer has better performance while for large number of training data sets, `2

regularizer has better performance.

4.6.4.4 WebSpam

Now we look at the fourth row of Figure 4.5 which is the results of ‘WebSpam’ data set.

Note that the features of this data set are derived features related to network properties

like in-degree, page rank and edge reciprocity. It is well known that features like page

rank can be used to distinguish between spam and non-spam web pages. Thus these are

strongly correlated features with the dependent variable. Now for large values of λ , the

`2 regularizer will pull the feature weights closer to zero thus reducing the AUC value

while in the case of `1, the SafeRule will not come into effect.

4.7 Summary

The main contribution of the chapter is to construct a decision map which compares

the performance of `1 and `2 regularizer based on four characteristics of data: stability,

robustness, correlation between independent and dependent variable, and the shape.

Future work will focus on a deeper mathematical analysis of the regularizer and the

evaluation of the decision map on other situations.
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Chapter 5

Latent Outlier Detection and the Low
Precision Problem

This chapter is based on the following publication:

Wang, Fei, Sanjay Chawla, and Didi Surian. Latent outlier detection and the low

precision problem. Proceedings of the ACM SIGKDD Workshop on Outlier Detection

and Description. ACM, 2013.

5.1 Introduction

It is well known that new scientific discoveries or “paradigm shifts” are often triggered

by the need to explain outliers [47]. The availability of large and ever increasing data

sets, across a wide spectrum of domains, provides an opportunity to actively identify

outliers with the hope of making new discoveries.

The obvious dilemma in outlier detection is whether the discovered outliers are an

artifact of the measurement device or indicative of something more fundamental. Thus

the need is not only to design algorithms to identify complex outliers but also provide a

framework where they can be described and explained. Sometimes it is easy to explain

outliers. For example, we applied the recently introduced k-means-- algorithm [20] on

the 2012 season NBA player data set1. k-means-- extends the standard k-means algo-

rithm to simultaneously identify clusters and outliers. The result of the Top-5 outliers

are shown in Table 5.9 and matches with the top players in the NBA “All Star” team.

1www.basketball-reference.com

57
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An NBA star is an outlier and given the highly competitive nature of NBA, an outlier

is most likely a star. Or in other words there are no bad players in the NBA but some

players are very good! However, in many other applications it is not at all clear how to

proceed to explain outliers. This can be termed as the “Low Precision Problem (LPP)”

of outlier detection.

Table 5.1: Given the highly competitive nature of the NBA, not only are stars outliers,
but outliers are stars! All the top five outliers are well known leading players of NBA.

Outlier Rank Player Name All Star Team (Y/N)
1 Kevin Durant Y
2 Kobe Bryant Y
3 LeBron James Y
4 Kevin Love N
5 Russell Westbrook Y

Problem 1 The Low Precision Problem (LPP) in outlier detection is that

P(genuine outlier|predicted outlier)≈ low (5.1)

LPP occurs because it is hard to disambiguate genuine outliers from errors occurring

in the measurement device.

The main algorithm proposed in this chapter extends the work on k-means-- pro-

posed in et al. [20] which unifies clustering and outlier detection. Furthermore we have

taken inspiration from a body of work on multiple subspace outlier detection to distin-

guish between genuine and accidental outliers [59].

5.2 The multiple subspace view

A starting point towards addressing LPP and explaining and sifting genuine outliers

from measurement errors is to view data from multiple perspectives [59]. In the context

where data entities are described by a vector of features, examining an entity in all

possible feature subspaces can potentially lead to isolating genuine outliers. This is

especially true in high dimensional settings. For example assume that each entity is

described by a feature vector of size m. Furthermore, assume that the probability of

each feature being recorded incorrectly is p and is independent of other features. Then
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if m is large, the probability that at least one feature value has been recorded incorrectly

is 1− (1− p)m and this can be close to 1 when m is large. Thus having at least one

feature value which is corrupted due to measurement error is high. However if we can

view the data in multiple subspaces then a genuine outliers will consistently stand out.

A limitation of the multiple subspace approach is that there are exponentially many

subspaces leading to intractable algorithms. However the problem can be ameliorated

if we notice that in real data sets, the intrinsic dimensionality (which is the minimum

number of variable need to represent the data) of the data is much lower than the ambient

dimensionality (which is the actual number of dimension we perceived of the data) as

we now explain.

5.3 High-Dimensional Anomalies

It is now part of the data mining folklore that in real data sets, the “degrees of freedom”

which actually generate the data is small, albeit unknown. This can be illustrated using

examples from computer vision. For example, consider a subset of the Yale Face data

shown in Figure 5.1. Each image is very high-dimensional (64× 64 = 4,096), how-

ever the set of images together live on a three dimensional manifold where the degree

of freedom are governed by the rotation of the camera and the lighting. The bottom

right hand image (transpose of the top left image) is an outlier as it lives outside the

manifold [25].

Thus given a high-dimensional space, if we can project data into a lower-dimension

space which preserves the intrinsic structure of the data, then not only can we iden-

tify outliers efficiently but potentially explain the discovered outliers. An example of

manifold-preserving projection are the family of random projections which preserve

pairwise distances with high probability [25]. However, while random projections can

lead to improvements in efficiency, by their very nature they make it nearly impossi-

ble to interpret the outliers. Thus we need a set of projections to which we can also

ascribe some meaning. We next describe matrix factorization methods which are pro-

jections of data into lower dimensional space where each dimension aggregates a group

of correlated features.
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Figure 5.1: An example to explain the difference between intrinsic and ambient dimen-
sion. Samples from the 698-image Yale face data. Each 64 x 64 is a point in a 4,096
dimensional space. However the set of images live in a three dimension set. The bottom
right image is added as the transpose of the top left image and is an outlier.

5.4 Matrix Factorization

As we have noted, the challenge in outlier detection is the difficulty to separate true

outliers from those data points that are caused because of measurement errors. We have

also noted that in high-dimensional space most of the features tend to be correlated.

Thus if a data point is a true outlier that fact should be visible in several features. Thus

if we take a subspace approach then a genuine outlier will show up as an outlier in more

subspaces than an accidental outlier. The challenge in pursuing a subspace approach is

that the space of subspaces is exponential in the number of features and thus intractable

to explore for most practical problems.

One way to address the intractability is to reduce the dimensionality of the origi-

nal space. This can be carried out using matrix factorization approaches. Factorization

is a principled approach of simultaneously aggregating correlated features into a re-

duced number of “meta-features” which in turn can be imbued with semantics related

to the application domain. While Singular Value Decomposition (SVD) and Princi-

pal Component Analysis (PCA) have been around for a long time, the recent surge in

new methods like Non-Negative Matrix Factorization (NMF) and Bayesian factoriza-

tion have enhanced the reach of these methods [70]. The key advantage of NMF, say

over SVD, is the enhanced interpretation that these methods afford. For example, if

X is non-negative document-word matrix or data from a micro-array experiment and
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X =UV is a non-negative factorization (i.e., both U and V are also non-negative) then

the factors can be ascribed a meaning as shown in Table 5.2.

Table 5.2: Non-Negative Factorization provides enhanced interpretation of the meta-
features. In text processing, the meta-features can be interpreted as topics, while in
micro-array analysis, the meta-features are group of correlated genes.

X U V
Document-Word Document-Topic Topic-Word

Exp-Gene (Exp,Functional Group) (Functional Group, Gene)

5.4.1 The impact of Projections

Outliers can potentially be impacted in different ways depending upon the nature of

outliers. For example, consider the projection shown in Figure 5.2. The projection

shown will have no impact on data point 1, will force data point 3 into a cluster and

data point 2 will continue to remain an outlier even though it is far away from the

projection plane. Now, which one of these points are genuine outliers is potentially

application dependent. However, if we take a subspace perspective, then data point 1

is more likely a genuine outlier. This is because it preserves the correlation between its

components but each component is moved far from the main cluster.

5.4.2 Sensitivity to Outliers

While techniques like NMF provide a promising way to address the combinatorial ex-

plosion problem associated with multiple subspace viewing, like SVD, they are highly

sensitive to outliers. Thus if our aim is to find outliers, then our method of discovering

outliers should not in turn be affected by them. For example, it is well known that both

mean and the variance-covariance matrix are extremely sensitive to the presence of even

one extreme value and their use for outlier detection will often mask the discovery of

genuine outliers. Thus we first have to modify NMF to make them more robust against

outliers. Thus we define the following problem:

Problem 2 [NMF(k,`)] Given a non-negative matrix X ∈ Rm×n
+ , fixed integers k and

`, find matrices U ∈ Rm×k
+ , V ∈ Rk×n

+ and a subset L ⊂ N, |L| = `, which minimizes

‖X−`−UV−`‖F , where X−` is a submatrix consisting of all columns except those from

the set L.
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1

X

X

2

3

Figure 5.2: The figure shows the impact of projections of outliers in a lower dimensional
space. Data points 1 and 2 remain outliers after projection, while data point 3 is mixed
with normal after the projection [41].

To solve the NMF(k, `) problem we present the R-NMF algorithm shown in Algo-

rithm 3. The algorithm belong to the class of alternating minimization methods and

is very similar to the standard NMF algorithm except for a few caveats. We begin by

initializing U in Line 1. In Line 4, we solve for V which minimizes the Frobenius norm

of ‖X −U i−1V‖F . In Line 5, we compute the residual between X and the current esti-

mate of the product U i−1V . In Line 6, we rank the residuals based on the norm of their

column values, and L is the index vector of the ranking. We then generate new matrices

X−` and V−` by removing the first ` values of the set X and V in Line 7 and 8. In Line

9, we estimate U by minimizing the Frobenius norm of X−` and UV i
−`. We iterate until

the convergence criterion is met.

The R-NMF algorithm is an analogous extension of the recently proposed k-means-

- algorithm [20]. We should note that another extension for NMF to find outliers

has been proposed by Xiong et al. [84] introduced the method of Direct Robust Matrix

Factorization (DMRF). The DMRF method first assumes the existence of a small outlier

set S and then infers the low-rank factorization UV by removing S from the data set.

It then updates S by using the inferred factorization. In the experiment section we will

compare R-NMF with DNMF.
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Algorithm 3 [R-NMF Algorithm]
Require: A matrix X of size m×n, m number of features, n number of samples

k the size of the latent space
Ensure: An m× k matrix U and k×n matrix V

R≈UV
1: U0← random m× k matrix
2: i← 1
3: while (no convergence achieved) do
4: V i = argminV ‖X−U i−1V‖F
5: R = X−U i−1V i \\R is a residual matrix
6: Let L = {1,2, . . . ,n} be a new ordering of the columns of R such

‖R(:,1)‖ ≥ ‖R(:,2)‖ . . .≥ ‖R(:,n)‖
7: X−`← X(:,L\L(1 : `))
8: V−`←V (:,L\L(1 : `))
9: U i = argminU ‖X−`−UV i

−`‖
10: i← i+1
11: end while

The R-NMF algorithm forms the kernel of the subspace algorithm, SR-NMF shown

in Algorithm 4 which combines subspace enumeration with R-NMF. Note we only take

subspace of the “meta-features.” The intuition is that genuine outliers will emerge as

outliers in the latent subspaces.

Here we design algorithm that incorporate both the concept of multi subspace view

and matrix factorization. As we mentioned before the shortage in [59] is that due to the

high dimensionality nature in most of the data set, one simply can not brute force and

traversal each and every subspaces. We solve this problem by investigate the problem

in a latent space where data are confined in a much small dimensionality.

5.5 Experiments and Results

In this section we evalute both R-NMF,DRMF from [84] and SR-NMF on several data

sets. Our ultimate objective is to verify if SR-NMF can be used to address the LPP
problem. All our experiments were carried out on a PC with following configurations.

Intel(R) Core(TM) i5-2400 CPU @3.1GHz 4GB RAM running on 64-bit Microsoft

Windows 7 Enterprise Edition.
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Algorithm 4 [SR-NMF]
Require: A matrix X of size m×n, m number of features, n number of samples, k the

size of the latent space, ` number of outliers
Ensure: A vector R represent the ranking of anomalies with a score in descending

order
1: Using R−NMF algorithm we get U and V such that X ≈UV

(U,V ) = R−NMF(k, `)
2: j← 0;RANKS← empty matrix;
3: STEP1 generate ranks for each subspace
4: for i = 1→ k do
5: generate all set of combinations AS from (k choose i)
6: for each S ∈AS do
7: Residual = X−U(:,S)V (S, :)
8: RNorm = columnNorm(Residual)
9: [−,RANK] = sort(RNorm, ‘descend’)

10: RANKS = [RANKS;RANK]
11: j++
12: end for
13: end for
14: STEP2 merge ranks into one rank
15: R← vector of size n;
16: for i = 1→ j do
17: for p = 1→ n do
18: R(RANKS(i, p)) = R(RANKS(i, p))+ i
19: end for
20: end for
21: sort R in descending order

[−,R] = sort(R, ‘descend’) (Note: Matlab Notation)
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5.5.1 Data Sets

We used three data sets from different application domains which we now describe.

NBA 2012

The NBA 2012 data set consists of 483 players and 20 features. The features are values

related to metrics used to evaluate performances of the players in a season. For example,

features like 3PAr (3 point Attempt Rate), TOV (Turnover Percentage) and MP(Minutes

Played) etc.

Abstract

The Abstract data set is a collection of abstracts from Physics and Science papers. The

data is formatted into document-words matrix with 1000 samples from each group and

3894 features which are the most frequent words. In the experiments we compose two

types of data sets from this data set. One is composed of 1000 Physics and 100 Science

abstracts and we label Physics abstract as anomalies. The other one is 100 Physics and

1000 Science abstracts.

Spambase

‘Spambase’ is a spam email data set [29] consisting of 4,601 emails out of which 1,813

(39%) are spam. The spam e-mails came from their postmaster and individuals who had

filed spam and non-spam e-mails from work and personal e-mails. Most of the features

(48 out of 57) are frequency of key words.

Research Abstracts

We took around one thousand computer science paper titles from DBLP and also a

thousand physics research paper abstracts. We created two data sets. In the first we

kept the thousand CS titles and merged them with one hundred physics abstracts. For

the second data set, we kept the thousand physics abstracts and merged them with a

random subset of one hundred computer science titles. We call the former CSet and the

latter PSet.



66 CHAPTER 5. LATENT OUTLIER DETECTION

5.5.2 Results

We report results on robustness, convergence, runtime and accuracy on the three afore-

mentioned data sets.

Results:Robustness of R-NMF

Here we report on results about the sensitivity of the R-NMF against the classical NMF

algorithm, which we denote as O-NMF. We applied both R-NMF and O-NMF algorithm

on the NBA 2012 data set but modified one entry in the matrix as a multiple of the mean

value. This is shown on the x-axis of Figure 5.3. For each different value on the x-axis

we computed the U matrix and computed the difference in the norm of the new U matrix

and the original U matrix. The U matrix is the base matrix and stores the meta-features

in terms of the original features.

Figure 5.3 shows that R-NMF is more robust against perturbations while the U

matrix using O-NMF increases without bound. This clearly demonstrates that the tradi-

tional NMF algorithm should not be used for any serious applications as it is extremely

sensitive to data perturbations.
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Figure 5.3: R-NMF is substantially more robust against the presence of outliers in the
data compared to standard O-NMF.

Results:Convergence Analysis

Here we investigate the convergence properties of the R-NMF algorithms. From Algo-

rithm 3 we know that for each iteration R-NMF will reconstruct U with a given number
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of outliers excluded. However, each iteration the algorithm may exclude different data

points as outliers, this could potentially make the algorithm unstable. Thus, it is neces-

sary to study whether this new algorithm will converge properly.

We conduct the experiments as follows. We use the Spambase data set, and set the

number of outliers for R-NMF as the number of spam emails. We vary k and present

the results for k=9,12,15, and 18.
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Figure 5.4: R-NMF converges with all given settings of k. As the dimension of the
subspace (k) increases, residual of R-NMF algorithm goes down.

As can be seen from Figure 5.4, the first thing one can notice is that with bigger k,

the residual of the algorithm goes down. This is because with bigger k, the decomposed

matrices UV can better reconstruct the original X . Most importantly, the algorithm

converge at all given settings of k within 20 repetitions.

Results:Runtime

We present the run time results of R-NMF algorithm for the Spambase data sets in Fig-

ure 5.5 respectively. As expected, we observe that the run time of R-NMF decreases as

the number of outliers is increased. This trend follows the intuition of R-NMF algorithm

that the construction of base matrix U is based on the data X without the anomalous

points (Algorithm 3 line 5-8).
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Figure 5.5: Average Run time R-NMF on Spambase data set: (Left) k = 1, (Middle)
k = 2, (Right) k = 3. As the number of outliers increases, the run time for R-NMF
decreases. The values here are the average values for all iterations.

Results:Precision and Recall

We compute precision and recall on the Spambase, PSet and the CSet data sets. The

outliers are considered as positives. The experiments are conducted as follows. We

vary the two variables: k and `, We compared the two proposed algorithms: R-NMF

and SR-NMF against the Direct Robust Matrix Factorization (DMRF) approach pro-

posed by [84]. The results for different values of k and different sizes of the outliers

specified are show from Table 3-7. At the moment it is hard to draw conclusions from

the results. Futher work is required to analyse the results and determine the root cause

of the outliers.

The experiments are conducted as follows. We vary two variables: k and `, and

take precision and recall as the metrics. For this data set, we define the precision as

the number of true positive divided by the number of predicted positive (Equation 5.2),

while the recall is defined as the number of true positive divided by the number of

positive (Equation 5.3). Note that here we refer the predicted positive as the number of

outliers detected by our algorithms, positive as the above-mentioned records that have

complications, and true positive as the number of records detected by our algorithms

which are part of records that have complications. Both R-NMF, SR-NMF and DRMF

are applied with the same settings. Since the data set is already selected with fine

granularity, thus the rank of the original matrix is low, we set small values for k, from 1

to 3 precisely, while ` is varied from 200 to 2,000.

Precision =
number of true positive

number of predicted positive
(5.2)

Recall =
number of true positive

number of positive
(5.3)
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Spambase data set.

‘Spambase’ is a spam email data set [29] with a total number of 4,601 email, out of

which 1,813 (39%) are spam emails. The spam e-mails came from their postmaster and

individuals who had filed spam and non-spam e-mails from work and personal e-mails.

Most of the features (48 out of 57) are frequency of key words.

For the Spambase data set, we perform the same steps as previously. In this ex-

periment, we vary the variables k from 6, 9 and 12, while ` is varied from 100 to 500.

We use the same equations (Equation 5.2 and 5.3) to compute the precision and recall,

however, in this case the we consider the spam emails as the positive data. We present

the results for precision and recall on Spambase data set in Table 5.3 and 5.4 respec-

tively. The tables show that in some configurations, R-NMF gives competitive results,

however, in general SR-NMF outperforms RNMF and DRMF in both precision and

recall.

Table 5.3: Precision on Spambase: DRMF, SR-NMF and R-NMF. Best values are high-
lighted.

k
Portion of data as outliers

7% 10% 13%
DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF

6 0.27 0.30 0.29 0.32 0.26 0.29 0.37 0.32 0.36
9 0.26 0.26 0.30 0.28 0.31 0.28 0.31 0.35 0.35

12 0.25 0.32 0.30 0.30 0.33 0.29 0.30 0.32 0.36

Table 5.4: Recall on Spambase: DRMF, SR-NMF and R-NMF. Best values are high-
lighted.

k
Portion of data as outliers

7% 10% 13%
DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF

6 0.05 0.06 0.05 0.08 0.07 0.07 0.12 0.10 0.12
9 0.05 0.05 0.06 0.07 0.08 0.07 0.10 0.12 0.12

12 0.04 0.06 0.05 0.08 0.08 0.07 0.10 0.10 0.12

Table 5.5: Precision on Abstract: DRMF, SR-NMF and R-NMF. PhysicsAnomaly.

k
Portion of data as outliers

35% 40% 45%
DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF

6 0.10 0.13 0.13 0.10 0.12 0.12 0.09 0.11 0.11
9 0.09 0.12 0.14 0.10 0.12 0.12 0.09 0.11 0.11

12 0.10 0.12 0.12 0.09 0.12 0.13 0.09 0.11 0.11
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Table 5.6: Recall on Abstract: DRMF, SR-NMF and R-NMF. PhysicsAnomaly.

k
Portion of data as outliers

35% 40% 45%
DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF

6 0.39 0.49 0.50 0.45 0.51 0.54 0.47 0.56 0.55
9 0.36 0.47 0.52 0.45 0.52 0.54 0.46 0.56 0.56

12 0.39 0.48 0.47 0.40 0.53 0.55 0.45 0.56 0.52

Table 5.7: Recision on Abstract: DRMF, SR-NMF and R-NMF. ScienceAnomaly.

k
Portion of data as outliers

35% 40% 45%
DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF

6 0.13 0.15 0.15 0.16 0.15 0.16 0.15 0.15 0.14
9 0.16 0.16 0.18 0.16 0.16 0.16 0.15 0.15 0.15

12 0.17 0.16 0.18 0.16 0.16 0.16 0.15 0.15 0.15

Table 5.8: Recall on Abstract: DRMF, SR-NMF and R-NMF. ScienceAnomaly.

k
Portion of data as outliers

35% 40% 45%
DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF DRMF SR-NMF R-NMF

6 0.49 0.56 0.58 0.72 0.66 0.70 0.72 0.72 0.70
9 0.60 0.60 0.69 0.70 0.69 0.70 0.72 0.73 0.72

12 0.65 0.60 0.69 0.70 0.72 0.70 0.72 0.72 0.73

Abstract data set.
Here we compare the three algorithms on two sets of data sets as we described in the

Data Sets section. We first generate a data set composed of 1000 Sciences sample and

100 Physics samples. We label the Physics samples as anomalies and denote this data

set as PhysicsAnomaly. Then similarly we generate another data set composed of 1000

Physics samples and 100 Science samples. We label the Science samples as anomalies

and denote this data set as ScienceAnomaly.

The settings are as follows. For each experiment, we set k as 6,9 and 12. l is set as

35%, 40% and 45% of the full sample space. Results are presented in Table 5.5,5.6 ,

5.7 and 5.8

We can observe that overall, R-NMF has the best performance in both precision and

recall. We can also learn from this experiment that simply identifying minorities as

anomalies can give reasonable result.

Basketball data set.

Here we compare the NMF-Subspace algorithm an k-means--on the Basketball data

set. k is set as 10 for both the two aoglrithms. In terms of appearance, there is only

one difference in the first five anomalies compared with k-means--algorithm. ’Dwight
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Howard’ instead of ‘Russell Westbrook’ indentified as anomaly. This is a better result

since ’Dwight Howard’ is a more famous player.

Table 5.9: Given the highly competitive nature of the NBA, not only are stars outliers,
but outliers are stars! All the top five outliers are well known leading players of NBA.

Outlier Rank Player Name All Star Team (Y/N)
1 Kevin Durant Y
2 Dwight Howard Y
3 Kevin Love N
4 LeBron James Y
5 Kobe Bryant Y

5.6 Summary

Outlier Detection is a core task in data mining. In fact as the size and complexity of

data sets increases the need to identify meaningful and genuine outliers will only grow.

Almost all major applications ranging from health analytic to network data manage-

ment to bio-informatics require analytical tools which can identify and explain genuine

outliers.

The core challenge in outlier detection is to distinguish between genuine and noise

outliers. The former are indicative of a new, previously unknown process while the

latter is often a result of error in the measurement device. The difficulty to distinguish

between genuine and noise outliers leads to the Low Precision Problem (LPP). Our

claim is that LPP is the fundamental problem in outlier detection and algorithmic ap-

proaches to solve LPP are urgently needed.

One approach to distinguish between genuine and noise outliers is to take a multiple

subspace viewpoint. A genuine outlier will stand out in multiple subspaces while a

noise outlier will be separated from the core data in much fewer subspaces. However

the problem in subspace exploration is that current methods are unlikely to scale to high

dimensions.

Matrix factorization methods provide a balanced compromise between full subspace

exploration in the feature space versus exploration in the meta-feature or latent space.

The advantage of working in the latent space is that many of the features are aggregated

into a correlated meta-feature. Often these features in the latent space can be imbued
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with a semantic meaning relevant to the problem domain. For example, in the case of

text mining, the features correspond to words while meta-features correspond to topics.

The challenge with matrix factorization methods is that they are highly sensitive

to outliers. This can be a serious problem whenever there is a mismatch between the

data and the proposed model. One way to ameliorate the problem is to use an alternate

minimization approach to estimate both the matrix decomposition and the outlier set.

This is the basis of the NMF(k,`) problem and the R-NMF algorithm. Preliminary

results show that R-NMF is substantially more robust compared to NMF in the presence

of data noise. This opens up a promising avenue for further exploration and address the

LPP.



Chapter 6

Network Analysis on Healthcare

This chapter is based on the following publication:

Wang, Fei, Uma Srinivasan, Shahadat Uddin, and Sanjay Chawla. Application of

Network Analysis on Healthcare. Advances in Social Networks Analysis and Mining

(ASONAM), 2014 IEEE/ACM International Conference on. IEEE, 2014.

6.1 Introduction

Previous work on health insurance analytics using data mining and predictive mod-

elling [73] gives a good understanding of the semantics and the data available in a

private health insurance (PHI) claim, and the claiming patterns of hospitals and medical

providers. Within the context of Australian PHI there are two types of claims. A med-

ical claim is sent by a doctor - also referred to as a provider - who performs a service

to treat a patient who is a member of a particular private health insurer. The medical

claim has information about the provider, the member, the hospital where the patient

was treated, the details of the treatment and the cost of the services provided. A hos-

pital claim is sent by a hospital’s billing department and includes details of treatment,

theatre charges, accommodation charges, prosthetics charges and charges for other ser-

vices provided. Leveraging on that understanding, we have started using social network

analysis techniques to model provider relationships, and analyse the impact of provider

community structures on healthcare costs and quality of care.

We present two types of networks to explore collaboration among medical providers:

(i) collaboration networks (CN) designed to capture the collaboration among surgeons,

73
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anaesthetists and assistant surgeons (ii) surgeon centric collaboration networks (SCCN)

which explore an individual surgeon’s connections.

In terms of the network representations used in this chapter, a node in the network

represents a (medical) provider such as surgeon, anaesthetist, assistant surgeon; the

node size indicates the total amount charged by that provider; the thickness of the edge

(or tie strength) connecting two nodes represents the number of common hospital ad-

missions between the two providers. In this chapter, an admission refers to a single

episode of admitted patient care. The time interval between the date of admission and

the date of discharge represents the length of stay for that admission.

In addition to size of nodes and tie strength, other network measures - closeness

centrality and betweenness centrality that are related to the position of the node in the

network, and centralization measures that indicate how central its most central node is

in relation to how central other nodes are, can provide interesting insights about the

influence of the node in the overall communication control capacity and the network.

For example, the larger nodes with a more influential position in the network have the

capacity to provide additional meaning within the context of the graph.

In the context of healthcare, the questions we are trying to answer are:

• Is there a team structure that emerges as providers work together on a number of

shared admissions?

• What is the impact of an individual surgeon’s network on cost and quality of care

of the surgeries performed?

• What types network structures have positive or negative impact on cost and qual-

ity of care?

Our experiments indicate that betweenness centralisation in the SCCN network is

the variable that has significant positive influence on Length of Stay (LoS), Complica-

tion rate and Medical cost. This gives an indication that nodes with high betweenness

centrality are likely to be in more demand.

Our theoretical analysis combined with empirical investigation over a large data set

also suggest that surgeons who collaborate with more number of teams appear to have

a lower average LoS.

The rest of this chapter is organized as follows: Section 6.2 presents a brief review
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of collaboration models explored in the context of healthcare domain. Section 6.3 de-

scribes our research methodology to explore collaborations among providers using PHI

claims data. Section 6.4 presents an analysis of our findings. And finally Section 6.5

presents some conclusions and future work.

6.2 Collaboration in health care

Our study of surgeon collaboration presented in this chapter offers a unique perspective

as it combines theoretical analysis with empirical investigations of a PHI large data set.

The design of the collaboration model presented in this chapter is influenced by the

requirements of domain experts who wish to understand the nature of team structures

that have an impact on cost as well as quality of care provided to patients for specific

types of treatments. In order to keep it simple, in this chapter, we have used only

knee procedures as the exemplar treatment group. We have designed similar models

for other orthopaedic procedures as well other treatment groups such as cardiology and

cardio-thoracic procedures. More details of the application scenario is explained in the

following section.

The hospital and medical claims processed by an insurer contain data that specify

the type of service provided during an admission, the length of stay for that admission,

and the cost of that service. The service is specified as a Medicare Benefit Schedule

(MBS) code [21], as stipulated by the Australian Government. The hospitals also send

additional data related to an admission, once the patient is discharged. For any given

hospital admission, we deal with three sets of data:

1. Medical claims - these show the provider-ID i.e. who performed a service, and the

service is indicated by the MBS code for the specific type of treatment performed

while the patient was in hospital;

2. Hospital claims - these are sent by the billing department of the hospital, and

include MBS codes, accommodation cost, prosthetic costs, laboratory and radi-

ology costs; and

3. Hospital discharge data that consolidates the patient’s clinical care during that

particular admission, and includes details such as length of stay, whether this was
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an unplanned readmission, and additional diagnosis codes that indicate compli-

cations or infections that occurred during that admission. Therefore the discharge

data provides us with valuable information pertaining to quality of care.

We use data from all three sources to design our network models. The network graph

presented in this chapter represents the collaboration among three specific types of med-

ical providers; the surgeons, the anaesthetists and assistant surgeons, as they perform

knee-related surgical procedures.

6.3 Surgeon Collaboration network Design

In this section, we first report on the graphical models designed to capture the col-

laboration among medical providers. In addition we also explore a Surgeon-Centric

Collaboration Network (SCCN) which explores an individual surgeon’s connections.

Finally, we provide network concepts that are related to our work.

6.3.1 Design of Collaboration Network (CN)

The objective of our initial design is to investigate the quality of care provided by a spe-

cific provider or a group of providers who collaborate while performing knee surgeries.

The PHI domain experts are interested in understanding the impact of collaboration

among the three types of providers: surgeons, anaesthetists, assistant surgeons (also

refer to assistants in the rest of the chapter). This leads us to design a tripartite graph in

which the nodes correspond to the three types of providers.

The data we have for any private health insurer include the three types of data sets

specified in Section 6.2. Therefore, the information represented in the three sets of data

offers us content-rich health information about each admission episode. The admissions

are categorized by the treatment codes as specified in the MBS coding taxonomy. For

example, knee surgeries are coded in the following hierarchy: ‘Therapeutic→ Surgical

Operation→ Orthopaedic→ Knee’. The nodes represent the providers, and the edges

as the number of common admissions shared by the two providers. We then associate

the node size with the total medical charges of the corresponding provider. The three

different types of providers are shown in three distinct colors: red for surgeons, blue for

anaesthetists and light blue for assistants. A thicker edge indicates a higher number of

shared admissions. Figure 6.1 shows an example of a collaboration graph.
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Just by glancing at the graph, one can immediately identify the ’big’ providers, i.e.

providers with high medical charges, as well as highly connected providers. We can also

see isolated cluster of providers. Often such isolated clusters indicate providers working

in a specific geographic region. This network graph offers a powerful visualization to

study collaboration among providers.

The primary focus of our investigation is to study the impact of the collaboration

network structure on quality of care. To do this we consider all possible network fea-

tures.

Figure 6.1: The tripartite graph represent the collaboration between three types of
providers: surgeons (red), anaesthetists (blue) and assistants (light blue). The edge
thickness is modeled as the number of collaborating claims by two types of providers.
The size of the node is modeled as the medical charge of the provider.
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6.3.2 Design of Surgeon Centric Collaboration Network (SCCN)

Since the focus is on surgeons, we investigate a specific surgeon node in the CN and

build a lower level Surgeon-Centric Collaboration Network (SCCN). The SCCN is a

network of a specific surgeon. It shows how a specific surgeon collaborates with the

assistants and anaesthetists, and the hospital(s) in which they work together while per-

forming knee surgeries. The individual surgeon node is not shown in the SCCN as all

admissions (which are modeled as the edges) relate to a particular surgeon. Therefore,

we only model two types of edges, one is the edge between assistants and hospitals,

the other is between anesthetists and hospitals. Since it’s a surgeon centric network, we

have not shown the links between assistants and anesthetists. However such links are

shown in the CN graph. The SCCN network also shows the hospitals where the surgeon

performs knee surgeries. The hospital node is represented symbolically in the form of

a building. The size of the building indicates the total medical cost. Edge thickness

is modeled as the number of admissions of the specific surgeon with an anaesthetic or

assistant in that hospital. Two SCCN graphs are shown in Figure 6.2. The graph on the

left shows a surgeon who only works in one hospital and collaborates with nine anaes-

thetists or assistants. The graph on the right shows a surgeon who works in two hospitals

and collaborates with anaesthetists or assistants who also work in those hospitals.

Figure 6.2: Two SCCN graphs with hospital represented by a building icon.
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6.4 Data analysis

This section describes the experimental analysis staring with the data preparation, se-

lection of network variables , selection of quality of care parameters, the regression

model and finally an empirical investigation to compare the theoretical results within

the context of the large PHI data corpus.

6.4.1 Data preparation

6.4.1.1 Selection of admission-related variables

In terms of non-network variables, we have identified four admission related features,

which are shown in the top section of Table 6.1. The admission data shows all the med-

ical providers who are involved in treating a patient during that admission. We consider

four types of providers that includes: anaesthetists, assistants, pathologists and imaging

providers. Typically a surgery has one principal surgeon and assistant and anaesthetist

who work with the surgeon during the surgery. Specifically, we consider the number

of distinct providers a surgeon collaborates with while performing a knee surgery. For

the data analysis, we consider the percentage of distinct providers who collaborate with

the surgeon rather than the absolute number of providers. The percentage is calculated

with the denominator as the sum of distinct number of the four types of providers col-

laborating with the surgeon in knee procedure.

6.4.1.2 Selection of network variables

For network features, we first consider CN graph as depicted in Figure 6.1. We have

three types of nodes in the graph, out of which, around 500 nodes are ‘surgeon’ nodes.

Amongst several possible network variables, we have specifically selected five network

features as shown in Table 6.1. We have chosen these variables as they have the potential

to offer insights into the collaboration patterns among providers.

Clustering-coefficient: The local clustering coefficient of a vertex (node) in a graph

quantifies how close its neighbors are to being a clique (complete graph). In our context,

this represents the strength of the surgeon’s network.

Number of triangles: The global clustering coefficient is based on triplets of nodes.

A triplet consists of three nodes that are connected by either two (open triplet) or three

(closed triplet) undirected ties. A triangle consists of three closed triplets, one centred
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Figure 6.3: Surgeon node with Number of triangle as 3

on each of the nodes. In our context, a triangle shows the three types of providers i.e.

surgeons, anaesthetists and assistants working together while performing knee surg-

eries. For example, in Figure 6.3, we depict a surgeon node with its surrounding assis-

tants and anaesthetists. This is a small subset extracted from the CN graph shown in

Figure 6.1. The surgeon node, which is represented as the red colour, has three triangles

connected to it. This indicates that the surgeon performs knee surgeries frequently with

three pairs of assistants and anaesthetists. . The features from the CN graph are all

node-level features.

Next we consider network-level features. For each surgeon, we have one SCCN

graph. We will consider the four network measures for the SCCN graph which are

shown in the bottom section of Table 6.1.

6.4.1.3 Selection of Quality of Care parameters

As for the quality of care, we have chosen three parameters:

LoS - the average length of stay for all admissions of the surgeon. This information

is available in hospital discharge data as explained in Section 6.2.

Medical cost - the average medical charge for all the knee related admissions teated

by the surgeon.

Complication rate - calculated as the percentage of admissions with complications

out of all the admissions of a surgeon.
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Table 6.1: The table shows all the features we have extracted from the data and the
network.

Non-network features
1 %. of distinct anaesthetists
2 %. of distinct assistants
3 %. of distinct pathologists
4 %. of distinct imaging providers

Network features of CN
1 Clustering coefficient
2 Number of triangles
3 Degree centrality
4 Closeness centrality
5 Betweenness centrality

Network features of SCCN
1 Degree centralisation
2 Closeness centralisation
3 Betweenness centralisation
4 Density

6.4.1.4 Data cleansing and transformation

Our data set for knee surgeries includes a total of 59,256 admissions performed by 870

surgeons. However, in order to make robust conclusions, we only considered surgeons

who had more than ten claims. We further looked at the distribution of the surgeons

according to each variable shown in Table 6.1 and removed surgeons who appeared as

outliers. Our analysis was carried out on a set of 559 surgeons. For all the variables in

Table 6.1, we applied z-score standardization. Thus each variable had a mean of zero

and a standard deviation of one. In the simple regression analysis, that we will report

on, this allow us to interpret the constant and the “slope” term appropriately.

6.4.2 Simple linear regression

The quality of care parameters introduced in Section 6.4.1.3 are the dependent variables

in all the regression experiments. Since the independent variables are semantically

distinct in the healthcare domain, they have been dealt with independently. Hence an

individual linear model has been constructed for each variable. Although most of the

linear models have a low R2 value, our focus are the β values, which are significant.
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Table 6.2: Table explores the impact of all non-network attributes on quality of cares
(i.e. LoS, Medical cost)

Model Dependent Variable Independent Variable R2 value β Constant Sig.

1

LoS

%. of distinct anaesthetists 0.098 -0.438 3.506 0
2 %. of distinct assistants 0.023 -0.214 3.506 0
3 %. of distinct pathologists 0.003 0.074 3.506 0.211
4 %. of distinct imaging providers 0.179 0.592 3.506 0
5

Medical cost

%. of distinct anaesthetists 0.042 -58.127 1016.063 0
6 %. of distinct assistants 0.011 -29.481 1016.063 0.015
7 %. of distinct pathologists 0.002 14.200 1016.063 0.240
8 %. of distinct imaging providers 0.074 77.484 1016.063 0

Table 6.3: The table explores the impact of the network structure around a specialist
(based on SCCN) on quality of cares (i.e. LoS, Complication rate and Medical cost).

Model Dependent Variable Independent Variable R2 value β Constant Sig.

1

LoS

Degree centralization 0.014 0.164 3.506 0.005
2 Closeness centralization 0.023 0.212 3.506 0
3 Betweenness centralization 0.033 0.253 3.506 0
4 Density 0 0.024 3.506 0.681
5

Complication rate

Degree centralization 0.002 0.002 0.047 0.343
6 Closeness centralization 0.001 0.001 0.047 0.496
7 Betweenness centralization 0.014 0.006 0.047 0.005
8 Density 0.001 -0.001 0.047 0.494
9

Medical cost

Degree centralization 0 -1.684 1016.063 0.889
10 Closeness centralization 0.013 32.698 1016.063 0.007
11 Betweenness centralization 0.011 29.638 1016.063 0.014
12 Density 0.009 -27.014 1016.063 0.025

Table 6.4: The table shows the impact of network position of individual specialist in the
complete network (CN) on quality of cares (i.e. LoS, Complication rate).

Model Dependent Variable Independent Variable R2 value β Constant Sig.

1

LoS

Clustering coefficient 0.001 0.052 3.506 0.384
2 Number of triangles 0.005 -0.101 3.506 0.089
3 Degree centrality 0.003 -0.080 3.506 0.179
4 Closeness centrality 0.004 -0.085 3.506 0.149
5 Betweeness centrality 0 -0.016 3.506 0.788
6

Complication rate

Clustering coefficient 0.002 -0.002 0.047 0.277
7 Number of triangles 0.007 -0.004 0.047 0.048
8 Degree centrality 0.002 -0.002 0.047 0.298
9 Closeness centrality 0.002 0.002 0.047 0.350

10 Betweeness centrality 0 0.001 0.047 0.712

6.4.2.1 Non network features

Table 6.2 explores the impact of all admission-related features on the dependent vari-

ables (i.e. LoS, and Medical cost). We can see that a higher percentage of anaesthetist

and assistant indicates a lower LoS and Medical cost, while a higher percentage of

pathologists and imaging providers indicates a higher LoS and Medical cost. This is

intuitive since admissions with more imaging may be more severe situations and thus
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incur longer LoS and higher Medical cost.

6.4.2.2 Network features of SCCN

In Table 6.3, we observe that betweenness centralisation is the only variable that has

significant positive influence on LoS, Complication rate and Medical cost. This can be

interpreted as follows: From the perspective of a SCCN structure, a high betweenness

centralisation indicates that the structure of the corresponding SCCN follows a star-like

or centralized structure since betweenness centralisation reaches its highest value of 1

for a star network. A star-like or centralized network has few actors with higher be-

tweenness centrality values and the rest actors have very low betweenness centrality

values. In this type of network, only a small number of actors play major collabo-

ration and communication role (Wasserman and Faust 2003). That indicates there is

a presence of “network hubs” in this type of network. On the other side, if network

actors have almost equal level of network connectivity (as like a line graph) then be-

tweenness centralisation will be small and in such networks there does not present any

“network hub”. Therefore, SCCN, where participating actors have almost equal level

of network connectivity, will produce lower LoS, Complication rate and Medical cost.

In the context of health care domain, this offers an interesting insight. In their corre-

sponding hospitals, healthcare managers or administrators could encourage a practice

culture where each member will have equal level of network connectivity.

6.4.2.3 Network features of CN

Table 6.4 explores the impact of the network position of the individual specialist in the

complete network (CN) on independent variables (i.e. LoS, Complication rate). We

can observe that in the case of both LoS and Complication rate, the variable ‘Number

of triangles’ has a negative correlation. That is, when a surgeon works with a large

number of distinct groups, LoS and Complication rate are lower.

Intuitively, we have two assumptions with respect to the variable ‘Number of trian-

gles’: (i) Surgeons who work with large number of distinct assistants or anaesthetists

could be involved in more complicated surgeries and thus resulting longer Los and

higher complication rate. (ii) Surgeons who consistently work with only a few distinct

assistants or anaesthetists have a lower number of triangles. For these cases, our anal-

ysis shows a higher LoS. Our conjecture is that this limits external influence of other
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providers on the surgeon. The converse case where the number of triangles is higher

clearly shows lower LoS. Thus, to figure out which assumption is true we investigated

the different categories of knee surgeries and their impact on LoS in Section 6.4.3.

6.4.3 Treatment analysis

Table 6.5 shows the distribution of the different types of knee surgeries performed in

the data set used for analysis in this chapter. The data set used includes about 59,256

knee surgeries performed by 559 surgeons over a period of 2 years. As per the MBS

descriptions, there are four broad categories of knee surgeries with varying degrees of

complexity. Accordingly, the average length of stay for each category of knee surgery

varies. Column 3 of the table also shows the distribution of the four categories of knee

surgery. We conducted an empirical investigation to analyze the performance of teams

Table 6.5: Average LoS and percentage of admissions of the four knee categories.

Treatment type Average LoS Admissions %

Knee arthroscopy 1.24 58
Knee Revision 4.40 1
Knee Reconstruction 2.15 9
Knee Replacement 7.66 28

of surgeons indicated by the No, of triangles as shown in Table 6.4. Table 6.6 shows

two groups of providers: Group A and group B. Group A represents the 200 surgeons

having the least Number of triangles, and group B represent 200 surgeons with largest

Number of triangles. The purpose of this analysis is to compare the Average LoS for

each category of knee surgery for the two groups of providers.

Table 6.6: We can observe that, in terms of all the four treatment types, group B con-
sistently has a lower Average LoS compared to group A and also the whole data set as
shown in Table 6.5.

Treatment type Average LoS Admissions %

Group A B A B
Knee arthroscopy 1.31 1.21 58 57
Knee Revision 7.69 4.01 1 1
Knee Reconstruction 2.38 2.07 7 10
Knee Replacement 7.67 7.61 31 28
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Next we compare the Average LoS for each category of knee surgery for the two

groups in Table 6.6 with the Average LoS of the complete data set summarised in Table

6.5. We can observe that in all four categories of knee surgeries, group B consistently

has a lower Average LoS compared to group A, as well as the whole data set shown in

Table 6.5. The empirical investigation implies that surgeons who work with a higher

number of teams appear to have a lower length of stay. One could intuit that there is

social learning that comes into play. However, further investigation is required to con-

firm the intuitive analysis. Since the category distribution for group A and B are almost

identical. This makes assumption (i) in Section 6.4.2.3 invalid. Thus assumption (ii):
Lower Number of triangles limits external influence of other providers on the surgeon,

is a possible explanation.

6.5 Summary

In this chapter we have investigated the impact of network structure on the performance

of surgeon teams with respect to efficiency metrics including Medical costs, Length of

Stay (LoS) and Complication rate. Our data set was obtained from Australian PHI data

and consists of both medical and hospital claims. To reduce the impact of confounding

variables, we focused our analysis on “knee surgeries.” Our results provide a strong

indication that network features like degree, betweenness and closeness centralization

and number of triangles have a statistically significant impact on efficiency metrics. In

particular, for surgeon centric networks, betweenness centralization is significant for all

three metrics: Length of Stay, Complication rate and Medical cost. This observation can

potentially be used by health care providers to reorganize surgical teams and improve

the overall efficiency of health care delivery.



Chapter 7

Social Learning on Surgeons’
Behaviour

7.1 Introduction

In order to understand the impact of social learning on the behavior of members in

a medical team, we focus on orthopedic surgeons performing knee surgeries. Knee

surgeries are of particular interest because there is a specific procedure, called knee

arthroscopy, that is now considered to provide minimal health advantages, which begs

the question of why its use has not been discontinued [58]. Within this context we are

interested in the temporal patterns of two sets of variables: the use of specific types of

surgeries and the use of specific prosthetic devices, as to specific behavior indicators.

In this chapter we adapt a logistic regression model for the prediction of changes in

behavioral patterns of surgeons to incorporate dynamic social network structures. The

social network structures and behavioral patterns are extracted from health insurance

patient-level data that contains information about the typs of surgery performed, the

type of prosthetic devices used and the medical personnel involved in the surgery. Due

to the granularity and uniqueness of the data, we have the resources to construct three

social networks that describe connections among surgeones arising from: (i) practicing

at the same hospitals (ii) sharing the same assistants (iii) sharing the same anaesthetists.

Our primary objective is to enable private and public healthcare organizations to

better understand how behavioral trends may influence the delivery of healthcare ser-

vices. These organizations can use this valuable information for planning preventive

86
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health management strategies to improve the effectiveness of care and patient health

outcomes.

Key contributions of this chapter are as follows:

• We incorporate network structures into logistic regression prediction for our pro-

posed approaches, Social Relationship Model (SRM) and its variant model Posi-

tive SRM (P-SRM).

• We conducted experiments to validate and evaluate the models on artificial data

and a real data set obtained from the health insurance industry.

• We verify that the social network connections have influence on the surgeons’

behaviors, where the behavior is the change in the workload distribution of knee

surgeries and change in the use of certain prosthetic devices used in knee surg-

eries.

The structure of the chapter is as follows: In Section 7.2 we describe related work

and some concepts in social learning theory. Then we formally define the general prob-

lem of dynamic node behaviours in Section 7.3. Sections 7.4 describe the mathematical

formulation which incorporate network structures into logistic regression prediction and

introduce our proposed models, SRM and P-SRM respectively. The subsequent sec-

tions, contain a discussion of the results from artificial experiments and our application

to hospital data as well as a summary of our contributions.

7.2 Background and Related Work

In this work the actors of interest are surgeons. We assume that surgeons form a social

network and communicate their experiences with their other network members. This

exchange of information can alter professional attitudes of surgeons, resulting in be-

havioral changes such as the adoption of a medical intervention (e.g. new equipment,

surgeries or medication). In this setting, knowledge is strongly tied to medical prac-

tices, and learning occurs when a group of surgeons collaborate in order to achieve a

common goal, that is to improve patients’ well being [62, 26, 66].

In the context of surgeons, we concentrate on how surgeons are influenced by the

attitudes and behaviors of other colleagues as well as their hospital environment. The
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influence of a surgeon is related to their knowledge, where an individual’s level of ex-

perience within a group defines whether they are a sender or receiver of information

[50]. Thus a knowledge-rich surgeon potentially has a greater influence on the profes-

sional practices of their fellow surgeons. This becomes an imitative behavior for a less

experienced surgeon where they adjust their behaviors accordingly [55].

Similar problems relating to the influence of peers on their behaviors have been

addressed by Wei et al. [64], who developed a computational model to predict the

adoption of smart phone apps by analysing social network connections among the users.

Experimentally the model showed superior results than generic models, although this

outcome may not necessarily hold in the context of surgeon analysis.

Fei et al. [83] also investigated the potential impact of network relationships on

the quality of care provided by surgeons. The main result showed that patterns in po-

tential network connections can influence quality of healthcare services. This research

relied on finding correlations between network features and thus developing metrics for

quality of care.

7.3 Problem Definition

We consider a network with N nodes, corresponding to N “actors”, where the network

relationship among nodes is encoded in several adjacency matrices A= {A1,A2, . . . ,AQ}
with Aq ∈ RN×N . There are C binary labels associated with each node, describing

the behavioral status of the node. This is captured by the matrix Y ∈ RN×C where

the nth row (nodes) and cth column (behaviors) can be denoted as yn,c ∈ {−1,1} or

yn,c ∈ {0,1}. In our surgeons data set the N actors are surgeons, and the Q adjacency

matrices represent different ways in which surgeons are related. For example, one ma-

trix may represent the sharing of the same hospital(s) and another matrix represnt the

sharing of same anaesthetists or assistants. The C labels associated with each surgeon

will denote behaviors, such as the performance of certain types of surgery or the use of

certain prosthetic devices.

The evolving and dynamic nature of behaviors is considered by examining two time

periods, t1 and t2 (t2 > t1). The behavioral status of the nodes at t1 and t2 are denoted as

Y(1),Y2 ∈ RN×C. We make the key assumption that the relationships among the nodes

influence the behavioral status of each node over time: this is central to our study as our
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primary objective is to predict the node’s behavioral status in the future period t2 based

on the available data at t1.

The (i, j) element of an adjacency matrix is a positive number that quantifies the

strength of a social relationship between actor i and actor j if a relationship exists,

and it is 0 otherwise. The diagonals of these adjacency matrices are set to zeros. As

mentioned above, more than one set of network relationships may be defined among

the same set of actors. Suppose we have a set of N = 5 nodes, and among the nodes,

there are Q = 2 network relationships as shown in Figure 7.1. Then we can summarize

the network relationships among the nodes with the corresponding adjacency matrices

given in Table 7.1.

Figure 7.1: Networks defined in terms of two different relationships.

Table 7.1: Adjacency matrices based on networks in Figure 7.1.

(a)

Nod
e 1

Nod
e 2

Nod
e 3

Nod
e 4

Nod
e 5

Node 1 0 3 1 0 2
Node 2 3 0 0 0 0
Node 3 1 0 0 2 0
Node 4 0 0 2 0 0
Node 5 2 0 0 0 0

(b)

Nod
e 1

Nod
e 2

Nod
e 3

Nod
e 4

Nod
e 5

0 0 5 0 0
0 0 1 3 0
5 1 0 0 0
0 3 0 0 4
0 0 0 4 0
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7.4 Models

In sections 7.4.1 and 7.4.2 we introduce two models that we will compare to the standard

majority vode model, briefly described in section 7.4.3.

7.4.1 Social Relationship Model (SRM)

Adjacency matrices are assumed to be symmetric because they capture the existence

of a relationship among actors. However the influence of the behavior of actor i on

the behavior of actor j is not necessarily symmetric, and it is important to build in the

model the possibility that some actors are more influential than others (for example by

being leaders in the adoption of new technologies). We formalize this by assuming that

node n in a network q has an influential index sq,n, where S ∈ RQ×N , representing the

amount of influence of node n the other nodes in network q that are connected to it. In

this model, we allow the influence to be both positive and negative.

The variables of interest are the C vectors y(2)c representing the behaviors of the

nodes at time t2, which are binary. Therefore we take a latent variable approach and

assume that the behavior at time t2 is driven by the latent variable N-vector ŷ(2)c defined

below:

ŷ(2)c = bc1+
Q

∑
q=1

[
Aqdiag(sq)

]
y(1)c (7.1)

where bc is a constant offset, 1 is an N× 1 vector of ones, sq is a column vector of S,

diag(sq) is the N×N matrix with sq on the diagonal and zeros elsewhere. The latent

variable model is then expressed as follows:

y(2)n,c =

1 if ŷ(2)n,c + εn,c > 0

−1 otherwise
(7.2)

where εn,c are i.i.d. random variables with cumulative distribution F(·). For ease of

computation we choose the distribution F to be the logistic function, and therefore

arrive to the following model for the future behavior at node n:

P
(
y(2)n,c = 1

∣∣A,y(1)c
)
=

1

1+ exp
(
− ŷ(2)n,c

)
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The unknows of the model are the vector of offsets b≡ (b1, . . . ,bc) and the matrix S of

influential indices. The negative log-likelihood f (S,b) for model 7.2 is easily derived

as follows:

f (S,b) =− log

[
C

∏
c=1

∏
n:y(2)n,c=1

P
(
y(2)n,c = 1

∣∣A,y(1)c
)

(7.3)

∏
n:y(2)n,c=−1

P
(
y(2)n,c =−1

∣∣A,y(1)c
)]

(7.4)

=
C

∑
c=1

N

∑
n=1

log
(

1+ exp
(
− y(2)n,c ŷ(2)n,c

))
(7.5)

We note that in our model the number of unknowns (N×Q+C) is roughly equal to

the number of samples (N×C), and therefore a regularizing term is necessary in order

to avoid overfitting [61, 82]. Since our application of interest will be the adoption or

usage of certain technologies or procedure, we expect that only a relatively few number

of surgeons will have a considerable effect on their peers. Therefore an `1 regularizing

term that enforces sparsity seems better suited to this task than the standard `2 term.

Hence we propose to estimate the unknowns of the model by minimizing the following

cost function:

H(S,b) =
C

∑
c=1

N

∑
n=1

log
(

1+ exp
(
− y(2)n,c ŷ(2)n,c

))
+λ‖S‖1

where λ is the regularization parameter that controls the sparsity of the matrix S and

‖S‖1 is the sum of the absolute values of S. Since the objective function H(S,b) is

convex, global optimal solutions can be obtained. We implemented the model in Matlab

using the popular convex solver CVX [37].

7.4.2 Positive Social Relationship Model (P-SRM)

In a number of situations it is sensible to assume that if two nodes are connected in

a network then the influence that they have on each other can only be positive, that is

it can only lead to a reinforcement of a behaviour. A similar hypothesis was made in

the work by Wei et al. [64], where they studied the prediction of app adoption by smart

phone users. In the context of our model this assumption is formalized by assuming that
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the behaviors are represented by binary values taking values in {0,1}, and by assuming

that the unknown parameters b and S that enter the latent variable have all non-negative

entries. We refer to this model as the Positive Social Relationship Model (P-SRM), and

we will see shortly that it may have better performances than the unconstrained model

in certain situations.

Since the latent variables are now all positive by constructions, model 7.2 needs to

be revised so that the density F(·) is supported on the positive axis. We follow Wei et

al. [64] in defining the conditional probability of a positive outcome as follows:

P
(
y(2)n,c = 1

∣∣A,y(1)c
)
= 1− exp

(
− ŷ(2)n,c

)
The weighted negative log-likelihood associated to this model has the form:

f (S,b) =−
C

∑
c=1

N

∑
n=1

Wn,c log
(

y(2)n,c +(1−2y(2)n,c)exp
(
− ŷ(2)n,c

))
and therefore the parameters estimates for this model solve the following constrained

optimization problem:

(Ŝ, b̂) = argmin
S,b

f (S,b)+λ‖S‖1

subject to: S≥ 0,b≥ 0

As with model 7.2 the optimization problem above is also convex and therefore global

optimal solutions can be computed.

7.4.3 Baseline Model OMV

One of the simplest methods for network node prediction is the online majority vote

(OMV) algorithm. When applied to our context the OMV algorithm predicts future

behaviors at a node by taking a majority vote of the current behaviors of the neighbors

of that node, weighted by the strength of the network relationship. Despite its simplicity

this method proved to be highly effective and outperform other more complex methods

on a variety of data sets [3]. In formulas the predicted behaviors have the following
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form:

ŷ(2)c = sign

(
Q

∑
q=1

Aqy(1)c

)

In the OMV algorithm the influence of a node on another is fixed, and given by the

elements of the adjacency matrix. Therefore this algorithm is unable to discover, based

on the data, which nodes may have more influence in predicting future behaviors.

7.5 Artificial Data Experiments

In this section we compare the models described above (SRM, P-SRM and OMV) on

two artificial data sets, generated according to the SRM and P-SRM models, respec-

tively. The artificial data sets consist of three networks encoded by Q = 3 adjacency

matrices. Each network has N = 60 nodes and each node is associated with C = 10

binary labels. In the log-likelihood all the observations are assumed to have the same

weight. The data sets are generated as described below.

Artificial data: SRM

1. The adjacency matrices Aq are constructed by randomly deleting 95% of the edges

of the fully connected graph.

2. The labels for the first period Y(1), where yn,c ∈{−1,1} are sampled from a binomial

distribution with balanced classes of labels.

3. The influential index sq,n of each node n in network q was generated according

to a uniform distribution over an interval. For the training set the interval was

set to [−10,10], while for the test set the interval was set to [−α,α], with α ∈
{0,2,4,6,8,10}. Six different data sets were created, corresponding to the six val-

ues of α .

4. The dependent variable is determined using a simplified version of the SRM model

7.2, in which the noise is negligible. Therefore the dependent variables are simply

obtained by taking the sign of the corresponding latent variables:

ŷ(2)c = sign

(
Q

∑
q=1

[
Aqdiag(sq)

]
y(1)c

)
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Artificial data: P-SRM

1. The adjacency matrices Aq are constructed by randomly deleting 95% of the edges

of the fully connected graph.

2. The labels for the first period Y(1), where yn,c ∈ {0,1} are sampled from a binomial

distribution with balanced classes of labels.

3. The influential index sq,n for n in network q was generated using the same procedure

as for the SRM data, except that the interval was restricted to the positive numbers.

4. As with the SRM data the values of the dependent variables were assigned by a

simple thresholding of the latent variable, where the threshold has been set to 0.5 to

account for the positivity constraint:

ŷ(2)c = sign

(
Q

∑
q=1

[
Aqdiag(sq)

]
y(1)c −0.5

)

7.5.1 Performance tests

We compare the three models OMV, SRM and P-SRM on the two artificial data sets

described above. The data sets are split into training and test sets with equal sample

sizes and the performances of the algorithms are evaluated by the followig standard

four metrics: precision, recall, accuracy and F-measure. The regularization parameter

λ is set to 0.5 for all experiments, since we found that changing its value and attempting

to optimize it did not affect performances to great extent.

Note that we expect the models to perform best when the training data consists of

surgeons who have a significant influential index compared to the surgeons in the test

set, or, alternatively, if surgeons in the test set have small influential index. Therefore

in the generation of the baseline data sets we set the influential indices of test samples

to zero. In the sensitivity analysis of section 7.5.2 we will then allow the influential

indices in the test set to grow, by varying the parameter α introduced in the description

of the data generation above. This allows to study how performances degarde as the

data become increasingly difficult to predict.

In Figure 7.2 (a) and (b) we report the performance measures for the SRM and

P-SRM data sets respectively. We observe that the SRM model and the P-SRM model

outperform the other models on the SRM and P-SRM data sets, respectively. This result
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is expected and it is important for two reasons: 1) it is a sanity check that confirms that

the models are internally consistent, and 2) it gives us an idea of how much better the

SRM and P-SRM can perform, compared to OMV.
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(a) SRM
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Figure 7.2: The four performance measures for the the three algorithms on the SRM
data (a) and the P-SRM data (b). As expected the SRM model outperforms both the
OMV and P-SRM when applied to the SRM data and the P-SRM outperforms OMV
and the SRM when applied to the P-SRM data.

7.5.2 Sensitivity to influential index

In the baseline data of figure 7.2 the influential index for the surgeons in the test data

was set to 0. This makes the problem easier, because it implies that their future behavior

depends mostly on the behavior of the surgeons in the training set. Varying the scaling

factor α from 0 to 1 we obtain data sets that are increasingly more difficult to pre-

dict, and it is therefore interesting to study how the performances of the three different

method degrade.

The results of this experiment on the SRM data are shown in Figure 7.3. The key

message emerging from this figure is that even if the performance of the SRM and P-

SRM algorithm degrade as the complexity of problem increases they perform much

bettter than OMV even in the hardest case.

7.5.3 Sensitivity to network sparsity

The sparsity of the network is defined as the proportion of edges that are not connected.

In the baseline data the three networks have a sparsity equal to 95%. Since different
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Figure 7.3: As the influential index S of test samples increase, the performance of SRM
and P-SRM decreases, however SRM and P-SRM still outperforms the baseline method
OMV.

applications may have networks with different sparsity it is important to understand

whether the performances of the algorithms change with the sparsity of the network.

Intuitively the OMV algorithm is expected to perform better at a high sparsity level,

with very localized interaction. Since the SRM and P-SRM algorithms learn networks

effects from the data one would expect them to be reasonably insensitive to the sparsity

level.

We repeated the experiments for levels of sparsity varying from 55% to 95%, in

steps of 5%, and report the results in Figure 7.4. The key message of the figure is that

the performances of the SRM algorithms are unaffected by the sparsity level. The P-

SRM algorithm is somewhat more sensitive to the overall sparsity level, and tend to

perform slightly better at higher sparsity. This is also true for the OMV model, which

is the most sensitive of the three.
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Figure 7.4: SRM has the best performance, while OMV has the least scores when
varying values of sparsity of networks. We also notice that SRM has the most stable
and robust performance.

7.6 Hospital Data Set

7.6.1 Data Preparation

In order to study the problem in a reasonable granularity, we examines knee procedures

as the exemplar treatment group, utilizing data from the health insurance industry. In the

following sub-sections, we describe how the hospital data was prepared before applying

our models.

7.6.1.1 Surgeon networks

We are interested in studying surgeon behavior. In particular we wish to predict the

behavior of a surgeon at time t2 given the behavior of his/her peers at time t1. There

are different ways in which surgeons can affect each other’s behaviors, and each corre-

sponds to a separate network. The simplest form of interaction between two surgeons
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arises from the fact that they practice at the same hospital. Therefore we construct a

network that has one node for each surgeon in the data and one edge for each pair of

surgeons practicing at the same hospitals. More precisely the element (i, j) of the ad-

jacency matrix Ah is equal to the number of hospitals that surgeons i and j have in

common.

However it is also possible that surgeons influence each other via the people who

work closely with them. Our data of patient surgeries contains unique identification

for surgeons, assistants and anaesthetists. Therefore we define other two networks,

represented by the adjacency matrices Aan and Aas, such that element (i, j) of these

matrices is equal to the number of anaesthetists and assistants that surgeons i and j

have previously worked with, respectively. The details of the adjacency matrices are

summarized in Table 7.2.

Table 7.2: The three networks used in the hospital data experiments.

Notation Description Nodes Edge Weight

Ah ∈ RN×N Adjacency matrix of surgeons working in the same hospital Surgeons Number of common hospitals
Aan ∈ RN×N Adjacency matrix of surgeons working with the same anaesthetists Surgeons Number of common anaesthetists
Aas ∈ RN×N Adjacency matrix of surgeons working with the same assistants Surgeons Number of common assistants

7.6.1.2 Surgical procedures

The number and composition of the procedures performed by surgeons fluctuates over

time in a non-random way. Surgeons data show clear trends where some procedures gets

dropped while others are adopted. We hypothesize that one of the reasons behind these

trends, other than demand fluctuations, is the fact that surgeons may influence each

other in a number of ways. It is particularly interesting to study how trends propagate,

and a natural question to ask is whether changes in behavior this year predict changes

in behaviors next year.

We formalize this notion by introducing a set of binary variables Y(1),Y(2) ∈RN×C,

where N is the number of surgeons in the data, C is the number of surgical procedures

we consider and the superscripts refer to period 1 and 2. When yt
n,c is equal to 1 it means

that during period t (t = 1,2) surgeon n has increased his/her activity on procedure c.

In order to determine the value of yt
n,c for each surgeon and each procedure we

proceed as follows. We divide period t (one year) in an even number L time windows,

and for each window α we compute the number vα of procedures of type c performed
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by surgeon n (we dropped the indices n and c from vα in order to ease notation). The

vector v with elements vα captures the trend of usage of procedure over time. In order

to convert it to a binary variable we apply a linear filter to it. The linear filter allocates

higher weight closer to the endpoints and subtracts the second half of the vector from the

first. The precise form of filtering is described in Algorithm 5 below. In our experiments

we choose L = 4, so that there were 4 windows of three months each.

Algorithm 5 Surgeon Binary Labeling
Input: v ∈ RL: Number of specific behaviors over L continuous time windows.
Output: Labels y ∈ {−1,1} or y ∈ {0,1}.

1: F = ∑

L
2
i=1(2i−1)(vL−i+1− vi)

2: if F > 0 then
3: y = 1
4: else
5: y =−1 for SRM, y = 0 for P-SRM,
6: end if
7: Return y

In our hospital data set we have identified 20 procedures related to knee surgery, and

therefore C = 20. In Australian hospital data each type of surgery procedure is assigned

a unique Medicare Benefit Schedule (MBS) code [21]. The distribution of the MBS

codes is shown in Figure 7.5 and the MBS code descriptions are provided in Table 7.3.

We observe there are three MBS codes performed much more frequently than the other

procedures.

7.6.1.3 Prosthetic devices

In addition to surgical procedures we are also interested in investigating the behavioral

change of surgeons related to the use of prosthetic devices. In knee procedures, surgeons

can be influenced by other surgeons by either adopting or dropping a particular device.

The hospital data allows to identify the specific prosthetic device used by each surgeon,

and therefore the prediction problem is exactly as the one described in the previous

section, with MBS codes replaced by codes for prosthetic devices. Thus, the algorithm

to extract the binary labels for prosthetic devices is the same as in Algorithm 5.

The distribution of prosthetic devices is depicted in Figure 7.6 and a sample of

the devices is shown in Table 7.4. Unlike with surgical procedure, where few MBS
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Figure 7.5: Distribution of surgical procedures performed in the hospital data.

codes dominate the distribution, it appears that surgeons use prosthetic devices in simi-

lar amounts, with no particular preference.
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Figure 7.6: Distribution of prosthetic devices in the hospital data.
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7.6.1.4 Observation weighting

Over the course of our experiments we found useful to assign weights to each obser-

vation appearing in the likelihood of equation 7.5, in order to account for the fact that

there is a wide variation in the number of procedures performed by surgeons. Therefore

for each surgeon n and procedure c we compute the total number wn,c of procedures

performed. Rather than setting weights equal to wn,c, that would allow few very ac-

tive surgeons to dominate the likelihood we opted for a logarithmic weight of the form

log(1+wn,c), which performed better than linear weighting in our experiments.

7.6.2 Experimental Results

In this section we compare the three models, SRM, P-SRM and OMV on the hospital

data. We consider two types of dependent variables: one is the behavior of surgeons re-

garding the performance of specific surgeries, identified by 20 different MBS codes, and

the other is the behavior regarding the implant of specific prosthetic devices, identified

by 10 different prosthetic codes.

7.6.2.1 Surgical procedures

In our hospital data we selected surgeons with at least 100 surgeries performed over a

two year period, obtaining a sample size of 121 surgeons. The training and test sets

were randomly selected using equal sample sizes. In order to avoid random variation

due to choice of training and test data set each experiment was repeated 10 times over

different training and test data, and the performance measures were averaged of the 10

results.

We calculate performance results in the test data for each MBS code separately as

well as in the aggregate. Since the MBS code specific results are well reflected in the

aggregate results, for ease of exposition we only report the aggregate results, which are

shown in Figure 7.7(a).

What stands out from Figure 7.7(a) is that SRM and P-SRM have similar perfor-

mances, with P-SRM having a small advantage over SRM. Both models seem to have a

major advantage on the OMV model when it comes to recall. Therefore the two models

outperform OMV by a large margin in the task of correctly identifying surgeons who

will increase the use of specific procedures in the next period.
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Figure 7.7: The four performance measures for the the three algorithms on the MBS
codes (a) and the prosthesis data (b).

An attractive feature of the SRM and P-SRM models is that it provides, for each sur-

geon, an estimate of the associated influential index. Therefore these models allow to

identify, for example, who are the leaders of innovation in a surgeon network. We hy-

pothesize that in our hospital data only a small number of surgeons would be “leaders”.

This hypothesis is easily tested by looking at the distribution of the values of the three

groups of influential indices (one for each network) estimated by the SRM model, that

we report in Figure 7.8. A close inspection of the figure would reveal that only 13%

of the influential indices are significantly different from 0, and only few surgeons have

influential indices of the order of three or four. The figure also shows that the vast

majority of influential indices are positive. This may explain why the P-SRM model

performs better than the SRM model, since it makes the positivity assumption from the

beginning, and therefore the algorithm does not need to “discover” it from the data.

Studying the estimates of the influential indices can also provide other useful insight

in the data. For example, we observe that the three set of influential indices, one for each

type of network, are quite uncorrelated, with correlation coefficients ranging from 0.07

to 0.23. This finding support the notion that SRM and P-SRM models truly capture

network effects, and not other features of the data, such as for example hospital effects.

In fact, if that were the case, we would expect the influential indices to be quite similar

and highly correlated, which is certainly not the case.

We further analyzed three distinct networks to compute the social influence of sur-

geons. The three networks analyzed are based on: (a) connections among surgeons who
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Table 7.3: MBS code description

Code number MBS code MBS code description # of surgeries

1 49509 Knee, total synovectomy or arthrodesis with ... 109
2 49517 Knee, hemiarthroplasty of (Anaes.) (Assist.) 643
3 49518 Knee, total replacement arthroplasty of... 7084
4 49519 Knee, total replacement arthroplasty of... 442
5 49521 Knee, total replacement arthroplasty of... 564
6 49524 Knee, total replacement arthroplasty of... 116
7 49527 Knee, total replacement arthroplasty of... 396
8 49533 Knee, total replacement arthroplasty of... 123
9 49536 Knee, repair or reconstruction of, for... 146

10 49539 Knee, reconstructive surgery of cruciate... 325
11 49542 Knee, reconstructive surgery of cruciate ... 2876
12 49551 Knee, revision of procedures to which item... 357
13 49557 Knee, diagnostic arthroscopy of ... 189
14 49558 Knee, arthroscopic surgery of, involving... 383
15 49560 Knee, arthroscopic surgery of, involving... 1153
16 49561 Knee, arthroscopic surgery of, involving... 16353
17 49562 Knee, arthroscopic surgery of, involving... 771
18 49563 knee, arthroscopic surgery of, involving... 270
19 49564 Knee, patello-femoral stabilisation of... 338
20 49566 Knee, arthroscopic total synovectomy of... 457
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Figure 7.8: As expected the influential indices estimated by the SRM model show that
the surgeon network contains a very small number of surgeon “leaders”, with high
influential indices. The overall sparsity of the indices is 13%, meaning that only 13%
of the influential indices are significantly different from zero.

work at the same hospital (b) connections among surgeons who work with the same

anaesthetists, and (c) connections among surgeons who work with the same assistant

surgeons.

Figure 7.9 shows the comparative performance of most influential surgeons in the

three networks, in regard to their adoption of certain types of knee procedures. A dis-

tinct influencer is evident in the anaesthetist-sharing network while performing CMBS
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Figure 7.9: Comparative workload distribution of most influential surgeons in the three
networks.

code 6, which indicates a specific type of knee replacement requiring bone grafting.

It also indicates that the anaesthetist network appears to have a higher influence in

the surgeon behaviour in regard to this specific procedure, which is more complex as this

requires bone grafting, and more anaesthetists time while performing knee replacement

surgeries.

7.6.2.2 Prosthetic devices

Another variable of interest is whether surgeons increase or decrease the number of

implants of specific prosthetic devices in the next period. The experimental results

on the prosthetic devices data set shown in Figure 7.7(b). Similarly to the results for

surgical procedure we find that both the SRM and P-SRM model outperform the OMV

model. However, on this data set it is the SRM that outperforms P-SRM, which is the

opposite of what we found on the surgical procedure data. We also notice that while in

the surgical data most of the advantage over OVM was observed in recall, in this case

most of the advantage is manifested in the precision performance measure. Therefore

the performance measure on which we observe the highest difference between SRM,

or P-SRM, and OVM appears to be a property of the data, rather than the methods

themselves.
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Table 7.4: Prosthesis code description

Code number Prosthesis code Prosthesis code description # of surgeries

1 BX246 Infusor; Sterile infusor devices, spring or... 1081
2 DP107 CMW Bone Cement; CMW Bone Cement Various without Antibiotic 763
3 DP152 PFC Sigma Knee System patella component; Cemented, all ... 868
4 HK006 Palacos or Palamed Bone Cement with Gentamicin; Single Mix ... 3582
5 SK325 Triathlon Knee System Femoral Component ; Minimally ... 966
6 SK327 Triathlon Knee System Tibial Baseplate; Tibial ... 1051
7 SK419 Triathlon Knee System Patella Component; Patella ... 637
8 SN464 Bone Staple; Fixation - Short Leg 784
9 SN853 Endobutton; Fixation for ACL or PCL reconstruction 1708

10 SN857 Genesis II Knee System Tibial Baseplate; Tibial Baseplate... 1854

7.6.2.3 Comparing results

The experimental results on MBS codes are similar to the results for prosthetic devices

in the sense that they both perform better than OMV. A key difference, however, is

the performance of the P-SRM compared to SRM on the two data sets. Specifically,

P-SRM outperforms SRM on surgical procedures, while SRM outperforms P-SRM on

prosthetic devices.

The reason for this difference may lie with the fact that in terms of MBS codes,

surgeons are more likely to assert a positive influence on other surgeons. In other words,

a surgeon adopting a new procedure will probably cause the surgeons connected to him

to do the same. Howecer, a surgeon dropping a procedure will not have any influence

on the surgeons connected to him, and the P-SRM model is better suited to fit this

assumption. However, in the case of prosthetic devices it is reasonable that surgeons

can both positively and negatively influence the connected surgeons, and therefore this

would make the SRM preferable.

7.7 Summary

In this chapter we have proposed a Social Relationship Model (SRM) to predict how

a surgeon’s choice of treatment is influenced by their peer networks. In a surgeon

network, the nodes are surgeons and there is an edge between two nodes if they have

operated in the same hospital or have worked with a common anaesthetist or assistant.

SRM consists of an extension of the logistic regression model to incorporate network

features. A unique contribution of this work is the application of the proposed model

on an extremely fine-grained data set acquired from a health insurance company about
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the eco-system surrounding knee surgeons. SRM can be used to quantify the influence

of a surgeon on their peers over time. While it is well known that peer interaction

plays an important role in diffusion of knowledge and behavioral choices in a healthcare

environment, our approach provides the first quantitative tool to actually measure the

impact of social learning. SRM can be used by both practicing healthcare professional

and management to shape the treatment environment in an organization and manage

both the quality and cost of healthcare.



Chapter 8

Conclusions and Future Work

In this chapter we present a summary of the thesis, and highlight future research direc-

tions that could be extended from the research of the thesis.

8.1 Conclusions of the Thesis

• Adversarial learning is the study of machine learning techniques deployed in non-

benign environments. Till now, the standard assumption about modeling adver-

sarial behavior has been to empower an adversary to change all features of the

classifiers at will. However, we claimed the aim of an adversary is not just to

subvert a classifier but carry out data transformation in a way such that spam

continues to appear like spam to the user as much as possible. In Chapter 3 we

demonstrated that an adversary achieves this objective by carrying out a sparse

feature attack. We designed an algorithm to show how a classifier should be de-

signed to be robust against sparse adversarial attacks. We showed that sparse

feature attacks are best defended by designing classifiers which use `1 regulariz-

ers.

• Chapter 4, We use mathematical properties of the two regularization methods,

`1 (Lasso) and `2 (Tikhonov or Ridge), followed by detailed experimentation

to understand their impact based on four characteristics: non-stationarity of the

data generating process; level of noise in the data sensing mechanism; degree of

correlation between dependent and independent variables and the shape of the

data set. Thus, by considering the four characteristics, we developed a guide

107
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for practitioners of large scale data mining and machine learning tools in their

day-to-day practice.

• In Chapter 5, we claim that LPP is the fundamental problem in outlier detection

and algorithmic approaches to solve LPP are urgently needed. Matrix factoriza-

tion methods provide a balanced compromise between full subspace exploration

in the feature space versus exploration in the meta-feature or latent space. Results

showed that our proposed model R-NMF is substantially more robust compared

to NMF in the presence of data noise. This opens up a promising avenue for

further exploration and address the LPP.

• Data analytic techniques such as data mining and predictive modelling are be-

ing used to gain new insights into health care costs, In chapter 6 we described

a specific context of private healthcare in Australia and describe our SNA based

approach (applied to health insurance claims) to understand the nature of col-

laboration among doctors treating hospital inpatients and explore the impact of

collaboration on cost and quality of care. In particular, we use network analysis

to (a) design collaboration models among surgeons, anaesthetists and assistants

who work together while treating patients admitted for specific types of treat-

ments (b) identify and extract specific types of network topologies that indicate

the way doctors collaborate while treating patients and (c) analyse the impact of

these topologies on cost and quality of care provided to those patients.

• In Chapter 7 we developed models that predict the behaviors of orthopedic sur-

geons in regard to surgery type and use of prosthetic device. The models utilize

data on past practicing behaviours and take in account the social relationships

existing among surgeons, anaesthetists and assistants. We refer to the models

as the Social Relationship Model (SRM) and Positive Social Relationship Model

(P-SRM). An important feature of these models is that they can not only predict

the behaviors of surgeons but they can also provide an explanation for the pre-

dictions. Experimental results on both artificial and real hospital data sets show

that our proposed models outperform the baseline model Online Majority Vote

(OMV).
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8.2 Recommendations for Future Work

We have presented a number of robust learning models in this thesis. We also developed

models mining adversarial behaviors on healthcare data. Here we also list potential

future research directions.

• In Chapter 3, we developed robust classification algorithms by assuming the

adversary is carrying out sparse feature attacks. Similarly adversary can exist

in anomaly detection and clustering problems. The need for a robust learning

method under such problems is in need to be devised.

• For healthcare domain, in Chapter 7, we have proposed models that predict the

potential adversarial behavior of surgeons. However, more modelling technique

can be carried out based on entities such as hospitals, patients or even adminis-

trators working in the hospital. The reward for such adversarial behavior iden-

tification will not only reduce cost for insurance company, but also significantly

increase the quality of care and even help improve the overall healthcare system.
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