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Abstract  
The organic-inorganic hybrids fabricated by the sol-gel method are intrinsic 

bioactive materials with extensive applications in bone tissue engineering. 

The brittleness and limited water uptake capacity of these monoliths, 

however, restrict their applications for engineering the soft tissues and their 

interfaces with bone. To address these challenges, a unique class of organic-

inorganic hybrid was developed in which polymer crosslinking ceased the 

over-condensation of a bioactive glass component and eradicated the 

formation of brittle structure. 

In this study, an organosilane-functionalized gelatin methacrylate (GelMA) 

was covalently bonded to a bioactive glass during the sol-gel process, and 

the condensation of silica networks was controlled by photocrosslinking of 

GelMA. The physicochemical properties and mechanical strength of these 

hybrid hydrogels were then tuned by the incorporation of secondary 

crosslinking agents such as poly(ethylene glycol diacrylate) (PEGDA). The 

resulting bioresorbable hydrogels displayed elastic properties with ultimate 

elastic compression strain above 0.2 (mm/mm) and tuneable compressive 

modulus in the range of 42-530 kPa. The swelling ratio of these hybrids, 

however, was suitable for tissue engineering applications. In addition to 

remarkable enhancement in the mechanical properties of gelatin-based 

hydrogels, their structural integrity was significantly increased. As an 

example, these hybrid hydrogels kept their structures for more than 28 days, 

and only 30% of gelatin was released during this period in simulated body 

fluid. The presence of homogeneously distributed bioactive glass in these 

hydrogels, moreover, promoted the precipitation of calcium phosphate 

particles as the main inorganic compositions of the bone extracellular 

matrix. The continuous increase of alkaline phosphatase activity of bone 

progenitor cells for at least 28 days post-culture confirmed the 

osteoconductive properties of these hybrid hydrogels. The in vivo mice-

subcutaneous implantation, moreover, confirmed the biocompatibility and 

bio-resorption of these hydrogels. A bioactive hydrogel with a gradient of 
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mineralisation was also fabricated to confirm the feasible application of 

these hybrid hydrogels in interface tissue engineering.  

In summary, an organic-inorganic hybrid was developed that has favourable 

swelling properties and higher mechanical strength compared to ceramic 

based scaffolds. These hybrids were also bioactive, cytocompatible and 

bioresorbable. These gelatin-bioactive glass hydrogels can be used for 

regeneration of bone defects. It can also be used for the fabrication of 

gradient bioactive hydrogels for enhancing the integration of soft to hard 

tissue interfaces such as ligament and tendon.  
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Chapter 1. Introduction  
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Bone is a dynamic tissue with a unique capacity to heal and regenerate 

without leaving a scar [1]. In addition to these remarkable properties, bone 

mobilises the stored minerals on the metabolic demands, supports muscular 

contraction resulting in motion, withstands load bearing, and protects 

internal organs [2]. The significant alterations in the bone structure, 

therefore, can dramatically alter the body equilibrium and quality of life. 

The severe post-operation complications of current reconstructive surgeries 

include donor site morbidity, disease infection, and deficient supply [3, 4]. 

These restrictions induce the total economic burden of hundred millions of 

dollars on public health per annum. It is critical to developing a new 

approach to addressing these issues and minimising the risk of failure of 

current bone repair operations. This strategy promotes the proliferation of 

progenitor cells specifically in their interface with soft tissues. The potential 

of this approach has not yet been exploited, and this is the focus of this 

project. 

Bioactive glass is a class of ceramics, which regulates the metabolism of 

soft and hard tissues through stimulating the osteogenic differentiation [5-

7], enhancing the pro-angiogenesis of endothelial cells [8-10], and 

modulating the intercellular interactions [11-14]. Despite their particular 

biological behaviour, the intrinsic brittleness of bioactive glasses restricts 

their direct application in bone regeneration. Different compositions of 

bioactive glass and polymers with enhanced mechanical properties have 

been developed to mimic the structure of bone [15-17].  

The sol-gel method is superior to melt-quenching process for the 

preparation of polymer-bioactive glass hybrids. The intriguing benefits of 

the sol-gel method include the low reaction temperature [18], controllable 

kinetic of reaction [19], and convenience in modification of composition 

[20]. This technique composed of two main steps of hydrolysis and 

condensation followed by ageing and drying processes. In particular, the 

collagen-inorganic composite has been used for musculoskeletal tissue 

engineering, as these components comprise the chemical structure of bone 

[21, 22]. However, the limited mechanical properties of these composites 

may evoke severe clinical complications [23]. Gelatin is a disintegrated 
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derivative of collagen and possesses the intrinsic capacity to form a 

hydrogel through distinct methods. The formation of gelatin-bioactive glass 

composites is deemed to be a more favourable alternative for mimicking the 

bone structure [24, 25]. 

The heterogeneity of dissimilar phases, however, is the main associated 

drawback of these organic-inorganic composites [26]. The uniform 

distribution of bioactive glass within polymer phase is the main advantage 

of chemically modified organic-inorganic hybrids with enhanced bioactivity 

and physicochemical properties [27, 28]. In addition to their synergetic 

nature of hybridisation, cost-effectiveness and tuneable mechanical 

properties of these materials introduce them as proper candidates for bone 

regeneration. The complete condensation of the inorganic compound in 

these hybrids, however, carries out through drying and ageing steps and 

yields brittle structures [29]. The fabrications of two-dimensional monoliths 

with very limited water uptake capacity are their main drawbacks for hard-

to-soft interface tissue engineering [30].  

The aim of this study was to develop a unique structure for reconstruction of 

bone structure and its interface with soft tissues. It was hypothesised that the 

fabrication of an organic-inorganic hybrid with enhanced mechanical 

performance and high swelling ratio might promote the proliferation of bone 

progenitor cells. To achieve this objective, a covalently bonded hybrid of 

gelatin-bioactive glass was fabricated by a sol-gel process. It was 

hypothesised that the crosslinking of the organic component might control 

the condensation of the inorganic phase, prevent the formation of the brittle 

structure, and tune the physicochemical and mechanical properties of 

hybrid.  

This dissertation is comprised of 7 chapters. In Chapter 2, a review of the 

bone tissue engineering is provided. Different methods of polymer 

crosslinking, and the fabricated organic-inorganic hybrids for bone tissue 

engineering are also discussed in detail. The hypotheses of this project arose 

from the shortfalls of current bone tissue engineering are also explained. 

In Chapter 3, different methods for fabrication of organic-inorganic hybrid 
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hydrogels are presented. Various methods to assess the biological and 

physicochemical properties and mechanical performance of these hybrid 

hydrogels are also described. In Chapter 4, the effects of external stimuli 

and polymer-crosslinking on the physical status and brittleness of 

interpenetrated hybrids are presented. In Chapter 5, the impacts of 

organosilation and formation of covalently bonded gelatin-hybrid on the 

physicochemical properties of hydrogels are assessed. The effect of 

incubation media on the degradation profile of hybrid hydrogels is also 

investigated. In Chapter 6, the secondary polymer-crosslinking approach is 

used to form a bioconjugated hybrid hydrogel. The mechanical performance 

and degradation profiles of these hybrid hydrogels are discussed. The 

in vitro bioactivity and biocompatibility are also conducted to examine the 

proliferation of bone progenitor cells in these constructs. Finally, the 

biocompatibility and the biological properties of this class of hydrogels 

were evaluated by conducting in vivo mice implantation performed under an 

ethically approved protocol (2013/019A). The potential of these hybrid 

hydrogels for interface tissue engineering is also investigated. In Chapter 7, 

the overall conclusions and recommendations for the continuation of this 

project are presented. 



 

 

  

Chapter 2. An Overview to 

Bone Tissue Engineering 
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2.1 Introduction 

Bone is a dynamic, highly vascularised tissue with a unique capacity to heal 

and regenerate without leaving a scar [1]. In addition to these remarkable 

properties, bone mobilises the stored minerals on the metabolic demands, 

supports muscular contraction resulting in motion, withstands load bearing, 

and protects internal organs [2]. The significant alterations in the bone 

structure, therefore, can dramatically alter the body equilibrium and quality 

of life. Musculoskeletal defects due to congenital anomalies, skeletal 

diseases, sport and life-related traumas impose an economic burden of 

approximately one billion dollars per annum on the Australian economy, 

with 70% of the expenditure on long recovery period and hospitalisation 

services [31].  

The current treatment of bone fractures is replacement of the damaged tissue 

with different biological grafts from the patient (autograft) [4, 32] or 

cadaver (allograft) [33], and synthetic grafts [34]. Despite the intrinsic 

osteoconductivity and osteoinductivity of biological grafts, concern issues 

are associated with the risk of disease transfer, donor site morbidity, chronic 

pain, infection and increase of operative time and cost [3, 4]. Tissue 

engineering is considered as a new approach, which might remedy these 

shortfalls. In this chapter, the bone structure and current methods for 

substituting the bone fracture are reviewed. Moreover, the ongoing research 

on the development of bone tissue engineering is discussed in detail.  

2.2 Current Treatment Approaches for Bone Regeneration 

Bone possesses an intrinsic capacity for regeneration as a part of the repair 

process in response to injury, as well as during skeletal development or 

continuous remodelling throughout adult life [35]. Bone regeneration is 

comprised of a well-orchestrated series of biological events of bone 

induction and conduction, involving a number of cell types and intracellular 

and extracellular molecular signalling pathways [36, 37]. Prior to 

introducing the current treatment approaches for bone regeneration, it is of 

great importance to understand the chemical composition and cellular 

constitution of bone structure.  
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2.2.1 The Bone Structure 

Bone is constructed from cells and an extracellular matrix (ECM). The 

cellular architecture of bone is predominantly comprised of osteoblasts [38], 

osteocytes, osteoclasts [39], and mesenchymal stem cells (MSC) [40] that 

differentiate into committed progenitors of osteoblasts, osteoclasts and other 

cells [41]. Osteoblast cells are found at the active sites of bone formation 

and synthesise the non-mineralised organic matrix called osteoid. The 

osteoid is comprised of collagen, glycoproteins, glycosaminoglycans, and 

bone morphogenetic proteins (BMP) to participate in the mineralisation 

process. Osteocytes are the most abundant cell population on the bone that 

are terminally differentiated osteoblasts [42]. Osteocytes have significant 

impacts on the bone performance by regulating the ECM maintenance and 

calcium homoeostasis and initiating of the remodelling cascade [43]. 

Finally, osteoclasts are the bone resorbing cells, which keep bone healthy 

and new through remodelling and renewal processes [44]. 

The bone extracellular matrix is particularly mineralised. Inorganic 

compounds such as calcium phosphates comprise 65% of ECM, and the rest 

is fabricated from organic components. Collagen is the main organic 

component that combines to other glycoproteins and glycosaminoglycans to 

construct the osteoid and ECM and modulate the cellular activity and 

intercellular signalling [45]. The inorganic compounds, moreover, are found 

within and between the length of collagen fibres to improve their 

mechanical performances towards bending and compressive loads. 

Hydroxyapatite (HAp) is the most abundant calcium phosphate in bone 

structure that can combine with other materials such as carbonates, citrates, 

magnesium, fluorides and strontium [45]. The presences of these organic 

and inorganic components have significant impacts on the cellular 

constitution of bone. Magnesium has an important impact on the 

calcification process, bone fragility, and mineral metabolism [46]. While the 

presence of strontium promotes the bone growth and formation [47], zinc 

fosters the proliferation and differentiation of osteoblasts [48]. Potassium 

[49], sodium [50], and chlorine [51], moreover, possess a versatile nature in 
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the regulation of bone remodelling process. The significant alterations in the 

cellular constitution or chemical composition of bone, therefore, can 

dramatically alter the body equilibrium and quality of life. The severe bone 

fracture cannot regenerate through bone remodelling process. The surgical 

treatment, therefore, is the only clinical treatment to remedy these shortfalls.  

2.2.2 Clinical Treatments for Bone Repair 

Different biological grafts including autografts and allografts have been 

transplanted to repair the injured or damaged bone. The intrinsic 

biocompatibility and non-immunogenicity of autologous grafts promote 

their applications as the gold standard for bone grafts [52]. Despite the 

promising osteoinductivity, osteogenesis, and osteoconductivity of 

autografts, they are associated with some issues and complications. Donor 

side morbidity, chronic pain, possible immunogenicity, and an increase of 

operative time and cost are some examples of these complications [53]. The 

size limitation, moreover, restricts the application of autografts while the 

defect site requires a larger volume of bone [54]. 

Allografts represent the second most common bone-grafting technique by 

transplanting donor bone tissue, often from a cadaver [55, 56]. Allogeneic 

bone is a cytocompatible tissue, which is available in various sizes 

depending on the host-site requirements [57, 58]. The high risk of 

immunogenicity and transmission of infections, the reduced 

osteoconductivity, and the substantial cost issues, however, are limiting 

factors on clinical application of allografts [59, 60]. Despite the significant 

impacts of current transplantation methods on bone regeneration, they 

suffered from some intrinsic complications including low osteoinductive 

and angiogenic potencies, limited availability, and a high donor side 

morbidity. Tissue engineering is considered as a new approach, which might 

remedy these shortfalls. 

2.3 Bone Tissue Engineering 

Tissue engineering integrates osteoprogenitor cells, biological and 

mechanical stimulations, and scaffolds to regenerate the bone structure [61-
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64]. The scaffold is a temporary structure and logistic template for tissue 

engineering. It serves as “informational templates” to the cells, by 

patterning implementation, binding ligands and sustained releasing of 

cytokines [65]. The ideal scaffold has three dimensional (3D) structure 

composed of biocompatible materials with a controllable degradation 

profile. The degradation rate needs to be commensurate with neotissue 

formation while still maintaining the mechanical properties over the 

degradation period and tissue regeneration. The presence of interconnected 

pores with an average diameter with the range of 50 to 200 µm is critical for 

bone repair [66]. This interconnectivity acquires sufficient mass transfer 

feature for nutrients and waste, which provides an appropriate environment 

for cell adhesion, proliferation, and differentiation [67-69].  

The selection of a proper material to fabricate a scaffold is the most 

important factor towards the engineering the bone. While the ceramics 

represent intrinsic osteoinductive and osteoconductive behaviours, their 

limited degradation profiles restrict their applications in bone tissue 

engineering. The application of natural and synthetic polymers with 

controllable degradation profiles, moreover, is limited due to their lack of 

bioactive characteristics. The modified bioactive polymers [70-72], 

biodegradable ceramics [73-76], and their organic-inorganic complexes [77, 

78], therefore, have been assessed to design a biomimetic scaffold for bone 

regeneration. Hydrogels, for instance, mimic the chemical composition of 

ECM due to their intrinsic biocompatibility and desirable physicochemical 

characteristics [79]. The shortfalls of hydrogels including low mechanical 

properties and fast degradation profiles must be overcome prior to their 

applications for bone tissue engineering [80]. In this session, an overview of 

biomaterials that have been used for bone regeneration was presented.  

2.3.1 Polymer-based Scaffold for Bone Tissue Engineering 

Collagen is the most abundant organic component in the bone structure [45]. 

The lack of osteoinductive and osteoconductive behaviour restricts the 

application of pure collagen for bone tissue engineering. The combination of 

bioactive compounds such as inorganic materials [81-83] or biological 
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motifs [84-86] to collagen-based scaffolds, for instance, is an attempt to 

mimic the bone structure. These scaffolds, however, possess insufficient 

mechanical properties due to difficult reproducing of collagen spatial 

conformation in osteon sites [45]. In addition to extensive application of 

collagen [87], other natural-based polymers including alginate [88-90], 

chitosan [91-93], gelatin [94-97], Gellan gum [98, 99], and silk [100-102] 

have been used to fabricate a biocompatible complex for bone tissue 

engineering.  

Synthetic polymers such as aliphatic polyesters and their copolymers were 

extensively used to fabricate a biodegradable scaffold incorporated with 

bioactive compounds for bone tissue engineering [103, 104]. Several 

attempts have been approached on the fabrication of 3D scaffolds from 

poly(lactic acid) (PLA) [105, 106], poly(lactic-co-glycolic acid) (PLGA) [6, 

107, 108], poly (ɛ-caprolactone) (PCL) [109-112], poly anhydrides [113], 

and poly(phosphazenes) [114]. The incorporation of osteoconductive 

components in these polymers promoted their application in bone tissue 

engineering. Hydrogels fabricated from synthetic, or natural polymers 

possess superior impacts on tissue engineering. The biodegradable 

hydrogels mimic the chemical composition of ECM due to their intrinsic 

biocompatibility and desirable physicochemical characteristics, which guide 

the spatially complex multicellular processes of tissue regeneration [115]. 

The intermolecular interactions between polymer chains have a significant 

effect on their physicochemical and mechanical properties. These 

interactions, as well as chemical stimulus, can form a 3D network by 

crosslinking of polymer chains. The physicochemical associations including 

ionic interactions [116-120], crystallisation [121-124], and self-assembly 

[125-133] induce gelation of polymers upon hydrogen bonding, and van der 

Waals and π- π intermolecular interactions. The limiting factors of these 

physically crosslinked hydrogels are their weak mechanical properties, fast 

dissociation in the physiological condition, and the lack of interconnected 

porosity within their structures [134]. The formation of a covalent bond 

between polymer chains, however, leads to the hydrogels with superior 
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mechanical strength and enhanced degradation profile. In the next session, 

different chemical and photocrosslinking methods to fabricate a hydrogel 

are discussed, briefly  

2.3.2 Hydrogel Fabrication via Chemical Crosslinking  

Chemical stimulus induces gelation of the polymeric solution by forming 

chemical changes in the molecular structure of precursors or by the 

fabrication of covalent bonds in their polymeric systems [135]. These 

covalent interactions include Michael addition, Schiff and click reactions, 

redox-polymerisation, disulphide formation, and enzymatic- or 

photocrosslinking. The schematic of these chemical reactions is shown in 

Scheme  2-1. 
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Scheme  2-1 Scheme of chemical reactions used for covalent crosslinking of polymers 

[136]. 
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Michael Addition 

Michael addition is the 1, 4- addition of nucleophiles to α,β-unsaturated 

electrophiles. The nucleophile components comprised from thiol- and 

amine-functionalised macromeres, whereas ketones or esters with vinyl 

sulfone-, acrylate-, methacrylate-, or methacrylamide functional groups 

have been used as electrophiles [136]. The high efficacy of this gelation 

scheme under aqueous physiological conditions without the formation of 

any side products favours this method for biomedical applications. The 

nucleophilic derivatives of natural polymers including dextran [137], gelatin 

[138-140], hyaluronic acid [141-144] and collagen [145], and synthetic 

polymer such as poly(ethylene glycol) (PEG) [146-148] have been used to 

form a biocompatible hydrogel for tissue engineering or drug delivery 

applications. The thiolated gelatin, for instance, formed a hydrogel in the 

presence of acrylate-derivative of PEG as a crosslinking agent [140]. The 

encapsulation of fibroblasts within these hydrogels enhanced their 

cytoplasmic spreading and proliferation. The nucleophilic derivatives PEG 

were also used to fabricate biocompatible hydrogels for encapsulation of 

biological active agents [149, 150] and chondrocyte cells [151]. Despite the 

fast hydrogel formation using Michael addition, the complex mechanism of 

synthesis using toxic components, and the insufficient mechanical properties 

and degradation profile of resulting hydrogels limited their applications for 

bone tissue engineering. 

Schiff’s Base Reaction 

A Schiff’s base crosslinking is a condensation of an amine functional group 

by an aldehyde group without the use of any catalysts. Glutaraldehyde, for 

instance, has extensively used to crosslink different natural and synthetic 

polymers. Collagen [152, 153], chitosan [154, 155], and gelatin [156], for 

instance, have been crosslinked by glutaraldehyde to form a hydrogel for 

engineering different tissues. The associated problems with a high 

concentration of glutaraldehyde such as heterogeneous crosslinking and the 

intrinsic cytotoxicity have been overcome at low concentration [157]. The 
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chemical modification of polysaccharides with oxidative agents such as 

sodium periodate (NaIO4) to create aldehyde groups is another approach to 

forming a hydrogel with amine-functionalised polymers. The oxidisation of 

dextran [158, 159], alginate [160], and hyaluronic acid [161] formed an 

in situ hydrogel with amine groups of gelatin and chitosan. The external 

stimuli including pH and ionic strength of the solution, and degree of 

oxidisation had a significant impact on gelation rate of these hydrogels 

[162]. Despite the high gelation efficiency of Schiff base in physiological 

condition [163], the in vivo performances of these hydrogels may be altered 

due to the inflammation and calcification of surrounded tissue upon the 

reaction with aldehyde functional groups [164].  

Genipin is a natural-based crosslinking agent showing 10,000 times less 

cytotoxic than glutaraldehyde [165]. The mechanism of protein-crosslinking 

with genipin is not entirely understood [166]. However, it is known that the 

free amine groups of the peptide such as Arg-Gly-Asp (RGD) interact with 

genipin to form a heterocyclic structure [167]. The genipin-crosslinking, 

moreover, is a pH-dependant mechanism that undergoes ring-opening 

polymerisation under basic conditions [168]. At acidic or neutral conditions, 

however, genipin directly reacts with the primary amine functional groups. 

Different natural polymers such as chitosan [169, 170], collagen [171, 172] 

and gelatin [173, 174] have been crosslinked by genipin for tissue 

engineering application. 

Disulphide Formation 

An in situ hydrogel forms upon the formation of disulphide bonds between 

intermolecular chains of polymers with thiol functional groups [175]. The 

crosslinking proceeds through the oxidation of thiol groups at pH above 5 in 

the presence of oxidising agent [176]. The reversible hydrogel of thiolated 

hyaluronic acid, for instance, was fabricated through disulphide crosslinking 

approach in physiological condition [177, 178]. The physicochemical 

properties of hydrogels fabricated through this scheme are highly dependent 

upon the nature of the polymer backbone [179], the degree of oxidisation 
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[180] and the chemistry of oxidising agent [181]. Despite the controllable 

degradation profile of these hydrogels, the complex mechanism of 

crosslinking and the presence of oxidising agent restrict the practical 

application of these hydrogels. 

Click Reaction 

A click reaction is the cycloaddition of azide and alkyne to form a triazole 

ring in the presence of Cu(I) as a catalyst. This approach has a vast range of 

application in biomedical engineering due to its rapid proceeding and high 

conversion rate without side products in physiological condition [182, 183]. 

The orthogonal nature of this strategy, moreover, ensures the absence of 

cross-reactions with other functional groups [134, 184]. Different synthetic 

and natural polymers such as poly(vinyl alcohol) [185], PEG [186-188], 

polypeptide [189], hyaluronic acid [190], and gelatin [191] were converted 

to their azide or acetylene derivatives to form a hydrogel via click reaction. 

The toxicity of the catalyst renders such reactions undesirable for in situ cell 

encapsulation. The residual Cu (I) trapped in the gels during the synthesis 

needs to be extracted thoroughly before the gels can be used for cell culture. 

A copper-free click reaction, therefore, has been developed using 

cyclooctyne derivatives [192]. In this approach, azide and cyclooctyne 

derivatives undergo rapid cycloaddition reactions under physiological 

conditions in the absence of auxiliary reagents [193-195]. A hydrogel with 

enhanced physicochemical and mechanical properties and tuneable gelation 

was fabricated from the functionalised chitosan-PEG complex using copper-

free click chemistry. Despite the possible application of these hydrogels as 

injectable biomaterials [196], the copper-free click chemistry is infancy, and 

further research is required to understand the biological effects of this 

method at the insertion site. 

Redox-polymerisation 

The release of free radicals from redox reactions in an aqueous solution can 

trigger the crosslinking of polymers with acrylate or methacrylate functional 

groups. This approach is initiated by the addition of ammonium persulphate 
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(APS) to tetramethylethylenediamine (TMEDA) [197] or ascorbic acid 

(AA) solutions [198]. The redox-polymerisation has been used to fabricate 

biocompatible hydrogels with enhanced mechanical properties and 

degradation profiles. For instance, synthetic polymers such as 

poly(propylene fumarate-co-ethylene glycol) [199], oligo(poly(ethylene 

glycol)fumarate) [200] and poly(lactic-ethylene oxide fumarate) [201], and 

acrylate-derivatives of natural polymers including dextran [202] and 

chitosan [203] formed biodegradable hydrogels for different biomedical 

applications. Moreover, the encapsulation of cytocompatible moieties such 

as growth factors [204], drugs [205], and cells [206] within their 3D 

structures extensively enhanced their biomedical application. Despite the 

biologically benign process of redox-polymerisation, the residue of free 

radical ions is an issue for biomedical applications. 

Enzymatic-crosslinking 

The selective cleavage or ligation of enzymes to a particular bond promotes 

their application as a crosslinking agent without interfering with other 

chemical moieties of the polymer. Different enzymatic reactions including 

horseradish peroxidase [207], transglutaminase [208], phosphatase [209], 

tyrosinase [210], themolysin [211], α-galactosidase [212], and esterase 

[213] have been used to form a hydrogel. Horseradish peroxidase (HRP) is 

extensively used to prepare an enzymatic hydrogel. A solution of HRP in 

H2O2 is added to an aqueous solution of polymers containing tyrosine or L-

3,4-dihydroxyphenylalanine (DOPA) to catalyse their oxidative coupling 

reactions. The peptide-functionalised derivatives of PEG [214], chitosan 

[215], dextran [207], gelatin [216], heparin [217], and hyaluronic acid [218] 

were used for the substrate of HRP. The incorporation of HRP/H2O2 to 

these solutions rapidly formed a hydrogel by oxidative coupling of their 

peptides. A tyrosine-modified solution of hyaluronic acid, for instance, was 

subcutaneously injected into the rats to form an enzymatically crosslinked 

hydrogel in less than 20 s [219]. The concentration of hydrogen peroxide 

and enzyme have significant impacts on the gelation time and 

physicochemical and mechanical properties of these hydrogels [220].  
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Transglutaminase (TG) is another enzyme that catalyses a calcium-

dependent acyl transfer reaction between amines and ɣ-glutaminyl 

functional groups. The presence of polypeptides containing lysine and 

polymers with glutamine groups is vital for these reactions [221]. A 

glutamine-modified PEG, for instance, was enzymatically crosslinked with 

poly(lysine-co-phenylalanine) in an aqueous solution of TG [222]. Gelatin 

is a biopolymer with a sequence of lysine residues and glutamine functional 

groups. A cell-encapsulated hydrogel, therefore, was fabricated by 

enzymatic crosslinking of gelatin in the presence of TG [223]. Despite the 

high selectivity of this crosslinking method, the presence of unreacted 

enzymes acts as an impurity and has adverse impacts on biocompatibility of 

the system through denaturing of hydrogel as well as the encapsulated 

compound [136]. 

Photocrosslinking 

Photocrosslinking provides some economic advantages over other chemical 

crosslinking methods including fast hydrogel formation in physiological 

condition, organic-solvent free formulation as well as the low cost [224]. 

Typically, an aqueous solution of macromer goes through short exposure of 

visible light [225, 226], ultraviolet (UV) [227, 228], or laser [229, 230] in 

the presence of a light-sensitive component called as photoinitiator. The 

efficiency of this approach is dependent upon the nature of photoinitiator, 

beam wavelength, and the macromer. The chemistry of photoinitiator 

determined the specific parameters of the reaction such as the rate, spectral 

sensitivity, light resistance, and the stability of materials under storage 

conditions [224]. Two types of photoinitiators exist to crosslink the 

macromer. The first type of photoinitiators generates the active radicals with 

the capacity of initiating the radical polymerisation. The α-

hydroxyalkylphenones derivatives such as 4-(2-hydroxyethylethoxy)-

phenyl–(2-hydroxy-2-methyl propyl) ketone (Irgacure® 2959) are extremely 

reactive and form benzoyl and alkyl radicals upon UV-irradiation. The 

second type of photoinitiators, however, requires a tertiary amine molecule 

as a co-initiator to abstract the hydrogen. Eosin, for instance, reacts with 
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triethanolamine as a co-initiator to form intermediary species. The photo-

initiation continues with an electron and hydrogen transfer resulting in the 

radical formation [231].  

Different natural and synthetic polymers have been converted to their 

acrylate-derivatives to form a photocrosslinkable hydrogel. Natural 

polymers such as alginate [232], chitosan [233], chondroitin sulphate [234], 

gelatin [235], heparin [236], hyaluronic acid [237], starch [238], and 

tropoelastin [239, 240] were widely used to fabricate a photocrosslinkable 

hydrogel. Methacrylated hyaluronic acid, for instance, forms a 

photocrosslinkable hydrogel under laser [229] or UV irradiation [237]. The 

laser crosslinking process was initiated in the presence of 

eosin/triethanolamine using an argon laser at 514 nm. Upon laser exposure, 

eosin is excited to the triplet state, and triethanolamine donates an electron 

to generate a radical anion of eosin and a radical cation of ethanolamine. 

These free radicals polymerise an aqueous solution of functionalised-

hyaluronic acid [229].  

The bioprintable hydrogel, on the other hand, was designed by UV-

irradiation of methacrylate-derivatives of gelatin and hyaluronic acid in the 

presence of acetophenone as a photoinitiator [237]. The various cell-laden 

structures for engineering the different tissues were fabricated from the 

methacrylated gelatin (GelMA) [241-243]. The free amine groups of gelatin 

were converted to their methacrylate derivatives to form a hydrogel in the 

presence of Irgacure as a photoinitiator [244-246]. Despite the promising 

biological behaviour of these naturally derived hydrogels, their compressive 

modulus was inferior and varied in the range of 0.5 kPa to 100 kPa [230, 

234, 247]. 

PEG-based polymers were also modified to their acrylate derivatives to 

form a photocrosslinkable hydrogel. Despite the favourable 

physicochemical and mechanical properties of these hydrogels [248-250], 

the lack of cell motifs in these hydrogels restricts their biomedical 

applications. This drawback was addressed by incorporation of polypeptides 

such as RGD [251, 252], growth factors [253], and naturally derived 
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polymers [254-257]. A cell-laden hydrogel, for instance, was fabricated by 

photocrosslinking of an MSC-suspended solution of hyaluronic acid and 

PEG diacrylate (PEGDA) in the presence of transforming growth factor 

(TGF-β3) [253]. After subcutaneous injection of the suspension into mice, 

their skin was exposed to UV radiation to facilitate in situ hydrogel 

formation. The stem cells were chondrogenically differentiated and 

expressed cartilage-specific genes over 3-weeks of implantation. A micro-

patterned hydrogel, moreover, was fabricated upon the photocrosslinking of 

an aqueous solution of PLEOF-PEGDA incorporated with GelMA [254]. 

While the physical stability and mechanical properties of hydrogels relied 

on the synthetic polymers, the presence of GelMA promoted the 

proliferation of encapsulated osteoblasts. Despite the extensive 

advantageous of photocrosslinking for hydrogel formation and micro-

patterning, UV-induced polymerisation might have negative impacts on the 

encapsulated cells, drugs or growth factors [258]. The proper selection of 

photoinitiator and beam wavelength could minimise these drawbacks. 

2.4 Ceramic Scaffolds for Bone Tissue Engineering 

Bioceramic is a solid compound comprised of inorganic and non-metallic 

elements formed by the application of heat and pressure [259]. The intrinsic 

osteoconductive behaviours and high mechanical strength of these class of 

materials introduce them as a proper candidate for tissue engineering [260]. 

The slow degradability of these materials and their osteoinductivity, 

however, must be modified prior to their application as a bone scaffold. The 

fabrication of porous structures with interconnected pores [261] or the 

incorporation of polymers into bioceramic structure [262], for instance, are 

some attempts to enhance their degradation profile. The osteoinductivity of 

bioceramics, moreover, is modified using calcium phosphate ceramics. 

These bioceramics demonstrate unique biological interactions towards their 

physiological environment upon inducing of calcification and promoting the 

osteoinductivity [54]. 
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2.4.1 Calcium Phosphate Ceramics 

Calcium phosphate ceramics (CPCs) is extensively used in the forms of 

tricalcium phosphate (β-TCP, Ca3[PO4]2) and hydroxyapatite (HAp, 

Ca10[PO4]6[OH]2) [263]. Despite the similar elemental composition of HAp 

and β-TCP, their physicochemical properties are significantly different. β-

TCP, for instance, exhibits an adversely high dissolution rate with an 

immunologic response [264]. On the other hand, HAp possesses a 

crystalline structure with limited in vivo degradation profile [265]. This 

variation is a result of dissimilarity in the density and crystalline structure of 

HAp and β-TCP due to their different fabrication process.  

The sintering process of CPCs carries out in the range of 800°C to 1500°C 

and the partial pressure of water in this atmosphere has a significant impact 

on the formation of final ceramics. While the β-TCP is fabricated upon 

thermal decomposition, the presence of water promotes the rate of phase 

transition of β-TCP to HAp [266, 267]. The wet fabrication process such as 

precipitation, hydrothermal and hydrolysis of other CPCs are used to 

fabricate HAp [268]. Despite the attractive feature of these materials, their 

clinical applications were limited to non-load bearing applications due to 

their intrinsic brittleness [269]. Different approaches including the ionic-

substitution [270], and the formation of polymer-ceramic composites [17, 

271] have been attempted to overcome these shortfalls. 

The mineral component of bone is similar to HAp but contains other ions in 

the composition that play a significant role in the biological behaviour of 

bone. The ionic incorporation into the structure of β-TCP and HAp, 

therefore, can regulate their lattice structure, microstructure, crystallinity, 

and dissolution rate of CaPs [272, 273]. The ionic incorporation of fluoride 

[274], magnesium [275], manganese [276], silver [277], strontium [278], 

and zinc [279], within CPCs had significant impacts on the biological 

behaviour of these bioceramics. The incorporation of silicon into nano-

calcium phosphates, for instance, facilitate the adhesion, spreading, growth 

and proliferation of osteoblasts on these ceramic-based scaffolds [280]. 
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2.4.2 Bioactive glass 

Bioactive glass (BG) is a class of ceramics, which regulates tissue 

metabolism through stimulating the osteogenic differentiation [5-7], 

enhancing the pro-angiogenesis of endothelial cells [8-10], and modulating 

the intracellular interactions [11-14]. Silicon as the essential component of 

BG attributes to the collagen formation [281] and calcification of bone 

tissue [282]. The incorporation of other ionic components such as calcium 

[283, 284], phosphorous [20, 285], strontium [286, 287], and borate [288, 

289] enhances the therapeutic properties of BG towards a particular 

biological response [290]. 

Bioactive glass is fabricated through the melt-quenching process [291-294] 

or sol-gel method [295-298]. In the melt-quenching process, the melted 

mixture of alkali or alkali earth salts in a predetermined composition is 

quenched to form a glass with a disordered structure [299]. This structure is 

further milled to produce a BG with desired particle size [300]. Despite the 

basic nature of the melt-quenching process, the high processing temperature, 

difficult shaping process, and the high risk of contamination may have 

adverse impacts on the composition and bioactivity of BG. These issues 

could overcome by the sol-gel method, which comprised from hydrolysis 

and condensation reactions. The mechanism of the sol-gel method would be 

discussed at the end of this chapter. 

2.4.3 Modification of Ceramic Structure by Polymers 

The incorporation of polymeric components in the structure of bioceramics 

can enhance their mechanical properties and degradation profile. Several 

attempts such as foam replica method [301, 302] and polymer-ceramic 

composite formation [303-305] have been attempted to design a scaffold for 

bone tissue engineering.  

Foam replica method is based on the impregnation of an aqueous suspension 

of bioceramic in porous polymeric foam. After totally filling the pores, the 

excess suspension is removed from the impregnated foam upon passing 

through a roller or centrifuging [306]. The foam is then carefully heated at 
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temperatures between 300ºC and 800ºC for slow decomposition and 

diffusion into polymeric template [307]. The porous scaffold is then 

densified upon sintering at temperatures ranging from 1100ºC to 1700ºC to 

produce macro-porous structures with an interconnected pores [308, 309]. 

The mechanical strength of these structures, however, can be degraded by 

the formation of cracked struts during the decomposition of the foam [301]. 

Nanocomposite hydrogels are defined as an organic-inorganic composites 

crosslinked in the presence of nanoparticles [310-314]. The presence of the 

inorganic compound in theses hydrogels enhance their physicochemical and 

biological behaviours [315]. An injectable nanocomposite hydrogel, for 

instance, was fabricated from PEG and nano-HAp [316]. This composite 

possessed elastic mechanical properties with promoted biological behaviour. 

Despite the extensive application of polymer-ceramic composites, the 

heterogeneous distribution of ceramic nanoparticles within the polymer 

network may have a negative impact on their in vivo bone tissue engineering 

application. Fabrication of organic-inorganic hybrid could enhance the 

homogeneous distribution of mineralised phases within the polymeric 

scaffold.  

2.5 Organic-Inorganic Hybrids 

The first classification of organic-inorganic hybrid materials dates back to 

the beginning of the 1990s when Novak introduced them in five distinct 

types [317]. The chemical structure of the organic component (i.e., polymer 

or monomer) and the chemical interaction between organic and inorganic 

phases are their main distinctive criteria. The first class of organic-inorganic 

hybrid comprises from embedding a polymer within an inorganic precursor. 

In these hybrids, an interpenetrated network of organic-inorganic 

compounds is formed via intermolecular forces such as van der Waals, 

whereas, in type II, a polymeric is covalently bonded to the inorganic 

network structure. 

The second class of hybrids is fabricated from the simultaneous 

interpenetration of organic monomers within the inorganic precursors. The 
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presence of covalent bond between these two phases converts type III 

materials to type IV hybrid [318-324]. The last type of hybrids, also known 

as a non-shrinking material, is fabricated through mutual polymerisation of 

organic-inorganic precursors in the presence of polymerisable catalysts and 

solvents [325, 326]. The presence of the catalyst, organic solvents, and 

monomers for these simultaneously formed hybrids are their major burdens 

for their biomedical applications.  

The organic-inorganic hybrids possess broad biomedical applications. 

Scaffold fabrication [259, 327], coating the surface of implants [328-330], 

constructing the optical biosensor [331, 332], and encapsulation of 

biological components [333-338] are few examples of their applications in 

biomedical engineering. These biomaterials are commonly fabricated from 

type I or II hybrids through the sol-gel method. The presence of covalent 

bond between components has a significant effect on their properties. The 

applications of these hybrids (type I and II) in bone tissue engineering are 

discussed in the following sections. In addition, the mechanism of the sol-

gel method would be discussed at the end of this chapter. 

2.5.1 The Interpenetration of Polymer within Inorganic Network 

Type I hybrid is generated from the interpenetration of a polymer within an 

inorganic network using the sol-gel method. These dissimilar phases 

fabricate macroscopically uniform materials while their nanostructures are 

entirely separated [339]. It is crucial to optimise the conditions of the 

fabrication process to prevent the polymer phase separation during gel 

formation and drying processes. The selection of a suitable solvent for 

dissolving both polymer and inorganic phase is a crucial in the formation of 

hybrids to eradicate phase separation and insufficient mechanical integrity 

[340]. 

Solvents such as water, alcohols, hydrochloric acid, and formic acid are 

used to prepare organic-inorganic hybrids. The presence of liberated 

methanol or ethanol during the gel formation, however, can modify the 

solvent properties. A polymer that is initially soluble in the solvent may 
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precipitate at later stages of gel formation due to the bulk conversion of 

solvent from polar aprotic to polar protic [317]. Poly(vinyl pyrrolidone) 

(PVP), for instance, formed a homogenous solution with formic acid and 

tetraethyl orthosilicate (TEOS) mixture. The irreversible polymer 

precipitation, however, occurred upon release of ethanol into the reaction 

prior to the condensation of the silica network [317]. The homogenous 

hybrid of PVP-TEOS, on the other hand, was formed in the presence of 

isopropyl alcohol [341] as a solvent. The chemical structure of the polymer 

and its feasible interaction with alcohols, therefore, is critical. 

The chemical structure of the organic phase is a critical factor in the 

formation of the type I hybrids. The presence of basic functional groups, 

such as amine and pyridine, makes the organic phase soluble in the acidic 

catalysed solution of silica during the condensation and drying processes 

[342]. On the other hand, the presence of hydrogen bond acceptor groups in 

the backbone of the polymer enhances the formation of van der Waals 

interactions between polymer and inorganic phase [343]. Different natural 

and synthetic polymers were incorporated into bioactive glass (BG) 

precursors to form a hybrid are discussed in detail. 

Interpenetration of Natural Polymers within the Inorganic Network 

The first application of the interpenetrated network of organic-inorganic 

compounds in tissue engineering dated back to the end of the 1990s. An 

ethanol-catalysed silica solution was added to an acidic solution of chitosan 

to form an artificial skin [344]. The presence of the silica network had 

significant effects on oxygen permeation and also a proliferation of L929 

fibroblasts on these membranes [345]. These outcomes encouraged 

researchers to develop a protein-silica complex for tissue engineering 

applications. For instance, an interpenetrated network of silica and collagen 

was prepared for bone tissue engineering [346-348]. The interpenetrated 

hybrid with 60 wt% collagen, for instance, displayed a splitting tensile 

strength of 20 MPa. These monoliths, however, demonstrated brittle 

structures and broke at 6% compression strain [348]. Gelatin as a 
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disintegrated derivative of collagen is extensively used for fabricating of 

organic-inorganic complex [24, 25]. The gelatin-silica microgels, for 

instance, was fabricated to protect the encapsulated cardiac side population 

cells within their structure [349]. The silica hybridisation significantly 

enhanced cell proliferation. These complexes with a young modulus of 

1.87 kPa, however, were not suitable for hard tissue engineering. 

Interpenetration of Synthetic Polymers within the Inorganic Network  

Synthetic polymers are the favourite class of materials due to their tuneable 

and predictable physicochemical and mechanical properties upon the 

modification of their functional groups [350]. The presence of siloxane 

functional group in the backbone of poly(dimethylsiloxane) (PDMS), for 

instance, made this biocompatible polymer as a first candidate for 

fabrication of a bioactive organic-inorganic hybrid [351-353]. Despite the 

promising bioactivity and mechanical performances of these interpenetrated 

networks [354, 355], their slow degradation profiles restrict their 

applications in tissue engineering. More recently, a porous and crack-free 

monolith was fabricated from PDMS-TEOS hybrids incorporated with PCL 

pellets for bone repair applications [356]. The mechanical properties and 

degradation profile of these monoliths, however, were not evaluated. 

Poly(ɛ-caprolactone) is a biocompatible and biodegradable aliphatic 

polyester with an extensive range of applications in the biomedical 

application [357-362]. The incorporation of metal oxide precursors 

including titanium oxide [363], zirconium oxide [364], and silica [365] 

within PCL solutions formed bioactive interpenetrated networks for tissue 

engineering [366] and drug delivery systems [367]. The hydrolysis of these 

metal oxide precursors yielded to the formation of hydroxyl groups. Further 

formation of hydrogen bonds between these hydroxyl groups with carbonyl 

functional groups of PCL enhanced the compressive modulus of hybrids up 

to 310 MPa [368] and improved their angiogenesis and osteogenesis 

properties [369]. These brittle monoliths, however, tolerated a very limited 
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range of compression, and they lost their physical integrities under 10.8 % 

compressive strain [370].  

Poly(vinyl alcohol) (PVA) is a water-soluble poly(hydroxylate) with 

thermoplastic features [371-373]. The presence of hydroxyl groups in the 

structure of this polymer facilitates the formation of interpenetrated network 

with inorganic compounds [374]. A solution of BG, for instance, was 

incorporated within a PVA solution to form a cytocompatible construct with 

a compressive modulus of 5.9 MPa [375]. This hybrid, however, 

demonstrated a fast dissolution profile, and brittle structure with an ultimate 

compressive strain of 5 %. These shortfalls were overcome by chemical 

crosslinking of the organic phase [376]. The presence of glutaraldehyde as a 

crosslinking agent enhanced their ultimate compressive strain 3-fold [377]. 

The degradation profile of these cytocompatible hybrids was also modified 

to surface erosion upon chemical crosslinking [378].  

Despite the significant enhancement of physicochemical and mechanical 

properties of the hybrids, these interpenetrated networks are formed through 

hydrogen bond formation between the residual hydroxyls of silica and 

polymer molecules. These interactions, however, are weak and unstable in 

aqueous media [29]. These drawbacks could be addressed by covalent bond 

formation between the polymer and the inorganic components. In the next 

session, the application of covalently bonded organic-inorganic hybrids in 

tissue engineering is reviewed. 

2.5.2 The Fabrication of Covalently Bonded Organic-Inorganic 

Hybrids 

The second type of hybrids is formed through the covalent bonding of a 

polymer into an inorganic compound. Prior to hybridisation, the preformed 

polymer is converted to its alkoxysilyl derivative (i.e., R`-C-Si-(OR)3) to 

form a covalent bridge with a metal oxide component. The fabricated alkyl 

carbon-silicon is an inert bond toward the hydrolysis and does not change 

the rate of alkoxides hydrolysis from the silicon centre. The pendant silyl 

group, therefore, is incorporated into the inorganic structure to form a 
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covalently bonded organic-inorganic hybrid. The alkoxysilylation of 

polymer carries out in two different approaches. In the first approach, the 

hydrosilation reaction takes place through the terminal alkene functional 

groups of the polymer in the presence of platinum as a catalyst [379, 380]. 

The presence of toxic organic solvents and the complicated nature of this 

approach restrict the application of these polycarbosilanes in tissue 

engineering.  

In the second approach for the fabrication of organic-inorganic hybrids, an 

organosilane coupling agent makes a covalent bridge between a polymer 

and an inorganic network [75, 381]. The organosilane coupling agent is a 

heterobifunctional compound that forms a covalent bond with a polymer 

through its functional organic terminal. The other silane terminal, however, 

goes through hydrolysis and condensation reactions with the inorganic 

phase [382]. The chemical interaction of cellulose acetate and 3-

(isocyanatopropyl)-trimethoxysilane as a coupling agent, for instance, forms 

cellulose urethane with pendant alkoxysilane groups. The hydrolysis and 

further condensation of these pendant groups with hydrolysed TEOS 

solution turn to a covalently bonded cellulose-silica hybrid with enhanced 

mechanical performances [383-385].  

Different natural and synthetic polymers were converted to their 

organosilane derivatives to form a covalently bonded hybrid for biomedical 

application [386]. A polyelectrolyte complex, for instance, was fabricated 

by the combination of organosilane derivative of alginate and tetramethyl 

orthosilicate (TMOS). A modified derivative of alginate by 3-

(aminopropyl)-trimethoxysilane (APTMS) formed a hydrogel in the 

presence of calcium chloride as a crosslinking agent. The resulting 

microbeads were then immersed into an n-hexane solution of TMOS to 

covalently coat with silica [386]. The encapsulation of pancreas islets of 

Langerhans into these microbeads followed by in vivo transplantation into 

mice confirmed their feasible application as an artificial pancreas [387]. The 

presence of metal oxide in organic-inorganic hybrid displays an intrinsic 

bioactivity that is preferable for bone tissue engineering applications. To 
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this end, different natural and synthetic polymers were covalently bonded to 

the silica precursors. The physicochemical properties and mechanical 

performance of these hybrids are presented in Table  2-1.  
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Table  2-1 The physicochemical and mechanical properties of covalently bonded 

hybrids for bone tissue engineering 

Organic 

Phase 

Hybrid 

Formation*;†;‡ 

Physicochemical and Mechanical 

Propertiesϸ 

Ref 

Chitosan I;-;A&B ESR= 0.50 mg/mg; E= 4.5 MPa; 

σ= 20 MPa; ɛ= 5% 

[388-391] 

Collagen I&II;-;C&D - [392, 393] 

Gelatin I;-;A&B&E 

I;1&2;A&B 

I;2;F 

I;3;B 

I;4;F 

ESR= 7.38 mg/mg; E=1.94MPa; ɛ= 17.34% 

- 

E= 331-1270 kPa; ɛ= 5.2-8.88 % 

σ= 4.3 MPa, ESR= 0.15 mg/mg 

[394-396] 

[397-399] 

[400, 401] 

[402] 

[403] 

PCL III;2;G - [404] 

PDMEMA IV;5;B&F H= 527 MPa [405-407] 

PGA I;6;F&H H= 520 MPa; E= 30-40 MPa; σ= 3-10 MPa; 

ɛ= 15-32% 

[408-411] 

PLLA II;3&7;B&F - [412, 413] 

PMMA IV;2;I H= 3.14 MPa; E= 6 MPa; ɛ= 14% [414] 
*Organosilane coupling agent: I: (3-Glycidoxypropyl) trimethoxysilane; II: (3-
Aminopropyl) triethoxysilane; III: (3-Isocyanatopropyl) triethoxysilane; IV: (3-
Methacryloxypropyl) trimethoxysilane. 
†Inorganic Precursor: 1. Calcium nitrate; 2. Tetraethyl orthosilicate; 3. Tetraethyl 
orthosilicate-Hydroxyapatite; 4. Tetramethyl orthosilicate; 5. Zirconium peroxide; 6. 
Tetraethyl orthosilicate-Calcium nitrate; 7. Calcium carbonate. 
‡Biological evaluations: A: MG63; B: MC3T3-E1; C. L-929; D: C2C12; E: Neonatal 
olfactory bulb ensheathing cell; F: Mesenchymal stem cell; G: in vitro Mesenchymal stem 
cell and in vivo study in Rabbit; H: Saos-2; I: in vitro primary osteoblast and in vivo study 
in Mice. 
ϸESR: Equilibrium swelling ratio; H: Hardness; E: Young modulus; σ: Ultimate stress; ε: 
Ultimate strain. 
Materials: PCL: Poly(ɛ-caprolactone); PDMEMA: Poly((dimethylamino) 
ethylmethacrylate); PGA: Poly(ɣ-glutamic acid); PLLA: Poly(L-lactic acid); PMMA: 
Poly(methyl methacrylate). 

Formation of Covalent Bonding between Natural Polymers and 

Inorganic Precursors 

The natural bone comprises from a homogeneous hybrid of collagen and 

hydroxyapatite [415, 416]. The formation of collagen-inorganic complex, 

therefore, is fascinating to mimic the bone structure [22, 417]. Despite the 

extensive applications of collagen-hydroxyapatite composites [418-421], the 

collagen-inorganic hybrids were limited to the organosilation of collagen in 

the absence of inorganic precursors [392, 393]. The hydrogel formation 
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from a chemical modified collagen with (3-aminopropyl) triethoxysilane 

(APTES), for instance, displayed a 60-fold enhancement in their rheological 

properties [392]. The organosilation with (3-glycidoxypropyl) 

trimethoxysilane (GPTMS), moreover, enhanced the adhesion and 

proliferation of osteoblast cells on the surface of alkoxysilyl derivatives of 

collagen [393]. Chitosan is another biopolymer that chemically modified by 

GPTMS to form a hybrid [391]. This organosilation process yielded to the 

fabrication of porous structures with enhanced cytocompatibility towards 

the osteoblast progenitor cells [388-390]. 

Gelatin is another natural polymer that was hybridised with organosilane 

components. A condensed structure of gelatin, for instance, was fabricated 

in the presence of GPTMS [422]. In this process, the epoxy functional group 

of GPTMS grafted to the amino acid groups of gelatin. The self-

condensation of activated silane groups, moreover, acted as a crosslinking 

agent to form a hydrogel. Despite the significant enhancement of the 

mechanical performances, GPTMS crosslinking remarkably decreased the 

physicochemical properties and biological behaviours of these hydrogels 

compared to the other crosslinking methods [394, 395]. The inorganic 

proportion of these hybrids, moreover, could not be varied independently of 

the organosilane coupling agent. This restriction was addressed by the 

incorporation of different inorganic compounds such as calcium nitrate 

[398, 399, 423], TEOS [397, 401, 402], and TMOS [403] into the 

alkoxysilyl derivatives of gelatin. A gelatin-silica hybrid with tailorable 

physicochemical properties and mechanical performances was fabricated by 

incorporation of TEOS solution into the pre-functionalised solution of 

gelatin [400, 401]. The molecular weight of gelatin and the degree of 

organosilation were paramount factors to mimic the physicochemical and 

mechanical properties of these cytocompatible hybrids for an extensive 

range of applications [400, 401]. 

Poly(γ-glutamic acid) (PGA) is a biocompatible, natural-based polymer with 

a controllable profile of degradation. The sequence of glutamic acid residues 

presents in the collagen fibrils of bone and plays a significant role in the 
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nucleation of hydroxyapatite [424]. A bioactive hybrid of PGA and TEOS 

with an enhanced degree of cell proliferation was fabricated in the presence 

of GPTMS as a coupling agent [408]. The incorporation of different calcium 

sources into the inorganic phase of these hybrids, moreover, had a 

significant effect on their mechanical performances and degradation profiles 

[409, 410]. The ultimate compressive strain of these hybrids, for instance, 

was tuned in the range of 15-32 % upon the addition of different 

concentrations of calcium chloride [409]. Despite the significant 

improvements in the mechanical performance of hybrids, the presence of 

organic solvents in the fabrication process and restricting the encapsulating 

of biological motifs are the main drawbacks of these hybrids. 

Formation of Covalent Bonding between Synthetic Polymers and 

Inorganic Precursors 

The fabrication of organic-inorganic hybrids from synthetic polymers has a 

vast application in tissue engineering. PCL, for instance, was chemically 

modified in the presence of (3-isocyanatopropyl) triethoxysilane to form a 

covalent bond with silica [425-430]. The incorporation of MSC cells within 

these hybrids displayed a significant enhancement on their in vivo 

osteoconductivity in rabbit [404]. The organic-inorganic hybrids were also 

fabricated from the APTES-functionalised poly(L-lactic acid) in the 

presence of different bioactive glass solutions [412, 413]. The improved 

bioactivity of these hybrids in addition to the enhancement of cell 

proliferation introduced them as suitable candidates for bone tissue 

engineering.  

Poly(alkyl methacrylate)s such as poly(methyl methacrylate) (PMMA) and 

poly((dimethylamino) ethylmethacrylate) (PDMAEMA) are the other 

examples of synthetic polymers used for fabrication of organic-inorganic 

hybrids. The presence of methacrylate functional group in the backbone of 

these polymers facilitates the organosilation reaction in the presence of 

methacryloxy-possessed coupling agents. For instance, (3-

methacryloxypropyl) trimethoxysilane as an organosilane coupling agent 
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functionalised PMMA [431] and PDMAEMA [407] polymers prior to 

hybridisation. The addition of silica [414] or zirconia [405-407] into 

respectively PMMA and PDMAEMA solutions yielded to bioactive hybrids 

with enhanced mechanical performance and cell proliferation. The polymer-

hybridisation has extensive applications in bone tissue engineering. 

Regardless their natures (i.e. type I or II), these organic-inorganic hybrids 

are fabricated through sol-gel method. The chemistry of this approach is 

described in the next session.  

2.5.3 The Mechanism of Sol-Gel Process 

A homogeneous organic-inorganic hybrid is fabricated through the mild 

conditions of the sol-gel method. This approach is based on the hydrolysis 

and condensation reactions of an organosilane precursor in an aqueous 

solution of polymer [19]. The presence of polymer solution does not 

interfere with hydrolysis and condensation of an inorganic compound. In 

this session, therefore, the mechanism of a sol-gel method for a pure 

inorganic compound is reviewed in detail.  

In the first stage of the sol-gel process, the tetraalkyl orthosilicate as a 

precursor of BG goes through a hydrolysis reaction. The fabricated sol is a 

colloidal suspension of nanoparticles (size 1-100 nm) in an aqueous media 

supplemented with an acidic or basic catalyst. The condensation of these 

particles forms an interconnected network of submicron pores. This rigid 

network is converted into the gel structure in the second stage of the sol-gel 

process [432]. The physicochemical properties of the resulting hybrids 

depend upon the chemical composition of the catalyst, reactivity of 

inorganic compounds and the rates of hydrolysis and condensation 

reactions. The basic catalysed hybridisation, for instance, leads to the 

formation of multi-branched clusters [433]. The highly ramified structure is 

formed in the presence of acidic catalysts [434]. At low pH, moreover, the 

rate of hydrolysis is fast relative to condensation while using the basic 

catalyst reverses these relative rates and results in the formation of colloidal 

particles. The difference in cluster formation is also due to the higher 
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solubility of silicon oxide in alkaline media that enhances their inter-linking 

compared to acidic media [317]. 

Regardless of the chemical composition of the catalyst, the sol-gel process 

is a nucleophilic substitution reaction and comprises from hydrolysis and 

condensation reactions. The partial hydrolysis of tetraalkyl orthosilicate in 

the presence of various catalysts, as shown in Scheme  2-2, forms different 

silanol functional groups. 

 

Scheme  2-2 The schematic of acid- (A) and base-catalysed (B) hydrolysis reactions of 

silicate-based BG in the sol-gel process [19]. 

The condensation of these partially hydrolysed intermediates, as shown in 

Scheme  2-3, forms bridging oxygen and liberates water, ethanol, or 

methanol. These hydrolysis and condensation reactions are initiated at 

different sites of the solution with complicated kinetics. When a sufficient 

number of interconnected siloxane is formed in a particular region; their 

cooperative interactions turn to colloidal particles and form a 3D network of 

gel over time.  

A

B
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Scheme  2-3 The schematic of acid- (A) and base-catalysed (B) condensation reactions 

of silicate-based BG in the sol-gel process [19]. 

Following the gel formation, the condensed network goes through an ageing 

process to increasing the degree of condensation. The resulting materials 

then expulse the liquid phase, in the process called syneresis [435]. This 

drying process effectively prevents the formation of a 3D to the tendency of 

the hybrid network to shrink, crack and shatter [436, 437]. The large 

capillary forces generated within the pores of hybrid contribute to the drying 

stresses and yield to the shrinking and cracking of hybrid networks. The 

shattering, on the other hand, attributes to the solvent evaporation via either 

opening the reaction vessel at the ambient temperature or by placing the 

sample under mild vacuum [317]. These unfavourable side effects, however, 

can be minimised in different ways such as the controlled drying of a hybrid 

over the period of weeks or months. The addition of the pre-fabricated silica 

seeds during the sol-gel process, lyophilisation of the hybrid, the use of 

surfactant, control of drying step, and the presence of chemical additives are 
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the other approaches that can be used to increase the average pore size of 

condensed network and prevent the formation of cracks [438, 439]. Despite 

the formation of crack-free monoliths, the structure of the hybrid is still 

extensively shrunk (50-70 % of volume fraction) due to the presence of 

abovementioned capillary forces [317]. Therefore, it is critical to developing 

a new approach to addressing this issue and fabricating an organic-inorganic 

hybrid with enhanced physicochemical properties and mechanical 

performance. 

2.6 Summary 

This chapter described the demand for a new therapeutic approach to 

regenerating the bone. The current bone treatment techniques are entangled 

with several complications such as a donor site morbidity, disease 

infections, and deficient supply. Tissue engineering as a new approach was 

considered to overcome these burdens and regenerate bone structure. 

Among different approaches for bone regeneration, nanocomposite 

hydrogels have high potential to mimic the chemical composition of bone. 

The heterogeneous distribution of inorganic compound may have an adverse 

impact on biological behaviours of these hydrogels. This shortfall might be 

overcome by fabrication of organic-inorganic hybrid hydrogels. This 

approach, however, has not been exploited for bone tissue engineering. 

Different organic-inorganic hybrids with enhanced mechanical properties 

and bioactivity have been developed to mimic the bone structure. These 

biomaterials were fabricated through sol-gel method to distribute the 

bioactive glass homogeneously within the polymer phase. Different aqueous 

solutions of natural or synthetic polymers have been incorporated into 

hydrolysed solutions of bioactive glass to form a synergistic hybrid upon the 

condensation of bioactive glass. In particular, a collagen-inorganic hybrid 

could be the most favourable biomaterials for musculoskeletal tissue 

engineering, as these components comprise the chemical structure of bone. 

However, the limited mechanical properties of these hybrids may evoke 

severe clinical complications. Despite the nature of organic and inorganic 

components, the complete condensation of the inorganic phase carries out 
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through drying and aging steps and yields to the formation of brittle 

structures. The fabrication of two-dimensional monolith with very limited 

water uptake capacity is their main drawbacks for bone tissue engineering. 

2.7 Aim and Objectives 

The aim of this study was to develop a unique structure for reconstruction of 

bone and its interface with soft tissues. It was hypothesised that the 

fabrication of an organic-inorganic hybrid with elastic mechanical 

performance and high swelling ratio might enhance the proliferation of bone 

progenitor cells. To achieve this objective, a covalently bonded hybrid of 

gelatin-bioactive glass was fabricated through the sol-gel method. It was 

hypothesised that polymer-crosslinking could control the condensation of 

the inorganic phase and prevent the formation of brittle structure. In 

addition, it was anticipated that the addition of the secondary crosslinking 

agent might improve the mechanical performance of hydrogels without 

interfering with hybridisation. The effect of variables such as chemical 

structure and composition of hybrids on their physicochemical properties, 

mechanical performance, degradation profile and biological performance 

were examined. 

To achieve abovementioned objectives, it was planned to: (1) control the 

over condensation of inorganic phases in polymer-bioactive glass hybrids, 

(2) investigate the effect of covalent bond formation between gelatin and 

bioactive glass through organosilane coupling agents, (3) evaluate the 

impact of secondary polymer crosslinking on the physicochemical and 

mechanical properties of hybrid hydrogels, (4) study the impact of 

incubation media on the degradation profile and the mechanical 

performance of hybrid hydrogels, (5) conduct in vitro bioactivity and 

biological activity of these hybrid hydrogels, and (6) conduct animal study 

to assess their cytocompatibility, biological and biodegradable properties for 

bone repair. 



 

 

Chapter 3. Materials and 

Methods
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3.1 Introduction 

The intrinsic brittleness of pure bioactive glasses (BG) significantly restricts 

their biomedical applications [5, 297, 303]. Recent studies show that 

chemical bonding of BG with a polymer and fabrication of organic-

inorganic hybrids addresses this shortcoming of bioactive glasses and 

promotes their physicochemical and mechanical properties [428, 440]. 

While these hybrids were less brittle, over-condensation of silica networks 

may still lead to acquiring the brittle monolithic structure. The aim of this 

study was to reduce the risk of over-condensation and fabricate a 3D 

structure of polymer-BG hybrid with enhanced physicochemical and 

mechanical properties. It was hypothesised that the polymer crosslinking 

can interfere with silica network formation and could be used as a method to 

control the condensation of the inorganic phase. To assess this hypothesis, 

gelatin was selected as a polymer phase due to its capacity to form hydrogel 

through different approach: physical [441], chemical [156, 173, 223] and 

photocrosslinking [235]. In this chapter, various methods for the fabrication 

of different types of the gelatin-BG hybrid hydrogel are described. In 

addition, the characterisation techniques that were used to assess mechanical 

performance, physicochemical and biological properties of these hybrids are 

described in detail. 

3.2 Materials 

Gelatin type A, soluble starch, poly(ethylene glycol) diacrylate (PEGDA, 

Mn 700), methacrylate anhydride (MA, 99%), (3-aminopropyl)-

triethoxysilane (APTES), (3-glycidoxypropyl)-trimethoxysilane (GPTMS), 

tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS), and all 

other chemicals and solvents were in reagent grade and purchased from 

Sigma-Aldrich (USA) unless specifically mentioned. 2-hydroxy-1-(4-

(hydroxyethoxy)phenyl)-2-methyl-1-propanone (Irgacure 2959®) as a 

photoinitiator was supplied by Ciba Geigy. Genipin was purchased from 

Wako Chemicals (Japan). Phosphate buffer saline (PBS, pH 7.4 and 0.1 M) 

was prepared by dissolving PBS tablets (Medicago, Sweden) in 100 ml of 

deionised water (Millipore, USA). Simulated body fluid (SBF, pH 7.42) was 
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prepared based on the method described by Kokubo et al. [442]. Briefly, 

proper amounts of sodium chloride and sodium sulphate (Merck 

Chemicals), potassium chloride and calcium chloride (Silform Chemicals), 

sodium bicarbonate, potassium phosphate dibasic and magnesium chloride 

(Sigma-Aldrich) were dissolved in deionised water at 36°C and the pH was 

adjusted between 7.42 and 7.45 by addition of Tris (Plus one) and 1 M 

solution of hydrochloric acid (HCl 32 %, Merck Chemical). All these 

chemicals and reagents were used without further purification. 

McCoy’s 5A medium modified, propidium iodide and paraformaldehyde 

were purchased from Sigma-Aldrich. Alkaline phosphate assay kit was 

purchased from Abnova®. Fetal bovine serum, L-Glutamine, Antibiotic-

Antimycotic, trypsin-EDTA, and 4', 6-diamidino-2-phenylindole (DAPI) 

and all other reagents for in vitro biocompatibility assays were supplied by 

Life Technologies unless specified. 

3.3 Synthesis of Photocrosslinkable Gelatin 

Photocrosslinkable gelatin was synthesised by converting the gelatin to its 

methacrylated derivative (GelMA) by using the method described by Van et 

al. [443]. Briefly, MA (13.4 mmol, 20 ml) was added drop wise 

(0.4 ml/min) to a 100 mg/ml solution of gelatin in PBS at 50°C to control 

the pH of the final product. The precise amounts of gelatin and MA were 

presented in Appendix A, Table 1. After one hour, the reaction ceased by the 

addition of 500 ml pre-heated PBS media. The GelMA solution was then 

dialysed against distilled water using 12-14 kDa cutoff dialysis tubes at 

37°C until the pH was increased to 6. The purified GelMA solution was 

then lyophilised at -80°C and the resulting foams were kept in the dry and 

cool environment to avoid moisture absorption.  

The degree of methacrylation in GelMA was quantified using proton 

nuclear magnetic resonance (1HNMR) analysis (Varian INOVA NMR, 

USA). The 1HNMR spectra were collected at 35°C in deuterium oxide at a 

frequency of 500 MHz. Phase and baseline correction were applied before 

obtaining the integral of peaks, and the analysis was repeated at least triple. 
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It was found that GelMA with 80% degree of methacrylate was synthesised 

[254]. 

3.4 Synthesis of Photocrosslinkable Starch 

Starch was converted to its methacrylated derivative (StaMA) using the 

method described by Caldwell et al. [444]. Briefly, the slurry of 400 mg/ml 

of starch in PBS was prepared at room temperature. The pH of the slurry 

was increased to 8-9 by the addition of 3 wt% solution of sodium hydroxide 

(NaOH, Merck Chemicals). Methacrylic anhydride in 4.5:1 molar ratio of 

starch: MA was added to the slurry drop wise (0.3 ml/min), and pH was 

adjusted to 8-9 using NaOH solution. The precise amounts of starch and 

MA were presented in Appendix A, Table 2. Following 1 h agitation at room 

temperature, pH was decreased to 6.5-7. The StaMA was then dialysed 

against deionised water for 3 days and then separated by centrifugation at 

3500 rpm for 30 min. The sediments were then lyophilised at -80°C and the 

resulting powders were kept in a desiccator. 

3.5 Preparation of Bioactive Glass Solution  

Bioactive glass (BG) was prepared using the sol-gel method, in which 

TEOS was dissolved in 40 mM hydrochloric acid (HCl) in 8:1 molar ratio 

of TEOS: HCl solution. The precise amounts of these precursors were 

presented in Appendix A, Table 3. The mixture was stirred for one hour at 

room temperature to prepare a homogeneous solution. This solution was 

then used for the formation of either the interpenetrated gelatin-BG 

hydrogel or hybrid hydrogels. 

3.6 Fabrication of Interpenetrated Gelatin-BG Hybrid 
Hydrogels 

The interpenetrated network of gelatin-BG hydrogel was fabricated by the 

sol-gel method followed by different methods of polymer crosslinking. For 

the fabrication of all hydrogels, 100 mg/ml solution of gelatin was prepared 

in PBS at 50°C. Prior to the fabrication of interpenetrated gelatin-BG 

network, the temperature of the reaction was set at 37°C. Different 

concentrations of BG (0-6 µl BG per milligram of the organic phase) were 
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incorporated into the solutions immediately followed by addition of 

crosslinking agents. Genipin in the different final concentrations (1-

7.5 mg/ml) and Irgacure (1 mg/ml) were added to the gelatin-BG solutions 

to form respectively chemically- and photocrosslinked hydrogels. The 

precise amounts of gelatin, crosslinking agents and BG were presented in 

Appendix A, Table 4. The BG-gelatin solutions were then poured into 

custom-made moulds to form different incorporated BG-gelatin hydrogels. 

While the physically crosslinking process was accomplished at room 

temperature in the absence of crosslinking agents, the genipin-contained 

solutions were kept at different temperatures (37°C -60°C) to complete the 

chemical crosslinking reaction. The photocrosslinking, on the other hand, 

was accomplished by irradiation of the GelMA-BG solution supplemented 

by Irgacure under ultraviolet light (UV, 365 nm, 6.9 mW/cm2). 

3.7 Fabrication of Covalently-Bonded Gelatin-BG Hybrid 
Hydrogels using Organosilation Technique 

Prior to the hybrid formation, GelMA was functionalised with different 

organosilane coupling-agents to prepare a silane group in GelMA (Fn-

GelMA) for covalent bonding with BG. Therefore, GPTMS or APTES was 

added to different concentrations of GelMA (75, 100 and 150 mg/ml) in 

PBS and stirred for at least 12 h at 40°C. The molar ratio of 2:1 between 

hydroxylysine, lysine and arginine amino groups of GelMA and 

organosilane coupling agents was obtained through addition of 92 µl of 

these agents per each gram of GelMA. The constant concentration of 

Irgacure (1 mg/ml) as a photo-initiator was then added to the GelMA-based 

solutions. Subsequently, different amounts of BG with respect to organic 

phase, i.e. GelMA, (0-1 µl per each milligram of GelMA) were added to the 

photocrosslinkable solution to form a hybrid solution. The precise amounts 

of GelMA, organosilane agents and BG were presented in Appendix A, 

Table 5. 

The degree of crosslinking was also increased upon conjugation of different 

photocrosslinkable polymers. To this end, various concentrations of StaMA 

(0-20 mg/ml) or PEGDA (0-100 mg/ml)) were added to the GelMA solution 
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(100 mg/ml). The effect of secondary crosslinking on the covalently bonded 

hybrids was also investigated by the addition of these polymers to Fn-

GelMA. Different amounts of BG (0-1 µl) were incorporated into 

conjugated solution with respect to the amount of organic content (i.e. the 

mass of GelMA and secondary crosslinking agent). The chemical 

composition of various hydrogels is determined in Table  3-1 and Appendix 

A (Tables 6 and 7). Despite their chemical compositions, the prepared 

photocrosslinkable solution was poured into a custom-made mould (Plastic 

Petri Dish with an internal diameter of Φ=35 mm) to fill the mould up to 

2 mm. The solution was then photocrosslinked under UV light (365 nm, 

6.9 mW/cm2) to form a hydrogel. The required time for hydrogel formation 

was measured while a solid 3D structure was fabricated. 

Table  3-1 The chemical composition of various covalently bonded hydrogels 

fabricated by 1 mg/ml Irgacure  

Hydrogel GelMA 

(mg/ml) 

Secondary 

Crosslinking Network 

BG: 

Polymer 

(µl/mg) StaMA 

(mg/ml) 

PEGDA 

(mg/ml) 

Fn-GelMA 75-150 - - - 

Fn-GelMA-BG 75-100 - - 0-1 

Fn-GelMA-StaMA-BG 100 0-20 - 0-1 

Fn-GelMA-PEGDA-BG 100 - 0-100 0-1 

 

3.8 Attenuated Total Reflection Fourier Transform Infrared 
Spectroscopy 

Attenuated total reflection Fourier transform infrared (ATR-FTIR, Varian 

660 IR, 4000–650 cm-1) at a 4 cm-1 resolution and 32 scans in absorbance 

mode was conducted to evaluate the chemical structures of dried hydrogels 

and also methacrylated starch. 

3.9 Thermal Gravimetric Analysis 

The effect of methacrylation on the thermal properties of starch was 

investigated by thermal gravimetric analysis (TGA, Q500) with the 
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assistance of Mr. Ehsan Pourazadi, School of Chemical Engineering. The 

thermal stability of starch was monitored while the temperature was 

increased from ambient temperature to 500°C with a ramping rate of 

2.5°C/min under N2 stream of 60 ml/min. 

3.10 Quantification of amine functional groups 

The mechanism of organosilation was determined using colorimetric 

quantification of amine functional groups on GelMA structure. In this well-

established method, the amine functional group in a biopolymer is measured 

quantitatively using UV spectroscopy via observing the conversion of the 

yellowish colour of ninhydrin solution to the dark purple. In each run, 1 ml 

of 2 wt% ninhydrin in ethanol solution was added to 1 ml of 1.5 wt% 

solutions of plain and Fn-GelMA at 37°C. The temperature was then 

gradually increased to 80°C under mild stirring. The solution was kept at 

this temperature for 15 min to complete the reaction and then cooled down 

to ambient temperature. The degree of amine functional group (Da) was 

calculated by Equation 1 based on the recorded light absorbance at 410 nm 

(Bio-Rad 680 microplate reader).  

𝐷𝑎 = [(𝐵 − 𝐴)/𝐴] × 100     Equation 1 

where A is the mole fraction of free amine functional groups in GelMA and 

B represents the mole fraction of Fn-GelMA. The Da of functionalized 

GelMA by APTES in the abovementioned conditions (16 %) was used as a 

control to determine the mechanism of GPTMS functionalisation. The 

amine functional groups of APTES formed a covalent bond with carboxylic 

acid groups of GelMA. 

The presence of amine functional groups in Fn-GelMA hydrogel was also 

determined qualitatively using fluorescein isothiocyanate (FITC, Sigma-

Aldrich) assay. In this method, the sample was incubated in 1 mg/ml 

solution of FITC in PBS in the dark container. After 24 h incubation at 

ambient temperature, the hydrogel was washed against deionised water, and 

the absorbance of FITC was collected at 495 nm. A cylindrical sample was 
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fabricated from poly(L-lactic acid) (PLLA) to use as a positive control. This 

sample was incubated in the abovementioned conditions in FITC solution. 

3.11 Swelling Properties 

The swelling behaviour of hydrogel was measured at 37°C in PBS. The dry 

weight of hydrogels (Wd) was recorded after lyophilizing overnight. 

Subsequently, the hydrogels were immersed in excessive PBS overnight 

followed by weighting (Ws). The equilibrium swelling ratio (ESR) was then 

calculated using Equation 2. 

𝑬𝑬𝑬 �𝒎𝒎
𝒎𝒎
� =  𝑾𝒔−𝑾𝒅

𝑾𝒅
      Equation 2 

3.12 Mechanical Properties 

The mechanical performance of hydrogels was investigated using uniaxial 

compression tests (Instron 5943, 100 N load cell). The hydrogels were 

punched using 8 mm biopsy to form disks (Φ= 8 mm, h=2 mm) and swelled 

for 2 h in PBS at 37°C unless specifically mentioned. The hydrogels 

underwent 3 cycles of compression-decompression with a compression rate 

of 0.05 mm/min in the hydrated state at 37°C. The compressive modulus 

was then obtained from the tangent slope of the stress–strain curve in the 

linear strain range (10-20%). In addition, for all samples, the energy loss 

based on the compression cycle was computed. 

3.13 Degradation Profile of Hydrogels 

The degradation profiles of samples were measured based on the released 

protein and silicate anions in different media (i.e. PBS and SBF). The 

lyophilized samples were weighed prior to the test and incubated in different 

media at 37°C for a period of time. The protein concentration of each 

sample was measured using Qubit® Protein Assay Kits (Invitrogen) with 

considering the media absorbance as a background. The protein calibration 

curves were linear for known concentrations of GelMA in different media 

(PBS: R2=0.99; SBF: R2=0.98). The degree of protein release was 

calculated based on the concentration of protein with respect to the dried 

weight of samples. 
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The profile of silica degradation was also monitored using 

spectrophotometric analysis as described by Coradin et al. [445]. In each 

particular time interval, 1 ml of media was diluted with 15 ml deionised 

water. The diluted media were then mixed with 1.5 ml of 102 mM 

ammonium molybdate solution in 2.45 mM HCl. After 10 min vigorous 

shaking of this solution at room temperature, the released silica ions were 

conjugated with molybdate anions and formed a yellowish solution. This 

solution, however, could be formed due to the formation of 

phosphomolybdate or the possible reaction between GelMA and molybdate 

ions. These unfavourable salts, therefore, were eliminated from the solution 

by addition of 7.5 ml of secondary solution contained 22 mM oxalic acid, 

32 mM sodium sulphite and 39 mM metol in 1.9 mM sulphuric acid [445]. 

The colour of the solution was changed to blue upon addition of the 

secondary solution. After 2 h agitations at ambient temperature, the amount 

of released silica was measured at 810 nm using UV-Vis spectroscopy 

(Cary 60, Agilent Technologies). In this study, the calibration line was 

prepared for known concentrations of TEOS (R2=0.99) prior to analysis and 

SBF solution was used as the background. The degree of Si release was 

calculated based on the concentration of Si with respect to the dried weight 

of samples. 

3.14 Bioactivity of Hydrogels 

Scanning electron microscopy with energy dispersive X-ray spectroscopy 

(SEM-EDS, Zeiss EVO) at 15 KV was used to determine the bioactivity of 

hydrogels following SBF incubation at 37°C. Hydrogels were removed from 

SBF at a specific time, washed with deionised water, lyophilized, mounted 

on aluminium stubs and then carbon sputtered prior to SEM-EDS analysis. 

The AZtec software (Oxford Instruments, UK) was integrated to SEM to 

identify the chemical composition of hydrogels before and after SBF 

immersion. At least three different images with similar magnifications were 

collected to measure the amount of precipitated ions on their surfaces.  
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3.15 In Vitro Cell Culturing  

Saos-2 osteoblast cells were cultured in McCoy’s 5A medium supplemented 

with 10% fetal bovine serum, 1% L-Glutamine and 1% Antibiotic-

Antimycotic in 75 cm2 tissue culture flasks (BD Biosciences, USA). Cells 

were passaged weekly, and media was changed every two days. Cells were 

incubated at 37°C with 0.5% CO2 (Incubator Thermo Fisher Heracell 150i). 

3.15.1 Cell Seeding of Hydrogels 

The hydrogels were fabricated in aseptic condition with pre-sterilised 

components to eliminate the sterilization with ethanol. The presence of 

ethanol within hydrogels may have adverse effects on their degradation 

profile and also cell viability. Prior to cell seeding, the hydrogels were cut 

into small disks (Φ= 8 mm, h=2 mm) and transferred to 48-well plates. The 

prepared hydrogels were then rinsed with sterilized PBS followed by 

incubation in prepared media overnight. Saos-2 cells were trypsinised, 

counted and resuspended in fresh media at a density of 200,000 cells/ ml. 

The pre-determined amounts of cells were then seeded onto the surface of 

hydrogels and were placed in a CO2 incubator at 37°C. 

3.15.2 Live-Dead Assay and Bone Specific Analyses  

The cell viability and proliferation were measured by double staining of the 

cells cultured on the surface of hydrogels. After 14, 21 and 28 days of 

incubation, hydrogels were transferred to the new well-plate contained 1 ml 

of fresh media. The nuclear of dead cells was stained by addition of 1 µl 

propidium iodide solution (PI, 1 mg/ml) followed by 30 min incubation at 

37°C. The PI-stained hydrogels were thoroughly rinsed with PBS and then 

fixed by 10 min soaking in 4% paraformaldehyde (PFA) at 37°C. The 

residue of PFA was then removed by several rinsing steps of hydrogels with 

PBS. The DNA-specific 4', 6-diamidino-2-phenylindole (DAPI) was used to 

stain the nuclear of cells. The samples were then placed on a glass slide for 

confocal laser scanning microscopy (LeicaSP5, Germany) examination. The 

confluence of cells on the hydrogel was determined by analysing fluorescent 

images using the Fiji-ImageJ software. 
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The differentiation of Saos-2 osteoblast cells was determined using alkaline 

phosphate assay (ALP). After 14, 21 and 28 days cell culturing, the cells 

were trypsinised from the surface of hydrogels, and their ALP activities 

were evaluated based on manufacture’s procedure. 

3.16 In Vivo Animal Study 

The in vivo cytocompatible, degradation and the biological properties of the 

hybrid hydrogels were studied by using mice subcutaneous implantation 

model. These hydrogels were pre-fabricated in vitro as described in  3.15.1. 

The surgeries were carried out in ANZAC Research Institute in Concord 

Hospital with the direct assistance of Dr. Yiwei Wong.  

Nine pathogen-free, male BALB/c mice, aged 6 months with 28±1.7 g were 

acquired, housed and studied under a protocol approved by SLHD Animal 

Welfare Committee in Sydney, Australia (#2013/019A). Each mouse was 

anesthetised individually by intraperitoneal injection of a mixture of 

ketamine (75 mg/ml) and xylazine (10 mg/ml) at 0.01 ml/g of body weight. 

The dorsal hair was shaved and skin was cleaned with Betadine solution and 

washed with sterile saline. The incision was created surgically in the dorsal 

area and dissected to create a subcutaneous pouch into which the hydrogel 

was inserted. The wounds were then closed with 5-0 silk sutures and 

covered by Atrauman® (Hartmann, Australia) and IV3000 wound dressings 

(Smith & Nephew) for 7 days. Carprofen (5 mg/kg) was given at the time of 

anaesthesia and then on the following day post-surgery for analgesia. After 

surgery, each mouse was caged individually for the first two days and then 

three mice per cage thereafter with free access to water and food. Skin 

biopsies were collected for histological analysis at 1, 2 and 4 weeks post-

implantation. 

3.16.1 Haematoxylin and Eosin Staining 

Skin biopsies with implanted conjugated hybrid hydrogels were fixed in 

100 mg/ml formalin for 24 h. All samples were then dehydrated and 

embedded in paraffin. The 5 µm sections were deparaffinised in xylene and 

stained with Haematoxylin and Eosin (H&E). 
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3.17 Statistical Analysis 

All experiments were repeated at least for three times. Data was reported as 

mean±STD. A one-way analysis of variance (ANOVA) for single 

comparisons and Bonferroni Post-Hoc tests for multiple comparisons were 

performed, using IBM SPSS software for Windows, version 21. Statistical 

significance is accepted at p<0.05 and indicated in the Figures as * (p<0.05), 

** (p<0.01) and *** (p<0.001), no star represents no statistical significance. 
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4.1 Introduction 

The polymer-bioactive glasses formed through sol-gel method are 

commonly brittle monoliths with low water uptake capacity due to the over-

condensation of their inorganic phases [414]. The aim of this study was to 

fabricate 3D networks of polymer-BG with enhanced swelling properties 

and mechanical performance. In this part of the study, it was hypothesised 

that the combination of sol-gel method and polymer crosslinking can control 

the condensation of the inorganic phase and thus prevents the formation of 

brittle structure. In this study, gelatin was used as a polymer model due to 

its intrinsic capacity to form a hydrogel through different methods of 

crosslinking [446-448]. The gelatin solution in constant concentration 

(100 mg/ml) was prepared at 37°C and turned to the hydrogel using 

different methods. The physically crosslinked hydrogel was formed by 

cooling the solution at room temperature. The genipin, however, was used 

to crosslink the gelatin chains chemically. Finally, a photoinitiator was used 

to rapidly crosslink a gelatin that was methacrylated. In this chapter, the 

effects of different processing parameters, such as temperature and the 

concentration of crosslinking agents on the interpenetrated gelatin-BG 

network structure were examined. 

4.2 The Effects of External Stimuli on the Gelatin Hydrogel 
Formation and the Gelation of BG 

Prior to the fabrication of gelatin-BG hybrids, the rates of both BG 

condensation and the gelatin crosslinking were measured. It was ideal to 

select the conditions that both these compounds simultaneously are forming 

the gel to prepare a homogeneous macrostructure. To this end, two critical 

factors, the reaction temperature, and the concentration of crosslinking 

reagents were optimised [449-451]. 

The temperature was varied between 25°C and 60°C. The pure BG turned to 

a brittle structure after 3 h incubation at room temperature. Increasing the 

temperature to 37°C and 60°C, however, resulted in the formation of 

condensed networks of BG within 10 min and 2 min, respectively. This 

remarkable increase in the rate of BG condensation was due to the higher 
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rates of aggregation and collisions of activated silanol groups at elevated 

temperatures [452].  

Genipin crosslinking resulted in a change of colour of solution from clear to 

dark blue and also converting liquid to highly viscous gel. These are simple 

tests for determining the degree of crosslinking while the darker blue colour 

is an indication of stronger crosslinking reaction. In fact, other methods such 

as FTIR were not that sensitive due to the fact that the carboxylate 

functional groups and also amino acid were still present in the final 

crosslinked hydrogels. 

The temperature had a significant impact on the hydrogel formation as the 

gelatin solution formed a physically crosslinked hydrogel below 35°C [453, 

454]. While the physically crosslinked hydrogel was formed after 10 min 

incubation of gelatin solution at room temperature, at least 30 min was 

required to form a hydrogel when using different concentrations of genipin 

as a chemical crosslinking agent at 37°C. Data in Figure  4-1A show that the 

concentration of genipin and the temperature had significant effects on the 

gelation time of hydrogels. Despite the temperature of the reaction, 

increasing the concentration of genipin had a significant impact on the 

hydrogel formation. For instance as shown in Figure  4-1A, when the 

concentration of genipin was increased from 1 mg/ml to 2.5 mg/ml, the 

gelation time at 37°C was decreased 6-fold from 180 min to 30 min 

(p<0.001).  

Increasing the concentration of genipin at a constant temperature or 

elevating the temperature of the reaction for similar concentrations of 

genipin significantly decreased the gelation time of hydrogels. The 

statistical analyses through Bonferroni Post-Hoc tests, however, revealed 

that the effect of temperature on the gelation time of hydrogels (p<0.05) was 

marginally significant compared to the genipin concentration (p>0.05). 

Increasing the concentration of genipin from 2.5 mg/ml to 5 mg/ml at 37°C, 

for instance, did not have a significant effect on the gelation time of 

hydrogels. Incubation of these hydrogels at 60°C, however, significantly 

decreased their gelation times from 60 min to 30 min (Figure  4-1A, p<0.05). 
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The physicochemical properties of hydrogels were also dependent upon 

these two key factors (i.e. reaction temperature and the concentration of 

crosslinking agent). Increasing the concentration of genipin at a constant 

temperature significantly decreased the physicochemical properties of 

hydrogels. The swelling ratio of hydrogels, however, did not significantly 

alter by increasing the reaction temperature for a constant concentration of 

genipin (Figure  4-1B). For instance, the swelling ratio of hydrogels 

fabricated at 37°C was remarkably decreased from 6.7±0.3 mg/mg to 

5.8±0.1 mg/mg upon increasing the concentration of genipin from 

2.5 mg/ml to 5 mg/ml (p<0.05). Elevating the incubation temperature to 

60°C, however, did not have a significant effect on their swelling ratios 

(p>0.05). Data in Figure  4-1 reveal that the optimum hydrogel with proper 

swelling ratio and fast gelation time was formed upon the incubation of 

gelatin solution supplemented with 2.5 mg/ml genipin at 60°C. 
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Figure  4-1 The effects of genipin concentration and crosslinking temperature on the 

hydrogel formation (A) and swelling ratio (B) of gelatin hydrogels. Data presented in 

*, ** and *** represent p<0.05, p<0.01 and p<0.001, respectively. 

The photocrosslinking of methacrylated gelatin (GelMA) in the presence of 

Irgacure as a photoinitiator was a fast method to form a hydrogel within 

2 min. The temperature has a negligible effect on the gelation time of 

photocrosslinked hydrogels. In addition, when using more than 0.25 mg/ml 

the residue of Irgacure evokes significant drawbacks on biocompatibility 

and physicochemical properties of hydrogels [455-457]. Therefore, it was 

attempted to use the minimal amount of Irgacure required for 

photocrosslinking.  

*** ***
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***

***
*
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The different methods of crosslinking provided the particular conditions to 

investigate the effect of polymer crosslinking on the controlling of BG 

condensation and thus the formation of an interpenetrated network of BG 

and gelatin.  

4.3 Fabrication of Interpenetrated Gelatin-BG Hybrid Hydrogel 
through Physical or Chemical Crosslinking of Polymer 

The effects of polymer crosslinking on the formation of interpenetrated 

network of gelatin-BG were studied. The physical and chemical methods of 

crosslinking were used to form hydrogels before or after the condensation of 

BG. Despite the method of crosslinking, different concentrations of BG (0-

6 µl/mg) were incorporated into the gelatin solution at 37°C. It was found 

that the brittle structure was immediately formed upon the addition of high 

concentration of BG (more than 2 µl/mg) in the gelatin solutions prior to 

crosslinking. In these arbitrary structures, gelatin was entrapped within the 

condensed network of BG, and this network did not lose its integrity upon 

increasing temperature to 60°C. It seems that this entrapment was due to the 

differences in the isoelectric points (IEP) of gelatin and BG.  

Gelatin with IEP of 8.6 possesses the positive charges in the PBS media (pH 

7.4), while BG with IEP of 2.6 represents the negative charges in the 

environment with pH higher than its IEP [458, 459]. The interactions 

between gelatin and BG, therefore, enhanced the condensation of silicate 

anions and formed the brittle structures. This result was in agreement with 

the previous study by Heinemann et al. while their collagen solutions 

simultaneously solidified upon the incorporation of higher concentration of 

pre-hydrolysed tetramethyl orthosilicate due to increasing the rate of 

aggregation [348]. The degree of silica-condensation was decreased through 

the incorporation of lower concentration of BG. The polymer crosslinking, 

therefore, had the dominant role in the formation of gelatin-BG hybrid 

hydrogels and might control the degree of BG-condensation. 

The different concentrations of BG (0-2 µl/mg) were mixed with gelatin 

solution to physically crosslink the gelatin-BG hybrids. Despite the 

concentration of BG, the transparent hybrid hydrogels were formed after 10 
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min incubation at ambient temperature and no phase separation was 

observed. These hybrid hydrogels, moreover, have lost their physical 

integrities during the incubation at 37°C prior to assessing their 

physicochemical and mechanical properties. The lack of chemical bonding 

between interpenetrated gelatin-BG networks led to the rapid release of 

gelatin into solution and acquiring the fragile structure. 

Genipin as a biocompatible chemical crosslinking agent was used to form a 

gelatin-BG hybrid hydrogel. The distribution of silica within this hybrid 

hydrogel was monitored by electron microscopy. The SEM-EDS analyses in 

Figure  4-2 showed that silicate anions were homogeneously distributed 

within the gelatin-BG hydrogels. 

 

Figure  4-2 SEM image (A) and the distribution of Si ions (B) on the surface of genipin-

crosslinked gelatin-BG hybrid hydrogels. The scale bars represent 100µm.  

 

(B)

(A)
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The physicochemical properties of BG and pure hydrogels were 

significantly altered upon the formation of these hybrids. The incorporation 

of 1 µl/mg of BG into genipin-crosslinked hydrogels, for instance, 

significantly decreased the swelling ratio of pure hydrogels from 

7.15±1.59 mg/mg to 3.64±0.28 mg/mg. Data in Figure  4-3A show that 

further increase of BG concentration remarkably decreased the swelling 

ratio of hydrogels (p<0.001). This significant reduction was due to the 

intrinsic hydrophobic nature of BG, which had the water uptake capacity of 

0.35±0.01 mg/ml. These results were in the agreement with the literature 

where the conjugation of silica increased the hydrophobicity of gelatin 

powders by demonstrating the contact angle of ~45° [460].  

The formation of the interpenetrated gelatin-BG hybrid had a significant 

impact in the mechanical performances of hydrogels. As shown in 

Figure  4-3B, the compressive modulus of hydrogels, for instance, was 

significantly increased from 1.00±0.12 kPa to 26.67±6.31 kPa after 

incorporation of 2 µl/mg BG compared to pure gelatin hydrogels. The 

condensed silica network structurally reinforced the gelatin hydrogels upon 

van der Waals forces and the formation of hydrogen bonds between silanol 

functional groups of BG and free amines and/or carbonyl units of gelatin 

[461].  
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Figure  4-3 The effect of BG conjugation on swelling ratio (A) and compressive 

modulus (B) of genipin-crosslinked hybrid hydrogels. Data presented in * and *** 

represent p<0.05 and p<0.001, respectively. 

Despite the significant improvement on the mechanical properties of 

hydrogels, genipin-crosslinking did not significantly control the over-

condensation of the silica network. The results showed that when using 

genipin as a crosslinking agent, increasing the temperature significantly 

decrease the gelation time of hydrogels. For instance, the hydrogel was 

fabricated at 60°C after 30 min incubation of gelatin solution. At this 

condition, however, BG was condensed within 2 min. The significant effect 

of temperature on the hydrogel formation, the condensation of silica, and the 

differences between gelation time of BG and genipin-crosslinking resulted 

in the formation of brittle structures. These data implicitly suggested that it 
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was favourable to form the gelatin hydrogel prior to BG networking to 

overcome these limitations. 

4.4 Fabrication of a Photocrosslinked Gelatin-BG Hybrid 
Hydrogel 

The interpenetrated gelatin-BG hybrid hydrogels with different 

concentrations of BG were fabricated after 2 min UV-irradiation of gelatin-

BG solutions. The methacrylated derivative of gelatin (GelMA) was used to 

form a photocrosslinkable hydrogel in the presence of Irgacure as a 

photoinitiator. It was found that the pre-matured structures were formed 

immediately after the addition of 1.5 µl of BG per each mg of GelMA. It 

seems that the presence of methyl methacrylate groups in the structure of 

GelMA enhanced the hydrogen bond formation between silica and gelatin 

and thus facilitated the formation of pre-matured structure. Data in 

Figure  4-4 show that the conjugation of low concentration of BG 

(0.5 µl/mg) in GelMA hydrogels did not have significant effects on the 

physicochemical properties and mechanical performances of hydrogels 

(p>0.05). Incorporation of 1 µl/mg BG, on the other hand, significantly 

decreased the swelling ratio of hydrogels from 7.51±0.08 mg/mg to 

5.43±0.34 mg/mg.  

The interpenetration of the photocrosslinked hydrogel within BG network 

enhanced the mechanical performance of hydrogels. Data in Figure  4-4B 

show that these hydrogels could withstand under uniaxial cycles of 

compression-decompression. However, their energy loss were significantly 

increased by the incorporation of BG due to the intrinsic brittleness of silica. 

The addition of 1 µl/mg BG into pure GelMA hydrogels, for instance, 

significantly increased their energy loss from 23.44±4.86 % to 62.25±5.4 %. 

The compressive modulus of these hydrogels, as shown in Figure  4-4C, was 

improved from 39.44±4.86 kPa to 79.89±5.3 kPa upon interpenetrating of 

BG precursor (1 µl/mg) within their structure (p<0.001). 
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Figure  4-4 The effect of BG conjugation on swelling ratio (A), cyclic compression (B), 

compressive modulus (C) and energy loss (D) of photocrosslinked Gelatin-BG hybrid 

hydrogels. Data presented in *** represents p<0.001. 
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Despite the significant effect of photocrosslinking on controlling the 

condensation of BG, the interpenetrated network of gelatin-BG did not 

possess acceptable mechanical properties for bone tissue engineering due to 

the lack of covalent bonding between gelatin and BG.  

4.5 Summary 

This chapter described the formation of interpenetrated network of organic-

inorganic hybrid hydrogels upon the combination of the sol-gel method and 

polymer crosslinking. It was hypothised that polymer crosslinking prior to 

the condensation of BG was vital to eradicating the formation of brittle 

structures. In addition, external stimuli such as temperature and the 

isoelectric point of polymer and BG, the mechanism of polymer 

crosslinking, and the concentration of the inorganic component are the 

significant governing factors for tuning the formation of the interpenetrated 

networks. The mechanical performance and physicochemical properties of 

fabricated gelatin-BG were superior to BG. The problems associated with 

this method, however, was the insufficient mechanical strength of these 

hydrogels for bone tissue engineering applications. In the next chapter, the 

effect of using different organosilane coupling agents for covalent bonding 

of gelatin to BG would be examined. In addition, the impact of 

organosilation and further organic-inorganic hybrid formation on the 

physicochemical and mechanical properties of photocrosslinkable hydrogel 

would be discussed. 
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5.1 Introduction 

An interpenetrated network of gelatin-BG can be produced by the sol-gel 

method. In  Chapter 4, it was demonstrated that crosslinking of polymer 

phase has an impact on condensation of BG. Fast gelation of polymer phase 

expedited the condensation of BG and enhanced the mechanical strength of 

this interpenetrated structure. Among different method of crosslinking, the 

photocrosslinking was favourable as it controlled the condensation of BG 

and prevented the formation of brittle structure. The mechanical strength of 

GelMA-BG, however, was not within the acceptable range for bone tissue 

engineering. To address this shortfall, it was hypothesised that the formation 

of covalent bonds between GelMA and BG may enhance the mechanical 

strength and physical stability of these constructs. 

Different organosilane coupling agents have been selected for covalent 

bonding between the polymer and inorganic phases [408, 410, 462]. The 

fabricated hybrid, however, formed the brittle monolith due to the complete 

condensation of inorganic compounds through drying and aging steps [431]. 

In this chapter, the feasibility of organosilation of GelMA through different 

coupling agents and their mechanisms are investigated. The resulting 

functionalised GelMA was then chemically conjugated to BG to form a 

covalently bonded hybrid hydrogel. The effects of organosilation and hybrid 

formation on the physicochemical properties, mechanical strength, and the 

degradation behaviour of the resulting hybrids were then investigated. 

5.2 Organosilation of GelMA 

Different concentrations of GelMA (75-150 mg/ml) were functionalised 

with various organosilane coupling agents including APTES and GPTMS to 

form covalent bonds between gelatin backbone and BG. The organosilation 

reaction was accomplished in PBS (pH 7.4) at 40°C to control the hydrogel 

formation and gelation of BG. The hydrolysis of APTES and GPTMS 

liberated ethanol and methanol, respectively. The functionalisation of 

GelMA with organosilane was not feasible when using a high concentration 

of GelMA (150 mg/ml) due to the high viscosity of the solution. Therefore, 
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the lower concentrations of GelMA (75 mg/ml and 100 mg/ml) were used 

for this reaction. 

It was anticipated that by using APTES for GelMA functionalisation, the 

biological activity of this hydrogel is preserved due to the presence of this 

amine-coupling agent. The functionalisation occurs through direct 

condensation between amine groups of APTES and carboxylic acid groups 

of GelMA at 40°C for 20 h. However, the functionalisation of GelMA with 

APTES retard the gelation time of this hydrogel from 2 min to 10 min due 

to the steric hindrance effect of APTES chains and its interference with 

methacrylate group. This hydrogel, moreover, had lower structural integrity, 

and mechanical properties compared to neat GelMA.  

GPTMS was another organosilane coupling agent that was used to form a 

covalent bridge between GelMA and BG. GPTMS as a heterobifunctional 

agent undergoes competitive reactions between epoxy-ring hydrolysis and 

polycondensation of activated silanol groups. At 40°C and neutral pH, the 

kinetics of epoxide ring-opening reaction is slow [169]. The preliminary 

results showed that less than 14 h was not adequate for this reaction and 

above this period, there was a premature condensation of GPTMS. The 

faster self-condensation of GPTMS compared to APTES was due to the 

presence of methoxy pendant group in this coupling agent, which are more 

reactive than ethoxy functional groups of APTES [463]. The reaction time 

observed in this study was in agreement with the results of 29Si nuclear 

magnetic resonance (29Si-NMR) spectroscopy by Gabrielli et al. [464]. 

Their study confirmed that pure GPTMS is condensed after 16 h in neutral 

pH [464]. The presence of GPTMS had a negligible effect on the properties 

and gelation time of GelMA (Fn-GelMA) hydrogel. Therefore, GelMA was 

functionalised with GPTMS at 40°C for 14 h for the rest of the study. 

Glycidoxy functional group of GPTMS can form a covalent bond with 

either amine [395] or carboxylic acid [400] groups in amino acid residues of 

gelatin [465, 466]. The results of ATR-FTIR analyses in Figure  5-1A show 

the appearance of new bands at 970 cm-1 (silanol) and 1020 cm-1 

(methoxysiloxane) in Fn-GelMA, which endorsed the complete 
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functionalisation of GelMA with GPTMS [467]. These results, however, did 

not disclose the mechanism of organosilation. Colorimetric ninhydrin assay 

was therefore used to quantify the amine groups in Fn-GelMA hydrogels to 

determine the mechanism of GPTMS-functionalisation. The results show 

that the amount of the free amine functional group in GelMA was 15%, 

which was in agreement with 1H-NMR results [254]. However, the fraction 

of amine functional groups in GelMA was decreased to 13% following the 

functionalisation with GPTMS (p<0.001). This reduction of the percentage 

of free amine groups in Fn-GelMA confirmed that the glycidoxy functional 

groups of GPTMS formed covalent bonds with amine groups of GelMA 

during functionalisation reaction (Figure  5-2). The biological activity of 

GelMA might be slightly decreased due to decreasing the free amine groups 

[468]. 
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Figure  5-1 FTIR spectra of various hydrogels (A) the distribution of FITC-labelled 

amine groups (green) in Fn-GelMA hydrogel (B) and PLLA sample (C). PLLA was 

used as a positive control to show the absence of green fluorescence in this sample due 

to the absence of amine functional groups. The daggers and asterisks respectively 

represent to the presence and absence of amine functional groups. Scale bar 

represents 200 µm. 
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The presence of the free amine groups in the backbone Fn-GelMA was 

visualised with FITC. The strong and uniform fluorescence in Figure  5-1B 

confirms the presence of these sequence motifs within the structure of Fn-

GelMA hydrogels. The fabricated PLLA sample was also used as a positive 

control. Data in Figure  5-1C show that the PLLA sample did not illustrate 

any fluorescent light due to the absence of amine functional group in its 

structure. This result suggested the negligible impact of the partial reduction 

of the amine group on the biological activity of GelMA hydrogels. 
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Figure  5-2 The mechanism of organosilation of GelMA. 
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5.3 Physicochemical and Mechanical Properties of 
Functionalised GelMA Hydrogels 

The effect of GPTMS-functionalisation on the physicochemical properties 

and mechanical performance of hydrogels was studied. The molar ratio of 

2:1 between hydroxylysine, lysine and arginine amino groups of GelMA 

and organosilane coupling agents was chosen to preserve the biological 

activity of hydrogels. Data in Figure  5-3 show that the organosilation did 

not have a significant impact on swelling ratio and mechanical performance 

of hydrogels with a similar concentration of GelMA (p>0.05). On the other 

hand, increasing the concentration of GelMA significantly modified the 

physicochemical properties of hydrogels. The swelling ratio of Fn-GelMA 

hydrogels, for instance, was significantly decreased from 

12.32±0.36 mg/mg to 9.41±0.20 mg/mg by increasing the concentration of 

GelMA from 75 mg/ml to 100 mg/ml. The compressive modulus of the 

functionalised hydrogels, moreover, was remarkably enhanced from 

19.47±4.59 kPa to 42.39±3.58 kPa by increasing the concentration of 

GelMA (p <0.001). These results were in agreement with previous data 

presented by Nichol et al. who observed that by increasing the GelMA 

concentration the degree of crosslinking was increased [241]. Therefore, the 

swelling ratio of hydrogels decreases upon increasing the GelMA 

concentration while their compressive modulus increases [241]. 
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Figure  5-3 The effect of GPTMS-functionalisation on swelling ratio (A), Compression 

profile (B) and compressive modulus (C) of GelMA hydrogels with different 

concentration of GelMA. Data presented in *** represented p<0.001. 
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5.4 Fabrication of Fn-GelMA-BG Hybrid Hydrogels 

The covalently bonded organic-inorganic hybrid was fabricated by 

incorporation of BG precursors into an aqueous solution of Fn-GelMA. A 

preliminary test was performed to determine the concentration of BG 

(TEOS or TMOS) that could be used for chemical bonding with Fn-GelMA. 

The concentration of BG was changed from 0.25 to 1 µl/mg (µl of BG 

solution per mg of polymer). The hybridization reaction did not occur at low 

BG ratio (0.25 µl/mg). On the other hand, increasing the concentration of 

BG to 1 µl/mg led to the formation of the brittle structure due to the self-

condensation of silica networks. The BG ratio of 0.5 and 0.75 µl/mg were 

therefore used to fabricate the Fn-GelMA-BG hybrid hydrogels. 

The hybrid hydrogel was formed after 2 min UV crosslinking of the 

conjugated Fn-GelMA-BG solution in the presence of Irgacure. The 

chemical composition of BG precursors had a significant effect on the 

physicochemical properties of hydrogels due to the different steric 

hindrance and hydrolysis rates of their alkoxysilanes groups. The methoxy 

functional groups of TMOS, for instance, were hydrolysed 6-10 times faster 

than ethoxy functional groups of TEOS [463]. The higher hydrolysis rate 

and lower steric hindrance of these functional groups led to the faster 

condensation of TMOS, also expedited the covalent bonding with Fn-

GelMA and thus hybrid formation.  

The TMOS-based hybrid hydrogels showed brittle structures with 

insufficient swelling properties. For instance, the hybrid hydrogels 

fabricated from 100 mg/ml Fn-GelMA and 0.5 µl/mg TMOS displayed only 

2.91±0.1 mg/mg swelling ratio and 68.23±5.29 kPa compressive modulus. 

The further increase in the concentration of TMOS, as shown in Figure  5-4, 

did not have a significant effect on the physicochemical and mechanical 

properties of hydrogels. TEOS was therefore used as a BG precursor for 

chemical bonding with Fn-GelMA and formation of an Fn-GelMA-BG 

hybrid. 
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Figure  5-4 The effect of TMOS concentration on the swelling ratio (A) and 

compressive modulus (B) of Fn-GelMA-BG hydrogels. Data presented in *** 

represented p<0.001. 

The complete conjugation of Fn-GelMA and BG was confirmed by ATR-

FTIR spectra (Figure  5-1A). Upon the addition of BG and hybrid formation, 

the silanol band (at 970 cm-1) was shifted to 950 cm-1 and a new band was 

observed at 1150 cm-1 corresponding to silica structure [461, 469]. The 

distribution of silica within hybrid hydrogel structure was also monitored by 

SEM-EDS. The SEM image of Fn-GelMA-BG hybrid hydrogel is shown in 

Figure  5-5A. The homogeneous distribution of Si elements on the surface of 

this hybrid hydrogel was shown by SEM-EDS analysis as depicted in 

Figure  5-5B. The ATR-FTIR spectroscopy and SEM-EDS analyses 

confirmed the formation of a covalent bond between Fn-GelMA and BG, 

(A) ***

(B)

***
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and also the homogeneous distribution of BG on the surface of hybrid 

hydrogels. 

 

 

Figure  5-5 SEM image (A) and the distribution of Si ions (B) on the surface of Fn-

GelMA-BG hybrid hydrogels. The scale bars represent 500µm.  
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5.5 Physicochemical and Mechanical Properties of Fn-GelMA-
BG Hybrid Hydrogels 

The formation of the hybrid structure of Fn-GelMA and BG (i.e., TEOS 

solution) had significant impacts on the physicochemical and mechanical 

properties of hydrogels. Data in Figure  5-6A show that increasing Fn-

GelMA concentration did not have a significant effect on swelling ratio of 

hybrid hydrogels (p>0.05). Incorporation of BG into hydrogels, on the other 

hand, significantly decreased their swelling ratios due to increasing the 

degree of crosslinking and also the hydrophobic nature of BG (TEOS) [470, 

471]. For instance, the conjugation of 0.5 µl/mg BG into the hydrogels with 

75 mg/ml concentration of Fn-GelMA significantly decreased their swelling 

ratio from 13.16±1.0 mg/mg to 9.55±1.46 mg/mg. Further increasing the 

concentration of BG remarkably decreased the swelling ratio of hydrogels to 

2.21±0.16 mg/mg (p<0.001). 
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Figure  5-6 The effect of hybrid formation on swelling ratio (A), cyclic compression-

decompression (B), compressive modulus (C) and energy loss (D) of Fn-GelMA-BG 

hydrogels. Data reported as ** and *** represent p<0.01 and p< 0.001, respectively. 
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The effect of hybrid formation on the mechanical performance of hydrogels 

was evaluated to optimise the concentration of Fn-GelMA and BG. As 

shown in Figure  5-6B, hybrid hydrogels could withstand continuous cycles 

of compression-decompression without any deformations. The mechanical 

performance of hydrogels, moreover, was significantly enhanced by the 

conjugation of BG (Figure  5-6C) due to the formation of both covalent 

bonds and weak van der Waals interactions between Fn-GelMA and BG. 

The compressive modulus of hydrogels fabricated from 100 mg/ml Fn-

GelMA, for instance, significantly enhanced from 39.44±4.85 kPa to 

68.23±5.3 kPa upon the incorporation of 0.5 µl/mg BG. Further increasing 

the concentration of BG to 0.75 µl/mg remarkably elevated their 

compressive modulus to 96.08±5.28 kPa (p<0.01). Despite the significant 

increase in compressive modulus of hydrogels by hybrid formation, the 

presence of silica in their structure had a significant effect on their energy 

loss as depicted in Figure  5-6D. The incorporation of BG in 0.5 µl/m and 

0.75 µl/mg ratios into Fn-GelMA hydrogels (100 mg/ml), for instance, 

significantly increased the energy loss of Fn-GelMA hydrogels from 

23.28±2.16 % to respectively 52.39±2.74 % and 73.04±4.34 % (p<0.001).  

The outcomes of this study revealed that the concentration of BG has the 

paramount effect on the physicochemical and mechanical properties of 

hybrid hydrogels. The concentration of BG was kept below 0.5 µl/mg to 

minimise the risk of acquiring the brittle structure. Increasing the 

concentration of Fn-GelMA, on the other hand, significantly enhanced the 

mechanical properties of hydrogels, while their swelling ratio was not 

changed remarkably. The optimum hybrid hydrogel was therefore fabricated 

from 100 mg/ml Fn-GelMA and 0.5 µl/mg of BG. 

5.6 Degradation Profile of Hybrid Hydrogels 

5.6.1 The Accuracy of Analysis Method 

The gravimetric technique is an established method to determine the 

degradation profile of hydrogels [354, 448, 472]. This method, however, 

was not accurate in this study due to the poor structural integrity of GelMA 
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hydrogel that was used as a control sample. On the other hand, the possible 

precipitation of calcium phosphate particles on the surface of hybrid 

hydrogels could interfere with the actual mass of hydrogels. Hence, the 

mass loss ratio was not an accurate and practical method for monitoring the 

degradation profile of these hydrogels. The main components of the 

fabricated hybrid hydrogels were protein and silica. In here, the release of 

protein from the hybrid structures was measured to determine their 

degradation profiles.  

The degradation profiles of hydrogels were usually measured in phosphate 

buffer saline (PBS) to eliminate the effects of osmotic pressure between the 

hydrogel and its environment. The chemical composition of this media, 

however, differs from biological body fluids (Table  5-1). The ionic strength 

(mol/kg) of these media was calculated using 𝐼 = 1
2�  ∑ 𝑏𝑖 ×𝑛

𝑖=1

𝑧𝑖2 equation, where b and z represented the molarity and the charge of 

different ions in these media. Data in Table  5-1 show that the chemical 

composition and ionic strength of simulated body fluid (SBF), compared to 

the PBS, is closer to the human blood plasma. 

Particularly for bone tissue engineering, the in vitro bioactivity of scaffolds 

and formation of calcium phosphate particles are measured in SBF [473]. 

These differences between chemical composition and ionic strengths might 

have a significant effect on the in vitro performance of hydrogels. However, 

there is no study to evaluate the effect of incubating media on the 

degradation profile of hydrogels. 
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Table  5-1 Chemical composition of human blood plasma [474], simulated body fluid 

(SBF) [475] and phosphate buffer saline (PBS) [476] 

Ion Human Blood 

Plasma (mM) 

SBF (mM) PBS (mM) 

𝑯𝑯𝑶𝟑
− 27 4.2 - 

𝑲+ 5 5 2.7 

𝑯𝑪− 103 147.8 140.7 

𝑵𝑵+ 142 142 148 

𝑯𝑵+𝟐 2.5 2.5 - 

𝑴𝒎+𝟐 1.5 1.5 - 

𝑯𝑯𝑶𝟒
−𝟐 1 1 8.1 

𝑯𝟐𝑯𝑶𝟒
− - - 1.9 

𝑬𝑶𝟒
−𝟐 0.5 0.5 - 

Ionic Strength  0.150 (mol/kg) 0.160 (mol/kg) 0.163 (mol/kg) 

 

5.6.2 The Effect of Incubation Media on the Degradation of Hydrogels 

The effect of incubation media on the degradation profile of hydrogels in 

PBS and SBF was investigated. In both systems, as shown in Figure  5-7, the 

degradation rate of hybrid samples was lower than pure GelMA hydrogel. 

This significant stability and lower degradation were due to the formation of 

network structure between Fn-GelMA and BG [470]. The hybrid formation 

significantly decreased the amount of the released proteins (p<0.001) after 

14 days incubation in PBS from 92.92±2.74 % to 34.21±3.55 % for pure 

GelMA and hybrid samples fabricated from 0.5 µl/mg ratio of BG, 

respectively. 

As it was speculated, the incubation media had a significant effect on the 

degradation rate of hydrogels (p<0.001). For instance, the amount of the 

released proteins from hybrid hydrogel after one-day incubation was 

significantly decreased from 8.98±1.36 % to only 5.48±0.23 % by changing 

the media from PBS to SBF. This effect was due to the chemical 

compositions and ionic strength of these media [477]. Further incubation of 
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hybrid hydrogels revealed that only 22.26±0.85 % of their proteins was 

released after 14 days soaking in SBF. This amount was significantly lower 

than the cumulative amount of released proteins from hybrid hydrogels 

incubated in PBS in the same time point (34.21±3.55 %, p<0.001). Data in 

Figure  5-7 show that the hybrid formation significantly enhanced the 

integrity of gelatin hydrogel in the media and more than 60% of GelMA 

remained in hybrid hydrogels after 28 days incubation in SBF. The 

improvement in stability of the hydrogels is of great importance for in vitro 

regeneration of bone as Patterson et al. showed that osteoblasts formed 

more orientated structures on the scaffolds degraded within 6-8 weeks 

[478]. Therefore, it was concluded that the hybrid hydrogels formed with 

100 mg/ml Fn-GelMA and 0.5 µl/mg BG displayed the favourable 

degradation behaviour compared with pure GelMA hydrogels in different 

media.  

 

Figure  5-7 Degradation profile of various hydrogels in different media with respect to 

their protein release in particular days, G and H represent to GelMA and hybrid 

hydrogels fabricated with 100 mg/ml Fn-GelMA and 0.5 µl/mg BG, respectively. Data 

reported as *** p< 0.001. 
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The formation of the hybrid structure of Fn-GelMA and BG had significant 

impacts on physicochemical properties, degradation profile, and mechanical 

strength of the hydrogel. For a bone application, however, the scaffolds with 

the compression modulus higher than 300 kPa are favourable [479]. 

Increasing the methacrylation fraction, the concentration of GelMA and 

photoinitiator could increase the degree of crosslinking and thus improve 

the mechanical properties of hydrogels  

The effect of methacrylation fraction on the mechanical and biological 

properties of GelMA-based hydrogels was previously investigated [241, 

254]. It was found that upon the methacrylation, the free amine groups of 

gelatin formed a chemical bond to methacrylate groups [241]. Increasing the 

degree of methacrylation, therefore, enhanced the degree of crosslinking and 

elevated the mechanical properties of hydrogels. On the contrary, decreasing 

the biological motif sites of gelatin, i.e. free amine groups had a significant 

impact on the biocompatibility of GelMA hydrogels [254]. The degree of 

methacrylation of GelMA in this study was 80%. The further increase in the 

content of methacrylate might have a negative impact on the biological 

activity of hydrogels. 

The preliminary results showed that increasing the GelMA concentration led 

to the formation of premature silica network during the functionalisation 

process due to increasing the viscosity of the solution. Increasing the 

concentration of Irgacure, on the other hand, decreased the pore size of 

hydrogels and had significant drawbacks on biocompatibility and 

physicochemical properties of hydrogels [455-457]. Incorporation of 

GelMA hydrogel within prefabricated scaffolds is another approach to 

improving the mechanical properties [248]. The compressive modulus of 

these reinforced hydrogels, however, only depends on the concentration of 

GelMA. Therefore, this strategy was not used in this study to enhance the 

mechanical property of hybrid hydrogel.  
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5.7 Summary 

In this chapter, the feasibility of functionalised GelMA for chemical 

bonding to BG was examined. The favourable organosilane coupling agent 

was GPTMS due to complete functionalisation of GelMA. This 

organosilation reaction, moreover, did not interfere with crosslinking of the 

polymer phase. After this, the concentration of GelMA, GPTMS, and BG 

was optimised to acquire stronger mechanical strengths and suitable 

swelling properties compared to an interpenetrating hybrid of GelMA-BG. 

The hydrogels fabricated from 100 mg/ml GelMA functionalised with 

GPTMS, and 0.5 µl TEOS solution per each milligram of the organic 

component had superior properties. Despite the significant enhancement of 

physicochemical properties, mechanical strength, and degradation 

behaviours of these hydrogels their compressive modulus still was not 

adequate for bone tissue engineering. In the next chapter, a new approach 

would be proposed to enhance the mechanical properties of these hybrids. 



 

 

Chapter 6. Fabrication of 

Bioactive Hybrid Hydrogel 

for Bone Tissue Engineering
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6.1 Introduction 

The covalently bonded hybrid hydrogel with enhanced physicochemical 

properties and degradation behaviour was fabricated in  Chapter 5. The 

mechanical performance of these hydrogels was significantly enhanced by 

the formation of covalent bonds between Fn-GelMA and BG. Their 

compressive modulus, however, was still insufficient for bone tissue 

engineering. The aim of this study was to enhance the mechanical strength 

and stability of hybrid hydrogels. Several approaches including composite 

formation [480-482], double network formation [248, 483-485] and fibre 

reinforcement [486-488] have been attempted to improve the mechanical 

strength of hydrogels. The heterogeneous distribution of secondary phases 

within the hydrogel, however, is the paramount issue of these approaches. It 

was speculated that introducing a secondary crosslinking agent might have 

significant impacts on the mechanical strength and degradation profile of 

hybrid hydrogels. 

The feasibility of the formation of conjugated hybrid hydrogels with 

enhanced physicochemical properties and mechanical performances is 

investigated in this chapter. It is important to note that the secondary 

polymers should not interfere with organosilation reaction. Therefore, the 

absence of carboxylic acid and amine functional groups in their structures is 

the prerequisite criteria for the secondary crosslinking agents. The effect of 

the secondary polymer conjugation on the mechanical performance, 

physicochemical properties, degradation behaviour, and in vitro and in vivo 

biological performances of hybrid hydrogels are investigated. 

6.2 Fabrication of Natural-Based Photocrosslinkable Hybrid 
Hydrogel 

The photocrosslinkable derivatives of natural polymers such as alginate 

[232], chitosan [233, 489], Gellan gum [490], hyaluronic acid [227], and 

starch [491, 492] were extensively used to form a biocompatible hydrogel. It 

was speculated that the conjugation of these biopolymers into Fn-GelMA 

solution could enhance the mechanical properties and stability of hybrid 

hydrogels. A scaffold with enhanced mechanical properties, for instance, 
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has been fabricated using double network formation of GelMA and 

methacrylated derivative of Gellan gum [484]. The presence of carboxylic 

acid in the backbone of Gellan gum, however, could interfere with GelMA 

in organosilation reaction. The nucleophilic functional groups such as amine 

and carboxylic acid are found in the structure of other biopolymers 

including chitosan (amine), alginate and hyaluronic acid (carboxylic acid). 

Starch, on the other hand, only possesses electrophile functional groups (i.e. 

hydroxyl) in its structure. Therefore, the mechanical properties of GelMA-

BG hybrids might improve by conjugation of methacrylated derivative of 

starch (StaMA) within Fn-GelMA solution without any interference in 

GPTMS-functionalisation. Prior to the fabrication of bioconjugated hybrid 

hydrogels, the methacrylation process of starch was characterised. 

6.2.1 Characterisation of StaMA 

The effect of methacrylation on the chemical structure and thermal stability 

of starch was investigated. ATR-FTIR spectroscopy in Figure  6-1A 

confirms the synthesis of StaMA by the appearance of a characteristic band 

at 1670 cm-1 correspondence to alkenyl carbon (C=C) in its spectra [469]. 

The methacrylation, moreover, did not shift other characteristic bands of 

starch spectra. Data in Figure  6-1B show that the thermal stability of starch 

was significantly modified by methacrylation. The decomposition of 

StaMA, for instance, was initiated at 255°C, which was considerably lower 

than the decomposition temperature of pure starch (280°C).  

The slope of the thermogravimetric cure during decomposition period was 

calculated as a rate of decomposition [493]. It was found that the rate of 

decomposition was significantly improved from -0.287 (%/°C) to -0.128 

(%/°C) after methacrylation. The decomposition of StaMA was finished at 

305°C while more than 70% of StaMA remained untouched. On the other 

hand, 40% of the pure starch was remained after complete thermal 

decomposition at 310°C. These outcomes confirmed the complete 

methacrylation of starch.  
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Figure  6-1 The effect of methacrylation on ATR-FTIR (A) and TGA (B) of starch. 

The highest concentration of starch to form an aqueous solution is 

20 mg/ml. This concentration was therefore used to form a bioconjugated 

solution of StaMA and Fn-GelMA to form an organic-inorganic hybrid in 

the presence of BG. The temperature was set at 40°C to prevent over-

condensation of BG and also gelatinization of starch [494]. The presence of 

hydroxyl as an electron-donating group in the backbone of StaMA might 

form weak van der Waals interactions and hydrogen bonding with electron-

withdrawing functional groups of GelMA. StaMA, therefore, could entangle 

within GelMA chains and act as a filler to form a composite upon 

photocrosslinking. This hypothesis was evaluated by the formation of 

composite from 100 mg/ml GelMA and 20 mg/ml starch. It was found that 

UV irradiation of this solution did not form a hydrogel even after 10 min 



Page | 85 

 

due to the steric hindrance of starch molecules. The bioconjugation of 

20 mg/ml StaMA into GelMA solution, on the other hand, formed a 

hydrogel within 1 min UV irradiation due to increasing the degree of 

photocrosslinkable functional groups. 

The presence of MA functional groups in the structure of StaMA could form 

a chemical bond with other MA groups in StaMA and GelMA chains. The 

formation of these chemical bonds forms a crosslinked structure or an 

interpenetrated polymer network (IPN) with GelMA solution. The specific 

clarification between these two networks (i.e., crosslinked or IPN) was not 

possible due to the appearance of similar functional groups in FTIR-ATR of 

GelMA-StaMA hydrogels (data not shown). In this study, therefore, the 

term of bioconjugation was used to covering both crosslinking and IPN 

formation in GelMA-StaMA hydrogels. 

6.2.2 Physicochemical and Mechanical Properties of Bioconjugated 

Hybrid Hydrogels 

The effects of StaMA bioconjugation on the physicochemical properties and 

mechanical performance of GelMA hydrogels are shown in Figure  6-2. It 

was found that the bioconjugation of StaMA significantly decreased the 

swelling ratio of GelMA hydrogels from 9.92±0.42 mg/mg to 

6.25±0.9 mg/mg (p<0.001) due to increasing the degree of crosslinking. The 

incorporation of BG solution (0.5 µl per each milligram of Fn-GelMA and 

StaMA) into these hydrogels significantly decreased their swelling ratio to 

4.06±0.6 mg/mg due to intrinsic hydrophobicity of silica and formation of 

more compact structures. 

Despite the significant decrease in the swelling ratio of bioconjugated 

hybrid hydrogels, their mechanical performances were remarkably 

enhanced. The Fn-GelMA-StaMA-BG hydrogels, as shown in Figure  6-2B, 

could withstand the uniaxial cycles of compression-decompression loads 

without deformation. The compressive modulus of hydrogels, moreover, 

was enhanced 1.7-fold upon StaMA conjugation. Further incorporation of 

BG into bioconjugated hydrogel significantly improved its compressive 



Page | 86 

 

modulus from 67.57±1.96 kPa to 198.75±24.2 kPa (p<0.001). The previous 

outcomes in  Chapter 5 showed that the hybrid formation had a significant 

effect on the energy loss of pure GelMA hydrogels. The further 

bioconjugation of StaMA within these hydrogels significantly increased 

their energy loss (p<0.001). The hybrid formation, however, did not have 

significant impacts on the energy loss of the bioconjugated hydrogels. The 

energy loss of all hydrogels, as shown in Figure  6-2D, was less than 50% 

that underpin the elasticity of all hybrid hydrogels [495].  
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Figure  6-2 The effect of StaMA bioconjugation and hybrid formation on swelling ratio 

(A), cyclic compression-decompression (B), compressive modulus (C), and energy loss 

(D) of GelMA-based hydrogels. Non-Hybrid refers to polymeric hydrogels without 

organosilation. Data presented as *** represented p<0.001.  
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Despite the significant improvements on the physicochemical and 

mechanical properties of hybrid hydrogels upon StaMA conjugation, the 

further modification of these complexes was restricted due to the limited 

solubility of starch in PBS. Therefore, another photocrosslinkable polymer 

was conjugated to Fn-GelMA-BG hybrid hydrogels to enhance their 

physicochemical and mechanical performances. 

6.3 Conjugation of PEGDA within GelMA Hydrogels 

The application of poly(ethyleneglycol) diacrylate (PEGDA) as inert 

biomaterials in hydrogel formation is widespread due to its hydrophilic 

nature and tailorable physicochemical and mechanical properties [496-503]. 

The lack of nucleophilic functional groups in the structure PEGDA prevents 

any interfere with organosilation of GelMA. Different concentration of 

PEGDA, therefore, was conjugated within the GelMA-based hydrogel, and 

their physicochemical and mechanical properties were studied. Data in 

Figure  6-3A show that the swelling ratio of hydrogels was significantly 

decreased upon the conjugation of PEGDA within their structures 

(p <0.001) due to increasing the degree of crosslinking [471]. Conjugation 

of 50 mg/ml PEGDA to GelMA solution, for instance, significantly 

decreased the swelling ratio of hydrogels to 7.26±0.34 mg/mg. The further 

increasing in the concentration of PEGDA to 200 mg/ml in conjugated 

hydrogels remarkably decreased their swelling ratio to 2.83±0.08 mg/mg 

(p<0.001). 

Despite the remarkable decrease in swelling ratio of conjugated hydrogels, 

their mechanical performances were significantly improved. It was found 

that elevating the concentration of PEGDA from zero to 50 mg/ml, and 

100 mg/ml increased the mechanical strength of these conjugated hydrogels 

by five- and seven-fold, respectively. The conjugated hydrogel with 

50 mg/ml concentration of PEGDA, for instance, displayed elastic 

performances under uniaxial cycles of compression-decompression and 

possessed the compressive modulus of 211.16±14.2 kPa (Figure  6-3B and 

C). The further increasing of the concentration of PEGDA significantly 

enhanced the compressive modulus of hydrogels to 342.97±17.3 kPa.  
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The conjugation of PEGDA also had a significant effect on the mechanical 

properties of hydrogels. The addition of 50 mg/ml PEGDA to GelMA, for 

instance, significantly increased the energy loss of hydrogels from 

23.27±4.32 % to 38.67±1.4 %. This effect might be due to the random 

conjugation of PEGDA chain within GelMA network. Further increase of 

PEGDA concentration, as shown in Figure  6-3C and D, remarkably 

decreased the energy loss of hydrogels. The conjugation of 200 mg/ml 

PEGDA into GelMA solution, as an example, led to the formation of an 

elastic hydrogel with a compressive modulus of 1181.71±394.8 kPa and 

17.41±1.8 % energy loss. 
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Figure  6-3 The effect of PEGDA concentration on swelling ratio (A) cyclic 

compression-decompression (B), compressive modulus (C) and energy loss (D) of 

conjugated GelMA hydrogels. Data presented in *** represented to p<0.001. 
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The previous outcomes in  Chapter 5 revealed that the hybrid formation was 

the prosperous method to enhance the compressive modulus of hydrogels. 

The swelling ratios of those hybrid hydrogels, however, were significantly 

decreased due to the hydrophobic nature of BG and also increasing their 

degree of crosslinking. The concentration of PEGDA in conjugated 

hydrogels, therefore, must be optimised prior to the incorporation of BG and 

the hybrid formation. Despite the significant improvement in the mechanical 

performance of hydrogels, conjugation of high concentration of PEGDA 

significantly decreased the swelling ratio of hydrogels. The lower 

concentrations of PEGDA (50-100 mg/ml) were therefore conjugated within 

Fn-GelMA to form an organic-inorganic hybrid with proper swelling ratio 

properties.  

6.4 Fabrication of Photocrosslinkable Hybrid Hydrogels with 
Enhanced Physicochemical and Mechanical Properties 

The effects of hybrid formation on the swelling ratio and mechanical 

performance of PEGDA-conjugated hydrogels were investigated. As it was 

expected, the swelling ratio of hydrogels dramatically decreased upon 

incorporation of BG (p<0.01). Data in Figure  6-4A reveal that the swelling 

ratio of hydrogels conjugated with 50 mg/ml PEGDA was significantly 

decreased from 7.26±0.34 mg/mg to 4.35±0.44 mg/mg after hybrid 

formation. Increasing the concentration of PEGDA in the hybrid hydrogel, 

however, did not significantly decrease their swelling ratio (p>0.05).  

Upon the incorporation of BG, the compression modulus of PEGDA-

conjugated hydrogels was further increased by 1.5-fold. These results 

endorsed that regardless of PEGDA concentration, the formation of the 

silica network reinforced the compressive modulus of hydrogels. For 

instance, the fabricated hybrid hydrogel from 100 mg/ml PEGDA displayed 

the compression strength of 528.9±32.67 kPa that was within the acceptable 

range for bone regeneration applications [479]. The compression strength of 

this hybrid hydrogels is remarkably higher than previously developed 

interpenetrated polymer network (IPN) hydrogels from GelMA and PEGDA 

[235, 254, 256]. For instance, the IPN hydrogel fabricated from similar 
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concentrations of GelMA and PEGDA using thiol click chemistry technique 

showed the compressive modulus of 80 kPa [235]. The conjugation of poly 

(lactide-co-ethylene oxide-co-fumarate) (PLEOF) and PEGDA was another 

attempt to improve the mechanical properties of GelMA hydrogels [254]. 

The hydrogel fabricated from 300 mg/ml PLEOF, 100 mg/ml PEGDA and 

100 mg/ml GelMA possessed the compressive modulus of 250 kPa that was 

lower than hybrid hydrogels fabricated in this study. In addition to 

enhancement of compressive modulus of hydrogels, the energy loss of 

conjugated hydrogels was increased upon hybrid formation. The energy loss 

of all hybrid hydrogels, as shown in Figure  6-4D, was less than 50% that 

underpins their elasticity [495]. 
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Figure  6-4 The effect of PEGDA conjugation and hybrid formation on swelling ratio 

(A), cyclic compression-decompression (B), compressive modulus (C) and energy loss 

(D) of GelMA-based hydrogels. Non-Hybrid refers to polymeric hydrogels without 

organosilation. Data presented in ** and *** represented to p<0.01 and p<0.001. 
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The results of this study in  Chapter 5 showed that the degradation profile of 

hydrogels was a function of incubation media. It was hypothesised that the 

incubation media also has a significant impact on the mechanical 

performance of hydrogels. The GelMA-based hydrogels were prepared in 

PBS solution and their mechanical properties in this media were shown in 

Figure  6-4. The ultimate application of these hydrogels is bone tissue 

engineering. In order to stimulate the physiological environment of the 

bone, these hydrogels were incubated in SBF at 37°C. The presence of 

inorganic compounds in the structure of hybrid hydrogels acted as a 

nucleation site and thus could enhance the precipitation of ionic components 

on the surface of hydrogels [504]. Hence, the topography of hydrogels 

would change upon the sedimentation of ionic compounds that further alters 

the mechanical performances of hybrid hydrogels. No attempt, however, has 

been approached to investigate the effect of incubation media on the 

mechanical performance of hydrogels. 

6.5 The Effect of Incubation Media on Mechanical Properties of 
Hydrogels 

Different concentrations of PEGDA were conjugated within GelMA-based 

hydrogels before and after hybrid formation, and all hydrogels were 

incubated in SBF media at 37°C. The effects of media incubation, PEGDA 

conjugation, and hybrid formation on the mechanical properties of 

hydrogels, therefore, were specifically distinguished. As shown in 

Figure  6-5A, the compressive modulus of hydrogels was significantly 

decreased upon incubating in SBF (p<0.001). The continuous decrease in 

the compressive modulus of hydrogels was in agreement with the results of 

Jeon et al. while their photocrosslinked alginate hydrogels lose their 

compressive moduli in deionised water over time [232].  

The compressive modulus of pure GelMA hydrogels, for instance, 

decreased from 39.44±4.85 kPa to 29.23±2.3 kPa after one-day incubation 

in SBF. The compressive moduli of other hydrogels were similarly 

decreased after 1 day incubation that was due to the osmotic pressure 

between hydrogels and SBF. Further incubation of hydrogels in SBF media 
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significantly decreased their compressive moduli (p<0.001). The pure 

GelMA, for instance, possessed 19.59±2.90 kPa compressive modulus after 

3 days incubation in SBF. The seven days incubated GelMA hydrogels lost 

their physical integrity during the compression test, and thus their 

compressive moduli were excluded.  

The previous data in  Chapter 5 revealed that 20.38±1.6 % and 

36.02±4.18 % of proteins were released from pure GelMA hydrogel within 

respectively 3 and 7 days incubation in SBF. The bulk hydrolysis of 

hydrogels, therefore, was the particular aspect on decreasing of mechanical 

properties of GelMA hydrogels overtime. 
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Figure  6-5 The Compressive modulus and energy loss of GelMA-PEGDA hydrogels 

after incubation in SBF at different times G and P represented to GelMA and 

PEGDA, respectively. Data reported as *** p < 0.001. 

The mechanical properties of GelMA-PEGDA hydrogels displayed similar 

trend with pure GelMA hydrogels as depicted in Figure  6-5A. For example, 

the hydrogels contained 50 mg/ml PEGDA significantly lost their 

compressive modulus from 211.16±7.09 kPa to 71.46±22.32 kPa after 

3 days incubation in SBF. The compressive modulus of these hydrogels was 

dramatically decreased to 4.89±.038 kPa after 7 days incubation in SBF. It 

was concluded that mechanical strength was gradually decreased due to the 

degradation of hydrogels. 
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Increasing the concentration of PEGDA had a significant impact on the 

mechanical stability of these hydrogels. After 7 days incubation in SBF, for 

instance, the 100 mg/ml PEGDA-conjugated hydrogels displayed the 

compressive modulus of 100.87±22.64 kPa which was significantly lower 

than its modulus prior SBF-incubating (342.98±15.42 kPa, p<0.001).  

Despite the significant effect of incubating media on the compressive 

modulus of conjugated hydrogels, the SBF incubation up to 3 days did not 

have a remarkable impact on the energy loss of GelMA-PEGDA hydrogels 

(p>0.05). Data in Figure  6-5B show that these hydrogels kept their elastic 

performance under cycles of compression-decompression loads, while their 

energy loss was less than 50 % after 3 days incubation in SBF. After 7 days 

incubation in SBF, however, these hydrogels could not withstand under 

cyclic compression-decompression loads. It was concluded that the 

mechanical properties of hydrogels were a factor of incubating media and 

the period of incubation.  

The mechanical stability of hydrogels over time is a crucial factor for bone 

tissue engineering since the callus formation in a bone defect site is a 

protracted process and begins 7 days post-culture [505]. The hybrid 

formation significantly improved the mechanical stability of hydrogels over 

time (Figure  6-6). Prior to conjugation of PEGDA, for instance, the Fn-

GelMA-BG hybrid hydrogels kept their mechanical stability after 7 days 

incubation in SBF. Their compressive modulus was continuously decreased 

from 70.18±4.56 kPa to 58.06±1.46 kPa and 40.18±0.96 kPa after 

respectively 1 and 7 days incubation. These hydrogels, however, lost their 

physical integrities under the compression loads after 14 days incubation in 

SBF. Similar to non-hybrid hydrogels, the osmotic pressure and bulk 

degradation of these hybrid hydrogels were the main aspects on the 

continuous decrease of their mechanical performances.  

The bioactive scaffold with continuous mechanical stability was fabricated 

by conjugation of PEGDA within the hybrid hydrogels. Data in Figure  6-6A 

demonstrate that the conjugated hybrid hydrogels contained 100 mg/ml 

PEGDA displayed an elastic performance with a compressive modulus of 
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101.66±6.82 kPa after 7 days incubation in SBF. These hydrogels, 

moreover, represented the compressive modulus of 51.09±13.68 kPa after 

21 days incubation in SBF, which is still favourable for osteoblasts to 

proliferate [506]. The conjugated hybrid hydrogels with a lower 

concentration of PEGDA (50 mg/ml), on the other hand, lost their 

mechanical stability over time. These hydrogels displayed 1.37±0.84 kPa 

compressive modulus after 7 days incubation in SBF (Figure  6-6B). 

Regardless the concentration of PEGDA, the elastic performance of all 

conjugated hybrid hydrogels was confirmed by measuring their energy loss. 

Data in Figure  6-6C show that the energy loss of all hydrogels did not 

significantly change during SBF incubation.  

 



Page | 99 

 

 

Figure  6-6 The Compressive modulus(A and B) and energy loss (C) of Fn-GelMA-

PEGDA-BG hybrid hydrogels after incubation in SBF at different times. G, P and H 

represented to Fn-GelMA, PEGDA and Hybrid hydrogel, respectively. Data reported 

as ** p < 0.01 and *** p < 0.001. 
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The comparison between these outcomes revealed that the introducing the 

secondary polymer into hybrid hydrogels significantly increased their 

degree of crosslinking. The hybrid hydrogel with a higher concentration of 

PEGDA, for instance, demonstrated the highest mechanical stability over 

time. The swelling ratio of hydrogels, on the other hand, was remarkably 

decreased by PEGDA conjugation. Their swelling ratio, however, was still 

in the acceptable range for biomedical applications including bone 

regeneration or controlled release of pharmaceutically active proteins [507-

510]. The results of this study demonstrated that 100 mg/ml PEGDA was 

sufficient to achieve the desirable mechanical strength and also swelling 

property of hybrid hydrogels. 

6.6 Physical Stability of Conjugated Hybrid Hydrogels 

Previous outcomes in  Chapter 5 showed that regardless the chemical 

composition of incubation media, the physical stability of hydrogels was 

enhanced by hybrid formation. The similar chemical composition of SBF, 

moreover, stimulated the degradation of hydrogels in body fluid. The 

degradation profile of conjugated hybrid hydrogels was therefore 

investigated in SBF media with respect to the cumulative degree of released 

proteins and silicate ions from these hydrogels.  

The conjugated hybrid hydrogels were fabricated from GelMA, PEGDA, 

and BG. The degradation profile of PEGDA chains has been investigated 

in vitro [511] and in vivo [512]. It was found the molecular weight of 

PEGDA has a significant impact on the hydrolytic resorption of PEGDA 

[513]. In this study, low-molecular weight PEGDA (Mn= 700) was used. 

Therefore, it can be exerted from the body through metabolism and show a 

minimal impact on the biocompatibility of hybrid hydrogels [514]. The 

amounts of released protein and silicate anions were therefore quantified to 

determine the profile of degradation of hydrogels.  

It was found that the conjugation of PEGDA into GelMA hydrogels 

dramatically enhanced their structural integrity. Data in Figure  6-7A show 

that the protein release from GelMA hydrogels after seven days incubation 
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in SBF was decreased from 36.02±2.09 % to 25.86±0.90 % by conjugation 

of 100 mg/ml PEGDA within their structure (p<0.05). The hybridization of 

the hydrogel with BG further enhanced their structural stability and caused a 

2-fold decrease in the protein release. The protein release from hybrid 

hydrogel was only 11.92±1.72 % after seven days, which confirmed their 

high structural stability and protein retention capacity.  

Previous studies showed that the retention of proteins within the structure of 

hydrogels is essential to acquire favourable biological responses for a long-

term in vitro [131, 135, 232]. After 21 days, nearly 75% of GelMA was 

maintained within the structure of hybrid hydrogel due to chemical bonding 

between GelMA and BG that reduced the degradation rate of gelatin. 

Indeed, this enhancement of structural stability was remarkably higher than 

previous studies that attempted different approaches for preserving GelMA 

in hydrogel structure. For instance, at the same period, it was reported that 

more than 45% of GelMA was leached out from IPN hydrogel fabricated 

from GelMA, PLEOF and PEGDA [254]. Therefore, the presence of silica 

network structure in these hybrid hydrogels has a paramount role in 

enhancing the physical integrity of hydrogel.  

The amount of silicate anions released from hybrid hydrogels in SBF was 

monitored to assess their degradations. As shown in Figure  6-7B, the 

conjugation of PEGDA in hybrid hydrogels did not have a significant 

impact on degradation of silicate anions (p>0.05). For instance, less than 

1.2 % of silicate anions were released from hybrid hydrogels after 28 days 

incubation in SBF. The substantial integrity of silica within hybrid 

hydrogels could enhance the bioactivity of hydrogels; hence, it promotes the 

precipitation of calcium phosphate particles on the surface of hydrogels for 

a longer period.  
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Figure  6-7 The cumulative protein release (A) and cumulative silicate degradation (B) 

from different hydrogels. G, P and H represent to GelMA (100 mg/ml), PEGDA (100 

mg/ml) and Hybrid (0.5 µl/mg BG), respectively. Data presented in *** represents 

p<0.001. 

6.7 In vitro Bioactivity of Conjugated Hydrogels 

The in vitro bioactivity of hybrid hydrogels was assessed upon soaking 

these hydrogels in SBF media at 37°C. The pure GelMA hydrogel as a 

control was incubated in the similar condition. The results of SEM-EDS 

microscopy in Figure  6-8 revealed that no calcium (Ca) or phosphate (P) 

ions were precipitated on the surface of GelMA hydrogels. However, the 

results in Figure  6-9 shows the presene of Ca and P ions on the similar 

position of the surface of hybrid. The calcium phosphate (Ca-P) particles 

were therefore formed on the surface of hybrid hydrogels. The presence of 



Page | 103 

 

silanol functional groups in these hydrogels acted as the nucleation sites and 

thus enhanced the precipitation of Ca-P particles from SBF solution on their 

surfaces [504]. The distribution of Ca and P particles on the surface of 

hybrid hydrogels after 21 days SBF incubation at 37°C is shown in 

Figure  6-8. Moreover, it was found that the ratio of Ca to P ions in the 

precipitated particles was increased over time and approached 1.84±0.15 

after 21 days incubation in SBF. This ratio was not further increased 

significantly, and it was close to Ca/P ratio in a typical adult female bone 

(1.71) [515]. 

 

Figure  6-8 SEM image (A) and the distribution of Ca ions on the surface of GelMA 

hydrogel after 3 weeks incubation in SBF at 37°C. Scale bar represents 500 µm  

(A)

(B)
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Figure  6-9 SEM image (A), the distribution of calcium (B) and phosphate (C) particles 

on the surface of hybrid after 3 weeks incubation in SBF at 37°C, and the ratio of 

precipitated Ca-P particles on the surface of Fn-GelMA-PEGDA-BG hybrid 

hydrogels in different time (D). Data presented in *** represented p<0.001. Scale bars 

represent 500 µm.  
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6.8 In vitro Cell Studies 

The precipitation of Ca-P particles on the surface of hybrid hydrogels can 

promote the proliferation of osteoblasts. This hypothesis was studied by 

comparing the proliferation and alkaline activity of osteoblasts on the 

surface of pure GelMA and hybrid hydrogels for up to 28 days. The 

confocal laser scanning microscopy (CLSM) images (Figure  6-10A and B) 

revealed that the viability of osteoblast cells was significantly improved on 

the surface of hybrid hydrogels. This enhancement was due to the stiffness 

improvement of hybrid hydrogels and more importantly the precipitation of 

Ca-P particles on their surfaces as the two main components of natural bone 

extra cellular matrix. The CLSM images also revealed that the osteoblast 

cells diffused within hydrogels. Three-dimensional conversion of CLSM 

images (Figure  6-10C) showed that the Saos-2 cells lost their vitality upon 

diffusing within GelMA hydrogels 28-days post-seeding. The viability of 

the diffused cells within hybrids, however, was remarkably enhanced, and 

the cells proliferated progressively through these hydrogels (Figure  6-10D). 

Despite the evaluation of vitality and proliferation of osteoblasts, their 

phenotype was also examined upon alkaline phosphatase assay (ALP). 
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Figure  6-10 Proliferation of osteoblast cells cultured on the surface of GelMA (A) and 

hybrid (B) hydrogels after 14 days (scale bar=50 µm) and their diffusion within 

GelMA (C) and hybrid (D) hydrogels 28-days post-culturing. Cells were stained using 

PI (red) and DAPI (cyan) and images were analysed using Fiji-ImageJ software. 

The release of ALP from osteoblasts is the well-known assay to assess their 

osteogenic phenotypes. As shown in Figure  6-11, the ALP activity of the 

cells on the hybrid GelMA-PEGDA-BG structures was significantly higher 

than GelMA hydrogels (p<0.001). In addition, the cultured cells on the 

surface of hybrids kept their phenotypes at least for 21 days since their 

alkaline phosphatase activity was significantly increased over time. This 

result confirmed that the chemical conjugation of BG imparted 

osteoconductivity behaviour to the hydrogel structures. 
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Figure  6-11 The alkaline phosphatase activity (ALP) of cells cultured on the surface of 

different hydrogels. Data presented as ** and *** respectively represent p<0.01 and 

p<0.001. 

6.9 In vivo Animal Study 

The in vivo cytocompatibility, degradation and the biological properties of 

hybrid hydrogels were studied by using mice-subcutaneous implantation 

model. These hydrogels were pre-fabricated in vitro by photocrosslinking of 

100 mg/ml Fn-GelMA with 100 mg/ml PEGDA covalently bonded to 0.5 µl 

of BG per each milligram of polymer content, in the presence of Irgacure. 

The surgeries were accomplished in ANZAC Research Institute in Concord 

Hospital with direct assistance of Dr. Yiwei Wong.  

Nine pathogen-free, male mice, aged 6 months were acquired, housed, and 

studied under a protocol approved by SLHD Animal Welfare Committee in 

Sydney, Australia (2013/019A). After the surgery, in the period of the test 

for 4 weeks, the animal behaviour was monitored for signs of pain/distress, 

restlessness, depression, and lack of appetite. Heart and respiratory rates, 

body temperature, and their activities were also monitored. The mice 

maintained their well-being throughout the period of study. All wounds 

healed favourably by secondary intention and with no scarring. Regular and 

comfort movements of mice were noticed in the housing facility.  
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At different time points, up to 4 weeks post-surgery, the hybrid hydrogels 

were successfully excised. It was found that the explanted hydrogels 

retained their shapes and structures for more than four weeks. The in vivo 

degradation profile of these hydrogels also confirmed that hybrid formation 

has a significant impact on their in vivo stability. The pure GelMA hydrogel, 

for instance, lost its integrity after two weeks subcutaneously implantation 

in mice [516, 517]. The magnetic resonance imaging (MRI) of 

subcutaneously implanted PEGDA hydrogels, moreover, confirmed that 

these hydrogels lost more than half of their volume after 25 days 

implantation [518]. The in vivo resorption profile of hybrid hydrogels 

revealed that their physical stability was significantly enhanced by hybrid 

formation, which was in agreement with their in vitro degradation profile in 

SBF. 

At different time points, the implanted hydrogels were successfully excised 

and underwent histology analyses. During the slide preparation for H&E 

staining, however, the hydrogels were washed away due to the prolonged 

ethanol washing cycles, e.g. 24 hours. Therefore, an empty gap was formed 

at the implantation site, as shown in Figure  6-12. An inflammatory response 

towards the hybrid hydrogels was observed during the first two weeks of 

implantation due to the formation of fibrotic tissues around the hybrids. It 

was found that the enormous foreign body giant cells (FBGC) were formed 

around the implanted hydrogels 1 week post-implantation. The extension of 

FBGCs, however, was significantly decreased up 14 days. This 

immunogenic response was due to the presence of PEGDA in the hybrid 

hydrogels since the MRI monitoring has confirmed the poor integration and 

rapid resorption of this polymer [518]  
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Figure  6-12 H&E staining of implants after one (A), two (B) and four (C) weeks post-

implantation with the scale bar of 100 µm. The progress of fibrotic tissues around the 

implanted hydrogels after different time points are illustrated in higher magnification 

(scale bars represent 200 µm). The white arrows and asterisks respectively represent 

to foreign body giant cells and lamina propria. 

 

 

C

B

A

Zoom CZoom B

*

Zoom A

Hybrid 
Hydrogel

Hybrid 
Hydrogel

Hybrid 
Hydrogel

*

*

Zoom C

Zoom B

Zoom A



Page | 110 

 

In the period of two to four weeks post-operation, the immune response to 

the hybrid hydrogels was settled, as the fibrotic tissue around the implanted 

hydrogel was significantly decreased after 2 weeks. The histological 

analyses of the implanted hydrogels with their surrounded tissues were 

shown in Figure  6-12 A-C. In addition, the observed FBGCs was 

completely diminished after four weeks (the white arrows in Figure  6-12). 

The presence of lamina propria was another sign of inflammatory within the 

first couple of weeks post-implantation. These loose connective tissues 

contain various cell types including fibroblasts, lymphocytes, plasma cells, 

and macrophages to form the fibrotic tissue around the implanted hydrogels 

(white asterisks in Figure  6-12). This drop of lamina propria after four 

weeks implantation revealed that the hybrid hydrogels did not cause chronic 

inflammation.  

One possible explanation for these behaviours is the chain relaxation 

behaviour of gelatin at physiological condition resulting from coil-to-triple 

helix conformation changes to promote its biocompatibility [519, 520]. The 

presence of bioactive glass on these hybrid hydrogels, moreover, have 

significant impacts on their interfacial reactions with surrounding tissue 

[330]. The formation of Ca-P particles on the surface of these hybrids, 

therefore, could promote the formation of ECM and improve the 

biocompatibility of hydrogels. The in vivo results of this study completely 

confirmed the accuracy of in vitro degradation profile of hybrid hydrogels in 

SBF and their biocompatibility towards different tissues and cell types. In 

addition to significant impacts of bioactive hybrid hydrogels on proliferation 

of osteo-progenitor cells and thus bone regeneration, the presence of GelMA 

in the backbone of these hybrids may promote the proliferation of soft 

tissues. The interface of soft-to-hard tissues therefore might be mimicked 

upon the fabrication of bioactive hydrogel with gradient of mineralisation.  

6.10 Fabrication of Bioactive Hybrid Hydrogel with Gradient of 
Mineralisation 

The shortcomings of current fixation methods for ligament reconstruction 

are insufficient mechanical stability [521], and the formation of non-
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mineralised soft tissue within the bone tunnel [522]. It is critical to 

developing a new approach to addressing these issues and minimise the risk 

of failure of current ligament replacement at interface. To this end, a 

bioactive hydrogel with gradient of mineralisation was fabricated from 

GelMA that was covalently bonded with bioactive glass to mimic the 

structure of ligament interface. The optimum concentrations of GelMA, 

PEGDA, and BG were used to embed a silk fabric, as a ligament 

reconstruction graft, within the resulting scaffold. The physical integrity of 

these structures was tested for the ligament-to-bone interface tissue 

engineering. 

6.10.1 Fabrication of Bioactive Hybrid Hydrogel with Gradient of 

Mineralisation 

A bioactive hydrogel with gradient of mineralisation was fabricated that 

composed of three regions. This gradient hydrogel was fabricated in a 

custom-made mould that consisted of a removable slab made from 

poly(dimethyl siloxane) (PDMS). As shown in Figure  6-13, the slab was 

firstly inserted in the middle of the mould to form two distinct zones. In 

each run 1 mg/ml Irgacure was added as a photoinitiator for the fabrication 

of GelMA-PEGDA-BG hydrogel network. Different colour dyes were used 

for separate parts to demonstrate the integration of different regions. As 

shown in Figure  6-13, after filling the solution at two end parts, the mould 

was kept at -20°C to form physically crosslinked hydrogels. The PDMS slab 

was then removed from the mould, and the hybrid solution of GelMA-BG 

was poured between the physically crosslinked hydrogels at room 

temperature. The mould was then transferred under UV light to form a 

bioactive scaffold with gradient of mineralisation. 
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Figure  6-13 The procedure for fabrication of bioactive scaffold with gradient of 

mineralisation 

The bioactive hydrogel with gradient of mineralisation was fabricated from 

the optimum concentrations of GelMA, PEGDA, and BG. As shown in 

Figure  6-14A, these materials were fully integrated within their boundaries 

and formed a unique structure with a gradient of chemical composition. The 

physical integrity of this bioactive hydrogel was qualitatively evaluated 

under different mechanical loads. As shown in Figure  6-14B, the gradient 
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hydrogel could withstand under bending loads without any deformation. 

The effect of elongation on the physical integrity of the gradient hydrogel 

was also examined. To this end, the hydrogels were fixed within the 

pneumatic grips and underwent tensile load with a rate of 0.05 mm/min in 

the hydrated state at 37°C. As shown in Figure  6-14C, the gradient hydrogel 

did not lose its physical integrity from its boundaries under the elongation 

loads.  

 

Figure  6-14 The fabricated bioactive scaffold with a gradient of mineralisation (A) 

and its physical integrity under bending (B) and elongating loads (C). Arrows indicate 

the integration of hydrogels in their boundaries. 
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The formation of bioactive hydrogel with gradient of mineralisation 

mimicked the chemical composition of ligament-to-bone interface. A 

reconstructive graft, moreover, needs to be fully integrated within the 

gradient hydrogel to resemble the chemical composition and mechanical 

performance of ligament tissue. Therefore, silk fabric as a ligament 

reconstruction graft was embedded within the gradient hydrogel and its 

physical integrity was qualified.  

6.10.2 Fabrication of Gradient Hybrid Hydrogel Embedded with Silk 

Fabric 

A gradient hydrogel embedded with silk fabric was fabricated based on the 

approach shown in Figure  6-13 with some modifications. The bioactive 

hydrogel with gradient of bioactive glass component was fabricated by 

transferring the mould to -20°C instead of photocrosslinking. The silk fabric 

was then settled on the top of physically crosslinked hydrogel and 

embedded with the secondary mould. The secondary layer of the gradient 

hydrogel was fabricated in the same method as shown in Figure  6-13. This 

complex was then transferred under UV light to form a gradient hydrogel 

embedded with silk fabric. 

The integrity of silk fabric within the gradient hydrogel was investigated by 

using SEM-EDS. The white arrows in Figure  6-15A indicated the presence 

of silk fabric in the gradient hydrogels. The monitoring of the silicon 

distribution in this construct, moreover, confirmed the successful integration 

of the electrospun film within the hydrogel. The dash-lines in Figure  6-15B 

showed the boarders of silk-tropoelastin fabric within the hydrogels, as no 

silica has been detected in this region.  
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Figure  6-15 SEM image (A) and the distribution of silicon (B) on the surface of the 

gradient hydrogel embedded with silk fabric. White arrows indicate to the electrospun 

film. Dash-lines in (B) represent to the boarders of silk fabric. Scale bars represent 

1mm. 
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6.11 Summary 

In this chapter, the feasibility of secondary crosslinking agent for enhancing 

the mechanical properties and degradation profile of hydrogels was 

examined. The favourable polymer for bioconjugation with hybrid hydrogel 

was PEGDA. The inert nature of this photocrosslinkable polymer and its 

high solubility in water led to the formation of bioconjugated hybrid 

hydrogel with tuneable mechanical strength and degradation profile. This 

polymer, moreover, did not interfere with organosilation and hybridisation 

of GelMA.  

The concentration of PEGDA was also optimised to acquire a hydrogel with 

enhanced mechanical stability and physical integrity over time compared to 

the covalently bonded GelMA-BG hybrid. The hydrogels fabricated from 

100 mg/ml Fn-GelMA, 100 mg/ml PEGDA and 0.5 µl TEOS solution per 

each milligram of the organic component had superior properties. The 

in vitro bioactivity and biological properties as well as in vivo 

biocompatibility and degradation profile of bioconjugated hybrid hydrogels 

were also examined. The precipitation of Ca-P particles on the surface of 

these hybrids enhanced the in vitro proliferation of osteoblasts and the 

secretion of bone-specific enzymes. 

The in vivo mice-subcutaneous implantation, moreover, confirmed the 

biocompatibility and bio-resorption of these hydrogels for bone tissue 

engineering. The feasible application of these hybrid hydrogels for interface 

tissue engineering was also investigated. The bioactive hydrogel with a 

gradient of mineralisation was fabricated from GelMA that was covalently 

bonded with bioactive glass. This gradient hydrogel could withstand the 

elongation loads without any deformation. These results demonstrated the 

potential of bioconjugated hybrid hydrogels for bone repair and engineering 

its interface with soft tissues. 



 

 

Chapter 7. Conclusions and 

Recommendations
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7.1 Conclusions 

The organic-inorganic hybrids fabricated by the sol-gel method are intrinsic 

bioactive materials with extensive applications in bone tissue engineering. 

The brittleness and limited water uptake capacity of these monoliths, 

however, restrict their applications for the interface of soft and hard tissues. 

The aim of this study was to develop a unique structure for reconstruction of 

bone structure and its interface with soft tissues. To this end, a new class of 

polymer-inorganic hybrid was developed in which polymer crosslinking 

ceased the over-condensation of a bioactive glass component and eradicated 

the formation of brittle structure.  

The feasibility of this approach was confirmed by formation of covalently 

bonded hybrid hydrogels of gelatin and BG upon the combination of sol-gel 

method, organosilation process, and polymer-crosslinking. To this end, 

GelMA was functionalised with GPTMS for chemical bonding to BG 

through sol-gel method. This organosilation reaction and hybrid formation 

did not interfere with crosslinking of the polymer phase. Prior to the 

complete condensation of BG, GelMA sessions were photocrosslinked to 

eradicate the formation of brittle structures. The formation of these hybrid 

hydrogels was governed by the external stimuli such as temperature and the 

isoelectric point of polymer and BG, the chemical structure of organosilane 

coupling agent, and the concentration of the inorganic component. The 

physicochemical properties and mechanical strength of these hybrid 

hydrogels were then tuned by the incorporation of secondary crosslinking 

agents such as PEGDA. The resulting biodegradable hydrogels displayed 

elastic properties with ultimate elastic compression strain above 

0.2 (mm/mm). Furthermore, the compression modulus of these hydrogels 

was tuned in the range of 42-530 kPa while they demonstrated the minimum 

swelling ratio of 400 %, which is still acceptable for tissue engineering 

applications. 

The regulation of mechanical properties and degradation profile is a key 

factor for in vivo performance of hydrogels in tissue engineering 

applications. The hybrid hydrogels were therefore incubated in simulated 
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body fluid to evaluate their in vitro degradation profiles, as well as their 

mechanical properties over time. The optimum hybrid hydrogel comprised 

from 100 mg/ml Fn-GelMA, 100 mg/ml PEGDA and hybridised with 0.5 µl 

of bioactive glass solution per each milligram of polymer content. This 

hybrid hydrogel kept its structure 28 days post-incubation and displayed 

elastic properties. The presence of homogeneously distributed bioactive 

glass in these hydrogels, moreover, promoted the precipitation of calcium 

phosphate particles as the main inorganic compositions of the bone 

extracellular matrix. The continuous increase of alkaline phosphatase 

activity of bone progenitor cells for at least 28 days in vitro cell culturing 

confirmed the osteoconductive properties of these hybrid hydrogels. The 

in vivo mice-subcutaneous implantation, moreover, confirmed the 

biocompatibility and bio-resorption of these hydrogels. These biological 

behaviours showed the potential of hybrid hydrogels for the regeneration of 

bone fractures. 

The chemical composition of ligament-to-bone interface was mimicked 

upon the fabrication of GelMA-based hydrogel with a gradient of covalently 

bonded bioactive glasses. This gradient hydrogel could withstand the 

elongation loads without any deformation. The feasibility of integration of a 

constructive graft was also evaluated by embedding a silk fabric within this 

gradient hydrogel. The results of this study confirmed that this bioactive 

scaffold had a great potential to engineer the interface of bone and soft 

tissues. 

7.2 Recommendations 

The main scope of this study was to develop a new approach to fabricating a 

non-brittle structure with a homogeneous distribution of inorganic 

compounds for regenerating the bone and its interface with soft tissues. The 

outcomes of this study broaden the application of organic-inorganic hybrids 

by controlling the over-condensation of the silica network via polymer 

crosslinking. This new class of hydrogels displayed tuneable 

physicochemical characteristics with superior structural integrity and 

remarkable bioactivity, cytocompatibility and bio-resorption properties.  
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The presence of photocrosslinkable polymer in this approach presents a 

great potential of these bioactive hybrids for in situ tissue engineering. The 

progenitor cells may suspend into a solution of organic-inorganic hybrid to 

form an injectable, cell-encapsulated hydrogel. Series of in vitro and in vivo 

studies need to be conducted to confirm the feasibility of cell-encapsulation 

with these hydrogels and their potential to maintain the metabolic activity 

for dental applications. 

The solubility of these materials provides a huge potential for fabrication of 

hybrid hydrogels via 3D printing and stereolithography. The presence of the 

inorganic compound may promote the angiogenic behaviour of the 

hydrogels. The biological motifs, therefore, can be encapsulated within the 

organic-inorganic hybrids to form a 3D hydrogel with predetermined 

topography. Series of in vitro studies need to be conducted to confirm the 

angiogenicity of these hydrogels and their potential to maintain the 

metabolic activity and to support the proliferation cells.  

The presence of a semi-conductive material (silica) in the hybrids may 

promote the electro-conductivity of these hydrogels. This class of hydrogels, 

therefore, is deemed to have a potential for nerve tissue engineering. Series 

of in vitro studies need to be conducted to confirm the feasibility of 

delivering neural stem cells with these hydrogels and their potential to 

maintain the metabolic activity and to support the proliferation cells.  

 

These gelatin-bioactive glass hybrid hydrogels can be used for mimicking 

the bone structure and its interface with soft tissues. However, further 

studies should be conducted to assess the potential of hybrid hydrogels for 

interface tissue engineering, systematically: 

 Co-culturing of ligament and bone progenitor cells on the gradient 

hydrogels. The potential of gradient hydrogels for mimicking the 

cellular constitution of ligament-to-bone interface needs to be fully 

assessed by simultaneous cultivation of fibroblast and osteoblast 

cells on the surface of gradient hydrogels to regenerate ligament and 



Page | 121 

 

bone sides, respectively. The cell proliferation and also migration of 

these progenitor cells on the gradient hydrogels need to be evaluated 

systematically. 

 Encapsulating of mesenchymal stem cells in gradient hydrogels in 

the presence of biological motifs. The feasibility of cell 

encapsulation within GelMA-based hydrogels has been confirmed 

and thus the hydrogels with a gradient of mineralisation may display 

a high potential for differentiation of MSC cells to form a gradient of 

the cellular constitution. The presence of biological motifs such as 

growth factor, moreover, significantly promoted the proliferation of 

MSC cells. An engineered ligament-to-bone interface with a gradient 

of chemical composition and cellular constitution, therefore, can be 

fabricated upon the encapsulation of MSC cells in the presence of 

growth factors. 

 Pilot in vivo animal studies on the potential of hybrid hydrogels for 

the regeneration of bone defects. The osteogenic properties of hybrid 

hydrogels have been confirmed and thus, gradient hydrogels may 

display a high potential for the regeneration of bone. Pig ligament-

to-bone defect can be used to promote the migration of progenitor 

cells from bone marrow to the defected site and regeneration of 

ligament enthesis.  
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Appendix A the precise amount of materials for synthesising of 

photocrosslinkable polymers and fabrication of various hydrogels 
 

 

Table 1 The accurate amount of materials for synthesis of GelMA* 

Material Polymeric solution Temperature 

(C) 

MA* solution Final Volume 

(ml) Mass 

(g) 

PBS* (ml) Mass 

(g) 

PBS 

(ml) 

Gelatin (Porcine) 10.625 87.5 50 1.51 20 600 (100+500) 

*GelMA: Gelatin-methacrylate; MA: Methacrylic anhydride; PBS: Phosphate Buffer Saline  
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Table 2 The accurate amount of materials for synthesis of StaMA* 

Material Polymeric 

solution 

Temperature 

(C) 

MA* solution NaOH 

solution 

Final 

Volume 

(ml) Mass 

(g) 

PBS* 

(ml) 

Mass 

(g) 

PBS 

(ml) 

Mass 

(g) 

PBS 

(mL) 

Starch 40 80 50 1.51 20 3 100 100 

*StaMA: Starch-Methacrylate; MA: Methacrylic anhydride; PBS: Phosphate Buffer Saline.  
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Table 3 The accurate amount of materials for synthesis of BG* 

Material Bioactive glass 

precursor (ml) 

Distilled Water 

(ml) 

Hydrochloric acid 

(µl) 

Tetraethyl orthosilicate 

(TEOS) 

5.54 3.625 50 

Tetramethyl orthosilicate 

(TMOS) 

2 18 - 

*BG: Bioactive Glass 
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Table 4 The precise amount of materials for fabrication of interpenetrated gelatin-BG hybrid hydrogels 

Hydrogel Gelatin 

(GelMA*) 

Genipin Irgacure BG* Final 

Volume 

(ml) Mass 

(mg) 

PBS* 

(ml) 

Mass 

(mg) 

PBS 

(ml) 

Mass 

(mg) 

PBS 

(ml) 

Ratio 

(µl/mg) 

Volume 

(ml) 

Gel_GP1 200 1.25 2.67 0.75 - - 0 0 2 

Gel_GP2.5 200 1.25 6.67 0.75 - - 0 0 2 

Gel_GP5 200 1.25 13.3 0.75 - - 0 0 2 

Gel_GP7.5 200 1.25 20 0.75 - - 0 0 2 

Hybrid_B1 200 1.0 6.25 0.8 - - 1 0.2 2 

Hybrid_B1.5 200 1.0 7.14 0.7 - - 1.5 0.3 2 

Hybrid_B2 200 1.0 8.3 0.6 - - 2 0.4 2 

Hybrid_B4 200 0.8 12.5 0.4 - - 4 0.8 2 

Hybrid_B6 200 0.5 16.7 0.3 - - 6 1.2 2 

GelMA 200 2 - - 6.67 0.3 0 0 2 

Gel-B0.5 200 1.6 - - 6.67 0.3 0.5 0.1 2 

Gel-B1 200 1.5 - - 6.67 0.3 1 0.2 2 

Gel-B2 200 1.3 - - 6.67 0.3 2 0.4 2 

*GelMA: Gelatin-Methacrylate; BG: Bioactive Glass (from Tetraethyl orthosilicate); PBS: 
Phosphate Buffer Saline.  
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Table 5 The precise amount of materials for fabrication of covalently-bonded Fn-GelMA-BG hybrid 

hydrogels 

Hydrogel GelMA* Irgacure GPTMS* 

(ml) 

BG* Final 

Volume 

(ml) 
Mass 

(mg) 

PBS* 

(ml) 

Mass 

(mg) 

PBS 

(ml) 

Ratio 

(µl/mg) 

Volume 

(ml) 

Gel_75 150 1.7 6.67 0.3 0 0 0 2 

Fn-Gel_75 150 1.686 6.67 0.3 0.014 0 0 2 

Fn-G75-B0.25 150 1.648 6.67 0.3 0.014 0.25 0.038 2 

Fn-G75-B0.5 150 1.611 6.67 0.3 0.014 0.5 0.075 2 

Fn-G75-B1 150 1.536 6.67 0.3 0.014 1 0.15 2 

Gel_100 200 1.7 6.67 0.3 0 0 0 2 

Fn-Gel_100 200 1.682 6.67 0.3 0.018 0 0 2 

Fn-G100-B0.25 200 1.632 6.67 0.3 0.018 0.25 0.05 2 

Fn-G100-B0.5 200 1.582 6.67 0.3 0.018 0.5 0.1 2 

Fn-G100-B1 200 1.482 6.67 0.3 0.018 1 0.2 2 

Gel_150 300 1.7 6.67 0.3 0 0 0 2 

Fn-Gel_150 300 1.672 6.67 0.3 0.028 0 0 2 

Fn-G150-B0.25 300 1.597 6.67 0.3 0.028 0.25 0.075 2 

Fn-G150-B0.5 300 1.522 6.67 0.3 0.028 0.5 0.15 2 

Fn-G150-B1 300 1.372 6.67 0.3 0.028 1 0.3 2 

*GelMA: Gelatin-Methacrylate; GPTMS: Glycidoxypropylene trimethoxysilane; BG: 
Bioactive Glass (from Tetraethyl orthosilicate); PBS: Phosphate Buffer Saline.  
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Table 6 The precise amount of materials for fabrication of conjugated Fn-GelMA-StaMA-BG hybrid 

hydrogels 

Hydrogel Organic Content Irgacure GPTMS* 

(ml) 

BG* Final 

Volume 

(ml) 
GelMA* 

(mg) 

StaMA* 

(mg) 

PBS* 

(ml) 

Mass 

(mg) 

PBS 

(ml) 

Ratio 

(µl/mg) 

Volume 

(ml) 

Gel 200 0 1.7 6.67 0.3 0 0 0 2 

Fn-Gel-

BG 

200 0 1.582 6.67 0.3 0.018 0.5 0.1 2 

Gel-Sta 200 40 1.7 6.67 0.3 0 0 0 2 

Fn-Gel-

Sta-BG 

200 40 1.562 6.67 0.3 0.018 0.5 0.12 2 

*GelMA: Gelatin-Methacrylate; StaMA: Starch-Methacrylate; GPTMS: 
Glycidoxypropylene trimethoxysilane; BG: Bioactive Glass (from Tetraethyl orthosilicate); 
PBS: Phosphate Buffer Saline.  
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Table 7 The precise amount of materials for fabrication of conjugated Fn-GelMA-PEGDA-BG hybrid  

Hydrogel Organic Content Irgacure GPTMS* 

(ml) 

BG* Final 

Volume 

(ml) 
GelMA* 

(mg) 

PEGDA* 

(mg) 

PBS* 

(ml) 

Mass 

(mg) 

PBS 

(ml) 

Ratio 

(µl/mg) 

Volume 

(ml) 

Gel 200 0 1.7 6.67 0.3 0 0 0 2 

Gel-P50 200 100 1.7 6.67 0.3 0 0 0 2 

Gel-P100 200 200 1.7 6.67 0.3 0 0 0 2 

Gel-P150 200 300 1.7 6.67 0.3 0 0 0 2 

Gel-P200 200 400 1.7 6.67 0.3 0 0 0 2 

Fn-Gel-

BG 

200 0 1.582 6.67 0.3 0.018 0.5 0.1 2 

Fn-Gel-

P50-BG 

200 100 1.532 6.67 0.3 0.018 0.5 0.15 2 

Fn-Gel-

P100-BG 

200 200 1.482 6.67 0.3 0.018 0.5 0.2 2 

*GelMA: Gelatin-Methacrylate; PEGDA: Poly(ethylene glycol diacrylate); GPTMS: 
Glycidoxypropylene trimethoxysilane; BG: Bioactive Glass (from Tetraethyl orthosilicate); 
PBS: Phosphate Buffer Saline.  
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