
Copyright and use of this thesis

This thesis must be used in accordance with the
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright
may be an infringement of copyright and
copyright owners may be entitled to take
legal action against persons who infringe their
copyright.

Section 51 (2) of the Copyright Act permits
an authorized officer of a university library or
archives to provide a copy (by communication
or otherwise) of an unpublished thesis kept in
the library or archives, to a person who satisfies
the authorized officer that he or she requires
the reproduction for the purposes of research
or study.

The Copyright Act grants the creator of a work
a number of moral rights, specifically the right of
attribution, the right against false attribution and
the right of integrity.

You may infringe the author’s moral rights if you:

- �fail to acknowledge the author of this thesis if
you quote sections from the work

- attribute this thesis to another author

- �subject this thesis to derogatory treatment
which may prejudice the author’s reputation

For further information contact the University’s
Director of Copyright Services

sydney.edu.au/copyright

Master’s Thesis

Rolling Window Time Series Prediction
using MapReduce

Author:

Lei Li

Supervisor:

Prof Philip Leong

A thesis submitted in fulfilment of the requirements

for the degree of Master of Philosophy

in the

School of Electrical and Information Engineering

at the University of Sydney

July 2015

Declaration of Authorship

I, LEI LI, declare that this thesis titled, “Rolling Window Time Series Prediction using

MapReduce” and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at University of Sydney.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“The time of life is short; to spend that shortness basely, it would be too long.”

William Shakespeare

UNIVERSITY OF SYDNEY

Abstract

Faculty of Engineering

School of Electrical and Information Engineering

Master of Philosophy

Rolling Window Time Series Prediction Using MapReduce

by Lei LI

Prediction of time series data is an important application in many domains. Despite

their inherent advantages, traditional databases and MapReduce methodology are not

ideally suited for this type of processing due to dependencies introduced by the sequen-

tial nature of time series. In this thesis a novel framework is presented to facilitate

retrieval and rolling window prediction of irregularly sampled large-scale time series

data. By introducing a new index pool data structure, processing of time series can

be efficiently parallelised. The proposed framework is implemented in R programming

environment and utilises Hadoop to support parallelisation and fault tolerance. A sys-

tematic multi-predictor selection model is designed and applied, in order to choose the

best-fit algorithm for different circumstances. Additionally, the boosting method is de-

ployed as a post-processing to further optimise the predictive results. Experimental

results on a cloud-based platform indicate that the proposed framework scales linearly

up to 32-nodes, and performs efficiently with a relatively optimised prediction.

http://sydney.edu.au/
http://sydney.edu.au/engineering/
http://sydney.edu.au/engineering/electrical/

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor, Prof. Philip

Leong for his guidance, inspiring ideas, encouragement, precious time in reviewing my

work and always expecting high standards.

I am thankful to Dr. Richard Davis for his valuable comments and discussions, as well

as for reviewing my manuscripts which helped me to produce a well organised thesis.

I am extremely grateful to my colleagues Farzad Noorian and Duncan Moss for their

generous supports which helped me to complete this work in a timely manner.

Finally I would like thank my parents and Bo Gao for their love and care.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation and Aims . 1

1.2 Assumptions . 3

1.3 Contribution . 3

1.4 Thesis Structure . 4

2 Background 5

2.1 Time Series Prediction . 6

2.1.1 Time Series . 6

2.1.2 Time Series Prediction . 7

2.1.3 Rolling Time Series Processing . 9

2.2 Parallel Computing . 10

2.2.1 Parallel in Financial Applications 10

2.3 MapReduce . 10

2.3.1 Hadoop . 12

2.3.2 Hadoop Distribution File System 13

2.3.3 HBase . 14

2.3.4 Rhipe Package . 14

2.4 Amazon Web Service . 15

2.4.1 Elastic Cloud Computing . 15

2.4.2 StarCluster . 16

2.5 Boosting . 17

2.6 Related Work . 18

v

Contents vi

3 Rolling window time series prediction using MapReduce 19

3.1 Issue of Rolling Analysis using Hadoop 19

3.2 Proposed Methodology . 20

3.3 Design . 23

3.3.1 Data Storage and Index Pool . 23

3.3.2 Preprocessing . 24

3.3.3 Rolling Windows . 24

3.3.4 Prediction . 25

3.3.5 Finalisation . 25

3.4 Forecasting . 26

3.4.1 Multi-Predictor Model . 26

3.4.2 Linear Autoregressive Models . 27

3.4.2.1 AR model . 27

3.4.2.2 ARIMA models . 27

3.4.3 NARX Forecasting . 28

3.4.3.1 ETS . 28

3.4.3.2 SVM . 28

3.4.3.3 Artificial Neural Networks 29

3.5 Summary . 30

4 Cloud-based Platform 32

4.1 Cloud Platform . 32

4.1.1 Comparison of Different Cloud Platform 33

4.2 AWS . 34

4.2.1 Elastic Compute Cloud . 34

4.2.2 Instance Types . 35

4.2.3 Break-even Analysis of Instances 36

4.2.4 StarCluster . 36

4.3 Rhipe Package . 38

4.3.1 Advantages of Rhipe . 39

4.3.2 Example . 40

4.3.2.1 Specification of Rhipe . 40

4.3.2.2 Visualisation of Rhipe . 42

4.4 Summary . 43

5 Boosting 46

5.1 Boosting . 46

5.1.1 Ensemble Schemes . 47

5.1.2 Gradient Boosting Machine . 47

5.1.3 Discussion about Boosting Algorithms 49

5.1.3.1 How to Choose Weak Learners 50

5.1.3.2 Boosting Implementation Issues 50

5.2 Gbm Package . 51

5.2.1 Improving Boosting Methods . 51

5.2.1.1 Decreasing Learning Rate 51

5.2.1.2 ANOVA Decomposition 52

5.2.1.3 Relative Influence . 52

Contents vii

5.2.2 Loss Function . 52

5.2.3 Implement gbm Boosting . 53

5.2.4 Example . 53

5.3 Summary . 54

6 Results 55

6.1 Experiment Setup . 55

6.1.1 Experiment Environment . 55

6.1.2 Test Data . 55

6.1.3 Preprocessing and Window Size . 56

6.1.4 Preprocessing Steps . 56

6.2 Performance and Architecture Test . 57

6.2.1 Scaling Test . 57

6.2.2 Cost Estimation . 57

6.2.3 Multi Predictor Model Test . 59

6.2.4 Data Split Handling Comparison 60

6.3 Boosting Result Comparison . 60

6.3.1 HitRate . 61

6.3.2 Boosting Sample . 61

6.3.3 Boosting Test . 62

6.3.4 Measuring Effectiveness of Learner Combinations 64

6.4 Summary . 65

7 Conclusion 66

7.1 Summary . 66

7.2 Further Directions . 67

A Boosting Example 68

A.1 AdaBoost . 68

A.1.1 AdaBoost Algorithm . 68

A.2 Training and Weighting of Boosting . 69

A.3 Distribution Models of gbm . 70

A.3.1 Gaussian . 70

A.3.2 AdaBoost . 70

A.3.3 Bernoulli . 70

A.3.4 Laplace . 71

A.3.5 Quantile regression . 71

A.3.6 Cox Proportional Hazard . 71

A.3.7 Poisson . 72

A.4 Boosting Example . 72

Bibliography 74

Publication 81

List of Figures

1.1 Issue of partial windows: a rolling window needs data from both windows
at split boundaries. 2

2.1 Overview of a cloud-based prediction system 5

2.2 An example of a spot price time series plot 6

2.3 Components of time series dataset . 7

2.4 Time series prediction using ARIMA model 8

2.5 Overview of parallel processing within a MapReduce environment. 10

2.6 Overview of a multi-node Hadoop cluster. 13

3.1 The system’s architecture . 22

3.2 Flow of data in the proposed framework. 23

3.3 The back-propagation neural network structure 30

4.1 Break-even plot of AWS Reserved instances and On-Demand instance . . 37

4.2 The D & R computational framework. 39

4.3 Rhipe processing example . 43

4.4 Example of local Hadoop job . 43

4.5 Details of JobTracker . 44

4.6 Completion of map and reduce jobs . 44

6.1 Speedup of execution time versus cluster size 58

viii

List of Tables

3.1 Example of an index pool . 23

4.1 Price comparison of Amazon and Microsoft 34

4.2 Service comparison of Amazon and Microsoft 34

4.3 Fees comparison between Reserved and On-Demand instances 36

4.4 Prices for light, medium and heavy Reserved instance 37

4.5 Advantages of Rhipe . 39

6.1 AWS EC2 execution times for scaling test 57

6.2 Cost estimation . 58

6.3 Performance comparison of different predictor model on a 16 node cluster. 59

6.4 Computational efficiency of the proposed architecture. 60

6.5 Boosting results for client volume prediction 62

6.6 Boosting prediction results in four different foreign currencies 63

6.7 Boosting results of different combination of models 64

ix

To mum and dad

x

Chapter 1

Introduction

1.1 Motivation and Aims

A time series is a record of variables across time, usually measured at equally spaced time

intervals. Time series analysis forms the basis for a wide range of applications including

physics, climate research, physiology, medical diagnostics, computational finance and

economics [1, 2]. Prediction, in particular, is an important aspect of time series analysis.

It can be thought of as a form of data mining, namely forecasting future values based

on the analysis of data’s historical behaviours.

Historically time series prediction was performed by statistician and analysts. With

rapid growth in the number and size of time series, manual inspection of time series has

become time-consuming, cumbersome and costly, creating a demand for an automatic

system to forecast large number of univariate time series. For example, it is common

to have over one thousand product lines that need forecasting at least monthly in a

businesses. One of the recent attempts to address this need is the forecast package

by Hyndman et al. [3]. It includes variants of the most popular automatic forecasting

algorithms, most of which are based on as either exponential smoothing or autoregressive

integrated moving average (ARIMA) models [4]. This thesis was initially motivated to

improve the speed of forecasting using this package. It must be also noted that this

package is implemented in R [5], a free software programming language for statistical

computing analysis which has become the de facto tool in machine learning and time

series analysis.

The past decade has seen tremendous advances in application of parallel computing

to various fields. New principles and standards are being created to address different

requirements, and algorithms undergo many changes to become scalable. This requires

1

Chapter 1. Introduction 2

Split 1 Split 2

Partial
Windows

Window 1

Window 4-2 Window 4-1

Window 2

Window 3

Window 3-2

Window 4

Window 5

Window 3-1

Figure 1.1: Issue of partial windows: a rolling window needs data from both windows
at split boundaries.

not only an understanding of these algorithms, but of principles and techniques for

parallel programming.

To achieve an efficient approach for analysing time series data in a parallel architecture,

Hadoop is currently considered as the most appropriate option to try. Apache Hadoop,

originally derived from the work of Google’s MapReduce [6], has become the standard

way to address Big Data problems. MapReduce is used to process files on each node

simultaneously and then aggregate their outputs to generate the final result. Hadoop

allows for more scalable, cost effective, flexible and fault tolerant parallel programming

[7].

Despite all of its advantages, the original MapReduce methodology of Hadoop is not

ideally suited for time series analysis. This is due to the implicit dependencies among

time series data observations [8]. Therefore partitioning and processing of time series

data using Hadoop require additional considerations:

• Time series prediction algorithms operate on rolling windows, where a window of

consecutive observations is used to predict the future samples. This fixed length

window moves from the beginning of the data to the end of it. But in Hadoop,

when the rolling window straddles two files, data from both are required to form

a window and hence make a prediction (see Figure 1.1).

• File sizes can vary depending on the number of time samples in each file.

• The best algorithm for performing prediction depends on the data and a consid-

erable amount of expertise is required to design and configure a good predictor.

In addition, the issue of predictor algorithm selection and optimisation is critical, as is

the implementation of an efficient platform that scales with time series data size.

The main aim of this thesis is to develop a novel framework that can achieve parallel

rolling time series prediction using Hadoop. By implementing the proposed framework,

the system should be able to deal with massive amount of time series data, either regular

Chapter 1. Introduction 3

or irregular. Furthermore, the proposed system can handle the optimisation, parameter

selection and also model combination through boosting.

1.2 Assumptions

In order to clarify the objectives of the thesis, certain assumptions are made in advance

to give a better idea of what the proposed system is going to do and why it is significantly

important to the time series prediction:

• The time series data is sufficiently large such that distributed processing is required

to produce results in a timely manner.

• Time series prediction algorithms have high computational complexity so that an

efficient and fast prediction model is urgently needed.

• Disk space concerns preclude making multiple copies of the data.

• The time series are organised in multiple files, where the file name is used to specify

an ordering of its data. For example, daily data might be arranged with the date

as its file name.

• In general, the data consists of vectors of fixed dimension which can be irregularly

spaced in time.

1.3 Contribution

The first contribution of this thesis is a framework for rolling time series analysis using

Hadoop [9]. The notion of a new index pool data structure is introduced, which is piv-

otal for the entire framework to successfully solve the issues of dispatching regularly or

irregularly sampled time series data to each computational node. The problems associ-

ated with locating the index of time series data, architecture design issues, framework

efficiency and flexibility are studied in detail. An efficient architecture is designed which

enables the elegant handling of rolling time series forecasting smoothly, by using the

MapReduce programming model.

Within the framework, a systematic approach to time series prediction is developed

which facilitates the implementation and comparison of time series prediction algorithms

in a wrapper model. A user-customisable multi-predictor model (MPM) is comprised of

commonly used predictor algorithms. Applying the MPM in the proposed framework

Chapter 1. Introduction 4

not only allows algorithm auto-selection for a range of different circumstances, but also

avoids common pitfalls such as over-fitting and peeking of data.

The third contribution is a feasibility study of deploying the proposed parallel rolling

time series prediction system on a cloud-based platform. Considering its scalable pro-

cessing capacity, cloud computing is a good alternative for performing big data analysis.

Furthermore, the MapReduce model is in a suitable form for the applications deployed

across cloud clusters. The further evaluation on the architecture performance and en-

hancement of the scalability are achieved by implementing the proposed framework on

Amazon Web Service (AWS) cloud clusters.

The last contribution is a study of applying boosting techniques to the proposed frame-

work for a further prediction optimisation. A rolling procedure is employed within the

boosting experiments to enhance the stability and predictive accuracy.

1.4 Thesis Structure

The remainder of the thesis is organised as follows. Chapter 2 gives an introduction to

relevant background on time series prediction, MapReduce, Amazon Web Service, boost-

ing and reviews the related work in this field. Chapter 3 proposes the core methodology

of using MapReduce to achieve rolling window prediction and the notion of a new data

storage indexing design. Chapter 4 compares two popular cloud services and has a fur-

ther study on AWS cloud service. This chapter also describes the details about how

Rhipe package performs in parallel processing. The following Chapter 5 contains the

details on the ensemble scheme theory of boosting and gradient boosting machine. The

descriptive parameter specification and implementation of the gbm package are included

in the same chapter. Chapter 6 presents the experimental results with rigorous analysis

and discussion. Finally, the research conclusions are summarised and future research

directions are outlined in Chapter 7. Some less important details about boosting tech-

niques are included in Appendix A.

Chapter 2

Background

This chapter establishes the theoretical foundations on which the research in this thesis

is based. Specifically, the areas covered are: time series prediction and techniques, rolling

time series processing, MapReduce, Amazon Cloud Service and boosting techniques. The

work presented in this thesis is an amalgamation of these research fields (see Figure 2.1).

TS-Prediction
Technique

Rolling
Processing

Boosting

Prediction
Results

MapReduceCloud
Platform

Figure 2.1: Overview of a cloud-based prediction system

5

Chapter 2. Background 6

Jul 01
00:00

Jul 08
00:00

Jul 15
00:00

Jul 22
00:00

Jul 29
00:00

0.
00

0.
05

0.
10

0.
15

0.
20

Spot Price

Figure 2.2: An example of a spot price time series plot

2.1 Time Series Prediction

2.1.1 Time Series

A time series is defined as a sequence of data points observed typically at successive

intervals in time [8]. It can be expressed as an ordered list: Y = y1, y2, . . . , yn [10].

Time series data is extensively used in many disciplines including statistics analysing,

signal processing, weather forecasting, biology, mathematical economics and business

management [2, 11, 12].

Figure 2.2 illustrates a spot price time series plot. The data are hourly aggregated spot

prices of a small Linux AWS EC2 instance in the US east region for the one month period

of July 2013. Notice that the data points have been connected through smoothing lines,

which make it easier to follow the ups and downs over the time. The spot price for this

particular EC2 instance fluctuates randomly.

Many time series can be decomposed into four different components: the long term trend,

seasonal components, irregular cycles, and random fluctuations [13]. In Figure 2.3, the

time series data are analytically decomposed into components, which are the quarterly

retail trade index of 17 European countries from 1996 to 2011. In time series, adjacent

observations are in a natural temporal ordering. This intrinsic feature of the time series

makes its analysis dependent on the order of the observations, and distinct from other

common data, in which there are no dependencies of the observations, such as contextual

data [8].

Chapter 2. Background 7

90
96

10
2

da
ta

−
0.

3
0.

0

se
as

on
al

90
96

10
2

tr
en

d

−
0.

4
0.

2

2000 2005 2010

re
m

ai
nd

er

time

Figure 2.3: Components of time series dataset

Time series analysis is defined as the methods for analysing the characteristics of time

series data and extracting meaningful statistical information [14]. Time series forecast-

ing is an important part of time series analysis, in which a model is used to predict

future values based on previously observed values [15].

2.1.2 Time Series Prediction

Time series prediction is the use of past and current observations at time t to forecast

future values at time t+ l , where l is the horizon of prediction [8].

Linear time series models are well explored, with auto-regressive (AR) and moving aver-

age (MA) models being central to modern stationary time series analysis. Hyndman and

Khandakar developed a R library, named forecast, for automatic time series forecasting

[3]. In this package, some of popular forecasting algorithms are introduced which are

principally based on exponential smoothing and autoregressive integrated moving aver-

age (ARIMA) models. The automatic forecasting algorithms of the forecast select the

appropriate time series model, estimate its parameters and then use it to predict the

future values. [3]. Furthermore the forecast package contains robust algorithms that

automatically deal with time series seasonal patterns and random fluctuations.

Figure 2.4 shows an example of a time series prediction using an ARIMA model. The

example shows the quarterly beer production in Australia from 1958 Q1 to 2008 Q3,

with the prediction objective of the next 20 quarters’ production using an ARIMA(1,1,2)

model. The details of an ARIMA model are defined in Section 3.4.2.2.

Chapter 2. Background 8

Prediction

Years

P
ro

du
ct

io
n

1960 1970 1980 1990 2000 2010

20
0

30
0

40
0

50
0

60
0

Figure 2.4: Time series prediction using ARIMA model

As the non-linear and non-stationary components often exist in real world time se-

ries [16], non-linear approaches such as non-linear autoregressive processes, bilinear

models and threshold models are developed and widely used for time series modelling.

The generalised autoregressive conditional heteroskedasticity (GARCH) model is a non-

linear time series model used to represent the changes of variance over time (het-

eroskedasticity) [17], which is an extension of autoregressive conditional heteroskedasti-

cicy (ARCH) [18]. ARCH and GARCH are used for the volatility of time series data in

financial applications, but not studied in this thesis.

Financial time series prediction, however, is a special case as it is statistically different

from other time series analysis. Its empirical time series usually contain a high degree of

unpredictability, due to the existence of uncontrollable factors and potential or hidden

risks influencing the financial markets. For example, the price of a fluctuating stock,

which are truly random and not directly predictable, can be modeled as random walks.

The theory of random walk states that, in a stock market, using the past observations

of a stock price cannot predict its future movement [19, 20]. In the efficient market

hypothesis (EMH), it is stated that market efficiency also has some reflections about the

uncertainty of the future [21, 22].

In this thesis we use three pure time-series models, namely ARIMA, naive and exponen-

tial smoothing state space model (ETS), for the purposes of comparison. The drawback

of model based approaches is that usually a priori assumption of the underlying distri-

bution of data is required for model parameter estimation. Machine learning techniques

Chapter 2. Background 9

can alleviate this issue and cope with the inherent non-linear and non-stationary nature

of real world time series.

2.1.3 Rolling Time Series Processing

Different dynamic and statistical methods are available for time series prediction [11].

Commonly, time series prediction algorithms operate on a rolling window scheme. Let

{yi}, i = 1, . . . , N be a sampled, discrete time series of length N . For a given integer

window size 0 < W ≤ N and all indices W ≤ k ≤ N , the h-step, h > 0, rolling (or

sliding) window predictions, {ŷk+h} are computed:

ŷk+h = f(yk−W+1, . . . , yk) (2.1)

where f is a prediction algorithm. ŷk+h is approximated such that its error relative to

yk+h is minimised.

Rolling analysis of time series is usually applied to dynamically update the parameters

of a model. A common technique is to compute parameter estimates through a fixed

length rolling window of sample data. The estimates over the rolling windows should

not be too different if the data are stationary. On the other hand, if the parameters

change at some point during the sample, the rolling analysis should capture the changes

on instability over the estimations [23]. Rolling analysis is often used for the backtesting

of the historical time series data, so as to evaluate the stability of forecasting methods

and improve the overall prediction accuracy [24]. The first step is to split the initial

historical data into two parts, the estimation sample and the other sample for predic-

tion. Then a statistical model is fitted into the estimation sample to forecast a k-steps

ahead prediction for the prediction sample. The error measures can be deployed for

calculating the difference between k-step ahead prediction and the observed prediction

sample of historical data. By repeating the last two steps, the estimation sample is then

rolled ahead with certain give rolling window length until it reach the end of historical

estimation data sample. In the last step, all the predictive results of each single window

are then summarised to calculate more statistics, such as the overall k-steps prediction

errors, to evaluate the adequacy of the selected model. The rolling analysis often use

moving average methods to conduct and evaluate the technical analysis of financial time

series [24].

Chapter 2. Background 10

MapReduce

Sort

Map

Map

Map

Split 1

Split 2

Split 3

Split 4

Split 5

Reduce

Reduce

Reduce

Result

Figure 2.5: Overview of parallel processing within a MapReduce environment.

2.2 Parallel Computing

Parallel computing is defined as the simultaneous use of multiple computing resources

to solve a computational problem [25]. The precondition of parallelism is that the

problem is able to be broken apart into small parts and be processed simultaneously.

The execution time with multiple computing processors is always expected less than

with a single central processor. Parallel computing has been applied in various areas

to improve the computation speed, such as data mining, signal processing and and

computational simulation ranging from science to financial market [25].

2.2.1 Parallel in Financial Applications

With the increasing scale of stored transaction data in financial area, there are more

and more concerns about parallel computing for financial analysis, in order to optimise

business and marketing decisions. Many applications of quantitative finance are able to

be parallelised, such as hedging, risk management and portfolio optimization. There-

fore, the effective parallel computing modelling and methods are required urgently for

financial time series analysis, in order to be competitive in the speed scaling [25]. Cur-

rently MapReduce is one of the popular parallel computing mode for large-scale data

computation.

2.3 MapReduce

The MapReduce programming model in its current form was proposed by Dean [26].

It centres around two functions, Map and Reduce, as illustrated in Figure 2.5. The

first of these functions, Map, takes an input key-value pair, performs computations and

Chapter 2. Background 11

produces a list of key/value pairs as output, which can be expressed as (k1, v1) →
list(k2, v2). The Reduce function, expressed as (k2, list(v2)) → list(v3), takes all of

the values associated with a particular key and applies computations to produce the

results. Both Map and Reduce functions are designed to run concurrently and without

any dependencies. To ensure that each Reduce receives the correct key, an intermediate

sort step is introduced. Sort takes the list(k2, v2) and distributes the keys to the ap-

propriate Reducers. The name MapReduce originally referred to the proprietary Google

technology but has since become a generic term to describe this form of processing.

The word count problem is often taken as the classic example to explain how MapReduce

solves the real-world problem. The context is associated to the issue of counting the

number of occurrences of particular words in a dictionary or big document [26]. The

pseudocode designed in MapReduce model is listed below:

map(String key, String value)

// key: document name

// value: document contents

for each word w in value

EmitIntermediate(w, "1")

reduce(String key, Iterator values):

// key: word

// values: a list of counts

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

The map is responsible for adding 1 to the count of occurrences where each word appears;

The reduce function sums up all the counts for each single word.

The implementation of programming model MapReduce is an effective approach for

processing large-scale data with a algorithm distributed in a parallel machine cluster.

For example, using MapReduce to count student names in parallel: the Map procedure is

responsible for sorting students by first name, and store each student name into queues.

In the Reduce procedure, the counting number of students’ name and the frequency

of each name is summarised. The MapReduce programming model can also be called

infrastructure or framework. It benefits the parallelism of applications and computing

tasks. By using MapReduce, all the data transfers and interaction between each single

part of the system is becoming manageable, and also data redundancy and fault tolerance

are considered.

Chapter 2. Background 12

The concept of MapReduce is inspired by the map and reduce functions in functional

programming [26]. However, it has evolved and extended from their original forms and

now has more powerful functionalities. The Map and Reduce functions are not the only

major contribution, scalability and fault-tolerance are key to solving large-scale problems

on commodity computing equipment [26]. The implementation of MapReduce in a

single node or thread is not going to be faster than a traditional sequential computing.

Only deploying MapReduce on a large cluster becomes beneficial for the optimisation of

distributed operation, reduction on network communication cost and fault tolerance.

Currently, MapReduce concepts have been applied in many areas and its libraries have

been ported to various programming languages. The Apache Hadoop is one of the most

popular implementations.

2.3.1 Hadoop

Apache Hadoop [27] is an implementation of the MapReduce framework for cluster

computers constructed from computing nodes connected by a network, and was created

by Doug Cutting and Mike Cafarella in 2005. It operates under the Java Runtime

Environment (JRE) which ensures portability across platforms [28].

Used by 60% of the Fortune 500 companies, Hadoop has become the industry standard

for dealing with big data problems. The Hadoop implementation of MapReduce can be

described as a cluster of TaskTracker nodes, dealing with a JobTracker and client node,

see Figure 2.6. Once a MapReduce application has been created, the job is committed

to Hadoop and then passed to the JobTracker which initialises it on the cluster. During

execution, the JobTracker is responsible for managing the TaskTrackers on each node

and each TaskTracker spawns Map and Reduce tasks depending on the JobTraker’s

requirements [26]. Inputs to the Map tasks are retrieved from the Hadoop distributed

file system (HDFS), a shared file system that ships with Hadoop. These inputs are

partitioned into multiple splits which are passed to the map tasks. Each split contains

a small part of the data that the Map function will operate on. The Map results are

sorted and passed to the Reduce tasks. The results of the Reduce tasks are written back

to HDFS where they can be retrieved by the user [6].

In a small Hadoop cluster, there is only one single master with multiple slave nodes.

As shown in Figure 2.6, the master contains JobTracker, TaskTracker, NameNode and

DataNode. But the slave nodes only contains a DataNode and TaskTracker. They

are managed and controlled by the NameNode and JobTracker of master node. The

small-scale Hadoop cluster is used only in nonstandard applications [29].

Chapter 2. Background 13

task
tracker

job
tracker

name
node

data
node

master slave

task
tracker

data
node

MapReduce Layer

HDFS Layer

multi-node cluster

Figure 2.6: Overview of a multi-node Hadoop cluster.

For a larger size cluster, a dedicated NameNode server is assigned to manage HDFS

with file system index. The secondary NameNode duplicates the structure of master

NameNode as a snapshot. This structure can prevent the file system corruption and

reduce the risk of data loss. Similarly the JobTracker server is responsible for job

scheduling.

2.3.2 Hadoop Distribution File System

The Hadoop distributed file system (HDFS) is a shared file system developed for the

Hadoop framework. In a Hadoop cluster, the NameNode and DataNodes are formed in

the HDFS layer (see Figure 2.6). Usually the master has both of nodes and slave node

only has DataNode, because of the DataNode is not required to be present in each node.

The TCP/IP layer is used by the file system for communication between nodes. The

interaction of each DataNode is accomplished by using the protocol specific to HDFS

[30].

HDFS is distributed, scalable, and portable. It is usually used to stores big data files

over multiple machines, which typically can be in the range of gigabytes to terabytes

[31]. HDFS achieves reliability by replicating the data files across different nodes. By

default, 3 replications of data files are stored on 3 multiple nodes: two copies are on the

same rack, and another one is on a different rack [32]. The data nodes are interactive

and can reform the data rebalancing.

Chapter 2. Background 14

Using HDFS provides a significant data awareness in file system. The responsibility of

JobTracker is to assign the Map or Reduce jobs to TaskTrackers. The data location

is aware of while scheduling the jobs. More specifically, each node of the cluster only

schedules the Map or Reduce tasks on its own data. For example, node M contains data

(a, b) and then node M would only be scheduled to perform Map or Reduce tasks on

(a, b). This advantage prevents the unnecessary traffic transfer over the cluster nodes,

and reduces the data traffic time. However, this advantage is now always available when

Hadoop is used with other file systems. Moreover, Jiong Xie et al. [33] discovered that it

significantly impacts the job completion time, demonstrated by running intensive-scale

jobs.

HDFS was initially designed for most files except the systems requiring concurrent write-

operations [34]. In addition a Filesystem in Userspace (FUSE) interface is included into

HDFS, enabling users to write a normal userland application as a bridge for a traditional

filesystem interface [35].

2.3.3 HBase

HDFS file system is also the basis of Apache HBase, a column-oriented distributed

database management [36]. HBase has become the standard tool for big data storage

and query. It originates from Google’s BigTable and is developed as part of the Apache

Hadoop project [6]. The instinctive features of HBase are providing the capabilities of

querying and storing big data for Hadoop, such as serving database tables as the input

and output for MapReduce jobs and real-time data access. Additionally HBase features

file compression, in-memory operation and bloom filters [37].

2.3.4 Rhipe Package

Rhipe is a R package that integrates Hadoop within the R programming environment

[38]. In other words, Rhipe is a fusion of R and Hadoop, combining the interactive

R environment and the highly scalable parallel Hadoop framework, to facilitate the

statistical analysis of complex big data [39]. Rhipe uses Hadoop to parallelise the

computationally intensive tasks.

This package was developed by Saptarshi Guha from the Purdue Statistics Department

[40]. Currently a core development team is established and a Google discussion group

is provided to all the users and researchers.

The impressive contribution of Rhipe is that its functionalities are achievable with small-

scale data sets [39]. It was initially inspired by two goals. The first goal is to achieve

Chapter 2. Background 15

deep data analysis in an efficient way. Moreover it is more concerned about avoiding data

loss which caused by inappropriate data reductions. In order to achieve the first goal

for small or big data, the visualised and statistical methods are required to extract the

characteristics of data and detailed statistics. Therefore, the second goal is to integrate

with the high-level R language, in order to improve the efficiency and effectiveness by

avoiding low level programming.

The Rhipe chooses Hadoop to access scalable I/O and parallel the computing. As

described above in section 2.3.1, Hadoop was designed for cluster machines to handle

the comprehensive computing in a scalable way. It is practical to deal with very different

performance characteristics of different operating platforms. The advantages of using

Hadoop is not limited to the parallelism of cluster computing over time, but also the

detailed tracking record in its open-source application which supported by Apache.

Compared to the existing parallel R packages, Rhipe is more beneficial for users in data

analysis [39]. In addition, Rhipe is more computationally effective by applying the high

capabilities and support of Hadoop. More details are presented in Chapter 4 section

4.3.1.

2.4 Amazon Web Service

Amazon Web Services (AWS) is a cloud computing platform with a collection of remote

computing services, served over the Internet. The most well-known services of AWS are

Amazon Elastic Compute Cloud (EC2) and Amazon Simple Storage Service (S3) [41].

The significant advantage of utilising AWS is providing an elastic computing service

with high capacity. Using AWS services requires less resources and is cheaper than

establishing a cloud server in-house.

2.4.1 Elastic Cloud Computing

Amazon Elastic Compute Cloud (EC2) is a pivotal part of AWS cloud platform [42].

EC2 allows users to rent virtual computer resources for running their own computing

applications. It also provides the scalable deployment by using AWS’ Amazon Machine

Image (AMI) service, which allows user to create and manage a virtual machine with user

desired software. In EC2, each virtual machine created by users is called an “instance”.

The “elastic” feature of EC2 can be explained as follows: users can create, launch,

and terminate the cloud instances based on their needs and only pay for the cost of

active running hours of instances. There are three basic EC2 instance types, namely

Chapter 2. Background 16

On-Demand, Reserved and Spot. All types of the instances provides the same standard

computing capacity although they may be from different data centres based on the

different geographical locations. The only difference between these three types is the

different pricing schemes of the instances [42].

In November 2010, Amazon switched its own retail website to EC2 and AWS.

2.4.2 StarCluster

StarCluster is a cluster computing toolkit, specially designed for Amazon’s Elastic Com-

pute Cloud (EC2). It is open-source and released under the LGPL license [43].

Using StarCluster, users are able to build, configure and manage the AWS virtual ma-

chine clusters in a simpler and more automatic way. Additionally, StarCluster allows

users to create a cloud computing environment for parallel computing quickly and easily.

The target users group of the StarCluster is the academic researchers with the needs for

cluster computing services.

StarCluster is a command-line tool written in Python with an user-friendly interface

to AWS EC2. The most beneficial part of StarCluster is that the strong supports of

variants EC2 Linux system images.

There are three reasons to build StarCluster specially for AWS. Firstly cloud computing

is the future trend for computing service, allowing all the intensive programming works

outsourced. AWS is playing the lead role among the existing popular and standard cloud

computing platforms. Secondly, in contrast to the different controlling and configuration

manager for different AWS services, there is a need for a simple control method over all

different commands through a programmable API [43]. Furthermore, with the helps

of StarCluster toolkit, systems administrators and programmers can focus more on the

researches with a comfortable cloud user environment, rather than spending time on the

complicated procedure of managing a big cluster. All of these logistical complications

are removed with the development of this easy-to-use command toolkit with an easier

access to AWS cloud computing service.

More practical benefits of StarCluster will be introduced and demonstrated in Section

4.2.4.

Chapter 2. Background 17

2.5 Boosting

Boosting is a general method to improve the accuracy of a given set of learning algorithms

[44]. The idea of Boosting is to combine a set of learners to form an ensemble in order to

achieve a better performance. Assuming that the learning hypotheses can be presented

as h1, h2, . . . , hT , and the ensemble hypothesis is a sum of these hypotheses [45]:

f(x) =
T∑
t=1

αtht(x). (2.2)

The parameter αt is the coefficient of each combined ensemble member ht. The learner

ht is learned with the boosting procedure through the interoperation of αt. Therefore,

the hypothesis boosting problem can be simplified and referred to the process of combing

a set of weak hypothesises into a strong hypothesis [46]

Boosting was inspired by a machine learning theory called the “PAC” (Probably Ap-

proximately Correct) learning model [47], due to Valiant’s the Learnable Theory [48].

Professor Michael Kearns was the first to pose the question “Can a set of weak learners

create a single strong learner?” in his hypothesis [46]. Later boosting theory proved

that if each base learner performs slightly better than random guess, it is possible to

combine them to form an arbitrarily better performing ensemble.

Schapire was the first to provide a polynomial time boosting algorithm [49]. Later

he applied the boosting idea to a real-world problem, using the base learners of neural

networks for boosting [50].

After the above works appeared, boosting was defined as a learning algorithm, which

can generate high-accuracy predictions or estimates using a set of base learners, which in

turn can efficiently generate hypotheses slightly better than random guess. In machine

learning, a weak learner is defined as a classifier only slightly correlated with the actual

target. In contrast, a strong learner is a classifier that is well-correlated with the actual

target.

A boosting algorithm can be applied to model fitting, variable selection, and model

choice. Compared to the original outcomes from variant learners, the outcome of boost-

ing always leads to a better prediction or estimation. In order to improve the predictive

quality, boosting is usually considered as an efficient but time-consuming approach for

increasing the accuracy of forecasting. More practical theories are introduced and anal-

ysed in Section 5.1.

Chapter 2. Background 18

2.6 Related Work

Both the processing of times series data and specific time series prediction techniques

have been previously studied by different researchers. Hadoop.TS [51] was proposed in

2013 as a toolbox for time series processing in Hadoop. This toolbox introduced a bucket

concept which traces the consistency of a time series for arbitrary applications. Sheng

et al. [52] implemented the extended Kalman filter for time series prediction using the

MapReduce methodology. The framework calculated the filter’s weights by performing

the update step in the Map functions, whilst the Reduce function aggregated the results

to find an averaged value.

A Hadoop based ARIMA prediction algorithm was proposed and utilised for weather

data mining by Li et al. [53]. The work describes a nine step algorithm that employs the

Hadoop libraries, HBase and Hive, to implement efficient data storage, management and

query systems. Stokely et al. [54] described a framework for developing and deploying

statistical methods across the Google parallel infrastructure. By generating a parallel

technique for handing iterative forecasts, the authors achieved a good speed-up.

The work presented in this thesis differs from previous work in three key areas. First,

it presents a low-overhead dynamic model for processing irregularly sampled time series

data in addition to regularly sampled data. Secondly, the proposed framework allows

applying multiple prediction methods concurrently as well as measuring their relative

performance. Finally, it offers the flexibility to add additional standard or user-defined

prediction methods that automatically utilise all of the functionalities offered by the

framework.

In summary, the proposed framework is mainly focused on effectively applying the

Hadoop framework for time series rather than the storage of massive data. The main

objective of this thesis is to present a fast prototyping architecture to benchmark and

backtest rolling time series prediction algorithms. To the best of authors knowledge,

this is the first study focusing on a systematic framework for rolling window time series

processing using MapReduce methodology.

Chapter 3

Rolling window time series

prediction using MapReduce

To achieve the parallelism of rolling processing in time series, this chapter proposes a

methodology to facilitate retrieval and rolling window prediction of irregularly sampled

large-scale time series data, using MapReduce Framework. Special issues of rolling

analysis in time series data are discussed and straightforward implementation issues

arising as a result of proposed framework with a significant improvement on efficiency.

Although using Hadoop in the traditional way is not suitable for rolling analysis, there

are still variant advantages of implementing the rolling time series prediction in Hadoop,

which is considered as the best option so far. Time stamps is the unique feature of time

series data, which can be used as an indicator/indexer of locating the indices of data.

The notion of index pool is designed to locate the overlapping data which across two

adjacent windows.

3.1 Issue of Rolling Analysis using Hadoop

As stated in Chapter 2, the rolling time series processing is to fit the target algorithm

on the sample data of a fixed window length. The unique feature of time series data

leads the analysis depend on the order of timely manner. Specifically, the sample data in

each window is partially overlapping with the adjacent windows. This intrinsic feature

does not influence much on the predictions of rolling window time series sequentially,

due to that the entire sample data is accessible to be partitioned into splits. MapReduce

is originally designed to run Map and Reduce functions concurrently and without any

dependencies. Therefore, a technique is needed to locate the overlapping data from

neighboring data file precisely and assemble them. This is the core difficulty associated

19

Chapter 3. Rolling window time series prediction using MapReduce 20

with this research. The time series bucket concept inspired us to solve this issue with

the notion of index pool.

3.2 Proposed Methodology

While financial time series are often recorded in irregular ticks, many forecasting algo-

rithms expect a periodic time series. In order to make a time series periodic and/or

reduce its temporal resolution, an optional normalization of data may be required in

preprocessing stage. This is achieved by applying a user supplied algorithm to rolling

windows of the aggregated data.

In the proposed framework, it is assumed that the numerical samples and their times-

tamps are stored on HDFS before data input invoking. Then with the introduction of

an index pool, a table of time series indexing and time-stamp information for the entire

file directory in HDFS is stored in it. The major contribution of index pool to the entire

framework is being used to assign the appropriate index keys to time series entries, to

grantee an appropriate and precise distribution while data across multiple splits. As a

result, the index pool is considered the core of the architecture.

Data aggregation and pre-processing are handled by the map function. The aggregated

data is then indexed using the index pool and is assigned a key, such that window

parts spread across multiple splits are assigned the same unique key. If all of data for a

window is available in the map function, the prediction is performed and its performance

(in terms of prediction error) is measured; the prediction result along with its keys is

then passed to the reduce. Otherwise, the incomplete window and its key are directly

passed to the reduce, where they are combined accordingly with the partial window from

other splits into proper rolling windows. Prediction for these windows is performed in

the reduce. The final output is created by combining the results of all prediction.

The pseudocode below illustrates the detailed steps of proposed algorithm in both of

Map and Reduce stages, which process the rolling window prediction with window length

l.

Map Stage:

for data file in [file1, . . . , filem] do

fID = file ID in index pool

fetch the index list corresponding fID

partition the sample data into windows with l length

for window W in [W1, . . . ,Wm] do

Chapter 3. Rolling window time series prediction using MapReduce 21

if W is a complete window then:

predict f(W, otherparams)

return < K,Predictions > to Reduce

else

return < K, IncompleteWindows > to Reduce

end if

end for

end for

Reduce Stage:

for < K,V > in Map Results do

if for the same K has multiple vales V then:

assemble the incomplete windows together and sort in right order

predict f(W, otherparams) with the assembled complete window

return < K,Predictions >

else

reorder the results with key K

end if

end for

Figure 3.1 presents the work flow and the architecture of the proposed system. There are

five stages in the entire system working flow. The Data storage procedure is processed

in HDFS; Mapper and Reducer functions are responsible for the rolling processing of

time series prediction; the final outcomes and error measures are taken in Finalisation

stage; finally there is a post-processing step to facilitate the boosting of predictions.

Figure 3.2 shows how the data flows through the blocks. As the logistic design in both

Map and Reduce stages, the different procedures of rolling processing facing complete

and incomplete windows are clearly illustrated in the diagram. The complete windows

are being processed straightforward in Map stage; however, incomplete windows are

assembled and process afterwards in Reduce stage. All results are sorted and aggregated

in Finalisation session of the working flow.

The rest of this section describes the system components in greater detail, and two

different architecture designs are discussed later. The last step of the architecture,

boosting, is described separately in Chapter 5.

Chapter 3. Rolling window time series prediction using MapReduce 22

Rolling Window
Key Extraction

Normalisation

Interpolating to
a periodic time series

Dimension Reduction

Rolling Window
Re-Assembly

Step-ahead
Predictor(s)

Error Measurement

Model Selection

Index
Pool

HDFS Data

Time-stamp

Key

M
ap

p
e

r
R

e
d

u
ce

r
Fi

n
al

is
at

io
n

D
at

a
St

o
ra

ge

Step-ahead
Predictor(s)

Error
Measurement

Complete
Window?

Ye
s

No

Results Assembly

Multi-predictor
model

M
u

lt
i-

p
re

d
ic

to
r

m
o

d
el

P
re

p
ro

ce
ss

in
g

Boosting
Post

processing

Figure 3.1: The system’s architecture

Chapter 3. Rolling window time series prediction using MapReduce 23

Rolling Window 1

Rolling Window 2

Rolling Window 3 (1)

Rolling Window 3 (2)

Rolling Window 4 (1)

Rolling Window 4 (2)

Rolling Window 5

Split 1

Split 2

Rolling Window 3

Rolling Window 4

Prediction 1

Prediction 2

Prediction 3

Prediction 4

Prediction 5

Map Reduce

Model
Performance

Finalisation

Figure 3.2: Flow of data in the proposed framework.

3.3 Design

3.3.1 Data Storage and Index Pool

In the proposed system, the assumption that time series are stored sequentially in mul-

tiple files is made as a pre-request. Files stored cannot have overlapping time-stamps

and are not necessarily separated at regular intervals,and the lengths of the files are not

necessarily same as well. Each sample in time series contains the data and its associated

time stamp. The name of each file stored in HDFS is the first time-stamp in a ISO 8601

format, which can easily locate the target files and data access.

The major properties of Index pool designed in the proposed system are only File Name,

Start Time-stamp, End Time-stamp and Index List (the length of the files). These basic

components can be retrieved, and other additional components could be added if required

for special needs. It is represented as a global table that can be accessible over the entire

processing procedure, as stored in same file directory (HDFS for example). This Index

pool significantly improved the traceability of time series sample while rolling analysis

is under processing, in order to avoid the loss of overlapping data across multiple files.

Table 3.1 shows an example of an index pool.

Table 3.1: Example of an index pool

File Name Start Time-stamp End Time-stamp Index List

2011-01-01 2011-01-01 00:00 2011-01-01 22:00 1 → 12
2011-01-02 2011-01-02 00:00 2011-01-02 22:00 13 → 24
2011-01-03 2011-01-03 00:00 2011-01-03 22:00 25 → 36
2011-01-04 2011-01-04 00:00 2011-01-04 22:00 37 → 48
2011-01-05 2011-01-05 00:00 2011-01-05 22:00 49 → 60

The index pool enables arbitrary indices to be efficiently located and is used to detect

and assemble adjacent windows. Interaction of the index pool with the MapReduce

framework is illustrated above in Figure 3.1

Chapter 3. Rolling window time series prediction using MapReduce 24

Index pool creation is performed in a separate maintenance step prior to forecasting.

Assuming that data can only be appended to the filesystem (as is the case for HDFS),

index pool updates are trivial, as time series data is a continuous signal in real world.

3.3.2 Preprocessing

Work in the map function starts by receiving a split of data. A preprocessing step is

performed on the data, with the following goals:

• Creating a periodic time series: In time series prediction, it is usually expected

that the sampling is performed periodically, with a constant time-difference of ∆t

between consecutive samples. If the input data is unevenly sampled, it is first

interpolated into an evenly sampled time series. Different interpolation techniques

are available, each with their own advantage [55]. Linear interpolation is one of

the commonly used techniques [56].

• Normalisation: Many algorithms require their inputs to follow a certain distribu-

tion for optimal performance. Normalisation preprocessing adjusts statistics of the

data (e.g. the mean and variance) by mapping each sample through a normalising

function.

• Reducing time-resolution: Many sampled datasets include very high frequency

data (e.g. high frequency trading), while the prediction use-case requires a much

lower frequency. Also the curse of dimensionality prohibits using high dimensional

data in many algorithms. As a result, users often aggregate high frequency data

to a lower dimension. Different aggregating techniques include averaging and ex-

tracting open/high/low/close values as used in financial Technical Analysis from

the aggregated time frame.

3.3.3 Rolling Windows

Following preprocessing, the map function tries to create windows of length W from

data {yi}, i = 1, · · · , l, where l is the length of data split. As explained earlier, the data

for a window is spread across 2 or more splits starting from the sample l−W+1 onwards

and the data from another mapper is required to complete the window.

To address this problem, the map function uses the index pool to create window index

keys for each window. This key is globally unique for each window range. The map

function associates this key with the complete or partial windows as tuple ({yj}, k),

where {yj} is the (partial) window data and k is the key.

Chapter 3. Rolling window time series prediction using MapReduce 25

In the reduce, partial windows are matched through their window keys and combined

to form a complete window. The keys for already complete windows are ignored. In

Figure 3.2, an example of partial windows being merged is shown.

In some cases, including model selection and cross-validation, there is no need to test

prediction algorithms on all available data; Correspondingly the map function allows for

arbitrary strides in which every mth window is processed.

3.3.4 Prediction

Prediction is performed within a multi-predictor model, which applies user all of supplied

predictors to the rolling window. Each data window {yi}, i = 1, · · · , w is divided into

two parts: the training data with {yi}, i = 1, · · · , w − h, and {yi}, i = w − h, · · · , w as

the target. Separation of training and target data at this step removes the possibility of

peeking into future from the architecture.

The training data is passed to user supplied algorithms and the prediction results are

returned. For each sample, the time-stamp, observed value and prediction results from

each algorithm are stored. For each result, user-defined error measures such as an L1

(Manhattan) norm, L2 (Euclidean) norm or relative error are computed.

To reduce software complexity, the initial design is to perform all the predictions in

the reduce, regardless of the concerns whether the sample data is from an incomplete

window or complete window; however, this straightforward method is inefficient due to

the MapReduce architecture. In the Result section there is a detailed comparison of these

two designs and a demonstration on the advantages of proposed design. Therefore in our

proposed framework only partial windows are predicted in the reduce after reassembly.

Prediction and performance measurement of complete windows are performed in the

map, and the results and their index key are then passed to the reduce.

3.3.5 Finalisation

In the reduce, prediction results are sorted based on their index keys and concatenated

to form the final prediction results. The errors of each sample are accumulated and

converted to a summary error measures, allowing model comparison and selection.

Chapter 3. Rolling window time series prediction using MapReduce 26

Commonly used measures are Root Mean Square Error (RMSE), Mean Absolute Pre-

diction Error (MAPE) and Symmetric mean absolute percentage error (SMAPE):

RMSE(Y, Ŷ) =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (3.1)

MAPE(Y, Ŷ) =
1

N

N∑
i=1

|yi − ŷi
yi
| (3.2)

SMAPE(Y, Ŷ) =
1

N

N∑
i=1

|ŷi − yi|
(|yi|+ |ŷi|)/2

(3.3)

where Y = [y1, · · · , yN] is the observed time series, Ŷ = [ŷ1, · · · , ŷN] is the prediction

result and N is the length of the time series.

The SMAPE measure is not recommended as a measure of forecast accuracy since small

values of the denominator lead to division by numbers close to zero [57]. However, since

it is in widespread use, it is included in the results.

Akaike Information Criterion (AIC) is another measure, and is widely used for model

selection. AIC is defined as:

AIC = 2k − 2 ln(L) (3.4)

where k is the number of parameters in the model and L is the likelihood function.

3.4 Forecasting

3.4.1 Multi-Predictor Model

In this section, some of popular time series prediction algorithms are described, which

are used as the predictor models of the experimental results in Chapter 6. In addition,

a multi-predictor model (MPM) scheme is applied to the proposed framework for the

automatic selection of an appropriate prediction model. MPM is expected to improve

the efficiency of batching predictors. In this scheme, the multi-predictor function is

called in the Map or the Reduce, which in turn applies all user supplied predictors to

each data window, returning a vector of prediction results (and error measures) for every

predictor. Following the MapReduce, MPM selects the most proper predictor for the

particular test time series by comparing the error measures (RMSE and MAPE) of each

prediction model, which are illustrated in Finalisation section.

Chapter 3. Rolling window time series prediction using MapReduce 27

3.4.2 Linear Autoregressive Models

Autoregressive (AR) models are a type of statistical process where any new sample in a

time series is a linear function of its past values. Because of their simplicity and gener-

alisability, AR models have been studied extensively in statistics and signal processing

and many of their properties are available as closed form solutions [11].

3.4.2.1 AR model

A simple AR model is defined by:

Xt = c+

p∑
i=1

φiXt−i + εt (3.5)

where Xt is the time series sample at time t, p is the model order, φ1, . . . , φp are its

parameters, c is a constant and εt is white noise.

The model can be rewritten using the backshift operator B, where Bxt = xt−1:

(1−
p∑
i=1

φiB
i)Xt = c+ εt (3.6)

Fitting model parameters φi to data is possible using the least-squares method. How-

ever, finding the parameters of model for data X1, . . . , XN , requires the model order

p to be known in advance. This is usually selected using AIC. First, models with

p ∈ [1, . . . , pmax] are fitted to data and then the the model with the minimum AIC is

selected.

To forecast a time series X1, . . . , XN , first a model is fitted to the data. Using the model,

predicting the value of the next time-step is possible by using Eq. 3.5.

3.4.2.2 ARIMA models

The autoregressive integrated moving average (ARIMA) model is an extension of AR

model with moving average and integration. An ARIMA model of order (p, d, q) is

defined by: (
1−

p∑
i=1

φiB
i

)
(1−B)dXt = c+

(
1 +

q∑
i=1

θiB
i

)
εt (3.7)

where p is autoregressive order, d is the integration order, q is the moving average order

and θi is the ith moving average parameter. Parameter optimisation is performed using

Box-Jenkins methods [11], and AIC is used for order selection.

Chapter 3. Rolling window time series prediction using MapReduce 28

AR(p) models are represented by ARIMA(p, 0, 0). Random walks, used as Näıve bench-

marks in many financial applications are best modelled by ARIMA(0, 1, 0) [58].

3.4.3 NARX Forecasting

Non-linear auto-regressive models (NARX) extend the AR model by allowing non-linear

models and external variables being employed. Support vector machines (SVM) and

Artificial neural networks (ANN) are two related class of linear and non-linear models

that are widely used in machine learning and time series prediction. More details about

the algorithms are going to be elaborated as below:

3.4.3.1 ETS

Exponential smoothing state Space (ETS) is a simple non-linear auto-regressive model.

ETS estimates the state of a time series using the following formula:

s0 = X0

st = αXt−1 + (1− α)st−1
(3.8)

where st is the estimated state of time series Xt at time t and 0 < α < 1 is the smoothing

factor.

Due to their simplicity, ETS models are studied along with linear AR models and their

properties are well-known [11].

3.4.3.2 SVM

SVMs and their extension support vector regression (SVR) use a kernel to map input

samples to a high dimensional space, where they are linearly separable. By applying

a soft margin, outlier data is handled with a penalty constant C, forming a convex

problem which is solved efficiently [59]. As a result, there are several models using SVM

that have been successfully studied and used in time series prediction [60].

In this thesis, a Gaussian radial basis kernel function was used:

k(xi, xj) = exp

(
−1

σ2
||xi − xj ||2

)
(3.9)

where xi and xj are the ith and jth input vectors to the SVM, and σ is the kernel

parameter width.

Chapter 3. Rolling window time series prediction using MapReduce 29

The time series NARX model using SVM is defined as:

Xt = f(C, σ,Xt−1, · · · , Xt−w) (3.10)

where f is learnt through the SVM and w is the learning window length.

To successfully use SVM for forecasting, its hyper-parameters including penalty constant

C, kernel parameter σ and learning window length w have to be tuned using cross

validation. Ordinary cross validation cannot be used in time series prediction as it

reveals the future of the time series to the learner [11]. To avoid peeking, the only

choice is to divide the dataset into two past and future sets, then train on past set and

validate on future set.

The following algorithm is used to perform cross-validation:

for w in [wmin, . . . , wmax] do

prepare X matrix with lag w

training set ← first 80% of X matrix

testing set ← last 20% of X matrix

for C in [Cmin, . . . , Cmax] do

for σ in [σmin, . . . , σmax] do

f ← SVM(C, σ, training set)

err ← predict(f , testing set)

if err is best so far then:

best params ← (C, σ,w)

end if

end for

end for

end for

return best params

3.4.3.3 Artificial Neural Networks

Artificial neural networks (ANN) are inspired by biological systems. An ANN is formed

from input, hidden and output node layers which are interconnected with different

weights. Each node is called a neuron.

Similar to SVM, ANNs have been extensively used in time series prediction [61]. In an

NN autoregressive (NNAR) model, inputs of the network is a matrix of lagged time series,

and the target output is the time series as a vector. Back-propagation neural network

Chapter 3. Rolling window time series prediction using MapReduce 30

X1

X2

Xi

XN

Y1

Yk

YK

Input Layer Hidden Layer output Layer

Figure 3.3: The back-propagation neural network structure

is a learning algorithm used to minimise error of this network’s output. Basically back-

propagation NN weights the connected neural neuron by gradient decent method. The

structure of a back-propagation ANN is shown in Figure 3.3. The solid lines are the

forward moves and dot lines are the training connection moves. In the output layer,

each neuron’ output is aggregated by the previous level’s neurons multiplied by their

corresponding weights [62].

Xiao and Chandrasekar successfully applied back-propagation ANNs for e-commerce

customers patterning and rainfall estimation from radar data separately [63]. In this

thesis, a feed-forward ANNs with a single hidden layer is used for the experiments, the

structure is similar as the picture show in Figure3.3.

f(x) = g(

N∑
i=1

wixi) (3.11)

where xi is the value of neuron and the weights of each level wi, and g(y) is the activation

function.

3.5 Summary

In this chapter, the proposed methodology was demonstrated in detail after raising

the issue of rolling time series analysis using Hadoop. It includes how the new data

storage index design, index pool, was formed, and how rolling windows smoothly proceed

Chapter 3. Rolling window time series prediction using MapReduce 31

using MapReduce model. The rest of this chapter presented the multi-predictor model

developed for automatic algorithm selection and the details of each forecasting algorithm

used in the proposed framework.

Chapter 4

Cloud-based Platform

Another objective of this work is to deploy the the framework on a cloud-based envi-

ronment. This chapter provides a comparison of the state-of-art in commercial cloud

services, including Amazon Web Service and Microsoft (Windows) Azure, particularly

with respect to their ability of supporting the large-scale experiments. Other essen-

tial aspects such as price and storage services are also considered. The Rhipe software

framework is chosen to provide the development environment for the parallelism of the

proposed framework. In this chapter, the practical example of Rhipe and its advantages

are demonstrated in detail.

4.1 Cloud Platform

The shift to cloud computing is a major change for businesses and industries. Cloud

computing is defined as a system where software applications may be run in an envi-

ronment consisting of a logically abstract network of general purpose computers [64].

Following the definition, there are numerous benefits offered by a cloud-based platform,

i.e. (1) lets developers create apps which are available to users anytime and anywhere;

(2) provides self-service access to a variety of computing resources; (3) enables an elastic

control of resources allocation; (4) only charges for the resources users used.

There are two major use-cases of a cloud-based platform: computing and storage (see

Table 4.2). From the development viewpoint, developers currently categorise the differ-

ent levels of cloud computing services to IaaS (Infrastructure as a Service) and PaaS

(Platform as a Service).

32

Chapter 4. Cloud-based Platform 33

4.1.1 Comparison of Different Cloud Platform

Generally a cloud-based platform can be easily utilised without physical room space,

regular maintenance, front-end investment in machines and other facilities. As a result

of market demand and technological innovations, several cloud platform service providers

have been established in recent years.

In this chapter, two of the most prevalent cloud services are studied:

• Amazon Web Services

AWS plays a leading role in the constant innovation and enhancements to the

service. AWS now has provided 30 services ranging from basic cloud computing

to real-time data storage all across the world since 2006. Major services cover the

area of compute, networking, storage & content delivery, database, App services,

mobile services and applications. There are a variety of computing resources and

instance types offered to meet the unique needs of different user groups. AWS

has established 8 data centres all over the world in 2014, in order to provide the

standard services to the users in different regions [41].

• Microsoft

Microsoft Azure (formerly called Windows Azure) is a cloud computing platform

and infrastructure, owned by Microsoft. It provides the cloud resources, applica-

tions and services through a global datacentre network. Both PaaS and IaaS ser-

vices are supported with many different programming languages, tools and frame-

works. Azure was launched in 2010 [65].

Generally these two well-known cloud services provide users with similar and compatible

services. They are both of user-friendly interface, allowing users to create and manage

the cloud computing environment in a few minutes through simple operations on web

browsers. There are minor performance differences between these two providers, but

often vary in terms of the machine configuration options and pricing schemes.

Table 4.1 and Table 4.2 compare the price and service features between AWS and Mi-

crosoft Azure. AWS is slightly cheaper than Microsoft in tiers with similar configuration.

All of the compared prices are studied in the same region (US east) and of the same

operating system (Linux). Both options provide similar IaaS and PaaS services, and

relational, scale-out and blobs storage. It is found AWS more preferable due to its lower

operational cost.

Chapter 4. Cloud-based Platform 34

Table 4.1: Price comparison of Amazon and Microsoft

Instance Virtual CPUS RAM Cost per hour

Amazon m3.medium 1 3.75GB 7 cents

Amazon m3.large 2 7.5GB 14 cents

Amazon m3.xlarge 4 15.00GB 28 cents

Amazon m3.2xlarge 8 30.00GB 56 cents

Microsoft Azure Medium A2 2 3.50GB 15.4 cents

Microsoft Azure Large A3 4 7.00GB 30.8 cents

Microsoft Azure Extra Large A4 8 14.00GB 61.6 cents

Table 4.2: Service comparison of Amazon and Microsoft

Name Computing Storage

Iaas Paas Relational Scale-out Blobs

Microsoft Hyper-V
Cloud

Windows
Azure

SQL Azure Azure Tables Azure Blobs

Amazon EC2 Elastic
Beanstalk

RDS SimpleDB S3

4.2 AWS

4.2.1 Elastic Compute Cloud

Amazon Elastic Compute Cloud (Amazon EC2) is briefly introduced in Chapter 2 which

is the central service of AWS, providing resizable computational cloud resources.

AWS EC2 has a simple web service interface for users to manage and control the com-

puting properties easily and quickly. It provides complete controls of the computing

resources and lets users run on Amazon’s proven computing environment. The time of

creating and booting new cloud computing resources is significantly reduced by using

AWS EC2. AWS EC2 enables the quick scaling on computing capacity as the user re-

quirements change, hence it is “elastic”. Amazon’s EC2 also reduces the monetary cost

of computing utilisation by allowing users to pay only for actual running hours they use.

Functionally, it provides a variant selection of instances to fit different user requirements.

The EC2 instances vary from the different configurations of CPU, memory, storage, and

networking capacity [41]. Moreover, users are able to select a mix of resources for spe-

cial purposes to proceed the complicate computational tasks. Each instance type can be

Chapter 4. Cloud-based Platform 35

deployed with different instance sizes, allowing customers to elastically scale the com-

puting resources and balance the target workload. The price of instances varies with

different regions in which the users selected and running their instances.

4.2.2 Instance Types

A basic comparison between On-Demand instances, Reserved instances and Spot in-

stances, in terms of the unique features, cost and suitable users, is illustrated below:

• On-Demand instances are simply charged by the hours used by users, without any

committed terms or upfront payments. On-Demand instances are recommended

for: (1) the users who want low cost and facilitate the EC2 resource flexibly

and unwilling to pay any long-term commitment fee; (2) the short-term running

applications or those with uncertain usage term, but without interruptions;(3) the

applications under testing or developing.

• Reserved instances allow the users to pay upfront fee for an instance at the begin-

ning, then use the reserved instances in a relatively cheaper price than On-Demand

price, within one or three year term. A significant lower hourly rate for that in-

stance is beneficial in a long-term way. For applications that have steady state

needs, AWS announced that Reserved instances can achieve up to 71% savings

compared by using On-Demand instances, in 2013. Functionally, Reserved in-

stances and On-Demand instances perform identically. There are different options

for the use of Reserved instances: light, medium and heavy. According to the

different upfront fees of these three options, the different hourly usage prices are

enjoyed.

• Spot instances allows users to purchase computing capacity with a bid price they

provide, without any upfront commitment. Users can enjoy the hourly rates which

are usually lower than the On-Demand rate. The bid price is considered as the

maximum hourly price that users are willing to pay for a particular instance type.

The Spot price of AWS EC2 fluctuates based on supply and demand, and vary

from different regions and different available instance type in each availability zone.

The real-time Spot price of each instance is released to users, which is the lowest

feasible price for users to run the Spot instance in that given period. Once the Spot

price is move up and higher than the customer’s bid price, the running instance

will be immediately shut down by AWS. When Spot instance running actively, the

performance is exactly the same as On-Demand or Reserved instances.

Chapter 4. Cloud-based Platform 36

4.2.3 Break-even Analysis of Instances

Table 4.3 shows the upfront fees for different reserved instances in a 1 year reservation

usage. All these numbers are calculated and concluded from the comparison with the cost

of a 1 year fully-used On-Demand instance. It can be seen from the table that light used

m1.large reserved instances become beneficial after 1981 hours of usage, which occupy

31.7% of yearly usage. For medium and heavy reserved instances, the initial upfront

fees are higher than the light reserved instances and they are beneficial much later, after

5029 and 5717 hours respectively. Reserved instances result in a total savings with a

lower hourly usage fee of usage although the committed upfront fee paid. A detailed

price comparison is given in Table 4.4, including the specific On-Demand price, upfront

fee and hourly fee of Reserved instances.

The first plot in Figure 4.1 presents the cost versus hours for these four different instance

types, which assume all of them are fully-used for 1 year. The black line 1 is the plot

of on-demand instance; red line 2, green line 3 and blue dot line 4 are light, medium

and heavy reserved instances respectively. The top graph illustrates the results for a 1

year reservation for 1 single instance usage and the bottom one is for the cost of 5 fully

used reserved instances. The plots are based on the variant prices of Reserved instances

with different committed years, and On-Demand Price from Table 4.4. It shows that,

for a single instance, reserved instances will not achieve a lower cost below a certain

usage. With more instance used, the reserved instances become economically beneficial,

which is compared in Figure 4.1. The top plot reflects the cost versus hours for different

instance types of a single instance, but the bottom plot is the usage of 5 instances.

Table 4.3: Fees comparison between Reserved and On-Demand instances

Types Most Beneficial Runtime of Upfront Fee Usage Fee

(m1.large) After (hours) the term /cascading (R parallel packages)

On-Demand 0 0% 0 $0.32

Light 1981 31.7% $266 $0.186

Medium 5029 80.5% $608 $0.118

Heavy 5717 91.6% $379 $0.095

4.2.4 StarCluster

StarCluster was initially developed at the Massachusetts Institute of Technology (MIT),

by the Software Tools for Academics and Researchers (STAR) team. It aims to provide

an easy-to-use environment for cluster computing, especially for users and developers on

AWS.

Chapter 4. Cloud-based Platform 37

Table 4.4: Prices for light, medium and heavy Reserved instance

Reserved Instance Upfront Fee Hourly Price On-Demand Hourly Saving

(m1.large) Price

Light Utilisation $266 in 1 year, $0.186 $0.32 42%

$388 in 3 years $0.149 53%

Medium Utilisation $608 in 1 year, $0.118 $0.32 63%

$964 in 3 years $0.095 70%

Heavy Utilisation $739 in 1 year, $ 0.095 $0.32 70%

$1160 in 3 years $0.076 76%

Figure 4.1: Break-even plot of AWS Reserved instances and On-Demand instance

StarCluster was chosen as the control toolkit due to its mature support of Hadoop.

After creating an AWS account, users are able to execute all the operations using control

commands though StarCluster. It not only includes and maintains all the features of

AWS cloud service mentioned above, i.e. (1) economical;(2) elastic scaling;(3) no physical

Chapter 4. Cloud-based Platform 38

presence required;(4) spot instance. but also provide additional benefits:

• Easy configuration. It is easy to request different sets of machines as different

requirements using particular configuration plan.

• Avoid software breakage. It is easy to setup the operating system and libraries via

custom user AMIs, no need to re-install the software in each start of cluster.

• Queueing system. It configures the Oracle Grid Engine queueing system for dis-

tributing the computing tasks for the cluster, to guarantee that the entire cluster

is auto-balanced and not overloaded.

• Passwordless SSH access between nodes. It is useful for administrator to switch

and perform the tasks in various nodes across the cluster.

• Dynamically resizing clusters. It supports the elastic control of the cluster in a

dynamical way. The users can add and remove nodes from the cluster through

the Oracle Grid Engine. The load balancer of Oracle Grid Engine will add more

nodes to relieve the load when the task queue is overloaded.

4.3 Rhipe Package

As introduced in Chapter 2, Rhipe package is an open source R package that allows

the users to program the MapReduce jobs in parallel within the R environment [40].

It includes both functions for data analysis and cluster architecture, which enables the

processing of complex large data.

The concept of Divide and Recombine (D & R) for large-scale data analysis was intro-

duced with the development of Rhipe [39]. From this thesis’ point of view, D & R is a

superset of MapReduce methodology but with more expandable capacity. In D & R, the

input data are usually divided into different subsets. Statistical methods are applied to

each of the subsets independently, which means no communication with other datasets

[66]. Then the results of each subset are recombined. The computations of D & R have

three parts: the data are divided into subsets by S computations; the analytic methods

are applied to subsets in W computations; outputs from W are recombined by B com-

putations across the subsets, see Figure 4.2 [39]. By applying the parallelisation of data

in D & R, Rhipe successfully processes the large complex data in a scalable manner.

Chapter 4. Cloud-based Platform 39

Analytic
Recombination

Visualisation
Recombination

Statistical
Recombination

Data

Subset

Subset

Subset

Subset

Subset

Subset

Output

Output

Output

Output

Output

Output

Result

New Data for
Analysis Sub-

Thread

Visual
Displays

Divide Recombine

S W B

Analytical Methods

Figure 4.2: The D & R computational framework.

4.3.1 Advantages of Rhipe

Data parallel distributed computing methods such as MapReduce have been developed

as the tools to deal with large data, but there is few works done about implementing

MapReduce in R. There are only few options available to process parallel computing in

R. Compared with the other choices, the advantages of using Rhipe in large data are

quit remarkable considering its ideal combination of powerful statistical analysis of R

and parallel computing in Hadoop. Table 4.5 below compares them in terms of different

aspects:

Table 4.5: Advantages of Rhipe

Rhipe Hadoop Pig/scoobi Snowfall/

/cascading multicore packages

User Friendly 3 7 3 3

Handle Large data set 3 3 3 7

Apply statistical algorithm 3 7 7 3

Large Data visualisation 3 7 7 7

Although there are certain merits in Rhipe in large data computing, the drawbacks of

Rhipe also need to be highlighted:

1. Need to write R code in map reduce format

2. Need other formal R packages for statistical algorithm computation in large data

sets

Chapter 4. Cloud-based Platform 40

3. Not as mature and stable as Hadoop, pig

4. No mature debug process supported by framework

5. Not fault-tolerant in the complicated MapReduce process

Technically, basing a design on Rhipe as a pure R package limits the developer capacity.

However, this thesis is not concerned with the first two issues as the major challenges

when using Rhipe. Instead, the powerful statistical ability of R benefits the effectiveness

and efficiency of the proposed framework. The basic design of the MapReduce program-

ming model has been systematically introduced in Section 3.2 and how it incorporated

with Rhipe is demonstrated through a practical example in Section 4.3.2.1. Since the

proposed design involves complex indexing and assembly in MapReduce, the primitive

debugging toolset and the relative low fault-tolerance of Rhipe caused the challenges

for the implementation and experiments on large-scale data. However, after solving the

issue over logical programming, the advantages of D & R improves the efficiency of time

series rolling analysis. Rhipe’s visualisation helps developers monitor the status of the

complex processing of large data in real-time, Section 4.3.2.2 describes this in detail.

4.3.2 Example

In this section, Rhipe interacting with MapReduce programming model is simply demon-

strated by the way of a toy problem (here iris dataset was used). The objective is not

to benchmark Rhipe’s ability to tackle large datasets, but on how it parallelises the

computation. However, it must be noted that the map and reduce functions are not

as sensitive to the increase on data size and they can be run with the same perfor-

mance for a massive data set. This is due to the overhead of launching a MapReduce

job while processing any small tasks. For instance, a job on the extremely small set

of data can take up to two minutes as a result of overhead from the initialisation and

communication between nodes. The results from working with really big data will not

be affected by these minor delays. There are more discussions on the performance of big

data processing in Chapter 6.

4.3.2.1 Specification of Rhipe

The sample code below demonstrates how MapReduce operates in D & R. Firstly, the

iris data was partitioned by the class species and stored with a HDFS path. Then, in the

MapReduce stage, the split data was systematically assigned with key-value pairs in map

and summed up by the Petal.Length in reduce. In the last step, the results were written

Chapter 4. Cloud-based Platform 41

to HDFS with another output path and the specific MapReduce task configurations are

controlled. Map and Reduce are two modes of Hadoop computation, and interact well

with D & R computational framework which illustrated in Figure 4.2. Map is the first

parallel computation mode and only computed within each subset. It executes part

of the W computations, see Figure 4.2. The Reduce mode is able to compute across

subsets. The B computations and W computations are partially performed in Reduce.

Both of Map and Reduce are involved in S computations.

Partitioning the Data:

path = "/user/lei/demo/testdata

bySpecies <- lapply(unique(iris$Species), function(x) {

list(as.character(x), subset(iris, Species==x))

})

rhwrite(bySpecies, path)

MapReduce Stage:

map <- expression({

lapply(seq_along(map.values),function(r) {

v <- map.values[[r]]

k <- map.keys[[r]]

rhcollect(k, v)

})

})

re<- expression(

pre ={ sum <- 0 },

reduce = { sum <- lapply(reduce.values, function(x) sum(x$Petal.Length)) },

post = { rhcollect(reduce.key, sum)}

)

Results:

results <- rhwatch(map=map,reduce=reduce,setup=setup,

input=path,

output="/user/lei/demo/testre",

mapred=list(mapred.reduce.tasks=2)

Chapter 4. Cloud-based Platform 42

The above code generally outlines how MapReduce model interact with the D & R

concept of Rhipe. Rhipe communicates with Hadoop to carry out the parallel S, W and

B computations. Therefore, it is not necessary to program in Hadoop, or to be deeply

familiar with parallel processing. The above elementary computational modes of Hadoop

can help developers easily understand and construct their own MapReduce processing.

The proposed MapReduce methodology, described with pseudo-code in Section 3.2, is

applied to this D & R programming skeleton. This skeleton inherits the parallel capacity

of MapReduce and has evolved to handle the large-scale time series data in a more

scalable and efficient way. The data values in Map are collected by key pairs (key, value)

and then are ready to be processed through an analytic methods in computation W.

The categorical values from Map function are passed to Reduce with re-assigned reduce

keys. An analytic method, similar to computation W, is applied to the re-grouped

reduce values, and then recombined through a further computation B. The outputs,

after B computation, not only are a statistical recombination but also can be an analytic

recombination. The continued analytic boosting procedure will be introduced in Chapter

5. A common analytic computation is often applied in the following step. The outputs

can be statistically analysed and generated a extraction of the statistical characteristics.

4.3.2.2 Visualisation of Rhipe

Rhipe also facilities for visualisation of the detailed processing status of data [66]. Sub-

sets contain the data to proceed the MapReduce jobs, so the visualised methods applied

to subsets monitor the processing of D & R computation in real-time. Application of

the methods starts with the dividing of input data then following a statistical compu-

tation in W on each sampled subset, then resulting in numeric and categorical output

presented in the form of the plots in R or the ResourceManager of Hadoop. The visu-

alisation recombination in Rhipe is a display of the MapReduce computation status, as

well as the processing status in Hadoop and HDFS.

The screenshot Figure 4.3 shows the processing status of a MapReduce job programmed

by using Rhipe. The specific processing status and percentage of the tasks done in

both the map and reduce stages are included, to reflect the proceeding stage of the

job in actual time. There is an URL link provided with each job directing to the

Hadoop ResourceManager web interface. The URL link is another important part of

Rhipe’s visualisation, providing the real-time monitoring system of Hadoop. As Rhipe

inherits the advantages of Hadoop, the JobTracker web interface is hosted on the master

node of each cluaster to monitor the entire MapReduce processing as well as the write

and read on HDFS. In Rhipe, it is hosted at http://localhost:50030/ locally and at

http://NameNodeHost:50030/ in cloud. The NameNodeHost is the address of the master

Chapter 4. Cloud-based Platform 43

Figure 4.3: Rhipe processing example

node. There are four key information resources contained in it. The first two resources

provide the general information about the current Hadoop, including the job file name,

submission details, and a table of map and reduce tasks completion status; the second

part contains the detailed information of JobTracker in the forms of job counters, Rhipe

timing, RhipeInternal, HDFS counter and Map-Reduce framework; then the last part

is comprised of two bar graphs, which illustrate the Map and Reduce completion status

visualised. The screenshots of the above four resources can be found in Figure 4.4,

Figure 4.5 and Figure 4.6.

Figure 4.4: Example of local Hadoop job

4.4 Summary

This chapter compared two different well-known cloud platforms, AWS and Microsoft

Azure, in terms of performance, price and services provided. Then a deep analysis and

comparison was conducted on different instance types of AWS, centring on the benefits

of different pricing schemes. The next half of the chapter illustrated both advantages

and disadvantages of using Rhipe package in relation to the proposed work and how

Chapter 4. Cloud-based Platform 44

Figure 4.5: Details of JobTracker

Figure 4.6: Completion of map and reduce jobs

Chapter 4. Cloud-based Platform 45

they interact. Finally, a practical coding sample was presented to demonstrate how

MapReduce works in Rhipe.

Chapter 5

Boosting

In this chapter, a review of boosting techniques as implemented in the R gbm package

is given. This is used to improve the accuracy of the prediction results for the proposed

framework.

5.1 Boosting

Boosting was proposed to generate improved predictions, based on an ensemble of multi-

ple weak predictions. It has been shown that various boosting algorithms can successfully

improve prediction quality in a variety of applications [67]. Therefore, the deployment

of boosting has attracted considerable attention in machine learning as well as in related

areas of statistics [68–70].

In the late 90s, significant progress was made by Friedman who proposed the gradient

boosting machine [68, 69]. Subsequently, he was able to pose boosting in a statistical

context, this insight not only being a significant advance to the theory, but also having

implications on efficient implementation [70]. In references [71–73], boosting prediction

accuracy was improved and the estimation of linear and additive models presented. In

this work, boosting is used to enhance the forecasting of the proposed framework.

However, a series of questions must be considered before applying boosting algorithms

into our real-world predictions: (1) Is boosting method suitable to our prediction prob-

lem? (2) Will the prediction be improved through boosting? (3) What is the proper

boosting model for the prediction? (4) How to evaluate the boosting results and what

is the benchmark?

The rest of this section will elaborate in detail about how boosting works, before moving

further to implementation of boosting.

46

Chapter 5. Boosting 47

5.1.1 Ensemble Schemes

Ensemble schemes use a linear combination to combine a multiple base predictions [67].

A base procedure is presented as a function p(·) to predict based on some data as

(X1, Y1), · · · , (Xn, Yn):

(X1, Y1), · · · , (Xn, Yn)
BaseProcedure−−−−−−−−−→ p(·)

Then the base procedures are combined as below:

re-weighted data 1
BaseProcedure−−−−−−−−−→ p[1](·)

. . .

re-weighted data M
BaseProcedure−−−−−−−−−→ p[M](·)

aggregation: fA(·) =
M∑
m=1

αmp
[M](·)

The individual data are iteratively assigned weights and it is assumed that the base

procedure permits weighted fitting. The variant mechanisms lead to different ensemble

schemes with different levels of improvements [67]. Most boosting methods estimate the

weights m only based on the previous iterative result m− 1. Bagging [74] and random

forests [75, 76] are examples of ensemble schemes.

The AdaBoost algorithm is the most widely used boosting method for binary classifi-

cation problem [77–79]. More details of AdaBoost algorithm is illustrated in Appendix

A.1.

5.1.2 Gradient Boosting Machine

Friedman developed the gradient boosting machine algorithm in 1999, which was a

general framework to produce optimised boosting results for statistical analysis [80].

It is assumed that a regression function f̂(x) can minimise the expectation of a loss

function, Ψ(y, f), as shown in equation 5.1 [81].

f̂(x) = argmin
f(x)

Ey,xΨ(y, f(x))

= argmin
f(x)

Ex[Ey|xΨ(y, f(x))|x]
(5.1)

If the focus is to find the estimates of f(x):

f̂(x) = argmin
f(x)

Ey|x[Ψ(y, f(x))|x] (5.2)

Chapter 5. Boosting 48

It is assumed that f(x) is a function with a finite number of parameters β, based on

parametric regression models. The parameters are estimated by selecting the values on

(y, x) pairs over the N size training sample, to minimise a loss function, e.g. squared

error loss. The equation is presented as below:

β̂ = argmin
β

N∑
i=1

Ψ(yi, f(xi;β)) (5.3)

Friedman pointed out that the work is difficult if the function f(x) is estimated non-

parametrically. Therefore, the estimate of f(x) is modified by adding a new function in

a greedy fashion by using the similar approach in equation 5.1. Letting fi = f(xi) to

decrease the dimension of function.

J(f) =
N∑
i=1

Ψ(yi, f(xi))

=
N∑
i=1

Ψ(yi, Fi)

(5.4)

The negative gradient of J(f) indicates the direction of the locally greatest decrease in

J(f). Then f is modified by gradient descent as:

f̂ ← f̂ − ρ∇J(f) (5.5)

where ρ is the size of the step along the direction of greatest descent. However there

are two issues in this step [81]. It only fits f at values of x for those with observations.

Besides, the observations with similar x are likely to have similar values of f(x). To

solve these issues, Friedman suggests selecting a class of functions that use the covariate

information to approximate the gradient, usually a regression tree [70, 80]. This line of

reasoning then produces his Gradient Boosting algorithm shown as below [81].

Gradient Boosting Algorithm:

1. Initialise f̂(x) to be a constant, f̂(x) = argminρ
∑N

i=1 Ψ(yi, ρ)

2. For t in 1, . . . , T do

(a) Compute the negative gradient as the working response

zi = − δ

δf(xi)
Ψ(yi, f(xi))|f(xi)=f̂(xi) (5.6)

Chapter 5. Boosting 49

(b) Fit a regression model, g(x), predicting zi from the covariates xi

(c) Choose a gradient descent step size as

ρ = argmin
ρ

N∑
i=1

Ψ(yi, f̂(xi) + ρg(xi)) (5.7)

(d) Update the estimate of f(x) as

f̂(x)← f̂(x) + ρg(x) (5.8)

The boosting algorithm determines the gradient direction at each iteration, where to

improve the fit to the data and to select a suitable model from the class of functions

with the direction.

The basic framework suggested above can be extended and improved through various

ways. For example, Friedman substituted several choices in for to develop new boosting

algorithms for robust regression with least absolute deviation and Huber loss functions

[80]. In 2002 he showed that a simple subsampling trick can greatly improve predictive

performance while simultaneously reduce computation time [82]. The gbm package

applied these modifications as parameters setting of its boosting methods. More details

are discussed in section 5.2.

5.1.3 Discussion about Boosting Algorithms

Most boosting algorithms depend on a distribution model to combine the weak pre-

dictor algorithms to a final strong predictor. The “weak” learners are assigned new

weights in each iteration step, which estimate accuracy separately. For example, the

predictor algorithms with good predictions will have weights and the learners with less

accurate prediction have their weights reduced. Different boosting algorithms use dif-

ferent weighting schemes. Overall, boosting focuses more on data that weak learners

incorrectly predicted in the previous iteration.

There are many boosting algorithms. The original ones, proposed by Schapire, were

studied and proved that they could not take full advantage of weak learners [49]. Then

the term of boosting algorithms were used on the provable algorithms with approximately

correct learning formulation [45].

Chapter 5. Boosting 50

5.1.3.1 How to Choose Weak Learners

Theoretically, boosting is a function that combine weak classifiers to obtain a very

strong classifier. In the proposition that weak classifiers are slightly better than random

on training data, boosting always results in a very strong classifier. However, boosting

does not always improve the estimates or predictions.

The choice of weak learners has a pivotal influence on the improvement of accuracy.

This is a trade-off between 3 factors :

• The bias of the model. A lower bias is almost always better, but one must be

careful to avoid overfitting.

• The training time for the weak learner. This is an issue because a large number

of them will be processed.

• The prediction time for the weak learner. A weak learner with a slow prediction

speed, will be very slow in an ensemble.

5.1.3.2 Boosting Implementation Issues

As illustrated above, there are three key factors for choosing weak learners. Instead

of learning a single weak learner, it may be desirable to learn many weak learners

that are optimised for different parts of the input space. The output can combine

base learners with different weights, possibly improving performance over each single

classifier/predictor.

In this thesis, the prediction results of a multi-predictor model (MPM) were taken as the

input for boosting. In order to study how input space and bias of the each base learner’s

prediction influence the prediction, different combinations of MPM base models with

different sizes are compared in Chapter 6. In addition, a rolling window procedure was

applied, this being called “RollingBoosting”, in an attempt to enhance the forecasting

quality. For each rolling window, the training sample size for boosting is selected as 500.

Another sequential boosting procedure on a block of data is marked as “BlockBoosting”

to compare with the rolling processing. These two techniques present a refinement of

boosting for time series data. Both the efficiency of the proposed framework and the

boosting techniques have been further tested and demonstrated in Chapter 6.

In order to answer the question (2), the error measures described in Chapter 3 were used

to evaluate the boosted predictions with the initial results in Chapter 7. For question

(3), the appropriate boosting model for the particular experiments was described in

Chapter 5. Boosting 51

Appendix A.4 and demonstrated in in Chapter 7. Question (4) was also answered by

the practical experiments in section 6.3.

5.2 Gbm Package

In this section, the R package gbm (Generalized Boosted Regression Models) is de-

scribed. Gbm extends Freund and Schapire’s AdaBoost algorithm and Friedman’s gra-

dient boosting machine [83]. To answer the question (1) it is expected that boosting

can be computationally more efficient, and perform better prediction than the base

predictors of MPM.

5.2.1 Improving Boosting Methods

With the development of the gbm package, Ridgeway found that boosting methods can

be further optimised to generate more desirable predictions by controlling the learning

rate, sub-sampling and a decomposition for interpretation [81]. Given the assumption

that the general form of boosting is presented as follows:

f̂(x)← f̂(x) + E[z(y, f̂(x))|x]. (5.9)

The easiest way to obtain the advantages is to substitute the regression procedure for

Ew[z|x] [81]. Furthermore, other modifications are discussed in the following subsection.

5.2.1.1 Decreasing Learning Rate

Some researchers claim that boosting rarely overfits [81], whereas others have the oppo-

site opinion [70]. In the update step of any boosting algorithm, a learning rate can be

introduced to slow the boosting expansion.

f̂(x)← f̂(x) + λE[z(y, f̂(x))|x]. (5.10)

The parameter λ controls the speed of the gradient step in a boosting algorithm. In

equation 5.10, it multiples E[z(y, f̂(x))|x] to reduce the error surface of the learning. If

λ = 1 the full gradient steps are the same as equation 5.9. Friedman showed that the

learning rate λ controls the regularisation of boosting in 2001 [80] and that λ depends

on the iteration number of the steps T . The optimal performance of boosting occurs

when setting the learning rate λ as small as possible [81]. The iteration number T can

be selected by cross-validation.

Chapter 5. Boosting 52

5.2.1.2 ANOVA Decomposition

The analysis of variance (ANOVA) is considered as a method to decompose variance into

a explainable variance format. For example, the experimental assignments or variances

which cannot be explained are usually treated as random error [84]. In the gbm package,

ANOVA is applied and then then function approximation methods become decomposable

[81]. The proposed function can be decomposable as below:

f(x) =
∑
j

fj(xj) +
∑
jk

fjk(xj , xk) +
∑
jkl

fjkl(xj + xk + xl) + · · · . (5.11)

This function is applied to boosted trees. The stumps of the trees only depend on the

first term of 5.11. The second term of 5.11 is the trees with two splits. The order of

the approximation in boosting can be easily controlled by the depth of the trees of each

iterative step. It is found that the approximation the additive components of boosting

can be well explained through an approximation function, such as generalised additive

models and,the näıve Bayes classifier [81].

5.2.1.3 Relative Influence

Friedman extended the relative influence of a variable for boosting estimation [80].

Taking the tree based example above, the relative influence of the a variable xj is

presented as below:

Ĵ2
j =

∑
splitsonxj

I2t (5.12)

The parameter I2t is produced by splitting the variable xj , in order to achieve the

empirical improvement [81]. In Friedman’s proposal in 2002, the boosted models apply

the average of the variable’s relative influence of variable xj to all the tress of the boosting

algorithm [82].

5.2.2 Loss Function

In using gbm, the first decision to be made is the distribution. In gbm there are sev-

eral popular functions applied to the boosting methods. The Bernoulli or Adaboost

are appropriate for most classification problems. The continuous outcomes can be de-

ployed by selecting the models of Gaussian (for minimising squared error), Laplace (for

minimising absolute error), and Guantile regression (for estimating percentiles of the

conditional distribution of the outcome) [83]. The Poisson is able to count outcomes

although Gaussian or Laplace are also considered depends on the analytical goals.

Chapter 5. Boosting 53

5.2.3 Implement gbm Boosting

The gbm package implements boosting based on the procedure below::

1. Select

(a) a loss function (distribution)

(b) the number of iterations, T (n.trees)

(c) the depth of each tree, K (interaction.depth)

(d) the shrinkage (or learning rate) parameter, λ (shrinkage)

(e) the subsampling rate, p (bag.fraction)

2. Initialise f∗(x) to be a constant, f̂(x) = argminρ
∑N

i=1 Ψ(yi, ρ)

3. For t in 1, . . . , T do

(a) Compute the negative gradient as the working response

zi = − δ

δf(xi)
Ψ(yi, f(xi))|f(xi)=f̂(xi) (5.13)

(b) Randomly select p×N cases from the dataset

(c) Fit a regression tree with K terminal nodes, g(x) = E[z|x]. This tree is fit

using only those randomly selected observations

(d) Compute the optimal terminal node predictions, ρ1,. . ., ρK , as

ρk = argmin
ρ

∑
xi∈Sk

Ψ(yi, f̂(xi) + ρ) (5.14)

where Sk is the set of xs that define terminal node k.

(e) Update f̂(x) as

f̂(x)← f̂(x) + λρk(x) (5.15)

where k(x) indicates the index of the terminal node into which an observation

with features x would fall. Again this step uses only the randomly selected

observations

5.2.4 Example

gbm(formula = formula(data),

distribution = "bernoulli",

data = list(),

Chapter 5. Boosting 54

weights,

var.monotone = NULL,

n.trees = 100,

interaction.depth = 1,

n.minobsinnode = 10,

shrinkage = 0.001,

bag.fraction = 0.5,

train.fraction = 1.0,

cv.folds=0,

keep.data = TRUE,

verbose = "CV",

class.stratify.cv=NULL,

n.cores = NULL)

The above example illustrates the specific parameters used in gbm. Distribution is a

critical parameter influencing performance for choosing the proper distribution model

for boosting, which includes “gaussian” for squared error, “laplace” for absolute loss,

“bernoulli” for logistic regression for 0-1 outcomes), “multinomial” for classification

when there are more than 2 classes, “adaboost” for the AdaBoost exponential loss for

0-1 outcomes and so forth. All these available distribution models are illustrated in

Appendix A.3. Weights and n.trees are the variables that control the weight values

used in fitting and the total number of trees, which controls the number of iterations.

Shrinkage controls the learning rate or step-size reduction applied to each tree in the

expansion. Interaction.depth is the maximum depth of variable interactions (1 implies

an additive model, 2 implies a model with up to 2-way interactions). cv.folds controls

the number of cross-validation in each boosting processing [83].

Another code example is given in Appendix A.4, which includes the specific parameter

settings used for the experiments in Chapter 6.

5.3 Summary

In this chapter, an overview of ensemble schemes and gradient gradient boosting machine

was given. Implementation issues and how to choose weak learners were also discussed.

The second half of this chapter described the gbm package used in our experiments.

Some specific modifications were discussed to improve boosting in gbm.

Chapter 6

Results

This chapter investigates how the proposed framework performs for different cluster

sizes. Both synthetic and real-world data are used in the experiments. The efficiency

of handling big data is demonstrated in depth, by comparing the proposed design with

benchmark and alternative designs. The MPM model is compared to each individual al-

gorithm within MPM. The results show that the architecture of the proposed framework

is both efficient and scalable. Boosting is shown to improve the prediction of MPM.

6.1 Experiment Setup

6.1.1 Experiment Environment

All experiments were undertaken on the Amazon Web Service (AWS) Elastic Compute

Cloud (EC2) Clusters. The clusters were constructed using the m1.large instances type

in the US east region. Each node within the cluster has a 64-bit processor with 2 virtual

CPUs, 7.5 GiB memory and a 64-bit Ubuntu 13.04 image that included the Cloudera

CDH3U5 Hadoop distribution [42]. The statistical computing software R version 3.1.0

[85] and RHIPE version 0.73.1 [40] were installed in each Ubuntu image. RHIPE was

used to control the entire MapReduce procedure in the proposed framework.

6.1.2 Test Data

• An autoregressive (AR) model using Eq. 3.5 was selected, generating values for

random time stamps and intervals. The order p = 5 was chosen and φi were

generated randomly. The synthetic time series data starts from 2004-01-01 to

2013-12-31, and is 6.6 MB in size.

55

Chapter 6. Results 56

• As one of the initial goal for this study, client volume data of four foreign exchange

currencies from the Westpac Project were used for the MPM and boosting test.

The data starts from 2010-05-01 to 2011-05-01.

To assess the efficiency of the framework and comprehensiveness of testing, multiple

runs were made. In this thesis, only the best 6 results are reported.

6.1.3 Preprocessing and Window Size

The preprocessing included normalisation, where the samples were adjusted to have

average of µ = 0 and standard deviation σ = 1. The tests in section 6.2 were performed

with a rolling window size w = 7, which contained the training data of size w′ = 6 and the

target data with length h = 1 for predicting procedure in the framework. Consequently,

each predictor model was trained on the previous 3 hours of data to forecast 30 minutes

ahead. For the section 6.3, in order to process the data more accurately, we set the

window length to a week to predict a 24 hour ahead prediction.

6.1.4 Preprocessing Steps

As briefly presented in sections 3.2 and 3.3.2, it is necessary to pre-process the data.

This involved:

• Creating a periodic time series: as the synthetic and real-world time series data

are usually randomly recorded, the input sampling data have to been adjusted

periodically with a constant time-difference of ∆t between consecutive samples.

Linear interpolation is used [56]. Missing data are given zero values.

• Normalisation: normalisation preprocessing adjusts statistics of the data (e.g. the

mean and variance) by mapping each sample through a normalising function. If

required, a second normalization pass can be performed in the Reduce.

• Aggregation: according to section 3.2, aggregation and preprocessing are handled

by the map function. The aggregated data is then indexed using the index pool

and is assigned a key, such that window parts spread across multiple splits are

assigned the same unique key. Averaging and extracting open/high/low/close

values are applied from the aggregated time frame.

Chapter 6. Results 57

6.2 Performance and Architecture Test

6.2.1 Scaling Test

In order to demonstrate parallel processing efficiency, the SVM prediction method with

cross validation was tested using different cluster sizes with 1, 2, 4, 8, 16 and 32 nodes on

AWS EC2. The performance of the proposed framework was evaluated by a comparison

of execution time and speedup for different cluster sizes, to show the efficiency of the

use of index pool.

Table 6.1 shows the execution time for this test. With consideration of the capacity

of m1.large, the maximum number of map and reduce tasks in each node were limited

to the number of CPUs and half the number of CPUs respectively. As can be seen

in Table 6.1, scaling is approximately linear up to 32 nodes for the reasonably small

example tested. In smaller clusters, the proposed framework scales well. Furthermore,

the speed-up on 16 and 32 nodes are 13.09 and 30.83 respectively, demonstrating good

scaling on a modestly sized cluster.

Table 6.1: AWS EC2 execution times for scaling test

Cluster Size Mappers Reducers Total (Sec) SpeedUp

1 Node 2 1 58514.29 1.00

2 Nodes 4 2 28991.34 2.02

4 Nodes 8 4 13762.74 4.25

8 Nodes 16 8 7092.60 8.25

16 Nodes 32 16 4471.06 13.09

32 Nodes 64 32 1898.15 30.83

6.2.2 Cost Estimation

Table 6.2 provides a detailed cost estimation comparing different AWS EC2 instance

types. All these numbers are calculated using the price of the instance m1.large reported

in Section 4.2.3 from Table 4.4. In the table the upfront fee and hourly price are listed

under the name of each instance type respectively. Two major assumptions were made

by AWS to calculate the cost: (1) the pricing of AWS is the per instance-hour consumed

for each instance, from the time an instance is launched until it is terminated or stopped.

Therefore, total cost t is equal to the total working hours h times instance numbers i

times the hourly price p; and (2) each partial instance-hour consumed is billed as a full

hour. For example, 16.23 executing hours will be counted as 17 hours.

Chapter 6. Results 58

Figure 6.1: Speedup of execution time versus cluster size

Table 6.2: Cost estimation

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes 32 Nodes

Time

Exe.time (sec) 58514.29 28991.34 13762.74 7092.60 4471.06 1898.15

Exe.time (hrs) 16.23 8.05 3.82 1.97 1.24 0.52

Counting Hours 17 9 4 2 2 1

Cost
On-Demand

Upfront cost: $0
Hourly price: $0.32

5.44 5.76 5.12 5.12 10.24 10.24

L-Reserved 1year
Upfront cost: $266

Hourly price: $0.186
3.162 3.348 2.976 2.976 5.952 5.952

L-Reserved 3year
Upfront cost: $388

Hourly price: $0.149
2.465 2.610 2.320 2.320 4.640 4.640

M-Reserved 1year
Upfront cost: $608

Hourly price: $0.118
2.006 2.124 1.888 1.888 3.776 3.776

M-Reserved 3year
Upfront cost: $964

Hourly price: $0.095
1.615 1.710 1.520 1.520 3.040 3.040

H-Reserved 1year
Upfront cost: $739

Hourly price: $0.095
1.615 1.710 1.520 1.520 3.040 3.040

H-Reserved 3year
Upfront cost: $1160
Hourly price: $0.076

1.292 1.368 1.216 1.216 2.432 2.432

It can be seen from the table the 4-node and 8-node clusters achieve the minimal cost

with the best execution time. The estimated costs of light, medium and heavy Reserved

Chapter 6. Results 59

instances are significantly lower than On-Demand instances. However, the different up-

front fees with a different committed usage period of Reserved instances have to be taken

into account while considering the total budget (see Table 4.4). Other circumstances,

namely project life span and project usage requirements, also need to be considered

when selecting the optimal payment strategy.

6.2.3 Multi Predictor Model Test

The time series prediction algorithms described in the previous section: (1) Support Vec-

tor Machines (SVM), (2) Autoregressive Integrated Moving Average (ARIMA), (3) Arti-

ficial Neutral Network (NN), (4) Näıve (ARIMA(0,1,0)) and (5) Exponential Smoothing

State Space (ETS) model were tested on the synthetic data set individually.

In addition, we used a multi-predictor model (MPM) scheme to improve the efficiency

of batching predictors in the proposed framework. In this scheme, a multi-predictor

function is called in the Map or the Reduce, which in turn applies all user supplied

predictors to each data window, returning a vector of prediction results (and error mea-

sures) for every predictor. Following the MapReduce, MPM selects the best predictor for

the tested/selected time series by using an error measure (RMSE and MAPE) for each

prediction model. We used R’s forecast package [3] for ARIMA, ANN, Näıve and ETS

models, and e1071 package [86] for training SVM models. AIC was used to chose model

parameters in ARIMA and ETS models, while SVM and NN models were cross-validated

as outlined in Section 3.4.3.

Table 6.3: Performance comparison of different predictor model on a 16 node cluster.

Predictor model Execution time (s) RET RMSE MAPE

SVM 2935.77 0.67 3.372 0.508

ARIMA 1729.50 0.40 3.445 0.545

NN 1521.24 0.35 4.641 0.755

Näıve 1476.72 0.34 2.381 0.419

ETS 1585.19 0.36 3.449 0.545

MPM 4351.05 1 2.381 0.419

Table 6.3 compares MPM with individual prediction algorithms in terms of execution

time, RMSE and MAPE. All tests were undertaken in an AWS EC2 cluster with 16

nodes. Relative execution time (RET) is calculated as a ratio of the model execution

time compared to the MPM execution time. As expected, simpler models execute faster.

SVM, which is cross-validated several times, takes longer, and MPM, which runs all pre-

dictor models, takes the longest. Despite this, MPM is 2.1× faster than executing all

Chapter 6. Results 60

models individually, as the former requires significantly less disk I/O than the latter.

The last two columns show the error associated with each model’s prediction. For MPM,

the minimum RMSE and MAPE obtained from the best-fitted prediction model are pre-

sented. The results indicate that for the particular synthetic AR test data generated,

the Näıve model has the lowest prediction error, which is also reported by the MPM.

6.2.4 Data Split Handling Comparison

In the proposed framework, with the help of index pool, a complex data split algorithm

is designed to balance the execution of prediction methods between Map and Reduce.

In order to evaluate the efficiency of the proposed design, a straightforward design as

discussed in Section 3.3.4, was implemented without this algorithm.

Table 6.4: Computational efficiency of the proposed architecture.

Cluster Proposed Straightforward Improvement

size framework (s) framework (s) %

16 Nodes 4351.05 5359.92 23%

32 Nodes 2444.17 3566.94 45%

Table 6.4 compares the proposed framework with the straightforward benchmark frame-

work for the same MPM prediction model, elaborately demonstrating the performance

of both frameworks for two different cluster sizes. The results clearly show that the

proposed framework is more efficient than the benchmark framework. In Section 3.3.4,

there is a detailed conceptual discussion illustrating the architecture design, respect to

MapReduce programming model. The experimental results further showed that instead

of applying all prediction models in Reduce stage, systematic/reasonable processing of

assembling data splits and employing prediction procedure in both Map and Reduce

procedures is more efficient. The significant improvements in execution time are due

to the reduced overhead of data being cached before being moved from the Map to the

Reduce, and then lead to a significant reduction in communication time.

6.3 Boosting Result Comparison

In order to improve the prediction results, a boosting technique was applied to the

collection of MPM prediction results. The test data used is the client volume data of

Westpac from 2010-05-01 to 2010-06-01 in four currencies, USD, EUR, NZD and JPY.

Chapter 6. Results 61

The prediction results from MPM (which includes ELM, Näıve, ETS, ARIMA and NN)

were generated through a 50 hours rolling window MapReduce processing.

The benchmark setup for boosting method is the ARIMA(0,0,0) model, namely Zero

model. In this context, it is the long term average of Westpac client volume data.

The boosting algorithm selected is from the gbm R package. As this procedure is time-

consuming, it is processed as a post-processing step after the rolling window time series

prediction. It is expected to produce a more accurate prediction from the boosting of

all “weak” learners’ forecasting results.

6.3.1 HitRate

In addition to the error measures (RMSE, MAPE and SMAPE) mentioned previously,

HitRate (abbreviated as HR in results) is also used the quantity the prediction improve-

ments after boosting. HitRate is traditionally used as a measure of business performance

associated with sales. There are only two basic operations in currency trading, sell or

buy. The positive numbers in result stand for the volume bought in by clients. In con-

trast, the numbers of currency volume sold out by clients are negative. The other error

measures, RMSE, MAPE and SMAPE, are able to reflect the volume error between the

prediction and actual data, but not on indicate the direction of the trades (negative or

positive). Except the measures of showing the the magnitude of the volume clients are

willing to trade, another indicator is needed to prove that the predictions are not just

arbitrary numbers. Consequently, HitRate is being used in this section, to help on a

further measurement of the bias precision of predictive results. It can benchmark the

prediction by calculating the accuracy on the predictive numbers’ sign [87]. HitRate

generally reflects the possible direction of client trading in a quantitative way.

6.3.2 Boosting Sample

Table 6.5 compares the prediction results achieved from MPM with the boosting results

in post-processing. As shown in the table, the BlockBoosting and Rollingboosting results

are better than the benchmark Zero model, showing the utility of our new boosting

methods introduced in section 5.1.3.2. In order to have a clear comparison about the

RMSE of each model, “Ratio” is calculated by taking the RMSE of Zero model as the

base. It indicates that no primary prediction model of MPM performed better than

the benchmark Zero as listed in the above table. However, the boosting post-processing

improved the prediction based on the collection of the former results, achieving 1% and

5% better in BlockBoosting and RollingBoosting perspectively.

Chapter 6. Results 62

Table 6.5: Boosting results for client volume prediction

Prediction Method RMSE Ratio

ELM 9116976.061 1.003

Näıve 12347157.882 1.359

ETS 9793595.494 1.078

ARIMA 9119264.403 1.003

NN 10424333.874 1.147

Zero 9088322.466 1

BlockBoosting 9049643.819 0.996

RollingBoosting 8612966.691 0.948

6.3.3 Boosting Test

Table 6.6 includes the boosting results of client volume the numbers in four different

currencies, USD, EUR, NZD and JPY. It contains all the prediction results from all five

“weak” learners (ELM, Näıve, ETS, ARIMA and NN) with the two boosting results

(BlockBoosting and RollingBoosting) and benchmark Zero model of ARIMA(0,0,0).

Among the primary “weak” prediction algorithms, ELM performs the best in terms

of RMSE in all different currencies, by considering RMSE as the most accurate error

measure as the standard. As expected after boosting, the boosted prediction results

are slightly better than all primary models, even ELM. This can be clearly seen by the

ratio of “vsZero”, which is a number by comparing the difference of RMSE between

each model with the benchmark Zero Model. The “vsZero” of rolling boosting results

in USD, EUR, NZD and JPY, are 0.3%, 0.32%, 0.21% and 0.2% respectively, which are

all the smallest numbers within each currency. Although it indicated that the boosted

results are still not better than the Zero model, the forecasting results are improved

through boosting, compared to the primary predictive results of ”weak”” models from

MPM. This phenomenon is well known in finance, referred to as the “efficient market

hypothesis (EMH)”. EMH states that it is impossible to “beat the market”, that is, to

predict the future and make profit, using the available data [88]. As a result, a “random

walk” has been prescribed for modelling financial time-series [89]. The random walk is

essentially the accumulation of a Gaussian process, which is implemented in the näıve

Zero model using ARIMA(0,0,0). However, it has been shown that financial data contain

many anomalies which are occasionally predictable, although this is usually not enough

to recover the cost of trading [90]. Since the financial time series are non-stationary and

nearly random, a low HitRate is observed. Nevertheless, the new boosting techniques

provide a HitRate higher than 50% for 3 of the 4 currencies tested.

Chapter 6. Results 63

Table 6.6: Boosting prediction results in four different foreign currencies

Prediction Method RMSE SMAPE HR vsZero

USD

ELM 7811469 162.12 52.28 0.93

Näıve 10526768 120.98 52.56 36.01

ETS 8549324 165.25 52.24 10.46

ARIMA 7825735 162.3 51.67 1.11

NN 50102417 167.34 53.88 547.33

Zero 7739856 100 0 0

BlockBoosting 7491540 167.12 31.26 -3.21

RollingBoosting 7762793 162.23 53.36 0.3

EUR

ELM 2305307 180.52 57.95 0.73

Näıve 3210685 131.64 48.98 40.29

ETS 2684418 181.19 60.78 17.3

ARIMA 2308534 180.77 57.49 0.87

NN 5629850 183.71 53.12 146

Zero 2288558 100 0 0

BlockBoosting 2302224 183.09 83.09 0.6

RollingBoosting 2295874 182.02 52.78 0.32

NZD

ELM 4239166 186.5 49.8 0.92

Näıve 6024310 139.74 30.57 43.41

ETS 4459842 186.62 54.18 6.17

ARIMA 4244371 186.83 49.18 1.04

NN 7434540 189.02 49.34 76.99

Zero 4200645 100 0 0

BlockBoosting 4202826 189.56 25.65 0.05

RollingBoosting 4209303 187.32 57.86 0.21

JPY

ELM 233010856 189.57 49.95 0.91

Näıve 327881977 143.47 21.35 41.99

ETS 248021897 189.75 53.42 7.41

ARIMA 233448633 162.3 48.72 1.1

NN 434660164 167.34 52.09 88.23

Zero 230914656 100 0 0

BlockBoosting 232134345 167.12 25.54 0.53

RollingBoosting 231370833 162.23 49.85 0.2

Chapter 6. Results 64

6.3.4 Measuring Effectiveness of Learner Combinations

Table 6.7: Boosting results of different combination of models

Models Number Prediction Methods RMSE SMAPE HR vsZero

USD

5 Models ELM, Näıve, ETS, ARIMA, NN 7762793 162.23 53.36 0.3

3 Models ELM, Näıve, ETS 7781564 162.55 52.75 0.54

3 Models ELM, ETS, ARIMA 7756277 162.18 52.15 0.21

EUR

5 Models ELM, Näıve, ETS, ARIMA, NN 2295874 182.02 52.78 0.32

3 Models ELM, Näıve, ETS 2294882 181.93 53.63 0.28

3 Models ELM, ETS, ARIMA 2294315 181.74 53.97 0.25

NZD

5 Models ELM, Näıve, ETS, ARIMA, NN 4209303 187.32 57.86 0.21

3 Models ELM, Näıve, ETS 4207867 187.14 57.47 0.17

3 Models ELM, ETS, ARIMA 4205274 186.96 58.72 0.11

JPY

5 Models ELM, Näıve, ETS, ARIMA, NN 231370833 190.72 49.85 0.2

3 Models ELM, Näıve, ETS 231317301 190.75 49.64 0.17

3 Models ELM, ETS, ARIMA 231320119 190.68 50.66 0.18

Table 6.7 compares the boosting results of different model combinations in all four

currencies, USD, EUR, NZD and JPY. It is clearly seen that more learners selected

for boosting did not result in better prediction. In the table, the predictive results

of the 3 model combination are mostly better the 5 model results, in terms of RMSE

and SMAPE. The only reasonable explanation for this is due to the particular extreme

“weak” learners (NN for example) worsening the boosting prediction significantly. Fur-

thermore, the different combination of models is another factor influencing predictive

improvement. As the bias varied from different “weak” learners, the different selection of

models led to different total bias as well. Table 6.6 in previous session clearly presented,

ELM, ETS and ARIMA constantly generated better predictions than the other two

models, Näıve and NN. Consequently, for most cases, the predictions from the “good”

combination of ELM, ETS and ARIMA are slightly better than the results of “weak”

combination of ELM, Näıve and ETS. Due to the random nature of the foreign exchange

data used for experiments, there are slight variances among the results, for example, in

JPY, the “good” combination of predictive models performed slightly worse than the

“weak” one in terms of RMSE.

Chapter 6. Results 65

6.4 Summary

The results from the scaling test and the multi-predictor model test showed that the pro-

posed methodology can efficiently handle the rolling window time series problem using

the MapReduce programming model. The feasibility of the proposed architecture design

was further demonstrated in the data split handling test compared to a straightforward

approach. A detailed cost estimation was summarised using different AWS instance

types. The boosting results from four currencies indicated that the boosting technique

is feasible for improving the accuracy of prediction. The different combinations of learn-

ing models lead to the different degrees of boosting improvements.

Chapter 7

Conclusion

7.1 Summary

In this thesis, we have presented an efficient framework for rolling window time series

prediction, with a focus on computational efficiency for large-scale data.

Inspired by the idea of applying R-based forecast algorithms in a parallel fashion, the

problems of implementing rolling time series prediction were explained. The distinguish-

ing feature of time series, namely strong dependency between the observations, prevent

straightforward parallelisation. The new index pool technique developed in this work

allows incomplete windows across data splits be to easily reassembled via the sorting

stage of MapReduce. Additionally, our approach allows users to only be concerned

about designing prediction algorithms, with data management and parallelisation being

handled by the framework. The MPM technique contains a series of prediction models

and, after processing, can automatically return the best prediction result with a compre-

hensive comparison on predictive errors. With the helps of AWS cloud computing, the

proposed work was applied to cloud clusters and able to resolve the large scale rolling

time series prediction. The proposed framework has been evaluated in terms of scaling

performance, architecture efficiency and predictor auto-selection. The cost of running

the proposed work is also estimated using different AWS instance types.

Within the platform, boosting was added as a post processing to improve the prediction

after the MapReduce processing of rolling predictions. We showed that boosting tech-

nique is feasible to further increase prediction accuracy. A further study of selecting the

optimal combination of learning models was presented.

66

Chapter 7. Conclusion 67

7.2 Further Directions

First of all, it would be interesting to extend the current platform into a generalised R

library, to deal with all kinds of time series rolling window predictions automatically.

After applying MPM, it is possible to wrap more algorithms to extend its capability

of the MPM of the proposed platform. Both customised prediction algorithms and the

algorithms of existing R packages are considered.

A second interesting direction is to exploit the present work in other environments.

Currently, all technical work is limited in R environment. However, the theoretical

architecture and design can be generalised in such a way that it is portable and other

programming language can be targeted. This could possibly be targeted with other more

sophisticated platforms or applications but need more research.

The last consideration is to extend the proposed architecture design to not only time

series forecasting but other analyses, such classification and anomaly detection. As the

unique dependency feature exists in any types of time series, any research related to time

series analysis is facing the difficulty of splitting the time series data in an appropriate

way and process in parallel. The notion of indexing pool can be beneficial in other areas

to handle the time series data split issue without data loss.

Appendix A

Boosting Example

A.1 AdaBoost

The AdaBoost algorithm is the most well known boosting algorithm used in numerous

areas, firstly developed in 1995 by Freund and Schapire [79]. The application of Ad-

aBoost focus mainly on the binary valued weak predictions, which is distinguished from

the other boosting methods [91].

A.1.1 AdaBoost Algorithm

AdaBoost Algorithm Pseudocode:

Give: (x1, y1), . . . , (xm, ym) where xi ∈ X,yi ∈ {−1,+1}
Initialise D1 = 1/m for i = 1, . . . ,m

For t = 1, . . . , T :

• Train weak learner using distribution Dt

• Get weak hypothesis ht : X → {−1,+1}

• Select ht with the low weight error:

εt = Pri∼Dt [ht(xi) 6= yi].

• Choose αt = 1
2 ln(1−εtεt

)

68

Appendix A. Boosting Example 69

• Update:

Dt+1(i) =
Dt(i)

Zt
×

e−αt ifht(xi) = yi

eαt ifht(xi) 6= yi

=
Dt(i) exp(−αtytht(xi))

Zt

where Zt is a normalisation factor (chose so that Dt+1 will be a distribution).

• Output the final hypothesis:

H(x) =sign(
∑T

t=1 αtht(x))

Pseudocode for AdaBoost algorithm is shown as above [92]. There are m training sets

(x1, y1), . . . , (xm, ym) as the input. Each value of xi is in the domain X. The prediction

values are binary yi ∈ −1,+1. Adaboost trains the weak learners iteratively in the

rounds of t = 1, . . . , T . The distribution Dt is used by each training sample. The aim of

learning procedure is to select the weak learner with low weighted error εt relative to Dt,

in order to reduce the training error. The Dt(i) denoted the weight of the distribution Dt

on example i in round t. The final combined hypothesis H is the sign of the aggregation

of weighted weak hypotheses:

A.2 Training and Weighting of Boosting

Training

The training and weighting are the two general procedures of boosting [67]. Assuming

the basic boost classifier can be presented in the form of:

FT (x) =
T∑
t=1

ft(x)

where the ft is the weak learner with input value x aims to return a classification

result. The output of the weak learners are the predicted object class. The real value

identifies the confidence level of the predicted classification. The weak hypothesis h(xi)

is generated by each weak learner produces in each training sample. At each round of

t, a weak learner is iteratively selected and with the coefficient αt as below:

Et =
∑

iE[Ft−1(xi) + αth(xi)]

Appendix A. Boosting Example 70

The training errors of each iteration of t are summed Et with error function E(F). The

Ft−1(x) denotes the boost classifier from the previous iteration of training.

Weighting

At each iteration of the training process, a weight is assigned to each sample in the

training set equal to the current error E(Ft−1(xi)) on that sample. The weighting scheme

is used to distinguish the weak learners in each iteration step. For good classification

results weights are added to the particular classifier and the relative worse classifier will

lose weights. The iteration process would be stopped at round m to avoid overfitting.

The cross-validation can be applied for tuning parameter [67].

A.3 Distribution Models of gbm

This section lists all the mathematical details for distribution model options offered in

the gbm package. In each model, the property of deviance, initial value, the gradient

and the terminal node estimates are presented in detail [81].

A.3.1 Gaussian

Deviance 1∑
wi

∑
wi(yi − f(xi))

2

Initial value f(x) =
∑
wi(yi−oi)∑

wi

Gradient zi = yi − f(xi)

Terminal node estimates
∑
wi(yi−f(xi))∑

wi

A.3.2 AdaBoost

Deviance 1∑
wi

∑
wi exp(−(2yi − 1)f(xi))

Initial value 1
2 log

∑
yiwie

−oi∑
(1−yi)wieoi

Gradient zi = −(2yi − 1) exp(−(2yi − 1)f(xi))

Terminal node estimates
∑

(2yi−1)wi exp(−(2yi−1)f(xi))∑
wi exp(−(2yi−1)f(xi))

A.3.3 Bernoulli

Deviance −2 1∑
wi

∑
wi(yif(xi)− log(1 + exp(f(xi))))

Initial value log
∑
wiyi∑

wi(1−yi)

Gradient zi = yi − 1
1+exp(−f(xi))

Terminal node estimates
∑
wi(yi−pi)∑
wipi(1−pi) where pi = 1

1+exp(−f(xi))

Notes:

Appendix A. Boosting Example 71

• For non-zero offset terms, the computation of the initial value requires Newton-

Raphson. Initialise f0 = 0 and iterate f0 ← f0+
∑
wi(yi−pi)∑
wipi(1−pi where pi = 1

1+exp(−(oi+f0))

A.3.4 Laplace

Deviance 1∑
wi

∑
wi|yi − f(xi)|

Initial value medianw(y)

Gradient zi = sign(yi − f(xi))

Terminal node estimates medianw(z)

Notes:

• medianw(y) is the weighted median, as the solution to the equation
∑
wiI(yi≤m)∑

wi
=

1
2

• but currently it is not supported in gbm.

A.3.5 Quantile regression

Deviance 1∑
wi

(α
∑

yi>f(xi)
wi(yi − f(xi)) + (1− α)

∑
yi≤f(xi)wi(f(xi)− yi))

Initial value quantile
(α)
w (y)

Gradient zi = αI(yi > f(xi))− (1− α)I(yi ≤ f(xi))

Terminal node estimates quantile
(α)
w (z)

Notes:

• quantile(α)w (y) is the weighted quantile, as the solution to the equation
∑
wiI(yi≤q)∑

wi
=

α

A.3.6 Cox Proportional Hazard

Deviance −2
∑
wi(δi(f(xi)− log(Ri/wi)))

Initial value 0 Gradient zi = δi − sumjδj
wjI(ti≥tj)ef(xi)∑
k wkI(tk≥tj)ef(xk)

Terminal node estimates Newton-Raphson algorithm

1. Initialise the terminal node predictions to 0, ρ = 0

2. Let p
(k)
i =

∑
j(k(j)=k)I(tj≥ti)ef(xi)+pk∑

j I(tj≥ti)ef(xi)+pk

3. Let gk =
∑
wiαi(I(k(i) = k)− p(k)i)

Appendix A. Boosting Example 72

4. Let H be a k × k matrix with diagonal elements

(a) Set diagonal elements Hmm =
∑
wiαip

(m)
i (1− p(m)

i)

(b) Set off diagonal elements Hmm = −
∑
wiαip

(m)
i p

(n)
i

5. Newton-Raphson update ρ← ρ−H−1g

6. Return to step 2 until convergence

Notes:

• ti is the survival time and δi is the death indicator.

• Ri is the hazard for the risk set, Ri =
∑N

j=1wiI(tj ≥ ti)ef(xi).

• k(i) is the indexes of the terminal node in observation i.

A.3.7 Poisson

Deviance −2 1∑
wi

∑
wi(yif(xi)− exp(f(xi)))

Initial value f(x) = log(
∑
wiyi∑
wieoi

)

Gradient zi = yi − exp(f(xi))

Terminal node estimates log
∑
wiyi∑

wi exp(f(xi))

A.4 Boosting Example

doBoost<-function(datatrain,datatest) {

gbm1 <- gbm(Y~X1+X2+X3+X4+X5, # formula

data=datatrain, # train dataset

var.monotone=c(1,1,1,1,1), # +1 monotone increase

distribution="gaussian", # gaussian model

n.trees=10, # number of trees

shrinkage=0.001, # shrinkage (learning rate),

interaction.depth=1, # 1: additive model

bag.fraction = 0.5, # subsampling fraction

train.fraction = 1, # fraction of data for training

n.minobsinnode = 10, # minimum total weight needed in each node

cv.folds = 3, # do 3-fold cross-validation

keep.data=TRUE, # keep a copy of the dataset with the object

Appendix A. Boosting Example 73

verbose=FALSE, # don’t print out progress

n.cores=1)

best.iter <- gbm.perf(gbm1,method="cv")#method="OOB")

f.predict <- predict(gbm1,datatest,best.iter)

f.predict <- as.numeric(f.predict)

return(f.predict)

}

The above example gives the details of the gbm boosting technique with practical param-

eter settings. By formula, it takes the predictions from five basic models of MPM as the

weak prediction hypothesis, to generate the final boosting prediction. The “gaussian”

distribution model is selected as the most appropriate choice for the case. A slow learn-

ing rate 0.001 and 10 trees are set to the control the boosting learning rate and iteration

numbers, respectively. The weighting mechanism is selected as increasing 1 weight for

the selected learner in each iterative step. The additive model is used for the maximum

depth of variable interactions. Each boosting process is under 3-fold cross-validation.

Bibliography

[1] W.A. Fuller. Introduction to Statistical Time Series. Wiley Series in Probability

and Statistics. Wiley, 1996. ISBN 9780471552390.

[2] R.S. Tsay. Analysis of Financial Time Series. CourseSmart. Wiley, 2010. ISBN

9781118017098.

[3] Rob J Hyndman with contributions from George Athanasopoulos, Slava Razbash,

Drew Schmidt, Zhenyu Zhou, Yousaf Khan, Christoph Bergmeir, and Earo Wang.

forecast: Forecasting Functions for Time Series and Linear Models, 2014. URL

http://CRAN.R-project.org/package=forecast. R package version 5.3.

[4] Rob J. Hyndman and Yeasmin Khandakar. Automatic Time Series Forecasting:

The forecast Package for R. Journal of Statistical Software, 27(3), July 2008.

[5] The R Project for Statistical Computing. URL http://www.r-project.org/.

[6] Ronald C Taylor. An overview of the Hadoop/MapReduce/HBase framework and

its current applications in bioinformatics. In Proceedings of the 11th Annual Bioin-

formatics Open Source Conference (BOSC), 2010.

[7] IBM Software. What is hadoop? URL www.ibm.com/software/data/infosphere/

hadoop/.

[8] George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time Series

Analysis: Forecasting and Control. Wiley Series in Probability and Statistics, 4th

edition, June 30, 2008.

[9] Lei Li, Farzad Noorian, Duncan J.M. Moss, and Philip H.W. Leong. Rolling window

time series prediction using mapreduce. In Proc. IEEE International Conference

on Information Reuse and Integration (IRI), pages 757–764, August 2014.

[10] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,

Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. Searching and

74

http://CRAN.R-project.org/package=forecast
http://www.r-project.org/
www.ibm.com/software/data/infosphere/hadoop/
www.ibm.com/software/data/infosphere/hadoop/

Bibliography 75

mining trillions of time series subsequences under dynamic time warping. In Proceed-

ings of the 18th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 262–270, 2012.

[11] Rob J. Hyndman and George Athanasopoulos. Forecasting: Principles and Practice.

Otexts, 2013. URL https://www.otexts.org/fpp.

[12] Wayne A Fuller. Introduction to Statistical Time Series, volume 428. John Wiley

& Sons, 2009.

[13] Jessica Utts. Seeing Through Statistics. Cengage Learning, 3rd edition, 2004.

[14] Shanta Rangaswamy, Shobha G., Samir Sherif, Satvik Nelakant, and Vaishakh B

N. Time Series Data Mining Tool. International Journal of Research in Computer

and Communication Technology, 2, October, 2013.

[15] Ezeliora Chukwuemeka Daniel, 2Ubani Nelson O, Umeh Maryrose Ngozi, and

Mbeledeogu Njide N. Time Series Decomposition Analysis of Production Quan-

tity Using Historical data. International Journal of Software & Hardware Research

in Engineering, 1(4), 2013, December.

[16] Ruey S. Tsay. Analysis of Financial Time Series, volume 712. John Wiley & Sons,

2010.

[17] Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal

of Econometrics, 31(3):307–327, April 1986. URL http://ideas.repec.org/a/

eee/econom/v31y1986i3p307-327.html.

[18] Robert F Engle. Autoregressive Conditional Heteroscedasticity with Estimates of

the Variance of United Kingdom Inflation. Econometrica, 50(4):987–1007, July

1982. URL http://ideas.repec.org/a/ecm/emetrp/v50y1982i4p987-1007.

html.

[19] Eugene F. Fama. Random walks in stock-market prices. Financial Analysts Journal,

21:55–59, 1965.

[20] Kehinde S. James. Share Price Movement and the White-noise Hypothesis: the

Algebraic Approach. International Journal of Business & Information Technology,

2, March 2012.

[21] Andrew W. Lo. Efficient markets hypothesis. In The New Palgrave: A Dictionary

of Economics. Palgrave McMillan, New York, 2 edition, 2007.

[22] Andrew W. Lo. The adaptive markets hypothesis: Market efficiency from an evo-

lutionary perspective, 2004.

https://www.otexts.org/fpp
http://ideas.repec.org/a/eee/econom/v31y1986i3p307-327.html
http://ideas.repec.org/a/eee/econom/v31y1986i3p307-327.html
http://ideas.repec.org/a/ecm/emetrp/v50y1982i4p987-1007.html
http://ideas.repec.org/a/ecm/emetrp/v50y1982i4p987-1007.html

Bibliography 76

[23] Dayla Mayela Pequeño Cantú. Exchange rate changes and net positions of spec-

ulators in the eurofx futures market - does market size matter? Master’s thesis,

Department of Economics Aalto University School of Economics, 2011.

[24] Eric Zivot and Jiahui Wang. Modeling Financial Time Series with S-PLUS R©,

chapter Rolling Analysis of Time Series. Springer New York, 2006.

[25] Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta. Introduction to

Parallel Computing. Addison-Wesley, 2nd edition, January 26, 2003.

[26] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-0782.

doi: 10.1145/1327452.1327492.

[27] Apache Hadoop. URL http://hadoop.apache.org/.

[28] Ankit Darji and Dinesh Waghela. Parallel Power Iteration Clustering for Big Data

using MapReduce in Hadoop. International Journal of Advanced Research in Com-

puter Science and Software Engineering, 4:Issue 6, June 2014.

[29] Bhavani Thuraisingham. Developing and Securing the Cloud, chapter 12, pages

230–233. Auerbach Publications, October 28, 2013.

[30] Chitrank Verma. A soft introduction to hadoop distributed file system

(hdfs) architecture, 2014. URL http://nixustechnologies.com/2014/04/

a-soft-introduction-to-hadoop-distributed-file-system-hdfs-architecture/.

[31] N. Brahmanaidu1 and Shaik Riaz . Distributed Data Storage and Retrieval on

Cloud by using Hadoop. International Journal of Science and Research, 2012.

[32] Hadoop.apache.org. Hdfs architecure. URL http://hadoop.apache.org/docs/

current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Large_Data_

Sets.

[33] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, James Majors, Adam

Manzanares, and Xiao Qin. Improving mapreduce performance through data place-

ment in heterogeneous hadoop clusters. In Proc. 19th Int Heterogeneity in Com-

puting Workshop, April 2010.

[34] Yaniv Pessach. Distributed Storage: Concepts, Algorithms, and Implementations.

CreateSpace Independent Publishing Platform, 1 edition, February 17, 2013.

[35] Cloudera. Mountable hdfs in cdh4. URL http://www.cloudera.com/content/

cloudera-content/cloudera-docs/CDH4/latest/CDH4-Installation-Guide/

cdh4ig_topic_28.html.

http://hadoop.apache.org/
http://nixustechnologies.com/2014/04/a-soft-introduction-to-hadoop-distributed-file-system-hdfs-architecture/
http://nixustechnologies.com/2014/04/a-soft-introduction-to-hadoop-distributed-file-system-hdfs-architecture/
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Large_Data_Sets
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Large_Data_Sets
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Large_Data_Sets
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Installation-Guide/cdh4ig_topic_28.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Installation-Guide/cdh4ig_topic_28.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Installation-Guide/cdh4ig_topic_28.html

Bibliography 77

[36] Apache hbase. URL http://hbase.apache.org/.

[37] Nick Dimiduk and Amandeep Khurana. HBase in Action. Manning Publication,

1st edition, November 17, 2012.

[38] Divide and Recombine (D & R) with RHIPE. URL https://www.datadr.org/.

[39] S. Guha, R. Hafen, J. Rounds, J. Xia, J. Li, B. Xi, and W. S. Cleveland. Large

Complex Data: Divide and Recombine (D&R) with RHIPE. Stat, 1(1), 2012, to

appear.

[40] Saptarshi Guha. Rhipe: R and Hadoop Integrated Programming Environment, 2012.

URL http://www.rhipe.org. R package version 0.73.1.

[41] Amazon Web Service, . URL http://aws.amazon.com/.

[42] Amazon Web Service EC2 - Previous Generation Instances, . URL http://aws.

amazon.com/ec2/previous-generation/.

[43] StarCluster. URL http://star.mit.edu/cluster/.

[44] Robert E. Schapire. A brief introduction to boosting. In Proceedings of the 16th In-

ternational Joint Conference on Artificial Intelligence - Volume 2, IJCAI’99, pages

1401–1406, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. URL

http://dl.acm.org/citation.cfm?id=1624312.1624417.

[45] Ron Meir and Gunnar Rätsch. Advanced lectures on machine learning. chapter

An Introduction to Boosting and Leveraging, pages 118–183. Springer-Verlag New

York, Inc., New York, NY, USA, 2003. ISBN 3-540-00529-3. URL http://dl.acm.

org/citation.cfm?id=863714.863719.

[46] Michael Kearns. Thoughts on hypothesis boosting. December 1988.

[47] Leslie Valiant. Probably Approximately Correct: Nature’s Algorithms for Learning

and Prospering in a Complex World. Basic Books, first edition edition, June 4 2013.

[48] Leslie Valiant. A theory of the learnable. Communications of the ACM, 27:1134–

114, November, 1984.

[49] Robert Schapire. The strength of weak learnability. Machine Learning, 5:197–227,

1990.

[50] H. Drucker, R.E. Schapire, and P.Y. Simard. Boosting performance in neural net-

works. International Journal of Pattern Recognition and Artificial Intelligence, 7:

705–719, 1993.

http://hbase.apache.org/
https://www.datadr.org/
http://www.rhipe.org
http://aws.amazon.com/
http://aws.amazon.com/ec2/previous-generation/
http://aws.amazon.com/ec2/previous-generation/
http://star.mit.edu/cluster/
http://dl.acm.org/citation.cfm?id=1624312.1624417
http://dl.acm.org/citation.cfm?id=863714.863719
http://dl.acm.org/citation.cfm?id=863714.863719

Bibliography 78

[51] Mirko Kämpf and Jan W Kantelhardt. Hadoop.TS: Large-Scale Time-Series Pro-

cessing. International Journal of Computer Applications, 74, 2013.

[52] Chunyang Sheng, Jun Zhao, Henry Leung, and Wei Wang. Extended Kalman Filter

Based Echo State Network for Time Series Prediction using MapReduce Frame-

work. In Mobile Ad-hoc and Sensor Networks (MSN), Ninth IEEE International

Conference on, pages 175–180. IEEE, 2013.

[53] Leixiao Li, Zhiqiang Ma, Limin Liu, and Yuhong Fan. Hadoop-based ARIMA Algo-

rithm and its Application in Weather Forecast. International Journal of Database

Theory & Application, 6(5), 2013.

[54] Murray Stokely, Farzan Rohani, and Eric Tassone. Large-scale Parallel Statistical

Forecasting Computations in R. In JSM Proceedings, 2011.

[55] H.M. Adorf. Interpolation of Irregularly Sampled Data Series–A Survey. Astro-

nomical Data Analysis Software and Systems IV, 77:460–463, 1995.

[56] Andreas Eckner. A Framework for the Analysis of Unevenly-spaced Time Series

Data. Technical report, Stanford University, 2012. URL http://www.eckner.com/

papers/unevenly_spaced_time_series_analysis.pdf.

[57] R. J. Hyndman. ”another look at measures of forecast accuracy”. FORESIGHT

Issue, page pg46, 4 June 2006.

[58] Lutz Kilian and Mark P Taylor. Why is it so difficult to beat the random walk

forecast of exchange rates? Journal of International Economics, 60(1):85–107,

2003.

[59] Vladimir Vapnik. Statistical Learning Theory. Wiley, 1998. ISBN 978-0-471-03003-

4.

[60] N. Sapankevych and R. Sankar. Time Series Prediction using Support Vector Ma-

chines: A Survey. Computational Intelligence Magazine, 4(2):24–38, 2009.

[61] Tim Hill, Marcus O’Connor, and William Remus. Neural network models for time

series forecasts. Management science, 42(7):1082–1092, 1996.

[62] Zhen-Guo Che, Tzu-An Chiang, and Zhen-Hua Che. Feed-forward neural networks

training: a comparison between genetic algorithm and back-propagation learning

algorithm. International Journal of Innovative Computing, Information and Con-

trol, 7(10), October 2011.

[63] R. Xiao and V. Chandrasekar. Development of a neural network based algorithm

for rainfall estimation from radar observation. IEEE Transactions on Geoscience

and Remote Sensing, 35:160–171, 1997.

http://www.eckner.com/papers/unevenly_spaced_time_series_analysis.pdf
http://www.eckner.com/papers/unevenly_spaced_time_series_analysis.pdf

Bibliography 79

[64] Liang Zhao, Sherif Sakr, Anna Liu, and Athman Bouguettaya. Cloud Data Man-

agement. Springer, March 25 2014.

[65] Microsoft Azure. URL https://azure.microsoft.com/en-us/.

[66] S. Guha, R. P. Hafen, P. Kidwell, and W. S.Cleveland. Visualization Databases for

the Analysis of Large Complex Datasets. Journal of Machine Learning Research,

5:193–200, 2009.

[67] Peter Bühlmann and Torsten Hothorn. Boosting algorithms: Regularization, Pre-

diction and Model fitting. Statistical Science, 22:447–505, 2007.

[68] L. Breiman. Arcing classifiers (with discussion). The Annals of Statistics, 26:801–

849, 1998.

[69] L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11:

1493–1517, 1999.

[70] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical

view of boosting (with discussion). The Annals of Statistics, 28(2):337–374, 2000.

[71] P. Bühlmann. Boosting for high-dimensional linear models. The Annals of Statistics,

34:559–583, 2006.

[72] P. Bühlmann. Boosting with the L2 loss: Regression and classification. Journal of

the American Statistical Association, 98:324–339, 2003.

[73] T. Hothorn, P. Bühlmann, S. Dudoit, A. Molinaro, and M. van der Laan. Survival

ensembles. Biostatistics, 7:355–373, 2006.

[74] L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

[75] Y. Amit and D. Geman. Shape quantization and recognition with randomized trees.

Neural Computation, 9:1545–1588, 1997.

[76] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[77] Y. Freund and R. Schapire. A decision-theoretic generalization of online learning

and an application to boosting. In In Proceedings of the Second European Con-

ference on Computational Learning Theory. Lecture Notes in Computer Science,

Springer., 1995.

[78] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In In Pro-

ceedings of the Thirteenth International Conference on Machine Learning. Morgan

Kaufmann Publishers Inc., San Francisco, CA, 1996.

https://azure.microsoft.com/en-us/

Bibliography 80

[79] Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences, 55:

119–1139, 1997.

[80] J. Friedman. Greedy function approximation: a gradient boosting machine. The

Annals of Statistics, 29(5):1189–1232, 2001.

[81] Greg Ridgeway. Generalized boosted models: A guide to the gbm package, 2005.

[82] J. Friedman. Stochastic Gradient Boosting. Computational Statistics and Data

Analysis, 38(4):367–378, 2002.

[83] Greg Ridgeway with contributions from others. gbm: Generalized Boosted Regres-

sion Models, 2013. URL http://CRAN.R-project.org/package=gbm. R package

version 2.1.

[84] Larson MG. Analysis of variance. Circulation, 117:115–121, 2008.

[85] R Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2014. URL http://www.

R-project.org/.

[86] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and

Friedrich Leisch. e1071: Misc Functions of the Department of Statistics (e1071),

TU Wien, 2014. URL http://CRAN.R-project.org/package=e1071. R package

version 1.6-3.

[87] Christian Ullrich. Forecasting and Hedging in the Foreign Exchange Markets, vol-

ume 623 of Lecture Notes in Economics and Mathematical Systems. Springer, 2009.

[88] Burton G Malkiel. Efficient market hypothesis. The new palgrave: A dictionary of

economics, 2:120–23, 1987.

[89] Malkeil Burton. A random walk down wall street. W. W, Norton, New York, 1996.

[90] Allan Timmermann and Clive WJ Granger. Efficient market hypothesis and fore-

casting. International Journal of Forecasting, 20(1):15–27, 2004.

[91] Yoav Freund and Robert E. Schapire. A Short Introduction to Boosting. Journal

of Japanese Society for Artificial Intelligence, 14:771–780, September, 1999.

[92] Robert Schapire. Explaining adabooste. Empirical Inference: Festschrift in Honor

of Vladimir N. Vapnik, 2013.

http://CRAN.R-project.org/package=gbm
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=e1071

Publication

Full-length Conference Paper

Lei Li, Farzad Noorian, Duncan J.M. Moss, and Philip H.W. Leong. Rolling window

time series prediction using mapreduce. In Proc. 15th IEEE International Conference

on Information Reuse and Integration (IRI), pages 757–764, August 2014.

81

	Copyright_Statement

