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Abstract

The increasing volume of videos and the mounting interest from consumers in accessing

to such repositories require efficient and effective techniques to index and structure

videos. Video summarization is such a technique that extracts the essential information

from a video, so that tasks such as comprehension by users and video content analysis

(e.g., indexing and classification) can be conducted more effectively and efficiently.

The research presented in this thesis investigates three novel perspectives of the video

summarization problem and provides approaches to such perspectives.

Our first novel perspective is to employ local keypoint to perform keyframe se-

lection. While majority of the existing methods use global visual features to char-

acterize each video frame, where local visual details are neglected, a local keypoint

based framework is proposed for the first time to tackle this issue. Two criteria, namely

Coverage and Redundancy, are introduced to guide the keyframe selection process in

order to identify those which represent maximum video content and share minimum

redundancy. Experiments presented in this thesis indicate that this approach achieves

better performance than some state-of-the-art video summarization techniques. In or-

der to more effectively and efficiently deal with long videos, a top-down strategy is

proposed, which splits the summarization problem to two sub-problems: scene iden-

tification and scene summarization. In the first step, each frame is characterized with

global visual features and a scalable clustering method is utilized to group frames into

scenes. Secondly, local visual features are used to find the representative keyframes
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within each scene. Superior results are obtained from experiments over two publicly

available datasets.

Our second perspective is to formulate the task of video summarization to the prob-

lem of sparse dictionary reconstruction. In other words, the task is to best reconstruct

the original video sequence with as few selected keyframes as possible. Different with

the recently proposed sparse dictionary selection based method, our proposed method

utilizes the true sparse constraint L0 norm, instead of the relaxed constraint L2,1 norm,

such that keyframes are directly selected as a sparse dictionary that can well reconstruct

all the video frames. An on-line version is further developed owing to the real-time

efficiency of the proposed Minimum Sparse Reconstruction (MSR) principle. In addi-

tion, a Percentage Of Reconstruction (POR) criterion is proposed to intuitively guide

users in selecting an appropriate length of the summary. Experimental results on two

benchmark datasets with various types of videos demonstrate that the proposed meth-

ods outperform the sate-of-the-art approaches. In addition, an L2,0 constrained sparse

dictionary selection model is also proposed to further verify the effectiveness of sparse

dictionary reconstruction for video summarization.

Lastly, we further investigate the multi-modal perspective of multimedia content

summarization and enrichment. Video content, or any media content in general, do not

only contain visual information, but textual and audio information as well. Therefore,

the future of multimedia content summarization, as we believe, will be multi-modal

content analysis and summarization. Visual modality plays a crucial role in our daily

activities such as comprehending information and acquiring knowledge. Meanwhile,

there are abundant images and videos on the Web. As a result, it is highly desirable

to effectively organize such resources for content enrichment so as to facilitate com-

prehension and to improve user experiences in consuming textual stories such as news

articles, documentaries, biographies, and Wikipedia entries, where limited visual aids
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are provided. Therefore, we propose to address such an issue by utilizing abundant web

resources to bridge the gap between these two modalities. Although there exist some

studies on organizing web images for very specific concepts such as objects (e.g., car

and table), persons, and landmarks, little research has been conducted for textual infor-

mation at the story level. Our work, namely StoryImaging, is one step further than the

traditional usage of image search systems. With the support of web scale images, our

proposed approach is capable of enriching arbitrary textual stories with visual content.
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Chapter 1

Introduction

This thesis explores the task of video summarization from three novel perspectives and

provides approaches and experimental findings in these perspectives. This chapter in-

troduces the motivations behind our work and its objectives. Then the exploration of

our novel approaches to video summarization is discussed. Finally, this thesis is con-

cluded with a discussion of the major contributions and an outline of the structure of

the thesis.

1.1 Motivations

Video is becoming a more and more prominent part of our daily life. TV programs

and news videos are widely watched, recorded, and shared on social networks (e.g.,

Youtube1, Vimeo2 and Vine3). As reported by Youtube Statistics 2014 [1], there were

100 hours of videos uploaded to Youtube every minute. That is, about 16 years long

videos were produced in just one day. With the ever-increasing number of videos we

produce and consume, how to manage such enormous visual content is emerging as a

1http://www.youtube.com
2http://vimeo.com
3https://vine.co/
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challenging topic in the research area. Video summarization, as being one of the hot

tasks in this topic, aims to make people consume video more effectively by identifying

the most important information.

Early research on this task started at late 1990s [2][3], and it has attracted more

and more attentions since then with the popularity of video consumption and produc-

tion. Because of the popular use of of global visual features (e.g., texture and color)

in visual data analysis in this period, most of the existing approaches to video summa-

rization utilize only the global visual features of each video frame to identify important

keyframes. Consequently, subtle details within video frames are not taken into account

in video summarization. On the other hand, local visual features, e.g. the scale-invariant

feature transform (SIFT) descriptor [4] and its variants, have been showing distinctive

representation power in several tasks recently, including object recognition and image

classification.

Apart from the consideration of local visual features, video summarization can also

be treated as a problem of data reconstruction, where the goal is to select a number

of keyframes to reconstruct or represent the original video with minimum error and

redundancy. This perspective is inspired by a special type feature learning called sparse

coding. It is a class of unsupervised methods for learning over-complete basis vectors

to represent the original feature vectors efficiently as a linear combination of these basis

vectors. There exist some approaches to video summarization using sparse dictionary

selection, however this is a new direction that is worth more in-depth research and

exploration.

Last but not least, video summarization can be regarded as a subset of multimedia

content summarization. Multi-modal content analysis will become the next hot topic,

which integrates the information of textual, audio and visual features of a piece of con-

tent to generate a more meaningful and content-rich presentation. This is especially
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beneficial to the presentation of a large piece of content (e.g., a video or a text story)

to users. Most of the current efforts still focus on summarizing content of individual

modalities, and pioneering research on this perspective is limited.

1.2 Objectives

Video summarization is not a new research topic, but there are many new perspectives

of this task awaiting to be tested and explored further. The goal of this thesis is not

to harvest all possible directions and solutions to this problem, but to provide research

findings on some noteworthy perspectives and inspire related future works. Towards

this goal, the objectives of this thesis can be split into three parts which will be pursued

separately.

Our first objective is to verify the effectiveness of using local visual features in the

process of keyframe selection. Since previous works lack the use of local visual fea-

tures which have been prominently used in object recognition and image classification

only, it would be interesting to find out how this feature could help identify important

keyframes. Furthermore, the huge time cost of local feature detection and keypoint

matching is a non-negligible factor that affects the effectiveness and efficiency of such

approach, so this issue should also be addressed.

Our second objective is to investigate the reformulation of the video summariza-

tion problem into a mathematical problem of data reconstruction. While there are many

ways to identify a frame as an important keyframe, from simple shot detection and clus-

tering to complex graph cutting algorithms, formulating it as a mathematical problem

with established theories could easily lead to promising results and further improve-

ments.

Our last objective is to have a futuristic preview of multimedia summarization. We
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are already in the age of digitization, and many digital content already contains multi-

modal information. Summarizing multimedia content or enriching single-modal con-

tent with multi-modal information will become more and more common in the future.

We have taken an experimental attempt to tackle this task in this thesis.

1.3 Contributions

The main contributions of this thesis can be summarized as follows:

• In our first perspective, a local visual feature based method is proposed to tackle

the problem of video summarization. To the best of our knowledge, this is one of

the first attempts in the world on constructing a unique keypoint pool for video

summarization. At first, local keypoints with distinctive features are extracted

from every video frame. Then, all unique keypoints from all frames are merged

via keypoint matching to become a global pool. Lastly, important keyframes

are identified to achieve maximum coverage of the global pool and minimum

redundancy among the selected keyframes.

• To further enhance the aforementioned approach, a top-down approach is pro-

posed to split the video summarization problem into scene identification and

scene summarization, where global and local visual features are exploited. Scene

identification is achieved by grouping similar frames into scenes, and scene sum-

marization is formalized as the aforementioned keypoint pool coverage problem.

Additionally, the efficiency of this problem is improved by a kd-tree forest based

local visual word model.

• In our second perspective, a Minimum Sparse Reconstruction (MSR) based ap-

proach is formulated by utilizing a selection matrix, such that video summariza-

tion is achieved by utilizing minimum number of keyframes to reconstruct the
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entire video as accurate as possible. An L0 norm based constraint is imposed to

ensure true sparsity such that keyframes are selected directly according to the se-

lection matrix. Two efficient and effective MSR based algorithms are proposed

for off-line and on-line applications, respectively. Furthermore, a scalable strat-

egy is designed to provide flexibility for practical applications. The proposed

percentage of reconstruction (POR) criterion can be tuned to extract a keyframe

set at different levels of reconstruction of the original video sequence. On the

other hand, an L2,0 based sparse dictionary selection model is also proposed as

another method of sparse dictionary reconstruction. A simultaneous orthogonal

matching pursuit (SOMP) based keyframe extraction algorithm is proposed to ob-

tain an approximate solution for the proposed L2,0 based problem directly without

smoothing the penalty function. Thus, the contribution of non-keyframes for re-

construction is eliminated by strictly confining the reconstruction coefficients of

non-keyframes to zero.

• In our third and last perspective, we conduct a pioneering attempt to perform

multi-modal content summarization. A text to image system, so called Story-

Imaging, is implemented to automatically enrich a given textual story by infor-

matively organizing relevant web images. To the best of our knowledge, this work

is one of the first efforts harvesting web images for text story illustration.

1.4 Organization of The Thesis

The remainder of this thesis is organized as follows.

Chapter 2 presents a comprehensive review of the state-of-the-art in video summa-

rization categorized by different features being utilized, followed by the discussion of

datasets being used in the current works.
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Chapter 3 presents a novel keyframe selection method based on local keypoints. It

firstly introduces the keypoint based video shot representation, and explains how a key-

point pool is constructed for the whole video. Then it gives details of a greedy algorithm

tailored to efficiently solve the keyframe selection problem, followed by comprehensive

experiments with case study examples and quantitative evaluation demonstrating the ef-

fectiveness of this method. Computational complexity is also discussed, the weakness

of high computational cost is also mentioned, which will be addressed in the following

chapter.

Chapter 4 elaborates a top-down framework to address the weakness of the method

presented in Chapter 3 and to improve the effectiveness for long videos. X-means based

scene identification with global visual features is firstly explained, and then the key

steps of the keypoint feature based keyframe selection method to summarize each scene

are discussed. Experiment section provides thorough evaluation, including the impact

of different parameters, performance evaluation, case studies and video summaries with

different lengths.

Chapter 5 introduces a novel video summarization technique based on Minimum

Sparse Reconstruction. The MSR model is mathematically formulated, and solutions to

this model are given to devise both an off-line and an on-line algorithms. Experimental

results on two benchmark datasets are reported.

Furthermore, L2,0 constrained sparse dictionary selection is also discussed in Chap-

ter 6 as our another attempt to data reconstruction based video summarization. Simul-

taneous orthogonal matching pursuit (SOMP) based keyframe extraction algorithm is

given in details for an approximate solution to this method.

Chapter 7 focuses on our pioneering work on multimedia summarization. A novel

framework is presented to automatically illustrate a given textual story by informatively

organizing relevant web images. We then showcase a simple yet effective and efficient
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StoryImaging system with implementation details.

Finally, Chapter 8 summarizes our work and key findings, and provides some po-

tential directions for future research.
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Chapter 2

Literature Review

This chapter reviews the state-of-the-art in keyframe selection and video summariza-

tion, with particular attention to the works relevant to our own investigations. Video

summarization has been well researched for decades [5] [6] [7]. The input and output

of this task is simply illustrated in Figure 2.1. Given a sequence of frames from a target

video, the task is to intelligently identify the frames or video segments of the highest

importance as a summary.

In [3], Truong and Venkatesh categorized existing video summarization approaches

into two types in terms of the forms of video summaries: keyframe based approaches

and video skim based approaches. Keyframe based approaches select individual frames

as a summary, while skim based approaches output a number of video segments as a

summary, and our work belongs to the former category. As pointed out in that review,

although video skims and keyframes are often generated in different ways, these two

types of video summary can be easily converted from each other. Because of our re-

search focus and the larger volume of existing works on keyframe based methods, our

review will mainly focus on keyframe based video summarization.

Another review [8] by Money et al. divides existing research into three categories

with respect to what kind of video characteristics are employed: internal (i.e., video
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Figure 2.1: Illustration of Input and Output of Video Summarization.

signals), external (e.g., audio and subtitles) and hybrid (i.e., a combination of internal

and external information).

In this chapter, at first, several visual feature based video summarization approaches

are reviewed because they are more related to our research focus. They are categorized

into two groups, i.e. global perspective and local perspective, based on the context in

which each video frame is ranked and selected. Then a comprehensive review of other

types of methods is provided based on semantic features and multi-modal features.

Lastly, the datasets and evaluation metrics used in the literature and our experiments

are discussed.

2.1 Visual Feature based Approaches

Most of existing works use visual feature based methods, which analyze the visual

content of each video frame and identify the important ones as the summary. We are

here categorizing those methods into two categories, namely global perspective based

10



and local perspective based approaches.

2.1.1 Global Perspective based Approaches

A video is a mixture of many similar and/or dissimilar frames. To select the most

important keyframes representing a video, global perspective based approaches com-

monly make use of different clustering strategies. In [5], one of the first works in this

category, Zhuang et al. proposed to utilize unsupervised clustering for keyframe se-

lection. The proposed algorithm is both computationally simple and capable to adapt

to visual content. Similarly, Avila et al. [9] and Furini et al. [10] also used k-means

as the base of their method. Mundur et al. [11] represented each video frame as a

multi-dimensional point in a complex graph, and Delaunay Triangulation is employed

to cluster them. Besiris et al. [12] utilized graph connectivity and dominant set cluster-

ing to select keyframes by exploiting the connectivity information of prototype frames.

The connectivity information for the prototypes is obtained from the whole set of data

to improve video representation and reveal its structure. Ngo et al. [13] proposed a

unified approach for video summarization based on the analysis of video structures and

video highlights. Complete undirected graph is generated to represent a video, and the

graph is partitioned into connected video clusters (a temporal graph) using normalized

cut algorithm. Overall, simple clustering based methods basically identify keyframes

from cluster centers, and different clustering algorithms can be applied.

On the other hand, keyframe selection has also been considered as an optimization

problem where the original video should be optimally reconstructed with the selected

keyframes as much as possible. In [14] by Gong et al., Singular Value Decomposition

was employed to project a raw frame-feature matrix into a lower dimensional space,

and the set of keyframes was obtained by clustering . This method defines a metric to

measure the amount of visual content contained in each frame cluster using its degree
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of visual changes. The most static frame cluster was then identified, and the context

value computed from it is used as the threshold to cluster the rest of the frames. Zhu

et al. [15] formulated the keyframe identification problem as a temporal rate-distortion

MINMAX optimization problem. Both an optimal dynamic programming based solu-

tion and a near-optimal Distortion Constrained Skip based solution is presented. By

adopting Maximal Marginal Relevance (MMR) which is classically defined for text

summarization [7], Li et al. derived a technique called Video Maximal Marginal Rele-

vance (Video-MMR) for video summarization [16]. In MMR, text relevance is calcu-

lated based on its similarity to a specific text query, while in Video-MMR, keyframe

coverage is calculated as the amount of similarity against the target video as a whole.

Comparison with traditional k-means clustering algorithm supports its advantages.

2.1.2 Local Perspective based Approaches

A video is a sequence of consecutive frames. Considering that the final selected keyframes

should be visually representative among their neighboring frames, local perspective

based approaches focus on measuring visual redundancy in a temporal window that

moves through the whole video. In [6] proposed by DeMenthon et al., a high dimen-

sional feature space was formed from global visual features on each frame, and all

frames combined were treated as a trajectory curve in that space. This curve was sim-

plified to lower dimension by a derived version of planar curve splitting algorithm,

and eventually became a tree structure, where each level could be regarded as final

keyframes. Similarly, three iso-content principles (i.e., Iso-Content Distance, Iso-Content

Error and Iso-Content Distortion) were proposed in [17] to split the frame trajectory in a

high dimensional feature space. Keyframes were selected at each partitioning locations,

so they are equal-distant with regards to the principle in use. Recently, Cong et al. [18]

proposed to project each frame (represented with a global feature) into a sparse feature
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space, and a dictionary of key frames is selected such that the original video can be

best reconstructed from this representative dictionary. The selected keyframes are those

corresponding to the local maxima of the weight curve formed by sparse representation

of each frame.

2.2 Semantics and Structure based Approaches

Many approaches also focus on bringing mid/high level semantics and video structure

into video summarization, such as domain specific semantics [19] [20], 4W concepts

(Who, What, Where, When) [21], events [22][23], camera motion [24] and human

attentions [25][26]. In [27][28], textual semantics context is also used to enhance video

annotation.

The work proposed by Vasconcelos et al. [19] is a very early attempt to bring seman-

tics into the structure of videos. They realized the fact that video production normally

follows specific rules and conventions, which introduce some structures to the result

video. A probabilistic Bayesian network was employed to capture the content struc-

ture, and a map was then generated between semantic and image features. However,

this method requires a large amount of domain specific training data, and also depends

on the fact that their learned model cannot be applied to unseen videos, which is not

usually the case in the fast-changing industry and daily life videos. The work of Ekin

et al. [20] places its focus on soccer videos only, which relies on domain-specific algo-

rithms for goal detection, referee detection, and penalty-box detection, which are able

to capture the highlights of a soccer event.

Chen et al. [21] presented a structural video content browsing system which pro-

vides users with a concept-organized and systematic view by integrating visual and text

features and constructing a relational graph using four concept entities, i.e. “who,”

“what,” “where,” and “when”. Therefore, not only the browsing efficiency is enhanced,
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but the user can also select what they are interested in. Graph entropy model was then

exploited to detect important shots and relations, which became selectable items for the

users.

Regarding event-driven query, Hong et al. [22] and Wang et al. [23] provided a

mechanism to summarize video search results by mining and threading “key” shots,

so that an overview of main content of these videos was generated for quick user con-

sumption . These approaches deal with multiple videos in a prepared search results.

Lu et al. [29] aimed to select a short chain of video sub shots to describe the essential

information of the video. They used a random-walk based metric of influence between

sub shots that reflects how visual objects contribute to the progression of events. Their

summary can then captures how event are linked to each other rather than simple object

co-occurrence.

In [24] proposed by Luo et al., a psycho-visual study was firstly conducted to create

an evaluation dataset and also to find out the criteria used by human judges so they

can design the algorithm to better fit the criteria. They observed that spatio-temporal

changes provide semantically meaningful information about scenes of the video and

the general intents of the camera operator. As a result of this finding, a video clip

was segmented into parts based on several types of camera motion (e.g., pan, zoom,

pause, steady), and in each segment fine-tuned rules were employed to extract candidate

keyframes.

2.3 Multi-modal Feature based Approaches

A number of studies also utilize multi-modal features (i.e., visual, audio and textual

features) for video summarization.

Pan et al. [30] proposed a multi-modal story-oriented video summarization (MMSS)

method which provides a domain-independent, graph-based framework. A general
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framework is introduced to mine the cross-modal correlations among different modali-

ties such as frames, terms and logos in video clips. The mined cross-modal correlations

were then exploited for story summarization and video retrieval.

Ma et al. [25] indicated that human attention is an effective and efficient mechanism

for information prioritizing and filtering. Based on that, a set of modeling methods for

visual and aural attentions is proposed to better video understanding. They defined

viewer attention through multiple sensory perceptions, i.e. visual and aural stimulus as

well as partly semantic understanding, so as to identify keyframes based on importance

ranking. Dong et al. [31] utilized both textual and visual information, and semantic

concepts are labeled to each video segment. As a result, a feature space derived from

the semantic concepts is exploited to measure the importance of each video segment.

Similarly, Evangelopoulos et al. [26] also formulated perceptual attention as salient

events in the audio and visual streams. The presence of salient events was identified

on this audiovisual curve by a few geometrical features such as local extrema, sharp

transition points and level sets. They further extended their work to integrate textual

saliency [32]. Aural saliency is calculated by signals that quantify multi-frequency

waveform modulations. Visual saliency is calculated by a spatio-temporal attention

model based on visual features such as brightness, color, and orientation. Furthermore,

textual saliency is derived from the part-of-speech tags over the video subtitles. The

individual saliency streams are combined in a multi-modal curve, and a bottom-up video

summarization algorithm is then applied on this saliency curve to generate a summary.

2.4 Dataset and Evaluation

To evaluate the performance of a video summarization method, a video dataset is re-

quired. However, not only the methodologies vary, but the evaluation datasets being
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used in existing works are very diverse. Because of the lack of a well-known and well-

prepared dataset, many of the existing works resort to creating their own datasets for

evaluation. For early works, the dataset used in evaluation are especially limited. In

[5] only one action movie and one romantic movie were utilized to show the results.

Likewise, Vasconcelos et al. [19] also subjectively evaluated their results using the pro-

motional trailers of two movies. Zhu et al. [15] also only used one video (the famous

Foreman video1) for case study.

A number of existing works aim to handle different types of videos. Gong et al. [14]

used different types of video sequences: news reports, documentary, political debate,

and live coverage of a breaking event, each of which lasts for from 5 to 30 minutes. In

[13], two videos with sound tracks from the MPEG-7 video collection2 and three home

videos were adopted for evaluation. Each tested video has two associated summaries,

one with 10% of the original video length and the other with 25% of the original length.

Twenty students were invited to assign two scores ranging from 0 to 100 to summary

results in terms of informativeness and enjoyability. Luo et al. [24] and Cong et al.

[18] shared the same dataset, which consists of 18 QuickTime clips of VGA resolution

and frame rates from 24 to 30 fps. These video were selected from a database of 3000+

video clips. Three human judges selected key frames for each video clip to form the

ground truth of the dataset. Similarly, a dataset consisting of more than 250 real life

video sequences is used in [17]. Most of these videos are from sport events. The

coast sequence, the table tennis sequence, and the hall monitor sequence, which are the

widely known MPEG test sequences, were also included in the dataset. In [16], the

video dataset was collected from the website “wikio.fr” which aggregated news from

many different sources. This website is already offline. Twenty one video sets were

collected in total. Each has between 3 and 15 videos with durations from a few seconds
1https://www.youtube.com/watch?v=9-v8O1bv6A0
2http://mpeg.chiariglione.org/standards/mpeg-7
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to above 10 minutes. The genres of the videos are varied, including news, advertisement

and movie.

On the other hand, some other works focus on domain specific videos due to the

requirement for domain knowledge and training data. In [20], only soccer TV record-

ings were used. Chen et al. [21] selected only documentary videos as our experimental

data because of easier and more accurate retrieval of the 4W concepts. Eight genres of

documentary videos were chosen in the dataset: buildings, ocean, wildlife, war, ancient

history, space, crime science, and art. Some of these videos were obtained at the Open

Video Project website3), and some were downloaded at the Discovery Channel, British

Broadcasting Corporation (BBC), and National Geographic Channel documentaries. In

[29], over 12 hours of daily activity video was taken by 23 unique camera wearers, and

results were evaluated by comparing its quality with multiple baselines with 34 human

subjects.

The most widely used dataset in the literature is from the Open Video Project, which

has been used by [9], [11], [10], [12] and [21]. The Open Video Project aims to host and

maintain a repository of digitized video content for the research communities. Those

video data can be used to study a broad range of research topics, such as video seg-

mentation, video summarization, face recognition, and multimedia retrieval. A test

collection is also included to enable systems to be compared against the same dataset.

There are more than 2100 videos collected in this dataset, whose genres include doc-

umentary, educational, ephemeral, historical, lecture, public service and others. There

are still some missing types of videos though, such as actions and movies. The du-

rations of videos are also diverse, ranging from less that 1 minute to more than 10

minutes. The variety of genres and durations is very useful for comprehensive testing

of performance. When it comes to video summarization, ground truth keyframes must

be prepared for quantitative evaluation. Luckily, Avila et al. [9] have invited 5 users to

3http://www.open-video.org
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annotate 50 selected videos from the dataset, which then can be used by others to test

the performance.

Our experiments mainly used the Open Video Project together with the ground truth

data provided by [9] to perform evaluation. Details of the experiment settings and

evaluations will be discussed in Section 4.4.1 and Section 4.4.2 of Chapter 4.

2.5 Summary

As discussed in this chapter, many approaches to video summarization have been pro-

posed. The majority of existing works focus on visual feature analysis to identify

keyframes, while semantics and structure based approaches are emerging to bring in

more high-level video understanding. Multi-modal feature based approaches are grow-

ing as well because single-modal feature analysis are getting more mature. On the

other hand, the dataset and evaluation methods used in the existing works are diverse,

and there is no commonly-recognized dataset and evaluation method for experiments.

This is a still a weakness in this research area. In light of the above observations, we

explore some new perspectives to video summarization in the following chapters, and

take the most-widely-used Open Video Project datasets to evaluate our approaches.

18



Chapter 3

Keypoint based Video Summarization

This chapter introduces a video summarization framework utilizing local keypoints on

video frames. It is based on results and includes text that have been published in [33].

3.1 Introduction

The proliferation of video acquisition devices and the mounting interest of consumers

in the access to video repositories have significantly boosted the demand for effective

and efficient methods in retrieving and managing such multimedia data. A video is

structurally composed of a number of stories, each story is depicted with a number of

video shots, and each shot is essentially a sequence of images (i.e., frames) [34]. Due

to the inherent temporal continuity of the consecutive frames within a video shot, there

exists a great deal of redundant information among those frames. Therefore, selecting a

set of frames to represent a video shot has been crucial for effective and efficient video

content analysis.

Most of the existing works utilize global visual feature of each video frame to iden-

tify keyframes. These approaches are however mainly subject to the following limi-

tations. First, these approaches highly rely on global features such as color, texture
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and motion information, though adapting them to local features may be possible. As

a result, the risk exists that local details of frames will be neglected, which makes the

selected keyframes less representative, though global features coarsely represent visual

characteristics of an image. Second, it is difficult to decide how many keyframes should

be selected. For example, it is always challenging to set an appropriate threshold when

two adjacent frames are compared. For the clustering based approaches, it is generally

an open issue to set a reasonable number of clusters without prior knowledge. More-

over, different metrics are proposed to fulfill this task, however, there is no intuitive way

to assess the quality of selected keyframes in terms of representativeness, redundancy

and completeness.

Recently, local features such as the scale-invariant feature transform (SIFT) descrip-

tor [4] have played a significant role in many application domains of visual content

analysis such as object recognition and image classification due to their distinctive rep-

resentation capacity. Hence, it would be beneficial to characterize each frame with local

visual descriptors derived from the keypoints within the frame, and keyframe selection

is to identify a number of frames whose keypoints are representative for the scene.

In light of the above observations, we propose a keypoint based keyframe selection

framework summarized as follows. Firstly, keypoints are identified from each frame and

descriptors are extracted for each keypoint. Secondly, a global pool of unique keypoints

is formed to represent the whole video shot through keypoint matching. Finally, rep-

resentative frames which best cover the global keypoint pool are chosen as keyframes.

Two criteria, namely Coverage and Redundancy [35], are devised to ensure that each

keyframe is selected to maximize the coverage of the keypoint pool and to minimize

introducing redundant keypoints.
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3.2 Keypoint based Video Shot Representation

3.2.1 Keypoint Matching

Lowe’s SIFT descriptor [4] is utilized for keypoint extraction and representation, though

many other local features [36] are also applicable to our approach. SIFT descriptor was

proposed in [4] to perform reliable matching between different views of an object or

scene. For each detected keypoint, there are three steps to calculate its SIFT descriptor.

Firstly, the image gradient magnitudes and orientations are computed, sampled from a

16×16 region around the keypoint. Secondly, in order to eliminate the influence intro-

duced by small changes in the position of the window, the magnitude of each sample

point is weighted by a Gaussian weighting function. Thirdly, these samples are accu-

mulated into orientation histograms summarizing the contents over 4× 4 subregions.

The length of each orientation vector corresponds to the sum of the gradient magni-

tudes near that direction of the region. Therefore, SIFT descriptor of each keypoint is a

4× 4× 8 = 128 dimension feature vector (i.e., a 4× 4 array of orientation histograms

with 8 orientation bins in each). The 128-dimensional descriptor is invariant to image

scale and rotation, which is robust for many applications such as object recognition and

image stitching. It has be shown to be very effective in the domain of object recognition,

image stitching, video tracking and so on.

Straightforward keypoint matching based on SIFT descriptors will result in many

false matches. Lowe proposed to improve matching robustness by imposing ratio test

criterion (i.e. the ratio of the nearest neighbor distance to the second nearest neighbor

distance is greater than a given threshold) [4]. However, there still exist two challenging

problems;

Firstly, the cost of keypoint matching between two target frames is high. To ex-

haustively match keypoints, we have to calculate the distance between every pair of
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keypoints in both frames, which is computationally expensive. In order to relieve this

problem and take advantage of the continuity among adjacent frames, we adopt a match-

ing strategy that considers only those candidate keypoints within a certain radius R of

the target keypoint. Meanwhile, false matching can also be reduced with such a con-

straint. Secondly, there are a number of false-positive matches, and as a result, the

global pool of keypoints K would contain noisy keypoints. To filter these false matches,

the RANdom Sample Consensus algorithm (RANSAC) [37] is iteratively invoked to

detect sets of geometrically consistent keypoint matches. This process is repeated until

no further large set of matches (e.g. five matches in a group) can be found.

3.2.2 Keypoint Pool Construction

In order to build a global pool K from all keypoints kx in each frame fi to represent

the content of a video shot, ideally every two frames fi and f j (a pair) within the shot

should go through keypoint matching. However, such a strategy is very costly. Utilizing

the inherent nature of visual continuity among consecutive video frames, we propose

an Inter-window Keypoint Chaining scheme to constrain the pairing within a temporal

window of size W without losing the discriminative power of keypoint matching, as

illustrated in Fig. 3.1. Hence, keypoints are only matched within a window and chained

across multiple windows. When a keypoint k1 in frame fi is matched with another

keypoint k2 in frame f j, and the same keypoint k2 is matched with a third keypoint k3

in frame fm, satisfying |i− j| <= W and |m− j| <= W , we link these matches into a

chain, which would finally contribute to the same unique keypoint in the global pool

K without matching keypoints between fi and fm. As shown in our recent study [38],

the window size can be adaptively determined by calculating visual variations between

consecutive frames in terms of distribution correlation.

On the other hand, it may occur that true keypoint matches are dropped during
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Figure 3.1: Illustration of Inter-window keypoint chaining with overlapped windows,
where k1, k2, and k3 are matched keypoints.

matching. In order to make the matching more reliable, we also propose Intra-Window

Keypoint Chaining. As shown in Fig. 3.2, k1 is matched with k3 but not k2, and k2 is

matched with k3. In this case, k1, k2 and k3 will also be linked by a single chain, which

could ease the problem of missed matching (e.g. k1 should be a true match with k2).

After the keypoint chaining on frames, each keypoint either belongs to a chain of

matched keypoints or becomes an singleton. All singleton keypoints, which are very

likely to be noisy keypoints, are discarded. Each chain is represented by its HEAD

keypoint and the number of keypoints on that chain, denoted by (kx,Nx). The global

keypoint pool K is then formed by aggregating all (kx,Nx) (see Figure 3.3). As shown

in Figure 3.4, each chain has different number of keypoints for a Tennis video shot. In

order to reduce noisy chains, we further filter less important/unstable global keypoints

by setting a threshold T for Nx.

To illustrate the usefulness of the keypoint pool, the number of keypoints of a video

frame over time is shown in Figure 3.5 as an example, where the number of keypoints

increases while the frame progresses temporally. As indicated by the horizontal dashed
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Figure 3.2: Illustration of Intra-window keypoint chaining within one window, where
k1, k2, and k3 are matched keypoints and merged into one chain.

Figure 3.3: The global keypoint pool K is formed by all HEAD keypoints of each chain.

line, the keypoint pattern changes around the 35-th frame, which corresponds to the

content change. Specifically in this example of the Tennis video, a small panning tran-

sition happens around the 35th frame, which could be detected from the frame-keypoint

correspondence visualized in the figure.

3.3 Keyframe Selection

The goal of keyframe selection is to best represent a video shot with a minimal num-

ber of frames. That is, the keyframes are able to best represent the video shot while
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Figure 3.4: The number of keypoints (y-axis) along each chain (x-axis) for the Tennis
video shown in Fig. 3.11.

Figure 3.5: The number of keypoints over time for the Tennis video, where x-axis is the
index of keypoints and y-axis is the index of frames. A dot denotes the existence of a
keypoint in a frame.
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minimizing redundancy among them. In our case, to ensure the best representation, the

keypoints of those keyframes should cover the global keypoint pool as much as possible.

Since this can be formulated as a variation of the well-known Set Cover Problem which

has been proven to be NP-complete [39], we adopt a greedy algorithm to approximately

tackle this issue. At first, we choose the frame with the highest number of keypoints

against the keypoint pool. Then, at each iteration, a frame is chosen as a keyframe if

it best helps improve the coverage while minimizing redundancy. Therefore, we devise

two metrics, namely Coverage and Redundancy, to guide the selection process.

In the selection process, the pool is separated into two sets, Kcovered and Kuncovered .

At the beginning of the process, Kuncovered contains all keypoints in K and Kcovered is

empty. For frame fi, denote its keypoint set as FPi, then the Coverage of the frame

to the pool can be defined as the cardinality of the intersection between FPi and the

uncovered set:

C( fi) = |FPi∩Kuncovered|. (3.1)

Likewise, Redundancy is defined as how many keypoints it contains in Kcovered ,

reflecting how redundant it is based on the covered content in the shot:

R( fi) = |FPi∩Kcovered|. (3.2)

The influence of frame fi at an iteration is calculated in (3.3) as a balance of C( fi)

and R( fi) controlled by α .

In f luence( fi) =C( fi)−αR( fi) (3.3)

A simplified illustration of the calculation is presented in Fig. 3.6. In this example,

f1 has higher coverage but also higher redundancy than f2, so f2 will be favored during

the selection.
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Figure 3.6: A toy sample of calculating of the influence of frames, where f2 is selected
because of its higher influence.

At the end of each iteration, the frame with the highest and positive influence value

will be selected as a keyframe, and Kcovered and Kuncovered will be updated based on

the keypoints of the selected keyframe. The iteration repeats until all the keypoints are

covered or a predefined coverage threshold of the pool K is reached.

3.4 Experiments and Discussions

3.4.1 Experimental Settings

We conduct experiments with two datasets. The first dataset is for case studies, con-

sisting of 4 videos including the widely used Foreman and Coastguard videos and two

TV news shots (Tennis video and Zooming video). The second dataset 1 is constructed

from the Open Video Project (http://www.open-video.org) for quantitative evaluation.

1http://sydney.edu.au/engineering/it/ zhiyong/data/kfsyd.html
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Table 3.1: The Testing Videos from the Open Video Project
Video Name Start

Frame
End
Frame

# of
Frames

v25 A New Horizon, segment 02 664 900 237
v28 A New Horizon, segment 05 3223 3440 218
v33 Take Pride in America, segment
03

540 650 111

v39 Senses And Sensitivity, Introduc-
tion to Lecture 4 presenter

1838 1934 97

v40 Exotic Terrane, segment 01 1790 1989 200
v49 America’s New Frontier, segment
07

150 500 351

v57 Oceanfloor Legacy, segment 04 1600 1800 201
v58 Oceanfloor Legacy, segment 08 540 633 94
v63 Hurricane Force - A Coastal Per-
spective, segment 03

867 1012 146

v66 Drift Ice as a Geologic Agent, seg-
ment 05

766 977 212

As described in Table 3.1, it consists of 10 video shots across several genres (e.g. doc-

umentary, education, and history).

In our experiments, the results generally are not affected when the matching radius

R is set above 100 and the window size W above 5. Hence we set the radius R to

100 (i.e., 100 pixels around a target keypoint) to reduce matching search space without

sacrificing matching accuracy even in fast-motion scenes, and W to 5 so as to balance

the computational cost and chaining accuracy. The threshold T to filter the unstable

global keypoint affects the size of the keypoint pool and thus the granularity of details it

captures. Empirically we have tried different settings in our experiments, but the results

shown in the following section are based on T = 5 to reduce noisy keypoints without

losing noticeable details.

Our approach (denoted as KBKS in the figures) is compared against three state-of-

the-art approaches, Iso-Content Distance [17], Iso-Content Distortion [17] and Clus-

tering [5]. For the first two approaches we use the same Color Layout Descriptor as
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adopted in the original paper. For the clustering based method, we adopt the Colour

and Edge Directivity Descriptor (CEDD) feature [40], which is a histogram represent-

ing color and texture features.

3.4.2 Case Studies

The sample frames for the four shots in discussion is presented in Fig. 3.8. The results

for the Foreman video are displayed in Fig. 3.9. It is observed that our approach can

capture different details when different coverage threshold values are specified. For

example, the two frames under 73% coverage capture the key content, the foreman and

the building. When the coverage is increased to 95%, different stages of the smiling

face are captured. However, such details are missing in the results of the other methods,

since they rely on global features. Meanwhile, it is also noticed that our approach misses

the keyframe on the tower and sky. There are two reasons. One is that the transition is

very short and some keypoint chains are discarded. The other is that there are not many

keypoints due to a large portion of the uniform region and the influence score of those

frames have been affected. In order to remedy this issue, we take global features into

account by replacing (3.3) with the following equation:

In f luencNew( fi) =
C( fi)−αR( fi)

GolbalSim( fi)
, (3.4)

where

GolbalSim( fi) = ∑
j

Similarity( fi, f j). (3.5)

That is, the influence of a frame fi will be increased if it shares low similarity (i.e. small

GolbalSim( fi)) with other frames in terms of color and edge histogram. As shown in

Fig. 3.7, such a simple strategy is able to effectively resolve the “missing sky” problem,

though not being used in our other experiments.
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Figure 3.7: New keyframe selection results for the Foreman video.

Figure 3.8: Sample frames of the Foreman, Coastguard, Tennis, and Zooming videos
(from top to down).

For the Coastguard video (See Fig. 3.10) capturing that one boat overtakes the other,

our approach selects not only the frames with both boats, but also more frames to get a

higher coverage of keypoints as the background of the boat (e.g., the building and trees)

keeps changing. The other two methods do capture both boats, but do not reflect the

background change very well. In addition, from our selected keyframes, it seems easier

for audience to understand the overtaking process.

In Fig. 3.11, the Tennis video contains two actions of the player with a very short

panning and fading transition in between. Our selection algorithm clearly identifies

these two action frames with a high keypoint coverage of 97%. The clustering-based

method achieves the similar result with the help of predefined the number clusters (i.e.,

2), and the Equidistance method selects the first and last frames.

The last video is a short zoom-out footage. Our approach selects one keyframe near
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Figure 3.9: Keyframe selection results for the Foreman video.

the end of the shot with a high coverage of 86%, since the frames at the beginning are

part of such a keyframe. For the clustering-based method, if the number of cluster is set

to 1, we get the keyframe with the middle frame of the shot. That is, clustering based

approaches generally take the frame with average information as representative frames.

For the Equidistance method, it has the limitation of selecting both the first and the last
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Figure 3.10: Keyframe selection results for the Coastguard video.

Figure 3.11: Keyframe selection results for the Tennis video.
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Figure 3.12: Keyframe selection results for the Zooming video.

frames as a starting point, which is not necessary for many cases such as zooming.

3.4.3 Quantitative Evaluation

The ground-truth keyframes of the videos described in Table 3.1 are manually selected

by three students with video processing background. When calculating the metrics, we

average the results among the three ground-truth sets of keyframes. The number of

target keyframes is set to five. As for our approach, we try different values of coverage

starting from 50% until five keyframes are generated. The following metrics are chosen:

Precision, Recall, F-score, and Dissimilarity.

A candidate keyframe is considered matched if being no more than X frames apart

from a ground truth keyframe. A ground-truth keyframe will be matched with at most

one candidate keyframes. F-score is a combination of both the precision and recall indi-

cating the overall quality. Dissimilarity measures the difference between the candidate

keyframes and the ground-truth keyframes. It is defined as:

Dissimilarity = ∑
fc

min ft d( fc, ft), (3.6)

where fc is a candidate keyframe and ft is a ground-truth keyframe, and d( fc, ft) is a

distance measure of two keyframes, which is the difference of their frame indices.

In order to explore the influence of X , various experiments were conducted by vary-

ing X from 10 to 20 while fixing α to 1 and T to 5. As shown in Fig. 3.13, the F-score

of every method increases and stabilizes. While setting a high value for X does not
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Figure 3.13: Influence of X on the F-score.

Figure 3.14: Influence of α on the F-score.
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Figure 3.15: Quantitative Evaluation on the second dataset in terms of Precision, Recall
and F-score

Table 3.2: Quantitative Evaluation on the second dataset: Dissimilarity

Clustering Iso-Content
Distance

Iso-Content
Distortion

KBKS KBKS-fast

35.3 29.72 30.72 27.5 28.1

reflect a true match, we set X to 15 in the following experiments. Similarly, experi-

ments were conducted to explore the influence of α in (3.3) by setting X to 15 and T

to 5, and varying α from 0 to 2. As shown in Fig. 3.14, α does influence the selection

result, however, not in a significant way. F-Score grows when α increases from 0 to

0.3, and stabilizes between 0.3 and 1.2. This could be explained that a frame with a

higher coverage introduces more new visual content and is more likely to introduce less

redundancy. For the sake of simplicity, we set α to 1 in the following experiments.

As illustrated in Fig. 3.15, our approach achieves better performance in regards to

precision, recall and F-score. The dissimilarity result shown in Table 3.2 also indicates

that the results of our approach are more similar to the ground truth compared to other

methods.
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3.4.4 Computational Complexity

In our experiment, the frame size of Foreman and Coastguard is 352 x 288, and frame

size of the videos in the Open Video project is 352 x 240. With a standard 3.0GHz Dual

core desktop computer, for a video shot of 300 frames (i.e., 10 seconds), the total time

needed by our algorithm without parallel computing is roughly 150 seconds broken

down into 150 seconds for the first step (Section II.A) and the second step (Section

II.B) and less than 1 second for the third step (Section II.C) and the fourth step (Section

III).

The computational cost of our approach is largely affected by the efficiency of Key-

point Extraction and Matching. As for Keypoint Extraction, it costs about 0.02 second

to process one frame. Regarding Keypoint Matching, it takes about 0.1 second to pro-

cess one frame-pair. Therefore, the time cost of keyframe selection on a video shot with

N frame is roughly N ∗0.02+W ∗N ∗0.1+1, and complexity is O(N). When N = 300

and W = 5, the time cost is about 150 seconds.

In order to reduce the computational cost, we utilized the randomized kd-tree forest

based matching algorithm [41] within the window. The matching speed is about ten

times faster than the conventional matching algorithm. That is, the computational cost

of the fast matching algorithm is about 15 seconds for 300 frames. As shown in the

rightmost column of Fig. 3.15 and Table 3.2, the performance of the fast algorithm

(namely KBKS-fast) is still comparable to the original scheme, though approximated

matching is employed in [41].

3.5 Summary

In this chapter we present a keyframe selection framework based on discriminative key-

points. A video shot is firstly represented by a global pool of keypoints through keypoint
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chaining. Secondly, a greedy algorithm is developed to select suitable keyframes based

on the two intuitive metrics: Coverage and Redundancy. The experimental results on

both case studies and quantitative evaluation demonstrate that our proposed approach is

very promising.
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Chapter 4

A Top-down Approach for Video

Summarization

This chapter proposes an enhanced video summarization framework. It is based on

results and includes text that have been published in [42].

4.1 Introduction

While looking into the steps of the experiments in the previous chapter further, we find

out that a few problems exist, such as nosiy and unimportant keypoint in the back-

ground, the high cost of keypoint matching for every pair of frames (Section 3.2.1),

unstable keypoint chain due to inaccurate keypoint matching (Section 3.2.2), and the

overall time cost for longer videos (Section 3.4.4). In this chapter, we propose a new

top-down approach for video summarization, with steps that address all these issues.

We will start with a brief explanation of Gestalt Psychology, which is a theory of

mind of the Berlin School. By taking a holistic stand point, Gestaltism focuses on the
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Figure 4.1: Illustration of the proposed top-down approach.

emergent properties of visual stimuli rather than considering them individually. Fol-

lowing its well-known rallying cry, “The whole is greater than the sum of its parts,”

Gestaltism provides a set of perceptual rules in order to explain that perception cannot

be reduced to parts or even to piecewise relations among parts. Such a top-down manner

has been neglected in existing video summarization methods so far, since almost all of

the previous approaches are designed in a bottom-up fashion to build on the information

that is based on the relation between consecutive frames, which are basically the parts

of the video, instead of considering the fact that transitions naturally emerge when the

video is considered as a whole.

In the current literature, very few of them take both global and local viewpoints into

account (see Section 2.1). In general, an edited video depicts a story or an event with a

number of scenes (or scenarios, physical environments, fine-grained characteristics of

video environmental semantics [43]) in different temporal orders and shooting angles,

and video content of the same scene is often visually similar. For unedited raw footage
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(e.g., consumer videos), video content will continuously transit from one scene to an-

other, such as panning from the left to right at first and zooming in for a close-up of

a person. Meanwhile, human beings often take a top-down approach for storytelling:

outlining at first the story or event by identifying the key scenes and then focusing on

the details of each scene. Therefore, it would be ideal to take a top-down perspective for

video summarization: identifying the scenes of a video at first and performing keyframe

selection within each scene next.

In addition, most existing methods share one common feature: each frame is rep-

resented with global visual features (e.g., color and texture). Therefore, some subtle

yet important details could be shadowed by global features, which results in less rep-

resentative content in the final video summary. For example, when a person makes

faces in a video, traditional video summarization methods may only produce one frame

by missing the details of facial dynamics, since global visual features are not able to

characterize such fine details. Note that in the context of this work, global features also

include the features created by aggregating local features.

Local keypoint features such as scale-invariant feature transform (SIFT) descrip-

tor [4] have played a significant role in many application domains of visual content

analysis such as Near-Duplicate Keyframe Detection [44][45], shot boundary detec-

tion [46][47] and places clustering in videos [48] due to their distinctive representation

capacity (e.g., invariant to location, scale and rotation, and robust to affine transfor-

mation). Hence, it would be beneficial to characterize each frame with a number of

keypoints and each keypoint is represented with a visual descriptor, and all the frames

contribute their keypoints to depict the whole video scene. Therefore, video summa-

rization could be formulated as a problem of identifying a number of frames whose

keypoints are representative for the video.

In light of the above observations, in this chapter, we propose a top-down video
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summarization framework to account for both the global and local perspectives of a

video. As illustrated in Fig. 4.1, video frames are firstly clustered to identify scenes

of a video with X-means method [49] and scene summarization is then applied to each

scene. The final video summary is an assemble of each scene summary where the se-

lected keyframes are organized in their original temporal order. By assuming that a

video scene is depicted with a set of unique keypoints, we formulate scene summa-

rization as a keypoint coverage problem: choosing the keyframes which best cover

the unique keypoints and share minimal redundancy. Therefore, we define two crite-

ria: Coverage and Redundancy, in terms of the keypoints shared among video frames,

which is different with other local perspective approaches that explore the difference

or importance among adjacent frames. By building the unique keypoint set, a coarsely

identified scene can be further discriminated, even it may include multiple semantic

scenes. Since it is computationally expensive to build the set of unique keypoints for a

scene through keypoint matching and chaining, we further propose a visual word based

approach to speed up this process.

Preliminary results of this approach are first reported in [50], then in our later study,

we have made three major extensions: 1) for scene identification, we represent each

video frame with global visual features and utilize the clustering method X-means [49]

to produce scene clusters, instead of K-means, since X-means is computationally scal-

able, which allows our approach to handle long videos efficiently, and does not require

the exact number of final clusters in advance; 2) for scene summarization, we propose

a fast algorithm for our previous keyframe selection algorithm reported in [50][33] by

developing a kd-tree forest based local visual word model to build the set of unique

keypoints for a video; and 3) we conduct more systematic evaluation with two popular

video summarization datasets.

In summary, the major contributions in this chapter are as follows.
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• Motivated by how video content is captured and organized and how human beings

perceive a story or an event, we propose a top-down approach for video sum-

marization: scene identification and scene summarization, which exploits both

global features and local details of a video. Note that such a framework allows

parallel computing at the scene summarization stage. The main purpose of clus-

tering based scene identification are to improve 1) the efficiency of keyframe

extraction by reducing the number of frames to be processed; and 2) the effec-

tiveness of keypoint matching by restricting the matching process within visually

similar frames.

• We propose to formulate scene summarization as a keypoint coverage problem by

efficiently identifying the set of unique keypoints of a video. To the best of our

knowledge, this is one of the first attempts on building a unique keypoint pool for

video summarization. By building the unique keypoint set, our method does not

critically depend on accurate scene identification. As evidenced with our exper-

iments, our summarization method is able to achieve improved efficiency even

with coarsely identified scenes, since keypoints are able to further discriminate

different semantic scenes. Such scene summarization method also makes our top-

down approach unique, while most existing summarization algorithms generally

achieve hierarchical browsing through setting different clustering parameters.

• We propose a kd-tree forest based local visual word model to improve our previ-

ous keyframe selection algorithm for scene summarization.

• We conduct comprehensive experiments with two popular video summarization

datasets for evaluation and discussions.

The rest of the chapter is organized as follows. In Section 4.2, we explain X-means

based scene identification with global visual features. In Section 4.3, we describe the
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key steps of the keypoint feature based keyframe selection method to summarize a

scene. Experimental results and discussions are presented in Section 4.4, followed by

the conclusion in Section 4.5.

4.2 Scene Identification with Global Features

Since the frames of each scene are visually similar, it is straightforward to achieve

scene identification by clustering all the frames of a video. Though being very popular

due to its simplicity, K-means has three key drawbacks [49]. Firstly, the number of

clusters must be pre-determined by users, which is difficult for users when they do not

have sufficient prior knowledge of the data. If this number is set inappropriately, the

resulting clusters would be either too coarse or too dense. Secondly, it does not scale

well computationally for a large amount of data. Thirdly, the clustering result is easily

affected by the initialization and it usually converges to local minima which might be

far away from the globally best results.

Therefore, X-means algorithm [49] was proposed to address these issues by request-

ing a range in which the number of clusters K reasonably lies. Basically, it is an iterative

process to estimate the best K by starting K-means algorithm with the lower bound of

the range. That is, at a stage for a given K value, traditional K-means algorithm is per-

formed on the dataset and a model score is calculated to evaluate the model. As shown

in Fig. 4.2, three clusters (i.e., K = 3) are produced and the black dots denote centroids

of the clusters. At the next stage, all the clusters will be split into two clusters locally by

performing 2-means algorithm. The model score will decided whether such a splitting

is necessary. As a result, the number of clusters will increase until reaching the upper

bound or freeze. Among such an iterative process, the clustering which has the best

model score will be selected as the final output. That is, the score model is used in both

local centroid splitting and global selection of the final clustering output.
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Figure 4.2: Illustration of centroid splitting in X-means clustering algorithm.

The model score is defined with the Bayesian Information Criterion (BIC): .

BIC(Mi) = Li(D)− pi

2
∗ logR, (4.1)

where Mi is the i-th generated model, D is the input data and R is number of points in

D. pi is the number of parameters in Mi, which is the sum of K−1 class probabilities,

M×K centroid coordinates (M is the dimensionality of each point), and one variance

estimate. Li(D) is the log-likelihood of the data according to the i-th model and taken

at the maximum-likelihood point. The maximum likelihood estimate for the variance

is calculated under the identical spherical Gaussian assumption, which is described in

more details in [49]. The second part of the formula is actually a penalty term for the
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number of parameters in the model to avoid over-fitting.

As illustrated in the second row of Fig. 4.1, six scenes are identified. We represent

each video frame with the Colour and Edge Directivity Descriptor (CEDD) [40], which

is a histogram characterizing both color and texture features. Note that other advanced

clustering algorithms (e.g., [51][52]), scene identification methods and global features

can also be utilized in our framework.

4.3 Scene Summarization with Local Visual Words

Since video frames of a scene are visually similar, keypoint features are important to fur-

ther characterize and differentiate individual frames. Therefore, a scene can be viewed

as a set of unique keypoints and keyframe selection for scene summarization is formu-

lated as below to maximize the coverage of the set of unique keypoints and minimize

redundancy among selected frames:

argmax
KF
{α×Cov(KF)− (1−α)×Red(KF)} (4.2)

where KF is the final set of selected keyframes in the scene summary, Cov(KF) and

Red(KF) are the functions to quantify the coverage of the KF over the set of unique

keypoints of the whole scene and redundancy among KF , respectively, and α is a

weighting parameter of Coverage and Redundancy. The details of solving the prob-

lem are explained in Section 4.3.4.

As explained in our previous studies [50][33], the key is to construct the set of

unique keypoints for a scene and it is very time consuming to achieve this through

keypoint matching, tracking and chaining. Therefore, we develop a local visual word

based method by constructing a keypoint forest. Noticing that there exist many noisy

keypoints which could compromise the performance of keyframe selection, we utilize
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saliency map to filter such noisy keypoints and achieve robust performance.

In our work, Lowe’s SIFT (Scale-invariant feature transform) descriptor [4] is uti-

lized for keypoint extraction and representation, though many other local features [36]

are also applicable for our approach.

4.3.1 Saliency Map based Keypoint Filtering

There are often thousands of local SIFT keypoints within a frame, and not all of these

keypoints are visually salient to humans. The second row of Fig. 4.3 shows the locations

of keypoints marked as small circles for three sample frames. In order to obtain a robust

representation of the video content with local keypoints, we should only keep those with

high saliency.

We utilize the saliency detection algorithm proposed in [53] to produce a saliency

map (i.e., a saliency value from 0 to 255 for each pixel) for each frame, and filter only

those keypoints with saliency lower than a predefined threshold S. As shown in Fig. 4.3,

salient areas in the sample frames are automatically detected and highlighted in bright

color (shown in the third row), and the prominent objects are reflected in the remaining

keypoints after saliency filtering (shown in the fourth row).

4.3.2 Keypoint Forest

After obtaining the filtered keypoints for each frame, a global dictionary from all the

keypoints kx in each frame fi is to be built to represent the content of the whole scene. In

order to find the unique keypoints across all the video frames in the scene, ideally every

two frames fi and f j should go through keypoint matching using keypoint features.

That is, every pair of keypoints between these two frames should be compared to check

whether they are identical or not. However, such a straightforward strategy is very

computationally expensive. For example, there are about 31,000 (= 250 × 249 / 2)
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Figure 4.3: Illustration of saliency map based keypoint filtering. Original images (1st
row), images with SIFT keypoints overlaid (2nd row), saliency maps of original im-
ages (3rd row) and images with remaining keypoints overlaid (4th row) of three sample
frames.
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frame pairs for a 10-second video segment at 25 fps, and each pair of frames requires

hundreds of thousands of keypoint comparisons.

To overcome this issue, we adopt the technique proposed in [54] to build a random-

ized kd-tree forest for all the keypoints in a scene, which enables very fast k-nearest

neighbour search in large scale datasets. Essentially, a kd-tree forest is a number of

kd-trees that partitions the data in different ways so that the possibility of finding true

neighbours are higher than using only a single kd-tree. Partitions are organized into

a binary tree with the root element corresponding to the whole space. Each element

is then divided into two halves by thresholding along a certain dimension. Both the

splitting dimension and the threshold are determined as a statistic of the data records

contained in the partition. For a single kd-tree, the splitting dimension is the one hav-

ing largest sample variance. For a randomized kd-tree forest, each tree adopts different

splitting dimensions, e.g., one tree starts with the splitting dimension having the largest

variance, and another one starts with the dimension having the second largest variance.

The splitting threshold is either the sample mean or the median. Leaves of a tree are

atomic partitions and they contain zero or more data records.

4.3.3 Local Visual Word Model

While keypoint forest speeds up k-nearest neighbor search for keypoint matching, local

visual word model is developed to accommodate variance of the same keypoint appear-

ing in different frames by grouping neighbouring keypoints into local visual words.

Each keypoint goes through the forest to find the k nearest neighbours. If k is set

to a large number, then it may induce many false neighbours; if k is too small, many

of the true neighbours may be lost due to the approximation in the algorithm. In the

experiment, k is set to 15 empirically to achieve a good balance and the distance between

two keypoints is measured with the Euclidean distance between their local descriptors.
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Figure 4.4: Illustration of forming neighbouring keypoint group through mutual neigh-
bourhood among keypoints, where a directional arrow from ki to k j means ki has k j as
its neighbour.

To further reduce false neighbours, the neighbourhood of ki and k j is retained only

if ki and k j are neighbours of each other. If ki is a noisy keypoint that “mistakenly” has

k j as its own neighbour, it is very likely that k j’s true neighbours have a closer distance

to k j so the neighbourhood between ki and k j will not be kept.

Based on the nature of neighbourhood, when a keypoint kx has a neighbour keypoint

ky, and the same keypoint ky has a neighbour keypoint kz, we put all these keypoints into

one neighbourhood.

A simplified illustration of forming keypoint neighbourhood is presented in Fig.

4.4. In this toy example, k1 and k3 are neighbours of each other, so as k2 and k3, k3 and

k4. As a result, keypoints k1 to k6 forms a neighbourhood, while k7 is excluded from

the neighbourhood since k4 is a neighbour of k7, but not vice versa.

After forming the keypoint neighbourhoods, each keypoint either belongs to a neigh-

bourhood or becomes an singleton with no neighbours. All singleton keypoints, which

are very likely to be noise keypoints, are removed. Each neighbourhood Ni corresponds

to a group of keypoints with high visual similarity and is denoted as a Local Visual
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Word LVWNi for all the keypoints in Ni. Because the number of keypoints in a neigh-

bourhood reflects its importance in a scene, we set a threshold T on this number to

further filter less important/unstable local visual words.

Compared to the traditional visual word generation where vector-based visual fea-

tures are clustered into a predefined number of visual word, which might significantly

lose the discriminative power of local keypoints, local visual word model emphasizes

the quality of the keypoint matching by forming small and growing keypoint neighbour-

hoods, so that a representative local visual word dictionary can be created based on the

strong similarity within a neighbourhood.

4.3.4 Keyframe Selection

The goal of keyframe selection is to best represent a scene with a minimal number of

frames. That is, the keyframes should be able to best represent the visual content of a

scene while minimizing redundant content among them. In our case, to ensure the best

representation, the keypoints of those keyframes should cover the global dictionary of

local visual words LVWdictionary as much as possible. Since it is a NP-complete problem,

we approach it in a greedy manner.

First of all, the global dictionary is separated into two sets, LVWcovered and

LVWuncovered . At the beginning of the process, LVWuncovered contains all local visual

words in LVWdictionary and LVWcovered is empty. Since each keypoint in a frame is

mapped to either a local visual word during the formation of keypoint neighbourhood,

or nothing, each frame fi has a local visual word set denoted as lvwi. If multiple key-

points in a frame correspond to the same local visual word, only one of them is counted

to form a set of unique keypoints, though such counting information can be further

utilized to derive the importance of each keypoint.

The Coverage C( fi) of the frame fi to the dictionary can then be defined as the sum
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of the weights of the intersected local visual words between lvwi and the uncovered set

LVWuncovered .

lvwCi = lvwi∩LVWuncovered, (4.3)

C( fi) = ∑
lvw∈lvwCi

|lvw|, (4.4)

where lvwCi is the intersection of a frame’s local visual word set and the global uncov-

ered set, and |lvw| is the number of keypoints in a local visual word lvw.

Likewise, Redundancy R( fi) of the frame fi is defined as the sum of the weights of

the intersected local visual words between lvwi and the covered set LVWcovered , reflect-

ing how redundant it is based on the already-covered content in the scene:

lvwRi = lvwi∩LVWcovered, (4.5)

R( fi) = ∑
lvw∈lvwRi

|lvw|. (4.6)

The influence of frame fi at an iteration is calculated in Equation (4.7) as a linear

combination of C( fi) and R( fi) controlled by α .

In f luence( fi) =
α ∗C( fi)− (1−α)R( fi)

GlobalSim( fi)
, (4.7)

where

GlobalSim( fi) = ∑
j

Similarity( fi, f j). (4.8)

That is, the influence of a frame fi will be increased if it shares low similarity (i.e.,

small GlobalSim( fi)) with other frames in terms of its global visual feature. This factor

is added because some frames with a large portion of uniform regions (e.g., sky) do not
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have a reasonable number of keypoints.

At each iteration, the frame with the highest influence value will be selected as a

keyframe, and LVWcovered and LVWuncovered will be updated accordingly based on the

selected keyframe:

LVWcovered = LVWcovered ∪ lvwi, (4.9)

LVWuncovered = LVWuncovered− lvwi. (4.10)

The iteration repeats until a predefined percentage of coverage STOP over the

LVWdictionary is reached.

4.4 Experiments and Discussions

4.4.1 Experimental Settings

We perform experiments on two datasets. The first dataset is the one used in [9], [10]

and [11], which contains 50 videos from the Open Video Project (OVP)1, and user

ground-truth summaries provided by [9]. Each video is about 100 seconds long and

has 3036 frames on average. The second dataset is provided by [9]2, which contains

50 videos covering several genres (cartoons, news, sports, commercials, tv-shows and

home videos). Their duration varies from 1 to 10 minutes. More detailed statistics of

this dataset can be found at [9].

Our proposed approach (namely KFVSUM) is compared with Sparse Dictionary

based approach (SD) [18], VSUMM [9], OVP storyboard, Delaunay Clustering ap-

proach (DT) [11] and STIMO [10]. We implement the SD approach, since experimental

1http://www.open-video.org
2https://sites.google.com/site/vsummsite/download
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results are available for VSUMM, OVP, DT, and STIMO approaches in the first dataset,

and available for VSUMM only in the second dataset. The top 10 frames selected by

Sparse Dictionary based method [18] is used for evaluation to comply with its experi-

mental settings, since the average number of ground truth keyframes is around 10. And

the tuning parameter λ of SD approach is set to 0.15 to achieve the best summarization

result.

In our experiments, each video is down-sampled at 5 frames per second (fps), which

is comparable to the practice of other studies (e.g., [12] at 5 fps, [11] at 3 fps and

VSUMM [9] at 1 fps). Because there are much redundant information in neighbouring

frames, so down-sampling can be applied to reduce computational cost without losing

important information. The number of trees Trs in the kd-tree forest is set to 5 to

balance accuracy and efficiency for finding keypoint neighbours.

4.4.2 Evaluation Metrics

Automatic summaries (AS) generated by different algorithms are compared with all the

user summaries (US) to obtain quantitative assessment. Three evaluation metrics, preci-

sion, recall, and F-score, are used to measure summarization quality of each algorithm:

Precision =
nmatched

nAS
, (4.11)

Recall =
nmatched

nUS
, (4.12)

F-score =
2×Precision×Recall

Precision+Recall
, (4.13)

where nmatched is the number of matching keyframes (discussed below) from an auto-

matic summary, nAS is the number keyframes in the automatic summary and nUS is the
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number of keyframes in a user summary.

In [9], two frames are matched if the Manhattan distance of their color histograms

is less than a predetermined threshold δ . In this chapter, we use a stronger matching

criteria than [9]. Combined with requirement on the visual similarity, we also impose a

temporal requirement that two frames are considered matched only if they are no more

than ∆ frames apart from each other. We set δ = 0.5 and ∆ = 60 (i.e., 2 seconds) in

our experiments. Moreover, a user summary keyframe will be matched with at most

one candidate keyframe in an automatic summary, so multiple keyframes matching the

same user summary keyframe will be penalized.

4.4.3 Impact of Parameter Settings

We randomly withhold half videos (i.e., 25 videos) of the first dataset as a validation

dataset to investigate the impact of different parameters for our proposed approach and

to guide our comparison study.

The upper bound parameter of X-means, K, determines the maximal number of

resultant clusters. The saliency threshold S is used to remove background keypoints in

a frame. The threshold T to filter the local visual word affects the size of the dictionary

and thus the granularity of details it captures. α is used to balance the contribution of

Coverage and Redundancy in Eqn. 4.7. STOP is the measurement of summarization

quality in terms of coverage percentage. Analytical tests are performed to identify

appropriate values for these parameters.

As shown in Fig. 4.5, F-score value varies little while K is greater than 10. There-

fore, we set the lower bound of the range for the X-means algorithm to 2, and the upper

bound to 10 throughout our experiments.

It is noticed that the method proposed in [53] does a good job detecting salient

objects in a frame, so object segmentation can be achieved with satisfactory results.
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Figure 4.5: Impact of K, the upper bound of X-means algorithm.

However, in many cases it also assigns high saliency values to areas with strong texture

such as rocks and buildings. As shown in Fig. 4.6, experiments were performed when

S = 0,50,100,150,200,250 while fixing T to 20 and α to 0.5. F-score grows slightly

with increasing S, but drops significantly when S reaches a very high value (i.e., 250),

where most of the keypoints are discarded so few meaningful local visual words are

generated. It also shows that removing low-saliency keypoints has some positive impact

on the performance. In the following experiments, we set S to 200 to keep the most

keypoints in the foreground, though some background keypoints may still exist after

saliency filtering.

In order to explore the impact of T , experiments were conducted by varying T from

1 to 40 while fixing S to 200 and α to 0.5. As shown in Fig. 4.7, when T is small,

most of the local visual words including noisy visual words are kept, which results in

a dictionary with a large size and requires a large number of frames to best cover the

dictionary. As a result, the precision is very low and recall is very high. On the other

hand, when T is large, most of the local visual words are discarded, and very few frames

will be selected. Based on this observation, T is set to 20 in other experiments. That is,
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Figure 4.6: Impact of S, the saliency threshold.

keypoint neighbourhood with fewer than 20 keypoints are discarded.

Figure 4.7: Impact of T , local visual word neighbourhood threshold.

As shown in Fig. 4.8, F-score grows when α increases from 0.1 to 0.5, so it indicates

that Coverage is an important factor in the selection. On the other hand, F-score stabi-

lizes at higher value of α . This could be explained that a frame with a higher Coverage

introduces more new visual content and is more likely to introduce less Redundancy.

For the sake of simplicity, we set α to 0.5.

As shown in Fig. 4.9, precision decreases clearly, when STOP is set to greater than

85%, which also compromises F-score, though recall increases. This is because that

greater STOP values will increase the number of keyframes selected, which decreases
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Figure 4.8: Impact of α , the weight between coverage and redundancy.

Table 4.1: Performance of Each Method for the First Dataset.
Precision Recall F-score

OVP 43% 64% 51%
DT 47% 50% 49%
STIMO 39% 65% 49%
VSUMM 42% 77% 54%
SD 40% 61% 48%
KPVSUM 46% 63% 53%
KFVSUM 46% 79% 58%

precision and increases recall. Therefore, we set the dictionary coverage threshold

STOP to 85% for the experiments of comparison study.

4.4.4 Performance Evaluation

For the first dataset, as illustrated in Fig. 4.10 and detailed in Table 4.1, our approach

achieves the best performance among all compared methods in terms of F-score. By

Table 4.2: The Average Number of Selected Keyframes.

OVP DT STIMO VSUMM SD KPVSUM KFVSUM
9.66 6.2 9.96 9.92 10 9.16 9.76
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Figure 4.9: Impact of STOP, the coverage percentage of the final summary.

further analysing the selected keyframes in terms of the average number of selected

keyframes (shown in Table 4.2), it is noticed that DT selects fewer keyframes than

others, so they have slightly higher precision values and lower recall rates due to the

limited selection of keyframes, while OVP, STIMO, VSUMM, SD, KPVSUM [50], and

our approach KFVSUM produce similar numbers of keyframes on average. Similarly,

for the second dataset, our proposed approach also outperforms all other methods in

terms of F-score, as illustrated in Fig. 4.11 and detailed in Table 4.3.

The effectiveness of scene identification is shown at Fig. 4.12 for the first dataset.

Without scene identification, keypoint kd-trees are generated for the whole video, so the

size of trees would become bigger, and it may cause more false keypoint neighbours.

Thus a bigger local visual word dictionary would be generated with possibly more noisy

local visual words, and eventually compromise the performance of keyframe selection.

In addition, a global dictionary for the whole video might cause selection bias towards

the scenes with more visual details, so short scenes and scenes with less visual content
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Figure 4.10: Quantitative evaluation in terms of Precision, Recall and F-score for the
first dataset.

Table 4.3: Performance of Each Method for the Second Dataset.
Precision Recall F-score

VSUMM 38% 72% 50%
SD 37% 53% 44%
KFVSUM 42% 74% 54%

would be neglected. As a result, the performance degrades without grouping the frames

into scenes, as more keyframes with similar visual contents are produced and some true

keyframes are missing.

In our experiments, the frame size of the videos in the Open Video project is 352 x

240, and the frame size of the videos in the Youtube dataset is 320 x 240. With a stan-

dard 3.0GHz Dual core desktop computer, for a video shot of 60 seconds (300 frames

to be processed with a sampling rate of 5fps), the total time needed by our algorithm

without parallel computing is roughly 10 seconds, broken down into 1 seconds for the

scene identification with global features (Section 4.2), 6 seconds for local keypoint ex-

traction [4] which requires roughly 0.02 second for each frame, 2 seconds for saliency

map based keypoint filtering (section 4.3.1) which requires roughly 0.007 second for
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Figure 4.11: Quantitative evaluation in terms of Precision, Recall and F-score for the
second dataset.

Figure 4.12: Effectiveness of scene identification.
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each frame, 1 second for building the keypoint forest and performing keyframe selec-

tion. This speed is about 15 times faster than our previous approach [33]. For SD based

approach [18], the most computationally expensive part is to obtain sparse dictionary

and sparse representation, which takes about 1.5 minutes for a 60-second video.

4.4.5 Case Studies

This section presents three summarization samples for subjective evaluation: the first

two samples from the first dataset and the third one from the second dataset. The first

example is from the 4th video of the first dataset. The video summarization results of all

the methods are shown in Fig 4.13. As illustrated, DT tends to choose fewer keyframes

than others. In addition, since DT is a clustering-based method, it normally selects

keyframes representing average information within a cluster (i.e., close to the centroid

of a cluster), which might cause problems when a cluster contains frames from multiple

scenes. In that case, it will likely select keyframes during a fading transition that are

most similar to all the frames in the cluster, as clearly shown in Fig 4.13. This problem

of DT is also observed from many other videos in our experiments. Being a human

selected summary, OVP is able to roughly cover the content, but there are still some

details missing. Comparing KFVSUM with STIMO, VSUMM, and SD, we notice that

there are missing keyframes from STIMO, VSUMM and SD. In particular, the last two

keyframes being selected by KFVSUM contain more details than those in VSUMM,

such as the tree in the second last keyframe and the text titles in the last keyframe. This

indicates the effectiveness of keypoint based scene summarization algorithm.

The second example is from the 15th video of the first dataset. The video summa-

rization results of all the methods are shown at Fig 4.14. OVP contains two very similar

frames at the second and the second last positions, because keyframes are manually
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Figure 4.13: Sample video summarization results of all the methods for the 4th video of
the first dataset, from top to bottom: OVP, DT, STIMO, VSUMM, SD, and KFVSUM
(ours).

selected by humans based on the temporal order of frames. Therefore, content redun-

dancy is introduced in the final summary, and DT, STIMO, VSUMM and SD misses

a few keyframes. In addition, DT and STIMO select the keyframes with limited local

details, such as the keyframes framed in black and orange, because global visual fea-

ture are only able to discriminate significant difference between those pure-background

frames and other frames. Since our method utilizes the local details in a frame, non-

informative frames are discarded. On the other hand, the two frame pairs highlighted

in blue and red rectangles, though having similar global visual features, are extracted in

our method but missed in all the others. It is also noticed that our approach misses the

last frame identified by SD, which could be explained that its local visual words as well

as global features are similar to those of other frames with textual content.

The third sample is from the second video (v12) of the second dataset. As shown in

Fig. 4.15, the first three keyframes of all the four methods are very similar. Note that

VSUMM has two redundant keyframes, while missing some important frames. Though

performing better than VSUMM, SD misses two important frames (e.g., the 6th and 7th

frames in the KFVSUM row).
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Figure 4.14: Sample video summarization results of all the methods for the 15th video
of the first dataset, from top to bottom: OVP, DT, STIMO, VSUMM, SD, and KFVSUM
(ours).

Figure 4.15: Sample video summarization results for the 2nd video of the second
dataset, from top to bottom: VSUMM, SD, and KFVSUM (ours).
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4.4.6 Summaries with Different Lengths

Having a local visual word dictionary for each scene, we can easily customize our

desired summary. Within each scene of a video, the number of selected keyframes is not

predefined, but is determined by the desired coverage of contents. A static/low-motion

scene may produce fewer keyframes with very high coverage of the scene. On the other

hand, scenes with substantial change of contents may require more keyframes to reach

the same level of coverage. Therefore, we could adjust the length of the summary by

tuning the desired coverage of content STOP denoted by percentage, which is more

intuitive than setting a fixed number, and is more adaptive to different kinds of videos.

This flexibility is mostly lacked in the previous works.

Fig. 4.16 to Fig. 4.19 demonstrate the flexibility of our approach by adapting to

summaries with different coverages and lengths. As summaries with different lengths

can be prepared, hierarchical skimming can also be supported as a top-down overview

of a video. In addition, a different coverage threshold can be given to different scenes,

so that it is possible to further customize the granularity of the summary for each scene

automatically or via user interaction.

Figure 4.16: Video summarization with STOP = 60%.
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Figure 4.17: Video summarization with STOP = 70%.

Figure 4.18: Video summarization with STOP = 80%.

4.5 Summary

In this chapter we present a top-down approach video summarization framework by ex-

ploiting both visual similarity among the frames within a scene to identify scenes within

a video and local details for scene summarization. Video frames firstly are automati-

cally grouped into scenes with global visual features and representative frames of each

scene are identified with local features. In addition, we formulate scene summarization
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Figure 4.19: Video summarization with STOP = 90%.

as a coverage problem in terms of keypoints of a scene. Rather than performing time-

consuming keypoint matching, tracking and chaining, a keypoint forest based approach

is proposed to construct a dictionary of local visual words for efficient scene summa-

rization. Our proposed two metrics Coverage and Redundancy are intuitive for users

to fine tune the final summary. The experimental results demonstrate that our proposed

approach outperforms the state-of-the-art and is flexible to generate various lengths of

keyframe based summaries. In the future, we will discover the importance of each scene

and individual local descriptors and incorporate such information into our framework.

It would also be interesting to explore spatial and temporal context for more efficient

keypoint matching and to investigate the impact of various local features.
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Chapter 5

Video Summarization via Minimum

Sparse Reconstruction

This chapter proposes another video summarization approach based on minimum sparse

reconstruction (MSR) principle. It is based on results and includes text that have been

published in [55].

5.1 Introduction

Video summarization has been extensively studied and there exist a large number of

methods in the literature as detailed in Chapter 2. Recently, Cong et al. [56] formulated

video summarization from a new point of view. In this algorithm, video summarization

is transformed into a sparse dictionary (SD) selection problem and an L2,1 norm based

relaxing constraint is imposed to ensure sparsity. Since the L2,1 norm based constraint

cannot ensure sparsity directly, the SD cannot be selected directly as keyframes for

video summarization. Instead, they are selected by identifying local maximums of an

importance curve generated according to the norm of reconstruction coefficients. As

a result, the selected keyframes are not the optimal subset of frames for the model
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since the frames with least reconstruction coefficients, which also contribute to reducing

reconstruction errors, may not be selected. In addition, the optimization algorithm for

dictionary selection is computational expensive, which makes it not suitable for real-

time applications.

In this chapter, with the inspiration from the SD based algorithm [56], video sum-

marization is formulated as a problem selecting the minimum number of keyframes to

reconstruct the entire video as accurate as possible. And the real sparse constraint L0

norm, instead of the relaxing constraint L2,1 norm, is adopted to ensure sparsity. A se-

lection matrix is proposed to model the selection of keyframes from the original video,

according to which the L0 norm of this selection matrix is proposed to ensure selecting

as few keyframes as possible. As a result, SD can be selected directly as keyframes

for video summarization. Specifically, two computationally effective video summariza-

tion algorithms based on minimum sparse reconstruction (MSR) principle, including

an off-line version and an on-line version, are proposed to extract keyframes for video

summarization. In addition, a percentage of reconstruction (POR) criterion is also pro-

posed to summarize video sequence with different length, enabling the proposed MSR

based video summarization algorithms adaptive to different kinds of videos. Finally,

experiments on two benchmark datasets are conducted to demonstrate the effectiveness

of the proposed algorithms.

The main contributions of this chapter reside in three aspects:

1. An MSR based video summarization model is formulated by utilizing a selection

matrix, such that video summarization is performed by utilizing minimum num-

ber of keyframes to reconstruct the entire video as accurate as possible. An L0

norm based constraint is imposed to ensure real sparsity such that keyframes are

selected directly according to the selection matrix.
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2. Two efficient and effective MSR based video summarization algorithms are pro-

posed for off-line and on-line applications, respectively.

3. A scalable strategy is designed to provide flexibility for practical applications.

The proposed POR criterion can be tuned to extract a keyframe set at different

levels of reconstruction of the original video sequence.

5.2 Problem Formulation

5.2.1 Minimum Sparse Reconstruction Constrained Video Summa-

rization Model

The key element for our video summarization is to select an optimal subset from the en-

tire video frame pool through which the original video can be reconstructed as accurate

as possible. Given an initial candidate pool F = [f1, f2, . . . , fn] ∈ IRd×n, where each col-

umn vector fi ∈ IRd denotes the feature vector of the i-th video frame. Our goal is to find

an optimal subset FK = [f1, f2, . . . , fnk ] ∈ IRd×nk such that the original frame set F can be

accurately reconstructed by FK and the size of FK is as small as possible. Therefore,

the following minimum sparse reconstruction (MSR) model can be constructed:

min
S

:
1
2
‖F−FKA‖2 +λ · ‖S‖0

s.t. FK = FS

A = f (F,FK), (5.1)

where S is a sparse diagonal matrix defined as selection matrix. Its diagonal elements

are either ’1’ or ’0’, indicating that the corresponding frames are selected as keyframes

or not. Therefore, ‖S‖0 represents the number of elements selected from F for FK . A

represents the reconstruction coefficients of F by FK using the reconstruction function
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f (F,FK). And ‖ · ‖2 represents the L2 norm of a matrix or vector. The first part in

the optimization function of (5.1) is to decrease the least-square reconstruction error

(LSRE) as much as possible, while the second part to confine the number of keyframes

(nK) as small as possible. Therefore, the proposed model ensures that the whole video

can be reconstructed as accurate as possible with as few keyframes as possible, which

is denoted as MSR constrained video summarization model.

5.2.2 Video Frame Representation

In the proposed MSR based video summarization model defined by (5.1), each frame

is represented by its feature vector, and thus a candidate pool is formed by compiling

the features of all frames. In this chapter, the 360-dimensional feature vector utilized

in the SD algorithm [56] is adopted for better performance evaluation, though many

other features can also be employed in our method. This feature set consists of two

parts: a 252-dimensional feature vector extracted by CENTRIST [57][58], and a 108-

dimensional feature vector accounting for color moment.

The CENTRIST feature captures local structures of an image without color infor-

mation by utilizing a spatial pyramid structure. Only the last two spatial levels, each of

which contains 5 and 1 image patches, are adopted. Thus, each patch is represented by

a 42-dimensional feature, where 40 dimensions are for eigenvectors and the other two

are for the mean and variance of each patch, respectively. Hence, the dimension of each

CENTRIST feature is 6×42 = 252. More details can be found in [57][58].

To calculate the color moment feature of a video frame, each frame is represented

in HSV color space and partitioned in to 3× 4 patches. A three-order color moment

(i.e., Mean, Standard Deviation, and Skewness) is adopted. As a result, each frame is

represented with a 3×4×3×3 = 108-dimensional color moment.
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5.3 Solution and Algorithm Implementation

5.3.1 Minimum Sparse Reconstruction Algorithm for Video Sum-

marization

As observed in the video summarization model defined by (5.1), there is a competition

between minimizing LSRE and nK . If we want to decrease the LSRE, the nK will in-

crease. For example, when nK equals to the size of original frame candidate pool, the

LSRE will be 0, indicating that no video summarization is conducted. Therefore, a bal-

ance (denoted by λ ) should be achieved between LSRE and nK . However, it is difficult

to select a suitable λ for the optimization problem defined by (5.1), since the magni-

tudes of LSRE and nK are not the same and will vary for different videos. Therefore, in

this chapter, we take an iterative approach to solve the MSR problem.

Assume that m keyframes FK = [fk1, fk2, . . . , fkm]∈ IRd×m have been identified, where

k1,k2, . . . ,km ∈ {1,2, . . . ,n}. Then choosing the next keyframe should be able to maxi-

mally decrease the reconstruction error defined in equation (5.1). As a result, the candi-

date of the next keyframe will be the one producing the maximum reconstruction error

at the current iteration:

fkm+1 = arg max
f j∈F/FK

‖f j−FKa j‖2, (5.2)

in which a j( j = 1,2, . . . ,n) represents the reconstruction coefficients of the j-th frame,

and F/FK represents all the non-keyframes.

Due to the fact that feature vectors with high magnitudes are more likely to result

in large reconstruction errors, we define the percentage of reconstruction (POR) as the
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objective criterion for keyframe selection:

fkm+1 = arg min
f j∈F/FK

POR j = arg min
f j∈F/FK

‖f j−FKa j‖2

‖f j‖2
. (5.3)

Now for each frame in the candidate pool, reconstruction coefficients should be

obtained for calculating its POR. Though many methods can be employed for such

a reconstruction problem, we use one of the most effective methods, the Orthogonal

Subspace Projection (OSP). In OSP, all the frames are projected to the orthogonal space

spanned by FK , and the reconstruction coefficients of the j-th frame are determined as

follows:

a j = (FT
KFK)

−1FT
Kf j = PKf j, (5.4)

in which PK = (FT
KFK)

−1FT
K is the orthogonal projector of FK . As a result, the re-

construction error (RE) of the j-th frame is determined by the L2 norm of orthogonal

complement projection of FK:

RE j = ‖f j−FKa j‖2 = ‖(I−FK(FT
KFK)

−1FT
K)f j‖2 = ‖P+

K f j‖2, (5.5)

in which P+
K = I−FK(FT

KFK)
−1FT

K represents orthogonal complement projector of FK

and I is the unit matrix. Thus, the POR of the j-th frame is defined as follows:

POR j =
RE j

‖f j‖2
. (5.6)

As a result, the original iterative video summarization model (defined in equation(5.3))

can be rewritten as:

fkm+1 = arg min
f j∈F/FK

POR j. (5.7)

Note that other constraints can also be further imposed to ensure the reconstruction

more physically meaningful, such as sum-to-one constraint which confines the sum of
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all the reconstruction coefficients of a frame to one, and nonnegative constraint which

requires all the reconstruction coefficients to be nonnegative.

The next task is to set the termination criterion for such an iterative process. The

straightforward solution is to predefine the number of keyframes. However, it is still an

open issue to determine a reasonable value for the number of keyframes without prior

knowledge [33]. In this chapter, we rely on a threshold for POR, i.e. TPOR. When the

POR of all the frames in a video exceeds TPOR, the iteration will terminate and all the

extracted keyframes form the final keyframe set.

When deriving the iterative algorithm, we assume that a set of keyframes have been

identified. Therefore, in order to provide a complete solution, the initialization issue

should be addressed. If prior knowledge exists, we can incorporate it into our algorithm.

For example, the cover image of a video can be chosen as the initial keyframe. Other-

wise, it would be ideal to select the most representative frame as the first keyframe. In

this chapter, we employ the following two strategies to address the initialization issue:

1) selecting the frame with the largest magnitude since it will be more likely to result in

large RE:

fk1 = argmax
f j∈F
‖f j‖2, (5.8)

and 2) selecting the frame closest to the average of all the frames since it will be more

likely to reduce RE of all other frames:

fk1 = argmin
f j∈F
‖f j− f‖2, (5.9)

in which f = 1
n ∑ j f j.
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5.3.2 Off-line MSR based Video Summarization

We use the word off-line to describe the scenario that summarization will be performed

on a given video. That is, all the video frames are available when summarization algo-

rithm starts. Actually, most of the existing video summarization methods focus on such

an off-line scenario. By referring to the solution introduced in the above section, off-

line MSR based video summarization method (OffMSR) is summarized in Algorithm 1:

Algorithm 1: The Off-line MSR based video summarization algorithm
Input: the whole video frame set F ∈ IRd×n and POR threshold TPOR.
Output: the keyframe set of the summary output FK ∈ IRd×p.
Initialization:

1) Selecting initial keyframes, such as the first keyframe fk1 according to (5.8)
or (5.9).

2) Calculating the POR of all the frames according to (5.7).
3) Setting the iteration counter m to 1.

Iteration for video summarization:
While the POR of any frame is less than TPOR:

1) Determine the next keyframe fkm+1 according to (5.7).
2) Update keyframe set FK = [FK, fkm+1 ].
3) Increase iteration counter m = m+1.
4) Calculate RE of all the frames by the current keyframe set according to

(5.5).
5) Calculate POR of all the frames by the current keyframe set according to

(5.6).

A summarization example with an airplane video from the OVP is illustrated in

Fig. 5.1. The first keyframe is selected according to the magnitude of all the frames.

Then the worst reconstructed frame (the frame with the least POR) is selected as a new

keyframe at each iteration until the POR of all the frames exceeds a predefined threshold

(70% in this example).

The proposed OffMSR algorithm has the following merits:

• The computational time efficiency of our proposed OffMSR algorithm is more
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Figure 5.1: A sample illustration of our proposed Off-line MSR based video summa-
rization algorithm. In this example, the frame with maximum magnitude is selected as
the first keyframe and TPOR = 70%.
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Table 5.1: Computation complexity analysis of the (m+ 1)-th (m = 1,2, . . .) iteration
in the proposed OffMSR algorithm.

Calculation Complexity

RE j

FT
mFm O

(
m2d

)
(FT

mFm)
−1 O

(
m3)

Fm(FT
mFm)

−1 O
(
m2d

)
Fm(FT

mFm)
−1FT

m O
(
d2m

)
I−Fm(FT

mFm)
−1FT

m O
(
d2)

(I−Fm(FT
mFm)

−1FT
m)f j O

(
d2)

‖(I−Fm(FT
mFm)

−1FT
m)f j‖2 O(d)

Total max{O
(
m2d

)
,O
(
d2m

)
}

POR j max{O
(
m2d

)
,O
(
d2m

)
}

POR j( j = 1,2, . . . ,n) max{O
(
m2dn

)
,O
(
d2mn

)
}

fkm+1 max{O
(
m2dn

)
,O
(
d2mn

)
}

efficient than other known alternative approaches. As observed from equation

(5.7), the denominator for calculating POR j is the L2 norm of the feature vec-

tor and does not change in the iteration. Therefore, it can be stored as con-

stant after the first keyframe is identified. Consequently, in each iteration, only

the reconstruction errors of all the frames (defined by RE j( j = 1,2, . . . ,n) in

(5.5)) are calculated. Then a minimum calculation is performed for the recon-

struction error weighted by the reciprocal of the L2 norm of the feature vec-

tor. As observed from Table 5.1, the computation complexity of the (m+ 1)-

th iteration in the proposed OffMSR algorithm is max{O
(
m2dn

)
,O
(
d2mn

)
}.

Generally, to extract nK keyframes, only nK − 1 iteration is required. There-

fore, the total computation complexity of the proposed OffMSR algorithm is

max{O
(
(nK−1)2dn

)
,O
(
d2(nK−1)n

)
}. Therefore, the proposed OffMSR al-

gorithm is suitable for real-time applications.

• Compared with the SD based algorithm in [56], our proposed OffMSR algorithm

extracts a sparse dictionary as keyframes directly by ensuring sparsity explicitly.

• Our proposed OffMSR algorithm is flexible to produce summaries with different
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Figure 5.2: A sample illustration of our on-line MSR based video summarization
(TPOR = 70%).

lengths by intuitively tuning the parameter TPOR.

5.3.3 On-line MSR based Video Summarization

On-line MSR based video summarization algorithm is for continuous incoming video

streams such as surveillance videos where the input frame set is continuously chang-

ing. As shown in Fig. 5.2, for the continuous video stream, the first frame f1 is first

selected as the keyframe fk1 , and thus the current keyframe set FK = [f1]. When a new

frame f j( j = 2,3, . . .) is available, it is projected to the subspace spanned by the existing

keyframes:

RE j = ‖(I−FK(FT
KFK)

−1FT
K)f j‖2. (5.10)
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The POR of the j-th frame is determined as follows:

POR j =
RE j

‖f j‖
, j = 2,3, . . . (5.11)

If its POR is less than a predefined threshold TPOR, the current frame will be selected

as a new keyframe: FK = [FK, f j]; Otherwise, the current frame f j will not be selected

and the keyframe set FK does not change. Such an on-line strategy can be formulated

as follows:

POR j

 < TPOR new keyframe: FK = [FK, f j]

≥ T FK remains unchanged
(5.12)

The proposed on-line MSR based video summarization algorithm (denoted by On-

MSR) for real-time video summarization is summarized in Algorithm 2.

Algorithm 2: The On-line MSR based video summarization algorithm
Input: A video sequence f j( j = 1,2, . . .), and POR threshold TPOR.
Output: the keyframe set of the summary output FK ∈ IRd×p.
Initialization:

Selecting f1 as the first keyframe fi1 .
Iteration for video summarization:
For j = 2,3, . . .:

1) Calculate the RE of the current frame according to (5.10).
2) Calculate the POR of the current frame represented by current keyframes

according to (5.11).
3) Determine whether the current frame is selected as a keyframe according to

(5.12).

According the computational complexity analysis shown in Table 5.1, in the pro-

posed OnMSR algorithm, the computational complexity to determine whether the j-th

( j = 1,2, . . .) frame is selected as a keyframe or not is max{O
(
m2d

)
,O
(
d2m

)
}, in

which m is the number of current keyframes in FK . Obviously, the computation cost is

mainly affected by the number of current keyframes m. Generally, m is much smaller

80



than the number of available video frames n. Even for the continuous video acquir-

ing applications (e.g., video surveillance) that m may continue to increase. Note that

keeping m small by removing some early obtained keyframes periodically will help

to maintain reasonable computation complexity, which makes the proposed OnMSR

algorithm very suitable for real-time applications.

Since the OnMSR algorithm relies on the initial keyframe set, selecting an appropri-

ate set of initial keyframes is very important. In order to reduce the bias of selecting the

first frame as the initial keyframe, we can utilize the proposed OffMSR algorithm shown

in Algorithm 1 to produce a keyframe set from a video buffer and use the keyframe set

as the initial keyframes:

Finit = OffMSR
(
Fbu f f

)
, (5.13)

in which Finit represents the initial keyframes extracted from a video buffer, Fbu f f rep-

resents the video buffer consisting of first several frames of a video.

5.4 Experiments and Discussions

In this section, we present various experiments and comparisons to validate the effec-

tiveness and efficiency of our proposed MSR based video summarization algorithm.

The experimental settings and evaluation metrics have been introduced in Section 4.4.1

and Section 4.4.2 respectively.

5.4.1 Performance Evaluation

The first dataset with human-selected ground-truth keyframes from five users is avail-

able at the VSUMM [59] official website. When calculating quantitative metrics, the

average of the results among the five ground-truth sets of keyframes is adopted. Our
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Figure 5.3: Quantitative evaluation in terms of Precision, Recall and F-score for the first
dataset.

proposed MSR based video summarization approach is compared with sparse dictio-

nary (SD) based approach [56], VSUMM [59], Open Video Project storyboard (OVP)

[60], Delaunay Clustering (DT) [61], STIMO [62], and Keypoint-Based Keyframe Se-

lection [33] (KBKS). The results of OVP, DT, STIMO, and VSUMM from the same

website are adopted. In the KBKS algorithm, the keyframes are selected automatically

when its STOP coverage is 85%. In the SD algorithm, frames corresponding to the top

10 local maximums are selected firstly according to the importance curve and then a

temporal constraint is imposed to further remove the keyframes near to each other. In

order to perform fair comparison, TPOR is set to 85% in the proposed MSR based video

summarization algorithms.

According to the definition of these three quantitative metrics in Section 4.4.2,
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Table 5.2: Performance of each method for the first dataset.
Precision Recall F-score Average nK

OVP 43% 64% 51.4% 9.66
DT 47% 50% 48.5% 6.2

STIMO 39% 65% 48.8% 9.96
VSUMM1 42% 77% 54.4% 9.62
VSUMM2 48% 63% 54.5% 7.7

SD 40% 61% 48.3% 10
KBKS 31% 89% 46.0% 15

OffMSRm 58% 58% 58.0% 8.0
OffMSRa 60% 57% 58.5% 7.62
OnMSR 50% 66% 56.9% 10.58

‘Precision’ reveals the ability to select matched keyframes over all algorithm select-

ing keyframes, while ‘Recall’ reflects the ability to select matched keyframes over all

ground-truth keyframes. ‘F-score’ balances these two metrics and evaluates overall per-

formance of summarizing videos. Precision, Recall, and F-score for the first dataset are

shown in Fig. 5.3 and detailed in Table 5.2. It is observed that our proposed MSR based

video summarization algorithms, including both Off-line version and On-line version,

obviously achieve the best performance among all compared methods. Generally, for

fewer keyframes that have been selected, fewer keyframes are likely to be matched, and

thus resulting a lower Precision. On the contrary, for more keyframes that have been

selected, more keyframes are likely to be matched, and thus resulting higher Recall.

According to the average number of selected keyframes in these algorithms shown in

Table 5.3, although our proposed OffMSR based video summarization algorithms se-

lects fewer keyframes than OVP, STIMO, VSUMM1, and SD, and similar number of

keyframes as DT and VSUMM2, the precisions of our proposed OffMSR algorithms

are much higher than these two video summarization algorithms, indicating that our

proposed OffMSR based video summarization algorithms extract keyframes with much
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higher accuracy. In addition, the Recall of our proposed OffMSR based video summa-

rization algorithms is similar to that of most video summarization algorithms consid-

ered. Thus, our proposed OffMSR based video summarization algorithms outperform

all the methods compared. In addition, the performance of the OffMSRa algorithm is

slightly better than the OffMSRm algorithm, indicating that the most average frame (the

frame closest to the average of all the frames) is a better choice for initialization than

the maximum frame (the frame with the largest magnitude). The performance of our

proposed OnMSR algorithm decreases a little compared with the OffMSR algorithms,

however, it still outperforms all compared methods. This is because the on-line imple-

mentation selects keyframes in a local point of view, which determines whether a video

frame is a keyframe or not according all the video frames acquired previously. In ad-

dition, when the same POR threshold is adopted, the OnMSR algorithm extracts more

keyframes than the OffMSR algorithms.

The results of our proposed MSR based video summarization algorithms with differ-

ent POR thresholds are shown in Fig. 5.4. It is observed that, when the POR threshold

increases, more keyframes are selected by the proposed MSR based video summariza-

tion algorithms and the precision decreases monotonously. However, the F-score of our

proposed approach does not decrease a lot since the Recall increases monotonously.

As demonstrated in Fig. 5.4, when TPOR = 90% and more keyframes are selected, our

proposed MSR based video summarization algorithms still outperform all compared

algorithms. It is also observed that when TPOR = 80% and fewer keyframes are se-

lected, our proposed MSR based video summarization algorithms also outperform all

compared video summarization algorithms even if much fewer keyframes are selected,

indicating that, our proposed MSR based video summarization algorithms can provide

very concise but highly effective summarization results. In addition, the performance of

the OnMSR algorithm decreases more than that of the OffMSR algorithm since many
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(a) h

(b) h

(c) h

Figure 5.4: The quantitative performance of the proposed MSR based video summa-
rization algorithms with different POR Thresholds: (a). OffMSRm, (b). OffMSRa, and
(c). OnMSR.

more keyframes are selected. However, its performance is still better than those of all

the other video summarization algorithms compared. Therefore, our proposed OnMSR
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Figure 5.5: Quantitative evaluation in terms of Precision, Recall and F-score for the
Second dataset.

Table 5.3: Performance of each methods for the second dataset.
Precision Recall F-score Average nK

VSUMM1 38% 72% 49.7% 10.26
VSUMM2 44% 54% 48.5% 7.2

SD 37% 53% 43.6% 8
KBKS 37% 60% 45.5% 11.4

OffMSRm 52% 45% 48.2% 8.12
OffMSRa 54% 47% 50.2% 8.14
OnMSR 47% 54% 50.2% 10.96

algorithm is an effective on-line video summarization algorithm.

The second dataset with human-selected ground-truth keyframes from five users

is also available at the VSUMM [59] official website. The results of VSUMM from

the same website are adopted for comparison. In addition, the SD algorithm [56] and

the KBKS algorithm [33] are also considered. The experimental settings for all the

algorithms are similar to those in the first dataset. The experimental results of our
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Figure 5.6: Sample video summarization results of all the methods for the 5th video
of the first dataset, from top to bottom: OVP, DT, STIMO, VSUMM1, VSUMM1, SD,
KBKS, OffMSRm, OffMSRa, and OnMSR.

proposed MSR based video summarization algorithms, together with that of VSUMM,

SD, and KBKS, are shown in Table 5.3. Although the performance of the proposed

OffMSRm is slightly lower than those of the VSUMM algorithms, our another off-

line version, the OffMSRa algorithm, clearly outperforms all the video summarization

algorithms considered. This also confirms that the frame closest to the average of all the

frames is a better choice for initialization. It should also be noted that our proposed on-

line version of MSR based algorithm outperforms all considered video summarization

methods, including its corresponding off-line version, although the dataset becomes a

little difficult to summarize and the performance of all the algorithms decreases a lot.
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5.4.2 Case Studies

This section presents several summarization samples for subjective evaluation. The first

example is from the 5th video in the first dataset. The video summarization results of all

considered video summarization methods are shown in Fig 5.6, in which all the meth-

ods to be compared are shown in each row. Being a human selected summary, OVP is

able to roughly cover the content, but there are still some details missing. Although DT

selects fewer keyframes than others, its selected keyframes are similar to each other,

especially for the two in red rectangular. Being a clustering-based method, STIMO

fails to extract all clusters due to large intraclass and low interclass visual variance.

VSUMM improves clustering-based method by eliminating meaningless frames before

clustering and similar keyframes after clustering. In addition, a keycluster selection

is involved in VSUMM2 [59]. Thus, VSUMM1 and VSUMM2 achieve better results

than the other compared video summarization algorithms. Since sparse relaxation in

SD cannot guarantee real sparsity, it selects three keyframes about airplanes. Although

KBKS algorithm selects more keyframes in average than others according to Table 5.2,

it selects fewer keyframes in this video to provide a very concise summarization. Com-

pared with all these video summarization algorithms, our proposed OffMSR algorithms,

including OffMSRm and OffMSRa, top the coverage of contents without redundancy,

though they have slightly different results. Although VSUMM provides similar results

with our OffMSR, the keyframes being selected by OffMSR contains more details than

that by VSUMM. For example, the airplane keyframe selected in OffMSR provides

more details about the airplain. In addition, VSUMM misses the last keyframe in our

proposed OffMSR algorithms. Our proposed OnMSR selects several keyframes of the

airplane, resulting similar results. This is because OnMSR needs more keyframe to re-

duce REs of coming keyframes in the beginning of video. Therefore, as listed in Table

5.2, OnMSR generally selects more keyrames than its corresponding Off-line versions.
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Figure 5.7: Sample video summarization results of all the methods for the 49th video of
the second dataset, from top to bottom: VSUMM1, VSUMM1, SD, KBKS, OffMSRm,
OffMSRa, and OnMSR.

Such part-view nature is a natural shortcoming for most on-line video summarization

algorithms since they determine whether the incoming frame is a keyframe or not ac-

cording to information of previously selected frames only. However, all the keyframes

extracted in the OnMSR method are distinctive, even for the several keyframes with the

airplane, indicating that it is an effective on-line algorithm for video summarization.

The second example is from the 49th video in the second dataset. The video sum-

marization results of all the methods are shown in Fig 5.7. It is also confirmed that our

proposed OffMSR based algorithms top the coverage of contents without redundancy

among all the video summarization algorithms. The results of our proposed OnMSR

algorithms are not concise enough to represent the video due to its the part-view nature

of on-line algorithms.
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Figure 5.8: Sample video summarization results of our proposed OffMSRa algorithm
when different levels of reconstruction are adopted for the 5th video of the first dataset.

5.4.3 Summarization with Different Lengths

In the proposed MSR based video summarization algorithms, within each scene of a

video, the number of selected keyframes is not predefined, but is determined by the

level of reconstruction. A static/low-motion scene may produce fewer keyframes with

high percentage of reconstruction. On the other hand, scenes with substantial change of

contents may require more keyframes to reach the same level of reconstruction. There-

fore, we could adjust the length of the summary by tuning the level of reconstruction,

which is more intuitive than setting a fixed number, and is more adaptive to different

kinds of videos. This flexibility is mostly lacked in the previous works. The quantita-

tive performance of our proposed algorithms with different POR thresholds for adaptive

summarization has been explained as shown in Fig. 5.4. Therefore, in this section, vi-

sual results for adaptive summarization are presented for subjective evaluation.

As explained in Fig. 5.1, the proposed OffMSR algorithm extracts keyframes iter-

atively until it reaches the predefines level of reconstruction. Fig. 5.8 lists the summa-

rization results of our proposed OffMSRa algorithm when different POR thresholds are

adopted for the 5th video of the first dataset. When the level of reconstruction is set to

80%, only six keyframes are extracted, resulting in a low-level video summarization.

When the level of reconstruction grows up to 85%, three more keyframes are extracted.
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Figure 5.9: Sample video summarization results of our proposed OnMSR algorithm
when 80% is adopted as the level of reconstruction for the 25th video.

Figure 5.10: Sample video summarization results of our proposed OnMSR algorithm
when 90% is adopted as the level of reconstruction for the 25th video.

Moveover, six more keyframes are extracted for 90% of reconstruction, indicating a

more detailed coverage of the video. That is, the proposed OffMSRa algorithm can

summarize videos into different lengths. Therefore, it is possible to further customize

the granularity of the summary for each scene automatically or via user interaction.

Similar conclusion can also be drawn in the proposed OffMSRm algorithm.

As shown in Fig. 5.2, the proposed OnMSR algorithm determines whether a frame

is a keyframe or not when it is acquired. Therefore, when different POR thresholds

are adopted, different summarization results will be obtained. The video summariza-

tion results of the proposed OnMSR algorithm when 80% and 90% is adopted as POR

thresholds for the 5th video of the first dataset is shown in Fig. 5.9 and Fig. 5.10, re-

spectively. Compared with the video summarization results of 85% shown in Fig. 5.6,

when POR threshold increases, a high-level summarization with more frames will be
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produced and more details will be kept in the video summarization results. However, as

shown in Fig. 5.10, if POR threshold is set too high, transitional frames will be selected

as keyframes, especially the blurred transitional frames labeled by red rectangular. In a

video, transitional frames are acquired before next distinguished frames. Therefore, in

on-line applications, when we try to summarize video with high-level reconstruction,

transitional frames are more likely to be selected as keyframes and and thus affect the

summarization results. Therefore, special consideration should be taken to handle these

blurred transitional frames in on-line applications.

5.5 Summary

In this chapter, an L0 constrained MSR model is presented for video summarization

by reconstructing all the frames in a video as accurate as possible with as few frames

as possible. Specifically, an off-line solution and an on-line solution are proposed by

utilizing the proposed MSR based video summarization principle. In addition, a POR

criterion is proposed to intuitively guide users in selecting an appropriate length of the

summary. Experimental results demonstrate that our MSR based video summarization

approaches outperform state-of-the-art ones and are flexible to generate various lengths

of keyframe based summaries. Moreover, our MSR based video summarization ap-

proaches can be utilized to summarize not only the structured videos, such as news,

sports, or surveillance videos, but also the consumer videos without pre-defined struc-

tures. One of the interests in our future work is to further extend the proposed method

for image summarization in on-line shopping and on-line image recommendation ap-

plications [63][64].
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Chapter 6

L2,0 Constrained Sparse Dictionary

Selection for Video Summarization

This chapter proposes an enhanced video summarization approach to the previous chap-

ter based on constrained Sparse Dictionary Selection. It is based on results and includes

text that have been published in [65].

6.1 Introduction

Recent developments on sparse dictionary selection have demonstrated promising re-

sults to solve these problems for video summarization [56]. In this algorithm, video

summarization is performed by extracting a sparse dictionary from the entire video

frame pool since keyframes are viewed as a dictionary that can recover the whole video

frames without significant information loss. However, the relaxation method to solve

this problem, in which an L2,1 norm is imposed to enforce the selected key frames as

sparse as possible, cannot ensure the sparsity of the reconstruction coefficients directly.

As a result, the selected keyframes are not the optimal subset of the video frames that
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can reconstruct the original video as accurate as possible, since the contribution of non-

keyframes for reconstruction cannot be strictly confined to zero.

Therefore, in this chapter, the L2,0 norm is adopted to formulate a simultaneous

sparse constraint for dictionary selection based video summarization. As a result, an

L2,0 based sparse dictionary selection model is proposed for video summarization prob-

lems. Moreover, a simultaneous orthogonal matching pursuit (SOMP) based keyframe

extraction algorithm is proposed to get an approximate solution for the proposed L2,0

based problem directly without smoothing the penalty function. Thus, the contribu-

tion of non-keyframes for reconstruction is eliminated by strictly confining the recon-

struction coefficients of non-keyframes to zero. Finally, experiments on different video

datasets are conducted to demonstrate the effectiveness of the proposed algorithm.

6.2 L2,0 Based Dictionary Selection Model for Video Sum-

marization

Since keyframes are concise yet representative to an original video, all the important

content of the video should be included in these keyframes. Therefore, given an initial

candidate pool F = [f1, f2, . . . , fn] ∈ IRd×n, where each column vector fi ∈ IRd denotes

a video frame represented as feature vector, the goal of video summarization is to find

an subset FK = [fi1, fi2 , . . . , fip] ∈ IRd×p where i1, i2, . . . , ip ∈ {1,2, . . . ,n} such that it

can represent all the important information in the video frame set F without significant

information loss:

min
FK
|I (F)−I (Fk)|< δ , (6.1)

in which I (·) represents the information implying in a frame set and δ > 0 is the

information loss tolerance. Therefore, if the keyframe set is viewed as a dictionary

that can reconstruct all the frames in the video, video summarization will be performed
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by selecting a dictionary from the video frames such that all the video frames can be

reconstructed by such a dictionary:

min
FK

: ‖F−FKA‖F < δ , (6.2)

in which A ∈ IRp×n is the reconstruction coefficient of F by FK , ‖ · ‖F represents the

Frobenius norm of a matrix. Since keyframes are just a subset of frames in the video,

video summarization can be viewed as a sparse reconstruction problem that all the

frames in the video can be reconstructed by a part of them, which can be formulated as

follows:

min
X

: ‖F−FX‖F < δ , (6.3)

in which X ∈ IRn×n represents the sparse reconstruction coefficient. Therefore, the re-

construction coefficient A by the keyframes corresponds to all the nonzero rows of X,

which implies that, if the i-th (i = 1,2, . . . ,n) row of X is not a zero vector, its corre-

sponding i-th frame involves in the reconstruction of other frames and will certainly be

selected as a keyframe; Otherwise, it will not be selected as a keyframe.

In this chapter, the L2,0 norm is adopted to guarantee the simultaneous sparsity

in the reconstruction coefficient X. The L2,0 norm of X, which is indeed a general

version of L0 norm that counts the number of zero elements in a vector, is defined as

‖X‖2,0 = L0(‖Xi·‖2), where Xi· denotes the i-th row of X. If we construct a new vector

x ∈ IRn with xi = ‖Xi·‖2, the L2,0 norm of X equivalents to ‖x‖0. Therefore, L2,0 norm

actually counts the number of zero rows in X and thus guarantees the simultaneous

sparsity. Generally, the number of keyframes should be as small as possible since the

keyframes are just a concise representation of the video. Therefore, in this chapter,

an L2,0 norm based sparse dictionary selection (SDS) model is constructed for video
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summarization:

min
X

: ‖X‖2,0

s.t. ‖F−FX‖F < δ . (6.4)

In summary, in the proposed L2,0 norm based SDS model, video summarization is per-

formed with the following two criteria: 1) the entire video frames can be reconstructed

by the keyframes as accurate as possible, and 2) the size of keyframes is as small as

possible.

6.3 Proposed Video Summarization Method

Generally, there are two kinds of methods to solve the simultaneous sparse problems:

Greedy Algorithm (GA) [66] and Convex Relaxation algorithm [67]. To the best of our

knowledge, only convex relaxation method has been utilized to solve video summariza-

tion by adopting L2,1 norm to ensure simultaneous sparsity [56]. Little attention has

been paid to the use of GA for video summarization. GA follows the problem solving

heuristic of making the locally optimal choice at each stage with the hope of finding a

global optimum. Although it could not produce an optimal solution for some problems,

it is able to yield locally optimal solutions that approximate a global optimal solution

in reasonable time. On the other hand, the advantages brought by GA such as the low

computational complexity of solving the optimization problems containing non-smooth

terms and that it can get an approximate solution for the L2,0 problem directly without

smoothing the penalty function are attractive. Therefore, in this chapter, GA algorithms

are adopted to solve the L2,0 based SDS model for video summarization.

Orthogonal Matching Pursuit (OMP) [68], a typical GA, has been widely utilized to
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solve the L0 based sparse problem [69]. It has also been extended to solve the simultane-

ous sparse approximation by a simultaneous OMP (SOMP) algorithm [66]. Although

the simultaneous sparse problem in (6.4) is slightly different from traditional simultane-

ous sparse approximation problem [66], it pursues simultaneous sparsity in coefficient

matrix similar to that in simultaneous sparse approximation problem. Therefore, the

SOMP algorithm in [66] is extended to solve the L2,0 norm based SDS model defined

by (6.4) for video summarization.

First, we give a formal description of the proposed SOMP based algorithm for video

summarization, and then discuss some of its basic properties. According to the SOMP

algorithm in [66], an SOMP based video summarization algorithm is proposed as fol-

lows:

Algorithm 3: The proposed SOMP based video summarization algorithm
Input: the whole video frame set F ∈ IRd×n.
Output: the summarized keyframe set FK ∈ IRd×p.
Initialization:

Initialize the residual matrix R0 = F, the index set Λ0 =∅, and the iteration
counter t = 0.
SOMP iteration for video summarization:
While the termination condition is not satisfied:

1). Update iteration: t← t +1.
2). Find an index λt that the reconstruction error of the current residual R0 by

its corresponding frame fλt is minimized:
λt ← arg min

1≤k≤n
‖Rt−1− fkAt−1

k ‖F , (6.5)

where At−1
k represents the reconstruction coefficient of Rt−1 by fk.

3). Update the index set: Λt ← Λt−1∪λt .
4). Update keyframe set: FK

t = FΛt .
5). Update the reconstruction coefficient:

Xt ← argmin
X
‖F−Ft

KX‖F . (6.6)

6). Update the residual:
Rt = F−Ft

KXt . (6.7)

End While

In the proposed SOMP algorithm for video summarization, three issues must be
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solved before its implementation: how to solve the minimization problem defined by

(6.5) to obtain the reconstruction coefficient At
k, how to solve the minimization problem

defined by (6.6) to obtain the reconstruction coefficient Xt , and how to stop the iteration.

According to the minimization problem defined by (6.5), a frame that can best re-

construct the current residuals is selected as a new keyframe at each iteration of the

SOMP algorithm. Therefore, the reconstruction coefficient for Rt by fk, denoted by At
k,

must be predetermined. In order to assess the ability of the k-th frame to reconstruct the

current residuals, its corresponding reconstruction coefficient At
k is defined as follows:

At
k = (fT

k fk)
−1fT

k Rt =
fT
k Rt

P(fk)
, (6.8)

in which P(fk) = ‖fk‖2 is the L2 norm of the k-th frame.

In order to characterize the ability of reconstruction by the current keyframe set,

a minimization problem defined by (6.5) is formulated to calculate the current recon-

struction coefficient. In the proposed SOMP algorithm, we must guarantee that a frame

cannot be selected as a keyframe for several times. Therefore, the residuals must be

irrelevant to the keyframes. As a result, the orthogonal subspace projection (OSP) is

adopted to calculate the current reconstruction coefficient Xt :

Xt = ((Ft
K)

T Ft
K)
−1(Ft

K)
T F. (6.9)

Generally, it is difficult to determine how many keyframes should be selected [33] in

a video summarization problem. This is still an open issue to select a reasonable number

of keyframes without prior knowledge. One of the plausible ways to solve this problem

is to predefine how many keyframes should be extracted by popular intrinsic dimen-

sionality (ID) estimation algorithms, such as principle component analysis (PCA), an

information theoretic criterion (AIC), and minimum description length (MDL) [70]. A
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more reasonable solution is to set an adjustable stopping criterion which can be tuned to

summarize the video frames with different length for different applications. Therefore,

in this chapter, a percentage of residuals (POR) threshold, which measures the energy

of residuals that cannot be reconstructed by current keyframe set, is proposed to per-

form flexible video summarization. The POR at t-th iteration in the proposed SOMP

algorithm is defined as follows:

PORt =
E(Rt)

E(F)
=
‖Rt‖F

‖F‖F
. (6.10)

Therefore, if PORt decreases below a predefined threshold TPOR, the iteration will stop

and all the keyframes have been extracted; Otherwise, more keyframes are required

to be selected. Consequently, the video summarization results are tuned by TPOR for

different values to summarize the video frames with different degrees of reconstruc-

tion, and thus, summarizing video frames with different lengths for different levels of

summarization.

6.4 Experiments and Discussions

In this section, two popular video datasets are adopted to quantitatively evaluate the

performance of our proposed SOMP based video summarization algorithm. The ex-

perimental settings and evaluation metrics have been introduced in Section 4.4.1 and

Section 4.4.2 respectively.

6.4.1 Performance Evaluation

The first dataset with human-selected ground-truth keyframes from five users is avail-

able at the VSUMM [59] official website. When calculating quantitative metrics, the

average of the results among the five ground-truth sets of keyframes is adopted. Our
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Table 6.1: Performance of each methods for the first dataset.
Precision Recall F-score

OVP 43% 64% 51.4%
DT 47% 50% 48.5%
STIMO 39% 65% 48.8%
VSUMM1 42% 77% 54.4%
VSUMM2 48% 63% 54.5%
SD 40% 61% 48.3%
KBKS 31% 89% 46.0%
SOMP 55% 73% 63.1%

Table 6.2: The average number of selected keyframes for the first dataset.
OVP DT STIMO VSUMM1 VSUMM2 SD KBKS SOMP
9.66 6.2 9.96 9.92 7.7 10 15 11.16

proposed SOMP based video summarization approach is compared with sparse dictio-

nary (SD) based approach [56], VSUMM [59], Open Video Project storyboard (OVP)

[60], Delaunay Clustering (DT) [61], STIMO [62], and Keypoint-Based Keyframe Se-

lection [33] (KBKS). The results of OVP, DT, STIMO, and VSUMM from the same

website is adopted. In the KBKS algorithm, the keyframes are selected automatically

when its STOP coverage is 85%. The top 10 frames selected by SD based method are

used for evaluation to comply with its experimental settings, since the average number

of ground truth keyframes is around 10. In the proposed SOMP algorithm, the 360-D

feature vector utilized in [56] is adopted to represent each frame in a video. In order

to perform fair comparison, TPOR is set to 20% in the proposed SOMP based video

summarization algorithm since it extracts around 10 keyframes.

According to the precision, recall, and F-score shown in Table 6.1, obviously, our

proposed SOMP based video summarization algorithm achieves the best performance

among all compared methods. By further analyzing the selected keyframes in terms

of the average number of selected keyframes shown in Table 6.2, it is noticed that DT
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Figure 6.1: The performance of our proposed SOMP based video summarization algo-
rithm for different POR thresholds.

and VSUMM2 select fewer keyframes than others, so they have slightly higher preci-

sion values and lower recall rates due to the limited selection of keyframes. Although

our proposed SOMP produces similar numbers of keyframes on average with OVP,

STIMO, VSUMM1, and SD, its performance in terms of precision and F-score clearly

outperforms that of these four algorithms. Our proposed SOMP based video summa-

rization approach is inferior to the KBKS algorithm in terms of Recall since it selects

fewer keyframes. However, in terms of Precision and F-score, our proposed approach

obviously outperforms the KBKS algorithm.

The results of our proposed SOMP with different POR thresholds are shown in

Fig. 6.1. When the POR threshold increases, fewer keyframes are selected by the

proposed approach. However, the F-score of our proposed approach does not decrease

a lot. Even when TPOR = 25% and only an average of 5.58 keyframes is selected, our

proposed approach still outperforms other considered video summarization approaches.
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Table 6.3: Performance of each methods for the second dataset.
Precision Recall F-score

VSUMM1 38% 72% 49.7%
VSUMM2 44% 54% 48.5%
SD 37% 53% 43.6%
KBKS 37% 60% 45.5%
SOMP 46% 61% 52.5%

Therefore, the proposed SOMP algorithm can provide very concise but high-effective

summarization results, which is extremely useful when the amount of video content is

increasing rapidly.

The second dataset with human-selected ground-truth keyframes from five users is

also available at the VSUMM [59] official website. The results of VSUMM from the

same website is adopted for comparison. In addition, the SD algorithm [56] and the

KBKS algorithm [33] are also considered. The experimental settings for all the algo-

rithms are similar to those in the first dataset. The experimental results of our proposed

SOMP based video summarization algorithm, together with those of VSUMM, SD, and

KBKS, are shown in Table 6.3. It is also confirmed that our proposed approach out-

performs all other methods, although the dataset becomes a little difficult to summarize

and the performance of all the algorithms decreases a lot.

6.4.2 Case Studies

In this section, the 4th video of the first dataset is selected for subjective evaluation. The

summarization results by all the considered video summarization methods are listed in

Fig 6.2. As illustrated, DT tends to select fewer keyframes than others. In addition,

since DT and STIMO are clustering-based methods, they normally select the keyframes

representing average information within a cluster (i.e., close to the centroid of a cluster),

which might cause problems when a cluster contains frames from multiple scenes. In

that case, it will likely select keyframes during a fading transition that are most similar

103



Figure 6.2: Sample video summarization results of all the methods for the 4th video
in the first dataset, from top to bottom: OVP, DT, STIMO, VSUMM1, VSUMM2, SD,
KBKS, and SOMP(ours). The frames in red rectangular are possible redundant frames.

to all the frames in the cluster, as clearly shown in Fig 6.2. This problem of DT and

STIMO has also been observed from many other videos in our experiments. Being a hu-

man selected summary, OVP is able to roughly cover the content, but there are still some

details missing. Although SD utilizes the same feature with our proposed approach, it

loses much details in this case, and gives some redundant keyframes as pointed out in

the red rectangular in Fig 6.2. Comparing our methods with KBKS and VSUMM, we

notice that they cover similar amount of details of the video, while our methods top the

coverage of contents. Although similar keyframes (shown enclosed by a red rectangu-

lar in Fig 6.2) emerge in our approach, they are selected just because we want to obtain

more information of the video by selecting more keyframes. The summarization results

by the proposed SOMP based approach with different POR thresholds are also indicated

out in this figure. Combined with the quantitative evaluation in Fig. 6.1, our proposed

SOMP based approach is an ‘always-in-focus’ algorithm which can summarize video
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sequence with different lengths for different applications with high accuracy.

6.5 Summary

In this chapter, an L2,0 constrained sparse dictionary selection model is constructed for

video summarization. Specifically, an SOMP based keyframe extraction algorithm is

proposed to obtain an approximate solution for the proposed L2,0 based problem di-

rectly without smoothing the penalty function. In addition, a percentage of residuals

(POR) threshold is utilized to provide flexibility for different kinds of videos by sum-

marizing video sequence with different length. The experimental results demonstrate

that our proposed approach outperforms the state-of-the-art and is flexible to generate

various lengths of keyframe based summaries. Moreover, the proposed SOMP based

video summarization approach can be utilized to summarize not only the structured

videos, such as news, sports, or surveillance videos, but also the consumer videos with-

out pre-defined structures. One of the interests in our future work is to further extend

the proposed method for personal photo summarization.
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Chapter 7

Towards Multimedia Summarization -

StoryImaging: from Text Story to

Images

This chapter introduces a novel system to achieve multimedia storytelling. It is based

on results and includes text that have been published in [71].

7.1 Introduction

Video summarization can be regarded as a subset of multimedia content summariza-

tion. Multi-modal content analysis will become the next hot topic, which integrates

the information of textual, audio and visual features of a piece of content to generate

a more meaningful and enriched representation. This is especially beneficial for the

presentation of a large piece of content (e.g., a long video or a long text story) to users.

Since this topic requires many content analysis techniques involved, we firstly make a

pioneering step towards this ultimate goal with visualization support to textual stories.

Visual information is essential for our daily lives. As indicated in [72], 80% of
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human cognition is obtained from visual information. For example, some natural lan-

guages are historically derived from pictographs, such as Chinese and Egyptian, as ev-

idenced with ancient cave paintings. In addition, visual information generally contains

rich content and is very expressive. As said, one picture is worth a thousand words.

There are plenty of such examples. Journalists often use several images to help illus-

trate news stories and a movie is a visual illustration of a novel (with very high cost).

Images are also useful for people with reading difficulties. In the web era, emoticons

are developed to enhance communication experiences in Instant Messengers. However,

we have to deal with a large amount of textual information every day, such as news

articles and documentaries. It is very often that we hope to know what the person looks

like and what the place is in reading a news article even when knowing that a phrase

represents a person’s name or a location. Furthermore, different people will have dif-

ferent interpretation of the same text due to their diverse background (e.g. culture and

knowledge). Besides this, diverse background may lead to mistaken interpretation of

a textual story without the help of visual aids. All these factors increase the difficulty

to human beings in comprehending textual information. Therefore, it would be ideal to

augment textual information with suitable images so as to facilitate comprehension in

consuming textual documents.

To enrich an arbitrarily given textual story (e.g. a news article or a biography), a

large scale repository with images and accompanying text is required. Nowadays the

Web has become the largest database on the planet and commercial search engines allow

us to conveniently access a large number of images by expressing information needs

with a number of words. However, several issues should be addressed when search

engines are utilized for such purpose. Firstly, the search results returned by current

commercial search engines are generally too noisy, which demands further interaction

(e.g. refinement) from users. Secondly, users have to conduct some queries during the
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reading, if there are a number of unknown items such as persons and locations, which

is time consuming and significantly interrupts information consumption. Thirdly, it is

difficult for users to gain an overview of the story, since results returned by a series of

independent queries are isolated.

Fang [73] investigated the relationship between texts and pictures in children’s sto-

rybooks and summarized six roles of visual illustration as, 1) establishing the setting,

2) defining/developing the characters, 3) extending/developing the plot, 4) providing a

different viewpoint, 5) contributing to the text coherence, and 6) reinforcing the text.

While reading a piece of descriptive story, users who (i.e. persons involved in the event),

where (i.e. settings such as locations), and what (i.e. activities such as giving a speech).

We currently focus on identifying named entities such as persons (who) and locations

(where), and key terms (what) as initial queries [74].

Based on the above observations, we propose a novel approach, namely StoryImag-

ing, to automatically fetching images from the Web and selecting suitable ones for the

visual illustration of a given textual story. As shown in Figure 7.1, our approach consists

of five components: text analysis, image search, search result re-ranking, near duplicate

removal, and image clustering. Text analysis includes Part-of-Speech (POS) tagging for

extracting noun words, identification of named entities, and summarization of the text

story for the following re-ranking. Image search is to collect an initial set of images

by issuing queries based on named entities and key terms in each sentence. Re-ranking

and near duplicate removal is to improve the quality of the returned images. And visual

clustering is to enable convenient overview of the story. As shown in Figure 7.2 for a

sample excerpt from Wikipedia, users can easily gain an overall picture of the company

from its logos, key products, and key persons.
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Figure 7.1: Workflow of our StoryImaging approach.

7.2 Related Work

To the best of our knowledge, our work is one of the first efforts harvesting web images

for story illustration. The most similar work to ours is the Story Picturing Engine (SPE)

[75]. It consists of three steps: 1) identifying semantic keywords from input texts; 2)

searching a database of annotated images with those keywords for candidate images;

and 3) selecting images from the candidate images with mutual-reinforcement-based

rank. However, it worked only on a small closed database, and semantic keywords

were limited to objects such as flower and car. In addition, the global context of the

story was not taken into account. In [76], a system was developed to assist news read-

ing by selecting Flickr images. However, its purpose was to attract and retain users’

attention in news reading through matching content with noisy tags, instead of facilitat-

ing comprehension without thoroughly analyzing the content of news and images.

Recently, some researchers have also been interested in interpreting words (e.g. ob-

jects, persons, and landscapes) with visual information. Word2Image [77] was proposed

to produce a set of high quality, precise, diverse and representative images for a given

word through correlation analysis and clustering of semantic and visual features. In

[78] by Feng et al., interpreting textual inputs with images was treated as a by-product
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Figure 7.2: A StoryImaging sample.
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of image annotation, where global context of the input is discarded. In addition, it was

also constrained to a closed set of news archives. In [79], Wang et al. proposed to inter-

pret tags with the distribution of visual words obtained through sample images, which is

an analogy to traditional dictionary which defines terms with real words. Nevertheless,

visual words obtained through clustering local features generally lack semantic mean-

ings. In [80], Deng et al. proposed to build ImageNet by following the hierarchy of

WordNet. For each noun word in WordNet, relevant web images were manually col-

lected, which is an expensive effort. It is also worth mentioning that the above three

studies only focus on individual words, instead of a whole text story conveying more

information. In the domain of named entities, Taneva et al. proposed to improve image

search for persons with an existing knowledge base[81]. In [82], Lu et al. proposed

to collect landmark images for travelogues. However, these methods generally work

on very short text (e.g. several words only), instead of a whole textual story conveying

more information.

In summary, our contributions lies in three aspects, 1) working at story level for a

wide range of documents such as news articles, documentaries, and Wikipedia entries;

2) applying story context to harvest web images; and 3) clustering-based informative

presentation for engaging and explorable user experiences.

7.3 Proposed StoryImaging Approach

Using the context and keywords extracted from text, the StoryImaging system har-

vests images from the web where there are abundant image resources, refines the im-

age pool by context-based reranking and near-duplicate removal, and eventually out-

puts sentence-by-sentence image lists, which serves as an illustration for users read-

ing the story in the order of sentences, image lists and visual image clusters, which

gives an overall picture of the story. As shown in Figure 7.2 for a sample excerpt from
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Wikipedia, users can easily gain an overall picture of the company from its logos, key

products, and key persons.

7.3.1 Text Summarization

Since our approach allows free user inputs, the input text could vary from a complete

story the user is interested in to a snippet of a news article, a section of a document,

or a fraction of a web page. Therefore, the position of a sentence cannot be used to

determine its saliency, which has been proven to be one of the key features in automatic

text summarization [83]. In this case, summarization of a given input is achieved by

ranking the saliency of sentences, and extracting the named entities and salient noun

words in top sentences [84], which will also be the context for our visual illustration.

First, stop words are removed from the story and each word is lemmatized. Term fre-

quency t f (w) is calculated for each word w. Then inverse document frequency id f (w)

is measured using a corpus of one-year TV news transcripts from five channels. Note

that this corpus can be replaced by any other general-purpose ones to avoid bias. Next,

named entities are extracted from each sentence. For the i-th sentence Si with its col-

lection of words Ci, its saliency is scored by

Si = ∑
w∈Ci

t f (w)∗ id f (w)+ |NE ∈Ci|, (7.1)

where |NE ∈ Ci| is the number of named entities (NE) in sentence i. The sentences

can then be sorted by its saliency, and all named entities in top NumContext sentences

are combined as the context of the story. Note that other advanced summarization

algorithms can be applied to obtain story context. In our experiments, NumContext is set

to 3 empirically.
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7.3.2 Keyword-based Image Search

Named Entities (NEs) such as people and organizations are the focus of a story. There-

fore, we aim to obtain images by forming queries with the words of those NEs. Named

entity based image search first removes duplicate entities by regarding two names iden-

tical if one is the prefix or suffix of the other, such as “Microsoft Corporation” vs “Mi-

crosoft” and “President Obama” vs “President” and “Obama”. For each NE, images are

then collected from the commercial search engines such as Bing and Google. Mean-

while, location information in the story is also utilized to generate maps for users so

that they know where the related locations are.

Besides named entities, noun words generally reflect the fundamental meaning of

a sentence. Therefore, we collect extra images by forming a query with all the noun

words of each sentence.

After retrieving images from the searches with their source webpages, each named

entity and each sentence have a list of candidate images, denoted by L(NE) and L(Si),

respectively. Each sentence links to several corresponding named entities mentioned

within that sentence, so L(NE ∈Ci) and L(Si) are formed to highlight the key NE ∈Ci

and the content of each sentence.

7.3.3 Context-based Re-ranking

Images collected from search engines are related to the keywords, but are not neces-

sarily relevant to the story itself. Therefore, re-ranking of these candidate images is

necessary to obtain the story-relevant ones and to filter the noises.

The surrounding text of an image in a web page implies its visual content, so we

use this textual feature to further re-rank the image pool against the story context. For

each candidate image I j, its relevance to the context is measured by calculating the

cosine similarity between I j’s surrounding text and the story context based on their
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tf-idf vectors. That is:

Relevance j = cos(I j.SurroundText,StoryContext) (7.2)

After the re-ranking of each L(NE ∈Ci) and L(Si), only the top images of L(NE) and

L(Si) will be shown to the user.

We use the summary as the context, rather than the whole story, because a condensed

context can effectively define the story background, thereby filter the images with a

small but precise funnel. The whole story might have diverse words so the relevance

will be affected if irrelevant words are matched with the surrounding text of an image.

In addition, we do not add the context into the search query directly, otherwise the

search result will be significantly biased by the context words.

7.3.4 Near Duplicate Removal

Duplicates or near duplicates are very common in web search due to the nature of

the Web. Therefore, search engines may return different version of the same image

content, though significant efforts have been endeavoured for Near-Duplicate Detection.

It would be ideal to remove the near duplicated images to maximize the information

delivered to users.

In [85], an efficient technique was proposed to quickly identify near duplicate im-

ages for a query from a database of tens of thousands of images. We adopt such an

algorithm to efficiently discover near duplicates and to enable real-time interaction for

users. The algorithm makes use of multi-resolution wavelet decompositions of an im-

age, which are distilled into small signatures for fast computing and comparison based
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on the image querying metric. The image querying metric is given by:

||Qc,Tc||=w0,0|Qc[0,0]−Tc[0,0]|

+ ∑
i, j:Q̃c[i, j]6=0

wbin(i, j)(Q̃c[i, j] 6= T̃c[i, j]),
(7.3)

where Qc (Tc) represents a single colour channel c of the wavelet decomposition of

the query image (the target image), Qc[0,0] (Tc[0,0]) is the scaling function coefficient

corresponding to the overall average intensity of that colour channel of the query im-

age (the target image), Q̃c[i, j] (T̃c[i, j]) represents the [i, j]-th truncated and quantized

wavelet coefficients of Q (T), and wi, j is the weight for a term grouped into buckets

by bin(i, j). Therefore, only a small number of weights wi, j need to be determined

experimentally.

7.3.5 Visual Clustering

To give users an overall picture of a story, visual clustering is applied to capture various

visual groups for easier understanding and better organization of the result. As normal

clustering leads to separated groups of images, the semantics of a story are broken into

isolated parts. Therefore, we propose to address such problem of clustering algorithms

by discovering the minimum spanning tree of the graph formed by resulting clusters.

Our extension is based on the Reciprocal Election algorithm proposed in [86] for a

lightweight clustering and eventually construct a graph by connecting each cluster with

a minimum spanning tree, which can be visualized as a force-directed graph. Details of

this algorithm is shown in Algorithm 4. In our approach, the Colour and Edge Directiv-

ity Descriptor (CEDD) is employed to characterize visual content by taking both colour

and texture attributes into account [40]. Selection of such features is also a trade-off

between performance and efficiency.
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Algorithm 4: Reciprocal Clustering
Input : Set S containing all candidate images, parameter m to control cluster
granularity (set to 5 in our experiments)
Output : A Graph G connecting Clusters C
01: Initialize votes map V [0, ...,k] = 0, ...,0
02: for each image i in S do
03: Rank S into Li based on visual similarity to i
04: for each image j in Li do
05: V [ j]+ = 1/r, where r is the rank of j in Li
06: While V is not empty do
07: Let Ri be the item with the highest score in V
08: Remove Ri from V
09: Initialize new cluster C with representative Ri
10: for all items s in V do
11: if Ri is in top-m of Ls then
12: add s to cluster C
13: remove s from V
14: Initialize Rep[0, ...,n] = [null, ...null] (n is |C|)
15: For each cluster Cx from C
16: Rep[x] = Rx which is the representative image in Cx
17: Construct a minimum spanning tree G from Rep

7.4 Demonstration

A web based demo system has been developed for the proposed approach, and the

frontend screenshot is presented at Figure 7.3 and Figure 7.4.

7.5 Summary

We present a novel framework to automatically enrich a given textual story by informa-

tively organizing relevant web images. Based on such framework, we develop a simple

yet effective and efficient StoryImaging system. It firstly identifies key terms such as

named entity and extract a story summary. Then an image pool will be obtained by is-

suing queries formed with those key terms to commercial search engines and the story

summary will be utilized to re-rank image candidates. At last, images clustered in terms
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Figure 7.3: Frontend of StoryImaging system.
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Figure 7.4: Frontend of StoryImaging system.
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of visual features will be presented to users. Since our approach utilizes web images,

eventually any textual story can be illustrated visually.

In our future work, we will extend the current framework to further integrate other

modalities such as video and audio in augmenting textual information so as to eventu-

ally achieve multimedia storytelling [87].
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Chapter 8

Conclusion and Future Work

This thesis investigates the task of automatic video summarization from three novel per-

spectives, including a local keypoint based top-down approach, formation of the task

to sparse dictionary reconstruction, and a text-to-image system for multimedia summa-

rization. This chapter summarizes the main contributions and suggests directions for

future work.

8.1 Main Contributions

8.1.1 Local Keypoint based Keyframe Selection

By utilizing the discriminative power of local visual keypoints, a novel keypoint-based

keyframe selection method is proposed in Chapter 3. It starts by building a global

pool of unique local visual keypoints from all video frames. After that, representative

keyframes are selected by a greedy algorithm based on two criteria, namely Coverage

121



and Redundancy, to achieve maximum video content coverage and minimum redun-

dancy. The experimental results on both case studies and quantitative evaluation indi-

cate very promising performance compared to other global-visual-feature based meth-

ods.

8.1.2 Top-Down Approach for Video Summarization

Chapter 4 presents a top-down approach for video summarization framework, which

decompose the problem into two sub-problems: scene identification and scene sum-

marization. Scene identification is achieved by global visual feature clustering based

on the fact that frames within a scene are visually similar, while scene summariza-

tion is accomplished through selecting keyframes with most representative local visual

feature. Users can easily fine tune the summarization results by adjusting the two intu-

itive metrics Coverage and Redundancy. The experimental results demonstrate that our

proposed approach outperforms the state-of-the-art and is flexible to generate various

lengths of keyframe based summaries.

8.1.3 Sparse Dictionary Reconstruction based Video Summariza-

tion

The problem of video summarization can be reformulated as the problem of sparse

dictionary reconstruction, where solutions can be derived with strong mathematical

support. Chapter 5 and Chapter 6 present two algorithms to solve this problem. An

L0 constrained MSR model is firstly introduced, which reconstructs all the frames in

a video as accurate as possible with as few frames as possible. Specifically, an off-

line solution and an on-line solution are proposed by utilizing the proposed Minimum

Sparse Reconstruction based principle. In addition, a POR criterion is proposed to in-

tuitively guide users in selecting an appropriate length of the summary. Experimental
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results demonstrate that our MSR based approaches outperform the state-of-the-art and

are flexible to generate various lengths of keyframe based summaries. Moreover, our

MSR based video summarization approaches can be utilized to summarize not only the

structured videos, such as news, sports, or surveillance videos, but also the consumer

videos without pre-defined structures. Then another L2,0 constrained sparse dictionary

selection model is proposed. An simultaneous orthogonal matching pursuit (SOMP)

based keyframe extraction algorithm is devised to obtain an approximate solution for

the proposed L2,0 based problem directly without smoothing the penalty function. The

experimental results are also very promising.

8.1.4 StoryImaging - A Text to Image Visualization System

Chapter 7 presents StoryImaging, a system that generates visual representation of a

given textual story. This system contains streamlined components: text analysis, image

search, search result re-ranking, near duplicate removal, and image clustering. Because

the web search engine and images are utilized, any textual story can be illustrated visu-

ally by this system.

8.2 Future Work

8.2.1 Weighted Local Keypoint for Keyframe Selection

In our keypoint-based keyframe selection method (Chapter 3) and our top-down ap-

proach (Chapter 4), every keypoint is weighted equally when it contributes to keyframe

selection. However, some keypoint may have higher importance and should contribute

more to identify suitable keyframes, for example keypoints in face regions during change

of facial expression, keypoints on more prominent foreground objects than those on

other objects or those in the background, etc. This information has not been utilized
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yet in our current framework, and we plan to incorporate this to get more robust and

accurate video summaries.

8.2.2 Weighted Scene for Video Summarization

In our top-down approach (Chapter 4), the importance of each scene is treated equally,

which may not be true in many videos. Some scenes should weight higher as they

present more important information. This is not limited to visual information, but also

audio and textual information. Identifying those scenes and selecting more keyframes

for them reflects a more accurate representation of the oringinal story.

8.2.3 Feature-Rich Multimedia Summarization

The StoryImaging system is our first working system for multimedia summarization. It

is simple but effective. In the future, we will extend the current framework to further

integrate other modalities such as video and audio in augmenting textual information.

Moreover, related audio and textual information can also be utilized to summarize video

content. In [88], we have also made some progress on using visual features to identify

the actions within images. Our ultimate goal is to eventually achieve multimedia story-

telling.
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