
Copyright and use of this thesis

This thesis must be used in accordance with the
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright
may be an infringement of copyright and
copyright owners may be entitled to take
legal action against persons who infringe their
copyright.

Section 51 (2) of the Copyright Act permits
an authorized officer of a university library or
archives to provide a copy (by communication
or otherwise) of an unpublished thesis kept in
the library or archives, to a person who satisfies
the authorized officer that he or she requires
the reproduction for the purposes of research
or study.

The Copyright Act grants the creator of a work
a number of moral rights, specifically the right of
attribution, the right against false attribution and
the right of integrity.

You may infringe the author’s moral rights if you:

- fail to acknowledge the author of this thesis if
you quote sections from the work

- attribute this thesis to another author

- subject this thesis to derogatory treatment
which may prejudice the author’s reputation

For further information contact the University’s
Director of Copyright Services

sydney.edu.au/copyright

Exploring complex rhythmic devices in new music composition

through software design

Joe Manton

A thesis submitted in partial fulfilment

of requirements for the degree of

Master of Music (Composition)

Sydney Conservatorium of Music

The University of Sydney

2014

Abstract

This thesis examines the role that complex rhythms perform in my music. I will demonstrate how

the software I have created is unique and necessary for this type of rhythmic exploration in music

composition and how it differs from existing softwares. I will investigate the practice of hearing

one’s environment as music and how the development of my software and compositions are

integrally linked to this phenomenon and make clear the importance of advanced rhythmic study

within this practice. I am particularly interested in extending my own and others’ perceptual

capabilities to hear more and more complex rhythms accurately and congruently with what they

would normally consider ‘groove’. To this end, my project involves the development of softwares

that: mathematically model the naturally occurring rhythms of specific species of frogs; allow the

simultaneous occurrence of ninety-six different tempos; explore Miles Okazaki’s Rhythm Matrix;

enable the creation of new and complex grooves from simple beginnings via performance means;

allow for infinitely complex variable mapping of musical parameters and rhythms via simple

gestural controls; are completely modular and dynamic in design, thereby freeing the user from

normal software design limitations. I will demonstrate the use of these softwares in my music

compositions and analyse the compositions from within the context of rhythmic exploration and

discovery.

KEYWORDS: composition, computer music, software, polyrhythm, algorithmic, experimental,

groove, tempo, beat, poly-tempi, nature, frogs

iii

Acknowledgments

I would like to sincerely thank the following people:

Dr Ivan Zavada for his continued support, guidance, help and efforts throughout my studies and in
getting me to the finish line. Professor Matthew Hindson, for his encouragement and advice. Dr
Ollie Bown for his incredible help with the ‘Frog Code’. Isaac Hayward for his ‘rhythm
combinator’ javascript/html coding. Elliott James for his friendship, inspirational madness, help
with testing software, and proof reading. My parents, parents-in-law and brothers for their love and
support.

I would especially like to thank my wife Alex, without whom I would probably still be laying
bricks... in the sun… ew!

iv

Contents

Statement of originality ii

Abstract iii

Acknowledgments iv

List of tables/figures/illustrations ix

List of Abbreviations x

CHAPTER 1 Introduction 1

1.1 Background and aims 1

1.2 Description of thesis and portfolio 2

1.3 Definitions 2

1.3.1 Rhythm 2

1.3.2 Complex rhythm 3

1.3.3 Poly tempi, polyrhythm and poly metric 3

1.3.4 Metric/tempo superimposition and metric/tempo modulation 3

1.3.5 Rhythmic displacement 4

1.3.6 Sync and Near-sync 4

1.3.7 Groove 4

1.3.8 [WordsInsideBrackets] 5

CHAPTER 2 Music - background, nature, rhythm matrix, metronomes 6

2.1 Context and general musical aesthetic; stylistic considerations 6

2.1.1 Music notation concerns and performance considerations 6

2.1.2 Totalism 8

2.1.3 Generative Art 8

2.1.4 Progressive rock/jazz/metal/fusion/math 9

2.2 Naturally occurring rhythmic systems and chaos 9

2.2.1 Frog call behavior 10

2.2.2 Eco-structuralism 12

2.2.3 Quantisation of nature 13

2.2.4 Bugs and animals = music 13

2.4 Rhythm matrix 15

2.5 Metronomes and poly-tempi music 17

v

2.5.1 Taking control of Ligeti’s Metronomes 18

2.5.2 Poly-tempi composition 18

2.5.3 The metronome game - rhythmic discovery and learning made fun! 19

2.5.3.1 The game instructions 20

2.5.3.2 Game variations 21

2.5.4 The beginnings of Spiral Rhythm Clock 22

2.5.4.1 Perceptual relationships between tempos 22

2.5.4.2 Meta-beats within poly-tempi systems 24

2.5.4.3 Poly-tempi similarities in nature 24

2.5.4.4 Poly-tempi conclusion 25

CHAPTER 3 Software Design 26

3.1 Rhythmic complexity in commercially available music software/hardware 26

3.2 Modularity in software design 28

3.3 One-to-many mapping of MIDI gestures 30

3.4 Inter Max App Communication System (IMACS) 31

3.5 Programming Environment of a New Creative Interface/Interactive Language/Logic (PENCIL) 32

3.5.1 The available modules of PENCIL 36

3.6 Miles Okazaki Method (MOM) 36

3.7 The Spiral Rhythm Clock (SPIRAL) 37

3.8 One Knob To Rule Them All (ONE KNOB) 40

3.9 FROGGIES 43

3.10 The Ultimate Rhythm Discovery Station (TURDS) 46

CHAPTER 4 Composition portfolio 49

4.1 Study No. 1 49

4.2 Study No. 2 49

4.3 Study No. 3 50

4.4 Study No. 4 51

4.5 Study No. 5 51

4.6 Composition No. 6 52

4.7 Composition No. 7 52

4.8 Study No. 8 53

4.9 Study No. 9 53

vi

FIGURE 4.3 Example image of an iterated function system fractal 54

4.10 Study No. 10 55

4.11 Study No. 11 55

4.12 Study No. 12 56

4.13 Study No. 13 56

4.14 Study No. 14 57

CHAPTER 5 Conclusion 58

5.1 Future 58

5.2 Concluding remarks 58

Bibliography 59

Appendix A 61

A.1 Sequencer Modules of PENCIL 61

A.2 Data parsing (and other) modules of PENCIL 62

Appendix B 65

B.1 The Frog Code (java code) by Dr Ollie Bown 65

Appendix C 69

C.1 Rhythm Matrix 69

C.1.1 How the patterns are derived 69

C.1.2 How to interpret the books 69

C.2 Rhythm Matrix 6 beats 69

C.3 Rhythm Matrix 4 beats addendum 69

C.4 Rhythm Matrix Combinator by Isaac Hayward 69

Appendix D 74

D.1 Software CD - CD No. 1 74

D.1.1 PENCIL 74

D.1.2 TURDS 74

D.1.3 Max616Runtime_131209.dmg 74

D.1.4 pasteMeIntoPatchForImacsUsage.maxpat 74

D.1.5 IMACS.maxpat 74

D.1.6 README_SOFTWARE_INSTALLATION_INSTRUCTIONS.rtf 74

D.1.7 README_PENCIL_IMACS_HELP_TUTORIAL_FILE.rtf 74

D.1.8 README_TURDS_HELP_TUTORIAL_FILE.rtf 74

vii

Appendix E 75

E.1 Audio CD (CD 2) 75

E.1.1 Fourteen composition studies 75

viii

List of tables/figures/illustrations

1.1 Maintaining a sense of groove on a spectrum of rhythmic order. 5

2.1 Excerpt of drum notation from Native Metal (Donati, 2005) 10

2.2 Rhythm Matrix groupings of 3 and 4 subdivisions across four beats. 17

3.1 Contents of “PasteMeIntoPatchForImacsUsage.maxpat” 33

3.2 IMACS user interface. 33

3.3 Example of PENCIL interface with four modules loaded. 34

3.4 Miles Okazaki Method user interface. 37

3.5 Spiral Rhythm Clock user interface. 39

3.6 ONE KNOB user interface. 41

3.7 FROGGIES user interface. 44

3.8 The Ultimate Rhythm Discover Station user interface. 47

4.1 Excerpt of MIDI data output by Spiral in the recording of Study No. 3.

Visually demonstrating Wannamaker’s “flanking curves”.

51

4.2 MIDI data recorded from SPIRAL for Study no. 4 (complete). 52

4.3 Example image of an iterated function system fractal. 54

ix

List of Abbreviations

ADSR Attack decay sustain release

BPM Beats per minute

CC Continuous controller

CV Control voltage

DAW Digital audio workstation

GSA Groove superimposition alignment

GUI Graphical user interface

IMACS Inter Max-App Communication System

IOI Inter-onset interval

LFO Low frequency oscillator

MIDI Musical interface digital instrument

MOM Miles Okazaki Method

NRPN Non registered parameter number

PENCIL Programming Environment of a New Creative Interface/Interactive

 Language/Logic.

SysEx System exclusive

TURDS The Ultimate Rhythm Discovery Station

x

 CHAPTER 1 Introduction

Introduction

1.1 Background and aims

 In 2014, with our understanding of the world around us and our technological abilities, we

can quantify, analyse and extrapolate with more precision what we hear around us, and in more

musically varied ways. We can record audio and forensically extract information from recordings

with precise and technical means that people have never been exposed to before. The point of this

discussion is that now the human race has the ability to understand and learn about evolutionary and

phenomenological aspects of the world they live in, with increased ability to educate and train

themselves due to technological innovation. Within this context, the focus of this thesis is on music,

and arguably, one of the most important components of music: rhythm.

 I am particularly interested in extending my own and others’ perceptual capabilities to hear

more and more complex rhythms accurately and congruently with what they would normally

consider ‘groove’. The aim of this project is to create a suite of computer programs, literature, and

audio, in order to help improve personal complex rhythmic understanding. One of the expected

outcomes of this project is for the reader to use their new found rhythmic understanding to

musically interpret the world around them. That is, for the reader to develop a deeper, intuitive,

groove based musical appreciation of their environment (one where everything is in time and can be

interpreted musically).

 Further motivation behind the software developed for this project comes from my

frustrations with the limitations of commercial hardwares/softwares currently available with respect

to their rhythmic capabilities. That is, I appreciate the functionality of existing commercial

software/hardware for musical use in all respects except for their rhythmic potential, which I find

typically lacks ingenuity and originality. I seek to address these current software rhythmic

limitations with my own software, so that I may achieve my intended aims.

1

1.2 Description of thesis and portfolio

 This thesis will address my goals and motivations for creating new compositional tools in

the form of computer music software. I will discuss each piece of software and how it can be used

in creative ways. I will explore the use of some complex rhythmic devices in music composition,

namely poly-tempi, frog call rhythms and nature music, the Rhythm Matrix concept created by

Miles Okazaki, poly-tempi music, and performance systems that let you generate complex new

grooves quickly and easily. Furthermore, I will investigate the use of one-to-many mapping in

musical composition with relation to rhythmic and sonic discovery. In chapter three I will describe

my softwares in detail and chapter four will address the compositions that have been created

utilising the software developed for this project. The software can be found on CD No.1 (see

Appendix D). The compositions can be found on CD No.2 (see Appendix E).

1.3 Definitions

 Throughout this document, I will be using some terminology that may or may not be

familiar with the reader and so I would like to clarify meaning for the following terms.

1.3.1 Rhythm

The following definitions of rhythm in a musical setting are provided as a context for the reader:

1. “Rhythm in music is normally felt to embrace everything to do with both time and motion
—with the organization of musical events in time, however flexible in metre and tempo,
irregular in accent, or free in durational values......For most listeners, nevertheless, the
primary quality of rhythm is as an immediate succession of durations and occasional accents,
approached and quitted in ways which participate in the shaping processes of the entire
musical fabric, and which may even, in certain very ‘rhythmical’ works, seem to dominate
that fabric.” (Whittall, 2014, “Rhythm”, para. 1).
2. Rhythm “(in the full sense of the word) covers everything pertaining to the time aspect of
mus[ic] as distinct from the aspect of pitch” (Oxford Music Online, 2014, “Rhythm”, para. 1).
3. “Movement, fluctuation, or variation marked by the regular recurrence or natural flow of
related elements.” (Merriam-Webster, 2014, “Full Definition of Rhythm”, para. 3).

2

1.3.2 Complex rhythm

Throughout this text I refer to complex rhythms as being:

1. subdivisions of the beat other than the typically used two, three, four or six partials per

beat;

2. prolongation/intensification of displacement of a beat for extended periods of time;

3. illusions as to what the tempo or time signature is;

4. poly-tempi, polyrhythmic and/or poly-metric patterns;

5. those that occur naturally by means other than human;

6. combination of any/all of the above in any way.

1.3.3 Poly tempi, polyrhythm and poly metric

 Poly-tempi refers to the occurrence of more than one tempo being used at the same time in a

musical scenario.

 Polyrhythm is made possible by poly-tempi but the difference between the two is as defined

by Nash and Blackwell:

“As regards experiments in musical time, the notion of polytempi is crucially different
from the relatively more common concepts of polyrhythm and polymetre, which both
rely on simple integer divisions of the bars or beats in the piece. In contrast, the
multiple simultaneous tempi of polytempo music leads to situations where the bar
lines and beats of each part in the piece are themselves incongruent. The timing
relationships between the events in each part can no longer be thought of, or expressed
in, simple integer fractions (e.g. 3 in the time of 2, or 3/2 vs. 6/4), but instead become
irrational.” (Nash and Blackwell, 2008, p. 1)

 Poly-metric refers to two or more coincidental time signatures occurring and can, by means

of standard accenting within a bar, yield results that sound like polyrhythm (particularly at faster

tempos).

1.3.4 Metric/tempo superimposition and metric/tempo modulation

 Metric/tempo superimposition is the implying of a new time signature or tempo but where

the existing or old time signature or tempo actually remains constant. This could also be considered

3

to be ‘rhythmic illusion’. In contrast, metric/tempo modulation refers to where the tempo actually

does shift to the new tempo and is not just implied temporarily.

1.3.5 Rhythmic displacement

 Rhythmic displacement is the shifting of a rhythm from its current position in relation to a

tempo, to that of either side of its current position, by any incremental amount of any subdivision of

the tempo. A simple example would be a rhythm of four crotchet notes originally sounded as

occurring on each beat of a bar of 4/4 being shifted by one semiquaver after the beat. The important

consideration of rhythmic displacement is that it occurs at a fixed ratio of the tempo, and if the

tempo of the music changes then the displaced rhythm will also adjust tempo such that the ratio

remains constant.

1.3.6 Sync and Near-sync

 Sync and near-sync effectively mean the same thing in this text (from the perspective of

groove) but they have different initial conditions hence the use of both words. I use sync to mean

the exact synchronous occurrence of events in time. Near-sync refers to events that happen within a

tiny fraction of time from each other (say, less than 30 milliseconds apart), close enough for the

observer to consider them as synchronised within the context of their understanding of the groove.

The boundary of what is near-sync and what is not synchronised at all is subjective and non-

definite, relying completely on the discretion of the listener.

1.3.7 Groove

 As defined in The New Grove Dictionary of Jazz (Kernfeld 2014) the following definition of

groove in a musical setting is provided as a context for the reader:

 “an unspecifiable but ordered sense of something that is sustained in a distinctive, regular
 and attractive way” (Feld, as cited in Kernfeld, 2014, “Groove”, para. 1).

 The experience of groove is possible with any level of rhythmic complexity, and relies on

the listener’s ability to maintain that sense of groove. That is, regardless of any apparent

randomness of the rhythmic content, the listener can superimpose this “ordered sense” according to

their own interpretation of the implied groove: this is what I call groove superimposition alignment

(GSA). As seen in Figure 1.1 the more ordered the rhythmic material is, the easier it is for the

4

FIGURE'1.1'Maintaining'a'sense'of'groove'on'a'spectrum'of'rhythmic'order.

listener to superimpose a groove in alignment with that order and the more difficult it is to break

away from the implied groove. As the rhythmic material becomes more disordered, the listener’s

GSA becomes more defined by the listener and less by the rhythmic material itself, therefore

making it more difficult to sustain alignment with the material, but easier to sustain an out of

alignment GSA. As though there is a ratio of GSA strength depending on the material’s strength of

order (i.e. the placement of strong versus weak components of the rhythm). Further, if the rhythmic

material is completely random then the GSA becomes arbitrary. The sense of groove, therefore, is

entirely within the subjective experience and superimposed by the listener onto any rhythmic

material.

1.3.8 [WordsInsideBrackets]

 This project has been designed in the multimedia software Max/Msp1 and the nomenclature

used to denote the name of a Max/Msp object involves the use of brackets around the name of the

object. All Max/Msp objects discussed in this thesis will be indicated by using these brackets. For

example: [thispatcher], [bpatcher], [metro], [button] and so on.

'''''''''''''''''Rhythmic(Material

'''''''''''''ORDERED''''''''''''''''''''''''''''(more'disorder)''''''''''''''''''''RANDOM

Groove(superimposition(in(alignment(

'''''''''''''''''''''''EASY' (more'difEicult)''''''''''''''''''''''ARBITRARY

Groove(superimposition(out(of(alignment(

'''''''''''''DIFFICULT' (easier)'''''''''''''''''''''''''''''''ARBITRARY

5
1 For more information on Max/Msp, see www.cycling74.com

http://www.cycling74.com
http://www.cycling74.com

 CHAPTER 2 Music - background, nature, rhythm matrix, metronomes

Music - background, nature, rhythm matrix, metronomes

2.1 Context and general musical aesthetic; stylistic considerations

 I have been interested in and sought out music of increasing rhythmical complexity since I

was a teenager. Consequently, the music I compose is largely rhythmically complex in many ways. I

tend to gravitate toward rhythmic emphasis in the composition, rather than placing importance on

pitch, or timbral concerns. This often results in simple pitch material that is used to exhibit complex

rhythmical relationships between and within phrases throughout my music. This type of

compositional approach most formally comes under the heading of totalism (Gann 1997).

 There are, however, problems that arise when writing rhythmically complex music in

western notation. Particularly when using computer software to do so. Further, I have found that

musicians (even highly trained ones) are typically inaccurate when it comes to the performance of

complex rhythm and guess work is often used. This is a big problem for a composer who wishes to

use these rhythms a great deal in their work and who wants to have their compositions actually

performed (let alone performed accurately). There just is not enough time (money) to enable the

required rehearsal to accomplish most of the musical ideas I want to present to the world when

using musicians to do so. Moreover, rhythmically complex music such as poly-tempi music

depends on accuracy of performance for the complex and often subtle relationships between the

tempos to be clearly appreciated by the listener. Therefore, if a performer does not accurately

perform any of the notated rhythms they are then likely to destroy the intent of the composer.

Naturally then, over the years, I have gravitated toward realisation of my musical ideas via other

methods. Namely, computers.

2.1.1 Music notation concerns and performance considerations

 Commercial music notation software such as Sibelius2 is very powerful and altogether an

exceptional tool for any composer who notates music for people to perform. The capabilities of

Sibelius for notating complex nested tuplets are very good and time signatures can be as varied as

one wishes. However, writing music with complex rhythm is not without its pitfalls. For example,

6
2 http://www.sibelius.com/home/index_flash.html (accessed 7/3/2014)

http://www.sibelius.com/home/index_flash.html
http://www.sibelius.com/home/index_flash.html

traditional western music notation does not have a note that equals five smaller units. There is a

note that equals one, two, three, four, six, seven, and eight smaller units, but not five. This has been

debilitating to my creativity when notating my music as, for example, the concept of playing in the

time signature of 20/16, where the beat is every fifth semiquaver (thereby giving four beats to a

bar), might often require a note that equals five semiquavers to be used. One workaround is to fill

the score with ties between notes to add up to five semiquavers, and another would be to place the

piece into 4/4 and add quintuplets throughout to generate the five notes per beat required. However,

both of these solutions are cluttered, time consuming, and not ideal.

 Further, when notating rhythm, there are standard ways to group beats and beams of quavers

(and other shorter duration notes) together. This can make it difficult at times to find a suitable

balance when writing a score with advanced rhythmic concepts, as for example, where two parts

have notably different rhythmic material at the same time within a score, grouping the rhythm in

one way might make it easy for one musician to read but hard for the other musician to read (based

on the content). This may cause the composer to abolish consistency within their score and allow

for different grouping practices for each part. Unfortunately this solution can lead to further

concerns and problems for the composer such as difficult, convoluted and time consuming

processes in order to create the score in this way (due to software limitations) and also difficulty for

a conductor.

 Yet another concern in traditional western music notation of rhythm is to do with groupings

that suggests the way a passage is to be ‘felt’. In grouping a passage in the way it is to be felt, it

may make the passage much more difficult to read by the musician, yet if grouped ‘correctly’, the

composer’s intention for how the passage should be felt rhythmically is destroyed and the musician

will not engage the rhythm in the way the composer intends.

 These concerns and frustrations with western notation of rhythm, coupled with the typical

lack of accuracy in performance by human musicians, have led me to pursue composition via non

notation based systems, utilising the computer to create and to perform my rhythmically complex

ideas in composition.

7

2.1.2 Totalism

 According to Kyle Gann, a prominent thinker and writer about the musical genres of our

time, totalism is music that has “the formal and textural clarity of minimalism, the energy of rock,

the dissonance of modernism, and the rhythmic intricacy of Asian musics or even Cowell or

Nancarrow” (Gann, 2001, “Totalism”, para. 4). And “music that appeals to audiences on a sensuous

and visceral level, and yet which still contains enough complexity and intricate musical devices to

attract the more sophisticated aficionado” claiming that it is music with the “ability to yield more

and more information on further hearings...” with “...inherent complexity, especially rhythmic

complexity (...) Totalism can generally be characterized as having a steady, articulated beat, often

flavored by rock or world music. That beat becomes a background grid for polyrhythms of great

complexity (...) For totalists, being able to hear and calculate the complexity is essential (...) Totalist

harmony can be either consonant, dissonant, or both - the distinction having ceased to be very

important - but it is fairly static, concentrating on harmonic or melodic images that are easily

memorable even when quite complex.” (Gann, 1997, p. 355).

 I find these descriptions of totalism to be surprisingly fitting for much of my own

algorithmic compositional aesthetic, particularly when this genre was entirely unknown to me prior

to my research for this thesis. I spent a long time working on musical ideas prior to discovering that

they could fit under Gann’s description of totalism, which encompasses many of the ways that I

approach my own algorithmic, generative compositional processes. The concept of focussing on

complex rhythm, often poly-tempi in nature, that still has a recognisable groove, and generating

pitch/harmonic material in simple ways to make sure that the rhythm is the important feature of the

music is very important to me as a composer.

2.1.3 Generative Art

 My compositional output for this project, being largely created by means of software that is

designed to generate complex rhythm that is parsed through user definable pitch content, is a form

of generative art. Philip Galanter provides this definition of generative art:

“Generative art refers to any art practice where the artist uses a system, such as a set of
natural language rules, a computer program, a machine, or other procedural invention,
which is set into motion with some degree of autonomy contributing to or resulting in
a completed work of art.” (Galanter, 2003, p. 4)

8

2.1.4 Progressive rock/jazz/metal/fusion/math

 In recent years, there has been a growing trend in certain rock, metal and jazz/rock fusion

music around the world towards more complexity in rhythmic content. Bands like Meshuggah,

Planet X, and Mats Morgan are a few notable examples. The music of Swedish heavy metal band

Meshuggah often uses long scale metric superimposition and other complex rhythmic devices

(Pieslak, 2007) while maintaining simple pitch content and a consistent, relatively unchanging

timbral aesthetic in a fashion somewhat congruent with the genre of totalism. Similarly, the music

of Planet X, a band whose main compositional contributor is the drummer of the group (Australian

musician Virgil Donati), contains many examples of complex rhythmic devices such as polyrhythm,

poly-meter, rhythmic displacement, metric superimposition, metric modulation and more. So much

so, that I have no hesitation considering it a main feature of his/their compositional style from

composition to composition rather than something that the band does every so often. Moreover, the

compositions of Virgil Donati in his own bands (The Virgil Donati Band and On The Virg), are

almost exclusively built on those same rhythmic devices. Donati’s rhythmic ideas have been

instrumental in shaping my own musical ideas over the years that I have been composing. Figure

2.1 provides an example of rhythmic displacement used in the composition Native Metal (track one

off the album Serious Young Insects by the band On The Virg, 1999). In this example, you can see

the hihat part shift by one semiquaver (bar 107) and then before returning to a non-displaced state,

proceed to be displaced by a semiquaver sextuplet (bar 108). This type of extended displacement is

one of many occurrences of rhythmic complexity found in Donati’s music.

2.2 Naturally occurring rhythmic systems and chaos

 Utilising dynamic systems in music composition provide a way to include order and control

but with the benefit of automatic variation with self similar tendencies. The inherent nature of the

system is that it will apply similar patterns of behavior at both the micro and macro level (Harley,

1995). Further, chaotic systems can be used to model the evolvement of naturally occurring

phenomenon in time (Steinitz, 1996) and for reasons of my rhythmic interest, they are likely to

provide a large playground through which to explore new grooves and generative rhythm as will be

discussed forthwith.

9

FIGURE 2.1: Excerpt of drum notation from Native Metal (Donati, 2005)

2.2.1 Frog call behavior

 It is often observed in the calling behavior of certain species of frog, that male frogs call

with a mostly consistent periodicity and yet interact with each other somewhat systematically so as

to better attract female frogs (Greenfield et al., 1997; Greenfield, 1994; Aihara et al., 2006). The

calling is not only non-random, but also follows criterion of a mathematically quantifiable nature.

 Aihara et al. have indeed set out to mathematically model the calling behavior of the

Japanese tree frog Hyla japonica for the potential benefits to robotics and/or artificial life (Aihara et

al., 2006; Aihara et al., 2008; Aihara et al., 2011). Their modeling makes use of nonlinear dynamics

and a representation of the frogs as coupled phase oscillators which, most importantly for my

application, allows for the hocket-like nature of these frogs’ calling patterns. Their research

incorporates only the phase differences and the mathematical attractors to the frogs’ “asymptotically

stable equilibrium point.” (Aihara, 2008, p. 30) (The point where the frogs call with relatively strict

periodicity in almost perfect antiphase to each other). They leave out variation in frequency of

calling, as well as equations that provide control over the build up time to the convergence of the

anti-phase calling structure, both of which I will need to consider for future revision to the

algorithms I have created in my software. And while they have limited their equations to a chorus of

three frogs, my software allows for but is limited to six frogs currently. However, while not

10

included in the user interface, it does have the capability of running any number of frogs in the

chorus at any time.

 While Greenfield et al. approach the problem of frog calling from the perspective of

evolutionary biology, their research is also beneficial to the application of my software design in its

mathematical modeling of frog calling behavior. For my application, the most valuable element of

the model presented by Greenfield is the “central nervous system oscillator that may be inhibited

and reset by an acoustic stimulus such as a neighbour’s call” (Greenfield, 1997, p. 1355), (he calls

this a ‘resettable oscillator’). This is a similar feature to that espoused by Aihara but approaches the

problem using a different mathematical approach (Monte Carlo simulations) and takes into

consideration a more realistic setting of the calling scenario. For example, Greenfield addresses the

masking effect of frogs calling at the same time, that is, that a frog who calls at the same time as

another frog may not hear the other’s call resulting in neither frog resetting its call timing

accordingly. This process is important for a realistic model of frog calling and is lacking in Aihara’s

model.

 Another element Greenfield examines and Aihara neglects is the application of the distance

between frogs and the variation of volumes and time values resulting from this distance. In a

computer model of calling frogs (as I endeavor to create), all of these elements (and probably

more), need to be considered. Implemented currently in my software is Aihara’s method but in

future, Greenfield’s methods (and a combination of the two) should be investigated.

 My personal inspiration for using the rhythms of frog calling behavior in musical

composition comes largely from the fact that in my backyard I have frequently observed a chorus of

approximately six frogs whose rhythmic interaction have provided hours of inspired and stimulated

listening. These frogs have been identified by Australian frog specialist David Stewart (personal

communication, October 14, 2013) as Crinia signifera - Common Eastern Froglet. I have observed

that these frogs call (in their small chorus) in almost identical ways to the Japanese Tree Frog as

modeled by Aihira. As Aihara’s modeling algorithm is relatively accurate to frogs found in my aural

environment, it provides an intuitive foundation for translating my observations of nature into

music.

11

2.2.2 Eco-structuralism

 Developing out of eco-composition, eco-structuralism (as defined by Opie) is the process by

which nature “...recordings are analyzed and the resulting data is mapped onto resynthesis processes

to create new audio material” (Opie, 2006, p. 10). Opie’s data mining techniques include analyses

of amplitude, frequency, timbre and spatial structure. His method is to re-map the mined data onto

new parameters to show the characteristics of the chosen data in a new musical way. Opie refers to

these abstracted data sets as ‘structures’. The primary rule of eco-structuralism is that these

structures must be derived from nature recordings and must remain in series (chronological order)

no matter how it is transformed (for example transformations such as elongation, compression and

inversion among others are discussed), that is, the data can not be segmented and mixed up. Opie

defines these rules and considers practical applications. (Opie and Brown 2006). Strangely, in

Opie’s available writing on eco-structuralism to date, the strict use of periodicity and rhythmic data

extracted from nature recordings, seems to be missing from his thoughts on the subject.

 The use of periodicity and rhythmic data from recorded material is however explored by

Sandred in his Interpretation of everyday gestures - composing with rules (Sandred, 2004) where he

considers, in layman terms, a process for quantifying rhythm of a non-musical source into notate-

able music to expand a composer’s music generating toolset. Unfortunately, Sandred does not offer

a mathematical model, nor (disappointingly) does he provide the details of the computer program he

created to generate the results discussed in his paper.

 The concept of taking existing data and re-synthesising it in the audio domain has many

applications including, but not limited to: the monitoring of a mechanical system by an engineer

listening to compressed sonification of data (listening for inconsistencies or abnormalities in a large

scale system such as a factory manufacturing plant); and improvising electronic musicians and

composers creating new music. For my project, taking data from nature (frog call rhythms for

example) and then mapping it onto a spectrum of quantisation between naturally occurring rhythms

and highly simplified (quantised) rhythms is probably somewhat of a tangent from Opie’s eco-

structuralism concept. However, I believe that it still follows the primary rules defined by eco-

structuralism with the difference that my ‘data’ is generated algorithmically and is not itself from

12

natural sources, (yet is modeled entirely on natural phenomenon) and remains in series,3 although

through quantisation the structural integrity of the series may be somewhat compromised. Sandred’s

paper (un-intentionally) provides a link between Opie’s research and that of more detailed studies in

quantisation that are discussed now.

2.2.3 Quantisation of nature

 In my own software, I seek to have the option to quantise the modeled frog call timing into

common (or uncommon) musical time values. The quantisation process from naturally occurring

rhythms to any other version of them along a quantisation spectrum is a problem in which many

considerations need be made. Human rhythmic perception studies will illuminate necessary

components to consider. I am seeking to create software that incorporates current knowledge of

human rhythmic perception so as to maximise the musical merit that is output by the software. For

example, as discussed by Leigh M. Smith of Cowan’s research, the subjective present, short

auditory stores, and long auditory stores, offer great insight into ways in which computer models

might be made. As Smith states, “These limits influence the process of grouping temporal events,

establishing limits a computational model should address” (Smith, 2000, p. 16).

 As well as promoting his own multi-resolution wavelet analysis of rhythm which has

applications in rhythmic transcription, quantisation and realtime musical accompaniment by a

computer, Smith provides a comprehensive overview of relevant human perception research with

regard to rhythm (Smith, 2000). There are currently many varied methods of rhythmic quantisation

proposed by researchers in the field. Cemgil et al. provide a model of quantisation called vector

quantisation which makes use of Bayesian statistics and demonstrates how its application works

with greater accuracy than rounding methods (Cemgil et al. 2000). Both Smith’s and Cemgil’s

methods of quantisation seem to be the most applicable and useable as aids in the future revisions of

my software.

2.2.4 Bugs and animals = music

 In his book The Great Animal Orchestra, the sound recordist Bernie Krause provides insight

to a lifetime of experience of being in nature, simply listening. His work as a field recordist has

13

3 Maybe my project could be labelled as a sub-category of eco-structuralism under the title of eco-rhythm (or similar).

taken him to all parts of the world and his exposure to many and varied natural environments should

be highly respected due to its immense scope. He suggests that the evolution of music may have

preceded the development of language and that music has evolved directly from our experience in

the natural world (Krause, 2013). That is, from nature itself, came music. While this may seem to be

unscientific conjecture (to which I concur), as an artist, I find myself looking deeply at where my

inspirations come from and to this end, nature has been a true source of musical inspiration for me

as a composer. Similarly, David Rothenberg in his book Bug Music provides multiple accounts of

listening to nature (particularly bugs in this case) and interpreting it as music. He places great

importance on rhythm and noise throughout the book and oft discusses the precedence of rhythm to

all other possible musical qualities (through natural evolution of insects and similar creatures) by

millions of years (Rothenberg, 2013).

 When I listen to certain music, it very often invokes landscape. Not just a painting, but a

moving landscape. This internal sense of traveling through terrain is very strong in my inward

imaginings while listening to many types of music. Certain improvised drum solos by Australian

drummer Virgil Donati, invoke in me a sense of traveling down a calm stream in a canoe at a fixed

speed with the drums being played in time with the visual placement of objects that lie on the shore

(and beyond) perpendicular to the movement of the canoe. So the canoe is a timeline and the banks

of the stream provide the musical score.

 Similarly, much of my own through-composed instrumental music invokes the sensation of

traveling through a landscape of some sort. Often futuristic and often on a fixed medium like a train

on rails. This to me implies the sense of continuous time, a fixed momentum, an unwavering

movement forward where one becomes a passenger to the flow of sound coming from the

instruments or speakers. It is interesting to note that in order for me to best hear nature as music, I

need to be completely still while time moves everything onwards. I would stand outside, next to a

small body of water (usually a dam or pond), and after some time become entrained by the calling

rhythms of the frogs and insects nearby. I would start to lose my sense of self and begin hearing

everything happening around me as one ‘thing’ playing music. This is the most succinct way I can

explain the phenomenon. During these experiences, my complete awareness of reality was entirely

focussed on the sound world around me as a musical instrument, playing itself out to the score of

cause and effect (albeit chaotic). During these experiences, it became completely apparent that the

most central element linking everything together was (when things were occurring in time): rhythm.

14

 The perspective of the speed of this movement of time, this groove, is completely arbitrary.

The unimportance of the ‘tempo’ of the progression of time is one of the most enlightening things to

consider when listening to nature as music. However, the act of applying a non-fixed, preferential

weight to one tempo over another at any point in the moment to moment experience (based on the

incoming perceptual information or not), is important to my experience of hearing music in nature.

That is, I perceive the events occurring in time, against an arbitrary and oft changing tempo

(sometimes more than one concurrent tempo), thereby creating a groove that is unified by that

arbitrary perception of a pulse. It is from giving weight to the perception of a pulse (that is entirely

subjective), that groove is given the possibility of existing.

 This general concept of the perception of groove is entirely personal to each individual

listener, even if the pulse is physically presented to the human senses (like a ticking clock for

example). It is the listener, the observer, the subjective interpreter of events, the one who places

weight or importance on a pulse, that is the creator of the groove. For me, the ability to listen to

nature as music follows this train of thought and is repeatable at any time. Why stop at nature?

Indeed… What I seek to obtain in my own life (and engender in others) is the ability to listen to all

that exists as music, not just nature. The difficulties I personally have with obtaining this state of

mind are related to the problem of noise pollution as described by Krause (Krause, 2013). That is, I

have some difficulty accepting man made sounds within the sphere of a nature setting and they are

more often than not a distraction than an additional musical flavour. Perhaps further reading and

understanding of John Cage’s work will help me in this regard.4

2.4 Rhythm matrix

 The American composer and jazz guitarist, Miles Okazaki, published (online) a book called

Rhythm Matrix5 . This book contains a numbered list of 4928 rhythmic modes as Okazaki calls

them. The rhythmic modes are every single possible permutation of groups of two and three

subdivisions of the beat across a four beat measure, from quavers (1/8th notes) through to

demisemiquavers (1/32nd notes) with all tuplets in between. Okazaki describes the book in the

15

4 That said, Irving Godt would beg to differ, claiming that music must be created by humans with intention, and where
those two (and other) criteria are not met (like sounds from nature for example), then it is not music, no matter how
much you want it to be so. (Godt, 2005).

5 http://milesokazaki.com/fourpulse.php (accessed 07/02/2014)

http://milesokazaki.com/fourpulse.php
http://milesokazaki.com/fourpulse.php

following way: “There are no ‘rhythms’ in the list, only groupings of 2 and 3, which could be used

as ‘containers’ or ‘skeletons’ for actual rhythmic material.”6 He also provides three possible ways of

utilising the book in practise with a short description of ‘linear practise’, ‘contrapuntal practise’ and

‘dynamic cycle practise’.

 Having worked through Okazaki’s Rhythm Matrix book in numerous of my own ways in

practise, I started to develop an even more refined awareness of normal every day sounds occurring

as rhythmic events pertaining to a pulse. That is, it became easier to fit the world around me into a

musical structure rhythmically, with said structure being a constant pulse. It enhanced my rhythmic

perceptual capabilities in listening and also physically in performance.

 As I found the method so simple and beautifully architected, I decided to produce my own

‘Rhythm Matrix’ books, built on the same design concept. The design concept is simply this:

1. Choose any amount of beats.

2. Choose any subdivision of the beat.

3. Choose any groupings of the chosen subdivisions. (for example, groups of three and

groups of five).

4. Notate all possible permutations of chosen groupings of chosen subdivision across chosen

amount of beats ensuring that the end result begins and ends on an even grouping.

5. No mode is listed twice.

 Following this procedure, I wrote two of my own Rhythm Matrix books (see Appendix C).

The first book I created could be thought of as an addendum to Okazaki’s original book as it is also

across four beats. It differs from his book as it contains all possible permutations of groupings of:

two and four (triplets, quintuplets and septuplets only); three and four; two and five; three and five;

and finally four and five (where his book used groups of two and three only). All of which are

again, across quavers through to demisemiquavers. This process yields 1745 rhythmic modes. The

second book I created is groupings of three and four across six beats again using all subdivisions

between quavers and demisemiquavers. This process yields 5981 rhythmic modes. A diagram

showing all of the possible rhythmic pathways (or all of these modes) is shown in Figure 2.2. Both

of these books, as well as a javascript based html code (written by my friend Isaac Hayward

16
6 http://milesokazaki.com/img/fourpulse/003fourpulse.jpg (accessed 07/02/2014)

http://milesokazaki.com/fourpulse.php
http://milesokazaki.com/fourpulse.php

FIGURE 2.2: Rhythm Matrix groupings of 3 and 4 subdivisions across four beats.7

specifically for me and used with permission, for the purpose of being able to generate lists of

rhythmic modes after defining the overarching parameters) are included in Appendix C. After

creating the books, I decided to create software in Max/Msp to be able to perform any of these

modes. This software, called The Miles Okazaki Method (MOM) is discussed in Section 3.6.

2.5 Metronomes and poly-tempi music

 At some point in my teenage years (now in my thirties) I began experimenting with multiple

hardware metronomes running at the same time. To me, hearing the complex yet surprisingly simple

relationships between multiple speeds being produced by the simple (and unchanging) sonification

of digital metronomes was a joy and very inspiring. It was not until much later that I discovered

Gyorgi Ligeti and Conlon Nancarrow as being two notable composers of poly-tempi music,

17

7 In the diagram (Figure. 2.2), you can see how close many naturally occurring events in time would be to the quantised
positions the rhythmic modes and how one could navigate (in relation to a constant speed) from the naturally occurred
rhythm along a quantised rhythmic pathway through any combination of the modes to achieve a perceptually significant
match to being perfectly in time (or near-sync).

Nancarrow through his player piano pieces and Ligeti most profoundly through his composition for

100 metronomes. These are discussed forthwith.

2.5.1 Taking control of Ligeti’s Metronomes

 Ligeti’s Poème Symphonique pour 100 metronomes explores poly-tempi music heavily yet

relies on chance and many non-determinate parameters. In repeated performances of the work, the

dynamic and textural structure of the work is about all that can be guaranteed to be similar from one

performance to the next. The interest and influence I have taken from this work is its use of

multiple, concurrent and unique tempi. This opens a doorway into an endless world of stimulating

and interesting rhythmic grooves and patterns. These rhythms are best discovered in Poème

Symphonique during the second half of the piece, typically after many of the metronomes have

stopped ticking, enabling the rhythmic interaction between the remaining devices to be able to be

heard more clearly. It is like a kaleidoscope of rhythmic ratios continuously getting simpler as each

metronome voice drops out. The listener is also better able to latch onto the rhythms due to

repetition and the lessening complexity thereby facilitating better understanding of the grooves and

patterns created by the remaining metronomes. I noticed also that the rhythms discoverable in

Poème Symphonique contain many similarities to naturally occurring sonic phenomena such as frog

and insect calling. These similarities are due to the metronomes phasing in and out of sync with

each other across multiple complex rhythmic structures and subdivisions concurrently.

2.5.2 Poly-tempi composition

 During the twentieth century, there have been a few notable uses of machines to realise

compositions of greater rhythmical complexity. The Rhythmicon, an electronic instrument created

in 1931 by Leon Theremin for Henry Cowell8, provides a composer with a tool that can perform up

to sixteen different tempos at once (based on the harmonic overtone series). Further, Conlon

Nancarrow and James Tenney utilised player pianos to perform many of their compositions that

contain poly-tempi material. This use of the machine enables music to be realised by a composer

without relying on human performers, and indeed allows the creation and performance of music that

would exceed the physical (and mental) capabilities of a human performer. To create my own poly-

18
8 http://musicmavericks.publicradio.org/rhythmicon/ (accessed 12/02/2014)

http://musicmavericks.publicradio.org/rhythmicon/
http://musicmavericks.publicradio.org/rhythmicon/

tempi compositions, I too am utilising a machine, the computer, and in particular, I am creating my

own software for this creative exploration.

 Robert Wannamaker recently published a paper in Music Theory Spectrum that provides a

succinct overview of the major contributors in the world of poly-tempi music composition followed

by detailed mathematical analysis and descriptions of the rhythmic particulars of a poly-tempi

system (Wannamaker, 2012). He utilises Farey sequences to explain the rhythmic patterns that can

be found within the context of the poly-tempi phenomenon. Many rhythmic features are described

in detail of the divisive polyrhythmic array. This is an excellent paper to review should one wish to

understand more about poly-tempi systems. In summary, Wannamaker discusses the following

concepts, all of which are applicable to poly-tempi music and useful for analysis of my own poly-

tempi compositions contained in this portfolio:

- Rhythmic glissandi (also Farey arc, also flanking curve): where the tempos are aligned in such a

way that they appear to rise toward or fall from a beat that is rhythmically separated from the other

material.

- The five distinct heirachical levels of perceptible rhythmic groupings:

- individual attacks;

- attack groups residing together on a single flanking curve, and having the character of

arpegiando figures or grace notes preceding or following a metrically stronger main attack;

- a constant periodicity equal to that of the highest voice, which is variously subdivided into

‘tuplets’ by the cyclical patterns of voices presented in the succession of attack groups;

- the irregularly spaced transitions between these different n-tuple meters, which correspond

to transitions between sets of flanking curves about asymptotes of different reduced

denominators n;

- the periodicity of the polyrhythm as a whole, which….corresponds to unity.

- Buffer zones: His analysis explains how ‘buffer zones’ exist near strong ratios with low

denominators (like 1/2 and 1/3). (Wannamaker, 2012)

2.5.3 The metronome game - rhythmic discovery and learning made fun!

 Inspired by Ligeti’s Poème Symphonique I purchased over one hundred simple hardware

digital metronomes during the course of this research and began experimenting with different

19

combinations of tempos and start time offsets. During this experimentation I noticed many of the

rhythmic particulars mentioned in Wannamaker’s article.9 For example, the ‘buffer zones’, ‘flanking

curves’ and the ‘rhythmic arpeggiations traversing multiple rhythmic layers’ (Wannamaker, 2012).

These rhythmic effects became highly intellectually and musically stimulating and encouraged new

thoughts in me about rhythm and time in music. Particularly in my interests in developing skills at

being able to listen to nature and hear it as music. For me, the ‘way in’ to that experience being a

rhythmic perception, being capable of discerning complex input and interpreting it against an

arbitrary pulse to produce an internal sense of groove (see FIGURE 1.1).

 I devised a simple game to play with the metronomes that, in playing, provided much further

inspiration and understanding of these rhythmic peculiarities. The game requires:

1. many metronomes (arbitrary amount);

2. preferably each one being the exact same brand and design/model (so that they are

perceptually identical aurally);

3. LED lights that visibly flash when the metronome itself ‘beeps’;

4. a playing surface.

2.5.3.1 The game instructions

1. Choose any amount of metronomes you like and set them all to either a random tempo or

incrementally (from any starting point). Example: 20 metronomes set to tempos

incrementally increasing by 1BPM, starting from 60BPM.

2. Make all metronomes have the same settings (except for the BPMs)

3. Start all of the metronomes (the start time of each metronome with respect to other

metronomes is not important).

4. Place all running metronomes on a flat surface facing upwards so that the flashing LED of

each one is visible.

5. Sit and listen to the metronomes all running together and concentrate only on them.

6. After an arbitrary amount of time, begin to notice which metronome stands out as being a

reference point from which you are hearing all of the other metronomes in relation to.

20

9 Let it be known that I had not read the article until much later, in fact, I built the Spiral Rhythm Clock and was making
music with it long before discovering Wannamaker’s article.

7. Listen to the rhythms of all the metronomes combined from the perspective of the tempo

you have found to focus on for an arbitrary amount of time.

8. Find the metronome that you are using as your reference tempo (by looking for its

flashing LED that should correspond with the tempo you are hearing), and then turn it off.

9. Repeat step 6 to 8 until only one final metronome is left on.

 Following these steps to play this game you should see that there is no winner and no

competition, no time limit, and no reward other than the experience gained of listening to x amount

of time of poly-tempi beaps from y amount of different tempo perspectives.

 This game starts out quite difficult, depending on how many metronomes are being used, as

it can take some time to 1) find an individual tempo amongst all the metronomes running to hear

and isolate as the tempo from which to listen them all from, and 2) physically find that metronome

on the playing surface. Especially when there are tempos that are only one BPM apart from each

other. You must observe carefully that the tempo you are hearing is actually coming from the

metronome you think you have spotted as being the one.

2.5.3.2 Game variations

 There are many ways this game can be varied, each with its own benefit. For example, if

step 6) as defined above is too difficult for the player then maybe instead they can arbitrarily choose

any of the running metronomes physically and purposefully force your rhythmic perspective to use

its tempo from which to perceive the resulting rhythm of all of the metronomes combined. (Turning

the chosen metronome up louder than the others might be a good method to aid in this process).

Further to this variation, the player could turn up (or focus on) more than one metronome at a time

and listen to the resulting rhythms from the perspective of the groove created by two (or more)

metronomes at different tempos combined.

 Another variation might be to include more than one player, each following the exact same

steps listed above but both listening to the same group of metronomes. Although completely relying

on honesty and fair play, maybe the winner of this variation would be the person who removed the

most metronomes by the end. Making the game into a competition like this could be useful in

21

providing the player with incentive to find tempos quicker and as a result, enable them to get better

at it in the first place.

 Yet another variation might be to impose musical structures like time signatures and phrase

lengths (in bar numbers) from which tempo perspectives are maintained before moving on to the

next. This variation provides additional and deeper layers of rhythmic perception and musical

abstraction from which to understand the resulting rhythmic results of this poly-tempi scenario.

 Lastly, a performance component could be introduced to the game, where the player has to

play along with (in any way, using any instrument, percussive or not) their chosen tempos in

addition to following the normal steps of the game. This variation is particularly effective if the

player is playing the game in pairs (or with a group of players). Further variation to this might be

that the player must not actually articulate the chosen tempo directly. Meaning, the player can not

simply tap out the tempo they have chosen. This final variation causes a more physical interaction

with the other metronomes that are running and therefore might cause the player’s listening,

reactive and predictive skills to be developed or enhanced.

2.5.4 The beginnings of Spiral Rhythm Clock

 For the purposes of this discussion, I am seeking to strip musical parameters back to the

rhythmic element only and not be concerned about pitch or timbre aside from the following criteria

(in accordance with my ‘totalism’ aesthetic): 1) other musical qualities must not get in the way or

distract from the rhythms, nor be a focus, and 2) they must articulate the rhythms sufficiently. That

is, the envelope and duration of the sound must be adequate for the listener to fully comprehend the

inter-onset-interval (IOI) of each rhythmic iteration and its relationship in time to the other events

surrounding it. For this reason, sonification of the tempos with short durations and with envelopes

that have a fast attack are preferred and are generally the type of settings that I have used in the

compositions contained in the portfolio. (Percussive sounds such as those produced by a wood

block being struck by a drum stick are an excellent choice).

2.5.4.1 Perceptual relationships between tempos

 When two separate tempos co-exist, the interaction between them follows a structure that is

similar no matter what the tempos actually are. The structure of this interaction is akin to Reich’s

22

phase music in that the return to and falling away from sync is continuous. If the two tempos are

very similar in value, 140 and 141 beats per minute for example, beginning in perfect sync with

each other, the faster tempo will precede the slower tempo by increasing amounts until a half way

point is reached where they will appear to be in hocket with each other (in this example, at the thirty

second mark). After this time the faster tempo will approach the slower tempo again but from the

opposite direction in time until they coincide in perfect synchrony at the sixty second mark. Over

the course of the whole minute, the rhythmic effect of the two concurrent tempos will often sound

as if they perform partials of simple subdivisions of the beat. (In this case, either the faster or slower

tempo can be arbitrarily chosen as being ‘the beat’). These subdivisions include triplet quavers,

semiquavers, quintuplets, sextuplets, septuplets and so on. Whether they achieve a mathematically

perfect subdivision partial (sync) or one that is perceptually close enough (near sync) to sound as

though it is any particular subdivision partial is not important for this discussion.

 Arbitrarily adding a random third tempo to this example, illuminates the perceptually simple

subdivision sync/near sync even more so as it enables more continuity. That is, where there are only

two metronomes, aside from the quaver hocket sync, all other perceptual subdivision syncing only

contains two of the subdivision partials (the other partials not possible to sound with only two

metronome sources). So with three metronomes, it is perfectly reasonable to observe a triplet with

all three partials of the triplet sounding during the phasing of the metronomes at some point. Adding

a fourth enables the possibility of all four semiquaver partials being sounded in sync or near sync

from the perspective of any of the tempos used and so forth.

 As you add more tempos to the mix, these syncs or near syncs are perceivable from multiple

tempos often, even at the same time, creating many more occurring sync events from different

tempo perspectives throughout the poly-tempi phasing system. This is where some highly

sophisticated and most interesting grooves can be found. When the listener is able to change which

tempo they perceive as the beat from which subdivisions are perceived at any given moment during

the phasing, they are then participating in a rhythmic ‘choose your own adventure’ kaleidoscopic

experience.

 In a poly-tempi system that has fine control over all parameters such as Spiral Rhythm

Clock, it is also possible for a composer to coerce the listener into perceiving specific tempos or

subdivisions at any given time by altering usage of pitch, timbre, duration and dynamics of the

23

sounds used. Typically and within certain limits, I have found that faster, higher pitched sounds tend

to attract my attention as being the beat from which to perceive all other activity.

2.5.4.2 Meta-beats within poly-tempi systems

 The poly-tempi system described so far is not limited to listening to only one tempo at a

time as the main tempo from which all the other tempos are considered as relating to. As discovered

by playing the game described in section 2.5.3, it is also possible to construct ‘meta-beats’ out of

two or more tempos from which all the other tempos occurring become the phasing subdivision

partials. This can be done either intentionally or arbitrarily in a moment to moment subjective way.

The meta-beat, even while it is itself phasing and non-permanent, can become the perceptual

structure that is ‘fixed’ while the other tempos are the ones perceptually phasing within the context

of that meta-beat. This becomes much easier to perceive when the meta-beat is derived from tempos

in their sync or near-sync phasing within the context. For example, if 140, 141 and 109 beats per

minute (BPM) are running concurrently with 140 BPM and 141 BPM started in sync and 109 BPM

started arbitrarily, then at the thirty second mark it is possible that the listener can perceive 140

BPM and 141 BPM as being in near sync quaver hocket (or tempo doubling) for a period of a few

seconds, during which time the 109 BPM tempo can relate to this hocket/tempo doubling

combination in a variety of ways rhythmically. This can be extrapolated out indefinitely,

particularly with large amount of metronomes being used in the context. This is why I find the poly-

tempi system to be an immensely rich and fertile playground of possibilities for enhancing rhythmic

awareness and discovering new grooves. A person can use this system to train themselves to hear

and understand rhythms of increasing complexity from a musical perspective and the possible

combinations are effectively inexhaustible.

2.5.4.3 Poly-tempi similarities in nature

 The rhythms generated in this poly-tempi experience are very often similar to what a person

can observe when listening to frogs or insects calling. The phenomenon of gravitation towards sync

in the calling behavior of frog and insects (as discussed in section 2.2.1), often produce rhythms

akin to any poly-tempi system. But these similarities are only temporary, appearing only in short

‘glimpses’. In my observation, the more tempos that are used in the poly-tempi system, the more

frequent these ‘similar to nature’ rhythms are produced due to the increased complexity of adding
24

more tempos to the mix. Adhering to the sonic restrictions previously stated regarding my preferred

sonification methods of a poly-tempi system, one can create a rhythmic study or composition that

can simulate, or in many ways be similar to, naturally occurring phenomena such as frog and insect

calling.

2.5.4.4 Poly-tempi conclusion

 Stemming directly from my experimentation with multiple hardware metronomes and the

rhythmic particulars of interest that I discovered as listed above, I decided to create a piece of

software called the Spiral Rhythm Clock (SPIRAL) (which will be discussed in more detail in

section 3.7).

25

 CHAPTER 3 Software Design

Software Design

3.1 Rhythmic complexity in commercially available music software/hardware

 In this time, most commercial computer software and hardware designed for use in creating

music is highly limited in its rhythmic capabilities. Almost all commercial music sequencers

available, even in the most widely used and highest regarded professional digital audio workstations

(DAW) such as Pro Tools, Logic, Ableton Live10 et al, contain severely crippling rhythmic

limitations. Such limitations are predominately based on the lack of options in the quantisation of

timed events.

 Most commercial software and hardware music sequencers are limited to the following

musical rhythmic grid systems: 1/4 notes, 1/8th notes, 1/16th notes, 1/32nd notes, 1/64th notes, the

triplet variation of same, the dotted variation of same, and the ‘swing’ variation of same. While

there are exceptions, very few popular DAWs allow for grids of quintuplet, septuplet and other

higher order tuplets, and even rarer still are nested tuplets11 found within these applications. This

grid based limitation is also almost always coupled with an embarrassingly small amount of

possible time signatures on offer for the composer to use. Many music making programs (in

software or hardware) offer the options of only 2, 3, or 4 beats per bar and do not even allow the

possibility to change that time signature within the composition. That is, the composition is fixed in

that one time signature for its entirety. This limitation can be worked around by placing events on

the grid in ways to make it actually sound like it is changing time signature but the user interface

experience makes this very difficult and time consuming.

 Adding to this conundrum is the incredible amount of hardware devices (almost all of

them!) whose user interface has sixteen pads or buttons corresponding to the sixteen grid locked

steps in time from which the music that the hardware has been created to create is presumably

expected to be written.

26

10 http://www.avid.com/US/products/family/Pro-Tools; http://www.apple.com/au/logic-pro/; https://www.ableton.com/
(accessed 07/03/2014)

11 ‘Nested tuplet’ simply referring to tuplets within tuplets (within tuplets (within tuplets (etc)))

http://www.avid.com/US/products/family/Pro-Tools
http://www.avid.com/US/products/family/Pro-Tools
http://www.apple.com/au/logic-pro/
http://www.apple.com/au/logic-pro/
https://www.ableton.com
https://www.ableton.com

 To be clear, I do understand the refuting arguments one could make about the design and

intention of these hardware units, with regard to expected users, using the devices for specific

musical genres. While there is an obvious concern in a market system to create tools for the public

that will ultimately lead to profitable return for the proprietor, I am discouraged by the lack of

creativity in hardware design in this time for the exploration of rhythmic possibilities.

 If the user interface grid cannot be changed, I, the user, am most likely going to either resort

to sticking within the bounds of that grid system or, spend a great deal of time counting tiny little

lines and moving events around manually to a new system that I have to imagine in my head while

looking at something entirely different. This is a problem for a composer who does not want to stick

to a rhythmic grid, imposed by the design of the software or hardware, yet wishes to use all the

other features and functionality of the software. Of course, much music has been, can be, and will

continue to be made within these limited grid systems. Further, I am not denying the potential

complexity of rhythmic output made possible when only utilising these simple grid systems. There

are many ways (work arounds) to achieve complexity using such tools. The problem is that these

work arounds are, in most cases, far too convoluted, involved, and difficult to achieve, and so deter

the user, me, from bothering in the first place.

 While I have been arguing that the current tools available for composers are most often

severely limited rhythmically, there of course exist some exceptions to this. Bounce Metronome (by

Robert the Inventor)12 has many poly-rhythmic possibilities but is predominately designed as a

practise tool rather than a tool for composing. It is also built for Windows13 operating system only.

However, with its MIDI capabilities, one could record or send the MIDI output and use the rhythms

generated by Bounce Metronome from within their DAW, assigning pitches manually according to

their needs. However this is a slow and painstaking process, with an inherent lack of efficiency

which in itself is a deterrent. In other words, Bounce Metronome is not primarily designed as a

composition tool.

27

12 http://bouncemetronome.com/ (accessed 29/03/2014)

13 http://windows.microsoft.com/en-au/windows/home (accessed 17/03/2014)

http://bouncemetronome.com
http://bouncemetronome.com
http://windows.microsoft.com/en-au/windows/home
http://windows.microsoft.com/en-au/windows/home

 A plethora of other, non-commercial software exists and can be found via internet forums

such as Max/Msp and Reaktor14 that do allow for more sophistication in their rhythmic capability.

These applications can often suffer however from the lack of customer support (because they are

offered free in a ‘use at your own risk’ way), as well as a lack of documentation and poorly

designed user interfaces.

 As a composer who wants the practicality and excellent functionality of using the existing

popular commercial software/hardware tools for composing, but does not want to be confined by

the rhythmic sequencing limitations of said tools, one needs to take matters into one’s own hands.

Thus, I have designed five specific applications within the Max/Msp programming environment

that break down the walls of the existing grid system (status quo) of contemporary music

composition tools. These tools are now at my hands as a composer, and I am free to experiment

with them in any musical way I see fit.

3.2 Modularity in software design

 The design model of modular synthesis is very interesting from a composers point of view.

This design model being that you are presented with a limited amount of modules that can be

patched together in pre-defined ways with each parameter being editable via an interface consisting

of, among other things, knobs, buttons and sliders. This gives the synthesist a highly advanced

playground of sonic exploration from which to create, invent and imagine new sounds and sound

morphology. This is the idea that strikes me most powerfully as a composer. The ability to have

high level musical data manipulation modules, pre-built with their own functionality and purpose,

and to be able to patch them together in any way you can imagine, yields a very versatile possibility

of output.

 A traditional composer of notes and rhythms writing for traditional acoustic instruments has

before them a similar modular experience. One that is also infinite in scope. But that composer has

to start from scratch. Ideas must be notated one by one and even with copy and paste functionality

of modern notation computer software, the process can be somewhat slow. Contrarily, taking the

notation out of the experience and giving the composer a program that has many complex features

28

14 http://cycling74.com/newest-topics/; http://www.native-instruments.com/forum/forums/reaktor.30/ (accessed
7/3/2014)

http://cycling74.com/newest-topics/
http://cycling74.com/newest-topics/
http://www.native-instruments.com/forum/forums/reaktor.30/
http://www.native-instruments.com/forum/forums/reaktor.30/

enables a different type of creativity. Even if the end result is still ‘notes and rhythms’, and even if

the end result would have been notate-able using traditional music notation, a composer using such

software must engage different creative methods and incorporate a new musical thinking to achieve

results that will be pleasing to them.

 Many such computer music programs exist today that are modular in design with a high-

level user interface for organising and controlling musical ideas/sounds. Reaktor by Native

Instruments, the Kyma system, Max/Msp and Pure Data are but a few.15 Then there are even higher

level modular design systems stemming from these existing applications. In particularly, many

users of Max/Msp have built their own libraries of abstractions and modules (utilising Max/Msp’s

[bpatcher] object) that can be incorporated quickly into their Max/Msp patching. Such examples are

Beap, 110 Modular, Jamoma, Euromax, telePort, and Vizzie.16 Though not entirely, most of these

existing systems are limited to the processing of audio/video and not data or MIDI information.

 Here I would like to directly quote Shawn L. Decker et al, regarding the benefits of a

modular software design for use in composition:

1. “Synthesis routines and composition tools can exist as independent programs
implemented in the manner that is most efficient and appropriate to the task.

2. Because synthesis and composition programs are not bundled together in large
packages, the repertoire of programs can grow gracefully through the addition of new
synthesis algorithms or new composition tools

3. Composition programs are independent of the particular synthesis algorithms and also
independent of whether the synthesis is performed by hardware or software. Thus it is
possible to provided a unified approach to real-time and non-real-time activities.

4. Individual composers with unique needs can customize the environment by adding
their own programs, but they need not create their composition software entirely from
scratch.

5. Special categories of users (for instance, beginners in sound synthesis) can be given
software environments with user interfaces and synthesis programs that are tailored to
their needs and capabilities.

6. It is possible to substitute new hardware for synthesis programs or for compositional
input routines. This allows new hardware devices to be integrated easily into the
software environment.” (Decker, Kendall, Schmidt, Ludwig, Freed, 1986, p. 29)

29

15 http://www.native-instruments.com/en/; http://www.symbolicsound.com; http://cycling74.com/; http://puredata.info/
(Accessed on 17/02/2014)

16 https://github.com/stretta/BEAP; http://jamoma.org; http://www.behance.net/gallery/Euromax-for-MaxMSP/782013;
http://juvul.com; http://cycling74.com/2010/11/19/introducing-vizzie/ (Accessed on 17/02/02014)

http://www.native-instruments.com/en/
http://www.native-instruments.com/en/
http://www.symbolicsound.com
http://www.symbolicsound.com
http://cycling74.com
http://cycling74.com
http://puredata.info
http://puredata.info
https://github.com/stretta/BEAP
https://github.com/stretta/BEAP
http://jamoma.org
http://jamoma.org
http://www.behance.net/gallery/Euromax-for-MaxMSP/782013
http://www.behance.net/gallery/Euromax-for-MaxMSP/782013
http://juvul.com
http://juvul.com
http://cycling74.com/2010/11/19/introducing-vizzie/
http://cycling74.com/2010/11/19/introducing-vizzie/

 Even though this particular article was written nearly thirty years ago, I find it to be

particularly relevant to the concerns of the software design of this project. Note that, whilst Decker

et al are discussing synthesis in the article rather than data parsing and data generation, everything

mentioned here can be applied to my modular concept of data parsing and data generation instead

of synthesis.

3.3 One-to-many mapping of MIDI gestures

 Gesturally, there are currently many methods with which a performer/composer can interact

with electronic music, be it in the form of computer software or other hardware sound producing/

editing units. Some of these include: knobs, faders, sliders, proximity sensors, X/Y joysticks and/or

touch pads, bend-wheels, light sensors, bend sensors, pressure sensors, velocity sensing pads,

aftertouch, buttons, switches, turntables, touch screens, gyro-meters, accelerometers, and so on.

There are also interesting hardware devices (primarily designed for other purposes) that can be used

in musical applications as well like the Nintendo Wii-mote, Microsoft Kinect, and many game

controllers like an XBox 360 controller and so forth.17 In most cases, a user has a one-to-one

relationship with their gesture (using these physical devices) and an editable parameter (within their

sound making setup). For example, they might turn a knob (on a MIDI controller) which controls

the frequency cut-off of a filter inside a music software plugin18, this hardware knob turn would

match the turning of a user interface knob on the screen of the computer directly. In some software/

hardware, one can assign the same knob to control more than one parameter at the same time. This

is one-to-many mapping. The same input value of the knob will be sent to all parameters it is linked

to. There are some exceptions, but this is largely what a user is limited to when mapping hardware

control devices to editable parameters within their music making environment.

 In recent years, some software has been developed that allows one-to-many mapping of a

single input controller to many parameters within the software itself. Notable examples of this are

Tornado by Sugar Bytes, The Finger by Native Instruments, and Stutter Edit by iZotope.19

However, each of these examples are effect units for processing audio and the one-to-many

30

17 http://www.nintendo.com; http://www.microsoft.com; http://www.xbox.com (Accessed on 17/02/2014)

18 Typically, with standard 7-bit MIDI, the knob will have only 128 steps of resolution (0-127) which will be internally
scaled by the hardware/software into a value that makes sense for the particular parameter that is being edited by the
knob.

19 http://www.sugar-bytes.de/; http://www.native-instruments.com/en/; https:www.izotope.com/ (accessed 17/02/2014)

http://www.nintendo.com
http://www.nintendo.com
http://www.microsoft.com
http://www.microsoft.com
http://www.xbox.com
http://www.xbox.com
http://www.sugar-bytes.de
http://www.sugar-bytes.de
http://www.native-instruments.com/en/
http://www.native-instruments.com/en/
https:www.izotope.com
https:www.izotope.com

mapping exists solely within the application itself, with no further output of this parsed MIDI

information to control other devices.

 There are some applications that do forward the input to many and varied MIDI outputs.

Numerous of these are iOS applications (for the Apple iPad, iPhone, iTouch devices).20 Lemur by

Liine, Gestrument by Jesper Nordin, Beatsurfer by DRUW, and Konkreet Performer by Konkreet

Labs21 are the most notable iOS applications, with the latter being the most versatile one-to-many

application currently available. Konkreet Performer allows single gestures on the touch screen to

control up to 64 parameters at once via MIDI. The parameters of Konkreet Performer only change

when interacted with on the screen as there are no automation features such as low frequency

oscillators (LFO) or similar.

 While these applications allow for one-to-many mapping of gesture to parameters, those

parameters are still modified in a uni-directional, linear fashion as per the input gesture, with no

option for making any individual parameter traverse the 0-127 range in a non-linear and/or multi-

directional manner contrary to the original physical gesture. (As differs from my software One

Knob To Rule Them All).

 These examples of commercially available software for the processing of a MIDI input to

many parameters of MIDI output are powerful in their possibilities, but they do not go far enough

for me and my compositional ideas. I want to be able to control many parameters with one gesture

but I do not want all of those parameters to be limited to a uni-directional, linear output. So I

created the software One Knob To Rule Them All (ONE KNOB) which will be discussed in detail

in chapter 3.8.

3.4 Inter Max App Communication System (IMACS)

 IMACS is a highly re-useable and easy to implement system that enables a user of Max/Msp

to create data sending links between their own separate Max/Msp patches in real time. IMACS

exists due to my increasing desires to have my main Max/Msp patches able to trigger each other or

control each others various parameters without hard coding those connections in. I wanted it to be

31

20 http://www.apple.com (accessed 17/02/2014)

21 https://liine.net/; http://gestrument.se/; http://beatsurfing.net; http://konkreetlabs.com/ (accessed 17/2/2014)

http://www.apple.com
http://www.apple.com
https://liine.net
https://liine.net
http://gestrument.se
http://gestrument.se
http://beatsurfing.net
http://beatsurfing.net
http://konkreetlabs.com
http://konkreetlabs.com

dynamic and non permanent. I wanted it to be free for myself (or the end user) to connect whatever

they like, whenever they like and not be limited by a hard coded, built in application design. This

dynamic form of using Max/Msp as an end user will change the way I patch in the future. That is to

say, all new patches/software that I make in future will include the IMACS system. Any new

addition to the system will therefore make any previously made patch even more powerful with new

options for creative discovery and design. It is built around Max/Msp’s scripting messaging system

to the [thispatcher] object combined with the [hover] object. IMACS enables wireless connections

to be scripted into existence between and within existing Max/Msp patches. It is not designed to

work on its own, instead it is designed to work in conjunction with other Max/Msp apps.

 For any newly created patch to obtain complete access to the IMACS system, the user need

only apply the following steps:

1. paste the contents of one small piece of Max/Msp code, that is, a small patch (located on

A p p e n d i x D S o f t w a r e P o r t f o l i o C D (C D 1) l a b e l l e d “ D . 1 . 4

pasteMeIntoPatchForImacsUsage.maxpat”) into patch desired to be included in the system

and then replace all text: “RENAME” with a unique name for that particular patch (See

Figure 3.1).

2. either insert an [autopattr] object OR give varnames (scripting names) to all objects that

are desired to be included in the system (within the patch that the previous step was

made).

3. insert the IMACS patcher (included on Appendix D Software Portfolio CD (CD 1),

labelled “D.1.5 IMACS.maxpat”) into the main patch window via a [bpatcher] object OR

simply run it as a separate patch on its own (see Figure 3.2).

 IMACS began as a simple communication system between max patches but as I started

using the system more, it became clear that it would be very beneficial to have some data parsing

modules to place in between the connections I was making. Thus PENCIL was born...

3.5 Programming Environment of a New Creative Interface/Interactive Language/
Logic (PENCIL)

 PENCIL is an application designed specifically for open ended possibilities. It is mainly an

environment for parsing rhythmic and/or MIDI information in many and varied ways. It is a

32

FIGURE 3.1: Contents of “PasteMeIntoPatchForImacsUsage.maxpat”

FIGURE 3.2: IMACS user interface.

modular programming environment built within a modular programming environment (Max/Msp).

One of the most powerful features of it is that you can connect any piece of the interface to any

other piece of the interface by means of a specially designed ‘send and receive’ system (IMACS).

This connectivity is not limited in its scope and there are even parts of the interface that you can

create connections to (or from) that are capable of completely destroying the functionality of the

program. PENCIL was designed this way to give the user complete creative control of their MIDI

setup and to provide an interface by which the creative possibilities for composing new music are

limitless in scope.

 The PENCIL environment differs from Max/Msp by allowing me to compose using my

software more quickly and efficiently with a high amount of versatility and creativity. The main

reason for this is that using the pre built modules save on patching time. Essentially, it is simply less

work for me as a composer while working on ideas and it is more convenient and efficient than the

process of normal patching within Max/Msp. It is higher level programming than Max/Msp.

PENCIL is designed with easy to comprehend, ready to use modules that can be placed anywhere

within the user interface environment and can be connected to any other part of the environment (or

any other IMACS ready patch outside of PENCIL too, for example The Ultimate Rhythm

Discovery Station discussed in section 3.10).

33

FIGURE 3.3: Example of PENCIL interface with four modules loaded.

 There are currently 40 modules (listed in Appendix A.1 and A.2) that can be loaded into the

PENCIL environment window (see Figure 3.3 for a simple example of PENCIL in action), some of

them are basically just a user interface for existing Max/Msp objects (like the [scale] object for

example) and other modules are more sophisticated devices (like the arpeggiator module). All of

these modules can be moved around the interface and positioned wherever the user wants them by

simply clicking and dragging them with the mouse (after pressing a keyboard shortcut ‘m’). The

modules are used to create an event based system that can control and manipulate existing max

patches, themselves and/or hardware/software.

 This modular based system that I have created differs to the aforementioned modular

[bpatcher] based systems in chapter 3.2, in that it requires no Max/Msp ‘patching’ at all. A

composer using PENCIL will never need to open the Max patch in ‘patching mode’ and go behind

the scenes, connecting objects, sub-patchers, abstractions and [bpatcher]s with patch cords. All

‘programming’ is done from ‘presentation view’. And yet the software is still modular and dynamic

in design. It starts with a blank canvas from which the user can select modules to create, and can

then move them around the user interface just like the parent application Max/Msp. Each of the
34

modules I have created are accessed via a menu and are scripted into existence when the user

selects them. Ultimately, they are simply pre-saved Max/Msp patches, dynamically loaded into a

freshly created [bpatcher] object that is given: arguments for its window size/location; an

incrementally indexed reference number; and other variables pertinent to the module created. The

modularity does not end there however as many of the modules have slots for creating more of the

same type of module again within its very own window. Thereby creating a modular programming

environment (dynamically scriptable and modular [bpatcher]s), within a modular programming

environment (PENCIL), within a modular programming environment (Max/Msp).

 Of course, the results of the programming effort on my part to create such a system is up to

the composer/user at the time of use to decide, just like the output of a modular synthesiser is up to

the hands and mind of the synthesist commandeering it, except that the modules I have created to

use within PENCIL are tailored mainly for the exploration and parsing of MIDI and/or rhythmic

information. Meaning, the resulting output engineered by the user will mostly gravitate naturally

toward that of rhythmic creativity or discovery within any MIDI environment of their preference.

Although, PENCIL could quite equally be used in other ways as well.

 I am constantly thinking of new ways of using PENCIL. I am often struck with thoughts of

“what if I were to link x to y and have x controlled by z which is going through n and l which in turn

is controlling the offset of y which is also controlling the range of n and the speed of l….” and so

on. The fact that this is at all possible and that it will generate rhythmic (or sonic) results unheard of

before that I can actually imagine in my mind prior to patching it all together is an absolute dream

for a composer. It is an absolute joy to use this system. Even if the usage is more experimental and

less planned from the outset. My mind races with the possibilities and is excited with the results on

a daily basis. And yet, after using the system for a few months, I know very well that I have not

even scratched the surface of the possibilities with the software. Not to mention that not only is it

open ended in how it can be patched, but it is also open ended in that new modules can be created at

any time in the future that will expand its potential exponentially. This system will no doubt keep

me as a composer, who wishes to use new and deliberately rhythmically interesting software, busy,

entertained, and fulfilled for years to come.

35

3.5.1 The available modules of PENCIL

 The available modules I have created for use within the PENCIL environment are listed in

Appendix A.1 and A.2, each with short descriptions. Note that none of these modules are for

processing audio. Instead, they are all built to generate timed events and/or parse data.22

3.6 Miles Okazaki Method (MOM)

 The PENCIL module ‘MOM’ is entirely built around Miles Okazaki’s Rhythm Matrix book.

MOM allows the performance of: any of the rhythmic modes from Rhythm Matrix, at any

subdivision speed and at any tempo (based on a percentage ratio of a master tempo) against: any

other rhythmic mode with the same variables. Within each module are many options like: rhythm

selection (from within pool of currently selected subdivision), displacement of the rhythm by one

subdivision partial step, randomise or increment rhythm (from within pool of currently selected

subdivision) every x amount of repetitions.

 It is also possible to override the tempo settings for any individual module so that it can run

completely independent of the parent module tempo yet still be controlled by other of the parent

module’s global settings. Rhythms can be triggered and stopped and can be looped or not. Each

module contains a user interface object ([matrixctrl]) that graphically shows the currently selected

rhythm and also allows the customisation of new rhythms at the user’s wishes (See Figure 3.4). This

essentially allows MOM to work as a traditional rhythmic step sequencer but with all of the above

extra options for adding rhythmic complexity. Up to thirteen of these modules can be dynamically

loaded into any individual parent MOM module, thereby allowing up to thirteen rhythmic modes to

be coincidently performed (per parent MOM module). There is no limit within PENCIL as to how

many parent MOM modules you load (excepting the computational load that running many

modules at once would incur).

 MOM is fully IMACS ready, meaning any component of it can be controlled by, or can be

used to control, any part itself and/or any other pieces of software in this portfolio. This means it

36

22 Note: contained within a few of the available modules are third party Max/Msp objects from the Modal Object
Library created by V.J. Manzo vjmanzo.com/cv. Copyright.

FIGURE 3.4: Miles Okazaki Method user interface

could, for example, be used to control the structure of a composition, rhythmic material, rhythms

within rhythms (nested tuplet rhythms), tempo changes, pitch control, and any other musical

parameters the user can imagine. This effectively provides many rewarding and deeply creative

possibilities with the exploration and discovery of new grooves and rhythmic patterns being the

primary intention of the author..

3.7 The Spiral Rhythm Clock (SPIRAL)

 The non-determinate parameters of Ligeti’s Poème Symphonique are precisely those that I

wanted to have control over for determinate, repeatable and creative composing in a poly-tempi

system. Developing SPIRAL allowed me to investigate the compositional and educative arena of

poly-tempi music. It consists of up to ninety-six concurrent and unique tempi whose output can

trigger anything the user likes within the IMACS system (including but not limited to MIDI). This

enables the user to create repeatable, sophisticated rhythmic structures previously only imaginable

or highly time consuming to create manually via traditional computer notation methods. SPIRAL,

in conjunction with IMACS and the other PENCIL modules, enables the user to create a timing

system of impressive and sophisticated complexity.

 The rhythms created by SPIRAL will repeat identically on the minute, every minute, if the

tempi used are all whole numbers. They have subtlety and complexity that require repeated

listening to fully comprehend. Therefore the one minute structure of repetition is in fact, most

helpful for the appreciation and understanding of the rhythms by the listener. SPIRAL can also

utilise tempos that are not whole numbers and where this is the case, the cycles of repetition can

quickly stretch from one minute out to practically infinite length in comparison. Is a cycle worth

37

exploring that will not repeat itself for 4000 years? Absolutely yes. It is just as interesting as any

other. As with any other element of music or previously constructed system, it comes down to user

preference and the choices of an individual creator/composer/practitioner.

 The metronomes in SPIRAL are laid out in 8 circles with twelve metronomes per circle set

out as though on the face of a clock. Each arm is slightly curved in a clockwise direction for

aesthetic purposes (See Figure 3.5). A visual phenomenon created by this interface configuration is

that the flashing of the metronomes while it is running will spin in a multitude of different spiraling

patterns back and forth over the course of the phasing. There are many ‘rhythmic nodes’ during a

complete phasing cycle (that is, one minute, where whole numbers are used for the tempos) where

metronomes who have a common denominator will flash together at prescribed times. This

phenomenon also allows for a unification of rhythms at many points during the phasing. For

example, all metronomes divisible by three will sound/flash together again every twenty seconds

(providing they are all started at the same time). All metronomes divisible by four will sound

together again every fifteen seconds and so on.

 Each group of metronomes with a common denominator also has its own collection of

‘nodes’ where tempos within that particular group sound together at various times in the phasing

cycle. These rhythmic nodes enable rhythmic cycles within rhythmic cycles (meta-cycles) to occur

across the greater phasing cycle. They each also contain the near sync or sync activity of multiple

subdivisions from each of the tempo’s perspectives throughout the node cycle. In other words, there

is a large amount of rhythmic ‘harmonicity’ in effect when using a system of such complexity as

ninety-six separate tempos running coincidently.

 There are a number of options to allow for a diminishment of the harmonicity in SPIRAL. In

each of the options, the metronomes once started will continue to click at their normal tempo. The

first option is the normal and default behavior of the application, all metronomes begin at once. The

second option causes each metronome to be started at a random point within the period of one

minute. The third option is a randomised time for a delayed start of each metronome within the

period of its own IOI. Finally there is an option to allow the start time of each metronome to be

delayed by a defined amount from the previous metronome (in ascending order of tempos) and this

delay time can be defined in milliseconds by the user.

38

FIGURE 3.5: Spiral Rhythm Clock user interface.

 There are many other important options for controlling the behavior of the SPIRAL

application. The user has the ability to change the speed of the entire system while maintaining all

of the original ratios between the tempi. This enables very highly complex systems of large

numbers of the metronomes (up to ninety-six) to be played back at much slower speeds (as slow as

1% of the original tempi) illuminating rhythms and grooves that would have been too fast and

overwhelming at full speed to be appreciated. The user can change the size difference between each

metronome speed (from the default of one) to any other number including zero and negative

numbers. Setting the size difference between each metronome’s tempo to zero lets the user

effectively ‘pause’ the system in its current state with all of the metronome’s tempos changing to the

speed of the slowest tempo while remaining in the same ratio or position from each other as they

were at the time of ‘pausing’ and thereby creating the arbitrary rhythm at that moment to repeat

identically at that slowest metronome speed.

 SPIRAL could also be used to help make highly complex rhythms actually easier to

perceive. For example, if each tempo is given two different pitched notes that it triggers one after

the other repetitively, the user can better grasp that particular tempo in the mix of all the other

tempos as they can lock onto a very simple pattern of ‘up down up down up down’ or ‘tick tock tick

39

tock’ whilst the other complexity surrounds and interacts with the simple pattern perceptually.

Further enhancement can be made by automating the volumes of each pair of notes via other

PENCIL modules (for example ONE KNOB).

 Finally, in addition to many other user controllable options in the application, all parameters

of SPIRAL can be automated or controlled remotely using IMACS (and also therefore MIDI

hardware/software and all modules from the PENCIL environment). This automation feature makes

SPIRAL a generative rhythmic composition tool of unprecedented complexity and control, and a

highly unique environment, allowing the composer to explore infinite rhythmic possibilities.

3.8 One Knob To Rule Them All (ONE KNOB)

 ONE KNOB is a gestural control application that gives the user many ways to control

musical parameters via a dynamic interface that grows according to user needs. The user provides

an input and the input is parsed through ONE KNOB, creating a new output. The amount of ways

that the input can be parsed and changed to a new output in ONE KNOB are practically infinite. As

a composer who works with music technology in both hardware and software form, I am constantly

trying to create new sounds and ways of interacting with and controlling these tools. In my

experience and in my searching for controller systems, I found that there were gaps to fill within the

softwares available. I could not find the tools that I imagined would exist. Hence, I built ONE

KNOB to fill one such gap.

 Although not limited to this functionality, a typical input of ONE KNOB would be an

integer between 0 and 127 (like standard MIDI data of a continuous controller or a note on message

for example). This input is then fed into a [function] object which converts the input into a new

number based on the graphical position of the line inside the [function] object. Figure 3.6 shows an

example of the user interface of ONE KNOB. Observe that the “[function] 1” (the lower left box)

that has two points (the start and end points of the line) generating a straight line, starts at position 0

with a value of 127 and ends at position 127 with a value of 0 (where the first number is an index

point for the incoming integer and the second number is the output value for the specified index

point). This [function] will generate an output that is completely inverse to the input. That is, while

the input travels from 0, 1, 2, 3, 4….124, 125, 126, 127 the output will conversely travel from 127,

126, 125, 124….4, 3, 2, 1, 0.

40

 FIGURE 3.6: ONE KNOB user interface.

 ‘[function] 2’ in Figure 3.6 again uses a simple straight line with only a start and end point

but has a smaller range: The line inside ‘[function] 2’ starts at position 0 64 and ends at position 127

74. In this example, the input value of 0 will return an output value of 64 and as the input value

increases to 127, the output will be scaled and increase from 64 up to 74 only.

 The input does not have to be linear, it can jump around randomly, or move backwards and

forwards in any way the user wants. The input value refers to an index point on the [function] line

and returns whatever value the [function] line is at that index point. Similarly, the [function] line

does not have to be limited to a straight line with only a start and end point, it can have any number

of points and these points can be placed anywhere within the bounds of the [function] object

enabling lines that go up and down with any degree of slope, as demonstrated by ‘[function] 3’ in

Figure 3.6).

 The user interface of ONE KNOB allows the creation of multiple [function]s dynamically

where the input value is parsed through each [function] separately at the same time. This enables

the user to use one knob (of a MIDI controller for example) to control various parameters at once,

with the line inside each [function] being capable of different shapes (an advanced form of one-to-

many mapping). An example usage of this functionality might be: the user wants to control multiple

parameters of their synthesiser with one knob turn. So the output of ‘[function] 1’ could control

filter cutoff frequency; the output of ‘[function] 2’ could control an LFO (Low Frequency

Oscillator) speed; the output of ‘[function] 3’ could control the pitch bend, with all of these

[function]s parsing the input differently as per Figure 3.6.

41

 ONE KNOB includes many features to enable further parsing of the output generated by the

line inside the [function] object. Some of these features include: the scaling of the output to any

floating point low and high fixed output; the limiting of the speed of the output to any amount by

measurement of milliseconds; the probability of the output occurring or not by means of a gate that

can be controlled via percentage of probability; the ability to impose an LFO on the position of the

input with various user definable parameters of control; the ability to synchronise all LFOs; and

more.

 The generated line can be created using a computer mouse to click and draw points and

change the shape of the line and the line can also be randomised. The input value can come from a

midi controller, or it can be automated. This automation can be sent from another digital audio

workstation sending its own automation data via MIDI. The automation can also be done from

within the ONE KNOB module window itself as there is yet another [function] object in place

purely for this purpose. The lines within the [function]s can be mirrored, inverted (or both at the

same time) by user interface buttons and they can also be copied and pasted to any other [function].

Any of the above mentioned features can be automated themselves as all parameters of ONE

KNOB are included in the IMACS system. Each [function] module within each ONE KNOB group

is capable of ignoring the incoming input for the group it resides in and being overridden by a

different source. This overriding input includes yet further automation options. Alternatively, ONE

KNOB can be used as a type of gestural sequencer as well. The output can be sent to the Noteout

module in PENCIL for example, and the speedlim and gate functionality within ONE KNOB can be

automated for rhythmic interest (even by other ONE KNOB modules).

 As a composer, the possibilities with the ONE KNOB are so infinitely varied that it becomes

highly daunting to try and list even a few of the things that can be done with the software. I will

however describe how I have used it in my own compositional output: controlling of synth/effect

parameters via MIDI continuous controller messages, control voltage (CV) inputs to analog

synthesisers and effect units, editing of System Exclusive strings and Non Registered Parameter

Numbers; mapping output of [function]s to the creation of midi notes, thereby triggering both

software and hardware samplers, synthesisers, drum machines and more.

42

 As ONE KNOB can be mapped in any way the user can think of with the available modules

of PENCIL, there are many ways in which it can be used to generate, control, influence, design, and

refine rhythmic content to create rhythmic complexity and/or create new sounds.

3.9 FROGGIES

 FROGGIES is a rhythmic generator that simulates frog call behavior with six frogs

interacting with each other in real time via a non-linear dynamic equation matrix. The rhythmic

beauty of the output of FROGGIES resides in its inherent striving to achieve sync between the

calling frogs at all times whilst relying on a choatic system that is fully dependent on the initial state

of the system. Within the algorithm, each ‘frog’ within FROGGIES ‘listens’ to the calling of the

other frogs and adjusts the timing of its call to try to achieve a hocket-like sync between the call

time of the other frogs. Often this process results in the frogs calling in a distinct and strict hocket

sync, but once deviating from this, the frogs’ call times can briefly resemble other distinct rhythmic

tuplets like triplets, semiquavers, quintuplets and so on, as well as all variance of in between

rhythmic placement of calls.

 FROGGIES is a module available within the PENCIL environment. I used a non-linear

dynamic equation provided by Aihira to generate the interactive rhythmic calling of each frog in

FROGGIES (Aihira et al, 2008). I enlisted the help of Dr Oliver Bown from the Architecture

Department of Sydney University (Design Lab) to port Aihira’s equation via java programming and

the [mxj] object into Max/Msp and with the kind permission of Dr Bown, was able to use this code

within FROGGIES (see Appendix B.1 for the frog code).

 The interface for FROGGIES includes two graphical ways to change the influence that each

frog has on each other (See Figure 3.7). The first of which is a circular, proximity and ‘sphere of

influence’ based approach whereby the location of each (numbered) frog and the strength/loudness

(sphere of influence) of its calling can be edited via the use of a [nodes] object. This GUI object

controls the frog’s relationship to all the others all at once. That is, the user is able to edit each

individual frogs’ submission/dominance over the other frogs influencing their call times

accordingly. The second graphical method of changing the influence of the frogs on each other is

via a bar graph [multislider] object which provides the same functionality as the [nodes] object

43

FIGURE 3.7: FROGGIES user interface.23

previously mentioned, except modification is only possible on an individual frog to frog influence

basis. You could also use this [multislider] to draw new relationships quickly with a computer

mouse. Further, there is a randomise button which will automatically provide new influence

amounts for all frogs against each other.

 FROGGIES has the ability to slow down/speed up the calling speed and also has controls

for the random automation of inter-frog influence amounts. It can even be run so slow as to be

useful for the generation of, for example, the structure of a composition, or at medium speeds for

the generation of the structure of individual musical phrases. Further, it is completely IMACS ready

and so can be automated/controlled by and can automate/control any other element within the

IMACS system. This inter-connectivity provides the means to make audible the rhythms generated

by FROGGIES in any way the user desires.

44

23 Photo of frog used in FROGGIES user interface is of the Japanese Tree Frog Hyla japonica and was retrieved on
August 13, 2013 from http://farm1.staticflickr.com/81/232646672_713d8673c8_z.jpg

http://farm1.staticflickr.com/81/232646672_713d8673c8_z.jpg
http://farm1.staticflickr.com/81/232646672_713d8673c8_z.jpg

 As with all other modules within the PENCIL environment, all settings within the

FROGGIES module can be saved as presets and these presets can be changed or interpolated

between manually or via automation. This allows for the generation of self similar states/grooves,

but with all of the variation one would expect from a chaotic system that is inherently reliant on

initial system states. For example, one could save a few different frog-to-frog influence states and

then periodically (or rhythmically) change between these saved states. Then, each time the preset is

changed back to one already heard, the chaotic system may repeat itself almost identically to the

last time the preset was heard, or provide any amount of variation from mild to extreme.

 Included in FROGGIES is the ability to mute any individual frog being influenced by the

timing of the other frogs calling. As well as the ability to turn off the ability of any individual frog

being able to influence the timing of any other frog calling. This enables, among other things, the

ability to create a ‘fixed’ tempo frog that will continue to call at a steady rate while the other frogs

interact and change around it. Also included is a ‘noise’ element. This provides the user with a

method of applying a continuous, variable amount of randomness to the influence each frog has on

each other for an even more natural-like ‘frog-scape’.

 Quantisation of frog call timing is made possible by means of eight, user definable values of

quantisation that are completely linked to the call time of frog number one. Each of these definable

values can be switched on or off individually at any time and any number of them can be running at

once. The method used to quantise is as follows: frog one’s tempo in beats per minute is sent to a

master metronome that is stopped and restarted every single time (and at the precise moment) that

frog one actually calls. The eight outputs of the master metronome are sent to eight [onebang]24

objects. The output of all frog calls are sent to the right inlets of these [onebang] objects and

therefore will only ‘call’ after the metronome/s that is/are switched on ‘ticks’. As stated, the master

metronome controlling the quantisation runs at the speed of frog one however the eight outputs of

this metronome can be set to any floating point number above the value of 1.0 which provide a

division of the BPM set by frog one. This means the user can quantise the call timing of all the

frogs to any degree of complexity or simplicity that they like.

45

24 The [onebang] object only allows an event received in its left inlet through after receiving an event in its right inlet,
after which time its internal gate closes again until receiving another event in the right inlet again.

 Composing new music with a chaotic, dynamic, rhythmic generator such as FROGGIES

within the IMACS system places the composer in a unique position whereby they can automate new

musical systems that emulate nature, or by which they can take the given modeling of nature and

bend it into new, extreme settings, far removed from the original ‘frog calling behavior’ source.

3.10 The Ultimate Rhythm Discovery Station (TURDS)

 The Ultimate Rhythm Discovery Station (TURDS) (see Figure 3.8) is an application

designed for the sole purpose of creating and discovering new rhythms and grooves via

performance means.25 Some of the other applications in this portfolio (specifically MOM, ONE

KNOB, and the Motion Recorder module from PENCIL) can be used in the same way as I intended

TURDS to be used but they are limited to data/MIDI processing only, not audio. Though by no

means limited to this usage, the intended use for this application is for the user to record themselves

performing eight unique rhythms, five times each (overdubbed), and then create entirely new

rhythms out of these recordings by altering their speeds and triggering them in real time via a MIDI

controller.26

 When five separate performances of the one rhythm are recorded individually and played

back at once, panned evenly across the stereo sound stage, the result can sound somewhat like a

group of performers performing the rhythm, albeit a bit out of time with each other. This loose feel

in the timing can create or add realism to the perceptual interpretation of the playback as being

actually performed by a group of performers rather than one performer recording themselves five

times. This results in an environment where the performer feels as though they are in control of a

group of performers and can make those performers play ever more complex rhythms and grooves.

The looseness of the timing helps to add a sense of realism to this phenomenon. This is the general

sonic aesthetic of TURDS.

 TURDS enables the layering of up to five samples or recordings of duration up to one

minute into eight separate groups. Each group’s speed can be controlled as a whole from any

46

25 Although it is also possible to use it in other ways for other purposes.

26 I designed the application for use with the QuNeo MIDI controller (by Keith McMillan Instruments) however any
other MIDI controller could be used instead.

FIGURE 3.8: The Ultimate Rhythm Discover Station user interface

negative to any positive multiplication of the original speed.27 This means recordings can also be

played back in reverse (even while recording them!). After a recording has been made, the

beginning of the [buffer] that has been recorded into will be automatically cropped to the first sound

that is larger than a user definable volume threshold. This is so that synchronised playback of each

recording slot is automatically created for the convenience of the user. This is particularly useful

when using TURDS manually (without the automation of IMACS) and when using TURDS for

rhythmic purposes (the original and intended use of the application).

 To use TURDS, the performer would record themselves performing the same rhythm into

the five available slots of group one and then proceed to fill the other groups in a similar fashion to

group one, each group with their own rhythm. The rhythms for each group need not be related in

any way to each other. It is then up to the performer to use a MIDI controller (or the computer

keyboard) to trigger the playback of the recorded groups to create new and interesting rhythmic

grooves. For example, while triggering different groups and setting up a rhythmic tempo/groove,

the performer might change the speed of a single group while maintaining the existing rhythmic

groove causing a new rhythmic challenge for the performer. This forces the performer to hear the

47

27 The default speed control is scaled so that an input control (for example, MIDI) of 0-64 equals 20% to 100% of the
original speed and 65-127 equals 100% to 500% of the original speed. These settings can be configured to other
amounts if required in the user interface including negative speeds of any multiplication.

new timing of the rhythm (due to its speed being changed) in relation to the existing groove they

have set up. Hence the speed control option exists. This is one of many possible ways to use the

application.

 Grooves that are performed can be resampled (recorded) into new groups, which can then be

factored into the next performance which can then be resampled into new groups and so on. There

is definitely a lot of interesting music to be discovered in the recursive nature of the software.

Particularly when playing with the speed controls offered. TURDS can also be used as more of a

compositional tool by recording longer, musical ideas, playing groups back at different speeds and

resampling them into new slots. For example, if you record the sound of a music box into the

different buffer recording slots offered by TURDS (using a microphone), then vary the speeds of

the groups and resample into new groups, the results can be very harmonically (and rhythmically)

interesting from very simple source material. That is, you can transform a single, simple recording

into an elaborate and intricately detailed soundscape within a very short amount of time by means

of resampling the performance of playback triggering and speed control of playback whilst

resampling the output and triggering the play back of the newly resampled material ad infinitum.

There are 40 recording slots (or sample buffers) offered by TURDS to allow for this.

 TURDS is also completely IMACS ready and so every part of it can be controlled by my

other Max/Msp applications. Connectivity options include playback and recording of groups and

individual cells, and also speed changes for group playback. This connectivity therefore allows for

automated recording and/or playback, opening up many more creative avenues of exploration for

the use of the application. The automation of TURDS can yield fascinating results; however, my

own interests with this application are in its real time performance capabilities. In other words,

TURDS allows the ability to physically create new complex rhythms/grooves from arbitrary,

potentially very simple, and potentially non-related source material. It allows this in real time and in

an improvisatory manner. As a result, I have found that my own sense of time and groove has been

challenged and developed/improved by using TURDS. This makes me more capable as a composer

to now develop more sophistication in my rhythmic explorations and enables me as a listener (and

performer) to have a greater awareness of groove (and sense of time) in potentially or seemingly

unrelated events (like those discoverable in nature).

48

 CHAPTER 4 Composition portfolio

Composition Portfolio

 The following subsections contain the analysis of the studies that form the basis of my

composition portfolio. These studies were constructed primarily within the context of the rhythmic

devices (software) discussed in this thesis.

4.1 Study No. 1

 This study utilised SPIRAL and PENCIL (in particularly the arpeggiator module). An

arbitrary subset of metronomes from within SPIRAL were selected and used to trigger four separate

arpeggiator modules. These arpeggiator modules were each configured with settings that were

similar but slightly different from each other. The end result is a harmonically rich progression of

consonant pitches moving through a short series of modulations (causing numerous dissonances

that are resolved shortly after) via the arpeggiator playback options.

 This study features the mirrored qualities of SPIRAL’s rhythmic behavior as the rhythms

that have occurred up to the halfway point are then completely retrograded in playback to the end of

the study. Many instances of ‘rhythmic glissandi’ (Wannamaker, 2012) are present throughout.

4.2 Study No. 2

 This study consists of two smaller parts, both of which were created with the following

modules within PENCIL: ONE KNOB, NoteOut, Speed Limiter, Maths, Arpeggiator, Scaled Value,

and Random. I also made use of the preset system within PENCIL.

 Firstly, to create this piece I relied on certain characteristics of the synthesiser I wanted to

use, namely, the Yamaha TX816. This synthesiser has eight identical Yamaha DX7 synths within it.

Each of these units are called a TF1 and all of the TF1 modules are accessible at once or

individually via MIDI. I wanted to exploit the common texture of loading the same patch (sound

settings) into each TF1 module and then triggering them slightly differently with PENCIL and also

with each TF1 module positioned individually across the stereo image from left to right, with
49

slightly different tuning to each other. I chose a bell-like sound for this composition as I am

particularly fond of the richness and clarity that the Yamaha DX7 achieves with its Phase

Modulation synthesis (commonly referred to as Frequency Modulation or FM synthesis) to create

bell-like timbres.

 I used ONE KNOB to generate pitch gestures and also to control speed of playback of such

gestures via random, maths and speed limiting modules. I used the preset system to store particular

gestures that ONE KNOB had created (after being parsed through the other modules listed above,

whose settings were stored within each preset also). The pitch gestures were parsed through Vince

Manzo’s Modal Object Library28 and the different modes were triggered in realtime by myself

during the recording. I used the arpeggiator module to control the preset system. Each step of the

arpeggiator was triggered by the loop start point of the master ONE KNOB group automation

control. During the recording of this study, I interacted with the (mostly) automated patch by

causing disruptions to the rhythmic output of each module so that the timing of each module

oscillated in various ways (via ONE KNOB’s LFO system) around a common speed (as set by the

varying gestures of ONE KNOB). The result is a stunning interaction of rhythms, sonic timbres,

stereo imaging and harmonic movement with a great deal of unity built into the composition via the

careful use of the software.

4.3 Study No. 3

 This study demonstrates and illuminates rather well some of the inherent patterns and

underlying rhythmic qualities of running ninety-six metronomes at once. The audio track consists of

ninety-six different BPMs (40-135 set incrementally) slowed down to 5% of the speed (resultant

BPMs: 2-6.75), all started at the same time, and triggering different pitches (descending 5ths) on the

Yamaha TX816 synthesiser in groups of 12 BPMs (8 groups). It plays through the first five seconds

of the retarded minute and then is stopped.

 One of the interesting rhythmic phenomena of these settings of SPIRAL is that clearly

audible simple rhythmic relationships are heard from the beginning. That of the polyrhythms 2:3

(decelerating), then 3:4 (decelerating), then 4:5 (decelerating) and so forth, with overlapping of

these later in the track to eventually produce 3:4:5:6:7:8:9:10 (see Figure 4.1).

50
28 Modal Object Library, created by V.J. Manzo vjmanzo.com/cv. Copyright.

FIGURE 4.1: Excerpt of MIDI data output by Spiral in the recording of Study No. 3. Visually demonstrating
Wannamaker’s “flanking curves”.

4.4 Study No. 4

 This study uses exactly the same rhythmic material as Study No. 3. That is, the Spiral

Rhythm Clock is run using the same rhythmic settings as before but with different pitches being

triggered by each group of the eight groups of twelve metronomes (See Figure 4.2). The main

difference with this extra study is that in addition to the TX816 synthesiser being triggered, I have

also sent the MIDI note data from SPIRAL to a drum machine (Roland TR505). The reason for this

extra study is to demonstrate that new levels of rhythm can be perceived by the inclusion of the

drum machine. The drums provide a new layer of temporal information even though they are being

triggered at the same time as the TX816 synth. This is due to the kick, snare and open/closed hihat

drum sounds indulging our preconceived notions of their use within commonly heard drum beats in

popular music. I assigned the pitches of the lydian dominant mode to the rhythms. The choice of

pitch, however, is arbitrary.

4.5 Study No. 5

 As one of the aims of this thesis is obtaining a deeper understanding of musical time,

exploring multiple tempo layers is a focus of this study. The piece begins with a single metronomic

pulse and is structured so that the individual (and separate) tempos are introduced gradually. The

work is entirely automated and created using SPIRAL. Midi was sent to the TX816 synthesiser as

well as the Yamaha FS1R (an eight operator FM synthesiser). Only eight metronomes of the ninety-

six possible metronomes within SPIRAL were used, and they were set to the BPMs: 60, 73, 86, 99,

51

FIGURE 4.2: MIDI data recorded from SPIRAL for Study no. 4 (complete).

112, 125, 138 and 139 (chosen arbitrarily). Each metronome’s entry was delayed by varying

amounts based on its position within the interface of the SPIRAL application (that is, which arm

and circle it belongs to in order from 12 o’clock of the inner most circle being the first, to 11

o’clock of the outer most circle being the last metronome to be triggered via the delay mechanism

built into SPIRAL mentioned previously). This composition features SPIRAL running at 100% of

the speed. It features only eight pitches with each metronome being assigned its own pitch that does

not change throughout the entire work. This piece fits very well into the genre of totalism as defined

by Gann (1997) as its main focus is rhythm, indeed, multiple tempos coinciding with little (to no)

variation in pitch or timbre aside from the structure of the piece as it unfolds. The choice of pitches

used was arbitrary. The main sonic consideration for the piece was that each note should be of short

duration with a fast enough attack to make the rhythms produced clearly audible, to emphasise the

rhythmic character of the work.

4.6 Composition No. 6

! This is another strictly totalist composition similar to Study No. 5 in its static harmonic/

melodic content and use of SPIRAL, however it differs in the settings used. Firstly, all ninety-six

metronomes are used instead of only eight, each one set to its own BPM. The time delay between

the starting point of each metronome is 1200ms. The entire system is running at 5% of the whole

number BPM speeds of 50-145 (resultant BPMs: 2.5-7.25). While both this study and Study No. 5

begin with a solitary metronome voice and grow in complexity from simple beginnings, this

particular piece maintains a more sophisticated evolution of complexity as one would expect from

using ninety-six different BPMs over only eight. Where Study No. 5 repeats itself every minute

(once all eight metronomes are running), this study takes longer to repeat itself, hence its longer

duration (however, it is cut short well before it repeats itself).

4.7 Composition No. 7

 This piece uses MOM exclusively with no other software or hardware being used. MOM

was originally designed as a standalone application before it was integrated into PENCIL and while

it was standalone, it had its own audio synthesis capabilities (these were removed when it was

52

integrated into PENCIL). The audio is actually created by the rhythmic output of the individual

matrices triggering a very fast and loud transient that is sent through a band-pass filter with extreme

resonance settings employed. This creates the pitched material heard within. Each MOM module

was able to automate (via a [line] object) the change in frequency of the band-pass filter cutoff.

These changes in frequency of the filter were controlled by a random algorithm in the patch (that

included the ramp time to the new pitch) and triggering of this system was performed in real time

during the recording of the study.

 Only four matrices were used in MOM with the audio output of each sitting in a fixed

panned location in the stereo field. This helps to facilitate the listening of each subdivision being

used against the others.

4.8 Study No. 8

 A commonly used compositional device (or system) is that of repetition with change.

Repetition and the self similarity of iterated functions (see Figure 4.3) are of interest to me as a

composer, as are fractals in general. In this short study, I explore these concepts within a rhythmic

context by utilising MOM and numerous arpeggiator modules within PENCIL to create music

whose output resembles said systems. There are multiple time scales employed (limited to simple

duple rhythms) and the pitched and timbral content does not vary much throughout. I chose short

duration notes of equal length and with a fast attack to exemplify the rhythmic content within. The

presentation of this particular usage of MOM and the arpeggiator modules could be developed

through additional interaction and programming within PENCIL to enable more variation (from

subtle to extreme) yet this study demonstrates that MOM can be used to sound similar to standard,

currently available step sequencers if one wants it to, albeit with MOM being much faster to set up

and generate such material.

4.9 Study No. 9

 The timbral quality of insect sounds and other related sounds from nature is explored in this

study. As discussed by David Rothenberg in his book Bug music: how insects gave us rhythm and

noise (2013), synthesisers are excellent tools for the emulation of insect sounds and soundscapes.

53

FIGURE 4.3 Example image of an iterated function system fractal29

Using synthesisers in this way is of great interest to me and this short composition provides an

example of a possible outcome of the process. It features the Elektron Machinedrum (Mk2 UW)

being manipulated by ONE KNOB. ONE KNOB is used to send MIDI CC messages to the

Machinedrum, creating the grooving ‘insect-scape’ heard in the example. The Machinedrum, being

primarily a drum machine, allowed for the insect emulation to be placed strictly within a fixed and

rigid timing system. The internal sequencer of the Machinedrum was used to trigger the audio

events (in the time signature of 11/8). Many of the synthesis parameters of the Maschinedrum were

changed in realtime by ONE KNOB (via the preset system and automation within PENCIL and

ONE KNOB). Syncing between ONE KNOB and the Machinedrum was achieved through MIDI

communication and was necessary for the creation of the sounds heard throughout.

54

29 “Really large triange fractal” image retrieved on March 18th, 2015 from https://ssodelta.files.wordpress.com/2014/03/
really_large_triangle_fractal.png

https://ssodelta.files.wordpress.com/2014/03/really_large_triangle_fractal.png
https://ssodelta.files.wordpress.com/2014/03/really_large_triangle_fractal.png
https://ssodelta.files.wordpress.com/2014/03/really_large_triangle_fractal.png
https://ssodelta.files.wordpress.com/2014/03/really_large_triangle_fractal.png

4.10 Study No. 10

 This study demonstrates a simple application of ONE KNOB which is used to generate and

trigger pitch on the Yamaha FS1R synthesiser and also used to send control voltage (CV) to a Moog

Moogerfooger MF-104m analog delay pedal via a MIDI to CV converter (the Encore

Expressionist). The settings on the delay pedal, being controlled by CV that is being controlled by

ONE KNOB were automated by ONE KNOB itself. As were the pitches being sent to the FS1R.

The patch used on the FS1R was designed by myself prior to the recording. (No presets were

harmed…). This composition contains subtle and ever changing rhythmic events also controlled and

triggered by ONE KNOB. The complexity of the timing is ‘buried’ by the use of a slower attack in

the amplitude envelope of each note being triggered. A further layer of rhythmic complexity is

engineered by the manipulation of the delay time on the analog delay pedal.

4.11 Study No. 11

 The use of quintuplet grooves (where each beat is subdivided into five even pulses) in

musical pieces is often neglected by composers. This is possibly due to the quintuplet not being part

of standard practise routines of musicians (aside from percussionists) thereby making it harder for

them to perform accurately. However, just like semiquaver grooves, or triplet shuffle feels can be

easily danced to and are rhythmically aesthetically pleasing, quintuplets also provide a very

interesting rhythmic feel that can be easily interpreted due to the regularity of the actual beat being

constant. This regularity enables easier synchronisation with personal GSA (groove superimposition

alignment) as discussed in Section 1.3.7. In exploration of this concept, Study No. 11 is for a six

FROGGIES ensemble triggering Native Instruments Maschine30 software. I made use of

quantisation from FROGGIES and used ONE KNOB to control pitch and quantisation amount.

Quantisation was centered on a quintuplet groove throughout. The influence of the frogs on each

other was in constant variation via automation of the nodes object in FROGGIES except for frog

one which was switched off from being influenced by the other frogs thereby enabling a more

consistent and solid tempo. This allowed for the constant, driving beat throughout the study and

further enhanced the quantisation accuracy (as quantisation in FROGGIES is reset every time frog

one ‘calls’).

55
30 www.native-instruments.com/en/products/maschine/production-systems/maschine/ (accessed 30/03/2013)

http://www.native-instruments.com/en/products/maschine/production-systems/maschine/
http://www.native-instruments.com/en/products/maschine/production-systems/maschine/

4.12 Study No. 12

 This particular study consists of FROGGIES triggering the Yamaha TX816 synthesiser in

this slow and gradually evolving composition. The sounds generated by the synthesiser are full of

constant high pitched material to maintain an insect chorus-like aesthetic. Anyone familiar with the

loudness and ear piercing droning produced by cicadas in the Australian summer will recognise the

sonic aesthetic I set out to achieve (made possible by very long sustain envelope sounds in the DX7

synth architecture). FROGGIES was run at a very slow speed for this study with frog call influences

continuously randomised by the ‘drunk frogs’ settings within the application. This randomisation

only affects the strength of the influences of the frogs on each other (as discussed in Section 3.9),

thereby allowing the output of the dynamic equation at the heart of FROGGIES to morph over time

with more variation. Without changing the influence that each frog has on each other, this phase-

coupled oscillator system can easily fall into a simply hocket pattern that never changes, hence the

randomisation of the influences.

4.13 Study No. 13

 This study is presented in four parts, played one after the other and is an example of a

possible exploration of rhythm and groove via the TURDS application. Each part was performed in

real time without rehearsal and with randomised settings within TURDS. That is, the speeds of each

track were randomised prior to (and during) the performance via the Quneo MIDI controller that

TURDS was initially designed around. Then I performed x rhythms on the Quneo, triggering y

rhythms from TURDS. Performed in real time, means the interaction of the performer with the

software is crucial for a successful performance as it would be with performance on any musical

instrument. Simple finger clicking and hand tapping on a desk were the source of the audio that was

recorded into TURDS initially for each of these examples. Recording was done using the low

quality microphone built in to the iMac computer that was being used at the time. This low quality

recording is further exaggerated when making speed adjustments to the playback of recorded audio,

particularly when slowing down the playback. It is important to note that the audio quality is of no

concern for these studies however. They are presented as (quick) demonstrations of TURDS as a

practise in groove creation tool. Or literally, as demonstrations of why TURDS has its name: The

Ultimate Rhythm Discovery Station. The rhythms created in these studies are entirely different and

non-related to the original rhythms that were recorded into each group of the TURDS software.

56

That is the point, the discovery, maintained balance and procuring of new grooves/rhythms from

arbitrary source material.

4.14 Study No. 14

 Study No. 14 demonstrates TURDS being used in a very different way. While being created

as a ‘rhythm discovery’ program, it is also a powerful system for creating soundscapes and evolving

sonic textures as discoverable in this study. The original source material for this study is a short

vocal sample recorded using the inbuilt microphone on an iMac computer. This simple original

audio sample was transformed in realtime by interacting with and controlling TURDS with the

QuNeo MIDI controller. Most notably, I utilised the realtime speed control of the sample playback

of each group, whilst also continuously resampling into new recording slots.

57

 CHAPTER 5 Conclusion

Conclusion

5.1 Future

 Continuing with the modular design system created in Max/Msp for this project, I seek to

create more software modules for the PENCIL environment. These could include new rhythmic

sequencers based on systems other than those explored in this project, as well as more simple and

practical data parsing modules. Further enhancement could be made to the IMACS system to allow

for more than one IMACS system to run at the same time without any cross-talk. Also, the ability

for the user to create save-able ‘container modules’ inside PENCIL which would allow the user to

quickly load pre-configured setups that they find themselves often building each time they use

PENCIL.

 I am also eager to get working more with robotic percussion instruments that are

controllable via my software. Existing arduino/solonoid based robotic systems such as Robbie

Avenaim’s SARPS are perfect examples of the mechanics I would utilise in developing my own

system.31

5.2 Concluding remarks

 With software design tools like Max/Msp at the hands of a composer, the limitations (as seen

by the composer/user) of existing softwares and hardwares can be overcome by the creation of new

tools. This thesis provided many examples of how software design was used to explore elements of

rhythmic complexity in music composition. Firstly, a background was explained, detailing

influences and existing similar projects. Then each piece of software was described in short detail

including example ways that a user may like to use the software. Finally, the composition studies

created with the software and included in the portfolio were explained also in short detail. In all, the

thesis attempts to provide the reader with an understanding of the reasons why and processes

employed by myself as a composer, to create new software to explore my creative desires, in this

case, complex rhythms and grooves.

58
31 http://www.robbieavenaim.com/robbieavenaim.com/S.A.R.P.S.html (accessed 07/03/2014)

http://www.robbieavenaim.com/robbieavenaim.com/S.A.R.P.S.html
http://www.robbieavenaim.com/robbieavenaim.com/S.A.R.P.S.html

Bibliography

Aihara, I., Kitahata, H., Yoshikawa, K., & Aihara, K. (2008). Mathematical modeling of frogs’

 calling behavior and its possible application to artificial life and robotics. Artificial Life and

 Robotics, 12(1), 29-32.

Aihara, I., Kitahata, H., Aihara, K., & Yoshikawa, K. (2006). Periodic rhythm and anti-phase

 synchronization in calling behaviors of Japanese rain frogs. METR, 35, 1-10.

Aihara, I., Takeda, R., Mizumoto, T., Otsuka, T., Takahashi, T., Okuno, H. G., & Aihara, K. (2011).

 Complex and transitive synchronization in a frustrated system of calling frogs. Physical

 Review E, 83(3), 031913.

Cemgil, A. T., Desain, P., & Kappen, B. (2000). Rhythm quantisation for transcription. Computer

 Music Journal, 24(2), 60-76.

Decker, S., Kendall, G., Schmidt, B., Ludwig, D., & Freed, D. (1986). A modular environment for

 sound synthesis and composition. Computer Music Journal, 10(4), 28-41.

Donati, V. (2005). Virgil Donati Ultimate Play-Along. Alfred Publishing, USA. (26)

Gann, K. (1997). American Music in the Twentieth Century. Shirmer Books, New York (355)

Gann, K. (2001). “Minimal Music, Maximum Impact - Totalism" retrieved February 9, 2014 from,

 http://www.newmusicbox.org/articles/minimal-music-maximal-impact/7/

Galanter, P. (2003). What is Generative Art? Complexity Theory as a Context for Art Theory. In In

 GA2003-6th Generative Art Conference (2003).

Godt, I. (2005). Music: a practical definition. The Musical Times, 146(1890) 83-88.

Greenfield, M. D., Tourtellot, M. K., & Snedden, W. A. (1997). Precedence effects and the

 evolution of chorusing. Proceedings: Biological Sciences, 264(1386), 1355-1361.

Greenfield, M. D. (1994). Synchronous and alternating choruses in insects and anurans - Common

 mechanisms and diverse functions. [Article; Proceedings Paper]. American Zoologist, 34(6),

 605-615.

Harley, J. (1995). Generative processes in algorithmic compostion: chaos and music. Leonardo,

 28(3), 221-224

Kernfeld, B. (2014). Groove (i). The New Grove Dictionary of Jazz, 2nd ed.. Grove Music

 Online.Oxford Music Online. Oxford University Press, retrieved December 14th, 2014, from

 http://www.oxfordmusiconline.com/

Krause, B. (2012). The great animal orchestra: finding the origins of music in the world’s wild

 places [Kindle Edition]. Retrieved from amazon.com

59

http://www.oxfordmusiconline.com/subscriber/article/grove/music/J582400
http://www.oxfordmusiconline.com/subscriber/article/grove/music/J582400

Merriam-Webster (2014). Rhythm. Retrieved March 8, 2014, from http://www.merriam-

! webster.com/dictionary/rhythm

Nash, C. & Blackwell, A.F. (2008). Realtime representation and gestural control of musical

 polytempi. In A. Camurri, S. Serafin and G. Volpe (Eds), Proc. 8th Int Conf on New

 Interfaces for Musical Expression (NIME'08). Genova Italy June 4-8, 28-33.

Opie, T., & Brown, A. (2006). An introduction to eco-structuralism. In International Computer

 Music Conference, New Orleans, ICMA, 9-12.

Opie, T., & Brown, A. (2010). Aesthetic implications of the eco-structuralist process. In

 Proceedings of the Australasian Computer Music Conference 2010, Australian National

 University, Canberra, 43-50.

Oxford Music Online (2014). Rhythm. Retrieved March 6, 2014, from http://!

! www.oxfordmusiconline.com

Pieslak, J. (2007). Re-casting metal: rhythm and meter in the music of Meshuggah. Music Theory

 Spectrum, 29(2) 219-246

Rothenberg, D. (2013). Bug music: how insects gave us rhythm and noise [Kindle Edition].

 Retrieved from amazon.com

Sandred, O. (2004). Interpretation of everyday gestures - composing with rules. Preceeding to the

 Music and Music Science symposium, Stockholm, 1-6.

Smith, L. M. (2000). A Multiresolution Time-Frequency Analysis and Interpretation of Musical

 Rhythm. (Doctor of Philosophy PhD), The University of Western Australia.

Steinitz, R. (1996). Music, maths and chaos. The Musical Times, 137(1837), 14-20.

Wannamaker, R. (2012). Rhythmic relationships, farey sequences, and james tenney’s spectal canon

 for conlon nancarrow. Music Theory Spectrum, 34(2), 48-70.

Whittall, A. (2014). Rhythm. The Oxford Companion to Music. Oxford Music Online. Oxford

 University Press, retrieved March 6, 2014, from http://www.oxfordmusiconline.com

60

http://www.merriam-webster.com/dictionary/rhythm
http://www.merriam-webster.com/dictionary/rhythm
http://www.merriam-webster.com/dictionary/rhythm
http://www.merriam-webster.com/dictionary/rhythm
http://www.oxfordmusiconline.com/subscriber/article/opr/t237/e8496
http://www.oxfordmusiconline.com/subscriber/article/opr/t237/e8496
http://www.oxfordmusiconline.com/subscriber/article/opr/t237/e8496
http://www.oxfordmusiconline.com/subscriber/article/opr/t237/e8496
http://www.oxfordmusiconline.com/subscriber/article/opr/t114/e5635
http://www.oxfordmusiconline.com/subscriber/article/opr/t114/e5635

Appendix A

A.1 Sequencer Modules of PENCIL

FROGGIES A non-linear dynamic rhythmic system modelling frog call behavior (up to
six ‘frogs’ per module). (See chapter 3.9 FROGGIES)

MOM
Allows simultaneous playback of up to thirteen rhythmic modes (per
module) from Rhythm Matrix. Can also be used as a traditional step
sequencer. (See chapter 3.6 Miles Okazaki Method (MOM)

SPIRAL Allows simultaneous playback of up to ninety-six metronomes (per
module). (See chapter 3.7 The Spiral Rhythm Clock (SPIRAL)

61

A.2 Data parsing (and other) modules of PENCIL

Arpeggiator

Allows many ways of controlling the numeric order of its output upon

receiving an input trigger (reset-able). Also allows output of arpeggiator to

be parsed through Vince Manzo’s Modal Object Library. It also allows

output to be sent to any MIDI channel/port with control of note velocity

and duration, and control over behavior of repeated notes. Pitch bend and

program change messages can also be sent from this module. The user is

also able to use a MIDI keyboard controller to play the notes or chords that

the arpeggiator will trigger when it fires. This enables the composer to ‘dip

their hands’ into the computer’s algorithmically generated rhythmic output

providing it with realtime pitched material to work with.

 BangThisValue Allows a value to be set and banged out at a later time.

CCin
Allows MIDI continuous controller messages to be received into the

PENCIL environment

CCout
Allows MIDI continuous controller messages to be sent out from the

PENCIL environment

Comment
A simple text box allowing the user to comment out there user interface

Counter
Counts input with control of output direction and loop max/min (reset-

able).

Delay Delays input trigger bang, float or int by x milliseconds (stop-able).

EveryOther Triggers output bang for every x input bangs (reset-able).

Gate Allows input to be let through a gate or not based on probability

HotHand
Provides user interface for incoming CC data from the HotHand wireless

midi controller (incoming pitch and roll plus the inverse of same).

InThisOrder
Allows incoming trigger to be output to x amount of outputs (up to 20) in

sequential order (reset-able)

Line Generates ramp to a set-able destination over a set-able duration.

62

Maths
Allows simple maths expressions (addition, subtraction, multiplication and

division)

Metronome
Provides a simple metronomic output trigger at any speed definable in

milliseconds or beats per minute

MIDIConvert
Allows an typical 16 pad MIDI controller to be remapped in many ways.

MidiFighter
A user interface for the incoming data of the MidiFighter Classic MIDI

controller.

MidiIn
Allows MIDI pressure, aftertouch and pitchbend messages to be received

into the PENCIL environment.

MidiRouter
Allows the routing of the input of any MIDI input port directly to the

output of any MIDI output port on the computer running PENCIL.

Modulo
Finds the remainder of division of one number by another. Triggers bang

when remainder equals zero.

MotionRecorder

Allows any incoming MIDI CC (or any value within PENCIL between 0

and 127) to be recorded and played back identically upon request, looped

or not. Speed of playback is set-able via percentage of initial speed. Editing

(or indeed creation) of data stored is possible via separate user interface

window.

NoteIn
Allows incoming MIDI note on and note off information to be received

into PENCIL

NoteOut

Allows MIDI note on and note off messages (including duration and

velocity), to be sent from the PENCIL environment on any MIDI channel/

port. Allows, incoming notes to be parsed through Vince Manzo’s Modal

Object Library. Allows sending of pitchbend data and program change

messages.

ONE KNOB
Allows parsing of incoming data in many ways. (See chapter 3.8 One

Knob To Rule Them All (ONE KNOB).

PitchBendOut
Allows MIDI pitchbend data to be sent out of the PENCIL environment on

any MIDI channel/port.

63

ProgramChange
Allows MIDI program change messages to be sent out of the PENCIL

environment on any MIDI channel/port.

QWERTY
Provides user interface for allowing any of the computer keyboard keys to

be used within PENCIL as controllers/triggers of events.

Random

Allows random numbers to be created within a definable minimum and

maximum range. Also provides option for non-repeating random until all

numbers within range have been randomly created whereupon the module

is reset and capable of producing any number within the defined range

once again.

ScaledValue
Allows an input integer or float to be scaled to a minimum and maximum

value and output.

SelectNumber
Allows input number to be checked against variable with positive and

negative results triggering separate outputs.

Speedlim
Allows incoming triggers or numbers to be output at regular intervals

defined in milliseconds.

Switch Allows input to be sent to up to 8 different outputs (one at a time).

SysexOut
Allows MIDI system exclusive messages (strings written in decimal

format) to be sent from the PENCIL environment.

TapTempo

Allows input trigger to be converted into a tempo of beats per minute with

control over how often the calculation is made (average over x amount of

input triggers)

Threshold

Allows incoming integer or float to be compared to definable number as

being: equal to, equal to or greater than, equal to or less than, greater than,

less than, not equal to.

TriggerThisOrder
Allows the precise ordering of trigger events within the PENCIL

environment of up to 20 outgoing events per incoming trigger.

Wiimote

Allows the incoming data of a Nintendo Wiimote to be used within the

PENCIL environment. Third party software called Osculator must be

running in background for Wiimote data to be received by this module.

64

Appendix B

B.1 The Frog Code (java code) by Dr Ollie Bown

import com.cycling74.max.MaxObject;

public class Kuramoto extends MaxObject {

 int N;
 double omega;
 double timeStep;
 double[][] K; //N squared connections, K[i][j] is the effect of frog j on frog i
 double[] theta;
 double[] thetaDot;
 double[][] diff;
 double noise;

 public Kuramoto(int N) {
 this.N = N;
 declareIO(1,3);
 basicSetup();
 }

 public void basicSetup() {
 omega = 1;
 timeStep = 0.1;
 K = new double[N][N];
 theta = new double[N];
 thetaDot = new double[N];
 diff = new double[N][N];
 for(int i = 0; i < N; i++) {
 theta[i] = Math.random() * 2 * Math.PI;
 for(int j = 0; j < N; j++) {
 K[i][j] = 1;
 }
 }
 }

 public void randomise() {
 for(int i = 0; i < N; i++) {
 theta[i] = Math.random() * 2 * Math.PI;
 }
 }

 public void bang() {
 for(int i = 0; i < N; i++) {

65

 thetaDot[i] = omega + noise * (Math.random() * 2. - 1.);
 for(int j = 0; j < N; j++) {
 if(i != j) {
 //accumulate the influence of frog j on frog i
 thetaDot[i] -= K[i][j] * Math.sin(theta[j] - theta[i]);
 }
 }
 }
 for(int i = 0; i < N; i++) {
 theta[i] += thetaDot[i] * timeStep;
 }
 for(int i = 0; i < N; i++) {
 for(int j = 0; j < N; j++) {
 diff[i][j] = (theta[i] - theta[j]) / Math.PI;
 }
 }

 double[] tempTheta = new double[N];

 for(int i = 0; i < N; i++) {
 tempTheta[i] = theta[i] % (2 * Math.PI);
 while(tempTheta[i] < 0) tempTheta[i] += 2 * Math.PI;
 }

 outlet(0, tempTheta);
 outlet(1, thetaDot);
 double[] neighbourDiffs = new double[N];
 neighbourDiffs[0] = diff[0][N-1];
 for(int i = 1; i < N; i++) {
 neighbourDiffs[i] = diff[i][i-1];
 }
 outlet(2, neighbourDiffs);
 }

 public void printDiffs() {
 for(int i = 0; i < N; i++) {
 for(int j = 0; j < N; j++) {
 System.out.print(diff[i][j] + " ");
 }
 System.out.println();
 }
 }

 public void printStatus() {
 post("N = " + N);
 }

 public void setN(int n) {

66

 N = n;
 double[][] newK = new double[N][N];
 theta = new double[N];
 for(int i = 0; i < N; i++) {
 theta[i] = Math.random() * 2 * Math.PI;
 for(int j = 0; j < N; j++) {
 newK[i][j] = 0;
 if(i < K.length && j < K[i].length) {
 newK[i][j] = K[i][j];
 }
 }
 }

 K = newK;
 thetaDot = new double[N];
 diff = new double[N][N];
 }

 public void setOmega(double omega) {
 this.omega = omega;
 }

 public void setTimeStep(double timeStep) {
 this.timeStep = timeStep;
 }

 public void setK(double[][] k) {
 K = k;
 }

 public void setNoise(double noise) {
 this.noise = noise;
 }

 public void setK(double[] k) {
 int index = 0;
 for(int i = 0; i < N; i++) {
 for(int j = 0; j < N; j++) {
 K[i][j] = k[index++];
 }
 }
 }

 public void setSpecificK(int i, int j, double k) {
 K[i][j] = k;
 }

 public void setAllK(double k) {

67

 for(int i = 0; i < N; i++) {
 for(int j = 0; j < N; j++) {
 K[i][j] = k;
 }
 }
 }

 public void setKNeighboursOnly(double k) {
 for(int i = 0; i < N; i++) {
 for(int j = 0; j < N; j++) {
 if((i == j - 1) || (j == i - 1)) {
 K[i][j] = k;
 } else {
 K[i][j] = 0;
 }
 }
 }
 }

 public void setTheta(double[] theta) {
 this.theta = theta;
 }

 public void setTheta(double theta) {
 for(int i = 0; i < N; i++) {
 this.theta[i] = theta;
 }
 }

 public void setThetaDot(double[] thetaDot) {
 this.thetaDot = thetaDot;
 }

 public void setDiff(double[][] diff) {
 this.diff = diff;
 }

}

68

Appendix C

C.1 Rhythm Matrix

C.1.1 How the patterns are derived

Please see Chapter 2.4 Rhythm Matrix for a description of how the rhythms are derived.

C.1.2 How to interpret the books

1. A crotchet is used to symbolise a group of 2 subdivisions.
2. A dotted crotchet is used to indicate a group of 3 subdivisions.
3. A minim is used to indicate a group of 4 subdivisions.
4. A minim with a dot in the middle is used to indicate a group of 5 subdivisions.
5. The changing stem direction is only used to make the two different rhythmic groupings

clearer.
6. Notes that are highlighted are notes that land on a beat.
7. The number at the top of each page is used to remind what the current subdivision is.

C.2 Rhythm Matrix 6 beats

Can be found in PDF format on CD 2 enclosed in the folder named “Appendix C”.

C.3 Rhythm Matrix 4 beats addendum

Can be found in PDF format on CD 2 enclosed in the folder named “Appendix C”.

C.4 Rhythm Matrix Combinator by Isaac Hayward

Can be found in html format on CD 2 enclosed in the folder named “Appendix C”.

Rhythm Combinator HTML script:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Rhythm Combinations & Permutations</title>
</head>

<body style="font:12px Arial, Helvetica, sans-serif;">
<table width="581" border="0">
<tr>
<td colspan=4>
<h1>THE RHYTHM COMBINATOR</h1>

69

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

<div align="right">Isaac Hayward 2012
</div>
<hr style="border:1px #000000 solid;" noshade /></td>
</tr>

<form name="gui">

<tr>
 <td width="116"><label>Beats in bar:</label></td>
 <td width="155"><input type="text" name="fBeats" value="16" size="3" /></td>
 <td width="160"><label>Number of note values:</label></td>
 <td width="122"><label>
 <select name="fBagSize" id="fBagSize" onchange="updateOptions();">
 <option value="1">1</option>
 <option value="2" selected="selected">2</option>
 <option value="3">3</option>
 <option value="4">4</option>
 <option value="5">5</option>
 <option value="6">6</option>
 <option value="7">7</option>
 <option value="8">8</option>
 <option value="9">9</option>
 <option value="10">10</option>
 <option value="11">11</option>
 </select>
 </label></td>
 </tr>
 <tr>

 </tr>
 <tr>
 <td>Note values:</td>
 <td colspan="3">
 <input name="dur0" type="text" id="dur0" value="2" size="2" maxlength="2" />
 <input name="dur1" type="text" id="dur1" value="3" size="2" maxlength="2"/>
 <input name="dur2" type="text" id="dur2" value="5" size="2" maxlength="2" />
 <input name="dur3" type="text" id="dur3" value="7" size="2" maxlength="2" />
 <input name="dur4" type="text" id="dur4" value="11" size="2" maxlength="2" />
 <input name="dur5" type="text" id="dur5" value="13" size="2" maxlength="2" />
 <input name="dur6" type="text" id="dur6" value="17" size="2" maxlength="2" />
 <input name="dur7" type="text" id="dur7" value="19" size="2" maxlength="2" />
 <input name="dur8" type="text" id="dur8" value="23" size="2" maxlength="2" />
 <input name="dur9" type="text" id="dur9" value="31" size="2" maxlength="2" />
 <input name="dur10" type="text" id="dur10" value="37" size="2" maxlength="2" />
</td>

 </tr>

 <tr>
 <td colspan="4">
 <div align="right"><input type="button" value="Calculate" onclick="Calculate();" /></div>
 </td>
 </tr>

70

<tr>
<td colspan="4">
<textarea name="output" cols="70" rows="40">
</textarea>
</form>
</td>
</tr>
</table>
<script language="javascript">

var MAX_BAG_SIZE = 11;
var BAG_SIZE = 2 ;
var bag = new Array(MAX_BAG_SIZE);

var BAR_SIZE = 16;

var counter = 0;

var output = document.gui.output;
output.value = "";

var COMBO = new Array();

updateOptions();

function Log(loggables) {
 output.value = output.value + loggables;
}

function AddCombo(digits) {
var result=0;
 for (z = 0; z <= digits; z++) {
 result += parseInt(COMBO[z]);
 }
 return result;
}

function CatCombo(digits) {
var result="";

 for (n = 0; n <= digits; n++) {

 result += COMBO[n].toString();
 }
 return result;
}

function Recursor(digit) {

var i;
 for (i = 0; i < BAG_SIZE; i++) {
 // set digit to be the one we've taken from the bag
 COMBO[digit] = bag[i];

 // now test to see if it's over or equal to

71

 if (AddCombo(digit) == BAR_SIZE) {
 //Tell us of the great news
 Log(CatCombo(digit)+"\n");
 counter++
 continue;
 } else if (AddCombo(digit) >BAR_SIZE) {
 continue;
 }

 Recursor(digit+1);
 continue;
 }

 return;
}

function Calculate() {

 output.value = "";

 BAR_SIZE = document.gui.fBeats.value;
 if (BAR_SIZE == 0) {
 alert("Please enter number of beats in bar.");
 return;
 }

 BAG_SIZE = document.gui.fBagSize.value;

 for (n = 0; n < BAG_SIZE; n++) {

 eval("bag[n] = document.gui.dur" + n + ".value;");

 if (bag[n] == 0) {
 alert("Please enter note value #" + (n+1) + ", or change the number of note values.");
 return;
 }

 }

 counter = 0;

 Recursor(0);

 Log("\nFound " + counter + " combination(s).");

}

function updateOptions() {

 for (n = 0; n < MAX_BAG_SIZE; n++) {
 if (n < document.gui.fBagSize.value) {
 eval("document.gui.dur" + n + ".disabled = false;");

72

 } else {
 eval("document.gui.dur" + n + ".disabled = true;");
 }
 }
}

//Recursor(0);

</script>

</body>
</html>

73

Appendix D

D.1 Software CD - CD No. 1

D.1.1 PENCIL

D.1.2 TURDS

D.1.3 Max616Runtime_131209.dmg

D.1.4 pasteMeIntoPatchForImacsUsage.maxpat

D.1.5 IMACS.maxpat

D.1.6 README_SOFTWARE_INSTALLATION_INSTRUCTIONS.rtf

D.1.7 README_PENCIL_IMACS_HELP_TUTORIAL_FILE.rtf

D.1.8 README_TURDS_HELP_TUTORIAL_FILE.rtf

Installation instructions are found in the README_SOFTWARE_INSTALLATION_INSTRUCTIONS.rtf

document located on the Software CD No. 1.

74

Appendix E

E.1 Audio CD (CD 2)

E.1.1 Fourteen composition studies

Track 1: Study No. 1 2:31 min

Track 2: Study No. 2 7:49 min

Track 3: Study No. 3 1:43 min

Track 4: Study No. 4 1:48 min

Track 5: Study No. 5 3:48 min

Track 6: Study No. 6 11:14 min

Track 7: Study No. 7 4:31 min

Track 8: Study No. 8 1:00 min

Track 9: Study No. 9 1:27 min

Track 10: Study No. 10 5:00 min

Track 11: Study No. 11 4:03 min

Track 12: Study No. 12 18:22 min

Track 13: Study No. 13 3:50 min

Track 14: Study No. 14 7:06 min

Total playing time: 74 minutes and 12 seconds

75

