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Summary of the thesis 

 Parasites are integral components of biodiverse ecosystems and profoundly impact 

the health and population dynamics of many free-ranging species. The sequelae of parasitic 

infection fluctuate along a continuum from beneficial to detrimental host effects, mediated 

by the dynamic interaction of host, pathogen, and environment factors. Understanding the 

effects of parasitic infection, and the fundamental factors influencing the epidemiology of 

disease, is essential to determining the need for, and approach to, control strategies to 

conserve complex ecosystems. For the Australian sea lion (Neophoca cinerea), an 

endangered keystone predator that demonstrates high rates of pup mortality and limited 

population recovery, an understanding of the role of infectious disease in influencing pup 

health, and how it may contribute towards shaping population demography, is a key 

knowledge gap. Preliminary investigations indicated that hookworm (Uncinaria sp.) 

infection is an important cause of disease and mortality in Australian sea lion pups. These 

findings were the impetus for this thesis to investigate the taxonomy, epidemiology, 

clinical impact, and management of hookworm infection in the Australian sea lion. 

 Chapter 1 of this thesis describes the natural history of the Australian sea lion and 

outlines the key threats and knowledge gaps pertaining to the species’ survival. The state 

of knowledge regarding hookworm infection in pinnipeds is reviewed and the aims of this 

thesis are presented. 

 Field work for this study was undertaken at two major colonies of the Australian 

sea lion in South Australia – Seal Bay, Kangaroo Island, and Dangerous Reef, Spencer 

Gulf – during consecutive breeding seasons in 2010–2013. These colonies were selected 

primarily for their disparate biogeographical features and opposite seasonal patterns of 

variation in pup mortality, facilitating investigation of the role of host, pathogen, and 
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environment factors in influencing the epidemiology and clinical impact of hookworm 

infection in this species. 

 Hookworms collected from Australian sea lion pups were identified and described 

in Chapter 2 as a single, novel species (Uncinaria sanguinis). Substantial inter-host 

morphometric variation in both juvenile and adult specimens of U. sanguinis was 

identified, demonstrating the limited utility of quantitative morphometrics to discriminate 

between different Uncinaria species, which engenders caution when delimiting new 

species. However, morphological features and differences in nuclear ribosomal DNA 

sequences clearly delineated U. sanguinis from named congeners. By determining the 

taxonomic identity of hookworms parasitising Australian sea lion pups, this study provided 

a solid foundation to investigate the epidemiology, clinical impact, and management of this 

parasite. 

 Findings presented in Chapters 2, 3, and 5 indicate that, as for hookworm infection 

in other otariid species, transmammary transmission in the immediate post-parturient 

period is likely the predominant route leading to patent hookworm infection in Australian 

sea lion pups. However, in contrast to the fundamental role that colony substrate appears to 

play in shaping the epidemiology of hookworm infection in these other hosts, the findings 

of Chapter 3 demonstrate that 100 % of Australian sea lion pups are infected with U. 

sanguinis irrespective of the type of colony substrate, and that the intensity of hookworm 

infection (mean intensity of 2138 hookworms per pup) appears to be influenced by colony-

specific seasonal differences in host behaviour. Seasonal fluctuations in the intensity of 

hookworm infection corresponded to oscillations in the magnitude of colony pup mortality; 

higher hookworm infection intensity was associated with higher colony pup mortality as 

well as reduced pup body condition. This study implicates U. sanguinis as a key factor 

shaping the population demography of the Australian sea lion and provides a new 
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perspective to understanding the fundamental factors that influence the dynamics of 

hookworm infection in otariids. 

 Chapter 4 of this thesis improves the understanding of the impact of infectious 

disease on the health status of Australian sea lion pups by estimating the effects of 

pathogen, host, and environment factors on the values of haematological parameters. In 

addition, haematological reference intervals were developed for free-ranging Australian 

sea lion pups within the context of endemic hookworm infection to facilitate health 

assessment. Uncinaria sanguinis was identified as a significant agent of disease, with 

infection causing regenerative anaemia, hypoproteinaemia, and a predominantly 

lymphocytic-eosinophilic systemic inflammatory response. Further evidence that U. 

sanguinis causes intensity-dependent disease in pups was provided by the findings of 

higher eosinophil counts and lower total plasma protein values during high hookworm 

infection intensity seasons compared to low hookworm infection intensity seasons at both 

colonies. Interestingly, the degree of eosinophilia observed in this study was markedly 

higher than that previously reported for other otariid pups, possibly reflective of the higher 

intensity and pathogenicity of hookworm infection in Australian sea lion pups. This study 

demonstrated the significant adverse impact that U. sanguinis has on the health status of 

Australian sea lion pups and, by demonstrating that the occurrence of neonatal anaemia is 

not solely a benign physiological response to host-environment changes in this species, 

challenges assumptions about the non-pathological nature of neonatal anaemia in other 

pinnipeds. 

 Chapter 4 also presents findings on the epidemiology and clinical impact of sucking 

lice (Antarctophthirus microchir) infestation in Australian sea lion pups. This parasite was 

identified commonly on pups (> 70 % prevalence) but, in contrast to hookworm infection, 

the clinical impact of infestation was less severe, associated only with mild anaemia and 
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hyperproteinaemia, and is considered unlikely to be having a significant impact on the 

health status of Australian sea lion pups. In addition, findings in Chapters 4 and 5 indicate 

that the prevalence and intensity of lice infestation may increase secondary to hookworm 

infection, suggesting that some of the effects attributed to A. microchir are correlatively, 

rather than causatively, associated with their occurrence. 

 Chapter 5 reports the results of investigations at Dangerous Reef to test the 

association of U. sanguinis with disease in Australian sea lion pups by experimentally 

manipulating the host-parasite relationship via anthelmintic administration. Ivermectin was 

found to be highly effective (97.9 %) at eliminating U. sanguinis from pups and was also 

effective (91.4 %) at removing A. microchir for up to 2 months. As such, it was not 

possible to definitively distinguish between the independent effects of these parasites, 

however, given that U. sanguinis was otherwise identified to have greater pathological 

impact than A. microchir, it is likely that the changes observed in clinical parameters in 

treated pups were predominantly due to the elimination of hookworm infection. Pups 

administered ivermectin had significantly higher erythrocyte counts and significantly lower 

eosinophil counts relative to saline-treated control pups at 1–2 months post-treatment. 

Unexpectedly, ivermectin treatment was not significantly associated with beneficial effects 

on pup growth and survival, highlighting the challenges associated with treating pups of 

this species shortly after birth at a remote colony. This study contributes towards 

understanding the utility of anthelmintic treatment as a tool for the conservation 

management of free-ranging wildlife and outlines essential steps to further the 

development of strategies to ensure the effective conservation of the Australian sea lion 

and its parasitic fauna. 

 Chapter 6 discusses the significance of the major findings of the studies in this 

thesis and their implications for the conservation management of the Australian sea lion. 
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Limitations of the studies are also discussed and directions for future research are 

proposed. The baseline epidemiological data and the haematological reference intervals 

described in this thesis can facilitate the implementation of long-term health surveillance in 

this species, which is critical for the early recognition of emerging disease and changes in 

disease impact so that interventional strategies can be implemented. This thesis determined 

that U. sanguinis is an important cause of disease in the Australian sea lion and implicated 

this parasite as a major factor contributing towards pup mortality. As such, this body of 

work contributes towards an improved understanding of the role of infectious disease in 

influencing the health status and population demography of this endangered species, 

informing conservation management and providing a solid foundation for further 

investigations of the effect of disease on the health status of this and other free-ranging 

species. 
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Chapter 1 Introduction, literature review, and aims of the thesis 

1.1 Introduction 

 Parasites are integral components of biodiverse ecosystems and profoundly impact 

the health and population dynamics of many free-ranging species (Smith et al. 2009; 

Thompson et al. 2010). The sequelae of parasitic infection fluctuate along a continuum 

from beneficial to detrimental host effects, mediated by the dynamic interaction of host, 

pathogen, and environment factors (Leung and Poulin 2008). For example, parasitic 

infection may be associated with clinical or subclinical disease, which can be evident by 

alterations in haematological values, changes in behaviour, and/or reduced growth rates, 

and can contribute directly or indirectly towards mortality (Irvine 2006; Bordes and 

Morand 2011). Conversely, parasites may confer an advantage to their host by modulating 

immunological responses, improving survival by delaying physiologically expensive 

activities such as reproduction, or increasing sexual attractiveness (Thomas et al. 2000; 

Yazdanbakhsh et al. 2002; Telfer et al. 2005). Understanding the effects of parasitic 

infection in free-ranging species, and the fundamental factors influencing the epidemiology 

of disease, is essential to quantifying the impact of parasites on population health and 

dynamics and to inform conservation management as to the need for, and approach to, 

control strategies. 

 The Australian sea lion (Neophoca cinerea) is an endangered (IUCN Red List of 

Threatened Species; Goldsworthy and Gales 2008) and vulnerable (Environment 

Protection and Biodiversity Conservation Act 1999) pinniped species endemic to Australia. 

The three major breeding colonies demonstrate high rates of pup mortality (The Pages 

Islands: mean 17 %, range 3–56 % – Shaughnessy et al. 2013; Seal Bay: mean 29 %, range 

20–41 % – Goldsworthy et al. 2014a; Dangerous Reef: mean 24 %, range 10–45 % – 

Goldsworthy et al. 2014b) that likely contribute towards limiting population recovery 
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(McIntosh et al. 2013). Pup mortality oscillates between the low and high ends of the 

observed range at Seal Bay for winter and summer breeding seasons, respectively, and the 

opposite seasonal association occurs at Dangerous Reef (Goldsworthy et al. 2014a; 

Goldsworthy et al. 2014b). In contrast, seasonal patterns of variation in pup mortality are 

not readily apparent at The Pages Islands (Shaughnessy et al. 2013). Most Australian sea 

lion pup mortality occurs before 1–2 months of age and has been largely attributed to 

conspecific trauma and starvation (Higgins and Tedman 1990; McIntosh et al. 2012; 

McIntosh and Kennedy 2013); however, an understanding of the role of infectious disease 

in pup mortality, and how it may contribute towards seasonal patterns of pup mortality, is a 

key knowledge gap for this species (Goldsworthy et al. 2009a; Australian Government 

2013a and 2013b; McIntosh and Kennedy 2013). 

 Hookworms (Uncinaria spp.) are haematophagous parasitic nematodes 

predominantly of the small intestine. They are associated with anaemia, reduced growth 

rates, and mortality of pups in several otariid species (Lyons et al. 2001; Chilvers et al. 

2009; DeLong et al. 2009; Seguel et al. 2011). Greater hookworm infection intensity and 

prevalence, and subsequently more severe disease outcomes, have been associated with 

high host density and sandy substrates compared to low host density and rocky substrates 

(Lyons et al. 2000b). Historically, only two species of Uncinaria were described from 

pinnipeds, yet the identification of ‘intermediate’ morphotypes, unknown host specificity, 

and the potential for host-dependent morphological variation contributed towards the 

uncertainty of how many distinct Uncinaria species parasitise pinnipeds (Baylis 1933; 

Baylis 1947; George-Nascimento et al. 1992). Recent molecular investigations have 

demonstrated the existence of greater hookworm species diversity as well as the 

occurrence of parasite-sharing between several pinniped hosts (Nadler et al. 2000; Lyons et 

al. 2011a; Nadler et al. 2013; Ramos et al. 2013); however, the taxonomic identity of 
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hookworms parasitising the Australian sea lion is unresolved. The relative pathogenicity of 

different hookworm species in pinnipeds has not been determined due to this taxonomic 

uncertainty and the confounding effects of differential host and environment factors on the 

expression of disease. 

 Preliminary investigations of the health of Australian sea lion pups indicated that 

hookworm infection is an important cause of disease and mortality in this species (R. Gray, 

pers. comm.). These findings were the impetus for this study to address knowledge gaps 

pertaining to the taxonomy, epidemiology, and clinical impact of hookworm infection in 

the Australian sea lion and to investigate the utility of anthelmintic treatment as a tool for 

the conservation management of this endangered species. More broadly, the life history of 

the Australian sea lion and the disparate biogeographical features of some of their breeding 

colonies offer a unique comparative system to investigate host-pathogen-environment 

relationships in the epidemiology and clinical impact of hookworm infection in neonatal 

pinnipeds. 

 The remainder of this chapter describes the natural history of the Australian sea 

lion and outlines the key threats and knowledge gaps pertaining to the species’ survival. 

The taxonomy, epidemiology, clinical impact, and management of hookworm infection in 

pinnipeds are then reviewed. Finally, the aims of this thesis are presented. 

 

1.2 The Australian sea lion 

 The Australian sea lion is a marine mammal in the order Carnivora, family 

Otariidae. Traditionally, Otariidae was subdivided into Otariinae (sea lions) and 

Arctocephalinae (fur seals), the latter exhibiting a dense layer of underfur. However, 

morphological and molecular analyses indicate a complex evolutionary history that does 

not support this taxonomic subdivision (Churchill et al. 2014). Otariids are characterised 
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by the presence of external pinnae and the ability to rotate their hindflippers cranially, 

which facilitates terrestrial agility. In contrast, members of the closely related Phocidae 

family lack external pinnae – hence, the vernacular name ‘earless seals’ – and are unable to 

turn their hindflippers cranially; phocids are relatively less agile on land compared to 

otariids, relying upon undulating body movements for locomotion. Similar to phocids, the 

only extant representative of the Odobenidae family, the walrus (Odobenus rosmarus), 

lack external pinnae but are able to rotate their hindflippers cranially like otariids. The 

walrus also features characteristically elongated maxillary canine teeth (tusks). 

Collectively, Otariidae (sea lions and fur seals), Phocidae (seals), and Odobenidae 

(walruses) are referred to as ‘pinnipeds’. 

 Australian sea lions demonstrate marked sexual dimorphism: adult males (Figs. 1 

and 2) are typically dark brown in colour with a creamy-white dorsal head cap and weigh 

180–250 kg with standard length of 185–250 cm; adult females (Figs. 2 and 3) are 

typically silver-grey to brown dorsally with creamy-white ventral colouration and weigh 

61–104 kg with standard length of 130–185 cm (Ling 1992; Kirkwood and Goldsworthy 

2013). Males are sexually mature from approximately 5 years of age but are unlikely to 

successfully compete and mate until approximately 6–12 years of age, whereas females are 

sexually mature from 3 years of age (Ling 1992; McIntosh 2007). Juveniles of both sexes 

are similar in colouration to adult females with significant sexual dimorphism evident from 

1–3 years of age (McIntosh 2007). Neonatal pups (Fig. 3) vary in colour from grey-black 

to brown with their first moult commencing at approximately 3–4 months of age, after 

which they have the pelage of juveniles (Gales et al. 1994). Data on the size of neonatal 

pups is limited; a small study of dead newborn pups reported weights of 4–8 kg with 

standard length of 58–75 cm (McIntosh and Kennedy 2013).  
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Fig. 1 Australian sea lion adult males competing to mate. Seal Bay, Kangaroo Island. 

 

Fig. 2 Parturient Australian sea lion adult female mate guarded by an adult male. 

Dangerous Reef, Spencer Gulf. 
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Fig. 3 Australian sea lion adult females and neonatal pups on a range of substrate types at 

Seal Bay, Kangaroo Island. 

 
 Australian sea lions exploit the aquatic environment to meet their nutritional 

requirements and utilise terrestrial environments for rest and reproduction. Dive-behaviour 

studies indicate that Australian sea lions are predominantly central-place benthic foragers 

(Costa and Gales 2003; Fowler et al. 2007a; Lowther et al. 2011; Lowther et al. 2013); 

these findings are supported by analyses of regurgitate and stomach contents (McIntosh et 

al. 2006a), milk fatty acids (Baylis et al. 2009), and faecal DNA (Peters et al. 2014) that 

demonstrate that Australian sea lions predominantly prey upon cephalopod, crustacea, and 

benthopelagic fish. The aquatic areas utilised are extensive and vary according to gender 

and age class with individuals demonstrating specific preferences for certain habitat types 

(Baylis et al. 2009; Lowther and Goldsworthy 2010; Lowther et al. 2011; Lowther et al. 

2013); limited data suggests that the foraging locations of individual Australian sea lions is 

relatively insensitive to environmental changes, with individuals exhibiting seasonal 
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variation in the composition of consumed prey rather than foraging locations (Lowther et 

al. 2013). 

 This foraging site fidelity likely helps maintain the high degree of Australian sea 

lion female natal site fidelity (Higgins and Gass 1993), which results in substantial 

intercolony genetic subdivision of maternal lineages (Campbell et al. 2008a; Lowther et al. 

2012). In addition, the duration of foraging trips are typically only 2–3 days for adult 

females – possibly limited by the nutritional requirements of their dependent pups – and 

mean distance travelled is less than 90 km, effectively restricting mixing of adult females 

between most colonies (Costa and Gales 2003; Fowler et al. 2007a; Lowther and 

Goldsworthy 2011; Lowther et al. 2011). In contrast, intercolony movements have been 

observed for adult male Australian sea lions with individual males recorded travelling up 

to 440 km in a single trip and at-sea durations of up to 9 days (Lowther et al. 2013); 

however, the extent of male-mediated gene-flow between colonies has not been 

established. 

 The reproductive biology of the Australian sea lion is unique amongst pinnipeds 

and may act to further limit the migration of breeding females between colonies (Campbell 

et al. 2008a; Lowther et al. 2012). The timing of the breeding season in most pinniped 

species is hypothesised to be influenced by endogenous factors such as body condition and 

exogenous factors such as photoperiod, prey availability, and environmental variability. 

For most species, parturition occurs annually in summer, corresponding to periods of 

increased prey availability and optimal temperatures for pup survival (Boyd 1991; Soto et 

al. 2004; Gibbens and Arnould 2009). In contrast, the Australian sea lion exhibits an 

extended breeding cycle of approximately 18 months that occurs asynchronously between 

colonies (Higgins 1993; Gales et al. 1994; Shaughnessy et al. 2011; McIntosh et al. 2012). 

Furthermore, whereas the duration of most pinniped breeding seasons is approximately 1–2 
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months (reviewed by McIntosh 2007), most Australian sea lion pups are born over a 4–5 

month period with the duration of breeding seasons extending up to 7–9 months at some 

colonies (Goldsworthy et al. 2012; McIntosh et al. 2012). The asynchronous timing of 

breeding between colonies and the prolonged period of pup dependence (pups are weaned 

after an average lactational period of 17.3 months; Higgins and Gass 1993), in combination 

with the high degree of foraging site fidelity, likely acts as a barrier to adult female 

dispersal, reinforcing selection for natal site fidelity (Campbell et al. 2008a; Lowther et al. 

2012). 

 

1.2.1 Population distribution and trends in abundance 

 The Australian sea lion population consists of approximately 15,000 individuals 

distributed across 76 colonies from The Pages Islands in South Australia (35.77 oS, 138.30 

oE) to the Houtman Abrolhos Islands (28.46 oS, 113.70 oE) in Western Australia (Fig. 4; 

Goldsworthy et al. 2009a). This population size is based on recent estimates that 3,610 

pups are born each breeding cycle; 3,107 pups (86 %) in South Australia and 503 pups (14 

%) in Western Australia (Goldsworthy et al. 2009a). Population data for the Australian sea 

lion is generally poor across its range due to the species’ extended breeding season, 

uncertainty of the timing of breeding seasons at different colonies, and the large number of 

colonies; these characteristics pose difficulties for accurately estimating pup production 

because the timing, frequency, and methodology of pup surveys can significantly affect the 

accuracy of pup counts (Goldsworthy et al. 2009a; Shaughnessy et al. 2011; McIntosh et 

al. 2012). As such, there is limited robust long-term data of trends in pup production for 

most colonies (McIntosh et al. 2012). 

 The current abundance and distribution of Australian pinnipeds is reduced 

compared to pre-European-colonisation levels, due primarily to the occurrence of 
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unregulated harvesting in the 18–20th centuries (Ling 1999). There is insufficient data to 

accurately determine the historical size of the Australian sea lion population, but 

harvesting records and observations indicate that colonies previously extended through the 

Bass Strait (Fig. 4) and that there was a loss and reduction in the abundance of colonies 

within the extant range (Gales et al. 1994; Ling 1999; Shaughnessy et al. 2005). Although 

it is likely that fewer Australian sea lions were killed than Australian fur seals 

(Arctocephalus pusillus doriferus) and long-nosed fur seals (Arctophoca australis forsteri)1 

as their pelage was not considered as valuable (Ling 1999), in contrast to the on-going 

exponential recovery of these fur seal populations following the cessation of harvesting, 

the Australian sea lion population remains small and there is considerable uncertainty 

about the extent of recovery (Goldsworthy et al. 2009a; Kirkwood et al. 2010; 

Shaughnessy et al. 2015). A third of the total Australian sea lion pup production occurs at 

three colonies in South Australia (Fig. 4): Seal Bay, Kangaroo Island (35.994 oS, 137.317 

oE); Dangerous Reef, Spencer Gulf (34.815 oS, 136.212 oE); and The Pages Islands, 

Backstairs Passage (35.77 oS, 138.30 oE). Notwithstanding the aforementioned limitations 

of accurately estimating pup production in this species, the most robust data of trends in 

pup production are available for these three colonies. 

                                                 
1 Following the recommendations of Shaughnessy and Goldsworthy (2014), I have used the vernacular name 
‘long-nosed fur seal’ in preference to ‘New Zealand fur seal’ for Arctophoca australis forsteri. An exception 
is present in Chapter 2, the publication of which pre-dated this recommendation. Note, in this thesis and 
associated publications, pinniped taxonomic nomenclature follows Berta and Churchill (2012). 
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Fig. 4 (a) Current and historical range of the Australian sea lion (N. cinerea). (b) Location 

of the three largest breeding colonies for this species: Seal Bay, Dangerous Reef, and The 

Pages Islands. Adapted from Gales et al. (1994). 

 

 Seal Bay extends over approximately 3 km of sandy beaches, rocky coastal-

platforms, and sand dunes covered predominantly with coast saltbush (Atriplex cinerea) 

and tea-tree (Melaleuca lanceolata) scrub, offering plentiful shelter for pups. Seal Bay is 

readily accessible – approximately 100,000 tourists visit this colony each year 

(Goldsworthy et al. 2014a) – and pups are routinely microchipped at approximately two 

months of age as part of ongoing demographic studies (McIntosh et al. 2012). Trends in 

pup production have been estimated using (1) maximum pup counts and (2) a recently 

implemented metric of pup production incorporating the number of observed births, the 

number of pups microchipped, and mark-recapture estimates (McIntosh et al. 2012; 

Goldsworthy et al. 2014a). Based on maximum pup counts for 20 consecutive breeding 

seasons between 1985 and 2013, pup production is significantly declining by 2 % each 

breeding season; however, no significant trend in pup production was identified using the 

new metric for eight consecutive breeding seasons between 2002 and 2013 (McIntosh et al. 

2012; Goldsworthy et al. 2014a). A comparison of the two methods of estimating pup 

production at Seal Bay demonstrated that maximum pup counts are not a reliable measure 
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at this colony (McIntosh et al. 2012). As such, there remains considerable uncertainty 

about the historical and current trajectory of the Australian sea lion population at Seal Bay. 

Based on the new metric, approximate pup production is currently 250 pups per breeding 

season at this colony and pup mortality has oscillated between low mortality rates (mean 

22 %, range 20–25 %) for breeding seasons occurring predominantly in winter, and high 

mortality rates (mean 35 %, range 32–41 %) for alternate breeding seasons occurring 

predominantly in summer (McIntosh et al. 2012; Goldsworthy et al. 2014a). 

 Dangerous Reef is a remote low-lying granite and limestone island approximately 

250 m long and 100 m wide with minimal vegetation and a substrate consisting 

predominantly of rock and guano; shelter for pups is scarce. Access to Dangerous Reef is 

via sea transport and is dependent upon favourable weather conditions. At this colony, 

individually-numbered flipper tags are applied to pups to facilitate demographic studies 

and trends in pup production have been estimated using (1) maximum pup counts, (2) 

minimum live and cumulative dead pup counts, (3) mark-recapture estimates, and (4) 

“cumulative pup production methods” (methods outlined in Goldsworthy et al. 2010a and 

2014b). However, the reliability of these measures is uncertain as they tend to estimate 

similar pup production values during winter breeding seasons but demonstrate marked 

variation during summer breeding seasons; differences in pup behaviour and survival 

between seasons may influence the accuracy of these methods, although there is 

insufficient data to robustly test these hypotheses (Goldsworthy et al. 2014b). Irrespective 

of the methodology to estimate pup production, no significant linear trends were identified 

for 13 breeding seasons between 1994 and 2014 (excluding the 2013 breeding season in 

which pup production was not estimated); the broad pattern in pup production was for an 

apparent increase from approximately 350 pups in 1994 to up to approximately 830 pups in 

2006, followed by an apparent decline to approximately 500 pups in 2014 (Goldsworthy et 
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al. 2014b). Similar to Seal Bay, pup mortality also tends to oscillate between consecutive 

breeding seasons at Dangerous Reef, although the opposite seasonal association occurs, 

with low mortality rates observed for summer breeding seasons (based on the incidence of 

pup mortality at the time of maximum pup count; mean 15 %, range 10–23 %) and high 

mortality rates for winter breeding seasons (mean 29 %, range 12–45 %; Goldsworthy et 

al. 2014b). 

 The Pages Islands are two low-lying islands composed primarily of phyllite (a type 

of foliated metamorphic rock); North Page Island is approximately 400 m long and 200 m 

wide, and South Page Island is approximately 500 m long and 200 m wide. Apart from 

small pockets of soil on top of the islands which support scattered plant species, the islands 

are rocky (Anon 1983). Access via sea transport is difficult and unreliable, necessitating 

the use of helicopters (Shaughnessy et al. 2013). Given the proximity of these two islands 

(< 2 km) and the high genetic similarity of Australian sea lion pups born at each island, 

they are considered one colony (Lowther et al. 2012). Based on maximum pup counts for 

14 breeding seasons between 1989 and 2010 (excluding the 1994 breeding season in which 

pup production was not estimated), there is no significant trend in pup production at this 

colony; mean pup production is 470 pups per breeding season (Shaughnessy et al. 2013). 

Unlike Seal Bay and Dangerous Reef, there is no apparent seasonal pattern to pup 

mortality at The Pages Islands which averages 17 % per breeding season (range 3–56 %; 

Shaughnessy et al. 2013). Additional methods of estimating pup production have not been 

reported for The Pages Islands. Given the variation in the timing and frequency of surveys 

at this colony and the limitation that direct pup counts are likely to underestimate the 

number of both live and dead pups, the accuracy of the reported pup production and 

mortality values is uncertain (Shaughnessy et al. 2013). 

 



14 

1.2.2 Threats and knowledge gaps 

 The fundamental reasons underlying the apparent lack of recovery of Australian sea 

lion populations are not well understood. The state of knowledge regarding the role of 

natural and anthropogenic factors in shaping the demography of the Australian sea lion 

was recently reviewed and priorities for research to address key knowledge gaps that are 

considered critical to informing the conservation management of this species were 

identified (Goldsworthy et al. 2009a; Australian Government 2013a and 2013b). 

 Firstly, given the supra-annual breeding cycle of this species, an inherently slower 

rate of population recovery than annually breeding species is to be expected. In addition, 

the high degree of foraging- and female-natal-site fidelity limits dispersal and reduces the 

likelihood of recolonisation of previous colonies (Campbell et al. 2008a; Lowther et al. 

2012). As such, it is critical to assess and manage each colony as effectively closed 

subpopulations; the numerous small breeding populations of the Australian sea lion poses 

additional conservation management challenges as they are at increased risk of extinction 

from stochastic processes and anthropogenic impacts (Goldsworthy et al. 2009a). 

 The role of inter-specific competition for food resources and nutritional stress on 

the demography of Australian sea lions is uncertain. At broad spatial scales, there is 

considerable overlap between foraging areas of the Australian sea lion and long-nosed fur 

seal, however, long-nosed fur seals are predominantly epipelagic foragers and niche 

overlap is considered likely to be low (Goldsworthy et al. 2009a). On the other hand, 

Australian fur seals are benthic foragers and may compete directly for resources with 

Australian sea lions (Page et al. 2005; Peters et al. 2014). The contemporary expansion and 

dispersal of Australian fur seal populations into South Australian waters could have 

implications for the foraging success and survival of sympatric Australian sea lions; 

however, further investigation is necessary to determine the extent and impact of 
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competition for mutually targeted prey species (Shaughnessy et al. 2010; Australian 

Government 2013b). 

 Factors driving mortality are considered the most likely to significantly inhibit 

population growth or cause a decline in population size (Goldsworthy et al. 2009a). The 

role of predation, anthropogenic impacts, and disease are considered here in more detail. 

Predation has been noted to significantly impact some pinniped populations by reducing 

demographic recruitment and causing the removal of reproductively active females (Lucas 

and Stobo 2000; Springer et al. 2003). Great white sharks (Carcharodon carcharias) are 

known to predate on Australian sea lions, with attacks on adult females and juveniles noted 

most frequently (Shaughnessy et al. 2007), whereas killer whales (Orcinus orca) are also 

suspected to hunt pinnipeds in Australian waters (Goldsworthy et al. 2009a). However, the 

extent of successful predation on Australian sea lions is unknown and their demographic 

impact has not been quantified. 

 Anthropogenic factors may significantly impact pinniped populations by increasing 

mortality directly, as well as indirectly by affecting foraging and reproductive success 

(Goldsworthy et al. 2009a). The most important anthropogenic factor impacting Australian 

sea lion populations is interaction with fisheries, specifically mortality related to fishery 

bycatch and entanglement in marine debris (Goldsworthy et al. 2009a; Australian 

Government 2013a and 2013b). Foraging areas of Australian sea lions extensively overlap 

with areas targeted by gillnet and lobster fisheries; these activities are associated with high 

levels of bycatch mortality, predominantly of adult females and juveniles, respectively 

(Campbell et al. 2008b; Hamer et al. 2013a). Marine debris causing entanglement 

originates primarily from these fisheries and impacts all age classes, although pups are 

most frequently entangled (Page et al. 2004). Circumstantial evidence of the impact of 

gillnet fishing is provided by the observation that the major period of increase in pup 
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production at Dangerous Reef (occurring 2000–2006) was associated with substantial 

decreases in fishing effort in Spencer Gulf (Goldsworthy et al. 2007). In addition, 

population viability analyses demonstrated that the observed rates of bycatch were highly 

likely to lead to effective extinction of most subpopulations within 100 breeding cycles, 

equivalent to approximately 150 years (Goldsworthy and Page 2007; Campbell et al. 

2008b; Goldsworthy et al. 2010b; Hamer et al. 2013a). In order to attempt to reduce the 

occurrence of gillnet bycatch mortality, the Australian Fisheries Management Authority 

implemented three primary management interventions in 2011: (1) observer coverage 

(human or camera) on gillnet fishing vessels was increased to 100 % to more accurately 

record the occurrence of bycatch; (2) areas up to 20.7 km around breeding colonies were 

closed to fishing; and (3) ‘trigger-limits’ were introduced such that if bycatch limits are 

exceeded within designated zones than that zone is closed to fishing for 18 months (Hamer 

et al. 2013a). In addition, the introduction of sea lion exclusion devices to lobster pots can 

reduce sea lion mortality without significantly impacting lobster catch rate (Campbell et al. 

2008b). The effect of these management interventions on Australian sea lion populations 

are yet to be thoroughly assessed. In addition, the impact of other anthropogenic factors, 

such as human disturbance (e.g. tourism) and toxicants, on the recovery of Australian sea 

lion populations is uncertain and requires further investigation (Goldsworthy et al. 2009a; 

Australian Government 2013a and 2013b). 

 Finally, the impact of disease on Australian sea lion health and population 

demography is unknown. Infectious disease plays an important role in the health and 

population dynamics of many free-ranging species (Smith et al. 2009; Thompson et al. 

2010); the occurrence and impact of infectious diseases are mediated by the dynamic 

interaction of host, pathogen, and environment factors (Irvine 2006). Endemic and 

epidemic infectious diseases are associated with significant pup mortality and population 
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regulation of several pinniped species (Kennedy et al. 2000; Kuiken et al. 2006; Castinel et 

al. 2007b; Spraker and Lander 2010; Lyons et al. 2011b; Seguel et al. 2013b; Spraker et al. 

2014) and a plethora of pathogens have been reported from pinnipeds (Dailey and 

Brownell 1972; Higgins 2000; Kennedy-Stoskopf 2001; Barnes et al. 2008). However, 

only limited data is available for the range of infectious disease agents in the Australian sea 

lion (Table 1) and few studies have investigated the pathogenic effects of these agents; 

whether infectious disease contributes towards the high rate and oscillating pattern of pup 

mortality in this species is a key knowledge gap (Goldsworthy et al. 2009a; Australian 

Government 2013a and 2013b; McIntosh and Kennedy 2013). In particular, given the 

association of hookworm infection with disease and mortality of pups in several otariid 

species (Lyons et al. 2001; Chilvers et al. 2009; DeLong et al. 2009; Seguel et al. 2011), 

and preliminary findings that Uncinaria sp. are similarly pathogenic in Australian sea lion 

pups (R. Gray, pers. comm.), it is imperative to obtain a thorough understanding of 

hookworm infection in this host. 
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Table 1 List of infectious disease agents reported in the Australian sea lion 

Pathogen Age class infected Notes Reference 
Bacteria    
Brucella spp. Not reported Serological evidence only 

Free-ranging individuals 
(Dawson 2005) 

Helicobacter spp. Adult Captive individuals (Oxley and McKay 2004; Oxley et al. 2004) 
Mycobacterium pinnipedii Subadult, adult Captive and free-ranging individuals (Forshaw and Phelps 1991; Cousins et al. 1993) 
Fungi    
Microsporum gypseum Adult Captive individuals (Phillips et al. 1986) 
Parasites    
Acanthocephala    
Corynosoma australe Not reported Free-ranging individuals 

Likely requires an intermediate host 
(Johnston 1937; Smales 1986) 

Corynosoma sp. Not reported Free-ranging individuals 
Likely requires an intermediate host 

(Smales 1986) 

Acarina    
Orthohalarachne attenuata All Free-ranging individuals (Domrow 1974; Marlow 1975; Nicholson and 

Fanning 1981) 
Orthohalarachne diminuata All Free-ranging individuals (Nicholson and Fanning 1981) 
Anoplura    
Antarctophthirus microchir All Free-ranging individuals (Dailey and Brownell 1972; Marlow 1975; 

McIntosh and Murray 2007) 
Cestoda    
Adenocephalus pacificus 
(syn. Diphyllobothrium 
arctocephalinum) 

Not reported Free-ranging individuals 
Likely requires an intermediate host 

(Johnston 1937; Dailey and Brownell 1972; 
Hernández-Orts et al. 2015) 

Nematoda    
Contracaecum osculatum Not reported Free-ranging individuals 

Likely requires an intermediate host 
(Johnston 1937; Johnston and Mawson 1941) 

Parafilaroides sp. Juvenile, adult Free-ranging individuals 
Likely requires an intermediate host 

(Nicholson and Fanning 1981; Lynch 1999) 

Uncinaria sp. Neonatal Free-ranging individuals (Beveridge 1980; Ladds 2009) 
   (Continued) 
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Table 1 List of infectious disease agents reported in the Australian sea lion (continued) 
 
Pathogen Age class infected Notes Reference 
Protozoa    
Giardia duodenalis Not reported PCR detection only 

Captive and free-ranging individuals 
(Delport et al. 2014) 

Toxoplasma gondii Neonatal, adult Captive-born neonate; free-ranging adult (Fay 1989; Kabay 1996) 
Trematoda    
Mesostephanus neophocae Not reported Free-ranging individuals 

Likely requires an intermediate host 
(Dubois and Angel 1976) 

Viruses    
None reported    
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1.3 Hookworm infection in pinnipeds 

1.3.1 Taxonomy 

 Hookworms of the genus Uncinaria Frölich, 1789 (Nematoda: Ancylostomatidae) 

are haematophagous parasitic nematodes of the small intestine. Thirteen species are 

recognised in carnivores (Carnivora) and three additional species are recognised in rodents 

(Rodentia), tenrecs (Afrosoricida), and treeshrews (Scandentia) – see Table 2. The validity 

of several additional species has been disputed as a result of unproven host specificity and 

the questionable significance of some morphological differences (Ransom 1924; Baylis 

1933; Olsen 1968; Beveridge 1980); the potential for host-induced effects on parasite 

morphology engenders caution when deciding whether we have new species (George-

Nascimento et al. 1992; Pérez-Ponce de León and Nadler 2010). One of the long-standing 

parasitological uncertainties is the number of distinct Uncinaria species parasitising 

pinnipeds (George-Nascimento et al. 1992; Nadler et al. 2000). Hookworms (Uncinaria 

spp.) have been reported from eleven otariid and five phocid hosts, but have not been 

reported from odobenids (Dailey 2001; Brock et al. 2013; Nadler et al. 2013). Uncinaria 

lucasi from the northern fur seal (Callorhinus ursinus) was the first hookworm species to 

be described and named in pinnipeds (Stiles and Hassall 1899; Stiles 1901; redescribed by 

Baylis 1947), followed by Uncinaria hamiltoni from the South American sea lion (Otaria 

byronia) (Baylis 1933). Morphological differences between specimens of each species 

were sufficient to clearly delineate two separate species, however, the limitations of 

morphological examination are evidenced by the taxonomic uncertainty which arose from 

specimens demonstrating ‘intermediate’ or similar morphology to the two named 

congeners (Baylis 1933; Johnston and Mawson 1945; Baylis 1947; Olsen 1952, cited in 

Lyons 2005; Botto and Mañé-Garzón 1975; George-Nascimento et al. 1992; Norman 1994; 

Sepúlveda 1998; Beveridge 2002; Berón-Vera et al. 2004; Castinel et al. 2006). Accurately 
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distinguishing between Uncinaria spp. is not an esoteric pursuit; knowledge of species 

identity is essential for understanding host-parasite-environment relationships, which is 

critical for informing the conservation management of parasites and their hosts (Thompson 

et al. 2010). 

 

Table 2 List of recognised Uncinaria speciesa 

Type host Parasite species 
Carnivora  
Nausa narica and 
Procyon cancrivorus 

Uncinaria bidens (Molin, 1861) 

Canis lupus Uncinaria stenocephala (Railliet, 1884) 
Callorhinus ursinus Uncinaria lucasi Stiles, 1901 
Otaria byronia Uncinaria hamiltoni Baylis, 1933 
Prionailurus bengalensis Uncinaria felidis Maplestone, 1939 
Martes zibellina Uncinaria skrjabini Machul'skii, 1949 
Ailurus fulgens Uncinaria thapari Biocca et Bronzini, 1953 
Ursus americanus Uncinaria yukonensis (Wolfgang, 1956) 
Mellivora capensis Uncinaria parvibursata Le Roux et Biocca, 1957 
Ursus americanus and 
Ursus arctos 

Uncinaria rauschi Olsen, 1968 

Prionailurus iriomotensis Uncinaria maya Hasegawa, 1989 
Neophoca cinerea Uncinaria sanguinis Marcus, Higgins, Šlapeta et Gray, 2014b 
Zalophus californianus Uncinaria lyonsi Kuzmina et Kuzmin, 2015c 
Rodentia  
Hydromys chrysogaster Uncinaria hydromyidis Beveridge, 1980 
Afrosoricida  
Tenrec ecaudatus Uncinaria bauchoti Chabaud, Brygoo et Tchéprakoff, 1964 
Scandentia  
Tupaia glis Uncinaria olseni Chabaud et Durette-Desset, 1975 
a Note, this list includes two hookworm species from pinnipeds which were described subsequent to the 
commencement of this study. 
b See Chapter 2. 
c Uncinaria lyonsi is referred to as “Uncinaria species A” in Chapter 2, the publication of which pre-dated 
this species description. 
 

 Molecular techniques coupled with traditional morphological analysis can reduce 

the uncertainty of species delimitation and description, facilitating species identification 

(Pérez-Ponce de León and Nadler 2010). Using this combined approach, the existence of 

considerable species diversity within pinniped hookworms has been recently demonstrated 

(Nadler et al. 2000; Lyons et al. 2011a; Nadler et al. 2013; Ramos et al. 2013). In addition, 
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Nadler et al. (2013) demonstrated reduced host specificity, showing that U. lucasi also 

parasitises Steller sea lions (Eumetopias jubatus) and that U. hamiltoni also parasitises 

South American fur seals (Arctophoca australis). These findings indicate that the 

significant morphometric differences observed within different host-associated populations 

of U. lucasi (Olsen 1952, cited in Lyons 2005; Nadler et al. 2013) and U. hamiltoni 

(George-Nascimento et al. 1992) could be due to host-induced effects on parasite 

morphology; however, these morphological differences could also be accounted for by 

age-dependent variation. 

 In Australian waters, hookworms from the Australian sea lion, Australian fur seal, 

and long-nosed fur seal are traditionally considered closely related and morphologically 

similar to U. hamiltoni (Norman 1994; Ramos et al. 2013). Ramos et al. (2013) 

demonstrated that Uncinaria spp. from Australian pinnipeds are molecularly distinct from 

North American pinniped hookworms and that the Australian sea lion and long-nosed fur 

seal may share a single species of Uncinaria. However, the species diversity, global 

phylogenetic relationships, and taxonomic identity of hookworms from these hosts are 

unresolved. 

 

1.3.2 Epidemiology 

 The life cycle of pinniped-associated hookworms has been most extensively 

investigated for U. lucasi in the northern fur seal in Alaska (Olsen 1958; Olsen and Lyons 

1965; Lyons et al. 2011b). A key feature of the life cycle is the transmammary 

transmission of infective third-stage hookworm larvae to pups during the immediate post-

parturient period (Olsen and Lyons 1965). This route of hookworm infection is also 

supported by studies in the Juan Fernandez fur seal (Arctophoca philippii philippi), 

California sea lion (Zalophus californianus), and New Zealand sea lion (Phocarctos 
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hookeri) (Sepúlveda and Alcaíno 1993; Lyons et al. 2003; Castinel et al. 2007a). 

Hookworm larvae are likely only transmitted to pups for a short period of time post-

parturition as generally little intra-host variation is observed in the size of hookworms 

(Olsen and Lyons 1965). Infective third-stage larvae develop to fourth-stage larvae 

approximately 24 hours after ingestion, with the final moult to fifth-stage (adult) 

hookworms occurring 4–5 days after ingestion (Lyons 1994); as the duration of the 

prepatent period is approximately 12–15 days, it is possible that hookworm could have 

pathogenic effects on their host prior to an infection being diagnosed by the presence of 

eggs in host faeces (Olsen and Lyons 1965). The duration of patent hookworm infection 

varies among host species, being approximately 6–8 weeks in northern fur seal pups 

(Lyons et al. 2011b) and 6–8 months in South American fur seal, South American sea lion, 

and California sea lion pups (Lyons et al. 2000a; Hernández-Orts et al. 2012; Katz et al. 

2012), whilst New Zealand sea lion pups are infected for at least 2–3 months (Castinel et 

al. 2007a). Free-living third-stage hookworm larvae can hatch from eggs passed in faeces 

within approximately 4 days, although development may be delayed for up to several 

months in the environment (Olsen and Lyons 1965; Lyons et al. 1997; Castinel et al. 

2007a). Sandy substrate rather than rocky terrain is considered favourable for the 

development, survival, and transmission of free-living hookworm larvae (Lyons et al. 

2000b; Castinel et al. 2007a) which infect hosts either orally or percutaneously, and then 

migrate through the tissues, predominantly to the ventral abdominal blubber, where they 

remain dormant as tissue-stage larvae until late pregnancy or lactation (Olsen and Lyons 

1965). The longevity of tissue-stage hookworm larvae has been observed to be at least 6 

and 16 years in captive, non-regularly breeding northern fur seal and California sea lion 

adult females, respectively (Twisleton-Wykeham-Fiennes 1966; Lyons and Keyes 1984). 

Unlike in human and canine hosts, maturation of tissue-stage larvae to adult hookworms 
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has not been observed, but could potentially occur as patent infection of older age classes 

has been reported at 1–22 % prevalence (Olsen 1958; George-Nascimento et al. 1992; 

Lyons et al. 2012b). For this reason, adult males are referred to as dead-end hosts with 

respect to infection in pups (Lyons et al. 2011b), but could have a potential role in parasite 

dispersal (Haynes et al. 2014). This life cycle is considered typical for hookworms in 

otariids (Lyons et al. 2005), however, the validity of extrapolating between parasitic 

species and hosts is uncertain. 

 The primary factors hypothesised to influence the prevalence and intensity of 

hookworm infection in pinnipeds are the type of colony substrate and host density (Lyons 

et al. 2012b). Greater hookworm infection intensity and prevalence have been associated 

with sandy substrates over rocky substrates, presumably due to enhanced survival of free-

living larvae (Sepúlveda 1998; Lyons et al. 2000b; Lyons et al. 2005; Ramos 2013), and 

host behavioural preferences for substrate-type interacts with host density to affect 

individual exposure to free-living larvae (Lyons et al. 2005; Lyons et al. 2012b). However, 

the relative importance of these environment and host factors in the epidemiology of 

hookworm infection in the Australian sea lion are unknown. Key knowledge gaps for this 

host are the prevalence and intensity of hookworm infection, whether transmammary 

transmission plays a central role in infection of neonatal pups, and the timing of hookworm 

life cycle events. In addition, it has been hypothesised that colony-specific seasonal 

differences in the survival and transmission of hookworm larvae could result in 

fluctuations in the impact of hookworm infection for pups, contributing towards the 

seasonal patterns of pup mortality observed at Seal Bay and Dangerous Reef (Goldsworthy 

et al. 2009b). 
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1.3.3 Clinical impact 

 Hookworm infection is associated with anaemia, reduced growth rates, and 

mortality of pups in several otariid species (Lyons et al. 2001; Chilvers et al. 2009; 

DeLong et al. 2009; Seguel et al. 2011). In addition, hookworm infection may also increase 

individual susceptibility to other disease processes such as bacterial infection or trauma 

(Castinel et al. 2007b; Spraker et al. 2007). The primary mechanism by which hookworms 

cause disease is by feeding-associated damage to the intestinal mucosa and submucosa, 

resulting in gastrointestinal blood loss and eliciting local and systemic inflammatory 

responses (Loukas and Prociv 2001; Hotez et al. 2004). The major factor implicated in the 

severity of hookworm-associated disease is the intensity of hookworm infection. Studies in 

northern fur seals indicate that infection intensities greater than 100 hookworms are 

associated with haemorrhagic enteritis and anaemia (Olsen 1958; Keyes 1965). In addition, 

relatively high hookworm infection intensity is associated with pup mortality in the New 

Zealand sea lion (mean intensity of 824 hookworms per pup – Castinel et al. 2007a), South 

American fur seal (range 120–200 – Seguel et al. 2013a), northern fur seal (means 643, 

1200 – Lyons et al. 1997; Mizuno 1997), and California sea lion (means 612, 1284 – 

Lyons et al. 1997; Lyons et al. 2001), whereas comparatively low hookworm infection 

intensity was not associated with pup mortality in the Australian fur seal (range 2–18 – 

Ramos 2013), Juan Fernandez fur seal (mean 17 – Sepúlveda 1998), and South American 

sea lion (means 38, 135 – Berón-Vera et al. 2004; Hernández-Orts et al. 2012). 

Interestingly, higher hookworm infection intensity has been positively associated with 

body condition in northern fur seal, California sea lion, and Juan Fernandez fur seal pups 

found dead; pups in better body condition demonstrated higher hookworm infection 

intensity compared to pups in poor body condition (Lyons et al. 1997; Sepúlveda 1998; 

Lyons et al. 2001; Lyons et al. 2005). Lyons et al. (2005) hypothesised that higher 
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hookworm infection intensity and better body condition is related to greater milk intake. In 

contrast, increased growth rates were observed in New Zealand sea lion and northern fur 

seal pups following anthelmintic administration to reduce hookworm infection intensity 

(Chilvers et al. 2009; DeLong et al. 2009). One possible explanation that accounts for these 

observations is that the pups in better body condition which were found dead were 

relatively younger and experiencing the effects of acute rather than chronic hookworm 

infection, and therefore adverse effects on body condition were not yet evident. Further 

investigation of the relationship between hookworm infection intensity and clinical impact 

is required; however, methods for determining hookworm infection intensity in live pups 

have not been validated, confounding investigation. 

 Neonatal anaemia is observed to occur in many pinniped species, however, despite 

the widespread host distribution of hookworms (and other haematophagous parasites such 

as lice; Leonardi and Palma 2013), this anaemia has generally been attributed to a 

physiological host-response to the increased oxygen availability compared to the 

environment in utero and the expansion of plasma volume with pup growth (Richmond et 

al. 2005; Clark et al. 2007; Trillmich et al. 2008). Evidence that hookworm infection 

causes anaemia in neonatal pinnipeds is relatively limited (Olsen 1958; Lyons et al. 2001) 

and there are no reports that characterise neonatal anaemia in pinnipeds by the presence or 

absence of reticulocytosis; classifying the erythroid response to anaemia as regenerative or 

non-regenerative in this way is fundamental to differentiating between pathological and 

physiological mechanisms (Stockham and Scott 2008). In addition, although 

haematological reference intervals have been developed for pups of several pinniped 

species to facilitate health assessment, and several studies have associated host and 

environment factors with changes in the values of haematological parameters (Bryden and 

Lim 1969; Geraci 1971; Lane et al. 1972; Banish and Gilmartin 1988; Castellini et al. 
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1993; Castellini et al. 1996; Horning and Trillmich 1997; Hall 1998; Rea et al. 1998; 

Sepúlveda et al. 1999; Trumble and Castellini 2002; Lander et al. 2003; Richmond et al. 

2005; Boily et al. 2006; Clark et al. 2007; Trillmich et al. 2008; Greig et al. 2010; Brock et 

al. 2013; Lander et al. 2014), few studies have considered the effects of parasitosis on the 

haematological values of pups and their implications for the assessment of health status. 

 The clinical impact of hookworm infection on the health status of Australian sea 

lion pups has not been reported and is considered a key knowledge gap for understanding 

the impediments to population recovery in this species (Goldsworthy et al. 2009a; 

Australian Government 2013a and 2013b); determining the clinical impact of hookworm 

infection in pups is critical to informing conservation management to mitigate the risks of 

population extinction. Haematological analysis is a reasonably non-invasive and efficient 

tool used as part of routine health assessment, permitting repeated in situ sampling of live 

individuals with minimal impact on animal welfare and survival (Clark 2004; Wimsatt et 

al. 2005). Changes in haematological values provide quantifiable measures of the impact 

of, and host-response to, disease. However, inherent host-specific differences and dynamic 

temporospatial adaptations to physiological stressors also influence haematological 

characteristics (Gray et al. 2005; Beldomenico et al. 2008; Hufschmid et al. 2014); 

although haematological reference intervals for free-ranging Australian sea lions older than 

six months of age have been reported (Needham et al. 1980; Fowler et al. 2007b), data 

from neonatal pups is lacking. For this reason, the establishment of species- and context-

specific reference intervals are necessary to define and assess deviations from baseline 

health status (Sergent et al. 2004; Ceriotti et al. 2009). This would also facilitate the 

implementation of long-term health surveillance, which is critical for both the early 

recognition of emerging disease and to inform species conservation management (Hall et 

al. 2007; Thompson et al. 2010). 
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1.3.4 Management 

 The aim of parasite control in free-ranging wildlife populations within the context 

of conservation management is not to eradicate parasitic infection, but rather to lessen the 

impact of associated disease on the health and survival of host-individuals to improve 

population viability; parasites are integral components of biodiverse ecosystems and 

should also be conserved (Gómez and Nichols 2013). Fundamentally, the benefits of 

parasite control to the host species and their ecosystem must outweigh the potential 

ecological and evolutionary costs associated with the loss or reduction of the targeted 

parasite and any collateral consequences (Stringer and Linklater 2014). Critically, there 

must be a recognised need for parasite control; as the impact of parasitic infection on the 

host population’s viability increases, so does the impetus to intervene (Stringer and 

Linklater 2014). 

 Disruption of the hookworm life cycle in free-ranging pinnipeds to prevent or 

reduce the effects of hookworm infection and improve pup survival has been investigated 

using several approaches. The first control recommendations were aimed at reducing the 

exposure of northern fur seals to free-living hookworm larvae by removing the sandy 

colony substrate and preventing access to sandy areas with fences, in addition to modifying 

the environment with boulders to provide pups with a degree of protection from 

conspecific trauma (Jordan et al. 1898); the extent to which these recommendations were 

adopted is not clear. Olsen (1958) later investigated the utility of environmental larvicides 

to reduce the number of larvae present in the substrate and identified cresylic acid as an 

effective treatment. However, no reduction in pup mortality was observed in the breeding 

season following large-scale environmental application, although the cause of death for 

these pups and the intensity of hookworm infection were not determined (Olsen 1958). 
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 Anthelmintic administration to prevent or eliminate hookworm infection in 

northern fur seal pups has been investigated using several compounds. Orally administered 

dichlorvos was found to be highly effective (> 99 %), although apparent organophosphate 

toxicity was observed in some pups (Lyons et al. 1978; Bigg and Lyons 1981). 

Subcutaneously administered disophenol demonstrated variable effectiveness (< 1–100 %) 

and was associated with diarrhoea in some pups (Lyons et al. 1978; Lyons et al. 1980). The 

effectiveness of diethylcarbamazine, fenbendazole, levamisole, and morantel tartrate have 

also been investigated, although few details are available (Kolevatova et al. 1998, cited in 

Lyons et al. 2011b). Possibly the most successful treatment to date, subcutaneously 

administered ivermectin was found to be highly effective (~ 96–100 %) at eliminating or 

preventing hookworm infection in both northern fur seal and New Zealand sea lion pups 

and no significant adverse effects on pup health were identified (Beekman 1984; Castinel 

et al. 2007a; Chilvers et al. 2009; DeLong et al. 2009). Of these anthelmintics, the host-

benefits associated with treatment have only been reported for northern fur seal pups 

administered ivermectin at approximately 2 weeks of age (DeLong et al. 2009) and New 

Zealand sea lion pups administered ivermectin at 3, 7, and 30 days of age (Chilvers et al. 

2009). For both species, treated pups demonstrated significantly higher growth rates 

relative to untreated controls (Chilvers et al. 2009; DeLong et al. 2009). Ivermectin treated 

northern fur seal pups also demonstrated significantly higher short-term survival rates than 

controls (DeLong et al. 2009), whereas treated New Zealand sea lion pups only 

demonstrated a trend towards higher rates of survival than controls during a high mortality 

event associated with Klebsiella pneumoniae infection (Chilvers et al. 2009). 

Haematological changes associated with anthelmintic administration in pinniped pups have 

only been reported from a small study of New Zealand sea lion pups in which significant 
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haematological changes were not associated with ivermectin treatment to prevent 

hookworm infection (Castinel 2007). 

 For free-ranging neonatal Australian sea lion pups, hookworm infection is 

hypothesised to cause significant health impacts, evident by anaemia, systemic 

inflammatory responses, and reduced growth rates, as well as to contribute directly and 

indirectly towards increased pup mortality. Experimental manipulation of the host-parasite 

relationship via anthelmintic administration is required to test these hypothesised causal 

relationships and quantify the impact of hookworm infection, both of which are necessary 

to inform conservation management on the effectiveness of, and need for, control strategies 

(Irvine 2006; Stringer and Linklater 2014). In addition, it is critical to prospectively assess 

the utility of anthelmintic administration in this species to reduce pup mortality should, for 

example, the need for sporadic parasite control occur, as demonstrated for New Zealand 

sea lion pups during high mortality epizootics associated with K. pneumoniae infection 

(Chilvers et al. 2009). 

 

1.4 Aims of the thesis 

 The life history of the Australian sea lion offers a unique comparative system to 

investigate the role of host, pathogen, and environment factors in influencing the 

epidemiology and clinical impact of hookworm infection in neonatal pinnipeds. This study 

was undertaken primarily at Seal Bay and Dangerous Reef due to their disparate 

biogeographical features, opposite seasonal patterns of variation in pup mortality, their 

status as major breeding colonies for this species, and the opportunity to minimise colony 

disturbance and impact on individual animals by collaborating with other researchers 

undertaking concurrent field investigations. This study investigates the overarching 

hypothesis that hookworm infection is a significant cause of disease and mortality in 
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Australian sea lion pups by addressing some of the key knowledge gaps pertaining to the 

taxonomy, epidemiology, and clinical impact of hookworm infection in this species. In 

addition, the utility of anthelmintic treatment as a tool for the conservation management of 

this endangered species is investigated. The aims of this thesis were to: 

1. Determine the number of hookworm species parasitising the Australian sea lion 

(Chapter 2); 

2. Resolve the taxonomic identity and phylogenetic relationships of hookworms from 

the Australian sea lion (Chapter 2); 

3. Determine the utility of quantitative morphometrics to delineate Uncinaria species 

by investigating intra- and inter-host parasite morphometric variation and the effect 

of host age on parasite morphometrics (Chapter 2); 

4. Investigate whether transmammary transmission plays a central role in hookworm 

infection in the Australian sea lion and determine the timing of key hookworm life 

cycle events (Chapters 2 and 3); 

5. Determine the prevalence and intensity of hookworm infection in free-ranging 

Australian sea lion pups and investigate the role of host, pathogen, and environment 

factors in the epidemiology of infection in this host (Chapter 3); 

6. Relate the prevalence and intensity of hookworm infection in Australian sea lion 

pups to seasonal fluctuations in the magnitude of colony pup mortality (Chapter 3); 

7. Develop haematological reference intervals for free-ranging neonatal Australian sea 

lion pups within the context of endemic hookworm infection to facilitate health 

assessment (Chapter 4); 

8. Characterise the erythroid response to anaemia in Australian sea lion pups to 

differentiate between pathological and physiological mechanisms (Chapter 4); 
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9. Determine the clinical impact of hookworm infection in neonatal Australian sea 

lion pups (Chapters 4 and 5); 

10. Investigate the effectiveness of ivermectin administration to eliminate hookworm 

infection in Australian sea lion pups and test the hypotheses that hookworm 

infection causes anaemia, systemic inflammatory responses, and reduced growth 

rates, and contributes towards increased pup mortality (Chapter 5). 
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Chapter 2 

Uncinaria sanguinis sp. n. (Nematoda: 

Ancylostomatidae) from the endangered Australian 

sea lion, Neophoca cinerea (Carnivora: Otariidae)
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Hookworms of the genus Uncinaria Frölich, 1789 
(Nematoda: Ancylostomatidae) are haematophagous 
parasitic nematodes of the small intestine. Eleven species 
have been described in carnivores (Mammalia: Carnivo-
ra) and three additional species described in rodents (Ro-
dentia), tenrecs (Afrosoricida) and treeshrews (Scanden-
tia). The validity of several species has been disputed as 
a result of unproven host specificity and the questionable 
significance of some morphological differences (Ransom 
1924, Baylis 1933, Olsen 1968, Beveridge 1980). Molec-
ular techniques coupled with morphological analysis can 
reduce the uncertainty of species delimitation and descrip-
tion (Pérez-Ponce de León and Nadler 2010). Baseline 
knowledge of species identity has significant implications 
for the management of parasitic diseases and conserva-
tion of the host themselves (Thompson et al. 2010).

One of the long-standing parasitological uncertainties 
is the number of distinct Uncinaria species parasitising 
pinnipeds (Carnivora) (George-Nascimento et al. 1992, 
Nadler et al. 2000). Parasites in the genus Uncinaria 
have been reported from eleven otariid (eared seals) and 

five phocid (earless seals) hosts (Dailey 2001, Lyons et 
al. 2011a, Brock et al. 2013, Nadler et al. 2013). Only 
two species have been described and named, Uncinaria 
lucasi Stiles, 1901 from the northern fur seal, Callorhi-
nus ursinus (Linnaeus), and Uncinaria hamiltoni Baylis, 
1933 from the South American sea lion, Otaria byronia de 
Blainville; syn. Otaria flavescens (Shaw). However, the 
existence of greater species diversity has been recently 
recognised using molecular techniques (Nadler et al. 
2000, Lyons et al. 2011b, Nadler et al. 2013, Ramos et al. 
2013). Additionally, Nadler et al. (2013) demonstrated re-
duced host-specificity, showing that U. lucasi also parasi-
tises Steller sea lion, Eumetopias jubatus (Schreber), and 
U. hamiltoni also parasitises the South American fur seal, 
Arctophoca australis (Zimmerman). The taxonomic iden-
tity of specimens from other pinniped hosts is unresolved. 

In Australian waters, hookworms from the Australian 
sea lion, Neophoca cinerea (Péron), Australian fur seal, 
Arctocephalus pusillus doriferus (Wood Jones), and New 
Zealand fur seal, Arctophoca australis forsteri (Lesson), 
are traditionally considered closely related and morpho-
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three colonies in South Australia, Australia. The Australian sea lion is at risk of extinction because its population is small and geneti-
cally fragmented. Using morphological and molecular techniques, we describe a single novel species, Uncinaria sanguinis sp. n. 
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logically similar to U. hamiltoni (Norman 1994, Ramos 
et al. 2013). Ramos et al. (2013) showed that Uncinaria 
spp. from Australian pinnipeds are molecularly distinct 
from North American pinniped hookworms and that the 
Australian sea lion and New Zealand fur seal may share 
a single species of Uncinaria.

The aim of the present study was to address whether 
a single novel species of hookworm parasitises the Aus-
tralian sea lion. The Australian sea lion is classified as 
endangered in the IUCN Red List of Threatened Spe-
cies due to its small, genetically fragmented population, 
population declines at some colonies, and the risk of ex-
tinction from fishery by-catch (Goldsworthy and Gales 
2008, McIntosh et al. 2012). We investigated the utility of 
quantitative morphometrics to delineate Uncinaria spe-
cies by assessing intra- and inter-host parasite variation 
and determining the effect of host age on parasite mor-
phometrics. Subsequently, we used molecular techniques 
to examine the phylogenetic relationships of Uncinaria 
species. The outcome is a description of a new Uncinaria 
species.

MATERIALS AND METHODS

Sample collection
All samples were collected from Australian sea lion pups. 

Necropsies were undertaken on pups found dead at Seal Bay, 
Kangaroo Island (n = 84), Dangerous Reef, Spencer Gulf 
(n = 32), and South Page Island, Backstairs Passage (n = 1), in 
South Australia during 2009–2013 as a part of ongoing investi-
gations into the pathogenesis and epidemiology of hookworm in-
fection in the Australian sea lion. A sample of hookworm speci-
mens was collected from the small intestine from fresh carcasses 
or from frozen-thawed pups and stored in 70% ethanol at -20 °C; 
the remainder of the intestinal content was stored in 10% neutral 
buffered formalin. Daily observations of marked and unmarked 
pups at Seal Bay in 2012 facilitated the collection of hookworm 
specimens from dead pups of known-age (8–101 days, n = 12). 
All samples were collected under Government of South Austral-
ia Department of Environment, Water and Natural Resources 
Wildlife Ethics Committee approvals (3–2008 and 3–2011) and 
Scientific Research Permits (A25008/4–8).
Morphological study

Individual hookworms were examined in temporary glass 
slide mounts using 4, 10, 20, and 40× objectives of an Olym-
pus BX60 microscope equipped with differential interference 
contrast (Olympus, Sydney, Australia) and photographed with 
a ProgRes CFscan camera (Jenoptik, Jena, Germany) or DP80 
camera (Olympus). Voucher specimens preserved with 70% 
ethanol were cleared and mounted with lactophenol (Rep 1963). 
Hookworm vouchers used for molecular studies were mounted 
in 70% ethanol. Measurements recorded with an ocular mi-
crometer were body length, maximum body width (measured 
at approximately mid-specimen), buccal capsule length, buccal 
capsule width, teeth height, oesophageal length, and maximum 
oesophageal width. Additional measurements recorded from 
male specimens included spicule length and gubernaculum 
length, and from female specimens the distance from the vulva 
to tail tip, tail length, and the average length and width of three 

eggs per female. Measurements for each feature were not ob-
tained for every specimen due to differences in preservation or 
clarity. Additional morphological observations were performed 
with specimens cleared and mounted in glycerol. Specimens 
obtained from pups with hookworm eggs in their faeces were 
considered mature, confirmed by the presence of eggs in female 
hookworms. Measurements given in-text are mean with stand-
ard deviation, followed in parentheses by the range and sample 
size. Values in brackets are measurements for the holotype male 
or allotype female, as indicated. All measurements are in mi-
crometres, unless otherwise stated. 

Z-stack images were created using cellSens Dimensions 
1.8.1 (Olympus). All images were imported into Adobe Pho-
toshop CS6 (Adobe Systems, San Jose, USA) and multiple im-
ages were combined to illustrate features spanning greater than 
a single field-of-view. Images were converted to greyscale and 
adjustment layers for levels and brightness/contrast were used 
to optimise the appearance of investigated features. Individual 
specimens were isolated from the background using layer masks 
and presented on a white background. Line drawings accompa-
ny photomicrographs to illustrate characteristic features. The in-
troduction of the new hookworm species name followed generic 
rules for describing a new (parasite) species (Šlapeta 2013).
Statistical analysis

Descriptive statistics were used to assess the intra- and inter-
host morphometric differences between hookworm specimens. 
The effect of host age on the body length of both male and fe-
male hookworms, and on spicule length for male specimens, 
was assessed with a linear fixed effects model using REML 
in GenStat 16.1 (VSN International, Hemel Hempstead, UK). 
Model assumptions were checked by visually assessing the 
fitted-value plots of residuals for homogeneity of variance and 
the histograms of residuals for approximately normal distribu-
tions. Predicted means were compared using Fisher’s Protected 
LSD (α = 0.05). We focused on these features as they may be 
objectively measured, are unlikely to be substantially influenced 
by specimen preparation, and are considered important for spe-
cies discrimination (Baylis 1933, Rep 1963, Nadler et al. 2000).
Morphological identification

The identification of examined specimens was attempted us-
ing taxonomic keys and species descriptions (Baylis 1933, 1947, 
Maplestone 1939, Chabaud et al. 1964, Olsen 1968, Chabaud 
and Durette-Desset 1975, Beveridge 1980, Hasegawa 1989, Li-
chtenfels 2009, Willmott and Chabaud 2009).
Molecular characterisation

An approximately 4 mm mid-body section was excised asep-
tically using a sterile scalpel blade from individual hookworms 
collected from Seal Bay (n = 10; 10 hosts), Dangerous Reef 
(n = 10; 8 hosts) and South Page Island (n = 1). The anterior and 
posterior ends were retained as voucher specimens. The mid-
section of each hookworm was air dried prior to DNA extraction. 
DNA was extracted from mid-body sections using the standard 
protocol of the Isolate II Genomic DNA Kit (Bioline, Sydney, 
Australia).

Two regions of nuclear ribosomal DNA (rDNA) encompass-
ing the internal transcribed spacers (ITS1 and ITS2) and a par-
tial sequence of the 28S rDNA were amplified by PCR using 
primers No. 93/No. 94 and No. 527/No. 532, respectively (Na-
dler et al. 2000). PCR was performed using 15 µl MyTaq Red 
Mix (Bioline), 5 pmol of each primer, and 2 µl template DNA in 
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a total volume of 30 µl. Cycling parameters consisted of an ini-
tial denaturation at 94 °C for 5 min, followed by 30 or 35 cycles 
of 94 °C for 15 s, 54 °C for 15 s, 72 °C for 15 s, and a final exten-
sion at 72 °C for 2 min. Sequence polymorphism was verified by 
PCR with an alternate polymerase master mix, EconoTaq PLUS 
GREEN (Lucigen, Middleton, USA), using the same parameters 
described above. Successful amplification was confirmed by gel 
electrophoresis using a 1.5% agarose gel with GelRed (Biotium, 
Hayward, USA). Amplicons were bidirectionally sequenced us-
ing PCR primers at Macrogen Inc. (Seoul, South Korea). Se-
quences were assembled and analysed with CLC Main Work-
bench 6.8.1 (CLC bio, Aarhus, Denmark). 

Obtained sequences were aligned with hookworm sequenc-
es from the otariid hosts Australian fur seal (ITS: HE962177; 
28S rDNA: HQ261929), New Zealand fur seal (ITS region 
only: HE962175), New Zealand sea lion, Phocarctos hook-
eri (Gray) (HQ262095; HQ261983), South American sea lion 
(HQ262119; HQ262006), South American fur seal (HQ262102; 
HQ261989), Steller sea lion (HQ262131; HQ262018), northern 
fur seal (AF217890; AF257730), and California sea lion, Za-
lophus californianus (Lesson) (AF217889; AF257724), and 
from the phocid hosts southern elephant seal, Mirounga leonina 
(Linnaeus) (HE962181; HQ262009), and Mediterranean monk 
seal, Monachus monachus Hermann (HQ262065; HQ261951). 
An Australian sea lion hookworm sequence (ITS region only: 
HE962176), collected from Dangerous Reef in 1994 (Ramos 
et al. 2013), was included for historical comparison. Uncinaria 
stenocephala Railliet, 1884 (AF194145; AF257712) from the 
Arctic fox, Alopex lagopus (Linnaeus), and Uncinaria felidis 
Maplestone, 1939 (Shimono et al. 2012; ITS2 only) from the 
Tsushima leopard cat, Prionailurus bengalensis euptilura (Elli-
ott), were included for outgroup comparisons. The numbering of 
sequence residues is according to rDNA unit of Caenorhabditis 
elegans (Maupas, 1900) (X03680).

 Multiple sequence alignment was constructed using Clus-
talW 1.83 (Thompson et al. 1994). Comparisons were per-
formed for the ITS1, ITS2 and 28S rDNA regions to determine 
percentage sequence similarity (uncorrected p-distance) using 
CLC Main Workbench. Phylogenetic analyses were performed 
using a concatenated DNA dataset. The best-fit model of DNA 
evolution was selected based on the lowest Bayesian Informa-
tion Criterion using MEGA 5.2.1 (Tamura et al. 2011). Baye-
sian trees were constructed using MrBayes 3.2.2 (Ronquist et al. 
2012). The parameters were set to Kimura-2 parameter model 
and run for 2 000 000 generations with sampling every 200 gen-
erations with four chains (temperature set to 0.2). The analysis 
was run beyond convergence and run multiple times. 

The consensus tree was constructed and posterior probabili-
ties calculated from the dataset from which the first 500 000 gen-
erations were discarded. Maximum Parsimony and Maximum 
Likelihood trees were calculated using MEGA 5.2.1 (Tamura 
et al. 2011). The Maximum Parsimony tree was obtained using 
the Subtree-Pruning-Regrafting algorithm with search level 1 in 
which the initial trees were obtained by the random addition 
of sequences (10 replicates). The initial Maximum Likelihood 
search was started from a tree reconstructed using the Neigh-
bour-Joining method with distances estimated using the Maxi-
mum Composite Likelihood approach. Bootstrap support was 
calculated from 1 000 replicates. A schematic tree of the phy-
logeny demonstrating character state changes was constructed 
from the majority consensus of the three phylogenetic analyses.

RESULTS
Morphological and molecular data of nematodes re-

covered from the Australian sea lion have revealed an un-
described hookworm species. Our current investigation 
forms the basis for a formal description of a new parasite 
species belonging to the genus Uncinaria.

Uncinaria sanguinis sp. n.	 Figs. 1–14
Description: Small, translucent, white nematodes with 

occasional dark-red intestinal contents. Sexual dimor-
phism evident in mature specimens (Figs. 1, 2). Anterior 
extremity bent dorsally (Figs. 4, 6). Ventricose-shaped 
oral opening armed with paired anterior and posterior 
cutting plates (Figs. 3–6). Four small submedian papil-
lae present around oral opening (Fig. 5), amphids not 
observed. Buccal capsule large and globular with con-
tinuous walls. Dorsal gutter present. Bilateral teeth with 
variably shaped tips arise ventrally, anterior to the annu-
lar thickening of buccal capsule. Oesophagus elongate, 
posteriorly clavate. Paired lateral deirids, small, present 
in mid-oesophageal region (Fig. 6). Nerve ring in mid-
oesophageal region (Fig. 6). Excretory pore opens ven-
trally, in mid-oesophageal region (Fig. 6).

Male (description based on 116 specimens; for detailed 
morphometric data – see Tables 1, 2): Total body length 
9.1 ± 1.7 (3.8–11.5; 46) [8.8] mm; juvenile (8–14 days) 
7.2 ± 1.7 (3.8–8.9; 9) mm, mature (15–39 days) 10.1 ± 1.0 
(8.5–11.5; 15) mm. Maximum body width 390 ± 67 
(165–470; 46) [400]. Buccal capsule length 239 ±  21 
(163–280; 37) [260], width 216 ± 21 (175–270; 37) [270]. 
Teeth height 45.4 ± 11.7 (25–80; 20) [60]. Oesophageal 
length 965 ± 126 (650–1 275; 33) [900], width 169 ± 32 
(70–220; 33) [170]. Copulatory bursa symmetrical 
with single dorsal lobe, paired lateral and ventral lobes 
(Figs.  10, 11). Paired lateroventral prebursal papillae, 
small, anterior to copulatory bursa. Dorsal ray bifurcates 
distally with each short stem terminating in 3 digitations. 
Externodorsal ray arises proximally from dorsal ray, does 
not reach edge of lateral lobe. Lateral rays in contact prox-
imally, separated for distal half; anterolateral ray shorter 
than other lateral rays; mediolateral and posterolateral 
rays approximately equal in size, tips reach edge of lateral 
lobe. Lateroventral and ventroventral rays equal in length 
and fused, tips reach edge of ventral lobe. Gubernaculum 
elongate, posteriorly clavate; length 104  ±  22 (50–150; 
24) [105]. Paired spicules, length 762 ± 47 (660–860; 34) 
[670]; juvenile (8–14 days) 748 ± 51 (660–800; 6), ma-
ture (15–39 days) 733 ± 39 (670–800; 8). Spicules feature 
transverse striations and sharp tips. Genital cone promi-
nent with long, thin, bilaterally paired papillae present 
near posterior margin.

Female (description based on 112 specimens; for 
detailed morphometric data – see Tables 1, 2): Total 
body length 13.5 ± 3.5 (4.5–20.2; 52) [13.3] mm; ju-
venile (8–14  days) 8.9 ± 1.8 (5.3–11.0; 7) mm, mature 
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(15–101 days) 15.0 ± 1.7 (12.4–18.5; 17) mm. Maximum 
body width 451  ± 90 (110–590; 52) [520]. Buccal cap-
sule length 287 ± 31 (200–330; 25) [300], width 257 ± 24 
(185–300; 25) [265]. Teeth height 54  ±  12 (38–75; 17) 
[75]. Oesophageal length 1 059  ± 130 (750–1 275; 25) 
[1 000], width 183 ± 37 (90–240; 25) [170]. Tail bluntly 
conical, length 204 ± 39 (150–285; 27) [225], terminat-
ing with a short spike (Fig. 8). Vulva located in middle to 

posterior third of body, 5.2 ± 1.6 (1.8–9.8; 29) [5.0] mm 
to posterior end; prominent anterior and posterior vulval 
lips (Fig. 7). Ovejectors longitudinal; uterine eggs thin 
shelled, elliptical, 124 ± 6 × 81 ± 9 (110–135 × 55–95; 
19) [123 × 80] (Fig. 9).

T y p e  h o s t :  Australian sea lion, Neophoca cinerea (Péron), 
emaciated and freshly deceased pup, female, 15 days old, 
6 kg, collected 1 May 2012 (ID SBDP12–088).

Figs. 1–5. Photomicrographs (a) and line drawings (b) of Uncinaria sanguinis sp. n. from Australian sea lion (Neophoca cinerea). 
Fig. 1. Allotype female. Fig. 2. Holotype male. Fig. 3. Holotype male, buccal capsule, dorsoventral view. Fig. 4. Juvenile male, buc-
cal capsule, oblique lateral view. Fig. 5. Female, buccal capsule, en face view. 

1

1 
m

m

2 3a 3b

4a 4b

5a 5b

1 
m

m

10
0 

μm
10

0 
μm

10
0 

μm

38



259

Ahead of print online version

Figs. 6–11. Photomicrographs (a) and line drawings (b) of Uncinaria sanguinis sp. n. from Australian sea lion (Neophoca cinerea). 
Fig. 6. Allotype female, anterior end, lateral view. Fig. 7. Allotype female, vulva, lateral view. Fig. 8. Allotype female, tail with 
mucron, lateral view. Fig. 9. Ovum. Fig. 10. Holotype male, copulatory bursa and spicules, dorsoventral view. Fig. 11. Male, copula-
tory bursa and gubernaculum, dorsoventral view with rays spread. Abbreviations: al – anterolateral; d – dorsal; ed – externodorsal; 
g – gubernaculum; gp – genital cone papillae; lv – lateroventral; ml – mediolateral; pl – posterolateral; pp – prebursal papillae; 
vv – ventroventral.
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T y p e  l o c a l i t y :  Seal Bay (35°59'37''S; 137°18'29''E), Kan-
garoo Island, South Australia, Australia.

O t h e r  l o c a l i t i e s :  Seal Bay, Kangaroo Island (35°59'40''S; 
137°19'00''E), Dangerous Reef, Spencer Gulf (34°48'54''S; 
136°12'43''E), and South Page Island, Backstairs Passage 
(35°46'37''S; 138°17'31''E); South Australia, Australia.

S i t e  o f  i n f e c t i o n :  Based on necropsy, adult and juvenile 
worms in large numbers in the small intestine of Australian 
sea lion pups. Unembryonated eggs released into the envi-
ronment with faeces.

T y p e  s p e c i m e n s :  Holotype male (AHC 35806), allotype 
female (AHC 35807), and 58 paratypes (AHC 35808 and 
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AHC 46823–46850) deposited in the Australian Helmintho-
logical Collection of the South Australian Museum, Ad-
elaide, Australia. Additional paratypes deposited in the 
U.S. National Parasite Collection, Maryland, USA (USNPC 
107521–107522; n = 20), Natural History Museum, London, 
UK (NHMUK 2013.11.13.1–2013.11.13.20; n = 20), and 
Helminthological Collection of the Institute of Parasitology, 
České Budějovice, Czech Republic (IPCAS N–1047; n = 2).

D N A  s e q u e n c e s  ( G e n B a n k  a c c e s s i o n  n u m -
b e r s ) :  Partial 28S rDNA: KF690639–KF690649; ITS1, 
5.8S rDNA, ITS2: KF690650–KF690670.

E t y m o l o g y :  The species epithet reflects the haemorrhage 
and effective exsanguination caused by large burdens of this 
parasite in the type host. The name is derived as Latin singu-
lar genitive.

Morphometrical variation. Measurements were ob-
tained for examined features with inter-host morphomet-
rical variation being greater than intra-host variation (Ta-

ble 1). Ranges of all morphometrical features overlapped 
for mature hookworms from Seal Bay, Dangerous Reef 
and South Page Island. Juvenile hookworms, collected 
from pups at Seal Bay with prepatent infections, differed 
from mature specimens by the absence of eggs in females 
and generally reduced magnitude for morphometrical 
values, however, no functional morphological differences 
were identified (Fig. 4).

Host age and hookworm sex significantly influenced 
hookworm body length (F8, 29 = 3.89, P = 0.003), with sig-
nificant sexual dimorphism, associated with maturity, ob-
served from 15 days (females longer than males, P < 0.05; 
Table 2). Whilst body length generally increased with host 
age and mature females were significantly longer than ju-
venile females (P < 0.05), males at 15 and 29 days were 
not significantly longer than juvenile males (P  >  0.05). 
Additionally, spicule length was not significantly related 
to host age (F6, 7 = 0.49, P = 0.796).

Table 1. Measurements of Uncinaria sanguinis sp. n. collected from Australian sea lion (Neophoca cinerea) pups.

Location DR SPI Seal Bay Seal Bay DR SPI Seal Bay Seal Bay
Sex Mature ♀ Juvenile ♀ Mature ♂ Juvenile ♂

Max. sample size 17 1 24 10 14 1 20 11
Hosts examined 10 1 13 7 8 1 10 6
Body length 10.2–20.2 (6.0) 16.9 10.1–18.7 (4.0) 4.5–11 (2.2) 6.6–11.4 (1.4) 10.1 8.5–11.5 (2.0) 3.8–8.9 (3.8)
Body width 450–590 (100) 540 320–580 (140) 110–380 (10) 350–450 (50) 460 350–470 (50) 165–380 (85)
Buccal capsule length 250–330 (30) - 255–320 (15) 200–275 (-) 220–265 (15) 220 215–280 (50) 163–250 (50)
Buccal capsule width 235–300 (50) - 225–300 (10) 185–275 (-) 175–225 (35) 190 190–270 (40) 180–250 (25)
Teeth height 40–75 (15) - 50–75 (-) 38–60 (-) 35–50 (15) - 40–80 (35) 25–45 (-)
Oesophageal length 1 000–1 150 (40) - 1 000–1 275 (125) 750–1 000 (-) 850–1 050 (150) 1 025 900–1 275 (25) 650–900 (100)
Oesophageal width 120–230 (50) - 170–240 (0) 90–195 (-) 125–195 (55) 165 160–220 (35) 70–180 (50)
Tail length 160–285 (35) 245 150–275 (95) 150–235 (-) - - - -
Vulva to posterior end 3.5–9.8 (0.9) 7.0 4.6–7.4 (1.9) 1.8–4.1 (-) - - - -
Average egg length 110–128 (15) - 115–135 (8) - - - - -
Average egg width 73–95 (7) - 55–88 (33) - - - - -
Gubernaculum length - - - - 50–100 (50) - 90–150 (45) 75–125 (50)
Spicule length - - - - 680–850 (110) 760 670–860 (60) 660–800 (110)

Measurements are given in mm for body length and vulva to posterior end. All other measurements are in µm. Reported values are minimum–maxi-
mum. Values in parentheses are the maximum range observed within individual hosts. Abbreviations: DR – Dangerous Reef ; SPI – South Page Island.

Table 2. Comparative measurements (mean ± standard deviation) of body and spicule lengths for Uncinaria sanguinis sp. n. 
collected from Australian sea lion (Neophoca cinerea) pups of known age.

Body length (mm) Spicule length (µm)

Pup age (days) n ♀ n ♂ n ♂

Juvenile

8 1 5.25a 3 5.48a ± 1.89 2 790 ± 14
11 2 9.70b ± 0.42 2 8.12b ±0.18 - -
12 2 8.75b ± 0.35 2 8.25b ± 0.00 2 740 ± 28
14 2 9.90b ± 1.56 2 7.94b ± 1.33 2 715 ± 78

Mature

15 4 13.18c ± 0.64 4 9.12bc ± 1.01 2 735 ± 92
27 4 16.38d ± 1.49 3 10.52c ± 0.96 2 735 ± 21
29 3 14.33ce ± 0.26 4 9.95bc ±0.77 3 723 ± 25
37 2 14.88cde ± 1.77 2 10.62c ± 0.53 - -
39 2 16.38de ± 0.53 2 11.00c ± 0.35 1 750

101 2 15.75de ± 2.83 - - - -

For each sex, means that do not share a superscript letter (a–e) are significantly different (P < 0.05).
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DNA sequences. Four DNA markers were amplified. 
The complete ITS1 of U. sanguinis was 364 bp long, ITS2 
was 227 bp long and the 5.8S rDNA sequence of U. san-
guinis was 153 bp long (Seal Bay, n = 10; Dangerous Reef, 
n = 10; South Page Island, n = 1). The partial 28S rDNA 
sequence of U. sanguinis was 992 bp long (Seal Bay, 
n = 5; Dangerous Reef, n = 5; South Page Island, n = 1). 

Molecular distance analysis. Uncinaria sanguinis 
from Seal Bay, Dangerous Reef and South Page Island 
demonstrated 100% sequence similarity at ITS1, ITS2, 
5.8S rDNA, and 28S rDNA. There was a single polymor-
phism (C/T) in ITS1 at position 199 in one worm (AHC 
46824; KF690651), which was not present in another 
worm from the same host (AHC 46825; KF690652). The 
polymorphism was confirmed by sequencing PCR prod-
uct generated using two different DNA polymerases. The 
historical Australian sea lion and New Zealand fur seal 
hookworm ITS sequences (HE962176 and HE962175, re-
spectively) demonstrated 100% similarity to U. sanguinis 
sequences. Additionally, the New Zealand fur seal hook-
worm ITS sequence (HE962175) demonstrated an ambig-
uous nucleotide at position 199 in ITS1, corresponding to 
the polymorphic site in worm AHC 46824 (KF690651). 
Pairwise comparisons with Uncinaria from other otariid, 
phocid, canid and felid hosts demonstrated high levels of 
sequence similarities at ITS1 and ITS2 (Table S1). Fewer 
differences were evident between hookworm species at 
the 28S rDNA locus; sequence similarity to U. sanguinis 

was 99.3–99.8% (Table S2). The 5.8s rDNA locus was 
invariant across all Uncinaria species.

Molecular character analysis. Bayesian analysis 
demonstrated 100% support (posterior probability) for 
one phocid and three otariid hookworm-clades (Figs. 12, 
14). The phocid clade consists of two sequences, rep-
resenting two putative new species, one each from the 
southern elephant seal and the Mediterranean monk seal. 
The otariid clade is further divided into the North and 
South American clades and the Oceanic clade (Figs. 12, 
14). The North American otariid clade contains sequences 
belonging to U. lucasi from the northern fur seal and the 
Steller sea lion, and sequences belonging to the putative 
new species Uncinaria ‘species A’ sensu Nadler et al. 
(2000) from the California sea lion. The South American 
otariid clade consists exclusively of sequences belonging 
to U.  hamiltoni from the South American sea lion and 
the South American fur seal. The Oceanic otariid clade 
consists of sequences belonging to U. sanguinis from 
the Australian sea lion and two sequences from unnamed 
Uncinaria spp. from the New Zealand sea lion and the 
Australian fur seal, respectively. Hookworms from the 
New Zealand fur seal are provisionally considered to be 
U. sanguinis sp. n. on the basis of limited data. 

Maximum Likelihood and Maximum Parsimony anal-
yses provided 100% bootstrap support for separate phocid 
and otariid hookworm-clades (Figs. 12–14). The Maxi-
mum Likelihood analysis demonstrated 100% support for 
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Figs. 12, 13. Phylogenetic relationships of host-associated Uncinaria spp. estimated with concatenated ITS1, ITS2, and 28S rDNA 
sequence data. Fig. 12. Maximum Likelihood tree based on the K2 model in MEGA5 with the highest log likelihood (-2117.3390).
Numbers above the nodes represent bootstrap values (1 000 replicates), values below the branches represent Bayesian posterior 
probabilities based on the K2 model calculated in MrBayes. The tree is drawn to scale, with branch lengths measured in the number 
of substitutions per site. Fig. 13. The majority consensus rule tree constructed using Maximum Parsimony based on SPR algorithm 
in MEGA5. Numbers above the nodes represent bootstrap values (1 000 replicates). The multiple sequence alignment included nine 
nucleotide sequences and a total of 1 149 positions in the final dataset. Abbreviations: AF – Arctic fox, Alopex lagopus; AFS – Aus-
tralian fur seal, Arctocephalus pusillus doriferus; ASL – Australian sea lion, Neophoca cinerea; CSL – California sea lion, Zalo-
phus californianus; MMS – Mediterranean monk seal, Monachus monachus; NZSL – New Zealand sea lion, Phocarctos hookeri; 
NFS – northern fur seal, Callorhinus ursinus; SASL – South American sea lion, Otaria byronia; SAFS – South American fur seal, 
Arctophoca australis; SES – southern elephant seal, Mirounga leonina; SSL – Steller sea lion, Eumetopias jubatus.

12 13
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Fig. 14. Schematic of phylogenetic relationships of pinniped Uncinaria spp. constructed from the majority consensus of Bayesian 
inference, Maximum Likelihood and Maximum Parsimony methods with concatenated ITS1, ITS2, and 28S rDNA sequence data. 
Uncinaria felidis and Uncinaria sp. from Arctophoca forsteri are excluded due to incomplete data. The bars indicate nucleotide 
character changes with reference to the outgroup Uncinaria stenocephala. Homoplastic characters shared with U. stenocephala are 
indicated by white bars with the derived character state at this position indicated in parentheses. Nucleotide gaps are indicated by ‘#’. 
Alignment positions are specific to each locus (a – ITS1; b – ITS2; c – 28S rDNA). Four clades are evident, one from phocid hosts 
and three from otariid hosts. 

three otariid hookworm-clades and moderate (67%) sup-
port for the three sequence lineages within the Oceanic 
clade (Fig. 12). The Maximum Parsimony analysis mod-
erately (61%) supported the South American and Oceanic 

clades and, in contrast to the other phylogenetic analy-
ses, provided only weak (< 50%) support for separate 
sequences within the Oceanic clade (Fig. 13). However, 
fixed rDNA character state changes provide evidence for 
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independent evolutionary lineages and species delimita-
tion (Fig. 14).

Differential diagnosis. Uncinaria sanguinis demon-
strates the general morphological characteristics of the 
Ancylostomatinae and the specific features of the genus 
Uncinaria, including the dorsally directed anterior ex-
tremity, a globular buccal capsule with continuous walls, 
well-developed cutting plates, and a dorsal gutter (Li-
chtenfels 2009). The species can be differentiated from 
all other named species in the genus Uncinaria on the 
basis of morphological features and available molecular 
data. Morphologically, U. sanguinis is very similar to 
the otariid hookworms U. lucasi and U. hamiltoni, dem-
onstrating subtle morphological differences. An annular 
thickening of the base of the buccal capsule, observed in 
U. sanguinis and U. hamiltoni, was reported absent in the 
description of U. lucasi, but subsequently noted in other 
specimens (Lyons and DeLong 2005). Male specimens 
of U. sanguinis exhibit shorter anterolateral rays relative 
to the other lateral rays, a feature shared with U. hamil-
toni, differentiating these species from U.  lucasi which 
exhibits lateral rays of almost equal length (Baylis 1947). 
The relatively shorter externodorsal rays of U. sanguinis 
distinguish it from U. hamiltoni – see Baylis (1933). 

Female specimens of U. sanguinis are morphologically 
indistinguishable from U. lucasi and U. hamiltoni. Unci-
naria sanguinis is definitively identified and delimited 
from U. lucasi by thirteen fixed character state changes at 
three loci (ITS1, n = 3; ITS2, n = 6; 28S, n = 4) and from 
U. hamiltoni by seven changes at two loci (ITS1, n = 5; 
28S, n = 2).

The size of eggs from U. sanguinis is similar to those 
from U. lucasi and U. hamiltoni, and is approximately 
twice the size of eggs from Uncinaria spp. parasitic in 
terrestrial mammals, differentiating female otariid hook-
worms. The only other native Australian hookworm, Unc-
inaria hydromyidis Beveridge, 1980, described from the 
Australian water rat, Hydromys chrysogaster Geoffroy, 
a murid host in north-eastern Queensland, may be further 
distinguished from U. sanguinis by its relatively longer 
ventral and dorsal rays, blunt spicule tips, the absence of 
the annular buccal capsule thickening, and female speci-
mens feature inconspicuous vulval lips (Beveridge 1980). 
Uncinaria bidens (Molin, 1861), found in procyonids 
(Carnivora), is differentiated from U.  sanguinis by rela-
tively longer ventral rays and the angulation of the lateral 
ray tips (Olsen 1968). 

The felid hookworms, U. felidis and Uncinaria maya 
Hasegawa, 1989, differ from U. sanguinis by their pos-
terolateral, externodorsal and dorsal rays being of equal 
length and female specimens exhibit prevulvar flaps or 
protruding anterior lips (Maplestone 1939, Hasegawa 
1989). Uncinaria bauchoti Chabaud, Brygoo et Tchépra-
koff, 1964 and Uncinaria olseni Chabaud et Durette-
Desset, 1975, identified from tenrecid (Afrosoricida) 

and tupaiid (Scandentia) hosts, respectively, exhibit 
large deirids and have been considered by some authors 
(Chabaud et al. 1966, Lichtenfels 2009) to represent 
a subgenus, Megadeirides Chabaud, Bain et Houin, 1966. 
All other Uncinaria species, found in carnivore hosts 
from the ailurid, canid, mustelid and ursid families, may 
be morphologically discriminated from U. sanguinis and 
each other on the basis of their lateral rays using Olsen’s 
(1968) key. Molecularly, U. sanguinis is delimited from 
U.  stenocephala by 54 fixed character state changes at 
three loci (ITS1, n = 27; ITS2, n = 24; 28S, n = 3) and 
from U. felidis by 32 changes in ITS2.

DISCUSSION
Hookworms collected from Australian sea lions were 

found to belong to a single novel species, Uncinaria 
sanguinis sp. n. Morphological and molecular investiga-
tions did not discriminate between specimens from three 
South Australian colonies and provided no evidence for 
the presence of cryptic species or geographical variants. 
This is the third species within the genus Uncinaria to be 
described and named from otariid hosts and is morpho-
logically most similar to U. lucasi and U. hamiltoni. Dif-
ferences in the relative lengths of the bursal rays differ-
entiate these species and fixed rDNA sequence diversity 
demonstrates independent evolutionary lineages.

The potential for host-induced effects on parasite mor-
phology engenders caution when deciding whether we 
have new species (George-Nascimento et al. 1992, Pérez-
Ponce de León and Nadler 2010). As such, assessing the 
normal range of morphometric variation within a species 
is of critical importance for accurate species-description 
and comparisons. We found little intra-host variation for 
specimens of U. sanguinis from Australian sea lions. Sim-
ilarly, Olsen and Lyons (1965) reported no variation in 
the size of U. lucasi within individual northern fur seals. 
These findings support the hypothesis that pinnipeds ac-
quire hookworm infection over a short period of time, 
likely via the transmammary route shortly after birth 
(Olsen and Lyons 1965). However, we also observed 
large morphometric variation between hosts, in part relat-
ed to host age, highlighting the importance of examining 
specimens from multiple host-individuals across a range 
of ages in order to assess the extent of species variation. 
Interestingly, juvenile hookworms demonstrated no func-
tional morphological differences when compared to adult 
hookworms and may be associated with host-pathology, 
which has implications for the detection of disease in live 
animals. 

The wide morphometric ranges we obtained overlap 
with those of other Uncinaria spp., suggesting limited 
utility for quantitative morphometrics for species dis-
crimination within this genus. Similar conclusions were 
reached by other authors who identified significant host-
associated morphometric differences within U. hamiltoni 
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from the South American sea lion and South American fur 
seal (George-Nascimento et al. 1992) and within U. lu-
casi from the northern fur seal and Steller sea lion (Olsen 
1952, Nadler et al. 2013). Whether these differences were 
host-induced or due to age-dependent variation is unclear 
due to limited or unreported host sample sizes and un-
known host ages. Regardless, these findings support the 
need to employ molecular techniques to delimit and de-
scribe morphologically-similar species.

Hookworms from the Australian fur seal, New Zealand 
fur seal, and New Zealand sea lion cluster with U. san-
guinis within the Oceanic clade. Morphological differenc-
es between Oceanic hookworms have not been described 
although molecular differences delineate two species 
from the Australian fur seal and New Zealand sea lion, 
respectively, in addition to U. sanguinis from the Austral-
ian sea lion. Hookworms from the New Zealand fur seal 
are thus provisionally considered to be U. sanguinis. An 
alternative viewpoint may be that all hookworms within 
the Oceanic clade are U. sanguinis and that molecular 
differences reflect intraspecific or geographical variation 
(Ramos et al. 2013). Whether U. sanguinis demonstrates 
host-specificity or is capable of infecting other hosts re-
mains to be tested. Investigation of hookworm population 
structure at DNA markers subjected to greater rates of 
substitution, such as mitochondrial DNA, may demon-
strate the level of genetic interchange between colonies 
and host-associated hookworms and clarify their taxo-
nomic identities further (Gasser and Newton 2000).

Recognising, describing and identifying parasites of 
free-ranging wildlife species are critical processes for the 
comprehensive investigation and management of associ-
ated disease (Thompson et al. 2010). Delimiting parasitic 
species is essential for examining host-parasite-environ-
ment-anthropogenic interactions, implementing and moni-

toring management programs, and ensuring the conserva-
tion of parasites and their hosts. Hookworm infection is 
a recognised cause of morbidity and mortality in otariid 
hosts (Castinel et al. 2007, Chilvers et al. 2009, DeLong et 
al. 2009, Spraker and Lander 2010). In this study, we cou-
pled morphological analysis with molecular techniques to 
describe and identify a novel species of hookworm in the 
Australian sea lion. This work contributes towards resolv-
ing the taxonomic uncertainty within the genus Uncinaria 
and provides critical data regarding an important pathogen 
of an endangered mammal. Further investigation and for-
mal identification of the species of hookworms parasitis-
ing other pinniped hosts is recommended.
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Table S1. Pairwise comparisons of the internal transcribed spacer 1 and 2 sequences between host-associated Uncinaria spp. 

ASL NZFS AFS NZSL SASL SAFS NFS SSL CSL SES MMS AF

ASL 100.00 99.73 99.18 98.63 98.63 99.18 99.18 97.81 96.99 97.27 92.60
NZFS 100.00 99.73 99.18 98.63 98.63 99.18 99.18 97.81 96.99 97.27 92.60
AFS 100.00 100.00 99.45 98.90 98.90 99.45 99.45 98.08 97.27 97.54 92.88
NZSL 99.56 99.56 99.56 98.90 98.90 99.45 99.45 98.08 97.27 97.54 92.60
SASL 100.00 100.00 100.00 99.56 100.00 98.90 98.90 98.08 96.72 96.99 92.05
SAFS 100.00 100.00 100.00 99.56 100.00 98.90 98.90 98.08 96.72 96.99 92.05
NFS 97.36 97.36 97.36 96.92 97.36 97.36 100.00 98.63 97.27 97.54 92.60
SSL 97.36 97.36 97.36 96.92 97.36 97.36 100.00 98.63 97.27 97.54 92.60
CSL 97.36 97.36 97.36 96.92 97.36 97.36 99.12 99.12 95.90 96.17 91.51
SES 91.63 91.63 91.63 91.19 91.63 91.63 90.75 90.75 89.87 99.73 93.99
MMS 90.75 90.75 90.75 90.31 90.75 90.75 89.87 89.87 88.99 98.24 94.26
AF 89.43 89.43 89.43 89.87 89.43 89.43 88.55 88.55 87.67 90.75 89.87
TLC 85.96 85.96 85.96 86.40 85.96 85.96 85.53 85.53 84.65 86.40 85.53 87.22

Sequence similarity in % for internal transcribed spacer 1 (ITS1, top right triangle) and the internal transcribed spacer 2 (ITS2, bottom left trian-
gle). Abbreviations: ASL – Australian sea lion, Neophoca cinerea; NZFS – New Zealand fur seal, Arctophoca australis forsteri; AFS – Australian 
fur seal, Arctocephalus pusillus doriferus; NZSL – New Zealand sea lion, Phocarctos hookeri; SASL – South American sea lion, Otaria byronia; 
SAFS – South American fur seal, Arctophoca australis; NFS – northern fur seal, Callorhinus ursinus; SSL – Steller sea lion, Eumetopias jubatus; 
CSL – California sea lion, Zalophus californianus; SES – southern elephant seal, Mirounga leonina; MMS – Mediterranean monk seal, Monachus 
monachus; AF – Arctic fox, Alopex lagopus; TLC – Tsushima leopard cat, Prionailurus bengalensis euptilura.

Table S2. Pairwise comparisons showing sequence similarity at 28S rDNA between host-associated Uncinaria spp. 

AFS NZSL SASL SAFS NFS SSL CSL SES MMS AF

ASL 99.82 99.82 99.64 99.64 99.28 99.28 99.46 99.28 99.28 99.46
AFS 100.00 99.82 99.82 99.46 99.46 99.64 99.46 99.46 99.64

NZSL 99.82 99.82 99.46 99.46 99.64 99.46 99.46 99.64
SASL 100.00 99.64 99.64 99.82 99.64 99.64 99.82
SAFS 99.64 99.64 99.82 99.64 99.64 99.82
NFS 100.00 99.82 99.28 99.28 99.46
SSL 99.82 99.28 99.28 99.46
CSL 99.46 99.46 99.64
SES 100.00 99.82

MMS 99.82

Abbreviations: ASL – Australian sea lion, Neophoca cinerea; AFS – Australian fur seal, Arctocephalus pusillus doriferus; NZSL – New Zealand sea 
lion, Phocarctos hookeri; SASL – South American sea lion, Otaria byronia; SAFS – South American fur seal, Arctophoca australis; NFS – northern 
fur seal, Callorhinus ursinus; SSL – Steller sea lion, Eumetopias jubatus; CSL – California sea lion, Zalophus californianus; SES – southern elephant 
seal, Mirounga leonina; MMS – Mediterranean monk seal, Monachus monachus; AF – Arctic fox, Alopex lagopus.
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Abstract Understanding the fundamental factors influencing
the epidemiology of wildlife disease is essential to determin-
ing the impact of disease on individual health and population
dynamics. The host–pathogen–environment relationship of
the endangered Australian sea lion (Neophoca cinerea) and
the parasitic hookworm, Uncinaria sanguinis, was investigat-
ed in neonatal pups during summer and winter breeding
seasons at two biogeographically disparate colonies in South
Australia. The endemic occurrence of hookworm infection in
Australian sea lion pups at these sites was 100 % and post-
parturient transmammary transmission is likely the predomi-
nant route of hookworm infection for pups. The prepatent
period for U. sanguinis in Australian sea lion pups was deter-
mined to be 11–14 days and the duration of infection approx-
imately 2–3 months. The mean hookworm infection intensity
in pups found dead was 2138±552 (n=86), but a significant
relationship between infection intensity and faecal egg count
was not identified; infection intensity in live pups could not be
estimated from faecal samples. Fluctuations in infection in-
tensity corresponded to oscillations in the magnitude of colo-
ny pup mortality, that is, higher infection intensity was signif-
icantly associated with higher colony pup mortality and re-
duced pup body condition. The dynamic interaction between
colony, season, and host behaviour is hypothesised to modu-
late hookworm infection intensity in this species. This study
provides a new perspective to understanding the dynamics of
otariid hookworm infection and provides evidence that
U. sanguinis is a significant agent of disease in Australian

sea lion pups and could play a role in population regulation in
this species.

Keywords Australian sea lion .Neophoca cinerea .

Hookworm .Uncinaria sanguinis . Epidemiology .Wildlife
disease

Introduction

Infectious disease plays an important role in the population
dynamics of many free-ranging species (Smith et al. 2009;
Thompson et al. 2010). Population regulation by endemic
infectious disease is mediated by the dynamic interaction of
host–pathogen–environment factors and may have either pos-
itive or negative effects (Telfer et al. 2002; Irvine 2006). For
example, cowpox virus infection of wood mice (Apodemus
sylvaticus) and bank voles (Clethrionomys glareolus) in-
creases mortality in winter but increases survival in summer
by delaying host maturation; the resulting avoidance of the
physiological costs of reproduction outweighs the negative
effects of infection (Telfer et al. 2005). As the prevalence of
cowpox virus is density dependent, infection is hypothesised
to significantly influence population dynamics, as does
Trichostrongylus tenuis infection in red grouse (Lagopus
lagopus scoticus) (Hudson et al. 1998) and Ostertagia
gruehneri infection in Svalbard reindeer (Rangifer tarandus
platyrhynchus) (Albon et al. 2002). Importantly, infectious
disease has been implicated in mass mortalities, declines of
wildlife populations, and species extinction, with changes to
host, pathogen, and environment factors likely precipitating
these events by increasing the occurrence and pathogenicity of
infectious disease agents (Smith et al. 2009). For this reason,
gaining an understanding of the fundamental factors influenc-
ing the epidemiology of wildlife disease is essential to deter-
mining its impact on individual and population health and
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demographic regulation, and to inform conservation
management.

Hookworms (Uncinaria spp.) are haematophagous parasit-
ic nematodes predominantly of the small intestine. They are
associated with anaemia, reduced growth rates, and mortality
of pups in several otariid species (Lyons et al. 2001; Chilvers
et al. 2009; DeLong et al. 2009; Seguel et al. 2011). A key
feature of the life cycle ofUncinaria lucasi in the northern fur
seal (Callorhinus ursinus) is the transmammary transmission
of infective third-stage hookworm larvae to pups during the
immediate post-parturient period (Olsen and Lyons 1965).
This route of hookworm infection is also supported by studies
in the Juan Fernandez fur seal (Arctophoca philippii philippi),
California sea lion (Zalophus californianus), and New
Zealand sea lion (Phocarctos hookeri) (Sepúlveda and
Alcaíno 1993; Lyons et al. 2003; Castinel et al. 2007). The
duration of patent hookworm infection varies among species,
being approximately 6–8 weeks in northern fur seal pups
(Lyons et al. 2011) and 6–8 months in South American fur
seal (Arctophoca australis), South American sea lion (Otaria
byronia), and California sea lion pups (Lyons et al. 2000a;
Hernández-Orts et al. 2012; Katz et al. 2012), whilst New
Zealand sea lion pups are infected for at least 2–3 months
(Castinel et al. 2007). Free-living third-stage larvae hatch from
eggs passed in faeces, infect hosts either orally or percutane-
ously, and then migrate predominantly to the ventral abdom-
inal blubber where they remain dormant until late pregnancy
or lactation (Olsen and Lyons 1965). The longevity of tissue-
stage hookworm larvae has been observed to be at least 6 and
16 years in captive non-regularly breeding northern fur seal
and California sea lion females, respectively (Twisleton-
Wykeham-Fiennes 1966; Lyons and Keyes 1984). Unlike in
human and canine hosts, maturation of tissue-stage larvae to
adult hookworms has not been observed but could potentially
occur as patent infection of older age classes has been reported
at 1–22 % prevalence (Olsen 1958; George-Nascimento et al.
1992; Lyons et al. 2012). For this reason, adult males are
referred to as dead-end hosts when considering infection in
pups but are considered to have potential to play a role in
parasite dispersal (Haynes et al. 2013). This life cycle is
considered typical for hookworms in otariids (Lyons et al.
2005); however, the validity of extrapolating between parasitic
species and hosts is uncertain.

Factors implicated in the epidemiology and disease out-
comes of hookworm infection in otariids include colony sub-
strate, host genetics and behaviour, and hookworm species
(George-Nascimento et al. 1992; Spraker et al. 2007; Chilvers
et al. 2009; Lyons et al. 2011). Greater hookworm infection
intensity and prevalence have been associated with sandy
substrates over rocky substrates, presumably due to enhanced
survival of free-living larvae (Sepúlveda 1998; Lyons et al.
2000b; Lyons et al. 2005; Ramos 2013), and host behavioural
preferences for substrate type interacts with host density to

affect individual exposure to free-living larvae (Lyons et al.
2005; Lyons et al. 2012). Studies in northern fur seals indicate
that infection intensities greater than 100 hookworms are
associated with haemorrhagic enteritis and anaemia (Olsen
1958; Keyes 1965), although methods for determining hook-
worm infection intensity in live pups have not been validated
or employed in other otariid studies. Three species of hook-
worm have been described and named in otariids—U. lucasi
from the northern fur seal and Steller sea lion (Eumetopias
jubatus), Uncinaria hamiltoni from the South American sea
lion and South American fur seal, and Uncinaria sanguinis
from the Australian sea lion (Neophoca cinerea) (Baylis 1933;
Baylis 1947; Nadler et al. 2013; Marcus et al. 2014)—and
greater species diversity has been demonstrated in other
otariid hosts (Nadler et al. 2013). However, relative pathoge-
nicity of different species has not been determined due to the
confounding effects of differential host and environmental
factors on the expression of disease.

The life history of the Australian sea lion offers a unique
comparative system to investigate the host–pathogen–envi-
ronment relationship in the epidemiology of neonatal hook-
worm infection. Australian sea lions exhibit an extended
breeding cycle of approximately 18 months, with 90 % of
pups in each colony typically born over a 4–5-month period
(Higgins 1993; Gales et al. 1994; McIntosh et al. 2012),
enabling an investigation of the effects of alternate ‘summer’
and ‘winter’ breeding seasons. Additionally, females demon-
strate a high degree of natal site fidelity (Campbell et al. 2008;
Lowther et al. 2012), facilitating an examination of the effects
of colony-specific factors such as substrate type and host
density. Two of the largest breeding colonies in South
Australia, Seal Bay on Kangaroo Island and Dangerous Reef
in Spencer Gulf, demonstrate disparate biogeographical fea-
tures. Seal Bay extends over approximately 3 km of sandy
beaches, rocky coastal platforms, and sand dunes covered
predominantly with coast saltbush (Atriplex cinerea) and tea
tree (Melaleuca lanceolata) scrub. The approximate pup pro-
duction is 250 pups per breeding season (McIntosh et al.
2012). In contrast, Dangerous Reef is a low-lying granite
and limestone island approximately 250-m long and 100-m
wide, with minimal vegetation and a substrate of rock and
guano. Given its geographical size and pup production of
approximately 500 pups each breeding season (Goldsworthy
et al. 2012), Dangerous Reef has a higher population density
than Seal Bay.

The Australian sea lion is classified as endangered in the
IUCN Red List of Threatened Species (Goldsworthy and
Gales 2008) and an understanding of the role of infectious
disease in population health and demography is a key knowl-
edge gap for the species (Goldsworthy et al. 2009). Whilst
U. sanguinis has been identified fromAustralian sea lion pups
at both Seal Bay and Dangerous Reef, the epidemiology of
infection in this host has not been reported (Marcus et al.
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2014). Both colonies demonstrate an oscillating pattern of
high and low pup mortality associated with summer and
winter breeding seasons, respectively, at Seal Bay (summer
high ~35 %; winter low ~23 %), and the opposite seasonal
association at Dangerous Reef (winter high ~39 %; summer
low ~14 %) (Goldsworthy et al. 2012; Goldsworthy et al.
2013). Most Australian sea lion pup mortality occurs before
2 months of age prior to pup emigration between colonies and,
based on gross necropsy findings, has been largely attributed
to trauma and starvation, although up to 49 % of mortality is
attributed to ‘unknown cause’ (Higgins and Tedman 1990;
Gales et al. 1992; McIntosh and Kennedy 2013). As
Australian sea lion females first give birth during the alternate
season to which they were born (Gales et al. 1994), propor-
tionally more primiparous females will give birth during high
mortality breeding seasons due to the increased survival of
lowmortality breeding season pup cohorts. Having potentially
accumulated tissue-stage hookworm larvae over an extended
period of time, primiparous females may transmit higher
numbers of hookworm larvae to their pups compared to
multiparous females, potentially contributing towards higher
pup mortality rates and the maintenance of the oscillating
pattern of pup mortality. However, the role of disease and
the factors contributing towards this pattern of mortality are
unknown (Goldsworthy et al. 2013).

This study investigates the hypothesis of neonatal
transmammary transmission of U. sanguinis in the
Australian sea lion and determines the timing of key life cycle
events. The prevalence and intensity of hookworm infection
in N. cinerea pups are determined to test the hypothesis that
hookworm infection is a significant agent of disease in
Australian sea lion pups and that hookworm infection dynam-
ics may contribute to the cyclical pup mortality at Seal Bay
and Dangerous Reef. The interaction of host–pathogen–envi-
ronment factors that may influence the epidemiology and
impact of hookworm infection on pupmorbidity and mortality
are investigated. The findings of this study will contribute
towards a greater understanding of the determinants of popu-
lation health and demography and to informing conservation
management of this endangered pinniped species.

Materials and methods

Study sites and sample collection

Field work was conducted during consecutive breeding sea-
sons at Seal Bay (35.994° S, 137.317° E) in 2010 and 2012
and at Dangerous Reef (34.815° S, 136.212° E) in 2011 and
2013, facilitating data collection from one winter and one
summer breeding season, respectively, at each colony. Pup
mortality was high in 2011 (38.9 %) and 2012 (41.4 %) and
low in 2010 (24.5 %) (Goldsworthy et al. 2012; Goldsworthy

et al. 2013). Pup mortality data are not available for the 2013
Dangerous Reef breeding season, but it was considered likely
to be a low mortality season on the basis of historical trends
(Goldsworthy et al. 2012).

For both live pups and pups found dead, standard length
(straight line distance from nose to tail tip to the nearest
0.5 cm), body weight (measured to the nearest 0.1 kg; Salter
hanging scale, Avery Weigh-Tronix, West Midlands, UK),
and pup sex were recorded. Body condition was classified as
poor, fair, good, or excellent, based upon the palpable prom-
inence of the vertebral spinous processes, the pelvic bones,
and skeletal muscle and adipose tissues. Moult status was
classified as non-moulting or moulting based on the presence
of lighter-coloured pelage in moulting pups.

Live pups: Australian sea lion pups (n=437) were captured by
hand or net during maternal absence and manually restrained
within canvas bags for examination and sample collection.
During 2010, pups ≥10 kg were sampled on one occasion
only, whilst in other years, pups including those <10 kg body
weight were captured on up to three occasions at least 14 days
apart. The standard length and body weight of pups across all
capture events were 60.0–95.5 cm (median 72.5 cm; n=537)
and 5.1–23.1 kg (median 10.7 kg; n=537), respectively.
Faecal samples (n=559) were obtained per rectum using
rayon-tipped dry swabs (Copan Diagnostics, Murrieta, USA)
within a lubricated open-ended polyethylene sheath (modified
1–3-ml transfer pipette, Livingstone International, Sydney,
Australia) and were also collected from the ground if known
pups were observed to defecate at other times. Faecal sam-
ples were stored cooled at 4 °C or frozen at −20 °C prior
to analysis. As part of ongoing population studies and to
facilitate individual pup identification for recapture, sampled
pups were uniquely identified by a bleach mark on their
lumbosacral pelage (Schwarzkopf Nordic Blonde, Henkel
Australia, Melbourne, Australia), a subcutaneous passive in-
tegrated transponder (23-mm microchip, Allflex Australia,
Brisbane, Australia), and/or tags applied to the trailing edge
of both fore-flippers (Supertag Size 1 Small, Dalton ID,
Oxfordshire, UK). Bleach marks were no longer present after
the first moult commencing at approximately 3–4 months of
age (Gales et al. 1994).

Pups found dead: Australian sea lion pups found dead were
collected for immediate necropsy where possible (n=87) or
were frozen at −20 °C until necropsy was performed (n=17).
The standard length and body weight of examined pups were
54.0–84.0 cm (median 70 cm; n=101) and 3.8–18.4 kg (me-
dian 6.3 kg; n=99), respectively. Necropsy data from an
additional 27 pups were excluded from this study due to
previous treatment with an anthelmintic or due to insufficient
sample collection. Faeces were ‘milked’ from the transected
descending colon and stored cooled at 4 °C or frozen at
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−20 °C prior to analysis. The entire small intestine was trans-
ferred to a clean bucket, the mesentery and mesenteric lymph
node were removed, and the intestine was straightened by
hand. One litre of rainwater (Seal Bay) or seawater
(Dangerous Reef) was added to the bucket, and the entire
length of the small intestine was opened with blunt-tipped
scissors and rinsed. The small intestine was then examined
and run between the fore-finger and thumb so that all free and
attached hookworms were retained. The entire intestinal
contents (n=90) or representative 25-ml triplicate ali-
quots (n=7) were preserved with 10 % neutral buffered
formalin (Fronine, Sydney, Australia).

Determination of pup age

The extended breeding season of the Australian sea lion
precludes the estimation of pup age based on peak parturition
dates, a method utilised in other otariid species (Lyons et al.
2005; Castinel et al. 2007; Ramos 2013). Standard length and
moult status were instead used as proximate measures of age.
In 2012, a cohort of known-age pups (n=72) was identified at
Seal Bay by recording the geographic location and identity
(microchip/tag number, distinctive scars) of female Australian
sea lions with newborn pups during daily or twice-weekly
observations. Parturition dates were thereby determined with
an accuracy of 0–4 days. Pups were captured at approximately
14 days of age for marking and sampling. Misidentification
prior to first capture was considered unlikely due to the low
density of animals and the minimal movement of pups away
from the site of parturition within the first few weeks of life in
this colony. Subsequent observations of maternal–pup pairs
confirmed pup identity and provided birthdates for other
marked pups. Faecal and intestinal samples (n=145; 1–4 time
points per pup) were collected from pups aged 0–137 days.

Hookworm infection status

Hookworm eggs per gram of faeces (EPG) were estimated
using a modified McMaster flotation with saturated NaCl
solution. For small faecal samples, a direct smear was exam-
ined to determine the presence/absence of hookworm eggs.
Hookworm infection intensity in dead pups was estimated
from total or aliquot counts of the posterior ends of hookworm
specimens examined at ×8–50 magnification using a Nikon
SMZ–2B stereomicroscope (Nikon, Tokyo, Japan) and the
sex of worms was recorded. Pup hookworm infection status
was classified as patent (faecal samples containing eggs),
negative (live pups with no eggs in faeces; dead pups
with no eggs in faeces and no intestinal hookworm
specimens observed at necropsy), or prepatent (dead
pups without eggs in faeces but with intestinal hook-
worms observed at necropsy). Thus, the ‘negative’

group may have included prepatent infections in live
pups.

Statistical analysis

Hookworm prevalence: Crude prevalence was calculated sep-
arately for live and dead pups as the number of hookworm-
positive (patent or prepatent) samples divided by the total
number of samples. The patency of hookworm infection in
dead pups was calculated as the number of dead pups with
patent infection divided by the total number of hookworm-
positive dead pups, and associations with colony (Seal Bay/
Dangerous Reef), season (winter/summer), mortality level
(high/low), and year of sampling (representing the interaction
between colony and season) were analysed with maximum
likelihood chi-square tests. The crude period prevalence was
calculated for each breeding season as the number of pups
with at least one hookworm-positive sample divided by the
total number of live and dead pups sampled. Stillborn
pups (n=4) were excluded from statistical analysis.

To assess the association of hookworm infection preva-
lence in live pups with potential risk factors (standard length,
body weight, body condition, moult status, pup sex, and year
of sampling), generalised linear mixed models (GLMM) with
a binomial distribution and logit link function were fitted to
the data. The factors colony, season, and mortality level were
excluded due to aliasing with year of sampling, providing
greater resolution to investigate factor effects. Pup identity
was specified as the random factor to account for the repeated-
measures design. Models were constructed by the backwards
stepwise removal of parameters with low explanatory power
(Wald F-test P>0.05). The results of the fitted model are
presented graphically and reported as odds ratios with 95 %
confidence intervals (CI). The association of hookworm in-
fection prevalence in dead pups with potential risk factors was
assessed as for live pups, excluding the random factor. Due to
small sample sizes for pups found dead, the categorical levels
of body condition ‘good’ (n=8) and ‘excellent’ (n=2) were
combined and moulting pups (n=4) were excluded from
model construction. Prevalence data from pups of known
age were categorised according to hookworm infection status,
and descriptive statistics are presented. The results of the
GLMM and known-age pup analysis were used to determine
selection criteria to calculate the proximate-age-specific peri-
od prevalence as an estimate of the true occurrence of hook-
worm infection.

Hookworm infection intensity: The association between
hookworm infection intensity in dead pups and potential risk
factors was assessed using general linear models (GLM) fitted
using REML. Models were constructed as for hookworm
prevalence, with infection patency and age included as addi-
tional potential risk factors in the models. Results are reported
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as predicted back-transformed means with 95 % CI and were
compared using Fisher’s protected LSD. Descriptive statistics
of hookworm infection intensity of pups born at Seal Bay in
2012 to females of known birth cohort are also presented. To
investigate the utility of hookworm egg counts to predict
infection intensity, differences in EPG between live and dead
pups was assessed using linear mixed models fitted using
REML with a normal distribution and identity link function.
Pup identity was specified as the random factor and an appro-
priate correlation structure was chosen using the change in
deviance. The number of hookworms of each sex in dead pups
was tested for equality using a two-sample paired T-test. The
relationship between EPG and hookworm infection intensity
in dead pups was modelled using GLM, constructed as de-
tailed earlier. For each model, where appropriate, the assump-
tions of homogeneity of residual variance and normality were
checked by visually assessing the fitted value plots and histo-
grams of residuals, and linearity of continuous predictors was
accepted in binomial models for correlation coefficients ≥0.7
of the log odds of categorised variates against their midpoint;
where necessary, the data were power or log-transformed. The
amount of variance explained by the models was estimated
using the marginal coefficient of determination (R2

m; fixed
factors only) and the conditional coefficient of determination
(R2

c; fixed and random factors) following the method of
Nakagawa and Schielzeth (2013). Negative R2

c values
resulting from negative variance components of the random
model were adjusted to zero. All statistical analyses were
performed using GenStat 16.1 (VSN International, Hemel
Hempstead, UK) and statistical significance was considered
at P<0.05.

Results

Hookworm prevalence

Crude measures of hookworm prevalence for Australian sea
lion pups at Seal Bay and Dangerous Reef are shown in
Table 1. The age structure of pups found dead, as indicated

by the level of patency, did not significantly differ with
colony (χ2=0.21, df=1, P=0.649), season (χ2=0.02, df=
1, P=0.893), or year of sampling (χ2=5.75, df=3, P=0.125);
however, the association between patency and mortality level
approached significance (χ2=3.52, df=1, P=0.061), with a
greater proportion of dead pups having prepatent infections
during high mortality seasons (34.4 %; n=64) compared to
low mortality seasons (15.4 %; n=26).

The GLMM demonstrated that the probability of detecting
hookworm infection in live pups was significantly associated
with standard length (F1, 451=11.83, P<0.001), moult status
(F1, 451=21.10, P<0.001), and year of sampling (F3, 451=
6.51, P<0.001). Individual variability did not contribute to
model variance (R2m=R

2
c=52 %). Body weight, body condi-

tion, and pup sex did not contribute significantly to the model
fit. The likelihood of hookworm infection decreased by
37.0 % (CI 18.0–51.7 %) for each 5-cm increase in standard
length, and non-moulting pups were 5.0 (CI 2.5–10.0) times
more likely to be infected than moulting pups. Pups sampled
during the summer breeding season at Dangerous Reef were
14.7–30.7 times more likely to be infected compared to pups
sampled during the other three breeding seasons (Table 1 of
the “Electronic supplementary material”). There were no sig-
nificant differences in the likelihood of hookworm infection
between pups sampled during these other breeding seasons
(Table 1 of the “Electronic supplementary material”). Figure 1
demonstrates the effects of standard length, moult status, and
the interaction between colony and season (year of sampling)
on the probability of detecting hookworm infection in live
pups.

For pups found dead, no significant association (P>0.05)
was identified between the prevalence of hookworm infection
and potential risk factors; however, the number of hookworm-
negative dead pups was low (Table 1). Uncinaria sanguinis
was the only macroscopic parasite identified in the gastroin-
testinal tract of pups.

Hookworm prevalence in known-age pups: The hookworm
infection status of known-age Australian sea lion pups is
shown in Fig. 2. The prevalence of hookworm infection was
100 % for all pups aged 12–57 days (n=58; 94 time points).

Table 1 Crude prevalence of hookworm (U. sanguinis) infection in Australian sea lion (N. cinerea) pups at Seal Bay and Dangerous Reef during
consecutive breeding seasons

Live pups Pups found dead Live and dead pups

Crude prevalence Crude prevalence Patency Crude period prevalence

% n (samples) % n (pups) % n (pups) % n (samples) n (pups)

Seal Bay—winter (2010) 40.0 100 91.7 24 81.0 21 50.0 124 122

Seal Bay—summer (2012) 68.3 183 93.5 46 68.3 41 84.3 229 134

Dangerous Reef—winter (2011) 72.6 186 95.8 24 60.9 23 83.0 210 182

Dangerous Reef—summer (2013) 96.7 90 83.3 6 100 5 96.5 96 85

Parasitol Res (2014) 113:3341–3353 3345

53



Four stillborn pups and one pup that died shortly after partu-
rition and prior to suckling were negative for hookworm
infection. Prepatent infection was identified in dead pups aged
6–14 days (n=10), whilst patent infection was identified in
pups aged 11–101 days (n=54; 98 time points). No eggs were
present in the faeces of live pups aged 6–11 days (n=5);
however, patent infection was subsequently identified in four

of these pups that were re-sampled at 20, 23–26, 27, and 53–
55 days at capture (n=2) or necropsy (n=2). Apparent recov-
ery from hookworm infection, as evidenced by the cessation
of faecal egg shedding, occurred from 59 days of age in pups
with a minimum standard length of 70.5 cm (n=22; 27 time
points). Re-infection was not observed. Evidence of moulting
was observed from 67–69 days of age (n=11 pups; Fig. 2).

Fig. 1 Predicted probability of
hookworm (U. sanguinis) infection
by standard length andmoult status
in Australian sea lion (N. cinerea)
pups at Seal Bay and Dangerous
Reef during consecutive winter
and summer breeding seasons

Fig. 2 Hookworm (U. sanguinis) infection status of known-age Australian
sea lion (N. cinerea) pups at Seal Bay in 2012.Circles represent themaximum
age and hookworm infection status of individual pups at each sampling event
(n=145); error bars indicate the range of absolute uncertainty for pup age (0–

4 days). Non-moulting pups are indicated by filled circles and moulting pups
by open circles. Hookworm infection status was categorised as patent,
negative, or prepatent for live and dead pups. The timing of the prepatent
period, patent infection, and recovery from infection are indicated
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Estimated occurrence of hookworm infection: The GLMM
risk analysis and known-age pup analysis were used to deter-
mine selection criteria to estimate the true occurrence of
hookworm infection; the proximate age-specific period prev-
alence was calculated for pups with (1) more than one sam-
pling event, (2) non-moulting at first sample collection, and
(3) standard length ≤70.0 cm at first sample collection. Using
these criteria, the estimated occurrence of hookworm infection
in Australian sea lion pups is 100% (CI 86.8–100%; n=26) at
Seal Bay and 96.7 % (CI 82.8–99.9 %; n=30) at Dangerous
Reef.

Hookworm infection intensity

The intensity of hookworm infection in dead pups ranged
from 1 to 8880 worms (mean 2138±552, CI 1698–2629;
n=86). The GLM (R2

m=28 %) demonstrated that hookworm
infection intensity in dead pups was significantly associated
with body condition (F2, 79=4.25, P=0.018) and year of
sampling (F3, 79=6.74, P<0.001). Standard length, body
weight, pup sex, pup age, and hookworm patency did not
contribute significantly to the model fit. Significantly higher
(P<0.05) infection intensity was seen in pups in poor (mean
1594, CI 1053–2247) and fair body condition (mean 1515, CI
879–2322) when compared to pups in good-to-excellent con-
dition (mean 243, CI 0–1017); there was no significant differ-
ence (P>0.05) in infection intensity in pups in poor and fair
body condition. At Seal Bay, infection intensity was signifi-
cantly higher (P<0.05) during the summer breeding season
(mean 2165, CI 1493–2962) compared to the winter breeding
season (mean 745, CI 276–1444). Conversely, pups at
Dangerous Reef had significantly lower (P<0.05) infection
intensity during the summer breeding season (mean 67, CI 0–
861) compared to the winter breeding season (mean 1927, CI
1142–2916). Overall, the intensity of hookworm infection
was significantly higher (P<0.05) during high mortality sea-
sons compared to low mortality seasons; hookworm infection
intensity was not significantly different (P>0.05) between
Seal Bay and Dangerous Reef or between summer and winter
breeding seasons.

No apparent difference was observed in hookworm infec-
tion intensity in dead pups less than 1 month of age born to
females from different birth cohorts at Seal Bay: median
hookworm infection intensities were 3960 (n=1, maternal-
cohort: 2001, winter); 2380 (range 1380–5820; n=3, cohort:
2004, winter); 2280 (680–7160; n=5, cohort: 2006, summer);
and 3097 (2693–3500; n=2, cohort: 2007, winter).

The number of hookworm eggs in pup faeces (live and
dead) ranged from 4–142500 EPG (mean 4427±97, CI 3532–
5482; n=191). No significant difference in EPG was identi-
fied when live and dead pups were compared (F1, 189=0.37,
P=0.542, R2

m=0 %, R2
c=0 %). In pups found dead,

significantly higher (t=3.84, df=85, P<0.001) numbers of

female hookworms were present in the intestines (mean
1122, CI 893–1376) compared to the number of male hook-
worms present (mean 1000, CI 783–1243). However, the
mean difference of 3.5 worms (CI 0.8–8.0) was not considered
biologically important and no significant difference was iden-
tified when assuming random independent sampling of female
and male hookworms (two-sample T-test: t=0.73, df=
170, P=0.469), representing a population level sample. No
significant relationship was identified for EPG and total hook-
worm infection intensity (F1, 32=0.04, P=0.839,R

2
m=0%) or

for EPG and female hookworm infection intensity (F1, 31=
0.43, P=0.518, R2

m=1 %).

Discussion

Life cycle of U. sanguinis in N. cinerea

The life cycle ofU. sanguinis in the Australian sea lion appears
to follow the typical pattern for Uncinaria spp. in otariids
(Olsen and Lyons 1965; Sepúlveda and Alcaíno 1993; Lyons
et al. 2003; Castinel et al. 2007). Uncinaria sanguinis infects
Australian sea lion pups shortly after birth, demonstrating a
prepatent period of 11–14 days and an approximate duration of
infection of 2–3 months. Evidence implicating transmammary
transmission as the predominant route of hookworm infection
for Australian sea lion neonatal pups is provided by the find-
ings of the present study: the absence of hookworm infection in
stillborn pups or pups that have not suckled, suggesting that
patent infections are not acquired in utero; the identification of
hookworm infection in pups from 6 days of age across a range
of substrate types, indicating that colony substrate is unlikely
to be the primary source of infective larvae for pups; and the
short duration of overlap between the prepatent period and
patent infection, indicating that the timing of infection is
similar for all pups. These findings are consistent with those
of Marcus et al. (2014) who observed little intra-host variation
in the size of U. sanguinis specimens, indicating that
Australian sea lion pups are infected with U. sanguinis over a
relatively short period of time. Transplacental transmission has
been identified for several parasitic species, including the
hookworms Ancylostoma caninum and Necator americanus
(Shoop 1991; Lyons 1994); however, similar to the present
study, there was no evidence of prenatal infection with
Uncinaria spp. in studies of the northern fur seal, New
Zealand sea lion, and dogs (Walker and Jacobs 1982; Lyons
1994; Castinel et al. 2007). Orally or percutaneously acquired
free-living larvae cannot be excluded as possible routes of
patent infection in this host, although given the range of
substrate types and the need for large numbers of larvae to be
acquired acutely to fit with the observed data, it appears
unlikely that free-living larvae contribute significantly to
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infection intensity and mortality in neonatal pups.
Investigation of the occurrence of tissue-stage larvae and pat-
ent infection in older cohorts, as well as the role of host
physiological states as drivers of larval hypobiosis, reactiva-
tion, and migration (Shoop 1991), is required to further eluci-
date details of the U. sanguinis life cycle.

Occurrence and significance of hookworm infection

The crude prevalence of hookworm infection in otariid pups,
typically considered to represent age-specific prevalence with
reference to population peak parturition dates, has been used
to estimate the true occurrence and dynamics of hookworm
infection in other otariid species (Sepúlveda and Alcaíno
1993; Lyons et al. 2005; Castinel et al. 2007; Ramos 2013)
but is not an appropriate measure in Australian sea lion pups.
As the extended breeding season of this species results in
substantial cohort age heterogeneity, the crude prevalence of
hookworm infection likely underestimates the true occurrence
due to the failure to detect prepatent infections in live pups and
the inclusion of negative samples from older pups that have
recovered from infection. For example, the crude prevalence
of hookworm infection was 68 % for live pups at Seal Bay in
2012, whereas the age-specific prevalence (12–57 days) was
100 %. For this reason, the true occurrence of hookworm
infection in pups of unknown age was estimated using (1)
repeated temporal sampling to address prepatency and (2) age
proxies (standard length and moult status) to restrict sampling
to pups likely to be less than 2 months of age, demonstrating
that the endemic occurrence of U. sanguinis is effectively
100 % at both colonies. Whilst cohort age heterogeneity in
other otariid species is not as extreme as in the Australian sea
lion, failure to detect hookworm infection due to methodolog-
ical limitations or recovery from infection have been noted to
underestimate prevalence (DeLong et al. 2009) and is
recognised as a limitation in studies of other parasites in
free-ranging hosts (Huffman et al. 1997; Hamer et al. 2013;
Spada et al. 2013). The reported crude prevalence of hook-
worm infection in other otariid species is highly variable,
likely due to differences in both sampling methodology and
the true occurrence of hookworm infection. Hence, compari-
sons between studies must be undertaken cautiously. The
implementation of repeated sampling and age (or age proxy)
restriction may improve the accuracy of estimates of pathogen
occurrence.

The in situ infection intensity of some nematode species,
for example, Haemonchus contortus in sheep and T. tenuis in
red grouse, may be estimated from faecal egg counts (Shaw
and Moss 1989; Coyne and Smith 1992); however, no signif-
icant relationship was identified between EPG and hookworm
infection intensity in Australian sea lion pups found dead. For
this reason, the in situ infection intensity in individual live
pups remains unknown. Factors noted to confound the

estimation of hookworm infection intensity from EPG in
human and canine hosts include density-dependent fecundity,
host immune responses, and random daily variation in egg
production (Krupp 1961; Anderson and Schad 1985;
Pritchard et al. 1995). Additionally, the finding in this study
of slightly higher numbers of female compared to male hook-
worms in individual pups suggests that differential survival or
longevity of hookworm sexes may occur (Poulin 1997), fur-
ther confounding estimation of total infection intensity. The
sensitivity of hookworm infection diagnosis in live pups may
be influenced by EPG fluctuating below the threshold of
detection, providing further support for repeated temporal
sampling to accurately determine the infection status of indi-
vidual pups. Considering these limitations, EPG is not a
reliable measure of the intensity of hookworm infection in
Australian sea lion pups and therefore cannot be correlated
with clinical parameters to determine the impact on individual
pup health. However, given no significant differences in EPG
between live and dead Australian sea lion pups were identi-
fied, the intensity of hookworm infection in these two groups
may be cautiously considered similar; seasonal fluctuations in
the intensity of infection in pups found dead are presumed to
also occur in live pups.

The role of U. sanguinis as a significant agent of disease
and mortality in Australian sea lion pups is supported by the
relationship between hookworm infection intensity and body
condition, pup mortality, and the age of dead pups. The
association between high hookworm infection intensity and
poor body condition in Australian sea lion pups found dead
suggests that hookworm infection adversely impacts pup
growth rates, presumably via nutrient and energy loss through
gastrointestinal haemorrhage and the increased energy re-
quirements associated with the inflammatory response to
hookworm infection. Increased growth rates were observed
in New Zealand sea lion and northern fur seal pups following
anthelmintic administration to reduce hookworm infection
intensity (Chilvers et al. 2009; DeLong et al. 2009).
Similarly, during the summer breeding season at Dangerous
Reef, the significantly increased probability of hookworm
infection and the apparent delay in the onset of moulting in
Australian sea lion pups, compared to all other seasons
(Fig. 1), may be due to increased growth rates as a result of
the presumed lower hookworm infection intensity during this
season.

The association of higher hookworm infection intensity
with higher colony pup mortality suggests that hookworm
infection causes intensity-dependent pup mortality. The mean
hookworm infection intensity of dead Australian sea lion pups
(2138±552 worms) is greater than that implicated in pup
mortality in the New Zealand sea lion (mean 824; Castinel
et al. 2007), South American fur seal (range 120–200; Seguel
et al. 2013), northern fur seal (means 643, 1200; Lyons et al.
1997; Mizuno 1997), and California sea lion (means 612,
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1284; Lyons et al. 1997; Lyons et al. 2001). In contrast,
comparatively low hookworm infection intensity was not
associated with pup mortality in the Australian fur seal
(Arctocephalus pusillus doriferus, range 2–18; Ramos
2013), Juan Fernandez fur seal (mean 17; Sepúlveda 1998),
and South American sea lion (means 38, 135; Berón-Vera
et al. 2004; Hernández-Orts et al. 2012). This causative link
is supported further by the relative decrease in the age of dead
Australian sea lion pups during high-infection-intensity sea-
sons and substantiates the finding that juvenile (prepatent)
U. sanguinis are functionally capable of causing disease
(Marcus et al. 2014). In known-age Australian sea lion pups,
the majority of mortality occurred prior to 1 month of age
(Fig. 2), providing evidence for the acute impact of hookworm
infection. Investigation on the clinical health status of live
Australian sea lion pups is essential to further characterise
the impact of this important pathogen.

Host–pathogen–environment drivers of hookworm infection

The role of maternal parity as a significant factor influencing
the epidemiology of U. sanguinis in Australian sea lion pups
remains uncertain. In dogs, a greater proportion of A. caninum
larvae are transmitted via the transmammary route when
tissue-stage larvae are acquired prior to pregnancy (Burke
and Roberson 1985). Hence, primiparous Australian sea lion
females, having potentially accumulated tissue-stage larvae
over an extended period of time prior to pregnancy and
parturition, were hypothesised to transmit higher numbers of
hookworm larvae to their pups compared to multiparous fe-
males. In the present study, no apparent differences in the
intensity of hookworm infection were observed between pups
born to primiparous females (birth cohort 2007; approximate-
ly 4.5 years prior) and those born to older multiparous females
(cohorts 2001, 2004, and 2006); however, only small numbers
of pups from each cohort were available, precluding robust
statistical analysis. Additional data examining the survival
rates and hookworm infection intensities of pups born to
known-age females across several seasons are required to
further explore this hypothesis and determine its contribution
towards pup morbidity and mortality.

In Australian sea lion pups, there is limited evidence to
support the supposition that higher hookworm infection in-
tensity and better body condition is related to greater milk
intake, as reported for dead northern fur seal, California sea
lion, and Juan Fernandez fur seal pups (Sepúlveda 1998;
Lyons et al. 2001; Lyons et al. 2005). The significant associ-
ation between high hookworm infection intensity and poor
body condition suggests that, in this species, infection inten-
sity is relatively independent of milk intake or that any benefit
from additional milk intake is outweighed by the clinical
impact of increased infection intensity. Additionally, there is
significant intraspecific variation in the energy content of the

milk of lactating Australian sea lions, indicating that pup body
condition is not directly dependent on the quantity of milk
intake (Kretzmann et al. 1991; Baylis et al. 2009; Lowther and
Goldsworthy 2011).

Long-term survival of free-living larvae appears unlikely to
be an essential factor for the successful maintenance of
U. sanguinis populations in the Australian sea lion.
Although greater hookworm infection intensity and preva-
lence are typically associated with sandy substrates
(Sepúlveda 1998; Lyons et al. 2000b; Lyons et al. 2005;
Ramos 2013), no significant differences in the overall infec-
tion intensity and prevalence were identified between Seal
Bay and Dangerous Reef, biogeographically disparate colo-
nies representing the archetypal sandy and rocky substrate
types, respectively. The environmental persistence of
U. sanguinis larvae at these colonies is unknown but, given
the extended duration of the Australian sea lion breeding
season and the minimum duration of infection in pups, free-
living larvae are expected to be present in the colony substrate
for at least 6 months during each breeding cycle.

Fluctuations in the intensity of hookworm infection in
Australian sea lion pups may be mediated by colony-specific
seasonal differences in host behaviour (i.e. seasonal-
dependent biogeography) influencing local host aggregation
(fine-scale density) and subsequent exposure to free-living
larvae. Local host aggregation is recognised as an important
factor influencing the transmission and prevalence of
Elaphostrongylus cervi in red deer (Cervus elaphus)
(Vicente et al. 2006) and Protostrongylus spp. in bighorn
sheep (Ovis canadensis) (Rogerson et al. 2008). As the num-
ber of larvae acquired between the preceding breeding season
and parturition directly affects the number transmitted to
canine pups (Stoye 1973; Burke and Roberson 1985), pre-
sumably large numbers of larvae must be acquired by
Australian sea lion females during low mortality seasons to
cause the higher infection intensities observed in pups in high
mortality seasons and vice versa. At Seal Bay, during winter
breeding seasons (when large numbers of larvae must be
acquired), individuals may be more likely to be closely aggre-
gated on land and seek shelter from inclement weather in
caves and under vegetation (Stirling 1972; Higgins and Gass
1993; Marcus, pers. obs.), areas frequented by pups and likely
contaminated with free-living hookworm larvae. In summer,
fine-scale density may be relatively reduced as animals are
less likely to aggregate closely; thereby, exposure to pup
faecal-contaminated areas may be less frequent. In contrast,
at Dangerous Reef, individuals during winter may be more
likely to emigrate sooner due to a paucity of shelter, reducing
mean colony density and temporal exposure to free-living
larvae, whereas in summer (when large numbers of larvae
must be acquired), the impetus to emigrate may be reduced,
relatively increasing colony density and temporal exposure to
hookworm larvae. Observations of reduced host aggregation
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during highmortality seasons relative to lowmortality seasons
at Australian sea lion colonies in Western Australia (Gales
et al. 1992) provide additional support for seasonally-
dependent biogeography modulating pup mortality, although
the occurrence of hookworm infection in these populations
has not been reported. Additional behavioural observations
and determination of fine-scale habitat usage over several
seasons at Seal Bay and Dangerous Reef are required to
further investigate this hypothesis. Unlike the seasonally-
dependent positive and negative effects of cowpox virus in-
fection in wood mice and bank voles (Telfer et al. 2002), the
seasonally-dependent effects of hookworm infection in
Australian sea lion pups, that is, increased infection intensity
associated with decreased body condition and increased mor-
tality, are principally negative. The beneficial effects, if any, of
hookworm infection to surviving pups are unknown, although
high infection intensities may stimulate the development of
protective immunity (Davey et al. 2013) with potential impli-
cations for the immune response to, and susceptibility to, other
parasites (Christensen et al. 1987) and for the subsequent
transmammary transmission of hookworm larvae.

Conclusion

This study found that all Australian sea lion pups at Seal Bay
and Dangerous Reef, two of the largest breeding colonies in
South Australia, are endemically infected with U. sanguinis,
most likely via the transmammary route in the immediate
post-parturient period. In this species, the prepatent period is
11–14 days and the duration of hookworm infection is ap-
proximately 2–3 months. The dynamic interaction between
colony, season, and host behaviour influenced the intensity of
hookworm infection; higher hookworm infection intensity
was significantly associated with higher colony pup mortality
and reduced pup body condition. Although the findings of
seasonal-dependent biogeography modulating the intensity of
hookworm infection implicates U. sanguinis in cyclic pup
mortality, the presence of endemic parasitic infection could
play a secondary role amplifying fluctuations driven by other
factors (Tompkins et al. 2011). Investigation over additional
breeding seasons is paramount to determine whether the ob-
served pattern is fixed for these colonies and to elucidate the
contribution of other mechanisms such as long-term climatic
systems (McIntosh et al. 2013). To establish causality and
quantify the effects of hookworm infection on pup health
and survival, it is essential to associate infection with changes
in clinical parameters and verify these observations via exper-
imental manipulation of the course of infection (Irvine 2006);
the results of these concurrent empirical studies will be report-
ed elsewhere.

The findings of this study support the hypothesis that
U. sanguinis is a significant agent of disease in Australian
sea lion pups and could play an important role in population
regulation. This improved understanding of the epidemiology
of hookworm infection in the Australian sea lion adds a new
perspective to understanding the dynamics of otariid hook-
worm infection, has significant implications for investigations
of developmental ontogeny and health, and provides critical
baseline information on endemic disease for conservation
management.
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Supplementary Table 1 

The relative likelihood of detecting hookworm (Uncinaria sanguinis) infection in live Australian sea lion (Neophoca cinerea) pups at Seal Bay 

and Dangerous Reef during consecutive breeding seasons. Odds ratios with 95% confidence intervals are presented as the column breeding 

season relative to the row breeding season. 

 Seal Bay – summer (2012) Dangerous Reef – winter (2011) Dangerous Reef – summer (2013)

Seal Bay – winter (2010) 1.1 (0.6–2.3) 0.5 (0.2–1.3) 16.4 (3.8–71.0) 

Seal Bay – summer (2012)  0.5 (0.2–4.7) 14.7 (3.4–62.7) 

Dangerous Reef – winter (2011)   30.7 (6.6–143.8) 
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Evaluation of the health status of free-ranging populations is important for understanding the impact of disease
on individuals and on population demography and viability. In this study, haematological reference intervals
were developed for free-ranging endangered Australian sea lion (Neophoca cinerea) pups within the context of
endemic hookworm (Uncinaria sanguinis) infection and the effects of pathogen, host, and environment factors
on the variability of haematological parameters were investigated. Uncinaria sanguinis was identified as an im-
portant agent of disease, with infection causing regenerative anaemia, hypoproteinaemia, and a predominantly
lymphocytic–eosinophilic systemic inflammatory response. Conversely, the effects of sucking lice
(Antarctophthirus microchir) were less apparent and infestation in pups appears unlikely to cause clinical impact.
Overall, the effects of U. sanguinis, A. microchir, host factors (standard length, body condition, pup sex, moult sta-
tus, and presence of lesions), and environment factors (capture-type and year of sampling) accounted for 26–65%
of the total variance observed in haematological parameters. Importantly, this study demonstrated that anaemia
in neonatal Australian sea lion pups is not solely a benign physiological response to host–environment changes,
but largely reflects a significant pathological process. This impact of hookworm infection on pup health has po-
tential implications for the development of foraging and diving behaviour, which would subsequently influence
the independent survival of juveniles following weaning. The haematological reference intervals developed in
this study can facilitate long-term health surveillance, which is critical for the early recognition of changes in dis-
ease impact and to inform conservation management.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Evaluation of the health status of free-ranging populations is impor-
tant for understanding the impact of disease on individuals and on pop-
ulation demography and viability (Deem et al., 2001; Smith et al., 2009;
Thompson et al., 2010). Haematological analysis is a reasonably non-
invasive and efficient tool used as part of routine health assessment,
permitting repeated in situ sampling of live individuals with minimal
impact on animal welfare and survival (Clark, 2004; Wimsatt et al.,
2005). Changes in haematological values provide quantifiablemeasures
of the impact of, and host-response to, disease. However, inherent host-
specific differences and dynamic temporospatial adaptations to physio-
logical stressors also influence haematological characteristics (Gray
et al., 2005; Beldomenico et al., 2008; Hufschmid et al., 2014). For this
reason, the establishment of species- and context-specific reference in-
tervals is necessary to define and assess deviations from baseline health

status (Sergent et al., 2004; Ceriotti et al., 2009). Thiswould facilitate the
implementation of long-term health surveillance, essential for both the
early recognition of emerging disease and to inform species conserva-
tion management (Hall et al., 2007; Thompson et al., 2010).

As high trophic-level predators exploiting a variety of ecological
niches, pinnipeds act as sentinels for marine ecosystem health
(Bossart, 2011). In particular, the health status of maternally-
dependent pinniped pups is sensitive to changes to pathogen–host–
environment relationships such as shifts in prey abundance, major cli-
matic events, the presence of environmental toxins and contaminants,
the occurrence of infectious diseases, and increasing human-impacts
(Beckmen et al., 2003; Soto et al., 2004; Greig et al., 2005; Castinel
et al., 2007; Melin et al., 2010; Brock et al., 2013). Haematological refer-
ence intervals have been developed for pups of several pinniped species
to facilitate health assessment and several studies have investigated
haematological responses to physiological changes, identifying the in-
fluential role of host factors (for example age, body condition, and
sex) and environment factors (including geographic location and
capture-associated stress) (Bryden and Lim, 1969; Geraci, 1971; Lane
et al., 1972; Banish and Gilmartin, 1988; Castellini et al., 1993, 1996;
Horning and Trillmich, 1997; Hall, 1998; Rea et al., 1998; Sepúlveda

Comparative Biochemistry and Physiology, Part A 184 (2015) 132–143

⁎ Corresponding author at: McMaster Building B14, Faculty of Veterinary Science, The
University of Sydney, Camperdown, New South Wales 2006, Australia. Tel.: +61 2 9351
2643; fax: +61 2 9351 7421.

E-mail address: rachael.gray@sydney.edu.au (R. Gray).

http://dx.doi.org/10.1016/j.cbpa.2015.02.017
1095-6433/© 2015 Elsevier Inc. All rights reserved.

Contents lists available at ScienceDirect

Comparative Biochemistry and Physiology, Part A

j ourna l homepage: www.e lsev ie r .com/ locate /cbpa

65



et al., 1999; Trumble and Castellini, 2002; Lander et al., 2003, 2014;
Richmond et al., 2005; Boily et al., 2006; Clark et al., 2007; Trillmich
et al., 2008; Greig et al., 2010; Brock et al., 2013). Yet, despite the wide-
spread host distribution of haematophagous hookworm and lice species
(Leonardi and Palma, 2013; Nadler et al., 2013), the effects of these par-
asites on the haematological values of pups and their implications for
the assessment of health status remain unresolved. For example, al-
though hookworm and lice can cause anaemia (Olsen, 1958; Dailey,
2001; Lyons et al., 2001), the population-wide occurrence of anaemia
in neonates of many pinniped species has generally been attributed to
a physiological host-response to the increased oxygen availability com-
pared to the environment in utero and the expansion of plasma volume
with growth (Richmond et al., 2005; Clark et al., 2007; Trillmich et al.,
2008). A notable exception to the occurrence of neonatal anaemia is ob-
served in land-bound northern elephant seal (Mirounga angustirostris)
pups at Año Nuevo State Reserve (Castellini et al., 1990; Thorson and
Le Boeuf, 1994) in which hookworm infection has not been detected
(Lyons et al., 2012). Critically, few studies have considered parasitosis
as a cause of anaemia in pinniped pups and there are no reports that
characterise this anaemia by the presence or absence of reticulocytosis;
classifying the erythroid response to anaemia as regenerative or non-
regenerative in this way is fundamental to differentiating between
pathological and physiological mechanisms (Stockham and Scott,
2008).

The impact of disease on the health status and population demogra-
phy of the endangered Australian sea lion (Neophoca cinerea) is consid-
ered a key knowledge gap for understanding the impediments
to population recovery in this species and for informing conservation
management to mitigate the risks of population extinction
(Goldsworthy et al., 2009). Whilst haematological reference intervals
for free-ranging Australian sea lions older than six months of age have
been reported (Needham et al., 1980; Fowler et al., 2007), data from
neonatal pups is lacking. Additionally, the effects of disease on haema-
tological values in this species have not been reported. Hookworm
(Uncinaria sanguinis) endemically infects 100% of neonatal Australian
sea lion pups at Seal Bay and Dangerous Reef in South Australia, two
of the largest breeding colonies of this species, and is hypothesised to
be an important agent of disease and cause of pup mortality across
the species' range (Marcus et al., 2014a,b). Pups are infected via the
transmammary route shortly after birth and demonstrate patent

infection from 11–14 days of age for approximately 2–3 months
(Marcus et al., 2014a; see Fig. 1). The extended breeding season of the
Australian sea lion (approximately 7–9 month duration; Goldsworthy
et al., 2012; McIntosh et al., 2012) facilitates the high prevalence of
hookworm infection in pups by increasing the period of time in which
breeding females can acquire infective free-living hookworm larvae
(Marcus et al., 2014a). Additionally, the extended breeding cycle
of approximately 18 months results in alternate ‘summer’ and ‘winter’
breeding seasons, occurring asynchronously between colonies (Higgins,
1993; McIntosh et al., 2012). The magnitude of colony pup mortality is
associated with fluctuations in the intensity of hookworm infection,
mediated by seasonal and colony-specific factors; an oscillating pattern
of high-pup-mortality-with-high-infection-intensity and low-pup-
mortality-with-low-infection-intensity has been observed at Seal
Bay for summer and winter breeding seasons, respectively, and the op-
posite seasonal association has been described for Dangerous Reef,
reflecting the different environmental attributes of the two colonies
(Goldsworthy et al., 2012, 2013; Marcus et al., 2014a). Infestation with
sucking lice (Antarctophthirus microchir) is also reported in Australian
sea lion pups (McIntosh and Murray, 2007), although the epidemiology
and clinical impact of this parasite have not been investigated in this
host.

The aim of this study is to develop haematological reference inter-
vals for free-ranging neonatal Australian sea lion pups within the con-
text of endemic hookworm infection. In addition, this study will
investigate the impact of U. sanguinis and A. microchir on pup health
by estimating their effects on the variability of haematological parame-
ters whilst considering the concurrent influence of host and environ-
ment factors. In particular, by characterising the erythroid changes in
anaemia, this study will assess the hypothesis that neonatal anaemia
is non-pathological, caused predominantly by physiological responses
to host–environment changes.

2. Materials and methods

2.1. Sample collection

Samples were collected from Australian sea lion pups (n = 295)
during consecutive winter and summer breeding seasons at two South
Australian colonies, Seal Bay, Kangaroo Island (35.994°S, 137.317°E) in

Fig. 1. Flowchart displaying the timing of hookworm (Uncinaria sanguinis) infection andmoult status in neonatal Australian sea lion pups (Neophoca cinerea) frombirth to 137 days of age.
Grey boxes indicate the occurrence of each category with respect to pup age. White arrows indicate possible directions of change between categories. Dashed black arrows demonstrate
the uncertainty in the upper limit for the occurrence of patent hookworm infection and non-moulting pups.
Adapted fromMarcus et al. (2014a).
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2010 and 2012, and Dangerous Reef, Spencer Gulf (34.815°S,
136.212°E) in 2011 and 2013. During 2010, pups≥10 kgwere sampled
on one occasion only, whilst in other years, pups including those b10 kg
body weight were captured for sample collection on up to three occa-
sions at least 14 days apart. Based on the estimated or observed starting
dates for pupping during each breeding season (Goldsworthy et al.,
2012, 2013), the maximum possible age of sampled pups was
approximately seven months. During the 2012 breeding season at Seal
Bay, samples were also collected from a cohort of known-age pups
(n = 41; aged 10–137 days).

Pups were captured by hand or net during maternal absence and
restrained manually within canvas bags. Capture-type was categorised
as sleeping, awake (pup alert, minimal pup exertion), or mobile (pup
alert, captured after a short period of pup exertion). Standard length
(measured to the nearest 0.5 cm), body weight (measured to the
nearest 0.1 kg; Salter hanging scale, Avery Weigh-Tronix, West
Midlands, UK), body condition (subjectively scored poor/fair/good/
excellent based on the palpable prominence of the vertebral spinous
processes, pelvic bones, and skeletal muscle and adipose tissues), pup
sex, and moult status (non-moulting/moulting) were recorded. Pups
were examined for the presence of clinically significant lesions (includ-
ing dermatitis, cutaneous ulceration, and subcutaneous abscesses;
absent/present) and the dorsal and ventral pelage of the thorax and
abdomen was examined for the presence of ectoparasites (lice;
categorised as negative/positive). Faecal samples were collected per
rectum using rayon-tipped dry swabs (Copan Diagnostics, Murrieta,
USA) within a lubricated open-ended polyethylene sheath (modified
1–3 mL transfer pipette, Livingstone International, Sydney, Australia)
or from the ground if pups were observed to defecate.

Blood samples (n = 387) were collected from the brachial vein
(Barnes et al., 2008) using 21-gauge × 1-inch needles attached to 5 or
10 mL plastic syringes, transferred to 1.3 mL EDTA, lithium heparin,
and plain serum tubes (Sarstedt, Nümbrecht, Germany), and stored at
approximately 4 °C prior to processing. To facilitate individual pup iden-
tification for recapture, pupswere uniquely identified by one ormore of
the following methods: a temporary bleach mark on their lumbosacral
pelage (Schwarzkopf Nordic Blonde, Henkel Australia, Melbourne,
Australia), a subcutaneous passive integrated transponder (23 mm
microchip, Allflex Australia, Brisbane, Australia), and/or tags applied to
the trailing edge of both fore-flippers (Supertag Size 1 Small, Dalton
ID, Oxfordshire, UK).

2.2. Haematological analysis

EDTA anti-coagulated whole blood samples were processed for
haematological analysis within 10 h of collection. Packed cell volume
(PCV; L/L) was measured in duplicate in microhaematocrit tubes (IRIS
Sample Processing, Westwood, USA) following centrifugation at
15,800 rpm for 120 s (StatSpin MP, StatSpin Technologies, Norwood,
USA); mean values were utilised for statistical analysis. Total plasma
protein (TPP; g/L) was measured using a hand-held refractometer
(Reichert TS Meter, Cambridge Instruments, Buffalo, USA). Air-dried
blood smears were fixed with 100% methanol and treated with a
Romanowsky-type rapid stain (Diff Quik, Lab Aids, Sydney, Australia;
or Rapid Diff, Australian Biostain, Traralgon, Australia) for examination
using an Olympus BH-2 microscope (Olympus, Australia). Absolute
reticulocyte counts (RET; ×109/L) were performed by estimating the
number of reticulocytes per 1000 erythrocytes on air-dried smears
prepared by incubation of 50 μL blood 1:1 with citrated 1% brilliant
cresyl blue (Sigma Chemical, St. Louis, USA) for 20 min. Smears from
samples collected at Seal Bay were examined immediately whilst
those collected from Dangerous Reef were fixed with methanol for
20 s and examined at a later time. For blood samples collected from
Seal Bay, total erythrocyte and leucocyte counts were performed using
Ery-TIC and Leuko-TIC kits (Bioanalytic, Freiburg, Germany), respective-
ly, using a Neubauer improved haemocytometer (Glaswarenfabrik Karl

Hecht, Sondheim, Germany). Erythrocytes in the five diagonal central
group squares and leucocytes in all nine large squares of the
haemocytometer were enumerated in duplicate at 400×magnification;
mean values were utilised for statistical analysis. As field conditions at
Dangerous Reef precluded use of the haemocytometer method for
erythrocyte and leucocyte estimations, 100–200 μL aliquots of EDTA
anti-coagulated whole blood samples collected at Dangerous Reef
were mixed 1:1 with Streck Cell Preservative (Streck, Omaha, USA)
and stored at approximately 4 °C. Preserved samples were analysed
using a Sysmex XT-2000iV automated haematology analyser (Sysmex,
Kobe, Japan) at the Veterinary Pathology Diagnostic Service, Faculty of
Veterinary Science, The University of Sydney within nine days of
blood collection. Leucocyte counts (WBC; ×109/L) were calculated by
manually gating the WBC/BASO scattergram using the manufacturer's
software (version 00-10; Sysmex) and one profile was applied to
all analysed samples. Automated erythrocyte counts (RBC; ×1012/L)
were calculated by the impedance method using default parameters.
Values obtained were doubled to correct for dilutionwith cell preserva-
tive. To facilitate comparison of haematological parameters between
Seal Bay and Dangerous Reef, manual haemocytometer counts were
converted to Sysmex-equivalent values (Supplementary Material
Appendix S1). Finally, differential leucocyte counts were performed on
Romanowsky-type stained blood smears to determine the proportion
of neutrophils, lymphocytes, monocytes, eosinophils, and basophils;
one hundred leucocytes were identified for every 10 × 109/L WBC.
The proportion of nucleated erythrocytes (mainly late normoblasts) to
leucocyteswas also recorded to estimate absolute nucleated erythrocyte
counts (nRBC; ×106/L), corrected leucocyte counts (cWBC; ×109/L),
and absolute neutrophil, lymphocyte, monocyte, eosinophil, and baso-
phil counts (×109/L). The equations used to calculate haematological
values are presented in Supplementary Material Appendix S1. Due to
the availability of test kits and occasional samples where an insufficient
volume of blood was collected to permit complete haematological
analysis, values for all haematological parameters could not be deter-
mined for every individual.

2.3. Hookworm infection status

Hookworm eggs were detected using amodifiedMcMaster flotation
with saturated NaCl solution or, for small faecal samples, a direct smear.
Where eggs were evident in faecal samples, pups were classified as
‘patent’ (n = 213 pups; n = 256 time points). Where eggs were not
evident, hookworm infection status was inferred based on pup age,
moult status, and the timing of infection, or using repeated faecal
samples (Marcus et al., 2014a; see Fig. 1): pups ≤14 days of age or
with subsequent patent faecal samples were classified as ‘prepatent’
(n = 6 pups; n = 7 time points) and pups ≥59 days of age, showing
signs of moult, or with previous patent faecal samples were classified
as ‘postpatent’ (n = 83 pups; n = 91 time points). As such, the
prepatent and postpatent groups could have included pups with occult
(undetected patent) hookworm infection (Fig. 1). Hookworm infection
status was considered to be unknown (n= 33) for non-moulting pups
(or pups with no recorded moult status) of undetermined age with
negative repeat faecal samples (or no repeat sample) and for those
pups sampled for blood collection but with no faecal sample.

2.4. Statistical analysis

2.4.1. Haematological reference intervals
Nonparametric 95% reference intervals were calculated for haema-

tological parameters (PCV, RBC, mean corpuscular volume, RET, nRBC,
TPP, cWBC, and differential leucocyte counts), partitioned by hook-
worm infection status as a proxy for age and because haematological
values were expected to significantly differ between groups. Outliers,
values more than 1.5 times the interquartile range above or below the
interquartile range (Tukey, 1977), were excluded from each group
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prior to the development of reference intervals to improve the accuracy
of the reference interval limits (Horn et al., 2001). To adjust for repeated
measures from pups sampled on more than one occasion, reference in-
tervals were developed for each parameter using bootstrap estimation
(1000 replicates) with observations drawn randomly from the dataset
with replacement andweighting to ensure equal probability of selection
from individual pups, based on methodology described by Taylor et al.
(1996) and Alatzas et al. (2014). For each bootstrap replicate, the refer-
ence interval (2.5th and 97.5th percentiles) and median value (50th
percentile) were determined. Final estimates of the reference interval
and median value for each parameter were calculated as the median
of the replicated bootstrap percentile values. Approximate 95% confi-
dence intervals (CI) were calculated around each estimate as the 2.5th
and 97.5th percentiles of the replicated bootstrap percentile values
(Efron, 1982). For pups with prepatent hookworm infection, minimum
and maximum values are reported due to insufficient sample size for
the calculation of nonparametric 95% reference intervals (Ceriotti
et al., 2009) and median values were calculated as non-bootstrapped
weighted values as bootstrappingmay under-represent the true biolog-
ical variability with small sample sizes (Chernick, 2011). Haematologi-
cal data from pups with unknown hookworm infection status were
excluded from reference interval development.

The validity of partitioning reference intervals based on hookworm
infection status for pups with patent and postpatent hookworm infec-
tion was determined by observing the proportion of values in each
group that fell outside of common reference limits (Lahti et al., 2004).
The combined reference interval was developed by combining the
outlier-removed datasets for these two groups and using bootstrap
estimation, with observations weighted to adjust for both repeated
measures and unequal numbers of reference values between the
groups. Following the recommendations of Lahti et al. (2004), the com-
bined reference interval for each parameter was considered invalid if
≥4.1% or ≤0.9% of reference values from either group, adjusted for
repeated measures, were outside either the upper or the lower com-
bined reference limits. Additionally, the underlying distributions of ref-
erence values for each parameter for these two groups were considered
significantly different (P b 0.01) if their median CI did not overlap
(Cumming, 2009).

The erythroid response to anaemia was classified as regenerative or
non-regenerative based on the absolute reticulocyte count; a
reticulocytosis greater than 65.0 × 109/L was considered evidence of a
regenerative erythroid response (Hodges and Christopher, 2011).

2.4.2. Factors explaining haematological parameter variability
Correlational analysis was performed to characterise the pattern of

haematological changes associated with hookworm infection. Pairwise
Spearman's rank correlations (ρ), partitioned by hookworm infection
status, were calculated for all haematological parameters reported
except for mean corpuscular volume (MCV) and cWBC as variability in
these parameters is explained by the variability in PCV and RBC, and
the differential leucocyte counts, respectively. To adjust for repeated
measures from pups sampled on more than one occasion, median esti-
mates of ρ with 95% CI were calculated using bootstrap replication as
previously described. Correlations were categorised as ‘weak’ for
ρ b 0.35, ‘moderate’ for 0.35 ≤ ρ b 0.75, and ‘strong’ for ρ ≥ 0.75
(Shi and Conrad, 2009), and were considered statistically significant
(P b 0.05) if their CI excluded zero. Haematological data from pups
with prepatent hookworm infection were excluded from correlational
analysis due to small sample size.

The effects ofU. sanguinis and A.microchir on haematological param-
eters were investigated using linear mixed modelling with REML esti-
mation. Terms prospectively included in the models as fixed factors
were pathogen factors (hookworm infection status and presence of
lice), host factors (standard length, body weight, body condition, pup
sex, moult status, and presence of lesions), and environment factors
(capture-type and year of sampling). Standard length, body weight,

and moult status were included as proxies for growth and pup age
(Marcus et al., 2014a) as known-age pup data was only available for
one breeding season. Presence of lesions was included as a factor to
account for the variance related to the occurrence of other disease pro-
cesses whilst the physiological effects of capture-associated stress were
investigated by including capture-type as a factor. Year of samplingwas
included as a factor to represent the interaction between colony (Seal
Bay/Dangerous Reef) and season (summer/winter). Pup-identity was
specified as the random factor to account for repeated measures and
an appropriate correlation structure was chosen using the change in
model deviance. The assumptions of homogeneity of residual variance
and normality were checked by visually assessing the fitted-value
plots and histograms of residuals and, where necessary, the response
variate was power or log-transformed. Models were constructed by
the backwards stepwise removal of factors with the lowest explanatory
power (highest Wald F-test P-value) to arrive at the final models that
included only significant predictors (P b 0.05). The amount of variance
explained by the final models was estimated using the marginal coeffi-
cient of determination (R2m; fixed factors only) and the conditional co-
efficient of determination (R2

c; fixed and random factors) (Nakagawa
and Schielzeth, 2013). The predicted effects of factors included in the
final models are reported as the regression coefficient ± standard
error. For factors with more than two levels (body condition, capture-
type, hookworm infection status, and year of sampling), the predicted
level effects were considered significantly different (P b 0.05) if the
95% CI for their difference excluded zero. Model construction was un-
dertaken for all haematological parameters except for MCV and cWBC
as previously outlined. Haematological data from all sampled pups
were prospectively included in model construction with listwise dele-
tion employed to exclude cases with missing factor data for each
model. All statistical analyses were performed using GenStat 16.1
(VSN International, Hemel Hempstead, UK) and statistical significance
was considered at P b 0.05.

3. Results

3.1. Haematological reference intervals

Haematological reference intervals for Australian sea lion pups,
partitioned by hookworm infection status, are presented in Table 1.
The proportion of values identified as outliers for each hookworm infec-
tion status group are presented in Supplementary Table S1. Combined
reference intervals for pups with patent and postpatent hookworm
infection did not adequately represent the true distributions of refer-
ence values for any of the measured haematological parameters
(Supplementary Table S2). When compared to pups with patent hook-
worm infection, postpatent pups had significantly highermedian values
(P b 0.01) and reference interval limits for PCV, RBC, and TPP; and signif-
icantly lower median values (P b 0.01) and reference interval limits for
MCV, RET, nRBC, and all leucocyte parameters. Pups with prepatent
hookworm infection had the highest median values for PCV, RBC, neu-
trophil, and monocyte counts; median values intermediate to the
other hookworm infection status groups for RET, nRBC, TPP, cWBC,
and lymphocyte counts; and the lowest median value for MCV. Median
eosinophil countswere invariant between pupswith prepatent and pat-
ent hookworm infection. Basophils were not identified in any of the
blood smears examined.

The proportions of samples from pups with prepatent, patent, and
postpatent hookworm infection that demonstrated a regenerative
erythroid response were 66.7% (CI 22.3–95.7%), 65.0% (CI 58.7–71.0%),
and 29.1% (CI 19.8–39.9%), respectively.

3.2. Factors explaining haematological parameter variability

For pups with patent hookworm infection, significant correlations
were identified between most haematological parameters examined
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(26 of 36 pairs; Table 2), whereas for postpatent pups, fewer significant
correlationswere observed (15 of 36 pairs; Table 3). Strong correlations
(ρ ≥ 0.75) were not identified in either dataset. The moderate correla-
tions (0.35 ≤ ρ b 0.75) between haematological parameters are
summarised below; all pairwise correlation coefficients (with 95% CI)
are presented in Tables 2 and 3.

For both groups of pups there was significant moderate positive
correlation between PCV/RBC and RET/nRBC; however, only pups with
patent hookworm infection demonstrated evidence for regenerative
responses with significant moderate negative correlation of PCV/nRBC
and RBC/nRBC and significant weak negative correlation of PCV/RET
and RBC/RET. Postpatent pups had non-significant correlations be-
tween PCV/nRBC, RBC/nRBC, PCV/RET, and RBC/RET. For pups with
patent hookworm infection, there was significant moderate positive

correlation between RBC/TPP, significant moderate negative correla-
tion between RBC/neutrophil-count and TPP/eosinophil-count, and
significant weak negative correlation between RBC/eosinophil-
count. In contrast, postpatent pups had significant weak negative cor-
relation between RBC/TPP and RBC/neutrophil-count, non-significant
correlation between TPP/eosinophil-count, and significant moderate
negative correlation between RBC/eosinophil-count. Postpatent pups
also had significant moderate positive correlation between TPP/
lymphocyte-count and nRBC/monocyte-count, whilst pups with patent
hookworm infection had significant weak negative correlation and
non-significant correlation for these pairs, respectively.

Thefinal linearmixedmodels assessing the effects of pathogen, host,
and environment factors on the variability of pup haematological pa-
rameters are presented in Table 4 (effects; erythrocytes and TPP),

Table 1
Nonparametric 95% haematological reference intervals and median values (with 95% confidence intervals) for neonatal Australian sea lion pups (Neophoca cinerea), partitioned by hook-
worm infection status. Values were calculated by bootstrap estimation which adjusted for repeatedmeasures. Due to the small sample size for pups with prepatent hookworm infection,
reference intervals for this group are presented as minimum–maximumwith non-bootstrapped weighted median values.

Hookworm infection status Prepatent Patent Postpatent

Number of pups sampled 6 213 83

Min–max Median na 95% RI Median na 95% RI Median na

PCV (L/L) 0.355–0.520 0.390 7 0.261–0.410
(0.245–0.278; 0.397–0.429)

0.340
(0.335–0.350)

244 0.284–0.440
(0.280–0.306; 0.430–0.455)

0.380
(0.370–0.389)

88

RBC (×1012/L) 4.34–5.19 4.51 6 2.85–4.88
(2.54–3.03; 4.62–4.93)

3.75
(3.69–3.80)

236 3.43–5.34
(3.36–3.87; 5.13–5.46)

4.44
(4.35–4.53)

88

MCV (fL) 78.5–100.3 82.0 6 76.1–103.6
(74.5–77.2; 101.3–107.7)

90.1
(88.9–91.3)

233 65.1–96.2
(61.2–71.4; 94.7–100.5)

84.3
(82.5–86.3)

88

RET (×109/L) 0.0–117.2 78.5 6 13.0–203.8
(6.3–19.2; 180.1–209.1)

83.2
(75.1–87.2)

236 5.1–106.4
(4.0–10.0; 96.1–117.0)

45.1
(39.6–53.6)

85

nRBC (×106/L) 0.0–130.7 27.2 7 0.0–550.1
(0.0–0.0; 466.2–597.1)

92.6
(78.1–122.3)

224 0.0–127.1
(0.0–0.0; 97.7–135.1)

0.0
(0.0–0.0)

78

TPP (g/L) 58.0–75.0 70.5 7 51.8–86.2
(48.0–53.0; 81.3–87.7)

69.0
(66.0–70.0)

251 63.7–87.0
(62.0–66.1; 83.3–88.0)

72.0
(71.0–73.0)

89

cWBC (×109/L) 6.03–15.02 11.29 7 6.48–25.02
(5.40–6.88; 23.65–26.58)

12.12
(11.50–13.00)

237 3.74–15.18
(3.58–4.65; 13.57–18.53)

8.73
(7.92–9.25)

82

Neutrophils (×109/L) 3.26–9.54 7.91 7 2.47–20.13
(1.93–2.86; 17.30–21.01)

6.83
(6.37–7.49)

237 1.42–11.71
(1.08–2.14; 9.24–13.78)

4.91
(4.34–5.49)

82

Lymphocytes (×109/L) 1.30–3.57 2.85 7 1.44–5.99
(1.19–1.60; 5.65–6.27)

3.18
(2.99–3.40)

241 0.94–5.01
(0.67–1.19; 4.55–5.08)

2.55
(2.34–2.85)

85

Monocytes (×109/L) 0.11–0.47 0.45 6 0.00–1.07
(0.00–0.00; 0.90–1.18)

0.31
(0.28–0.34)

240 0.00–0.70
(0.00–0.00; 0.54–0.73)

0.17
(0.12–0.23)

83

Eosinophils (×109/L) 0.24–2.18 1.13 7 0.05–3.54
(0.00–0.08; 3.22–3.80)

1.13
(0.95–1.41)

246 0.06–1.24
(0.03–0.11; 1.00–1.28)

0.42
(0.34–0.50)

82

a Sample size after outlier removal. Abbreviations: cWBC — corrected leucocyte count; MCV — mean cell volume; nRBC — absolute nucleated erythrocyte count; PCV — packed cell
volume; RBC — erythrocyte count; RET — absolute reticulocyte count; RI — reference interval; TPP — total plasma protein.

Table 2
Spearman's rank correlation of haematological parameters in neonatal Australian sea lion pups (Neophoca cinerea) with patent hookworm (Uncinaria sanguinis) infection, calculated by
bootstrap estimation to adjust for repeatedmeasures. Median bootstrap replicate values (with 95% confidence intervals) of the correlation coefficient (top right triangle) and sample sizes
(bottom left triangle) are presented. Values indicated in boldwere statistically significant (P b 0.05).

PCV RBC RET nRBC TPP Neutrophils Lymphocytes Monocytes Eosinophils

PCV 0.71
(0.62, 0.78)

−0.26
(−0.38, −0.14)

−0.41
(−0.51, −0.30)

0.20
(0.07, 0.32)

−0.30
(−0.41, −0.17)

−0.24
(−0.36, −0.11)

0.17
(0.06, 0.30)

−0.06
(−0.18, 0.07)

RBC 242 −0.21
(−0.32, −0.07)

−0.37
(−0.48, −0.26)

0.37
(0.24, 0.49)

−0.37
(−0.49, −0.25)

−0.26
(−0.38, −0.13)

0.04
(−0.10, 0.18)

−0.13
(−0.25, −0.005)

RET 240 243 0.43
(0.32, 0.53)

−0.07
(−0.20, 0.06)

0.08
(−0.07, 0.20)

0.10
(−0.02, 0.23)

−0.03
(−0.16, 0.10)

0.19
(0.06, 0.31)

nRBC 247 242 242 −0.19
(−0.32, −0.07)

0.04
(−0.08, 0.16)

0.22
(0.09, 0.34)

−0.04
(−0.16, 0.09)

0.25
(0.13, 0.37)

TPP 251 241 239 246 0.09
(−0.04, 0.20)

−0.17
(−0.29, −0.04)

0.17
(0.05, 0.30)

−0.35
(−0.46, −0.23)

Neutrophils 247 242 242 250 246 0.18
(0.06, 0.30)

0.16
(0.03, 0.29)

−0.22
(−0.34, −0.10)

Lymphocytes 247 242 242 250 246 250 −0.05
(−0.17, 0.07)

0.29
(0.17, 0.40)

Monocytes 247 242 242 250 246 250 250 −0.17
(−0.29, −0.04)

Eosinophils 247 242 242 250 246 250 250 250
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Table 5 (effects; leucocytes), and Supplementary Table S3 (P-values),
and are summarised below. The final models accounted for 26–65% of
the total variance observed in haematological parameters with differ-
ences between individual pups explaining up to 28% of the variability.

3.2.1. Effects of pathogen factors
Patent hookworm infection was associated with significantly lower

PCV, RBC, and TPP values and significantly higher nRBC and eosinophil
counts, relative to pupswith prepatent infection. Postpatent hookworm
infection status was associated with significantly higher RBC and TPP
values and significantly lower nRBC, lymphocyte, and eosinophil counts,
relative to pups with patent hookworm infection. However, PCV and
RBC values remained significantly lower compared to those pups with
prepatent hookworm infection. Hookworm infection status was not
significantly associated with RET, neutrophil, or monocyte counts.

The presence of lice (identified in 73.3% of sampling events; see
Supplementary Table S4)was also associatedwith a significant decrease
in PCV, although themagnitude of effectwasmarkedly less than that for
patent hookworm infection (Table 4). In contrast to patent hookworm
infection, lice infestation was associated with significantly increased
TPP concentrations. No other significant effects were identified for lice
infestation for the remainder of the haematological parameters.

3.2.2. Effects of host factors
Increases in standard length were associated with significant in-

creases in PCV, RBC, and TPP values and significant decreases in RET,
nRBC, and all leucocyte parameters. The presence of moult was also as-
sociated with significant decreases in RET, but did not have significant
effects on any of the other haematological parameters.

Body conditionwas a significant host factor in the finalmodels. Pups
in excellent body condition had significantly higher nRBC compared to
all other pups. Similarly, TPP values significantly increasedwith improv-
ing body condition although the effect of poor body condition was not
significantly different from the other categorical levels. Pups in fair
body condition had significantly lower eosinophil counts compared to
pups in good or excellent body condition; however, as for TPP, the effect
of poor body condition on eosinophil countswas not significantly differ-
ent from the other categorical levels. Compared to female pups, male
pups had significantly lower PCV and RBC values. The presence of
lesions was associated with significantly higher neutrophil counts. No
other significant effects were identified for body condition, pup sex, or
the presence of lesions for the remainder of the haematological param-
eters. Body weight was not associated with significant effects on any of

the haematological parameters after accounting for the effects of other
factors.

3.2.3. Effects of environment factors
Pups captured whilst awake or mobile had significantly higher lym-

phocyte counts relative to pups that were captured whilst asleep. There
was no significant difference in lymphocyte counts between awake and
mobile pup captures and no other significant effects were identified for
capture-type for any of the other haematological parameters. Year of
sampling was associated with significant effects for all haematological
parameters except for PCV, RBC, and RET. At Seal Bay, pups sampled
during the summer breeding season (2012) had significantly higher
neutrophil and eosinophil counts and significantly lower monocyte
counts, relative to pups sampled during the winter breeding season
(2010). At Dangerous Reef, pups sampled during the winter breeding
season (2011) had significantly higher nRBC, lymphocyte, and eosino-
phil counts, and significantly lower TPP, neutrophil, and monocyte
counts, relative to pups sampled during the summer breeding season
(2013). Overall, pups sampled at Seal Bay had significantly higher
nRBC and eosinophil counts and significantly lower TPP values and
neutrophil counts compared to pups sampled at Dangerous Reef.

4. Discussion

The current study established haematological reference intervals for
free-ranging neonatal Australian sea lion pups within the context of en-
demic hookworm infection and estimated the impact ofU. sanguinis and
A.microchir, and the concurrent effects of host and environment factors,
on the variability of haematological parameters of pups. By investigating
markers for erythroid regeneration, the current study demonstrated
that anaemia in neonatal Australian sea lion pups is not solely a benign
physiological response to host–environment changes, but largely re-
flects a significant pathological process that adversely impacts pup
health with potential implications for the population demography and
viability of this species.

4.1. Development of haematological reference intervals

The partitioning of neonatal Australian sea lion haematological ref-
erence intervals by hookworm infection status provides important
age- and disease-specific context, enhancing their utility for future
investigations. Reference intervals are generally developed by obtaining
representative samples from a ‘healthy’ reference population, excluding
subjects with clinical signs of disease that may affect the parameters of

Table 3
Spearman's rank correlation of haematological parameters in neonatal Australian sea lion pups (Neophoca cinerea) with postpatent hookworm (Uncinaria sanguinis) infection, calculated
by bootstrap estimation to adjust for repeated measures. Median bootstrap replicate values (with 95% confidence intervals) of the correlation coefficient (top right triangle) and sample
sizes (bottom left triangle) are presented. Values indicated in bold were statistically significant (P b 0.05).

PCV RBC RET nRBC TPP Neutrophils Lymphocytes Monocytes Eosinophils

PCV 0.57
(0.39, 0.70)

−0.13
(−0.36, 0.09)

−0.15
(−0.36, 0.05)

−0.08
(−0.29, 0.14)

−0.28
(−0.49, −0.06)

0.02
(−0.18, 0.23)

0.21
(−0.01, 0.43)

−0.31
(−0.50, −0.10)

RBC 90 −0.17
(−0.36, 0.05)

−0.21
(−0.40, 0.001)

−0.33
(−0.53, −0.13)

−0.34
(−0.55, −0.14)

−0.05
(−0.26, 0.15)

−0.03
(−0.25, 0.19)

−0.39
(−0.55, −0.20)

RET 85 86 0.39
(0.20, 0.57)

0.12
(−0.10, 0.34)

0.27
(0.06, 0.48)

0.06
(−0.17, 0.28)

0.06
(−0.14, 0.27)

0.28
(0.07, 0.48)

nRBC 85 86 85 0.06
(−0.15, 0.28)

0.25
(0.07, 0.44)

−0.09
(−0.29, 0.13)

0.37
(0.17, 0.53)

0.25
(0.03, 0.43)

TPP 90 91 86 86 0.30
(0.08, 0.49)

0.36
(0.16, 0.55)

−0.13
(−0.33, 0.08)

0.05
(−0.15, 0.27)

Neutrophils 85 86 85 86 86 0.12
(−0.10, 0.33)

0.06
(−0.14, 0.29)

0.15
(−0.07, 0.36)

Lymphocytes 85 86 85 86 86 86 −0.17
(−0.35, 0.04)

−0.01
(−0.21, 0.22)

Monocytes 85 86 85 86 86 86 86 0.23
(0.002, 0.43)

Eosinophils 85 86 85 86 86 86 86 86
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interest (Ceriotti et al., 2009). However, few individuals in free-ranging
populations are likely to be considered completely disease-free, so ref-
erence intervals developed from biased sampling of ‘healthy’ or captive
individuals have little utility for free-ranging populations (Schwacke
et al., 2009). For this reason, the occurrence of endemic disease in
free-ranging populations should be considered when establishing base-
line data to ensure reference intervals reflect the ‘normal’ characteristics
of the sampled population (Pacioni et al., 2013; Hufschmid et al., 2014).

Parturition marks an extreme life-history change, necessitating ad-
aptation to dynamic nutritional and environmental challenges and the
development of immunological responses. As such, consideration of
the age of sampled pups is also important to appropriately partition
the reference population and interpret haematological values. However,
as the extended breeding season of the Australian sea lion (Higgins,
1993; McIntosh et al., 2012) precludes the routine collection of
known-age pup data or the estimation of pup age from peak parturition
dates, as utilised for other otariid species (Richmond et al., 2005;
Trillmich et al., 2008), the development of reference intervals for pups
partitioned by known-age categories has limited clinical and conserva-
tion utility in this species. Conversely, hookworm infection status may
be readily determined, is biologically meaningful, and provides a proxi-
matemeasure of age as the timing of patent hookworm infection (from
11–14 days of age to approximately 2–3 months of age) effectively de-
limits pups into three age groups (Marcus et al., 2014a). Thus, within
the context of endemic hookworm infection, the haematological refer-
ence intervals developed in the current study provide a baseline refer-
ence for the interpretation of haematological data from individual
neonatal Australian sea lion pups and facilitate the monitoring of
population-level health trends via changes in the temporal proportions
of outliers (Lander et al., 2014; see Supplementary Table S1).

Weighted bootstrap estimation techniques were adopted in the cur-
rent study to provide improved parameter estimation, facilitate the use
of repeated measures data, and reduce the number of individuals re-
quired for sample collection. The traditional calculation of nonparamet-
ric reference intervals assumes sample independence; ignoring the fact
that different numbers of measurements were obtained from different
individuals can result in the development of incorrect reference inter-
vals (Taylor et al., 1996). For this reason, to account for the correlation
between repeated observations, weighted bootstrap estimation was
used when developing nonparametric reference intervals to ensure
equal contribution from individual pups whilst making efficient use of
all available data (Taylor et al., 1996; Alatzas et al., 2014). Pairwise
Spearman's rank correlations were estimated similarly. Alternative
approaches, namely the exclusion of all but one sampling event per in-
dividual or the averaging of repeated measurements, are frequently
employed in wildlife research but are relatively inefficient and can
lead to the calculation of incorrect estimates (Taylor et al., 1996).

4.2. Investigation of haematological parameter variability

Determining the fundamental causes of variability in the haema-
tological parameters of free-ranging populations is commonly con-
founded by the dynamic inter-related effects of pathogen, host, and
environment factors (Beldomenico et al., 2008; Hufschmid et al.,
2014). In the current study, haematological values and patterns of cor-
relation differed for pups with patent or postpatent hookworm infec-
tion (Tables 1–3), yet the models attributed only part of this variation
to the direct effects of hookworm infection (Tables 4 and 5). It is possi-
ble that the intensity of parasitic infection accounts for some of this var-
iation. For example, in harbour seals (Phoca vitulina), the intensity of
lice (Echinophthirius horridus) infestation was negatively correlated
with PCV and RBC, however, no significant haematological differences
were identified between infected and uninfected seals (Thompson
et al., 1998). Similarly, hookworm infection intensity is inversely associ-
ated with growth rates of northern fur seal (Callorhinus ursinus),
New Zealand sea lion (Phocarctos hookeri), and Australian sea lionTa
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pups (Chilvers et al., 2009; DeLong et al., 2009; Marcus et al., 2014a).
Hence, variance in haematological parameters related to the intensity
of these parasitic infections could have been attributed to inter-
related factors such as body condition, moult status, standard length,
and the year of sampling, or may have contributed towards the total
amount of unexplained variance in the models. In the current study, it
was not possible to obtain this data as methods for determining the in
situ intensity of hookworm infection have not been validated in pinni-
peds. Conversely, the intensity of lice infestation may be determined
by direct counting, although this was not undertaken in order to reduce
individual pup handling time. Thus, because U. sanguinis and
A. microchir infections were measured as categorical factors, their ef-
fects on haematological parameters could have been underestimated;
further investigations utilising anthelmintics to prevent, reduce, or
eliminate parasitic infections may help to refine estimates of their hae-
matological effects (López-Olvera et al., 2006; Castinel, 2007). Regard-
less, the findings of the current study contribute towards a greater
understanding of the pathogen, host, and environment factors that
influence the values of haematological parameters in pinniped pups.

4.2.1. Effects of U. sanguinis on erythrocyte and TPP values
The presence of U. sanguinis infection was significantly associated

with anaemia, implicating this parasite as an agent of disease and chal-
lenging assumptions about the non-pathological, physiological, nature
of neonatal anaemia in pinnipeds. The pattern of anaemia observed in
the current study was similar to that considered ‘normal’ for many pin-
niped species (Trillmich et al., 2008); Australian sea lion pups approxi-
mately two weeks to 2–3 months of age (that is, pups with patent
hookworm infection) had lower erythrocyte values (RBC and PCV)
than both younger pups with prepatent hookworm infection and
older postpatent pups (Table 1). Total plasma protein values followed
the same pattern, suggestive of haemorrhage. In contrast to a study of
New Zealand sea lion pups in which neonatal anaemia was attributed
to physiological causes rather than hookworm (Uncinaria sp.) infection
(Castinel, 2007), the linear mixedmodels in the current study indicated
that the erythrocyte and TPP changes in Australian sea lion pups were
primarily attributable to patent hookworm infection (Table 4), sugges-
tive of the occurrence of significant haemorrhagic anaemia. This is in
agreement with earlier investigations in which infections of Uncinaria
lucasi in northern fur seal pups and Uncinaria lyonsi in California sea
lion (Zalophus californianus) pups were associated with anaemia
(Olsen, 1958; Lyons et al., 2001; Kuzmina and Kuzmin, 2015).

The erythroid response to anaemia in Australian sea lion pups was
characterised as regenerative for the majority of pups with hookworm
infection, indicative of the presence of a pathological process leading
to anaemia. In the absence of absolute reticulocyte count data, the
erythrocyte changes identified in the current study could be attributed
to the strong correlation of age with hookworm infection status
(Fig. 1) and would not refute the hypothesis that neonatal anaemia is
non-pathological, caused predominantly by physiological responses to
host–environment changes. The classification of the erythroid response
to anaemia aids in differentiating between pathological and physiologi-
cal mechanisms; increased numbers of circulating reticulocytes are di-
agnostic of a regenerative erythroid response to pathological anaemia
(Stockham and Scott, 2008). However, there is limited data for reticulo-
cyte counts in pinnipeds and none from pups; in older cohorts of
Australian sea lions, fewer than 1% of erythrocyteswere identified as re-
ticulocytes, indicating that a normal reticulocyte count in the Australian
sea lion is expected to be less than 47.7–60.8 × 109/L (Needham et al.,
1980). As such, what constitutes an adequate reticulocytosis in pinni-
peds is unknown. For this reason, guidelines recommended for dogs
were applied in the current study to define a minimum regenerative
threshold (reticulocyte count N 65.0 × 109/L indicates regeneration;
Hodges and Christopher, 2011). Increased nRBC valuesmay also be sup-
portive of a regenerative erythroid response (Jain, 1993); in the current
study, pups with patent hookworm infection had significantly higherTa
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nRBC compared to pre-patent and postpatent pups (Tables 1 and 4).
Similarly, in anaemic northern fur seal pups infected with U. lucasi, in-
creased numbers of nRBC were also observed (Olsen, 1958). Reference
values for nRBC have also been reported for harbour seal pups (95% in-
terval 0–8 nRBC/100 leucocytes), harp seal pups (Phoca groenlandica;
range 0–50 nRBC/100 leucocytes), and hooded seal pups (Cystophora
cristata; range 1–45 nRBC/100 leucocytes) (Trumble and Castellini,
2002; Boily et al., 2006); unfortunately, significant limitations to the
comparative and clinical utility of these values arise due to the paucity
of absolute nRBC count data (Allison and Meinkoth, 2007) and data on
health status. In Australian sea lion pups with patent hookworm infec-
tion, both RET and nRBC were significantly negatively correlated with
PCV and RBC; these changes were not observed in postpatent pups.
Additionally, MCV values were increased and TPP values were
decreased, relative to prepatent and postpatent pups. Overall, these
findings are suggestive of a macrocytic regenerative response to
hookworm-associated haemorrhage, providing a causative link be-
tween hookworm infection and anaemia and further implicating
U. sanguinis as an important agent of disease in Australian sea lion
pups. Hence, the effects of hookworm infection offer an alternative –

or concurrent – explanation for the occurrence of neonatal anaemia in
Australian sea lion pups to the hypothesis that neonatal anaemia results
from physiological responses to non-pathological host–environment
changes.

4.2.2. Effects of A. microchir on erythrocyte and TPP values
Relative toU. sanguinis infection, the presence of A.microchir infesta-

tion was associated with a smaller decrease in PCV values, no change in
RBC, RET, or nRBC values, and an increase in TPP values, indicating that
A.microchir infestation plays a lesser role in neonatal anaemia, although
may contribute towards immunological stimulation or dehydration.
Incidentally, the occurrence of lice infestation in pups in the current
study (crude cumulative prevalence 79.3%, CI 74.2–83.8%; see Supple-
mentary Table S4) was significantly higher (Fisher's exact test:
P b 0.001) than that previously reported for Australian sea lion pups
(48.9%, CI 34.1–63.9%; McIntosh and Murray, 2007). Differences in
methodological approach (among others the calculation of cumulative
prevalence versus cross-sectional prevalence) account for the higher
prevalence observed in the current study. Additionally, the crude cumu-
lative prevalence of lice infestation of pups with patent hookworm
infection (81.2%, CI 75.3–86.2%) was significantly higher (Fisher's
exact test: P = 0.029) than for postpatent pups (68.7%, CI 57.6–78.4%).
The evidence that lice can directly cause disease in free-ranging pinni-
peds is limited (Thompson et al., 1998), although they are capable of act-
ing as vectors for other pathogens (Jellison and Milner, 1958; Geraci
et al., 1981; Linn et al., 2001). Heavy lice infestations can cause pruritus,
alopecia, and anaemia, however, they may be acquired secondary
to other disease processes causing debilitation (Dailey, 2001), such
as hookworm infection. Hence, the current study indicates that
A. microchir is associated with mild disease and is unlikely to be having
a significant impact on the health status of Australian sea lion pups.
Further investigation of the epidemiology of A. microchir in Australian
sea lion pups is necessary to determine the factors that influence the
prevalence and intensity of this parasite.

4.2.3. Effects of host factors on erythrocyte and TPP values
As expected, significant increases in PCV, RBC, and TPP values were

associated with increases in standard length (Table 4), indicative of
recovery from hookworm-associated haemorrhagic anaemia via the re-
generative erythroid response and progressive ‘normalisation’ of hae-
matological parameters in older pups. Additionally, increases in TPP
values could be explained by increased exposure to antigenic stimuli
(and therefore higher globulin values) in older pups, associated with
the ontogeny of diving behaviour (Fowler et al., 2007; Brock et al.,
2013). Further investigation to characterise changes in plasma protein
fractions and their response to disease are required to further elucidate

the physiological and pathological mechanisms contributing towards
hypo- and hyperproteinaemia (Gray et al., 2005; Schmertmann, 2010).

Pup sex had a small but significant effect on PCV and RBC values
(Table 4), a difference not identified in a limited study of Australian
sea lions aged 6–23 months (Fowler et al., 2007). Sex-related neonatal
erythrocyte differences have been reported in one longitudinal study
of Steller sea lions (Eumetopias jubatus) in which male pups had signif-
icantly lower RBC and significantly higher PCV than female pups,
although differences were considered clinically irrelevant (Lander
et al., 2014). These differences were not identified in other studies of
Steller sea lion pups (Rea et al., 1998; Richmond et al., 2005) nor in
investigations of other pinniped pups (Lane et al., 1972; Horning and
Trillmich, 1997; Hall, 1998; Beckmen et al., 2003; Castinel, 2007;
Trillmich et al., 2008). The underlying mechanisms contributing to
these sex-related differences are unclear as hookworm infection inten-
sity does not appear to significantly differ between sexes (Marcus et al.,
2014a) and major sex-related differences in physiology and behaviour
are not expected in pinniped pups (Greig et al., 2010).

4.2.4. Effects of pathogen and host factors on leucocyte values
Temporal changes in leucocyte parameters in Australian sea lion

pups followed the same general pattern described for Steller sea lion
and Galapagos sea lion (Zalophus wollebaeki) pups, that is, median
leucocyte counts were high shortly after birth and decreased with
increasing age (Keogh et al., 2010; Brock et al., 2013). This pattern likely
reflects a similar developmental history in which immunologically-
naïve neonates are exposed to a range of novel environmental antigens
and develop endogenous immune responses, resulting in a complex se-
ries of correlations between leucocytes (Tables 2 and 3). Neutrophils
were the predominant leucocyte cell-type, followed by lymphocytes,
eosinophils, and monocytes, the relative proportions of which were
similar across all hookworm infection status groups and approximated
those reported for older cohorts of Australian sea lions (Needham
et al., 1980). Consistent with previous investigations, no basophils
were identified in the pup blood smears examined (Needham et al.,
1980; Clark et al., 2002; Schmertmann, 2010).

The leucocyte response to hookworm infection was characterised
predominantly by a systemic lymphocytosis and eosinophilia
(Table 5), reflective of the small-intestinal tissue response identified
histologically (Larum, 2010), and was similar to the predominantly
eosinophilic response observed in humans and dogs to hookworm
infection (Fujiwara et al., 2006). In contrast, lice infestation was not
associated with significant effects on leucocyte parameters in the
current study. The observed lymphocyte values of Australian sea lion
pups with patent hookworm infection (median 3.18 × 109/L, 95% RI
1.44–5.99 × 109/L) were similar-to-less than those observed in both
New Zealand sea lion pups (1–58 days of age) with Uncinaria sp. infec-
tion (mean 2.32 × 109/L, range 0.21–16.04 × 109/L) and Steller sea lions
pups (b2 months of age) of undetermined health status (median
3.17 × 109/L, 95% RI 1.13–8.99 × 109/L) (Castinel, 2007; Lander et al.,
2014). In contrast, the eosinophil values of Australian sea lion pups
(median 1.13 × 109/L, 95% RI 0.05–3.54) were markedly higher than
those observed in both New Zealand sea lion pups (mean 0.05 × 109/L,
range 0.00–1.46 × 109/L) and Steller sea lions pups (median
0.36 × 109/L, 95% RI 0.00–1.93 × 109/L) (Castinel, 2007; Lander et al.,
2014). It is unclear whether this difference in eosinophil values is due
to inherent immunological host-response differences or reflects the in-
tensity and pathogenicity of hookworm infection in Australian sea lion
pups compared to other pinniped hosts. The latter is more likely given
the high intensity of infection (Marcus et al., 2014a) and marked intes-
tinal pathology identified on histopathology sections (Larum, 2010).
Interestingly, pups in better body condition tended to have higher eosin-
ophil values (as well as higher nRBC and TPP values; see Tables 4 and 5),
suggesting that eosinophilic inflammatory responsesmay have a protec-
tive effect as pup body condition is inversely associatedwith hookworm
infection intensity (Marcus et al., 2014a). Further investigation to

140 A.D. Marcus et al. / Comparative Biochemistry and Physiology, Part A 184 (2015) 132–143

73



determine whether changes in leukocyte values are associated with the
intensity and severity of parasitic infections are required to assess
whether these immunological-responses are advantageous or deleteri-
ous to the host, and their implications for pup survival.

4.2.5. Effects of environment factors on haematological values
The effects of capture and manual restraint on observed haemato-

logical values warrant consideration, as the physiological fight-or-
flight response can result in leucocytosis, due primarily to shifts in
neutrophils, lymphocytes, and monocytes from the marginal pool to
the circulating pool (Stockham and Scott, 2008). Additionally, splenic
contraction can increase circulating erythrocytes, falsely elevating PCV,
RBC, and nRBC values (Castellini et al., 1996; Stockham and Scott,
2008). In the current study, capture-type was identified as a significant
factor influencing lymphocyte values, with pups capturedwhilst awake
or mobile demonstrating a relative lymphocytosis compared to pups
captured whilst asleep, supportive of a physiological lymphocytosis. Al-
though differential effects of capture-type were not observed for other
parameters, it is likely that capture-type was a relatively insensitive
proxy of physiological stress levels and that the haematological param-
eters of all sampled pups were influenced to some degree by the acute
effects of capture and manual restraint (Castellini et al., 1996). As
such, the reported reference intervals reflect the haematological values
of free-ranging manually-restrained neonatal pups; comparisons with
captive-animal studies or those that utilise chemical restraint must be
undertaken cautiously.

Finally, the relative magnitude and direction of effects attributed to
the year of sampling were aligned with seasonal fluctuations in hook-
worm infection intensity for some haematological parameters. For
example, pups demonstrated higher eosinophil counts and lower TPP
values during the high-hookworm-infection-intensity season compared
to the low-hookworm-infection-intensity season at both colonies
(Tables 4 and 5). However, interpretation of these results is confounded
as the variance associatedwith seasonal changes in categorically-scored
factors was likely also attributed to the year of sampling (see
Section 4.2). For example, the severity of cutaneous ulcerative lesions
observed in pups during the Dangerous Reef summer breeding season
(2013) was markedly increased compared to the other breeding
seasons (unpubl. data), yet the associated variance in haematological
parameters would not have been encompassed by the binomial factor
‘presence of lesions’ and likely was attributed to the year of sampling
(see neutrophil count, Table 5). Conversely, and contrary to expecta-
tions, year of sampling had no significant effect on PCV, RBC, and RET
values (Table 4), although it is possible that these effects were attribut-
ed to standard length as fluctuations in hookworm infection intensity
are also expected to impact growth rates. The collection of data from
additional breeding seasons is required to clarify the role of environ-
mental seasonality and pathogen infection intensity on haematological
parameters.

5. Conclusion

This is the first study to report haematological reference intervals for
free-ranging neonatal Australian sea lion pups and to describe the ef-
fects of pathogen, host, and environment factors on the variability of
haematological parameters in this species. Uncinaria sanguinis was
identified as an important agent of disease for this species, with infec-
tion in pups characterised by regenerative anaemia, hypoproteinaemia,
and a predominantly lymphocytic–eosinophilic systemic inflammatory
response, with effects still evident in some postpatent pups. Conversely,
the effects of A. microchir were less apparent with infestation unlikely
to impact pup health. Importantly, this study demonstrated that anae-
mia in neonatal Australian sea lion pups is not solely a benign physiolog-
ical response to host–environment changes, but largely reflects a
significant pathological process that adversely impacts pup health. Pre-
dominantly benthic foragers, Australian sea lions operate at or near

their physiological limits with limited capacity to cope with shifts in re-
source availability (Fowler et al., 2007; Peters et al., 2014). As such, the
effects of U. sanguinis on the haematological values of pups might have
implications for the development of foraging and diving behaviour,
which would subsequently influence the independent survival of juve-
niles followingweaning, significantly impacting the population demog-
raphy and threatening the viability of this species. The haematological
reference intervals developed in this study can facilitate the implemen-
tation of long-term health surveillance, which is critical for the early
recognition of changes in disease impact and to inform conservation
management strategies. The outcomes of this study contribute towards
a greater understanding of the dynamic role of pathogen–host–environ-
ment relationships in influencing the values of haematological parame-
ters in pinniped pups, whilst highlighting the difficulties associated
with inferring cause and effect in free-ranging populationswith endem-
ic disease.
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Supplementary material 

 

Appendix S1. Additional haematological methods 

 

S1.1 Manual versus automated counts 

Erythrocyte and leucocyte counts were manually estimated from Australian sea lion blood 

samples (n = 15) using Ery-TIC and Leuko-TIC kits (Bioanalytic, Freiburg, Germany), 

respectively, with a Neubauer improved haemocytometer (Glaswarenfabrik Karl Hecht, 

Sondheim, Germany). Aliquots (150 µl) of EDTA anti-coagulated blood samples were 

subsequently preserved 1:1 with Streck Cell Preservative (Streck, Omaha, USA), stored at 

approximately 4 oC, and analysed 2–4 days later using a Sysmex XT-2000iV automated 

haematology analyser (Sysmex, Kobe, Japan) at the Veterinary Pathology Diagnostic 

Service, Faculty of Veterinary Science, The University of Sydney. Conversion factors 

between haemocytometer and Sysmex counts were determined by fitting general linear 

models using REML estimation to the data: 

 RBCs = 0.8447 × RBCh + 0.3789  F1, 13 = 45.98, P < 0.001, R2
m = 77% 

 WBCs = 0.8373 × WBCh – 0.8417  F1, 13 = 1068.7, P < 0.001, R2
m = 99% 

where s denotes Sysmex obtained counts and h haemocytometer counts. 

Leave-one-out cross-validation model construction was also performed for each parameter 

with predicted Sysmex-equivalent and actual Sysmex estimates compared using two-

sample paired T-tests; there were no significant differences between predicted and actual 

erythrocyte (t = 0.03, df = 14, P = 0.978) and leucocyte (t = 0.13, df = 14, P = 0.897) 

estimates. 
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S1.2 Equations 

The following equations were used to calculate reported haematological values: 

MCV (fL) = (PCV × 1000) ÷ RBC 

RET (×109/L) = RBC × (number of reticulocytes per 1000 erythrocytes) 

cWBC (×109/L) = (WBC × 100) ÷ ([number of nucleated erythrocytes per 100 leucocytes] 

+ 100) 

Differential leucocyte* count (×109/L) = cWBC × (proportion of leucocyte-type observed) 

*neutrophil / lymphocyte / monocyte / eosinophil 

nRBC (×106/L) = (WBC – cWBC) × 1000 

 

Abbreviations: cWBC – corrected leucocyte count; MCV – mean cell volume; nRBC – 

absolute nucleated erythrocyte count; PCV – packed cell volume; RBC – erythrocyte 

count; RET – absolute reticulocyte count; WBC – leucocyte count. 
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Supplementary tables 
 
Table S1. The proportion of haematological values from neonatal Australian sea lion pups (Neophoca cinerea) identified as low and high outliers for each 
hookworm infection status group. 
 
Hookworm infection status Prepatent Patent Postpatent 
 n Low outliers (%) High outliers (%) n Low outliers (%) High outliers (%) n Low outliers (%) High outliers (%) 
PCV 7 0.0 0.0 253 2.8 0.8 90 0.0 2.2 
RBC 6 0.0 0.0 245 2.0 1.6 91 0.0 3.3 
MCV 6 0.0 0.0 242 2.9 0.8 90 1.1 1.1 
RET 6 0.0 0.0 243 0.0 2.9 86 0.0 1.2 
nRBC 7 0.0 0.0 250 0.0 10.4 86 0.0 9.3 
TPP 7 0.0 0.0 252 0.0 0.4 91 0.0 2.2 
cWBC 7 0.0 0.0 250 0.0 5.2 86 0.0 4.7 
Neutrophils 7 0.0 0.0 250 0.0 5.2 86 0.0 4.7 
Lymphocytes 7 0.0 0.0 250 0.0 3.6 86 0.0 1.2 
Monocytes 7 0.0 14.3 250 0.0 4.0 86 0.0 3.5 
Eosinophils 7 0.0 0.0 250 0.0 1.6 86 0.0 4.7 
Abbreviations: cWBC – corrected leucocyte count; MCV – mean cell volume; nRBC – absolute nucleated erythrocyte count; PCV – packed cell volume; RBC – 
erythrocyte count; RET – absolute reticulocyte count; TPP – total plasma protein.  



 

80 
 

Table S2. Combined nonparametric 95% haematological reference intervals for neonatal Australian sea lion pups (Neophoca cinerea) with patent and postpatent 
hookworm infection. Reference limits were calculated by bootstrap estimation which adjusted for repeated measures and the number of samples from each 
infection status group. The proportion of reference values in each group, adjusted for repeated measures, which fell outside of the reference limits are presented; 
proportions ≥ 4.1% and ≤ 0.9% (shown in bold) invalidate the common reference interval. 
 

 Sample sizea 
Number of pups sampleda Lower limit

Proportion below limit (%)
Upper limit

Proportion above limit (%) 
 Patent Postpatent Patent Postpatent Patent Postpatent 

PCV (L/L) 244 88 254 0.279 4.7 0.0 0.436 0.0 5.3 
RBC (×1012/L) 236 88 249 3.02 4.8 0.0 5.26 0.0 4.7 
MCV (fL) 233 88 248 70.6 0.0 5.0 100.7 4.7 0.0 
RET (×109/L) 236 85 321 7.6 1.1 3.8 179.6 4.7 0.0 
nRBC (×106/L) 224 78 302 0.0 – – 445.3 4.9 0.0 
TPP (g/L) 251 89 340 54.0 4.4 0.0 87.0 1.0 1.6 
cWBC (×109/L) 237 82 242 3.85 0.0 4.0 23.61 4.9 0.0 
Neutrophils (×109/L) 237 82 242 1.72 0.0 5.2 17.50 4.6 0.0 
Lymphocytes (×109/L) 241 85 246 1.11 0.5 4.2 5.65 4.4 0.0 
Monocytes (×109/L) 240 83 240 0.00 – – 0.90 4.8 0.0 
Eosinophils (×109/L) 246 82 250 0.05 2.9 0.9 3.20 5.0 0.0 
a After outlier removal. Abbreviations: see Table S1.  
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Table S3. Significance levels (P-values) of host-pathogen-environment factors included in the final linear mixed models of neonatal Australian sea lion pup 
(Neophoca cinerea) haematological parameter variability. Dashes indicate factors which were excluded from the final models (P > 0.05). 
 

 Body condition Body weight Capture Hookworm infection status Lesion Lice Moulting Sex Standard length Year of sampling 
PCV – – – <0.001 – <0.001 – 0.001 <0.001 – 
RBC – – – <0.001 – – – 0.002 <0.001 – 
RET – – – – – – <0.001 – 0.012 – 
nRBC 0.038 – – <0.001 – – – – <0.001 <0.001 
TPP 0.008 – – <0.001 – <0.001 – – 0.006 <0.001 
Neutrophils – – – – 0.004 – – – <0.001 <0.001 
Lymphocytes – – 0.032 0.004 – – – – 0.003 <0.001 
Monocytes – – – – – – – – <0.001 <0.001 
Eosinophils 0.024 – – <0.001 – – – – <0.001 <0.001 
Abbreviations: see Table S1. 
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Table S4. Crude prevalence of lice (Antarctophthirus microchir) infestation in neonatal Australian sea lion pups (Neophoca cinerea), partitioned by hookworm 
infection status. 95% confidence intervals for the crude cumulative prevalence are presented in parentheses. 
 
Hookworm infection status Prepatent Patent Postpatent Unknown Total 
Number of pups sampled 6 213 83 33 295 
Number of sampling events 7 255a 91 33 386 
Crude proportion of sampling events with lice (%) 71.4 78.0 64.8 60.6 73.3 
Crude cumulative prevalence of lice infestation (%) 66.7 

(22.3–95.7)
81.2 

(75.3–86.2)
68.7 

(57.6–78.4) 
60.6 

(42.1–77.1)
79.3 

(74.2–83.8)
a The presence of lice was not recorded at one sampling event for one pup with patent hookworm infection. 
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Abstract A placebo-controlled study was used to investigate
the effectiveness of ivermectin to treat hookworm (Uncinaria
sanguinis) and lice (Antarctophthirus microchir) infections in
free-ranging Australian sea lion (Neophoca cinerea) pups and
to test the hypotheses that these parasitic infections cause
anaemia, systemic inflammatory responses, and reduced
growth, and contribute towards decreased pup survival.
Ivermectin was identified as an effective and safe anthelmintic
in this species. Pups administered ivermectin had significantly
higher erythrocyte counts and significantly lower eosinophil
counts compared to controls at 1–2 months post-treatment,
confirming that U. sanguinis and/or A. microchir are causa-
tively associated with disease and demonstrating the positive
effect of ivermectin treatment on clinical health parameters.
Higher growth rates were not seen in ivermectin-treated pups
and, unexpectedly, relatively older pups treated with ivermec-
tin demonstrated significantly reduced growth rates when
compared to matched saline-control pups. Differences in sur-
vival were not identified between treatment groups; however,
this was attributed to the unexpectedly low mortality rate of
recruited pups, likely due to the unintended recruitment bias
towards pups >1–2 months of age for which mortality due to
hookworm infection is less likely. This finding highlights the
logistical and practical challenges associated with treating
pups of this species shortly after birth at a remote colony.
This study informs the assessment of the use of anthelmintics
as a tool for the conservation management of free-ranging
wildlife and outlines essential steps to further the development

of strategies to ensure the effective conservation of the
Australian sea lion and its parasitic fauna.

Keywords Antarctophthirus microchir . Australian sea lion .

Ivermectin .Neophoca cinerea .Uncinaria sanguinis .

Wildlife disease

Introduction

Parasites profoundly impact the health and population dynam-
ics of many free-ranging species (Smith et al. 2009;
Thompson et al. 2010). Parasitic infection may be associated
with clinical or subclinical disease, which can be evident by
alterations in haematological values, changes in behaviour,
and/or reduced growth rates, and can contribute directly or
indirectly towards mortality (Irvine 2006; Bordes and
Morand 2011). Conversely, parasites may confer an advantage
to their host by stimulating development of the immune sys-
tem or delaying physiologically expensive activities such as
reproduction (Van Oers et al. 2002; Telfer et al. 2005).
However, as ill-health can itself exacerbate parasitism, exper-
imental manipulation of the host-parasite relationship is re-
quired to verify causal relationships and quantify the impact
of parasitic infection, both of which are necessary to inform
conservation management on the effectiveness of and need for
control strategies (Irvine 2006; Stringer and Linklater 2014).

The Australian sea lion (Neophoca cinerea) is an endan-
gered (IUCN Red List of Threatened Species; Goldsworthy
and Gales 2008) and vulnerable (EPBC Act 1999) pinniped
species endemic to Australia. These threatened species listings
are based on the Australian sea lion’s small, genetically
fragmented population, population declines at some colonies,
and the risk of extinction from fishery by-catch. Population
recovery could be limited by their extended breeding cycle
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(approximately 18months; Higgins 1993), which reduces life-
time reproductive potential, and the low survival rate of pups
to weaning (estimated range 11–44 %; McIntosh et al. 2013).
Most Australian sea lion pup mortality occurs before 1–
2 months of age and has been largely attributed to trauma
and starvation (Higgins and Tedman 1990; McIntosh et al.
2012; McIntosh and Kennedy 2013); however, the role of
infectious disease in pup mortality remains a key knowledge
gap for this species (Goldsworthy et al. 2009).

The haematophagous hookworm Uncinaria sanguinis
Marcus et al. 2014b, has recently been described in
Australian sea lion pups (Marcus et al. 2014b). This parasite
endemically infects 100 % of neonatal Australian sea lion
pups at Dangerous Reef and Seal Bay in South Australia
(Marcus et al. 2014a), two of the major breeding colonies of
this species (Shaughnessy et al. 2011). Similar to Uncinaria
spp. in other otariids, pups are likely infected via the
transmammary transmission of infective larvae shortly after
birth (Lyons et al. 2005; Marcus et al. 2014a). Patent small
intestinal infection is evident from approximately 2 weeks of
age until 2–3 months of age (Marcus et al. 2014a); the mech-
anism by which pups eliminate hookworm infection has not
be elucidated, although may be dependent upon host immu-
nological responses (Simpson 2014), age-related changes to
the host’s intestinal environment, or worm senescence.
Critically, U. sanguinis is implicated as a cause of anaemia
and hypoproteinaemia in Australian sea lion pups and infec-
tion is associated with a lymphocytic-eosinophilic systemic
inflammatory response (Marcus et al. 2015). In addition, high
hookworm infection intensity is associated with reduced body
condition in pups and seasonal oscillations in the magnitude
of colony pupmortality correspond to fluctuations in the mean
intensity of hookworm infection (Marcus et al. 2014a). Thus,
U. sanguinis is considered to be an important agent of disease
for Australian sea lion pups and is hypothesised to significant-
ly contribute towards pup mortality and demographic
regulation.

Sucking lice (Antarctophthirus microchir Trouessart &
Neumann, 1888) are also reported from Australian sea lion
pups at moderate to high prevalence (49–81 %; McIntosh
andMurray 2007; Marcus et al. 2015); however, as infestation
is only associated with mild anaemia and hyperproteinaemia
(Marcus et al. 2015), A. microchir is considered to have a
lesser impact on pup health and population demography.
The epidemiology of lice has not been thoroughly investigated
in this host, although pups likely acquire infestation via close
contact with conspecifics (McIntosh and Murray 2007;
Leonardi et al. 2013). In contrast to hookworm infection, the
intensity of lice infestation may be modified by host behav-
iours such as grooming.

Experimental manipulation of hookworm infection using
the anthelmintic ivermectin has been reported for Uncinaria
lucasi in northern fur seal (Callorhinus ursinus) pups

(Beekman 1984; DeLong et al. 2009) and for Uncinaria sp.
in New Zealand sea lion (Phocarctos hookeri) pups (Castinel
et al. 2007; Chilvers et al. 2009). In these hosts, ivermectin
was highly effective (~96–100%) at eliminating or preventing
hookworm infection and no significant adverse effects on pup
health were identified. Northern fur seal pups treated with
ivermectin demonstrated significantly higher growth and sur-
vival rates relative to controls (DeLong et al. 2009). Similarly,
New Zealand sea lion pups treated with ivermectin demon-
strated significantly higher growth rates and a trend towards
increased survival during a high mortality event associated
with Klebsiella pneumoniae infection (Chilvers et al. 2009).
Haematological parameters following ivermectin treatment
were not reported in northern fur seal pups and no significant
haematological differences were identified in a small study of
ivermectin-treated and untreated New Zealand sea lion pups
(Castinel 2007). The experimental manipulation of lice infes-
tation with ivermectin has not been reported for free-ranging
pinnipeds.

The aim of this study is to ascertain the clinical impact of
hookworm and lice infections on the health of free-ranging
neonatal Australian sea lion pups by experimentally manipu-
lating naturally occurring infections. This placebo-controlled
study estimates the effectiveness of ivermectin to treat
U. sanguinis and A. microchir infections in pups and tests
the hypotheses that these parasitic infections cause anaemia,
systemic inflammatory responses, and reduced growth rates,
and contribute towards decreased pup survival. The findings
of this study inform the assessment of the use of anthelmintic
treatment as a tool for the conservation management of this
endangered species.

Materials and methods

Study site and sample collection

Field work was conducted during the consecutive 2011 ‘win-
ter’ breeding season (high hookworm infection intensity) and
2013 ‘summer’ breeding season (low hookworm infection
intensity) at Dangerous Reef, Spencer Gulf, South Australia
(34.815° S, 136.212° E); six trips of 4–6 days duration were
undertaken: in May, July, August, and September 2011 and in
January and February 2013. Dangerous Reef is a remote low-
lying island (approximately 250 m long and 100 m wide) with
minimal vegetation and shelter; access is via sea transport and
dependent upon favourable weather conditions, and time
working in the colony is limited to minimise overall colony
disturbance. This site is the second largest colony of the
Australian sea lion, with approximate pup production of 500
pups per breeding season, and demonstrates an oscillating
pattern of high (~39%) and low (~14 %) pup mortality during
winter and summer breeding seasons, respectively
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(Goldsworthy et al. 2012). The extended breeding season of
the Australian sea lion (approximately 7 months duration at
Dangerous Reef; Goldsworthy et al. 2012), in conjunction
with the limited time available in the colony, precluded the
recruitment of known-aged neonatal pups on the basis of peak
parturition dates or observed births, as utilised in anthelmintic
studies of other otariid species (Chilvers et al. 2009; DeLong
et al. 2009). Instead, pups were prospectively recruited using
standard length (<80.0 cm) and moult status (non-moulting)
as proximate measures of age to select pups likely to be less
than 1–2 months old (McIntosh and Kennedy 2013; Marcus
et al. 2014a). Pups determined retrospectively to be free of
patent hookworm infection at recruitment, and hence likely
to be either less than 2weeks of age or greater than 2–3months
of age (Marcus et al. 2014a), were excluded from most statis-
tical analyses.

Pups (n=180) were captured by hand or net during mater-
nal absence and restrained manually within canvas bags.
Capture type was categorised as sleeping, awake (pup alert,
minimal pup exertion), or mobile (pup alert, captured after a
short period of pup exertion). Pups were weighed (measured
to the nearest 0.1 kg; Salter hanging scale, Avery Weigh-
Tronix, West Midlands, UK), sex determined, and body con-
dition was scored categorically (Marcus et al. 2014a). Pups
were examined for the presence of clinically significant le-
sions (including dermatitis, cutaneous ulceration, and subcu-
taneous abscesses; absent/present) and lice infestation (absent/
present). The number of lice present was scored (none, low,
medium, or high; 0–3) for each of three areas (dorsal thorax
and abdomen—‘back’, ventral abdomen—‘belly’, and ventral
thorax—‘chest’) and summed to obtain a crude semi-
quantified estimate of the intensity of lice infestation (scale
0–9). Faeces were collected per rectum using rayon-tipped
dry swabs (Copan Diagnostics, Murrieta, USA) within a lu-
bricated open-ended polyethylene sheath (modified 1–3 mL
transfer pipette, Livingstone International, Sydney, Australia)
or from the ground if pups were observed to defecate and
stored at approximately 4 or −20 °C prior to analysis. Blood
samples were collected from a subset of pups (n=55) from the
brachial vein (Barnes et al. 2008) using 21-gauge×1-inch
needles attached to 5 or 10 mL plastic syringes, transferred
to 1.3 mL EDTA tubes (Sarstedt, Nümbrecht, Germany), and
stored at approximately 4 °C prior to processing. To facilitate
resight and recapture, pups were identified uniquely by a tem-
porary bleachmark on their lumbosacral pelage (Schwarzkopf
Nordic Blonde, Henkel Australia, Melbourne, Australia) and/
or by tags applied to the trailing edge of both fore-flippers
(Supertag Size 1 Small, Dalton ID, Oxfordshire, UK).

Following sample collection, pups were allocated to treat-
ment and control groups using a randomised block design
based on standard length to reduce the variability in age dis-
tribution between groups. Treated pups (n=93; standard
length 60.0–75.0 cm, mean 67.2±3.5 cm) were administered

200 μg/kg ivermectin (10 mg/mL IVOMEC Antiparasitic
Injection for Cattle, Merial Australia, Sydney, Australia) sub-
cutaneously in the dorsal interscapular region, whilst control
pups (n=87; standard length 60.0–75.0 cm, mean 67.0±
3.3 cm) were administered 0.02 mL/kg saline (0.9 % sodium
chloride, Baxter Healthcare, Sydney, Australia) subcutaneous-
ly. A subset of pups (n=40 treatment, n=33 control) was re-
sampled subsequently between 27 and 67 days post-treatment
to assess changes in hookworm and lice infection status, hae-
matological parameters, and growth. Resights of recruited
pups were undertaken to categorise pup survival status as
alive, dead (carcass positively identified), or unknown (pup
not resighted; emigration or unidentified mortality). Necropsy
of recruited pups found dead was performed when the degree
of carcass decomposition permitted (n=4), in order to deter-
mine hookworm and lice infection status.

Haematological analysis

Blood samples were processed within 10 h of collection.
Packed cell volume (PCV; L/L) was measured in duplicate
in microhaematocrit tubes (IRIS Sample Processing,
Westwood, USA) following centrifugation at 15,800 rpm for
120 s (StatSpin MP, StatSpin Technologies, Norwood, USA);
mean values were utilised for statistical analysis. Total plasma
protein (TPP; g/L) wasmeasured using a hand-held refractom-
eter (Reichert TS Meter, Cambridge Instruments, Buffalo,
USA). Total erythrocyte counts (RBC; ×1012/L) and leucocyte
counts (WBC; ×109/L) were obtained from preserved blood
samples—prepared by mixing 100–200 μL aliquots of EDTA
anti-coagulated whole blood 1:1 with Streck Cell Preservative
(Streck, Omaha, USA)—using a Sysmex XT-2000iV auto-
mated haematology analyser (Sysmex, Kobe, Japan) at the
Veterinary Pathology Diagnostic Service, Faculty of
Veterinary Science, The University of Sydney within 9 days
of blood collection (Marcus et al. 2015). Differential leucocyte
counts were performed on air-dried blood smears prepared in
the field that were fixed with 100 %methanol and treated with
a Romanowsky-type rapid stain (Diff Quik, Lab Aids,
Sydney, Australia; or Rapid Diff, Australian Biostain,
Traralgon, Australia); 100 leucocytes were identified for every
10×109/L WBC. The proportion of nucleated erythrocytes
(mainly late normoblasts) to leucocytes was also recorded to
estimate absolute nucleated erythrocyte counts (nRBC; ×106/
L), corrected leucocyte counts (cWBC; ×109/L), and absolute
neutrophil, lymphocyte, monocyte, eosinophil, and basophil
counts (×109/L). Absolute reticulocyte counts (RET; ×109/L)
were estimated by counting the number of reticulocytes per
1000 erythrocytes on air-dried smears prepared in the field by
incubation of 50μL blood 1:1 with citrated 1% brilliant cresyl
blue (Sigma Chemical, St. Louis, USA) for 20 min and fixed
with methanol for 20 s. Due to occasional samples where an
insufficient volume of blood was collected to permit complete
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haematological analysis, values for all haematological param-
eters could not be determined for every individual.

Hookworm infection status

Pup hookworm infection status was determined by examining
faecal samples for hookworm eggs using a modified McMaster
flotation with saturated NaCl solution or, for small faecal sam-
ples, a direct smear. Where eggs were evident, hookworm in-
fection status was classified as ‘patent’. Where eggs were not
evident in faecal samples collected at recruitment (n=14 treat-
ment, n=12 control), hookworm infection status could not be
determined due to the inability to distinguish between
prepatent, occult, and postpatent hookworm infection using on-
ly one faecal sample (Marcus et al. 2014a); these pups, and one
control pupwith no faecal sample at recruitment, were excluded
from all statistical analyses except for the effectiveness of iver-
mectin against lice infestation. For pups with patent hookworm
infection at recruitment and no eggs in their faeces at recapture,
hookworm infection status was classified as ‘postpatent’.
Overall, 153 pupswith patent hookworm infectionwere recruit-
ed (n=79 treatment, n=74 control) and 64 of these pups were
recaptured (n=35 treatment, n=29 control; including one treat-
ment and two control pups from which faecal samples were not
obtained at recapture).

Statistical analysis

Effectiveness The effectiveness of ivermectin to treat patent
hookworm infection (n=34 treatment, n=27 control) was es-
timated using multivariate logistic regression (MLR). The ba-
se additive model consisted of the treatment group, standard
length at recruitment, and the time to recapture. The effects of
prospective covariates (weight and body condition at recruit-
ment and pup sex) on the estimation of ivermectin effective-
ness were tested for significance by constructing a maximal
model and covariates with the lowest explanatory power
(Wald F test P>0.05) were removed in a backwards stepwise
manner to arrive at a model that included only the base model
and any significant covariates (P<0.05). Two-way interac-
tions between these final model terms were tested and retained
if significant (P<0.05). The assumption of linearity of contin-
uous terms was accepted for correlation coefficients ≥0.7 of
the log odds of categorised variates against their midpoint.
The adjusted effectiveness and an approximate 95 % confi-
dence interval (CI) were calculated from the final model using
the formulae:

Adjusted effectiveness %ð Þ
¼ 1 – ‘adjusted odds ratio’ð Þ � 100

¼ 1 – e T – Cð Þ
� �

� 100; ð1Þ

95% CI %ð Þ ¼ 1 – e T – C � 1:96 � SEDð Þ
� �

� 100; ð2Þ

where T and C are the adjusted logit probabilities of patent
hookworm infection at recapture in treatment and control
pups, respectively, and SED is their standard error of differ-
ence, noting that the difference between the logits of two
probabilities is the logarithm of their odds ratio. The effective-
ness of ivermectin to treat and prevent lice infestation was
similarly estimated for pups with known lice infestation status
at both recruitment and recapture (n=38 treatment, n=31 con-
trol); the prevalence of lice at recruitment was tested for equal-
ity between treatment groups and included as an additional
prospective covariate in the analysis. The difference in the
intensity of lice infestation between treatment (n=38) and
control (n=30) pups at recapture was assessed using general
linear modelling (GLM) with REML estimation, with model
construction as above. Note, that estimates of the intensity of
lice infestation, which were measured on a Likert-type scale
and treated as interval data, were only utilised to obtain ap-
proximate parametric comparisons of lice infestation intensity
between treatment groups; the binomial covariate ‘presence of
lice’ was used in subsequent models to avoid potentially in-
troducing bias due to the crude semi-quantified nature of this
measurement.

Haematological parameters and growth Differences in the
values of haematological parameters (PCV, RBC, RET,
nRBC, TPP, and differential leucocyte counts) and growth
(standard length and weight) between treatment (n=26–35)
and control (n=22–29) pups at recapture were assessed using
GLM.Models were constructed as for effectiveness, including
the following additional prospective covariates: the relevant
haematological value at recruitment, the presence of lice and
lesions at recruitment and recapture, hookworm infection sta-
tus at recapture, and the year of sampling. Capture type at
recapture was also included as a prospective covariate for
haematological models to test for the physiological effects of
capture on haematological parameters. The assumptions of
homogeneity of residual variance and normality were checked
by visually assessing the fitted value plots and histo-
grams of residuals and, where necessary, the data was
power- or log-transformed.

Survival The cumulative survival rates of treatment (n=79)
and control (n=74) pups were estimated and compared using
Kaplan-Meier survival analysis with the log-rank test. The
maximum possible period of follow-up for each cohort of
recruited pups was 139–140 days (May 2011 recruitment),
73–75 days (July 2011), 30–35 days (August 2011), and 31–
35 days (January 2013), after which, pups known to be alive
were censored. For pups that were identified to have died
between field trips, survival time was estimated as the

Parasitol Res

88



known-time alive plus the median time to the next field trip.
The time to censoring for pups with unknown survival was
calculated similarly. To assess whether there was a significant
difference in the occurrence and distribution of time to emi-
gration or unidentified mortality between treatment groups,
Kaplan-Meier survival analysis was repeated excluding pups
known to have died and using unknown survival as the out-
come measure. All statistical analyses were performed using
GenStat 16.1 (VSN International, Hemel Hempstead, UK)
and statistical significance was considered at P<0.05.

Results

Effectiveness

The prevalence of patent hookworm infection at recapture 27–
67 days post-treatment (MLR χ2=32.49, df=6, P<0.001;
Fig. 1) was significantly different (F=12.63, df=1,
P<0.001) between treatment (2.4 %, CI 0.4–13.3 %) and con-
trol (54.0 %, CI 29.8–76.4 %) groups, after adjusting for the
non-significant effects of standard length at recruitment (F=
4.42, df=3, P=0.219) and the time to recapture (F=5.69, df=
2, P=0.058). The adjusted effectiveness of ivermectin to treat
patent hookworm infection was 97.9 % (CI 82.5–99.8 %).

The prevalence of lice infestation at recruitment (MLRχ2=
0.50, df=4, P=0.973; Fig. 2) was not significantly different
(F=0.03, df=1, P=0.862) between treatment (73.5 %, CI
57.3–85.1 %) and control (71.6 %, CI 53.5–84.7 %) groups
or across standard length (F=0.43, df=3, P=0.933). At re-
capture, the prevalence of lice infestation (MLR χ2=24.30,
df=5, P<0.001) was significantly associated with treatment

group (F=9.65, df=1, P=0.002) and the time to recapture
(F=7.05, df=1, P=0.008), after adjusting for the non-
significant effect of standard length at recruitment (F=
4.13, df=3, P=0.248). The adjusted prevalence of lice in-
festation at recapture 27–59 days post-treatment was signif-
icantly lower (P<0.05; Fig. 2) for pups administered iver-
mectin (prevalence at 27 days—28.4 %, CI 12.2–53.0 %)
than for pups administered saline (82.1 %, CI 53.7–94.8 %).
From 60 days post-treatment, there was no significant dif-
ference in the adjusted prevalence of lice infestation be-
tween treatment groups as the prevalence for both groups
approached 100 % (P>0.05; Fig. 2). The adjusted effective-
ness of ivermectin to treat and prevent lice infestation was
91.4 % (CI 59.6–98.2 %).

The intensity of lice infestation at recruitment (GLM R2=
2 %; Fig. 3) was not significantly different (F1, 65=0.54, P=
0.463) between treatment (mean 2.8, CI 1.9–3.6) and control
(3.2, CI 2.3–4.2) groups or across standard length (F1, 65=
0.70, P=0.407). At recapture, the intensity of lice infestation
(GLM R2=40 %) was significantly associated with the inter-
action between treatment group and the time to recapture
(F1, 63=11.12, P=0.001), after adjusting for the non-
significant effect of standard length at recruitment (F1, 63=
1.29, P=0.261). The adjusted intensity of lice infestation at
recapture 27–55 days post-treatment was significantly lower
(P<0.05; Fig. 3) for pups administered ivermectin (mean in-
tensity at 27 days—0.1, CI 0.0–0.9) than for pups adminis-
tered saline (4.0, CI 3.0–4.9). From 56 days post-treatment,
there was no significant difference in the adjusted intensity of
lice infestation between treatment groups as the intensity for
both groups converged to approximately 2.5 (P>0.05; Fig. 3).
No adverse signs associated with the administration of iver-
mectin were observed in the current study.

Haematological parameters

The final GLM and predicted values of haematological pa-
rameters for treatment and control pups at recapture are pre-
sented in Table 1. Pups administered ivermectin demonstrated
significantly higher (F1, 44=6.92, P=0.012) RBC values at
recapture (mean 4.19×1012/L, CI 4.03–4.34×1012/L) com-
pared to pups administered saline (3.87×1012/L, CI 3.69–
4.05×1012/L), after adjusting for the significant effect of
RBC value at recruitment (F1, 44=8.84, P=0.005) and the
non-significant effects of standard length at recruitment
(F1, 44=1.33, P=0.255) and the time to recapture (F1, 44=
1.52, P=0.225). The final fitted model accounted for 30 %
of the total variance observed in RBC values. Conversely,
pups administered ivermectin demonstrated significantly low-
er (F1, 46=13.67, P<0.001) absolute eosinophil counts at re-
capture (mean 0.17×109/L, CI 0.08–0.31×109/L) compared
to pups administered saline (0.60×109/L, CI 0.43–0.80×109/
L), after adjusting for the significant effect of hookworm

Fig. 1 The prevalence of patent hookworm (U. sanguinis) infection in
Australian sea lion (N. cinerea) pups a before and b after treatment with
ivermectin or saline, adjusted for the non-significant effects of standard
length at recruitment and the time to recapture (27–67 days). Error bars
(b) indicate approximate 95 % CI and the asterisk indicates significant
difference (P<0.05) between treatment groups
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infection status at recapture (F1, 46=4.56, P=0.038) and the
non-significant effects of standard length at recruitment
(F1, 44=0.25, P=0.621) and the time to recapture (F1, 46=
1.44, P=0.236). Within each treatment group, the absolute eo-
sinophil counts of pups with persistent patent hookworm infec-
tion were 0.05×109/L (CI 0.0004–0.20×109/L) higher than
postpatent pups. The final fitted model accounted for 44 % of
the total variance observed in absolute eosinophil counts. No
other significant differences between treatment and control
pups were identified at recapture for the remainder of the hae-
matological parameters measured (Table 1). Consistent with
previous investigations, no basophils were identified in any of
the blood smears examined (Needham et al. 1980; Clark et al.
2002; Schmertmann 2010; Marcus et al. 2015).

Growth

The standard length of pups at recapture (GLM R2=41 %;
Fig. 4) was significantly associated with the interaction of

treatment group and standard length at recruitment (F1, 43=
6.38, P=0.015), after adjusting for the significant effect of the
time to recapture (F1, 43=5.59, P=0.023), the presence of
lesions at recapture (F1, 43=6.14, P=0.017), and the year of
sampling (F1, 43=19.92, P<0.001). Pups administered iver-
mectin with standard length ≥67.0 cm at recruitment were
significantly shorter at recapture than pups administered saline
(P<0.05; Fig. 4); however, there was no significant difference
in the standard length at recapture between treatment
groups for pups with standard length <67.0 cm at re-
cruitment (P>0.05). Within each treatment group, pups
with lesions at recapture were 2.3 cm (CI 0.5–4.1 cm)
shorter than pups without lesions, and pups sampled in
2011 (high hookworm infection intensity breeding season)
were 5.0 cm (CI 2.8–7.2 cm) shorter at recapture than pups
sampled in 2013 (low hookworm infection intensity breeding
season).

The weight of pups at recapture (GLM R2=40 %) was not
significantly different (F1, 59=0.01, P=0.917) between

Fig. 2 The prevalence of lice (A. microchir) infestation in Australian sea
lion (N. cinerea) pups a before and b 27–67 days after treatment with
ivermectin or saline, adjusted for the non-significant effect of standard

length at recruitment. Error bars (a) and shaded areas (b) indicate
approximate 95 % CI. The asterisk indicates significant difference
(P<0.05) between treatment groups at 27–59 days post-treatment

Fig. 3 The intensity of lice (A. microchir) infestation in Australian sea
lion (N. cinerea) pups a before and b 27–67 days after treatment with
ivermectin or saline, adjusted for the non-significant effect of standard
length at recruitment. The intensityof licewas semi-quantifiedona scale

of 0–9. Error bars (a) and shaded areas (b) indicate approximate 95 %
CI. The asterisk indicates significant difference (P<0.05) between
treatment groups at 27–55 days post-treatment

Parasitol Res

90



treatment (mean 10.96 kg, CI 10.36–11.55 kg) and control
(10.91 kg, CI 10.25–11.56 kg) groups, after adjusting for the
significant effects of the time to recapture (F1, 59=19.01,
P<0.001) and weight at recruitment (F1, 59=7.55, P=0.008)
and the non-significant effect of standard length at recruitment
(F1, 59=0.15, P=0.701).

Survival

The crude survival rates of treatment (n=79) and control (n=
74) pups with patent hookworm infection were 93.7 and
94.6 %, respectively; four treatment and three control pups
died during the 2011 breeding season and one treatment and
one control pup died during the 2013 breeding season. One
dead pup from each group in each breeding season was avail-
able for necropsy. These pups were all female, in poor body
condition, and free of lice at necropsy. The pups administered
saline were found dead approximately 18 and 56 h post-
recruitment and patent small intestinal hookworm infection
was confirmed. The pups administered ivermectin were found
dead approximately 47 h and 32 days post-treatment: no hook-
worms were present in the small intestine of the 47-h pup but
hookworm adults and eggs were identified in the faeces; no
hookworms or eggs were present in the intestinal tract or fae-
ces of the 32-day pup. Differential diagnoses for the cause of
death in these pups include starvation and chronic hookworm
infection; ivermectin toxicity or iatrogenicmortality were con-
sidered unlikely. The results of histopathological examination
will be reported elsewhere. Necropsies were not performed on
the five additional pups found dead due to the degree of car-
cass decomposition; the three pups administered ivermectin
(one male and two females) were estimated to have died at
approximately 22, 22, and 32 days post-treatment and the two
pups administered saline (one male and one female) were
estimated to have died at approximately 20 and 32 days
post-recruitment.

The Kaplan-Meier cumulative survival estimates to 32 days
(the time to the last observed pup death) were not significantly
different (log-rank=0.065, df=1, P=0.798; Fig. 5) between
treatment (93.0 %, CI 84.0–97.0 %) and control (94.4 %, CI
85.7–97.9 %) groups. However, 24.1 % of treatment pups and
23.0 % of control pups were censored due to unknown sur-
vival (emigration or unidentified mortality) before the end of
the follow-up period. Additional Kaplan-Meier analysis, ex-
cluding pups known to have died, demonstrated that the oc-
currence and distribution of time to emigration or unidentified
mortality were not significantly different between treatment
groups (log-rank=0.279, df=1, P=0.598; Fig. 6): cumulative
survival estimates to 122.5 days (themaximum estimated time
until unknown survival status) were 37.4 % (CI 16.6–58.3 %)
and 35.2 % (CI 13.8–57.6 %) for treatment and control
groups, respectively.T
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Discussion

The current study demonstrates that ivermectin is an effective
and safe anthelmintic treatment for free-ranging neonatal
Australian sea lion pups and confirms that hookworm and/or
lice infections are causatively associated with alterations in
haematological parameters, and hence disease, in this species.
Differences in survival were not identified between treatment
and control groups; however, this may be attributed to the
unexpectedly low mortality rate of recruited pups, likely due
to the unintended recruitment bias towards older pups for
which mortality due to hookworm infection is less likely,

highlighting the logistical and practical challenges associated
with treating pups of this species shortly after birth at a remote
colony. Herein we provide recommendations for the conser-
vation management of endemic neonatal parasitoses in this
endangered species.

Effectiveness

Ivermectin was highly effective (97.9 %) at eliminating
U. sanguinis from Australian sea lion pups, similar to that
observed for U. lucasi in northern fur seal pups (100 %,
Beekman 1984; ~96 %, DeLong et al. 2009) and Uncinaria

Fig. 4 The standard length of
Australian sea lion (N. cinerea)
pups at recapture after treatment
with ivermectin or saline at
recruitment, adjusted for the
significant effect of the time to
recapture (27–67 days), the
presence of lesions at recapture,
and the year of sampling. Shaded
areas indicate approximate 95 %
CI and the asterisk indicates
significant difference (P<0.05)
between treatment groups for
pups with standard length
≥67.0 cm at recruitment

Fig. 5 Kaplan-Meier graph showing the estimated cumulative survival
rate of Australian sea lion (N. cinerea) pups after treatment with
ivermectin or saline (log-rank=0.065, df=1, P=0.798). The outcome
event was confirmed pup death. Pups with unknown survival
(emigration or unidentified mortality) between field trips were censored
at the known-time alive plus the median time to the next field trip; other-
wise, pupswere censored after the maximum possible period of follow-up
at 139–140 days (May 2011 recruitment), 73–75 days (July 2011), 30–
35 days (August 2011), or 31–35 days (January 2013)

Fig. 6 Kaplan-Meier graph showing the estimated cumulative survival
rate of Australian sea lion (N. cinerea) pups after treatment with
ivermectin or saline (log-rank=0.279, df=1, P=0.598). Pups known to
have died were excluded and the outcome event was unknown survival
(emigration or unidentified mortality). Pups were censored after the
maximum possible period of follow-up at 139–140 days (May 2011 re-
cruitment), 73–75 days (July 2011), 30–35 days (August 2011), or 31–
35 days (January 2013). This analysis demonstrates that the occurrence
and distribution of time to unknown survival were not significantly dif-
ferent between treatment groups
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sp. in New Zealand sea lion pups (100%, Castinel et al. 2007;
100 %, Chilvers et al. 2009). Although the pharmacokinetics
of ivermectin in Australian sea lion pups are unknown, ade-
quate distribution to achieve nematocidal concentrations oc-
curred within 2 days following subcutaneous administration,
based on the elimination of hookworms from the small intes-
tine of one treated pup found dead. This is consistent with the
finding of hookworm elimination within 16 h in a northern fur
seal pup following administration of ivermectin subcutane-
ously (DeLong et al. 2009) and the detection of maximal
plasma concentrations of ivermectin and moxidectin within
4 h in juvenile stranded harbour seals (Phoca vitulina) follow-
ing oral or subcutaneous administration, respectively
(Vercruysse et al. 2003). Ivermectin was also effective
(91.4 %) at removing A. microchir from Australian sea lion
pups yet, in contrast to the apparent persistent effectiveness
against hookworm infection, the prevalence and intensity of
lice infestation in treated pupswas equivalent to that of control
pups by 2 months post-treatment (Figs. 2 and 3). These find-
ings support hypotheses about the epidemiology of hook-
worm and lice infections in this host: infective hookworm
larvae are transmitted to pups only via the transmammary
route for a short period of time post-partum (Marcus et al.
2014a, b), whereas pups can become infected by lice from
infested conspecifics at any age (McIntosh and Murray
2007). Hence, following the elimination of parasitic infections
and reduction of ivermectin to non-effective concentrations,
re-infection with hookworm is unlikely to occur, whereas re-
infestation with lice is highly likely. To some degree, these
differences may also reflect species-specific differences in their
susceptibility to ivermectin and/or the development of protec-
tive host immunity against hookworm infection but not lice.
Further investigation of the duration of hookworm larval excre-
tion in milk, the role of host immunity in this species, and the
pharmacokinetics of ivermectin are necessary to clarify the
mechanisms contributing towards these differences.

The pattern of intensity of lice infestation in control pups—
initially high then decreasing over time (Fig. 3)—may be in-
dicative of a temporary reduction in grooming behaviour as-
sociated with the impact of patent hookworm infection,
supporting the hypothesis that high intensities of lice may be
secondary to other disease processes causing debilitation and
act as an indicator of poor clinical health status (Dailey 2001;
McIntosh andMurray 2007;Marcus et al. 2015). The intensity
of lice infestation for both groups converged at approximately
2 months post-treatment (Fig. 3), corresponding to the appar-
ent end of the period of ivermectin effectiveness as well as the
natural cessation of hookworm infection for most pups
(Marcus et al. 2014a), possibly reflecting the basal intensity
of lice infestation. Further investigations to quantify changes
in pup behaviour and lice infestation intensities are required to
elucidate the factors influencing the occurrence of lice and to
validate the intensity scale utilised in the current study.

Clinical impact of U. sanguinis and A. microchir

Pups administered ivermectin had significantly higher RBC
values and significantly lower absolute eosinophil counts
compared to saline controls at recapture (Table 1), verifying
the pathological impact ofU. sanguinis and/orA. microchir on
the health of Australian sea lion pups. Marcus et al. (2015)
identified that patent U. sanguinis infection was also associ-
ated with hypoproteinaemia and a lymphocytic inflammatory
response in Australian sea lion pups, whilst A. microchir in-
festation was associated with hyperproteinaemia. In the cur-
rent study, the TPP values and absolute lymphocyte counts of
treatment and control pups were not significantly different at
recapture (Table 1); however, it was not possible to differen-
tiate between the independent effects of U. sanguinis and
A. microchir in the current study because of the high effec-
tiveness of ivermectin against both parasites. Additionally,
significant differences in other haematological parameters
were not identified between treatment groups at recapture,
although most of the final models only explained a small
proportion of the observed variance in values. Part of this
unexplained variance may be due to factors not quantified in
the current study such as the actual intensity of parasite infec-
tions, host genetics influencing susceptibility and response to
disease, maternal experience, and short- and long-term envi-
ronmental factors (Acevedo-Whitehouse et al. 2009; Lowther
and Goldsworthy 2011; Marcus et al. 2015). Whilst some of
these factors are difficult or impossible to quantify without
long-term robust datasets, the development and validation of
methods to determine the intensity of parasitic infections in
live pups, along with the use of targeted parasite-specific an-
thelmintic treatment, should be pursued to facilitate improved
estimation of the relative pathogenic effects of parasites in
future studies. On balance, it is likely that U. sanguinis has a
greater pathological impact than A. microchir on the health of
Australian sea lion pups given that the intensity of hookworm
infection (mean 2138; Marcus et al. 2014a) is up to several
orders of magnitude greater than the intensity of lice infesta-
tion (Bless than 5 to several 100s^; McIntosh and Murray
2007) in this host; even relatively low hookworm infection
intensities are associated with the loss of large volumes of
blood via gastrointestinal haemorrhage (Hotez et al. 2004),
whereas sucking lice consume only small volumes of blood
(Speare et al. 2006).

The association of hookworm infection with anaemia and
inflammation in Australian sea lion pups is contrary to find-
ings from a small study of New Zealand sea lion pups in
which significant haematological changes were not associated
with ivermectin treatment to prevent hookworm infection
(Castinel 2007). Differences in methodology between stud-
ies—including sample sizes, parameters examined, and statis-
tical approach—may account for these conflicting findings;
alternatively, U. sanguinis may have greater pathogenicity in
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N. cinerea compared to the Uncinaria spp. found in New
Zealand sea lion pups (Marcus et al. 2015). Further investiga-
tion of the effects of parasitic infections on the haematological
parameters of pups of other pinniped species is required for
comparative analysis to determine the relative effects of
pathogen, host, and environment factors in influencing
the haematological values of pups and their impact on
health status.

Unexpectedly, positive effects on growth parameters (stan-
dard length and body weight) of Australian sea lion pups
administered ivermectin were not readily apparent. Instead,
the only significant growth finding was that longer pups
(≥67.0 cm at recruitment) treated with ivermectin increased
in standard length at a slower rate than matched controls; no
significant differences in standard length were identified be-
tween treatment groups for pups <67.0 cm at recruitment
(Fig. 4). In contrast, the weight of northern fur seal and New
Zealand sea lion pups increased at significantly higher rates
following ivermectin treatment compared to controls
(Chilvers et al. 2009; DeLong et al. 2009); changes in standard
length were not reported in these studies. An explanation for
this paradoxical treatment effect in Australian sea lion pups is
not clear, although similar findings have been reported un-
commonly in children infected with whipworm (Trichuris
trichiura) and treated with albendazole (Forrester et al.
1998; Tee et al. 2013). In these studies, reduced growth was
only observed for children with low whipworm infection in-
tensity that were administered a higher-than-usual dose of
albendazole (800 or 1200 mg compared to 400 mg). It is
possible that low nematode infection intensities have benefi-
cial host effects, mediated via their modulation of immuno-
logical responses (Yazdanbakhsh et al. 2002). As longer pups
are relatively older than shorter pups, they are in a later stage
of hookworm infection and may harbour reduced hookworm
infection intensity. In the current study, any potential benefi-
cial effects from this reduced intensity may have been negated
by the administration of ivermectin. Another possibility is that
ivermectin has adverse effects on the physiology of Australian
sea lions, as recognised for some anthelmintics in some spe-
cies (Sajid et al. 2006). These adverse effects may have been
evident only in older pups with reduced hookworm infection
intensity if the beneficial growth effects of parasite elimination
in younger pups outweighed—or were equivalent to—the
negative effects of treatment; indeed, the increase in standard
length of the shortest pups administered ivermectin was great-
er than that of control pups, although this difference was not
statistically significant (Fig. 4). Finally, it should be noted that
the sample size available for the growth analysis was relative-
ly small and that these unusual findings may be attributable to
a type I statistical error. Whilst the positive haematological
changes associated with ivermectin treatment support the clin-
ical impact of U. sanguinis and A. microchir, further investi-
gation into the effects of these parasites on the growth of pups

and the effects of anthelmintics in Australian sea lion pups are
warranted.

Pup survival

In order to reduce the pup mortality associated with hook-
worm infection, it is critical to prevent or reduce the impact
of infection prior to the occurrence of significant pathology.
For example, increased pup survival was associated with ad-
ministration of ivermectin to northern fur seal pups at approx-
imately 2 weeks of age and New Zealand sea lion pups at 3, 7,
and 30 days of age (Chilvers et al. 2009; DeLong et al. 2009).
In the current study, the apparent mortality rates of recruited
pups were not significantly different between treatment and
control groups and, unexpectedly, were markedly lower
(5.7 % in 2011 and 6.5 % in 2013) than the estimated colony
mortality rates (38.9 % in 2011 and, on the basis of historical
trends, ~14 % in 2013; Goldsworthy et al. 2012). These find-
ings suggest that despite selection criteria designed to recruit
pups during the relatively early period of patent hookworm
infection, recruitment was still biased towards older pups >1–
2 months of age which are less likely to experience mortality
due to hookworm infection. In addition, concurrent investiga-
tions identified that juvenile U. sanguinis are functionally ca-
pable of causing pathology during the prepatent period and
that up to ~30 % of pup mortality occurs during this period
(Marcus et al. 2014a, b). Unfortunately, given the access and
temporal limitations associated with this remote colony and
the extended breeding season of this species, as well as the
practical, ethical, and welfare considerations of safely captur-
ing, sampling, and treating pups whilst they are with their
mate-guarded cow during the prepatent hookworm period, it
was not possible in the current study to recruit these younger
pups. Hence, the results of the current study are not informa-
tive about the effect of ivermectin treatment on Australian sea
lion pup survival or the proportion of pup mortality which
may be attributable to hookworm and lice infections.

Conservation management of endemic neonatal
parasitoses: the way forward

The aim of parasite control in free-ranging wildlife popula-
tions within the context of conservation management is not to
eradicate parasitic infection, but rather to lessen the impact of
associated disease on the health and survival of host individ-
uals to improve population viability; parasites are integral
components of biodiverse ecosystems and should also be con-
served (Gómez and Nichols 2013). Fundamentally, the bene-
fits of parasite control to the host species and their ecosystem
must outweigh the potential ecological and evolutionary costs
associated with the loss or reduction of the targeted parasite
and any collateral consequences (Stringer and Linklater
2014). Critically, there must be a recognised need for parasite
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control; as the impact of parasitic infection on the host popu-
lation’s viability increases, so does the impetus to intervene
(Stringer and Linklater 2014). For free-ranging neonatal
Australian sea lion pups, U. sanguinis infection causes signif-
icant clinical health impacts and is hypothesised to contribute
directly and indirectly towards considerable pup mortality,
whereas A. microchir infestation is associated with relatively
mild disease and heavy infestations may occur secondary to
hookworm infection (Marcus et al. 2014a, 2015; this study).
There is much uncertainty regarding the population trajecto-
ries of several of the key breeding colonies for this species yet,
in contrast to the exponential growth of sympatric long-nosed
fur seal (=‘New Zealand fur seal’, see Shaughnessy and
Goldsworthy 2014; Arctophoca australis forsteri) popula-
tions, Australian sea lion population growth is stagnant
(Shaughnessy et al. 2013, 2014; Goldsworthy et al. 2014). It
is likely that U. sanguinis plays a critical role in the demo-
graphic regulation of Australian sea lion populations, limiting
population recovery (Marcus et al. 2014a, 2015), but further
empirical evidence demonstrating the impact of U. sanguinis
on the survival of free-ranging neonatal pups is required to
demonstrate the need for parasite control. In addition, it is crit-
ical that long-term health surveillance is implemented to ensure
that changes in the impact of hookworm infection, or the emer-
gence of new diseases, are recognised early so that their effects
can bemitigated. For example, there may be a need for sporadic
parasite control to reduce unexpected high pup mortality, as
demonstrated for New Zealand sea lion pups during high mor-
tality epizootics associated with K. pneumoniae infection
(Chilvers et al. 2009). However, before anthelmintic adminis-
tration can be recommended as a tool for the conservation man-
agement of Australian sea lion pups it is essential to determine
the long-term effects on individual health and breeding success,
and the implications (if any) for the health, development, and
survival of pups born to treated individuals.

Assuming that treatment directed against U. sanguinis is
deemed necessary, it is also essential that an effective and safe
treatment method can be implemented within the context-
specific logistical limitations. Some of the practical and wel-
fare considerations associated with treating Australian sea lion
pups within a few days of birth could be overcome by non-
invasively administering topical anthelmintic preparations to
pups or pre-parturient cows (Krämer et al. 2009; Woon 2012).
However, given the remote location of Dangerous Reef and
the extended duration of the breeding season, it may still not
be logistically feasible to treat a sufficiently large proportion
of the pups born at this colony. Rather, conservation efforts
could be more effective if directed towards management of
other colonies which are more readily accessible and also
demonstrate low pup emigration rates and high female partu-
rition site fidelity (Higgins and Gass 1993; McIntosh et al.
2006), facilitating the short- and long-term monitoring of the
individual and population effects of anthelmintic intervention.

There is concern that the treatment of free-ranging wildlife
could lead to the selection for anthelmintic resistance or par-
asite extinction (Chilvers et al. 2009; Stringer and Linklater
2014); however, these outcomes are unlikely for U. sanguinis
given its high genetic diversity—which does not appear to be
constrained by the geographic distance between colonies or
the site fidelity of breeding female sea lions (Haynes et al.
2014)—and the challenges to implementing widespread an-
thelmintic treatment at most remote colonies ensures a large
refugia population. Ideally, whilst treatment should be direct-
ed against U. sanguinis infection and have no impact on
A. microchir infestation given its much lower pathogenic ef-
fects in this species, this may not be achievable; however, the
occurrence of lice on older cohorts and at other colonies likely
ensures a large refugia population which can rapidly re-infest
pups (Figs. 2 and 3). Further investigation of the epidemiolo-
gy and genetic population structure of lice on Australian pin-
nipeds is required to assess the validity of these assumptions.

Finally, in order to inform conservation management, it is
imperative to obtain a thorough understanding of the effects of
parasitic infections on the health and disease status of individ-
uals and to determine their role in shaping population demog-
raphy. The current study contributes towards addressing these
knowledge gaps and provides preliminary data that informs the
assessment of the use of anthelmintics in free-ranging wildlife.
For the endangered Australian sea lion, we have outlined some
of the key steps that are necessary to further the development
of interventional strategies to ensure the effective conservation
of this species and that of its parasitic fauna.
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Chapter 6 Discussion 

6.1 General discussion, limitations, and directions for future research 

 Understanding the effects of parasitic infection in free-ranging species, and the 

fundamental factors influencing the epidemiology of disease, is essential to quantifying the 

impact of parasites on population health and dynamics and to determine the need for, and 

approach to, control strategies to conserve complex biodiverse ecosystems. For the 

Australian sea lion, an endangered keystone predator that demonstrates high rates of pup 

mortality and limited population recovery, the impact of disease on pup health is a key 

knowledge gap (Goldsworthy et al. 2009a; Australian Government 2013a and 2013b; 

McIntosh and Kennedy 2013). Prior to the work presented in this thesis, the published data 

available on hookworm infection in the Australian sea lion was limited to reports of 

Uncinaria specimens in pups born at Seal Bay and Dangerous Reef and the finding that 

one hookworm specimen from Dangerous Reef was molecularly distinct from North 

American pinniped hookworms (Beveridge 2002; Ladds 2009; Ramos et al. 2013). This 

thesis investigated the hypothesis that hookworm infection is a significant cause of disease 

and mortality in Australian sea lion pups; the publications presented in this thesis address 

some of the key knowledge gaps pertaining to the taxonomy, epidemiology, clinical 

impact, and management of hookworm infection in this species, collectively demonstrating 

that Uncinaria sanguinis is an important agent of disease. This body of work significantly 

improves the understanding of hookworm infection in the Australian sea lion and 

contributes towards furthering the fields of parasitology and marine mammal health. The 

findings of this thesis inform the conservation management of this endangered species and 

have implications for the assessment of the effects of disease on the health status of other 

pinnipeds. 
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 The findings presented in Chapter 2 indicate that a single, hitherto undescribed 

species of hookworm parasitises Australian sea lion pups at Seal Bay, Dangerous Reef, and 

The Pages Islands, extending the known range of hookworm infection in this host to 

include all three major breeding colonies. Based on morphological and molecular data 

from a relatively large number of specimens, this hookworm was described as a novel 

species (U. sanguinis) and its phylogenetic position with respect to several other pinniped 

hookworms was resolved. Subsequent investigations of the population structure of U. 

sanguinis demonstrated unexpectedly high levels of genetic interchange between these 

Australian sea lion colonies, indicating an effectively panmictic hookworm population 

(Haynes et al. 2014). Further investigation is necessary to determine the mechanisms by 

which U. sanguinis achieves intercolony gene flow despite the high degree of natal site 

fidelity of its host (Higgins and Gass 1993; Campbell et al. 2008a; Lowther et al. 2012), its 

transmammary mode of transmission (Chapters 2, 3, and 5), and the apparent occurrence of 

patent hookworm infection only in pups (Chapter 3; H. Shi, pers. comm.), which 

demonstrate limited dispersal capacity. In addition, whether U. sanguinis demonstrates 

host-specificity or is capable of infecting other hosts – such as the long-nosed fur seal, 

which could act as a vector host connecting otherwise isolated populations – is unknown 

and requires further investigation (Ramos et al. 2013). 

 Chapter 2 of this thesis reported the occurrence of substantial inter-host 

morphometric variation in both juvenile and adult specimens of U. sanguinis, in part 

related to host age, and therefore parasite age, highlighting the importance of examining 

specimens from multiple host-individuals across a range of ages in order to assess the 

extent of intra-species variation. This finding, together with the identification of host-

specific morphometric differences for U. hamiltoni in the South American sea lion and 

South American fur seal (George-Nascimento et al. 1992) and for U. lucasi in the northern 



 

101 

fur seal and Steller sea lion (Olsen 1952, cited in Lyons 2005; Nadler et al. 2013), 

demonstrates the limited utility of quantitative morphometrics to discriminate between 

different Uncinaria species and engenders caution when delimiting new species. As 

utilised in this study, coupling traditional morphological analysis and molecular techniques 

improves species descriptions and the certainty of identification (Pérez-Ponce de León and 

Nadler 2010). This is important because knowledge of species identity is essential for the 

comprehensive investigation of host-parasite-environment relationships and to attribute 

pathological changes to the correct agent of disease, which is critical for informing the 

conservation management of parasites and their hosts (Thompson et al. 2010). By 

determining that a single species of hookworm parasitises Australian sea lion pups, the 

findings of Chapter 2 established the foundation for subsequent chapters in this thesis to 

investigate the epidemiology, clinical impact, and management of this parasite. 

 The findings of this thesis support the hypothesis that the transmammary 

transmission of hookworm larvae to neonatal pups is the predominant route leading to 

patent hookworm infection in otariids. This has been most convincingly demonstrated for 

U. lucasi in the northern fur seal (Lyons et al. 2011b) and is also supported by studies in 

the Juan Fernandez fur seal, California sea lion, and New Zealand sea lion (Sepúlveda and 

Alcaíno 1993; Lyons et al. 2003; Castinel et al. 2007a). Evidence implicating 

transmammary transmission in the immediate post-parturient period as the predominant – 

and possibly exclusive – route leading to patent U. sanguinis infection in Australian sea 

lion pups was presented in Chapters 2, 3, and 5: 

i. the absence of hookworm infection in stillborn pups or pups that have not 

suckled, indicating that hookworm infection is not acquired in utero; 

ii. the little intra-host variation in the size of hookworm specimens, indicating that 

pups acquire hookworm infection over a relatively short period of time; 
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iii. the short duration of overlap between the end of the prepatent period and the 

start of patent infection, indicating that the timing of hookworm infection is 

similar for all pups; 

iv. the occurrence of hookworm infection in pups from 6 days of age across a 

range of substrate types, indicating that colony substrate is unlikely to be the 

primary source of infective hookworm larvae; and 

v. the apparent absence of re-infection subsequent to natural or anthelmintic-

mediated elimination of infection, indicating that infective hookworm larvae are 

likely only transmitted to pups for a short period of time post-partum. 

Overall, these findings exclude alternative pathways of infection as the predominant route 

by which Australian sea lion pups acquire patent U. sanguinis infection; the acquisition of 

infection via the ingestion of an intermediate or paratenic host, or via orally or 

percutaneously acquired free-living larvae, as occurs for other hookworm species in other 

hosts, cannot be excluded as possible routes of patent hookworm infection, although given 

the available evidence, they do not contribute significantly towards the intensity of 

hookworm infection in pups. In order to confirm the life cycle of U. sanguinis in the 

Australian sea lion, further investigation is required to demonstrate the occurrence of 

tissue-stage hookworm larvae and their excretion in milk. In addition, the current 

understanding of the hookworm life cycle in pinnipeds raises several key questions 

regarding the regulatory role of host immunity: What are the control mechanisms of 

hookworm larval hypobiosis and reactivation? Are tissue-stage larvae able to migrate to, 

and develop into adult hookworms in, the intestinal tract? Are hookworm larvae only 

transmitted via the transmammary route for a short period of time or are only neonatal 

pups susceptible to infection? Is elimination of hookworm infection dependent upon host 

immunological responses, age-related changes to the host’s intestinal environment, or 
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worm senescence? Further research to address these questions will improve our 

understanding of the host-parasite-environment relationship which could have implications 

for the conservation management of free-ranging pinnipeds as well as the control of 

hookworm infection in other hosts, including humans. 

 The results of investigations into the prevalence and intensity of U. sanguinis in 

free-ranging Australian sea lion pups (Chapter 3) provide essential baseline data on the 

epidemiology of this significant agent of disease and contribute a new perspective to 

understanding the fundamental factors that influence the dynamics of hookworm infection 

in otariids. The prepatent period of U. sanguinis in Australian sea lion pups was 

determined to be 11–14 days, similar to that determined for U. lucasi in northern fur seal 

pups, whilst the duration of patent hookworm infection (approximately 2–3 months) was 

found to be intermediate to that observed in northern fur seal pups (approximately 6–8 

weeks) and in South American fur seal, South American sea lion, and California sea lion 

pups (approximately 6–8 months) (Lyons et al. 2000a; Lyons et al. 2011b; Hernández-Orts 

et al. 2012; Katz et al. 2012). In other otariid species, greater hookworm infection 

prevalence and intensity are associated with sandy substrates over rocky substrates 

(Sepúlveda 1998; Lyons et al. 2000b; Lyons et al. 2005; Ramos 2013), similar to the 

predominant substrate types of Seal Bay and Dangerous Reef, respectively; however, 

contrary to expectations, there were no significant differences in the overall prevalence and 

intensity of hookworm infection between Seal Bay and Dangerous Reef. Rather, this study 

identified that the endemic occurrence of U. sanguinis is effectively 100 % in Australian 

sea lion pups born at both Seal Bay and Dangerous Reef and that the intensity of 

hookworm infection (mean intensity of 2138 hookworms per pup), which is substantially 

greater than that reported in other otariid hosts (see Chapter 1, section 1.3.3 for 

comparative values), appears to be influenced by seasonally-dependent biogeography 
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(Chapter 3). At Seal Bay, high hookworm infection intensity was associated with the 

summer breeding season (mean 2165 hookworms per pup) and low hookworm infection 

intensity was associated with the winter breeding season (mean 745 hookworms per pup), 

whereas the opposite seasonal association was identified at Dangerous Reef (winter, mean 

1927 hookworms per pup; summer, mean 67 hookworms per pup). These findings indicate 

that the substrate type and the long-term survival of free-living larvae are unlikely to be 

critical factors that significantly influence the epidemiology of hookworm infection in 

Australian sea lion pups. Instead, it is hypothesised that the extended duration of the 

breeding season and the minimum duration of patent hookworm infection in pups, both of 

which help to ensure that free-living larvae are present in the colony for at least six months 

each breeding cycle, account for the high prevalence of hookworm infection irrespective of 

colony substrate type. In addition, colony-specific seasonal differences in host behaviour, 

which influences local host aggregation, are hypothesised to influence the degree of 

exposure to free-living hookworm larvae, accounting for the seasonal fluctuations in 

hookworm infection intensity. Further investigation of the prevalence and intensity of 

hookworm infection at Seal Bay and Dangerous Reef during additional breeding seasons, 

as well as at other Australian sea lion colonies, is required to verify and improve our 

understanding of the host-pathogen-environment relationships that influence the 

epidemiology of hookworm infection in this host; given the logistical constraints 

associated with accessing other colonies, such as The Pages Islands, and the temporal and 

financial limits of this project, the investigation of hookworm infection at other colonies 

was beyond the scope of this thesis. However, the results presented here provide a solid 

foundation upon which researchers and conservation managers can monitor changes in the 

occurrence of hookworm infection at Seal Bay and Dangerous Reef in association with 

changes in population demography. More broadly, application of the methodology utilised 
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in this study to investigations in other free-ranging species, in particular the 

implementation of repeated temporal sampling, could improve the accuracy of estimates of 

pathogen occurrence and facilitate comparative studies to elucidate the fundamental factors 

influencing the epidemiology of infectious diseases across a range of hosts and 

environments. 

 Another significant contribution of this thesis is to improving the understanding of 

the impact of infectious disease on Australian sea lion health and its role in shaping 

population demography. The publications presented in this thesis relate the dynamics of U. 

sanguinis infection to the occurrence of seasonal patterns in clinical health parameters and 

pup mortality, and demonstrate the causative link between this parasite and disease in pups 

by quantifying the impact of infection on clinical health parameters and verifying this 

association via experimental manipulation. The intensity of hookworm infection has been 

implicated in other otariid hosts as a major factor that determines the severity of associated 

disease and subsequent mortality of pups (Olsen 1958; Keyes 1965; Lyons et al. 1997; 

Mizuno 1997; Sepúlveda 1998; Lyons et al. 2001; Berón-Vera et al. 2004; Lyons et al. 

2005; Castinel et al. 2007a; Chilvers et al. 2009; DeLong et al. 2009; Hernández-Orts et al. 

2012; Ramos 2013; Seguel et al. 2013a). In the Australian sea lion, evidence indicating 

that hookworm infection causes intensity-dependent disease in pups is provided by the 

findings, presented in Chapters 3 and 4, that higher hookworm infection intensity was 

significantly associated with reduced pup body condition and breeding seasons in which 

higher colony pup mortality occurred; that the relative age of dead pups during high 

hookworm infection intensity seasons was decreased compared to those which died during 

low hookworm infection intensity seasons; and that pups demonstrated higher eosinophil 

counts and lower total plasma protein values during high hookworm infection intensity 

seasons compared to low hookworm infection intensity seasons at both colonies. In 
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addition, pups sampled during the summer breeding season at Dangerous Reef, which had 

the lowest hookworm infection intensity determined across the four breeding seasons in 

this study, demonstrated a significantly increased prevalence of patent hookworm infection 

and an apparent delay in the onset of moult, suggestive of increased growth rates due to 

less-severe disease impact. 

 Further evidence demonstrating the causative link between U. sanguinis and 

disease in Australian sea lion pups is provided by the findings of Chapter 4, which 

estimated the effect of hookworm infection on the health status of pups by the assessment 

of changes in haematological parameters. Prior to this study, published data on the 

haematological parameters of Australian sea lion pups younger than six months of age was 

lacking and the effects of disease on haematological values in this species had not been 

reported. Therefore, to facilitate health assessment, haematological reference intervals 

were developed for free-ranging neonatal Australian sea lion pups within the context of 

endemic hookworm infection. These reference intervals demonstrated that the distributions 

of haematological values for all measured parameters were significantly different between 

neonatal pups with patent hookworm infection and older postpatent pups; pups with patent 

hookworm infection demonstrated relative macrocytic anaemia, hypoproteinaemia, and 

leucocytosis in comparison to postpatent pups. These findings are similar to the ‘normal’ 

developmental patterns observed in other pinniped species, however, in contrast to 

previous studies, the erythroid response to anaemia was characterised by quantifying the 

number of circulating reticulocytes and nucleated erythrocytes, thereby facilitating 

differentiation between the predominant underlying pathological or physiological 

mechanisms leading to anaemia (Stockham and Scott 2008). Critically, for the majority of 

pups with patent hookworm infection, the erythroid response was characterised as 

regenerative, indicative of the presence of a pathological process leading to anaemia, 
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whilst the concurrent occurrence of hypoproteinaemia indicated that this process was likely 

haemorrhagic in nature, implicating U. sanguinis as the causative factor. In addition, the 

systemic lymphocytosis and eosinophilia observed in pups with patent hookworm 

infection, which was similar to the small-intestinal tissue response to hookworm infection 

identified histologically (Larum 2010; R. Gray, pers. comm.), was predominantly 

attributed to the occurrence of U. sanguinis. Interestingly, the degree of eosinophilia 

observed in this study was markedly higher than that observed in other otariid pups 

(Castinel 2007; Lander et al. 2014), possibly reflective of the higher intensity and 

pathogenicity of hookworm infection in Australian sea lion pups. Overall, these findings 

demonstrate the significant adverse impact that U. sanguinis has on the health status of 

Australian sea lion pups and, by demonstrating that the occurrence of neonatal anaemia is 

not solely a benign physiological response to host-environment changes in this species, 

challenges assumptions about the non-pathological nature of neonatal anaemia in other 

pinnipeds. 

 The focus of this thesis was on hookworm infection in Australian sea lion pups, yet 

other pathogens could also have significantly influenced the health status of sampled pups, 

potentially confounding the interpretation of the haematological effects of U. sanguinis. 

Data on the occurrence and effects of other infectious disease agents in the Australian sea 

lion is limited (see Chapter 1, Table 1) and the scope of this study did not extend to 

investigate the possibility of disease due to microscopic pathogens such as bacteria, fungi, 

protozoa, or viruses; however, concurrent histopathological studies either did not identify 

these pathogens or did not implicate them as contributing significantly to disease in pups 

(Larum 2010; R. Gray, pers. comm.). In this study, U. sanguinis was the only 

macroparasite identified in the gastrointestinal tract of pups; the absence of other 

macroscopic gastrointestinal parasites is probably due to the relatively young age of pups 
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sampled and the likely requirement of the ingestion of an intermediate host for their 

transmission. Orthohalarachne spp. mites were identified in the nasopharynx of some 

necropsied pups, although they were not associated with gross pathological changes 

(unpubl. data); it is likely that these mites are of minor health significance (Dunlap et al. 

1976; Nicholson and Fanning 1981) and the collection of invasive nasal swabs to diagnose 

infestation in live pups was not undertaken in this study. Finally, infestation with sucking 

lice (Antarctophthirus microchir) is reported from the Australian sea lion at both Seal Bay 

and Dangerous Reef (McIntosh and Murray 2007); in general, lice infestation can cause 

anaemia in pinnipeds (Thompson et al. 1998; Dailey 2001), although prior to the 

publications presented in this thesis, the clinical impact of A. microchir had not been 

reported for this host. In this study, the presence of lice in the pelage of pups was recorded 

during clinical examinations and this data was incorporated into statistical models to 

differentiate the estimated effects of lice infestation from hookworm infection. Lice 

infestation was found to be common in pups (overall prevalence > 70 %; see Chapter 4, 

Table S4) but, in contrast to hookworm infection, was only associated with relatively mild 

haematological effects (mild decrease in packed cell volume and mild increase in total 

plasma protein) and is considered unlikely to be having a significant impact on the health 

status of Australian sea lion pups. A limitation of this study is that the actual intensity of 

parasitic infections in live pups was not determined; for hookworm infection, this was due 

to the absence of validated methods to estimate infection intensity from faecal egg counts 

(Chapter 3), whereas for lice infestation, direct counting was not undertaken in order to 

reduce pup handling time. (Note, as reported in Chapter 5, the intensity of lice infestation 

was crudely estimated based on subjective scoring, however, these estimates were only 

utilised to compare approximate lice infestation intensity between treatment groups; in 

order to avoid potentially introducing bias, these estimates were not used in other 
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analyses). Hence, the haematological effects attributed to these parasites should be 

interpreted as the mean estimated effect of the mean intensity of infection for each 

respective parasite. As such, some of the effect of these parasites that are related to the 

intensity of infection may have been attributed to interrelated host or environment factors, 

such as body condition or year of sampling, or may have contributed towards the total 

amount of unexplained variance in the models. Indeed, given that the prevalence and 

intensity of lice infestation may increase secondary to hookworm infection (Chapters 4 and 

5), it is possible that some of the effects attributed to A. microchir were actually due to 

hookworm infection and are correlatively, rather than causatively, associated with their 

occurrence. Regardless, given the absence of evidence to implicate other pathogens as 

significant agents of disease in Australian sea lion pups, the findings presented in this 

thesis assist in the characterisation of the clinical impact of hookworm infection in this 

species and highlight the key pathological role of U. sanguinis in influencing the health 

status of Australian sea lion pups. 

 Chapter 5 of this thesis detailed investigations to test the association of U. 

sanguinis with disease in Australian sea lion pups by experimentally manipulating the 

host-parasite relationship via anthelmintic administration. The results demonstrated that 

ivermectin is a highly effective and safe treatment to eliminate hookworm infection in this 

species, similar to that observed for northern fur seal and New Zealand sea lion pups 

(Beekman 1984; Castinel et al. 2007a; Chilvers et al. 2009; DeLong et al. 2009). In 

addition, ivermectin administration was identified to be effective at removing lice 

infestation and it is likely that treatment would have also removed Orthohalarachne spp. 

infestations (Lynch 1999). As such, it was not possible to definitively distinguish between 

the independent effects of these parasites, however, as previously discussed, given that U. 

sanguinis is implicated to have greater pathological impact than A. microchir (Chapter 4) 
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and that Orthohalarachne spp. are usually of minor health significance (Dunlap et al. 

1976; Nicholson and Fanning 1981), it is likely that the changes observed in clinical 

parameters in treated pups were predominantly due to the elimination of hookworm 

infection. Pups administered ivermectin had significantly higher erythrocyte counts and 

significantly lower eosinophil counts relative to saline-treated control pups at 1–2 months 

post-treatment. These findings assist the verification of the causative association of U. 

sanguinis with disease in Australian sea lion pups. Further investigation utilising narrow-

spectrum parasite-specific anthelmintics could be undertaken to facilitate improved 

estimation of the relative effects of each parasite species. 

 Unexpectedly, ivermectin treatment was not significantly associated with beneficial 

effects on Australian sea lion pup growth and survival, as observed for northern fur seal 

and New Zealand sea lion pups (Chilvers et al. 2009; DeLong et al. 2009). Reasons for 

these non-significant findings are not readily apparent, although several possibilities are 

proposed. Firstly, a key difference in this study is that the age of recruited pups was 

unknown, whereas northern fur seal pups were treated at approximately 2 weeks of age and 

New Zealand sea lion pups were treated at 3, 7, and 30 days of age (Chilvers et al. 2009; 

DeLong et al. 2009). In this study, it was not possible to recruit and treat known-age pups 

during the prepatent period of hookworm infection due to colony access and temporal 

limitations, as well as the practical, ethical, and welfare considerations of capturing, 

sampling, and treating Australian sea lion pups within the first few days of birth. Instead, 

this study aimed to recruit pups that, on the basis of morphological characteristics and 

hookworm infection status, were likely to be less than 1–2 months old (i.e. within the 

relatively early period of patent hookworm infection) and, hence, still expected to be at 

increased risk of mortality (McIntosh and Kennedy 2013). However, the apparent mortality 

rates of recruited pups, irrespective of treatment group, were markedly lower than the 
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colony pup mortality rates, indicating that the mean age of recruited pups may have been 

greater than expected. In addition, concurrent investigations identified that juvenile U. 

sanguinis are functionally capable of causing pathology during the prepatent period and 

that up to ~ 30 % of pup mortality occurs during this period (Chapters 2 and 3). These 

findings suggest that in order to reduce hookworm-associated pup mortality, it is critical to 

prevent or significantly reduce the impact of hookworm infection prior to the onset of 

patency. 

 Another possible explanation for the apparent lack of difference in survival 

between treatment groups could be that pups which were not resighted, either due to 

emigration away from Dangerous Reef or unidentified mortality, were categorised together 

as ‘unknown survival’; it is possible that ivermectin treatment increased survival and was 

associated with earlier emigration. Although the occurrence and distribution of time to 

unknown survival were not significantly different between treatment groups (Chapter 5, 

Fig. 6), due to the infrequency and short duration of field trips, there is insufficient 

evidence to discount this hypothesis. 

 Not only was ivermectin treatment not associated with positive effects on pup 

growth, but relatively longer pups treated with ivermectin increased in standard length at a 

slower rate than matched controls. This unexpected finding is similar to the reduced rates 

of growth identified in children with low whipworm (Trichuris trichiura) infection 

intensity that were treated with albendazole (Forrester et al. 1998; Tee et al. 2013). In these 

studies, it was hypothesised that low nematode infection intensity was associated with 

beneficial host effects. As longer pups are relatively older than shorter pups, they are in a 

later stage of hookworm infection and may have reduced infection intensity. It is possible 

that for Australian sea lion pups, low hookworm infection intensity or late-stage 

hookworm infection could have some beneficial host effects; in these longer pups, 
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treatment to eliminate their hookworm infections may have manifested as reduced growth. 

Finally, it is possible that ivermectin has adverse physiological effects in the Australian sea 

lion; this may have been evident only in older pups with reduced hookworm infection 

intensity as the presumed beneficial growth effects of parasite elimination in younger pups 

outweighed – or were equivalent to – the negative effects of treatment. 

 The findings of Chapter 5 contribute towards understanding the utility of 

anthelmintic treatment as a tool for the conservation management of the Australian sea 

lion. Although this study demonstrated that ivermectin effectively eliminates hookworm 

infection and is associated with haematological changes indicative of improved health 

status, critically, this study did not demonstrate a survival benefit to treated pups, which is 

essential to recommending this intervention be implemented. Importantly, this study 

demonstrated the challenges associated with treating pups of this species shortly after birth 

at a remote colony; given the evident impact of hookworm infection on clinical health 

parameters and its association with the magnitude of colony pup mortality, it is probable 

that had pups been recruited and treated during the prepatent period of infection that a 

survival benefit would have been observed. Before anthelmintic administration can be 

recommended as a tool for the conservation management of Australian sea lion pups, it is 

essential to demonstrate short- and long-term improvements in pup survival and breeding 

success following treatment, as well as to investigate the possible implications of treatment 

for the health, development, and survival of pups born to treated individuals. In addition, 

further investigation is required to assess the potential collateral ecological and 

evolutionary consequences of treatment, including the reduction or loss of other endemic 

parasites and the impact of introducing anthelmintics into the environment (Lumaret et al. 

2012; Stringer and Linklater 2014). The future role of anthelmintic treatment as a 

component of the conservation management of the Australian sea lion is likely to be as a 
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sporadic interventional tool to reduce pup mortality; for example, the need to reduce the 

impact of hookworm infection may arise due to the occurrence of additional health 

stressors contributing to increased mortality, as observed for New Zealand sea lion pups 

during high mortality epizootics associated with K. pneumoniae infection (Chilvers et al. 

2009). The routine use of anthelmintic treatment to support population recovery across the 

range of the Australian sea lion is not logistically feasible given the distribution of the 

population across multiple remote colonies and their asynchronous, extended breeding 

seasons, resulting in considerable heterogeneity in the age of pups within and between 

colonies, which would necessitate a near-constant presence within colonies during the 

breeding season to ensure treatment is administered to pups at an appropriate age to be 

effective. Although anthelmintic treatment may be possible at some readily accessible and 

highly monitored colonies, this intervention should not be considered a panacea for all of 

the threats impacting on the population recovery of this species. 

 An additional practical outcome of this thesis is the demonstration of methodology 

to preserve whole-blood samples in the field, facilitating the delayed analysis of 

haematological parameters and thereby enabling immunological and health investigations 

to be undertaken that otherwise would not have been logistically feasible (Chapters 4 and 

5). The implementation of this methodology in future studies could substantially improve 

the utility and value of obtaining blood samples from free-ranging species at locations 

otherwise too remote from laboratory facilities; the methodology outlined in this thesis is 

already being used to benefit studies of other Australian mammals including the long-

nosed fur seal (unpubl. data), Tasmanian devil (Sarcophilus harrisii; E. Peel, pers. comm.), 

koala (Phascolarctos cinereus; G. Pye, pers. comm.), and eastern grey kangaroo 

(Macropus giganteus; R. Gray, pers. comm.). 
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6.2 Conclusion 

 This thesis investigated the taxonomy, epidemiology, clinical impact, and 

management of hookworm infection in the Australian sea lion to address the hypothesis 

that hookworm infection is a significant cause of disease and mortality in this species. This 

thesis determined that a single novel species of Uncinaria parasitises the Australian sea 

lion, a finding critical to understanding and describing the epidemiology of hookworm 

infection in this host. The findings presented in this thesis indicate that, as for hookworm 

infection in other otariid species, transmammary transmission in the immediate post-

parturient period is likely the predominant route leading to patent hookworm infection in 

pups; however, in contrast to the fundamental role that colony substrate appears to play in 

shaping the epidemiology of hookworm infection in these other hosts, this thesis 

determined that all Australian sea lion pups are infected with U. sanguinis irrespective of 

the type of colony substrate, and that the intensity of hookworm infection appears to be 

influenced by colony-specific seasonal differences in host behaviour. The dynamics of 

hookworm infection were related to the occurrence of seasonal patterns in clinical health 

parameters and the magnitude of colony pup mortality, implicating U. sanguinis as a key 

factor shaping the population demography of this species. Critically, this thesis quantified 

the clinical impact of hookworm infection on the health status of Australian sea lion pups 

and demonstrated causative links between U. sanguinis and the occurrence of disease. 

 The baseline epidemiological data and the haematological reference intervals 

described in this thesis can facilitate the implementation of long-term health surveillance in 

this species, which is critical for the early recognition of emerging disease and changes in 

disease impact so that interventional strategies can be implemented. In addition, this thesis 

demonstrated the effectiveness and safety of ivermectin administration to eliminate 
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hookworm infection in pups, yet highlighted the logistical and practical challenges 

associated with treating neonatal pups of this species. 

 Finally, this thesis determined that U. sanguinis is an important cause of disease in 

the Australian sea lion and implicated this parasite as a major factor contributing towards 

pup mortality. As such, this body of work contributes towards an improved understanding 

of the role of infectious disease in influencing the health status and population demography 

of this endangered species, informing conservation management and providing a solid 

foundation for further investigations of the effect of disease on the health status of this and 

other free-ranging species.  
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