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A B S T R A C T

In many regression settings it is known, for example from some underlying physical or
economic theory, that the regression curve is monotone. While many fully parametric
monotone regression models exist, in particular in the growth curve literature, such
models may miss important features such as the number and location of roots, extrema
and inflection points of (higher order) derivatives of a regression function. Given the
many useful properties of monotone polynomials, for example that they are naturally
strictly monotone and have easily identifiable derivatives, we investigate the use of
monotone polynomials as a tool for exploring isotonic relationships in data.

Initially in Chapter 2 we revisit Hawkins (1994) algorithm for fitting monotone
polynomials and discuss two major practical issues that we encountered using this
algorithm; namely when fitting high degree polynomials, and situations with a sparse
design matrix but multiple observations per x-value. As an alternative, we describe
two new approaches to fitting monotone polynomials to data. The first approach is
based on the different characterisations of monotone polynomials, and extensions of
these, proposed by Elphinstone (1983) and by using a Levenberg–Marquardt type al-
gorithm. We consider the effectiveness of these different parameterisations, examine
effective starting values for the non-linear algorithms, and discuss some limitations.
The second method provides an approach for fitting monotone polynomials to data
which markedly improves on the algorithms of both Hawkins (1994) and those created
based on the Elphinstone parameterisations. We use a sum of squared polynomials
parameterisation to achieve this which in turn allows us to impose monotonicity con-
straints to be over either a compact interval or a semi-compact interval of the form
[a, ∞), which is in contrast to the previous approaches that imposed monotonicity over
the whole real line. This is the first time such algorithms have been made available and
the ramifications and potential benefits of this are discussed. Material described in this
chapter form parts of Murray, Müller & Turlach (2013, 2015).

In the subsequent chapters we consider inference for monotone polynomials using
our new methodology. Estimates of variation in monotone polynomials has received no
attention in the literature to date with the main focus being on trying to find effective
algorithms to fit monotone polynomials to data. In Chapter 3 we provide extensive in-
vestigations into estimates of variance for the fitted values and to estimates of variance
around the parameter estimates. We use Monte-Carlo simulations and compare several
bootstrapping algorithms to not only demonstrate the need for such techniques, but to
identify situations in which these may need adjusting. We initially start by demonstrat-
ing consistency of monotone polynomials and provide, through Monte-Carlo sampling,
empirical results with justifications for considering alternative approaches to standard
least squares unconstrained model fitting for monotone polynomials. We describe situ-
ations where the use of standard bootstrap methodology for polynomials under the
monotonicity constraints produces particularly low coverage probabilities in certain
areas of the fitted curve, dependent on how close to the boundary of the cone of
monotone polynomials the underlying function is. Consequently we describe alternat-
ive methodologies to address this issue and show that an adjustment by using either
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the m out of n bootstrap or a post hoc symmetrisation of the confidence bands is ne-
cessary to achieve more uniform coverage probabilities over the whole range of the
curve. We show that using standard bootstrap techniques to generate point wise predic-
tion intervals does not appear to suffer from the same under coverage problems as the
corresponding confidence intervals.

In Chapter 4 we provide some comparisons of monotone polynomials to existing
shape constrained regression methods and also look at speed comparisons. We show
through Monte-Carlo simulations that the bias and variance produced from monotone
polynomial curve fitting are at least comparable to those from the non-parametric
smoothing techniques, and for certain functions monotone polynomials provide better
results. This is demonstrated not only for data which are generated from polynomial
functions but also for those that originate from a sigmoidal or trigonometric function.

We compare several of the existing methods available to fit monotone polynomials
to data, described in Murray, Müller & Turlach (2013), and demonstrate that the sums
of squares formulation is much faster than previous monotone formulations and com-
parable to the semi-infinite programming approach of Hawkins (1994), with the sums
of squares formulation proving much more flexibility, for example through the ability
to fit over a compact or semi-compact interval. When compared to smoothing spline
approaches, we demonstrate the monotone polynomial model fitting appears to per-
form comparatively well for small sample sizes, but is more effective with smaller run
times when the sample sizes are larger. We show that the efficiency of our methodo-
logy is pertinent to the ability to use computationally intensive techniques such as the
bootstrap in variance estimation. Furthermore, we demonstrate that in many instances
monotone polynomials are at least comparable in terms of bias and variance to readily
available constrained regression techniques. Material described in this chapter form
part of Murray, Müller & Turlach (2015).

In Chapter 5 we switch focus to model selection techniques, and the visualisation of
the model selection process. This chapter describes graphical methods that assist in the
selection of models and comparison of many different selection criteria. Specifically, we
describe for logistic regression initially, how to visualize measures of description loss
and of model complexity to facilitate the model selection dilemma. We advocate the use
of the bootstrap to assess the stability of selected models and to enhance our graphical
tools. We demonstrate which variables are important using variable inclusion plots and
show that these can be invaluable plots for the model building process. We show with
two general case studies how these proposed tools are useful to learn more about
important variables in the data and how these tools can assist the understanding of the
model building process. Furthermore, we extend these techniques to model selection
using monotone polynomials, identify some of the issues with model selection in such
constrained scenarios, and provide a further two real world examples to illustrate this
process. The majority of this chapter forms the basis for the published article by Murray,
Heritier & Müller (2013) and is based on analysis carried out by Murray in Rosenwax,
McNamara, Murray et al. (2011) and Lawrance, Murray, Batman et al. (2013).

Finally in Chapter 6 we describe methods for detecting features of curves from fitted
models, for example derivatives or inflection points, through fitting monotone polyno-
mials to data. We demonstrate how simple this process now becomes and how effective
this technique is for such a problem and describe through our comparative examples
with other techniques for this particular problem, how other such techniques have
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many difficulties associated with identifying such features. We show through simu-
lated data and real world examples how effective using monotone polynomials can be
when the aim is to identify features of curves. We finalise the thesis by demonstrat-
ing the use of monotone polynomials with a well known, and analysed, adolescent
growth curve data set and demonstrate the simplicity and effectiveness of monotone
polynomials curve fitting using our newly developed methods and techniques.

All monotone polynomial algorithms and methods discussed are available in the
latest version of our newly created R (R Core Team, 2015) package MonoPoly (version
0.3-6 or later). The graphical model selection work has already been further developed
and now forms part of the mplot R package.
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To find out what happens when you change something,
it is necessary to change it.

Box, Hunter and Hunter (Box, Hunter & Hunter,
1978)
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I N T R O D U C T I O N A N D B A C K G R O U N D

The work presented in this thesis combines work from two different projects worked

on in parallel. The first being a larger project which has resulted in three chapters

of this thesis focussing on estimation of, inference for, and applications of monotone

polynomials. The second is a project on model selection, with a particular focus on

graphical methods, which has resulted in one chapter of this thesis. In this introduction

we provide a background and outline for the former of these projects with a detailed

background and explanation on the latter provided in Chapter 5. The sixth and final

chapter is an applications chapter.

1.1 background on monotonic curve estimation

In many regression settings it is known, for example from some underlying physical

or economic theory, that the regression curve is monotone. Further examples include,

but are not limited to, calibration problems, estimation of monotone transformations

(for example to transform a variable to normality), growth curves, and dose-response

curves. While many fully parametric monotone regression models exist, in particular

in the growth curve literature, such models may miss important features such as the

number and location of roots, extrema and inflection points of (higher order) derivat-

ives of the regression function.

A researcher who needs to fit a monotone regression curve typically has to make the

choice between a parametric nonlinear regression model (Ratkowsky, 1990), in partic-

ular those models developed in the growth curve literature (see, for example, Mirman,

2014; Panik, 2014), or a shape constrained smoothing technique. Popular methods for

the latter approach involve the use of either spline smoothing or kernel smoothing tech-

niques. Incorporating shape constraints into spline smoothing has been well studied

1
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and, for reviews of the existing literature, we refer to the introductory sections of Tur-

lach (2005), Hazelton & Turlach (2011) or Meyer (2008, 2012). By way of contrast, kernel

smoothing techniques for (general) shape constraints (Marron, Turlach & Wand, 1997;

Mammen, Marron, Turlach et al., 2001) are somewhat less often used, but there is some

notable work on monotone kernel smoothers (Friedman & Tibshirani, 1984; Mammen,

1991; Hall & Huang, 2001; Dette, Neumeyer & Pilz, 2006; Dette & Pilz, 2006).

Whilst both the parametric nonlinear regression models and the shape constrained

smoothing techniques are extremely effective for many applications they are not without

their drawbacks. Unfortunately approaches to monotone regression that use paramet-

ric nonlinear models may suffer from the problem that many parametric monotone re-

gression models depend only on a few parameters and, hence, such models may miss

important features such as the number and location of roots, extrema and inflection

points of (higher order) derivatives of a regression function. On the other hand, most

approaches that impose monotonicity on nonparametric smoothing techniques can be

problematic due to the estimated regression curve having flat stretches, and monotone

regression smoothing “has been criticized because practitioners do not believe in all

those flat spots” (Dette, Neumeyer & Pilz, 2006). Having to contend with estimated

regression functions with many (spurious) flat spots is highly undesirable, especially

in situations where the estimation of derivatives (and features thereof) is important, as

these would translate to increased variability of such estimates. Furthermore, while the

approaches of Ramsay (1998), Dette, Neumeyer & Pilz (2006), and Hazelton & Turlach

(2011) lead to estimated regression functions that are strictly monotone, the functional

form of the estimated regression function does not lend itself readily to a subsequent

analysis to aspects of its derivatives.

This suggests that there is a need for some methodology that occupies the middle

ground between the two approaches discussed, that is there is a need for models that

are more flexible than parametric monotone regression curves, but which lend them-

selves more easily to post-processing and further calculations than monotone nonpara-

metric smoothing techniques. Monotone polynomials provide such a methodology and

we note that these polynomials also exhibit many useful properties, for example that

they are naturally strictly monotone, have easily identifiable derivatives, and have the
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major advantage of only having one tuning parameter to estimate, that is the degree of

the polynomial, as opposed to spline smoothing, which is similar in nature to a mono-

tone polynomial, but has potentially many tuning parameters, such as the number and

location of knots and the particular choice of the basis function.

1.2 uses for monotone regression models

In many real world situations there is a necessity to not only identify a model or set of

models that adequately describe the underlying phenomenon, but that also have under-

lying features that are important for the application of interest. A well known example

of the latter are growth curve models (see, for example, Mirman, 2014; Panik, 2014), in

which many different models have been postulated. Specifically, human growth curves

have been examined extensively and modelled in numerous different ways. In these

situations the modeller is usually led by the well documented trajectories of adoles-

cent growth; that is by four distinct periods prior to reaching final adult height around

18-19: rapid growth during infancy, steady growth in childhood, rapid growth during

adolescence, and very slow growth approaching adulthood. These lead to the change

in y (height) differing throughout the growth period, hence generating (multiple) in-

flection points. To model the whole human growth parametrically has been attempted

and models such as the Preece-Baines models (Preece & Baines, 1978) for example have

been developed.

However, in other situations there may be little or no knowledge of the underlying

physical set of mathematical functions, but there are still specific aims. For example

searching for the LD50 in a toxicological study, that is the individual dose required

to kill 50% of a population of test subjects, would usually be based on the knowledge

that the proportion survived (y) has a monotone decreasing relationship with the dose

of the drug (x), but little more is known about the specific shape. In these instances

one can either assume a known parametric from, for example the sigmoidal function,

or adapt a more liberal approach by not specifying a functional form for the model

explicitly.
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In order to solve these types of problem many researchers have turned to a flexible

set of non-parametric smoothing spline approaches, see, for example, the work by

Ramsay (Ramsay, 1988, 1998; Ramsay & Silverman, 2002, 2006; Heckman & Ramsay,

2000; Ramsay, Wickham, Graves et al., 2013), which has been used extensively. However,

given the numerous decisions that need to be made when fitting smoothing splines, the

optimisation process can become difficult, which in many instances leads to subjective

choices of parameter values, thus in turn leading to non-robust solutions.

An example of the use of such methodology is described in Firmin, Müller & Rösler

(2011, 2012) in which the motor evoked potentials in the brain is modelled in terms of

a stimulus applied to an individual for different delay times. As the delay of the stimu-

lus increases the motor evoked potential decreases defining a underlying phenomenon

which is monotonic. In this research the number and location of inflection points is of

paramount interest as it would enable further classification of individuals, for example

to identify patients with diseases such as multiple sclerosis. In these situations, flex-

ible models, with easily defined inflection points are needed as details on the specific

locations of these features are very rarely known at the individual level, with many in-

dividuals having only one inflection point, some having them early, some having them

late and many having much more than one inflection point. This obviously increases

the difficulty of the modelling problem and further suggests that alternatives to the

usual methods would be useful.
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1.3 the aims and outline of this thesis

Our main thesis aims can be concisely put into two objectives:

OBJECTIVE 1: Provide a major contribution to the research area of

monotone curve estimation

OBJECTIVE 2: Contribute to the model selection literature through

the visualisation of the model selection process for generalised linear

models

In order to achieve these objectives we describe the five major areas contributing to this

thesis:

1. Investigate and develop the use of monotone polynomials for modelling the

monotone relationship between x and y, in particular:

• Develop new methodology for fitting monotone polynomials for data;

• Expand on the existing methodology for fitting monotone polynomials to

data;

• Consider different optimisation routines, starting values, stopping rules;

• Contribute to the development of an R package for these purposes.

2. Develop methodology for estimation of standard errors, and the calculation of

confidence and prediction intervals for monotone polynomials;

3. Provide a comparison to previously developed methodology for explaining the

monotone relationship between a response and a predictor;

4. Further develop work on model selection in general, with a focus on providing

graphical techniques to aid in model selection, and further develop the model

selection methods for monotone polynomials;
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5. Provide some real world applications and comparisons with monotone smooth-

ing splines when the aim of the research is to develop methods for detecting

inflection points, or points arising from higher order derivatives.

To this end, in this thesis, we have achieved all of this, and a simple example that

demonstrates the achievements of this thesis can be made with example data taken

from the Berkley Guidance Study (Tuddenham & Snyder, 1954), a famous and well

used data set, which examined the growth of boys and girls from the age of one

through to adulthood. We show one such individual girl’s growth curve data in the

top left panel of Figure 1.1, and show three different models fitted to this data in the

top right panel. These curves demonstrate the extent to which our monotone polyno-

mial methodology (green line) provides a similar fit to the smoothing spline approach

proposed by Ramsay (1998) and Ramsay & Silverman (2002, 2006) (black line), both of

which are only marginally different from using the Constrained Generalized Additive

Model (CGAM) framework described in Meyer (2008, 2012) (blue line). We note that

all three techniques provide a very similar fitting curve in this instance, highlighted by

their overlapping nature, but the monotone polynomial approach is the only method-

ology that has the added simplicity of only one tuning parameter (the degree of poly-

nomial). This suggests monotone polynomials are potentially beneficial in constrained

regression situations. Furthermore, with the methodology we developed, we see in the

bottom left panel of Figure 1.1, both confidence bands and prediction bands for the fit-

ted monotone polynomial curve. These intervals are based on bootstrap methodology

developed in this thesis and described in Chapter 3. Finally, in the bottom right panel

we show the bootstrap distribution for the location of inflection points in our growth

data, noting several peaks in the distribution, denoting the location of the inflection

points for this individual. The latter problem, is made particularly easy using mono-

tone polynomials due to their known parametric from and simplicity of their higher

order derivatives.

From this focus our thesis is outlined as follows: We will initially investigate new

methodologies for fitting monotone polynomials to data with the aim of making the

fits more robust and more efficient by decreasing the run-time. In Chapter 2 we con-
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Figure 1.1: Data from Berkley Guidance Study. Top left panel: actual growth data of one indi-
vidual; top right panel: different constrained regression fits to data with monotone
polynomial fit (red line), CGAM fit (blue line) and monotone smoothing spline fit
(black line); bottom left panel: confidence and prediction intervals using monotone
polynomials; bottom right panel: histogram of location of inflection points based on
bootstrap distribution.
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sider the existing methodology for fitting monotone polynomials to data through the

methods described by Elphinstone (1983), Hawkins (1994), and Heinzmann (2008). We

develop new methodologies, expanding on existing work, by introducing the use of the

Levenberg-Marquardt algorithm for the non-linear optimisation. We describe problems

associated with the use of the previous methodologies, in particular for the situation

where the number of design points is sparse and the aim is to estimate the location

of features of fitted curves, for example inflection points. Furthermore, we introduce a

novel algorithm for fitting monotone polynomials to data, which makes use of a sum

of squared polynomials approach. We provide some extensive simulations to compare

all of our newly proposed methods, making recommendations on which conditions

would suit each method.

In Chapter 3 we consider consistency of monotone polynomial estimators and provide

some numerical experiments to complement our theoretical argument. In addition we

look at the variability associated with monotone polynomials, and provide Monte-

Carlo simulations to demonstrate the difference between these and those obtained

using a standard unconstrained least squares approach. We outline the necessity to de-

termine different methods for estimating confidence bands for monotone polynomial

fits and describe bootstrap methodology to obtain such estimates. We propose adapta-

tions of the standard bootstrap methodology for monotone polynomials and describe

through simulations the effectiveness of such adaptations. Finally, we consider predic-

tion intervals and demonstrate that the problem associated with confidence intervals is

not as pronounced when calculating prediction intervals, indicating that such intervals

could be derived using existing bootstrap techniques.

In Chapter 4 we take a look at the new methodology developed in Chapters 2 and 3,

and provide a comparison of these approaches to the existing methodology in Hawkins

(1994), along with some comparisons to two of the more commonly used monotone

smoothing spline techniques described in Ramsay (1998),Ramsay & Silverman (2002,

2006) and Meyer (2008, 2012). Comparisons are quantified in terms of both bias and

variance and some run time comparisons are provided.

Chapter 5 presents material on the model selection problem for monotone polyno-

mials, along with the more general model selection problem for any generalised linear
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models, the latter of which was a parallel project to the monotone polynomial work.

We make extensive use of the bootstrap methodology discussed in Chapter 3 and con-

sider several different approaches including an information criteria approach to gen-

eral model selection, with the development of model selection plots to aid in the model

selection process. We examine the effectiveness of these with the more simple model

selection problem for monotone polynomials, that is determining the most effective de-

gree of monotone polynomial. We demonstrate these methodologies with several real

world problems from Medicine, Forensic science and Neurophysiology.

Finally, in Chapter 6, we address our initial problem that motivated the further de-

velopment of methods for fitting monotone polynomials to data, of detecting inflec-

tion points in monotone increasing or monotone decreasing functions. We revisit the

model selection problem discussed in Chapter 5 and carry out extensive simulations,

investigating the use of various methodologies. We give a comparison of two altern-

ative approaches for detecting inflection points and show the effectiveness of each

methodology. We finalise Chapter 6 by demonstrating these methodologies with the

Neurophysiology data and the growth curve data described earlier in this chapter.

At the start of each chapter we will include a brief introduction which goes beyond

the general introduction in this chapter, and at the end of each chapter we will provide

some general discussion and conclusions. Throughout the thesis our aim is to keep an

emphasis on visualisation of our techniques, and results generated using them, and as

a consequence we provide numerous visual aids to assist in the understanding and the

interpretation of our results.



2

F I T T I N G M O N O T O N E P O LY N O M I A L S T O D ATA

summary

In this chapter we revisit Hawkins’ (1994) algorithm for fitting monotone polynomi-

als and discuss two major practical issues that we encountered using this algorithm,

namely when fitting high degree polynomials and situations with a sparse x design but

multiple observations per x-value. As an alternative, we describe two new approaches

to fitting monotone polynomials to data.

The first approach is based on the different characterisations of monotone polynomi-

als, and extensions of these, proposed by Elphinstone (1983) and by using a Levenberg–

Marquardt type algorithm. We consider the effectiveness of these different paramet-

erisations, examine effective starting values for the non-linear algorithms, and discuss

some limitations.

The second method provides an approach for fitting monotone polynomials to data

which markedly improves on the algorithms of both Hawkins (1994) and those created

based on the Elphinstone parameterisations. We use a sum of squared polynomials

parameterisation to achieve this which in turn allows us to impose monotonicity con-

straints to be over either a compact interval or a semi-compact interval of the form

[a, ∞), which is in contrast to these previous approaches that imposed monotonicity

over the whole real line. This is, to our knowledge, the first time such algorithms have

been made available and the ramifications and potential benefits of this are discussed.

All algorithms discussed in this chapter are available in the R (R Core Team, 2015)

package MonoPoly (version 0.3-6 or later).

10
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2.1 introduction

Given the many useful properties of monotone polynomials, for example that they are

naturally strictly monotone and have easily identifiable derivatives, we revisit the fit-

ting of monotone polynomials to data. Our initial motivation was to improve upon the

methodology used in Firmin, Müller & Rösler (2011, 2012) who examined monotone

decreasing relationships in Neuroscience. They used a triple stimulation technique

(TST) to study motor evoked potentials (MEP) in the brain. Specifically this technique

is a collision technique, whereby the degree of MEP desynchrinization may be sup-

pressed (Magistris, Rösler, Truffert et al., 1998, 1999). It is performed by first delivering

a magnetic stimulus followed by an electrical stimulation of the peripheral nerve of the

wrist, after an appropriate delay. A third stimulus is delivered to Erb’s point, eliciting

a motor response that can be assessed. They fitted a monotone decreasing function

into the measured motor evoked potentials (TST amplitude) as a function of stimu-

lation delay on more than 40 different data sets, one from each participating patient

in their study. Firmin, Müller & Rösler (2011, 2012) used smoothing splines via the

smooth.monotone function which is part of the R-package fda (Ramsay, Wickham,

Graves et al., 2013) and extracted those inflection points (roots of the second deriv-

ative) from the fitted curve that relate to local maxima of the first derivative. These

estimated modes are of relevance in Neuroscience. The purpose of this chapter is not

to demonstrate that using monotone polynomials in this context outperforms “full-

blown” nonparametric smoothing techniques, this will be investigated in Chapter 6,

but to present improved algorithms for fitting monotone polynomials.

Recently, fitting monotone polynomials to data has been considered in a Bayesian

framework by Curtis & Ghosh (2011), and previously in a frequentist setting by Hawkins

(1994), whose algorithm we revisit in Section 2.3. While Hawkins’ algorithm is fast and

effective, we identify situations in which it cannot be used. For these situations, and

for use in general, we consider several parameterisations of monotone polynomials,

and show how the best fitting monotone polynomial, using any of these parameterisa-

tions, can be fitted to data using a Levenberg–Marquardt modified Newton–Raphson

algorithm.
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We continue this chapter by describing broad methodology for fitting monotone

polynomials to data in Section 2.2 and describe our experience with Hawkins’ (1994)

algorithm in Section 2.3. Furthermore by closer investigation of the parameterisations

and algorithms, based on the earlier formulations proposed by Elphinstone (1983) and

a semi-definite programming algorithm by Hawkins (1994), we identify two situations

in which improvements could be made on the existing methodology: (i) when q, the de-

gree of the polynomial, is large and leads to problems with the QR factorisation of the

design matrix, or (ii) when q is large relative to the number of unique points in the x

design. In Section 2.4 the various parameterisations of monotone polynomials based on

formulations described in Elphinstone (1983) and modifications of these parameterisa-

tions, along with a sum of squared polynomial approach is presented, together with a

discussion on how to evaluate the objective functions and its derivatives. We show that

one of the drawbacks of earlier methodologies proposed for fitting monotone polyno-

mials to data, is the inability to constrain the polynomial to be monotone over compact

or semi-compact intervals. To date algorithms for fitting monotone polynomials to data,

when the function is only constrained to be monotone over a compact or semi-compact

region, are to our knowledge not available, and we consider this by developing a meth-

odology to fit such polynomials using a sums of squares parametrisation, which also

allows fitting over the entire real line. We believe this is key to generalise the fitting of

monotone polynomials to these regions, as well as to allow the fitting of constrained

even degree polynomials, and we examine the impact of this sums of squares paramet-

risation and its effectiveness. For all methodologies presented, we describe optimising

the objective function through the use of a Levenberg-Marquardt optimisation routine

in Section 2.5 and describe methods for selecting effective starting values and stopping

criteria. In Section 2.6 we describe our experiences of the different parameterisations

and, in Section 2.7, results from our numerical experiments are illustrated. Finally, we

provide some discussion and conclusions in Section 2.8.
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2.2 background

The usual parameterisation for a polynomial regression function is

p(x) = p(x; β) = β0 + β1x + β2x2 + · · ·+ βqxq (2.1)

where q is the degree of the polynomial and β = (β0, β1, . . . , βq)T, with the β js being

the regression parameters in the linear regression model

Y = β0 + β1x + β2x2 + · · ·+ βqxq + ε. (2.2)

and ε is the error term. For a random sample from model (2.2) the errors ε1, . . . , εn are

for many applications assumed to be independent and identically distributed. Note

that such a polynomial, p(x), can be monotone over the whole real line, only if its

degree q = 2K + 1 is odd, where K is some non-negative integer. To fit a polynomial

regression curve to given data (xi, yi), i = 1, . . . , n, one usually minimises the residual

sum of squares (RSS), which under the assumption of Gaussian errors in (2.2) achieves

the same as maximising the likelihood. That is, the fit is determined by minimising

RSS(β) =
n

∑
i=1

(yi − p(xi))
2. (2.3)

Note that this objective function is strictly convex in β if the number of distinct x-

values exceeds q. Moreover, the set of monotone increasing polynomials, I = {p(x) :

∀x, p′(x) ≥ 0}, and the set of monotone decreasing polynomials,D = {p(x) : ∀x, p′(x) ≤

0}, are both convex, closed sets. Thus, minimising (2.3) over either I or D is a convex

optimisation problem, with a unique solution, which should be easy to solve. However,

while it would be relatively easy to find starting values in I or D, for example by fitting

a simple linear regression and setting β j = 0 for j ≥ 2 or fitting the function β0 + βqxq

to the data, finding descent directions is extremely difficult at best.
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2.3 hawkins’ approach

Hawkins (1994) shows that the solution to minimising RSS(β) subject to p ∈ I must

be a polynomial with derivative p′(x; β) > 0 for all but a finite number of points, say,

x∗m with p′(x∗m; β) = p′′(x∗m; β) = 0, m = 1, . . . M (with M = 0 a possibility), which

he calls “hips” (short for “horizontal inflection points”). This insight shows that the

optimal monotonic (increasing) polynomial is the saddle-point (that is, a stationary

point in the range of the function which does not correspond to a local extrema) of the

Lagrangian

RSS(β)−
M

∑
m=1

λm p′(x∗m; β).

Thus, if M and the location of the hips were known, then the optimal monotonic

polynomial is given by the solution to the quadratic program

minimiseβ RSS(β) subject to p′(x∗m; β) = 0, m = 1, . . . , M. (2.4)

This led Hawkins (1994) to propose the following algorithm:

1. Set M = 0 and solve the unconstrained problem minimiseβ RSS(β).

2. Check whether the first derivative p′(x, β) of the fitted polynomial is non-negative

everywhere. If it is, then the fitted polynomial is monotonic already, and therefore

solves the problem.

However, if the resulting polynomial is not monotonic, then it will be necessary

to find an additional candidate hip at which to force the polynomial’s slope to be

zero. To do this, increase M by 1, adding an additional candidate hip and forcing

a zero derivative there. Solve the resulting equality-constrained problem.

The additional constraint at the new candidate hip may make one of the existing

constraints redundant, a fact that will be detected by its Lagrange multiplier λm

becoming negative. If this occurs, remove that candidate hip from the active set.

Repeat the algorithm from step 2.
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To complete the description of his algorithm, Hawkins (1994) suggests (with slight

modifications to adapt to the notation used here):

The test for monotonicity can be made quickly and efficiently, finding the

minimum of p′(x) by solving p′′(x) = 0 [. . . ] which is easily done using

standard packages for manipulating polynomials. The test for monotonicity

is made by evaluating p′(x) at each real root of [p′′(x)]—by definition the

x values at which p′(x) takes on its most extreme values. If any of these

derivatives is negative the polynomial is not monotonic. The converse is

not true; p′(x) may have positive extreme values but be negative for all

sufficiently large |x|; for this reason while the primary test for monotonicity

is based on the values of p′(x) at the roots of p′′(x) = 0, we supplement this

test with a direct evaluation of p′(x) at some relative extreme value of x.

Where the current polynomial is not monotonic, the algorithm needs to

select an additional candidate hip. A good choice is the x-value at which

the largest negative slope occurs, a value which is the byproduct of the

suggested method for checking monotonicity. This value is then used as

the candidate additional hip in step 2.

and describes how (2.4) can be solved for a given set of hips.

In attempting to implement this algorithm, we frequently experienced two or more

Lagrange multipliers becoming negative in step 2. It appears that one should still drop

only one constraint during this step, which may require a judicious selection. More

problematic were situations in which two, or more, of the Lagrange multipliers became

close to zero; that is having an absolute value smaller than typically employed tolerance

levels for numerical calculations. In such situations it is difficult to determine whether

the corresponding constraints are inactive and should be dropped, and if so, in what

order. However, not dropping such constraints leads to an increasing set of candidate

hips and (2.4) being solved with an increasing number of equality constraints which

may create numerical problems.
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2.3.0.1 Improving Hawkins’ Approach

To improve the algorithm provided in Hawkins (1994) we choose to implement step 2

by using the R package quadprog (Turlach & Weingessel, 2011) which implements

the quadratic programming algorithm of Goldfarb & Idnani (1982, 1983). In doing so,

we replaced the equality constraints in (2.4) by inequality constraints (p′(x∗m; β) ≥ 0,

m = 1, . . . , M) and removed all candidate hips for which the Lagrangian parameter

was non-positive at the solution. Finally, to cope with different levels of numerical

precision for the polynomial root finder (function polyroot() in R), the evaluation of

polynomials and the quadratic programming solver, we found it necessary to declare

a polynomial to be monotone if p′(x) > −ε at the roots of p′′(x), where ε can be

chosen to be in the order of 10−7 to 10−12, and p′(x) > 0 at some relative extreme

value of x. This correlates with Hawkins’ (1994) warning that “Care is needed [since]

it is not always trivial to decide whether a polynomial is really non-monotonic, or just

seems so because of roundoff noise”. The choice of ε obviously influences the number

of iterations of the algorithm, but we found our implementation of the algorithm to be

fast and reliable for values of ε in the indicated range.

We note that for numerical stability a QR factorisation of the design matrix

D =



1 x1 x2
1 x3

1 . . . xq
1

1 x2 x2
2 x3

2 . . . xq
2

1 x3 x2
3 x3

3 . . . xq
3

...
...

...
... . . .

...

1 xn x2
n x3

n . . . xq
n


(2.5)

should be used as recommended by Hawkins (1994), where n is the number of obser-

vations. However, it becomes increasingly difficult to calculate a QR factorisation of

the design matrix as q increases, irrespective of the x-design. The reason is that the

approach of Hawkins uses unorthogonalised polynomials which pose severe numer-

ical challenges at higher degrees and the calculations may fail with default settings
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of numerical routines. Consequently judicious choice of numerical tolerances becomes

necessary.

While Hawkins (1994) surmises that “Polynomials of degree 1, 3, 5, 7 and 9 were

fitted—[to test] the method when using a polynomial of degree far above what most

people would normally consider using for data modeling”, the application that motiv-

ated our research, namely the search for inflection points, may necessitate the use of

polynomials of (much) higher degrees. With the methods described in the subsequent

sections we are able to fit much higher degree monotone polynomials to data than can

be achieved using Hawkins’ approach.

Furthermore, in situations with a sparse design but multiple observations per x-

value, such as our example data W2 below in Section 2.7, one might want to fit a

monotone polynomial of order q in a situation where one has only q, or even slightly

less, unique x-values. In such circumstances the algorithm of Hawkins (1994) will fail

as it starts off at the unconstrained solution.

These two drawbacks, which limit the usefulness of Hawkins’ approach for our ap-

plication of interest, lead to the consideration of other approaches for fitting monotone

polynomials which are based on isotonic parameterisations.

2.4 isotonic parameterisations

We describe in this section two different approaches to parameterising monotone poly-

nomials and the benefits and drawbacks of each.

2.4.1 Elphinstone type

As an alternative approach to overcome the problem that (2.3) cannot be easily min-

imised, over I or D, when the parameterisation (2.1) is used, we consider here several

parameterisations of isotonic polynomials. The first parameterisation is due to Elphin-

stone (1983) who realised that a polynomial of degree q = 2K + 1 is isotonic if, and
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only if, all real roots of its derivative have an even multiplicity. This insight leads to the

following parameterisation

p1(x) = δ + α
∫ x

0

K

∏
j=1

{(
c2

j + b2
j

)
+ 2bjt + t2

}
dt (2.6)

where α, δ, bj and cj, are arbitrary real values, j = 1, . . . , K; the sign of α determines

whether the polynomial is monotone increasing or monotone decreasing. In this para-

meterisation α/(2K + 1) is the coefficient of the xq term, and the roots of the derivative

of p1(x) are given by −bj ± cj ι, where ι =
√
−1.

Elphinstone (1983) also proposed the following parameterisation, subsequently men-

tioned by Hawkins (1994) and used by Heinzmann (2008),

p2(x) = δ + α
∫ x

0

K

∏
j=1

{
1 + 2bjt +

(
b2

j + c2
j

)
t2
}

dt, (2.7)

and motivated it by observing that “when stepping from K− 1 to K the starting values

[. . . ] would be the solution which [minimise] the criterion for K− 1, and the two new

parameters [. . . ] would be set to zero”. We shall comment on this observation later in

this section, but note for now that unlike parameterisation (2.6), this parameterisation

cannot be used for all isotonic polynomials, for example p(x) = xq with q = 3 cannot

be represented in the form (2.7). The reason being that the roots of the derivative of

p2(x) are given by −bj/(b2
j + c2

j )± cj/(b2
j + c2

j ) ι. For example with q = 3, that is K = 1,

then (2.7) becomes

p2(x) = δ + α

{
x +

b1x2

2
+

(b2
1 + c2

1)x3

3

}
,

which will always have a linear term included so long as α is non-zero, hence p2(x)

will never be x3. As in (2.6) the sign of α determines whether p2(x) lies in I or D.
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The final parameterisation that we consider, proposed by Penttila (2006), is a modi-

fication of (2.7) and, to the best of our knowledge, was published by Murray, Müller &

Turlach (2013) for the first time:

p3(x) = δ + α
∫ x

0

K

∏
j=1

{
b2

j + 2bjt +
(

1 + c2
j

)
t2
}

dt. (2.8)

The roots of the derivative of p3(x) are given by −bj/(1 + c2
j )± bjcj/(1 + c2

j ) ι, which

shows that this parameterisation can also not represent all isotonic polynomials; the

derivative of p3(x) cannot have roots of the form 0± e ι with e 6= 0. Again the sign of

α determines whether p3(x) is monotonic increasing or decreasing. It should be noted

that with parameterisations (2.6) and (2.8) the fitted polynomial will either be constant

or of degree q, while for (2.7) and for Hawkins’ (1994) method, described in Section 2.3,

the fitted polynomial can potentially have degree less than q.

For all three parameterisations we denote the vector of parameters generically by

θ = (δ, α, b1, c1, . . . , bK, cK)
T =

(
δ, α, θ̃

T
)T

. Note that all these parameterisations have

the form

p(x) = δ + α p̃(x) = δ + α p̃(x; θ̃), (2.9)

where p̃(x) depends only on the bjs and cjs. Finally, for the remainder of this chapter,

it will be clear from the context whether we regard the residual sum of squares as a

function of β or as a function of θ, and we avoid the subscript of p.

2.4.1.1 Evaluating the objective function and its derivatives

To evaluate the RSS using any of the parameterisations described previously in this

section, we first calculate the β which corresponds to the given θ. This allows an easy

evaluation of p(x) for arbitrary values of x, using for example the Horner scheme for

numerical stability (Fausett, 2003), and to use (2.3) for the calculation of the RSS.

We illustrate the necessary calculations using parameterisation (2.6), the other two

parameterisations can be handled analogously, and are shown in Appendix A. To cal-

culate β for a given θ, we first build triples (c2
j + b2

j , 2bj, 1), which are the coefficients
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for the quadratic functions appearing in (2.6). By convoluting these triplets, we can

calculate the coefficients γ = (γ0, . . . , γ2K)
T of the polynomial

γ0 + γ1t + · · ·+ γ2Kt2K =
K

∏
j=1

{(
c2

j + b2
j

)
+ 2bjt + t2

}
.

From γ we can readily calculate β as

β =

(
δ, αγ0, α

γ1

2
, . . . , α

γ2K

2K + 1

)T

.

Note that
(
0, γ0, γ1

2 , . . . , γ2K
2K+1

)T is the vector that contains the coefficient of the polyno-

mial p̃(x) in (2.9).

To minimise RSS numerically we also need first and second derivatives for a de-

rivative based optimisation algorithm. These derivatives can easily be calculated in a

similar manner. In general using (2.3) we see

∂

∂θ
RSS = −2

n

∑
i=1

(y− p(xi))
∂

∂θ
p(xi) (2.10)

and from (2.9) we have

∂

∂δ
RSS = −2

n

∑
i=1

(y− p(xi)), (2.11a)

∂

∂α
RSS = −2

n

∑
i=1

(y− p(xi)) p̃(xi), (2.11b)

∂

∂θ̃k
RSS = −2α

n

∑
i=1

(y− p(xi))
∂

∂θ̃k
p̃(xi), (2.11c)

where θ̃k is a component of the vector θ̃, that is one of the bjs or cjs. Previously we

have discussed how p̃(xi) can be evaluated once γ is determined. The partial de-

rivatives ∂
∂θ̃k

p̃(xi) can be evaluated similarly. For example, if θ̃k is bj0 , then we build

the triples (c2
j + b2

j , 2bj, 1) for j 6= j0 and the triple (2bj0 , 2, 0). After convoluting these

K triples, the coefficients of the polynomial ∂
∂θ̃k

p̃(·) can be readily calculated. Similarly,

if θ̃k is cj0 , then we build the triples (c2
j + b2

j , 2bj, 1) for j 6= j0 and the triple (2cj0 , 0, 0).

After convoluting these K triples, the coefficients of the polynomial ∂
∂θ̃k

p̃(·) can be read-

ily calculated.
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Using (2.10) it follows that the Hessian is

∂2

∂θ∂θT RSS(θ) = 2
n

∑
i=1

(
∂

∂θ
p(xi)

)(
∂

∂θ
p(xi)

)T

− 2
n

∑
i=1

(y− p(xi))
∂2

∂θ∂θT p(xi) (2.12)

and combining with (2.11) allows us to find formulae for the second partial derivatives

of RSS, that is of ∂2

∂θk ∂θl
RSS. Some of these second derivatives involve second derivatives

of the polynomial p̃(x). Again, the coefficients of ∂2

∂θk ∂θl
p̃(x; θ̃) can be determined by

convoluting appropriately constructed triples. Though if either θl or θk is either α or δ,

then, trivially, ∂2

∂θk ∂θl
p̃(x; θ̃) ≡ 0. Also note that ∂2

∂bj∂cj
p̃(x; θ̃) ≡ 0, j = 1, . . . , K.

These second partial derivatives are shown here for completeness. First, we note the

obvious relationship

∂2

∂θk ∂θl
RSS ≡ ∂2

∂θl ∂θk
RSS.

From (2.11a) we have

∂2

∂δ2 RSS ≡ 2n, (2.13a)

∂2

∂δ∂α
RSS = 2

n

∑
i=1

p̃(xi), (2.13b)

∂2

∂δ∂θ̃k
RSS = 2α

n

∑
i=1

∂

∂θ̃k
p̃(xi). (2.13c)

From (2.11b) we have

∂2

∂α2 RSS = 2
n

∑
i=1

p̃(xi)
2, (2.14a)

∂2

∂α∂θ̃k
RSS = −2

n

∑
i=1
{(yi − p(xi))− α p̃(xi)}

∂

∂θ̃k
p̃(xi). (2.14b)

From (2.11c) we have

∂2

∂θ̃k
2 RSS = −2α

n

∑
i=1

{
−α

(
∂

∂θ̃k
p̃(xi)

)2

+ (yi − p(xi))
∂2

∂θ̃k
2 p̃(xi)

}
, (2.15a)

∂2

∂θ̃k∂θ̃j
RSS = −2α

n

∑
i=1

{
−α

∂

∂θ̃j
p̃(xi)

∂

∂θ̃k
p̃(xi) + (yi − p(xi))

∂2

∂θ̃k∂θ̃j
p̃(xi)

}
, where j 6= k.

(2.15b)
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From these equations we see immediately some potential problems associate with us-

ing a derivative based optimisation algorithm and make some comments in the next

section.

2.4.1.2 Some remarks on these isotonic parameterisations

Earlier we noted that the RSS is strictly convex in β if the regressor variable has suffi-

ciently many distinct values. However, RSS as a function of θ is no longer convex. It is

easy to see that RSS is a quartic polynomial in the bjs and cjs and this leads to potential

non-convexity and the possibility of local extrema in RSS(θ).

In fact, note that for each of the parameterisations considered in Section 2.4 the

polynomial p̃(x; θ̃) depends on the cjs only through c2
j . Generalising an observation by

Heinzmann (2008), we could replace in all the parameterisations considered here c2
j by

τ(cj), where τ(z) is a function with τ(0) = 0 and whose range is the non-negative reals.

If additionally τ(z) is differentiable then τ′(0) = 0 since zero is a global minimum

of τ(z). With this generalisation, (2.11c) implies

∂

∂cj
RSS = −2α

n

∑
i=1

(y− p(xi))

(
∂

∂cj
p̃(xi)

)
τ′(cj). (2.16)

Moreover, if θk is a component of θ different from cj then

∂2

∂cj ∂θk
RSS = −2α

n

∑
i=1

{
(y− p(xi))

(
∂2

∂cj ∂θk
p̃(xi)

)
−
(

∂

∂θk
p(xi)

)(
∂

∂cj
p̃(xi)

)}
τ′(cj).

(2.17)

These results have undesirable consequences for derivative based optimisation algorithms

such as the Newton–Raphson algorithm and its variants. If during the iterative optim-

isation a cj becomes zero, (2.16) implies that the corresponding entry in the gradient of

RSS will be zero. More seriously, (2.17) implies that in the Hessian matrix all elements

in the row and column corresponding to cj equal zero, with the possible exception of

the diagonal element. This, in turn, implies that the step direction calculated from this

Hessian matrix for the next iteration will have a zero in the component corresponding

to cj. In other words, if during the iterations a cj becomes zero, it will remain so.
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Similar results hold for smooth loss functions other than the RSS. Thus, we discour-

age following the proposition in Elphinstone (1983), that is to change from (2.6) to (2.7)

so that when stepping from K− 1 to K the values which minimise the criterion for K− 1

can be used as starting values with the two new parameters set to zero. One of these

new parameters would be cK. Setting cK to zero when a derivative based optimisation

routine is used ensures that cK remains at zero. Admittedly, Elphinstone (1983) does

not discuss the optimisation algorithm that he uses. By way of contrast, Heinzmann

(2008) appears to use a Levenberg–Marquardt modification of the Newton–Raphson

algorithm, that is a second-derivative based algorithm, but does not discuss the start-

ing values that he uses. We note that neither of these authors discussed the problem

with local extrema in the parameterisation of isotonic polynomials and that cjs can get

trapped at zero.

In this chapter we also propose to use a Levenberg–Marquardt modification of the

Newton–Raphson algorithm, described in Section 2.5. We demonstrated though our

numerical experiments that all three parameterisations of isotonic polynomials indeed

suffer under the problem of local extrema when one, or more, of the cjs become fixed

at zero. Thus, we also investigate replacing c2
j in each of the parameterisations by cj

and optimising the RSS under the constraints cj ≥ 0, j = 1, . . . , K.

2.4.2 Sum of squared polynomials

A major limitation of all previously consider parameterisations is that they can only fit

monotone polynomials over the whole real line, that is R = (−∞, ∞). In this section

we describe a methodology that allows the fitting of monotone polynomials over a

compact or semi-compact interval. We start by working with the usual parametrisation

for a polynomial regression function as described in (2.1) and (2.2). We again consider

fitting a polynomial regression curve to given data (xi, yi), i = 1, . . . , n, using least

squares with the residual sum of squares (RSS) being minimised which, under the

assumption of Gaussian errors in (2.2), achieves the same as maximising the likelihood.

We reiterate the point that this objective function is strictly convex in β if the number

of distinct x-values exceeds q. However, as noted in Section 2.2, this parametrisation
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is not convenient to use if there are monotonicity constraints on the polynomial over

a set R ⊆ R. To date we have only considered the case R = (−∞, ∞) and revisited

two approaches for fitting monotone polynomials, namely the semi-indefinite program-

ming approach by Hawkins (1994) and various isotonic parametrisation based on work

by Elphinstone (1983). In this section we now propose to use another isotonic paramet-

risation which will allow us to specify, in addition to (−∞, ∞), more general regions,

namely semi-compact intervals [a, ∞) and compact intervals [a, b] for finite a, b ∈ R, on

which the fitted polynomial satisfies a monotonicity constraint.

2.4.2.1 Isotonic parameterisation – sum of squared polynomials

As in Section 2.2 we require an alternative approach to overcome the problem that

(2.3) cannot be easily minimised under monotonicity constraints when the paramet-

risation (2.1) is used. We again consider here parametrisation of isotonic polynomials

of the form

p(x) = δ + α
∫ x

0
p̌(u) du, (2.18)

where p̌(u) is required to be non-negative on R. However, in this instance we wish

to ensure that fitting monotone polynomials over a compact or semi-compact inter-

val is achievable. We note again that from Equation (2.18) it follows immediately that

the first derivative of the polynomial p′(x) = α p̌(x), ensuring that p(x) is monotone in-

creasing or monotone decreasing on R depending on whether α is positive or negative,

respectively.

The isotonic parameterisations considered in Section 2.2, based on work by Elphin-

stone (1983), write p̌(x) as a product of quadratic polynomials where each of these

quadratics has either conjugate complex roots or a real root of multiplicity two. Find-

ing the parameter vector that minimises RSS is typically slow when using these para-

meterisations, although they allow the fitting of monotone polynomials in some situ-

ations in which the semi-indefinite programming approach fails. Moreover, without

awkward case distinctions, the approaches in 2.2 cannot be readily extended to more

general forms of R.
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In this section we propose another isotonic parameterisation for p̌(u) which is based

on the following proposition.

Proposition 2.4.1. A polynomial p̌(x) of degree q is non-negative;

1. On R = (−∞, ∞) if and only if q = 2K and it can be written as the sum of two squared

polynomials

p̌(x) = p1(x)2 + p2(x)2, ∀x ∈ R, (2.19)

where p1(x) and p2(x) are polynomials whose degrees are at most K.

2. On R = [a, ∞) if and only if it can be written as

p̌(x) = p1(x)2 + (x− a)p2(x)2, ∀x ∈ R, (2.20)

where, if q = 2K, p1(x) and p2(x) are polynomials whose degrees are at most K and

K− 1, respectively, and, if q = 2K + 1, both degrees are at most K.

3. On R = [a, b] if and only if it can be written as

a) if q = 2K:

p̌(x) = p1(x)2 + (x− a)(b− x)p2(x)2, ∀x ∈ R, (2.21)

where p1(x) and p2(x) are polynomials whose degrees are at most K and K − 1,

respectively.

b) if q = 2K + 1:

p̌(x) = (x− a)p1(x)2 + (b− x)p2(x)2, ∀x ∈ R, (2.22)

where p1(x) and p2(x) are polynomials with their degree at most K.

Proposition 2.4.1 can be proved using the theory of Tchebycheff systems (Karlin &

Studden, 1966) or the theory of canonical moments (Dette & Studden, 1997). A proof

that does not utilise such deep mathematical theories can be found in Brickman &

Steinberg (1962) or Papp (2011).
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We use Proposition 2.4.1, by fixing α in (2.18) to be either −1 or 1, depending on

whether the polynomial should be monotone decreasing or monotone increasing re-

spectively overR. We denote the coefficients of p1(x) and p2(x) in (2.19)–(2.22) by β1 =

(β01, β11, . . . , βq11)
T and β2 = (β02, β12, . . . , βq22)T, respectively, with q1, q2 ∈ {K− 1, K}.

This allows us to write the vector of parameters generically by θ =
(

δ, βT
1 , βT

2

)T
. Again,

it will be clear from the context whether we regard the residual sum of squares as a

function of β or as a function of θ.

2.4.2.2 Evaluating the objective function and its derivatives

To evaluate the RSS we first calculate the β which corresponds to the given θ. This al-

lows an easy evaluation of p(x) for arbitrary values of x, using for example the Horner

scheme for numerical stability (Fausett, 2003), and to use (2.3) for the calculation of the

RSS.

We illustrate the necessary calculations for a polynomial that is monotone on R =

(−∞, ∞); other choices of R can be handled analogously. To calculate β for a given θ,

we convolve β1 and β2 each with themselves to obtain the coefficients of the polyno-

mials p1(x)2 and p2(x)2, respectively. Adding these two sets of coefficients, we obtain

the coefficients γ = (γ0, . . . , γq−1)
T of the polynomial

p̌(t) = γ0 + γ1t + · · ·+ γq−1tq−1.

From γ we can readily calculate β as

β =

(
δ, αγ0, α

γ1

2
, . . . , α

γq−1

q

)T

.

To minimise RSS numerically, using a derivative based optimisation algorithm, re-

quires first and second derivatives. These derivatives can easily be calculated in a sim-

ilar manner to how the objective function is evaluated. Using (2.18) we see clearly,
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∂p(xi)/∂δ ≡ 1. For other components of θ, say β ji, for i ∈ {1, 2} and some j ∈

{0, 1, . . . , qi}, we find

∂

∂β ji
p(x) =

∂

∂β ji
α
∫ x

0
p̌(u) du = α

∫ x

0

∂

∂β ji
p̌(u) du = α

∫ x

0
2pi(u)uj du (2.23a)

= α
∫ x

0
2

(
qi

∑
k=0

βkiuk

)
uj du =

2α

k + j + 1

(
qi

∑
k=0

βkixk+j+1

)
, (2.23b)

The two equations in (2.23) show that the coefficients of the polynomials appearing in

(2.10) are easily determined.

Furthermore, from (2.10) it follows that the Hessian matrix of RSS is (2.12) as defined

previously. And from (2.23) it follows that

∂2

∂θ∂θT p(x) =


0 0T 0T

0 H 0

0 0 H

 (2.24)

where H is a (qi + 1) × (qi + 1) matrix with (k, j)th entry being 2α
k+j+1 xk+j+1, with

k, j = 0, . . . , qi.

2.5 optimising the objective function

We considered various approaches for minimising RSS(θ). Initial experiments using

derivative free methods (Nelder & Mead, 1965; Powell, 2009; Bates, Mullen, Nash et al.,

2011) showed that such algorithms struggle with minimising RSS(θ). Coordinate des-

cent algorithms that were recently applied quite successfully to other computational

statistics problems (see, among others, Friedman, Hastie, Höfling et al., 2007; Fried-

man, Hastie & Tibshirani, 2010) proved to be somewhat more successful but required

a large number of iterations, and long run-times, to achieve convergence to the optim-

iser of RSS(θ). Here, we describe a Levenberg–Marquardt modification to the Newton–

Raphson algorithm, which differs from the one described by Heinzmann (2008) and is

more in the spirit of Osborne (1976), that proved to be effective for minimising RSS(θ).
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2.5.1 Levenberg–Marquardt routine

In the following description ∇RSS(θ) denotes the gradient vector of RSS and H(θ) the

Hessian matrix, calculated as outlined in Sections 2.4.1 and 2.4.2. The algorithm that

we propose to use for optimising RSS(θ) is the following:

1: Set λ = 0.1, t = 0 and initialise θ(t)

2: repeat

3: Calculate RSSt = RSS
(

θ(t)
)

, gt = ∇RSS
(

θ(t)
)

and Ht = H
(

θ(t)
)

4: Set HD to be a diagonal matrix with ith diagonal entry being hii, if hii > 0, and 1

otherwise; where hii is the ith diagonal entry of Ht

5: Set l = 1

6: loop

7: Calculate θc = θ(t) − (Ht + λHD)
−1gt

8: Calculate RSSc = RSS (θc)

9: if RSSc ≤ RSSt then

10: if l = 1 then

11: Set λ = λ/10

12: end if

13: Set θ(t+1) = θc

14: Set t = t + 1 and exit from loop

15: else

16: Set λ = 10 ∗ λ and l = l + 1

17: if λ > 1010 then

18: Terminate algorithm with failure to converge

19: end if

20: end if

21: end loop

22: until convergence criteria are met

Note that HD in step 4 is always positive definite and will typically contain informa-

tion on the curvature of RSS with respect to each component of θ. Thus, for large λ, the
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algorithm essentially takes steps according to a steepest descent algorithm where the

components of the gradient vector are rescaled by the curvature. Such steps are typic-

ally taken when the current value of θ is far away from the optimal value and, hence,

H(θ) may be neither positive definite nor useful for determining a descent direction.

The typical scenario, as the iterates approach a (local) minimum, is that each proposal

θc is immediately accepted (l = 1), λ becomes very small, and the algorithm turns into

a Newton–Raphson algorithm.

In the variation of the parameterisations that use cj instead of c2
j , the algorithm is

much the same. Except in step 7 the proposal is calculated as θc = θ(t) + δ(t) where δ(t)

is determined by solving the following quadratic program:

minimiseδ
1
2

δT(Ht + λHD)δ + gT
t δ

where the imposed constraints are such that all entries in θc that correspond to any of

the cjs will be non-negative. Figure 2.1 describes pictorially this algorithm.

To complete the description of the algorithm we discuss in the following sections

how θ(0) is initialised and the stopping criteria.

2.5.2 Starting values

In order to have efficient and effective optimisation routines it is extremely important

to have a sensible approach to produce starting values for the parameter estimates

in the optimisation routine. In light of this we describe extensively the methods used

to produce a general set of rules to derive a reasonable set of starting values for our

optimisation routines.

2.5.2.1 Elphinstone

With parameterisations (2.6), (2.7) and (2.8) our experience has suggested that for nu-

merical stability a rescaling of the x- and y-values is beneficial. For these parameterisa-

tions we advocate the rescaling of both x and y so that their minimum and maximum

values are -1 and 1 respectively.
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During our numerical experiments, discussed in more detail in Section 2.7, the fol-

lowing procedure seemed to yield a reliable and satisfactory initialisation of θ(0). For

any parameterisation, we begin by setting the bjs to zero. Next, for (2.6) and (2.7) the cjs

are initialised to cj = 0.1 + (j− 1) 0.9
K−1 , j = 1, . . . , K, and for (2.8) to cj = 1 + (j− 1) 1

K−1 ,

j = 1, . . . , K. Finally, based on (2.9), α and δ are determined by regressing the re-

sponses yi on the predictor p̃(xi), which completes the initialisation of θ.

2.5.2.2 Sum of squared polynomials

As with the Elphinstone parameterisations we rescale the x and y values. In this in-

stance this not only aids numerical stability but also assists in providing a more general

methodology to determine starting values when looking at fitting monotone polyno-

mials over a (semi-)compact interval. Specifically for the three variations of R, that is

Case 1: R = (−∞, ∞), Case 2: R = [a, ∞), Case 3: R = [a, b], we have:

case 1 For fitting monotone polynomials over the whole real line, that isR = (−∞, ∞),

we rescale x and y values as per the Elphinstone parameterisations.

case 2 For fitting monotone polynomials over the semi-compact interval, that is R =

[a, ∞), we rescale such that a→ 0 and max x → 1. We rescale y as per Elphinstone

parameterisations.

case 3 For fitting monotone polynomials over the compact interval, that is R = [a, b],

we rescale such that a → 0 and b → 1. We rescale y as per Elphinstone paramet-

erisations.

These rescalings, based on the definition of R, enable easier working with the for-

mulations to determine effective starting values.

To start the optimisation routine, we fit a polynomial using a constant, linear and

cubic term to those points (xi, yi) for which xi falls into R if the monotone polynomial

to be fitted is of odd degree, otherwise we use an initial polynomial fit up to and

including the quadratic term.

From this initial fit starting values are determined. If the initial fit is monotone, one

can calculate its representation using the appropriate isotonic parameterisation (2.19)–
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(2.22). Otherwise, it is possible to determine the isotonic parameterisation of a polyno-

mial whose coefficients equals the coefficients of the initial fit in absolute value. Finally,

α is automatically chosen as either −1 or 1 based on the sign of the correlation of those

points (xi, yi) for which xi falls into R.

We provide details of these calculations below.

2.5.2.3 Starting values – Case 1

If we are fitting monotone polynomials over R = (−∞, ∞), using (2.19), then only odd

degree polynomials can be fit. We take the following initialisation steps:

1: Fit unconstrained polynomial of the form y∗ = A + Bx∗ + Cx∗3 where (x∗, y∗) are

the rescaled (x, y) pairs.

2: Initialise δ = Â

3: Initialise β01 =
√
|B̂|

4: Initialise β12 =
√

3|Ĉ|

5: Initialise all other βij = 0.

Putting these initial starting values with the rescaling into our monotone polynomial

in (2.18) and using (2.19) gives:

p(x∗) = δ + α
∫ x∗

0
p̌(u) du

= Â + α
∫ x∗

0
p1(u)2 + p2(u)2 du

= Â + α|B̂|x + α|Ĉ|x∗3

Once α is determined we see this is then the fitted unconstrained polynomial described

in the algorithm above (up to the sign of |B̂|).

2.5.2.4 Starting values – Case 2

If we are fitting monotone polynomials over R = [a, ∞) as described in (2.20) then

our starting values depend on whether the degree of the polynomial is odd or even. If

the degree is even and hence the derivative is odd we take the following initialisation

steps:
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1: Fit unconstrained polynomial of the form y∗ = A + Bx∗ + Cx∗2 where (x∗, y∗) are

the rescaled (x, y) pairs.

2: Initialise δ = Â

3: Initialise β01 =
√
|B̂|

4: Initialise β02 =
√

2|Ĉ|

5: Initialise all other βij = 0.

Putting these initial starting values with the rescaling into our monotone polynomial

in (2.18) using (2.20) gives

p(x∗) = Â + α
∫ x∗

0
p1(u)2 + up2(u)2 du

= Â + α|B̂|x∗ + α|Ĉ|x∗2

Again, once α is determined we see this is then the fitted unconstrained polynomial

described in the algorithm above (up to the sign of |B̂|).

If the degree is odd and hence the derivative even, still considering monotone poly-

nomials overR = [a, ∞) as described in (2.20), the initialisation becomes:

1: Fit unconstrained polynomial of the form y∗ = A + Bx∗ + Cx∗3 where (x∗, y∗) are

the rescaled (x, y) pairs.

2: Initialise δ = Â

3: Initialise β01 =
√
|B̂|

4: Initialise β11 = −
√

3|Ĉ|

5: Initialise β02 = −
√

2|β01β11|

6: Initialise all other βij = 0.
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We note that β01 ≥ 0 and β11 ≤ 0 hence the product of these is ≤ 0. Using this inform-

ation and inserting these initial starting values with the rescaling into our monotone

polynomial in (2.18) using sums of squares formulation in (2.20) gives:

p(x∗) = Â + α
∫ x∗

0
p1(u)2 + up2(u)2 du

= Â + α
∫ x∗

0

{
β2

01 + 2β01β11u + β2
11u2}+ {2|β01β11|u} du

= Â + α
∫ x∗

0
β2

01 + β2
11u2 du

= Â + α|B̂|x + α|Ĉ|x∗3

Again, once α is determined we see this is then the fitted unconstrained polynomial

described in the algorithm above (up to the sign of |B̂|).

2.5.2.5 Starting values – Case 3

If we are fitting monotone polynomials over R = [a, b] for even degree polynomials as

described in (2.22), with derivative odd, we initialise as follows:

1: Fit unconstrained polynomial of the form y∗ = A + Bx∗ + Cx∗2 where (x∗, y∗) are

the rescaled (x, y) pairs.

2: Initialise δ = Â

3: Initialise β02 =
√
|B̂|

4: Initialise β01 = −
√
|B̂|+ 2|Ĉ|

5: Initialise all other βij = 0.

Combining these values into (2.22) with corresponding rescaling of a and b gives:

p(x∗) = Â + α
∫ x∗

0
up1(u)2 + (1− u)p2(u)2 du

= Â + α
∫ x∗

0
uβ2

01 + (1− u)β2
02 du

= Â + α
∫ x∗

0
u(|B̂|+ 2|Ĉ|) + (1− u)|B̂| du

= Â + α|B̂|x∗ + α|Ĉ|x∗2

Again, once α is determined we see this is then the fitted unconstrained polynomial

described in the algorithm above (up to the sign of |B̂|).
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If we are fitting monotone polynomials overR = [a, b] for odd degree polynomials as

described in (2.21), with derivative even, we initialise as follows:

1: Fit unconstrained polynomial of the form y∗ = A + Bx∗ + Cx∗3 where (x∗, y∗) are

the rescaled (x, y) pairs.

2: Initialise δ = Â

3: Initialise β01 =
√
|B̂|

4: Initialise β11 = −β01 −
√

β2
01 + 3|Ĉ|

5: Initialise β02 =
√

β2
11 − 3|Ĉ|

6: Initialise all other βij = 0.

We note here that

β11 = −
(

β01 +
√

β2
01 + 3|Ĉ|

)
= −

(√
|B̂|+

√
|B̂|+ 3|Ĉ|

)
< 0

Hence combining these values into (2.21) with corresponding rescaling of a and b gives:

p(x∗) = Â + α
∫ x∗

0
p1(u)2 + u(1− u)p2(u)2 du

= Â + α
∫ x∗

0
β2

01 + 2β01β11u + β2
11u2 + (u− u2)β2

02 du

= Â + α
∫ x∗

0
β2

01 + (2β01β11 + β2
02)u + (β2

11 − β2
02)u

2 du

Note that β2
11− 3|Ĉ| > 0 by construction, hence by definition of β2

02 we have β2
11− β2

02 =

β2
11 − (β2

11 − 3|Ĉ|). Furthermore,

2β01β11 + β2
02 = 2β01β11 + β2

11 − 3|Ĉ|

= (β11 + β01)
2 − β2

01 − 3|Ĉ|

=

(
−
√

β2
01 + 3|Ĉ|

)2

− β2
01 − 3|Ĉ|

Hence we get

p(x∗) = Â + α|B̂|x∗ + α|Ĉ|x∗3



2.5 optimising the objective function 36

To reiterate, the final step of all the initialisations described is to set the α to be

either −1 or +1 dependent on the correlation of (xi, yi) observations. However, the

implementation in our R package MonoPoly allows the user to override this choice and

specify whether α should be −1 or 1.

2.5.3 Stopping criteria

2.5.3.1 Elphinstone

We considered several criteria for stopping the algorithm. Namely monitoring the

change in β, monitoring the change in RSS, and monitoring the entries of the gradi-

ent vector ∇RSS. Our numerical work showed that RSS as a function of θ is typically

relatively flat in a neighbourhood of the optimal solution.

Hence monitoring changes in β or RSS, and basing a stopping criteria on either

absolute or relative changes in either of these quantities being small, leads in many

situations to a premature termination of the optimisation algorithm. Based on our nu-

merical experiments, the only reliable way to determine convergence is to monitor the

gradient vector ∇RSS, with a suitable default stopping criteria being that the abso-

lute value of each entry in ∇RSS is smaller than 10−5. Of course, in the parameterisa-

tions that employ cj instead of c2
j and optimise RSS under the constraints that cj ≥ 0,

j = 1, . . . , K, the entries in ∇RSS that corresponds to cjs that are zero are not required

to be smaller than 10−5.

2.5.3.2 Sum of squared polynomials

We determine convergence by monitoring the gradient vector ∇RSS, with a suitable

default stopping criteria being that the absolute value of each entry in ∇RSS is smaller

than 10−5.
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2.6 miscellaneous comments

Previous applications of fitting monotone polynomials to data (Elphinstone, 1983; Hein-

zmann, 2008) involved fitting monotone polynomials of increasing degree. The sugges-

tion by Elphinstone (1983) was to use the fitted parameters from a monotone poly-

nomial of degree q = 2K − 1 as starting values for fitting a monotone polynomial

of degree q = 2K + 1, initialising the two new additional parameters to zero. In Sec-

tion 2.4.1.2 we demonstrated that, with the isotonic parameterisations described by

Elphinstone (1983) and Heinzmann (2008), this strategy is problematic if a gradient

based optimisation algorithm is used for minimising the objective function, as one of

the new parameters would remain fixed at zero.

However, we note that using the new sum of squares formulation, implementing this

method of choosing starting values when iteratively fitting monotone polynomials of

increasing degree does not suffer from such problems. Moreover, for monotone polyno-

mials over compact or semi-compact intervals, it is also possible to use such a strategy

in instances when the degree is incremented by one. As monotone polynomials over

semi-compact intervals have a single parameterisation, given by (2.20), it would be

easy to implement such a strategy. By way of contrast, taking the same incremental

approach for fitting monotone polynomials over compact intervals, would necessitate

alternating between parameterisations (2.21) and (2.22).

As noted earlier in this chapter, the RSS as a function of β is a convex function, and

strictly convex if the number of unique design points is larger than the degree of the

polynomial fitted to the data, with no local extrema. Conversely, the RSS as a function

of θ is not convex, and consequently may have local extrema. Later we will show

that, for some of the Elphinstone derived isotonic parameterisations used, the iterative

optimisation algorithm has convergence problems or converged to a local minima. In

our extensive numerical experience, when using the sums of squares parameterisation

to fit polynomials that are monotone over the whole real line, and the starting values

described in the previous section, there is no evidence of such problems arising, that

is we have not observed any convergence issues or any convergence to local minima.

However, when fitting polynomials that are constrained to be monotone over a (semi-)
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compact region the potential of the algorithm converging to a local minima seems to be

greater. In our extensive simulations, we have experienced instances of convergence to

a local minima. Specifically we observed, for polynomials constrained to be monotone

over a semi-compact region, upon convergence a RSS larger than that of a polynomial

of the same degree which was constrained to be monotone over the whole real line

fitted to the same data. This clearly indicates convergence to a local minima in the

former instance. Thus, as in all optimisation problems in which local minima could be

a potential issue, we recommend the use of random starting values. Additionally, when

fitting polynomials (of odd degree) constrained to be monotone over a (semi-)compact

interval, we recommend comparing the fit with the polynomial that is constrained to

be monotone over the whole real line to ensure that one has obtained at least as good

a fit.

2.7 numerical experiments and results

2.7.1 Simulated data examples

To assess the effectiveness of our methodology, and to determine which combinations

of parameterisations and formulations provide stable results, we carried out numerical

experiments using four simulated datasets.

We used the simulated data (n = 50) published in Hawkins (1994), growth data

with n = 31 measurements for the first male individual from the Berkeley Growth

Study described in Ramsay & Silverman (2002), and two simulated data sets from the

regression models (2.25) and (2.26), respectively:

W0 : Yi = p(xi) + εi = 0.1x3
i + εi, (2.25)

where xi = −1 + i−1
10 and εi

i.i.d∼ N(0, 0.012), i = 1, . . . , 21; and

W2 : Yij = 4π − xi + cos(xi − π/2) + εij, (2.26)
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Figure 2.2: Data sets used for numerical experiments. Clockwise from top left: Hawkins, RS,
W0 and W2.

where xi = i− 1, i = 1, . . . , 13 (restricting the maximum degree polynomial that can be

fitted to be 11), and εij
i.i.d.∼ N(0, 0.52) with j = 1, . . . , ni and all ni = 3 except for n1 = 5,

for a sample size of n = 41. We note that the W2 data is also not simulated from a

polynomial model, further testing the ability of monotone polynomials to effectively

solve problems where the underlying phenomenon is not polynomial in nature.

We denote these four data sets for the remainder of this chapter as Hawkins, RS,

W0 and W2, respectively, and show scatterplots in Figure 2.2. The latter of these was

specifically generated to mimic our motivating problem described in the introduction

of this chapter, and is typical of any of the datasets in Firmin, Müller & Rösler (2011,

2012).

Figure 2.2 shows that the ranges for the x and y values are quite different for the vari-

ous examples. Our numerical experiments indicate that it is beneficial, for numerical

stability, to re-scale all x and y values to have minimum and maximum of −1 and 1, re-

spectively, before starting the iterative optimisation process described in Section 2.5.1.

Using the methodology described in the previous section, we fitted monotone poly-

nomials to each data set, for the three different Elphinstone type parameterisations,
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Table 2.1: Objective function value RSS/n ×10, 000, by parameterisation for the four data sets
(* indictates algorithm did not converge).

Using (2.6) Using (2.7) Using (2.8) Hawkins’ SOS

c2 c ≥ 0 c2 c ≥ 0 c2 c ≥ 0 approach Approach

Data 1 K=1 83.16 83.16 83.16 83.16 83.16 83.16 83.16 83.16

(Hawkins) K=2 16.34 16.34 17.44 16.34 16.34 16.34 16.34 16.34

K=3 11.55 10.79 11.55 10.79 11.55 10.79 10.79 10.79

K=4 10.77 10.77 11.15 10.77 10.77 10.77 10.77 10.77

Data 2 K=1 34.75 34.75 34.75 34.75 34.75 34.75 34.75 34.75

(RS) K=2 13.83 13.83 34.98 13.83 34.98 13.83 13.83 13.83

K=3 5.86 4.05 35.06 4.05 4.05 4.05 4.05 4.05

K=4 5.88* 4.04 26.18 4.04 4.04 4.04* 4.04 4.04

Data 3 K=1 105.52 105.52 105.52 105.52 105.52 105.52 105.52 105.52

(W0) K=2 77.52 77.52 77.52 77.52 77.52 77.52 77.52 77.52

K=3 73.82 73.82 77.14 73.82 75.05* 73.82 73.82 73.82

K=4 73.76 73.75 73.75 73.75 73.83* 73.75 73.75 73.75

Data 4 K=1 130.93 130.93 130.93 130.93 130.93 130.93 130.93 130.93

(W2) K=2 129.57 129.57 129.57 129.57 129.57 129.57 129.57 129.57

K=3 58.37 57.35 58.37 57.35 58.37 57.35 57.35 57.35

K=4 56.51 56.51 56.53 56.51 58.41 57.35* 56.51 56.51

using both the constrained and unconstrained formulation (for the cj parameters) up

to degree 9. We chose 9 to mirror the approach described by Hawkins (1994) where

he indicated that polynomials of higher degree are of little practical use. However, we

do revisit this assertion later, where we describe the fitting of monotone polynomials

to much higher degrees. These results are described in Table 2.1, which also includes

results using Hawkins’ (1994) approach and the sum of squared polynomial approach.

During our numerical experiments we noticed that when using the c2 formulations,

the RSS indeed appears to have local extrema. This is consistent with our comments

earlier regarding second derivative based algorithms. For example, when fitting a de-

gree 9 polynomial to the RS data, using (2.7) with c2
j , we note that all cj estimates

become zero early in the iterative process and are subsequently trapped at that value.

For the same data and degree polynomial with the constrained formulation, the same

phenomenon again occurs early in the iterative process, and all cjs become zero. How-

ever, subsequently they depart from zero and the process continues giving a much

lower objective function value on termination of the algorithm. This is described in

Figure 2.3 where in the top panel, representing the c2
j formulation we see that after

only 15 iterations we achieve convergence at a local minima, and note that all cjs have
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Figure 2.3: How the parameter estimates change through the optimisation iterative stages for
the RS data when fitting a degree 9 polynomial using (2.7) parameterisation. Top
panel c2

j formulation; bottom panel c ≥ 0 formulation.

settled early at zero. However, the bottom panel of Figure 2.3, representing the corres-

ponding cj ≥ 0 formulation shows that only two of the four cj parameter estimates end

up at zero even though all four estimates were zero at some point during the iterative

process. Subsequently the iterative process was allowed to continue updating cj values

and ultimately achieving a lower objective function value.

For all Elphinstone type parameterisations we have δ = β0 and for (2.6) and (2.7),

α ∝ βq and α ∝ β1 respectively. Thus, for these two parameterisations α is identifiable,

and only the remaining β js are functions of α, the bjs and the cjs. By way of contrast,

for the parameterisation (2.8) all β js (j 6= 0) are functions of α, the bjs and the cjs which

makes none of the latter parameters identifiable. This can lead to additional problems

when (2.8) is used as we observed in our numerical experiments. For this parameterisa-

tion we observed instances in which α → 0 and at least one of the (bj, cj) → ∞, hence

at least partially cancelling each other’s effect on β. We display this phenomenon in

Figure 2.4 and note in the left panel that most of the parameters have achieved a stable

estimate after approximately 150 iterations. However, in the right panel we see that the
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Figure 2.4: Parameter estimates changing through the optimisation iterative stages using (2.8)
parameterisation. Left panel c2

j stable parameter that achieve stability; right panel
cancelling effects of other parameter estimates.

(b3, c3) pair of parameters are still increasing rapidly after 1,000 iterations and the α

parameter is continuing to decrease, hence the cancelling of effects on the β.

Specifically, from Table 2.1, we also note the following: The performance (that is

lower objective function values in smaller number of iterations) when using (2.8) is in-

ferior to that of (2.6) and (2.7). When comparing the performance of the latter two para-

meterisations there is little difference when using the constrained formulation (c ≥ 0).

However, (2.6) seems to perform better when the unconstrained formulation is used.

Given the demonstrated problems with local minima with the c2 parameterisation, we

would ordinarily not recommend its use. However, if one does use it, we have found

it beneficial to perturb any cj that was zero at the solution and restart the algorithm

with these perturbed estimates as starting values. This usually ensured that the ob-

jective function value after the restart was comparable with other parameterisations’

performances.

We also make some comments on the sums of squares parameterisation. First, we

note that problems of local minima were not experienced at all using this parameterisa-

tion for the data sets considered. Second, we note that the speed of convergence using

this parameterisation was relatively quick compared to all three Elphinstone derived
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isotonic parameterisations. We also note that the Hawkins algorithm, with our imple-

mentation is efficient and speedy. Further comparisons of these algorithms are made

in Chapter 4.

2.7.2 Optimisation speed

As mentioned previously, the sums of squares parameterisations and Hawkins al-

gorithm appear to be the most efficient in terms of speed. We extended the experiments

described in Section 2.7.1 to provide an insight into the convergence at higher degrees.

For each of the four data sets we fit odd degree polynomials of degree 1 through

to 23. Figure 2.5 depicts the processing times for each of these datasets and each al-

gorithm/parameterisation, using a standard installation of R running on a relatively

modest machine (MacBook Air, Processor 2GHz Intel Core i7, RAM 8GB). We observe

from our experiments that higher degree polynomials are somewhat cumbersome for

the three isotonic parameterisations (2.6), (2.7) and (2.8). Specifically, monotone poly-

nomials of degree 9 or higher appear to have much longer processing times to achieve

convergence. However, parameterisation (2.7) appears to perform moderately better for

polynomials up to degree 15. When examining the sums of squares approach and our

implementation of the Hawkins’ algorithm, we observe very quick processing times for

both indicated by the overlaying lines very close to zero in Figure 2.5. In fact, in terms

of speed, both algorithms are comparable for all degree monotone polynomials. How-

ever, using our implementation of the Hawkins’ algorithm would only allow a limited

degree polynomial to be fit before encountering problems mainly related to the QR

factorisation. Specifically in our examples using the W0 data and W2 data polynomials

above degree 19 and degree 11 respectively can not be fit using this algorithm. For

completeness we show in Figure 2.6 the values of the RSS after convergence. We note

that up to degree 9 the converged RSS values are essentially identical for all methods

except degree 9 polynomials fit using (2.8) for the W2 data. Beyond degree 9 there

are some slight discrepancies, again particularly relating to the use of (2.8) but also

in some instances using (2.6). The sums of squares approach, (2.7), and Hawkins ap-
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Figure 2.5: Processing time for algorithms to converge by degree of polynomial and different
data sets

proach (in situations where problems with the QR factorisation are not encountered)

all seem comparable otherwise.

We propose at this point that Figure 2.6 can be useful in addressing the model

selection problem, that is which degree polynomial should we use? This is something

we consider in more detail in subsequent chapters. However, for now we note that the

use of monotone polynomials dramatically reduces the model selection problem when

compared to alternative approaches (for example smoothing splines), in that one only

has to select a model from d distinct models where d is the largest polynomial to be

considered (assuming we follow a sums of squares approach and allow even degree

polynomials that is). We will show later, that if we look at a loss function such as RSS

as we have here or more generally the log-likelihood, we can immediately rule out

several models based on the convex nature of plotting maximised likelihood against

model dimension in a similar fashion to Figure 2.6. In particular we will develop what

we describe as the maximum lower enveloping convex curve (MELCC) in Chapter 6.

Using this and an information criteria approach to the model selection problem, we

show that specific models lying inside this curve should not be considered.



2.7 numerical experiments and results 45

4.0

4.5

5.0

5.5

0 5 10 15 20
Degree of polynomial

lo
g(

R
S

S
/n

x1
00

00
)

w0 data

4.0

4.2

4.4

4.6

4.8

0 5 10 15 20
Degree of polynomial

lo
g(

R
S

S
/n

x1
00

00
)

w2 data

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0 5 10 15 20
Degree of polynomial

lo
g(

R
S

S
/n

x1
00

00
)

Hawkins data

−4

−2

0

2

4

0 5 10 15 20
Degree of polynomial

lo
g(

R
S

S
/n

x1
00

00
)

RS data

SOS Hawkins Elphistone EHH Penttila

Figure 2.6: RSS for final converged iteration by degree of polynomial for different algorithms
and data sets

2.7.3 Random starting values

As in other situations when an objective function with local extrema is optimised using

a derivative based algorithm, we recommend starting this optimisation process from

several randomly chosen starting values. In our numerical experiments, for constrained

parameterisations (2.6) and (2.7) we took 100 simulations using random starting values

for the bjs and cjs by simulating from a standard Normal distribution, taking the ab-

solute value for the constrained cjs. In all simulations the algorithm converged to the

value shown in Table 2.1. However, the same amount of success was not seen when the

y values were not rescaled initially.

2.7.4 Rank deficient designs

To further illustrate our methods, and to illustrate the point mentioned in Section 2.3

regarding situations with a sparse design but multiple observations per x-value, we

subset our W2 data to retain only the even values of x. Using Hawkins’ (1994) ap-
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Figure 2.7: Monotone fits to subset of W2 data. Solid line is the underlying regression function
while the dotted and dashed lines are the best fitting monotone polynomials of
degree 5 and 7, respectively.

proach and the isotonic parameterisations described previously, we consider fitting

monotone polynomials of degrees 5 and 7. The results are shown in Figure 2.7. Here,

the solid line shows the underlying regression function and the dotted line is the

monotone polynomial of degree 5, which all isotonic parameterisations and Hawkins’

method agree upon. The dashed line is the monotone polynomial of degree 7, which

is consistently produced using our three Elphinstone type isotonic parameterisations

and the sums of squares approach. However, due to the Hawkins’ method starting at

the unconstrained solution, fitting a degree 7 polynomial to this data is not achievable

using his methodology.

We observe that Hawkins’ approach starts at the unconstrained solution as he pro-

poses to use the Goldfarb-Idnani (Goldfarb & Idnani, 1982, 1983) quadratic program-

ming algorithm iteratively to solve the semi-infinite quadratic programming problem

minimiseβ RSS(β) subject to p′(x; β) ≥ 0, ∀x.
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If Hawkins’ approach were substantially modified to use another quadratic program-

ming problem solver it could possibly work for rank deficient designs.

2.8 conclusions

In this chapter we have revisited Hawkins’ (1994) algorithm for fitting monotone poly-

nomials and discussed its implementation. We have identified two situations in which

this algorithm becomes problematic, namely when q is large causing problems with

the QR factorisation of the design matrix, or when q is large relative to the number

of unique points in the design matrix. Both these situations are important for using

monotone polynomials to detect the location and number of inflection points, our ma-

jor motivation for this work. Consequently we have provided a new algorithm for

fitting monotone polynomials to data using various formulations for isotonic polyno-

mials, which overcomes these issues.

We have also identified some of the drawbacks of previous methodologies, that are

not based on monotone polynomials, and conclude that our method, which has the

advantage of being parametric, is an alternative to many of the existing smoothing

spline based techniques.

Four numerical examples for fitting monotone polynomials up to degree nine with

our algorithm were presented. However, in other investigations—shown in Chapter 4—

comparing our methodology to smoothing spline based approaches, we have fitted

models up to degree 25, which indicates that in principle our methods are not degree

constrained.

In comparing the isotonic parameterisations (2.6), (2.7) and (2.8) and formulations,

we have shown that using the c2 formulation as originally described in Elphinstone

(1983), and subsequently used by other authors, can produce converged objective func-

tion values at a local extrema when a derivative based optimisation algorithm such as

Newton–Raphson is used. This problem is observed in particular when the ‘step up’

approach is used but is not limited to this. It can also be problematic when one (or

more) cj parameter estimate becomes zero.
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We have provided recommendations on the choice of sensible starting values and

which of the formulations provide more consistent results.

Fitting unconstrained polynomials to data has historically been an easy task and is

popular because of the simplicity of the functions and ease of interpretability of corres-

ponding estimates. The constrained version of such polynomials has not received as

much publicity, mainly due to the lack of available software to implement such meth-

ods and the difficulty in providing effective optimisation algorithms. We have shown

through our simulations, that there is not only a need for such methodology but a

necessity in some instances where standard polynomials do not provide intuitively

correct estimated functions, for example ensuring monotonicity. Initially using para-

meterisations (2.6), (2.7) and (2.8), ideas were postulated on how such models can be

fitted with various different formulations. These methods were made available through

the MonoPoly package in R. We have identified some of the short-comings of these

parameterisations and extended the work, now including the ability to fit monotone

polynomials using the sum of squared polynomial formulation. This new formulation it-

self has led to a dramatic reduction of time to fit such models compared to the other

methods. In addition, and as a consequence of the sums of squares formulation, we

presented methodology in which we can constrain the polynomial to be monotone

over the full region of x values, over a semi-compact region, or over compact regions.

These latter two methodologies result in allowing even degree polynomials to be con-

sidered, something previously unattainable in the fitting of monotone polynomials to

data. Our numerical examples have demonstrated that using this methodology can de-

scribe a relationship in a more efficient way, and, allows even degree polynomials that

are monotone over a compact or a semi-compact region to be fitted.

All code to fit the models in this article are available in the most recent version of

the R (R Core Team, 2015) package MonoPoly (version 0.3-6 or later) currently available

on CRAN.
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I N F E R E N C E F O R M O N O T O N E P O LY N O M I A L S

summary

Estimates of variation in monotone polynomials has received no attention in the lit-

erature to date with the main focus being on trying to find effective algorithms to fit

monotone polynomials to data. We provide extensive investigations into estimates of

variance for the fitted values and to estimates of variance around the parameter estim-

ates. We use Monte-Carlo simulations and compare several bootstrapping algorithms

to not only demonstrate the need for such techniques but to identify situations in

which these may need adjusting. We initially start by demonstrating consistency of

monotone polynomials and provide, through Monte-Carlo sampling, empirical results

which proffer justifications for considering alternative approaches to standard least

squares unconstrained model fitting for monotone polynomials. We describe situations

where the use of standard bootstrap methodology for polynomials under the monoton-

icity constraints produces particularly low coverage probabilities in certain areas of the

fitted curve, dependent on whether the true function is on the boundary of the cone

of monotone polynomials. Consequently we describe alternative methodologies to ad-

dress this issue and show that an adjustment by using either the m out of n bootstrap

or a post hoc symmetrisation of the confidence bands is necessary to achieve more

uniform coverage probabilities over the whole range of the curve. We show that using

standard bootstrap techniques to generate point wise prediction intervals does not ap-

pear to suffer from the same under coverage problems as the corresponding confidence

intervals.

49
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3.1 introduction

The fitting of monotone polynomials to data has historically been complex due to both

computational issues and problems providing adequate parameterisations that ensure

monotonicity in the fitted function. In the previous chapter, and in Murray, Müller

& Turlach (2013, 2015), we have shown, using our new techniques for fitting mono-

tone polynomials to data, that this process is now more tenable and relatively simple

solutions can be achieved. However, as always it is important to provide estimates of

variability of parameter estimates and in particular of fitted regression curves, that

are statistically sound. Furthermore, in some situations where prediction is the most

important aspect of modelling we may wish to provide prediction intervals. To date

it would appear there is little work on variance estimation or confidence intervals for

monotone polynomials. Whilst there is a large body of literature on bootstrap meth-

odology for estimating confidence bands or point wise confidence intervals in a non-

parametric, or semi-parametric framework (see for example the summary provided in

Hall & Horowitz, 2013, and references therein), to our knowledge there is a lack of

available bootstrap methodology for our specific problems. When the estimation of

confidence bands or point wise confidence intervals is of primary interest, we note

there are a couple of exceptions that address some of the more general issues (not

specific to monotone polynomials) arising when calculating such bands under shape

constraints described in the literature. In particular Hall & Horowitz (2013) describe

the construction of bootstrap confidence bands, allowing for the fact that the stand-

ard bootstrap bias estimators suffers from relatively high frequency stochastic error.

They combine this with a technique based on quantiles, leading to simple to construct

confidence bands. Another exception is Dümbgen (2003) who constructed confidence

bands based on a kernel smoothing approach for a given function with guaranteed

minimum coverage probability, under the assumption that the function is isotonic or

convex.

However, given the lack of direct literature for confidence bands and variance es-

timation in monotone polynomials, in this chapter we consider through numerical

examples the impact of using various bootstrapping techniques, including the stand-
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ard non-parametric (paired) bootstrap, the residual bootstrap, the weighted bootstrap

and m out of n bootstrap, in situations where the function is constrained to be mono-

tone. We examine their performance under such constraints and provide some general

advice when considering the calculation of such confidence and prediction bands for

monotone polynomials.

Specifically in Section 3.2 we provide a description of the data used throughout this

chapter in our simulations, and provide motivation through a simple Monte-Carlo sim-

ulation. In Section 3.3 we examine the theoretical properties of monotone polynomials

and provide consistency arguments. In Section 3.4 we look at empirical properties of

monotone polynomials, providing further supporting for our consistency argument,

and we motivate the need for alternative methodology for confidence interval estima-

tion in monotone polynomial fitting through Monte-Carlo simulations. In Section 3.5

we investigate the use of bootstrapping and describe and compare various bootstrap

methods with monotone polynomials. We also provide a comparison to the standard

unconstrained model fitting when using bootstrapping techniques and demonstrate

in which situations the solutions differ. In Section 3.7 we extend these bootstrapping

ideas to enable the estimation of point wise confidence and prediction bands, and for

our simulated data look at estimates of coverage probabilities for such bands. We also

make two suggestions for the tuning of the sometimes asymmetric bands produced

from these techniques to enable desired and/or uniform coverage probabilities. Finally,

in Section 3.8, we provide some conclusions and a brief discussion.

3.2 simulated data and motivation

In this section we describe results from simulations that provide motivation for the

necessity, and careful consideration, of variance estimation and confidence interval cal-

culations for polynomials under the monotonicity constraint. For the remainder of this

chapter we consider the following three monotone polynomial functions, and generate

our data based on these:

p1(x) = x3, p2(x) = 3x3 + x + 1, p3(x) = x5.
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We simulate responses for n equidistant design points over [−1, 1] from the linear

regression models

Yi = pk(xi) + εi, k = 1, 2, 3, xi = −1 + 2
i− 1
n− 1

, i = 1, . . . , n.

For the two cubic regression models the errors are independent N(0, 22) and for the

quintic the errors are independent N(0, 0.32). These three monotone polynomials are

specifically chosen to demonstrate how the different variance and confidence interval

techniques work under monotonicity constraints. In the case of p1(x) and p3(x) we

have functions which lie on the boundary of the cone of monotone polynomials; con-

versely p2(x) lies well within this boundary. Furthermore, through p3(x) we demon-

strate the impact of having a long virtually horizontal region in the regression function,

a feature that many smoothing techniques find difficulty dealing with.

Standard least squares regression theory states that when fitting unconstrained poly-

nomials of degree q, the distribution of the q + 1 vector of parameter estimators, β̂, has

a multivariate normal distribution when the errors are independent and identically

normal. Specifically β̂ ∼ MVN(β, Σ), where Σ is the variance covariance matrix given

by σ2(XTX)−1 and X is the design matrix with ith row xi = (1, xi, x2
i , . . . , xq

i ). We also

denote by Cq
R the set of all β ∈ Rq+1 for which p(x; β), a polynomial of degree at most

q, is monotone for all x ∈ R ⊆ R. Note that Cq
R is a (non-pointed) closed convex cone

in Rq+1. For the sake of brevity, we will refer below to polynomials lying within Cq
R or

on its boundary instead of the vector of coefficients of a polynomial lying within Cq
R

or on its boundary.

To provide an idea of the necessity of constraining fitted polynomials to be mono-

tone, we carry out Monte-Carlo integration of the density of β̂, over the region of para-

meter vectors corresponding to monotone polynomials. The observed probabilities of

monotone fits, using standard unconstrained polynomials and least squares estimation,

are shown in Table 3.1.

As one would expect, for p2(x) the probability of a fit being monotone quickly con-

verges to one. By way of contrast, for p1(x) and p2(x), which lie on the boundary of

Cq
R, the probability of a fit being monotone does not converge to one as n→ ∞.
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Table 3.1: Expected proportion of monotone fits for a range of sample sizes, when the data
generating polynomial is pk(x), k = 1, 2, 3, and the standard least squares estimator
is used to fit unconstrained polynomials.

n p1(x) = x3 p2(x) = 3x3 + x + 1 p3(x) = x5

50 0.131 0.727 0.086

100 0.187 0.858 0.111

200 0.275 0.946 0.141

500 0.405 0.995 0.194

1000 0.465 1.000 0.240

10000 0.493 1.000 0.356

3.3 theoretical properties

In this section we provide some theoretical properties of monotone polynomial estim-

ators. Specifically we describe a consistency argument for monotone polynomials and

make some comments on bias and variance.

3.3.1 Consistency

Following on from Section 3.2, we note that a monotone polynomial estimator of a

polynomial lying within Cq
R (for some q and some R) is asymptotically equivalent to

the unconstrained polynomial estimator, and therefore inherits all the properties of

the latter, such as consistency and multivariate normality of the estimated vector of

coefficients. Conversely, for a polynomial lying on the boundary, the monotone poly-

nomial estimator is, by the triangle inequality, closer to the “true” polynomial than the

unconstrained polynomial estimator, as the former is the orthogonal projection (with

respect to some norm) of the latter onto Cq
R. Consistency of the constrained polynomial

follows from this observation, although in this case the asymptotic distribution of the

constrained polynomial estimator is more complicated; see also Barlow, Bartholomew,

Bremner et al. (1972) or Silvapulle & Sen (2005).

A slightly more careful argument for consistency of the monotone polynomial estim-

ator would be necessary if q is also estimated, for example via m out of n bootstrap, as
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we propose and discuss in Chapter 4. However, the theory of the m out of n bootstrap

(Shao, 1996) indicates that it provides a consistent estimator q̂ of the degree of an un-

derlying monotone polynomial thus, the monotone polynomial fit from C q̂
R would be

consistent for the underlying monotone function.

While our numerical examples concentrate on underlying response functions that

are monotone polynomials, one might wonder what can be said if the true underly-

ing response function m(x) is monotone over R but not a polynomial. The results in

Shevchuk (1993) would allow us to establish point-wise consistency for any x0 ∈ R if

R is a compact interval. Essentially, Shevchuk (1993) proved that monotone functions

over compact intervals can be approximated uniformly to an arbitrary precision by

monotone polynomials of sufficiently high degree q . This implies that for the mono-

tone polynomial pm,q(x) in Cq
R onto which m(x) is projected, |pm,q(x0)−m(x0)| ≤ ε/2,

for any pre-specified ε, if q is chosen sufficiently large. Since the monotone polynomial

estimator p̂m,q(x0) will be consistent for pm,q(x0), for sufficiently large sample sizes

p̂m,q(x0) will be with high probability less than ε/2 away from pm,q(x0) and, thus, by

the triangle inequality, with high probability less than ε away from m(x0), establishing

that the monotone polynomial estimator is also consistent in such settings. Establishing

the rate of consistency would require a more careful argument and that q = q(n)→ ∞

as n → ∞. While establishing the rate of consistency might be of some theoretical

interest, it is not pursued further in this thesis.

3.3.2 Bias and variance

Whilst consistency properties are straightforward to provide evidence for, the bias in

the estimators and associated variance are still open research problems. This is mainly

due to the mathematical complexity of these when the estimation is constrained. Fur-

thermore, in instances where the underlying regression function is inside the boundary

of the cone of monotone polynomials, bias and variance may be more simple to de-

scribe due to the asymptotic nature of these estimates being identical to the that of the

unconstrained estimates. When the underlying regression function is on the boundary

of the cone of monotone polynomials, the same properties of estimators that hold in
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least squares estimation do not hold due to there being no closed form solution, which

can be a major problem.

Consequently we do not pursue further theoretical properties of monotone polyno-

mials, mainly due to the mathematical complexity, which itself is not the major focus

of this thesis. However, we will show empirical properties of such estimators in the

next sections.

3.4 empirical properties

3.4.1 Consistency

We demonstrate through simple simulations, using the polynomials pi(x), for 1 =

1, 2, 3, consistency arguments. Figure 3.1 shows simulated data for sample sizes 50 and

1, 000. In these instances, we have in all but one case selected an example where the

standard unconstrained polynomial fit is not monotone. The exception is when using

data generated from p2 with n = 1, 000, which, due to the location of the function

inside the cone of monotone polynomials, would almost always provide a monotone

increasing fit, as indicated in Table 3.1. We see from the top row of Figure 3.1, that

even with a relatively small sample size (n = 50), the estimated curves using mono-

tone polynomials (green dashed lines) are relatively close to the underlying population

curve (black line). The bottom row demonstrates that as we increase the sample size

the fit becomes closer, even in the case of p2 where the underlying signal is extremely

weak. This further supports the consistency argument in cases where the underlying

function is a polynomial.

However, we argue that these consistency arguments would also hold in other in-

stances. In Figure 3.2, we demonstrate the impact of fitting varying degrees of mono-

tone polynomials to data generated using a non-polynomial function. We again simu-
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Figure 3.1: Monotone polynomial fitted curves for data generated from p1(x) = x3, p2(x) =

3x3 + x + 1, and p3(x) = x5 for sample size n = 50 (top row) and n = 1, 000 (bottom
row). Green dashed line - fitted curve; black solid line - underlying population
polynomial function.

late responses for n equidistant design points over [−1, 1], this time from the sigmoidal

model, using the following model:

y =
10

1 + exp(−8x)
+ ε (3.1)

where the errors are independent N(0, 1). We see that with a relatively low sample size,

using a monotone polynomial of a sufficiently high degree, one can obtain a reason-

able fit. Furthermore increasing the sample size dramatically improves the fit. Note in

this instance we have arbitrarily chosen the degrees of polynomial to demonstrate the

effectiveness when the underlying function is not a polynomial. We consider further

methods for determining the ‘most appropriate’ degree of monotone polynomial in

Chapters 5 and 6.
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Figure 3.2: Monotone polynomial fitted curves for data generated from sigmoidal functions for
sample sizes n = 50 (top row) and n = 1, 000 (bottom row). Green dashed line -
fitted curve; black solid line - underlying population polynomial function.

3.4.2 Bias and variance

3.4.2.1 Standard polynomial regression

In standard polynomial regression situations the estimation of variances, confidence

intervals, and prediction intervals is routine under certain assumptions. Mainly the

distribution of the estimators are known and hence variability estimates and upper

and lower confidence and prediction limits can be easily evaluated. Consider an un-

constrained polynomial regression p(x) model

p(x) = β0 + β1x + β2x2 + · · ·+ βqxq + ε, (3.2)

where q is the degree of the polynomial, the βs are standard regression coefficients

and ε is an error term which is assumed to be distributed N(0, σ2). We can estimate

confidence intervals for β, and µ(x) the mean of the regression function, along with
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prediction intervals for p(x), using standard least squares estimation and standard

linear model theory described earlier in Section 3.2 and in more detail in standard

linear regression texts (see, for example, Draper & Smith (1998)).

Whilst in standard unconstrained polynomial regression we can use this theory to

examine the estimates and variability around our estimated response and parameter

estimates, in other situations, where the standard assumptions do not hold, alternative

estimation approaches for the variance and those functions derived from it, need to

be investigated. Examples of such situations could be when the errors are not inde-

pendent and identically normally distributed, when sample sizes are small, or there is

some constraint(s) on the parameter estimates (as with monotone polynomials), effect-

ively removing our ability to determine their distribution. The bootstrap is one such

approach which we introduce and describe in subsequent sections with specific focus

on (constrained) regression scenarios.

3.4.2.2 Monte-Carlo simulations for variance estimates

As described previously we motivate the following sections with some Monte-Carlo

simulations. We generate 1, 000 simulated data sets from the polynomial functions

p1(x), p2(x) and p3(x) and examine the Monte-Carlo estimates of the polynomial re-

gression parameters and their standard errors shown in Table 3.2 and Figure 3.3. These

estimates are calculated using:

β̂i = m−1
m

∑
j=1

β̂
[j]
i , (3.3)

where m = 1, 000 is the number of Monte-Carlo simulations, βis are the polynomial

regression parameters and the β̂is their corresponding estimates, and

SE(β̂i) =

√√√√ 1
m− 1

m

∑
j=1

(β̂
[j]
i − β̂i)

2. (3.4)

The top row in Figure 3.3 shows the distribution of parameter estimates, when the

underlying data generating function is p1(x) = x3, using a standard unconstrained



3.4 empirical properties 59

Table 3.2: Monte-Carlo estimates and standard errors using standard unconstrained polyno-
mial least squares fitting and monotone polynomial fitting from our simulated data
examples, based on 10, 000 simulated data sets with sample size 1, 000

Sample Estimation Parameter p1(x) = x3 p2(x) = 3x3 + x + 1 p3(x) = x5

Size estimate SE estimate SE estimate SE

50 Unconstrained β0 -0.002 0.422 0.980 0.416 0.001 0.081

polynomial β1 -0.008 1.188 1.015 1.187 0.005 0.322

β2 0.012 0.908 0.011 0.895 -0.010 0.501

β3 1.062 1.728 2.985 1.753 0.002 1.223

β4 - - - - 0.013 0.540

β5 - - - - 0.987 1.039

Monotone β0 0.000 0.347 0.980 0.410 0.000 0.057

polynomial β1 0.312 0.386 1.142 0.920 0.114 0.119

β2 0.007 0.588 0.010 0.873 -0.003 0.192

β3 0.701 0.646 2.823 1.409 -0.183 0.516

β4 - - - - 0.006 0.266

β5 - - - - 1.048 0.528

1000 Unconstrained β0 0.001 0.093 0.999 0.092 0.000 0.018

polynomial β1 -0.005 0.277 1.017 0.283 -0.002 0.072

β2 0.002 0.205 0.011 0.206 -0.001 0.108

β3 1.005 0.417 2.975 0.424 0.002 0.280

β4 - - - - 0.000 0.119

β5 - - - - 1.001 0.244

Monotone β0 0.001 0.090 0.999 0.092 0.000 0.014

polynomial β1 0.113 0.153 1.017 0.283 0.037 0.039

β2 0.002 0.195 0.011 0.206 0.000 0.060

β3 0.841 0.267 2.975 0.424 -0.120 0.178

β4 - - - - -0.001 0.073

β5 - - - - 1.089 0.174
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least squares fit with sample size n = 50. As expected these estimators appear to be

normally distributed and centred around the true parameter estimates, which in this

instance are [0, 0, 0, 1]. The third row in the same figure shows the difference when

monotonicity is imposed and monotone polynomial fitting is carried out using the

methodology described in the previous chapter. Whilst there does not appear to be an

impact on all of the parameter estimates there is a marked impact on β̂1 and β̂3. Both of

these show asymmetric distributions with smaller variability than that obtained from

the standard unconstrained least squares fit. In a similar fashion for p2(x) we show the

results from standard unconstrained least squares estimation with n = 50 in the top

row of Figure 3.4, and the results from monotone polynomial estimation in row three.

Again, the standard least squares estimation provides what would be expected. How-

ever, the monotone polynomial estimation, in this instance, shows that β̂1 displays the

largest discrepancy to standard least squares estimation, with the estimates truncated

at zero. Again smaller variance is associated with the monotone polynomial parameter

estimates. The estimated means and variances for all the parameters are shown in

Table 3.2 which appears to confirm smaller variances for monotone estimates in gen-

eral for the simulated data and functions we have considered. We note also that this

apparent asymmetry and decreased variability in the estimates are seen for p1(x) even

when the sample size is increased to 1, 000 (rows two and four of Figure 3.3) but not

for p2(x) (rows two and four of Figure 3.4) at the same sample size. We believe this is

due to p1(x) lying on the boundary of Cq
R whilst p2(x) lies inside the boundary of Cq

R.

The information from this section suggests that alternative variance estimates are

indeed needed for polynomials constrained to be monotone, in particular in situations

where the sample size is smaller, or when the underlying monotone function is close

to, or on the boundary of Cq
R. Unfortunately it is seldom know in practice whether the

latter is true.

3.5 bootstrapping

Bootstrap techniques first became prominent with the publication of the 1977 Rietz

Lecture by Efron (1979). He succinctly described the problem to be
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Figure 3.3: Standard unconstrained linear model fits and monotone polynomial fits to data
generated from p1(x) = x3 : Top two rows standard least squares estimates for n =
50 and n = 1, 000 respectively; bottom two rows monotone polynomial estimates
for n = 50 and n = 1, 000 respectively. Red vertical lines indicate the location of the
true parameter value.
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Figure 3.4: Standard unconstrained linear model fits and monotone polynomial fits to data
generated from p2(x) = 3x3 + x + 1 : Top two rows standard least squares estimates
for n = 50 and n = 1, 000 respectively; bottom two rows monotone polynomial
estimates for n = 50 and n = 1, 000 respectively. Red vertical lines indicate the
location of the true parameter value.
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Given a random sample X = (X1, X2, . . . , Xn) with unknown probability

distribution F, estimate the sampling distribution of some pre-specified ran-

dom variable R(X, F), on the basis of the observed data x.

In general a standard bootstrap procedure would involve attempting to say some-

thing about the parameter θ say, by resampling from the original data source used to

estimate θ. The procedures themselves are wide and varied and have grown in popular-

ity as computing power has become increasingly larger. For a more detailed discussion

on general bootstrap methodology see for example either Efron & Tibshirani (1993) or

Davison & Hinkley (1997).

3.5.1 Bootstrap in regression

Bootstrap techniques in linear regression situations have also been well developed over

the years with most applications of the bootstrap to regression modelling scenarios util-

ising one of two approaches; either case resampling (non-parametric paired bootstrap)

or model based resampling (residuals bootstrap). However, more recently attention has

been given also to the weighted bootstrap (Barbe & Bertail, 1995). The selection of the

specific bootstrap technique is usually made by consideration of the design matrix of

predictors and how much faith we have in the underlying regression model (Efron &

Tibshirani, 1993). However, regardless of the assumptions we make on the predictors,

if we can reasonably assume that the residuals are identically distributed then the re-

siduals bootstrap is generally more preferable. In situations like ours where we have

monotonicity constraints imposed, or in more general situations, where there is some

knowledge or evidence of heterogeneity, a more prudent approach may be to adopt the

non-parametric bootstrap. We consider these three bootstrap techniques in the context

of monotone polynomial fitting starting in the next section where we describe simple

versions of the bootstrap algorithms we implement. We further investigate these and

their appropriateness for constrained regression.
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3.5.2 Notation and bootstrap algorithms

Following standard notation for Bootstrapping, for example, see Davison & Hinkley

(1997), we define the following:

Let our observed data be denoted by (xj, yj), and our bootstrap resamples denoted

by (x∗j , y∗j ). The calculation of our bootstrap data is described in the following sections.

3.5.2.1 Case resampling (paired bootstrap)

The non-parametric (or paired) bootstrap, is a simple technique that is without para-

metric assumptions regarding the resampling distribution. In its simplest form we

consider the set of paired observations (x, y) where x is an n by p matrix.

For polynomial regression models we sample pairs with replacement from the (xj, yj),

which is achieved by taking a sample of size n, with replacement from I = 1, 2, 3, . . . , n.

We let (x∗j , y∗j ) be a sample of the (x, y) pairs. For each of our bootstrap samples we es-

timate regression coefficients β̂∗i using the monotone polynomial algorithms described

in the previous chapter and Murray, Müller & Turlach (2013). Our bootstrap algorithm

is adapted from Davison & Hinkley (1997):

1: Set b = 1,

2: loop

3: sample i∗1 , . . . , i∗n with replacement from 1, 2, . . . , n

4: for j = 1, . . . , n, set x∗j = xi∗j and y∗j = yi∗j and,

5: Fit polynomial regressions to (x∗1 , y∗1), . . . , (x∗n, y∗n) giving regression parameter

estimates β̂∗0,b, . . . , β̂∗p,b

6: if b = B then

7: terminate algorithm

8: else

9: Set b = b + 1

10: end if

11: end loop
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We use this algorithm and many of the proposed variations of this throughout the

remainder of this thesis. These include the m out of n bootstrap (Shao, 1994), the

weighted bootstrap (see Barbe & Bertail (1995), Müller & Welsh (2005, 2009)), and the

stratified bootstrap (see Müller & Welsh (2005, 2009)). The latter of these is seen as an

important tool for situations where there is a small number of fixed design points to

resample from, something we consider in more detail in our real world examples later

in this thesis.

3.5.2.2 Model based resampling (residuals bootstrap)

In regression situations, the natural alternative to the non-parametric bootstrap, is the

model based resampling technique or the residuals bootstrap. This method effectively

fits the regression model to the original (xj, yj) pairs of observations, calculates the

residuals from this model, then resamples from the residuals. The bootstrap algorithm

we describe below is again adapted from Davison & Hinkley (1997):

1: Fit appropriate polynomial regression model to original (x1, y1), . . . , (xn, yn) data

giving regression parameter estimates β̂0, . . . , β̂q

2: Calculate residuals (ej) for each set of n paired observations

3: Set r = 1,

4: loop

5: set x∗j = xj

6: randomly sample ε∗j from e1, . . . , en

7: set y∗j = β̂xj + ε∗j ,

8: Fit polynomial regressions to (x∗1 , y∗1), . . . , (x∗n, y∗n) giving regression parameter

estimates β̂∗0,b, . . . , β̂∗p,b

9: if b = B then

10: terminate algorithm

11: else

12: Set b = b + 1

13: end if

14: end loop
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A drawback of this technique is that it assumes a known distribution for the errors.

For example, in standard polynomial regression models the errors are assumed to have

a normal probability distribution. However, in some instances one is not able to specify

a form on the error distribution and hence we either assume we know the distribution

of the errors (not ideal for monotone polynomials) or we have to modify our approach.

One such modification proposed for a standard linear regression situation is based

on the variance of the residuals, that is:

Var [ej] = (1− hj)σ
2 (3.5)

where hj is the jth element of the diagonal of the hat matrix (see Draper & Smith (1998)

for standard ordinary least squares theory). In this instance it is obvious that as the

leverage increases the variance of the residuals tends to zero. In light of this one needs

to be careful when considering using the residuals bootstrap in a linear regression situ-

ation, or more importantly in our constrained polynomial regression situation. How-

ever, it is recommended, especially for small sample sizes that instead of resampling

the raw residuals, one should resample the modified residuals (see Weber (1984); Dav-

ison & Hinkley (1997); Fox & Weisberg (2011) for more details). In summary, in order

to take into account the leverages of the observations, which can be problematic es-

pecially in situations where there are one or two points of extremely high leverage

and as a consequence have residuals with much lower variability, we can simply res-

ample modified residuals ej/(1 − hj) where ej and hj represent the residual and its

corresponding ‘hat matrix’ value for the jth observation.

However, we should note at this point that whilst this adjustment has been shown to

be good for small sample regression situations or situations where there are instances

of high leverage, it is dependent on being able to calculate the hat-matrix. In many

other situations, for example non-parametric regression, or many shape constrained

regression examples (including the fitting of monotone polynomials) such a quantity

is not readily defined or available. Consequently, when considering the adjustment of

residuals, the quantity by which to make the adjustment is itself ill defined.
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3.5.2.3 The weighted bootstrap

Finally in this section we provide an algorithm for the weighted bootstrap:

1: Set b = 1,

2: loop

3: sample w∗1 , . . . , w∗n with replacement from a known distribution (we will assume

a standard exponential distribution)

4: for j = 1, . . . , n, set x∗j = xj and y∗j = yj and,

5: Fit weighted polynomial regressions to (x∗1 , y∗1), . . . , (x∗n, y∗n) giving regression

parameter estimates β̂∗0,b, . . . , β̂∗p,b

6: if b = B then

7: terminate algorithm

8: else

9: Set b = b + 1

10: end if

11: end loop

Simply put, this algorithm uses the same (xi, yi) pairs in all iterations of the al-

gorithm, which itself is the original data. However, each time a randomly selected

weight is attached to each of our n pairs.

3.6 bootstrapping - numerical examples

In this section we discuss, via numerical examples, bootstrap methods for calculating

variance estimates and point wise confidence and prediction intervals for monotone

polynomials. We will demonstrate for confidence intervals, that standard bootstrap

methodology typically leads to under coverage in certain regions and show that these

areas of under coverage appear to be related to the curvature of the underlying regres-

sion function. We also demonstrate the same problem is not observed when consid-

ering prediction intervals. To address this problem of under coverage for confidence

intervals we consider two solutions: first, we investigate an m out of n bootstrap which

results in similar patterns of coverage probabilities to standard bootstrap methodology,
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but yields more conservative confidence bands; second, by making confidence bands

symmetric, we show we can ensure the coverage probabilities are more uniform over

the range of the regressor variable. We summarise our findings from our bootstrap

simulation exercises as follows:

1. The method of bootstrap (paired, residual, weighted) has minimal impact on the

parameter estimates and associated variability.

2. If the underlying data generating function is on the boundary of Cq
R then:

• At both small and large sample sizes there are significant differences between

unconstrained least squares fitting and monotone polynomial fitting with re-

spect to the estimates and standard errors from the bootstrapping.

• These differences are marginally more pronounced with data that would

provide a non-monotone fit when standard unconstrained least squares es-

timation is used.

3. If the underlying data generating function is not on the boundary of Cq
R then:

• At large sample sizes the underlying fit of an unconstrained polynomial is

almost always going to be monotone and consequently there is little (if any)

differences between the bootstrap estimates from standard unconstrained

least squares fitting and monotone polynomial fitting.

• At small sample sizes differences are observed between standard least squares

unconstrained fitting and monotone polynomial fitting, and are more pro-

nounced when the data sampled provides an underlying standard least

squares unconstrained polynomial fit which is not monotone.

Given we very rarely know the nature of the underlying phenomenon in practice,

one can argue that at small sample sizes there is sufficient difference between the

constrained and unconstrained fits to consider further alternative methodologies for

bootstrapping monotone polynomials, and that in practice a good check would be

whether or not the underlying fit is on the boundary. Furthermore, we note that as a

consequence, these differences will carry through to confidence intervals and predic-

tion intervals. The extent to which this is apparent is discussed in Section 3.7. However,
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first we provide a more detailed commentary on what led us to the aforementioned

summary of bootstrapping in regression in Section 3.6.1.

3.6.1 Estimating the variance of regression parameters

We start by providing bootstrap estimates for the regression parameters and standard

errors for these under various scenarios. For the three polynomial regression models

(p1(x), p2(x), p3(x)) described previously, at two sample sizes n = 50 and n = 1, 000,

for two selected different example data sets from our generated data in each case

(one that gives a standard unconstrained least squares fit that is monotone and one

that gives a standard unconstrained least squares fit that is not monotone) we estimate

parameters and variances of these estimates using the residuals bootstrap, the adjusted

residual bootstrap, the non-parametric (paired) bootstrap and the weighted bootstrap,

for both standard unconstrained linear model fitting and monotone polynomial model

fitting. We use the standard definition of the bootstrap parameter estimates from the

polynomial regression models as:

β̂bs,i = B−1
B

∑
j=1

β̂
∗[j]
i , (3.6)

where B = 1, 000 is the number of Monte-Carlo simulations, βis are the polynomial

regression parameters and the β̂bs,is their corresponding bootstrap estimates. The asso-

ciated standard errors are given by:

SE(β̂bs,i) =

√√√√ 1
B− 1

B

∑
j=1

(β̂
∗[j]
i − β̂∗bs,i)

2 (3.7)

3.6.1.1 Results comparing different bootstrap methodologies

The four different bootstrap approaches considered provide very similar estimates of

the polynomial regression parameters and their corresponding standard errors. We
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can succinctly summarise these results by noting that regardless of the underlying

data generating function (p1(x), p2(x), p3(x)), the sample size, the method of fitting

the polynomial (constrained or unconstrained) or whether the underlying data would

provide a monotone fit should a standard linear model be used to the raw data, the

bootstrap methodologies provide similar results. All results comparing the various

bootstrap methodologies are shown in Appendix B.

3.6.1.2 Comparing the results from standard bootstrap methods

Given that the bootstrap estimates from the different techniques are similar in nature,

for the remainder of this discussion we will only consider the paired bootstrap es-

timates and standard errors for comparing further scenarios. When examining these

estimates and standard errors for p1(x) we note the following: For the relatively small

sample size (n = 50), the difference in the bootstrap parameter estimates and variab-

ility associated with these, appears to be dependent on two issues. First, the method

of fit and second, whether the data would provide a monotone fit with unconstrained

least squares regression. Consider the top two rows in Figure 3.5 showing the kernel

density plots for the different estimation methods of the regression parameters. The

top row are bootstrap estimates when the data set used provides a monotone fit using

standard unconstrained least squares estimation. The second row are comparable es-

timates for a second alternative data set which yields a non-montone fit to the data with

unconstrained least squares estimation. We see that there are substantial differences in

the distributions of β̂1 and β̂3 between constrained and unconstrained fits regardless

of the data set. However, there are also subtle differences in the other two parameter

estimates when the unconstrained fit to the data is non-monotone suggesting these

estimates are more affected in such instances. Furthermore, when we consider increas-

ing the sample size to 1, 000 (see Figure 3.5 row three and row four for unconstrained

monotone fit and unconstrained non-montone fit respectively), we note there are still

similar differences in the empirical distributions of these parameter estimates but these

are now much more pronounced in the data where the unconstrained fit is not mono-

tone (row four) as opposed to the unconstrained fit being monotone (row three). We

note that these findings seem to suggest that if the data generating function is on
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Figure 3.5: Results of non-parametric bootstrap using two separate data sets (unconstrained
least squares fit monotone rows; unconstrained least squares fit not monotone) at
two different sample sizes (n=50 and n=1,000) generated from the underlying poly-
nomial function p1(x) = x3 . Overlaid kernel density estimates in each plots are for
bootstrap estimates of regression parameters using standard unconstrained least
squares estimation (blue) and using monotone polynomial estimation (pink).
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the boundary of Cq
R (as p1(x) is), then increasing the sample size does not provide

comparable results between standard least squares bootstrap parameter estimates and

standard errors and those produced from monotone polynomial bootstrap estimation,

in particular when the data under consideration was variable enough to yield a fitted

polynomial that is not monotone.

Conversely when we focus on p2(x) (see Figure 3.6), which itself does not lie on the

boundary of Cq
R, an increase in sample size has two consequences. First, with support-

ing evidence from our simulations, we note that a non-monotone fit using standard

least squares constrained estimation is highly unlikely. In our 1, 000 simulated data

sets with n = 1, 000, not one of them provided a non-monotone fit. As a consequence

we conclude that when the underlying function is not on the boundary then, with a

sufficiently large sample size, the standard unconstrained least squares estimates will

provide the same results as the constrained monotone polynomial estimates. However,

if the sample size is small enough then there are situations in where even though the

underlying data generating function is not on the boundary of Cq
R, the data generated

will provide fits which are not monotone using unconstrained least squares estimation.

In these instances there are substantial differences between the bootstrap parameter

estimates using monotone polynomial estimation and using standard least squares un-

constrained estimation, as can be observed by row two of Figure 3.6. These can also be

seen in more details in Appendix B.

We should note at this point that whilst we have presented results from only two

data sets (monotone unconstrained fit versus non-monotone unconstrained fit) in each

situation, further simulations have served to reinforce the results of the simulations

presented.

Finally, given the nature of p3(x), in that this function is itself on the boundary of

the cone of monotone polynomials, it is not surprising that the results and conclusions

reached when we consider simulations involving p3(x) are similar to those seen for

p1(x).
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Figure 3.6: Results of non-parametric bootstrap using two separate data sets (unconstrained
least squares fit monotone rows; unconstrained least squares fit not monotone) at
two different sample sizes (n=50 and n=1,000) generated from the underlying poly-
nomial function p2(x) = 3x3 + x + 1 . Overlaid kernel density estimates in each
plots are for bootstrap estimates of regression parameters using standard uncon-
strained least squares estimation (blue) and using monotone polynomial estimation
(pink).
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3.7 bootstrap confidence intervals and prediction intervals

In standard least squares regression we can calculate bootstrap confidence intervals

for the mean value of the regression function by applying any of the bootstrap meth-

ods outlined in the previous sections. We estimate the mean value for each bootstrap

sample evaluated at a specific design point, for instance x0, and can then estimate

bootstrap confidence intervals by extracting the appropriate quantiles of these boot-

strap estimates.

For a given future observation or set of observations it is often useful to be able to

predict the value of the response for a given predictor. In this instance we often find it

useful to present a prediction interval for the predicted value of the response. Existing

methodology makes use of the residuals bootstrap. We describe here the method pro-

posed by Stine (1985) for prediction intervals in a regression model, acknowledging the

large sample theory for prediction intervals for the general regression set up described

in Olive (2007).

We take the same approach as that of calculating confidence intervals using the re-

siduals bootstrap in that we define the (xi, yi) pairs of observations and generate êi

by fitting a standard regression model. We then resample with replacement from the

residuals to create our bootstrap value y∗i and at the same time we create y∗f , the future

predicted values of the response for a given set of f further values. We then regress y∗i

on xi and generate our β̂∗ the bootstrap sample regression coefficients. We then gener-

ate D∗f ,b = y∗f − xT
f β̂∗. Repeating this B times we then use the empirical distribution of

the Ds to give our bootstrap prediction interval
(

ŷ + D∗f [
1−α

2 ], ŷ + D∗f [
1+α

2 ]
)

.

3.7.1 Confidence bands for polynomials using standard least squares estimation

In fitting monotone polynomials to data, our major focus mainly has been on finding

the fitted value of the response for a given x value. We used simulated data from the

three data generating functions (p1(x), p2(x), p3(x)) described earlier to investigate the

effectiveness of monotone polynomials for this purpose. For least squares estimation
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Figure 3.7: Coverage probabilities for 80% confidence intervals for three different polynomial
functions using standard unconstrained least squares estimation. Orange lines re-
siduals bootstrap n=50; green lines adjusted residuals bootstrap n=50; black lines
residuals bootstrap n=1000

without monotonicity constraints, the (adjusted) residuals bootstrap should provide

consistent estimates for confidence intervals for our mean values. Figure 3.7 describes,

for the three different models considered, the coverage probabilities when 80% confid-

ence intervals are estimated in this fashion.

As expected the coverage probabilities are reasonably flat for all three functions

using the two different sample sizes, regardless of whether the adjusted residual boot-

strap or the straight residual bootstrap is chosen. Table 3.3 describes the mean coverage

probabilities over the range of x values for each of the approaches.

We see that for each of these, two observations are apparent. First, with small

samples size (n = 50) there is under coverage for each function, with the mean per-

cent coverage of 77.50, 77.90 and 75.67, for p1(x), p2(x) and p3(x) respectively. This

apparent under coverage can be rectified in one of two ways. First, we could increase

the sample size (for example to n = 1, 000 as we have done), which gives mean per-

cent coverage of 79.53, 80.10 and 79.67 for the three functions, much closer to the 80%
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Table 3.3: Mean coverage probabilities over the range of x for 80% confidence intervals, when
the data generating polynomial is pk(x), k = 1, 2, 3, and the standard least squares
estimator is used to fit unconstrained polynomials.

n and method p1(x) = x3 p2(x) = 3x3 + x + 1 p3(x) = x5

50 residuals 77.50 77.98 75.67

50 residuals adjusted 79.28 79.88 78.57

1000 residuals 79.53 80.10 79.67

nominal value. Second, a more suitable approach when large sample sizes cannot be

attained in practice, is to adjust the residuals by their corresponding diagonal entry of

the hat matrix (or the leverage), which itself has the impact of increasing the mean per-

cent coverage in a similar fashion to increasing the sample size, giving mean percent

coverage of 79.28, 79.88 and 78.57 for the three functions, again in close proximity to

the nominal 80%.

These results are in line with bootstrap theory for confidence interval estimation in

standard linear regression; for a discussion we refer to Hall (1989). The impact on the

confidence bands produced when the fit is constrained to be monotone for these three

functions is examined later in this chapter, however we note that the simple simula-

tion results in this section suggests these approaches are applicable for unconstrained

polynomial regression modelling of our three functions p1(x), p2(x) and p3(x).

3.7.2 Confidence bands and prediction intervals for monotone polynomials

Due to the complex nature of the isotonic parameterisations, we estimate (point wise)

confidence bands using bootstrap methodology. We present the results for the model

p3(x), with n = 50 and n = 1, 000, noting that similar results are observed for the other

functions that lie on the boundary of the cone of monotone polynomials (for example

p1(x)). We use a non-parametric (paired) bootstrap approach, with 1, 000 bootstrap

replications, recalling that the different bootstrap approaches appear to have minimal

impact on the estimates or standard errors. An example of the resulting confidence

bands is shown in the bottom left panel of Figure 3.9. We note the asymmetric nature

of these bands and observe that this asymmetry is more pronounced in certain regions
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as demonstrated in the bottom right panel of Figure 3.9. Using either of these bootstrap

methods the confidence bands are monotonic increasing and, as the top left panel

of Figure 3.9 demonstrates, exhibit poor coverage probabilities in some regions. In

the next section we shall argue that estimates of these bands should be based on a

methodology that allows these bands to be non-monotone.

In addition to the investigation of confidence bands, we also studied and adapted

the approach of Stine (1985) to use the bootstrap to calculate prediction intervals for

monotone polynomials. In our extensive numerical experiments we found that, in con-

trast to the confidence bands described earlier, these prediction bands work equally

well for polynomials lying inside the cone of monotone polynomials of order at most

q as for polynomials on the boundary of the cone. The top two panels of Figure 3.10

show, that in our simulated data examples p1(x) and p3(x), the prediction intervals

are much more symmetric than the confidence intervals. We demonstrate in the next

section the impact this has on the coverage probabilities.

3.7.3 Coverage probabilities

To examine the effectiveness of the bootstrapping, we estimate coverage probabilities

extracting the 10th and 90th percentiles of the 1, 000 bootstrap replications for each

of 1, 000 simulation runs, for both confidence intervals and prediction intervals. We

describe coverage probability plots where in general our aim is to produce upper and

lower limits that contain within them the true model 100(1− α)% of the time, where

(1− α) is the nominal confidence level. Generally speaking for some function, f , say,

we require:

P(Ll < f < Ul) = 1− α, (3.8)

where Ll and Ul are our upper and lower limits respectively.

Figure 3.8 shows the coverage probabilities for p2(x) = 3x3 + x + 1 (top panel)

and p3(x) = x5 (bottom panel), using both standard least squares estimation (left

panel) and monotone polynomial fitting (right panel). We note that with standard least
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Figure 3.8: Coverage probabilities for 80% confidence intervals for the cubic p1(x) = 3x3 + x+ 1
and the quintic p3(x) = x5, for sample sizes n = 50 (blue solid line) and n = 1, 000
(orange dashed line). Left panel – Standard least squares fits using paired bootstrap.
Right panel – Monotone polynomial fits using paired bootstrap.

squares fitting the coverage probabilities are relatively uniform over the range of the

regressor variable and there is under-coverage in the smaller sample size (n = 50,

solid blue line) as opposed to the near nominal coverage for n = 1, 000 (orange dashed

line), as expected. However, when these models are fit using monotone polynomials we

make two observations. First, for p2(x), the coverage probabilities are near the nominal

level for both sample sizes. However, when we look at the coverage probabilities for

p3(x) we see a distinct pattern with undulations around x = −0.5 and x = 0.5 depict-

ing areas of extreme under-coverage (sometimes as low as 0.65). Second, we note that

increasing the sample size does not impact on this to any great extent. From this it is

evident that straight forward off the shelf bootstrap methodology alone is not suitable

for monotone polynomials in all situations, and is particularly poor when the underly-

ing regression function is on the boundary of Cq
R. Furthermore, and upon examination

of alternative regression functions, we suggest that this observed under coverage, us-
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ing bootstrap methodologies, is not restricted to the specific degree of polynomial nor

the sample size.
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Figure 3.9: Non-parametric bootstrap results using the underlying polynomial function
p3(x) = x5. Top left: Coverage probabilities for 80% confidence interval; Top right
curvature for underlying function; Bottom left: example bootstrap confidence upper
and lower limits (blue and red respectively); Bottom right: deviations from fitted
curve for upper and lower limits (blue and red respectively)

However, when considering prediction intervals, it would appear that using the boot-

strap methodology described by Stine (1985) we can achieve nominated coverage (or

close to) with all of our simulated examples. Presumably the extra variance term that

appears in the calculation of prediction intervals dominates the width of these inter-

vals and, consequently, close to nominal coverage is also obtained for polynomials on

the boundaries, for which the usual asymptotics with respect to asymptotic distribu-

tion and/or confidence intervals do not apply. This is demonstrated in Figure 3.10

where we note for p1(x) and p3(x) the relatively uniform coverage probabilities from

prediction intervals over the whole range of x values regardless of the sample size (in

contrast to what was previously observed for the confidence intervals). We also note

that as the sample size increases these coverage probabilities become more similar to

the nominal coverage (red line) with the green lines in both plots denoting coverage
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probabilities for sample size n = 50 being slightly lower than the blue line n = 1, 000.

We also note that the asymmetric nature of the confidence bands described previously

is not as apparent in the prediction bands with these much more balanced for all x.
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Figure 3.10: Prediction interval plots for: left panel p1(x) = x3, and right panel p3(x) = x5.
Top row fitted curves and 80% confidence and prediction intervals for n = 50.
Middle row fitted curves and 80% confidence and prediction intervals for n =
1, 000. Bottom row converge probabilities for n = 50 (green line) and n = 1, 000
(orange line) with 80% nominal coverage (red line). Note the scale on the coverage
probability plots is deliberately set to be compared to the previously described
coverage probability confidence interval plots in Figure 3.8.

3.7.3.1 Using the m out of n bootstrap for confidence bands

In our numerical examples, adopting an m out of n bootstrap, as described by Shao

(1994), rectifies this under coverage observed in the point wise confidence intervals.

Figure 3.11 shows coverage probabilities for 80% confidence intervals based on the m

out of n bootstrap, varying m over 10, 15, 20, 25, 30, 35, 40 and 50 for n = 50, as well

as for the n out of n bootstrap for n = 1, 000.

The right panel of Figure 3.11 shows coverage probabilities for 80% confidence inter-

vals based on the ‘m out of n’ bootstrap, varying m over 10, 15, 20, 25, 30, 35, 40 and

50 for n = 50, whilst the left panel shows the coverage probabilities for the n out of
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Figure 3.11: Coverage probabilities for 80% confidence intervals for the quintic monotone poly-
nomial p3(x) = x5. Left panel – n out of n residuals bootstrap: Black line n = 50;
orange line n = 1, 000. Right panel – m out of n bootstrap: decreasing values of
m from bottom (black) line m = n through m = 40, 35, 30, 25, 20, 15, 10 for n = 50
design points.

n bootstrap for n = 50 and n = 1, 000. We note that using an ‘m out of n’ bootstrap

gives more acceptable results in terms of coverage probabilities for an astute choice

of m. In this example we observe that m = 35, which is relatively close to n, achieves

an average coverage probability that is close to the nominal level, whereas for small

choices of m the resulting confidence bands are very conservative. We found this to be

true for a range of other examples and depending on m there are three possibilities

in general: we either choose m too large and get under coverage; we can choose m

too small so that the coverage probabilities on the whole exceed the nominated con-

fidence level, hence we get substantial over coverage in some areas; or we select m

approximately optimal to obtain average coverage over the range to be at the nomin-

ated confidence level, which results in some areas with under coverage and some areas

with over coverage. However, we note that a data driven choice of m remains an open

research question. Table 3.4 summarises coverage probabilities for varying size m. In

particular we note that using m = 35 gives the best overall mean coverage probabilities.
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Table 3.4: Summaries of coverage probabilities from different m out of n bootstrapping al-
gorithms and post hoc adjustments. Signed area between curves (SABC) denotes
the signed area of the difference of the estimated coverage probability curve and the
nominal coverage line.

Mean Median % above
Algorithm Mean Median Min Max deviation deviation SABC 0.8

m = 10 0.961 0.966 0.910 0.999 0.161 0.166 0.321 1.000

m = 15 0.924 0.929 0.857 0.986 0.124 0.129 0.249 1.000

m = 20 0.890 0.900 0.812 0.963 0.090 0.100 0.180 1.000

m = 25 0.859 0.872 0.768 0.937 0.066 0.072 0.118 0.784

m = 30 0.831 0.849 0.734 0.912 0.057 0.060 0.061 0.660

m = 35 0.804 0.820 0.708 0.880 0.052 0.055 0.008 0.564

m = 40 0.782 0.798 0.689 0.860 0.049 0.045 -0.037 0.490

m = n 0.741 0.757 0.644 0.822 0.063 0.043 -0.118 0.185

(No Adj.)
Curv Adj. 0.840 0.840 0.759 0.887 0.043 0.040 0.081 0.909

However, using a criteria such as minimising mean or median absolute deviation may

suggest an alternative choice for m.

We further observe from the right panel of Figure 3.11 that regardless of the mag-

nitude of m the coverage probabilities are not consistent for all x. To examine this in

more detail we propose the idea of a post hoc adjustment. Our conjecture is that this

under coverage results from the asymmetric nature of the confidence bands arising

from the monotonicity constraint, and that the resulting under coverage is particularly

pronounced in areas of high curvature.

3.7.3.2 Post hoc adjustments to confidence bands

In order to rectify the problem of non-uniform coverage, we consider a post hoc

adjustment to our estimated confidence bands and illustrate it for p3(x). We pro-

pose a simple adjustment using an n out of n bootstrap; specifically we make these

bands symmetric around p̂(x). Let δu,x and δl,x be the upper and lower deviations

from p̂(x) for a given x. We define an adjusted confidence band for a given x to be

[ p̂(x)−max{δu,x, δl,x}, p̂(x) + max{δu,x, δl,x}]. Such an adjustment is illustrated in Fig-

ure 3.12 with the left panel showing the fitted confidence band for an example sim-

ulation realisation, and the right panel showing the new coverage probabilities after

this symmetrisation of the confidence bands over the 1, 000 simulation runs. We ob-
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serve that the apparent under coverage initially observed has now been removed by

this adjustment and the coverage is much more uniform over the whole range of x.

Furthermore, our numerical experiments using other functions, which would initially

suffer from under-coverage issues in specific areas, with varying degree polynomials,

show similar positive results, suggesting such a post hoc adjustment could be benefi-

cial for monotone polynomial bootstrap confidence bands.
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Figure 3.12: Left panel: Fitted monotone polynomial based on simulated data from underly-
ing function p2(x) = x5 with adjusted 80% and 95% bootstrap confidence bands.
Right panel: Coverage probabilities for adjusted 80% bootstrap confidence bands
on monotone polynomials based on the underlying function p3(x) = x5; adjusted
probabilities (green), unadjusted (black).

Finally, we observe from Figure 3.9 that, there appears to be some correlation between

the areas of under coverage and the underlying curvature of the data generating func-

tion, which we defined here by:

κ(x) =
p′′(x)

(1 + p′(x)2)
3
2

(3.9)
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This relationship suggests areas of high curvature are reflected in the areas of un-

der coverage. This phenomenon exists in other functions, as can be seen in Figure C.1

in Appendix C, which shows the coverage probabilities and corresponding curvature

for p4(x) = (x − 0.5)5, where Yi = p4(xi) + εi with 50 equidistant design points and

the errors independent N(0, 0.32) as described previously, and m = n. Furthermore,

additional numerical experiments using other functions, with varying degree polyno-

mials, show similar positive results, to suggest such a curvature adjustment could be

beneficial for monotone polynomial bootstrap confidence bands. We speculate that

such curvature adjustments would also have similar potential in non-parametric and

semi-parametric regression settings. However, we also note that whilst in simulation

exercises we can demonstrate success by making such curvature adjustments, in prac-

tice the underlying curvature is unknown and would have to be estimated making

such an adjustment problematic.

3.8 conclusions

The work described in Chapter 2 and in Murray, Müller & Turlach (2013, 2015) has

made fitting monotone polynomials to data much more accessible, with various differ-

ent formulations and parameterisations now available through the R package MonoPoly.

We have further demonstrated, through our simulations in this chapter, that there is not

only a need for such methodology but a necessity in some instances where standard

polynomials do not provide intuitively correct estimated functions, for example ensur-

ing monotonicity. We have also provided theoretical and empirical consistency results

for monotone polynomials and have argued that even if the underlying function is not

a polynomial then our methods should provide results that are consistent.

To date, and to our knowledge, there has been little work carried out on variance es-

timation for monotone polynomials. We have shown through Monte-Carlo simulations

that estimates and confidence intervals for monotone polynomials may require differ-

ent methodologies depending on the location of the function in reference to the cone

of monotone polynomials (on the boundary or not), the sample size and whether the

initial unconstrained least squares solution is on the boundary. Furthermore, we have
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demonstrated that, in some instances, standard unconstrained least squares bootstrap

methodology may be satisfactory when estimating variances and functions thereof for

monotone polynomials. However, in other instances these methods will not be suitable

and it is extremely difficult to define instances in which this would be the case.

Consequently, we considered various different methods for confidence and predic-

tion bands and have further proposed methodology for estimating these advocating

one of two approaches; either using an m out of n bootstrap, or by employing a post hoc

curvature adjustment. Initial testing of such approaches has yielded some encouraging

results with the m out of n bootstrap providing an average coverage probability over

the range of x at the nominated level, if one selects the right choice of tuning parameter.

However, the post-hoc adjustment appears to have practical promise, given its ability

to ensure the coverage probabilities are more uniform, and it is apparent such adjust-

ments could be extended to techniques in both non-parametric and semi-parametric

regression. Details of the mathematical properties of such adjustment remain to the

best of our knowledge an open research question.
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A C O M PA R I S O N O F M O N O T O N E R E G R E S S I O N T E C H N I Q U E S

summary

We examine the effectiveness of monotone polynomials when compared to two of the

more commonly used non-parametric smoothing techniques. We show through Monte-

Carlo simulations that the bias and variance produced from monotone polynomial

curve fitting are at least comparable to those from the non-parametric smoothing tech-

niques, and for certain functions monotone polynomials provide better results. This is

demonstrated not only for data which are generated from polynomial functions but

also for those that originate from a sigmoidal or trigonometric function.

Speed comparisons of existing methods available to fit monotone polynomials to

data demonstrate that the sums of squares formulation is much faster than previous

monotone formulations and comparable to the semi-infinite programming approach

of Hawkins (1994), with the sums of squares formulation proving much more flexibil-

ity. When compared to smoothing spline approaches we demonstrate that monotone

polynomial model fitting performs comparatively well for small sample sizes, and is

more effective with smaller run times when the sample sizes are larger. We argue that

the efficiency of our methodology is pertinent to the ability to use computationally

intensive techniques such as the bootstrap.

4.1 introduction

The fitting of a monotone curve to data is increasingly important in modern statistics.

Whilst we have described to date the impact and flexibility of using monotone poly-

nomials, we recognise that there is a huge body of literature that would recommend

smoothing splines, kernel smoothing, non-parametric or semi-parametric techniques.

86
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As indicated in the introduction of this thesis it is not our desire to demonstrate that

such techniques are not useful or necessary. However, given the attractiveness and sim-

plicity of monotone polynomials we aim to describe and demonstrate these models as

an effective and viable alternative. In doing this we do recognise there is a desire for

people to want to make such comparisons between monotone polynomials and some

of the other monotone regression techniques. Hence, in this chapter, we demonstrate

with both polynomial functions and with non-polynomial functions, the effectiveness

of using monotone polynomials in comparison to some of the other more commonly

used techniques.

In Chapter 2 (and in Murray, Müller & Turlach (2013, 2015)) we revisited the idea of

using monotone polynomials and provided algorithms for the fitting of monotone poly-

nomials to data, initially based on the isotonic parameterisations of Elphinstone (1983)

and the semi-infinite programming algorithm by Hawkins (1994), and subsequently

using a sums of squares parameterisation.

In this chapter we compare the fitting of monotone polynomials to data with some of

the more frequently used practical approaches to curve fitting. We further discuss these

comparisons in more detail in Chapter 6 where we examine comparisons of monotone

polynomials to non-parametric approaches with respect to the specific task of identify-

ing the number and location of inflection points. For the remainder of this section we

compare monotone polynomials to the smoothing spline approach using B-spline basis

functions as described in Ramsay (1998) and Ramsay & Silverman (2002, 2006) in addi-

tion to the approach described in Meyer (2008, 2012), using the R packages created to

implement these methodologies, fda (Ramsay, Wickham, Graves et al., 2013) and cgam

(Meyer & Liao, 2014) respectively. The approach of Meyer uses constrained generalized

additive model (CGAM) fitting using maximum likelihood estimation, where shape or

order restrictions can be imposed on the non-parametrically modelled predictors with

optional smoothing (Meyer & Liao, 2014).

We start initially in Section 4.2 by providing some results of timing experiments that

compare the three different methodologies for fitting monotone polynomials to data.

That is the semi-indefinite programming approach of Hawkins (1994), approaches

based on Elphinstone (1983) parameterisations, implemented and described in Chapter 2
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and in Murray, Müller & Turlach (2013), and the sums-of-squared polynomials ap-

proach also described in Chapter 2 and Murray, Müller & Turlach (2015). In Section 4.3

we describe the results from Monte-Carlo simulations comparing the three different

approaches in terms of bias, variance and mean squared error (MSE). Finally, in Sec-

tion 4.4 we provide the results from the timing experiments comparing the three dif-

ferent approaches (monotone polynomials, CGAM and B-splines) to fitting monotone

regression curves to data.

4.2 comparisons with previous parameterisations

In our experience, fitting a monotone polynomial to data using the sum-of-squares

parameterisation is markedly faster than using any of the isotonic parameterisations

considered previously and is comparable speed wise with the semi-infinite program-

ming approach of Hawkins (1994). While Hawkins’ (1994) approach could be extended

to allow fitting of polynomials that are monotone only over a specified compact or semi-

compact region we do not investigate this further here since in Chapter 2 and in Murray,

Müller & Turlach (2013) we noted that isotonic parameterisations of the Elphinstone

(1983) type allow the fitting of monotone polynomials in some situations in which the

semi-infinite programming approach fails; this also being true for the sum-of-squares

parameterisation. Furthermore, we noted that the semi-infinite programming approach

might require the careful choice of numerical precision parameters to allow the vari-

ous numerical algorithms used in its implementation to successfully work together.

We would expect these numerical precision problems to increase when a polynomial

is restricted to be monotone over a compact or semi-compact interval and, in the ter-

minology of Hawkins (1994), a decision would have to be made on which side of the

boundary a ‘horizontal inflection point’ falls.

We report results from one of our timing experiments that we performed using a

sigmoidal function as the true underlying regression function. This target function is

selected as it provides a suitable target for monotone polynomials of increasing degree.

In fact, Shevchuk (1993) shows that monotone functions over compact intervals can be

approximated uniformly to an arbitrary precision by monotone polynomials of suffi-
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Figure 4.1: Sigmoidal curve (black) with n = 50 (left panel) and n = 1, 000 (right panel) observa-
tions generated from this regression curve. Monotone polynomial fit of polynomial
of degree 9 (green dashed lines) and degree 15 (red dashed lines) are shown.

ciently high degree q. Figure 4.1 depicts the sigmoidal function used as a solid black

line together with a typical data set of size n = 50 (left panel) and n = 1000 (right

panel). Fitted monotone polynomials of degrees q = 9 and q = 15, respectively, are

overlaid in both panels and illustrate that monotone polynomials of degree 9 approx-

imate the underlying regression curve fairly well.

In our timing experiment, we used sample sizes of n = 50, 100, 200, 250, 400, 500,

800, 1000, 1600 and 2500, respectively, and monotone polynomial of degrees 5, 7, . . . , 19

and 21. For each sample size, 10 replicates were generated, that is we sampled xi, i =

1, . . . , n, from a uniform distribution, and generated corresponding yis by evaluating

the sigmoidal regression function at the xis and adding standard normally distributed

noise. For each simulated data set the time needed to fit a monotone polynomial using

the sum-of-squares parameterisation, Hawkins’ (1994) semi-indefinite programming

approach and the Elphinstone (1983) type isotonic parameterisation recommended by

Murray, Müller & Turlach (2013) were recorded and, for each method, averaged over

the 10 replications. The resulting average times are shown in Figures 4.2 and 4.3.
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Figure 4.2: Monotone polynomials of degree q = 5, 7, . . . , 21 fitted to simulated data with vari-
ous sample sizes from a sigmoidal curve (Figure 4.1). The plot shows for three
approaches to fitting monotone polynomials the average time, over 10 replications,
needed to fit the model against the sample size. Both axes are on a log scale.

These figures show that the sum-of-squares parameterisation is markedly faster than

using the preferred Elphinstone (1983) type isotonic parameterisation and is compar-

able with the semi-infinite programming approach of Hawkins (1994).

During our timing experiments, we also noticed that the sum-of-squares isotonic

parameterisation approach and Hawkins’ (1994) semi-infinite programming approach

always resulted in the same fitted monotone polynomial, while the fitted monotone

polynomial using the Elphinstone (1983) type isotonic parameterisation occasionally

differed if the true regression function was a polynomial and somewhat more often

with the sigmoidal target function. This suggests that fitting monotone polynomials

using the sum-of-squares parameterisation, instead of an Elphinstone (1983) type iso-



4.3 monte-carlo simulations to compare constrained regression techniques 91

  0.01

  0.10

  1.00

 10.00

100.00

5 10 15 20
Degree

T
im

e 
(s

ec
)

n=50

  0.01

  0.10

  1.00

 10.00

100.00

5 10 15 20
Degree

T
im

e 
(s

ec
)

n=100

  0.01

  0.10

  1.00

 10.00

100.00

5 10 15 20
Degree

T
im

e 
(s

ec
)

n=200

  0.01

  0.10

  1.00

 10.00

100.00

5 10 15 20
Degree

T
im

e 
(s

ec
)

n=250

  0.01

  0.10

  1.00

 10.00

100.00

5 10 15 20
Degree

T
im

e 
(s

ec
)

n=400

  0.01

  0.10

  1.00

 10.00

100.00

5 10 15 20
Degree

T
im

e 
(s

ec
)

n=500

  0.01

  0.10

  1.00

 10.00

100.00

5 10 15 20
Degree

T
im

e 
(s

ec
)

n=800

  0.01

  0.10

  1.00

 10.00

100.00

5 10 15 20
Degree

T
im

e 
(s

ec
)

n=1600

  0.01

  0.10

  1.00

 10.00

100.00

5 10 15 20
Degree

T
im

e 
(s

ec
)

n=2500

Sum of Squares Hawkins Elphinstone

Figure 4.3: Monotone polynomials of various degrees were fitted to simulated data from a
sigmoidal curve (Figure 4.1). Sample sizes used in this timing study are indicated
in the strip of each panel. The plot shows for three approaches to fitting monotone
polynomials the average time, over 10 replications, needed to fit the model against
the degree of the polynomial.

tonic parameterisation, is not only beneficial in terms of run-time but also reduces the

potential risk of the algorithm converging to a local minima.

4.3 monte-carlo simulations to compare constrained regression tech-

niques

For each of p2(x), p3(x) and the sigmoid function, all described in Section 3.2, we

generate 1, 000 simulated responses to examine and compare bias, variance and mean
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squared error for the monotone polynomial fits, the CGAM fits and the B-spline fits.

Furthermore, we simulate from the following trigonometric function:

y = 5π − x + cos(x− π/2− 2) + ε (4.1)

where x are at 0, 1, . . . , 12 in triplicate and ε ∼ N(0, 1). This final simulation reflects the

data described in Firmin, Müller & Rösler (2011, 2012) which formed the motivation

for further development of monotone polynomial model fitting tools and ultimately

this thesis.

Figures 4.4 and 4.5 show the bias, variance and mean squared error (MSE) for data

generated from the cubic and quintic polynomial functions p2(x) and p3(x), respect-

ively. In each figure we compare the three methods of curve estimation for these data

for sample sizes n = 50 and n = 1, 000. We observe for the cubic, that is the function

which sits inside the boundary of Cq
R, comparatively good performance from the mono-

tone polynomial fits when compared to the cgam and fda smoothing spline approaches.

This performance is apparent for both sample size 50 and sample size 1, 000 but is more

pronounced in the latter. This is to be expected given the fits derived using monotone

polynomials are generally the same as that using a standard unconstrained polyno-

mial when the underlying function lies inside the boundary of Cq
R, and the sample

size is sufficiently large. Consequently by standard linear model theory this should be-

come an arbitrary accurate estimate of the underlying polynomial function as n → ∞.

Comparatively, the results from using the three different methodologies with p3(x), a

quintic which lies on the boundary of Cq
R, are not as clear. For both sample sizes the fits

from the cgam and the fits from the monotone polynomial are relatively comparable in

terms of bias, variance and MSE, with the monotone polynomial providing marginally

better results. However, it is notable that the fda smoothing spline approach does not

appear to perform as well. Whilst this may be a reflection on the methodology itself, we

suspect that it is more a reflection on the judicious choices needed to be made in terms

of the number and location of knots, smoothing parameters and basis functions. In this

instance we used the same settings as for the cubic, and believe this demonstrates, to

some extent, some issues with repeatability and robustness of this methodology.
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Figure 4.4: Bias, variance and mean squared error based on 1, 000 monte-carlo simulations of
size n = 50 (top row) and n = 1, 000 (bottom row), comparing model fits using
monotone polynomials (orange line), fda smoothing spline (red line) and CGAM
(blue line) for underlying data generating function p2(x) = 3x3 + x + 1.

Figure 4.6 shows the bias, variance and mean squared error for n = 50 and n = 1, 000

for each of the three methods to be compared for data generated from the sigmoidal

function. It is clear from these plots that the choice of parameters used to find fits with

the three methods, whether it be smoothing parameters, knots, or the choice of degree

of polynomial for the monotone polynomial fits, has a significant impact on the per-

formance. It is evident that, at the smaller sample size the smoothing spline approach

is comparable to the monotone polynomial approach and whilst the CGAM approach

provides lower variance overall it would appear not as effective as the others. At the

larger sample size the bias would be somewhat smaller for the monotone polynomial

fit, with larger variance but in terms of MSE it could be argued to perform ‘better’.

Finally, results using the data generated from the trigonometric function (described

by (4.1)), which has limited design points and multiple inflection points, are shown in

Figure 4.7. Immediately apparent from this simulation exercise, and numerous com-

parable other exercises we carried out, is the impact of the smoothing parameters and
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Figure 4.5: Bias, variance and mean squared error based on 1, 000 monte-carlo simulations of
size n = 50 (top row) and n = 1, 000 (bottom row), comparing model fits using
monotone polynomials (orange line), fda smoothing spline (red line) and CGAM
(blue line) for underlying data generating function p3(x) = x5 .

placement of knots. This is something we consider further in Chapter 6 when we use

monotone polynomials to search for inflection points. However, in general, we observe

that the monotone polynomials outperform the other two methods.

4.4 speed comparisons with different approaches to fitting mono-

tone curves

We provide in this section a very brief demonstration of speed comparisons for each

of the methods considered. We recognise that there are many elements which will con-

tribute to speed, for example processor speed and memory, however for information

we have given a comparison again using a relatively modest machine (MacBook Air,

Processor 2GHz Intel Core i7, RAM 8GB). Specifically we use the sigmoidal function

described in (3.1) and simulate increasing samples sizes from 50 through to 5, 000 from

this function. Again, we consider x to be randomly generated from a uniform distri-
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Figure 4.6: Bias, variance and mean squared error based on 1, 000 monte-carlo simulations of
size n = 50 (top row) and n = 1000 (bottom row), comparing model fits using
monotone polynomials (orange line), fda smoothing spline (red line) and CGAM
(blue line) for underlying data generating function f4(x) = 10/ [1 + exp(−8x)].

bution over the range [−1, 1]. The results are shown in Figure 4.8 for each of the three

methods under consideration. The monotone polynomial fit is consistently lower in

run time than the smoothing spline approach and outperforms the cgam approach for

all but relatively low sample sizes. The standard cgam implementation has dramatic-

ally increased run time as sample sizes get relatively large and under-performs the

smoothing spline approach. This is probably due to the default settings in the cgam

package which would appear to produce a large amount of knot placements. Whilst

this increased run time may not be important for the fitting of one curve to the data,

it will have a dramatic impact on the time to carry out model selection searches for

the ‘best’ combination of parameters needed to fit these models, and in the estimation

of confidence and prediction intervals using, for example, computationally intensive

techniques such as the bootstrap.
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function f5(x) = 5π − x + cos(x− π/2− 2).
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4.5 discussion

We have demonstrated in this chapter that for certain functions fitting monotone poly-

nomials to data can provide at least a comparative performance when compared to

the current alternative shape constrained regression techniques. However, whilst we

recognise that for every regression model in which we can demonstrate monotone

polynomials are able to perform comparatively well, or even outperform other tech-

niques, there will be other regression models in which smoothing splines, or similar

approaches, would be much more suitable. Furthermore, it certainly is not our inten-

tion to suggest that monotone polynomials are in any way superior to non-parametric

or semi-parametric shape constrained regression — which we certainly do not believe

to be the case in all situations. However, we do believe we have demonstrated, at least

in some situations, that there is place in the literature and applications for monotone

polynomial data fitting. We have also described how the choice of model parameters

can have a huge impact on any of the three modelling techniques discussed. However,

in the case of the cgam and fda smoothing spline approach many decisions need to

be made, some of which are the subject of current research. Determining this optimal

choice of model parameters is in some instances not simple, which has the potential

to ensure these approaches could be less palatable, even for relatively straight forward

functions. Conversely, acknowledging that the selection of the degree of monotone

polynomial can have an impact on the model performance, we would argue that this is

a more simple problem to resolve given the choice of degree is limited to a number of

models defined by the highest degree monotone polynomial considered. Our timing

exercises have also demonstrated that monotone polynomials are at least as efficient as

any of the other two shape constrained regression techniques considered and perform

more efficiently at larger sample sizes.

We have also demonstrated that the new sums of squares methodology proposed in

this thesis for fitting monotone polynomials to data has not only outperformed the pre-

vious methodologies in terms of speed, but has also increased flexibility allowing, for

example, the fitting of monotone polynomials over (semi-)compact regions. The speed

with which monotone polynomials can be fitted using the sum-of-squares paramet-
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erisation now makes it feasible to explore the use of bootstrap techniques for problems

such as model selection (see Chapter 5) and estimation of standard errors and confid-

ence intervals (see Chapter 3). Furthermore, we believe, in some instances, monotone

polynomials may be more desirable mainly due to the simplicity of fitting monotone

polynomials to data through our newly described methodology in this thesis, and our

R (R Core Team, 2015) package MonoPoly (version 0.3-6 or later) currently available on

CRAN.



5

G R A P H I C A L T O O L S F O R M O D E L S E L E C T I O N

summary

Model selection techniques have existed for many years however to date simple, clear

and effective methods of visualising the model building process are sparse. This chapter

describes graphical methods that assist in the selection of models and comparison of

many different selection criteria. Specifically, we describe for logistic regression, how to

visualize measures of description loss and of model complexity to facilitate the model

selection dilemma. We advocate the use of the bootstrap to assess the stability of selec-

ted models and to enhance our graphical tools. We demonstrate which variables are

important using variable inclusion plots and show that these can be invaluable plots for

the model building process. We show with two general case studies how these pro-

posed tools are useful to learn more about important variables in the data and how

these tools can assist the understanding of the model building process. Furthermore,

we extend these techniques to model selection using monotone polynomials, identify

some of the issues with model selection in such constrained scenarios, and provide a

further two real world examples to illustrate this process.

5.1 introduction

Many applied problems involve the collection of data with multiple potential predictor

variables. In analysing the data one usually engages in a process of model building,

of which a crucial part is to determine one or more appropriate models. For a general

introduction and overview into the topic of model building we refer to Miller (2002).

One of the most commonly used techniques for model selection, which is probably

the least advocated by statisticians, is a “hypothesis test/P-value" stepwise approach,

99
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using either forward selection, backward selection or a combination of the two. These

approaches have been shown to be inefficient in many situations, and have particular

issues such as multiple testing and localization of solutions. For many models, includ-

ing the vast array of generalized linear models, the information theoretic approach

and the use of the log-likelihood to compare models is widespread in general for

model selection purposes. For this reason, the majority of this chapter mainly focuses

on measuring the descriptive ability of a model via the log-likelihood, but our ideas

extend directly to using other loss functions.

To date, in medical research in particular, data analysts have used many different

techniques to select models for prediction purposes. In most instances only one final

model is presented, and how such a model is reached is typically not sufficiently de-

scribed in the statistical methods section of research articles. Reasons for this include

space restrictions and a shortage of simple graphical tools that can be shown to explain

the reasoning behind the final model. Consequently future researchers have difficulty

obtaining a clear understanding of available model selection techniques in current med-

ical research, what these techniques are really doing, and how to replicate and adapt

such techniques.

When using an information theoretic approach to model selection, a somewhat con-

troversial and much debated question is whether to model select using the Akaike

information criterion (AIC) (Akaike, 1973) or the Bayesian information criterion (BIC)

(Schwarz, 1978). The purpose of the analysis drives the model selection. Often a sep-

aration is made between the purpose to describe the data well or to obtain a model

which has good predictive qualities. A major difference between AIC and BIC is that

AIC attains the minimax rate, whilst BIC is consistent (that is as n tends to infinity

the probability of selecting the true model tends to one) and aims to model the di-

mension of the true model but fails to attain the minimax rate. The concept of a true

model is debatable (Shao, 1997) and there are strong arguments in opposition of such

assumptions (Burnham & Anderson, 2002). Put simply, the argument is that all of the

predictor variables proposed for a model should have some effect on the response,

even if this effect is extremely small. In spite of this, many questions still arise: which

variables are important to describe the data well; which components remain when a
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smaller model is preferred to the model selected using AIC; what happens if a slightly

different penalty is chosen to the one which led to the calculation of the AIC value.

Graphs are powerful tools in statistics. We quote Tukey who said: “There is noth-

ing better than a picture for making you think of questions you had forgotten to ask

(even mentally)" (Tukey & Tukey, 1985). When fitting models it is standard practice to

examine model diagnostics using visual aids (residuals plots, QQ-plots, etc) and we

are encouraged to visualise our data throughout the majority of any statistical ana-

lysis. In light of this, it seems somewhat perplexing that in carrying out model (or

variable) selection, little encouragement is given to employ visualisation approaches.

In a general setting the works of Loftus (1983) or more recently with a clinical flavour

Krause & O’Connell (2012) provide some examples of the benefits of using graphical

techniques in data analyses. However, to date, there are relatively few publications

that show graphical tools as aids in model selection. The best known is the Mallow’s

Cp plot (Mallows, 1973), which has been proposed for linear regression situations and

some further variants exist (Spjotvoll, 1977; Siniksaran, 2008). Recently, Müller & Welsh

(2010) introduced for a p < n setting a variable detection plot, which is similar to the

stability paths in Meinshausen & Bühlmann (2010) for the p >> n context, where n

denotes the sample size and p the total number of variables that are subject to selection.

Both graphs are based on slightly different resampling procedures and among others

aim to facilitate the choice of a tuning parameter.

Whilst on the face of it model selection for polynomial regression is a much more

simple task, there are still many facets that have to be considered. The general question

of ‘what degree is the best to describe my data’ still needs to be reconciled with the aim

of the analysis. However, in standard polynomial regression one can still make use of

typical approaches including the information criteria approaches described previously

or more sophisticated approaches, for example the bootstrap approach (see Chapter 4)

to model selection. In constrained regression, for example, determining the appropriate

degree for a monotone polynomial model, little work exists. Hawkins (1994) made a

suggestion to determine the ‘best’ degree polynomial by using ‘conventional F-tests’ of

the sequentially added higher order terms. However, he noted that the hypotheses in
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such a model selection do not satisfy the needed regularity conditions for conventional

F distributions.

In this chapter, we take a liberal view of model selection, mainly in a medical context,

and instead of trying to argue one way or another on issues like AIC versus BIC, or

on the advantages of techniques such as model averaging, we aim to provide simple

graphical tools for the visualisation of different model selection criteria that facilitate

the descriptive process of the data and assist with the model selection problem. It

should be noted that we are not advocating the use of our plots for one specific purpose;

rather we aim to demonstrate how they can aid in many different aspects of model

building.

The outline of the chapter is as follows: In Section 5.2 we describe the terminology

and methodology and introduce our graphical concepts by a first case study with

simulated data. Additionally, we show how the methods assist in the model selection

process. In Section 5.3 we present the results of two further case studies, which have

more variables and more features than the simulated data. The first is from a retro-

spective cross-sectional palliative care study and the second from an ongoing health

study analysing the effect of smoking in patients with Crohns disease. In Section 5.5

we demonstrate graphical techniques for model selection in the specific constrained

polynomial estimation described in Chapter 2. We further develop our techniques to

look at this specific case and demonstrate model selection for monotone polynomials

through two real world examples. In Section 5.6 we demonstrate other uses of our

model selection plots, in particular in the context of highly correlated regressors and

in the presence of outliers. We conclude with a discussion and comments in Section 5.4.

R code for reproducing all results and figures shown in this chapter can be found in

Murray, Heritier & Müller (2013).
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5.2 terminology and graphical methods

5.2.1 Generalised linear model framework

Assume that n independent observations y = (y1, . . . , yn)T and a n× p design matrix

X is available, whose columns are indexed by 1, . . . , p. Let α denote any subset of pα

distinct elements from 1, . . . , p. Let Xα be the corresponding n× pα design matrix and

xT
αi

denotes the ith row of Xα.

Then a generalised linear regression model (GLM) α for the relationship between the

response y and the design matrix Xα is specified by

E(yi) = h(β0,α + ηi), and Var(yi) = σ2v2(ηi) with ηi = xT
αi

βα, i = 1, . . . , n, (5.1)

where (β0,α, βT
α )

T is an unknown (pα + 1)-vector of regression parameters and σ is an

unknown scale parameter, or 1 in the binomial and Poisson models. Here h is the

inverse of the usual link function and, for simplicity, we have absorbed h into the

variance function v. Both h and v are assumed known. In this chapter we initially focus

on the logistic regression model, which has binomial response and logit link function,

however our methods can be extended to any GLM, and we demonstrate later how

transferable they are to monotone polynomial regression models.

5.2.2 Measuring description loss and complexity in GLM

The purpose of model selection is to choose one or more models α, from all candid-

ate models A, with specified desirable properties. Many model selection procedures

involve the minimisation of an expression which can take the simple form:

Description Loss + λ×Model Complexity. (5.2)
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Most prominently, the ‘description loss’ of a model can be measured by −2× log-

likelihood. Here, we use the term ‘description loss’, which we regard as any function

Ln that measures how well a model fits the data. Model complexity, in its simplest

form, is the number of independent regression model parameters. We refer to λ as the

penalty multiplier, which often drives the properties of the selection criteria (Müller &

Welsh, 2010). We will focus on procedures that use the information theoretic choice of

description loss, that is minus twice the log likelihood. The AIC is of form (5.2) and

has penalty multiplier λ = 2; similarly, the BIC has λ = log(n) or more generally

the generalised information criterion (GIC) (Konishi & Kitagawa, 1996) has penalty

multiplier λ ∈ R.

5.3 case study i – simulated logistic regression example

For ease of presentation we illustrate our techniques through logistic regression ex-

amples. However, these are easily extendable to any GLM. Initially we describe a sim-

ulated logistic regression example in which n = 250 responses (y′is) are modelled with

seven potential predictors x1− x7. The predictors themselves are simulated from a mul-

tivariate normal distribution, with correlations of 0.7 introduced between predictors x1

and x2 and between x5 and x6. The data generating model samples responses from

Bernoulli random variables with probability of success πi, such that

log
(

πi

1− πi

)
= β0 + β1xi1 + . . . β7xi7, i = 1, . . . , n, (5.3)

and the parameter values for the β’s (excluding the intercept) are set to be (2.1, 0, 1.5,

0, 0, 0.9, 1.1).

The full model including all 7 regressors and intercept, that is α f = {1, 2, 3, 4, 5, 6, 7, 8},

has −2× LogLik(α f ) = 135.9, whilst the model including only an intercept has −2×

LogLik({1}) = 207.7. Because there are seven explanatory variables there are a total of

27 = 128 possible logistic GLM’s, that is A = { {1}, . . . , α f }. The description loss and

dimension for all α ∈ A are visualised next.
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5.3.1 Visualising Ln and pα

Basic scatter plot

The left panel in Figure 5.1 shows for all possible α ∈ A a simple scatter plot of

the number of regression parameters (horizontal axis) and Ln = −2× LogLik. As the

dimensionality increases the general pattern is for the description loss (Ln) to decrease,

that is become better. We can use these simple plots in many different ways. First, we

observe for any given model dimensionality that we have a model of rank 1. This is

the model which provides minimum Ln value among those models having the same

dimension (number of explanatory variables). For example in Figure 5.1, with two

regression parameters there is a model with Ln = 173, which is the lowest of all seven

models at this dimension and hence is defined as the rank 1 model for dimension 2. We

have added also to this plot two dashed lines which represent a line of slope −2 which

intersects the AIC minimum solution (dimension 6), and a line of slope −log(n) which

intersects the BIC minimum solution (dimension 5). From this one can determine that

no other solutions using either a minimum AIC or BIC as model selection criteria exist

for this particular data. We consider this in more detail in 5.3.3.

Enriching the scatter plot

The right panel of Figure 5.1 is an enriched scatter plot. In this instance we have labelled

models that include the variable x1 (red triangle) differently to those that do not (black

circle). In this example we observe separation of Ln values over all dimensions, in

that all models that include this important variable (x1) give a much lower Ln than all

models that do not include this variable. We can generalise this approach to examine

all variables and those interactions that are of interest.

By visual inspection of such graphs, we can determine that this particular variable

is “a must" for the inclusion in the final model (or subset of models), without having

to make a choice on the size of the penalty multiplier, or delving into arguments about

AIC versus BIC. Mathematically, it is clear that complete separation can only occur

when the grouping of models is according to variables present in the best model of a



5.3 case study i – simulated logistic regression example 106

●

●
●
●
●●

●

●

●
●
●

●
●
●

●

●
●●

●●
●●●

●

●

●●

●

●

●
●
●

●

●●

●

●

●
●

●
●●
●●
●

●●
●●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●
●
●
●

●
●

●

●●
●

●
●

●●

●
●
●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

1 2 3 4 5 6 7 8

12
0

14
0

16
0

18
0

20
0

22
0

number of regression parameters

−
2 

Lo
gL

ik

●

●
●
●
●●

●
●
●
●

●
●
●

●

●
●●

●●
●●●

●
●
●

●

●●

●

●

●
●

●
●●
●●
●

●●
●●

●
●
●●

●

●
●
●
●

●
●

●

●●
●

●

●
●
●
●

●

●

1 2 3 4 5 6 7 8

12
0

14
0

16
0

18
0

20
0

22
0

number of regression parameters

−
2 

Lo
gL

ik

● without x1
with x1

Figure 5.1: Left panel - Ln vs dimension. Right panel - Ln versus dimension by model type, that
is presence or absence of an highly influential variable (triangle = included, circle =
not included)

given dimension. For example by construction of the maximum likelihood approach

adding any variable k ∈ 1, . . . , p to a given model α ∈ A satisfies −2× LogLikα∗ ≤

−2× LogLikα, where α∗ = α ∪ {k}. Then, we can use these plots to list and see all

models of a given dimension that represent a local minimum in terms of Ln.

5.3.2 Assessing model stability through bootstrapping

A slight modification to these scatter plots is choosing the plot symbol size to be pro-

portional to a measure of model stability, a concept that was independently introduced

by Meinshausen & Bühlmann (2010) and Müller & Welsh (2010) for different linear re-

gression situations. Model stability can be estimated by bootstrapping, which was suc-

cessfully used for model selection in GLMs by Müller & Welsh (2009). There exist dif-

ferent bootstrapping techniques including the residual bootstrap, the paired bootstrap

and the weighted bootstrap as described by Barbe & Bertail (1995) and used recently

by Minnier, Tian & Cai (2011). We demonstrate how our model selection plots can be
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modified to give an idea of model stability at each dimension using the weighted boot-

strap, which is simple to implement because it is based on repeatedly re-weighting

observations. Conversely, the residual bootstrap can be problematic for generalised

linear models since adding bootstrapped residuals to fitted values can result in unob-

servable responses, whilst the non-parametric bootstrap is known to lead to potential

separation problems for logistic regression models.

To obtain our measure of model stability, let wi be the weight for observation i in our

original data, and sample the wi’s from an exponential distribution with expectation

1 as described in Janssen & Pauls (2003) and Minnier, Tian & Cai (2011). We refit our

original models using these weights, and resample B times, where B is the number

of bootstrap samples which we set to 1,000. For each bootstrap sample we rank mod-

els within each dimension and count the number of times each model is of rank 1.

We plot Ln versus dimension with symbol size proportional to the number of times

model α has rank 1. This incorporates information on model stability into the scatter

plot. Consequently those models selected a large proportion of times in the weighted

bootstrapping have large symbols and those selected very few times have small sym-

bols. We also highlight the underlying model we simulated from (the data generating

model) with the full red circle. Figure 5.2 shows an example and we note that the size

of the plot symbol for dimension 1 (intercept only) and dimension 8 (α f ) is at its largest

since there is only one possible model choice within these dimensions. However, at di-

mensions 2 through to 7 we can assess the stability of models with lowest description

loss visually, and determine how reliable any one chosen model may be. For example,

at dimension 2 there is one model that stands out as the single best model, whilst at

dimensions 3 and 7 there are at least two models that have very similar size symbols

at the optimum end of the scale. For information we include below the figure those

variables included in the rank 1 model for each dimension. For example, at dimension

4, the model with lowest Ln includes the regressor variables x1, x3 and x6.
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Figure 5.3: Constructing the maximum enveloping lower convex curve and the decrease in Ln
for models lying on this curve
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5.3.3 The maximum enveloping lower convex curve

We define and describe the maximum enveloping lower convex curve (MELCC) which is

developed by the following algorithm. Starting with dimension 1 (or an equivalent

appropriate starting point) draw a straight line from the minimum Ln at this point to

either the minimum Ln at the next dimension, or the minimum Ln at the next dimen-

sion that envelops all other minimum Ln/dimension combinations inbetween. Repeat

this process until the highest dimension to obtain the curve. Figure 5.3 depicts this

process, starting in the top left panel where we join the minimum Ln at dimension 1, to

the minimum Ln at dimension 2. Continuing we join the minimum Ln’s at subsequent

dimensions until the curve is complete. We show these steps with the thick red line

indicating the part of the MELCC added. The final curve is shown in the bottom left

and right panel of Figure 5.3 (with all lines and the partial parts of the curve displayed

in the bottom left panel). Note, in some instances the minimum Ln at a given dimen-

sion will be omitted from the curve if it is enveloped by a line joining minimum Ln’s

at dimensions above and below. This is seen in the top right panel of Figure 5.3 where

the minimum Ln at dimension 3 is fully enveloped by the minimum Ln’s at dimen-

sions 2 and 4. Intuitively these model dimensions that do not have an Ln lying on the

MELCC indicate that a model of that dimension would never be selected according to

a GIC model selection strategy, irrespective of the penalty. The reasoning is simple: We

note that (i) the MELCC has at most p different slopes, a property that follows from

the convexity and (ii) that the GIC solution is found by having a straight line passing

through a point such that all other points are not below that line. From (i) and (ii) it

follows that only points on the MELCC are GIC solutions.

Visual inspection of this curve shows the lowest Ln for all dimensions effortlessly and

identifies the model dimensions that do not appear on the MELCC. For completeness

Figure 5.3 also shows the finalised MELCC with the value of the decrease for each move

along the curve. The first decrease is large (34.98) and subsequent decreases much

lower. These decreases determine whether a model with higher dimension would be

selected for a given penalty multiplier. For example, with AIC, the penalty multiplier

is λ = 2. Hence we would select models on the curve that have a decrease in Ln of 2
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or greater for each unit increase in dimension. Alternatively we could use BIC, that is

λ = log(n), which in this example is 5.52, and to accept a larger model the decrease in

Ln would have to be in excess of 5.52 units per unit increase in dimension. Using AIC

we arrive at the solution of the point at minimum Ln on the curve with dimension 6,

and in this instance using BIC gives a solution at dimension 5.

5.3.4 The variable inclusion plot

In addition to being able to simply visualise the loss and dimensionality we show

here how a “variable inclusion plot” can provide insightful information. The variable

inclusion plot (VIP) was introduced by Müller & Welsh (2010) for linear regression

models. Here the VIP is introduced for GLMs using the weighted bootstrap. The VIP

visualises ‘inclusion probabilities’ as a function of the penalty multiplier λ. For each

variable xj subject to selection, the proportion of times this variable is retained in the

B final selected bootstrapped model is plotted for a range of λ values, for example

λ ∈ [0, 2 log(n)]. More specifically, we calculate for bootstrap sample b = 1, . . . , B

and for each considered λ multiplier value that model α̂
(b)
λ ∈ A which has smallest

GIC(α; λ) = −2× LogLik(α) + λpα value. Thus the inclusion probability for variable

xj is estimated by
1
B

B

∑
b=1

1{j ∈ α̂b
λ},

where the indicator function 1{j ∈ α̂
(b)
λ } is one if variable xj is in the final model and

zero otherwise.

Figure 5.4 shows the VIP for all seven variables in our simulated data and to help

identify what happens when using AIC and BIC as a model selection criteria we show

vertical lines at the AIC penalty multiplier value λ = 2 and for BIC at λ = log(n),

respectively.

From this chart we can immediately see two things: First, regardless of the value

of the penalty multiplier, variable x1 is always going to be included in a final model

with a bootstrapped probability of 1 for penalty parameter values up to 10. Similarly

for relatively large λ values variable x3 seems to maintain a high inclusion probability.
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Figure 5.4: Variable inclusion plot for simulated data showing the bootstrapped inclusion prob-
ability against the penalty parameter for each variable considered. The horizontal
lines indicate the penalties associated with AIC and BIC

Beyond this we can examine each curve individually. Variable x6 appears to have a

reasonably high inclusion probability regardless of the penalty as does variable x7 but

the latter tails off more steeply as the penalty is increased. On the other hand, since we

know the data generating model, redundant variable x4 has a relatively high chance of

being included with the AIC, only a fair chance with BIC and beyond that is not likely

to be selected. Redundant variables x2 and x5 both have a fair chance of inclusion

with AIC but beyond that the bootstrapped probabilities diminish, indicating that a

higher penalty would result in neither of these variables being included. One of the

big advantages of the VIP is to visualise differences between AIC and BIC and any

other generalized information criteria (GIC) as a model selector, which reveals much

more information than when ‘blindly’ choosing a fixed λ value.
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5.4 results and further applications

We further investigate the ideas described in the previous section through two ad-

ditional case studies, and show more ways in which combinations of our graphical

displays can be used.

5.4.1 Case study II – Cross-sectional palliative care study

We analyse data from a retrospective cross-sectional study on how home based palliat-

ive care services affect hospitalisations of people in a cohort identified systematically

through death registrations as described in Rosenwax, McNamara, Murray et al. (2011)

and McNamara & Rosenwax (2010). The cohort comprised 1, 071 people who died in

Western Australia between 1 August 2005 and 30 June 2006, had an informal primary

carer at the time of death, did not reside in a residential aged care facility, and died of

one of 10 conditions amenable to palliative care.

Using a logistic GLM with logit link function, and the terminology described pre-

viously, we model the dichotomous response variable ‘did’ or ‘did not receive com-

munity based palliative care’. It is known that cancer patients are much more likely

to receive such care because of the nature of their condition, so we considered the

dichotomous variable underlying cause of death (cancer or non-cancer) as a vitally

important explanatory variable; we label this x1 for simplicity. Additionally we con-

sidered variables age at death (x2) and age squared (x3); gender (x4); number of days

spent in hospital in final year of life (x5); number of emergency department visits in

final year of life (x6); and usual place of residence (metropolitan or rural, based on

postcode) (x7). Therefore, p = 7 potential parameters are included in the full model,

resulting in #A = 2p = 128 possible sub-models that include an intercept. However, if

the marginality principle is obeyed the age squared term is only included in the model

together with the linear term. This reduces the number of models to #A = 96. In Table

5.1 we show parameter estimates and standard errors for the full model, the model se-

lected using both AIC and BIC as selection criteria, along with a p-value based forward
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Figure 5.5: Basic and enriched scatter plot with MELCC and reduction in Ln for models on the
MELCC for case study II

and backward hypothesis testing approach to select a final model. Note the substan-

tial differences in the models selected between these methods, even with our relatively

small p. For example the AIC model includes five explanatory variables whereas both

BIC and backward selection only include x1 and x7.

The basic scatter plot is shown in Figure 5.5. We show the impact of including or

excluding the two most important main effects by enriching this plot by choosing

different symbols for models with and without x1 and with and without x7 as well

as drawing the MELCC. We observe the following: first, in the left hand plot a stark

separation of the model Ln for all dimensions is observed, when the variable of interest

(in this case cause of death) is either included or not included in the model. Such

separation does not exist for any of the other main effects (not shown here) and we

conclude that cause of death is clearly the single most important variable irrespective

of model dimension or concepts such as p-values. Second, the right hand panel of

Figure 5.5 shows the impact of including a second important variable (x7) in the model,

subsequent to fixing either level of cause of death in the model. We observe that the

model with both Cause of Death and Usual Place of Residence give us consistently
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Figure 5.6: Model stability for case study II data with weighted bootstrapped proportions con-
ditional on dimension proportional to symbol area. Left panel full plot, right panel
zoomed in plot.

lower Ln regardless of dimension. Again, such a pattern is not apparent for other

variables when combined with Cause of Death. We conclude that these two variables

are important as a pair. We could continue in this fashion, considering other effects

including interactions and higher order terms.

Figure 5.5 also shows the MELCC for this data. We note the dramatically steep

decline as we move from the intercept only model, to the models at dimensions 2

and 3, further highlighting the importance of the two variables x1 and x7. From the

left hand plot we see the reduction from dimension 3 to 4 is 4.74, which is less than

log(n) = 6.98. Here, the BIC solution has dimension 3. Furthermore when continuing

down the curve until a reduction of less than 2 is observed, we obtain the AIC model.

This is attained at dimension 6 as also seen in Table 5.1. For this case study the change

in the Ln values as we move from dimension to dimension is monotone decreasing,

which is not the case in general.

The model stability plot shown in Figure 5.6 indicates again the stability at each of

dimension 2 and dimension 3 with large symbols indicating one model is selected the
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Figure 5.7: Variable inclusion plot for case study II

majority of the time at these dimensions. However, in the right hand panel Figure 5.6,

we show the zoomed in version of this plot focussing on dimensions 4 through 7 and

identify several models that have similar size symbol to that of the optimal model at

each of these dimensions.

The variable inclusion plot shown in Figure 5.7 gives an indication of which variables

would and should be included, dependent on the value of the penalty parameter. First,

we note again the importance of variables Cause of Death (x1) and Usual Place of

Residence (x7), which are always included regardless of the penalty multiplier used,

as shown by the two overlaying horizontal lines with probability of 1 for all λ values

in the range given. Second, we see that with lower values of λ, a large proportion

of the time variables x2 and x6 would be included in the ‘best model’, and to some

extent variables x3 and x5 could also be considered. At higher penalty values it would

be difficult to argue for the inclusion of anything more than the two main variables,

which is reflected in the BIC model for this data. The VIP clearly shows that variables

x2 and x6 are important to describe the data but are not informative to predict the

response variable.
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5.4.2 Case study III – Smoking in patients with Crohns disease

The final case study consists of data from an ongoing study described in Lawrance,

Murray, Batman et al. (2013) that investigates the impact of smoking in patients with

Crohns Disease, specifically focussing on those patients who have already had one

surgery relating to their condition since their initial diagnosis. We examine the dicho-

tomous response of having a repeat surgery (yes/no) and the impact of potential ex-

planatory variables: age group (young, middle aged and old); sex; whether the patient

had ever been a smoker (yes/no); the amount of time they were followed up (measured

in years post their first surgery); the location of the condition (broken down into one

of three locations); and an additional indicator location variable depicting severity of

location. In addition, whether the patient was using steroids (yes/no); had a perianal

condition (yes/no); was classified as immuno suppressed (yes/no); or had received

Anti TNF α agents (yes/no) were included as potential explanatory variables. In total

ten variables were examined (seven binary indicator variables, one continuous variable,

and two factors each with 3 levels). Changing the factors to dummy variables(two ad-

ditional parameters each) we arrive at a total of twelve possible explanatory variables.

We retained the factors as a whole in the model, hence the two parameters associated

with each of the two factors would be regarded as a grouped variable, with levels that

are either simultaneously included or excluded.

We use logistic GLMs with logit link function to model the occurrence of a second

surgery (yes/no) response and demonstrate further our ideas. With p = 12 potential

variables in the final model, we have #A = 212 = 4, 096 possible sub-models that

include an intercept. Taking into consideration the two factors and ensuring that the

corresponding dummy variables are either simultaneously excluded or included, the

number of potential models reduces to #A = 210 = 1, 024.

In Table 5.2 we report the model selection for this data by showing for each dimen-

sion what model is optimal (has smallest Ln value). Note both backward and forward

variable selection using a p-value approach would give us a model of dimension 5,

the minimum AIC model is a model of dimension 6, and the minimum BIC model is
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Figure 5.8: Case study III - Ln vs dimension.: Left panel - Enriched scatter plot; Middle panel -
Zoomed in MELCC with reduction in Ln; Right panel - Zoomed in model stability
plot

a model of dimension 4. Again this confirms that there is often lack of agreement in

model selection depending on what the objective is and what methodology is used.

The basic scatter plot is shown in the left panel of Figure 5.8. There is clear separation

between those models that include the variable ‘time post first surgery’ and those that

do not, indicating this to be an important variable. Intuitively this makes sense, given

patients are more likely to have recorded a second surgery if their followup time is

longer.

The middle panel of Figure 5.8 shows a zoomed version of the scatter plot and the

MELCC for this data. As before we can make several ‘simple’ observations from this

plot: For example, dimensions 9 and 12 do not lie on the MELCC. Hence, regardless of

the choice of penalty multiplier, one can rule these out of the subset of optimal models,

that is regardless of the choice of λ, no GIC method will select a final model with 8 or

11 explanatory variables.

As expected, examination of model stability indicates that the model including only

the variable time is not only the best model at dimension 2, but extremely stable.
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Figure 5.9: Variable inclusion plot for case study III

However, as seen in the right hand panel of Figure 5.8, beyond dimension 3 through

to dimension 12 there are many models that are identified almost as frequently as the

optimal models lying on the MELCC. This should prompt consideration of models that

lie within close proximity of the optimal model at these dimensions.

The variable inclusion plot shown in Figure 5.9 gives an indication of which vari-

ables would be included, dependent on the value of the penalty parameter. Notice the

variables x1 and x2 have trajectories which are exactly the same. This is true of vari-

ables x3 and x4 and is due to the criteria we set for these variables which represent the

dummies for age and location respectively. The horizontal line at probability 1 corres-

ponds to the variable time (x5) and again demonstrates the importance of this variable

which would be included in any final model. We note also the high line corresponding

to x7 which for both AIC and BIC criteria has probability in excess of 0.8. Beyond this

one could argue for the inclusion of variables x10 and x11 using criteria with penalties

at or below the BIC penalty. However, only lower penalties would include x6 and it

would be difficult to argue for the inclusion of other variables regardless of penalty

parameter.
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5.5 model selection plots with monotone polynomials

We have limited our examples and discussion to date to look at the specific role of

these graphical techniques using binary responses and logistic regression. However,

we can use any form of GLM as long as we can estimate a loss and measure model

complexity. When considering polynomials we note that unconstrained standard poly-

nomial regression belongs to the GLM family with normal errors and identity link func-

tion. Hence, model selection for polynomial regression could follow the approaches

described earlier in this chapter. The only decision would be on what is the maximum

degree polynomial to consider which can usually be determined by the nature of the

problem. If we set qmax to be highest degree polynomial we are willing to consider

then we note that there will be #A = 2qmax potential models. However, one would pay

particular attention to the marginality principle in that lower order terms be retained

in the model should a higher degree term be deemed necessary. In light of this we

would usually only consider #A = qmax + 1 models in a polynomial regression model

selection, dramatically reducing the task. We consider this problem for unconstrained

polynomial regression through a simulation in Section 5.5.1 and demonstrate using

our model selection plots the models which are generally included.

5.5.1 Simulated data example

We use an example data set from the data generated based on the function:

p3(x) = x5.

We simulate responses for n equidistant design points over [−1, 1] from the linear

regression models

Yi = p3(xi) + εi, xi = −1 + 2
i− 1
n− 1

, i = 1, . . . , n

where the errors are independent N(0, 0.32).
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Given this is a quintic polynomial we would like to consider models of higher degree

for the purpose of model selection. In this instance we set qmax to be 9 and note there

are #A = 29 = 512 models to consider. However, if we obey marginality this number

reduces dramatically to 10 models.

We start by looking at the basic scatter plot of Ln by dimension in the left panel of

Figure 5.10 where the triangular symbols identify models that obey the marginality

principle. Immediately we see a distinct separation between models with Ln between

100 and 200 and the reminder which all have Ln > 250. The latter of these is indicative

of models only including the intercept and one or two higher order terms not obeying

the marginality principle. For example one such model is a model that includes the

intercept and the degree 8 term without any of the lower order terms. Another, is the

model that includes the intercept and the degrees 4 and 6 terms only. Noticeable is

that none of these poor performing models include an odd degree term, something

which is not unsurprising given the degree of the underlying polynomial that the data

was generated from was odd. We also note that the models that obey the marginality

principle do not on the whole provide the ‘best’ model at each dimension. This is

not surprising given the nature of the problem however we note that the benefits of

obeying marginality have in general been seen to outweigh the drawbacks. In the right

hand panel of Figure 5.10 we demonstrate the model stability plots using the weighted

bootstrap. Again the models obeying marginality are highlighted in red and we note

there are many models that are seen to be comparable at most dimensions.

5.5.1.1 Some comments on model selection plots for monotone polynomials

Whilst these plots are of some use when looking for model selection for polynomial

regression we note that there are many issues to be considered. First, as can be seen,

the decision to plot all the models, including those that do not obey marginality, is

something that needs to be carefully thought through. As mentioned previously if we

obey the marginality principle then the model selection problem becomes very simple

in theory, with only a small number of competing models to consider. Second, whilst

in standard polynomial regression the degrees of freedom (or the model dimension) is

easy to define (that is, the dimension is simply the degree of polynomial plus one), we
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Figure 5.10: Left panel - Ln vs dimension for polynomial model selection using p3(x), red tri-
angle = marginality obeyed, black circle = marginality not obeyed. Model stability
plots using bootstrapping, red circle=marginality obeyed back circle=marginality
not obeyed.

observe that introducing monotonicity constraints makes defining the degrees of free-

dom more problematic. This obviously has a larger impact when using an information

criteria approach for model selection, although one may argue that the comparison

of AIC values, for example, could be seen to be independent of the estimation of the

degrees of freedom. However, in light of these issues, in Section 5.5.2, we make further

use of the bootstrapping methodology described in Chapter 3 to demonstrate more

suitable plots, and model selection techniques, through our real world examples of

constrained polynomial estimation.
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5.5.2 Case study IV - Brain function data

Adapted from Firmin, Müller & Rösler (2011, 2012) we describe our example data set.

The Latency of Motor evoked potentials (MepL) distribution for each of 50 subjects was

derived from the triple stimulation technique (TST) amplitude measurements, where

the expected TST amplitude E(Yijk), which is a function of δt, is an unscaled survival

function of the MepL distribution. The maximal value of the expected TST amplitude

served as baseline for 100% survival and proportions thereof resulted in 1 − Fi(x),

where F denotes the true but unknown MepL distribution, x = δt, and i is the index

for the ith subject. TST amplitude measurements were available at stimulus delays in

steps of 1ms and for most stimuli with smaller delay extension, j < 9, there were at

least nij = 3 repeated measurements per subject.

An initial examination of the 50 individual datasets involved fitting cubic, quintic

and septic unconstrained polynomials using standard least squares. Of the 150 un-

constrained models fitted we observed only 13 which provided monotone fits, further

strengthening the argument of the need for the constrained version of polynomials.

We consider for demonstrative purposes one of these patients and describe the differ-

ences between the three different polynomial methodologies considered in Chapter 2

with Figure 5.11, where we show the data and three fits of degree 7 polynomials (the

unconstrained fit, the monotone over the whole real line fit, and the monotone over

[0, ∞) fit). The horizontal axis has been extended outside the range of the observed x

data values, for illustrative purposes only, to demonstrate where the curves become

non-monotone. We note that, over the range of the data, there are noticeable differ-

ences between the unconstrained polynomial fit and the two constrained polynomial

fits, with little difference between the latter two.

Using our example patient’s data shown in Figure 5.11 we have {5, 3, 3, 3, 3, 3,

3, 3, 3, 3, 2, 1} observations at each of the increasing design points from 0 through

11 in increments of 1. The particular interest in Firmin, Müller & Rösler (2011, 2012)

was to determine the inflection points of the estimated survival function, that is, the

modes (peaks) of the estimated MepL density which coincide with the inflection points

of the estimated mean curves. Firmin, Müller & Rösler (2011, 2012) estimated these
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Figure 5.11: Different degree 7 polynomial fits to brain function data of an individual.

using monotone smoothing splines. We will re-examine this problem using monotone

polynomials , which have the advantage of well defined inflection points in Chapter 6.

However, for now we only consider the associated model selection problem, and for

demonstrative purposes restrict our focus to those polynomials that are monotone over

x ∈ [0, ∞).

We consider using the following polynomials:

p(x; β) = β0 + β1x + β2x2 + . . . + βqxq (5.4)

where in this instance q is not restricted to be odd, as with previously described mono-

tone polynomial fitting, but β such that p(x) is monotone over x ∈ [0, ∞) reflecting the

nature of the brain function data.

For model selection purposes, as suggested by Shao (1996), we consider using the

‘m out of n’ paired bootstrap, implemented over a range of values for m. For each
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bootstrap sample we calculate the prediction errors for fitted monotone polynomials

of degrees q = 1, . . . , 11, using:

PE(q) = u−1
u

∑
j=1

(yij − p(xij ; β̂q))
2. (5.5)

where β̂q is the estimated vector of coefficients for the monotone polynomial of degree

q, based on the bootstrap sample; and (xij , yij), j = 1, . . . , u ≥ n−m, are the (unselected)

out-of-bag (x, y) pairs. For each bootstrap iteration the polynomial with degree q =

arg min PE(q), is selected as the ‘best’ model.

To reflect the nature of the data and the design matrix (that is, a relatively small

number of unique design points), we use a stratified version of the paired bootstrap

as described in Müller & Welsh (2005, 2009). Stratification facilitates that individual

bootstrap samples are not too different to the full data, for example ensuring that

samples have sufficient design spread to enable reasonable polynomial fits. We let

D = {d1, d2, . . . , dnd} be the set of values at which we have design points, and #D = nd

be the number of unique design points. We also let #di be the number of values at each

design point di, i = 1, . . . , nd. If nd ≤ m we sample one value from each unique design

point, and randomly select with replacement and with probability proportional to #di

another m − nd design points to sample additional observations from. If nd > m we

simply sample without replacement m design points and select one observation from

each.

Minimising prediction error as the objective function, as described previously, we

examine the selection probabilities of the differing degree polynomials. We consider

only polynomials up to degree 8 (restricted by the number of design points) that are

constrained to be monotone over a semi-compact region and values of m ranging over

10, 15, 20, 25, 30 and 35. Results are described in Table 5.3 and Figure 5.12. One can im-

mediately determine that the best fitting degree of constrained monotone polynomial,

irrespective of the size of m, is degree 6, thus highlighting the benefits of our improved

algorithm over previous algorithms which were restricted to fitting monotone polyno-

mials of only odd degree.



5.5 model selection plots with monotone polynomials 127

1 2 3 4 5 6 7 8

Degree of polynomial

E
st

im
at

ed
 s

el
ec

tio
n 

pr
ob

ab
ili

ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

m=10
m=15
m=20
m=25
m=30
m=35

Figure 5.12: Selection probabilities for the m out of n bootstrap by degree of polynomial and m
for brain function data

Table 5.3: Brain function data: Proportion of models selected using m out of n bootstrap by
degree q and m

Degree of polynomial p
m 1 2 3 4 5 6 7 8

10 0.038 0.034 0.256 0.166 0.052 0.374 0.052 0.028

15 0.000 0.000 0.060 0.077 0.046 0.563 0.219 0.035

20 0.000 0.000 0.082 0.083 0.048 0.553 0.193 0.041

25 0.001 0.000 0.098 0.055 0.055 0.562 0.190 0.039

30 0.000 0.001 0.111 0.040 0.051 0.569 0.203 0.025

35 0.001 0.003 0.131 0.036 0.041 0.546 0.216 0.026

For completeness we carried out the bootstrapping without stratification and the

results were comparable to the results obtained from the stratified bootstrap. However,

in some simulation runs higher degree polynomials could not be fitted or were highly

variable, mainly due to attempting to have more parameters estimated than unique

design points.

5.5.3 Case study V - Estimation of dental age

In forensic science, Demirjian, Goldstein & Tanner (1973) described a method for es-

timating dental maturity or dental age by reference to a scoring system created from
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the radiological appearance of teeth. Using population based data they described a

simple plotting method with subsequent extraction of percentiles for age estimation

for a given maturity score. Subsequently regression based methods were mainly used

for smaller data sets with Chaillet, Nystrom, Kataja et al. (2004) comparing the use of

polynomials to model the relationship between age and the dental maturity score with

the original percentile method in Demirjian, Goldstein & Tanner (1973). Using data

from Flood, Mitchell, Oxnard et al. (2011) in which n = 284 adolescent teenagers were

examined, with the objective of fitting models to describe the relationship between

a dental maturity score (x) and age of child (y), we consider modelling this relation-

ship using polynomials, and incorporate the underlying widely accepted view in the

forensic science literature that the relationship be monotone increasing. Due to the

nature of how the score (x variable) is generated, we also constrain the polynomial to

be monotone over the compact interval [0, 100]. Hence we consider using the polyno-

mials described in (5.4).

For model selection purposes, we again consider using the ‘m out of n’ paired boot-

strap. Here the sample size is n = 284 and we consider values of m ranging over 20, 25,

30, 35, 40, 50, 100 and n. For each bootstrap sample we calculate the prediction errors

for fitted monotone polynomials of degrees q = 1, . . . , 11, again using (5.5).

Table 5.4 shows the proportion of times the polynomial of degree q is selected. Con-

sistent results are obtained regardless of the magnitude of m, with a distinct mode in

the distribution of the proportions at q = 5. This is visualised in Figure 5.13. These

results indicate a higher degree polynomial than that usually used when polynomials

are fit to this type of data in forensic science, which is usually q = 3. However, we

suspect that the main reason for this is that with increasing degree polynomials the

chance of obtaining a monotone fit, as needed for this type of data, is smaller and cu-

bics are generally the only polynomials which will give a monotone fitted curve. Our

methodology now provides more flexibility in the degree of polynomials that can be

used for these types of examples.
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Table 5.4: Estimation of dental age data: Proportion of models selected using m out of n boot-
strap by degree q and m

Degree of polynomial q
m 1 2 3 4 5 6 7 8 9 10 11

20 0.005 0.176 0.080 0.136 0.219 0.098 0.085 0.051 0.067 0.043 0.040

25 0.000 0.128 0.070 0.143 0.236 0.104 0.078 0.066 0.074 0.047 0.054

30 0.000 0.106 0.052 0.131 0.249 0.107 0.126 0.075 0.076 0.022 0.056

35 0.000 0.078 0.037 0.146 0.308 0.108 0.089 0.050 0.084 0.038 0.062

40 0.000 0.050 0.025 0.123 0.318 0.115 0.109 0.071 0.084 0.042 0.063

50 0.000 0.043 0.022 0.123 0.326 0.105 0.088 0.075 0.113 0.045 0.060

100 0.000 0.007 0.003 0.121 0.487 0.085 0.047 0.048 0.130 0.030 0.042

n 0.000 0.000 0.016 0.106 0.474 0.088 0.032 0.032 0.141 0.056 0.055
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Figure 5.13: Selection probabilities for the m out of n bootstrap for dental maturity example by
degree q and a range of m values.

5.6 additional uses for model selection plots

In this section we consider two additional challenges that are (potentially) problem-

atic in any model selection problem. First, we examine how our plots perform in the

presence of (highly) correlated predictors. Second we consider extensions of our plots

when outliers are present in our data, and propose some robust extensions to our

methodology.
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5.6.1 Correlated predictors

We investigate the effect of correlated predictors through a simple example. Let us

again consider a similar logistic regression example to that described in Section 5.3. For

this example we chose n = 150, have 4 potential predictors with the parameter values

for the β’s (excluding the intercept) set to be ( 1.5 , 0 , 0 , 2.5 ). We set the correlation

between x1 and x2 to be either 0.95, 0.85, 0.7 or 0.5 in four separate simulations.
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Figure 5.14: Model stability plot for simulated correlated data. Correlations between x1 and x2
are 0.95 (black circles) and 0.5 (red circles)

Figure 5.14 shows the impact of the correlated variables on the model stability plots.

Superimposed are the results from the simulation with correlation of 0.5 (red circles)

and the correlation 0.95 (black circles). Using the smaller correlation (of 0.5) the dis-
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Figure 5.15: Variable inclusion plot for simulated correlated data. Correlations between x1 and
x2 are 0.95 and 0.85, (top row) and 0.7 and 0.5 (bottom row)

tinction between competing models at dimension 3 (the underlying true dimension)

is more pronounced, with only one prominent large red circle. However, even though

the results are not as clear with the high correlation, there is still a subtle distinction

at dimension 3 between the model that includes x1 and not x2 (largest black circle),

and the model that includes x2 and not x1 (smaller black circle). This indicates that

even in the presence of a high correlation we are still able in this instance to get some

reasonable results, implying that our graphs are useful in this context.

Figure 5.15, which shows the variable inclusion plot for the four different correl-

ations, is more informative. Clearly the bootstrapped probability of selection of the

true variable x1 from which the data was simulated is much higher than x2 for a large
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range of λ, even for high correlation values like 0.95. As expected the trade-off between

selecting x1 and x2 becomes more apparent when the correlation gets very close to one.

5.6.2 Outliers in data

As with any applications in statistics outliers can cause problems. Given our methods

depend on the likelihood as a loss function our plots are influenced by one or more

outliers in the data whenever the likelihood is influenced as well. A simple solution to

this is pre-processing the data and exclusion of outliers before estimation and selection.

However, in the robustness literature deletion of outliers is often not the preferred way

of dealing with this challenge. Therefore we prefer to extend our ideas by replacing

the likelihood by robust alternatives of the loss function. These, as well as alternat-

ive choices of the penalty term, were recently reviewed in Müller & Welsh (2010). In

particular one could consider log-quasilikelihoods, L1 and other loss functions for the

robust estimation and selection of parameters (Ronchetti & Staudte, 1994; Konishi &

Kitagawa, 1996; Ronchetti, 1997; Müller & Welsh, 2005, 2009). Generally speaking, as

long as one can quantify the loss function and penalty in some sensible and robust

fashion, then slightly modified versions of our plots can be produced for robust model

selection. A step in this direction was suggested for GLMs in (Heritier, Cantoni, Copt

et al., 2009, p 159).

5.6.3 Other uses for model selection plots

We can use our model selection plots, or modifications thereof, in many additional

ways to those described in this chapter. To date we have examined the logistic regres-

sion model, however these techniques can be easily extended to any generalised linear

model or even all models in which an information theoretic approach can be taken for

model selection. Adapting the model stability plots to show symbol size proportional

to bootstrap probabilities across all dimensions, rather than dimension specific, is one

alternative to what we have proposed as is the inclusion of plots to focus on models
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included in model averaging. Given the simplicity of the graphs and the ease at which

they can be expanded upon they can be easily applied and/or adapted with the sample

code as made available in Murray, Heritier & Müller (2013).

5.7 discussion

We have shown, in the context of information criteria, that by using simple graphical

techniques there are many ways to assist in the process of model selection and model

building. The presented charts visualise how the choice of penalty multiplier can im-

pact on the models selected and how volatile selected models are. The techniques show

for each possible penalty multiplier the corresponding minimum description loss, sep-

arately for each possible model dimension. This demonstrates that any model selection

procedure, having the simple form of Description Loss + λ×Model Complexity can be

visualised. A particular strength of the graphs are that they help to address the ques-

tions of which variables to include, model stability, and potentially model averaging.

We propose that this prevails regardless of whether the aim is inference or prediction,

since varying the penalty multiplier allows examination of both.

Our techniques imply that Ln, a measure of description loss, can be calculated for

all possible models. In situations where the number of variables is between four and

twenty, that is the maximum number of models to be considered is between 16 and

about 1, 000, 000, our techniques will provide invaluable information. With only a few

models hypothesis testing seems more appropriate than automated all subset proced-

ures. On the other hand, with a growing number of variables the number of models

becomes eventually infeasible to fully evaluate. In situations where p is too large, say

p > 20, even with huge graphical displays it will become increasingly difficult to

ascertain exactly what advantage can be gained when visualising all possible models.

However, in these situations our techniques are still useful when the number of models

is substantially reduced by pre-processing of the data and initial screening of models.

How to best pre-process goes beyond the scope of this thesis. A simple and fast way for

logistic regression models would be to use the logistic LASSO (Lokhorst, 1999; Roth,

2004) repeatedly (through bootstrapping), and to focus only on those models that ap-
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pear on one of the repeated LASSO paths (see Müller, Scealy & Welsh, 2013, Section

4, for a more detailed explanation). Investigating interactions is more challenging and

future work is needed. The grouped LASSO (Meier, van de Geer & Bühlmann, 2008) is

one possible way to investigate interactions.

Our aim was not to suggest that using the shown techniques is the only way to

go about model selection in future. Rather, we suggest that our charts together with

their nice geometric properties assist with model selection and help the understanding

of what is actually achieved when using some of the well documented techniques,

such as AIC or BIC. In this respect we regard our diagnostic tools as very helpful,

especially considering it is still widespread to use model selection techniques as “black

boxes", or at best a recipe that has to be followed despite the consequences. Graphically

displaying loss functions will greatly assist in the understanding of model stability,

AIC, BIC and model selection.

We have also demonstrated that graphical displays can be a useful aid in model se-

lection problems for isotonic regression. We demonstrated that use of bootstrap model

selection methodology using the m out of n bootstrap can be beneficial. However, in

our experience the selection of m through our real world examples has minimal impact

on the model selection aspect of the problem, that is choosing the degree q. In our ex-

tensive simulations moderate values of m performed best but in some instances a strat-

ified bootstrap proved to be a more efficient and sensible approach which, if employed,

would also impact on the selection of m. We have also shown that in some instances, us-

ing a constrained polynomial bounded over a semi-compact region, chooses a smaller

degree polynomial than the corresponding unconstrained or monotone polynomials

as in described Murray, Müller & Turlach (2013).
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U S I N G M O N O T O N E P O LY N O M I A L S F O R D E T E C T I N G

I N F L E C T I O N P O I N T S

summary

While many fully parametric monotone regression models exist, in particular in the

growth curve literature, such models may miss important features such as the number

and location of roots, extrema and inflection points of (higher order) derivatives of a

regression function. Using a new approach to fitting monotone polynomials to data

as described in Chapter 2 and in (Murray, Müller & Turlach, 2015), we demonstrate

the effectiveness of using monotone polynomials to detect inflection points. We use

bootstrap methodology to determine the number and location of inflection points and

show, through extensive simulations, that monotone polynomials are not only effective

at estimating the number and location of inflection points when the underlying func-

tion is itself a monotone polynomial, but also when it is not. Our simulations show that

the results are also reasonably robust to mis-specification of the degree of monotone

polynomial.

Using two real world data sets we compare the smoothing spline approach of Firmin,

Müller & Rösler (2011, 2012), to estimate the location of inflection points, with the use

of monotone polynomials. We show that the latter provides more stable solutions and

has the added benefit of simplistic implementation, with only one tuning parameter to

determine, that is the degree of the polynomial, as opposed to smoothing spline based

solutions, which have many parameters to be determined.

135
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6.1 introduction

In this chapter, we describe the results obtained in the last three months of candidature,

which show the applicability of the work discussed in the previous chapters, with a

specific focus on detecting features of higher order derivatives, for example inflection

points. Inflection point problems are important issues in many physical applications

and have particular prominence in the growth literature, for example human growth

curves (see, for example, Mirman, 2014; Panik, 2014), plant growth, and even in finan-

cial applications such as growth of a company (for example defining the point where

the company stops growing). However, to date, when data is involved, the problems

have been solved for the majority of the time in one of two ways: either, by using the

mathematical relationship derived from differential calculus and fitting the resulting

(and often) non-linear models to the data or; by making use of the many smoothing

spline techniques available when there is no underlying physical theory available. Such

techniques have been applied in many situations with a varying degree of success with

some software packages already available for such problems. For example the R pack-

ages inflection and RootsExtremaInflections, based on unpublished work at the

time of writing (Christopoulos, 2014a,b), allow the estimation of one inflection point

from a given set of data. More flexible, especially when the aim is specifically to look at

growth curves, is the range of techniques employed in the package Automatic Maxima

Detection (Dandurand & Shultz, 2010) with illustrations of the use of this software

shown in Dandurand & Shultz (2011). The authors of this package demonstrate, using

growth curve data, how the location of multiple inflection points can be determined. In

particular they make use of the smoothing spline approach implemented in the fda R

package (Ramsay, Wickham, Graves et al., 2013). Consequently, the detection of inflec-

tion points are subject to choice of parameters to enter into the smoothing algorithms.

This apparent lack of simple but effective and reliable techniques to estimate the

number and location of inflection points, in monotone increasing or monotone decreas-

ing relationships, has led us to investigate the use of monotone polynomials for such

purpose. In this chapter we describe through empirical investigations two scenarios:
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1. Six different situations where inflection points are the focus and we know the

data generating model;

2. Two real world scenarios, in neuroscience and early human growth, where the

underlying literature suggests that the relationship between x and y must be

monotone.

6.2 inflection points

We note that for a given monotonic polynomial function

p(x) = p(x; β) = β0 + β1x + β2x2 + · · ·+ βqxq (6.1)

the first and second derivatives are given by:

p′(x) = β1 + 2β2x + 3β3x2 + · · ·+ qβqxq−1 (6.2)

and

p′′(x) = 2β2 + 6β3x + 12β4x2 + · · ·+ q(q− 1)βqxq−2 (6.3)

and note that inflection points are defined by the location of the roots of the second

derivative.

In order to determine the location of the inflection points using monotone polyno-

mials we describe in this chapter a two step approach:

1. Using the bootstrapping methodology described in Chapter 3, select the ‘best’

degree of monotone polynomial and hence the number of inflection points.

2. With a second bootstrap determine the location of the inflection points by looking

at modes in the bootstrap distribution of inflection points.

The remainder of this chapter is structured as follows: In Section 6.3, we describe

simulated data used in this Chapter and in Section 6.4 we describe the results of our
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numerical experiments using this simulated data, in which one can determine the num-

ber and location of inflection points through the fitting of monotone polynomials. In

Section 6.5 we compare and contrast the use of monotone polynomials to other com-

monly used smoothing spline techniques with real world data. First, we use data from

our motivating example (Firmin, Müller & Rösler, 2011, 2012) who utilised monotone

smoothing spline techniques similar to those implemented by Dandurand & Shultz

(2010) to locate inflection points; second we use data from the human growth curve

literature. Finally, in Section 6.6 we provide some discussion and final comments.

We would like to emphasise that this particular chapter is focussed on the practical

application and use of monotone polynomials in a real world scenario. We demonstrate

that in certain situations our proposed monotone polynomial methodology works with

simulated data from different underlying data generating functions both polynomial

and non-polynomial. Subsequently we demonstrate the effectiveness in real world data

and provide a comparison to the monotone smoothing spline approach. Mathematical

development of theory and inference for inflection point detection using monotone

polynomials is not discussed here and is beyond the scope of this thesis.

6.3 simulated data examples

To describe the effectiveness of using monotone polynomials to detect inflection points

in data, we first generate six datasets; three based on a data generating model from un-

derlying functions that are polynomials and monotone, and three based on monotone

trigonometric functions. Each are there to provide us with a range of inflection points

to detect, which in our simulated data is zero to five. To generate data with inflec-

tion points for monotone polynomials we define a function that has ni roots, integrate

twice whilst adding constants to ensure monotonicity. For the trigonometric functions

we use their properties to ensure inflection points are at the desired locations. Using

this process we generate our six datasets which are shown in Table 6.1.

The initial three (Equations (6.4)–(6.6)) are generated with the aim of describing how

well monotone polynomials perform when the underlying data generating function

is itself a monotone polynomial. The final three (Equations (6.7)–(6.9)) aim to determ-
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ine how well monotone polynomials perform when the underlying function is not

of polynomial form. Furthermore, we note that the functions in (6.4) and (6.7) have

zero inflection points. Anecdotal evidence has suggested that smoothing spline based

methodology would, in such situations, tend to overestimate the number of inflection

points.

All six of these functions are specifically designed to mimic our motivating example

in addition to exploring the impact of fitting monotone polynomials to data generated

from non-polynomial functions. We describe all these data with example simulated

data points in Figure 6.1, which displays underlying data generating function with

data superimposed, first derivative, and second derivative with the location of the

inflection points indicated in each instance. The red lines corresponding to modes in

the distribution of the first derivative, the red dotted lines to troughs in the distribution

of the first derivative. Giving our aim of mimicking the motivational problem described

in Firmin, Müller & Rösler (2011, 2012), we generate our design points such that xi =

i− 1, i = 1, . . . , 13 (restricting the maximum degree polynomial that can be fitted to be

11 in all instances), with our model:

yij = f (xi) + εij

where the errors are such that εij
i.i.d.∼ N(0, 0.52) with j = 1, 2, 3 and all ni = 3. In each

case this gives an overall sample size of n = 39.

6.4 numerical experiments - results

We make extensive use of bootstrapping to examine the effectiveness of monotone poly-

nomials for the estimation of inflection points, which includes choosing the ‘best’ de-

gree, q, of the polynomial to be fitted following the approach described in Section 5.5.2.

We use an m out of n stratified bootstrap, and for each bootstrap sample we calculate

the prediction errors for fitted monotone polynomials of degrees q = 1, . . . , 9, using:

PEb(q) = u−1
b

ub

∑
j=1

(yij − p(xij; β̂
∗b
q ))2 b = 1, . . . , B. (6.10)
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Figure 6.1: Simulated data (top tow), first and second derivatives (middle and bottom row re-

spectively) for inflection point simulations based on (6.4)–(6.9) (from left to right
columns). Vertical lines in second derivatives indicate the location of inflection
points.

where β̂
∗b
q is the estimated vector of coefficients for the monotone polynomial of de-

gree q, based on the bth bootstrap sample; and (xij , yij), j = 1, . . . , u ≥ n− m, are the

(unselected) out-of-bag (x, y) pairs. For each bootstrap iteration the polynomial with

degree qb = arg min PEb(q), is selected as the ‘best’ model.

6.4.1 Selecting the degree of monotone polynomial

We present results initially for selecting the degree of polynomial. Using an m out of

n stratified bootstrap, m ranging over 13, 20, 26, 33, n =39, selected to enable sensible

stratification over the design points and thus maintaining the underlying design struc-

ture in our bootstrap samples. We simulated 1, 000 data sets from each of the functions
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Figure 6.2: Model selection probabilities for simulated data with monotonicity constraint lower
bounded at 0,using m out of n bootstrap and minimising prediction error for various
values of m for the simulated data from monotone polynomial functions (6.4)–(6.6)
and non-monotone polynomial functions (6.7)–(6.9).

described in (6.4)–(6.9), based on B = 1, 000 m out of n stratified paired bootstrap

samples for each and calculated the prediction error. For each simulated sample, for

each of the six simulated data examples, we calculated the degree of polynomial that

minimised the prediction error. The results of these are shown in two separate ways.

First, considering all polynomials constrained to be monotone over the range [a, ∞),

(with a = 0 in this instance) thus allowing even degree polynomials. Second, we ex-

amined polynomials to be constrained to be monotone over the whole real line. The

results from both these approaches are described in Figures 6.2 and 6.3 respectively.

The top row of Figure 6.2 describes the results for fitting monotone polynomials, over

a semi-compact interval, to the simulated data simulated from polynomial functions

(generated from (6.4)-(6.6)) with the bottom row the corresponding results for the non-

polynomial functions (generated from (6.7)-(6.9)). We note that for the simple linear

regression function (top left plot), regardless of the chosen m, we are able to accurately

select the degree of polynomial as q = 1. This itself is useful when trying to determine
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Figure 6.3: Model selection probabilities for simulated data with monotonicity constraint un-
bounded,using m out of n bootstrap and minimising prediction error for various
values of m.

the number and location of inflection points, since when one is searching for inflection

points, it seems sensible to answer the question of whether there are any at all.

The top middle panel describes the results when the simulated data was from a de-

gree 5 polynomial. We see the choice of degree of polynomial is not consistent from

simulation run to simulation run and is dependent on the size of m. For the smallest

and largest values of m the degree 5 polynomial appears to provide the most suitable

fit, whilst for moderate values of m a higher degree 7 polynomial appears more sens-

ible. This may be reflective of the choice of the location of inflection points, with the

lowest being close to the lower boundary of x values .

We note that when considering the underlying function being of degree 7 (top right

panel), with inflection points not on the lower bound of the semi-compact interval, that

we achieve consistent results for correct identification of polynomial degree through

our model selection process for the lower range of values of m considered (13, 20, 26),

and a selection of a degree 6 polynomial when higher values of m are considered.

This provides evidence that when selecting the degree of a polynomial one should
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potentially use a range of values of m to examine robustness of the model selection

process.

When considering the non-polynomial data generating functions in the bottom row

of Figure 6.2 we note reasonably consistent results. The bottom left panel indicates that

a cubic monotone polynomial was considered the best approximation of the exponen-

tial decay function, regardless of the magnitude of m. The middle panels suggest also

reasonably consistent results in that increasingly larger degrees of monotone polynomi-

als are needed to accurately describe data with increasing number of inflection points.

In the middle panel we see that a degree 4 polynomial appears to provide a reason-

able approximation to the trigonometric function with two inflection points, whilst the

bottom right panel indicates a degree 7 or 8 monotone polynomial would provide a

reasonable approximation with moderate values of m corresponding to degree 7.

Considering monotone polynomials over the whole real line we see similar results

in Figure 6.3. For the polynomial function of degree 1 we consistently select a model

of degree 1, whilst for the polynomial function of degree 5 we select either degree 5

or 7 and for the the polynomial function of degree 7 we select mainly degree 7, with

the former and the latter selections made regardless of the size of m. For the non-

polynomial functions again a consistent selection of polynomial is seen. The bottom

left panel again indicates a degree 3 monotone polynomial, and the bottom middle

and bottom right consistently suggest degree 7 and 9 monotone polynomial again

regardless of m.

The results from these model selections are used in the next section to determine the

numbers and locations of inflection points.

6.4.2 Number and location of inflection points

Whilst model selection reduces the problem of finding the location of inflection points,

in some instances the model selection may not provide a clear solution on the ‘best’

degree of polynomial. Furthermore, if the set of models to select from includes mono-

tone polynomials that are constrained to be monotone over both the whole real line

and over a semi-compact interval, one clear solution to the model selection problem
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may be more difficult to achieve. In data generated from (6.4) it is obvious that only

polynomials of degree q = 1, regardless of the magnitude of m, should be considered.

However, when the data is more complex, for example with the data generated from

(6.5), which not only has more inflection points, but has the added difficulty of inflec-

tion points lying close to the boundary of the observed x values, we encounter more

difficult problems. We will use this data as an example for the remainder of this section

to demonstrate the flexibility of monotone polynomials for detecting inflection points.

Using the results provided from the model selection, we see that polynomials of

degree 5 and 7, on both a semi compact interval of the from [0, ∞) and over the whole

real line, are viable solutions. In light of this we investigate all four of these possibilities

to see the impact on the inflection point location.

Using bootstrapping over the range of values of m as specified earlier, we consider

the number of inflection points and describe the results in detail for one of the simu-

lated data sets. However, having reviewed numerous examples, these results are gen-

eralisable to other datasets. We note at this point that the total number of inflection

points detected may not be the most useful representation of the effectiveness of this

approach, especially when higher degree polynomials are used. In light of this we

present in Table 6.2 several useful metrics: the total number of inflection points detec-

ted, the number inside the range of values of the design points, and the number within

a close margin of being inside this range (in this instance we indicate this margin to

be one unit and describe the number of inflection points within the range [−1, 13]).

We note the following: in fitting a degree 5 monotone polynomial to this data (either

over the whole real line or over a semi-compact interval lower bounded at 0), we con-

sistently produce through our bootstrap samples, regardless of the size of m, three

inflection points, as required from the model the data was generated. Furthermore, the

vast majority of these inflection points are within the range of design point values or

close to. For example, we see that with a degree 5 semi-compact interval monotone

polynomial, and m = 13, out of the 1, 000 bootstrap samples all of them produced a

model with three inflection points. Of these, 871 bootstrap samples had three inflec-

tion points inside the range of design point values and 994 had three inflection points

within one unit of the range of design point values.
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Similar results are observed for the degree 5 monotone polynomial constrained to

be monotone over the whole real line. However, it is noticeable that the magnitude

of m does have an impact when comparing these two models in that for low m the

polynomial fit over the semi-compact interval has a higher proportion of inflection

points inside the range of design point values whilst as we increase m (for example

to m = 33 or m = n) the polynomial fit over the whole real line has more inflection

points within the desired range. However, overall it is obvious that three inflection

points are sensible for this data regardless of whether we constrain the polynomial to

be monotone over the whole real line or over a semi-compact interval.

To demonstrate the difference in the four comparable models, Figure 6.4 shows the

fitted curves for an example data set generated using (6.5). We note that all four models

give a very similar fitted curve with the minor differences being observed for both

degree 7 (red and green lines) but outside the range of values of the data. There was

no difference between the two degree 5 polynomial fits, hence one black line is shown

for both. Inflection points estimated are also in very similar positions. The two degree

7 polynomials (red and green lines) have almost identical inflection points whilst the

degree 5 polynomials (black line) have marginally different locations to the degree 7

fits. Finally, not shown in this picture, are two additional inflection points for the degree

7 polynomials. In this example they both have two additional negative inflection point

locations, at (−28,−45) when the polynomial is constrained to be monotone over the

whole real line, and at (−13,−5.2 billion) when the polynomial is constrained to be

monotone over the semi-compact interval.

This is further highlighted in Figure 6.5 where we show the distribution of inflection

points for this data set, over a range of values of m using the m out of n stratified

bootstrap, for the four different models under consideration. We note there is very

little difference in the location of the inflection points regardless of which of the four

different models are used. In fact the only major difference arises when the incorrectly

specified degree 7 monotone polynomial is selected. In this instance the three inflection

points are still identified however the bootstrap estimates of the location of the first

inflection point (which in this case would be at x = 1.1) appears to be slightly more

variable. This consistency between the methods suggests that even if the degree of



6.4 numerical experiments - results 147

2

4

6

8

10

12

14

0 2 4 6 8 10 12
x

y

Figure 6.4: Fitted models for degree 5 and 7 monotone polynomials over the whole real line
and semi-compact interval with inflection points based on an example data set gen-
erated from (6.5). Green lines monotone monotone polynomial fit (and inflection
point location) constrained to be monotone over a semi-compact interval; red line
degree 7 constrained to be monotone over the whole real line; black lines degree 5

fits and inflection points.

the polynomial is overestimated this methodology would still be useful for detecting

inflection points within the range of values.

As an example we take one such bootstrap sample of our example dataset and note

that after fitting a degree 7 polynomial, constrained to be monotone over the whole

real line, we observe inflection points at (−246,−162, 1.48, 6.28, 10.66), noting the first

two points are located well beyond the range of observed x values and are irrelevant

for applications such as ours. We also note that the three inflection points detected

are similar to the true location of the inflection points from the data generating model,

that is (1.1, 6.3, 11.6). Again, we see consistency in these results when other datasets

are considered, suggesting there exists some robustness to model mis-specification.

We make some general comments on the other data sets. First, we note that recovery

of inflection points, for instances where the inflection points are not on the boundary

of the x values, appears to be well performed by monotone polynomial data fitting and
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Figure 6.5: Distribution of inflection points at or near the range of values of the x data for an
example data set generated from (6.5).

is reasonably robust to model mis-specification. Second, when inflection points on the

boundary of the data have been specified in the data generating process, we note that

the problem becomes more difficult. In these instances many simulations would not be

able to detect the inflection point at the boundary. Third, the only simulated data set

which provided some major problems was that of data generated from (6.7). Given the

exponential decreasing nature of this data, it would appear that a polynomial repres-

entation, which does not have any inflection points was difficult to emulate. In fact in

the 1, 000 simulation runs for all values of m < n, a degree 3 polynomial was selected.

Furthermore, using one simulated data set, approximately 80% of these simulations

returned one inflection point inside the range of x values from the data.

Finally, an obvious extension using our methodology, is the estimation of confidence

intervals for the location of inflection points . One relatively simple solution would be

to fit mixtures of normals to processed bootstrap estimates (excluding outliers etc.) to

determine the distribution of the inflection point locations. However, in order to do

this we need to determine how to process the bootstrap estimates and address issues
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such as: what to do with values outside the range of the data; how to define the first

inflection point and; if the distribution of bootstrap estimates for each inflection point

location overlap how does one consider the variability. Given there are many facets

that need to be considered, we do not consider the problem further in this thesis.

6.5 real world examples to determine the number and location of

inflection points

In this section we fit monotone polynomials to data with the aim of detecting inflection

points, and compare the methods described earlier in this chapter using monotone

polynomials, to those described in Firmin, Müller & Rösler (2011, 2012) who implicitly

used Dandurand & Shultz (2010, 2011) through the R package fda (Ramsay, Wickham,

Graves et al., 2013). We use two real world data sets: first, the previously described

brain function data (see Section 5.5.2 for more details) and second the well known

and utilised Berkley guidance study growth data described in the introduction of this

thesis.

6.5.1 Firmin et al. brain function data

Using the brain function data, with response MepL distribution (y) and explanatory

variable delay time (x), we aim to determine the number and location of inflection

points. Firmin, Müller & Rösler (2012) described a methodology that fits a smoothing

spline to the (x, y) data using the fda package and the smooth.monotone function. Sub-

sequently the fitted curve is evaluated at a fine grid of x values, the first and second

order differences are taken in y with respect to x, to create numerical first and second

derivatives. A search for modes (and troughs) in the distribution of the first derivative

(or identification of roots of the second derivative) identify the corresponding inflection

points. For a more thorough summary of their approach we refer to the supplement-

ary material in Firmin, Müller & Rösler (2011). For one patient we initially compare
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this approach with that of monotone polynomials, describe some limitations of the

smoothing spline approach and finally provide a comparison for all patients.

6.5.1.1 Patient X - Different fits

We use one patient from the brain function data to initially describe the approach taken

by Firmin, Müller & Rösler (2012) and one of the major drawbacks of their approach.

In Figure 6.6 we show two fitted curves using the smoothing spline approach to the

data. The first would generate two inflection points corresponding to modes in the

distribution, the second would generate only one corresponding inflection point. The

two plots in the left panel of Figure 6.6 demonstrate the difference in fits by ‘tweaking’

only one parameter in the smoothing algorithm. The right panel shows the dramatic

impact it has had on the corresponding inflection points. We see with this simple

change in the model fitted, the smoothing spline solution has been dramatically altered.

Not only have the location of the inflection points changed but also the actual number

of points. It is the non-robust nature of such a solution that has initially led us to fitting

monotone polynomials to tackle such problems.

We consider this same problem, for the same patient data using a monotone poly-

nomial approach. First, we demonstrate the simplicity of the problem graphically. Fig-

ure 6.7 shows the only decision to be made is on the degree of the polynomial, and

this is a choice between a small number of competing models. In this case due to the

limited number of design points, we consider only polynomials up to and including

degree 9. Each of the curves shown demonstrate the solution to a monotone polyno-

mial constrained to be monotone over the range [0, ∞), using the sums of squares

parameterisation. Note, using this parameterisation also allows us to consider even

degree polynomials.

In order to determine the ‘best’ polynomial for this patients data we use the stratified

bootstrapping methodology described previously, and use minimising the prediction

error as the objective function. The top panel of Figure 6.8 shows bar charts for different

values of m in the m out of n stratified bootstrap and demonstrates that a degree 6

monotone polynomial is most suitable (note this example was described previously

in Section 5.5.2). The bottom panel shows the fitted curve with the location of the
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Figure 6.6: Example patient X data and two solutions to estimated the location of inflection
points using the approach adapted by Firmin, Müller & Rösler (2011).
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Figure 6.7: Different monotone polynomial fits for patient X.
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of inflection points.

inflection points as determined by the ‘best’ fitting monotone polynomial to this data

shown as vertical red dashed lines.

We note that four inflection points are detected, two corresponding to inflection

points of local steepest decent. These are located at a similar position to that determ-

ined by Firmin, Müller & Rösler (2012) and can be seen more clearly in Figure 6.9

which provides the location of the inflection points detected (red vertical lines) and the

bootstrap distribution of the location of such points. We note the clear separation in

the four distinct modes, making the potential for further inference more simple. We

finish this example by showing the comparison of the smoothing spline solution and

the monotone polynomial solution in Figure 6.10 and note that not only are the fitted

curves comparable in this instance, but the location of the inflection points correspond-

ing to steep decent are at a similar location (1.14 and 7.15 for monotone polynomials

and 1.20 and 7.20 for smoothing spline).
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Figure 6.11: Comparisons of location of inflection points using monotone polynomials and
monotone smoothing splines.

6.5.1.2 Comparisons for the other patients

Finally, we describe pictorially a simple comparison of the location of inflection points

for the other patients in the brain function data. Figure 6.11 describes the location of

inflection points for a variety of patients and we observe in many cases that the number

and location of inflection points are similar. However, there are some differences, and

there are some instances where no inflection points were detected, by either method.

6.5.2 Growth curve examples from Berkley Guidance Study

We finish this thesis where we started, by using the Berkley Guidance Study growth

data, fitting monotone polynomials and monotone smoothing splines. We use the

growth data of the 39 boys to examine the differences in monotone polynomial fits and

the monotone smoothing spline fit using methodology described in the R package fda

(Ramsay, Wickham, Graves et al., 2013). We determined the degree of monotone poly-

nomial using an m out of n non-parametric bootstrap for each boy with two choices
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of m = 20 and m = n = 31 and determined the location of the inflection points by

taking the roots of the second derivative of the fitted curve. We compared this to the

solution provided by fitting monotone smoothers and evaluating the second derivative

at a fine grid of values to determine the roots and location of inflection points. An

example of the fitted curves and locations of inflection points is shown in Figure 6.12.

We note, the blue curve denoting the smoothing spline solution and the black curve of

the monotone polynomial solution (using m = 20 in the bootstrap model selection) are

extremely close and both are good fits to the underlying data. However, the location of

inflection points detected by the two competing models are not consistent. The mono-

tone polynomial inflection point locations are denoted by the solid red vertical lines;

the monotone smoothing spline inflection points by the dashed red vertical lines. In the

left plot of Figure 6.12 we see that both solutions provide inflection points around 4.5,

11, and 14 years. However, the two additional inflection points are in different locations.

The smoothing spline solution has another inflection point early whilst the monotone

polynomial has an inflection point just after 6 years old. Similarly in the right panel of

Figure 6.12 we see some very close agreement in the inflection points located around

12 and 15 years. However, again there is some discrepancy as to whether other inflec-

tion points are around 5-7 years as suggested by the smoothing spline solution, or on

the edge of the solution space as suggested by the monotone polynomial solution. Of

course it could be the case that neither is correct.

To complete this section we describe the number of inflection points detected for

all 39 boys growth data using the monotone smoothing spline solution and the two

versions of the monotone polynomial algorithm (with m = 20 and m = 31 for bootstrap

model selection) in Figure 6.13.

Generally speaking, the m = 31 bootstrap gives more inflection points than when

m = 20, which in turn gives more inflection points than the smoothing spline approach.

We note that there could be several reasons for this. First, we have used a paired boot-

strap and looked at minimising the prediction error as the objective function in order to

determine the location of inflection points using monotone polynomials. Whilst both of

these are useful in many instances, they may not be the best approach for this particular

problem. The paired m out of n bootstrap does not retain the original design points in
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Figure 6.12: Comparisons of location of inflection points for two children from the Berkley
Guidance Study using monotone polynomials (black curve and red solid vertical
lines for inflection points) and monotone smoothing splines (blue curve and red
dashed vertical lines for inflection points).
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the growth data, whilst minimising the prediction error may not be the optimal solu-

tion when searching for inflection points. However, there are two clear conclusions: if

our objective is to fit a curve to this data then the monotone polynomial solution is as

reasonable as the monotone smoothing spline solution; second, decreasing m provides

a solution more consistent with the monotone smoothing spline approach when it

comes to number and location of inflection points. Whether the monotone polynomial

solution is providing too many or too few inflection points is the subject of further

investigation, as is the use of monotone polynomials in growth curve modelling.

6.6 conclusions

We have described in this chapter methods for determining inflection points using

monotone polynomials and have illustrated these with two real world examples. We

have demonstrated through simulation studies, that monotone polynomials not only

provide a viable solution to the location and number of inflection points whether the

underlying curve is a monotone polynomial, or not. We have shown that even in situ-

ations where there are inflection points lying on the edge of the data range that mono-

tone polynomials can manage, in many instances, to locate these inflection points.

Extensive use of bootstrapping was employed to determine the degree of monotone

polynomial and then provide a distribution for the location of inflection points.

We have limited our numerical experiments and comparisons at the moment to data

which reflects our underlying motivational problem, that is, the brain function data de-

scribed by Firmin, Müller & Rösler (2012). However, our final exercise using the Berkley

Guidance Study growth data demonstrates that, with careful application, monotone

polynomials could potentially be more widely used in a variety of situations. Further-

more, we have shown through our simulation exercises that the methods of monotone

polynomials to determine the location of inflection points appears on the whole to be

somewhat robust to model mis-specification of a higher degree, with the additional in-

flection points arising from this higher degree polynomial being fitted, quite frequently

lying outside the range of data, thus deeming them irrelevant.
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There remain open research questions arising from this work including in particular,

more refined methodology to determine confidence intervals for the location of inflec-

tion points. However, we have suggested, with support from the bootstrap distributions

of our inflection points, that mixtures of normals may be a suitable methodology to

determine such estimates of variability.





A
A P P E N D I X A : E VA L U AT I N G O B J E C T I V E F U N C T I O N A N D I T S

D E R I VAT I V E S F O R M O D E L S ( 2 . 7 ) A N D ( 2 . 8 )

Following the same arguments described in Chapter 2 we illustrate the necessary cal-

culations to evaluate the objective function and its derivatives.

a.1 model parameterisation (2 .7)

To calculate β for a given θ, we first build triples (1, 2bj, c2
j + b2

j ) which are the coeffi-

cients for the quadratic functions appearing in (2.7). By convoluting these triplets, we

can calculate the coefficients γ = (γ0, . . . , γ2K)
T of the polynomial

γ0 + γ1t + · · ·+ γ2Kt2K =
K

∏
j=1

{
1 + 2bjt +

(
c2

j + b2
j

)
t2
}

.

From γ we can readily calculate β as

β =

(
δ, αγ0, α

γ1

2
, . . . , α

γ2K

2K + 1

)T

.

Note that
(
0, γ0, γ1

2 , . . . , γ2K
2K+1

)T is the vector that contains the coefficient of the polyno-

mial p̃(x) in (2.9).

To minimise RSS numerically we also need first and second derivatives for a de-

rivative based optimisation algorithm. These derivatives can easily be calculated in a

similar manner. In general using (2.3) we see

∂

∂θ
RSS = −2

n

∑
i=1

(y− p(xi))
∂

∂θ
p(xi) (A.1)
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and from (2.9) we have

∂

∂δ
RSS = −2

n

∑
i=1

(y− p(xi)), (A.2a)

∂

∂α
RSS = −2

n

∑
i=1

(y− p(xi)) p̃(xi), (A.2b)

∂

∂θ̃k
RSS = −2α

n

∑
i=1

(y− p(xi))
∂

∂θ̃k
p̃(xi), (A.2c)

where θ̃k is a component of the vector θ̃, that is one of the bjs or cjs. Previously we

have discussed how p̃(xi) can be evaluated once γ is determined. The partial de-

rivatives ∂
∂θ̃k

p̃(xi) can be evaluated similarly. For example, if θ̃k is bj0 , then we build

the triples (1, 2bj, c2
j + b2

j ) for j 6= j0 and the triple (0, 2, 2bj0). After convoluting these

K triples, the coefficients of the polynomial ∂
∂θ̃k

p̃(·) can be readily calculated. Similarly,

if θ̃k is cj0 , then we build the triples (1, 2bj, c2
j + b2

j ) for j 6= j0 and the triple (0, 0, 2cj0).

After convoluting these K triples, the coefficients of the polynomial ∂
∂θ̃k

p̃(·) can be read-

ily calculated.

Using (A.1) it follows that the Hessian is

∂2

∂θ∂θT RSS(θ) = 2
n

∑
i=1

(
∂

∂θ
p(xi)

)(
∂

∂θ
p(xi)

)T

− 2
n

∑
i=1

(y− p(xi))
∂2

∂θ∂θT p(xi) (A.3)

and combining with (A.2) allows us to find formulae for the second partial derivatives

of RSS, that is of ∂2

∂θk ∂θl
RSS. Some of these second derivatives involve second derivatives

of the polynomial p̃(x). Again, the coefficients of ∂2

∂θk ∂θl
p̃(x; θ̃) can be determined by

convoluting appropriately constructed triples. Though if either θl or θk is either α or δ,

then, trivially, ∂2

∂θk ∂θl
p̃(x; θ̃) ≡ 0. Also note that ∂2

∂bj∂cj
p̃(x; θ̃) ≡ 0, j = 1, . . . , K.

These second partial derivatives are shown here for completeness. First we note the

obvious relationship

∂2

∂θk ∂θl
RSS ≡ ∂2

∂θl ∂θk
RSS
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From (A.2a) we have

∂2

∂δ2 RSS ≡ 2n, (A.4a)

∂2

∂δ∂α
RSS = 2

n

∑
i=1

p̃(xi), . (A.4b)

∂2

∂δ∂θ̃k
RSS = 2α

n

∑
i=1

∂

∂θ̃k
p̃(xi) (A.4c)

From (A.2b) we have

∂2

∂α2 RSS = 2
n

∑
i=1

p̃(xi)
2, (A.5a)

∂2

∂α∂θ̃k
RSS = −2

n

∑
i=1
{(yi − p(xi))− α p̃(xi)}

∂

∂θ̃k
p̃(xi). (A.5b)

From (A.2c) we have

∂2

∂θ̃k
2 RSS = −2α

n

∑
i=1

{
−α

(
∂

∂θ̃k
p̃(xi)

)2

+ (yi − p(xi))
∂2

∂θ̃k
2 p̃(xi)

}
, (A.6a)

∂2

∂θ̃k∂θ̃j
RSS = −2α

n

∑
i=1

{
−α

∂

∂θ̃j
p̃(xi)

∂

∂θ̃k
p̃(xi) + (yi − p(xi))

∂2

∂θ̃k∂θ̃j
p̃(xi)

}
, where j 6= k.

(A.6b)

a.2 model parameterisation (2 .8)

To calculate β for a given θ, we first build triples (b2
j , 2bj, 1 + c2

j ) which are the coeffi-

cients for the quadratic functions appearing in (2.8). By convoluting these triplets, we

can calculate the coefficients γ = (γ0, . . . , γ2K)
T of the polynomial

γ0 + γ1t + · · ·+ γ2Kt2K =
K

∏
j=1

{
b2

j + 2bjt +
(

1 + c2
j

)
t2
}

.

From γ we can readily calculate β as

β =

(
δ, αγ0, α

γ1

2
, . . . , α

γ2K

2K + 1

)T

.
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Note that
(
0, γ0, γ1

2 , . . . , γ2K
2K+1

)T is the vector that contains the coefficient of the polyno-

mial p̃(x) in (2.9).

To minimise RSS numerically we also need first and second derivatives for a de-

rivative based optimisation algorithm. These derivatives can easily be calculated in a

similar manner. In general using (2.3) we see

∂

∂θ
RSS = −2

n

∑
i=1

(y− p(xi))
∂

∂θ
p(xi) (A.7)

and from (2.9) we have

∂

∂δ
RSS = −2

n

∑
i=1

(y− p(xi)), (A.8a)

∂

∂α
RSS = −2

n

∑
i=1

(y− p(xi)) p̃(xi), (A.8b)

∂

∂θ̃k
RSS = −2α

n

∑
i=1

(y− p(xi))
∂

∂θ̃k
p̃(xi), (A.8c)

where θ̃k is a component of the vector θ̃, that is one of the bjs or cjs. Previously we

have discussed how p̃(xi) can be evaluated once γ is determined. The partial de-

rivatives ∂
∂θ̃k

p̃(xi) can be evaluated similarly. For example, if θ̃k is bj0 , then we build

the triples (b2
j , 2bj, 1 + c2

j ) for j 6= j0 and the triple (2bj0 , 2, 0). After convoluting these

K triples, the coefficients of the polynomial ∂
∂θ̃k

p̃(·) can be readily calculated. Similarly,

if θ̃k is cj0 , then we build the triples (b2
j , 2bj, 1 + c2

j ) for j 6= j0 and the triple (0, 0, 2cj0).

After convoluting these K triples, the coefficients of the polynomial ∂
∂θ̃k

p̃(·) can be read-

ily calculated.

Using (A.7) it follows that the Hessian is

∂2

∂θ∂θT RSS(θ) = 2
n

∑
i=1

(
∂

∂θ
p(xi)

)(
∂

∂θ
p(xi)

)T

− 2
n

∑
i=1

(y− p(xi))
∂2

∂θ∂θT p(xi) (A.9)

and combining with (A.8) allows us to find formulae for the second partial derivatives

of RSS, that is of ∂2

∂θk ∂θl
RSS. Some of these second derivatives involve second derivatives

of the polynomial p̃(x). Again, the coefficients of ∂2

∂θk ∂θl
p̃(x; θ̃) can be determined by

convoluting appropriately constructed triples. Though if either θl or θk is either α or δ,

then, trivially, ∂2

∂θk ∂θl
p̃(x; θ̃) ≡ 0. Also note that ∂2

∂bj∂cj
p̃(x; θ̃) ≡ 0, j = 1, . . . , K.
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These second partial derivatives are shown here for completeness. First we note the

obvious relationship

∂2

∂θk ∂θl
RSS ≡ ∂2

∂θl ∂θk
RSS

From (A.8a) we have

∂2

∂δ2 RSS ≡ 2n, (A.10a)

∂2

∂δ∂α
RSS = 2

n

∑
i=1

p̃(xi), . (A.10b)

∂2

∂δ∂θ̃k
RSS = 2α

n

∑
i=1

∂

∂θ̃k
p̃(xi) (A.10c)

From (A.8b) we have

∂2

∂α2 RSS = 2
n

∑
i=1

p̃(xi)
2, (A.11a)

∂2

∂α∂θ̃k
RSS = −2

n

∑
i=1
{(yi − p(xi))− α p̃(xi)}

∂

∂θ̃k
p̃(xi). (A.11b)

From (A.8c) we have

∂2

∂θ̃k
2 RSS = −2α

n

∑
i=1

{
−α

(
∂

∂θ̃k
p̃(xi)

)2

+ (yi − p(xi))
∂2

∂θ̃k
2 p̃(xi)

}
, (A.12a)

∂2

∂θ̃k∂θ̃j
RSS = −2α

n

∑
i=1

{
−α

∂

∂θ̃j
p̃(xi)

∂

∂θ̃k
p̃(xi) + (yi − p(xi))

∂2

∂θ̃k∂θ̃j
p̃(xi)

}
, where j 6= k.

(A.12b)
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Bootstrap estimates using different bootstrap methodologies

We describe in Figures B.1 and B.2, bootstrap estimates and variability for the un-

derlying data generating function p1(x) and note similar results for the other two

functions. We note that regardless of the bootstrap methodology, very similar results.

This is demonstrated visually through the patterns in row 1 (paired bootstrap), row

2 (residual bootstrap) and row 3 (weighted bootstrap), for each of Figures B.1 and

B.2, being very similar, which show in each plot a histogram on top for the mono-

tone polynomial bootstrap iteration estimates, and the bottom standard unconstrained

least squares bootstrap iteration estimates both for data where the underlying fit using

standard unconstrained least squares would be a monotone polynomial. Similarly rows

4 through 6 show consistent patterns for data where the underlying fit using standard

unconstrained least squares would not be a monotone polynomial. For example, con-

sider estimates of any βi; we see the distribution of the bootstrap estimates to be very

similar regardless of the bootstrap methodology regardless of the parameter one se-

lects. This reasonable high degree of homogeneity has several ramifications. First, our

chosen functions display reasonable levels of agreement regardless of the bootstrap

method, suggesting that the bootstrap results, when fitting monotone polynomials to

data, should be relatively robust to the bootstrap method used. Second, it suggests

that one can simply select the most appropriate bootstrap technique to use when fit-

ting monotone polynomials to data. (Note: there are no estimates using monotone

polynomials for the residual adjusted bootstrap due to there being no defined hat mat-

rix).
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Figure B.1: Results of three bootstrap methods (non-parametric rows 1,4; residuals rows 2,5;
weighted rows 3,6) using two data sets (least squares fit monotone rows 1-3;
least squares fit not monotone rows 4-6) from the underlying polynomial function
p1(x) = x3 for n = 50. Back to back histograms in each plots are bootstrap estim-
ates of parameters from standard least squares estimation (bottom histogram) and
using monotone polynomials (top histogram).
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Figure B.2: Results of three bootstrap methods (non-parametric rows 1,4; residuals rows 2,5;
weighted rows 3,6) using two data sets (least squares fit monotone rows 1-3;
least squares fit not monotone rows 4-6) from the underlying polynomial function
p1(x) = x3 for n = 1, 000. Back to back histograms in each plots are bootstrap estim-
ates of parameters afor standard least squares estimation (bottom histogram) and
using monotone polynomials (top histogram).
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