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Abstract
We develop and investigate several quantum many-body spin models of use for topological

quantum information processing and storage. These models fall into two rough categories:

those that are designed to be more realistic than alternative models with similar phenomenol-

ogy, and those that are designed to have richer phenomenology than related models.

In the first category, we present a procedure to obtain the Hamiltonians of the toric code and

Kitaev quantum double models as the low-energy limits of entirely two-body Hamiltonians.

Our construction makes use of a new type of perturbation gadget based on error-detecting

subsystem codes. The procedure is motivated by a PEPS description of the target models, and

reproduces the target models’ behavior using only couplings which are natural in terms of the

original Hamiltonians. This allows our construction to capture the symmetries of the target

models.

As an extension of this work, we construct parent Hamiltonians involving only local 2-body

interactions for a broad class of Projected Entangled Pair States (PEPS). Again making use of

perturbation gadget techniques, we define a perturbative Hamiltonian acting on the virtual

PEPS space with a finite order low energy effective Hamiltonian that is a gapped, frustration-

free parent Hamiltonian for an encoded version of a desired PEPS. For topologically ordered

PEPS, the ground space of the low energy effective Hamiltonian is shown to be in the same

phase as the desired state to all orders of perturbation theory.

We then move on to define models that generalize the phenomenology of several well-known

systems. We first define generalized cluster states based on finite group algebras in analogy

to the generalization of the toric code to the Kitaev quantum double models. We do this

by showing a general correspondence between systems with CSS structure and finite group

algebras, and applying this to the cluster states to derive their generalization. We then investi-

gate properties of these states including their PEPS representations, global symmetries, and

relationship to the Kitaev quantum double models. We also comment on possible applications

of the generalized cluster states, including a protocol for universal adiabatic topological cluster

state quantum computation.

Continuing this programme, we finally propose a generalization of the color codes based on

finite groups algebras. For non-Abelian groups, the resulting model supports non-Abelian

anyonic quasiparticles and topological order. We examine the properties of these models such

as their relationship to Kitaev quantum double models, quasiparticle spectrum, and boundary

structure.
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1 Introduction

Quantum information science is the study of the methods and mechanisms of quantum infor-

mation storage and processing. This burgeoning field has produced many significant results

pointing to the practical applications of these procedures, as well as their theoretical scope. A

key cornerstone in quantum information science is the theory of quantum error correction

and fault tolerance [NC10]. Without this, quantum information theory would largely be a

theoretical curiosity without real-world application in the inherently noisy laboratory (though

like classical analog computation, may still find application that does not require asymptotic

guarantees of correctness).

Several paradigms for considering quantum information processing protocols have been

proposed. Each of these protocols has a basis in an idealised physical realization of a quantum

computer, which may have relative practical advantages and/or drawbacks. Significantly

they each also offer a different theoretical vantage point from which to view problems in

quantum information. Most notably, these paradigms include the standard quantum circuit

model [Deu89, NC10], adiabatic quantum computation [FGGS00, AvDK+07], measurement-

based quantum computation [RB01], and topological quantum computation [Kit03, NSS+08].

In this thesis we will focus most closely on systems of interest for topological quantum com-

putation.

Topological quantum computation typically considers systems with some underlying geom-

etry in space that limits the available interactions. This is motivated by analogy to realistic

condensed matter systems whose interactions are typically local in R2 or R3. Although this

might seem like a disadvantageous constraint, locality also allows topologically ordered sys-

tems to achieve certain robustness to physical noise processes [WOP99, DKLP02], which are

generally considered to respect spatial locality in the same sense. Topological systems derive

their name from the fact that typically the quantum information they encode or process is

delocalized over global degrees of freedom, often related to topological features of a mani-

fold [DKLP02]. This delocalization is exactly the quality that allows them robustness to local

noise sources - like topology itself, the information is invariant under local deformations

(suitably defined). In this sense, topological quantum computation builds in to its framework
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Chapter 1. Introduction

some inherent features of quantum error correction and fault tolerance that must be added by

hand to protocols in other implementations such as a circuit-based scheme.

A further advantage of topological quantum information protocols is that the global nature

of the encoded information often means that the precise microscopic details of the imple-

mentation are less important than the emergent macroscopic features [NSS+08]. This often

allows us to define protocols in the continuum, making use of quantum field theory tech-

niques when convenient, and port the results to more realistic physical implementations in

condensed matter systems. Alternatively, we can make use of toy models of interacting bosons,

fermions, or spins on lattices to study phenomena of interest before relating the main results

to more complicated experimental systems. In this thesis we will mainly study models of

interacting spins on a lattice, and their topological properties or ability to perform interesting

computational tasks in the topological quantum computing paradigm.

Quantum many-body spin models

Quantum many-body models are useful tools for describing or modelling many systems of

interest, particularly for condensed matter physics [Aue94], but also more broadly for example

in high energy physics [KS75, Kog79] or quantum gravity [Rov08, KMS06]. The fundamental

degrees of freedom in a quantum many-body model are typically arranged in a lattice (as

in solid-state systems) and may be either fermionic or bosonic in nature. Such systems

can describe many interesting materials such as integer or fractional quantum hall liquids,

topological insulators, Bose-Einstein condensates, quantum magnets, quantum spin liquids,

and high temperature superconductors.

Many-body spin models correspond to hard-core bosonic systems, in the sense that there are

only finitely many available states corresponding to each site of the lattice, and operations at

one lattice site commute with those at all other lattice sites. Since finite-dimensional spins are

the building blocks of most quantum information protocols, it is natural to look for many-body

spin models for use in quantum information as opposed to fermionic or soft-core bosonic

lattice models. These kinds of spin models, and their application to quantum information

science, are the focus of this thesis.

Many-body spin systems are ubiquitous in condensed matter physics, being a natural de-

scription of many solid-state systems. As well as being representative of models for natu-

ral physical systems, spin models are also amenable to engineering in the laboratory, for

example with arrays of Josephson junctions [DIV04] or interacting neutral atoms in opti-

cal lattices [Blo05]. Many-body fermionic systems are also equivalent to certain spin mod-

els. Most straightforwardly, the Jordan-Wigner transformation [JW28] can be used to relate

fermionic and spin models in 1 dimension, and in higher dimensions similar analogues can be

found [BK02, Bal05, VC05] (though they are usually less natural). Additionally, fermions them-

selves can be found as emergent quasi-particle excitations of spin models in two dimensions

or higher [LW03].
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Rules of the many-body spin game: A quantum many-body spin model has a Hilbert space

formed by the tensor product of di -dimensional spins at each site i of a finite valency lattice

or graph Λ. Λ is typically a discretization of RD for some spatial dimension D (usually ≤ 3)

with bounded interaction (edge) length and density of sites. Often the local Hilbert space

dimension di is taken to be constant over the lattice, but at a minimum it must be bounded.

The dynamics of the system are specified by a Hamiltonian consisting of a sum of bounded

interactions centered at each site whose strength is decaying suitably quickly with total radius

of their support (intuitively, the interactions must be local enough). This condition, combined

with the finite valency of the lattice, means that the total norm of all interactions acting on any

site of the lattice should be finite.

Quantum many-body spin models are subject to Lieb-Robinson bounds [LR72]. These bounds

give a maximum rate for transmission of information or correlations over the lattice (up to

exponentially small corrections). The ability to prove such a bound should be understood

as the appropriate definition of “decaying quickly” in the previous paragraph. For most

purposes, we will deal with either strictly local interactions (those whose interaction strength

is precisely zero for interaction ranges beyond some constant value) or exponentially decaying

interactions, which both have this property. We will normally use the term local to refer to

strictly local interactions, reserving the term 1-local for operations on a single site, and using

quasi-local for exponentially decaying terms or other terms decaying fast enough to satisfy a

Lieb-Robinson bound.

Often we are most interested in the behaviour of many-body models when the number of

sites on the lattice tends to infinity. This can be thought of as taking the thermodynamic

limit, where we also increase the total size of the lattice such that the density of sites remains

bounded. It is in this limit that notions such as gappedness, phase transition, and so on

emerge. These are key features of a condensed matter system that play an important role

in characterizing the effective properties of (finite approximations to) such systems in the

laboratory. Though the thermodynamic limit may not be well-defined for arbitrary quantum

many-body spin models, for most models of interest we will be able to compute these kinds of

quantities asymptotically.

Applications of many-body spin models

One major reason to study many-body spin models is that they can represent or approximate

natural physical systems such as condensed matter systems, discrete gauge theories, etc. As

well as modelling natural systems, many-body spin systems can be specifically engineered in

experimental setups as previously mentioned. Apart from straightforwardly describing these

physical systems with lattice models, there are several broader reasons to be interested in the

study of many-body spin systems.

Toy models are a ubiquitous tool to study interesting phenomena without complicating the

analysis with spurious effects. Many-body spin models give a broad framework within which
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Chapter 1. Introduction

toy models of varying degrees of realism can be constructed and analysed to give insight into

a vast range of physical phenomena. While quantum many-body spin models are mostly

inspired by models for condensed matter physics, these kinds of models are also be used to

study phenomena in high energy physics and quantum gravity.

Classic examples of toy spin models include the Ising models [Kog79], Bose- and Fermi-

Hubbard models [Hub63], and Abelian lattice gauge theories [Kog79]. The kinds of phenom-

ena these models and other spin models can be used to study is almost endless and includes

phase transitions, magnetism, superconductivity, condensation, confinement, localization,

thermalization, symmetry breaking, and topological order. Many-body spin models also give

a general theoretical test-bed for broader physical concepts and theoretical tools such as

entanglement (or correlation) measures, variational ansatze, and renormalization group flow.

Of interest in this thesis are the related notions of topological order and topological phases.

Compared to their classical counterparts which fall under the Landau symmetry-breaking

phase classification, quantum (or topological) phases are not so well understood. Studying

explicit spin models as representatives of phases is extremely useful in quantifying the proper-

ties of a phase, and how these systems behave as they approach a phase transition. Of course

similar analysis has historically played a very important role in understanding classical phases

and phase transitions, for instance in the classical Ising models.

Apart from these general considerations, a central motivation of this thesis is in studying

the application of many-body spin models to the implementation of topological quantum

computation. The systems we consider can generally be thought of as toy models of varying

degrees of realism - balancing the possibility of meaningful analysis with the constraint of de-

scribing a realizable physical system. Many-body spin models can be used in several different

ways to realize quantum computational protocols, several of which we will discuss shortly.

Most notably these systems are central to both the topological quantum computation and

measurement-based quantum computation paradigms. Interesting examples of common

many-body spin models relevant to this thesis include resources for measurement-based quan-

tum computation such as the AKLT state [WAR11, Miy11] and cluster states [RB01, RBB03],

and topologically ordered systems and topological codes such as string-net models [LW05],

quantum double models [Kit03], and color codes [BMD06]. The cluster states and toric code

(the simplest quantum double model) in particular are the prototypical toy models for many

phenomena or protocols in measurement-based and topological quantum computation,

respectively.

One exciting possible technology for quantum information is a self-correcting quantum

memory. In analogy to a classical hard-drive, which can store information robustly over long

timescales at finite temperature, it may be possible to construct a quantum many-body model

that can store quantum information robustly without the need for active error-correction

protocols to be continuously running. This is known to be possible using a local many-body

model in 4 spatial dimensions [DKLP02, AHHH10], but remains an open question in 2 or
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3 dimensions. Promising partial results have been found in this direction [BH11a, Mic14,

PHWL13, BTH+13, BASP14] which have led to significant progress in our understanding of

the possible phenomenology of realistic many-body models. Many-body spin models are

also important in the study of several other open problems in quantum information theory,

notably the quantum probabilistic checkable proofs conjecture [AAV13].

Topological order, topological codes, and topological quantum computation

Topological order in many-body models can be defined in many ways depending on the

context and application. Topological order may either be defined for a particular state or

space [CGW10], or for a Hamiltonian system [BHM10, BH11b, MZ13] (and typically its as-

sociated ground space). We will refer to topologically ordered systems, but this should be

understood to either mean topologically ordered states or Hamiltonians as appropriate. Topo-

logical phases are a useful related notion. A topological phase is the equivalence class of all

systems which have the same topological (i.e. global or long-range) properties. Such a phase

can also be defined in several ways depending on context. A common definition that will

be useful for this work will be that two gapped, local Hamiltonians are in the same phase if

they are connected by a quasi-local adiabatic path (i.e. one that does not close the gap of the

Hamiltonian). This definition of a phase also implies a definition of a topologically ordered

system: one which is not in the same phase as the trivial system, where the trivial system is a

gapped, local Hamiltonian with a product state as its ground state.

Observables of two systems in the same phase can be related by quasi-adiabatic continua-

tion [HW05], and this is the notion that makes concrete the idea that the microscopic details

of a particular system do not play a significant role in the topological properties of a system.

The topological degrees of freedom, accessible only by global operations, are not adversely

affected by this quasi-adiabatic continuation.

Another way to express this robustness to changes in microscopic degrees of freedom is

encapsulated in the topological stability theorems [BHM10, BH11b, MZ13]. Loosely speaking,

these define topologically ordered systems as those with global degrees of freedom that are

inaccessible by local operations. The topological stability theorems prove that for gapped,

local, frustration-free Hamiltonians with this kind of topological order, the gap of the system

is robust against the addition of sufficiently small quasi-local perturbations. Similarly, the

splitting of the ground space of the system is exponentially suppressed in the system size, so

that the thermodynamic limits of all such perturbed systems have the same ground space

properties. This result proves that all systems that are topologically ordered in the appropriate

sense belong to proper phases (as the addition of a perturbation while the gap remains open

defines a non-trivial adiabatic path).

Often, we will be interested in topological order specifically in 2D systems. The types of

possible topologically ordered systems in 2D are much better understood than the general

case, and can be described by models with point-like quasi-particle excitations obeying so-

5



Chapter 1. Introduction

called anyonic statistics [NSS+08]. These are in contrast to the more familiar bosonic and

fermionic statistics that are available to point-like excitations in 3D space. In 3D space the

exchange of particles must act as a representation of the permutation group, while in 2D space

exchange statistics can act as a representation of the braid group instead. Anyonic statistics

may be either Abelian (corresponding to 1D representations of the braid group), in which

case some arbitrary phase is accumulated upon exchange of two particles, or non-Abelian

(for higher-dimensional representations), where pairs of particles can have multiple possible

fusion outcomes and exchanging the particles acts as some unitary on this space of fusion

products.

Physically, anyon models are expected to describe the excitations of experimentally relevant

natural systems such as fractional quantum hall liquids or engineered systems such as neu-

tral atoms in optical lattices [Wen07, Pac12]. Mathematically, a particular anyon model is

described by a ribbon category [Wan10]. This contains the information about the types of

particles (or charges), how they may fuse, and how they act under exchange or braiding.

Such anyon models can also be studied in the continuum as topological quantum field the-

ories [Wan10]. This connection has allowed the development of new quantum algorithms

to compute topological invariants of manifolds efficiently for which no efficient classical

algorithm is known [AJL09]. It has also advanced our understanding of the simulability of

topological quantum field theories (which are both efficiently simulable by a quantum com-

puter and can efficiently simulate a quantum computer [FKW02]).

The canonical microscopic test-bed for topological order in 2D systems is the toric code [Kit03].

This simple model is amenable to study through the Pauli stabilizer formalism [Got99b] and

supports Abelian anyons. The ground space of this system can be studied abstractly as a

quantum code and is the prototypical example of a topological code. Topological codes

are, loosely speaking, codes corresponding to the ground spaces of topologically ordered

systems. This then means that the codespace is inaccessible to local noise operations and so

has robustness to common sources of noise (or common errors). Topological codes can also

often be used to implement computation via code deformation [BMD09, Bom11], a process by

which the code itself is gradually changed in a way that encodes, manipulates, and measures

quantum information.

A related notion to topological order is symmetry protected topological order [GW09, CGW11,

SPGC11] (SPTO), or simply symmetry protected order. Systems with SPTO share many features

with topological ordered systems such as robustness of to certain deformations - though in

this case the deformations must respect the relevant symmetry. SPTO systems may also be

used to encode classical information, though they do not typically give good quantum codes

as do true topologically ordered systems [ZZ14].
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Computation by anyon braiding

A pair of non-Abelian anyons may fuse to several possible distinct particle types, in con-

trast to Abelian anyons whose fusion products are unique. The space of possible fusion

outcomes of pairs (or sets) of non-Abelian anyons may be used to encode information in a

topologically protected way, as it is inaccessible to local operations if the anyons are kept

well separated [Kit03]. Only by bringing a pair of anyons together may their total charge be

measured, and so far-separated anyon pairs have fusion spaces robust to local noise sources.

Computation can be performed on this fusion space by braiding pairs of particles [NSS+08].

Non-Abelian anyon braiding statistics give rise to a non-Abelian representation of the braid

group that acts on the relevant fusion spaces. If the anyon model is sufficiently complicated,

then this braiding may be sufficient to efficiently perform any desired unitary gate on some

subspace of the fusion space to arbitrary precision. This anyon model is then said to be

universal, in the sense that it may be used to implement universal quantum computation

by braiding of these particles. Not all non-Abelian anyon models are universal in this sense

(in fact the braiding of some non-Abelian anyons can be efficiently simulated on a classical

computer [Bra06]), though there are many known families of universal anyon models, most

notably the Fibonacci anyons [NSS+08].

A quantum algorithm generally consists of three main stages: initalization, evolution, and

measurement. Given a universal anyon model, the initalization step may be performed by

creating suitable particle-antiparticle pairs from the vacuum. This process places the fusion

space in a known state, which can then be evolved by braiding the anyons to give any desired

gate to a given accuracy. Finally, measurement may be performed on the encoded information

by bringing pairs of anyons together and determining the particle type of their fusion product.

It is also possible to supplement the computational power of a non-universal anyon model

with non-topological operations that complete a universal gate set. The common topological

operations would then inherit the inherent robustness of the topological protocol, and only

the non-topological operations would need to be made fault tolerant by hand. This is often

envisaged in systems whose anyons may be experimentally accessible but do not have the

ability to perform universal computation by braiding, such as the Ising anyons [Bra06].

Computation by code deformation

An alternative method for implementing topological quantum computation is by topological

code deformation [BMD09, Bom11]. Instead of using the fusion space of several anyons to

encode information, in these kinds of schemes quantum information is encoded in global

degrees of freedom corresponding to topological defects. Topological codes and topolog-

ically ordered systems allow for several kinds of topological defects to arise, most notably

holes [BMD09] and twists [Bom11]. These can be considered to represent defects in the

manifold itself on which the topologically ordered system lives.
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Chapter 1. Introduction

Holes are punctures in the surface of the manifold, and each hole may contain anyonic (or

more generally topological) charge. The charge of a hole can be made inaccessible to local

operations by making the size of the hole macroscopic. Only operations that can enclose the

entire hole may measure its charge. In this way we can encode topological information in a

set of holes and manipulate it by braiding them.

Twists are the endpoints of domain walls in anyon systems [KK12]. A domain wall is a defect

line along which the particle type of different anyon species is confused. By travelling around

a twist, an anyon may change its charge. Due to charge conservation, this associates a residual

charge with the domain wall and its twists that may be measured by annihilating the twists

with one another (destroying the domain wall). The charge associated with a pair of well

separated twists is again inaccessible to local operations and may be manipulated by braiding

twists with either anyons or other twists.

These kinds of topological defects should not be considered excitations of the anyon system,

rather deformations of the system itself. Holes and twists are usually imagined to be produced

by, for example, adiabatically deforming the Hamiltonian to move from one defect configura-

tion to another [CLB+14]. This process should be done sequentially via local changes to avoid

closing the gap along the adiabatic path. If we interpret the system as a topological code, this

style of procedure can be classed as code deformations. Code deformations change the defini-

tion of the codespace step by step until we arrive at an alternative code encoding the output

of the desired computation. Examples of braiding of twists and holes as code deformation can

be conveniently expressed in the stabilizer formalism [BMD09, Bom11, Bom10a].

Measurement-based quantum computation

Measurement-based quantum computation [RB01] is a paradigm for quantum information

processing that proceeds quite differently to the standard circuit model. The circuit model

typically specifies a computation by initialization of data registers in a product state, unitary

evolution of the registers, and measurements on each register. In contrast, the measurement-

based model assumes that a suitable highly entangled resource state has been prepared prior

to computation. It then evolves the state by selectively measuring single particles one at a time

and choosing subsequent measurements based on prior outcomes. These measurements can

be thought of as consuming the entanglement prepared at the beginning of the protocol, as

compared to the circuit model where entanglement can be created or destroyed at will by

many-particle unitary gates.

In some experimental implementations, measurements are relatively cheap, and so if a suitable

resource can easily be prepared then measurement-based quantum computation may be

much simpler than implementing the circuit model or other computational protocols. The

complexity of a measurement-based computation scheme thus largely rests on the difficulty

of preparing an appropriate resource state. The prototypical resource state is the 2D cluster

state [RBB03], which is very amenable to study within the stabilizer formalism. The cluster
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state is the ground state of gapped, local, commuting Hamiltonian, and can also be prepared

as the output of a constant depth quantum circuit. Other resource states that are ground

states of more realistic Hamiltonians have also been proposed, most notably the 2D AKLT

states [WAR11, Miy11]. These are the ground states of 2-body Hamiltonians, and so may be

possible to prepare more easily in the laboratory, but this realism is traded for some of the

simplicity of analysis present in the cluster states.

Elements of the measurement-based quantum computation paradigm may also be blended

with those of other paradigms, most notably the topological and adiabatic approaches to

quantum computation. Using a 3D cluster state, it is possible to simulate code deformation on

a toric code by measurement [RHG07], thus combining some of the robustness of a topological

computation scheme with the possible experimental advantages of a measurement-based

protocol. The measurements in a cluster state computation can also be simulated by adiabatic

fields, allowing a modular approach to adiabatic quantum computing by importing the tools

of cluster state computation [BF10, BFC13, AMA14].

Many-body state ansatze

The problem of efficiently describing and manipulating quantum many-body states is an

important one. Simply writing down a many-body spin model is of little use if there exist

no tools to derive its properties. To this end, several extremely successful ansatze have been

proposed to assist in the description and analysis of many-body states. We will discuss two

main frameworks for describing many-body systems: stabilizer formalism and tensor network

ansatze.

Pauli stabilizer formalism [Got99b] is very simple and can only describe a very restricted class

of states of many-spin- 1
2 systems. Happily, this small class includes important examples of

many interesting many-body systems such as the toric code, color code, and cluster states.

Pauli stabilizer states can be described as common +1 eigenstates of a set of Pauli operators

called stabilizers. Using this Heisenberg picture description of the state, we can easily de-

termine expectation values of operators by looking at their commutation relations with the

stabilizers, or compute the effect of certain evolutions that take stabilizer states to stabilizer

states. These allowed evolutions, called Clifford operations, and stabilizer states in general,

are significant to the study of quantum information broadly, but when combined with locality

constraints can also be used to describe many-body models of interest.

The Pauli stabilizer formalism has been extended in several ways. The first obvious extension is

to higher dimensional Pauli algebras [Got99a], where most of the structure is inherited directly.

Further generalizations have been less successful in giving useful tools to analyse evolution

or properties of states, but are still useful to describe certain classes of quantum many-body

states. Generalized stabilizer formalisms include the X S stabilizer formalism [NBVdN15], the

normalizer circuit formalism [VdN13, BVVdN14, BVLVdN14], and the monomial stabilizer

formalism [VdN11].
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Tensor network ansatze are variational classes of quantum states that allow for efficient

representation and manipulation of a desired class of states. Tensor network ansatze have

been developed specifically to represent states of quantum many-body spin models, and have

allowed for rapid advances in the numerical simulation of such systems. A prototypical such

ansatz is that of matrix product states (MPS) [AKLT88, FNW92, PGVWC07]. This is suited to

describing states of 1D spin chains, and in fact can provably be used to efficiently approximate

the ground space of any gapped 1D system of locally interacting spins [Has07].

One way of understanding MPS is by considering pairs of maximally entangled “virtual” d-

dimensional spins arranged on a line. Neighbouring qudits belonging to different maximally

entangled pairs are then grouped and projected into some D-dimensional “physical” Hilbert

space. The projection map thus defines a particular matrix product state. Expectation values of

local observables and correlation functions can be efficiently extracted from such a description

of the state, and for a given Hamiltonian the density matrix renormalization group procedure

may be used to quickly determine a good MPS description for the ground state of such a

system. MPS are equivalent to mean field theory (the variational class of product states) for

trivial virtual systems (i.e. d = 1).

A natural generalization of MPS to higher dimension is projected entangled pair states [Has06,

VWPGC06a] (PEPS). In this ansatz, pairs of virtual spins are placed on each edge of a graph,

and then a projection map acts on all of the spins collected at each vertex (an MPS corresponds

to a PEPS on a line graph). Though many of the guarantees of efficiency of representation or

calculation that MPS provides do not survive to the general case of PEPS, it is nonetheless

quite successful in practice at numerically determining the ground states of (usually gapped)

quantum many-body spin systems and calculating their expectation values.

Apart from their use as numerical tools, states with MPS and PEPS representations can also

be analysed analytically. For example, a PEPS representation by construction constrains the

scaling of entanglement entropy in a system. The existence of a PEPS representation with

certain properties for a state also guarantees the existence of a local, gapped, frustration-free

parent Hamiltonian that has the desired PEPS as its ground state [PGVCW08]. Symmetries

of a PEPS representation can be related to the properties of the state itself [SCPG10], and

the PEPS representation of the cluster states can even be used to understand measurement-

based quantum computation as a teleportation-based computation scheme on the virtual

systems [VC04]. Additionally, PEPS have been used to construct interesting examples of states

such as resonating valence bond states [SPCPG12], as well as the cluster states [VWPGC06b],

quantum double ground states [SCPG10], and string-net states [BAV09, GLSW09].

Finally, we briefly mention a third major tensor network ansatz, though we will not make

particular use of it in this thesis. The multiscale entanglement renormalization ansatz [Vid08]

(MERA) is a class of tensor network states that are suited to describing critical many-body

systems as opposed to MPS and PEPS, which are typically used to describe ground states of

gapped systems.
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1.1. Thesis overview

1.1 Thesis overview

In this thesis we will develop several families of quantum many-body spin models that may be

of use for topological quantum information processing. In developing these models, there are

several competing factors: it is desirable that the models have interesting phenomenology, are

analytically tractable, and are experimentally realistic. Of course, it is not always possible to

optimize these constraints all at once and so at different stages of this thesis we will focus on

either the first or last of these values, while still maintaining a high enough level of tractability

that it is possible to demonstrate the relevant features.

In Chapter 2, we consider the topologically ordered quantum double models first described

by Kitaev. These models are one of the main theoretical test-beds for concrete proposals

of topological quantum computation by either braiding anyons or code deformation, and

have the toric code as their simplest member. Although the simplicity of these models lends

itself to theoretical study, the Hamiltonians of these systems are not particularly realistic,

involving at least 4-body operators. We develop a method to approximate these systems by

2-body interactions using the tools of perturbation theory. The approximation we develop

in fact gives the quantum double model in an encoded form as its low energy limit, so that

each qudit of the target model is encoded in a fixed number of qudits of our system. The

construction is motivated by the PEPS descriptions of the quantum double ground states. The

interactions involved in our construction are local, and retain much of the algebraic structure

of the original quantum double models, enabling the analysis of these new, more realistic

models.

Following this theme, in Chapter 3 we construct 2-body parent Hamiltonians for a broad class

of PEPS. Typically parent Hamiltonians of PEPS require many-body interactions, as is the

case for the quantum double models. We can again use the structure of the PEPS description

and ideas from perturbation gadgets to build a gapped Hamiltonian involving only 2-local

interactions that gives the desired PEPS as its ground state under some conditions. These

conditions are inspired by several known important natural classes of PEPS with amenable

algebraic structure such as injective, G-injective, H-injective, etc. PEPS. Topological order

of the states is also important in demonstrating the stability of the result. The additional

complexity of the general case means that some of the elegant features of the quantum double

construction presented in Chapter 2 do not survive. As in the previous chapter, the main result

of Chapter 3 is a 2-local Hamiltonian with the desired ground state, providing an avenue for

more experimentally realistic realizations of PEPS.

Chapter 4 departs from this programme of producing more realistic parent Hamiltonians

for desirable states. In this chapter, we begin to construct new examples of many-body spin

states that may have interesting phenomenology or be amenable to application in quantum

information processing protocols. We start by introducing a formalism for generalizing a

given qubit CSS state to a family of states labelled by arbitrary finite group. In this picture,

the original qubit state corresponds to the group Z2. We relate the algebraic structure of a
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CSS state to the group algebra of Z2 or the (isomorphic) representation algebra, and show

how this may be straightforwardly generalized. This construction is applied to the cluster

states to produce a family of generalized cluster states. The relationship between the standard

qubit cluster state and the toric code generalizes to a relationship between the generalized

cluster states and the relevant quantum double model. We also explore some properties of

these states such as their symmetries and PEPS representations, as well as discussing possible

applications of these states, including to generalizing the topological cluster state computation

scheme (also making use of adiabatic quantum computation techniques).

Chapter 5 follows this programme by proposing a generalization of the topologically ordered

color codes to arbitrary finite group. The color codes are of significant interest for topological

coding and topologically ordered systems, having many useful properties. However, these sys-

tems cannot support non-Abelian anyons, precluding the possibility to implement topological

quantum computation by braiding of color code anyons. Roughly following the prescription

outlined in Chapter 4 we define a family of generalized color codes that allow for non-Abelian

anyons and study their properties. An equivalence between these generalized color codes and

the quantum double models is demonstrated and is particularly useful in determining the

topological properties of these systems.

Finally, in Chapter 6 we comment on the broader relevance of the models introduced and the

tools used in this thesis, before providing concluding remarks.

Each of the main chapters 2-5 can be read as a stand-alone unit, and has a self-contained

introduction to the relevant background material. For the reader’s convenience, at the conclu-

sion of each of these chapters is a brief summary of the main results and discussion points

covered.
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2 Toric Codes and Quantum Doubles
from Two-Body Hamiltonians

Abstract

We present a procedure to obtain the Hamiltonians of the toric code and Kitaev quantum

double models as the low-energy limits of entirely two-body Hamiltonians. Our construc-

tion makes use of a new type of perturbation gadget based on error-detecting subsystem

codes. The procedure is motivated by a PEPS description of the target models, and re-

produces the target models’ behavior using only couplings which are natural in terms of

the original Hamiltonians. This allows our construction to capture the symmetries of the

target models.

2.1 Introduction

There has been a surge of interest recently in spin lattice models because of their strange and

wonderful properties. From the perspective of condensed matter physics and quantum many-

body theory, they have recently led to major advances in our understanding of the nature of

quantum phase transitions and topological order in two-dimentional systems. The topological

properties of these models are also of interest in quantum computing and quantum error

correction. A system with topological order can possess intrinsic error correction or protection

capabilities. These are exploited for quantum data storage [DKLP02, WHP03, DCP10] or

quantum information processing [RH07, RHG06, RHG07] with high error thresholds. The

encoded logical operations in topological models are associated with non-trivial homology

cycles on a lattice of spins. A lattice which has a non-trivial topology (such as a torus or

punctured disk) can encode quantum information into its ground states which is robust to

small local perturbations of the Hamiltonian.

Many models which are relatively simple (from a theoretical point of view) contain topo-

logically ordered ground states. The toric code and its generalization to the quantum dou-
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ble models [Kit03] are a significant class of exactly solvable models containing a range of

different topological orders. Quantum double models of non-Abelian groups can support

non-Abelian anyons, quasiparticles whose exchange statistics transcend the traditional Bose-

Einstein/Fermi-Dirac dichotomy that is ubiquitous in three dimensions. Braiding such quasi-

particles can be used for universal quantum computation [Moc03, Moc04, Pre98, WOP99].

However, these models (and other more general topological models [LW05]) consist of many-

body interactions that are quite challenging to implement experimentally, as they usually

involve interactions between four or more bodies. By contrast, most natural couplings are

only 2-body. It is therefore of interest to find systems with only 2-body interactions which can

realize topologically ordered phases.

An example of a 2-body system with a topologically-ordered ground state is the Kitaev honey-

comb model [Kit06]. This well-studied model is being pursued experimentally in a number of

systems, but unfortunately it cannot be used for universal quantum computation.

Aside from explicitly finding 2-body models which reproduce a particular desired type of

topological order (certainly challenging), one can use perturbative techniques to reproduce

an existing many-body model as the low energy effective behaviour of a 2-body system. The

perturbative gadgets approach [KKR06, BDLT08, JF08, OT08] is the standard tool to achieve

this, but it has a number of drawbacks. By tailoring the perturbation gadgets to specific classes

of models, one might hope the result is a simpler construction circumventing many of these

difficulties.

Here we present a new type of perturbation gadget that works by encoding the logical qudits of

the target models in quantum error-detecting codes. This allows us to reproduce the properties

of topological models as the low-energy effective Hamiltonians of 2-body systems. Here we

concentrate specifically on the quantum double models, but we anticipate that a similar

mechanism could be tailored to other classes of models (e.g. string net models [LW05]). Our

construction is natural, in the sense that all of the interactions of our system are very closely

related to the interactions of the target model, and because of this, an extensive number of

symmetries of the target model are preserved exactly from the level of the physical lattice.

Unlike Kitaev’s honeycomb model, our constructions are not known to be exactly solvable.

However, our results are a significant extension of Kitaev’s method in that they can yield

any type of topological order (i.e. different types of anyons) within the class spanned by the

quantum double models, including those which are universal for quantum computation.

2.2 Results and Methods

In this section we give an overview of our results and the methods we use to obtain them. To

avoid obscuring the essence of our work with unnecessary technical details, we will use the

toric code model as a concrete example in many places. However, we stress that our results
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immediately carry over to all of the cyclic (Zd ) quantum double models, and extend to the

general non-Abelian quantum double models with just minor adjustments.

2.2.1 The Quantum Double Models

The quantum double models [Kit03] are a class of spin-lattice models which exhibit topological

order. They can be used as topological quantum error-correcting codes based on the algebra

of the Drinfeld double D(G) of a group G . The simplest member, corresponding to the group

Z2, is the well-studied toric code model.

For simplicity, we define the quantum double models on a square lattice (although they can

be defined on any oriented graph) with qudits (d-level quantum systems) on the edges, as in

Figure 2.1. The lattice can be embedded into any 2-dimensional orientable surface, such as a

torus. The Hamiltonian for the model takes the form

HQD =−
∑
v

A(v)−
∑
p

B(p) , (2.1)

where v denotes a vertex of the lattice and p denotes a plaquette. In the simple case of the

toric code, the vertex and plaquette operators are defined by

A(v) ≡
⊗

e∈+(v)
Xe and B(p) ≡

⊗

e∈�(p)
Ze , (2.2)

where the form for the star of a vertex +(v) and the boundary of a plaquette �(p) can be

seen in Figure 2.1, and Xe and Ze are Pauli matrices acting on the qubit located on the edge

e. Since we are working on a square lattice, each of these terms are clearly 4-body. For more

complicated quantum double models, the A(v) and B(p) operators take slightly different

forms, but will always consist of operators acting on the star of a vertex or the boundary of a

plaquette. The exact details of the quantum double construction are given in Sec. 2.4.

When the surface in which the lattice is embedded has genus g , then the ground space of the

toric code is 4g -fold degenerate, and thus can encode 2g qubits. This particular encoding has

generated so much interest because it is in some ways naturally robust to local errors [Kit03,

DKLP02, BHM10, BH11b]. The dimension of the codespace for a non-Abelian quantum

double model is more complicated, but on a torus the degeneracy of the ground space is equal

to the total number of particle types [NSS+08, Agu11].

2.2.2 Methods

Overview of Our Construction

Our main result is the construction of a wholly 2-body Hamiltonian that reproduces the

quantum double Hamiltonian of Eq. (2.1) as its low-energy limit. Our procedure uses only

15



Chapter 2. Toric Codes and Quantum Doubles from Two-Body Hamiltonians
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Figure 2.1 – The toric code defined on a square lattice with qubits on the edges. Each colored
region represents one of the two types of terms in the Hamiltonian. The star terms (in red) act
around a vertex v with a Pauli X on each qubit and the plaquette terms (in blue) act on the
qubits around the boundary of p with a Pauli Z operator.

qudits of the same dimension as in the target model. Furthermore, the couplings that we use

have the same form as in the original model. As an example, notice how each A(v) and B(p)

term from Eq. (2.2) consists of the tensor product of four Pauli X terms or 4 Pauli Z terms,

respectively. Our construction for the toric code will involve products of only two Pauli X

terms or Z terms.

Each qudit on the edges of the original model is encoded in four physical qudits, shown in

Fig. 2.2. The 2-body interactions among these four qudits will give us an effective single-qudit

degree of freedom in the low-energy limit. This gives a 4-fold increase in the number of

qudits required to construct our model as compared with the target model. We will couple

neighbouring encoded qudits perturbatively, and the perturbation expansion will yield the

desired Hamiltonian at 4th order. This order is related to the coordination number of the

underlying lattice and the number of edges bordering each plaquette, both of which are four

for a square lattice. In contrast, on a honeycomb lattice terms will arise at 3rd and 6th order

in perturbation theory (though there would still only be a 4-fold increase in the number of

physical qudits required).

We achieve these results with a blend of techniques from condensed matter physics and

quantum information theory. Before sketching how we use these techniques, we briefly

mention each one in turn.

Projected Entangled Pair States.

Our construction is inspired by projected entangled pair states (PEPS), a class of quantum

states particularly well suited for describing the ground states of interacting quantum many-
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Figure 2.2 – PEPS description on a square lattice. Each qubit (for the toric code, or qudit in
general) on an edge in the original model is replaced by four qubits (or qudits in general).
Qubits connected by a wavy line are in a maximally entangled state. Each blue circle represents
a projection down to a single encoded qubit. The quantum states in the support of these
projectors are encoded qubits, entangled with each other. The global state space contains
exactly the states in the ground space of the original toric code model. With toroidal boundary
conditions, the ground space is four-fold degenerate. Our construction proceeds by simulating
these local projections and the entangling interactions with 2-body Hamiltonians.

body systems [AKLT88, FNW92, Has06, PGVWC07, VWPGC06a, Vid03]. Indeed, for the case of

1-dimensional systems this is provably the case [Has07]. The basic idea of these states is to

use virtual pairs of entangled systems to simulate correlations. For every coupling between

neighboring systems on a lattice, a maximally entangled state (of some chosen dimension) is

introduced between the systems. These virtual entangled pairs are then projected down to a

“physical” subspace with a dimension equal to the that of the spins in the original model. An

illustrative construction is depicted in Figure 2.2 for the special case of a square lattice.

One would expect the kinds of models we are studying to have an efficient PEPS representa-

tions of their ground spaces because of the facts that they obey an area law, possess a spectral

gap above the ground state, and contain finite correlations. In fact, the PEPS representa-

tion of the toric code ground space has been studied by Verstraete et al. [VWPGC06b], and a

PEPS representation of general quantum double models is also known [SCPG10]. PEPS de-

scriptions have also been developed for all of the string-net ground spaces [GLSW09, BAV09]

and the symmetries of these PEPS descriptions have been explored [SCPG10]. The quantum

double models on trivalent lattices can be mapped to string net models [BA09], and gener-

alisations of the quantum double models are also being interpreted as extended string net

models [BCKA13]. In our construction we have an implicit PEPS representation for the quan-

tum double models which is presumably equivalent to those already known (this is provably

the case for our construction of the toric code).
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Perturbation Gadgets.

The next technique that we use is that of perturbation gadgets [KKR06, OT08, BDLT08, JF08].

Perturbation gadgets are a method for systematically reducing the complexity of a many-body

coupling between a large number of quantum systems. The gadgets generally consist of

introducing some ancilla qudits which act as conductors, in the sense of the conductor of

an orchestra. By having a strong coupling to the conductor, n separate primary qudits can

synchronize their behavior in a way which mimics an n-body coupling at low energies, but

by using couplings having only a fraction of the “body-ness”. By recursively applying these

general constructions, one can arrive at a strictly 2-body Hamiltonian for an arbitrary n-body

coupling. The cost is that this coupling only occurs at a higher order in perturbation theory.

Our construction is a new variant on the perturbation gadgets approach. The concept is very

similar, but instead of beginning from the original lattice and adding ancilla qubits to break up

many-body interactions, we begin by encoding the qudits of the original lattice into a 4-qudit

system. These systems are then coupled via relatively weak 2-body interactions, which enable

us to treat the entire model perturbatively and show that it reproduces the target model in

the low-energy limit. We will refer to these 4-qudit encoded systems as “code gadgets”. Apart

from the intrinsic interest of a new approach, we also manage to bypass a number of pitfalls

that naive application of the perturbation gadgets can encounter. In particular, the resource

cost of perturbative gadget schemes scales poorly with the system complexity, and a naive

application of the technique can lead to the energy gap scaling with the system size or the

fidelity of the topologically ordered states [VdNLDB08, OT08]. While this can be avoided, it

remains a problem with applying the method in general. Additionally, while the couplings can

be reduced to only 2-body, the nature of these 2-body couplings is in general vastly different

from the couplings of the original model. It is plausible that by taking advantage of structure a

much simpler construction could be devised that is specifically tailored to the model, using

couplings that exploit this structure. This is the approach taken by Koenig [Koe10], who

showed that a simple “clock” gadget could reduce the complexity of the quantum double

models to only 3-body terms. Our construction also follows a similar strategy in some sense,

but uses perturbative couplings that are direct analogues of the original models’ terms on

simple surfaces.

The type of gadgets that we use are adapted for use with states that are ground states of

local Hamiltonians and have a simple PEPS description [BR06]. The virtual entangled pairs

of the PEPS description are promoted into real physical systems with a coupling such that

their ground state is a maximally entangled state. Then the PEPS projection can be done

by using strong interactions between the systems within a code gadget which energetically

favors the subspace defined by the PEPS projection. When this coupling within a site is

much stronger than the entangling coupling between sites, the resulting Hamiltonian at low

energy approximates the desired many-body Hamiltonian, with the same ground space up

to perturbative corrections. This technique was originally used [BR06, GB08] to find 2-body

Hamiltonians whose ground state encodes the cluster state [RB01], a state which is universal

18



2.2. Results and Methods

for measurement-based quantum computing. Our technique is very similar, in that the

target models are reproduced in an encoded manner, i.e. the 4-qudit code gadgets of our

construction serve as the logical spins of the target model.

Subsystem Quantum Error Detecting Codes.

Finally, we make use of quantum error-detecting codes [Sho95, Ste96, Got97] to ensure that

all of the undesirable terms in the perturbative expansion do not couple to the low-energy

sector of our model. Recall that a quantum error-detecting code consists of a subspace of a

larger Hilbert space, which is protected from some set of errors on the large Hilbert space.

This protected subspace, the codespace, is used to store encoded logical information. The

mapping between the codespace and the physical Hilbert space defines the encoded logical

operators. Detectable errors move the system out of the codespace, and so can be detected by

a suitable measurement.

Specifically, we use a particular type of quantum code known as a subsystem code [KLP05,

KLPL06]. Compared to stabilizer codes, subsystem codes are no more powerful in terms of the

number of errors they can detect, rather, their power lies in a simplification of the recovery

operations required to fix the errors. The physical Hilbert space is partitioned into distinct

subsystems: the logical subsystem and a “gauge” subsystem. As in a stabilizer code [Got97],

stabilizer operators are defined such that the logical codespace is in the mutual +1 eigenspace

of these operators. If an error moves the system out of this +1 eigenspace, it can be detected

by measurement of the stabilizer, and must actively be corrected. In contrast, the logical state

is taken to be invariant under a transformation on the gauge system, and so any errors that

occur on this gauge space are passively avoided.

The code we use on our gadget construction is designed so that any operations contributing to

unwanted terms in the perturbative expansion will be detected as errors, and map the ground

space to another energy eigenspace with higher energy. In this way, the code ensures that the

low energy behavior of our system will remain error free, in the sense that only desirable terms

(i.e. those of the target model) will remain. Errors which move the system out of the codespace

need not explicitly be corrected because they will be suppressed heavily by an energy penalty

for doing so. Note that the “errors” that occur in the gadget code are unrelated to errors

appearing in the target model we are trying to replicate. Instead, they mix the protected

low-energy sector with higher energy (unprotected) sectors, thus preventing our system from

mimicking the target model perfectly.

Our models are similar in many respects to the topological subsystem codes of Bombin [Bom10b].

These models, based on the color codes [BKMD09, KBMD10] and their qudit generaliza-

tions [Sar10], yield a subsystem code using local 2-body gauge generators. We note that the

construction of [Bom10b] requires a 3-colorable lattice, whereas our method applies to any

lattice for which the desired model possesses a PEPS description. Additionally, Bombin’s

models possess an exactly degenerate ground space while our models’ ground spaces are
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only approximately degenerate (as in the Kitaev honeycomb model [Kit06]), but where the

degeneracy is only broken at very high order (roughly the linear size of the system). One con-

sequence of this exact degeneracy in the Bombin model is that it is straightforward to define

quantum error correction in the ground space [SBT11] where perfect recovery operations will

yield perfect recovery from correctable errors. By contrast, in our model even perfect recovery

operations will yield some small error due to the splitting of the ground space. While the

small error in recovery seems unavoidable in our model, it might still be the case that our

model yields higher thresholds due to the substantially simpler stabilizer measurements that

are required. It is an open problem to define error correction and exactly quantify the errors

incurred by the splitting for our model. Aside from both of our constructions being viewed as a

generalization of the honeycomb model, we are not aware of any deeper connection between

them.

2.2.3 Discussion

Our results allow us to replicate in the low-energy limit the Hamiltonians of certain topological

models, but a more ambitious goal is to reproduce the topological order in the ground state

wavefunctions of these models, as well as in their low-lying excited states. To demonstrate that

our constructions reproduce all the topological properties of the original models, we would

need to show additional properties. First, we would need to show that these topological orders

are stable under the kinds of perturbative corrections that our procedure introduces. There

are two separate types of corrections which could threaten the stability of the topological

properties of our models. The first are the very high-order corrections where perturbation

terms can form non-trivial homology cycles on the surface of the model. These will occur

at order 2L in perturbation theory (with L the smallest linear dimension of the surface) and

split the ground space degeneracy of the encoded model. They can be heavily suppressed

by increasing L or by increasing the bare energy gap of the system. The second kinds of

corrections to consider are those which leave the protected ground space of our code gadgets.

These allow transitions into higher energy subspaces where our encodings fail. These kinds

of corrections are suppressed energetically by the energy gap. Thus, we would also need to

demonstrate stability of the energy gap in the thermodynamic limit. It would also be quite

interesting to compute the topological entanglement entropy in the ground state [HIZ05,

KP06, LW06, FHHW09]. Like the toric code model in two dimensions [DKLP02, NO08, CC07],

the topological order of Kitaev’s non-Abelian quantum double model is not expected to persist

at finite temperature. We expect that our models will have similar behaviour to the original

quantum double model at finite temperature, and in particular, that they will suffer from the

same “thermal fragility” of the topological order.

Even more ambitiously, one might hope to show that our models remain gapped even in

the presence of arbitrary local perturbations, with only very small splitting of the ground

state degeneracy and the degeneracy of the excited states. For topological models whose

Hamiltonians consist of a sum of commuting projectors, just such a result was shown by
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Bravyi, Hastings and Michalakis [BHM10, BH11b]. Unfortunately, their techniques cannot be

directly applied to our models since our Hamiltonians are not sums of commuting projectors.

In fact, our models do not have frustration-free ground states either (meaning the ground

states are not minimum-energy eigenstates of each term separately in the Hamiltonian) and

hence other results on frustration-free systems also do not apply.

As one might expect from a perturbative construction, our effective Hamiltonian can be

thought of as the target Hamiltonian plus perturbative corrections. Generically in this type

of construction, the symmetries of the target model will be recovered approximately, up to

these corrections. In our model, the encoded string operators of the target models will not

commute with the perturbative terms in the Hamiltonian, and the corresponding ground

space degeneracy will also be split. This splitting will be exponentially suppressed by the size

of the lattice (as noted above), and so these symmetries will be recovered approximately as one

might expect. In the quantum double models, there are also an extensive number of vertex

and plaquette operators which commute with the Hamiltonian and form a quantum double

algebra. It is possible to construct encoded counterparts of these operators on our model

which also commute with our full Hamiltonian and form an equivalent algebra. In contrast

to a generic perturbative construction, this large symmetry group is reproduced exactly by

our model. This symmetry group severely constrains the arbitrarily high order terms arising

from the perturbation expansion, and prevents undesirable terms from appearing. In fact,

higher order terms in our effective Hamiltonian will act on the logical codespace as products

of (commuting) lower order terms until the perturbative order is sufficiently high to form

non-trivial loops over the lattice and break the ground space degeneracy.

As well as capturing symmetries of the target models, our construction is also natural in

the sense that it is built from miniature quantum double models overlaid on each other. In

the case of Abelian quantum double models (including the toric code), there is an exact

correspondence between our constructions and quantum double models on simple surfaces.

For these models, the ground space of our code gadget is chosen to coincide with a subspace

of the quantum double ground space on a 4-qudit torus (see Sec. 2.6.2). That is, our codespace

is stabilized by the same operators as the ground space of the quantum double Hamiltonian

on this torus. These stabilizers would normally be 4-body, so in order for our codespace to

obtain this property from a 2-body Hamiltonian we must sacrifice the degeneracy of one of

the two qudits a torus can typically encode. In addition, the perturbative bond terms we

introduce can be interpreted as quantum double models on a 2-qudit sphere (see Sec. 2.6.3).

All the terms present in our model reflect the construction of the quantum double models

on small surfaces. In non-Abelian models, the correspondence in the Hamiltonian is not as

precise due to the distinction between left and right regular representations. However it will

still be true that the ground spaces of our code gadgets will correspond to a subspace of the

quantum double ground space on a 4-qudit torus, and the ground space of the perturbative

bond terms will correspond to the ground space of the relevant quantum double model on a

2-qudit sphere.
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Our work is inspired by the construction of Bartlett and Rudolph [BR06], who used encoded

qubits to reproduce the cluster state as the ground state of a 2-body Hamiltonian. As with

the model we present, the encoding is closely related to the PEPS description of the target

state. Our work generalises this type of construction by using a subsystem code (as opposed

to a subspace code). In order to reproduce the PEPS space as the ground space of a 2-body

Hamiltonian, we have had to sacrifice the extra gauge degrees of freedom in our model. This

would not have been possible if we had used a subspace code, where these gauge degrees of

freedom are not available.

The procedure we present reproduces the quantum double Hamiltonian in the perturbative

coupling limit. If we consider the opposite (strong coupling) limit in our model, the system will

act as a disconnected set of maximally entangled pairs. In this limit, the lattice can be thought

of as a set of disconnected quantum double models on spheres (up to the caveats noted above).

There must be some phase transition(s) between these states, and the respective topologies in

the two limits are suggestive of the kind of behavior studied by Gils et al. [GTK+09]. The phase

transition would be between different topologies in the sense that the quantum double model

would act on the entire lattice together in one limit, and at some critical coupling strength

break down to act on disconnected portions of it.

A robust topologically ordered system would also have anyonic low-energy excitations which,

ideally, would be similar to those of the desired quantum double model. One would need

to consider the effect of the perturbative corrections in our model on these anyons and any

other excitations, as for example in [DSV08, SDV08, VSD08]. The perturbative nature of our

construction means that the target model is only realized up to a quasi-local unitary trans-

formation. Attempting to manipulate excitations in the model using local unitary operations

would generally cause the quasi-particles to delocalize or create additional undesired excita-

tions [DSV08, VSD08]. One method to avoid these complications is to transport the excitations

by local adiabatic deformation of the Hamiltonian [BP08, LP09].

It would also be interesting to explicitly and rigorously show that cooling our Hamiltonians by

coupling to a local bath can bring them to the ground space quickly. (Cooling to a particular

ground state of the degenerate ground space is more difficult, but also quite interesting.)

Because of the frustration in the model, it isn’t immediately obvious that this can be achieved

efficiently, i.e. in an amount of time polynomial in the size of the system. But because the

low-energy effective theory is frustration-free, it certainly seems plausible that the cooling can

be done efficiently.

It is noteworthy that the codes we utilise in our construction for general quantum double

models are examples of extensions of the stabilizer formalism to non-Abelian groups. This has

not been closely studied previously, and in that sense the quantum codes we use may be of

interest in their own right.

We believe that the kind of approach we employ here to reproduce topological orders may be

more generally applicable to other systems with efficient PEPS representations. Some work
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towards extending this treatment to the class of string net models [LW05] supports this belief,

with some caveats, and will be presented in a future publication.

2.3 Example: The Toric Code

As a simple and illustrative example of our scheme, we now demonstrate how to construct a

two-body Hamiltonian for which the low-energy behavior reproduces the standard toric code

Hamiltonian on a square lattice. This simple example possesses all of the key features of our

general construction for the quantum double models.

2.3.1 PEPS Representation of the Toric Code

We begin our construction by replacing each qubit on the edges of the toric code lattice with

four qubits, as in Fig. 2.2 on page 17. We use the term bond to refer to the wavy lines in

Fig. 2.2 that connect the maximally entangled pairs of physical qubits. By contrast, we use the

word edge to denote the edges of the original lattice. In the PEPS description, the projection

operators acting on each edge will entangle these four qubits into a single qubit. We achieve

this projection in the ground space of a Hamiltonian defined on each edge e.

H(e) =− X I
IX

e

− I X
XI

e

− Z Z
II

e

− I I
ZZ

e

. (2.3)

This notation is a convenient visual shorthand for the tensor product of the operators acting

on the given physical qubits. For each edge, the collection of 4 qubits forms our “code gadget”.

The Hamiltonian contains only two-body terms acting within the gadget itself.

Instead of the explicit projection mechanism of the PEPS scheme to reduce the Hilbert space,

our model simply suppresses by energy penalty states which lie outside the desired PEPS

projection. It can be shown that the projectors to the ground space of our edge Hamiltonian

are equivalent to the PEPS projectors given in Ref. [VWPGC06b] for the toric code. These two

formulations are not identical – they give different encodings of the “physical” PEPS space in

the “virtual” qubits. However, this difference can be regarded as a gauge freedom in the PEPS

representation that does not affect the PEPS itself. Explicitly demonstrating this equivalence is

tedious (though straightforward) so we omit this.

Next, we introduce entanglement across the bonds by coupling sites on different edges. Thus

for each bond b, define the perturbation term

V (b) =− X X
b − Z Z

b
, (2.4)
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chosen because it possesses a maximally entangled state as its ground state1. Our unpertubed

Hamiltonian is summed over all edges e:

H0 =
∑

e
H(e) , (2.5)

and our perturbation term is summed over all bonds b:

V =
∑

b
V (b) . (2.6)

For those readers familiar with PEPS, it may seem counterintuitive to treat the bond term as

small compared to the code gadget Hamiltonian (which is simulating the PEPS projection).

We will see that this is in fact the correct approach to recover the target model. We introduce a

coupling strength λ which is a small parameter compared to the strength of the main terms in

our Hamiltonian (which we have taken to have unit norm). The full Hamiltonian describing

our lattice is then given by

H = H0 +λV . (2.7)

Now we need to compute the perturbative low-energy effective Hamiltonian to leading non-

trivial order in λ. We will find the exact ground space of H(e) in the next section, and then

show that the perturbations λV will generate operators which reproduce an encoded toric

code Hamiltonian (Eq. 2.1-2.2) at fourth order in λ.

2.3.2 Solving the Code Gadget Hamiltonians

We must first demonstrate that H(e) of an edge e has a two-dimensional degenerate ground

space. We will show that this ground space is in fact the codespace of a subsystem quantum

error-detecting code, which will greatly assist the perturbative analysis in the next section. Our

analysis of this Hamiltonian for the toric code construction follows Bacon [Bac01]. Because

we are always working on a particular arbitrary edge (within a particular code gadget), we will

suppress the label e in this section.

The code gadget Hamiltonian H(e) (Eq. 2.3) posesses a number of constants of motion. That

is, we can define operators that commute with each other, and with the Hamiltonian. In fact

some of these operators are the stabilizers of a quantum code, so we label them S. They form a

1An alternative choice would be V (b) =− Y Y
b

. This choice also approximately realizes the toric code
Hamiltonian in the limit of small perturbation strength. The resulting Hamiltonian Eq. (2.7) is precisely equivalent
to Kitaev’s exactly solvable honeycomb model on a mosaic tiling [YZS07]. We do not consider this possibility
further since it is unclear how to generalize it to more complicated quantum double models. It is interesting to
note, however, that this alternative choice results in a model with topological order in the limit of large perturbation
strength, in contrast to our models which become valence bond solids.
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commutative group, and are generated by

SX ≡ X X
XX

and SZ ≡ Z Z
ZZ

. (2.8)

We can also define other joint operators to complete the algebra of our code gadget. We will

call these operators gauge operators and logical operators, and denote them with appropriate

subscripts.

XG ≡ I X
XI

, ZG ≡ Z Z
II

, and XL ≡ X X
II

, ZL ≡ I Z
ZI

. (2.9)

These Pauli algebras define qubit Hilbert spaces that we denote G and L respectively.

We see immediately that these operators encode two orthogonal copies of the Pauli algebra,

so they define two encoded qubits. In terms of these new operators, we can rewrite the gadget

Hamiltonian

H(e) =−XG(1+SX )−ZG(1+SZ ) . (2.10)

The protected subspace of our code, also corresponding to the ground space of the Hamilto-

nian, is a subspace of the +1 eigenspace of the stabilizers SX and SZ . Any single qubit error will

anticommute with at least one of these, and so could be detected (though not unambiguously)

by measurement of the stabilizers. This means that any single qubit error will neccesarily

move the system out of its ground space, and will be suppressed by the energy penalty for

doing so.

We can easily check that the logical operators XL and ZL also commute with H(e). However,

neither XG nor ZG commutes with H . Given all these facts, H decomposes into a direct sum

of four copies of L⊗G, each labeled by the pairs of eigenvalues (±1,±1) of SX and SZ , and

furthermore the energies in the logical space are degenerate. Thus, we only have to solve the

Hamiltonian on the gauge subspace of each stabilizer eigenvalue to find the ground space.

It turns out the ground space is contained in the (+1,+1) block, and it is exactly two-fold de-

generate. We provide a proof of this statement and its generalization to all the quantum double

models in Sec. 2.10. It can be shown that within this codespace the encoded computational
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basis states take the (unnormalised) form:

|0L〉 =
(
1+

p
2
)




|0〉 |0〉
|0〉|0〉

+ |1〉 |1〉
|1〉|1〉



+ |0〉 |1〉

|1〉|0〉
+ |1〉 |0〉

|0〉|1〉
(2.11)

|1L〉 =
(
1+

p
2
)




|1〉 |1〉
|0〉|0〉

+ |0〉 |0〉
|1〉|1〉



+ |1〉 |0〉

|1〉|0〉
+ |0〉 |1〉

|0〉|1〉
(2.12)

Now that we have determined that the ground space encodes a qubit in an error-detecting code,

we can perform the perturbative analysis to compute the low-energy effective Hamiltonian.

2.3.3 Perturbation Analysis

We now introduce the perturbative coupling of Eq. (2.4) between our encoded qubits on the

lattice. We use the Green’s function perturbation method, following Kitaev [Kit06] (see also

[BSFB07]) to calculate the leading non-trivial order in the effective Hamiltonian, defined as

Heff = E0 +Σ(E0), with the unperturbed ground state energy of the lattice E0 and Σ the self-

energy. In this, we have approximated the self energy as being independent of E , for E ≈ E0.

More details of our perturbation formalism are in Sec. 2.7.

The key to our analysis is the fact that quantum codes map detectable errors to orthogonal

states. In terms of the gadget Hamiltonians H(e), this means that any single-qubit Pauli

operator anti-commutes with either (or both) of SX or SZ , and hence maps ground states to

orthogonal states, since these states must lie in some block of H(e) other than the (+1,+1)

block.

The consequence is that the perturbation analysis greatly simplifies. It immediately gives the

result that all odd-order perturbation terms will vanish, as they will necessarily leave two code

gadgets in excited states. The terms at second order only contribute an energy shift, since

those that don’t vanish act twice on the same qubits, hence they act proportionally to the

identity. The first non-trivial terms appear at fourth order, and we can write the 4th-order

effective Hamiltonian as follows:

H (4)
eff =λ

4ΥV
(
G0(E0)V

)3
Υ , (2.13)

where Υ is the projector to the ground space of the unperturbed system and G0(E) = (E −
H0)−1(1−Υ) is the Green’s function (resolvent) projected to vanish on ground states. TheΥ

will project the stabilizer and gauge degrees of freedom down to a single state, but will act

identically on the logical degree of freedom.
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v
Â( , v) = pB̂( , p) =

Figure 2.3 – Encoded operators. For each operator, the non-trivial operator acts on the colored
qubits. For example, Â(X , v) is a tensor product of X operators on each of the colored qubits
surrounding the vertex v .

The non-trivial fourth order terms arise by constructing joint operators around a plaquette or

around a vertex which leave all the code gadgets in the ground space. By expanding Eq. 2.13

and ignoring constant energy shifts, we can express the effective Hamiltonian to 4th order as

Heff ∝−λ4
∑
v
ΥÂ(v)Υ−λ4

∑
p
ΥB̂(p)Υ , (2.14)

where v and p sum over all vertices and plaquettes, respectively. The operators Â(v) and B̂(p)

are each a sum of two terms,

Â(v) = Â(X , v)+ Â(Z , v) and B̂(p) = B̂(X , p)+ B̂(Z , p) , (2.15)

where these terms are quite cumbersome to express algebraically, so we define them pictorially

in Fig. 2.3. Basically, these operators act on the pairs of qubits in an edge that are nearest to

the center of a given plaquette or vertex.

We can derive from Fig. 2.3 that Â(X , v) acts like a tensor product of logical XL operators on

each of the edges surrounding v . This is not immediately obvious; we must use the fact that in

the ground space XL = SX XL to exchange the action of the logical operators between pairs of

qubits at a particular edge. Similarly, B̂(Z , p) acts like a tensor product of logical ZL operators

around the plaquette p. The other operators Â(Z , v) and B̂(X , p) act like gauge operators in a

similar fashion. When these encoded gauge operators are mapped back to the ground space

byΥ, they contribute only a constant energy shift, which we can ignore.

We can think of these Â and B̂ operators as acting equivalently to some logical operators

within the ground space. If we define

ÂL(v) ≡
⊗

e∈+(v)
X e
L and B̂L(p) ≡

⊗

e∈�(p)
Z e
L , (2.16)

then we can see that within the codespace, they are equivalent (up to muliplicative and

additive constants) to Â and B̂ respectively. That is,

ΥÂL(v)Υ∝ΥÂ(v)Υ−const and ΥB̂L(p)Υ∝ΥB̂(p)Υ−const . (2.17)
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We can think of the logical Hamiltonian acting within the codespace as being comprised of

these operators, such that

HL =−λ4
∑
v

ÂL(v)−λ4
∑
p

B̂L(p) . (2.18)

When restricted to the codespace, this is exactly the effective Hamiltonian we previously

derived (again, up to multiplicative constants and energy shifts), so that

Heff ∝ΥHLΥ+const (2.19)

Noting that the logical operators ÂL and B̂L act on the logical state exactly like the toric code

vertex and plaquette terms, we can see that on the logical space, our effective Hamiltonian is

the toric code Hamiltonian of Eq. (2.2) up to constants, as claimed.

The higher order terms in the expansion for the self-energy (see Sec. 2.7) will generally act on

the logical space like products of the terms appearing in Eq. (2.18). Moreover, for low energies

all these terms will be negative, since the perturbation term and the Green’s function will

both be non-positive and so each term in the expansion will be negative. All these terms

in the self-energy expansion will commute, and so the ground space should remain the +1

eigenspace of the terms in Eq. (2.18) as desired. There will be some corrections to the excited

spectrum of the effective Hamiltonian due to these higher order corrections and due to the

energy dependence of the self-energy as discussed in Sec. 2.7, but as we are mainly interested

in the topologically ordered ground space, this does not concern us especially. At very high

order it will be possible to construct terms which run all the way around the torus. These

errors will corrupt the logical state. If the linear size of the torus is N , these terms will appear

at 2N th order, and will be suppressed by a factor of λ2N .

This result allows us to take a system of only two-body couplings, and in the low energy

limit reproduce the Hamiltonian of the toric code. This means we might expect to be able

to use the topological properties of the toric code to protect quantum information without

the requirement for experimentally problematic many-body couplings. A similar result of

obtaining the toric code in a limit was observed in Kitaev’s honeycomb model [Kit06]. In

contrast to our construction, this honeycomb model is exactly solvable. Although we can

only solve our model perturbatively, we can generalize it relatively easily to more complicated

quantum double models (and lattices other than square), as will be seen in the following

sections.

2.4 Review of Quantum Double Models

The quantum double models consist of coupled finite-dimensional quantum systems on the

edges of a lattice, and their ground states exhibit topological order [Kit03]. In this section,
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a) b)

v+

v−

p− p+
e

Figure 2.4 – a) A directed square lattice, and the orientation of + and − vertices and plaquettes
relative to edge direction. Each vertex consists either of all “inward” edges or all “outward”
edges. Plaquettes consist of alternately directed edges as you traverse their boundary. b) If an
edge spans the pair of vertices (v+, v−), then the edge is oriented toward v+. The plaquettes
are labeled with signs, where p+ is on the right of the edge, following the given orientation.

we will define the quantum double Hamiltonian that will become the target model of the

perturbative two-body systems that we will work with in the subsequent sections.

As with the toric code, we will work with a square lattice for concreteness. The lattice can be

embedded into any orientable 2-dimensional surface. To each edge e of the lattice we will

associate an orientation, as in Figure 2.4. Although this orientation could be arbitrary, we

chose the orientation in Figure 2.4 because it has the convenient feature that each vertex can

be labeled with either a “+” or a “−” sign. In fact, any bipartite lattice can be partitioned in

such a way.

We associate each quantum double model with a finite group G , and a local Hilbert space for

each edge C|G|, with |G| the order of the group. On each edge e of the lattice, there exists a

natural orthonormal basis {|g 〉e , g ∈G}, for these degrees of freedom. The total Hilbert space

is then the tensor product of the local Hilbert spaces over all the edges.

We now define a number of operators that act on these edge degrees of freedom. For each

edge e, define operators associated with left (+) and right (−) group multiplication and group

projectors as follows:

Lg
+(e) ≡

∑

h
|g h〉〈h|e , Lg

−(e) ≡
∑

h
|hg−1〉〈h|e , (2.20)

T g
+ (e) ≡ |g 〉〈g |e , T g

− (e) ≡ |g−1〉〈g−1|e . (2.21)
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The operators on a single edge form an algebra defined by commutation relations

Lg
±T h

± = T g h
± Lg

± , Lg
±T h

∓ = T hg−1

∓ Lg
± . (2.22)

Clearly, operators acting on different edges commute.

We also associate a sign ± to each vertex and plaquette relative to their incident edge. This is

illustrated in Figure 2.4. If an edge spans the vertices (v−, v+), then the arrow along the edge

points away from v− and toward v+. Plaquettes to the left of an edge when looking along its

direction are labelled p−, while those to the right are labelled p+.

It is convenient to associate a particular operator with a (plaquette, edge) pair or a (vertex,

edge) pair. That is, depending on the sign of the vertex or plaquette under consideration at the

time (v± or p±) respective to the edge under consideration, the sign of the group multiplication

and projection operators can be inferred. Explicitly, we define

Lg (e, v±) ≡ Lg
±(e) , T g (e, p±) ≡ T g

± (e) . (2.23)

The L operators play the role of a generalized Pauli X operator in the group element basis,

insofar as they move a particular state |g 〉 through the space of elements. To make the analogy

with the toric code more apparent, we can also construct some operators which act as general-

ized Pauli Z ’s for an arbitrary group algebra. Let π be a unitary irreducible representation of G .

Then we can define a type of Fourier transform by

Z
πi j

± ≡
∑
g

[π(g )]i j T g
± , (2.24)

where [π(g )]i j is the (i , j )th element of the representation matrix for group element g in

representation π. Equivalently, we can invert this expression to obtain

T g
± = 1

|G|
∑
π

dπ
∑

i j
[π(g )]i j Z

πi j

± , (2.25)

where the sum is over the complete set of unitarily inequivalent irreps of G and dπ is the

dimension of the irrep π. Although the quantum doubles are typically defined in terms of T

operators, the algebra of these generalized Z operators gives the most convenient form for a

particular calculation later on.

Given these preliminary operators, for each vertex v we can define operators

Ag (v) ≡
⊗

e∈+(v)
Lg (e, v) , (2.26)

where +(v) is the set of edges incident on the vertex v (recall Figure 2.1). We can average these
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operators over the group to give the projector

A(v) ≡ 1

|G|
∑
g

Ag (v) . (2.27)

Given a plaquette p and a fiducial edge on its boundary that we label e1, we can define an

operator

B g (p) ≡
∑

gk ···g1=g

⊗

ei∈�(p)
T gi (ei , p) , (2.28)

where ei are the boundary edges taken as the plaquette is traversed clockwise starting with e1,

and there are k total edges on the boundary of p. These operators are all orthogonal projectors,

but note that this definition depends on the choice of the fiducial edge e1. However, if we

consider the operator

B(p) ≡ B 1(p) , (2.29)

where 1 is the identity element of the group G , then it is easy to see that B no longer depends

on the choice of this fiducial edge.

For all p and all v , the B(p) operators and the A(v) commute pairwise amongst themselves

and each other. Finally, the following Hamiltonian defines the quantum double model

H =−
∑
v

A(v)−
∑
p

B(p) , (2.30)

in a fashion which directly generalizes the toric code.

2.4.1 Simplifications in the Case of Cyclic Groups

It will be instructive to treat the cyclic groups Zd before moving on to the general case. For

that reason, we revisit the above discussion specialized to this setting. Because each of the

|G| representations of the (Abelian) groups Zd are 1-dimensional, we can relate the L and

Z operators by a simple discrete Fourier transform for these groups. In cyclic groups (with

d = |G|), the group multiplication operation is addition (modulo d), and so the left and right

multiplication operations are equivalent. Following this, the convention for the identity

element in cyclic groups is 0 as opposed to 1 for general groups. With no need for unique left

and right multiplication operators, we define the cyclic L operator by

L ≡
d−1∑

h=0
|h +1〉〈h| . (2.31)

The addition within the ket is performed modulo d . Note that the group action of any other

element can be achieved in these models by taking powers of this (unitary) operator. We also
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define a set of group projection operators

T g ≡ |g 〉〈g | , (2.32)

Following the general case, we also define a generalized Pauli Z operator. As representa-

tions of the cyclic groups are 1-dimensional, we can define a primitive Z corresponding to a

representation ω

Z ≡
d−1∑

h=0
ωhT h , (2.33)

where ω is a primitive d th root. Other representations of the group correspond to powers of ω,

so to obtain the operators corresponding to these representations, we need only take powers

of this Z operator. Thus we regard the powers of Z as being labelled by representations of Zd .

If we take a discrete fourier transform on the basis
∣∣g 〉, we obtain:

|γ〉 = 1p
d

∑

j
ωγ j | j 〉 (2.34)

where we label the Fourier basis with Greek letters (corresponding to irreps). This transforma-

tion diagonalizes the L operators:

L =
∑
γ
ω−γ|γ〉〈γ| , (2.35)

and so we can see that the Z and L operators are simply a basis change away from each other

in these cyclic models, as was the case with the Pauli matrices for the toric code. As they are

both unitary, we can also say

L† = L−1 = Ld−1 , (2.36)

Z † = Z−1 = Z d−1 . (2.37)

In terms of the definition of the quantum double model for cyclic groups, the only changes we

need make to become consistent with this simplified set of operators is to slightly redefine the

associations of L and T operators with ± vertices and plaquettes, i.e.

Lg (e, v±) ≡ L±g (e) , T g (e, p±) ≡ T ±g (e) . (2.38)

With this in mind, the quantum double Hamiltonian is defined exactly as in the general case.
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2.5 Our Construction for the Cyclic Quantum Double Models

In this section we will show how our construction on the toric code generalizes naturally to

the quantum doubles of cyclic groups. The toric code model corresponds to the quantum

double of the groupZ2; here we extend this treatment to the quantum double of G =Zd , where

|G| = d is the order of the group. This analysis could be extended to general Abelian groups.

However, for simplicity, and because the fully general case is considered in the next section,

we restrict our attention to cyclic groups in this section.

In order to reproduce the cyclic quantum double models, two features must be added to

the simple toric code construction. To begin with, qubits at each site must be replaced by

d-dimensional qudits, with appropriate generalized Pauli operators defined on them, as

introduced in Sec. 2.4. The group multiplication operator L plays the role of the X operator

in the toric code, and the newly generalized Z operator plays the role of the Pauli Z . These

operators obey the commutation relation

Z aLb =ωabLb Z a (2.39)

The other feature we will add to our construction at this juncture is the notion of directed

edges, as discussed in Sec. 2.4. As in the toric code (Z2) case, we will now proceed with our

construction explicitly on the square lattice.

2.5.1 Code Gadgets on Lattice Edges

We use a very similar construction to the toric code to encode our qudits for cyclic quantum

double models. Each logical qudit is encoded using a subsystem code constructed from 4

physical qudits (Figure 2.2 shows the scheme). The d 4-dimensional space of these edges is

partitioned as

H (e) =
⊕

S
H S

L ⊗H S
G (2.40)

where the direct sum is over eigenvalues of stabilizers S. Our codespace is in the +1 eigenspace

of two stabilizer operators SL and SZ defined below. The remaining d-dimensional degrees of

freedom are encoded as qudits, one of which (the gauge qudit HG) we fix in a single state in

the codespace. The other qudit is used as our logical space HL. If an error occurs, it will flip a

stabilizer operator, move the code gadget out of the codespace, and incur an energy penalty.

Physically, we provide the codespace with these properties as the ground space of a 2-body

Hamiltonian. Before we write it, we will first introduce the gauge, logical, and stabilizer joint
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operators as we did for the toric code.

SL ≡ L L

L†L†

e

, LG ≡ I L†

LI

e

, LL ≡ L L
II

e

,

SZ ≡ Z Z †

Z †Z

e

, ZG ≡ Z † Z
II

e

, ZL ≡ I Z
ZI

e

. (2.41)

To avoid confusion as much as possible, we will distinguish typographically G for gauge

and G for group, similarly L for logical and L for group multiplication. It is simple to verify

that the operators defining each seperate degree of freedom commute with each other (i.e.,

stabilizers commute with gauge and logical operators, and gauge operators commute with

logical operators). It can also be seen that the logical operators satisfy the desired algebra of

the cyclic quantum double models:

Z a
L Lb

L =ωabLb
LZ a

L (2.42)

and the gauge operators satisfy an equivalent algebra:

Z a
GL−b

G =ωabL−b
G Z a

G . (2.43)

We define the Hamiltonian on a single code gadget (associated with edge e) as

H(e) =− 1

d

d−1∑

k=0

[
Lk
G+ (Lk

GSk
L )† +Z k

G+ (Z k
GSk

Z )†
]

e
. (2.44)

This equation can be represented diagrammatically as

H(e) =− 1

d

∑

k




I L−k

LkI

e

+ L−k I
ILk

e

+ Z−k Z k

II

e

+ I I

Z kZ−k

e




. (2.45)

In this form, it is easy to see that each term in the Hamiltonian acts only on two qudits.

Multiplication by the stabilizers (as in LGSL) effectively moves a gauge operator from two

qudits onto the opposite two. In the d = 2 case, this Hamiltonian does not directly reduce to

the one quoted for the toric code earlier (Eq. (2.10)) because of the inclusion of the identity
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(k = 0) term. However this term only induces a constant energy shift, and so can be disregarded

for our purposes.

We now turn to the properties of the ground space of this Hamiltonian. It is clear that this

Hamiltonian commutes with the logical operators, but less obvious that its ground space

possesses the other properties we require. In Sec. 2.9, we prove the following theorem:

Theorem 1. The Hamiltonian Eq. (2.44) has a d-fold degenerate ground space that is in the

common +1 eigenspace of SL and SZ .

This result, combined with the fact that our logical operators commute with the Hamiltonian,

gives us a ground space to use as an encoded logical codespace HL.

2.5.2 Coupling the Code Gadgets

The lattice is connected exactly as was the case for the toric code (Fig. 2.2), with qudits from

neighbouring edges linked via an entangling bond. We have an unperturbed Hamiltonian for

each edge qudit given as in the previous section:

H0 =
∑

e
H(e) (2.46)

where the index e denotes a particular edge qudit. We then introduce the bond term:

V =
∑

b
V (b) (2.47)

= −
∑

b

d−1∑

k=0

[
Lk Lkb + Z k Z−kb

]
(2.48)

coupling the physical qudits connected by bond b. The ground state of this bond term is a

maximally entangled state of dimension d between the two qudits.

We are interested in reproducing the quantum double Hamiltonian in an encoded form, so to

concisely state our objective, we define the encoded A and B operators

Â(v) ≡ 1

|G|
∑
g

⊗

e∈+(v)
Lg
L(e, v) (2.49)

B̂(p) ≡
∑

gk ...g1=0

⊗

ei∈�(p)
T gi

L (ei , p) (2.50)

with LL defined in Eq. (2.41) and TL = 1
d

∑
k ω

k Z k
L is the encoded group projection operator.

We can then state main result of this section as Theorem 2.

Theorem 2. The Hamiltonian H = H0+λV with H0 and V defined as in Eq. (2.46) and Eq. (2.47)
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on a square lattice has a low energy behaviour described by an effective Hamiltonian of the form

Heff = cI I − (
cAλ

4)∑
v

Â(v)− (
cBλ

4)∑
p

B̂(p)+O (λ5) (2.51)

for some constants c independent of λ and N , where N is the number of sites on the lattice.

The consequence of this theorem is our system’s low energy effective Hamiltonian replicating

the low-energy sector of the quantum double model (for cyclic groups at this stage).

Proof of Theorem 2.

We again follow the perturbative analysis described in Sec. 2.7. As such, this will require

evaluating terms in the perturbative expansion of the self-energy at order n:

Σ(n)(E0) =λnΥV (G0(E0)V )(n−1)Υ (2.52)

with G0 the Green’s function for the system (vanishing on ground states) andΥ is the projector

to the mutual ground space of each of the code gadgets.

Before we begin our the proof in earnest, it is useful to comment on the kinds of terms which

will be preserved and those that will vanish in the ground space. All the operators defined for

cyclic groups have some commutation relation M N =αN M for some complex α. It is then

a simple result to show that for our set of stabilizers any operator which does not commute

with each stabilizer will neccessarily excite a ground state to an orthogonal state. This means

that an operator M with α 6= 1 for N any stabilizer will become a detectable error on the

gadget’s quantum code, and will take the gadget to an orthogonal subspace. This implies that

it will vanish in our perturbative treatment, as terms arising in our effective Hamiltonian are

restricted to the ground space. In this way we need only consider error-free terms (i.e. terms

which commute with all stabilizers) in our effective Hamiltonian.

From this discussion, we immediately see that first order terms will vanish, as they will

necessarily leave two code gadgets in excited states. The only non-vanishing second order

terms will be proportional to identity. In contrast to the toric code as presented earlier, there

will be non-vanishing third order terms due to the inclusion of an identity component in

the perturbation term Eq. (2.47). However, these terms will be proportional to the second

order terms, and so will be trivial. At 4th order we find non-trivial vertex and plaquette terms

which survive. To write each of these terms more explicitly, we must now distinguish between

inwards directed vertices (v+) and outward directed vertices (v−) as well as the two kinds of

plaquettes. We will label the plaquettes left (pl ) and right (pr ) depending on the orientation of

the top edge. In this scheme, the effective Hamiltonian will take the form

H (4)
eff = const−

d−1∑

k=0

[
∑
v+

H k
v+ +

∑
v−

H k
v− +

∑
pl

H k
pl
+

∑
pr

H k
pr

]
(2.53)
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v
Â( , , v) = pB̂( , , p) = †

†
†
†

†
†

†
†

Figure 2.5 – Physical operators for a cyclic quantum double model. Qudits at locations denoted
by open circles will be acted upon by the same single-qudit operator (and similarly for those
represented by full circles). The adjoint (†) of a given operator is applied to the qudits so
labelled. Note the similarity of this diagram with Figure 2.3, however in contrast to the toric
code case, the operators acting on adjacent qubits are now different.

v
Â(x, v) = x x

x

x

pB̂(x, y, p) = x x

y

y

5

Figure 2.6 – Encoded operators for a cyclic quantum double model. Here each of x or y
represents a 4-qudit logical or gauge operator. We use an overloaded notation here for Â and
B̂ such that when their arguments are encoded 4-qudit operators they take this form, while if
the arguments are single qudit operators, then they take the form of Fig. 2.5.

We can write each of these parts individually using the notation of Figure 2.5.

H k
v+ = κL

vλ
4ΥÂ(Lk ,Lk , v)Υ+κZ

v λ
4ΥÂ(Z k , Z−k , v)Υ (2.54)

H k
v− = κL

vλ
4ΥÂ(Lk ,Lk , v)Υ+κZ

v λ
4ΥÂ(Z k , Z−k , v)Υ (2.55)

H k
pl

= κL
pλ

4ΥB̂(Lk ,L−k , p)Υ+κZ
pλ

4ΥB̂(Z k , Z k , p)Υ (2.56)

H k
pr

= κL
pλ

4ΥB̂(Lk ,L−k , p)Υ+κZ
pλ

4ΥB̂(Z k , Z k , p)Υ (2.57)

The κ are constants which take into account the sum of products of the Green’s functions in

the perturbation. They can be calculated for given d once the spectrum of H0 has been found.

They must be nonzero for each of these terms because they do not return to the ground state

before the end of the perturbation, and so the Green’s function will never vanish.

In terms of encoded logical, gauge and stabilizer operators, we can use a similar notation (as
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seen in Fig. 2.6) to write these terms.

H k
v+ = κL

vλ
4ΥÂ(Lk

LS−k
L , v)Υ+κZ

v λ
4ΥÂ(Z−k

G S−k
Z , v)Υ (2.58)

H k
v− = κL

vλ
4ΥÂ(Lk

L, v)Υ+κZ
v λ

4ΥÂ(Z−k
G , v)Υ (2.59)

H k
pl

= κL
pλ

4ΥB̂(Lk
G,L−k

G S−k
L , p)Υ+κZ

pλ
4ΥB̂(Z−k

L S−k
Z , Z k

L , p)Υ (2.60)

H k
pr

= κL
pλ

4ΥB̂(Lk
GSk

L ,L−k
G , p)Υ+κZ

pλ
4ΥB̂(Z−k

L , Z k
L Sk

Z , p)Υ (2.61)

We now evaluate theΥ projectors. Stabilizers SZ and SL act as identity on the ground space by

Theorem 1, and each gauge operator will simply evaluate as a constant (expectation value)

in the ground space. We can again disregard these constant terms as irrelevant energy shifts.

This leaves us with:

H k
v+ = κL

vλ
4ΥÂ(Lk

L, v)Υ (2.62)

H k
v− = κL

vλ
4ΥÂ(Lk

L, v)Υ (2.63)

H k
pl

= κZ
pλ

4ΥB̂(Z−k
L , Z k

L , p)Υ (2.64)

H k
pr

= κZ
pλ

4ΥB̂(Z−k
L , Z k

L , p)Υ (2.65)

By subsitituting the definitions of the Z operators in terms of T projectors, and using the

orthogonality of the characters ω, it is simple to verify that these B terms are identical to

the B terms of Eq. (2.29). Although the ± signs associated with the vertices (and edges in

general) in these definitions may not immediately seem consistent with the quantum double

Hamiltonian presented earlier (2.30) for cyclic groups, we have the freedom to rearrange the

sums over k in the Hamiltonian. When we consider that we can take k →−k whenever we

like, it becomes clear that these terms are indeed identical to those appearing in the quantum

double Hamiltonian. This gives the result that the effective Hamiltonian will take the form

Eq. (2.51). �

At all orders < 2L (L the smallest linear dimension of the surface into which the model is

embedded) the terms in the self-energy expansion (see Sec. 2.7) will act on the logical state like

products of the 4th order terms. These terms all commute and will not map the ground space

of the quantum double model out of the +1 eigenspace of the encoded vertex and plaquette

terms (2.62-2.65).

2.6 Our Construction for General Quantum Double Models

General quantum double models can have a much more complicated algebra than the simple

cyclic ones studied previously (see Sec. 2.4). However, this class includes non-Abelian models

which are able to perform universal quantum computation, and so they are of key interest in

38



2.6. Our Construction for General Quantum Double Models

this study.

2.6.1 Code Gadget Operators

As in the previously studied Zd quantum double models, we encode each logical qudit in a

code gadget consisting of four strongly coupled physical qudits (the scheme is again as in

Fig. 2.2). For a given group G , the code gadget on each edge then has a |G|-fold degenerate

ground space which we use as a logical qudit. The difference in this scheme is that the

generalizations of the gauge operators and stabilizers will not commute in general, and so

these degrees of freedom are not separable. This is contrary to the normal use of the terms

“stabilizer” and “gauge”, but we will abuse the terminology and continue to use these terms in

analogy to their cyclic counterparts. The operators we define here directly generalise those

used in the previous sections. The differences arise from the non-commutativity of the group

multiplication operations and the fact that the irreducible representations of these general

groups can be multidimensional (as opposed to the cyclic groups, which have 1-dimensional

irreps). With this in mind, we can define logical and “gauge" operators on the code gadget as

follows:

Lg
L+ ≡


 Lg

+
I

Lg
+

I


 , T g

L+ ≡
∑

g2g3=g


 I

I

T g2
+

T g3
+


 ,

Lg
G− ≡


 I

I

Lg
−

Lg
+


 , T g

G+ ≡
∑

g1g2=g


 T g1−

I

T g2
+
I


 . (2.66)

We can also define operators to describe the “stabilizer" degrees of freedom:

Sg
L ≡


 Lg−1

−
Lg−1

+

Lg−1

−
Lg−1

+


 , SL ≡ 1

|G|
∑
g

Sg
L , (2.67)

Sg
T ≡

∑
g1g2g3g4=g


 T g1−

T g4−

T g2
+

T g3
+


 , ST ≡S1

T . (2.68)

where here the identity group element is denoted 1. These operators are clearly defined in

a very natural way with respect to the quantum double algebra. In these models, the only

operators which we strictly require to stabilize (act identically within) the ground space of our

edge qudits are the projectors SL and ST . Despite this, we will extend our notational abuse

and continue to refer to Sg
L and Sg

T as “stabilizer operators”.

The operators we have defined now constitute a minimum operator basis for the degrees of
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freedom of our encoded qudit. We can also define addititonal operators:

Lg
L− ≡


 I

Lg
−

I

Lg
−


 , T g

L− ≡
∑

g4g1=g


 T g1−

T g4−

I

I


 ,

Lg
G+ ≡


 Lg

−
Lg
+

I

I


 , T g

G− ≡
∑

g3g4=g


 I

T g4−

I

T g3
+


 . (2.69)

The + and − subscripts on the joint operators here refer to whether these operators obey the

algebra of left or right multiplication (or projection) operators, i.e.

Lg
±T h

± = T g h
± Lg

± (2.70)

Lg
±T h

∓ = T hg−1

∓ Lg
± (2.71)

The stabilizer operators themselves satisfy the quantum double algebra

Sg
L Sh

T = Sg−1hg
T Sg

L (2.72)

The logical operators commute with both the gauge and stabilizer operators, but in this

scheme the gauge and stabilizer operators do not commute with each other.

We can also derive the Z operators corresponding to our T operators (see Sec. 2.4):

Z
πi j

L+ =
∑
m


 I

I

Zπi m
+

Z
πm j

+


 , Z

πi j

G+ =
∑
m


 Zπi m−

I

Z
πm j

+
I




Z
πi j

L− =
∑
m


 Z

πm j−
Zπi m−

I

I


 , Z

πi j

G− =
∑
m


 I

Z
πm j−

I

Zπi m
+


 . (2.73)

By construction, the sets of operators {Z
πi j

L± } and {Z
πi j

G± } give independent representations of

the Z
πm j

± .

We have now defined operators on the code gadget corresponding to both the left regular

representation and the right regular representation of the group G for the encoded gauge

and logical qudits. These definitions are redundant, in that the gauge or logical state can

be uniquely defined through the action of only one L operator and only one T operator (or

equivalently Z operator). This gives us some freedom in the definition of the logical state. We

will choose to define it through the action of Lg
L− and T g

L+. The action of Lg
L+ and T g

L− will then

be poorly defined in general with respect to the logical state, but we will choose the codespace

such that they act appropriately within it.
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In order to understand how these operators act on the logical state, it is useful at this point

to explicitly identify the encoding scheme of our code gadget. We can label the state of each

physical qudit within a given code gadget as follows:

|ha ,hb ,kG,kL〉 =

 |ha〉∣∣h−1

b h−1
a kL〉

|kGha〉∣∣h−1
a k−1

G kL〉


 (2.74)

Here the logical and gauge states of the system are labelled by kL and kG respectively, and will

transform under the action of the logical or gauge operators. The remaining labels h define

how the stabilizers SL and SG act on the system. We can directly see the action of our encoded

operators on these states. For example,

Lg
L−|ha ,hb ,kG,kL〉 = |ha ,hb ,kG,kLg−1〉 (2.75)

T g
L+|ha ,hb ,kG,kL〉 = δg kL

|ha ,hb ,kG,kL〉. (2.76)

We chose to define the logical state kL by the action of these two operators, and as such they

act on kL as might be expected. The stabilizer operators act as

Sg
L |ha ,hb ,kG,kL〉 =

∣∣ha g , g−1hb g ,kG,kL〉 (2.77)

Sg
T |ha ,hb ,kG,kL〉 = δg hb

|ha ,hb ,kG,kL〉 . (2.78)

The action of the remaining encoded operators is not so simple. In general, these will mix the

logical or gauge states with the ha or hb . However, we will construct the codespace such that

within it, logical operators will act only on the logical state, and gauge operators similarly act

appropriately.

2.6.2 Code Gadget Hamiltonian

Now that we have defined a set of operators we consider the Hamiltonian of a code gadget.

We require that this Hamiltonian consist only of 2-body terms and possess a ground space

which can be used as a codespace for our logical qudit. For this to happen, the ground space

must be stabilized by SL and ST , and be exactly |G|-fold degenerate. The significance of these

two stabilizers is that they are terms in the quantum double Hamiltonian defined on a small

4-qudit torus (as depicted in Fig. 2.7). In that sense, we are creating a code which is very

similar to a miniature quantum double model. Of course, our code gadget will consist of only

two-body terms, and to achieve this we must sacrifice the gauge degrees of freedom in our

model.
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p1

p2

v1

v1

v2v2

Figure 2.7 – The 4-qudit torus is constructed by identifying the opposite vertices of a square.
The dashed horizontal (red) lines are identified, and the dashed vertical (blue) lines are
identified. There are two equivalent plaquette stabilizers corresponding to p1 and p2 and two
(generally inequivalent) vertex stabilizers corresponding to v1 and v2 in this quantum double
model. Our stabilizers SL and ST are obtained by choosing one of each. For Abelian models
the two vertex stabilizers are also equivalent, and so SL and ST generate the full stabilizer
group of the quantum double model on this surface for those groups.

To this end, we generalize the Hamiltonian we used for cyclic groups previously to give

H(e) = − JL

|G|
∑
g

[
Lg
G++Lg

G−
]− JZ

|G|
∑

π,i
dπ

[
Zπi i

G++Zπi i

G−
]

(2.79)

= − JL

|G|
∑
g

[
Lg
G++Lg

G−
]− JZ

[
T 1
G++T 1

G−
]

(2.80)

These two forms can be seen to be equivalent using the definitions of the ZG operators

(Eq. (2.73)). In the latter form, it is clear that our unperturbed Hamiltonian is very closely re-

lated to the quantum double Hamiltonian (Eq. (2.30)). It is also clear that the logical operators

will commute with the Hamiltonian (as each term is a gauge operator), and so we can expect

at least the |G|-fold degeneracy of our logical qubit. The following theorem encapsulates the

remaining requirements of our codespace.

Theorem 3. The Hamiltonian Eq. (2.79) has a |G|-fold degenerate ground space that is in the

common +1 eigenspace of SL and ST .

We provide a proof of this theorem in Sec. 2.10. This theorem places restrictions on the form

of the ground space which ensure that undesirable terms in the effective Hamiltonian will

couple to higher energy sectors and vanish. Now we have a suitable codespace for our logical

qudit, we proceed to reproducing the target model.

2.6.3 Coupling the Code Gadgets

We place our code gadgets on the edges of the lattice and couple them using the same geo-

metric scheme as the toric code and cyclic group cases (illustrated in Fig. 2.2), where each

physical qudit is perturbatively coupled to a physical qudit from a neighbouring code gadget.
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Our uncoupled (unperturbed) Hamiltonian for each edge of the lattice is as given in Eq. (2.79).

H0 =
∑

e
H(e) (2.81)

=
∑

e

[
− JL

|G|
∑
g

[
Lg
G++Lg

G−
]− JZ

|G|
∑

π,i
dπ

[
Zπi i

G++Zπi i

G−
]
]

e

(2.82)

As before, the subscript e refers to a particular edge (a particular code gadget). The perturba-

tion term is generalized straightforwardly from the cyclic case to take the form:

V =
∑

b
V (b) (2.83)

= −
∑

b

[
∑

k
Lk Lkb +

∑

π,k,m
dπ Zπkm Zπmk

b

]
(2.84)

where the L or Z operator associated with a particular qudit has definite ± subscript depending

on its location as follows

L :


 +

−
+
−


 Z :


 −

−
+
+




e.g. an L operator in the top right hand corner of a code gadget (with the edge taken running

up the page) will take the form L+. This is motivated by the definitions of v± and p± of

the quantum double model in Sec. 2.4. As in the Zd models, it is clear that the coupling

terms are very closely related to the quantum double Hamiltonian. In fact, these bond terms

could be considered a quantum double Hamiltonian on a small (2-qudit) sphere, with the

corresponding non-degenerate ground state (see Fig. 2.8).

Again we must define the encoded A and B operators we will reproduce in our perturbative

expansion (with 1 the identity group element for general groups)

Â(v) ≡ 1

|G|
∑
g

⊗

e∈+(v)
Lg
L(e, v) (2.85)

B̂(p) ≡
∑

gk ...g1=1

⊗

ei∈�(p)
T gi

L (ei , p) (2.86)

The main result of this section is Theorem 4.

Theorem 4. The Hamiltonian H = H0+λV with H0 and V defined as in Eq. (2.81) and Eq. (2.83)

on a square lattice has a low energy behaviour described by an effective Hamiltonian of the form
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p1

p2

v1

v2

Figure 2.8 – The 2-qudit sphere is constructed by identifying every point on the boundary
of a plane. This boundary is represented by dashed red lines. The solid lines correspond to
edges on the lattice, with a qudit located on each edge. The loop formed by these edges is
homologically equivalent to an equator around the sphere. There exists a plaquette stabilizer
for each plaquette p1 and p2 and similarly a vertex stabilizer for each vertex v1 and v2 in this
quantum double model. The terms in our bond Hamiltonian are obtained by choosing one
plaquette and one vertex stabilizer from these. For Abelian models the two vertex stabilizers
are also equivalent, as are the two plaquette stabilizers, and so the bond Hamiltonian consists
of a full generating set of the stabilizer group of the quantum double model on this surface for
these groups.

Heff = cI I − (
cAλ

4)∑
v

Â(v)− (
cBλ

4)∑
p

B̂(p)+O (λ5) (2.87)

for constants c independent of λ and N , where N is the number of sites on the lattice. The

encoded low energy behavior of the system to this order is described by the quantum double

Hamiltonian Eq. (2.30) up to additive and multiplicative constants.

This theorem implies that our effective Hamiltonian correctly reproduces the low energy

sector of the quantum double Hamiltonian for any group. Before we prove it, we make some

comment on the operators that will arise in the perturbative treatment. For cyclic models, we

were able to make some general arguments to exclude all unwanted operators from arising in

the effective Hamiltonian. Unfortunately, no equivalent general argument has been found for

the general quantum double models. For this reason, we have explicitly shown this property for

the relevant operators in Sec. 2.11. The results are an intuitive generalization of the cyclic case,

in that the only non-vanishing operators will be those contributing encoded operators which

act on the gauge or logical subspaces. We use these results now to calculate the non-vanishing

terms in the effective Hamiltonian.

Proof of Theorem 4.

We follow the perturbative treatment as used previously (see Sec. 2.7). The results of Sec. 2.11

effectively show that no 2nd order terms are able to survive except those proportional to

identity (exactly as in the cyclic case). Similarly, all first order terms, and all non-trivial third

order terms will vanish. It is clear then, that no non-trivial operators will appear below 4th

order. The effective Hamiltonian at order 4 is given in Eq. (2.13).
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At this order we will find non-trivial terms around plaquettes and vertices consisting of prod-

ucts of Z or L operators. As in the Zd case, it is useful to distinguish the two different kinds

of vertices and the two different kinds of plaquettes here (see Fig. 2.4). We have defined the

lattice such that vertices can either consist of all inwardly directed edges (v+) or all outwardly

directed edges (v−). Plaquettes can either have their top edge directed left (pl ) or right (pr ).

Disregarding constant energy shifts, we can then separate terms in the Hamiltonian by vertex

or plaquette type:

H (4)
eff = −Υ

[
∑
v+

Hv+ +
∑
v−

Hv− +
∑
pl

Hpl +
∑
pr

Hpr

]
Υ (2.88)

As we did for the cyclic groups, we will write these operators pictorially to make the physical

location of a particular operator obvious. For simplicity, we have neglected to draw those

qudits on the outer edge of the vertex/plaquette under consideration, where these terms will

act trivially. With this in mind, the individual terms in the effective Hamiltonian can be written

as:

Hv+ = κL
vλ

4
∑
g

v

Lg
+ Lg

+

Lg
+

Lg
+

Lg
+Lg

+

Lg
+

Lg
+ +κZ

v λ
4

∑

π,i ,r,m,n
d 4
π

∑

j
v

Z
πr j

+ Z
π j i−

Z
πi j

+

Z
π j m−

Z
πm j

+Z
π j n−

Z
πn j

+

Z
π j r−

(2.89)

Hv− = κL
vλ

4
∑
g

v

Lg
− Lg

−

Lg
−

Lg
−

Lg
−Lg

−

Lg
−

Lg
− +κZ

v λ
4

∑

π,i ,r,m,n
d 4
π

∑

j
v

Z
πr j− Z

π j i

+

Z
πi j−

Z
π j m

+

Z
πm j−Z

π j n

+

Z
πn j−

Z
π j r

+

(2.90)
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Hpl = κL
pλ

4
∑
g

p

Lg
+ L

k−1
L g kL−

L
k−1
L g kL−

Lg
+

Lg
+L

k−1
L g kL−

L
k−1
L g kL−

Lg
+ +κZ

pλ
4

∑

π,i ,r,m,n
d 4
π

∑

j
p

Z
π j r− Z

πi j−

Z
π j i

+

Z
πm j

+

Z
π j m−Z

πn j−

Z
π j n

+

Z
πr j

+

(2.91)

Hpr = κL
pλ

4
∑
g

p

L
k−1
L g kL− Lg

+

Lg
+

L
k−1
L g kL−

L
k−1
L g kL−Lg

+

Lg
+

L
k−1
L g kL− +κZ

pλ
4

∑

π,i ,r,m,n
d 4
π

∑

j
p

Z
π j r

+ Z
πi j

+

Z
π j i−

Z
πm j−

Z
π j m

+Z
πn j

+

Z
π j n−

Z
πr j−

(2.92)

Here the κ’s are proportionality constants arising from the pertubation treatment. For a

specific model, they can readily be calculated. It should be reasonably clear that no other

non-trivial 4th order terms (or lower) than those shown above will survive (see Sec. 2.11). The

higher order terms will act in the logical space as products of the 4th order terms, until the

order is sufficiently high to form non-contractible loops over the lattice.

The most illustrative of the 4th order terms are the plaquette Z terms. As such, we will present

a brief demonstration of how these operators arise. On our plaquette, at 4th order the most

general Z operator to be constructed has the form:

Υ p

Zπsr− Z
πi j−

Z
π j i

+

Zπmn
+

Zπnm−Z
πt q−

Z
πqt

+

Zπr s
+

Υ
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Here we have already used the fact that Z operators with different representations will move

out of the ground space, and so we have only used one representation π. It will be shown in

Sec. 2.11, Eq. (2.184, 2.186) that we find the condition j = s = n = q for non-vanishing terms.

From this, we immediately obtain the term appearing above in the effective Hamiltonian for

this plaquette. Similar considerations give the other plaquette and vertex terms.

Given the operators (2.89-2.92) in their current form, it is difficult to immediately see how

many of them act on the logical state. In order to study this, we must revisit the encoding

scheme defined in Eq. (2.74) and the ground space studied in Sec. 2.10. We will study the

action of each operator on the basis

|σmn ,h,kG,kL〉 ≡
√

dσp|G|
∑

gσ∈G
[σ(gσ)]mn |gσ, g−1

σ hgσ,kG,kL〉 (2.93)

particularly in the ground space where σmn = I11 and h = 1. This basis is introduced in

Sec. 2.10.1 as the “gauge element basis”. From this we can examine the effect on the logical

state kL in the codespace. The operators in question act on these states as follows


 Lg

+
L

k−1
L g kL−

I

I


 |I11,1,kG,kL〉 = 1p|G|

∑
gσ

|g gσ,1,kGg−1,kL〉 (2.94)

= 1p|G|
∑

g̃σ

|g̃σ,1,kGg−1,kL〉 (2.95)

= |I11,1,kGg−1,kL〉 (2.96)

and


 I

I

Lg
+

L
k−1
L g kL−


 |I11,1,kG,kL〉 = 1p|G|

∑
gσ

|gσ,1, g kG,kL〉 (2.97)

= |I11,1, g kG,kL〉 (2.98)

In the codespace, these operators have the effective action equivalent to Lg
G− or Lg

G+ respec-

tively. They differ from the previously defined versions, but the key is that they act only on the

gauge state in this subspace. We will denote these operators Lg
G′− and Lg

G′+. In a similar way,

we can look at the action of the Z -like operators:

∑
m


 Z

πm j−
I

Zπi m
+
I


 |I11,1,kG,kL〉 = [π(kG)]i j |I11,1,kG,kL〉 (2.99)
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This operator acts quite similarly (identical up to conjugacy) to Z
πi j

G+ . In the ground space,

we will be able to ignore it as a constant expectation value (as the gauge state will be fixed).

As such, we will denote this operator Z
πi j

G′+. The second of the Z operators is a little more

complicated. To this end, we must consider the exact form of the ground states:

|ψ0〉 = |I11,1,1,kL〉+ |I11,1, I11,kL〉 (2.100)

This allows us to see the action of these operators.

∑
m


 I

Zπi m−

I

Z
πm j

+


 |I11,1,1,kL〉 = [π(k−1

L kL)]i j |I11,1,1,kL〉 (2.101)

= δi j |I11,1,1,kL〉 (2.102)

∑
m


 I

Zπi m−

I

Z
πm j

+


 |I11,1, I11,kL〉 = 1p|G|

∑
gπ

[π(k−1
L g−1

π kL)]i j |I11,1, gπ,kL〉 (2.103)

On the ground space, this acts not dissimilarly to Z
πi j

G− . The gauge state becomes mixed up

somewhat, but because of the particular definite gauge state we have in the code space, an

operator of this form can be evaluated as a constant. This is a result of the fact that the overlap

of this state (Eq. (2.103)) with the ground space is independent of kL (as can be easily verified).

With this in mind, we will write this operator as Z
πi j

G′− from now on.

Given these definitions, we can now write the terms in the effective Hamiltonian in a more

succinct format:

Hv+ = κL
vλ

4
∑
g

v

Lg
L+

Lg
L+

Lg
L+

Lg
L+ +κZ

v λ
4

∑

π,i ,r,m,n
dπ

v

Zπr i

G′+

Zπnr

G′+

Zπmn

G′+

Zπi m

G′+ (2.104)

Hv− = κL
vλ

4
∑
g

v

Lg
L−

Lg
L−

Lg
L−

Lg
L− +κZ

v λ
4

∑

π,i ,r,m,n
dπ

v

Zπr i

G′−

Zπnr

G′−

Zπmn

G′−

Zπi m

G′− (2.105)
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Hpl = κL
pλ

4
∑
g

pLg
G′+ Lg

G′+

Lg
G′−

Lg
G′−

+κZ
pλ

4
∑

π,i ,r,m,n
dπ pZπmi

L+ Zπr n

L+

Zπnm

L−

Zπi r

L−

(2.106)

Hpr = κL
pλ

4
∑
g

pLg
G′− Lg

G′−

Lg
G′+

Lg
G′+

+κZ
pλ

4
∑

π,i ,r,m,n
dπ pZπmi

L− Zπr n

L−

Zπnm

L+

Zπi r

L+

(2.107)

We have been able to treat each code gadget in the Z terms separately, even though in the

previous definitions they shared a common index ( j ). The reason that we are able to separate

them in this way is because in the ground space for any given j we can use Eq. (2.184 - 2.190)

to rewrite each term as an average over all values of j . This allows us to rewrite each term as a

summation over different indices, which gives us their quoted form. The factor of dπ appearing

in the terms (2.104-2.107) then comes from the remaining sum over j . As a simplified explicit

example, consider:

Υ
∑

j


 Z

π j m−
I

Z
πi j

+
I


⊗


 Z

π j p−
I

Z
πm j

+
I


Υ=Υ

∑

j

∑

j ′

1

dπ


 Z

π j ′m−
I

Z
πi j ′
+
I


⊗


 Z

π j p−
I

Z
πm j

+
I


Υ

(2.108)

We can disregard all the terms in the Hamiltonian which do not act on the logical subspace (as

they will only introduce some constant energy shift for our purposes). We now also drop the

± subscript on logical operators, with the observation that they are consistent with the edge

orientation conventions introduced in Sec. 2.4. With this in mind, our effective Hamiltonian

reduces to:

Heff =−λ4Υ




∑
v
κL

v

∑
g

v

Lg
L

Lg
L

Lg
L

Lg
L +

∑
p
κZ

p

∑

π,i ,r,m,n
dπ pZπmi

L Zπr n

L

Zπnm

L

Zπi r

L




Υ (2.109)
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with each operator defined as in Eq. (2.104 - 2.107), and the ± of the logical operators defined

by the edge orientation. Using the definitions of the Z operators in terms of T operators, and

the orthogonality of group characters, it is not difficult to show that these operators are indeed

equivalent to those of the target quantum double Hamiltonian. This gives our Hamiltonian

the form Eq. (2.87) as claimed. �

Additionally, the low energy effective Hamiltonian is gapped to arbitrary order of perturbation

theory, and the degeneracy of the ground space is lifted only at the order of the linear lattice

size.

As in the Abelian case, to all orders < 2L (L the smallest linear dimension of the surface into

which the model is embedded), the terms in the self-energy expansion (see Sec. 2.7) will act

on the logical space like products of the 4th order terms. These terms all commute and will not

map the ground space of the quantum double model out of the +1 eigenspace of the encoded

vertex and plaquette terms (2.62-2.65). As such, they will preserve the gap of the effective

Hamiltonian. Beyond this order perturbative corrections to the self-energy will be able to

form homologically non-trivial loops on the surface. These will act to lift the degeneracy of

the ground space, though this splitting will be exponentially suppressed in L.

2.7 Perturbation Theory

We will now give a brief introduction to the formalism we will use to perform perturbation

calculations, such as to introduce lattice couplings between edge qudits. We follow the

resolvent or Green’s function approach in [Kit06] and in general we are only interested in the

leading non-constant order in the effective Hamiltonian. Consider the Hamiltonian

H = H0 +λV (2.110)

where H0 has a subspace of degenerate eigenvectors with energy E0. LetΥ be the projector

onto the eigenspace of the eigenvalue E0 of H0. In our case we are interested in the situation

where E0 is the ground state energy of H0. In degenerate perturbation theory one generally

aims to find an effective Hamiltonian Heff that acts on the subspace given byΥ and that has

the same eigenvalues as H , in other words, an effective Hamiltonian that describes how the

perturbation term V acts within the ground space of the unperturbed Hamiltonian. We use

the Green’s function formalism of [Kit06] for this calculation and find the self-energy Σ(E)

which is given by the perturbation expansion:

Σ(E0) =
∑
n
Σ(n)(E0) (2.111)

Σ(n)(E0) = λnΥV (G0(E0)V )(n−1)Υ (2.112)
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To the lowest non-trivial order of perturbation theory we have

Heff ' E0 +Σ(E0) (2.113)

The unperturbed Green’s function for excited states of H0 is denoted by G0(E ) = (E −H0)−1(1−
Υ), such that this function vanishes in the ground space. At higher orders in perturbation

theory, one would need to take into account the E dependence of the self-energy around

E ≈ E0 in order to find the effective Hamiltonian; however, as we are interested only in the

lowest non-trivial order in perturbation theory throughout this paper, we do not. As such, the

Green’s function G0 will always be evaluated at the unperturbed ground state energy E0, and

will be non-positive.

The product of operators obtained between betweenΥ’s will vanish unless it remains within

(or at least overlaps in some nontrivial way) the ground space of every code gadget on the

lattice. It will be simple to eliminate many operators which will vanish or act trivially on the

ground space. At nth order, the self-energy will consist of a sum of terms

Σ(n)(E0) =
∑

j
λnΥκ j A jΥ (2.114)

with κ j constants. They take into account the Green’s function terms appearing in the pertur-

bative analysis. Summed over each possible ordering of the V terms which will give the same

A j , κ j is the product of the (n −1) Green’s functions appearing in the nth order terms. In our

case, this sum will run over the n! ways of ordering the perturbations which multiply together

to give the operator A j .

2.8 Extension to Arbitrary Graph

It is not difficult to extend our treatment from the explicit square lattice to an arbitrary directed

graph. As each edge is associated with two plaquettes on any nonintersecting 2D graph

(neglecting boundaries), each edge qudit is associated with exactly 4 nearest neighbours

regardless of the form of the lattice. This allows us to retain our previous definitions for edge

qubit gauge and logical operators as in Sec. 2.6.1.

If we apply a perturbation to the uncoupled edge qudits exactly as before, we will again see

plaquette and vertex terms arising in the effective Hamiltonian. Of course, they may not arise

at the same order in this treatment (e.g. for a hexagonal lattice plaquettes arise at 6th and

vertices arise at 3rd order, and on a general graph plaquette boundaries and vertex stars will

not be uniform in size). It is possible that this may have some undesirable effect on excited

states of the effective Hamiltonian, but the higher order terms that will be able to survive the

perturbation will act in the logical space as products of existing (commuting) terms until the

perturbative order is high enough to form non-trivial homology cycles over the lattice. Below

this order, the ground space of the effective Hamiltonian will remain within the ground space
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v1
p1

Figure 2.9 – A section of a simple directed graph

of the encoded quantum double Hamiltonian.

We can see in Fig. 2.9 part of a simple directed graph. If we consider the perturbation term

exactly as in the general group square lattice treatment (Eq. (2.83)), the vertex term will take

the form (up to additive and multiplicative constants)

H(v) ∼Υ
∑
g

∏
e→v

Lg
L+

∏
e←v

Lg
L−Υ+Υ

∑ ∏
e→v

ZG′+
∏

e←v
ZG′−Υ (2.115)

where e ← v denotes those edges which run out of the vertex v , and e → v denotes those

that run towards the vertex. The exact form of the Z term is not difficult to calculate but is

only sketched in this notation for clarity. In any case, the vertex Z term will evaluate as a

constant in the ground space and so can be disregarded for our purposes. This leaves the

products of terms for inwards directed edges and outwards directed edges. If we look back to

the definitions of the quantum double model in Sec. 2.4, we can see that this will give a vertex

term consistent with the target Hamiltonian.

Similarly, as we traverse a plaquette, two kinds of terms will arise,

H(v) ∼Υ
∑
g

∏
e→p

Lg
G−

∏
e←p

Lg
G+Υ+Υ

∑ ∏
e→v

ZL+
∏

e←v
ZL−Υ (2.116)

Here the notation e → p is taken to mean the edge is on the left of the plaquette, when looking

along e, and similarly e ← p has the edge on the right of p. The indices of the Z terms are here

suppressed for clarity, but they can easily be restored by comparing with Eq. (2.109), and can

be verified to be consistent with the quantum double Hamiltonian. Of course, the gauge L

term will be evaluated as a constant and disregarded. This will leave us only with the desired

logical operators on both plaquettes and vertices, and we will have successfully reproduced

the quantum double Hamiltonian (with the caveat that the terms may arise at different order,

and with different coefficients).

2.9 Proof of Theorem 1

Proof. We will label eigenstates of Z by group elements |h〉, and the corresponding eigenstates

of L by (unitary, irreducible) representations |σ〉 = 1p
d

∑
hω

σh |h〉. Note that for these cyclic
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groups, the representations are all one dimensional. We begin by defining projectors

P k
i = 1

d

∑

l
ωkl Sl

i , (2.117)

with inverses

Sk
i =

∑

l
ω−kl P l

i . (2.118)

where i ∈ {L, Z }. We can then write our Hamiltonian as

H(e) =− 1

d

∑

k

[
Lk
G

(
1+

∑

h
ω−khP h

L

)
+Z k

G

(
1+

∑
σ
ω−kσPσ

Z

)]
. (2.119)

If we block diagonalize with respect to both h andσ, our proof will amount to showing that the

unique ground state is in the h = 0 and σ= 0 block. In group theoretic terms, this corresponds

to h the identity group element and σ the trivial representation (which we will denote now as

σ= I ). Our Hamiltonian within the (h,σ) block takes the form (suppressing the (e) argument)

H h,σ =− 1

d

∑

k

[
Lk
G(1+ω−kh)+Z k

G(1+ω−kσ)
]

. (2.120)

We can rewrite the
∑

k Lk
G and

∑
k Z k

G operators as projectors on the gauge subspace onto group

elements or representations:

∑

k
ω−khLk

G = d |h〉〈h| and
∑

k
ω−kσZ k

G = d |σ〉〈σ| , (2.121)

with |σ〉 a representation state and |h〉 a group element state. The representation states are

discrete Fourier transforms of the element states. Then we have

H h,σ =−[|0〉〈0|+ |h〉〈h|+ |I 〉〈I |+ |σ〉〈σ|] . (2.122)

Here |0〉 is the group identity element and |I 〉 corresponds to the trivial representation of the

group. Since H h,σ is a negative sum of projectors, all its eigenvalues are non-positive. We can

then write a triangle inequality for the magnitude of least eigenvalue by taking the operator

norm,

∥∥H h,σ
∥∥≤

∥∥|0〉〈0|+ |I 〉〈I |
∥∥+

∥∥|h〉〈h|+ |σ〉〈σ|
∥∥ . (2.123)

We know that this inequality is saturated only if (|0〉〈0|+ |I 〉〈I |) is parallel to (|h〉〈h|+ |σ〉〈σ|) in

their largest eigenspace. But unless (h,σ) = (0, I ), these vectors are never parallel. Then we
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have

∥∥H 0,I
∥∥= 2

∥∥|0〉〈0|+ |I 〉〈I |
∥∥>

∥∥H h,σ
∥∥ when (h,σ) 6= (0, I ) . (2.124)

We can now say that the ground space must have h = 0 andσ= I . Furthermore, when this is the

case, we see from Eq. (2.122) that the only non-vanishing eigenvectors of this block are linear

combinations of |0〉 and |I 〉. We find by inspection that the two independent eigenvectors are

|ψ±〉 = |0〉± |I 〉 , (2.125)

with eigenvalues

λ± =−2

[
1± 1p

d

]
. (2.126)

This gives for the unique ground state of the gauge qudit

|ψG
0 〉 = |0〉+ |I 〉 . (2.127)

Given that the stabilizer and gauge degrees of freedom have a unique ground state, and the

fact that the Hamiltonian commutes with the logical operators, we can also say that the

Hamiltonian Eq. (2.44) has a d-fold degenerate ground space encoding the logical state. �

2.10 Proof of Theorem 3

Proof. We wish to prove that the ground space of our Hamiltonian Eq. (2.79) is stabilized as

claimed. The key to proving this theorem is choosing a suitable basis. We have previously

defined the states as in the physical basis of Eq. (2.74). Here we will need to look at some more

sophisticated bases that make the actions of our encoded operators even more transparent.

2.10.1 Alternative Bases

Consider first the gauge representation basis:

|σmn ,h,πi j ,kL〉 ≡
√

dπdσ
|G|

∑

gπ,gσ∈G
[π(gπgσ)]i j [σ(gσ)]mn |gσ, g−1

σ hgσ, gπ,kL〉 (2.128)

Here π and σ are (unitary irreducible) representations of dimension dπ and dσ respectively.

The πi j variable defines the gauge state, which is why we call this the gauge representation

basis. It is clear that there are a total of |G|4 basis states, as needed, and orthonormality can be

easily verified. We would like to know how the
∑

g Lg
G± projectors in the Hamiltonian Eq. (2.79)
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will act on this basis.

It can be easily verified that these operators act in the following way on the physical basis

L g̃
G+ |ha ,hb ,kG,kL〉 =

∣∣ha g̃−1, g̃ hb g̃−1,kGha g̃ h−1
a ,kL〉 (2.129)

L g̃
G− |ha ,hb ,kG,kL〉 =

∣∣ha ,hb ,kGha g̃−1h−1
a ,kL〉 . (2.130)

This gives for the action of the L projectors in our new basis:

1

|G|
∑

g̃
L g̃
G+|σmn ,h,πi j ,kL〉 =

√
dπdσ
|G|2

∑

gπ,gσ,g̃
[π(gπgσ)]i j [σ(gσ)]mn

· |gσg̃−1, g̃ g−1
σ hgσg̃−1, gπgσg̃ g−1

σ ,kL〉 (2.131)

introducing substitutions

g ′
σ = gσg̃−1 (2.132)

g ′
π = gπgσg̃ g−1

σ (2.133)

we find

1

|G|
∑

g̃
L g̃
G+|σmn ,h,πi j ,kL〉 =

√
dπdσ
|G|2

∑

g ′
π,g ′

σ,g̃

∑
s

[π(g ′
πg ′

σ)]i j [σ(g ′
σ)]ms[σ(g̃ )]sn

· |g ′
σ, g ′−1

σ hg ′
σ, g ′

π,kL〉 (2.134)

The grand orthogonality theorem (Eq. (2.182)) can then be used over g̃ to give

1

|G|
∑

g̃
L g̃
G+|σmn ,h,πi j ,kL〉 = δσI

√
dπdσ
|G|

∑

g ′
π,g ′

σ

[π(g ′
πg ′

σ)]i j [σ(g ′
σ)]11

·|g ′
σ, g ′−1

σ hg ′
σ, g ′

π,kL〉 (2.135)

= δσI |σmn ,h,πi j ,kL〉 (2.136)

where I is the trivial irrep of the group G . We can perform a similar treatment for the other L

projector, giving

1

|G|
∑

g̃
L g̃
G−|σmn ,h,πi j ,kL〉 =

√
dπdσ
|G|2

∑

g ′
π,gσ,g̃

∑
s

[π(g ′
πgσ)]i s[π(g̃−1)]s j [σ(gσ)]mn

· |gσ, g−1
σ hgσ, g ′

π,kL〉 (2.137)
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with substitutions

g ′
π = gπgσg̃ g−1

σ (2.138)

Again, this can be simplified through orthogonality to give

1

|G|
∑

g̃
L g̃
G−|σmn ,h,πi j ,kL〉 = δπI

√
dπdσ
|G|

∑

g ′
π,gσ

[π(g ′
πgσ)]11[σ(gσ)]mn

·|gσ, g−1
σ hgσ, g ′

π,kL〉 (2.139)

= δπI |σmn ,h,πi j ,kL〉 (2.140)

To treat the TG± operators analogously, we need to look at another basis in which the gauge

state takes a particular goup element as opposed to an element of a representation. We define

this gauge element basis as

|σmn ,h,kG,kL〉 ≡
√

dσp|G|
∑

gσ∈G
[σ(gσ)]mn |gσ, g−1

σ hgσ,kG,kL〉 (2.141)

i.e. instead of using a representation for the gauge degree of freedom, here a single group

element is used. In terms of the physical basis, the T 1
G± projectors act in the following way:

T 1
G+ |ha ,hb ,kG,kL〉 = δ1kG

|ha ,hb ,kG,kL〉 (2.142)

T 1
G− |ha ,hb ,kG,kL〉 = δ(ha hb h−1

a )kG
|ha ,hb ,kG,kL〉 (2.143)

where 1 is the identity group element. We are now in a position to demonstrate that the T

operators explicitly project to single states in the gauge element basis:

T 1
G+|σmn ,h,kG,kL〉 = δ1kG

√
dσp|G|

∑
gσ

[σ(gσ)]mn |kG,σmn ,h,kL〉 (2.144)

= δekG
|Rmn ,h,kG,kL〉 (2.145)

T 1
G−|σmn ,h,kG,kL〉 = δ(gσg−1

σ hgσg−1
σ )kG

√
dσp|G|

∑
gσ

[σ(gσ)]mn |gσ, g−1
σ hgσ,kG,kL〉 (2.146)

= δhkG
|σmn ,h,kG,kL〉 (2.147)
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2.10.2 Computing the code gadget ground space

The Hamiltonian of interest is given by

H(e) =−
∑
g

Lg
G+−

∑
g

Lg
G−−T 1

G+−T 1
G− (2.148)

Given that we now know explicitly what states each of these terms project to, we can write

instead

H(e) =−
∑

πi j ,h,kL

|I11,h,πi j ,kL〉〈I11,h,πi j ,kL|−
∑

σmn ,h,kL

|σmn ,h, I11,kL〉〈σmn ,h, I11,kL|

(2.149)

−
∑

σmn ,h,kL

|σmn ,h,1,kL〉〈σmn ,h,1,kL|−
∑

σmn ,h,kL

|σmn ,h,h,kL〉〈σmn ,h,h,kL|

Each of these terms are pairwise orthogonal for different values of h or kL. We can then

immediately block diagonalize the Hamiltonian by these two variables. As these labels will not

participate overly in the calculation, we will suppress them henceforth for clarity. We can also

block diagonalize by a representation and one of its indices as follows (suppressing (e) labels)

H h,kL
σ,n =−

∑
m

[
|I11,σmn〉〈I11,σmn |+|σmn , I11〉〈σmn , I11|+|σmn ,1〉〈σmn ,1|+|σmn ,h〉〈σmn ,h|

]

(2.150)

That projectors in each block are orthogonal to those in different blocks can be verified by

examining the inner products presented in Sec. 2.10.3.

Looking only in one block of the Hamiltonian, we can split the terms into two operators:

−H h,kL
σ,n =

[∑
m

|I11,σmn〉〈I11,σmn |+
∑
m

|σmn ,1〉〈σmn ,1|
]

+
[∑

m
|σmn , I11〉〈σmn , I11|+

∑
m

|σmn ,h〉〈σmn ,h|
]

(2.151)

We can bound the length of each of these operators individually by considering them as

subhamiltonians

−HA =
∑
m

|I11,σmn〉〈I11,σmn |+
∑
m

|σmn ,1〉〈σmn ,1| (2.152)

−HB =
∑
m

|σmn , I11〉〈σmn , I11|+
∑
m

|σmn ,h〉〈σmn ,h| (2.153)
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each of these subhamiltonians can be further block diagonalized by m:

−H m
A = |I11,σmn〉〈I11,σmn |+ |σmn ,1〉〈σmn ,1| (2.154)

−H m
B = |σmn , I11〉〈σmn , I11|+ |σmn ,h〉〈σmn ,h| (2.155)

We can solve these subhamiltonians in each block by calculating the overlap of the two

projectors (these calculations are shown in Sec. 2.10.3):

〈I11,σmn |σmn ,1〉 = 1p|G| (2.156)

〈σmn , I11|σmn ,h〉 = 1p|G| (2.157)

It can be shown that the eigenvalues of these subhamiltonians will then be

λm =−1±|C | (2.158)

where C is the inner product calculated above. As such, we can say that the norm of the

subhamiltonians are equal, independent of m block and have value 1+ 1p|G| . Importantly, their

length is independent of the choice of σmn , πi j , h and kL.

In terms of the full Hamiltonian and block structure, we have two operators whose norms

are constant for a given group. We can then bound the eigenvalues of the full Hamiltonian as

follows. We can use a triangle inequality argument to give

∥∥∥H h,kL
σ,n

∥∥∥≤
∥∥∥
∑
m

|I11,σmn〉〈I11,σmn |+
∑
m

|σmn ,1〉〈σmn ,1|
∥∥∥

+
∥∥∥
∑
m

|σmn , I11〉〈σmn , I11|+
∑
m

|σmn ,h〉〈σmn ,h|
∥∥∥ (2.159)

We know that each individual operator has a constant norm. We also know that this inequality

will only be saturated when the two operators are equal. This is also when σ= I , n = 1, and

h = e. As desired, there is no dependence on kL.

Since the eigenvectors of H are non-positive, the largest magnitude eigenvalue will correspond

to the ground space. The triangle inequality argument amounts to showing that the ground

state must rest in the block defined by H 1,kL

I ,1 . By inspection, there will be 2 independent

eigenvectors in this block for each value of kL (we return the h index, but the kL index remains

suppressed here)

|ψ±〉 = |I11,1,1〉± |I11,1, I11〉 (2.160)
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with eigenvalues

λ± =−2

(
1± 1p|G|

)

Clearly |ψ+〉 defines a |G|-fold degenerate ground space of our system. It is simple to verify

that the stabilizers have the desired relations with this state

∑
g

Sg
L |ψ+〉 = |ψ+〉 (2.161)

S1
T |ψ+〉 = |ψ+〉 (2.162)

and thus the Hamiltonian Eq. (2.79) behaves as claimed. �

2.10.3 Useful Inner Products

Here we wish to calculate inner products between states in the gauge representation basis and

the gauge element basis. In general, we have

〈σmn ,h,πi j ,kL|σ′
m′n′ ,h′,kG,k ′

L〉 =
√

dπdσ′dσ
|G|3/2

∑
gπ,gσ,gσ′

[π(gπgσ)]∗i j [σ(gσ)]∗mn[σ′(gσ′)]m′n′

×〈gσ, g−1
σ hgσ, gπ,kL|gσ′ , g−1

σ′ h′gσ′ ,kG,k ′
L〉 (2.163)

=
√

dπdσ′dσ
|G|3/2

∑
gπ,gσ,gσ′

[π(gπgσ)]∗i j [σ(gσ)]∗mnσ
′(gσ′)]m′n′

×δgσgσ′δhh′δgπkG
δkLk ′

L
(2.164)

=
√

dπdσ′dσ
|G|3/2

∑
gσ

[π(kGgσ)]∗i j [σ(gσ)]∗mn[σ′(gσ)]m′n′

×δhh′δkLk ′
L

(2.165)

In particular, the special cases we are interested can be simplified. With I the trivial represen-

tation, we have

〈σmn ,h, I11,kL|σ′
m′n′ ,h′,kG,k ′

L〉 =
√

dσ′dσ
|G|3/2

δhh′δkLk ′
L

∑
gσ

[σ(gσ)]∗mn[σ′(gσ)]m′n′ (2.166)

= 1

|G|1/2
δhh′δkLk ′

L
δσσ′δmm′δnn′ ∀kG (2.167)
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and

〈I11,h,πi j ,kL|σ′
m′n′ ,h′,kG,k ′

L〉 =
√

dπdσ′

|G|3/2
δhh′δkLk ′

L

∑
gσ

[π(kGgσ)]∗i j [σ′(nR )]m′n′ (2.168)

=
√

dπdσ′

|G|3/2
δhh′δkLk ′

L

∑
gσ

∑
s

[π(kG)]∗i s[π(gσ)]∗s j [σ′(nR )]m′n′

(2.169)

= 1

|G|1/2
δhh′δkLk ′

L
δπσ′δ j n′ [π(kG)]∗i m′ (2.170)

particularly,

〈I11,h,πi j ,kL|σ′
m′n′ ,h′,1,k ′

L〉 =
1

|G|1/2
δhh′δkLk ′

L
δπσ′δi m′δ j n′ (2.171)

The orthonormality of the gauge representation basis is also useful when written in the form

〈I11,h,πi j ,kL|σmn ,h′, I11,k ′
L〉 = δπσδσIδi 1δn jδm1δn1δhh′δkLk ′

L
(2.172)

2.11 Error Operations in General Quantum Double Models

In the case of cyclic quantum double models, we were able to provide a simple general

argument as to why many of the terms in the effective Hamiltonian vanished. In the more

general case, this kind of simple argument is no longer applicable, and so we are forced to take

an exhaustive survey of the terms that may arise in the effective Hamiltonian. We aim to show

that any undesired terms will vanish in the ground space.

In order to undertake this study, it is useful to note the following relations:

Z
πi j

± Lg
± =

∑

k
[π(g )]i k Lg

±Z
πk j

± (2.173)

Z
πi j

± Lg
∓ =

∑

k
Lg
∓Zπi k

± [π(g−1)]k j (2.174)

The kinds of operators we consider will take the form:

za =

 Z

πi j−
I

Zσkl
+
I


 , zb =


 I

Z
πi j−

I

Zσkl
+


 , zc =


 I

I

Z
πi j

+
Zσkl
+


 , zd =


 Z

πi j−
Zσkl−

I

I




la =

 Lg

+
I

Lg ′
+
I


 , lb =


 I

Lg
−

I

Lg ′
−


 , lc =


 I

I

Lg
+

Lg ′
−


 , ld =


 Lg

+
Lg ′
−

I

I




(2.175)
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We will refer to these as “error terms” or “error operators”. For each error term Ê we will

calculateΥÊΥwhereΥ is the projector on to the ground state. Note thatΥ= SΥ for either of

the stabilizers ST or SL . First consider the error term zc :

ΥzcΥ = Υzc SLΥ (2.176)

= 1

|G|
∑
g
Υzc Sg

LΥ (2.177)

= 1

|G|
∑
g
Υ


 Lg−1

−
Lg−1

+

Z
πi j

+ Lg−1

−
Zσkl
+ Lg−1

+


Υ (2.178)

= 1

|G|
∑
g
Υ(Sg−1

L )†
∑
m,n

[π(g )]m j [σ(g−1)]kn


 I

I

Zπi m
+

Zσnl
+


Υ (2.179)

Now, because the ground state is stabilized by the projector SL , it is easy to check that it must

also be stabilized by each of Sg
L individually. This allows us to write:

ΥzcΥ = 1

|G|Υ
∑

m,n,g
[π(g )]m j [σ(g−1)]kn


 I

I

Zπi m
+

Zσnl
+


Υ (2.180)

= 1

|G|Υ
∑

m,n,g
[π(g )]m j [σ(g )]∗nk


 I

I

Zπi m
+

Zσnl
+


Υ (2.181)

where we have used the unitarity of the representation σ in the last line. Now we make use of

the Grand Orthogonality Theorem for unitary representations:

∑
g

[π(g )]∗i j [σ(g )]kl =
|G|
dπ

δπσδi kδ j l (2.182)

and we can write

ΥzcΥ = Υ
∑
m,n

1

dπ
δπσδmnδ j k


 I

I

Zπi m
+

Zσnl
+


Υ (2.183)

= Υ
∑
m

1

dπ
δπσδ j k


 I

I

Zπi m
+

Zσml
+


Υ (2.184)

This gives us the result that all errors of this type will vanish from the effective Hamiltonian

unless they satisfy the conditions π=σ and j = k. It also allows us to rewrite an operator of

the form zc satisfying these conditions as an average over the shared index in the ground state.
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This will become important when we undertake the perturbation calculations.

We can find analogous results for the other z error terms,

ΥzdΥ = Υ
∑

m,n,g
[π(g−1)]i m[σ(g )]nl


 Z

πm j−
Zσkn−

I

I


Υ (2.185)

= Υ
∑
m

1

dπ
δπσδi l


 Z

πm j−
Zσkm−

I

I


Υ (2.186)

ΥzaΥ = Υ
∑

m,n,g
[π(g−1)]i m[σ(g )]nl


 Z

πm j−
I

Zσkn
+
I


Υ (2.187)

= Υ
∑
m

1

dπ
δπσδi l


 Z

πm j−
I

Zσkm
+
I


Υ (2.188)

ΥzbΥ = Υ
∑

m,n,g
[π(g )]m j [σ(g−1)]kn


 I

Zπi m−

I

Zσnl
+


Υ (2.189)

= Υ
∑
m

1

dπ
δπσδ j k


 I

Zπi m−

I

Zσml
+


Υ (2.190)

The l error terms require slightly different treatment. Consider first la :

ΥlaΥ = ΥlaS1
TΥ (2.191)

= Υ
∑

g1g2g3g4=1


 Lg

+T g1−
T g4−

Lg ′
+ T g2

+
T g3
+


Υ (2.192)

= Υ
∑

g1g2g3g4=1


 T g1g−1

−
T g4−

T g ′g2
+

T g3
+


 laΥ (2.193)

= Υ
∑

g1g g ′−1g2g3g4=1


 T g1−

T g4−

T g2
+

T g3
+


 laΥ (2.194)

The first operator is now orthogonal to the projector S1
T unless g ′g−1 = 1. Because the ground
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space is stabilized by S1
T , we can say that this vanishes unless g = g ′. This gives:

ΥlaΥ=Υδg g ′


 Lg

+
I

Lg ′
+
I


Υ (2.195)

i.e. error terms of the form la will vanish unless they obey g = g ′. The procedure for lb

proceeds similarly to yield:

ΥlbΥ = Υ
∑

g1g2g3g ′g−1g4=1


 T g1−

T g4−

T g2
+

T g3
+


 lbΥ (2.196)

= Υδg g ′


 I

Lg
−

I

Lg ′
−


Υ (2.197)

The error operators lc and ld are more complicated.

ΥlcΥ = Υlc
∑

g1g2g3g4=1


 T g1−

T g4−

T g g2
+

T g3g ′−1

+


Υ (2.198)

We can imagine the second operator acting on state |ha ,hb ,kG,kL〉. This leads to this operator

vanishing unless

h−1
a g−1kLg ′k−1

L hahb = 1

In the ground subspace, we know hb = 1, this implies

g = kLg ′k−1
L (2.199)

i.e. the nonvanishing operators of the form lc depend explicitly on the logical state. A similar

result is obtained for the error term ld :

ΥldΥ = Υld

∑
g1g2g3g4=1


 T g1g−1

−
T g ′g4−

T g2
+

T g3
+


Υ (2.200)

The second operator vanishes unless

h−1
a g kLg ′−1k−1

L hahb = 1
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In the codespace this is equivalent to:

g = kLg ′k−1
L (2.201)

There are two remaining kinds of terms which will arise in our perturbation treatment. They

may take a diagonal form, e.g.

Ê ∼

 Â

I

I

B̂




in which case they will not contribute to low order terms (and will have little impact on the

form of higher order terms). A similar treatment to Sec. 2.11 and Eq.(2.94-2.103) reveals that

these operators act as both gauge and logical operators, just as in the cyclic case.

Alternatively, error operators may consist of mixed L and Z operators, e.g.

Ê ∼

 Z

πi j−
I

Lg
+

I




It is a simple calculation to show that these kinds of operators will vanish when conjugated by

Υ, except when π= I (the trivial representation) and g = 1. That is, the only non-vanishing

operator of this form is the identity operator. These results show that the encoding we use will

indeed prevent undesirable excitations from being permitted, leaving only the terms from the

target Hamiltonian to arise in our perturbative treatment.
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Chapter Review

We construct perturbative 2-local Hamiltonians that reproduce the Kitaev quantum double

models as their low-energy limits.

• The main conceptual tool introduced is a form of perturbation gadget based on

error-detecting subsystem codes that we call a “code gadget”. These are related to

similar tools used to produce the cluster state Hamiltonian in earlier work.

• In contrast to previous perturbation gadget approaches, our construction produces

an encoded form of the target model. That is, each qudit of the target model is

encoded in the set of qudits forming a code gadget.

• The structure of the Hamiltonian and code gadgets are closely related to the PEPS

descriptions of the quantum double ground states.

• The low-energy effective Hamiltonian is shown to be gapped and has the target

quantum double ground state to arbitrary order in perturbation theory.

• The local symmetries of the target quantum double model are exactly reproduced

in our construction.

• We give a simplified analysis for the quantum doubles of cyclic groups, as well as

using the toric code as a pedagogical example.
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3 Perturbative Two-body Parent Hamil-
tonians for Projected Entangled Pair
States

Abstract

We construct parent Hamiltonians involving only local 2-body interactions for a broad

class of Projected Entangled Pair States (PEPS). Making use of perturbation gadget tech-

niques, we define a perturbative Hamiltonian acting on the virtual PEPS space with a

finite order low energy effective Hamiltonian that is a gapped, frustration-free parent

Hamiltonian for an encoded version of a desired PEPS. For topologically ordered PEPS, the

ground space of the low energy effective Hamiltonian is shown to be in the same phase as

the desired state to all orders of perturbation theory. An encoded parent Hamiltonian for

the double semion string net ground state is explicitly constructed as a concrete example.

3.1 Introduction

Projected Entangled Pair States (PEPS) are a class of quantum states particularly well suited

for describing the ground states of interacting quantum many-body systems [AKLT88, FNW92,

Has06, PGVWC07, VWPGC06a, Vid03]. They are a form of tensor network ansatz amenable to

both numerical and analytical study, and encompass many interesting classes of states. In

particular, they offer exact analytical descriptions of such states as the topologically ordered

ground states of quantum double models [Kit03] and string-net models [LW05], as well as

resources for measurement-based quantum computation such as the cluster states [RB01]

and Affleck-Kennedy-Lieb-Tasaki (AKLT) states [AKLT88, WAR11, DBB12], among others.

For a given PEPS (representing the state of a quantum many-body system defined on a graph),

there is an associated parent Hamiltonian for which it is a ground state [PGVCW08]. For

certain classes of PEPS, these Hamiltonians can be defined using only local interactions (i.e.,

interactions whose support lies only on qudits within some bounded size region) such that
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their ground states are unique. Though these interactions act only within a finite sized region,

there will still generally be a large number of qudits within this region. For this reason these

interactions may be challenging to implement experimentally, and it may be preferable to

find an alternative parent Hamiltonian with interactions involving at most two neighbouring

quantum systems (2-local1 interactions), whose ground state is a desired PEPS.

In this chapter, we construct such a parent Hamiltonian involving only 2-local interactions

for PEPS with certain properties. The strategy we use to show this is based on the pertur-

bation gadget [KKR06, OT08, BDLT08, JF08] approach. Perturbation gadgets allow k-body

interactions (those involving k systems) to be approximated by 2-body interactions through

the introduction of ancilla qudits coupled perturbatively. Applied to infinite systems, a naive

perturbation gadgets approach can encounter a number of pitfalls. In particular, the resource

cost of a general perturbation gadget scheme scales poorly with the system complexity, and

application of the technique can lead to the energy gap scaling with the system size or the

fidelity of target states [VdNLDB08, OT08]. Additionally, while interactions can be reduced to

only 2-body, the nature of these interactions is in general complicated and unnatural when

viewed in terms of the target model. By taking advantage of structure and tailoring the gadgets

to a particular class of models, we can circumvent these difficulties. Our construction involves

interactions that are natural from the point of view of the PEPS ansatz, and captures the

structure of the standard PEPS parent Hamiltonian.

We present a perturbation gadget scheme that works by encoding the qudits of the model in

question in a quantum code, and weakly coupling neighbouring encoded qudits. The encod-

ings and couplings are directly inspired by the PEPS descriptions of the target ground states.

As such, our scheme is specifically suited to constructing 2-local Hamiltonians whose ground

space is (an encoded form of) a desired PEPS. This generalizes the ideas of Refs. [BR06] and

[BFBD11], where similar techniques were used to reproduce encoded forms of the cluster state

and the quantum double ground states, respectively, as the ground states of entirely 2-local

Hamiltonians, based on their PEPS descriptions. The model studied in this chapter is not pre-

cisely equivalent to those developed previously, which take advantage of structure that is not

generally available for all the PEPS we discuss here. As well as the quantum double and cluster

states, we expect our construction to apply to broad classes of topologically ordered states with

similar structure, such as the string net ground states, isometric H-injective PEPS [BMCA13],

and (G ,ω)-isometric PEPS [Bue14]. In this direction, we argue that isometric MPO-injective

PEPS [SWB+14] with trivial so-called generalized inverse satisfy the requirements of our con-

struction; this class is known to include string-net ground states and (G ,ω)-isometric PEPS. In

fact, we conjecture that our results extend to any PEPS that satisfy certain topological order

conditions.

Our analysis proceeds in two parts. In the first part, we show that for a given PEPS satisfying

1The term k-local is used sometimes in the literature to refer to any interaction whose support is restricted to
at most k sites, regardless of their geometric arrangement. We will use the term k-body to refer to these types of
interactions, and reserve the term k-local for interactions whose support is localized geometrically.
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certain criteria there exists a finite-order low energy effective Hamiltonian for our system

which is a valid (gapped) parent Hamiltonian for the desired PEPS satisfying these conditions.

Our perturbation analysis is based on the Schrieffer-Wolff transformation [SW66, BDL11].

In the second part of our analysis, we study the robustness of this effective Hamiltonian to

contributions from higher order terms in the perturbation expansion. In doing so, we prove

that the effective Hamiltonian is in the same phase as the desired parent Hamiltonian to

arbitrary order.

We make use of stability results for topologically ordered states [BHM10, BH11b, MZ13,

CMPGS13] to prove that the ground space of our effective Hamiltonian remains in the same

phase to arbitrarily high order of perturbation theory. For this reason, our results apply only

to states with parent Hamiltonians satisfying the local topological quantum order condi-

tions [MZ13]. Note that these states need not be topologically ordered in the more colloquial

sense, and may have non-degenerate ground spaces, for example.

As an explicit new example of our construction, we demonstrate our procedure for the double

semion string-net model [LW05], which has an exact PEPS description [GLW08, GLSW09,

BAV09].

In Sec. 3.2 we will introduce the PEPS formalism and define the class of PEPS to which our

construction applies. In Sec. 3.3 we briefly outline our model and main results. Following this,

Sections 3.4 and 3.5 are devoted to the proofs of our results. Sec. 3.6 contains a discussion of

our results and concluding remarks, followed by an explicit example of our construction in

Sec. 3.7.

3.2 Projected Entangled Pair States

PEPS is an ansatz for describing states of many-body quantum systems. For a given PEPS

satisfying certain criteria, we will exploit the structure of this ansatz in order to construct a

2-local Hamiltonian whose ground state is in the same phase as the desired PEPS.

A PEPS is typically associated with a graph or latticeΛ, and can be defined constructively by

beginning with maximally entangled pairs of qudits of dimension D on each edge e = (i , j )

of the graph, such that one qudit from each pair is associated with each of the sites i and j .

These qudits are conventionally called virtual qudits. A linear map P s :
(
CD

)⊗deg(s) → Cd is

then applied to the deg(s) virtual qudits at each site s of the graph (with deg(s) the degree of

s), mapping the combined Hilbert spaces of all the virtual qudits at s to an encoded space of

dimension d . The space Cd is often called the physical space, but we will refer to it as the code

space, associated with an encoding of a d-dimensional qudit in the deg(s) D-dimensional

virtual qudits. The map P s is often referred to as the projection map, though it need not be a

projector in the strict sense.

This structure of a PEPS is illustrated in Fig. 3.1. In general, the projection map and the
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Figure 3.1 – PEPS construction on a square lattice. Virtual systems are shown in green, while
code qudits are shown in blue, encoded in the enclosed virtual qudits. Wavy lines run along
edges of the PEPS graph, and connect virtual qudits in maximally entangled states.

dimensions d and D can vary with location, but for notational simplicity we will restrict our

attention to the translation-invariant case (extension to the general case is straightforward).

We also take the graphΛ to have a bounded coordination number, i.e. deg(s) is finite. Because

each edge e = (i , j ) of the PEPS graph has an associated pair of virtual qudits, we define

|ΦD (e)〉 ≡∑D−1
k=0 |k〉e,i |k〉e, j as the maximally entangled state on edge e, where |·〉e,i refers to the

state of the virtual qudit at site i corresponding to edge e. With this in mind, we can write the

PEPS state (up to normalization) as

|ψPEPS〉c =
∏

s
P s

∏
e
|ΦD (e)〉v (3.1)

where e runs over edges ofΛ, and s runs over sites ofΛ. Note that |ψPEPS〉c is defined on the

code space, as opposed to the virtual qudits. We denote states and operators on the code

qudits and virtual qudits by subscript c and v , respectively.

A parent Hamiltonian of a PEPS (or more generally any state or space) is a local Hamiltonian

that has the desired state as its ground state. We will exclusively consider gapped parent

Hamiltonians. It is often conventional to also require that a parent Hamiltonian is frustration-

free, but we will still refer to a frustrated Hamiltonian as a parent Hamiltonian so long as

it is local and gapped. For any given PEPS, there is a special class of parent Hamiltonians,

canonical parent Hamiltonians [PGVCW08], defined as follows.

A canonical parent Hamiltonian is specified by a set of regions {R} on the PEPS lattice, where

{R} must contain a region of a large enough size around each site of the lattice. We call

the largest required region size r∗. This size r∗ generally depends on the details of the

PEPS under consideration, but in the cases we consider it can always be taken to be finite

(see [PGVCW08] for details). For each R, we define the projector $R onto the support of
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ρR = Tr\R |ψPEPS〉〈ψPEPS|, the reduced state in region R. The associated canonical parent

Hamiltonian is then

Hcan,c =−
∑

R
$R (3.2)

This Hamiltonian will have the desired PEPS as a frustration-free ground state. The Hamilto-

nian (3.2) acts on the code qudits of the model (as denoted by the subscript c), and the virtual

qudits are seen only as a mathematical tool used in the definition of the PEPS.

Virtual qudits and code qudits

A PEPS is a state defined on the code qudits as in Eq. (3.1). However, we will consider the

virtual qudits to be those that are manipulated in the laboratory and we regard the code qudits

to simply be encoded within a subspace of these virtual systems. This is the sense in which we

will recover an encoded form of the PEPS.

Generically in perturbation gadget approaches, ancilla qudits are required to mediate effective

many-body correlations. In standard approaches, these ancillae are introduced beside the

original qudits of the model being considered and simply mediate the interactions between

the model qudits. However, in our construction each qudit of the desired model is encoded

into several ancilla qudits, and so the additional qudits are integrated into the structure of the

model itself. In this way we have aligned the structure of our perturbation gadgets with that of

PEPS to reproduce these states more naturally.

For clarity, for the bulk of our analysis the interactions we use will not generally be 2-local on

these virtual systems, but instead be 2-local on the collection of virtual qudits that encodes

each code qudit. We call this collection a code gadget. We stress this distinction between

2-locality of an interaction with respect to the code gadgets as opposed to the virtual qudits as

it is a departure from previous similar work [BR06, BFBD11]. We discuss in Sec. 3.6.1 how to

subsequently construct Hamiltonians whose interactions involve at most 2 virtual qudits.

3.2.1 Types of PEPS

Because we take a perturbative approach in this work, we will construct a parent Hamiltonian

for a state within the same phase as a given PEPS, such that the ground state of our model

can be made arbitrarily close to the PEPS by taking the perturbation parameter to be small

enough. For this to be a sensible approach, we require parent Hamiltonians for the PEPS

under consideration to be gapped and stable (in an appropriate sense) with respect to small

perturbations. This criterion is formalized as topological order, and will be defined later in this

section. As well as the topological order condition, our procedure will require the PEPS we

treat to possess additional structure as compared to the most general definition of PEPS. We

are interested in the broadest such structure that will allow us to demonstrate our result.
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Apart from topologically ordered PEPS, there are two main subclasses of PEPS that we will

need to consider: isometric PEPS and quasi-injective PEPS. Isometric PEPS are a natural and

important subclass of PEPS, and are renormalization fixed points [SPGC11]. Quasi-injectivity

is the least natural of the classes we consider and is mainly a technical tool required in our

analysis. We argue that it is a generalization of several known classes of PEPS such as injective

PEPS [PGVCW08] and G-injective PEPS [SCPG10], which have properties that make them

amenable to our construction.

Isometric PEPS

Definition 5 (Isometric PEPS [SPGC11, SCPG10]). A PEPS is isometric if the projection maps

P s are isometries.

Notably, for isometric PEPS Ps ≡P †
s P s is a (Hermitian, idempotent) projector acting on the

virtual qudit space.

Apart from being renormalization fixed-points, isometric PEPS also give a simpler form for

the parent Hamiltonian than the general case [SCPG10]. In this work, we will require all

PEPS we treat to be isometric, as we will make use of the additional structure of their parent

Hamiltonians in our analysis. For isometric PEPS, we can write a canonical parent Hamiltonian

on the virtual space as

Hcan,v =P †
ΛHcan,cPΛ (3.3)

=−
∑

R
P †
Λ$RPΛ (3.4)

where PΛ = ∏
s∈ΛP s . Explicitly, this Hamiltonian will be be a parent Hamiltonian for the

encoded PEPS state

|ψPEPS〉v =
∏

s
Ps

∏
e
|ΦD (e)〉v (3.5)

defined on the virtual space.

Quasi-injective PEPS

We will define a class of PEPS that we call quasi-injective PEPS, inspired by several known

classes of PEPS. The most fundamental of these known classes is injective PEPS [PGVCW08],

which are technically defined as those PEPS whose projection maps have left inverses. Injec-

tivity has important consequences for properties of the parent Hamiltonian, and in particular

injective PEPS can be shown to be unique ground states of their canonical parent Hamilto-

nians, which can be defined to be 2-local [PGVCW08]. Broader classes of PEPS with similar

structure have been proposed, such as G-injective PEPS [SCPG10] for finite groups G , (G ,ω)-

injective PEPS [Bue14] for a finite group G and 3-cocycle ω, and H-injective PEPS [BMCA13]
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for finite-dimensional C∗ Hopf algebras H . Recently, a notion of injectivity based on the

use of a projection matrix product operator (MPO) that includes many (perhaps all) of these

previous classes has been developed [SWB+14], known as MPO-injectivity. MPO-injective

PEPS can describe a large class of topologically ordered states including the ground states of

string-net models [LW05]. In contrast to injective PEPS, which represent unique ground states

of local Hamiltonians, these other classes typically represent the ground states of topologically

ordered systems that would generally have degenerate ground spaces.

For all of these classes of PEPS (injective, G-injective, etc.), the canonical parent Hamiltonians

can be shown to have additional structure that is not present in the general case. In particular,

isometric PEPS that are also injective or G-injective have canonical parent Hamiltonians (3.2)

whose terms take a particularly simple form:

$R =PR ·
(
∏

e∈R
|ΦD (e)〉〈ΦD (e)|v

)
·P †

R (3.6)

Importantly, the Hamiltonian (3.2) can be chosen to be both local and gapped for these

PEPS [PGVCW08, SPGC11, SCPG10].

Our construction will, among other things, require the PEPS under consideration to have

canonical parent Hamiltonians that are local, gapped, and whose terms take the form of

Eq. (3.6). Injective or G-injective isometric PEPS have these properties, but we wish to be as

general as possible. We will therefore define the class of quasi-injective PEPS to be those that

satisfy the loosest such conditions that are sufficient to prove our main results. We believe that,

for isometric PEPS, our definition of quasi-injectivity generalizes the known classes of PEPS

mentioned earlier (injective, G-injective, (G ,ω)-injective, H-injective, and MPO-injective).

Loosely speaking, the conditions we impose require that the PEPS is stabilized by a set of

operatorsΥ{RPi ,REi } defined below, in the sense that the PEPS is an eigenstate of eachΥ{RPi ,REi }

corresponding to its highest eigenvalue. Explicitly, these (Hermitian) operators acting on the

virtual space take the form

Υ{RPi ,REi } =
1

2
P⋃

j {RP j ,RE j }

(
∏

i
PRPi

(
∏

e∈REi

|ΦD (e)〉〈ΦD (e)|v
))

P⋃
j {RP j ,RE j } +h.c. (3.7)

where the R are connected regions of the graph and PR = ∏
s∈R P †

s P s . The set {RPi ,REi } =
{RP1 ,RP2 , . . . ,RE1 ,RE2 , . . .} is a set of regions, with

⋃
j {RP j ,RE j } their union.

PEPS is a tensor network ansatz in the sense that the projection map can be defined by a

tensor with indices corresponding to each virtual and code qudit. In this picture, the operators

Υ{RPi ,REi } can be thought of as contractions of the tensors defining the PEPS projector in

various ways. This is because each Ps can be thought of as a tensor with input and output

indices for each virtual qudit, and |ΦD (e)〉〈ΦD (e)|v acts to contract the relevant indices of

these tensors on the sites e connects. In particular, Υ{;,R} = PR
(∏

e∈R |ΦD (e)〉〈ΦD (e)|v
)

PR =
P †

R$RPR corresponds to the contraction of all of the pairs of indices of PR corresponding to
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edges in R.

Given these Υ{RPi ,REi } operators, we can explicitly define the quasi-injectivity condition as

follows:

Definition 6 (Quasi-injective PEPS). An isometric PEPS is quasi-injective if

Υ{RPi ,REi }|ψPEPS〉v = η{RPi ,REi }|ψPEPS〉v , (3.8)

for η{RPi ,REi } the largest eigenvalue ofΥ{RPi ,REi }.

Most significantly, isometric quasi-injective PEPS have the property that

Hpar,v =−
∑

{RPi ,REi }
c{RPi ,REi }Υ{RPi ,REi } , (3.9)

is a valid frustration-free parent Hamiltonian for any choice of c{RPi ,REi } > 0. This is a direct

consequence of the condition (3.8). It is also clear from the fact that Hpar,v contains all terms in

the canonical parent Hamiltonian that if (3.2) is gapped, the Hamiltonian (3.9) is also gapped.

This follows from the fact that every term is minimized in the ground space, and so additional

terms can only increase the size of the gap.

We emphasise that the notion of quasi-injectivity is designed to be the loosest notion required

for our results to hold, and it is expected (in the isometric case) to encompass the broad

class of PEPS listed above, including injective, G-injective, (G ,ω)-injective, H-injective, and

MPO-injective PEPS. To illustrate this, we provide a proof sketch that all MPO-injective PEPS

for which the ‘generalized inverse’ (defined in Ref. [SWB+14]) is the identity map are quasi-

injective, noting that this class includes injective, G-injective, (G ,ω)-injective and string-net

PEPS. For isometric PEPS, as we consider in this chapter, it is believed that all MPO-injective

PEPS have a generalized inverse equal to the identity. We also believe that quasi-injectivity

captures the relevant features of higher dimensional analogues of these classes, such as

projected entangled pair operator (PEPO)-injective PEPS that are the natural extension of

MPO-injective PEPS. We leave the development of a formal proof of the relationship between

quasi-injectivity and other forms of injectivity to future work. The close relationship between

MPO-injective PEPS and topologically ordered PEPS in 2 dimensions may also suggest a close

relationship between quasi-injective PEPS and topologically ordered PEPS in general.

Proof sketch: Consider the operator Υ{RPi ,REi } acting on an MPO-injective PEPS. Consider

each projection factor of Υ{RPi ,REi } as defined in Eq. (3.7) to be applied sequentially. As we

apply projectors on maximally-entangled states associated with some set of bonds on the

lattice, this acts to block sites. This is because for MPO-injective PEPS, the generalised inverse

tensor can be considered to be a blocking operation. For those MPO-injective PEPS with

trivial generalized inverse, this simply corresponds to a contraction of the relevant bond,

which in our context is implemented by the projection onto the maximally entangled state.

Applying PEPS projectors on some set of sites then removes these sites from any blocks. The
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pull-through condition of MPO-injective PEPS ensures that blocks with such sites removed

indeed remain blocks. Note thatΥ{RPi ,REi } is composed of a sequence of such bond projections

that block sites followed by PEPS projectors that remove sites from blocks. At the conclusion

of this sequence, the state is described by blocks of sites (not necessarily geometrically local);

however, applying the PEPS projector at all sites restores the original PEPS state, thereby

guaranteeing that the PEPS is stabilized by allΥ{RPi ,REi } as required by quasi-injectivity.

Topological Order

The quasi-injective and isometric conditions discussed above are specific to the PEPS frame-

work. In contrast, the topological order condition applies more generally to frustration-free,

gapped, local Hamiltonian systems. Systems with topological order have inherent stability to

quasi-local perturbations (defined below). Since we will be using a perturbative approach,

we must consider the effect of high order corrections in the perturbation expansion, and

topological stability results will be crucial to establishing the robustness of our results to these

corrections. In our context, the topological order condition will be applied to the family of

canonical parent Hamiltonians (3.2) for a given PEPS.

The following results have been developed in a sequence of works [BHM10, BH11b, MZ13] on

the definition and stability of topologically ordered systems (see also related work on stability

of tensor network states [SW15, CMPGS13]). It is not our intention to provide a complete

discussion of topological order, and we will we will simply paraphrase the relevant definitions

and results here. We neglect several details (in particular, we restrict our discussion to infinite

length scales); interested readers should consult Ref. [MZ13] for a more thorough treatment

and for technical details of these conditions.

Definition 7 (Local-TQO). Consider a gapped Hamiltonian H0 = ∑
u∈ΛLu for some Lu sup-

ported in local regions around site u of a graph Λ. Let P0(R) be the projector to the ground

space of the restricted Hamiltonian HR =∑
u∈R Lu for a region R ⊆Λ. The system is said to obey

Local-TQO iff for all operators XR acting on a finite region R, there exists a superpolynomially

decaying function f (r ) such that

∥∥∥∥P0(Rr )XR P0(Rr )− TrP0(Rr )XR

TrP0(Rr )
P0(Rr )

∥∥∥∥≤ ‖XR‖ f (r ) (3.10)

for all finite r , where Rr is a region enclosing all points within distance r from R (including R

itself).

Definition 8 (Local-Gap). Given a gapped, local Hamiltonian H0, we say that it obeys the

Local-Gap condition iff for each R ⊆Λ and r ≥ 0, we have that HRr has gap at least g (r ) for g a

function decaying at most polynomially in r .

The Local-TQO condition formalises the colloquial definition of a topologically ordered system

as one whose ground states cannot be distinguished by local operations. The Local-Gap

condition is required to prove the topological stability results below.
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If at least one canonical parent Hamiltonian for the PEPS satisfies Local-TQO and Local-Gap,

we say that the PEPS is topologically ordered. One might be concerned that in general some

special choices of canonical parent Hamiltonian will satisfy these conditions while the rest

will not. It can easily be seen that if one canonical parent Hamiltonian defined by a set of

regions {R} satisfies the topological order conditions, then the family of canonical parent

Hamiltonians defined by region sets {R ′} ⊇ {R} are also topologically ordered. Thus for large

enough sets of regions the Local-TQO and Local-Gap conditions are universal properties of a

PEPS, rather than properties of a specific canonical parent Hamiltonian.

We will also require a notion of quasi-locality for operators. An operator X will be called

(J ,µ)-quasi-local iff it has a local decomposition X =∑
s∈Λ

∑
r Xs,r for Xs,r with support only

within radius r of site s, and ‖Xs,r ‖ ≤ Jµr for some µ< 1.

Given a PEPS that is topologically ordered, we can make use of the topological stability

theorem:

Theorem 9 (Topological Stability [MZ13]). Given a frustration-free Hamiltonian H0 with O(1)

gap, satisfying the Local-TQO and Local-Gap conditions, there exists ε> 0 such that H = H0+εV

has spectral gap O(1) for quasi-local V .

Note that systems satisfying both Local-TQO and Local-Gap conditions need not have degen-

erate ground spaces as one might expect for a conventional notion of a topologically ordered

system. In particular, canonical parent Hamiltonians of injective PEPS as well as G-injective

PEPS, etc. are topologically ordered by this definition. It seems natural to conjecture that the

appropriate definition of quasi-injectivity is really equivalent to (or at least implied by) the

topological order conditions. Unfortunately it is unclear to us how to prove this conjecture.

3.3 Overview of results

In this section we give an outline of our method and results. Given a suitable PEPS, our goal is

to construct a quantum spin model with 2-body interactions that is a parent Hamiltonian for a

state within the same phase as this PEPS. We will first describe the form of the Hamiltonian by

which we achieve this, before stating our main theorems. Sections 3.4 and 3.5 will be devoted

to proving these theorems.

3.3.1 Construction

Our strategy will be to use a perturbative Hamiltonian to simulate the different elements of the

PEPS construction. In contrast to a conventional PEPS parent Hamiltonian, our model acts on

the virtual qudit space, as opposed to the code qudit space. The unperturbed dynamics of our

model will be such that the ground space of our system is an encoded form of the relevant

PEPS code space.
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Our main tool is the code gadget [BFBD11], which can be understood as the collection of

virtual qudits at each site of the PEPS lattice, together with a Hamiltonian whose ground space

is the desired code space (i.e. an encoding of a physical qudit in the PEPS language). From

this point on all operators act on the virtual qudits unless otherwise stated, and so we will

suppress v subscripts on operators and states. The encoding of the d-dimensional code qudit

in the virtual space is given (up to 1-local unitaries) by the projection map P s . The simplest

way to achieve this encoding in the ground space of a code gadget is by using the Hamiltonian

Qs = 1−Ps (3.11)

with Ps ≡P †
s P s the projector to the PEPS code space (for an isometric PEPS). Each of these

code gadgets therefore corresponds to a single code qudit.

Note that the Qs act on a single code gadget, but this corresponds to deg(s) virtual qudits.

Thus, in terms of the virtual qudits of the model, this is a deg(s)-body interaction. We will

generally analyse this model as written, and in Sec. 3.6.1 discuss how to reduce the interactions

from deg(s)-body to 2-body on the virtual qudits if required.

We couple the code gadgets perturbatively according to the structure of the PEPS lattice Λ,

and this coupling will mediate the correlations present in the PEPS. For each edge e of the

PEPS lattice, we define a coupling term

Me = |ΦD (e)〉〈ΦD (e)| (3.12)

with M the projector to the maximally entangled state of the relevant virtual space dimension

D .

The Hamiltonian of our system is then given by

H =
∑

s∈Λ
Qs −ε

∑
e

Me (3.13)

where ε¿ 1. This is a 2-body Hamiltonian (considering each code gadget to be a single

particle), and we will show that it is a valid parent Hamiltonian for a state in the same phase as

the desired isometric, quasi-injective, topologically ordered PEPS.

A simple example of this construction is analysed in Sec. 3.7. The analysis uses a simplified

formalism and is much more accessible than the main technical sections; some readers may

wish to read it before tackling the technical issues that are required to treat the general case.

3.3.2 Results

Our analysis of the model described above proceeds in several stages. The main idea is to

compute a perturbation expansion in ε for a low-energy effective Hamiltonian of the system

and analyse its properties. To achieve this, we use the global Schrieffer-Wolff perturbation
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method [SW66, BDL11] as described in Sec. 3.4. We find the following result:

Theorem 10. Given an isometric, quasi-injective PEPS with gapped canonical parent Hamilto-

nian, there exists finite n∗ such that the global Schrieffer-Wolff effective Hamiltonian for our

model to order n∗ in the perturbation parameter ε is a frustration-free parent Hamiltonian for

the PEPS and has gap O(εn∗) for sufficiently small ε> 0.

This theorem is proved in Sec. 3.4 and is the most crucial part of our analysis.

Beyond this result, we would like to demonstrate that the full Hamiltonian (3.13) is gapped

and has ground state in the same phase as the desired PEPS. In this direction, we analyse the

stability of the gap of the nth
∗ order effective Hamiltonian to the addition of higher order terms

in the perturbation expansion. Such stability would guarantee that the nth
∗ order effective

Hamiltonian is adiabatically connected to the full effective Hamiltonian at arbitrary order in

perturbation theory, and so their ground states are in the same phase.

In order to guarantee any kind of stability against the additional contribution from higher

order terms in the perturbation expansion, we appeal to known results for topologically

ordered systems [MZ13, BHM10, CMPGS13]. If a given PEPS is topologically ordered as well as

isometric and quasi-injective, then we can use Theorem (10) together with the local Schrieffer-

Wolff perturbation method [DFRBF96, BDL11] to demonstrate the following theorem:

Theorem 11. Given an isometric, quasi-injective, topologically ordered PEPS, there exists per-

turbation strength ε> 0 such that the effective Hamiltonian for our model to any order k > n∗ is

in the same phase as the nth
∗ order effective Hamiltonian.

Here we define two ground states of gapped quasi-local Hamiltonians H1 and H2 to be in the

same phase iff H1 can be connected to H2 by a quasi-local adiabatic evolution that does not

close the spectral gap. Theorems 10 and 11 straightforwardly imply the following theorem,

which is the main result of this chapter.

Theorem 12. There exists perturbation strength ε> 0 such that the low-energy effective Hamil-

tonian corresponding to the system (3.13) is a gapped parent Hamiltonian for a state in the

same phase as the quasi-injective, isometric, topologically ordered PEPS under consideration to

any order k > n∗ of perturbation theory.

Our proof of Theorem 11 is given in Sec. 3.5 and involves two stages. We first transform the

effective Hamiltonian derived from the global Schrieffer-Wolff method to one defined by the

related local Schreiffer-Wolff method [DFRBF96, BDL11]. Although the global SW expansion

has structure which allows for the proof of Theorem 10, the higher-order terms in its expansion

cannot easily be bounded. Conversely, the local SW expansion has explicit locality properties

that allow us to analyse higher-order terms, but does not allow for a direct proof of Theorem

10. By transforming between these two effective Hamiltonian expansions, we are able to make

use of the convenient features of both. This transformation between the global and local
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Schrieffer-Wolff effective Hamiltonians can be treated as a quasi-local perturbation, and is

thus guaranteed to preserve the gap by the topological stability theorem.

Once we have demonstrated that the local SW effective Hamiltonian is in the same phase as

the global SW effective Hamiltonian, we show that the higher order contributions to the local

SW effective Hamiltonian can also be treated as quasi-local perturbations on the nth
∗ order

Hamiltonian and so will not induce a phase transition. A caveat to this statement that will be

made clear in the analysis is that we use a slightly modified effective Hamiltonian as compared

to the standard definition of the local SW expansion. The composition of each of these results

defines an adiabatic path from the nth
∗ order global SW effective Hamiltonian to our effective

Hamiltonian at arbitrary finite order, proving Theorem 11.

In addition, one would ideally like to show stability against contributions from the excited

space of the unperturbed Hamiltonian, which are neglected in the effective Hamiltonian.

While we expect that it may be possible to prove this kind of rigorous result using similar tools

to those used here, the bounds from Ref. [BDL11] on the size of these additional high-energy

terms are insufficient for this purpose, and so a complete proof of stability against such terms

is beyond the scope of this work. Our analysis demonstrates that the low energy effective

Hamiltonian of our model is a parent Hamiltonian for the desired state, but it does not prove

that this effective Hamiltonian is a good description of the low energy physics of our system

(i.e., that perturbation theory is accurate in this regime). While in principle, states from the

excited space of the unperturbed Hamiltonian could contribute to the low energy physics of

our model, we do not know of any examples for which such unusual behaviour occurs. We

leave the investigation of such breakdowns of perturbation theory to future work.

3.4 Perturbation Analysis

3.4.1 Preliminaries

As in Sec. 3.3.1, we define our system by a Hamiltonian of the form H = H0 +εV with

H0 =
∑

s∈Λ
Qs , V =−

∑
e

Me (3.14)

where ε¿ 1. The projector to the ground space of the unperturbed Hamiltonian H0 is defined

as P0 = PΛ =∏
s Ps , and P0H0 = H0P0 = 0. It will also be convenient to define the projector to

the unperturbed excited space Q0 ≡ 1−P0. Let ∆0 be the gap of H0 and note that ∆0 = 1. We

define N ≡ |Λ| to be the total number of sites of the PEPS graph.

We can motivate this choice of perturbative Hamiltonian by noticing that the low-energy

behaviour of the Hamiltonian (3.13) will involve projectors to maximally entangled states of

virtual qudits acting within the code space (or the unperturbed ground space), much as in the

terms of the canonical parent Hamiltonian (3.6). This will allow us to argue that the low-energy

effective Hamiltonian of our model is a valid parent Hamiltonian for a given PEPS, albeit in an
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encoded form. We will revisit this intuitive picture before proceeding to the general analysis,

but first let us define our perturbation formalism.

3.4.2 Global Schrieffer-Wolff perturbation expansion

We are interested in the low energy effective Hamiltonian of our system. To derive this ef-

fective Hamiltonian, we will make use of the global Schrieffer-Wolff (SW) perturbation ex-

pansion [SW66, BDL11]. We give a brief review of some relevant properties of the global SW

method here, following Ref. [BDL11]. We will focus on the relevant case where the unperturbed

Hamiltonian is 1-local and the perturbation is 2-local on the lattice Λ, which has bounded

degree.

The effective Hamiltonian derived from the global SW method is based on a transforma-

tion eS He−S that block diagonalizes H with respect to the ground and excited spaces of the

unperturbed Hamiltonian H0. We define an anti-Hermitian operator S such that

P0eS He−SQ0 =Q0eS He−SP0 = 0 (3.15)

That is, the transformed Hamiltonian eS He−S has vanishing block-off-diagonal components.

Together with (3.15), the conditions P0SP0 =Q0SQ0 = 0 and ‖S‖ < π
2 uniquely define S. We will

expand S in a Taylor series in ε and use this to compute an effective Hamiltonian expansion,

but before we proceed we will introduce some notations. Define

L (X ) = Q0

H0
X P0 −P0X

Q0

H0
(3.16)

Xd = P0X P0 +Q0XQ0 (3.17)

Xod = P0XQ0 +Q0X P0 (3.18)

for any operator X , where we define Q0
H0

in the obvious way to vanish on the image of P0.

Without loss of generality, we set H0P0 = P0H0 = 0, i.e., the unperturbed ground state energy

is set to zero. Because of this zero eigenvalue, we note that we can express Q0
H0

as Q0g̃ with

g̃ = ∆̃P0 +
Q0

H0
(3.19)

for an arbitrary constant ∆̃. We will make extensive use of this identity, and the freedom to set

∆̃, to prove our result.

Equipped with these notations, and following Ref. [BDL11], we expand S = ∑∞
j=1 ε

j S j as a
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series of anti-Hermitian operators S j =−S†
j , finding

S1 =L (V ) (3.20)

S j =L
(
[S j−1,Vd]

)+

⌊
j−1

2

⌋
∑

i=1
a2i L

(
W ( j−1)

2i

)
for j > 1 (3.21)

for ai = 2i Bi
i ! with Bi the Bernoulli numbers, and

W (k)
m =

∑

j1,..., jm≥1
j1+...+ jm=k

[S j1 , [S j2 , [· · · , [S jm ,Vod] · · · ]]] (3.22)

This yields an effective Hamiltonian to order n of the form

H 〈n〉
eff = P0H0P0 +

n∑

j=1
ε j P0V ( j−1)P0 (3.23)

where

V (0) =V (3.24)

V ( j−1) =

⌊
j
2

⌋
∑

i=1
b2i−1W ( j−1)

2i−1 , j > 1 (3.25)

with b2i−1 = 2(22i−1)B2i
(2i )! .

The terms in Eq. (3.23) can be systematically calculated through a diagrammatic technique

[BDL11], but for our purposes, we will not need to calculate the exact expansion of the effective

Hamiltonian for a general PEPS to arbitrary order. It will suffice for us to note that each term

P0V ( j )P0 in (3.23) can be written as a linear combination of operators of the form

Γ(q1, . . . , q j ) = P0

(
j∏

i=1
V gqi

)
V P0 (3.26)

for integers qi with
∑

i |qi | = j , and where gq is defined by

g0 = P0 (3.27)

gq = g̃ q = ∆̃q P0 +
Q0

H q
0

for q ≥ 1 (3.28)

gq = P0g̃ |q| = ∆̃|q|P0 for q ≤−1. (3.29)

This can be seen by the application of Eqs. (3.20-3.25) and making use of the identities Q0
H0

=
Q0g̃ , Q0 = 1−P0, and H0P0 = P0H0 = 0.
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We will also make use of the fact that the effective Hamiltonian Eq. (3.23) obeys the linked

cluster theorem [Kle74], which loosely states that all terms in the perturbative expansion at

order n are O(n)-local. More precisely, recall that the perturbation V is a sum of 2-local terms.

Then the effective Hamiltonian at order n can be decomposed into a sum of terms, each of

which correspond to the product of n such 2-local perturbations. The linked cluster theorem

states that the effective Hamiltonian terms corresponding to any product of perturbations

which are “unlinked” (there exists a bipartition of the perturbations such that the supports of

these sets are disjoint), must vanish. This implies that at order n, the terms in the effective

Hamiltonian can act on at most (n +1) sites, which must all be within a local region of size

(n +1).

3.4.3 Ground space of the effective Hamiltonian

In this section, we prove Theorem 10. That is, we will show that to some finite order n∗, the

effective Hamiltonian expansion of Eq. (3.13) is a gapped parent Hamiltonian for the desired

quasi-injective, isometric PEPS with a gapped canonical parent Hamiltonian. Before we begin

the proof in earnest, let us briefly attempt to give some intuition for our construction.

The effective Hamiltonian (3.23) can be written as a linear combination of Γ(q1, . . . , q j ) opera-

tors as defined in Eq. (3.26). Imagine for the moment that we were able to neglect the gq terms

in these operators (i.e. neglect the dependence on the spectrum of H0). These operators would

then reduce to P0V j+1P0, and for isometric, quasi-injective PEPS the effective Hamiltonian

would take the form

H 〈n〉
eff ∼−

n∑

j=0
εnP0

(∑
e

Me

) j

P0 (neglecting constants and gq factors) (3.30)

∼−
∑

R
P †
Λ$RPΛ (3.31)

where R runs over all regions containing at most n edges.

Equation (3.31) is precisely the encoded parent Hamiltonian (3.4), and so for n ∼O(r∗) will

have the desired PEPS as its ground state. (Recall from Sec. 3.2 that r∗ is the maximum required

region size to guarantee the canonical parent Hamiltonian has the correct ground space.) The

following sections will be devoted to giving this simple intuition a level of rigor.

Analysis

In order to analyse the ground space of the effective Hamiltonian (3.23), it will be useful to

split it into two parts: H 〈n〉
eff = H̃ 〈n〉

eff + H̃else, where H̃ 〈n〉
eff contains all Γ(q1, . . . , q j ) terms with all

qi positive, and H̃else contains the terms with at least one qi ≤ 0. The motivation for this split

is that gq for q ≤ 0 are proportional to P0, while those with q > 0 are not. This distinction will

prove crucial in the analysis.
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The constraint
∑

i |qi | = j implies that the only Γ terms with all positive qi have all qi = 1. It is

straightforward to demonstrate that H̃ 〈n〉
eff can be written as

H̃ 〈n〉
eff = P0H0P0 +

n∑

j=1
(−1) jε j P0Γ(1,1, . . .1,1︸ ︷︷ ︸

j

)P0 , (3.32)

where we have made use of the fact that b1 = 1
2 . The behavior of Eq. (3.32) actually depends on

the value of ∆̃, in contrast to the complete effective Hamiltonian (3.23) which is independent

of ∆̃. This is because we have neglected some terms which would otherwise cancel out the

effect of ∆̃ in the Hamiltonian.

Our proof of Theorem 10 will proceed in two parts. In the first, we will expand the restricted

Hamiltonian H̃ 〈n〉
eff of Eq. (3.32) to some finite order n∗ ∼ r∗ (recall the definition of r∗ in

Sec. 3.2), and show that this is a valid parent Hamiltonian for a given (quasi-injective, isometric)

PEPS for sufficiently large ∆̃. This may seem suspicious at first glance, as our proof only holds

for sufficiently large values of an unphysical parameter. However, since r∗ is finite for the PEPS

we consider, ∆̃ should be understood as a placeholder for some O(1) (i.e. intensive) constant

that will be important in the subsequent analysis. Although the value of ∆̃ chosen does not

affect the behavior of the effective Hamiltonian (3.23), the value of ∆̃ required to demonstrate

this result captures the magnitude of a relevant energy scale in the problem.

In the second part of the proof, we will restore the neglected terms H̃else to analyse the

complete effective Hamiltonian (3.23) at order n∗. We will show that there exists sufficiently

small ε that the physics of (3.23) is dominated by H̃ 〈n〉
eff . That is, the additional contributions

from H̃else do not affect the ground space nor gappedness of the Hamiltonian. The required

value of ε will be set in part by the value of ∆̃. The neglected terms that we restore in this part

of the analysis have some properties that will be quite useful. Recall that every neglected term

has at least one qi < 1, and gq ∝ P0 for all q < 1. This allows us to decompose any such term

into a product of Γ(1,1, . . . ,1,1) terms. Putting our Hamiltonian into this form (i.e. a sum of

products of Γ(1,1, . . . ,1,1) terms) will allow us to analyse it effectively.

We now prove Theorem 10, beginning with the following lemma.

Lemma 13. There exists O(1) (i.e. intensive) constants ∆̃ and n = n∗ such that H̃ 〈n〉
eff is a valid

parent Hamiltonian for a given quasi-injective, isometric PEPS with ground state energy < 0.

Proof. Consider one of the terms in the restricted effective Hamiltonian of Eq. (3.32):

(−1) jΓ(1,1, . . .1,1) = (−1) j P0

(
j−1∏

i=1
V g̃

)
V P0 (3.33)

=−P0

(
j−1∏

i=1

(∑
e

Me

)
g̃

)(∑
e

Me

)
P0 (3.34)

Similarly to Eq. (3.31), if we could ignore the g̃ terms, this would become a sum of P †
Λ$RPΛ
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operators. Thus we begin our analysis by expanding the operator g̃ as follows:

g̃ = ∆̃P0 +
Q0

H0
= ∆̃P0(Λ)+ 1

∆0
P1(Λ)+ 1

2∆0
P2(Λ)+ . . .+ 1

N∆0
PN (Λ) (3.35)

for Pi (Λ) the projector to the i th excited space of H0. This follows from the equally spaced

spectrum of the unperturbed Hamiltonian H0. In fact, we will be interested only in the effect

of g̃ on local regions R , and so we will generally need only consider excited states up to energy

|R|∆0. Define the restricted operator

g̃ (R) = ∆̃P0(R)+ 1

∆0
P1(R)+ 1

2∆0
P2(R)+ . . .+ 1

|R|∆0
P|R|(R) (3.36)

where the Pi (R) involve only states with excitations localized within R.

Since H0 is a sum of commuting projectors Qs , we can easily enumerate all possible states

with i excitations localized within a region R . The corresponding projectors Pi (R) can each be

expanded as

Pi (R) = PΛ\R
∑

R ′⊆R:|R ′|=i

(
∏

s′∈R ′
Qs′

)(
∏

s∈R\R ′
Ps

)
(3.37)

= PΛ\R

i∑

k=0

(
∑

R ′′⊆R:|R ′′|=(i−k)
(−1)k

(
|R|− (i −k)

k

)(
∏

s∈R\R ′′
Ps

))
(3.38)

where R1 \ R2 contains the sites of R1 that are not in R2, and we have expanded the Qs = 1−Ps

on the second line. Noting that
∑

R ′′⊆R:|R ′′|= j
∏

s∈R\R ′′ Ps =
∑

R ′⊆R:|R ′|=|R|− j PR ′ , we find

g̃ (R) =
(
∆̃+

|R|∑

i=1
(−1)i 1

i∆0

(
|R|
i

))
·P0

+
|R|∑

j=1

(|R|− j∑

k=0
(−1)k 1

( j +k)∆0

(
|R|− j

k

))
·

∑

R ′⊆R:|R ′|=|R|− j
PR ′PΛ\R (3.39)

The sums over k can be evaluated explicitly, and yields the result

g̃ (R) =
(
∆̃− 1

∆0
h|R|

)
P0 +

|R|∑

j=1

(
j

(
|R|

j

))−1

·
(

∑

R ′⊆R:|R ′|=|R|− j
PR ′PΛ\R

)
(3.40)

for h|R| =
∑|R|

j=1
1
j . We can guarantee that the first term in this expression is positive by choosing

∆̃> 1
∆0

h|R|, while it is clear that

(
j

(
|R|

j

))−1

is positive for all j > 0. It is clear that as long as |R|

is finite, we can also choose ∆̃ finite.
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Now returning to Γ(1,1, . . .1,1), we notice that

(−1) jΓ(1,1, . . .1,1) =−P0

(
j−1∏

i=1

(∑
e

Me

)
g̃

)(∑
e

Me

)
P0 (3.41)

=−
∑

{REi }∑
i |REi |= j

∑

{RPi }
c{REi ,RPi }P0Υ{REi ,RPi }P0 (3.42)

for some constants c, recalling the definitions of Υ{REi ,RPi } presented in (3.7) as part of our

definition of quasi-injectivity, and using g̃ (R) for g̃ as appropriate. We have also used the fact

that the global SW effective Hamiltonian obeys the linked cluster theorem so that all terms in

H̃ 〈n〉
eff act within regions of size O(n). Further, we can see by comparison with Eq. (3.40) that for

sufficiently large ∆̃, the constants c will all be positive.

Thus, the restricted effective Hamiltonian at nth order can be expressed as

H̃ 〈n〉
eff =−

n∑

j=0
ε j

∑

{REi }∑
i |REi |= j

∑

{RPi }
c{REi ,RPi }P0Υ{REi ,RPi }P0 (3.43)

This Hamiltonian takes the form of Eq. (3.9), and so as demonstrated in Sec. 3.2.1 it will be a

valid parent Hamiltonian for a quasi-injective isometric PEPS for sufficiently large n. We can

always find some finite order n∗ ∼O(r∗) that will contain all regions in the canonical parent

Hamiltonian (3.2).

Additionally, because all the terms in (3.43) are negative semi-definite, the ground space

energy of H̃ 〈n〉
eff cannot be higher than that of H̃ 〈n−1〉

eff , and so cannot be higher than 0. �

The proof of Lemma 13 is the main part of our analysis that depends explicitly on the spec-

trum of H0. If one were interested in analysing a modified construction with an alternative

unperturbed Hamiltonian (3.14) that is 2-body on the virtual qudits as well as the code qu-

dits (as discussed in Sec. 3.6.1), then the analogue of Lemma 13 may need alternative proof

techniques.

We have thus far considered the restricted Hamiltonian (3.32). Now we will restore terms from

H̃else to analyse the complete effective Hamiltonian (3.23). We will demonstrate that there

exists sufficiently small but non-zero ε such that the ground spaces of these two Hamiltonians

coincide.

The terms neglected in H̃ 〈n〉
eff are linear combinations of the terms Γ(q1, . . . , q j ) where there

exists some i such that qi < 1. Since gq ∝ (
gq

)2 for q < 1, these Γ(q1, . . . , q j ) can be rewritten

as Γ(q1, . . . , qi−1)Γ(qi+1, . . . , q j ) up to constant factors. By making use of the decomposition

(3.40) we can expand any Γ(q1, . . . , q j ) into linear combinations of Υ terms. Decomposing

each Γ in this way, we can rearrange the effective Hamiltonian into sums of terms acting on

each region of the lattice. The linked-cluster theorem shows that all non-local terms vanish.
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Together with the guarantee that the degree ofΛ is bounded, this guarantees that for finite n

only a finite number of terms act on each region. Thus there exist finite constants ci > 0 and

c̃i ∈R such that

H 〈n〉
eff =−

n∑

j=0

n− j∑

k=0

∑

{REi }∑
i |REi |= j

∑

{RPi }

∑

{RE ′
i
}

∑
i |RE ′

i
|=k

∑

{RP ′
i
}

(
ε j c{REi ,RPi }P0Υ{REi ,RPi }P0

+εk c{RE ′
i
,RP ′

i
}P0Υ{RE ′

i
,RP ′

i
}P0 +ε j+k c̃{REi ,RPi },{RE ′

i
,RP ′

i
}P0Υ{REi ,RPi }Υ{RE ′

i
,RP ′

i
}P0

)

(3.44)

where c̃{REi ,RPi },{RE ′
i
,RP ′

i
} = 0 if |REi | = 0 or |RE ′

i
| = 0. If we could also guarantee that all c̃i > 0,

then the proof that H 〈n〉
eff is a parent Hamiltonian would be immediate. Unfortunately this will

not be the case in general, but noting that ε j ,εk ≥ 1
εε

j+k for terms with non-vanishing c̃, we

use following simple lemma (given without proof) to show that the ground spaces of H 〈n〉
eff and

H̃ 〈n〉
eff coincide for sufficiently small ε.

Lemma 14. Consider Hermitian operators A,B with eigenvalues η1(A) ≥ η2(A) ≥ . . . ≥ ηn(A)

and η1(B) ≥ η2(B) ≥ . . . ≥ ηn(B). If A and B share a common eigenspace H with eigenvalues

η1(A) and η1(B) respectively, then H is also an eigenspace of

C = A−λB (3.45)

corresponding to the largest eigenvalue of C , for λ< λc = ∆A
2||B || , with ∆A = η1(A)−η2(A). Fur-

thermore, C has a finite gap ∆C > 2||B ||(λc −λ) between largest and second largest eigenvectors.

Since ε j ,εk ≥ 1
εε

j+k , we can immediately apply Lemma 14 to conclude that there exists ε> 0

such that each bracketed term has the same ground space as if all c̃ were zero (since we are

guaranteed that an isometric, quasi-injective PEPS state corresponds to the highest eigenvalue

of anyΥ operator). Immediately we can conclude that H 〈n〉
eff has the same ground space as H̃ 〈n〉

eff .

If we consider each bracketed term as a (local) operator, this Hamiltonian is also frustration-

free. Since the c and c̃ were implicitly functions of ∆̃, the critical value of ε will similarly be set

in part by the value of ∆̃.

Finally, to complete the proof of Theorem 10, we note that because all of the c, c̃ coefficients in

Eq. (3.44) are O(1), the gap of the effective Hamiltonian for our system must be at least O(εn).

Additionally, we can similarly see that ε can be chosen small enough that H 〈n〉
eff has ground

space energy no greater than H 〈0〉
eff . Because the energy of any state in the image of Q0 is 0, and

the ground state energy of H 〈0〉
eff is 0, at least one ground state of H 〈n〉

eff must be in the support of

P0. This means that it is sensible to discuss the restriction of Eq. (3.44) to P0. In particular, this

is useful because (3.44) in its general form is not a sum of local terms (note that P0 is a highly

non-local operator, having support on the entire lattice), while it does have this feature after

being restricted to P0.
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3.5 Stability of Effective Hamiltonian

Having proved Theorem 10, we will now show that the ground space of H 〈n〉
eff does not change

dramatically (i.e., will remain in the same phase) as we include additional contributions

from higher order terms in the perturbation expansion, as detailed in Theorem 11. In this

context, we will say that H 〈n〉
eff is stable to these additional terms. To prove Theorem 11, we

will require that the canonical parent Hamiltonian of the PEPS under consideration obeys

the Local-TQO and Local-Gap conditions, and so the PEPS is topologically ordered. This

will allow us to use the results on stability of topologically ordered systems under quasi-local

perturbations [MZ13, BHM10].

Let us outline the proof strategy, which proceeds in two stages. In order to analyse the stability

of the effective Hamiltonian, it will be convenient to make use of the local Schreiffer-Wolff

perturbation method in contrast to the global SW method used in Sec. 3.4. The local SW

method produces an effective Hamiltonian expansion with locality properties that we will

exploit to prove our stability results. With this in mind, the first stage of our proof will be

to transform the global SW effective Hamiltonian derived in the previous section into the

corresponding local SW effective Hamiltonian and showing that the properties of the ground

space are preserved under this transformation. This is captured by the following lemma.

Lemma 15. For a quasi-injective, isometric, topologically ordered PEPS, the global SW effective

Hamiltonian of our model at order n∗ is in the same phase as the local SW effective Hamiltonian

at order n∗ for sufficiently small ε> 0.

In order to prove this lemma, we will show that the transformation between the global and

local effective Hamiltonians can be achieved by the addition of a sufficiently small quasi-

local operator. This allows us to use the topological stability theorem to argue that the two

Hamiltonians are in the same phase. We then also give a lemma showing that if the global SW

effective Hamiltonian is topologically stable, then so is the local SW effective Hamiltonian.

At this point in the analysis we will simply have demonstrated that the ground space of one

finite order effective Hamiltonian is in the same phase as the ground space of another finite

order effective Hamiltonian. For the second stage of our proof, we will use the structure of the

local SW perturbation expansion to argue that the higher-order contributions to the local SW

Hamiltonian are both small and quasi-local. This will allow us to again apply the topological

stability theorem and prove the following:

Lemma 16. For a quasi-injective, isometric, topologically ordered PEPS, the local SW Hamilto-

nian of our model at order n∗ is in the same phase as our effective Hamiltonian at any order

k ≥ n∗, for sufficiently small ε> 0.

The two lemmas 15-16 constitute a proof of Theorem 11.

Throughout the following analysis, we will make use of the fact that both n∗ and the maximum
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coordination number ofΛ are O(1) constants in N and ε. We will also often use locality prop-

erties of operators in this section. Although the majority of the Hamiltonians and operators

we consider in this section are highly non-local (e.g., the unperturbed ground space projector

P0), we will often use the fact that these operators are local when restricted to the image of P0.

We will often loosely refer to an operator as local or quasi-local, when in fact it is clear from

context that this is only true after the restriction to the unperturbed ground space.

3.5.1 Transformation to local Schrieffer-Wolff effective Hamiltonian

To analyse the stability properties of the effective Hamiltonian (3.23), we will consider a related

effective Hamiltonian derived from the local Schrieffer-Wolff method [DFRBF96, BDL11]. (The

previous method has been referred to as the global SW method to avoid confusion.) As with the

global SW method, the local SW method is based on a transformation that block diagonalizes

the Hamiltonian with respect to the ground space and excited space of the unperturbed

Hamiltonian. In contrast to the global SW transformation, the local SW transformation does

not achieve this block diagonalization exactly, but only up to corrections of order O(εn+1) for a

given order n. However, it is constructed in a manifestly local way, which allows us to analyse

some properties of this expansion much more directly.

Local Schrieffer-Wolff transformation

Before proceeding, we will briefly define and review some relevant properties of the local SW

method, following Ref. [BDL11]. At a given order n we construct a sequence of anti-Hermitian

operators

T 〈n〉 =
n∑

q=1
εq Tq (3.46)

such that all Tq are (q +1)-local and

∥∥∥P0eT 〈n〉
He−T 〈n〉

Q0 +Q0eT 〈n〉
He−T 〈n〉

P0

∥∥∥≤O(Nεn+1) (3.47)

for sufficiently small ε. We can decompose the transformed Hamiltonian into a block-

diagonalized part and a “garbage” part as

eT 〈n〉
He−T 〈n〉 = H 〈n〉

loc +Hgarbage (3.48)

where Q0H 〈n〉
loc P0 = P0H 〈n〉

loc Q0 = 0. We use the subscript ‘loc’ to denote operators derived from

the local SW method where there may be confusion with similar operators from the global SW

method. Because H 〈n〉
loc is block-diagonal, Eq. (3.47) implies that ‖Hgarbage‖ is O(Nεn+1).

The effective Hamiltonian at order n is defined as the restriction of H 〈n〉
loc to the ground space
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of the unperturbed Hamiltonian H0:

H 〈n〉
eff,loc = P0H 〈n〉

loc P0 (3.49)

In order to explicitly compute H 〈n〉
loc , we first define a series of Hermitian operators

V ( j )
loc =

j+1∑
q=2

1

q !

∑

1≤ j1,..., jq≤n
j1+...+ jq= j+1

[T j1 , [T j2 , [· · · , [T jq , H0] · · · ]]]

+
j∑

q=1

1

q !

∑

1≤ j1,..., jq≤n
j1+...+ jq= j

[T j1 , [T j2 , [· · · , [T jq ,V ] · · · ]]] (3.50)

where V (0)
loc =V . We represent each of these operators as a sum of local terms

V ( j )
loc =

∑

R⊆Λ
V ( j )

R,loc (3.51)

where each V ( j )
R,loc is Hermitian and acts non-trivially only on spins within region R. This

decomposition is chosen as the expansion of V ( j )
loc in some orthogonal operator basis. Is can

be shown [BDL11] that V ( j )
loc is ( j +2)-local, so we can guarantee that this local decomposition

need only consider ( j +2)-local regions R. Each of the T j operators take the form

T j =
∑

R⊆Λ

(
QR

HR
V ( j−1)

R,loc PR −PRV ( j−1)
R,loc

QR

HR

)
(3.52)

where PR ≡∏
s∈R Ps , QR ≡ 1−PR , and HR ≡∑

s∈R Qs . Equations (3.50) and (3.52) can be solved

recursively. Given this solution, we find

H 〈n〉
loc = H0 +

n∑

j=1
ε j

∑

R⊆Λ

(
PRV ( j−1)

R,loc PR +QRV ( j−1)
R,loc QR

)
(3.53)

Properties of the local Schrieffer-Wolff transformation

Here we will state a number of known properties of the local Schrieffer-Wolff transformation

that will be useful in our analysis [BDL11].

Although Eqns. (3.50) and (3.52) define V ( j )
loc for arbitrary (positive, integral) j , only those V ( j )

loc
with j < n appear in H 〈n〉

loc . The remaining terms can be used to write Hgarbage as

Hgarbage =
∞∑

j=n+1
ε j V ( j−1)

loc (3.54)

As would be expected, V ( j )
loc is independent of n for j < n, while it is implicitly dependent on
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n for j ≥ n +1. For sufficiently small ε, the norm of Hgarbage can be bounded as ‖Hgarbage‖ ≤
c∆0Nεn+1 for a constant c that depends on n.

The local SW method obeys the linked-cluster theorem, and so we can guarantee that H 〈n〉
eff,loc

is O(n)-local. It is also the case that at a fixed order n, the effective Hamiltonians found by the

global and local SW methods can be related by a transformation K 〈n〉 up to an error

H 〈n〉
eff,glob −eK 〈n〉

H 〈n〉
eff,loce−K 〈n〉 ≡ δ̂ (3.55)

with ‖δ̂‖ ≤O(N |ε|n+1) for a system with N sites and |ε| < 1, and where K 〈n〉 is O(n)-local. This

is shown in Ref. [BDL11, Lemma 4.4]. We denote the global SW effective Hamiltonian by

H 〈n〉
eff,glob and the local SW effective Hamiltonian by H 〈n〉

eff,loc to avoid confusion. In the following

analysis, we will prove that δ̂ is quasi-local with favourable decay parameters. In doing so, we

will prove Lemma 15.

Because H 〈n〉
eff,glob, H 〈n〉

eff,loc and K 〈n〉 are all O(n)-local, we can decompose them into operators

acting non-trivially only on connected regions ofΛwith bounded size. Denote such a decom-

position of an operator X as X =∑
R XR . We now define a bound on the strength of an operator

as

‖X ‖max = max
s∈Λ

∥∥∥∥∥
∑

R3s
XR

∥∥∥∥∥ (3.56)

It can be shown that ‖K 〈n〉‖max =O(|ε|) [BDL11]. In fact, we can expand K 〈n〉 as a Taylor series

in ε as

K 〈n〉 =
n∑

j=1
ε j K j (3.57)

for some O( j )-local, block-diagonal K j with ‖K j‖max ∼O(1).

Transforming from global to local Schrieffer-Wolff effective Hamiltonians

Given the properties of the local Schrieffer-Wolff transformation noted above, we now demon-

strate that δ̂ of Eq. (3.55), the operator that relates the local and global SW effective Hamil-

tonians, is quasi-local. This quasi-locality will allow us to argue that H 〈n〉
eff,glob is stable under

addition of δ̂, and thus the gap does not close along a path from H 〈n〉
eff,glob to H 〈n〉

eff,loc.

Lemma 17. δ̂ is
(
O(1),O(εO(1))

)
-quasi-local when restricted to the space P0.

Proof. Recall from our definition of quasi-locality in Sec. 3.2, a (J ,µ)-quasi-local operator has

interaction strength that decays with radius r as Jµr . In order to show that δ̂ is quasi-local, we

will explicitly construct a local decomposition for it. For this purpose it will be convenient to
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introduce operators

ΘR (k) =
k∑

j=0

1

j !
[K 〈n〉, ·] j H 〈n〉

eff,loc,R (3.58)

for H 〈n〉
eff,loc =

∑
R H 〈n〉

eff,loc,R an O(n)-local decomposition of H 〈n〉
eff,loc with ‖H 〈n〉

eff,loc,R‖ =O(1), and

where [A, ·] j B is the j -fold nested commutator of A and B , e.g. [A, ·]0B = B , [A, ·]1B = [A,B ],

[A, ·]2B = [A, [A,B ]], etc.

Note thatΘR (∞) = eK 〈n〉
H 〈n〉

eff,loc,R e−K 〈n〉
. Because K 〈n〉 and H 〈n〉

eff,loc,R are both O(n)-local (when

restricted to the image of P0), this leads us to considerΘR (k) to be a O(kn)-local truncation of

eK 〈n〉
H 〈n〉

eff,loc,R e−K 〈n〉
. To relate this new operator to δ̂, it is convenient to rewrite the global SW

effective Hamiltonian as [BDL11]

H 〈n〉
eff,glob =

n∑

j=0

∑
1≤q0,q1,...,q j≤n

q0+...+q j≤n

1

j !
εq0+...+q j [Kq1 , [Kq2 , . . . [Kq j , H 〈q0〉

eff,loc −H 〈q0−1〉
eff,loc ] . . .]] (3.59)

Because we are interested in the local decomposition of δ̂, we also define

H 〈n〉
eff,glob,R =

n∑

j=0

∑
1≤q0,q1,...,q j≤n

q0+...+q j≤n

1

j !
εq0+...+q j [Kq1 , [Kq2 , . . . [Kq j , H 〈q0〉

eff,loc,R −H 〈q0−1〉
eff,loc,R ] . . .]]

(3.60)

where we note that H 〈n〉
eff,glob,R need not act only within R, even when restricted to the P0

subspace (though it is local). It is then straightforward to see that the difference between

H 〈n〉
eff,glob,R andΘR (n) consists only of those terms in the sum with

∑
i qi > n, i.e.

H 〈n〉
eff,glob,R −ΘR (n) =−

n∑

j=0

1

j !

∑
1≤q0,q1,...,q j≤n

q0+...+q j>n

εq0+...+q j

· [Kq1 , [Kq2 , . . . [Kq j , H 〈q0〉
eff,loc,R −H 〈q0−1〉

eff,loc,R ] . . .]] (3.61)

The norm of this difference is

‖H 〈n〉
eff,glob,R −ΘR (n)‖ ∼O(εn+1) (3.62)

for sufficiently small ε, since each H 〈q0〉
eff,loc,R fails to commute with at most a constant number

of local terms in each Kq .

We now define a local decomposition of δ̂ making use of theseΘR (n) operators. This decom-

position is not unique, and we may choose it as convenient so long as it has the property that

δ̂ = ∑
s,r δ̂s,r for δ̂s,r acting only within a region of radius r around site s. For our purposes,
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we are interested mainly in decay of δ̂ on long length scales, and so we simply collect all the

terms with radius smaller than some critical length scale κ. Specifically, we choose κ∼ n2 as

the maximum radius of operators H 〈n〉
eff,glob,R −ΘR (n) over all R. With this in mind, for all s we

define

δ̂s,r = 0 for r < κ (3.63)

δ̂s,κ = H 〈n〉
eff,glob,Rs

−ΘRs (n) (3.64)

where the regions Rs here have been put into one-to-one correspondence with the sites s in

some canonical way.

In a similar spirit, we need not define δ̂s,r for all r . Instead, we will only define it for some set

of radii rk for each k > n, as follows

δ̂s,rk =ΘRs (k)−ΘRs (k +1) for k > n (3.65)

such that δ̂s,rk acts within radius rk of site s as required. SinceΘR (k) is O(kn)-local, this implies

that rk ∼O(kn). It can clearly be seen that
∑

s,r δ̂s,r = δ̂. Given the facts that ‖δ̂s,κ‖ ∼O(εn+1)

and (since ‖K 〈n〉‖ ∼O(ε) and n,‖H 〈n〉
eff,loc,R‖ =O(1))

‖δ̂s,rk‖ ≤ ‖[K 〈n〉, ·]k+1H 〈n〉
eff,loc,Rs

‖ ≤O(εk+1) (3.66)

we conclude that δ̂ is
(
O(1),O(εO(1))

)
-quasi-local (when acting on the space P0) as claimed. �

Now we can make use of the fact that ‖δ̂s,r ‖ ≤O(εn+1) for all s,r to provide some alternative

quasi-local parameters for δ̂. Consider the following Lemma (presented without proof).

Lemma 18. Consider a function f (r ) where f (r ) ≤ abr and f (r ) ≤ c for 0 < b < 1 and a,c > 0.

Then f (r ) ≤ c1−λaλbrλ for all 0 <λ< 1.

This implies that δ̂ is
(
O(ε(n+1)(1−λ)),O(ελO(1))

)
-quasi-local for any choice of 0 <λ< 1. Particu-

larly, let us choose λ< 1
n+1 . Importantly, this means that by choosing ε sufficiently small, we

can make the first parameter of the quasi-local decay arbitrarily small compared to the O(εn)

gap of H 〈n〉
eff,glob, and the second parameter can be made arbitrarily small simultaneously by

decreasing ε.

Because H 〈n∗〉
eff,glob is frustration free, satisfies Local-TQO and Local-Gap by assumption, and has

a gap of O(εn∗), we can apply the topological stability theorem of Ref. [MZ13] for sufficiently

small ε to show that the gap of H 〈n∗〉
eff,glob remains O(εn∗) along a path to eK 〈n∗〉

H 〈n∗〉
eff,loce−K 〈n∗〉

. In

particular, this shows that eK 〈n∗〉
H 〈n∗〉

eff,loce−K 〈n∗〉
is in the same phase as H 〈n∗〉

eff,glob.

Since the Hamiltonians we consider are only local when restricted to the space P0, one might

be concerned that the topological stability theorems do not apply. However, we could instead

consider Hamiltonians which are manifestly local on the entire Hilbert space by replacing

each operator HR acting on a region R with PR HR PR , and considering
∑

PR HR PR instead of
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∑
P0HR P0. Though we do not present it in this way for clarity, the analysis would proceed in

the same way and the same conclusions would be reached.

To complete the proof of Lemma 15, we appeal to the following lemma, as proven in Ref. [CGW10]

Lemma 19 ([CGW10]). Given a gapped quasi-local Hamiltonian H and local Hamiltonian X ,

the ground states of ei X He−i X are in the same phase as those of H.

Because i K 〈n〉 can be regarded as a local Hamiltonian, the proof of Lemma 15 is an immediate

corollary to Lemma 19. That is, the local SW effective Hamiltonian at order n∗ has the desired

quasi-injective, isometric, topologically ordered PEPS as its ground state. This is the main

result of this section.

Before we proceed, it will be useful to demonstrate an additional property of the effective

Hamiltonian H 〈n∗〉
eff,loc. In the following sections, we would like to apply the topological stability

theorem (Theorem 9) to demonstrate that the ground space of H 〈n∗〉
eff,loc is stable against some

additional terms. Since the Local-TQO property itself is stable against perturbations which

do not close the (local) gap [CMPGS13], we can also argue that H 〈n∗〉
eff,loc satisfies Local-TQO

and Local-Gap. Unfortunately we have not shown that H 〈n〉
eff,loc is frustration-free, and so we

cannot directly apply Theorem 9. However, the following Lemma will allow us to leverage the

topological stability of H 〈n∗〉
eff,glob to prove topological stability of H 〈n∗〉

eff,loc.

Lemma 20. Consider a Hamiltonian HT O satisfying the assumptions of Theorem 9. That is, for

any quasi-local perturbation V there exists some ε0 > 0 such that HT O +εV is in the same phase

as HT O for all 0 ≤ ε< ε0. Then for each Hamiltonian H ′ in the same phase as HT O , there exists

some ε′0 > 0 such that H ′+ε′V is in the same phase as H ′ for all 0 ≤ ε′ < ε′0.

Proof. Define a smooth, invertible, linear quasi-local transformation T that relates HT O

and H ′, i.e. T (HT O) = H ′. We are guaranteed that such a transformation exists from the fact

that H ′ and HT O are in the same phase. This implies that T −1(V ) ≡ V ′ is quasi-local and

T −1(H ′+ε′V ) = HT O +ε′V ′. Because there exist non-zero ε such that HT O +εV ′ is in the same

phase as HT O by the quasi-locality of V ′, this also implies that there exist non-zero ε′ such

that H ′+ε′V is in the same phase as H ′. �

3.5.2 Stability to higher order contributions

Now that we have shown that H 〈n∗〉
eff,loc is in the same phase as H 〈n∗〉

eff,glob, we can make use of

the explicit locality structure of the local SW transformation to bound the effect of higher

order contributions to the effective Hamiltonian. The main technical result we will derive here

is the fact that Hgarbage is quasi-local, and so the ground state and gap of H 〈n∗〉
eff,loc are stable

under addition of this garbage term. Following this, we can define a sequence of effective

Hamiltonians to arbitrary order (very similar to the local SW effective Hamiltonians) that are

in the same phase as H 〈n∗〉
eff,loc to arbitrary finite order, completing the proof of Lemma 16.
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Our analysis is based on the fact that H 〈n〉
loc obeys the linked cluster theorem. This follows

directly from the fact that V ( j−1)
loc is ( j +1)-local. Any non-local term arising in the expansion

of V ( j )
loc must vanish. Defining V ( j )

s,loc =
∑

R3s V ( j )
R,loc, we can also bound the strength of V ( j )

loc as

‖V ( j )
loc ‖max = max

s∈Λ
‖V ( j )

s,loc‖ ≤α
(

n2

∆0β

) j

(3.67)

for some constants α,β> 0 [BDL11].

Now, because V ( j )
R,loc are components of V ( j )

loc in an orthogonal operator basis, removing some

set of them from V ( j )
s,loc cannot increase ‖V ( j )

s,loc‖. That is,
∥∥∥∑

R ′⊆{R:R3s} V ( j )
R ′,loc

∥∥∥≤ ‖V ( j )
s,loc‖.

This allows us to define a decomposition of Hgarbage (recall Eq. (3.54)) into terms acting within a

region of radius r around each site s. These will be operators of the form εr−1 ∑
R ′⊆{R:R3s} V (r−2)

R ′,loc .

For a fixed n, we then have that for ε< ∆0β

n2 we can bound the norms of these operators by the

exponential decay

∥∥∥εr−1
∑

R ′⊆{R:R3s}
V (r−2)

R ′,loc

∥∥∥≤
(
α∆2

0β
2

εn4

)(
εn2

∆0β

)r

. (3.68)

Therefore, Hgarbage is
(
O(ε−1),O(ε)

)
-quasi-local.

Because we also know that ‖Hgarbage‖ does not include terms V (r−2) for r ≤ n +1, we can give

an alternative bound on the decay parameters of Hgarbage. Making use of Lemma 18, we find

that Hgarbage is also
(
O(εn+1−λ(n+2)),O(ελ)

)
-quasi-local. Importantly, for λ< 1

n+2 , the first of

these parameters is O(εn+δ) for δ> 0, and both parameters can be made arbitrarily small by

decreasing ε. This is convenient as it allows us to use the topological stability theorem to

analyse the stability of H 〈n〉
eff,loc to contributions from Hgarbage.

As the gap of H 〈n∗〉
eff,loc is O(εn∗), by making ε small enough, we can make the strength of Hgarbage

arbitrarily small compared to the gap for λ< 1
n∗+2 . By the topological stability theorem, we can

find ε> 0 such that H 〈n∗〉
eff,loc +Hgarbage is in the same phase as H 〈n∗〉

eff,loc and has a gap of O(εn∗).

Given this result, we can write a sequence of effective Hamiltonians of the form

H 〈k〉
eff,loc+ ≡ P0eT 〈k〉

He−T 〈k〉
P0 (3.69)

= H 〈k〉
eff,loc +P0H 〈k〉

garbageP0 (3.70)

where we note that Hgarbage has previously been implicitly dependent on the order of pertur-

bation theory, and so we restore this explicit dependence here. Given the fact that H 〈n∗〉
eff,loc +
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H 〈n∗〉
garbage is in the same phase as H 〈n∗〉

eff,loc, we can now write for any k ≥ n∗

H 〈k〉
eff,loc+ = P0eT 〈k〉

e−T 〈n∗〉
(
H 〈n∗〉

loc +H 〈n∗〉
garbage

)
eT 〈n∗〉

e−T 〈k〉
P0 (3.71)

= P0eT 〈k〉
e−T 〈n∗〉

(
H 〈n∗〉

eff,loc +H 〈n∗〉
garbage

)
eT 〈n∗〉

e−T 〈k〉
P0 (3.72)

Because i T 〈k〉 are local Hamiltonians for any finite k, we can appeal to Lemma 19 to show

that H 〈k〉
eff,loc+ and H 〈n∗〉

eff,loc are indeed in the same phase when restricted to P0, and because

both Hamiltonians act trivially outside of P0, this concludes the proof of both Lemma 16 and

Theorem 11.

3.6 Discussion

Our construction yields a 2-body Hamiltonian described by Eq. (3.13) that is a gapped parent

Hamiltonian for a state in the same phase as a desired PEPS to all orders of perturbation

theory. We have made use of the fact that two ground states of gapped local Hamiltonians

are in the same phase if one Hamiltonian can be smoothly deformed into the other without

closing the gap. This also implies that expectation values of local observables deform smoothly

along the same path. Because in the limit ε→ 0 both the global and local Schrieffer-Wolff

transformations tend to the identity, our construction gives a parent Hamiltonian for a state

which tends towards the desired PEPS state as ε→ 0. Expectation values of local observables

can therefore be made arbitrarily close to those of the PEPS under consideration by choosing

ε arbitrarily small.

3.6.1 Locality on virtual qudits

Our model as defined in Sec. 3.3.1 gives a 2-local Hamiltonian where the code gadgets of our

construction are considered as indivisible quantum systems. Instead of treating a code gadget

as a single quantum system, we could also be interested in implementing the virtual qudits

as distinct physical systems. The code gadget Hamiltonian as defined at a site s would then

involve deg(s)-body interactions in general. There are two strategies that can be applied to

also reduce these interactions to 2-body terms on the virtual qudits. The first approach is

more elegant but less general, while the second is universally applicable.

The most important feature of a code gadget that we must preserve in a procedure like this is

its ground space. With this in mind, the first strategy involves simply finding an explicit 2-body

Hamiltonian whose ground space is identical to the code gadget Hamiltonian in Eq. (3.14).

This is the approach taken in Refs. [BR06] and [BFBD11]. When making use of this strategy,

the modification of the spectral structure of the code-gadget Hamiltonian means that our

technical proofs in Sec. 3.4 are not immediately applicable (particularly Lemma 13). However,

it seems reasonable to conjecture that the construction is insensitive to these details and

similar results could be found for any sensible choice of code gadget Hamiltonian.

95



Chapter 3. Perturbative Two-body Parent Hamiltonians for Projected Entangled Pair
States

The second strategy is to simply apply more conventional perturbation gadget techniques

to the code gadget Hamiltonian directly, reducing it to 2-body interactions using further

perturbative ancillae (for example following Ref. [JF08]). Because these perturbation gadgets

could be applied within each code gadget separately, they would be approximating systems

involving only a fixed finite number of qudits. For this reason, many of the difficulties with

applying general perturbation gadgets to infinite systems could be avoided. Additionally,

because the effective Hamiltonian of this system will be identical to Eq. (3.14), we expect

that the proofs in Sec. 3.4 could be adapted to this situation (given an appropriately chosen

perturbative hierarchy). Although it could be applied to an arbitrary system, this is clearly the

less elegant option.

3.6.2 Symmetries of the model

In previously studied examples of these techniques [BR06, BFBD11], the local symmetries

of the states were exactly captured by this construction. That is, for each local symmetry of

these models, a corresponding encoded symmetry can be found which commutes with the

full Hamiltonian of the system, including the perturbative couplings. In generic perturbative

approaches one would expect only to recover these symmetries approximately.

Exactly capturing the local symmetries of the target states is not a feature of our construction

in general. There exist cases where some or all of the local symmetries are exactly captured, but

this does not seem to be generic. An example of this is shown in Sec. 3.7, where a subset of the

full symmetries of the model are preserved exactly, and the rest only preserved approximately.

3.6.3 Application to RVB states

Constructing and analysing parent Hamiltonians for resonating valence bond (RVB) states is

of interest for modelling spin liquids and other exotic quantum phases. Methods to construct

such parent Hamiltonians for the Kagome lattice require at least 12-body interactions [Sei09].

Recently, an alternative construction for parent Hamiltonians of these states has been pro-

posed, based on a PEPS representation of the RVB states on this lattice [SPCPG12]. Canonical

parent Hamiltonians for this PEPS require at least 19-body interactions.

Because the RVB PEPS is Z2-injective [SPCPG12], we anticipate that our analysis could be

applied to this case and as such a 2-body parent Hamiltonian of the form (3.13) may be

obtained for a state in the same phase as the RVB state (and in the limit that the perturbation

parameter vanishes, should reproduce the RVB state precisely). In this context, we remind the

reader that our construction yields an encoded version of the desired state. The dimension of

the Hilbert spaces associated with each site will be larger, and there will also be ancilla systems

required to mediate coupling between the sites (corresponding to tensors with no physical

indices in the description of Ref. [SPCPG12]).
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(a) (b)

γγ′

β

β′α
α′

(c)

Figure 3.2 – (a) The double semion model is typically presented on a honeycomb lattice
with qubits (blue) on links. (b) The PEPS representation of the same region of the lattice. At
vertices of the honeycomb lattice, we place 6 virtual (orange) qubits, which will be projected
into a 4-dimensional (yellow) code qudit. Solid lines here denote edges of the PEPS graph,
and so connect virtual qubits in maximally entangled states. (c) Virtual qubit labels. For
triangles oriented in the opposite direction, rotate these definitions by π. States are labelled as
|αα′;ββ′;γγ′〉.

3.7 Example: The Double Semion Model

We now present an illustrative example of our construction. The double semion model is a

simple example of a string-net model [LW05], whose ground states are known to have exact

PEPS descriptions [GLSW09, BAV09]. In fact, the double semion model has a particularly

simple PEPS description [GLW08, GLSW09] that we can exploit to construct a 2-body system

whose low energy effective Hamiltonian is an encoded parent Hamiltonian for the double

semion ground space. These states are examples of both (G ,ω)-injective PEPS and MPO-

injective PEPS.

We will use the double semion model to demonstrate some of the features of our construction.

The analysis in this section should be understood as illustrative of the features of the Hamil-

tonian (3.13) rather than as an example of the theorems proven in Sections 3.4 and 3.5. As

such, we make use of a simplified formalism that sacrifices some rigor for clarity. The general

analysis as shown in Sections 3.4 and 3.5 can be applied to this example to demonstrate the

relevant features more rigorously.

The double semion state is typically defined on a honeycomb lattice with qubits on the edges,

as in Fig. 3.2a. It is conventionally defined as the ground state of the Hamiltonian [LW05]

Hds =−
∑
v

∏

j∼v
σz

j +
∑
p

(
∏

k∈p
σx

k

)(
∏

m∼p
i

1−σz
m

2

)
(3.73)

where v (p) are vertices (plaquettes) of the honeycomb lattice, σ are the Pauli matrices, j ∼ v

runs over qubits incident to vertex v , k ∈ p runs over edges bounding plaquette p, and m ∼ p
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runs over edges incident to p (i.e. edges sharing one vertex with p).

We can represent the ground state of this Hamiltonian as a PEPS by placing 2 pairs of maximally

entangled pairs of qubits between each vertex of the honeycomb lattice, as shown in Fig. 3.2b,

and applying a projection map P s at each vertex s to map from the 26-dimensional virtual

space to a 4-dimensional code space. (Note this is a slightly different PEPS representation for

the double semion ground state as compared to those presented in Refs. [GLW08, GLSW09,

BAV09].) The correspondence between these code qudits and the qubits of the double semion

model is not obvious at this stage, but will become clear as we proceed. At this point we should

emphasise the distinction between the honeycomb lattice, on which the double semion model

is typically defined (Fig. 3.2a), and the PEPS lattice, whose edges correspond to maximally

entangled virtual pairs (Fig. 3.2b). In particular, we stress that the sites of the PEPS lattice

(where P s is applied) correspond to vertices of the honeycomb lattice, and not edges.

For the most part of this analysis, we will neglect normalization for the sake of clarity. With

this in mind, and the labelling conventions of Fig. 3.2c, we can write the projection map P s as:

P s =
∑

α,β,γ,i , j ,k∈Z2

Tαβγ ·δi=α+βδ j=β+γδk=γ+α|i j k〉c〈αβ;βγ;γα|s (3.74)

where the c subscript on the ket indicates that it is a code space state, addition is modulo 2,

and we have defined

Tαβγ =





1 α+β+γ= 0,3

i α+β+γ= 1

−i α+β+γ= 2

(3.75)

It should be clear that although there are in principle 8 states that could be labelled by i , j ,

and k, these variables are not independent. In fact, there are only 4 non-vanishing states of

this form, given explicitly by

P †|000〉c = |00;00;00〉+ |11;11;11〉 (3.76)

P †|110〉c = i |10;01;11〉− i |01;10;00〉 (3.77)

P †|101〉c = i |01;11;10〉− i |10;00;01〉 (3.78)

P †|011〉c = i |11;10;01〉− i |00;01;10〉 (3.79)

We call these values of {i j k} the allowed values. The site projector is then

Ps =
∑

{i j k}
P †

s |i j k〉〈i j k|c,sP s (3.80)

where the sum only runs over allowed values of {i j k}, and the c, s subscript denotes code

space states associated with site s.
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The reason we use this redundant description of these states is that it allows us to identify the

states i , j , and k as the states of the qubits of the double semion model. That is, each variable

is associated with an edge of the honeycomb model. That some states (e.g. |100〉c ) are not

in the image of P s is a consequence of the fact that these states do not belong to the double

semion ground state, which is what this PEPS describes. One might also worry that we have

two variables labelling the state of each edge (one for each vertex on which the edge ends).

However, we will see that this is resolved in our analysis.

Our construction proceeds by simulating the projection maps with code gadgets, using a

Hamiltonian of the form of Eq. (3.13). Recall that the Hamiltonian for a code gadget is simply

Qs = 1−Ps . Because our virtual systems are qubits, each edge of the PEPS lattice has an

associated operator

Me = |00〉〈00|e +|11〉〈11|e +|00〉〈11|e +|11〉〈00|e (3.81)

The full Hamiltonian of our system is then given by

H =
∑

s
Qs −ε

∑
e

Me (3.82)

where s (e) runs over the sites (edges) of the PEPS lattice.

3.7.1 Effective Hamiltonian

In this example, we will not use the more rigorous global Schrieffer-Wolff perturbation method

as in Sections 3.4.2 and 3.4.3. We instead use the simpler self-energy expansion as used in

Refs. [Kit06, BFBD11]. This amounts to neglecting the Γ(q1, . . . , q j ) terms in the global SW

expansion with any |qi | 6= 1.

Given the Hamiltonian

H = H0 +εV (3.83)

the self-energy low energy effective Hamiltonian is given by

Heff,SE = E0 +
∑
n
εnP0V

(
Q0

H0
V

)(n−1)

P0 (3.84)

where P0 is the projector to the ground space of H0 with energy 0, and Q0
H0

is defined to vanish

on ground states of H0. In writing the effective Hamiltonian in this way, we have neglected the

dependence of the ground state energy on the perturbation. For our purposes, O(1) constants

are unimportant, so we will commonly neglect them in our analysis.

If we now explicitly evaluate the expansion (3.84) for the double semion model, we will see

that the terms arising will provide a parent Hamiltonian for the desired state. We have for the
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low energy effective Hamiltonian

Heff,ds =−
∑
n
εnP0

(∑
e

Me

)(
Q0

H0

(∑
e

Me

))(n−1)

P0 (3.85)

We now evaluate this sum order by order. At 0th order, the effective Hamiltonian can simply be

taken to be

H 〈0〉
eff,ds =−P0 (3.86)

This term may seem trivial, but in fact it is not so if we consider it in terms of the qubits in the

double semion model. This term enforces the constraint that only allowed values of |i j k〉p at

each vertex are in the ground space. Thinking about these variables i , j , and k as labels for the

states of the three qubits on the edges incident to any given vertex, this constraint plays the

same role as the term −∏
j∼v σ

z
j in Eq. (3.73).

At 1st order, we find that the only terms to appear are also proportional to P0, and so we can

absorb them into constants of the 0th order Hamiltonian. At 2nd order, non-trivial terms can

appear corresponding to each edge of the honeycomb lattice. Neglecting O(1) constants, the

effective Hamiltonian will take the form

H 〈2〉
eff,ds ∼−P0 −ε2

∑
s

s′∼s

P0Cs,s′P0 (3.87)

Cs,s′ ≡
∑

i , j ,k
i ′, j ′,k ′

P †
s,s′δ

i j k
i ′ j ′k ′(s, s′)|i j k〉〈i j k|c,s · |i ′ j ′k ′〉〈i ′ j ′k ′|c,s′P s,s′ (3.88)

where s′ ∼ s runs over all s′ neighbouring s (with s and s′ sites of the PEPS lattice). The function

δ
i j k
i ′ j ′k ′(s, s′) takes the form of a Kronecker delta δi i ′ , δ j j ′ , or δkk ′ for s and s′ connected by an

edge running northeast, northwest, or vertically respectively. These second order terms arise

from the product of Me on the two PEPS edges connecting s and s′. Recalling that each site

has its own label for the state of the double semion qubit on incident edges of the honeycomb

lattice, the Cs,s′ terms can be interpreted as requiring that the two labels for the state (one each

from s and s′) are consistent. This resolves the apparent overcounting of degrees of freedom

present in the model.

If we continue expanding the effective Hamiltonian order by order, we will find that no new

terms (that are not products of 2nd order terms) arise until 6th order. At this order, a new term

will arise from the product of Me terms around the inside of a hexagonal plaquette. We can

write the effective Hamiltonian (neglecting products of 2nd order terms and constant factors)

as

H 〈6〉
eff,ds ∼−P0 −ε2

∑
s

s′∼s

P0Cs,s′P0 −ε6
∑
p

P0Bp P0 (3.89)
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p

Figure 3.3 – The Bp operator acts on the edges of the PEPS lattice closest to the centre of the
plaquette p. The affected qubits are shown here in red.

where the action of Bp can be described as

Bp ∼
∏

e=(s,s′)∈p

(|00〉〈11|s,s′ +|11〉〈00|s,s′
)

(3.90)

with e = (s, s′) the edges of the PEPS lattice comprising the interior of the plaquette p (see

Fig. 3.3).

We can more clearly examine the effect of Bp by restricting to the image of all P0Cs,s′P0. Call

the projector to this subspace PC , and note that it is the ground space of H 〈2〉
eff,ds. Within this

subspace, we can unambiguously assign code space state labels to the edges of the honeycomb

lattice as in the standard definition of the double semion model. If we then evaluate PC Bp PC ,

we find that phases accumulate depending on the state of the edges leading out of the plaquette

under consideration (the legs of the plaquette). This is due to the asymmetry between the

phase factors defining the |i j k〉c states of Eqs. (3.76)-(3.79).

On the double semion model states (i.e. those associated with the honeycomb lattice), we can

describe this by

PC Bp PC ∼
(
∏

k∈p
σx

k

)(
∏

m∼p
i

1−σz
m

2

)
(3.91)

where k runs over honeycomb lattice edges comprising p and m runs over edges incident to

p, precisely as in Eq. (3.73).

Given also that the P0Bp P0 commute with the P0Cs,s′P0, this completes the specification of the

ground space of this model. The effect of each type of term arising in the effective Hamiltonian

on the low energy space can be summarized as follows.
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States with inconsistent
edge labels

}

States with
branching strings

}

Double semion
ground state

States violating
plaquette constraints

}

O(1)
...

O(ε2)O(ε6)...

Figure 3.4 – A schematic of the energy level structure of our effective Hamiltonian for the
double semion model defined by Eq. (3.89), showing the lowest excited states for each charac-
teristic energy scale (each order of perturbation theory).

0th order: Forbids disallowed vertex configurations (branching strings)

2nd order: Enforces consistency between the two descriptions of the state on each

edge of the honeycomb lattice (only one qubit per edge)

6th order: Gives rise to plaquette energetics of the double semion model

Each of these types of term acts on a different characteristic energy scale, based on the order

of perturbation theory at which they arise. This gives the spectrum of our system as in Fig. 3.4.

The ground state can easily be identified as (an encoded form of) the double semion ground

state.

In previous examples of this kind of construction [BR06, BFBD11], the local symmetries

of the target model were exact (i.e. not approximate) symmetries of the full Hamiltonian

(including perturbation). However, as discussed in Sec. 3.6.2, this is not a general feature of

our construction. In this double semion example, note that the 2nd order terms correspond to

exact symmetries of the model, while the 6th order terms do not.

The Hamiltonian we presented is 2-local if a code gadget is considered as one system. However,

if we consider the virtual qubits to be distinct particles, we would need to use further pertur-

bation gadgets techniques as outlined in Sec. 3.6.1 to reduce the Hamiltonian interactions to

2-local. Examples of our construction that would naturally allow for a 2-local Hamiltonian even

on the virtual qudits include those reproducing the quantum double ground states [BFBD11].
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Chapter Review

We construct perturbative 2-local parent Hamiltonians for a broad class of PEPS.

• Similarly to Chapter 2, we make use of a perturbation gadgets approach based on

code gadgets. As such, the target models are again reproduced in an encoded form.

• Our construction applies to isometric, topologically ordered PEPS satisfying a con-

dition we call “quasi-injectivity”, which we believe to be a generalization of known

classes such as injective, G-injective, (G ,ω)-injective, and H-injective PEPS.

• The structure of our Hamiltonian and code gadgets again is directly inspired by the

PEPS construction.

• In contrast to the construction of Chapter 2 for the toric code and quantum double

models, we make use of the more rigorous Schrieffer-Wolff perturbation expansion.

This avoids approximating the self-energy as independent of energy, and allows for

explicit error bounds on several important quantities.

• We show that there exists a finite order of perturbation theory such that the low-

energy effective Hamiltonian of our model has the target isometric, quasi-injective

PEPS as its ground state and is gapped.

• We also show that for topologically ordered, isometric, quasi-injective PEPS, the

low-energy effective Hamiltonian of our model remains gapped and has a ground

state in the same phase as the desired PEPS to arbitrary order of perturbation theory.

• In contrast to the construction of Chapter 2, we treat each code gadget as an indi-

visible particle, as opposed to being composed of several component particles, for

the purposes of defining 2-locality. We discuss how this issue may be reconciled by

the use of specially tailored encodings or further perturbation gadgets.

• We find that the local symmetries of the PEPS are not generally reproduced exactly

in our construction, as compared to the special case of the quantum double models

treated in Chapter 2.

• We include a concrete demonstration of the double semion string-net state arising

as the ground state of our model.
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Abstract

We define generalized cluster states based on finite group algebras in analogy to the gen-

eralization of the toric code to the Kitaev quantum double models. We do this by showing

a general correspondence between systems with CSS structure and finite group algebras,

and applying this to the cluster states to derive their generalization. We then investigate

properties of these states including their PEPS representations, global symmetries, and

relationship to the Kitaev quantum double models. We also comment on possible ap-

plications of these states including a protocol for universal adiabatic topological cluster

state quantum computation.

4.1 Introduction

Cluster states (or graph states) [RB01, RBB03] are the prototypical resource for measurement-

based quantum computation (MBQC) [BBD+09]. This is broad category of strategies for

implementing fault-tolerant quantum information processing equivalent but in contrast

to the quantum circuit model, adiabatic quantum computation, and topological quantum

computation. MBQC proceeds by taking a suitable entangled many-particle resource state

and performing computation by sequential single-particle measurements that may be chosen

adaptively based on previous measurement results.

The cluster states have a particularly simple structure that allows for straightforward analysis

of their properties. They also have many desirable features for a resource state: for example,

they are the output of a finite-depth quantum circuit, and also the frustration-free ground

states of a (gapped) commuting local Hamiltonian.

Apart from their usefulness for standard MBQC, the cluster states are also related to topolog-

ically ordered systems such as the toric code [Kit03, DKLP02, RBH05, HRD07, BSK+11] and
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the color codes [BMD06, BMD08b]. In fact, this relationship can be leveraged to define a

protocol for MBQC that exploits the natural fault-tolerance properties of topological quan-

tum computation schemes [RHG07]. The cluster states can also be used to study general

stabilizer states, as all stabilizer states are equivalent to cluster states under local Clifford oper-

ations [VdNDDM04]. Additionally, the cluster states have been used in studies of such diverse

topics as the origin of quantum computational power [AB09] and contextuality [Rau13].

Since the cluster states are such an important theoretical tool for studying these topics, it is of

interest to ask if their properties can be generalized in any interesting ways. In this chapter we

take steps towards answering this question, in particular motivated by the relation between

cluster states and topologically ordered systems. In so doing, we provide a general framework

for similar generalization programmes.

The toric code is the simplest member of the family of topologically ordered Kitaev quantum

double models [Kit03]. These models are defined by a finite group G (of which the toric code

corresponds to Z2). These models are of significant interest for condensed matter physics,

where they are an important testbed for the phenomenology of topological order, as well as

quantum information, where they can be used to implement topological quantum computa-

tion, for example through braiding of quasiparticles [NSS+08] or code deformation [BMD09],

or can be used as quantum memories [DKLP02]. Though extensions of the Kitaev quantum

double models have also been proposed based on a Hopf algebra H [BMCA13], or twisted

quantum doubles labelled by a finite group G and a 3-cocycle ω [HWW13], we will restrict our

consideration to the finite group case here. Most of the important phenomenology of these

generalizations can be captured by finite groups, and in particular the qualitative distinction

between Abelian and non-Abelian topological phases is manifested in Kitaev quantum double

models for Abelian and non-Abelian groups respectively. Abelian phases such as the toric code

cannot be used for quantum computation by braiding of quasi-particles, and are not known

to be able to implement universal topological quantum computation via code-deformation. It

is known that code-deformation in topological stabilizer codes such as the toric code cannot

produce a universal gate set [BK13], though universal quantum computation can still be

achieved by using non-topological operations such as magic state distillation [BK05, CLB+14].

For these reasons, we define a family of generalized cluster states based on arbitrary finite

groups G , where the standard qubit cluster state corresponds to the simplest group Z2. The

previously known higher-qudit cluster states [ZZXS03, Hal07] correspond to the cyclic groups

Zd . In order to make this generalization process as clear as possible, we first make a general

connection between general qubit CSS states and the group Z2. This allows an intuitive

generalization of any such system, which may be more generally applicable.

We explore the properties of the generalized cluster states defined in this way, such as their

global symmetries and PEPS representations, in analogy to the qubit case [SAF+11, VC04]. We

also show how the generalized cluster states retain a relation to the corresponding quantum

double models, and discuss possible applications of the generalized cluster states making use
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of this relation.

This chapter is organized as follows. In Sec. 4.2 we outline the group structure of CSS states and

the general method of generalization we will follow. This is then used in Sec. 4.3 to define the

generalized cluster states for arbitrary finite groups G . Sec. 4.4 is devoted to exploring some

properties of these states. Finally, in Sec. 4.5 we briefly consider applications for generalized

cluster states including preparation of the Kitaev quantum double states and a generalization

of the topological cluster state computation scheme, before discussing possible extensions of

the kind of generalization scheme proposed here and providing some concluding remarks.

4.2 From CSS structure to finite groups

In this chapter, we will generalize the familiar qubit cluster state to states based on finite group

algebras. In order to do this, we will make use of a general prescription to translate from a

system with CSS structure [CS96, Ste96] to one based on the group Z2.

Many interesting models defined on spin-1/2 systems have a CSS structure. While the term

CSS has a specific technical meaning as a class of stabilizer codes, we will use it in its more

colloquial sense to mean any system involving interactions that consist either of products of

Pauli X operators or products of Pauli Z operators.

Systems with a CSS structure have a natural interpretation in terms of the group algebra of Z2.

Recall thatZ2 has two elements (labelled 1 and the identity 0), group multiplication is addition

modulo 2 (⊕), and there are two irreducible representations. The trivial and alternating irreps

we label + and − respectively, with Γ+(0) = Γ+(1) = Γ−(0) = 1 and Γ−(1) =−1.

We can associate qubit states and operators with objects related to the groupZ2 by considering

the computational basis states of our qubit to be labelled by group elements. That is, we take

|0〉 and |1〉 to be associated with the respective group elements 0 and 1. Following this, the

Pauli X operator can be seen to act as group multiplication by the 1 element. For this reason

we denote it by X1 ≡ X . We can also see that X0 ≡ X 0 = I acts as group multiplication by the 0

element. Thus we consider Xg to act as group multiplication by an element g ∈Z2. We can

also interpret the CNOT gate in this context as a controlled group multiplication operation.

This can easily be seen by CNOT|g 〉|h〉 = |g 〉|g ⊕h〉.

The conjugate basis states |+〉 and |−〉 can be associated with the irreducible representations

of Z2 by noticing that |±〉 ∝ Γ±(0)|0〉 +Γ±(1)|1〉 (throughout this chapter we will consider

only unitary irreducible representations over C unless otherwise specified). We can similarly

consider the powers of the Pauli Z operator to be associated with the representations of Z2 as

Z+ ≡ Z 1 and Z− ≡ Z 0. Notice then that Z±|g 〉 = Γ±(g )|g 〉.

The group Z2 has much structure that is absent for general groups. In particular, since it is

Abelian there is a natural isomorphism between the group and its dual. The elements of the

dual group corresponding to irreps of Z2, this gives a natural map between group elements
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and irreps that takes 0 to + and 1 to −. In this way we can interpret the Hadamard gate as

implementing this bijection. Although the CPHASE gate has no fundamental interpretation

in terms of objects from the group, it can be brought into this framework by noticing that

CPHASE can be constructed from a circuit of Hadamard and CNOT gates.

This entire structure is summarized in the first two columns of Table 4.1. It also gives us an

avenue to generalize many of these concepts to arbitrary groups. In interpreting the structure

of the qubit in terms of Z2, the most significant property of this group that does not still hold

in the general case is the existence of a natural isomorphism from group elements to irreps.

The fact that this is not available for a general group G is the reason that the CSS structure is

important when generalizing to arbitrary finite groups, as we will show.

Now that the properties of the qubit have been related to properties of Z2, the generalization

to an arbitrary finite group G is relatively straightforward. 2-dimensional qubits are replaced

by |G|-dimensional qudits. The analogue of computational basis states for these qudits are

labelled by group elements g ∈G (we call this the group element basis). It is worthwhile noting

that there is a preferred state corresponding to the identity group element e. Thus the |0〉 state

of the qubit corresponds in general to the |e〉 state of the group element basis.

The Pauli X operator of the qubit generalizes to left and right group multiplication operators

X ←
g and X →

g acting as

X ←
g |h〉 = |g h〉 and (4.1)

X →
g |h〉 = |hg−1〉. (4.2)

Similarly, the CNOT gate generalizes straightforwardly to a controlled left or right group

multiplication gate.

The conjugate basis of the qubit was interpreted as representation states, and in the general

case we label these states by matrix elements of an unitary irreducible representation (or irrep)

of G , and define

|Γi j 〉 =
√

dΓ
|G|

∑

g∈G
[Γ(g )]i j |g 〉, (4.3)

where [Γ(g )]i j is given by the matrix element (i , j ) associated with the action of a group

element g in representation Γ, and dΓ is the dimension of Γ. We call this basis the representa-

tion basis as compared to the group element basis. Noting that
∑
Γd 2

Γ = |G|, orthonormality

of the representation basis follows directly from the grand orthogonality theorem of group

representations:

∑

g∈G
[Γλ(g )]∗i j [Γσ(g )]i ′ j ′ = δλσδi i ′δ j j ′

|G|
dλ

. (4.4)
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Chapter 4. Generalized Cluster States Based on Finite Groups

The transformation from the representation basis to the group element basis can also be found

as

|g 〉 =
∑

Γi j

√
dΓ
|G| [Γ(g )]i j |Γi j 〉. (4.5)

As in the group element basis, there is a preferred state in the representation basis. This

corresponds to the trivial irrep I . The trivial irrep state is given by an equal superposition over

all group element states, and reduces to the |+〉 state in the case that G =Z2.

The generalizations of the Pauli Z operators are labelled by matrix elements of irreps of G . As in

theZ2 case, they act on group element basis states by accumulating amplitudes corresponding

to the relevant matrix element of the group element in the given representation. That is,

ZΓi j |h〉 = [Γ(h)]i j |h〉. (4.6)

These generalizations are summarized in Table 4.1.

The Hadamard gate and CPHASE gate of the qubit have no natural generalization to an

arbitrary group in this way. Similarly, interactions that do not have CSS structure cannot

be generalized for the following reason. If we consider an operator constructed from mixed

X and Z operators on a set of qubits, to generalize this operator to the group G we must

associate a group element to the X operator and a representation to the Z operator. There is

no natural way to choose a representation corresponding to each group element, and so we

cannot consistently generalize a mixed operator of this type. This is a direct consequence of

the fact that the Hadamard operator has no analogue for arbitrary groups. Given that we can

only consider systems with CSS structure in this framework, it is clear that the Hadamard and

CPHASE gates cannot be generalized, as they take CSS systems to non-CSS systems.

One way to interpret Table 4.1 is as a prescription to design quantum systems with algebraic

properties inherited from an arbitrary finite group. In general, the structure of these algebraic

properties will be closely related to the quantum double of the group under consideration,

as is the case for example in the Kitaev quantum double models, which can be interpreted

in this framework. One could also consider generalizing this correspondence from groups

to more general objects such as Hopf algebras (as has been done for the Kitaev quantum

double models). This will briefly be discussed in Section 4.5.2, as well as speculation on further

possible generalizations.

Of course, the machinery introduced here simplifies significantly if G is chosen to be a cyclic

group Zd . In this case, the representations are all 1-dimensional d th roots of unity. The basis

change between the group element and representation bases for these groups is simply the

discrete Fourier transform. Significantly, there also exists a natural isomorphism from the

space of irreps of Zd to the space of elements. This allows us to generalize the Hadamard gate

and removes the necessity of considering only systems with CSS structure. The cluster states
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4.3. Generalized cluster states

corresponding to the cyclic groups have been previously defined and studied [ZZXS03, Hal07].

4.3 Generalized cluster states

We can use the general machinery established in the previous section to generalize the cluster

state. This will give a family of states labelled by decorated graphs and a group G . As a prelude

to the introduction of these general states, let us first review the definition of the qubit cluster

state. Since the standard definition does not have CSS structure, we will need to consider a

slightly modified definition of the cluster state that is more amenable to generalization.

4.3.1 Qubit cluster states

A qubit cluster state [RB01, RBB03] is uniquely specified by an underlying graph Λ. One

convenient way to define these states is as the output of a certain constant depth quantum

circuit. Equivalently, they can be described as the common+1 eigenstate of a set of commuting

stabilizer operators. We will describe the qubit cluster state in both of these languages, as

these two descriptions showcase different desirable features of the cluster state. In the first

case, the cluster state can be prepared in constant time by an appropriate parallel quantum

circuit, while in the latter case the cluster state can be seen as the unique gapped ground state

of a local Hamiltonian, namely that formed by the (negative) sum of the relevant stabilizer

operators.

The cluster state is given by

|CΛ〉 =
∏

<m,n>
CPHASE(m,n)

⊗

v∈Λ
|+〉v (4.7)

with < m,n > running over all edges and v running over all vertices ofΛ. The CPHASE gate is

given by CPHASE(m,n)|a〉m |b〉n = (−1)ab |a〉m |b〉n for a,b ∈Z2. As a circuit, we place qubits in

the |+〉 state at each site ofΛ and then perform CPHASE gates between the qubits connected by

an edge. Since the CPHASE gates commute, this is always a constant-depth circuit (assuming

bounded degree ofΛ).

It is straightforward to derive the stabilizers of this state by considering the circuit of Eq. (4.7)

in the Heisenberg representation. The qubit cluster state is thus the common +1 eigenstate of

the stabilizer operators

S(v) = X (v)
∏

w∼v
Z (w) (4.8)

for every site v , where w ∼ v runs over neighbours of v . Clearly, this state does not have the

CSS structure discussed in Sec. 4.2. This can be seen in two ways: firstly the stabilizers (4.8)

involve both X and Z operators in the same stabilizer, and secondly the circuit (4.7) involved

CPHASE operators. The toolkit introduced in Sec. 4.2 cannot be used to generalize states of
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Chapter 4. Generalized Cluster States Based on Finite Groups

this form.

We can, however modify the definition of the cluster state to endow it with CSS structure. In

order to do this, we must restrict to bipartite graphsΛ. On these graphs, we can partition the

sites of Λ into an odd set Λo and an even set Λe such that all edges of Λ involve one vertex

fromΛo and one vertex fromΛe . Given this structure, we can define the CSS cluster state as

|C C SS
Λ 〉 ≡

∏

v∈Λe

H(v)|CΛ〉, (4.9)

where H is the Hadamard operator. This allows us to rewrite the circuit constructing the CSS

cluster state as

|C C SS
Λ 〉 =

∏
<m,n>

m∈Λo ,n∈Λe

CNOT(m,n)
⊗

w∈Λo

|+〉w
⊗

v∈Λe

|0〉v (4.10)

where here the CNOT gates act with the odd qubit m as control and even qubit n as target. We

will generally use the notation that a controlled gate takes two site labels as arguments and

acts on the first as the control. The bipartite property ofΛ guarantees that each CNOT gate

acts on one odd and one even qubit. Even though CNOT gates do not commute in general,

two CNOT gates with common targets or common controls will commute. This gives us the

fact that the circuit specified by (4.10) is again always constant-depth as expected.

The stabilizers of the CSS cluster state are given by

Se (v) = Z (v)
∏

w∼v
Z (w), and (4.11)

So(w) = X (w)
∏

v∼w
X (v) (4.12)

for v and w even and odd sites respectively. This demonstrates the claimed CSS structure of

these states. This can also be seen by noting that the circuit (4.10) consists only of operators

that preserve CSS structure (i.e. CNOT gates). Although it can only be defined on bipartite

graphs, when it exists the CSS cluster state is locally equivalent to the corresponding standard

cluster state and so has all the same fundamental properties, notably including the ability to

perform universal measurement-based quantum computation.

4.3.2 Finite group cluster states

Given the toolkit of Sec. 4.2 and the definition of the CSS cluster state given above, we will now

describe the generalization of the cluster state to arbitrary finite groups G . These cluster states

will inherit many of the algebraic properties of the group that defines them.

As compared to the qubit cluster states where an undirected graph completely specifies the

state, for an arbitrary group G this is insufficient to uniquely determine a generalized cluster

state. This is similar to the generalization of the toric code to the quantum double models,
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Figure 4.1 – A directed bipartite graph augmented with an ordering of edges incident to each
even vertex. Even vertices are shown as solid circles, while odd vertices are represented by
open circles. This data is sufficient to specify a generalized cluster state.

where the former is completely specified by an undirected graph, while the latter requires

directed edges to specify the model. In particular, to describe a generalized cluster state we

require a directed bipartite graph Λ, together with an ordering #v (w) of the neighbours w

of each even vertex v . An example of such a structure is shown in Fig. 4.1. The roles that

are played by the additional direction and ordering parameters will become clear during the

construction of the generalized cluster states.

Given such a graphΛ and ordering #, together with a finite group G , the generalized cluster

state is a state on a system of |G|-dimensional qudits at each site ofΛ. It is most convenient

to generalize the qubit cluster state by considering the circuit that defines it according to

Eq. (4.10). The elements in this circuit are CNOT gates, |+〉 states and |0〉 states, each of which

has a natural analogue in Table 4.1.

Circuit representation

The qubit |+〉 state is interpreted as a special case of the trivial irrep state |I 〉 = 1p|G|
∑

g |g 〉.
Similarly the |0〉 state corresponds to the identity group element state |e〉 in general. Finally, the

last ingredient in the CSS cluster state preparation circuit is the CNOT gate, which generalizes

to either the left or right controlled multiplication gates CMULT�.

Loosely speaking then, we define the generalized cluster state as

|C C SS
Λ,#,G〉 ∼

∏
<m,n>

m∈Λo ,n∈Λe

CMULT(m,n)
⊗

w∈Λo

|I 〉w
⊗

v∈Λe

|e〉v . (4.13)

There are two ways in which (4.13) does not yet constitute a full specification of the state

|C C SS
Λ,#,G〉. The first is that there is an ambiguity regarding whether CMULT gates should act

as left or right multiplication. The second is that we have not specified an order in which to

apply the CMULT gates, which in general do not commute on their targets. Resolving these

ambiguities requires the additional structure we have specified in the # orderings and in the
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directions of the edges ofΛ. Note that since the CMULT gates commute on their controls, we

need not be concerned about the relative order of gate application on odd qudits, and so need

not specify a global order of CMULT application. It suffices to specify the ordering separately

at each even vertex.

We can complete the specification of Eq. (4.13) by firstly choosing the ordering of the CMULT

gates at a given even site v according to #v . Secondly, we choose the CMULT(m,n) gate to act

as left multiplication if the edge (m,n) runs from n to m, and as right multiplication otherwise.

This convention can be remembered by placing the control (odd) qudit on the left of the

target (even) qudit. The multiplication sense is then given directly by the direction of the edge

connecting the qudits. We denote these conventions in the following way:

|C C SS
Λ,#,G〉 ≡

∏#

<m,n>
m∈Λe ,n∈Λo

CMULT�(m,n)
⊗

w∈Λo

|I 〉w
⊗

v∈Λe

|e〉v (4.14)

where CMULT�(m,n) acts as CMULT→ (CMULT←) for an edge directed from m to n (n to m).

This is now a complete specification of the generalized cluster state |C C SS
Λ,#,G〉. Note that since

the CMULT operators commute on their controls, the circuit (4.14) is always constant-depth

as in the qubit case (again assumingΛ has bounded degree).

Strictly speaking, the orderings # contain more information than is necessary to specify the

state |C C SS
Λ,#,G〉. Since left multiplication commutes with right multiplication, we could rearrange

the order of CMULT application without affecting the state |C C SS
Λ,#,G〉 as long as we do not change

the relative order of CMULT gates acting on edges directed outwards and the relative order of

gates acting on edges direct outwards from a given even vertex. For notational simplicity we

will continue to use the redundant description # of the ordering at each even vertex.

The circuit (4.14) is a perfectly adequate definition of the generalized cluster states. However,

the stabilizer formalism has proved to be an extremely powerful tool in the analysis of cluster

states and similar qubit systems. For this reason we will compute the stabilizer representation

of the generalized cluster states.

Stabilizer representation

The term “stabilizer” has slightly different meanings in different contexts. Often it is used to

mean a subgroup of the n-qubit Pauli group that does not contain −1. The relevant stabilizer

states are then the common +1 eigenstates of the stabilizer group. This is the sense in which

the qubit cluster state and the CSS cluster state we discussed in Sec. 4.3.1 are stabilizer states

of their relative stabilizer groups.

More generally, stabilizer states can be thought of as the +1 eigenstates of an arbitrary set of

operators. Varying degrees of structure can be introduced to make the set more amenable

to study, for example requiring that the stabilizer operators are monomial matrices as in the

monomial stabilizer formalism [VdN11]. As with the stabilizers of the Kitaev quantum double
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models, the generalized cluster states can be cast in the monomial stabilizer formalism. We

may abuse the language slightly by referring to a set of stabilizers in the generalized sense as a

group, even if we do not present them in a form that has the algebraic structure of a group.

One of the most attractive features of the Pauli stabilizer formalism is the ability to efficiently

simulate operations that map stabilizer states to stabilizer states (through the Gottesman-

Knill theorem). This ability carries directly over to stabilizer formalisms based on Abelian

group algebras [VdN13, BVVdN14, BVLVdN14]. Such strong simulability properties seem to

require more structure than is available for general stabilizer states. However, some notions of

classical simulability remain in certain cases. For example, for sufficiently structured states

such as the Kitaev quantum double models, the monomial stabilizer formalism allows the

efficient evaluation of expectation values for local observables [VdN11]. We expect analogous

simulability results to apply to our models as they are based on the same algebraic structure.

Apart from the motivation of classical simulation, the existence of a local stabilizer description

guarantees the existence of a local, commuting, gapped parent Hamiltonian for these states. It

can also be a useful way of illustrating phenomena that would be more difficult to describe

in the Schrodinger representation, for example as is the case in the Kitaev quantum double

models where stabilizer operators correspond directly to quantities of interest such as charges

or Wilson loops.

In order to explicitly determine a set of stabilizer operators for the generalized cluster states,

we examine the action of the circuit implied by Eq. (4.14) in the Heisenberg representation.

This circuit begins with a product state of |I 〉 on odd vertices and |e〉 on even vertices.

Now, notice that the state |I 〉 = 1p|G|
∑

g |g 〉 is stabilized by all group multiplication operators.

That is,

X�
g |I 〉 = |I 〉 (4.15)

for all g , and either multiplication sense �. Similarly, we can define a set of stabilizers for |e〉,
noting that

ZΓi i |e〉 = |e〉 (4.16)

for all Γ, i .

Although this is a perfectly legitimate stabilizer description of the state |e〉, for the purposes of

calculating the stabilizers of the state |C C SS
Λ,#,G〉 it will be more convenient to use an alternative

representation. Defining the projectors to group element basis states Tg ≡ |g 〉〈g |, it is clear

that |e〉 is stabilized by Te . A more roundabout way to see this is to write the Tg operators in

terms of the ZΓi j operators as

Tg = 1

|G|
∑

Γ

dΓ
∑

i , j
[Γ(g )]∗i j ZΓi j (4.17)
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and find

Te |e〉 =
1

|G|
∑

Γ

dΓ
∑

i , j
[Γ(e)]∗i j ZΓi j |e〉 (4.18)

= 1

|G|
∑

Γ

d 2
Γ|e〉 (4.19)

= |e〉 (4.20)

as expected.

We thus have that prior to the application of any CMULT gates in Eq. (4.14) there are stabilizers

for the system given by

S̃e (v) = Te (v), and (4.21)

S̃o
g (w) = X�

g (w) (4.22)

for every even site v and odd site w , and all g ∈G . These stabilizers trivially commute since

they each act on distinct sites. In order to determine the stabilizers of the generalized cluster

state then, we simply need to study the evolution of these operators under the action of

controlled multiplication gates. This can be computed straightforwardly, and found to give

CMULT← CMULT→

X ←
g ⊗ I → X ←

g ⊗X ←
g

X →
g ⊗ I →

∑

h
X →

g Th ⊗X ←
hg−1h−1

I ⊗X ←
g →

∑

h
Th ⊗X ←

hg h−1

I ⊗X →
g → I ⊗X →

g

Tg ⊗ I → Tg ⊗ I

I ⊗Tg →
∑

h
Th ⊗Thg

X ←
g ⊗ I → X ←

g ⊗X →
g

X →
g ⊗ I →

∑

h
X →

g Th ⊗X →
hg−1h−1

I ⊗X ←
g → I ⊗X ←

g

I ⊗X →
g →

∑

h
Th ⊗X ←

hg h−1

Tg ⊗ I → Tg ⊗ I

I ⊗Tg →
∑

h
Th ⊗Tg h−1

where the first tensor factor is the control qudit and the second the target.

To construct the stabilizers of the generalized cluster states, we now build the state one CMULT

gate at a time according to Eq. (4.14). We will first develop the stabilizers for the even sites of

the lattice, and then return and compute the stabilizers corresponding to odd sites.

At each even site v of the lattice, prior to the application of any CMULT gates the state is

stabilized by S̃e (v) = Te (i ). This site will be the target of any CMULT gates applied to it. For

each edge directed outwards from v , a CMULT← gate will be applied, and similarly a CMULT→

gate will be applied for each inwards directed edge. In order to describe the evolution of S̃e (v),

it will be convenient to define n←v
w and n→v

u as the neighbours of v corresponding to the w th

outward directed edge or uth inward directed edge respectively (where the ordering is given by
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#v ).

Recalling that CMULT← gates commute on common targets with CMULT→ gates, we will

consider first performing the CMULT← gates on site v . As we apply the CMULT gates on

outward directed edges sequentially in the order specified by #v , the stabilizer for this site

becomes

S̃e (v) →
∑
g1

Tg1 (v)Tg1 (n←v
1 ) (4.23)

→
∑

g1,g2

Tg2g1 (v)Tg1 (n←v
1 )Tg2 (n←v

2 ) (4.24)

...

→
∑
gw

∀w←v

T∏
w ′ gw ′ (v)

∏

w ′′
Tgw ′′ (n←v

w ′′ ) (4.25)

where in the final expression w runs over all outward directed neighbours of v and
∏

w gw =
·· ·g3g2g1 (we also suppress the range of product and summation indices when they are clear

from context). We can then similarly apply the gates on the inward directed edges of v (again

in the appropriate order) and obtain

S̃e (v) →
∑

hu
∀u→v

∑
gw

∀w←v

T(
∏

w ′ gw ′)(
∏

u′ hu′)
−1 (v)

∏

u′′
Thu′′ (n→v

u′′ )
∏

w ′′
Tgw ′′ (n←v

w ′′ ) ≡ Se (v). (4.26)

Since it now has support on sites other than v , one might now worry that we will also need to

calculate how S̃e (v) transforms under the other CMULT gates acting on the neighbours of v .

However, since these CMULT operations all commute with each other (they share a common

control, not target), this is not a concern. Thus (4.26) is the stabilizer corresponding to each

even site of our cluster state, acting only on the given site and its nearest neighbours.

We can also derive the stabilizers corresponding to odd sites ofΛ in a similar fashion. In this

case, the stabilizers of an odd site w prior to the application of any CMULT gates are given by

S̃o
g (w) = X�

g (w) (4.27)

for all g . Although both the left and right multiplication operators form valid stabilizers for an

odd site, only one set is needed to specify the state completely. For simplicity we will choose

to study the left multiplication stabilizers though the analysis for the right multiplication

operators would proceed in an analogous way. With this in mind, we restrict to the case

S̃o
g (w) = X ←

g (w). (4.28)

The site w will act as the control for the CMULT gates applied to it. As such, it does not

matter in which order the CMULT gates are applied at site w . However, in contrast to the
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even sites, the odd site stabilizers will be affected by the order of CMULT gates applied to the

neighbouring (even) vertices.

The CMULT gate corresponding to an outward directed edge from w will act as CMULT→ and

inward directed edges correspond to CMULT←. Applying a CMULT gate on an inward directed

edge to neighbour v , we find S̃o
g (w) becomes

S̃o
g (w) → X ←

g (w)X ←
g (v). (4.29)

Now this operator has support on v as well as w . This means that we must consider the effects

of the CMULT gates acting not only between w and its neighbours, but also between v and its

neighbours. In doing so, we will only need to consider the effects of those gates applied to w

after that corresponding to the edge (w ← v). In addition, we need only consider edges with

the same direction from v (i.e. outwards from v in this case).

We can make this effect explicit by finding the effect of these CMULT gates on an X ←
g oper-

ator acting on site v . As each successive CMULT← is applied to edges connecting v to sites

w̃1, w̃2, . . . that follow w in the #v order, this operator transforms as

X ←
g (v) →

∑

h1

X ←
h1g h−1

1
(v)Th1 (w̃1) (4.30)

→
∑

h1,h2

X ←
(h2h1)g (h2h1)−1 (v)Th1 (w̃1)Th2 (w̃2) (4.31)

...

→
∑

hw̃
∀w̃←v,w̃>w

X ←
(
∏

w̃ ′ hw̃ ′)g(
∏

w̃ ′′ hw̃ ′′)−1 (v)
∏

w̃ ′′′
Thw̃ ′′′ (w̃ ′′′) (4.32)

where w̃ > w restricts to those w̃ that come after w in #i .

This operator still acts as multiplication on site v , but by a group element conjugated by terms

taking into account states of the neighbours of v . It will be convenient to define this operator

for any site v neighbouring w :

X̃ ←
g (v |w ) ≡

∑

hw̃
∀w̃←v,w̃>w

X ←
(
∏

w̃ ′ hw̃ ′)g(
∏

w̃ ′′ hw̃ ′′)−1 (v)
∏

w̃ ′′′
Thw̃ ′′′ (w̃ ′′′). (4.33)

Now having considered all the effects of site v and its neighbours on the stabilizer for site w ,

we have the stabilizer

S̃o
g (w) → X ←

g (w)X̃ ←
g (v |w ). (4.34)

As we apply this procedure to each of the edges directed inwards to w , the stabilizer transforms
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to

S̃o
g (w) → X ←

g (w)
∏

v→w
X̃ ←

g (v |w ). (4.35)

In a similar way, we can also consider the effects of CMULT gates on outwards directed edges

from w . If we apply a CMULT gate corresponding to an outward directed edge connecting site

w and u, the X ←(w) operator will be transformed by each gate as

X ←(w) → X ←(w)X →(u). (4.36)

Following an analogous prescription to that used for the analysis of the inward directed edges,

we are led to define the operator

X̃ →
g (u|w ) ≡

∑

hw̃
∀w̃→u,w̃>w

X →
(
∏

w̃ ′ hw̃ ′)g(
∏

w̃ ′′ hw̃ ′′)−1 (u)
∏

w̃ ′′′
Thw ′′′ (w̃ ′′′). (4.37)

This allows us to compute the stabilizers corresponding to each odd site w of a generalized

cluster state as

S̃o
g (w) → X ←

g (w)
∏

v→w
X̃ ←

g (v |w )
∏

u←w
X̃ →

g (u|w ) ≡ So
g (w). (4.38)

In contrast to the qubit cluster state, whose stabilizers only act on a site and its nearest

neighbours, in general the operators (4.38) act on a site, its nearest neighbours, and also its

next-nearest neighbours.

Together, the even site stabilizers Se (4.26) and the odd site stabilizers So (4.38) completely

specify a generalized cluster state. The odd site stabilizers are monomial matrices in their

current form, while the even site stabilizers are projectors and so can be made monomials by

considering the alternative operators 2Se −1. This means that the generalized cluster states

can be studied in the framework of monomial stabilizer groups [VdN11] as claimed.

4.4 Properties of generalized cluster states

We will now explore some salient features of the generalized cluster states defined in the

previous section. It is not our intention to provide a comprehensive specification of the

properties of the states, but merely to comment on some features of the qubit cluster states

and how they are survived in the general case.

One of the most important features of the qubit cluster state is that (on a suitable graph) it is a

resource for universal measurement-based quantum computation [RBB03]. Since the qubit

cluster state already has this universality property, considering generalized cluster states as re-
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(a) (b)

Figure 4.2 – Two different 3 qudit cluster states. Solid (open) circles represent even (odd)
vertices. The simple structure of these graphs means that a vertex ordering is not required to
specify the relevant cluster state. a) An even-odd-even 3 qudit cluster state. b) An odd-even-
odd 3 qudit cluster state.

sources for standard measurement-based quantum computation will not give any qualitative

advantage in this sense. However, it is possible that generalized cluster states may yield advan-

tages in terms of practical application, for example by finding more efficient implementations

of non-Clifford gates or by having desirable spectral properties (when considered as ground

states of Hamiltonians). We will not directly address these issues of practical advantage here,

though some of the general properties we discuss may be relevant to any such study.

4.4.1 Measurements

The results of measurements in the standard qubit cluster states can easily be determined

using the stabilizer formalism. The properties of the resulting states are largely insensitive to

the measurement outcomes obtained. By comparison, measurements on generalized cluster

states give rise to some qualitatively new phenomena that do not appear in the qubit cluster

state, such as significant dependence of the output state on measurement outcomes.

Ideally, we would like to understand the effect of measurements in the group element basis

and the representation basis (the analogues of Z and X Pauli measurements) on an arbitrary

generalized cluster state. However, since we can no longer use the simple Pauli stabilizer

formalism to compute these effects, this general specification is outside the scope of this

work. For this reason we will not exhaustively describe the results of measurement procedures

on general cluster states. Instead, we will illustrate the kinds of new phenomena that can

appear in a simple example. For this purpose, it is sufficient to consider 3 qudits on a line as in

Fig. 4.2a or 4.2b.

For a group G , these states are stabilized by the operators

S(eoe,1) =
∑

g∈G
Tg ⊗Tg ⊗ I , Sg (oeo,1) = X ←

g ⊗X ←
g ⊗ I , (4.39)

Sg (eoe,2) = X ←
g ⊗X ←

g ⊗X ←
g , S(oeo,2) =

∑

g ,h∈G
Tg ⊗Tg h−1 ⊗Th , (4.40)

S(eoe,3) =
∑

g∈G
I ⊗Tg ⊗Tg , and Sg (oeo,3) = I ⊗X →

g ⊗X →
g , (4.41)

where eoe or oeo represent the even-odd-even and odd-even-odd cluster states of Figs. 4.2a

and 4.2b respectively.
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Explicitly then, these states can be written as analogues of the GHZ state in different bases:

|Ceoe〉 =
1p|G|

∑

g∈G
|g 〉⊗ |g 〉⊗ |g 〉 (4.42)

|Coeo〉 =
1

|G|
∑

g ,h∈G
|g 〉⊗ |g h−1〉⊗ |h〉. (4.43)

The states |Ceoe〉 are clearly identical for any different choices of group G with the same order.

For a general graph of course this is not true (as with |Coeo〉), but nonetheless we will see group

structure arise in the analysis of measurement outcomes on |Ceoe〉. This is because the natural

measurements to consider are analogues of Pauli X and Z operators in the qubit case, and

these operators also inherit structure of the group G .

The two measurements we consider here are those in the group element basis {|g 〉} (corre-

sponding to Pauli Z ) and in the representation basis {|Γi j 〉} (corresponding to Pauli X ). If we

measure the central qubit of our cluster in these bases, we will find that some phenomena

arise which have no counterpart in the qubit cluster state.

Let us first recall what happens in the CSS qubit case (i.e. G = Z2). Since the eoe and oeo

qubit cluster states can be transformed into one another by Hadamard gates on each qubit,

we need only consider one of these states (the behavior of the other can be determined by

exchanging X and Z ). If we measure the central qubit of the eoe cluster in the Z basis and

find outcome mz ∈Z2, the state on the remaining qubits becomes a product state |mz〉⊗ |mz〉.
Alternatively, if we measure in the X basis with measurement outcome mX ∈ {±}, we find a

maximally entangled state |0〉⊗ |0〉+mx |1〉⊗ |1〉.

For a general group G , the group element basis measurement proceeds in much the same

fashion. For a outcome mg ∈G of this measurement on an eoe cluster state, the resulting state

is given by the product state |mg 〉⊗ |mg 〉. Similarly, the oeo cluster state is transformed to the

maximally entangled state
∑

h∈G |h〉⊗ |h−1mg 〉. In contrast, when performing a measurement

in the representation basis, we find a qualitative departure from the qubit case. Such a

measurement yields a triple of measurement outcomes (mΓ,mi ,m j ) representing a matrix

element of an irrep of G . Beginning with the eoe cluster state, we note that it can be rewritten

as

|Ceoe〉 =
∑
g

∑

Γi j

√
dΓ

|G| [Γ(g )]∗i j |g 〉|Γi j 〉|g 〉. (4.44)

Thus if we measure the central qudit in the representation basis, the resulting state is given as

∑
g

√
dmΓ

|G| [mΓ(g )]∗mi m j
|g 〉|g 〉. (4.45)

For any Abelian group, this will give a maximally entangled state as in the qubit case. However
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for a general group, the state (4.45) will be some less-than-maximally entangled state for any

representation mΓ with dimension greater than 1. We can see this by calculating the reduced

density matrix of the first qudit as ρ(1)
Ceoe

=∑
g

dmΓ
|G| |[mΓ(g )]mi m j |2|g 〉〈g | which is not, in general,

equal to
∑

g
1
|G| |g 〉〈g |. Of course, for any Abelian group all dmΓ

= 1 = |[mΓ(g )]mi m j |2, and we

recover the maximally entangled state as claimed.

The analogous measurement on an oeo cluster state produces a similar phenomenon. The

resulting state after measurement is given by

|Coeo〉→
∑

g ,h

√
dmΓ

|G| [mΓ(g h−1)]∗mi m j
|g 〉|h〉 (4.46)

=
∑

g ,h∈G

dmΓ∑

k=1

√
dmΓ

|G| [mΓ(g )]∗mi k [mΓ(h−1)]∗km j
|g 〉|h〉 (4.47)

=
∑

g ,h∈G

dmΓ∑

k=1

√
dmΓ

|G| [mΓ(g )]kmi [mΓ(h)]m j k |g 〉|h〉 (4.48)

=
dmΓ∑

k=1

1√
dmΓ

|mΓ
kmi 〉|mm j k

Γ 〉 (4.49)

for mΓ the conjugate representation to mΓ (recall that we consider only unitary irreducible

representations over C). This leaves us with a maximally entangled state of dimension dmΓ
.

For Abelian groups with only 1-dimensional irreps, this gives the product state as in the qubit

case. However, for general groups the behavior is non-trivial.

In particular, these phenomena mean that the property of maximal localizable entangle-

ment [PVMDC05] (i.e. any two qudits in the state can be brought into a maximally entangled

state with certainty by measurement) is not always present for a generalized cluster state as it

is for the qubit cluster state.

In order to develop a standard measurement-based quantum computation protocol making

use of the generalized cluster states, compensating for the subtle interplay between mea-

surement outcomes and remaining entanglement would require tools outside the scope of

standard cluster state computation methods. It may be possible to develop such a scheme

explicitly by making use of techniques in Ref. [GESPG07], combined with the PEPS representa-

tion of the generalized cluster states as found in Sec. 4.4.3. However, we will not consider this

question further in this work, instead focussing on the relationship between the generalized

cluster states and the Kitaev quantum double models as discussed in Sections 4.4.4 and 4.5.1.

For this relationship, that the remaining entanglement in the state depends on prior mea-

surement outcomes is crucial in reproducing the phenomenology of non-Abelian topological

orders.
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Figure 4.3 – An infinite 1D generalized cluster state graph.

4.4.2 Global symmetries

The 1D cluster state is well known to have a globalZ2×Z2 symmetry that has a significant effect

on its properties [SAF+11, SAV12]. This allows it to be placed in the framework of symmetry-

protected topological order (SPTO) [GW09, CGW11, SPGC11]. The symmetry group can also

be shown to be related to the power and robustness of the cluster state as a measurement-

based resource in both 1 and higher dimensions [ESBD12, EBD12].

The relevant global symmetry group of the infinite 1D CSS cluster state is represented by the

operators

U o =
∏

s odd
X (s), and (4.50)

U e =
∏

s even
Z (s). (4.51)

Since U o and U e clearly commute and are self-inverse, these operators generate a representa-

tion of Z2 ×Z2.

Considering the analogous property of a generalized cluster state for arbitrary finite groups G ,

for simplicity we will restrict to the specific infinite 1D graph as shown in Fig. 4.3.

Explicitly, the cluster state corresponding to this graph can be written as

|Cline〉 =
∑
gi

· · · |gi g−1
i+1〉|gi+1〉|gi+1g−1

i+2〉|gi+2〉|gi+2g−1
i+3〉|gi+3〉|gi+3g−1

i+4〉 · · · . (4.52)

It is clear by inspection that the global symmetries of this state can be written as

U o
g =

∏

s odd
X →

g (s) (4.53)

U e
Γ =

1

dΓ

∏
s even

∑

is

ZΓis−2is (s) (4.54)

as can be directly verified. As in the qubit case the U o
g and U e

Γ commute trivially. The U o
g

multiply as elements of G , and the U e
Γ transform as representations of G (i.e. U e

Γ1
U e
Γ2

=U e
Γ1⊗Γ2

and U e
Γ1
+U e

Γ2
=U e

Γ1⊕Γ2
, with ZΓi j defined in the obvious way for a reducible representation

Γ). Thus we deduce that the symmetry algebra of the generalized cluster state is given by the

product of the group algebra and the dual (representation) algebra. For Abelian groups such

as Z2, the representation algebra is isomorphic to that of the group itself, which recovers the

familiar result for the qubit cluster state.

Although the framework of symmetry protected topological order typically deals with states
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that have a group symmetry, we anticipate that many of the tools and results of SPTO may be

extended to this more general setting.

4.4.3 PEPS representations

The qubit cluster state has an exact tensor network representation as a projected entangled pair

state (PEPS) [VC04]. The PEPS ansatz [AKLT88, FNW92, Has06, PGVWC07, VWPGC06a, Vid03]

is extremely useful for both analytical and numerical analysis of states. In particular, the

description of the cluster state as a PEPS allows a reinterpretation of measurement-based

quantum computation as a teleportation-based computation scheme [VC04] or in the correla-

tion space picture [GESPG07]. Furthermore, it has also enabled an approximate 2-body parent

Hamiltonian to be derived for an arbitrary cluster state [BR06, GB08, BBD14a]. Here we show

how the PEPS representation of a cluster state generalizes for an arbitrary finite group G .

A PEPS is defined by an interaction graphΛ and a set of “projection” maps P s associated with

each site ofΛ. The state represented by the PEPS can be constructed by beginning with a set

of D-dimensional maximally entangled “virtual” pairs
∑D

i=1 |i 〉mn |i 〉nm ≡ |ΦD〉(m,n) along each

edge (m,n) of Λ, with one qudit of each of these pairs associated with each of the vertices

forming the edge (i.e. the qudit labelled mn is associated with vertex m and vice versa). At

each site s ∈Λ, the projection map P s is then applied to the qudits at each site, taking the

combined Dk -dimensional virtual Hilbert space (for a site of valency k) to a d-dimensional

“physical” Hilbert space. These physical qudits at each site ofΛ then typically correspond to

the individual qudits of the state being represented. That is, the PEPS state is given by

|ψPEPS〉 ≡
⊗

v∈Λ
P (v)

⊗

(m,n)∈Λ
|ΦD〉(m,n). (4.55)

For the CSS qubit cluster state, the interaction graphΛ is simply the (bipartite) graph specifying

the cluster state. D = d = 2 and the projection maps P are defined on odd and even sites ofΛ

as [VC04]

P o = |0〉〈0, . . . ,0|+ |1〉〈1, . . . ,1| (4.56)

P e = |+〉〈+, . . . ,+|+|−〉〈−, . . . ,−|. (4.57)

For generalized cluster states, the PEPS interaction graph is again given by the cluster state

graph. D = d = |G| as might be expected, and the projection maps are given (up to normaliza-

tion) by

P o =
∑
g
|g 〉〈g , . . . , g | (4.58)

P e =
∑

g1,...,gk ,hk+1,...,hl

∣∣∣∣∣

(
∏

i
gi

)(
∏

j
h j

)−1〉〈
g1, . . . , gk ,hk+1, . . . ,hl

∣∣ , (4.59)
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where the gi represent the states of qudits corresponding to edges leaving the relevant even

vertex, and the h j correspond to the edges entering the vertex. The products
∏

i gi and
∏

j h j

are taken in the appropriate order specified by #.

In order to demonstrate that Eqns. (4.58-4.59) define a PEPS for the generalized cluster states

as claimed, it is useful to note that the effect of applying controlled multiplication gates on the

physical level with target |e〉 can be reproduced by application of corresponding gates on the

virtual level. We will distinguish typographically between CMULT gate acting on a physical

target qudit and cmult gates acting on the virtual qudits.

Consider CMULT gates acting on virtual control qudits and a common physical target qudit:

l∏#

i=1
CMULT�(i , s)|g1, . . . , gk ,hk+1, . . . ,hl 〉|e〉s

= |g1, . . . , gk ,hk+1, . . . ,hl 〉
∣∣∣∣∣

(
∏

i
gi

)(
∏

j
h j

)−1〉

s

(4.60)

where the i index runs over the qudits grouped in the first ket. Compare this to cmult gates

acting on virtual control and target qudits, before projecting the target qudits into a single

physical qudit space:

I ⊗P e
s

∏
cmult←|g1, . . . , gk ,hk+1, . . . ,hl 〉⊗ |e,e, . . . ,e〉s

= I ⊗P e
s |g1, . . . , gk ,hk+1, . . . ,hl 〉⊗ |g1, . . . , gk ,hk+1, . . . ,hl 〉s (4.61)

= |g1, . . . , gk ,hk+1, . . . ,hl 〉⊗
∣∣∣∣∣

(
∏

i
gi

)(
∏

j
h j

)−1〉

s

(4.62)

=
l∏#

i=1
CMULT�(i , s)|g1, . . . , gk ,hk+1, . . . ,hl 〉|e〉s (4.63)

where here only one cmult gate acts on each (virtual) control and each (virtual) target qudit.

We can use this equivalence to give us the result that

|ψPEPS〉 =
(

⊗

w ′∈Λo

P o(w ′)
⊗

v ′∈Λe

P e (v ′)

)
⊗

(w,v)∈Λ
|Φ|G|〉w v (4.64)

=
(

⊗

w ′∈Λo

P o(w ′)
⊗

v ′∈Λe

P e (v ′)

)

·
∏

<m,n>
m∈Λo ,n∈Λe

cmult←(m,n)

(
⊗

w∈Λo

|I , . . . , I 〉w
⊗

v∈Λe

|e, . . . ,e〉v

)
(4.65)

∝
∏#

<m,n>
m∈Λo ,n∈Λe

CMULT�(m,n)

(
⊗

w∈Λo

|I 〉w
⊗

v∈Λe

|e〉v

)
(4.66)

= |CΛ,#,G〉 (4.67)
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as claimed, where on the penultimate line we used the facts that P o
s commutes with CMULT

on the control qudit, and |I 〉s ∝P o
s |I , . . . , I 〉s .

4.4.4 Generalized cluster states and Kitaev quantum double states

The qubit cluster state is related to the topologically ordered toric code in several ways. One

important way is that the toric code can be defined by preparing a suitable cluster state

and projecting (or measuring) a subset of the qubits into suitable states [RBH05]. Here we

show that this relationship also extends between the generalized cluster states and the Kitaev

quantum double models based on the same group. This relationship may also have practical

application, for example in preparing certain quantum double states or in generalizing the

topological cluster state computation protocol, as we will discuss in Sec. 4.5.1.

Recall that a Kitaev quantum double model is defined on a directed lattice. For simplicity,

we make a convenient canonical choice of edge direction (such that the edges around each

plaquette either run clockwise or anticlockwise, as shown in Fig. 4.4a) and note that all

alternative choices may be reached by local basis change. Quantum double states on these

lattices have stabilizers [Kit03]

A(s) =
∑

g∈G
Ag (s) and (4.68)

B(p) = Be (p) (4.69)

for

Ah
g (s) = X →

g (sU )X ←
g (sL)X →

g (sD )X ←
g (sR ) (4.70)

Av
g (s) = X ←

g (sU )X →
g (sL)X ←

g (sD )X →
g (sR ) (4.71)

BCW
g (p) =

∑
g1g2g3g4=g

Tg1 (pU )Tg2 (pL)Tg3 (pD )Tg4 (pR ) (4.72)

B ACW
g (p) =

∑

g−1
1 g−1

2 g−1
3 g−1

4 =g

Tg1 (pU )Tg2 (pL)Tg3 (pD )Tg4 (pR ). (4.73)

with sU , sL , sD , sR and pU , pL , pD , pR the neighbouring links located up, left, right, and down

from the star s or plaquette p under consideration, where CW or ACW denotes whether

the edges around the plaquette p run clockwise or anticlockwise, and where h or v denote

whether the horizontal or vertical edges point into the star s. The A(s) and B(p) are projectors,

commute pairwise, and the Kitaev quantum double ground state is defined as the common

+1 eigenspace of all A(s) and B(p) operators.

In order to produce such a quantum double ground state, we begin with a generalized cluster

state on a square lattice with half the lattice spacing of the quantum double lattice, as shown

in Fig. 4.4b. The even qudits of the generalized cluster state (shown as colored circles) will be

projected into suitable states, while the odd sublattice qudits will form the space on which

126



4.4. Properties of generalized cluster states

(a) (b)

Figure 4.4 – A choice of link directions for a) a quantum double model and b) a set of corre-
sponding cluster state link directions. The qudits in the odd sublattice are shown as open
circles, while the even sublattice is shown as colored circles. Qudits on quantum double lattice
reside on links. Red qudits in the cluster state are associated with plaquettes of the quantum
double, while blue qudits are associated with stars.

the quantum double state is defined. The red odd qudits correspond to plaquettes of the

quantum double state, and as such can be labelled as either clockwise or anti-clockwise,

depending on the direction of the links around the plaquette. Blue (odd) cluster state qudits

correspond to vertices of the quantum double model, and can be labelled as horizontal or

vertical depending on whether the horizontal or vertical incident links run into the vertex. An

equivalent procedure can be found to project the odd qudits and retain the even qudits, but

for simplicity we will treat only one case.

The edge directions and vertex orderings of the cluster state lattice will have a significant effect

on the final state. In particular, if we wish to recover a quantum double state on the lattice

with edge directions as in Fig. 4.4a, one suitable choice of edge directions is shown in Fig. 4.4b.

Explicitly, the edges of the cluster state drawn in black in Fig. 4.4b (i.e. those that will form the

quantum double lattice) should run in the opposite direction to the corresponding quantum

double links. All grey edges run away from (odd) red sites. For each red site corresponding to

an anticlockwise quantum double plaquette, the vertex ordering should be taken anticlock-

wise beginning from the topmost edge, while for each red site corresponding to a clockwise

quantum double plaquette, the vertex ordering should be taken clockwise beginning from the

topmost edge. The ordering of the edges around the blue sites is not particularly important,

for simplicity we choose them anticlockwise beginning from the topmost edge. The origin of

these convention choices may not appear particularly clear at this stage, but it will become

apparent how they figure as we proceed in the analysis.

The stabilizers for this generalized cluster state are given for red, blue, and odd sites respec-
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tively as

Sr,CW (p) =
∑

h
Th(p)

∑

g1g2g3g4=h
Tg4 (pU )Tg1 (pL)Tg2 (pD )Tg3 (pR ) (4.74)

Sr,ACW (p) =
∑

h
Th(p)

∑

g3g2g1g4=h
Tg4 (pU )Tg1 (pL)Tg2 (pD )Tg3 (pR ) (4.75)

Sb,v (s) =
∑

h
Th(s)

∑

g3g1g−1
4 g−1

2 =h

Tg4 (sU )Tg1 (sL)Tg2 (sD )Tg3 (sR ) (4.76)

Sb,h(s) =
∑

h
Th(s)

∑

g2g4g−1
1 g−1

3 =h

Tg4 (sU )Tg1 (sL)Tg2 (sD )Tg3 (sR ) (4.77)

So,u(l ) = X ←
g (l )X̃ ←

g (lD |l )X̃ ←
g (lL |l )X̃ →

g (lU |l )X̃ →
g (lR |l ) (4.78)

So,d (l ) = X ←
g (l )X̃ →

g (lD |l )X̃ →
g (lL |l )X̃ ←

g (lU |l )X̃ ←
g (lR |l ) (4.79)

So,l (l ) = X ←
g (l )X̃ ←

g (lD |l )X̃ ←
g (lL |l )X̃ →

g (lU |l )X̃ →
g (lR |l ) (4.80)

So,r (l ) = X ←
g (l )X̃ →

g (lD |l )X̃ →
g (lL |l )X̃ ←

g (lU |l )X̃ ←
g (lR |l ) (4.81)

where, as in the definition of the quantum double models, CW and ACW refer to the type

of plaquette corresponding to the red site, v and h denote the type of star corresponding to

the blue site, stabilizers associated to even sites have a u, d , l , r designation according to the

direction of the corresponding quantum double link, and vertices of the cluster state have

neighbours denoted by U , D , L, and R subscripts.

To produce the Kitaev quantum double ground state from the generalized cluster state we have

just described, we project the red even qudits (corresponding to plaquettes of the quantum

double model) onto the |e〉 state, and the blue even qudits (corresponding to vertices) into the

|I 〉 state. In the case of the qubit cluster state, this corresponds to projections to the |0〉 or |+〉
states, respectively.

Projecting even sites into |I 〉 effectively removes them from the cluster state (indeed, we

could alternatively have begun with a cluster state on a lattice lacking the blue sites). After

performing just these blue site projections, the red site stabilizers are unchanged, the blue site

stabilizers vanish and the odd site stabilizers are transformed to

So,u
g (l ) → X ←

g (l )X̃ ←
g (lD |l )X̃ →

g (lU |l ) (4.82)

So,d
g (l ) → X ←

g (l )X̃ →
g (lD |l )X̃ ←

g (lU |l ) (4.83)

So,l
g (l ) → X ←

g (l )X̃ ←
g (lL |l )X̃ →

g (lR |l ) (4.84)

So,r
g (l ) → X ←

g (l )X̃ →
g (lL |l )X̃ ←

g (lR |l ) (4.85)

where the X̃ operators are now defined with respect to the lattice where the blue sites have

been removed.

If we then proceed with the projection of the red sites, the red plaquette stabilizers can easily
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be seen to evolve to

SCW (p) →
∑

g1g2g3g4=e
Tg4 (pU )Tg1 (pL)Tg2 (pD )Tg3 (pR ) (4.86)

S ACW (p) →
∑

g−1
1 g−1

2 g−1
3 g−1

4 =e

Tg4 (pU )Tg1 (pL)Tg2 (pD )Tg3 (pR ). (4.87)

It is less obvious, but products of the odd site stabilizers around each former blue site s can be

rearranged to form the following stabilizers after red site projection:

Sh
g (s) = X →

g (sU )X ←
g (sL)X →

g (sD )X ←
g (sR ) (4.88)

Sv
g (s) = X ←

g (sU )X →
g (sL)X ←

g (sD )X →
g (sR ). (4.89)

This can most easily be seen by considering an explicit example of a cluster state in the

neighbourhood of a single (removed) h-type blue site:

∼
∑

g1,g2,g3,g4 |g2〉
|g3〉|g1〉

|g4〉

|g2g1〉 |g3g2〉

|g4g1〉 |g3g4〉

. (4.90)

This state is not stabilized by the appropriate operator (4.88). However, if we then project the

red sites into |e〉, we find:

∑
g1,g2,g3,g4

δg2g1=eδg3g2=eδg3g4=eδg4g1=e

|g2〉
|g3〉|g1〉

|g4〉

(4.91)

which is indeed stabilized by Sh
g as claimed. Note that if we had chosen a projection such

that, for example, g3g2 = h for some h 6= e, then this would no longer be true. If instead,

we projected into
∑

h∈C |h〉 for some conjugacy class C , Sh
g would again stabilize the state.

In the language of the quantum double anyons, this is due to the fact that only uniform

superpositions over conjugacy classes correspond to pure magnetic type excitations.

The stabilizers we just derived (4.86-4.89) are precisely the As and Bp stabilizers of the quantum

double (4.68-4.69). Thus we have a procedure to define the topologically ordered Kitaev

quantum double states by a sequence of projections on the generalized cluster states.

One might hope that for any scheme which builds some interesting state by measurement

of Z and X on a (bipartite) qubit cluster state, we could define a generalized model for a

finite group G built by performing suitable projections on the generalized cluster state as

we have done here. These models may or may not be able to be actually constructed from a

cluster state in general by measurement (their interesting properties may or may not survive
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the complications of non-ideal measurement outcomes, as will be mentioned in Sec. 4.5.1),

but simply being able to define such models may be of independent interest. An example

of a model that can be defined in such a way is a non-Abelian generalization of the color

codes, presented in Ref. [Bre15b]. One should also note the generality (and hence complexity)

of using the projection procedure in this way. We are able to define many generalizations

within this same framework by choosing different even and odd sublattices, different link

directions, and different link orderings at vertices. Furthermore, alternative projections can

be chosen to generalize the measurement of the Z or X operators, as is done in Ref. [Bre15b].

In general, the properties of the resulting state will be significantly affected by the choices of

these parameters.

4.5 Discussion

4.5.1 Applications

Producing the quantum double states

In practice, one may be interested in using the relationship between the generalized cluster

states and quantum double models discussed in Sec. 4.4.4 as a resource to prepare quantum

double states in the laboratory, by replacing the projections by suitable measurements. In the

case of the toric code, replacing |0〉 and |+〉 projections with measurements in the Z and X

bases respectively does not significantly affect the properties of the resulting state. However,

in general the effects outlined in Sec. 4.4.1 mean that the situation is not so simple.

To illustrate some of the resulting phenomena, consider replacing the |e〉 projections at each

red site in Fig. 4.4b by measurements in the group element basis. After projection of the

blue sites of the cluster state shown in Fig. 4.4b into the |I 〉 state (equivalently, removal of the

blue sites), the stabilizers of the state corresponding to the red sites are given as in equations

(4.74-4.75), while the remaining odd site stabilizers are as in (4.82-4.85). The effect on the red

site stabilizers of measuring these sites in the group element basis is clear: with measurement

outcomes {mp }, the stabilizers transform to

SCW (p) =
∑

g1g2g3g4=mp

Tg4 (pU )Tg1 (pL)Tg2 (pD )Tg3 (pR ) (4.92)

S ACW (p) =
∑

g3g2g1g4=mp

Tg4 (pU )Tg1 (pL)Tg2 (pD )Tg3 (pR ). (4.93)

The effect on the odd site stabilizers is less obvious. As in the previous section where red sites

were projected into |e〉, there will be a stabilizer corresponding to each star of the lattice. These

can also be straightforwardly calculated by considering a single isolated vertex and its four

neighbouring plaquettes.

We can interpret the state after measurement of the blue sites as a superposition of excited
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states of quantum double anyons. Explicitly, anyons in the quantum double models can

be created and transported by so-called ribbon operators F (h,g )
ρ corresponding to pairs of

group elements (h, g ) and fattened paths (ribbons) ρ on the lattice [Kit03, BMD08a]. The

ends of ribbons, “sites”, are composed of a neighbouring vertex-star pair. Ribbon operators

create anyonic charges at each end of the ribbon ρ. In particular, the operator F
(mp ,e)
ρ ending

on an appropriate site will transform a stabilizer of the form (4.86) or (4.87) into (4.92) or

(4.93) respectively. Similarly, the star-type stabilizers can be obtained by transforming the

naive stabilizers (4.88) and (4.89) under F
(mp ,e)
ρ on suitable ribbons. Further, if we replaced all

blue site projections with measurements in the representation basis, we could interpret the

remaining state in a similar way.

In some senses, this is a trivial statement, as all states on the lattice (up to boundary conditions)

are superpositions of some excited states of the quantum double model. However, using this

interpretation may be fruitful for example in a detailed analysis of the adiabatic topological

cluster state computation protocol sketched in the following section.

Producing quantum double ground states using generalized cluster states, either by measure-

ment or by adiabatically simulating the projections given in Sec. 4.4.4 [BF10, BFC13, AMA14],

faces a fundamental lower bound on the preparation time that scales as the linear size of the

system [BHV06, HL08, KP14]. In a measurement-based preparation, this is a limit on how

quickly a circuit that transforms the measurement output state into the desired state can be

computed.

Adiabatic topological cluster state quantum computation

Apart from standard measurement-based quantum computation, the qubit cluster state can

also be used to implement topological cluster state quantum computation [RHG07] (TCSQC).

This is a computation scheme that combines practical advantages of measurement-based

quantum computation with some natural robustness to noise from topological computation

schemes. It is based on the relationship between the cluster states and the toric code discussed

and generalized in Sec. 4.4.4.

In the TCSQC protocol, measurements are performed on a cubic lattice cluster state. By

interpreting one direction of the lattice as a “simulated time” direction, the resulting pro-

cedure can be interpreted as the evolution of punctures in the surface of the toric code in

simulated time. The world-lines of the punctures are determined by the chosen measurement

settings, while the measurement outcomes may be interpreted as specifying world-lines of

toric code anyons, which can then be compensated for by classical post-processing. Though

this scheme enjoys the native robustness that accompanies topological computation, the gates

that can be performed in this way are insufficient for universal quantum computation, and so

must be supplemented with non-topological operations whose fault-tolerance is guaranteed

separately.
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It is an interesting question as to whether a similar measurement-based computation scheme

exists that enjoys universal topological quantum computation. An obvious candidate strategy

is to attempt to replace the simulated toric code punctures with simulated defects in another

more complicated topological model, such as the quantum doubles. If we were to construct

an analogous procedure using the generalized cluster states for a non-Abelian group G , appro-

priately generalizing the qubit TCSQC protocol would not generally succeed for the reason

that the effect of random measurement outcomes could not be efficiently classically pro-

cessed. Random measurement outcomes would be interpreted as (possibly superpositions of)

anyons, and their dynamics - and hence effect on the logical state - is unlikely to be efficiently

classically calculable in general (particularly if the anyon dynamics is BQP complete).

One possible way to salvage such a generalized topological cluster state computation scheme

is by removing the measurements from the protocol altogether. Adiabatic cluster state compu-

tation [BF10, BFC13, AMA14] makes use of the cluster state as a modular prototype for com-

putation by adiabatic deformation of a Hamiltonian. A standard measurement-based cluster

state computation may be translated to the adiabatic setting by simulating the measurement

with the adiabatic application of a strong field in the direction of the desired measurement

result. Thus in this scheme, the analogue of measurement results are not random, and so need

not be compensated for by classical post-processing.

Though the adiabatic cluster state computation approach is typically applied to a standard

cluster state computation, we could equally well apply it to the topological cluster state scheme.

In this setting, the choice of fields would effectively set the world-lines of punctures and anyons

in simulated time, without randomness. Making use of these techniques, it should be possible

to perform universal topological cluster state computation with the generalized cluster states

by simulating the evolution of punctures (as with the standard TCSQC scheme) in a sufficiently

complicated Kitaev quantum double model1. Alternatively, since the world-lines of anyons

may now be controlled directly by choosing the adiabatic fields appropriately, and since

braiding of suitable anyons is sufficient to implement universal quantum computation [Kit03,

Moc03, Moc04], it should also be possible to compute in a generalized topological cluster state

computation scheme by adiabatically simulating the evolution of a suitable class of anyons.

These methods for adiabatic topological cluster state computation may be contrasted with

the direct approach of adiabatic topological quantum computation [CLB+14].

Universal topological measurement-based quantum computation

In the scheme laid out in Sec. 4.5.1 for adiabatic topological quantum computation with these

generalized cluster states, it was in part because of the infeasibility of classical processing that

standard measurement-based computing techniques could not be used. The universality of

1Though computation by braiding punctures in non-Abelian anyon systems has not been extensively studied,
the fact that punctures contain anyonic charges and the braiding of anyonic charges can be sufficient for universal
quantum computing [Kit03, Moc03, Moc04] suggests that the braiding of punctures should also be sufficient for
universal quantum computation in general.
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quasiparticle braiding in the relevant anyon model meant that it was infeasible to calculate

the effect of any stray braids caused by undesirable measurement outcomes (the most naive

implementation of the scheme would in fact produce superpositions of anyon states which

would generally be non-simulable in any case, but we believe that it may be possible to

circumvent this with a more sophisticated protocol in some cases).

However, recall that in the qubit topological cluster state computation scheme the computa-

tion proceeds not by simulating anyon braiding, but by simulating the braiding of punctures

in the surface of the system. It is not clear that the computational power of such puncture

braiding and the computational power of anyon braiding in such a model must always coin-

cide. In fact, for another type of topological defect known as a twist, braiding of these objects

can be universal for quantum computation while the braiding of the relevant anyons remains

classically simulatable [BJQ13c]. Thus it may be possible to find some anyon model where

braiding of punctures is universal, while braiding of anyons is classically simulatable. Although

the interaction between topological defects and anyons can be quite complex, this could con-

ceivably lead to a universal topological measurement-based quantum computation scheme

based on an appropriate generalized cluster state (whether as described in this chapter or

from the possible extensions noted below).

4.5.2 Extensions

Although as presented here, the generalized cluster states are based on finite group algebras,

there is little in the construction that is particularly restricted to finite groups. Several related

or further generalizations of this construction suggest themselves.

The clearest example is the extension from finite groups to Lie groups. In particular, by

considering the group of real numbers under addition, our construction reproduces the

continuous-variable cluster states [ZB06, MvLG+06]. This gives a unified framework for all

previously known variants of the cluster state. This will be presented elsewhere [BM].

As this construction was inspired by the generalization of the toric code to the quantum double

models based on finite groups, it is natural to ask if the later generalizations of the toric code to

arbitrary finite-dimensional Hopf C∗ algebras [BMCA13] and the conjectured generalization

to weak Hopf algebras [BMCA13, BCKA13] could also be applied to generalized cluster states.

There is an obstacle in directly extending the construction to Hopf algebras, as the natural

generalization of the controlled multiplication operation would be according to the coproduct

∆ of the Hopf algebra. This is the operation that maps from one system to a tensor product of

two systems.

The coproduct of a group algebra is simply∆(g ) = g⊗g for g ∈G . In a general Hopf algebra, the

coproduct of an element is given by ∆(a) =∑
i a(i )

(1)⊗a(i )
(2). The natural generalization of the con-

trolled multiplication gate is defined using this structure, e.g. CMULT|a〉|b〉 =∑
i |a(i )

(1)〉|a
(i )
(2)b〉.

However, this gate no longer need commute on control qudits. For this reason, if we were to
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use this CMULT gate to construct a cluster state, the circuit would no longer be finite-depth

and the stabilizer operators derived in analogy to those in Sec. 4.3 would no longer be finite

weight in general.

One way to define cluster states based on Hopf algebras that can be constructed by constant

depth circuits and have local stabilizers would be to restrict the graphs on which these states

are defined. In particular, consider a graph Λ that is bipartite and every site v in the even

sublatticeΛe is 2-valent. Then one edge incident to v could act as controlled left multiplication

and the other edge acts as controlled right multiplication. Since these two operations always

commute on common targets, this construction would yield a state with the desired properties.

Of course choosing graphs of this kind is a very restrictive constraint, and so it would be

interesting to see if an alternative mechanism to retain locality is possible.

Apart from Lie groups and Hopf algebras as motivated by the Kitaev quantum double models,

it would also be interesting to study generalizations of the cluster states motivated by the

Levin-Wen string net models [LW05]. Instead of a group, these models are specified by a fusion

category. The simplest choice gives the toric code as in the quantum double models. As in

Table 4.1, we could build qudits and associated operator algebras inheriting features of a given

fusion category. It would be interesting to develop cluster states for a given fusion category in

this way.

Finally, we note that in some of these extensions it may be possible to construct some cluster

states that are related to the standard definition (4.7) instead of the CSS definition (4.10). This

should be possible when considering algebraic objects which are self-dual in the relevant

sense (as with Abelian groups).

4.5.3 Broader implications

As noted in Sec. 4.4.2, the generalized cluster states on an infinite chain extend the standard

notion of symmetry protected states with a symmetry group to states that simply have a

symmetry algebra. The consequences of this are not clear, and it may be of interest to consider

the notion of symmetry protected phases that are labelled by more general objects than

groups.

The Pauli stabilizer formalism has proved spectacularly successful at describing a wide variety

of states, and making them amenable to both analytical and numerical study. Several similar

constructions have been proposed, including the monomial stabilizer formalism [VdN11]

mentioned earlier, among others [Got99a, NBVdN15]. It is known that all Pauli stabilizer states

are equivalent (under local Clifford circuits) to a qubit cluster state [VdNDDM04]. It may be of

interest to determine whether a similar family of states can be defined by local equivalence to

a generalized cluster state for any given group G . Although these all fall under the umbrella of

monomial stabilizer states, it may be advantageous to define smaller classes that have more

structure than the general case.
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Chapter Review

We define a family of generalized cluster states based on an arbitrary finite group and

explore their properties.

• We offer a general discussion of the algebraic structure of CSS qubit systems, their

relationship to the group algebra of Z2, and how they may be similarly generalized

to an arbitrary finite group.

• The relationship between the generalized cluster states and the standard qubit

cluster state is analogous to the relationship between the quantum double models

and the toric code.

• The generalized cluster states are the ground states of local commuting Hamiltoni-

ans and also the outputs of constant depth circuits, as is the case for the standard

cluster states.

• We discuss the properties of the generalized cluster states under measurement, as

well as giving their PEPS descriptions and discussing their global symmetries.

• The relationship between the qubit cluster state and the toric code is extended

to a relationship between the generalized cluster states and the quantum double

models.

• Possible applications of the generalized cluster states are discussed, including

an adiabatic topological cluster state computation scheme based on the qubit

topological cluster state computation scheme.
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5 Generalized Color Codes Supporting
Non-Abelian Anyons

Abstract

We propose a generalization of the color codes based on finite groups G . For non-Abelian

groups, the resulting model supports non-Abelian anyonic quasiparticles and topological

order. We examine the properties of these models such as their relationship to Kitaev

quantum double models, quasiparticle spectrum, and boundary structure.

5.1 Introduction

Topological codes are a promising avenue to achieve robust quantum memories [DKLP02] or

implement fault-tolerant quantum computation [Kit03]. These codes have locality properties

that are both advantageous from the perspective of implementation, and give robustness

against realistic noise models. Topologically ordered systems can be used for information pro-

cessing in a number of ways, notably by code deformation [BMD09, Bom11] or by the braiding

of quasiparticle excitations [NSS+08]. The latter approach is available only for particular types

of topologically ordered systems with non-Abelian anyonic excitations.

The color codes [BMD06, BMD07b] are a family of topological codes with Abelian anyonic ex-

citations. They may be used to perform computation by code deformation, but are particularly

notable for having a large class of transversal gates [BMD06], giving rise to high fault-tolerance

thresholds [LAR11]. They are also related to many other interesting families of codes such as

the toric codes [Kit03], topological subsystem codes [BKMD09, Bom10b], higher-dimensional

color codes [BMD07a], and gauge color codes [Bom13]. Small examples of color codes have

also been demonstrated and manipulated in the laboratory [NMM+14].

While the color codes have interesting properties and are related to many other interesting

models, the ability to support non-Abelian excitations is one feature they lack. Here, we

present a generalization of the color code to an arbitrary finite group G (such that the standard
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color code corresponds to the group Z2). This is motivated in analogy to the generalization of

the toric code to the quantum double models [Kit03]. These generalized color codes support

non-Abelian anyons for non-Abelian groups G and so may in general be used for topological

quantum computation by braiding these quasiparticles.

We also study some notable properties of these generalized color codes. Particularly, we

demonstrate an equivalence between the generalized color codes and the quantum double

models that allows us to easily determine the quasiparticle content of these color codes. We

further discuss the structure of the boundaries of these models among other properties.

The layout of the paper is as follows: in Sec. 5.2, we will review the qubit color code model

and introduce the generalized color code. We will prove the relation between these models

and the quantum double models in Sec. 5.3. Following this, in section 5.4 we will explore the

properties of the generalized color codes, before concluding remarks in Sec. 5.5.

5.2 Qubit Color Codes and G-Color Codes

The qubit color code [BMD06] is defined on a trivalent lattice whose plaquettes are 3-colorable

(see for example Fig. 5.1). Such lattices are called 2-colexes [BMD07a]. Qubits are placed on

vertices of the 2-colex, and each plaquette has two associated projectors, defined as

SX
p = 1

2

(
1+

∏

i∈p
X (i )

)
(5.1)

SZ
p = 1

2

(
1+

∏

i∈p
Z (i )

)
(5.2)

such that i ∈ p runs over vertices bounding the plaquette p, and where X (i ) and Z (i ) are the

Pauli matrices acting on vertex i . 2-colexes are always bipartite, which means that all cycles of

the lattice are even in length, and so SX
p and SZ

p commute with each other for the same p. It

can also be seen that [SX
p ,SZ

p ′ ] = 0 ∀p, p ′. The model is then defined by the Hamiltonian

H =−
∑
p

[
SX

p +SZ
p

]
(5.3)

such that the ground space of the code is the common +1 eigenspace of each of the Sp

operators. We will therefore refer to the SX and SZ as X - and Z -type stabilizers.

Plaquettes of the 2-colex are colored red, green, and blue, and similarly each link has an associ-

ated color, such that it connects two plaquettes of its own color. The elementary excitations of

this model can be thought of as (Abelian) anyonic quasiparticles, corresponding to stabilizer

operators that are frustrated. Anyon species can be labelled by the color of the plaquette on

which they live and the type of stabilizer they frustrate (i.e. X or Z ), or can be a composite of

these generating anyons.
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(a) (b)

Figure 5.1 – Two examples of 2-colexes. (a) The 6.6.6 (honeycomb) lattice. (b) The 4.8.8 lattice.

On a torus the qubit color codes are 24-fold degenerate, and alternative boundary conditions

for these codes are discussed further in Sec. 5.4.3. Logical operators in these codes consist of

homologically non-trivial strings of X or Z operators running along edges of a particular color,

and can branch if strings along edges of all three colors meet. A X string running along red

links will anticommute with a Z string running along blue links, for example, and these string

operators will form a Pauli algebra acting on the degenerate codespace.

We can think of the qubit color code as being based on the group Z2. The qubits on each link

have a natural basis labelled by elements ofZ2 = {0,1} (with 0 the identity element) and we can

consider the X operator to act on these states as group multiplication by the 1 element, i.e.

X |g 〉 = |g ⊕1〉 (5.4)

where of course addition modulo 2 is the relevant group multiplication operation for this

group. The X operator can also be labelled with a group element superscript such that

X h |g 〉 = |g ⊕h〉 (5.5)

and see that X 1 = X , X 0 = I .

Let us also introduce operators T g = |g 〉〈g | for each g ∈Z2. This allows us to write

Z = T 0 −T 1 (5.6)

In particular, this allows us to rewrite

SX
p = 1

2

∑

g∈Z2

∏

i∈p
X (i )g (5.7)

SZ
p =

∑
⊕

gi=0

∏

i∈p
T (i )gi (5.8)
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where we use notation such that
⊕

gi = 0 runs over all sets of g1, g2, . . . , gn such that g1 ⊕ g2 ⊕
·· ·⊕ gn = 0.

When written in this form, these operators bear a close resemblance to the Av and Bp projec-

tors used to define the quantum double models [Kit03] (in this case for the group Z2).

5.2.1 G-color codes

Given our interpretation of the qubit color code in terms of the group structure of Z2, we

now define a generalized color code. The desirable characteristics of this code are that its

Hamiltonian can be expressed as a (negative) sum of commuting local projectors, and that

its excitation spectra includes non-Abelian anyons for a sufficiently complicated group G .

The models we present will satisfy both of these conditions. It is worth noting that our

models defined for the (Abelian) cyclic groups Zd will correspond precisely to the known

generalizations of color codes to higher-dimensional spins [Sar10].

A G-color code is defined uniquely by the following set of data:

• A finite group G

• A 2-colex L

• A parity function si =±1 at each site i of L

• A choice of privileged color (conventionally red), and a choice of “clockwise” and “anti-

clockwise” for the remaining colors (conventionally green and blue respectively)

Here we will begin by defining the model for the special case si =+1 ∀i , and subsequently

describe how to relate models with different parity functions si . To each vertex of the 2-colex

L, we associate a qudit with dimension |G| and an orthonormal basis labelled by elements

g ∈G . Define operators corresponding to group multiplication and projection that act at a site

as follows

X h
+ |g 〉 = |hg 〉 (5.9)

X h
− |g 〉 = |g h−1〉 (5.10)

T h |g 〉 = δh=g |g 〉 (5.11)

As compared to the qubit case, a general group requires a distinction between left and right

multiplication, hence we have introduced both X+ and X− to distinguish these two operations.

Note that [X g
+ , X h

−] = 0, though [X g
+ , X h

+] 6= 0 6= [X g
− , X h

−] in general.

A further group theoretic concept that will be useful is the commutator subgroup [G ,G] =
〈[g ,h] : g ,h ∈G〉 where [g ,h] = g−1h−1g h. This subgroup is normal, and the quotient group
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G/[G ,G] is the Abelianization of G . A particularly useful property of [G ,G] is that it can

alternatively be defined as the set of elements in G which can be written as some product

g1g2g3 · · ·gn that may be reordered such that it evaluates to identity.

In analogy to the qubit color code, the G-color codes are specified by a number of stabilizer

operators. As in the qubit case, each plaquette will have an associated X - and Z -type stabilizer.

However, in general, the form of these stabilizers will depend on the color of the plaquette

under consideration. With this in mind, we can define X -type stabilizers for a plaquette as

follows

SX
p = 1

|G|
∑

g∈G
Ag

p (5.12)

Ag
p =

∏

i∈p
X g (i ) (5.13)

where in Eq. (5.13) the X g operator acts either as left (X g
+) or right (X g

−) multiplication depend-

ing on the relative orientation of the three colors at a given site. Explicitly, when considering

the X -type stabilizer corresponding to a blue or green plaquette, if the colors of plaquettes

around a vertex are ordered {r, g ,b} when traversed clockwise, then the operator appearing

at that vertex will be of the form X+. Similarly, if the plaquette colors around the vertex are

ordered {r,b, g } when traversed clockwise, then the operator appearing at that vertex will take

the form X−. When considering red plaquettes, these conventions are reversed, so that {r, g ,b}

clockwise ordering corresponds to X− and {r,b, g } corresponds to X+. Concrete examples of

these conventions are illustrated in Fig. 5.2.

These conventions are chosen so that the SX operators corresponding to plaquettes of the

privileged color (red) commute with the SX for both blue and green plaquettes. Making all

three colored X -type stabilizers commute pairwise is impossible, and so the blue and green

SX will not generally commute with each other for neighbouring plaquettes. Although this

may seem at first glance to be a severe problem, it so happens that there exists a common +1

eigenspace of all SX regardless.

The Z -type stabilizers for each of the three plaquette color are then defined as

SZ
p,red =

∑
∏

gi∈[G ,G]

∏

i∈p
T gi (i ) (5.14)

SZ
p,blue =

∑
∏

ACW gi=e

∏

i∈p
T gi (i ) (5.15)

SZ
p,green =

∑
∏

CW gi=e

∏

i∈p
T gi (i ) (5.16)

where the ACW or CW denotes the product being taken anti-clockwise or clockwise around the

plaquette, respectively. The origin of the product can easily be seen not to affect these opera-

tors. Additionally, the order of multiplication in SZ
red does not affect the outcome. Since [G ,G]

can be defined as the set of elements that can be decomposed into a product h1h2h3 · · ·hn
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+
−

+

−
+

−
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−
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Figure 5.2 – Sign conventions for X -type stabilizers for example red, green, and blue plaque-
ttes. These stabilizers are constructed from products of X operators at each site around the
plaquette. Those vertices with a + denote left multiplication (X+), while those with a − denote
right multiplication (X−). These signs are determined by the order of plaquette colors around
a site.

such that it can be rearranged to evaluate to identity, whether or not some product of elements∏
gi is in [G ,G] will be independent of the order of multiplication.

When considering these Z -type stabilizers, it is clear the sense in which the red plaquettes are

privileged. Their structure is not related to the full group G . Rather, we can consider [G ,G] as

the preimage of the identity element of G/[G ,G] under the quotient map. Thus the structure

of the red Z -type stabilizer is derived from that of the Abelianization of G , as opposed to G

itself. For this reason, we will sometimes refer to red plaquettes as “Abelianized”. It should

also be clear why we identified blue and green plaquettes as “anticlockwise” and “clockwise”

respectively.

The reason that we have defined the orderings of products in SZ operators as above is that

this allows these operators to commute with all the SX , as can easily be verified. That we are

unable to preserve this commutativity without Abelianizing the red plaquettes can be seen

as a consequence of the fact that the blue and green SX fail to commute. It is impossible to

preserve the full group structure of the red plaquette and have its SZ commute with both the

blue and green SX . In order to avoid this non-commutativity, we have reverted to the simpler

structure of the Abelianization of G , where no such problems exist, for the red plaquettes.

In Abelianizing the red plaquette Z -stabilizers, we have introduced an additional extensive

degeneracy to the system. This degeneracy is local in the sense that it can be lifted through the

addition of an extra class of local stabilizer operator that has no counterpart in the qubit case

(or in fact for any Abelian G-color code), where [G ,G] = {e}. We call these C -type stabilizers,

and they are defined for each red link as

SC
l ,red = 1

|[G ,G]|
∑

n∈[G ,G]
Cl ,red(n) (5.17)

Cl ,red(n) = X n
+ (l ,↑)⊗X n

− (l ,↓) (5.18)
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where X n
± (l ,↑↓) acts on the upper (↑) or lower (↓) qudit of the red link l after it has been oriented

such that the blue plaquette (ACW) is on the left of the link and the green plaquette (CW) on

the right. It can be seen that the SC will commute with all SZ and SX . By requiring the ground

space to be in the +1 eigenspace of the SC as well as the SZ and SX , the local degeneracies

caused by Abelianization of the red plaquettes are lifted.

As noted, the SX , SZ , and SC stabilizers as written do not commute (as the SX do not in general

commute). They nonetheless can be cast in the monomial stabilizer framework [VdN11], and

have an associated frustration free ground space. However, commutativity can be restored

by restricting the SX stabilizers for green and blue plaquettes to the +1 eigenspace of the SC .

These modified stabilizers take the form

S̃X
p,green = SX

p

∏

l∈p∩red
SC

l (5.19)

S̃X
p,blue = SX

p

∏

l∈p∩red
SC

l (5.20)

where p ∩ red denotes all red links bounding the plaquette p. This will then give a set of

commutative stabilizer operators generated by the SZ , S̃X and SC operators, allowing us to

write the Hamiltonian of a G-color code as

H =−
∑
p

(
S̃X

p +SZ
p

)
−

∑

red l
SC

l (5.21)

The ground space will be the common +1 eigenspace of all the stabilizer operators, and will

be protected from excited states by a constant gap (noting that each of the stabilizers is a

projector).

This completes the definition of the G-color code for the special case that the parity function

is set to si = 1 at every site i of the lattice. The parity at a given site may be reversed by making

the unitary transformation |g 〉→ |g−1〉 at that site. This completely exhausts the freedom we

have in choosing the SX , SZ and SC consistently. When viewed in this way, we can see the

parity function as being analogous to the edge direction in the quantum double models, where

reversing an edge is equivalent to applying the unitary taking g → g−1 on that edge. We will

henceforth restrict to the si = 1 parity case, with the understanding that all results will hold for

any possible alternative parity choice.

5.3 Equivalence to copies of the quantum double models

A property of the qubit color code that will be particularly useful to us in understanding the G-

color code is that it is locally equivalent to 2 copies of the toric code [Bom14, BDCP12, Haa13].

We will now sketch an alternative proof of this fact (for a particular 2-colex)1 and demonstrate

1The alternative mapping we describe is implicitly defined in [BFBD11].
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how it generalizes to a general G-color code.

5.3.1 Qubit color code ↔ toric code equivalence

Before we present the mapping between the color code and the toric code, we first briefly

review the toric code [Kit03]. For our purposes, it is sufficient to define the toric code on a

square lattice, with qubits on edges. As in the color code, this model is defined by a number of

stabilizer operators. Explicitly, for each vertex v and plaquette p of the lattice, we have

K X
v = 1

2

(
1+

∏

i∼v
Xv

)
(5.22)

K Z
p = 1

2

(
1+

∏

i∼p
Zp

)
(5.23)

where we use notation such that i ∼ v runs over all qubits incident to v , and i ∼ p runs over all

qubits bordering p. The toric code Hamiltonian is then given by

Htoric =−
∑
v

K X
v −

∑
p

K Z
p (5.24)

in a very similar fashion to the color code.

For simplicity, we present a mapping between the color code and two copies of the toric code

on a particular 2-colex. Specifically, we consider the 4.8.8 lattice, where the square plaquettes

are colored green and the octagonal plaquettes blue and red in such a way as to satisfy 3-

colorability (Fig. 5.1b). We will show how to interpret a qubit color code on this 2-colex as 2

copies of the toric code. That is, we will find a local unitary map that transforms color code

stabilizers to toric code stabilizers or actions on uncoupled ancilla systems. Intuitively, the

mapping we present treats each green plaquette as 2 encoded qubits, one belonging to each

copy of the toric code. The blue plaquettes will correspond to vertices (plaquettes) of the

first (second) copy of the toric code, while the red plaquettes will correspond to plaquettes

(vertices) of the first (second) copy of the toric code (see Fig. 5.3).

Consider the 4 qubits belonging to each green plaquettes as a stabilizer code with a 4-fold

degenerate codespace. The stabilizers of this code are simply the green face stabilizers of the

color code, i.e.

SX
green = 1

2

(
1+ X X

X X

)
(5.25)

SZ
green = 1

2

(
1+ Z Z

Z Z

)
(5.26)

where we use a graphical notation for the 4 operators acting on the vertices of the green
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Figure 5.3 – Overlaid on the 4.8.8 color code lattice, the solid lines correspond to the edges of
the first toric code lattice, while the dashed lines constitute the second toric code lattice.

plaquette, so that
A B

D C
≡ A⊗B ⊗C ⊗D on the 4 relevant qubits.

This 4-dimensional codespace corresponding to each green plaquette can be considered as 2

encoded qubits, one for each copy of the toric code. In this way, the qubits of the new toric

code lattices have a direct correspondence to the green plaquettes of the color code lattice. It

will now be convenient to bipartition these green plaquettes into those with red plaquettes on

their right and left (h-type) and those with red plaquettes above and below them (v-type).

On h-type green plaquettes, encoded Pauli algebras can be defined for each of the 2 encoded

qubits as

X h
enc(1) = X X

I I
(5.27)

X h
enc(2) = X I

X I
(5.28)

Z h
enc(1) = Z I

Z I
(5.29)

Z h
enc(2) = Z Z

I I
(5.30)

where X h
enc(2) acts as Pauli X on the 2nd encoded qubit for the h-type green plaquette under

consideration.
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For v-type green plaquettes, the encoded operators can be defined by

X v
enc(1) = X h

enc(2) (5.31)

X v
enc(2) = X h

enc(1) (5.32)

Z v
enc(1) = Z h

enc(2) (5.33)

Z v
enc(2) = Z h

enc(1) (5.34)

That is, on v-type plaquettes, the definitions of the first and second encoded qubits are

exchanged.

Note that these definitions are not unique. In particular, because the codespace is the +1

eigenspace of SX
green and SZ

green, multiplying any operator by
X X

X X
or

Z Z

Z Z
is a trivial

operation, and so the encoded operators are invariant under 180◦ rotations.

One could more rigorously define the unitary enacting this encoding as a function from

operators on the 4 qubits of each green plaquette to the 2 encoded (toric code) qubits, as well

as 2 ancilla qubits. Notably, this transformation would take green color code stabilizers to an

action on the ancilla space, and so they become “trivial” in the sense of Ref. [BDCP12].

In terms of the encoded toric code qubits, the action of the color code stabilizers for blue and

red plaquettes is

SX
red → K X (1) (5.35)

SZ
red → K Z (2) (5.36)

SX
blue → K X (2) (5.37)

SZ
blue → K Z (1) (5.38)

if we interpret the lattices of the two toric codes as in Fig. 5.3. Thus the unitary we have

described maps all the stabilizers of the original color code model to stabilizers of the toric

code model, or operators on uncoupled ancilla qubits. This completes the demonstration of

equivalence.

5.3.2 G-color code ↔ quantum double model equivalence

The equivalence between the qubit color code and the toric code on the 4.8.8 lattice shown

above can be generalized to an equivalence between the G-color code and 2 quantum double

models. However, as compared to the qubit case (which corresponds to G = Z2), the two

quantum double models will in general be different. One will be based on the group G , while

the other will be based on the Abelianization of the group G/[G ,G].

Before we continue, we briefly review the quantum double models [Kit03]. Conventionally,

these models are defined on a directed lattice, with edge direction playing a similar role to

146



5.3. Equivalence to copies of the quantum double models

(a)

Figure 5.4 – A directed square lattice, consistent with the quantum double stabilizers defined
in Eqns. (5.39) - (5.41).

our parity function. We will define a quantum double model for a group G on an particular

directed square lattice (Fig. 5.4), with qudits of dimension |G| placed at every edge, noting that

transforming the qudit on an edge by g → g−1 is equivalent to reversing the direction of the

edge (qudits have a natural basis labelled by g ∈G).

At each vertex v and plaquette p of the lattice, the stabilizers of the quantum double model

can be written as

K X
v =

∑
g

Av (g ) (5.39)

Av (g ) = X g
−,U X g

−,R X g
+,D X g

+,L (5.40)

K Z
p =

∑
g1g2g3g4=e

∏

i∈p
T g1

U T
g−1

2
R T

g−1
3

D T g4

L (5.41)

where the subscript of the X operators in (5.40) and the T operators in (5.41) denote whether

they act on the qubit U p, Right, Down, or Left from the center of the plaquette or vertex under

consideration.

As was the case for the qubit color code ↔ toric code mapping (the Z2 case), we will explicitly

consider only the 4.8.8 lattice, where the square plaquettes are colored green, and the octagonal

plaquettes are colored red and blue (Fig. 5.1b). The intuition for our construction is much

the same, in that we will encode the quantum double degrees of freedom in the qudits at the

vertices of the green plaquette. However, particularly in the case of non-Abelian group G , the

mapping will be less straightforward.

As before, green plaquettes are labelled h- or v-type depending on whether red plaquettes

are at their sides or above and below them. Given this, define the codespace for h-type green
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plaquettes via the stabilizers of the plaquette

SZ ,h
green =

∑
g1g2g3g4=e

T g1 T g2

T g4 T g3
(5.42)

SC ,h
l1,green =

∑

n∈[G ,G]
C h

l1,green(n) (5.43)

SC ,h
l2,green =

∑

n∈[G ,G]
C h

l2,green(n) (5.44)

S̃X ,h
green = SC ,h

l1,greenSC ,h
l2,green

∑
g

Ah
green(g ) (5.45)

with

Ah
green(g ) = X g

+ X g
−

X g
− X g

+
(5.46)

C h
l1,green(n) = X n

+ I

X n
− I

(5.47)

C h
l2,green(n) = I X n

−
I X n

+
(5.48)

On v-type green plaquettes, the stabilizers can be found by rotating the h-type stabilizers by

90◦. These definitions can be seen to be invariant under 180◦ rotations.

Given this codespace at each h-type green plaquette, we can write encoded operators on this

space as

X g
+(1) ≡ X g

− X g
+

I I
T g (1) ≡

∑
g2g3=g

I T g2

I T g3
(5.49)

X g
−(2) ≡

∑

k∈g [G ,G]

I X k
−

I X k
+

T g (2) ≡
∑

g1g2∈g [G ,G]

T g1 T g2

I I
(5.50)

X g
−(1) ≡ I I

X g
+ X g

−
T g (1) ≡

∑

g4g1=g−1

T g1 I

T g4 I
(5.51)

X g
+(2) ≡

∑

k∈g [G ,G]

X k
+ I

X k
− I

T g (2) ≡
∑

g3g4∈g−1[G ,G]

I I

T g4 T g3
(5.52)

As in theZ2 case, we can define logical operators for the encoded qudits in multiple equivalent

ways within the codespace. We have written two particularly useful sets of logical operators

for each of the encoded qudits here. These encoded operators can be seen to commute with

the stabilizers defined above. The encoded operators acting on the v-type green plaquettes

can again be found by rotating the h-type operators 90◦ clockwise.

In the Z2 case, the two encoded systems (labelled 1 and 2) were both of the same dimension
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Figure 5.5 – Overlaid on the 4.8.8 G-color code lattice, the solid lines correspond to the edges
of the first quantum double lattice, while the dashed lines constitute the second quantum
double lattice.

(they were both encoded qubits). In general, however, this is not the case. Examining the

encoded operators on qudit 2 (5.50) or (5.52), we can see that states in this space are labelled

only by k ∈ G/[G ,G], and thus this qudit is |G/[G ,G]| dimensional. This can be seen by

noting that g [G ,G] is the coset of G corresponding to a particular element of G/[G ,G], and in

particular g [G ,G] = ng [G ,G] for any n ∈ [G ,G]. In contrast, qudit 1 can be seen to have basis

labelled by g ∈G , and is thus |G| dimensional.

In terms of this encoding, it is clear that once again, the X -type stabilizers of the G-color code

corresponding to green plaquettes can be thought of as acting only on some ancilla space

(they have no action on the encoded space by construction). Similarly, the C -type stabilizers

corresponding to red links of the G-color code act only within a green plaquette, and commute

with the encoded operators, so they can also be interpreted as acting on an ancilla space. In

contrast, the G-color code stabilizers for blue and red plaquettes can be rewritten in terms of

the encoded qudits. Their action under the encoding map can be written as

SX
red → K X (1) (5.53)

SZ
red → K ′Z (2) (5.54)

S̃X
blue → K ′X (2) (5.55)

SZ
blue → K Z (1) (5.56)

where K ′ are defined by Eqs. (5.39) and (5.41) over the group G/[G ,G], as opposed to the K

which are defined over G . The K ′(2) and K (1) operators act on the quantum double lattices

depicted in Fig. 5.5.

Thus the unitary we have described maps all the stabilizers of the G-color code model to

stabilizers of the quantum double model, or operators on uncoupled ancilla qubits, in analogy

to the qubit color code ↔ toric code mapping. Thus we have demonstrated an equivalence

between a G-color code and a G quantum double model together with a G/[G ,G] quantum

double model (equivalently, a single G ×G/[G ,G] quantum double model).

149



Chapter 5. Generalized Color Codes Supporting Non-Abelian Anyons

5.4 Properties of Generalized Color Codes

The qubit color codes have a number of properties that make them of interest to the topological

quantum information community. Here we will take a brief survey of some of the most

important properties of the G-color codes. Where relevant, we will discuss the connection to

the properties of the qubit color codes. Note that some properties of these models for Abelian

groups G are explored in some depth in [Sar10].

5.4.1 Anyon spectrum

The correspondence between the G-color codes and the quantum double models developed

in Sec. 5.3 allows us to immediately import results from the study of the quantum double

models and interpret them in the context of the G-color codes.

Ref. [Bom14] shows that so-called topological stabilizer groups are equivalent iff they have

isomorphic topological charges. This result does not apply directly to the equivalence that we

have established between quantum double models and G-color codes because they are not

Pauli stabilizer models. However, even without the level of rigor available for Pauli stabilizer

models, we can still use the intuition behind this theorem to draw a correspondence between

the anyonic content of the quantum double models and the G-color codes.

It is easy to see that all local operations on the qudits of the quantum double models in

Sec. 5.3.2 can be mapped to some local operations on the qudits of the G-color code (though

the converse is not so straightforward due to the presence of the ancillae in the mapping).

Similarly, anyonic charges of the quantum double models can be mapped to charges living on

the red and blue plaquettes of the G-color code. This allows us to state that the G-color code

is supporting the anyons of both the G and G/[G ,G] quantum double models. Notably, this

includes non-Abelian anyons for non-Abelian G .

In general, since the anyons of a quantum double model for group G are given by the irre-

ducible representations of the Drinfeld double of G , Irrep(D(G)), we would expect from this

line of reasoning that the anyonic content of a G-color code is given by Irrep(D(G ×G/[G ,G])).

Anyonic charges of the quantum double models can be created and moved by ribbon op-

erators [Kit03]. Each of these ribbon operators must have a corresponding ribbon operator

creating or moving the analogous charges on the G-color code. Given these operators, we could

imagine braiding charges in the G-color code corresponding to any desired braiding in a quan-

tum double model. In particular, we could perform braiding of non-Abelian anyons that imple-

ments universal quantum computation in G-color codes for G non-nilpotent [Moc03, Moc04]

(see also Ref. [CHW15]).
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5.4.2 Further implications of equivalence

A concrete motivation for demonstrating equivalence between two topological models is that

it allows decoding or error correcting routines for one model to apply to a broader class of

models [BDCP12]. In our case, this amounts to the observation that a G-color code can be

decoded if an equivalent procedure for decoding the quantum double model for group G

is known. Although decoding for these non-Abelian anyon models has yet to be explicitly

demonstrated (though related work has been shown [WBIL14, BBD+14b]), by equating our

G-color codes to the well established quantum double models, we can exploit any results in

terms of decoding that are available for them.

Ref. [Bom14] shows that all Pauli stabilizer codes are equivalent to copies of the toric code. The

fact that we are able to demonstrate equivalence between quantum double models and our

G-color codes suggests that a more general equivalence may hold whenever the models are

constructed from commuting projectors based on the X and T operator algebra for a group G .

This may also point to a useful restriction of the monomial stabilizer formalism [VdN11] when

the desired algebra structure is related to a particular group.

Note that we have technically not demonstrated equivalence between an arbitrary G-color

code and quantum double models, as our mapping is specifically tailored to the 4.8.8 lattice.

This was sufficient to prove that the G-color codes are capable in principle of supporting

quantum double anyons, but we have not shown that this is true for a general lattice. However,

the general principles of topologically ordered systems suggest that the microscopic lattice

details should not affect global properties of the system such as its anyon spectrum, and so we

feel confident in taking this correspondence to hold in general.

5.4.3 Degeneracy and Boundaries

As is generic for topological codes, the degeneracy of a particular code is highly dependent on

the topology of the surface in which it is embedded, or, in the planar case, the particular choice

of boundary conditions. On closed (orientable) manifolds, this degeneracy is independent of

the microscopic details and can be derived from the anyon spectrum [NSS+08]. This means

that the degeneracy of the G-color codes on closed manifold can directly be calculated as the

degeneracy of the quantum double model for G ×G/[G ,G].

Similarly, characterization of the possible gapped boundaries for topologically ordered models

is based on the anyon spectrum rather than microscopic details. Possible boundary types and

their properties can thus be found by appealing to the known results for the quantum double

models [BSW11, KK12, HW15]. Since this theory is already well established in general, there is

no reason to delve into it here. However, before moving on we will briefly discuss some special

boundary types that are natural in the context of the color codes, and planar codes that can be

constructed from them.

The most common planar qubit color codes are triangular [BMD06] (Fig. 5.6a). Each side
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(a)

(b)

Figure 5.6 – Two examples of planar code boundaries, together with examples of logical
operator strings on these lattices. (a) A triangular boundary. (b) A rectangular boundary.

of the triangle is associated with the color not appearing in plaquettes on that boundary.

These triangular color codes encode one qubit. Small triangular color codes have been

experimentally prepared and manipulated [NMM+14]. Another common form of planar

color code is rectangular, as in Fig. 5.6b. In this case, two logical qubits are encoded. More

generally, a natural boundary for the color code is labelled by a color according to the color not

appearing on plaquettes at that boundary. Degeneracy is introduced to the system when the

lattice boundary consists of several different colored segments. Although these boundaries

arise naturally in the study of color codes, they are not the only boundary types that can occur.

In particular, note that the number of boundary types we have just described is 3 (labelled by

colors), while a topologically ordered model equivalent to two copies of the toric code can give

rise to 6 types of boundary [BK98, BSW11, KK12, BJQ13b, BJQ13a, Lev13]). The reason that the

boundaries we described are particularly natural is that they require no special modification

to the stabilizer operators (only the 2-colex on which the model is defined).

In the general case of a G-color code, the effect of boundaries is a little more complicated due
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to the asymmetry between the three colors (and of course the more complicated algebraic

structure). As before, degeneracy is introduced to the codespace when more than two distinct

boundaries exist, but the counting of this degeneracy depends on the color (or type) of

the boundaries. Since the general case can be determined by appealing to results for the

quantum double models, we will simply describe the logical operators and degeneracy of

three distinct planar G-color codes: the blue-green rectangular codes (i.e. one with alternating

blue and green boundaries as shown in Fig. 5.6b), the blue-red rectangular codes, and the

triangular codes. Up to the equivalence between the blue-red rectangular code and a green-red

rectangular code, this exhausts all possible rectangular and triangular codes.

In order to describe the logical operators in these codes explicitly, it would be necessary

to construct ribbon operators as in the quantum double models [Kit03, BMD08a], which is

straightforward but tedious. Instead, we will simply state the types of logical operators that

arise and their relationships in order to calculate the degeneracy of these codes.

Blue-green rectangular code

Before discussing the logical operators of these codes, we should quickly note a subtlety in

their definition. At each corner between a blue and green edge, there is a red plaquette with

one qudit that touches neither green nor blue plaquettes. This qudit should be understood

to have a C -type stabilizer associated with it, as would be the case if there were an edge

emanating from this qudit.

Between the two blue boundaries of this code, it is possible to construct a set of X -type

operators labelled by group elements in G that we call X g
log,blue. These would (largely) run

along blue links of the lattice. However, note that along a green boundary, the distinction

between blue links and red links disappears. Thus along this boundary, we can construct a

family of operators from C -type stabilizers, each labelled by n ∈ [G ,G] that runs along blue

links connecting the blue boundaries. After accounting for equivalence up to these operators,

only blue X -type logical operators labelled by k ∈G/[G ,G] are independent. Similarly we can

construct a set of independent green logical X operators labelled by k ∈G/[G ,G], X k
log,green.

These operators will commute pairwise.

We can also construct Z - (or T )-type logical operators between the blue boundaries. However,

if we were to construct an entire set Z g
log,blue labelled by each g ∈G , these would not commute

with the stabilizers. Instead, we can only construct independent representatives labelled by

each k ∈G/[G ,G]. Similar considerations apply to the Z k
log,green.

We can then form two pairs of logical qudit algebras generated by X k
log,green with Z k

log,blue and

X k
log,blue with Z k

log,green for k ∈G/[G ,G]. We thus say the logical qudits associated with each of

these sets of operators are Abelianized. The total degeneracy is |G/[G ,G]|2.

153



Chapter 5. Generalized Color Codes Supporting Non-Abelian Anyons

Blue-red rectangular code

As in the blue-green rectangular code, we can define X g
log,blue. However, since there is no green

boundary, these are now independent for all g ∈G . In contrast, red X -type logical operators

are only defined for each k ∈G/[G ,G] (again due to equivalence under C -type stabilizers).

Conversely, the red Z -type operators are defined for each g ∈G , while the blue Z -type opera-

tors are only independently defined for each k ∈G/[G ,G]. This leads to logical qudit algebras

generated by X g
log,blue with Z g

log,red for each g ∈G and X k
log,red with Z k

log,blue for each k ∈G/[G ,G].

In this case only one of the logical qudits has been Abelianized, and the total degeneracy is

|G| · |G/[G ,G]|.

Triangular codes

For the triangular code, it is not so straightforward to assign a color type to each logical

operator because they may branch. Despite this, by constructing logical operators that run

entirely along one side of the triangle, it can be seen that only independent X k
log and Z k

log
for each k ∈G/[G ,G] may be defined, and so determine the degeneracy of these codes to be

|G/[G ,G]|.

5.4.4 Topological defects

Topological defects can play an important role in topological systems. In particular, braiding

of certain types of defects can implement quantum computation (through code deformation)

in much the same way as braiding of anyons. Particular types of topological defects such as

holes [BMD09] and twists [Bom10a, Bom11] have been developed for this purpose in simple

models such as the toric codes or qubit color codes. As with our discussion of the anyon

spectrum of G-color codes, we can import many known results from quantum double models

into our study of topological defects in these models, taking the equivalence between quantum

doubles and G-color codes to be general (i.e. independent of the details of the lattice).

The theory of topological defects is closely related to the theory of boundaries. The study of

domain walls (general boundaries) between two topological phases can be used to explore

all the topological defects we will consider here. This theory is developed for the quantum

double models in [BSW11] (see also [KK12] for related work). By making use of the corre-

spondence between the G-color codes and the quantum double models, we can import the

characterization of the domain walls possible between two phases of G-color codes.

Twists are topological defects at which domain walls terminate [KK12]. They induce an

automorphism of the set of anyons, such that an anyon braiding around a twist will re-

turn as a different species (as dictated by the automorphism). Twists have well-defined

fusion and braiding amongst themselves, and can be used for topological quantum computa-

tion [Bom10a, Bom11]. Possible twists for quantum double models (and hence G-color codes)
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are studied in Refs. [BSW11, KK12].

The second type of defects we consider are holes (or punctures). These are closed bound-

aries between the G-color code and vacuum (the topologically trivial phase) within a planar

topological code. They can also have well-defined fusion and braiding relations, and can be

used for topological quantum computation [BMD09]. Again, the characterization of such hole

types can be imported from the boundary theory of quantum double models, as discussed in

Sec. 5.4.3.

Finally, condensation is a mechanism via which the topological order in an anyonic model

can be changed. In a condensed phase, the anyon density for a particular species is given a

non-trivial value in the ground space, and this can lead to interesting effects, e.g. confinement

of other anyon species. Condensation amounts to a deformation in the bulk of the model

under consideration and again an analogy can be drawn to equivalent processes in quantum

double models as studied in [BMD08a] (see also [Eli03, KK12, Kon14]). These kinds of effects

may also be used to perform quantum computation by manipulating the regions of condensed

phases [BMD11].

5.4.5 Transversality properties

One feature of the qubit color codes that is particularly appealing is its large set of transversal

gates [BMD06] (in comparison to the toric code, for example). In fact, this feature is inher-

ited for the color codes based on Abelian groups [Sar10]. The most important transversal

gate that these Abelian color codes possess is the Hadamard gate. However, as discussed

in [Bre15a], operator algebras based on finite non-Abelian groups will not have a counterpart

to the Hadamard gate, due to the inequivalence of the group algebra and the corresponding

representation algebra.

In a similar vein, logical operators for codes with similar algebraic structure to the G-color

codes (significantly the quantum double models) do not generally have large transversal gate

sets. The transversal “string”-like logical operators that appear for Abelian groups gener-

ally become non-transversal “ribbon” operators in this context [Kit03, BMD08a] when the

topological charges of the model become non-Abelian (and thus able to perform quantum

computation by braiding). For these reasons, we do not expect the G-color codes to have

particularly interesting transversal gate sets.

5.4.6 Construction from cluster state

The qubit color code can be constructed in a straightforward way from a suitable cluster

state [BMD08b]. We can view this relationship (appropriately generalized) as one way to

define the G-cluster states.

The qubit color code can be produced by beginning with a cluster state on the lattice shown in
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Figure 5.7 – By preparing a generalized cluster state on the lattice shown with black edges, and
projecting a subset of the qudits (those represented by open circles) into particular states, we
can prepare a G-color code.

Fig. 5.7, and projecting a subset of the qubits (corresponding to each plaquette of the color

code) into the |0〉 state [BMD08b]. This procedure can directly be generalized to produce

G-color codes from generalized cluster states [Bre15a] based on the group G . Given a suitably

prepared generalized cluster state, the analogue of the |0〉 state projections would naively be

expected to be a projection to |e〉. However, performing these projections would not give rise

to the G-cluster states we have defined (the resulting states would not have local stabilizers).

Instead, the projection on the qudits corresponding to red plaquettes must be generalized

to projections to
∑

n∈[G ,G] |n〉, while those on blue and green plaquettes would remain as

projections to |e〉. This will result in the desired G-color code state. Of course for any Abelian

group G , [G ,G] = {e}, and so we recover the standard qubit procedure for G =Z2.

As discussed in Ref. [Bre15a] for the similar case of the toric code, if we were to physically use

measurements of a suitable basis in lieu of projections to the |e〉 or
∑

n∈[G ,G] |n〉 states in an

attempt to prepare G-color code states from generalized cluster states in the laboratory, the

resulting state could be interpreted as an excited state of the G-color code with excitations

determined by measurement outcomes.

5.5 Discussion

We have defined a generalization of the color codes to a finite group G , and explored many

of their basic properties. Some of the useful features of the qubit color codes do not carry

over to the general case; most notably a large set of transversal gates is not expected to be

present in a general G-color code. Nonetheless, we do not have many exactly-solvable models

of topologically ordered systems and so this new family may be of interest as a testbed for

topological phenomena, or may have properties that are difficult to find in existing models.

Furthermore, the relationship between the color codes and many other interesting systems

156



5.5. Discussion

Figure 5.8 – The topological subsystem code is defined on an an expanded 2-colex lattice. In
this example, we have expanded the 6.6.6 honeycomb lattice. The links of the expanded lattice
come in three types, shown as dashed, dotted, and solid, corresponding to the three possible
interaction types: X , Y , or Z .

may allow for further extension of this work. We briefly discuss a few of the most obvious

extensions below.

5.5.1 Extensions of the model

Topological Subsystem Codes

Topological subsystem codes are a family of models that are related to color codes, but whose

Hamiltonians require only 2-body interactions [BKMD09, Bom10b]. They are defined on

2-colexes whose links and sites have been expanded to create a new lattice, as in Fig. 5.8. Each

edge of the expanded lattice carries an operator of the form X ⊗X , Y ⊗Y , or Z ⊗Z .

We will not go into details about these models, but we would not expect them to be generaliz-

able to an arbitrary finite group G as we have done for color codes for the following reason.

In our generalization, we have treated the X operator as if it were a group multiplication

operator. We could also have generalized the Z operator as ZΓ
i j =

∑
g [Γ(g )]i j Tg , for [Γ(·)]i j the

(i , j )th matrix element of a representation Γ. In particular, for the group Z2 this gives Z triv = I

and Z alt =σz for the trivial and alternating representations, respectively. In this way, we can

interpret the Z operators as acting like representations (see Ref. [Bre15a] for a more detailed

discussion).

Given these interpretations of X and Z , we can attempt to generalize a given CSS model.

However, when presented with a non-CSS model such as the topological subsystem codes,

the immediate problem of how to interpret a Y operator in terms of group structure has

no obvious answer. For the Z2 case (and indeed any cyclic group), there is a natural corre-

spondence between the group elements and the representations of the group. This allows

us to unambiguously define products of X g Z g that can serve as a generalization of Y (up

to constants). For this reason, we would not expect significant obstacles to generalizing the
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topological subsystem codes to Abelian groups. In contrast, for non-Abelian groups we cannot

generally rely on a natural correspondence between group elements and representations, and

for this reason it seems unlikely that our strategy will provide a sensible generalization of the

topological subsystem codes for these groups. We refer the interested reader to Ref. [Bre15a]

for a more comprehensive discussion of similar issues.

Higher dimensional models and gauge color codes

The 3D qubit color codes are introduced in [BMD07b], and D-dimensional qubit color codes

can also be defined [BCHMD13] and generalized to gauge color codes [Bom13]. They are

based on the notion of a D-colex in analogy to the 2-colex of the 2D model. We anticipate that

the same algebraic structure used here to define the 2-dimensional G-color codes (such as

the commutator subgroup) may be used to define generalizations of the higher-dimensional

color codes in some cases.

The gauge color codes are the most general setting for these higher-dimensional color codes,

and are defined for spatial dimension D by a D-colex and two positive integers d ,e such that

d +e ≤ D. These two integers specify the geometry of the generators of the stabilizer group

(or more generally the gauge group in the language of subsystem codes [KLP05, KLPL06]). In

particular, the Z -type interactions in the Hamiltonian are associated with (d +1)-dimensional

objects, while the X -type interactions are associated with (e +1)-dimensional objects. When

generalizing these models to an arbitrary finite group G in the most naive way, it seems

necessary to restrict to d = 1, since the definition of the SZ stabilizers (5.14-5.16) requires

these operators to be associated to an object with a notion of cycles, i.e. a 2-dimensional face.

The same considerations restrict the kinds of higher-dimensional generalizations that are

possible for e.g. the quantum double models and string net models, though more complex

higher dimensional analogues can be defined [WW12]. However, the fact that the gauge

color codes allow more general structures than the quantum double models (the analogous

construction for quantum double models would not allow d +e < D) suggests that there may

be novel ways to implement non-Abelian topological orders in higher dimension with these

methods.

Extension to more general algebras

Our model is very similar in construction to the quantum double models, as can be seen by

the mapping of Sec. 5.3, which makes this correspondence explicit. Given that more general

quantum double models can be defined based on Hopf algebras (and potentially more general

algebraic structures) [BCKA13, BMCA13], a natural question arises whether these models, too,

have color code counterparts. We expect that this may be possible using similar methods to

those used here, and that the resulting models would have an analogous relationship to the

corresponding quantum double models.
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It may also be possible to pursue a similar generalization of the color codes based on fusion

categories rather than finite groups, in the spirit of the string-net models [LW05], of which the

quantum double models are examples [BA09].
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Chapter Review

We define a family of generalized color codes based on an arbitrary finite group that can

have non-Abelian anyonic excitations.

• These generalized color codes may be derived using a similar generalization scheme

to that outlined in Chapter 4.

• In contrast to the standard qubit color code, the symmetry between the three colors

must in general be broken to allow for locality of the stabilizers.

• The relationship between the color code and toric code is extended to a relationship

between the generalized color codes and the quantum double models. Notably,

this gives the anyonic particle content of the generalized color code for group G as

equivalent to a copy of the quantum double of G and a copy of the quantum double

model of the Abelianization of G .

• The mapping between the generalized color codes and quantum double models al-

lows us to determine properties of the system such as degeneracy, allowed boundary

types, posssible topological defects, etc.

• We also show how the generalized color codes are related to the generalized cluster

states discussed in Chapter 4.
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6 Conclusion

In this thesis we have presented several new many-body models that may be of interest for

quantum information processing or storage protocols. The first models presented were de-

signed as a step towards realistic implementation of some theoretically interesting many-body

Hamiltonians. We gave perturbative Hamiltonians consisting of only 2-local interactions that

reproduced the quantum double models or PEPS parent Hamiltonians as their low energy

limit. Following this we introduced a programme of generalizing known interesting states to

give more complicated and interesting phenomenology. Specifically, we defined generaliza-

tions of the cluster states and color codes based on arbitrary finite groups, in analogy to the

generalization of the toric code to the quantum double models.

We do not claim that the models we present are intended to be realistic enough to allow for

direct implementation in the laboratory as written (though this may be possible for some

cases). The 2-body Hamiltonians we gave for quantum doubles and PEPS should be regarded

as a demonstration that it is possible to produce interesting states as the ground states of 2-

body Hamiltonians, and as a stepping stone to further, increasingly realistic, models that have

these desirable properties. Apart from the fact of their being 2-body, it is also of interest to find

relatively natural interactions that give rise to these interesting states. Exactly what is meant

by natural of course depends very much on context. In some cases, it may be desirable to

attempt to engineer in the laboratory the kinds of interactions that give rise to these interesting

states. If possible, this may allow for the kind of flexibility and precision that would be needed

to generate the kinds of interactions we have already proposed (though again depending

on implementation it may be desirable to find alternative interactions that are more easily

produced). In other cases, it may be of interest to find materials that naturally have the kinds

of interactions that give rise to interesting topologically ordered states. In this case a given

many-body model may be a good model for the interactions of the system, even though it

does not capture some features that the theoretician may deem irrelevant for the phenomena

at hand. Again, in this case it would be desirable to find Hamiltonians that model the system

as closely as possible while still retaining analytic or numerical tractability.

In developing our 2-body Hamiltonians we made use of a general type of perturbation gadget -
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the code gadget - that may be applicable in similar attempts to find 2-body Hamiltonians to

approximate other kinds of many-body models. This approach was first used to construct a

2-local parent Hamiltonian for the cluster state, but we have generalized it significantly here

to the point that it is now a reasonably general approach to perturbation gadgets for quantum

many-body spin systems. In analysing our construction of 2-body parent Hamiltonians for

PEPS, it was convenient to introduce the notion of quasi-injectivity. Although the properties of

quasi-injective PEPS are not immediately obvious (apart from those used in our analysis), this

class may also be of more general interest. The related classes of injective, G-injective, (G ,ω)-

injective, H-injective, and MPO-injective PEPS have been very useful in understanding the

relationship between symmetries of PEPS and their properties (particularly their topological

properties). We conjectured that the correct definition of quasi-injectivity is in fact equivalent

to a topological order condition, though we were unable to prove this. It may be the case

that quasi-injectivity is a useful blanket class to describe PEPS with desirable properties for

describing quantum many-body systems, particularly those with topological order.

The generalized cluster states and color codes that we defined should also not be understood

as obviously realistic proposals for quantum information systems. They do, however, give new

test-beds for theoretical ideas about many-body states and topological quantum computation

protocols. The generalization program we outlined may also be more applicable to other

interesting states, similarly allowing the definition of new families of tractable models with

interesting properties. This generalization program may also lend itself to extension, for

example attempting to define families of states given by members of a Hopf algebra (as is

possible for the quantum double states), weak Hopf algebra (as is conjectured to be possible

for the quantum double states), or by fusion categories (in analogy to the string net models).

Of course, the more general the framework, the less structure is available to assist in analysis

of such families, and so it may be desirable to only extend this kind of construction as far as is

necessary for some fundamentally new phenomenology or to define a specific desirable state

or model.

Although we only briefly sketched a protocol for adiabatic topological cluster state compu-

tation using the generalized cluster states, it may be possible to find a particular example of

these generalized cluster states (or a related state) that allows for measurement-based uni-

versal topological cluster state computation. This would very much depend on the interplay

between topological defects (which are simulated by choice of measurement settings) and

anyons (whose world lines are specified by the random measurement outcomes). Although the

standard qubit measurement-based topological cluster state computation scheme simulates

the braiding of punctures in the toric code, it may be possible to simulate other topological

defects such as twists. This would provide other possible avenues to construct topological

cluster state computation schemes with different properties.

Generally, we hope that the general models, concepts and tools introduced in this thesis may

find use beyond their immediate application. The programmes of generating more realistic

many-body Hamiltonians with desired properties, as well as finding new tractable models
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with interesting phenomenology, are both of central importance to the continued vitality of

topological quantum systems research. That they may find application in either condensed

matter physics or quantum information science, or indeed in one of several other fields, is

even more reason that these kinds of systems should be carefully studied to find new methods

of analysis and new models of interest.

The young field of topological quantum information has already produced some significant

results, and it is clear that it is a powerful complementary way of viewing quantum information

processing. It has also given many insights into the structure of condensed matter systems

and how we understand macroscopic quantum behaviour in realistic systems. The study of

topologically ordered systems is still discovering and refining fundamentally new concepts

by looking at toy models of various degrees of realism. We have provided several such new

models that we hope enable the study of topologically ordered phenomena both analytically

and numerically, as well as pushing towards experimental realization of some of the more

exotic topological phenomena that may enable robust quantum information processing in

the real world.
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