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Abstract 

Environmental enrichment (EE) provides animals with sensory, motor and social stimulation above 

that usually experienced within a laboratory setting, and has been shown to have a variety of 

impacts upon the nervous system and animal behaviours. There has recently been an increase in the 

number of studies investigating the impact of environmental manipulations such as EE. 

The striatum is the entry nucleus for the basal ganglia, receiving afferent projections from the 

cerebral cortex, thalamus and brainstem, and in turn projecting to other nuclei within the basal 

ganglia, controlling activity within, and output of, this system. The striatum contains a population of 

fast-spiking inhibitory interneurons expressing the calcium-binding protein Parvalbumin (PV) that 

receive direct input from corticostriatal afferents, project to the medium spiny output neurons of 

the striatum, and take part in feed-forward inhibition and modulation of the activity within this 

nucleus.  

PV+ inhibitory interneurons within the striatum have been shown to correlate with Perineuronal 

Nets (PNNs), an extracellular matrix structure, in determined ratios. In adult animals, PV+ inhibitory 

neurons within other areas of the brain have been shown to regulate parvalbumin expression in 

response to EE and neural activity levels. I found that EE increased the number of PV+ inhibitory 

interneurons present within the striatum of adult animals, resulting in a change in the correlation 

ratio of these neurons with PNNs, providing evidence that EE can continue to influence neural 

circuitry beyond the critical period.   

The development of PV+ inhibitory neurons in other areas of the brain has been shown to control 

the onset of the critical period, a time in early life when plasticity within a neural system is at its 

peak. Maturation of these neurons is known to be regulated by a neurotrophic growth factor, Brain-

Derived Neurotrophic Factor (BDNF), both within the striatum and other regions of the brain. EE 

accelerates cellular and functional maturation of sensory systems within the brain, resulting in 

earlier onset of system-specific critical periods. EE has also been shown to accelerate the maturation 
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of sensorimotor behaviours potentially mediated by the striatum. I found that young animals raised 

within EE demonstrate accelerated maturation of PV+ inhibitory interneurons and elevated levels of 

BDNF protein within the striatum. Exposure to EE also resulted in an alteration to the ultrasonic 

vocalisation (USV) call profile of juvenile mice, providing evidence of a change in a striatally-

mediated behaviour. Together, these results suggest that a putative early-life striatal critical period 

regulated by the maturation of PV+ inhibitory interneurons is able to be influenced by 

environmental factors.  

Different laboratory groups may utilise different EE paradigms depending upon the animal species, 

area of the brain, and particular issue under investigation. Thus, the efficacy of a particular 

environmental paradigm must be determined when undertaking research. Most techniques used to 

determine whether EE paradigms are effective are either post-mortem anatomical, molecular and 

physiological metrics, or behavioural tests requiring a degree of training and exposure to testing 

arenas prior to conducting experiments. I found that the Puzzle-Box, a test of goal-orientated 

learning, problem solving and memory, successfully and consistently returned evidence of the 

impact of EE upon animal behaviours.  

Animals exposed to EE demonstrate improved performance within behavioural tasks assessing 

cognitive capacities and sensorimotor coordination. The striatum is known to mediate a variety of 

behaviours, including cognitive processes and coordination of sensory and motor behaviours. I found 

that animals raised within EE demonstrated improved problem-solving and goal seeking within the 

Puzzle-Box, and slightly improved task acquisition upon a rotarod motor learning task. Behavioural 

patterns of movement within the Puzzle-Box differed in EE animals compared to those raised within 

standard laboratory housing. PNNs within the brain are able to be dissolved by use of the bacterial 

enzyme Chondroitinase ABC (ChABC), increasing neuroplasticity and resulting in an “immature” state 

within neural circuitry. I found that striatal ChABC treatment exerted an opposite effect to EE, 

impairing problem-solving behaviour within the Puzzle-Box. Enrichment is also known to increase 
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plasticity levels within neural circuitry; however, animals raised within EE did not show the same 

degree of ChABC-induced behavioural changes as mice raised within standard laboratory housing. 

Together, these results suggest that plasticity mechanisms and striatal effects of EE and ChABC 

treatment work via differing pathways.  

The striatum is known to play a role in decision-making and choice of action behaviours. One 

behavioural task used to assess decision-making is the Iowa Gambling Task (IGT), where participants 

make choices between overall disadvantageous and overall advantageous decisions. There are 

several rodent versions of the IGT (RGT) that have shown similar results to human testing, and 

demonstrate that rats are capable of performing this task. Impaired decision-making within the IGT 

is thought to result from an underactive ability to inhibit behaviours, suggesting that the striatum is 

likely involved in mediating decision-making during this behavioural task. I successfully developed a 

murine version of the RGT using the IntelliCage, a novel behavioural testing arena, and found that 

exposure to EE had little effect upon reward-based decision making within this task. Despite little 

effect of EE upon RGT performance, the development of a murine gambling task is potentially of 

great use for the assessment of animal models of human diseases known to interfere with decision-

making during the IGT.  

The basal ganglia is integral to the healthy and whole functioning of an organism, mediating 

interactions with and responses to an organism’s surroundings. The effects of environmental 

enrichment upon the striatum and animal behaviours documented within this thesis provide 

evidence for the significant impact that an organism’s surroundings may exert upon this important 

part of the brain. Determining the manner in which environmental enrichment influences specific 

cognitive neural networks may assist in the development of early education and intervention 

programs targeted at young children, or environmentally-based therapies for individuals suffering 

from neurological disease or injury.  
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Chapter 1: Literature Review 

 

“How can a three-pound mass of jelly that you can hold in your palm 

imagine angels, contemplate the meaning of infinity, and even 

question its own place in the cosmos? Especially awe-inspiring is the 

fact that any single brain, including yours, is made up of atoms that 

were forged in the hearts of countless, far-flung stars billions of years 

ago. These particles drifted for eons and light-years until gravity and 

change brought them together here, now. These atoms now form a 

conglomerate- your brain- that can not only ponder the very stars 

that gave it birth but can also think about its own ability to think and 

wonder about its own ability to wonder. With the arrival of humans, 

it has been said, the universe has suddenly become conscious of 

itself. This, truly, is the greatest mystery of all.”  

- Vilayanur S. Ramachandran, The Tell-Tale Brain: A Neuroscientist’s Quest 

for What Makes Us Human 
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Investigating the influence an organism’s environment may exert upon its nervous system is a 

growing field of study, with manipulations such as environmental enrichment used to assess the way 

surroundings can impact both the brain and behaviours of laboratory animals. This thesis focuses on 

the entry nucleus of the basal ganglia, the striatum, responsible for gating input to this region of the 

brain [1-3]. The basal ganglia and striatum are highly important components of the brain, connecting 

the cerebral cortex with older areas such as the thalamus and brainstem. Integrating sensory [4-6], 

motor [7-9], and cognitive [10-13] information, the striatum is placed in an ideal position to initiate 

behaviours and actions based on external stimuli, mediating the interaction between an organism 

and its surroundings.  

The striatum is a highly plastic system with the hallmarks of undergoing a critical period, and its 

placement within the brain makes it particularly susceptible to environmental manipulations. 

Environmental enrichment provides animals with sensory input, motor experience and social 

interaction above and beyond that usually experienced within standard laboratory housing. 

Enrichment is known to effect behaviours mediated by the basal ganglia and striatum [9, 14-17], and 

affect the anatomy [16], protein levels [15, 18]  and gene expression [19] of this nucleus. The full 

extent of environmental influences upon the striatum, however, is still unknown. It is not clear how 

environmental factors impact striatal function or the development of circuits contained within this 

nucleus. 

The following review will touch on these issues. I will first provide an overview of the striatum and its 

connections and composition, followed by an explanation of critical periods and the role that 

inhibitory circuitry, extracellular matrix and neurotrophic factors play in determining the timing of 

these important developmental epochs. Finally, I will cover the concept of environmental enrichment 

and previous work that has been conducted regarding this manipulation, as well providing an 

overview of the research contained within this thesis.   
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1. The Striatum 

The basal ganglia help to regulate motor behaviours, habit learning and action selection [1-3] and is 

comprised of the caudate and putamen nuclei (together known as the striatum), the globus 

pallidus, the substantia nigra, the nucleus accumbens, and subthalamic nuclei (Fig. 1.1). Located 

around the third ventricle and cerebral aqueduct, the basal ganglia takes part in sensory, motor, 

and cognitive behaviours, including the coordination of sensorimotor function, habit learning, 

reward and goal-orientated learning, action selection, and limbic function [1-3].  

This literature review will focus on the striatum, the main input nucleus of the basal ganglia [1-3] 

and an important regulator of sensory [4-6], motor [7-9] and cognitive [10-13] functions and 

behaviours. The following provides an outline of the circuitry and composition of this nucleus, with 

a particular emphasis on behavioural functions mediated by the striatum. The striatum is 

composed of the caudate and putamen nuclei: in the primate striatum, these nuclei are separated 

by the internal capsule, a tract of white matter connecting the thalamus to various cortical areas 

(Fig. 1.1A). In the rodent striatum however, located ventral and medial to the corpus callosum in 

the caudal plane, the caudate and putamen nuclei are intermingled with one another and the 

internal capsule (Fig. 1.1B) [5, 20-22]. 
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Figure 1.1 Diagram of the basal ganglia 

(A) A diagram representing the structure of the basal ganglia, as it appears within a coronal section 

of the human brain. The basal ganglia is composed of the caudate nucleus, putamen nucleus, 

globus pallidus internal and external, the substantia nigra, and the subthalamic nuclei. These 

structures are located around the third ventricle and cerebral aqueduct within the brain. Within the 

human brain, the internal capsule (red arrow) separates the caudate and putamen nuclei from the 

globus pallidus. Striatum: caudate + putamen; GPe: globus pallidus external; GPi: globus pallidus 

internal; STN: subthalamic nuclei; SN: substantia nigra. (B) A diagram representing the structure of 

the basal ganglia, as it appears within a coronal section of the rodent brain. Within the rodent 

brain, the caudate and putamen nuclei are not separate (striatum, highlighted in yellow) and are 

intermingled with the internal capsule. Image taken from Paxinos & Watson, 2004 [22]. CPu: 

caudate-putamen (striatum); LGP: lateral/external globus pallidus.  

 

 

 

 

 

 

1.1 Striatal Circuitry  

Afferent input to the striatum comes from various regions within the brain: glutamatergic input is 

received from the thalamus and the cerebral cortex; serotonergic input from the raphe nucleus 

within the brainstem; and dopaminergic input from the substantia nigra pars compacta within the 

midbrain [1, 20, 23, 24]. Recently, it has been demonstrated that the striatum receives input from 

the cerebellum via a disynaptic pathway passing through the thalamus [25, 26]. 
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Output from the striatum is inhibitory: within the primate brain the two output nuclei of the basal 

ganglia, the globus pallidus internal (GPi) and substantia nigra pars reticulate (SNpr), tonically inhibit 

projection target activity, and are themselves modulated by afferent input received from the 

striatum via the rest of the basal ganglia [1, 27]. Two pathways – the direct and indirect pathways – 

provide the link between the striatum and the GPi and SNpr (Fig. 1.2A). The direct pathway routes 

through the GPi, whilst the indirect pathway courses through the globus pallidus external (GPe), and 

subthalamic nuclei [1, 27]. Stimulation of the direct pathway enables activation of the thalamus and 

ultimately the cerebral cortex. Activation of the indirect pathway briefly increases inhibition of the 

thalamus, preventing the activity of thalamocortical neurons [1, 27]. The direct and indirect 

pathways may be considered as “closed loop” circuits, following the well-characterised basal ganglia-

thalamocortical course of connectivity [28]. There are also “open loop” circuits connecting the basal 

ganglia to regions within the cerebral cortex via currently unknown pathways [28]. These 

connections form the neural circuitry of the basal ganglia and its links with the cerebral cortex and 

thalamus, enabling behaviours mediated by the striatum and other basal ganglia nuclei to take 

place. 

Within the rodent brain, there also exist direct and indirect pathways within the basal ganglia (Fig. 

1.2B). The direct pathway consists of striatal projections to the SNpr and endopunducular nucleus 

(the equivalent of GPi), whilst the indirect pathway passes through the GPe [29]. Distinct populations 

of efferent projection neurons within the striatum take part in each of these pathways [30]: the 

direct pathway consists of axon projections from substance P-containing neurons that express the 

D1 dopamine receptor, whilst the indirect pathway involves axon projections from enkephalin-

containing neurons expressing the D2 dopamine receptor [31-33] (Fig. 1.2B).  
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Figure 1.2 Diagram of the basal ganglia circuitry within the primate and rodent brain 

A) A diagram representing the connections between the cerebral cortex, thalamus, and nuclei within 

the primate basal ganglia. Excitatory glutamatergic afferent input from the cerebral cortex and 

thalamus, and dopaminergic afferent input from the substantia nigra pars compacta project to the 

striatum. Inhibitory projections from the striatum form the “direct” pathway with the globus pallidus 

internal and the “indirect” pathway with the globus pallidus external. Both direct and indirect 

pathways eventually project to the thalamus, which in turn projects back to the striatum and the 

cerebral cortex. B) A diagram representing the connections between the cerebral cortex, thalamus, 

and nuclei within the rodent basal ganglia. The circuitry is similar to that seen within the primate 

basal ganglia, with the exception of the endopeduncular nucleus in place of the globus pallidus 

internal. Striatal projections to the direct and indirect pathways originate from distinct populations 

of neurons: the direct pathway from substance P-containing neurons that express the D1 dopamine 

receptor; and the indirect pathway from enkephalin-containing neurons that express the D2 

dopamine receptor [31-33].  
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1.2 Striatal Composition and Input 

Unlike the cerebral cortex the striatum is not arranged in cellular layers; despite its apparent 

homogeneity, there are histochemically and functionally distinct zones within this nucleus [34, 35], 

similar to other brain regions.  

A formation of acetylcholinesterase-poor regions, described as “striosomes”, along with the 

acetylcholinesterase-rich region known as the “matrix” make up the mammalian striatum [36, 37]. 

Striosomes and matrix differ both histochemically and in the projections they receive (Fig. 1.3). 

Within the rodent striatum, striosomes are rich in mu-opioid binding sites [38], whilst the matrix 

contains both calbindinD28kD immunoreactive neurons and a rich plexus of somatostatin fibres and 

dopamine islands [34, 35].  

Afferent input to striosome and matrix regions of then rodent striatum originate from distinct areas 

of the brain. Striosomes principally receive projections from deep layer V and layer VI neurons within 

the cerebral cortex, and the majority of projections from allocortical areas and prelimbic cortex [20]. 

The matrix principally receives projections from layers II, III and superficial layer V of the cerebral 

cortex, and the majority of projections from neocortical areas, agranular motor cortex, cingulate 

cortex, somatic sensory cortex, and visual cortex [20]. Both striosomes and matrix receive 

corticostriatal projections from prefrontal and motor areas and nigrostriatal projections [5, 6, 20, 

24], whilst input from the thalamus and raphe nucleus terminate within the matrix compartment 

[37, 39].  
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Figure 1.3 Diagram of the striosome/matrix compartments within the striatum 

A diagram representing the appearance of the acetylcholinesterase (ACh) poor/mu opioid rich 

striosome and ACh rich/mu opioid poor matrix compartments of the striatum. Striosomes appear as 

“patches” within the matrix, and are sometimes referred to as such. 
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1.3 Striatal function 

Given the wide variety of input received by the striatum[5, 6, 20, 24], it is not unexpected that this 

nucleus mediates a range of behaviours [8, 9,10, 13, 52, 53, 54, 55, 56, 57].  

The striatum is involved in cognitive processes such as decision-making [13, 40], choice of action 

[40], goal-orientated learning [41], rule-based learning [10], and task acquisition [42]; as well as 

sensorimotor behaviours, including motor coordination [9, 43], balance [9, 44], motor skill 

acquisition [8, 45], and synchronisation of sensory and motor input [9, 43, 44]. Functions carried out 

by the rodent striatum are, similar to afferent input, localised within certain regions of this nucleus.  

Some regions of the striatum are known to carry out both cognitive and sensorimotor functions: 

dorsolateral striatum mediates the transition from flexible outcome-based actions to habitual 

decision-making processes [8, 40, 46], whilst also being involved in the coordination of limbs during 

locomotion [44], and the maintenance of balance and sensorimotor coordination [9, 43, 44].   

More specifically, the dorsomedial striatum is involved with the acquisition of goal-orientated 

learning [41], dorsal striatum in the acquisition of rule-based learning  [10]. Medial striatum in turn 

has been shown to mediate general task acquisition [42], position discrimination and reversal 

learning [47]. Ventral and medial striatum are known to carry out sensorimotor behaviours, with 

both regions involved in the maintenance of balance and sensorimotor coordination [9, 43, 44]. 

Ventral striatum is also involved in the coordinated movement of forelimbs [9]. 

 

1.4 Cell types within the Striatum 

The rodent striatum is composed of a number of different cell types (Fig. 1.4) [48-51]. The following 

provides a brief description of the main neurons present, with a particular emphasis on Parvalbumin-

expressing interneurons, a key regulator of striatal circuitry [50, 52], and a focus of the work 

presented in this thesis. 
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The striatum not only differs from the cerebral cortex in its cytoarchitecture, but also in the types of 

neurons present within this brain region. Nearly all known neurons within the striatum contain the 

inhibitory neurotransmitter Gama Amino Butyric Acid (GABA), with the sole exception of the 

population of interneurons containing the neurotransmitter Acetylcholine (Ach) [49-54] (Fig. 1.4). 

The vast majority of neurons present within the striatum are GABA-ergic medium spiny projection 

neurons, which constitute up to 90% of striatal neurons [49, 54]. These cells receive nearly all input 

projection to the striatum, and provide all of the efferent output from this nucleus. Medium spiny 

neurons are alike in morphology, unlike the interneurons that make up the remaining 10% of the 

striatal neuronal population [48, 49, 54]. Four classes of interneurons have been identified within 

the striatum: large cholinergic neurons as well as three types of GABA-ergic inhibitory interneurons, 

containing the calcium-binding protein calretinin (CR), the neuropeptide somatostatin, or the 

calcium-binding protein parvalbumin (PV), [48-51].  
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Figure 1.4 Diagram of cell types and their connections within the striatum 

A diagram representing the five known types of neurons present within the striatum, and their 

synaptic connections with one another. There are four types of interneurons found within the 

striatum, represented here in grey, three of which are GABA-ergic inhibitory interneurons and the 

fourth of which contains the neurotransmitter acetylcholine. Striatal interneurons form synaptic 

connections with one another and with the efferent neurons of the striatum, medium spiny 

projection neurons, shown here in pink. The connections of calretinin-containing neurons are not yet 

determined. CR+: calretinin-expressing, ACh+: acetylcholine-expressing, PV+: parvalbumin-

expressing, SS: somatostatin-expressing, NPY: neuropeptide Y-expressing, NOS: nitric oxide 

synthase-expressing.  
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1.4.1 Medium Spiny Neurons 

Medium spiny neurons have a round or polygonal soma with a diameter of around 15m and four to 

eight primary dendrites that develop in a roughly spherical pattern of arborisation over an area 

around 500m in diameter, and are covered in dense dendritic spines. The axons of these neurons 

originate from the cell body, and form a dense local axon collateral plexus [49, 54, 55].  

Maturation of medium spiny neurons begins around embryonic day (ED) 12 with differentiation, and 

continues until several weeks after birth [54]. Medium spiny neurons do not display adult 

electrophysiological properties until well into the third and fourth postnatal weeks, during which 

time the morphology of these cells continues to mature [54]. The dendrites of these neurons do not 

develop adult levels of spine density until the third or fourth postnatal week [54]. Many 

morphological characteristic such as somatic area, number of primary dendrites, distance to first 

dendritic branch, and dendritic or axonal field diameter remain unchanged throughout the 

development of medium spiny neurons [54]. 

Medium spiny neurons develop along caudorostral and mediolateral gradients within the rodent 

striatum [54]. The majority (approximately 85%) of corticostriatal projections to these neurons 

terminate upon dendritic spine heads, with the remainder synapsing upon dendritic shafts, necks of 

dendritic spines and other unknown targets [54]. As animals mature, there is an increase in the 

density of asymmetric (likely excitatory corticostriatal) axospinous synapses upon striatal medium 

spiny neurons [54]. Symmetric synapses (likely inhibitory) upon medium spiny neurons undergo little 

developmental change and are relatively mature around 10 days postnatal [54]. The majority of 

symmetric synapses terminate upon spine necks, and occasionally onto spine heads. There appears 

to be no synaptic interaction between medium spiny neurons within the rodent striatum, although 

there is some suggestion of gap junction enabled connectivity between these neurons in young 

animals [54]. Medium spiny neurons fire phasically following activation by excitatory post-synaptic 

potentials received from extra-striatal projections originating within the cerebral cortex [56-59], with 
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the activity of this neural population modulated within the striatum by GABA-ergic and cholinergic 

interneurons [60, 61]. Medium spiny neurons taking part in the direct pathway that express the D1 

dopamine receptor are less excitable than neurons taking part in the indirect pathway that express 

the D2 dopamine receptor [62]. 

 

1.4.2 Cholinergic Interneurons 

Cholinergic interneurons within the striatum are large, with a 20 – 50 m diameter soma that may 

be spindle-like, oval, triangular or multipolar [48, 50]. These neurons have a relatively small number 

of primary dendrites (2 – 5) but display a widespread dendritic arbour that can reach over 600m, 

and be 200m distant from the cell body of origin [48, 50]. There is little cortical innervation upon 

both the soma and dendrites of cholinergic interneurons [63], although they have been shown to 

receive thalamic and dopaminergic inputs along with axodendritic input from other striatal 

cholinergic cells [49, 52, 63]. Cholinergic interneurons are located within the matrix compartment of 

the striatum [45]. Given the extensive dendritic arbour and synaptic contacts made with medium 

spiny projection neurons and other striatal interneuron populations, it seems that cholinergic 

interneurons act as associative interneurons within the striatum, taking the place of associative fibre 

systems seen in other areas of the brain [56, 63, 64].  

Cholinergic interneurons constitute a population of tonically active neurons within the rodent 

striatum that display constant, irregular firing patterns [59, 65].When activated, these neurons 

demonstrate long duration action potentials, with a long-lasting after hyperpolarisation effect [48]. 

These neurons are thought to modulate thalamic input to the striatum, and integration of the direct 

and indirect pathways within the basal ganglia, facilitated by their connectivity [49, 50, 61, 63].  

Cholinergic interneurons are observed within the lateral region of the rodent striatum on postnatal 

day one, and reach adult numbers during the second month of life [50]. Before postnatal day 20 
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(P20), a greater number of these neurons is present in the lateral portion of the striatum. 

Afterwards, cholinergic interneurons are distributed evenly throughout the striatum [50]. It is 

thought that this trajectory of maturation is due to a change in function from Acetylcholine acting as 

a developmental factor to becoming a mature neurotransmitter regulating striatal activity [50].  

 

1.4.3 Calretinin Inhibitory Interneurons 

Calretinin is a calcium-binding protein, found in small aspiny neurons within the rodent striatum [49, 

50, 52]. Calcium-binding proteins are thought to buffer the effects of fast calcium ion movement 

within a cell, preventing excitotoxicity and enabling the occurrence of fast-spiking action potentials 

[66, 67]. Striatal calretinin (Cr+) inhibitory interneurons are GABA-ergic and have a medium sized 

oval or polygonal soma 7 – 20m in diameter [49, 50, 52]. A low number of primary dendrites (2 – 3) 

originate from this soma, and in turn branch to give two or three secondary and tertiary dendrites, 

tapering to very thin processes that may extend to beyond 200m from the cell body [50]. Large 

numbers of Cr+ inhibitory interneurons are present within the striatum at birth, and display a 

mediolateral gradient of maturation until the third postnatal week, when distribution becomes more 

homogeneous [50]. The number of these neurons present within the rodent striatum increases until 

P5; during the following two weeks there is a decline in number until adult levels of expression are 

reached [50]. This transient expression of a calcium-binding protein is thought to protect neurons 

against calcium toxicity during the early developmental period [50]. Cr+ inhibitory interneurons 

make up a very small proportion of the total neuronal population within the striatum, and as such 

their physiological properties are less well characterised than those of other neurons within this 

nucleus.  
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Table 1.1 Summary of striatal neurons and their connections. 

 Neurotransmitter Soma dimensions Afferent input Efferent output 

Medium spiny 

projection 

neurons 

GABA 15m, 

round/polygonal  

Cortex, PV+, 

ACh+ & SS+ 

striatal neurons 

 

Globus Pallidus External, 

Endopeduncular nucleus, 

Substantia Nigra pars 

reticulata 

Cholinergic 

Interneurons 

Acetylcholine 20 – 50m, 

spindle-like/ 

triangular/oval/ 

multipolar 

Thalamus, 

Substantia 

Nigra, PV+ & 

SS+ striatal 

neurons. 

Striatal medium spiny 

projection neurons & SS+  

neurons 

Calretinin 

Interneurons 

GABA 7 – 20m,  

oval/polygonal 

Not yet 

determined 

Not yet determined 

Somatostatin 

Interneurons 

Nitric oxide synthase 

(NOS), somatostatin, 

neuropeptide Y & 

GABA 

12 – 25m  Cortex, 

Substantia Nigra 

& striatal ACh+ 

neurons. 

Striatal medium spiny 

projection neurons & 

Ach+ neurons 

Parvalbumin 

Interneurons 

GABA 10 – 25m, oval Cortex & 

Thalamus. 

Striatal medium spiny 

projection neurons & 

ACh+ neurons 

 

Table 1.1 Summary of striatal neurons and their connections. 

Cr+: calretinin, ACh+: acetylcholine, PV+: parvalbumin, SS: somatostatin, NPY: neuropeptide Y, NOS: 

nitric oxide synthase, GABA: Gamma Amino Butyric Acid. 
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1.4.4 Somatostatin Inhibitory Interneurons 

Somatostatin is a neuropeptide, derived from secretory proteins formed within the cell body of 

neurons, and acts as a neurotransmitter at short range [68-70]. Somatostatin (SS+) neurons within 

the rodent striatum are aspiny, with a soma 12 – 25m in diameter, relatively few dendrites and 

extensive axonal arborisations [48]. This neural population expresses a greater range of 

neurotransmitters and co-transmitters than any other striatal neurons, containing nitric oxide 

synthase (NOS), somatostatin (SS), neuropeptide Y, and low levels of GABA [70-75]. Approximately 

20% of these neurons also contain the calcium-binding protein calbindin D, thought to protect 

against calcium toxicity during fast-spiking action potentials [67, 76].  

SS+ interneurons within the striatum receive direct cortical input, along with dopaminergic 

innervation from the SNpc and cholinergic innervation from ACh+ interneurons within the striatum 

[24, 64, 77, 78]. In turn, the terminals of these neurons synapse upon the cell bodies and dendrites 

of other striatal neurons, including medium spiny projection neurons [79]. It is thought that SS+ 

interneurons take part in feed-forward processing and that their unusually long axons allow for an 

influence on neurotransmission over a great area [24, 52, 79]. SS+ neurons are visible within the 

rodent striatum prior to birth, appearing around ED 18 and do not display a clear anatomical 

gradient of development, suggesting that there are multiple subtypes of these interneurons present 

within this nucleus [80-82].  

 

1.4.5 Parvalbumin Inhibitory Interneurons 

Similar to other populations of inhibitory interneurons found within the rodent striatum, 

parvalbumin-expressing interneurons also contain a calcium-binding protein, in this case 

parvalbumin (PV), to protect against calcium toxicity during fast-spiking action potentials [48, 66, 67, 

83-85]. PV+ interneurons have a medium, oval shaped soma 10-25m in diameter, with three to five 
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thick primary dendrites originating from the cell body. These dendrites are aspiny, branch into thin 

processes a short distance from the cell body, and form elaborate, dense dendritic arbours over 200 

– 300m [48, 50, 86]. These neurons possess dense axonal branches very near to the dendritic 

arbour, with a great deal of collateral branching [48].  

PV+ interneurons within the rodent striatum form axosomatic and axodendritic synapses with other 

PV+ neurons and medium spiny projection neurons within this nucleus [54, 63]. The vast majority of 

input to PV+ interneurons originates from the cerebral cortex, although these neurons also receive 

direct asymmetrical (likely excitatory) synaptic input from the parafascicular nucleus of the thalamus 

[60, 87, 88]. The connections of striatal PV+ neurons thus provide a link between the cerebral cortex 

and medium-spiny projection neurons, enabling them to regulate activity levels, integrate synaptic 

inputs over large areas, and provide feed-forward modulation of medium spiny projection neurons 

[50, 52]. 

Along with synaptic connections, PV+ neurons within the rodent striatum are also connected to one 

another electrotonically through gap junctions formed between membranes of adjacent cells [86, 

89]. This electrical coupling allows PV+ interneurons to act as a syncytium within the striatum, 

coordinating action potential firing and activity within the microcircuitry formed between these 

neurons [90-94]. Striatal PV+ neurons are GABA-ergic, express the fast activating Shaw-like 

potassium channel, Kv3.1 [48, 87], and are accordingly able to fire fast action potentials: these 

neurons display short duration spikes, with short after-hyperpolarisations, and can fire at a high rate 

with little adaptation of spike frequency [48]. The electrophysiological properties of PV+ 

interneurons, together with their high levels of electrotonic coupling, indicates that these neurons 

are capable of generating fast action potential responses, coordinated over a large field within the 

striatum.  

PV+ inhibitory interneurons emerge during the embryonic period, and continue to mature 

throughout early postnatal life. The peak period of production for these neurons are ED 14 to 17, 
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with a greater density present within the lateral part of the rodent striatum [95]. This lateral to 

medial gradient is maintained throughout development, with mature animals having a greater 

density of PV+ neurons within lateral striatum [50, 53, 96]. Striatal PV+ inhibitory interneurons have 

also been revealed to mature along a caudorostral gradient [50, 53, 95].  

Despite the presence of these neurons within the rodent striatum from an early age, they do not 

fully mature until around the fourth postnatal week. Striatal PV+ inhibitory interneurons are first 

able to be visualised using immunohistochemical techniques around P9, when neurons become 

visible in the lateral portion of the striatum. The visible expression of PV spreads throughout the 

striatum until reaching adult levels around P28 [50]. This apparent increase in striatal PV+ inhibitory 

interneurons during early life is thought to result from an up-regulation of the parvalbumin calcium-

binding protein in response to afferent innervation of these neurons [50, 87]. Corticostriatal 

connections are established towards the end of the first postnatal week, shortly before when PV is 

first able to be visualised within the striatum [21, 50], with electrophysiological maturation and 

increased expression of Kv3.1 channels occurring during the same time period [87]. With a high level 

of cortical innervation received by the end of the second postnatal week, it is thought that the 

maturation of PV-expression within the striatum is driven by corticostriatal afferents synapsing and 

becoming active throughout the striatum [87].  

 

2. Perineuronal Nets (PNNs) 

The early postnatal period is a time of intense development within the rodent striatum and its 

associated circuitry. In the striatum itself there are alterations in cellular morphology [50], ongoing 

innervation from extra-striatal brain regions [87], and the growth of Perineuronal Nets (PNNs) in the 

extracellular matrix [97, 98]. PNN composition, function and the cell types with which they are known 

to be associated play a role in their relevance to striatal circuitry. 
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Perineuronal nets (PNNs) are extracellular matrix structures found within the CNS, first described by 

Camillo Golgi as an “endocellular reticular apparatus” enveloping the cell body and dendrites of 

various neurons [99, 100]. Thanks to improved histochemical and microscopy techniques, we now 

know that PNNs are found throughout the CNS and surround a variety of neurons within the brain 

and spinal cord [84, 96, 101-106]. PNNs are thought to play several roles in the CNS, ranging from 

consolidation of synaptic connections between neurons [107, 108], protecting against oxidative or 

other damage [109-114], and maintenance of ionic homeostasis around highly active neurons [84, 

104].  

PNNs have been shown to play an important role in the consolidation of maturing neural circuitry, 

and in the maintenance of strong synaptic connections between neurons within the adult rodent 

brain [105, 107, 108, 115]. PNN formation correlates with the development of mature neuronal 

properties [108] and function [96, 97]. The temporary removal of these structures within the adult 

brain using a bacterial enzyme, Chondroitinase ABC (ChABC), leads to an immature phenotype and 

increases the neural plasticity within a circuit [101, 102, 105]. PNN digestion has been shown to 

result in an increase in axon sprouting from Purkinje cells within the cerebellum [107], as well as 

encouraging collateral sprouting by afferent projections to target nuclei following partial lesion 

[101]. It appears that the dissolution of PNNs within the adult brain allows the neurons they 

surround to form new synaptic connections by “freeing up” their axons. Together, these findings 

suggest that PNNs are important for the development and maintenance of strong synaptic 

connections, and their removal may impact upon neural circuitry and function.  

PNNs are composed of highly charged Chondroitin Sulfate Proteoglycans (CSPGs), hyaluronan, 

tenascin and link proteins. CSPGs are comprised of a wide variety of proteins and covalently 

connected chondroitin sulphate glycosaminoglycans [116]. The protein components of CSPGs are 

what regulates integration into the extracellular matrix, and are thought to play a role in attachment 

and signalling functions [115]. Hyaluronan is a simple glycosaminoglycan; link proteins are small 
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glycoproteins that provide connections between hyaluronan and the aggrecan component of CSPGs; 

and tenascin is an adhesive molecule that interacts with CSPGs and provides connections with other 

components of PNNS [115, 117-120]. CSPGs and hyaluronan are both highly negatively charged, 

making PNNs polyanionic, enabling them to maintain local ion homeostasis within the brain by 

scavenging and binding redox-active ions, minimising oxidative damage [112-114]. PNNs have 

previously been shown to protect against neurodegeneration caused by both ageing and Alzheimer’s 

disease [109, 111]. The presence of PNNs is therefore highly important for the maintenance of both 

individual neurons and the circuits they make up.  

 

2.1 Perineuronal Nets and Parvalbumin-expressing neurons 

PNNs are widespread throughout the rodent CNS, having been identified in the cerebellum [107], 

cerebral cortex [121], brainstem [101, 104, 121], spinal cord [102], subcortical regions [121], and the 

striatum [96-98]. While these extracellular matrix structures are known to associate with a variety of 

neurons, the cell type most commonly linked with the presence of PNNs is that of fast-spiking 

neurons [84, 96, 103, 104, 106]. It is thought that the highly anionic microenvironment provided by 

the presence of PNNs allows for the fast transference of cations, aiding fast-spiking action potentials 

[104]. 

PNNs within the cerebral cortex, hippocampus and brainstem are seen to surround neurons 

expressing the Shaw-like potassium channel, Kv3.1 [84, 104], found within fast-spiking PV+ inhibitory 

interneurons [84, 122]. Direct immunohistochemical staining for PV+ neurons and PNNs has 

revealed that within the cerebral cortex, visual cortex, reticular nucleus of the thalamus, and the 

medial trapezoid nucleus of the brainstem, a large proportion of GABA-ergic inhibitory neurons 

expressing PV are surrounded by PNNs [103, 104, 106, 123]. The association between PNNs and PV+ 

inhibitory interneurons is maintained within the striatum, but is not exclusive [96]. 
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2.2 Perineuronal Nets within the striatum 

There are no PNNs present within the rodent striatum prior to birth or during the first week of life; 

instead, there are large, amorphous “clouds” containing CSPGs that are associated with the 

striosome compartment of the striatum [97]. As animals mature, these CSPG-containing clouds 

disperse and are no longer detectable by the end of the second postnatal week [97]. Mature striatal 

PNNs make their first appearance, around the same time [50, 97]. Curiously, this is also the period 

during which PV+ inhibitory interneurons are first able to be immunohistochemically visualised 

within this nucleus [44, 71]. Mature PNNs surround the soma of associated neurons within the 

striatum, with extended enmeshment of dendritic processes (Fig. 1.5). PNNs are restricted to the 

matrix subregion of the striatum, exhibiting a reversal of the association between diffuse CSPG 

clouds and striosomes during the early postnatal period [97].  

As in other areas of the brain, striatal PNNs demonstrate an overlap with PV+ neurons [96, 103, 104, 

106, 123]. Within the mouse striatum this association is not exclusive – approximately 50% of PNNs 

within the striatum are associated with PV+ inhibitory interneurons, with a similar proportion of PV+ 

inhibitory interneurons surrounded by PNNs [96]. This is not unexpected, given the mismatch in 

overlap of anatomical position displayed by these two populations [50, 96]. In other areas of the 

rodent brain, PNNs have been shown to associate with a variety of neurons expressing other calcium 

binding proteins [104]. Thus far, neither cholinergic nor calretinin expressing interneurons have been 

shown to overlap with PNNs within the mouse striatum [96]. Given that PV expression levels within 

interneuron populations can vary in a given brain region [124], it is possible that some of these 

unidentified cells associated with striatal PNNs may be interneurons with low PV concentration.  
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Figure 1.5 Perineuronal Nets (PNNs) within the striatum. 

(A) Perineuronal nets (PNNs) within the striatum, visualised using the plant lectin Wisteria 

Floribunda Agglutinin (WFA), imaged at 5,000X magnification and photo-merged using Adobe 

Photoshop. Scale bar=1000m. (B) A similar image, taken at 40,000X magnification. Note the ring-

like structure surrounding the soma of the PNN-associated cells, and the extended staining 

observable upon the neurites of these cells. Scale bar=50m. 
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3. Growth Factors 

Maturation of PV+ neurons within the striatum and other areas of the rodent brain has been shown 

to depend upon appropriate levels of growth factors, proteins that are also capable of influencing the 

expression of mature PNNs [106, 123, 125, 126].  

Growth factors are proteins secreted by cells that act locally to promote cell development, growth 

and repair. Neurotrophic factors are the growth factors found within the nervous system, and 

primarily promote the survival of neurons, along with facilitating appropriate neuronal maturation 

[127, 128]. Neurotrophins are thought to be released by the axonal target of a neuron, and are taken 

up via specific receptors [127, 128]. An inadequate supply of neurotrophic factors may have a variety 

of effects, ranging from lack of maturation and development of particular types of neurons or entire 

neural circuits [125, 126], to being the potential cause of neuropathologies [129, 130], and may even 

result in cellular death [128, 131]. There are a variety of neurotrophic factors – this review will focus 

on one specific type: Brain-Derived Neurotrophic Factor (BDNF). 

 

3.1 Brain-Derived Neurotrophic Factor (BDNF) 

Brain-Derived Neurotrophic Factor is related to Neurotrophic Growth Factor (NGF), and primarily 

interacts with the trkB tyrosine kinase receptor [127, 132]. BDNF is composed of a non-covalently 

linked homodimer with a signal peptide and a pro-region containing an N-linked glycosylation site, 

with two binding sites per BDNF molecule for trkB receptors [127, 133, 134]. BDNF, like other growth 

factors, promotes growth, repair and development of neurons, but is not limited to this: BDNF has 

been shown to regulate the synthesis, metabolism and release of neurotransmitters at synapses, 

and is also capable of modulating ion channel flux in postsynaptic neurons [135-137]. BDNF also has 

the ability to regulate synaptic efficiency by altering neuronal firing rates and inducing long term 

synaptic potentiation between neurons within the rodent CNS [128, 135-137], suggesting that this 
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neurotrophic factor plays an important role in the maintenance of neurons and the circuitry they 

compose.    

BDNF is distributed throughout the rodent CNS, with the protein previously found within the 

cerebellum [18, 138], retina [126, 139-141], cerebral cortex [142, 143], hippocampus [15, 142, 143], 

and the striatum [15, 125, 130]. Neurotrophic factors influence various neurons within the brain and 

BDNF is no exception [125, 126, 144]; the neuron type that appears to be most dependent upon the 

presence of BDNF are PV+ GABA-ergic inhibitory neurons [125, 126]. Within the rodent visual 

system, BDNF is responsible for the maturation of inhibitory circuitry containing PV+ interneurons 

[126], and within the rodent striatum a lack of BDNF results in fewer visible PV+ cells [125].  

 

3.2 BDNF within the striatum 

Despite the well documented presence of BDNF protein within the rodent striatum [15, 125, 130], 

very little BDNF mRNA is expressed in this nucleus [142]. Areas that contribute afferent projections 

to the striatum – particularly the cerebral cortex, thalamus and SNpc – do exhibit high levels of BDNF 

mRNA expression [125, 142]. It is thought that BDNF protein within the rodent striatum is 

transported in an anterograde fashion from other areas of the brain projecting to this nucleus [125]. 

Animals that receive lesions to the cerebral cortex and SNpc demonstrate a decrease in the level of 

BDNF protein present in the striatum; a similar effect is observed with the use of axon transport 

inhibitors [125]. In contrast, lesions within the striatum that do not damage afferent projections 

have little effect on the level of BDNF protein found within this nucleus [125]. PV+ inhibitory 

interneurons within the striatum appear to be dependent upon the presence of BDNF protein for 

normal cellular processes: rodents both heterozygous and homozygous for a null mutation in the 

gene encoding BDNF have a reduced incidence of PV+ inhibitory interneurons within the striatum as 

measured by immunohistochemistry [125]. It is not known whether PV+ cells within the rodent 
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striatum die off in response to lack of BDNF protein, or if they merely do not develop a mature 

profile of PV expression.  

Expression of PV is able to be regulated by activity levels within individual neurons in response to 

afferent input [124]. At the same time, a mature neurochemical profile of PV+ neurons appears to 

be dependent upon the presence of BDNF protein [125, 126]. Based on physiological data, the 

innervation of striatal PV+ inhibitory interneurons by corticostriatal afferents is thought to begin 

after the first postnatal week [87]. These afferents not only provide activity-dependent drive to PV+ 

cells, they also transport BDNF protein into this area of the brain [125], suggesting that BDNF, along 

with corticostriatal afferent activity, drives the maturation of PV expression in the striatum.  

 

4. The Critical Period 

The time during early life when PV, PNNs and BDNF are undergoing changes within the striatum may 

represent an early-life critical period for rodent striatal circuitry. This section will explain the concept 

of the critical period, and the role PV, PNNs and BDNF play in regulating this developmental epoch.  

The nervous system is not fully mature at birth; in humans it is thought that the nervous system 

does not reach full maturity until the early twenties, and whilst rodents have less drawn-out 

development, there is ongoing neural maturation after birth. A fully mature nervous system may be 

defined as having restricted levels of neuroplasticity, relative to the peak neuroplasticity observed 

during development [145, 146]. Neuroplasticity is the ability of the brain to re-wire itself in response 

to the input it receives, and has been observed throughout the lifespan of laboratory animal subjects 

[15, 16, 18, 145, 147, 148], but never appears to again reach the levels observed during early 

maturation in a developmental epoch that may be referred to as the critical period [149]. During the 

critical period, neuroplasticity, malleability and the vulnerability of neurons are at their peak; 
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individual systems and areas within the brain are known to undergo their own particular critical 

periods at various times throughout development [146, 150-152].  

Neuroplasticity may be dependent on coincident activation of linked cells within circuits during the 

critical period. This concept was first posited as important by Donald Hebb in 1949, whose idea of 

more efficient firing between cells as a result of repeated activation has become known as “Hebbian 

theory” [153]. This theory states that “when an axon of cell A is near enough to excite a cell B and 

repeatedly or persistently takes part in firing it, some growth process or metabolic change takes 

place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased” [153]. 

Today, this theory is best known as the aphorism “cells that fire together, wire together”. Hebb’s 

theory has since been expanded to apply to most neural structures, ranging from the synapses 

formed between individual neurons, to microcircuits formed within particular brain regions, to 

circuits involving several areas of the brain [154]. Neuroplasticity allows the nervous system to 

reshape itself in response to the stimuli it receives, with changes in firing of neurons leading to 

changes in wiring between cells.  

The best-characterised circuit within the nervous system with regards to the role of cellular activity 

during the critical period is the visual system; the well-defined timing of the critical period within this 

system has been demonstrated in several species [149, 155-157]. During the critical period, the 

activity level of neurons within the visual system is thought to play a role in strengthening cellular 

connections [149, 158]. Another way of phrasing Hebbian theory with regards to the critical period 

might be “use it or lose it”, as neurons that do not receive appropriate levels of activation and 

trophic support during this time tend to die off [128, 159, 160]. Through the use of mechanisms such 

as monocular deprivation [149, 156, 158], which leads to a decline in the number of cells within the 

primary visual cortex able to be activated by the deprived eye [149, 158], neural activity levels have 

been demonstrated to impact cellular and whole system development. Spontaneous action potential 

firing by retinal ganglion cells is another example of this mechanism at action in the visual system 
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[161, 162]. Blocking this spontaneous firing leads to greater levels of cellular death than normally 

would occur within the projection targets of the retina [161]. Further, abnormal firing patterns and 

rates within retinal ganglion cells lead to a disruption in the precise retinotopic mapping usually 

observed within the visual system. This suggests that the spatiotemporal patterning of activity can 

be just as important for establishment and maintenance of functioning neural circuitry as the 

presence or absence of activity [163]. Together, these findings highlight the importance of activity-

dependent mechanisms on the development of early visual pathways.  

There is also evidence of an activity-dependent period of plasticity for motor behaviours in the 

rodent striatum from P30 to P37 [164-169]. Curiously, the manifestation of this period of heightened 

plasticity appears to be dependent on cholinergic and dopaminergic systems within this region of 

the brain [164, 165, 167]. Circle training  - in which animals are taught to turn in a particular 

direction for a set number of times – during this time has been shown to permanently reduce the 

expression levels of muscarinic ACh receptors and D2 dopamine receptors within the rodent 

striatum [164, 165, 167].  

  

4.1 The role of inhibitory interneurons in the critical period 

The critical period is thought to come about due to a disparity in the maturation rates of excitatory 

and inhibitory neurons. Inhibitory interneurons are known to be strong modulators of 

neuroplasticity at the level of synaptic connections between cells, taking part in cellular interactions  

such as feed-forward inhibition that modulate the activity of downstream neurons within circuitry 

[151, 170-173].  

The possibility of inhibitory neurons playing an important role in learning and development was first 

put forward by Hebb in 1976, who believed that these cells functioned to “promptly shut off” 

activity of excitatory neurons once they had fired [174]. Inhibitory circuitry has been shown to 
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mature more slowly than its excitatory counterpart in several cortical areas [126, 175] (for review 

see Micheva, 1997 [146]), potentially creating a “gap” in the timing of circuitry development during 

which it is possible for life experiences to influence neural maturation.  

The delayed maturation of inhibitory circuitry that potentially allows for critical periods to occur has 

been observed in a variety of brain areas [150, 151, 170, 172, 175-181]. Much of the work explicitly 

investigating the effects of this mismatch in excitatory and inhibitory network development has 

again been performed within the visual system. It is thought that the end of the visual critical period 

is brought about via the full maturation of PV+ GABA-ergic inhibitory interneurons within the visual 

cortex [126, 170, 177, 178]. It is speculated that later maturing inhibitory interneurons consolidate 

circuits formed by earlier maturing excitatory neurons, preventing ongoing high levels of 

neuroplasticity [126, 170, 177, 178]. Both accelerated maturation of PV+ GABA-ergic neurons [126] 

and increased inhibitory tone [177, 178] within the rodent primary visual cortex have been shown to 

result in an earlier onset and termination of the visual critical period, as indicated by the earlier 

termination of both prolonged response following visual stimulation and decline in cortical long-

term potentiation induced by white matter stimulation [126, 177, 178].   

Similarly to cortical areas, the rodent striatum contains a population of PV+ inhibitory interneurons 

that have been shown to undergo a protracted postnatal development [50] during the time that 

these neurons begin to receive cortical input [87] and striatally-mediated behaviours begin to 

emerge [182-184]. PV+ inhibitory interneurons in the striatum are thought to play an integral role in 

modulating the activity within this important nucleus [50, 54, 87]. Unlike the cortical areas 

investigated with regards to the critical period, PV+ inhibitory interneurons within the striatum 

develop earlier than the neural population they exert control over, demonstrating both mature 

morphology [50, 54] and electrophysiological properties earlier than do medium spiny projection 

neurons [54, 87]. PV+ inhibitory interneurons also show a response to corticostriatal afferent 

activation earlier than do medium spiny neurons [87], and generate inhibitory postsynaptic 
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potentials within medium spiny neurons [54, 185] from P14 that decrease in amplitude as medium 

spiny neurons mature [54]. Given the correlation of striatal PV+ inhibitory interneuron maturation 

with the emergence of striatally-mediated behaviours and the ability of these neurons to exert 

control over striatal activity once mature, it is possible that a “critical period” within the rodent 

striatum exists that is mediated by the development of this neural population.  

 

4.2 The role of extracellular matrix in the critical period 

The extracellular matrix within the CNS provides support to the neurons contained within it, and 

plays an important role in the maintenance of synaptic connections, ionic homeostasis, and 

prevention of cellular damage [84, 104, 107-114]. PNNs in particular are thought to be vital for the 

healthy functioning of a mature CNS, and are associated with PV+ inhibitory neurons within several 

areas of the rodent brain [103, 104, 106, 123], including the striatum [96]. Similar to the role of 

inhibitory neurons within the critical period, the most researched brain area with regards to PNNs 

and the critical period is that of the visual system, and particularly the primary visual cortex. PNNs 

within the primary visual cortex are associated with GABA-ergic PV+ inhibitory neurons [123, 126]. 

Animals that have been dark reared from birth in an exclusively light free environment exhibit a 

visual critical period that initiates upon exposure to ambient light, effectively delaying the epoch of 

maximal plasticity beyond the age at which it usually occurs [105]. Dark rearing results in a 

comparable delay in the formation of mature PNNs within mammalian primary visual cortex, 

suggesting that these extracellular matrix structures play a role in “closing off” the visual critical 

period [105, 108, 186]. Digestion of PNNs within the rodent visual cortex has been shown to “re-

open” this critical period, reactivating ocular dominance (OD) plasticity [105] and reversing the 

effects of monocular deprivation [187], suggesting that PNNs within the rodent visual system are 

involved in the consolidation of circuitry leading to the end of the visual critical period. 
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Similar to the cortical areas that have been more thoroughly investigated, PNNs within the rodent 

striatum form during the postnatal period when striatally mediated behaviours are emerging [97]. 

Motor behaviours in particular develop during the first two weeks of life, as striatal PNNs are 

forming and the PV+ inhibitory interneuron population is maturing [50, 97]. Dissolution of PNNs 

within the striatum of adult mice leads to an immature gait, with animals adopting a crawling style 

of locomotion rather than adult walking [96]. The development of PNNs within the mouse striatum is 

able to be influenced by the environment an organism inhabits, with accelerated appearance of 

mature PNN structures in the striatum of animals raised within an enriched environment [98]. This is 

correlated with an accelerated onset of striatally-mediated motor behaviours [98], providing further 

evidence of an early postnatal critical period within the rodent striatum, the timing of which is likely 

mediated by the maturation of PV+ inhibitory interneurons and the formation of PNNs.  

 

4.3 The role of neurotrophic factors in the critical period 

Neurotrophic factors provide trophic support to cells within the nervous system [127, 159], with 

BDNF in particular associated with the full maturation of PV+ inhibitory neurons in several regions of 

the rodent brain including the striatum [125, 126]. Again, the most thoroughly researched area of 

the brain with regards to the effect of BDNF upon the critical period is that of the visual system. 

Rodents that overexpress BDNF such that the postnatal increase in the levels of this protein is 

accelerated also demonstrate both accelerated maturation of PV+ GABA-ergic interneurons [126] 

and decline of white-matter evoked long-term potentiation only observed within juvenile animals 

[126, 173]. Along with these circuit-level changes, BDNF overexpression within the rodent primary 

visual cortex also influences system function, accelerating the onset of ocular dominance plasticity 

and provoking precocious development of visual acuity [126]. Thus, BDNF within the rodent visual 

system regulates the maturation of PV+ inhibitory interneurons and is involved in determining the 

timing of the visual critical period.  
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The rodent striatum undergoes a critical period at the end of the first month of life, the timing of 

which is influenced by the neurotrophic factor NGF. During this critical period, the cholinergic and 

dopaminergic systems within the striatum exhibit sensitivity to motor experience [164, 165, 167]. 

The application of exogenous NGF maintains high levels of neuroplasticity beyond the age at which it 

normally decreases [168, 169], suggesting that timing of a late motor critical period within the 

striatum can be influenced by the presence of a particular neurotrophic factor. Despite the lack of 

BNDF mRNA within the rodent striatum, there is still a large amount of the protein found within this 

nucleus, the presence of which is vital for the full maturation of striatal PV+ inhibitory interneurons 

[125, 188]. The pattern of maturation observed within the rodent striatum with regards to 

development of PV+ inhibitory interneurons, PNNs within the extracellular matrix, and the influence 

BDNF has on PV expression suggests that there may be another, earlier, critical period occurring 

within the rodent striatum regulated by these three neural components [50, 97, 98, 125]. 

 

5. Animal Behaviours 

The behaviours of animals provide insight into neural function [42, 189], cognitive [98, 190, 191], 

motor [97, 148] and emotional [192-194] capacity and state. The following section provides an 

overview of some of the most frequently used behavioural assays, along with tasks that have been 

designed to specifically test striatal function.  

Assessing the cognitive capacity of animals can be a difficult process – there is no easy way to 

communicate with animal experimental subjects directly, and as a result much of the behaviour 

manifested during assessment is subject to interpretation. Despite these difficulties, a number of 

tests have been developed to evaluate explicit cognitive abilities of rodent subjects. These 

behavioural tasks include the Morris Water Maze, designed to assess spatial learning and memory 

[98, 190, 191] and operant or instrumental conditioning tasks evaluating learning, memory and 

decision-making behaviours [46, 195, 196]. Unlearnt behaviours, such as novelty seeking [195, 197], 
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motor capacity [9, 160], social interactions [198, 199] and baseline anxiety [191, 193, 194, 200, 201] 

may also provide insight into an animal’s cognitive capacity, emotional state or sensorimotor 

capabilities.  

The striatum mediates a variety of behavioural functions: cognitive processes such as decision-

making [13, 40], choice of action [40], goal-orientated learning [41], rule-based learning [10], and 

task acquisition [42]; as well as sensorimotor behaviours, including motor coordination [9, 43], 

balance [9, 44], motor skill acquisition [8, 45], and synchronisation of sensory and motor input [9, 43, 

44]. The following will describe and critique tasks designed to assess both developing and mature 

striatally mediated behaviours.  

 

5.1 Tests for striatally mediated juvenile behaviours 

The majority of tasks assessing striatally mediated behaviours has focused on the performance of 

adult animals [42, 44, 46, 202]. Less has been done to explore developing or emergent behaviours 

associated with this particular nucleus.  

Assessing the developing behaviours of juvenile animals can be a difficult task – young mice are 

unable to interact with their surroundings and manipulate objects to the same degree as adult 

animals. Previous work from our laboratory has demonstrated the successful assessment of juvenile 

mouse sensorimotor coordination and exploratory behaviours using a forced-swim and open-field 

task, respectively [98]. Recently, the production of Ultrasonic Vocalisations (USVs) has garnered 

interest as an indicator of rodent behaviours such as anxiety status [203-206], social [198, 207, 208] 

and maternal-infant interactions [209-211]. USV production by rodents may provide a mammalian 

model for vocal learning similar to that observed in songbirds [7], and can be used to assess 

environmental influences on a highly ethologically relevant, naturally occurring behaviour [203, 212, 

213]. The striatum has been shown to undergo motor-driven activation related to vocalisation 
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during the production of USVs [7], making the assessment of these calls a potential assay for striatal 

function. 

 

5.2 Tests for striatally mediated adult behaviours 

The many functions carried out by the striatum  [8, 9,10, 13, 52, 53, 54, 55, 56, 57] means that 

assessing behaviour mediated by this nucleus in adult animals must cover a variety of tasks assessing 

sensorimotor and cognitive capabilities.  

Assessing the motor capacity and sensorimotor coordination of rodents quite often overlaps, 

although the two can be distinctly measured. Motor capacity refers to the ability of animals to 

perform a particular motor task, and may be evaluated by such apparatus as a grip strength meter, 

used to assess maximum limb muscle strength and animal models of neuromuscular disorders [214]. 

Sensorimotor coordination refers to the synchronization between sensory input and motor output, 

and may particularly be considered a striatally mediated function. Sensorimotor coordination may 

be assessed by tests such as the balance beam [9, 160], consisting of an elevated beam leading to a 

sheltered box, and gait analysis [215, 216], where the locomotion of animals is evaluated.  

Another task used to assess sensorimotor coordination is the rotarod behavioural task, consisting of 

a rotating rod large enough for rodents to comfortably sit upon when not in motion. The speed and 

direction of rotation may be controlled so that abilities such as balance [217, 218], coordination 

[217, 218], and motor learning [8, 45] may be assessed using this apparatus. A once-off test using 

the rotarod may shed light upon the baseline sensorimotor coordination abilities of animals [218], 

whilst testing over a period of days allows assessment of motor learning [8, 45]. Injury to the rodent 

striatum, either due to a neurodegenerative condition [130, 219, 220] or induced damage [189, 202], 

has been shown to impair performance within this test of sensorimotor coordination [130, 189, 202, 

219, 220], whilst knock-out animals with altered thalamostriatal projections also display impaired 
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performance in motor skill acquisition [45]. Together with work demonstrating that the rodent 

striatum undergoes direct activation during the rotarod task [8], these studies suggest that the 

striatum is involved in generating behaviours needed to perform the rotarod task, making it a 

suitable test for assessing striatally mediated sensorimotor behaviours.  

One behavioural apparatus that may be used to assess the cognitive capacity of rodents is the 

operant conditioning chamber. This arena generally consists of a lever that animals can press in 

response to a cue in order to receive a reward, usually food. Variants on the operant conditioning 

chamber may have two or more “choice” stations to assess goal-orientated learning and decision-

making [46, 195, 196], behaviours known to be mediated by the striatum [13, 40]. 

Goal-orientated learning mediated by the rodent striatum may also be assessed using a Puzzle-Box 

behavioural test, an arena that offers a more naturalistic context for evaluating goal-seeking and 

learning behaviours [221-223]. This apparatus consists of an open-field start zone, and a dark goal-

box zone. Similar to balance beam behavioural tasks, this test utilises the natural preference of 

rodents for small, dark, enclosed spaces over brightly lit open-fields [221-223]. Animals are required 

to solve obstruction puzzles placed between the two zones within the Puzzle-Box in order to access 

the goal-box [221-223]. This arena tests the ability of animals to convert goal-directed intention into 

sensorimotor behaviours, whilst retention of solutions are also able to be assessed by repetition of 

obstruction puzzles [221-223]. Given the interaction between goal-orientated learning and 

sensorimotor behaviours that occurs within the Puzzle-Box behavioural test, it is likely that striatal 

circuitry is involved in this task.  

Decision-making behaviours have been shown to involve the dorsal rodent striatum (see Balleine et 

al, 2007 for review [13]). This nucleus is known to mediate executive function such as task 

acquisition [42], rule-based learning [10], and the transition from flexible outcome-based action 

selection to habitual decision-making [40, 46]. A decision-making task that examines specific reward-

learning behaviours is the Iowa Gambling Task, a test traditionally used in human psychological 

36



assessment [224-226] that has of late been adapted for rats [196, 227, 228]. Recently developed 

flexible behavioural testing systems such as the IntelliCage, that allow for continual performance 

monitoring of a number of mice simultaneously [229], may provide an ideal platform for the 

development of tasks to assess decision-making and other striatally mediated behaviours. To date, 

the IntelliCage has been used to assess a number of cognitive processes, including place learning 

[230], exploratory behaviours [229, 231, 232], and spatial learning [233, 234], but not the reward 

guided choice behaviour associated with striatal function.  

 

6. Environmental Enrichment 

An enriched environment may be defined as surroundings that provide increased opportunity for 

social interaction and motor activity and greater sensory stimulation than that experienced in 

standard laboratory housing (Figure 1.6). Animals raised or housed in environmental enrichment 

display a myriad of cellular, molecular, and behavioural differences when compared to animals 

raised or housed within a standard laboratory environment (for review, see Sale, 2009 or van Praag, 

2000 [154, 235]).  

Environmental enrichment (EE) provides animals with increased opportunities for stimulation and 

activity within their home cages, in turn increasing the levels of stimulation and activity experienced 

within the nervous system. Cellular activity levels are postulated to influence both the strength of 

connections between neurons and the level of trophic support present within a neural circuit [153, 

174]. Historically, Donald Hebb first noted that an organism’s environment may impact neural 

functioning, after observing that rats he had taken home behaved differently to those still housed 

within the laboratory. The opportunity provided by EE for extra stimulation of the nervous system, 

particularly during the critical period, may result in a greater number of neurons within the brain 

arranged in more strongly connected, and possibly more complex, circuitry.  
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Similar to research investigating the critical period, the region of the mammalian nervous system 

that has been most thoroughly investigated at a cellular level with regards to the influence of 

environment is the visual system. Hubel and Wiesel’s seminal work illustrating that lack of sensory 

input is able to impact the maturing visual system was amongst the first indicators of how important 

an organism’s environment can be for neural development and function [149, 158]. It has since been 

well-established that early life experience is capable of influencing the anatomy and physiology of 

visual circuitry. It is not just deprivation of stimuli that can impact the visual system; EE is also 

capable of influencing this circuitry.  
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Figure 1.6 Variable housing environments. 

(A) A diagram illustrating environmentally enriched housing. Animals are housed in a larger cage, 

with extra shelter, a running wheel and sensory stimuli such as balls and coloured objects. (B) A 

diagram depicting standard environment housing. Animals are placed in smaller cages with a limited 

number of objects such as a red mouse igloo and bedding materials. There are generally fewer 

animals placed within standard environments compared to enriched cages.  
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6.1 The effect of environmental enrichment upon the visual system 

Exposure to EE during the prenatal or postnatal period has been shown to have a great effect upon 

neural development, whilst EE during adulthood is capable of influencing neural function. Prenatal, 

postnatal and adulthood EE have all been shown to impact the anatomy and function of the visual 

system [98, 105, 139-141, 144, 187].    

Prenatal enrichment occurs when pregnant rodent dams are placed into enriched housing during 

their pregnancy, impacting their offspring. This form of EE has been shown to increase levels of the 

neurotrophin Insulin-like Growth Factor-1 (IGF-1) within the brains and breast milk of dams [236]. 

Increased levels of IGF-1 are also present within the retina of fetuses taken from enriched dams, 

along with an acceleration of programmed cell death and migration of differentiating neural cell 

precursors [236], suggesting that prenatal EE accelerates the development of a component within 

the visual system. 

Postnatal EE occurs when late-pregnancy rodent dams are placed into enriched environments 

immediately prior to giving birth, and offspring raised within enriched housing. This form of EE has 

also been shown to accelerate the maturation of several components within the rodent visual 

system, and is known to impact upon visual function [123, 139-141, 144, 237]. Postnatal enrichment 

leads to a precocious increase in levels of BDNF, IGF-1 and GABA within the primary visual cortex 

[123, 139, 237]. These effects are accompanied by an accelerated maturation in the development of 

visual acuity, earlier termination of the visual critical period, and a lifelong improvement in visual 

acuity compared to standard housed age cohorts [123, 139, 237]. Postnatal enrichment also impacts 

the retina, increasing levels IGF-1 and BDNF within this structure, accompanied by a precocious 

development of retinal acuity [140, 144]. Taken together, these results suggest that postnatal EE 

accelerates neural development within the rodent visual system. 

Prescribed periods of EE in adult animals can also affect neural circuitry and function, despite 

subjects being past the age of critical period when neuroplasticity is at its peak [106]. Animals that 
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have undergone long term monocular deprivation develop what is known as amblyopia. Amblyopia 

occurs when one eye loses visual acuity and function due to a shift of ocular dominance towards the 

non-deprived eye [106, 149, 158]. Amblyopic rodents that undergo reverse-suturing and are then 

placed into enriched environments show a full recovery of visual acuity in originally deprived eyes, 

accompanied by an increase in BDNF and a decrease in GABA and density of PNNs within the 

primary visual cortex [106]. In contrast, animals that undergo the same treatment but are not placed 

into enriched environments show no such recovery of visual function [106], suggesting that 

adulthood EE is capable of influencing inhibitory circuitry and function within the rodent visual 

system.  

As studies investigating the rodent visual system have demonstrated, EE has the ability to accelerate 

neural development, promote recovery of normal function in pathological conditions, improve the 

function of the visual system under normal conditions, and may impact the visual system during 

both the critical period and in later life when neuroplasticity is no longer at its peak [106, 140, 141, 

144, 236]. Overall, the visual system has provided researchers with an excellent model to examine 

the impacts of EE. Other areas of the brain are also able to be influenced by the environment an 

organism inhabits; the following will provide a brief summary of this research, with a particular focus 

on the effect EE has on the hippocampus, frontal/motor cortices, and the cerebellum.  

 

6.2 The effect of environmental enrichment upon other neural systems 

The visual system may offer an ideal model for investigating the impact of environmental enrichment 

upon brain function, but there are many other areas within the brain that have demonstrated a 

response to EE. This widespread impact of EE is not unexpected, given that most enriched 

environments contain objects that allow for a broad spectrum of stimulation, likely influencing more 

areas of the brain that those solely concerned with immediate sensory processing. Other areas of the 
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brain previously shown to be affected by EE include the hippocampus [17, 238] , 41] , prefrontal 

cortex [248] , motor cortex [16, 17], and cerebellum [18, 144, 252]. 

The hippocampus is the region of the brain involved in formation and recall of declarative memories 

[239], and also plays a vital role in cognitive functions such as learning [240]. Exposure to EE leads to 

increased levels of BDNF and NGF [143, 241-243] and neural generation and metabolic activity [17, 

238] within the rodent hippocampus. Morphological features of hippocampal neurons are also 

impacted by EE, with an increase in dendritic branching and total dendritic length observed in two 

populations of hippocampal neurons in enriched mice [244], suggesting that EE is capable of 

inducing both molecular and anatomical changes within this brain region.   

Non-sensory cortical areas such as prefrontal and motor cortex involved in executive function [221, 

245, 246] and motor planning [8, 247], respectively, have been less well-investigated with respect to 

EE than sensory cortices. Levels of the excitatory neurotransmitter serotonin are increased within 

the rodent prefrontal cortex in response to EE, along with an increase in the overall weight of this 

area of the brain [248]. Enrichment increases dendritic branching, density of dendritic spines of layer 

V pyramidal neurons, and neural metabolic activity within the rodent motor cortex [16, 17]. More 

generally, there is an increase in levels of the neurotrophic factors BDNF, NGF and neurotrophin-3 

within the rodent cerebral cortex following exposure to EE [18, 143].  

Another motor area that has been investigated with regards to EE is the cerebellum. The cerebellum 

is involved in the coordination, precision control and timing of motor activities [249-251], and so is 

likely to be stimulated by the extra motor activities available to animals within enriched 

environments. Similar to other previously investigated brain areas, the rodent cerebellum displays 

an increase in levels of BDNF and NGF in response to EE [18, 138], along with an increase in levels of 

the excitatory neurotransmitter noradrenaline [252].  

As demonstrated by studies mentioned above, EE has the ability to impact many areas of the rodent 

brain that are not primary sensory areas. Of all the brain regions other than the visual system that 
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have been investigated with regards to enrichment, the striatum is amongst the more thoroughly 

researched.  

 

6.3 The effect of environmental enrichment upon the striatum 

The purported functions carried out by the striatum – sensorimotor coordination [9, 43, 44], goal-

orientated learning [41] and decision-making  [13, 40]– suggest the possibility that the sensory, 

motor and social aspects of EE would all impact upon this area of the brain. 

Within the rodent striatum, adulthood EE influences protein levels of BDNF and NGF [15, 18, 253], 

and increases levels of the excitatory neurotransmitter norepinephrine [248], whilst decreasing the 

levels of dopamine transporter [253]. Postnatal exposure to EE is capable of modulating the 

expression of many genes and proteins within the striatum, including those involved in cell 

proliferation, differentiation, structure and metabolism, as well as signal transduction, transcription 

and translation [19]. Thus, an enriched environment is capable of inducing molecular changes within 

the rodent striatum at various ages.  

Anatomical features within the rodent striatum are also impacted by exposure to enriched 

environments. Medium spiny projection neurons display a greater level of dendritic branching and 

an increase in the density of dendritic spines in response to EE [16, 254, 255]. The effects of 

enrichment have also been observed during a putative early life critical period within the mouse 

striatum; recent work from our laboratory has demonstrated accelerated maturation of striatal 

PNNs in response to early life EE [98]. EE induces anatomical and morphological changes in the 

striatum, and potentially impacts critical period timing within this nucleus, given its effect on striatal 

extracellular matrix structures associated with PV+ inhibitory interneurons [98]. 

Previous studies have shown that the effects of EE are not always consistent. For example, both 

decreases [18], as well as increases [15], in striatal BDNF levels in response to enrichment have been 
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described, albeit in different rodent species. Differences in animal species and breeds, along with the 

EE paradigms used [15, 18], can account for at least some of the discrepancies in experimental 

findings. It is not currently known whether BDNF levels during a putative early striatal critical period 

are affected by exposure to EE.   

These examples do highlight a key problem associated with EE research: that laboratories use 

different EE paradigms, with different time lengths of enrichment, and different ages and types of 

animals as experimental subjects. These factors can make it difficult to draw consistent and coherent 

conclusions about the effects of EE upon specific regions of the brain. Further, given that engaging in 

or acquiring standard behavioural tasks can rely on a number of neural processes and/or areas, 

changes in behaviours resulting from enrichment can be extremely difficult to interpret. Careful task 

selection, however, can provide substantial insight into the effects of enrichment on specific circuits. 

Despite the level of previous investigations into the effect of EE upon the striatum, the full effects of 

enrichment upon this nucleus are still not known.   

 

6.4 Environmental enrichment and behaviour 

Given the impact of EE upon the anatomy and biochemistry of the brain, it is not surprising that it has 

been shown to also affect behaviours of animals that have undergone both postnatal and adulthood 

enrichment. Animals raised or housed in enriched environments demonstrate behavioural changes 

such as a decrease in stress and anxiety-related behaviours [15-17, 191], improved performance in 

learning and memory tasks  [98], accelerated motor development [98], changes in maternal 

behaviours [139, 141], and resistance to addictive substances  [14, 253, 256].  

Enrichment has been shown to decrease the incidence of rodent stress and anxiety-related 

behaviours such as thigmotaxis and stereotypies [15-17, 191]. Thigmotaxis is the tendency of 

animals to remain close to the periphery or walls when placed into a behavioural apparatus [193, 
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194], and is observable when animals undergo behavioural testing; EE begun in adulthood has been 

shown to reduce the occurrence of thigmotactic behaviours during testing within the Morris Water 

Maze apparatus [191]. Stereotypies are repetitive, pointless motor activities, such as pacing, flipping 

or jumping that are thought to result from basal ganglia dysfunction, in particular a lack of 

disinhibition of response selection from the striatum [200, 201]. A series of studies has 

demonstrated that enrichment begun at weaning prevents the development of jumping and back-

flipping stereotypies, accompanied by alterations in dendritic morphology, BDNF levels, and 

neuronal metabolic activity within the mouse striatum, providing evidence that stereotypies may be 

mediated by this area of the brain [15-17]. EE has also been shown to improve learning and memory 

of rodents within the Morris Water Maze apparatus: animals exposed to EE take less time to 

complete the Morris Water Maze [98] and demonstrate a greater number of entries to the quadrant 

where a platform was previously located when undergoing probe testing [191].   

Along with affecting anxiety and cognitive behaviours, EE accelerates the maturation of exploratory 

and motor behaviours in young animals. A previous study from our laboratory revealed that juvenile 

mice raised within enriched housing explore a greater area within an open-field and demonstrate 

more mature swimming behaviour than standard housed counterparts [98]. Exposure to EE has been 

shown to improve balance and sensorimotor coordination in rodents that have received lesions to 

the striatum [9], and to improve performance in a one-off test of sensorimotor coordination [218], 

demonstrating that enrichment can accelerate the development of motor behaviours, and 

ameliorate motor deficits caused by striatal damage.  

As evidenced by previous studies, the impact of EE is able to be observed in very young animals that 

are not yet capable of directly interacting with their environment [98, 139, 141]. This effect of very 

early EE is thought to come about due to an enrichment-induced change in maternal behaviours. 

Previous studies have confirmed this to be the case: rodent mothers within an enriched 

environment groom their pups more than those within standard housing, despite spending less total 
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time on the nest [139, 141]. Grooming behaviour provides a strong tactile stimulation to pups; 

effects similar to those resulting from EE-induced increased grooming have been emulated using 

manual manipulation of pups [237], suggesting that such sensation is important for the maturation 

of neural systems within young rodents.  

Along with effects on the cognitive, motor and sensory systems within the brain, EE also appears to 

be capable of impacting the “limbic” or reward system. Previous studies have demonstrated that 

rodents housed within an enriched environment display markedly different reactions to addictive 

substances than those housed within standard environments. Animals raised in EE demonstrate 

behavioural resistance to the rewarding effects of both cocaine and heroin when exposed to these 

drugs [14, 253, 256], despite the administration of these substances still having the ability to activate 

the limbic system and enriched animals demonstrating “high” behaviours [14, 253, 256]. Along with 

this protective function against developing addiction, EE has been shown to reverse addiction to 

cocaine. Animals displaying addiction-induced behaviours placed into enriched environments no 

longer demonstrate behavioural sensitization or conditioned place preference to cocaine and do not 

relapse into addictive behavioural patterns [257]. This effect of EE has also been demonstrated using 

sugar; animals housed within enriched cages following weaning demonstrate lower preference for 

sucrose consumption than those housed within a standard environment [258]. It seems that EE is 

capable of reducing the incidence of addictive behaviours mediated by the limbic system within the 

rodent brain, one component of which is the basal ganglia [2, 41].  

Raising or housing animals within enriched environments appears to have a beneficial effect on 

many behaviours that are mediated by various systems within the brain: stress and anxiety-related 

behaviours, sensorimotor coordination, cognitive abilities and reward systems. These behavioural 

changes likely result from the environmentally-induced anatomical and molecular alterations 

observed in many areas of the brain highlighted above. Another method used for elucidating the 

mechanism by which EE works is to investigate animal models of neurological diseases or disorders. 
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6.5 Environmental enrichment and neurological deficits 

The ability of EE to reverse an induced sensory deficit within the visual system was discussed 

previously: adult animals that undergo monocular deprivation followed by reverse suturing and 

enrichment demonstrate a complete recovery of visual acuity within the originally deprived eye [106]. 

Other induced deficits, along with more serious and global neurological disorders, have been shown 

to benefit from enrichment. Exposure to EE improves recovery of function following lesions to the 

brain [190], and reduces the severity of symptoms in autistic [148, 259], Huntington’s [130, 219, 

220], Parkinson’s [253, 260], and Alzheimer’s [261, 262] disease models.  

Surgically or chemically induced lesions within the brain are used to characterize the functionality of 

particular regions within the CNS and model neurological damage states such as traumatic brain 

injury or the occurrence of stroke. The combination of these techniques with enriched housing has 

revealed that EE is capable of reducing the impact of neurological injuries within rodent models. 

Animals housed in an enriched environment following a controlled cortical injury demonstrate 

improved sensorimotor coordination and cognitive ability when compared to standard housed 

injured cohorts [190]. The effects of chemically induced lesions are also reduced by exposure to EE: 

animals raised within an enriched environment demonstrate fewer detrimental effects on 

behavioural flexibility following a lesion to the basal forebrain [263], nor do they show the same 

level of motor and balance deficits following a striatal chemical lesion [9]. It appears that EE is 

capable of ameliorating injury-induced behavioural impairments, attenuating both cognitive and 

sensorimotor deficiencies.  

Autism is a neurodevelopmental disorder, characterized by stereotypic behaviours, difficulty in social 

engagement and communication, and cognitive and sensorimotor deficits [264]. The Mecp21lox 

mouse models an autism spectrum disorder known as Rett Syndrome, associated with mutations in 

a gene that codes for methyl CpG binding protein 2 [148, 265]. EE from weaning has been shown to 

decrease the severity of locomotor deficits and motor learning difficulties observed in Mecp21lox 
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mice [148, 259], reduce ventricular volume, and decrease severity of a cerebellar BDNF deficit in 

these animals [259]. Volumetric changes within the basal ganglia, specifically the caudate nucleus of 

the striatum, are associated with autism spectrum disorders and the presentation of stereotypic 

behaviours in human patients [266]. A reduction in stereotypic behaviours observed within enriched 

mice is known to be accompanied by a variety of anatomical and molecular changes within the 

striatum [15-17], suggesting EE may reduce the severity of autistic symptoms such as stereotypies 

through an effect on the basal ganglia.  

Huntington’s disease is a genetic neurodegenerative disorder that manifests around the fourth 

decade of human life. Symptoms begin with psychiatric and cognitive decline; patients eventually 

experience movement disorders, with a decline in motor function and involuntary writhing [267]. 

This disease state may last for decades, and is thought to result from dysfunction within the cerebral 

cortex and striatum [267]. The R6/1 and R6/2 mouse models of Huntington’s replicate many 

symptoms of this disease, with onset occurring around three to four months of age followed by 

rapid progression of the disease state [130, 219, 220, 268, 269]. Motor symptoms common to 

Huntington’s disease animal models include reduced motor coordination, reflexive rear paw 

clasping, and a reduction in activity and rearing behaviour within an open field [130, 219, 220]. EE 

begun at weaning improves performance of R6/1 and R6/2 animals on the accelerating rotarod 

behavioural task, delays the onset of rear paw clasping in R6/1 mice, and increases exploratory and 

rearing behaviours in R6/1 animals [130, 219, 220]. EE also prevents the loss of BDNF within the 

striatum and a dopaminergic signal regulator within the cerebral cortex of R6/1 disease model mice 

[130], suggesting that enrichment slows the onset of symptoms in a disease associated with striatal 

dysfunction.  

Huntington’s disease is not the only neurodegenerative disease whose effects are reduced due to 

EE. Parkinson’s disease, a condition in which dopaminergic neurons within the SNpc of the basal 

ganglia undergo cell death [1, 3], begins with motor deficits and progresses to include cognitive and 
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psychiatric issues such as dementia and depression. Parkinson’s disease affects two percent of adults 

over the age of 50, and manifests in the fifth or sixth decade of human life [1, 3]. Animal models of 

Parkinson’s disease are chemically induced by the administration of a drug, 1-methyl-4 phenyl-

1,2,3,6-tetrahydropyridine (MPTP), resulting in a loss of dopaminergic neurons within the SNpc 

similar to that observed in human Parkinson’s disease [253, 260]. Mice raised within enriched 

housing from weaning demonstrate double the level of cell survival within the SNpc and ongoing 

reduction in the incidence of cell death within this nucleus following MPTP treatment, suggesting 

that enrichment protects against the effects of this drug [253, 260] and is capable of reducing the 

severity of a neurodegenerative disease situated within the basal ganglia. 

Another neurodegenerative disease that is not typically associated with the basal ganglia but has 

also been shown to benefit from exposure to EE is Alzheimer’s disease. Symptoms of this disease 

include memory loss, psychological issues, and cognitive and language deficits [270-272]. 

Alzheimer’s disease manifests around the fifth to sixth decade of human life and leads to the 

formation of plaques within neurons causing neuronal death [270-272] A commonly used mouse 

model of Alzheimer’s disease is the TgCRND8 strain of mice, which express high levels of proteins 

involved in the formation of the plaques so characteristic of this disorder [192, 261, 262, 273]. 

TgCRND8 animals housed in enriched environments from weaning show greater exploration of novel 

objects than those housed within standard environments [192], a reduction in the prevalence of 

plaques within both neurons and blood vessels, and an increase in angiogenesis within the brain 

[261, 262]. Exposure to enrichment has also been shown to increase the survival and proliferation of 

hippocampal neurons within TgCRND8 mice [273], suggesting that EE can reduce the severity of a 

neurodegenerative disease situated within brain regions other than the basal ganglia.  

Neurological disorders are not the only disease states that have been shown to benefit from 

enriched environments: mice exposed to EE have decreased tumour size in models of melanoma 
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[274], colon [274] and breast cancer [275], demonstrating that EE is able to ameliorate disease 

states other than neurological disorders.    

Raising or housing animals within enriched environments appears to have a beneficial effect upon 

several neurological disorders. The way in which an organism’s surroundings influence the health 

and functioning of its nervous (and other) systems has only just begun to be fully understood. Whilst 

animal models provide an excellent example of the ability of environment to influence neural 

circuitry and function, there have been some investigations into enrichment and its impact upon the 

function of the human brain.  

 

6.6 Environmental enrichment and humans  

It is not just animals within a laboratory that may experience benefits from EE – humans have also 

been shown to derive positive benefit from exposure to “enriched environments”, with effects on 

both neurologically normative children [276, 277] and those with neurodevelopmental issues [278].  

It is not entirely clear what form environmental enrichment for humans might take: however, 

assuming that exposure to a variety of sensory stimuli, motor exercises, social interaction, and 

enhanced nutrition and education are enriching, then a handful of studies have shown an effect of 

these factors upon human children.  

One study demonstrating the effect of an “enriching” nursery school began on the island of 

Mauritius in 1972. Funded by the World Health Organisation, the study was originally intended to 

bring together psychologically at-risk children within nursery schools where “drugs could be used to 

bring their autonomic function back into normal range” [276, 277]. Instead, 100 children were drawn 

from the local population at random to undergo an enriching and stimulating nursery school from 

the ages of three to five, with the goal to assess what effects an early enriching experience may have 

on psychophysiological orienting and arousal [276, 277]. The enriched nursery schools employed 
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highly trained staff and ran on a structured schedule with activities providing cognitive, verbal, 

conceptual, memory and visuospatial skills, along with visuomotor coordination and sensation and 

perception experiences [276, 277]. Children within these nurseries were provided with nutritious 

meals, taught general hygiene, and underwent health inspections and exercise sessions. Parents 

were encouraged to become active participants in the programs run by the enriched nursery school, 

and children were prepared for the transition to primary school during their last term at the school 

[276]. In contrast, the control group consisting of 100 children undergoing the usual nursery care 

available on the island were under the supervision of untrained staff, in large children to adult ratios 

(30:1 versus the 5-10:1 within the enriched nursery schools), with only around half of the children 

receiving any sort of rudimentary education, and no provisions made for food or napping [276].  

All children underwent psychophysiological testing at age eleven: arousal and attention were tested 

using skin conductance and electroencephalograms. Recordings were made during both an 

orientation task and continuous performance task, and during rest periods between testing [276, 

277]. During testing, children that attended the enriching nursery school demonstrated increased 

skin conductance orienting, with a faster time rise. Orienting and timing of skin conductance are 

thought to be indicative of attention allocation, and thus information processing ability [276]. 

Children that attended the enriching nursery school also demonstrated increased 

electroencephalogram arousal compared to children that attended the usual nursery school on the 

island [276]. Exposure to EE during early life appears to be capable of influencing neural functioning 

within humans many years later. Given that such an effect is demonstrable in neurologically normal 

subjects, it is possible that enrichment therapy could be of benefit to people suffering from 

neurological disorders.  

Exposure to EE is capable of preventing the occurrence of autism-like behaviours that occur 

spontaneously within wild type mice [15-17] and reducing the severity of behavioural symptoms and 

brain changes in an animal model of autism [148, 259, 265], suggesting that EE may be a potentially 
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powerful treatment for human autism. One study has investigated the effect of an enrichment 

treatment protocol on the severity of autistic symptoms within male children between three to 

twelve years of age [278]. Twenty eight subjects previously diagnosed with autism were randomly 

divided into a treatment group receiving sensorimotor enrichment therapy, and a group without any 

extra stimulation above ongoing therapies [278]. Subjects within the sensorimotor enrichment group 

experienced 34 different sensorimotor tasks, four to seven of which were undertaken twice a day 

whilst listening to classical music, and were exposed to four to seven different scents on a daily basis 

[278]. The severity of autistic symptoms was assessed at the beginning of the study, and again after 

six months of therapy. Subjects that had experienced the sensorimotor enrichment demonstrated an 

improvement in both severity of autistic symptoms and cognitive performance, as assessed by the 

Childhood Autism Rating Scale and the Leiter-R Visualisation and Reasoning score [278], suggesting 

that exposure to a form of EE is capable of reducing the severity of a neurodevelopmental disorder 

within humans.  

Exposure to EE is capable of influencing many areas of the brain, with effects ranging from 

accelerated maturation to amelioration of disease states, impacting upon anatomical, molecular, 

and behavioural measurements. It would seem that benefits derived from EE are not restricted to 

rodents – a program of enrichment can also be beneficial for humans. EE may offer a relatively 

inexpensive, non-invasive, and straightforward treatment option for individuals with neurological 

disorders such as autism spectrum disorder and Huntington’s, Parkinson’s, and Alzheimer’s disease. 

 

7. Project Outline 

The effect of EE upon maturation of inhibitory circuitry within the rodent striatum has not yet been 

thoroughly investigated: previous work from our laboratory has demonstrated that early postnatal 

enrichment accelerates maturation of PNNs within the mouse striatum [98]; whether there is a 

similar impact upon the PV+ inhibitory interneurons associated with PNNs in this nucleus [96] has 
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yet to be determined. Striatal BDNF protein is modulated in adult rodents in response to EE [15, 18, 

130], and is vital for the visible presence of mature striatal PV+ inhibitory interneurons [125]. Any 

effect of early postnatal EE upon the maturation of striatal BDNF protein levels has not been 

evaluated. It is known that early postnatal EE accelerates the development of sensorimotor 

coordination behaviours thought to be mediated by the mouse striatum [98]: whether EE influences 

the production of ultrasonic vocalisations, another striatally-mediated behaviour [7] displayed by 

young rodents [209, 210], has yet to be ascertained.  

The difficulties associated with the use of differing EE paradigms between laboratories and 

ascertaining the effectiveness of particular enriched environments may be lessened by the use of a 

behavioural task providing consistent and reliable feedback about the effects of EE paradigms. Such 

a task has yet to be developed. Exposure to EE and dissolution of PNNs are both known to increase 

plasticity within neural circuitry [101, 106, 107, 115, 187, 273, 279], and impact upon cognitive [96, 

98, 191] and sensorimotor [9, 96, 148, 218] behavioural performance of rodents. It is not known 

whether there is any interaction between the two treatments during either type of behaviour, or if 

the increase in plasticity induced by both enrichment and PNN digestion share underlying 

mechanisms.  

Decision-making behaviours may provide an indication of cognitive capacity, and reflect ability to 

integrate sensorimotor, cognitive and motivational behaviours when choosing a course of action [13, 

280]. The striatum is involved in such behaviours [13], whilst early experience of maternal care is 

known to influence decision-making in later life [228]. Postnatal EE has been shown to influence 

levels of maternal care received by rodent pups during early life [139, 191]; whether adulthood 

enrichment also influences the decision-making behaviour of adult animals has yet to be 

determined.  
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7.1 Determining the effect of environmental enrichment upon striatal PV+ inhibitory 

interneurons (Chapter 2) 

Striatal PV+ inhibitory interneurons provide a link between the cerebral cortex and the output 

neurons of the rodent striatum, receiving direct afferent input from both the cerebral cortex and the 

thalamus [60, 87, 88] and synapsing upon medium spiny projection neurons [54, 63]. This 

configuration of synaptic connections means that the activity of striatal PV+ inhibitory interneurons 

is modulated by input from corticostriatal afferents [60, 87, 88]. The expression of calcium-binding 

proteins within neurons is able to be influenced by cellular activity levels [66, 67], as has been 

demonstrated by modulation of parvalbumin in PV+ inhibitory neurons within the rodent 

hippocampus and primary motor cortex in response to behavioural training and environmental 

experience [124]. EE has been shown to enhance transmission, long-term depression, and long-term 

potentiation at synapses between neurons within both the hippocampus and cerebral cortex [281-

283], and increase both weight of the cerebral cortex and dendritic complexity of cortical neurons 

[16, 284, 285]. It may be that exposure to EE results in a change in both the manner and level of 

afferent activation experienced by striatal PV+ inhibitory interneurons. 

PV+ inhibitory interneurons are associated with PNNs in various areas of the rodent brain, including 

the striatum [84, 96, 103, 104, 106, 123]. Within this nucleus, PV+ inhibitory interneurons and PNNs 

have been revealed to overlap in a known ratio [96]. I aim to assess the correlation of these neurons 

with PNNs to ascertain whether EE influences the association between these two markers within the 

adult striatum. I propose that determining the effect of lifelong EE upon the PV+ inhibitory 

interneuron population within the striatum will provide preliminary insight into how ongoing 

enrichment affects mature striatal circuitry.  

The timeline of PV+ inhibitory interneuron maturation within the rodent striatum synchronises with 

the innervation of ipsilateral corticostriatal afferents into this region of the brain [50, 87]. The 

majority of extra-striatal input received by PV+ inhibitory interneurons originates from corticostriatal 
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afferents [60, 87, 88], providing activation to striatal PV+ inhibitory interneurons [87], and the 

neurotrophic factor BDNF to the striatum at large [125]. BDNF is responsible for the maturation of 

PV+ inhibitory neurons in other areas of the brain [126], and lack of this neurotrophic factor within 

the striatum results in a decrease in immunohistochemically detectable PV+ inhibitory interneurons 

within the rodent striatum [125].  

The maturation of PV+ neurons and BDNF in the visual cortex heralds the onset of the visual critical 

period [126]. I hypothesise that the PV+ inhibitory interneurons within the rodent striatum play a 

similar role in determining the timing of an early life critical period within this region of the brain, 

and that BDNF is likely to influence the maturation of this neuronal population. I aim to characterise 

the development of PV+ inhibitory interneurons and to profile the levels of BDNF protein present 

within the murine striatum during this putative critical period.  

Within the striatum, early exposure to EE results in the accelerated formation of PNNs, an 

extracellular matrix structure associated with PV+ inhibitory interneurons [96-98]. EE is a means by 

which the timing of critical periods within the brain may be manipulated, providing an insight into 

the effect an organism’s surroundings have on neural development. I propose that early life 

enrichment begun immediately prior to birth is capable of accelerating the maturation of PV+ 

inhibitory interneurons within the striatum, and that this will likely impact upon the timing of a 

putative early critical period within this region of the brain. I aim to establish the effect of early EE 

upon the development of PV+ inhibitory interneurons within the striatum, and whether levels of the 

neurotrophic factor BDNF are impacted, providing a possible mechanism for any changes in the 

maturation of striatal PV+ inhibitory interneurons.  
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7.2 Assessing the impact of environmental enrichment upon juvenile animal behaviour 

(Chapter 2) 

There are a number of behavioural tasks that may be used to assess striatal function in mature 

animals; however, assessing striatally-mediated behaviours in juvenile animals is more difficult. 

Young mice do not begin to show coordinated sensorimotor behaviours until towards the end of the 

second week of life [182, 183], making it difficult to assess the early development of either cognitive 

or sensorimotor processes mediated by the murine striatum.  

One behaviour produced by the striatum that does not require the performance and/or acquisition 

of complex tasks to assess is Ultrasonic Vocalisation (USV). USVs are produced by mouse pups as 

early as P3, and the striatum is involved in the motor components of generating these vocalisations 

[7, 286, 287]. Young animals produce distinctive USVs in response to social isolation, to induce their 

retrieval by dams; the incidence of these calls decreases as animals age and become independently 

mobile [182, 183, 209, 210, 288, 289], displaying a clear developmental trajectory [209, 210, 288] 

that takes place over the same period as striatal PV+ inhibitory circuitry maturation [50, 209, 210, 

288].  

There are many factors that may influence the production of USVs induced by maternal separation, 

including temperature, the presence of a strange male, tactile stimulation, and maternal behaviours 

[210, 213, 289-291]. Dams housed within enriched environments display differing maternal 

behaviours to those housed within standard cages: pups experience greater levels of grooming 

despite mothers spending less time within the nest [139, 141]. I propose that ascertaining the 

number and type of USV calls produced by juvenile animals may be used as a behavioural measure 

of striatal maturation in very young mice. I aim to determine any effects of early life EE upon the call 

profile of USVs produced by juvenile animals in response to social isolation.  

It is known that an activity-dependent critical period of neuroplasticity for motor behaviours 

modulated by dopaminergic and cholinergic systems within the rodent striatum begins on P30 and 
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continues through until P37 [164-169]. Coordinated sensorimotor behaviours such as locomotion 

and swimming emerge earlier, around the same time as PV+ inhibitory circuitry within the rodent 

striatum begins to mature, with both behaviours and PV+ neurons fully developed around the same 

time [50, 182, 183]. Early life EE has been shown to accelerate the development of coordinated 

swimming behaviours of young mice [98]. It may be that a putative early critical period within the 

striatum modulates an aspect of sensorimotor circuitry, and that the earlier appearance of 

coordinated sensorimotor behaviours resulting from EE is due to an effect upon inhibitory circuitry 

within the striatum [98]. Locomotion behaviours continue to mature and undergo refinement during 

the third and fourth weeks of life [182, 183]. I propose the use of the rotarod apparatus to assess 

sensorimotor coordination behaviours of young animals from ages P21 to P26. I aim to determine 

whether EE may accelerate the development of refined sensorimotor coordination, resulting in an 

earlier appearance of mature locomotion behaviours.  

 

7.3 Assessing the effect of environmental enrichment upon goal-orientated learning and 

sensorimotor behaviours mediated by the striatum (Chapters 3 & 4) 

Adult rodents that have experienced EE demonstrate improved learning and memory in cognition-

based behavioural tasks such as the Morris Water Maze [98, 191], and do not display the same 

degree of sensorimotor deficit as standard housed counterparts when investigating animal models 

of neurological disorders [9, 219, 220, 292]. The striatum is known to be involved in both cognitive 

and sensorimotor processes [5, 8-10, 40-44, 46, 47], and is likely to play a part in the improvement 

observed in these behaviours when animals are exposed to an enriched environment.  

Cognitive processes mediated by the striatum include goal-orientated learning [41], rule-based 

learning [10], and task acquisition [42]. One behavioural test that may be used to assess goal-

orientated problem-solving and learning is the Puzzle-Box behavioural task. This task tests the ability 

of animals to convert goal-directed intention into sensorimotor behaviours and utilises the natural 
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preference of rodents for small, dark, enclosed spaces over brightly lit open-fields [221-223]. I 

propose the use of the Puzzle-Box behavioural task as a suitable test for the effects of EE upon a 

number of cognitive processes. Specifically, I aim to determine how EE impacts upon goal-orientated 

problem-solving by monitoring the way in which mice approach the Puzzle-Box behavioural task.  

Along with the impact of EE upon cognitive behaviours, I will also investigate its effect upon 

sensorimotor behaviours. Exposure to EE has been shown to improve the performance of adult 

rodents during a once-off test upon the rotarod behavioural task [218], along with preventing motor 

deficits specific to this task in Huntington’s disease animal models [130, 219]. Along with testing 

native sensorimotor coordination ability, the rotarod may also be used to assess motor learning 

across a period of time [8, 45]. I propose the use of the rotarod behavioural task as a suitable test for 

the effects of EE upon baseline sensorimotor coordination and motor learning, and aim to determine 

how EE impacts these behaviours.  

Both enrichment and PNN digestion increase plasticity within neural circuitry [101, 106, 107, 115, 

187, 273, 279], and impact upon cognitive [96, 98, 191] and sensorimotor [9, 96, 148, 218] 

behaviours. Previous work from our laboratory has demonstrated the ability of the bacterial enzyme 

Chondroitinase ABC (ChABC) to affect striatally-mediated sensorimotor and cognitive behaviours of 

mice [96]. I propose the use of ChABC within the striatum to determine the role of this nucleus in 

both the Puzzle-Box and rotarod behavioural tasks. The use of ChABC, rather than pharmacological 

or electrolytic lesions, will prevent the occurrence of cell death within this nucleus and minimize the 

chance of damage to other areas of the brain that may be involved in the behaviours under 

investigation [96]. My aim is to determine whether striatal ChABC application impacts goal-

orientated and motor learning of mice; and ascertain the manner in which EE interacts with this 

treatment to gain insight into whether neuroplasticity induced by both enrichment and PNN 

digestion share underlying mechanisms. 
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7.4 Determining the impact of environmental enrichment upon decision-making 

behaviours (Chapter 5) 

Along with goal-orientated cognitive processes and sensorimotor coordination, the striatum is also 

involved in decision-making and choice of action behaviours [13, 40]. Rodents with lesions to the 

striatum demonstrate impaired decision-making, suggesting that this area of the brain is involved in 

expressing the association between action and outcome [11, 12, 41]. Reward-based learning 

behavioural paradigms can be used to assess decision-making processes. One such paradigm is the 

Iowa Gambling Task (IGT), a test traditionally used in human psychological evaluation to assess how 

sensitivity to reward may impact choices made during testing [226, 280]. Subjects are given a choice 

between two high-reward/high-loss (high risk/overall disadvantageous) groups and two low-

reward/low-loss (low risk/overall advantageous) groups. More reward is gained over time by 

consistently choosing from the low risk/overall advantageous groups [226, 280]. Factors such as sex, 

age, weight, anxiety status, and neuropsychological conditions are all capable of impacting subjects’ 

performance within the IGT [224-226, 266, 293-297].  

There have been several studies investigating a rodent version of the Iowa Gambling Task (RGT), 

using food and its withdrawal as reward and loss [196, 227, 228]. These studies have made use of 

rats as subjects and have revealed that – similar to humans – there is a proportion of the rodent 

population that consistently makes risky decisions, both within the RGT and other behavioural tasks 

[196]. Decision-making within the RGT is influenced by early life levels of maternal care, with animals 

receiving greater care choosing low risk options more often than those receiving less [228]. Animals 

raised in enriched environments have been shown to receive a greater level of maternal care than 

those raised in standard environments [139, 141], whilst animals that have experienced EE during 

adulthood demonstrate improved cognitive ability [191]. It is not known how EE from birth or during 

adulthood may impact upon decision-making behaviours in a paradigm such as the RGT. I propose to 

develop a murine version of the RGT in order to ascertain whether EE both from birth and in 
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adulthood has any impact upon decision-making behaviours, using the IntelliCage, a novel 

automated behavioural testing and tracking system.  

The IntelliCage system was designed to mimic a more naturalistic setting for rodent test subjects. 

The testing arena also serves as the home cage in this system, with the movement and water 

consumption of individual animals tracked through the use of radio frequency identification (RFID) 

chip implants [229]. Access to water within conditioning corners of the IntelliCage can be regulated 

and used as a reward to train animals to complete tasks or behaviours [229, 234, 298-300]. The 

automated nature of the system limits animal handling, removing a potential experimental confound 

[123, 237]. Previous work has demonstrated that aspects of EE added to an IntelliCage decreases 

exploratory behaviours within the arena, but improves performance in a spatial learning task [299]. 

The effect of home cage EE upon behaviours within the IntelliCage testing arena has not yet been 

established. I propose the use of the IntelliCage to conduct a mouse version of the IGT, using water 

access and restriction as the reward and loss components of this RGT. I aim to determine whether EE 

from birth and during adulthood has an impact upon decision-making behaviours during a RGT 

within the IntelliCage. To the best of my knowledge, this is the first time that the IntelliCage system 

has been used to develop a RGT, and the first time that the effects of EE upon decision-making using 

a rodent version of the IGT has been assessed.  

 

7.5 Overall Aims 

This thesis aims to shed light upon the mechanisms by which environmental enrichment affects the 

striatum.  

Characterising the maturation of PV+ inhibitory interneuron maturation and BDNF protein levels 

within the striatum during early development, and how early EE may impact these measurements, 

will aid in establishing the presence of a putative early life striatal critical period. The assessment of 

60



both USV production and locomotion of juvenile animals, and whether EE impacts the development 

of these behaviours, will also provide an insight into the presence of an early life striatal critical 

period. Ascertaining the correlation of PV+ inhibitory interneurons and PNNs within the striatum of 

adult animals will allow me to determine whether EE continues to have any impact upon striatal 

inhibitory circuitry beyond the early postnatal period.  

The development of a Puzzle-Box behavioural task to allow consistent assessment of EE effects upon 

cognitive behaviours will provide researchers with a useful tool when determining the efficacy of 

enrichment paradigms. Assessing the impact of EE upon animal behaviours within the Puzzle-Box 

and upon the rotarod grants an overview of the ways in which enrichment can influence both 

cognitive and sensorimotor processes. The use of striatal ChABC injection in combination with EE 

during these tasks gives an insight into the mechanisms underlying neuroplasticity effects of both 

these treatments, and the role the striatum may play in mediating goal-orientated learning and 

sensorimotor coordination behaviours. 

Finally, determining the effects of EE upon reward-based decision-making within a novel testing 

environment will provide researchers with a new behavioural task that may be used to emulate the 

human psychological IGT assessment; grant insight into the impact of EE upon decision-making 

behaviours based on non-addictive reward substances; and supply information about the 

behavioural patterns of enriched animals within automated testing apparatus.  

The nervous system both mediates an organism’s external interactions and maintains internal 

homeostasis. This system enables sensory experience, motor movement, cognitive processes, and 

ultimately controls everything an organism does. Determining the impact of environmental factors 

upon this system and the behaviours it mediates highlights the importance of surroundings when 

it comes to neurological health and function, and may aid in the development of early education 

or intervention programs.     
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Abstract 

The consolidation of networks composed of parvalbumin-positive inhibitory interneurons is a crucial 

step in the maturation of neural circuits. Enriching the environment of developing animals can affect 

both the timing and rate of this process. Although the influence of environmental enrichment on 

parvalbumin-positive cells have been well characterized in sensory cortex, less is known about the 

role environmental factors play on the maturation and maintenance of inhibitory circuits involved in 

motor control and action. Accordingly, I examined the effect of enriching mice from birth on the 

development of parvalbumin-positive neurons in the striatum, the input nucleus of the basal ganglia, 

and a key structure in the regulation of motor control and goal directed learning. I find that 

perineuronal nets, extracellular matrix structures associated with the maturation of inhibitory 

networks, show increased overlap with parvalbumin-positive interneurons in the striatum of 

enriched adult animals and that early enrichment leads to an acceleration of striatal parvalbumin 

expression. As a first step in establishing a potential mechanism underlying the changes in the 

striatum induced by environmental enrichment, the level of brain derived neurotrophic factor 

(BDNF), an important regulator of inhibitory network maturation, was measured across early 

postnatal development in enriched and standard housed pups. I find that BDNF protein levels exhibit 

accelerated postnatal increases in the striatum of enriched cohorts. Finally, enrichment leads to 

changes in the dynamics of juvenile ultrasonic isolation calls, a behaviour regulated by striatal 

function. Together, these findings indicate that environmental enrichment can profoundly affect 

early striatal development and function and provide preliminary evidence that an organism’s 

surroundings are capable of influencing striatal circuitry throughout life.  

  

Keywords: Striatum; Development; Parvalbumin Inhibitory Interneuron; Brain-Derived Neurotrophic 

Factor; Behaviour. 
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1. Introduction 

In many organisms, there exists an early postnatal “critical period” during which their nervous 

systems become particularly susceptible to activity-dependent changes derived from interactions 

with the external environment [1-4]. The onset and offset of this critical period is dependent on the 

shifting balance of excitatory and inhibitory drive within neural circuits, with the maturation of 

inhibitory networks (consisting of parvalbumin positive (PV+), fast spiking interneurons) signalling 

the end of this epoch of peak plasticity [5-8]. The encapsulation of PV+ neurons by perineuronal nets 

(PNNs; extracellular matrix structures composed of chondroitin sulphate proteoglycans (CSPGs)) [9-

13] occurs concurrently, suggesting that these structures contribute to the consolidation of 

associated circuitry [11, 14-16]. At a mechanistic level, the maturation of inhibitory networks has 

been shown to be dependent on the expression of Brain-derived neurotrophic factor (BDNF) [7].  

The influence of environmental attributes on neural development has been explored by 

systematically manipulating an animal’s surroundings. One particularly effective approach has been 

to expose subjects to environmental enrichment (EE) by increasing sensory, motor and social 

stimulation (for reviews, see Sale et al 2009 and van Praag et al 2000) [17, 18]. Animals raised in 

enriched environments exhibit an accelerated maturation of neural circuitry, especially in regard to 

inhibitory networks, and the coincident formation of perineuronal nets (PNNs) [9, 10, 12, 19].   

Much of the work examining the influence of EE on neural circuitry has focused on primary sensory 

cortex; its role in the development and function of motor areas, particularly the striatum (the rodent 

equivalent of the caudate/putamen) has been less well characterised. This vitally important front-

end nucleus of the basal ganglia receives, filters and integrates input from various cortical and sub-

cortical areas, and projects this information to other circuits within and across associated networks 

[20-26]. GABA-ergic medium spiny projection neurons (MSNs), the main striatal output cells, 

comprise over 90% of the neuronal population within the striatum [26, 27]. PV+ cells are also 

present, although they constitute less than 3% of neurons within the nucleus [27, 28]. Despite these 
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low numbers, PV+ cells receive direct cortical as well as nigral input, and play a vital role in 

modulating the activity of striatal circuits [28-31].  

Previous work from our laboratory has demonstrated the accelerated maturation of PNNs within the 

striatum of young mice raised in enriched housing [19], with recent findings showing that exposure 

to EE modulates PV expression within the hippocampus of adult animals [32]. PV+ neurons and PNNs 

within the striatum of adult animals correlate in a known ratio [16], but it has not been determined 

whether enrichment continues to impact striatal PNNs beyond early development, or similarly 

modulates the expression of parvalbumin within the adult striatum.  

Striatal PV+ interneurons begin to emerge developmentally between the first and third postnatal 

weeks [33, 34]. This is also the period during which a host of other changes, including a second 

postnatal wave of innervations by dopaminergic afferents [23, 35] as well as the formation of PNNs, 

occur in the striatum [15, 19]. Within the visual cortex, the maturation of PV+ neurons is dependent 

on BDNF expression [7]. Although there is very little mRNA of the trophic factor expressed within the 

striatum [36], lesion studies have revealed that BDNF protein reaches the nucleus via anterograde 

transport along cortical afferents [37]. Previous work has demonstrated that EE accelerates the 

formation of striatal PNNs [19], and can also affect striatal BDNF levels of adult animals [38-40]. 

Whether the maturation of PV+ cells in the striatum is similarly influenced by EE, and how this 

relates to BDNF levels in early postnatal development has yet to be determined.  

Functionally, the striatum has been revealed to regulate both the emergence and maintenance of a 

number of behaviours in developing mice [19, 41, 42]. Amongst these, the generation of ultrasonic 

vocalizations (USVs) is of particular importance due to its ethological relevance [43]. Juvenile mice 

begin emitting USVs in response to social isolation during the first postnatal week of development 

[44-46]. They cease to make these vocalizations a week later (2nd postnatal week), when pups 

become independently mobile [45-48], further reinforcing the notion that the circuitry regulating 

this behaviour is undergoing key maturational changes during this period. Simple locomotion begins 
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to appear around the same time, on postnatal day 9 [41, 42], whilst more complex, coordinated 

sensorimotor behaviours mature during the third week of life [41, 42]. One such behaviour is the 

ability to negotiate a narrow rotating surface; rats younger than 20 days postnatal (P20) experience 

difficulty when traversing a slowly rotating surface, whilst animals younger than P25 are generally 

unable to traverse a surface rotating at a faster speed [41].  

Previous work from our laboratory has indicated that pups raised within an enriched environment 

demonstrate accelerated maturation of sensorimotor coordination behaviours at 10 days postnatal 

[19], during what is known as the postnatal transition stage of sensorimotor development [42].  

Together, these findings suggest the possibility that this epoch serves as a developmental “critical” 

period for the striatum.  

Accordingly, I have examined the overlap between PV+ cells and PNNs in adult striatum to 

determine whether lifelong enrichment impacts PNN or PV expression within the mature nucleus. I 

observe an EE dependent effect on the degree to which these two entities interact with one 

another, suggesting that enrichment may contribute to an activity-dependent impact on PV 

expression within the adult striatum. Given this effect, I then investigated the impact of early EE 

upon maturation of the PV+ population of striatal neurons, and how this is related to changes in 

BDNF expression. I find that enrichment from birth accelerates the maturation of this population of 

inhibitory interneurons, and show that EE increases striatal levels of BDNF protein in early postnatal 

mice, suggesting a possible mechanistic link between trophic factor levels and PV+ maturation. In 

order to identify potential behavioural consequences of the striatal changes wrought by early 

enrichment, I assessed juvenile mice in the time course and characteristics of ultrasonic vocalisations 

(USVs) [43] and locomotor behaviour [16]. I found that EE influences the call-profile and duration of 

USVs as the animals develop, and has no impact upon locomotion. Together, these findings indicate 

that EE can continue to influence striatal circuitry beyond the critical period, and that exposure to 
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enrichment can profoundly affect early striatal development, influencing PV and BDNF expression 

and contributing to changes in a juvenile striatally-mediated behaviour.  

 

2. Materials and Methods 

2.1 Ethics Statement 

All procedures were approved by the Animal Ethics Committee of the University of Sydney and 

conformed to National Health and Medical Research Council of Australia guidelines (Protocol 

number K22/11-12/3/5838). Experiments were performed on C57/BL6J mice which were reared at 

the University of Sydney animal house facility. All mice were housed in a single adequately-

ventilated room in 21oC ambient temperature on a 12-hour light-dark cycle with ad libitum access to 

dry food and water. 

 

2.2 Housing of animals in standard and enriched environments 

On arrival, half of the pregnant dams were randomly assigned to standard home cages (dimensions: 

30cmx13cmx13cm), and the other half to enriched housing (dimensions: 45cmx30cmx13cm), 

adapted from Simonetti et al, 2009 [19]. Standard cages contained a translucent, red plastic mouse 

“igloo”/shelter and extra material for bedding. Enriched cages contained these same items as well as 

extra sheltering material (paper tubing, spare igloo), a running wheel for voluntary exercise, objects 

to provide extra tactile stimulation including Velcro strips, marbles and rubber balls, olfactory stimuli 

such as scented plush balls (vanilla, strawberry and cinnamon), and two high-contrast visual stimuli. 

These items were moved around the cage every two to three days.  Enriched housing also contained 

two litters to enable greater social interaction between dams and pups. 
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At 21 days postnatal (P21), pups were weaned and placed into gender segregated housing of the 

same environmental conditions in which they were born.  

 

2.3 Measuring PV+ cell density and correlation with PNNs in fixed tissue 

P10, P15 and adult (12 – 14 weeks of age) mice were euthanised with >100mg/kg of sodium 

pentobarbitone injected intraperitoneally, and transcardially perfused using 0.9% saline followed by 

4% paraformaldehyde in 0.1M phosphate buffer (PB). The brain was dissected out, post-fixed 

overnight in 4% paraformaldehyde in 0.1M PB, and cryoprotected in 30% sucrose in 0.1M PB. 

Brains were then embedded in gelatin-albumin hardened by 25% glutaraldehyde in 0.1M PB, and 

sectioned coronally at 60m on a freezing microtome.  

Double-staining for parvalbumin-positive (PV+) neurons, and perineuronal nets (PNNs) was adapted 

from Fukuda & Kosaka, 2003 and Lee et al, 2012 with some slight modifications [16, 49, 50]. Sections 

were cryoprotected in 30% sucrose 0.1M PB and put through a rapid freeze-thaw procedure using 

liquid nitrogen [49, 50]. These sections were then labelled for CSPGs using Wisteria Floribunda 

Agglutinin (WFA), a plant lectin used to visualize CSPGs, as described previously [16] (Vector Labs, 

Burlingame, CA, USA). Following this, sections were incubated 48-72 hours at 4oC in a rabbit 

polyclonal antibody against parvalbumin (dilution 1:500; Abcam (catalog number: ab11427; 

Antibody Registry ID: AB_298032), Cambridge, England, UK) )[51-53], followed by three hours of 

incubation in goat anti-rabbit AlexaFluor 594 (dilution 1:200; Life Technologies, NY, USA), then 

mounted in 50/50 glycerol-0.1M PB with 1:1000 DAPI and imaged. 

Sections were digitally imaged at low power using a Zeiss deconvolution microscope with 

AxioCamHR camera and Axiovision software (Carl Zeiss Microscopy GmbH, Jena, Germany) and at 

high power using a Zeiss LSM 510 META confocal laser scanning microscope and Zeiss LSM software 

(Carl Zeiss). In each imaged slice, PNNs and PV+ cells were manually marked (Photoshop; Adobe 
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Systems Inc., San Jose, CA, USA) and both PNN and PV+ density measurements obtained, along with 

co-expression information. Measurements were imported into SPSS (SPSS Inc., Chicago, IL, USA) for 

statistical analysis with the degree of freedom calculated according to the number of brain sections 

analysed. Multifactorial ANOVAs (housing condition and age as factors) were used to compare PNN 

and PV+ densities and co-expression across groups and developmental time points. Univariate 

ANOVAs were used to compare density and co-expression values between housing condition groups 

at each age point.  

 

2.4 Fresh tissue and protein analysis 

P8, P10, and P15 standard and enriched mice were euthanized with >100mg/kg of sodium 

pentobarbitone injected intraperitoneally. Animals were then decapitated and the brain 

immediately removed and placed on ice. The striatum (caudate and putamen nuclei) was rapidly 

dissected out using ice-cold instruments as demonstrated in Chiu et al, 2007 [54]. All care was taken 

to avoid including other brain structures or white matter from the corpus callosum. All samples were 

weighed, then snap-frozen in liquid nitrogen and stored at –80oC until processed.  

Striatum were suspended in 1000l of lysis buffer [137mM sodium chloride (NaCl); 20mM Tris-

hydrogen chloride (Tris-HCl) (pH 8.0); 1% triton-x 100; 10% glycerol; 1mM phenylmethylsulfonyl 

fluoride (PMSF); 10g/mL aprotonin; 1g/mL leupeptin; 0.5mM sodium vanadate]. Samples were 

then sonicated, vortexed, and centrifuged at 1500Xg for 20 minutes at room temperature. The 

concentration of BDNF was determined using the E-max ImmunoAssay system (Promega, WI, USA). 

Standard 96-well flat-bottom ELISA (Enzyme linked Immuno-Sorbent Assay) plates were incubated 

overnight at 4oC with anti-BDNF monoclonal antibody. The next day, plates were blocked with 

1XB&S Buffer for 1 hour at room temperature. Serial dilutions of known amounts of BDNF ranging in 

concentration from 500pg to 0pg were performed in duplicate for the standard curve of each set of 

mouse tissue. 100l of sample was added to each well in triplicate and incubated at room 
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temperature for 2 hours. The wells were then incubated with an antihuman BDNF polyclonal 

antibody for 1 hour at room temperature, followed by anti-IgY conjugated to HRP for 1 hour at room 

temperature. A 3, 3’, 5, 5’-tetramethylbenzidine (TMB) solution was used to develop colour in the 

wells for 10 minutes at room temperature. The reaction was stopped with the addition of 1N 

hydrochloric acid (HCl) to the wells and the absorbance read at A450 within 30 minutes (BMG 

POLARstar Galaxy microplate reader; MTX Lab Systems, VA, USA). 

A multifactorial ANOVA was used to assess protein levels across age groups, using age and housing 

condition as between-subjects factors. A univariate ANOVA was used to compare protein levels 

between housing condition groups at each age point. The degree of freedom was calculated 

according to the number of animals assessed. 

 

2.5 Behavioural analyses 

2.5.1 Recording of ultrasonic vocalisations 

The ultrasonic vocalisations (USVs) of juvenile mice were recorded every second day at 50kHz + 

10kHz, from 5 to 15 days postnatal (P5 to P15). Vocalisations were recorded using a Magenta Bat 5 

bat-detector (NHBS, Devon, UK) and Audacity sound recording software (sourceforge.net). Animals 

were placed in a clean standard housing cage on top of a surgical heating pad maintained at 28oC. 

The cage contained no bedding, and was cleaned between animals with 70% ethanol. Individual 

mice were recorded within this apparatus for five minutes (per session). 

 

2.5.2 Maternal potentiation  

For each recording day, pups were placed within the recording arena for a single five minute session.  

They were then returned to their home cage for five minutes, before being recorded again in the 
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same arena for another five minutes (second session) [55]. All animals were weighed at the 

conclusion of each recording session.  

 

2.5.3 Analysis of ultrasonic vocalisations 

Spectrograms of audio recordings were produced and the properties of vocalisations extracted using 

AviSoft SAS Lab Pro (AviSoft Bioacoustics, Glienicke, Germany). The numbers of total USVs, and the 

average time length (duration) of USVs were tallied. Calls were grouped by type according to peak 

frequency at the beginning, maximum, and end amplitude of each call. Repeated measures ANOVA 

was used to assess the number and duration of total USVs as well as for each call type across animal 

ages, using age as the within-subject factor, and housing condition as the between-subjects factor. A 

univariate ANOVA was used to compare differences between enrichment cohorts at each age tested. 

To assess potentiation, an index comparing the number of USVs generated between the two 

sessions per recording day was calculated:  Ri = (S2i – S1i) / (S2i + S1i); where S2 and S1 are the 

number of vocalizations made during recording day i.  Indices were calculated for both the number 

and duration of call types, and a repeated measures ANOVA was used to compare these values with 

age as a within-subject factor and housing condition as the between-subject factor.  A univariate 

ANOVA was used to detect differences between enrichment cohorts at each age assessed. The 

degree of freedom was calculated according to the number of animals assessed.  

 

2.5.4 Rotarod behaviour 

Young animals (P21 – P26) underwent testing on a rotarod apparatus for 5 consecutive days. All 

animals were weaned on the first day of testing, and separate by sex after the last day of testing; 

they were housed in original home-cages for the duration of testing. Each day, animals were placed 

onto the Rotarod (IITC Inc., Woodland Hills, CA, USA) for five minutes of habituation prior to 

99



undertaking five runs of three minutes duration, starting at the lowest speed (1RPM) and ramping 

up to the highest speed (45RPM) at the three minute mark. Five animals were tested at a time, and 

runs were started when all animals were orientated in the same direction. Note was made of the 

time and distance run before an animal fell off the apparatus. A repeated measures ANOVA was 

used to compare performance of the sum of time and distance run within a testing day, using day of 

testing as the within-subjects factor and housing condition as the between-subjects factor.  

 

3. Results 

3.1 Environmental enrichment influences the number and PNN overlap of PV+ cells in 

adult striatum 

Both experience and environmental factors are capable of modulating PV expression within 

inhibitory circuits [32]. Further, although a close association between PNNs and PV+ interneurons 

has been well documented in sensory cortex [9-13], roughly only half of all PV+ cells are ensheathed 

by these CSPG structures within the striatum [16]. Moreover, even though the rate of increase in 

striatal PNN density across early postnatal development is greater in enriched compared to standard 

raised cohorts [19], whether this difference persists into adulthood has also yet to be determined.  I 

therefore asked if EE influenced the density of PV+ cells as well as PNNs in adult murine striatum, 

and whether enrichment affected the degree to which they associated with one another.  

Qualitatively, I observed an increase in the number of striatal PV+ neurons (Fig. 2.1A, C, G, 

arrowheads) of enriched adult mice (n=3). Quantitative analysis confirmed that EE significantly 

increased the density of striatal PV+ cells within the striatum (univariate ANOVA, housing condition 

as between-subjects factor, F(1, 34)=6.407, P=0.016) (Fig. 2.1J). 

Surprisingly, EE also affected the association between striatal PV+ interneurons and PNNs (Fig. 2.1B, 

E, H, arrows).  Although EE did not impact the density of PNNs within the striatum (univariate 
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ANOVA, housing condition as between-subjects factor, F(1, 34)=1.455, P=0.236) (Fig. 2.1J), analysis 

of the percentage of PV+ neurons encapsulated by PNNs, as well as the percentage of PNNs 

surrounding PV+ neurons, revealed that enrichment significantly increased the degree of overlap 

between the two  (univariate ANOVA, housing condition as between-subjects factor: % PV with 

PNNs, F(1, 34)=15.831, P<0.001; % PNNs with PV, F(1, 34)=12.802, P=0.001) (Fig. 2.1K). Conversely, 

both the proportion of PV+ neurons not encapsulated by PNNs and the percentage of PNNs not 

surrounding PV+ neurons were decreased to the same degree in enriched animals when compared 

to standard mice (univariate ANOVA, housing condition as between-subjects factor: % PV without 

PNNs, F(1, 34)=15.831, P<0.001; % PNNs without PV, F(1, 34)=12.802, P=0.001) (Fig. 2.1L). Together, 

these findings reveal that not only is the increased density of PV+ neurons in the striatum of 

enriched mice maintained into adulthood, but the degree to which these cells are encapsulated by 

PNNs is also dramatically influenced by EE.  
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Figure: 2.1 Environmental enrichment increases PV+ cell density and overlap with PNNs in adult 

animals.  

(A – C) Sample sections showing the pattern of PV (A), PNN (WFA) staining (B), and overlap (C) in the 

striatum of adult mice raised in standard (S) housing. PV staining is most prominent in the lateral 

part of the striatum (arrowheads), whilst PNN straining is distributed more evenly throughout the 

nucleus (arrows). Unlike in cortex, only a partial overlap between PV+ cells and PNNs is observed in 

the striatum (C: non-overlapping samples represented by arrows and arrowheads; circles highlight 

some examples of PV+ cells encapsulated by PNNs). (D–F) Corresponding sample striatal sections for 

enriched mice. Figure conventions are identical to (A-C). The number of PV+ cell appears to have 

increased (compare D to A), while little or no difference is observable for PNNs (compare E to B). (G 

– I) Higher-power micrographs showing overlapping (circles) and non-overlapping PV+ cells 

(arrowheads) and PNNs (arrows). Scale bars: 1000m in A – E, 50m in G – I. (J) Mean density of PV+ 

cells and PNNs for adult enriched (E) and standard (S) animals. While a significant increase was 

detected in enriched PV+ densities compared to standard cohorts (univariate ANOVA, F=6.407, 

P=0.016), no difference was observed for PNNs. (K – L) Mean overlap between PV+ cells and PNNs in 

the striatum of adult animals. A significant increase in overlap between PV+ cells and PNNs was 

detected in enriched (E) compared to standard (S) adult mice (univariate ANOVA: % PV with PNNs & 

% PV without PNNs, F=15.831, P<0.001; % PNNs with PV & % PNNs without PV, F=12.802, P=0.001). 

Six sections from 3 animals were quantified for each group. **: P<0.01, ***: P<0.001. Error bars= 

Standard Error of the Mean (SEM). 
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3.2 Environmental enrichment affects the maturation of PV+ cells 

Previous work has established a link between PNN formation and the maturation of PV+ inhibitory 

interneurons [10-13]. Striatal PNNs begin consolidating at around postnatal day 10 (P10) [15], 

increasing in density with age. Further, EE accelerates the formation of these structures within the 

nucleus [19]. Although striatal PV expression is also first observed around the same age point [33, 

34], whether the maturation of PV+ cells is similarly affected by enrichment is not known. 

Accordingly, I compared PV expression within the developing striatum of enriched and standard 

housed mice pups at two ages (P10 and P15, n=4-6) corresponding to when PV+ cells are first 

appearing. 

I found that enrichment accelerated the age-dependent increase in PV expression within the 

developing murine striatum. At P10, striatal PV+ cells were already present, albeit at low numbers, 

predominantly within the lateral striatum, in both standard and enriched pups [33] (Fig. 2.2A, C; 

arrowheads), with expression increasing by P15 for both cohorts (Fig. 2.2B, D, arrowheads).  In 

comparison to the standard-housed animals, pups raised in enriched environments exhibited a 

greater number of PV-expressing neurons in all sections of the striatum at each age-point (Fig 2.2A – 

D, arrowheads).  

Quantitative analysis across these two developmental time points confirmed that density of PV+ 

neurons within the striatum increased significantly with age for both housing conditions (univariate 

ANOVA, age as between-subjects factor: S, F(1, 128)= 123.681, P<0.001; E, F(1, 128)=162.513, 

P<0.001) (Fig. 2.2E). EE also greatly affected PV expression, with enriched pups showing significantly 

higher densities of PV+ cells compared to standard housed cohorts (univariate ANOVA, housing 

condition as between-subjects factor: At P10, F(1, 197)=11.445, P=0.001; at P15, F(1, 59)=8.612, 

P=0.005) (Fig. 2.2E). The significant interaction between age and housing condition suggests that EE 

accelerated the expression of PV within striatal inhibitory interneurons (univariate ANOVA, housing 

condition and age as between-subjects factors, F(1, 256)=13.782, P<0.001). Together, these findings 
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suggest that EE can accelerate the maturation of PV+ inhibitory networks within the developing 

striatum.  
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Figure: 2.2 Environmental enrichment accelerates the emergence of striatal PV expression.  

Sample striatal sections showing the pattern of PV staining at P10 (A) and P15 (B) of standard (S) 

housed mice. PV staining (arrowheads) in juvenile mice is most prominent in the lateral part of the 

striatum, spreading medially with age. Very few positively stained cells are present at P10, but they 

become more numerous by P15. (C, D) Comparable sample striatal sections for enriched mice. Note 

the greater number of positively stained PV cells at both P10 (C) and P15 (D) compared to standard 

housed mice. The inset in (D) shows the appearance of a sample PV+ neuron at higher power. Scale 

bars: 1000m in A – D, 100m for the inset in D. (E) Striatal PV+ cell density in standard (S) and 

enriched (E) mice at the two age points assessed.  Enriched mice exhibited significantly greater 

densities at both P10 (univariate ANOVA, F=11.445, P=0.001) and P15 (univariate ANOVA, F=8.612, 

P=0.005). Six sections from 4 – 6 animals were quantified for each group. **: P<0.01. Error 

bars=SEM. 
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3.3 Environmental enrichment increases levels of striatal brain-derived neurotrophic 

factor in juvenile mice 

Previous work has demonstrated an up-regulation of BDNF within various areas of the brain in 

response to EE [9, 12, 38-40, 56-59]. Further, this enrichment-induced increase in trophic factor 

levels has been shown to accelerate the maturation of PV positive interneurons [9, 12]. Interestingly, 

unlike in many other cortical and subcortical regions, BDNF is not synthesised in the stratum; instead 

it is delivered to the nucleus via anterograde transport along afferent axons [37]. I reasoned that if 

BDNF is responsible for the impact of EE on PV expression in the striatum, then this should be 

reflected in increased levels of the trophic factor detected within the striatum at key age-points. To 

assess this possibility, I compared the presence of BDNF protein within the striatum of enriched and 

standard housed pups at three early postnatal ages:  P8 (n = 5), P10 (n = 8) and P15 (n = 8), time 

points just prior to and inclusive of the early stages of PV expression. 

I found that EE accelerated the developmental regulation of BDNF protein levels within the striatum. 

Quantitative analysis across these three early postnatal time points confirmed that striatal BDNF 

levels increased with age (univariate ANOVA, age as between-subjects factor, F(2, 35)=17.190, 

P<0.001). Although striatal BDNF levels exhibited no difference between standard and enriched pups 

at P8, the earliest age tested (univariate ANOVA, housing condition as between-subjects factor, F(1, 

7)=0.93, P=0.769) (Fig. 2.3), by P10 the level of BDNF protein had at least doubled in both housing 

conditions, and was significantly greater in the striatum of enriched pups (univariate ANOVA, 

housing condition as between-subjects factor, F(1, 14)=8.223, P=0.009) (Fig. 2.3). By P15, striatal 

BDNF levels had peaked in both standard and enriched pups, and there was no longer any effect of 

housing condition (univariate ANOVA, housing condition as between-subjects factor, F(1, 14)=0.32, 

P=0.860). Together, these findings suggest that, as in other brain areas, the effect of EE on the 

maturation of inhibitory circuits within the striatum may be mediated by BDNF. 
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Figure: 2.3 Environmental enrichment increases levels of BDNF protein in early postnatal striatum 

Mean BDNF protein concentration (ng/g wet weight tissue) for standard (S), and enriched (E) housed 

mice at ages P8 (n=4-5), P10 (n=8) and P15 (n=8). There is a significantly greater level of BDNF 

protein present in the striatum of enriched mice at P10 compared to standard housed mice of the 

same age (univariate ANOVA F=8.223, P=0.009). **: P<0.01. Error bars=SEM. 
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3.4 Enrichment affects ultrasonic vocalisations produced by juvenile mice 

The emission of USVs by juvenile rodents in response to social isolation is a key ethologically 

relevant behaviour regulated by the striatum [44-46]. The period during which these calls peak 

corresponds well with other key developmental events occurring in postnatal striatum, including 

PV+ cell maturation [33] and PNN formation [15]. Given the current findings that show enrichment 

can accelerate the maturation of striatal PV+ neurons, along with previous work that has revealed 

that environmental enrichment can affect striatal PNN formation [19], and early life environmental 

experience can impact rodent USV production [60-62], I asked if the number and duration of social 

isolation USVs produced by juvenile animals were also impacted by EE.    

The number of USVs emitted by individual pups peaked and tapered off as the animals aged, with 

less than half a dozen calls being produced at the oldest time point tested (P15). Although no 

difference was observed between housing cohorts (repeated measures ANOVA, housing condition as 

between-subjects effect, F(1, 46)=0.082, P=0.776), quantitative analysis confirmed that the age of 

recording had a significant effect on the number of USVs produced for both enriched (repeated 

measures ANOVA, age as within-subject effect, F(5, 105)=6.704, P=0.001) as well as standard cohorts 

(repeated measures ANOVA, age as within-subject effect, F(5, 125)=6.747, P=0.001) (Fig. 2.4A). The 

greatest number of USVs were generated at P7 for enriched, and at P9 for standard cohorts.    

The duration of individual calls was also observed to increase as the animals aged in both standard 

and enriched pups (Fig. 2.4B). Quantitative analysis confirmed that age of recording had a significant 

effect on the duration of individual USV calls (repeated measures ANOVA, age as within-subjects 

factor, F(5, 230)=19.211, P<0.001), whilst housing condition did not (repeated measures ANOVA, 

housing condition as between-subjects factor F(1, 46)=4.019, P=0.051). Comparisons between 

standard and enriched cohorts at each date assessed, however, did reveal a difference in USV 

durations at the two oldest ages recorded (P13 and P15), with enriched pups exhibiting significantly 
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shorter calls compared to standard cohorts at these time points (univariate ANOVA, housing 

condition as between-subjects factor: P13, F(1, 46)=11.736, P=0.001; P15, F(1, 46)=7.084, P=0.011). 
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Figure: 2.4 Environmental enrichment affects the duration of juvenile USVs  

(A) Mean number of USVs produced during each day of recording. There was no effect of housing 

condition upon this metric (repeated measures ANOVA, F=0.082, p=0.776). Age significantly affected 

the number of USVs produced for both enriched (E) (repeated measures ANOVA, F=8.680, P<0.001) 

and standard pups (S) (repeated measures ANOVA, F=9.125, P<0.001). (B) Mean duration of USV 

calls produced during each day analysed. Age (repeated measures ANOVA, F=19.211, P<0.001), but 

not housing condition (repeated measures ANOVA, F=4.019, P=0.051), had a significant effect upon 

the duration of USV calls. Comparisons at each age point revealed that housing condition did impact 

mean duration of USVs at the two oldest ages recorded – enriched animals had significantly shorter 

calls at both P13 (multivariate ANOVA, F=11.736, P=0.001) and P15 (multivariate ANOVA, 7.084, 

p=0.011) than did standard housed mice. Standard n=26. Enriched n=22. *: P<0.05 **: P<0.01. Error 

bars=SEM. 
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In order to further examine the potential influence of housing conditions on USVs, calls emitted by 

pups were categorized into separate types based on their peak frequency at beginning, maximum 

and end amplitudes. USVs with a generally monotonic increase or decrease in peak frequency 

between beginning and end were classed as call type 1; calls with maximum peak frequencies that 

were either greater or less than beginning and end peak frequencies were classed as call type 2; and 

calls with equal peak frequency at beginning, maximum and end were classed as call type 3 (Fig. 

2.5A-C, left panels).    

When each call type was considered separately, further differences in the number of USVs emitted 

by housing condition were observed (Fig. 2.5A-C).  The more numerous type 1 (Fig. 2.5A) and type 2 

(Fig. 2.5B) USVs exhibited a call number profile that closely resembled the total vocalisation 

distribution.  For both types, peak call numbers occurred at the same ages observed for the 

combined total (P7 for enriched and P9 for standard housed pups).  A small, but significant 

distinction in call numbers with respect to housing condition was observed for type 2 calls at age 

P13, when standard pups exhibiting a slightly greater number relative to enriched cohorts 

(univariate ANOVA, housing condition as between-subjects factor, F(1, 46)=6.389, P=0.015). 

For the least frequent calls, type 3, peak call number occurred at later age points relative to the 

combined total (Fig. 2.5C).  This varied with housing condition, as standard pups exhibited the 

greatest number of this USV type at P11, while enriched juveniles revealed a further delay, with peak 

call numbers occurring at P13.  Enriched pups maintained a relatively high type 3 call rate through 

P15, resulting in an overall significantly greater number of these USVs for these last two days tested 

(univariate ANOVA, housing condition as between-subjects factor: P13, F(1, 46)=18.183, P<0.001; 

P15, F(1, 46)=9.672, P=0.003) (Fig. 2.5C).    

Examination by individual call type also revealed that the observed age-dependent duration effect 

was due primarily to changes observed in USVs type 1 and 2 (Table 2.1).  Both these call types 
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exhibited significant increases in duration as the pups aged (repeated measures ANOVA, age as 

within-subjects factor: call type 1, F(5, 100)=10.158, P<0.001; call type 2, F(5, 140)=14.697, P<0.001).  

Together, these findings suggest that EE can influence both the number and duration of USVs 

generated by developing mouse pups. 

 

 

 

 

Table 2.1: Duration of USV calls by type 

Call type P5 P7 P9 P11 P13 P15 

Call type 1 151.27 ± 

28.4 

105.49 ± 

19.47 

93.7 ± 

19.02 

61.21 ± 

19.22 

182.83 ± 

34.61 

369.85 ± 

30.78 

Call type 2 195.55 ± 

28.96 

100.53 ± 

18.6 

74.34 ± 

14.71 

142.03 ± 

33.4 

222.87 

±.30.45 

384.48 ± 

18.26 

Call type 3 7.38 ± 2.04 7.91 ± 2.88 31.48 ± 

7.24 

30.61 ± 

13.23 

18.01 ± 

2.87 

25.69 ± 

4.81 

 

Table 2.1: Duration of USV calls by type 

Average duration of USV calls in milliseconds with ± SEM. There is a significant effect of age of 

recording upon the duration of calls of type 1 and 2 as animals mature (repeated measures ANOVA: 

type 1, F=10.158, p<0.001; type 2, F=14.697, P<0.001). 
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Figure: 2.5 Environmental enrichment exerts a call type specific effect on juvenile USVs 

(A – C) Schematic representation of the 3 call types classified within this study as they appeared in 

spectrograms. Circles represent peak frequency at beginning (open) and end (closed) amplitudes, 

and triangles represent peak frequency at maximum amplitude. Dotted lines are possible call 

configurations. USVs with monotonically increasing or decreasing peak frequency were classed as 

call type 1; calls with maximum peak frequencies that were either greater or less than beginning and 

end peak frequencies were classed as call type 2; and calls with equal peak frequency at beginning, 

maximum and end were classed as call type 3. Below each schematic are four examples of calls 

recorded for that category. (A – C) Mean number of type 1 (A), type 2 (B), and type 3 (C) USV calls by 

housing condition for all ages assessed. No significant effect of housing condition upon the number 

of type 1 calls was detected (A; repeated measures ANOVA, F=0.162, P=0.689). Although no 

significant differences between housing cohorts was observed across all ages considered for type 2 

calls (B; repeated measures ANOVA, F=0.518, P=0.475), a difference was revealed at P13 when 

enriched and standard call numbers were compared at individual age points (univariate ANOVA, 

F=6.389, P=0.015). A significant effect of housing condition was detected for type 3 calls, with 

enriched cohorts emitting more of these USVs, especially on the final two days assessed (C; P13, 

univariate ANOVA, F=18.134, p<0.001, and P15, univariate ANOVA, F=6.968, P=0.011) as well as at 

P9 (C; univariate ANOVA, F=4.752, P=0.034). Standard n=26. Enriched n=22. *: P<0.05, **: P<0.01, 

***: P<0.001. Error bars=SEM. 
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3.5 Enrichment has no significant effect on “maternal potentiation” of ultrasonic 

vocalisations produced by juvenile mice 

USVs emitted by developing rodents have been shown to exhibit increases in incidence across two 

successive periods of social isolation separated by a stint within the home cage. Experimentally 

induced “maternal potentiation” has been well characterized in rat pups [61, 63, 64], and has also 

been demonstrated to occur in mice [55]. The degree to which environmental factors can influence 

this particular USV attribute is not well characterized. Accordingly, I assessed whether housing 

conditions affected the potentiation of either call number or duration across all ages tested. 

There were no significant differences in the number of USVs potentiated across the two recording 

session observed between enrichment cohorts at the ages measured (repeated measures ANOVA, 

housing condition as between-subjects factor, F(1, 46)=1.171, P=0.285) (Fig. 2.6A). Similarly, there 

were no significant differences in the average duration of USVs potentiated across the two recording 

sessions when comparing enriched and standard housed mice (repeated measures ANOVA, housing 

condition as between-subjects factor, F(1, 46)=0.037, P=0.849) (Fig. 2.6B).  

Together, these findings suggest that although early enrichment appears to exert little influence on 

the degree to which maternal potentiation can affect USV production, EE does exhibit a small but 

significant impact on other characteristics of social isolation calls. 
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Figure: 2.6 Environmental enrichment had no significant effect on maternal potentiation 

(A) Mean potentiation index (Ri = (S2i – S1i) / (S2i + S1i); where S2 and S1 are the number of 

vocalizations made during recording day i for the number of USV calls produced as animals aged. 

There was no significant effect of enrichment upon this metric (repeated measures ANOVA, F=1.171, 

P=0.285) (B) Mean potentiation index for the average duration of USV calls produced as animals 

aged. No significant effect of enrichment was detected for this parameter (repeated measures 

ANOVA, F= 0.037, P=0.849). Standard n=26. Enriched n=22. Error bars=SEM. 
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3.6 Environmental enrichment does not affect performance of juvenile mice in a motor 

coordination task 

Previous work from our laboratory has demonstrated the effect of EE on coordinated motor activity 

within juvenile animals. At P10, animals raised in an enriched environment demonstrate greater 

prowess and coordination in an open swim task than standard housed animals at the same age [19]. 

At this age, PV+ inhibitory circuitry within the striatum is not yet fully mature, and will not be for 

another two weeks [33]. It is not known whether improved motor coordination is sustained within 

enriched animals during this maturation, or if standard pups “catch up” to their performance at a 

later age. The impact of enrichment on coordinated ambulatory behaviours within older juvenile 

animals has yet to be analysed. Accordingly, I compared the motor ability of animals aged P21 – P26 

(n=18 – 22) using a rotarod behaviour task.  

Performance on the rotarod task was measured by assessing total time spent on the spinning rotor 

(Fig. 2.7A), and total distance run (Fig. 2.7B) each day of testing. I found that performance on the 

rotarod task was not impacted by housing condition (repeated measures ANOVA, housing condition 

as between-subjects factor, F(1, 36)=0.209, P=0.650) (Fig. 2.7A, B). Quantitative analysis across the 

day of testing demonstrated that both enriched and standard pups showed significant improvement 

in their ability to stay on the spinning rotor over the duration of testing (repeated measures ANOVA, 

day as between-subjects effect: E, F=89.182, P<0.001; S, F=101.904, P<0.001). The fact that both 

groups of animals showed effectively identical levels of improvement over the duration of testing 

suggests that the differences in motor coordination previously observed in very young enriched 

animals [19] may not be sustained.  
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Figure: 2.7 Environmental enrichment does not affect performance of juvenile animals in a 

sensorimotor coordination task.  

(A) A graph plotting the mean of total time spent on the rotorod each day (s) of standard housed (S) 

and enriched housed (E) mice aged P21 at the start of testing. (B) A similar graph to that in A but 

showing performance in mean of total distance run each day. There was no effect of housing 

condition on animals’ performance (repeated measures ANOVA, F=0.209, P=0.650). Day of testing 

significantly effected both total time and distance achieved by both housing conditions (repeated 

measures ANOVA, P<0.001 for both groups). Standard n=18. Enriched n=22. Error bars=SEM. 
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4. Discussion 

This study demonstrates that ongoing enrichment is capable of influencing striatal circuitry. Striatal 

PV+ cell density was higher for adult mice raised in enriched environments compared to standard 

cohorts, while PNN levels, previously shown to also exhibit accelerated formation in EE pups [19], 

were indistinguishable between mature enriched and standard cohorts. This difference was 

reflected in the association between these two entities, with adult animals raised in enriched 

environments exhibiting greater numbers of striatal PV+ cells encapsulated by PNNs. Assessment of 

the PV+ population of striatal neurons in young animals confirms that early EE is capable of 

dramatically affecting postnatal striatal development. Pups raised in enriched environments 

displayed a significantly accelerated maturation of PV+ cells within the nucleus. EE also had an 

influence on BDNF expression in early postnatal development, significantly accelerating the increase 

in levels of this protein within the striatum, providing a possible mechanism underlying enrichment 

dependent precocious PV+ expression. Finally, an ethologically relevant behaviour mediated by the 

striatum was also affected by EE, with enriched pups exhibiting a different developmental profile of 

ultrasonic vocalisations than that of standard cohorts. Together, these results have important 

implications for the role of environmental influences on the maturation and maintenance of striatal 

circuitry, and the development of ethologically relevant behaviours.  

 

4.1 Environmental enrichment from birth increases Parvalbumin, but not PNN expression 

in adult mice   

Striatal PV+ fast spiking interneurons play a key regulatory role in striatal function [16, 28, 34]: 

receiving afferent input from the cortex and thalamus [25, 28, 29, 34], these neurons form synapses 

upon, and regulate the activity of, medium spiny projection neurons, the sole efferent population of 

the striatum [29, 65]. Adult mice raised from birth in an enriched environment revealed a 

significantly higher density of PV+ cells within the striatum than did animals raised in standard 
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housing. This is consistent with the notion that EE continues to influence PV levels within elements 

of striatal circuitry, even after the rapid onset of expression observed during the first few postnatal 

weeks. In contrast, there was no effect of housing condition on the density of striatal PNNs of adult 

animals, despite the fact that EE has previously been shown to also accelerate the initial formation 

of these structures in early postnatal pups [19]. It would appear that early EE is capable of 

accelerating the maturation of both striatal PNNs [19] and PV+ neurons, but that lifelong EE only 

impacts PV+ cells, not PNNs, beyond the early postnatal period. Interestingly, this discrepancy is 

reflected in a change in association between these two entities, with enriched mice exhibiting a 

higher overlap between PV+ cells and PNNs compared to standard cohorts.  

How this increase in PV expression comes about is not clear. Previous studies have demonstrated 

that increased activity resulting from EE in adulthood is capable of modulating the intensity of PV 

expression within the hippocampus [32]. PNN expression within the visual cortex has also been 

shown to be susceptible to modulation in response to EE in adult mice, presumably contributing to 

an improved ability to correct artificially induced strabismus by enriched animals [66]. Curiously, in 

both of these cases, EE appears to either decrease the intensity of PV expression, or PNN density, 

having an almost opposite effect to the enrichment-induced changes in the current study. 

At a functional level, the increase in PV expression may be reflecting the inherent role striatal circuits 

subserve in the behaving animal. Corticostriatal pathways contribute to procedural learning and skill 

acquisition [67]. Hippocampal interneurons exhibiting low PV levels in adult mice exposed to EE 

express high levels of PV once they have acquired cognitive learning tasks [32]. It is possible that the 

higher levels of striatal PV expression observed in the current study reflect a greater range of skills 

EE animals have acquired and/or are continually acquiring and consolidating from their 

comparatively enriched surroundings.      

Moreover, striatal circuitry differs from both the hippocampus and neocortex in that most of the 

local constituents are non-glutamatergic: excitatory drive is sourced primarily from cortical and/or 
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thalamic input [21-23, 25, 68]. Dopamine also plays a requisite role in regulating synaptic level 

plasticity in this nucleus [69-71]. It is possible that the differences in local connectivity may be, at 

least in part, contributing to the manner in which EE affects the development and maintenance of 

PV+ networks in the striatum. Further studies will be required to determine the mechanism 

underlying the influence of EE on the development and maintenance of striatal regulatory circuits. 

 

4.2 The association between Parvalbumin-expressing cells and PNNs is increased in 

enriched adult mice   

Remarkably, striatal PV+ cells and PNNs exhibited a greater degree of overlap in adult mice raised in 

enriched environments from birth compared to standard raised cohorts. The link between PV+ 

neurons and PNNs is well established [9-14], with recent findings suggesting that the formation of 

these extracellular matrix structures contribute to the maturation of PV+ basket cells by potentially 

facilitating the association of these interneurons with the homeoprotein Otx2 [72].   

Unlike in other brain regions, however, there is only a partial overlap between PV+ cells and PNNs 

within the striatum [16]. Further, the identity of non-PV+, PNN associated cells has yet to be 

determined [16]. The current findings that EE induces an increase in PV+ cells, but not PNNs, within 

the adult striatum suggests that at least some PNN encapsulated, non-PV+ neurons are low PV-

expressing interneurons akin to low differentiation state basket cells described in the hippocampus 

[32]. This greater degree of overlap in enriched animals suggests that the increased numbers of 

striatal PV+ neurons resulting from EE occurs in a usually quiescent population of PV+ cells 

surrounded by PNNs. The increased potential for activity and skill acquisition provided by EE over 

time may lead to more circuits consolidating, effectively converting low PV-expressing cells to 

mature high PV+ interneurons. Further work will be required to assess this possibility. 
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4.3 Accelerated maturation of Parvalbumin-expressing inhibitory circuitry in enriched 

pups 

Previous work has revealed that the maturation of networks comprised of PV+ cells is vital for the 

opening and closing of developmental critical periods [5, 7, 73, 74], with evidence that EE can 

accelerate the maturation of PV+ networks in primary visual cortex (V1), thus shifting the timing of 

the developmental critical period [9, 12]. In the striatum, PV + cells do not begin to mature until 

around postnatal day 9-10 [33, 34]. PV expression itself exhibits a developmental gradient: it is first 

expressed in the lateral striatum, and gradually spreads across to more medial regions until reaching 

an adult-like expression profile in the fourth week of life [33].  The timing of postnatal PV expression 

overlaps with a number of key developmental changes associated with striatal circuitry: the 

innervation of the matrix compartment (one of two major immunohistochemically defined 

subregions within the striatum) by dopaminergic afferents [23, 35], the emergence or maturation of 

a host of striatum dependent behaviours including quadrupedal ambulation [41, 42], swimming, and 

exploration [19, 42], as well as the formation of PNNs [15, 19].  

The current finding that enrichment leads to precocious expression of PV in the striatum, together 

with recent studies showing that EE can expedite the emergence of exploratory behaviour and 

motor control, as well as the formation of striatal PNNs [19], strongly suggest that this postnatal 

epoch shares hallmark features characteristic of cortical critical periods.  

 

4.4 Changes in BDNF levels due to enrichment may underlie the accelerated maturation of 

PV+ cells 

The striatum is involved in a number of functions including the regulation of coordinated movement, 

motivation drive and volitional action. These roles require the precise integration of input from a 

variety of cortical and sub-cortical sources [21, 23-25]. Previous work has demonstrated that EE can 
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dramatically affect both the anatomy and function of sensory cortex [9, 75]. Given that the 

enrichment paradigm used in the study was designed to provide animals with a host of sensory, 

motor and social stimulation, it is possible that the changes induced by EE in input areas are 

indirectly driving accelerated maturation of striatal PV+ interneurons.    

Neurotrophins play a role in the development, maintenance and repair of neural circuits. In 

particular, BDNF has been linked with the maturation of GABA-ergic PV-expressing inhibitory 

interneurons within both the visual system and the striatum [7, 37]. In V1, excess expression of 

BDNF has been shown to accelerate the onset of the developmental critical period [7]. PV-expressing 

neurons within the striatum receive the bulk of their excitatory synaptic inputs from cortical 

afferents [29]. Previous work has shown that the maturation of PV expression in other brain areas is 

dependent on afferent drive [73, 76] with BDNF revealed to be a key contributor to this process [7]. 

There is very little BDNF mRNA found within the striatum: instead, the trophic factor is “ported in” 

to the striatum on afferent fibres projecting from the cortex [36]. Lesion studies have shown that 

cortical ablations lead to a lack of BDNF protein and decrease in PV-expressing neurons within the 

striatum [37]. Given the temporal alignment of corticostriatal terminal formation with the 

emergence of PV positive immunoreactivity within the striatum [33, 34], it is likely that BDNF may 

also contribute to the maturation of striatal PV+ neurons.  

Enriched pups showed a significantly higher level of BDNF protein within the striatum at P10, around 

the same time that PV begins to be expressed. It may be that the observed increase in BDNF protein 

levels comes about as a result of cortical afferents forming functional striatal connections earlier due 

to EE. The BDNF protein provided by these afferents may in turn contribute to the maturation of PV+ 

inhibitory interneurons within the striatum of enriched pups. Interestingly, there was no difference 

in striatal BDNF protein levels at the older age tested (P15), suggesting that enrichment caused 

animals to reach a developmental peak in striatal BDNF protein earlier, but that the effect of EE 

upon striatal BDNF levels has an upper threshold. Given that BDNF protein is transported into the 
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striatum by cortical afferents [36, 37], the number and maturity of these projections may limit the 

amount of BDNF available within the juvenile striatum. Further experiments would be required to 

confirm whether cortical afferents form functional synapses on striatal PV + neurons earlier due to 

EE, and whether there are a greater number of these connections formed within the striatum of 

enriched animals. 

 

4.5 Early enrichment can influence a striatally mediated behaviour 

Ultrasonic vocalisations (USVs) are a large part of the range of utterances made by mice: these 

sounds are produced throughout an animals’ lifespan, but their use differs with animal age, gender 

and context [46, 61, 77]. The striatum has been shown to undergo motor-driven, vocalisation-

related activation during the production of USVs, suggesting it is a part of the pathway responsible 

for generating these sounds [43].  

Social isolation USVs emitted by rodent pups can take on a variety of forms [78, 79]. Although a 

thorough acoustical analysis of USVs was beyond the scope of the current study, based on my simple 

categorization scheme, I was still able to detect differences in the USV emissions of juvenile mice 

raised in enriched and standard housing conditions. Most notably, enriched pups exhibited a 

significantly greater number of type 3 calls and standard animals emitted significantly longer calls at 

the two oldest age points assessed. It is not entirely clear why EE would result in older pups 

producing a greater number of shorter, unmodulated calls than standard counterparts; it may be a 

reflection of altered maternal behaviours, or of accelerated maturation within the enriched pups. 

Recent work has revealed that the Fmr1 mouse model for Fragile X syndrome exhibit call type 

specific deficits in USV emissions [80]. As the mutation is associated with abnormal dendritic spines 

and altered synaptic plasticity (for review see, He & Portera-Cailliau, 2012 [81]), it is intriguing to 

note that environmental enrichment, which has been characterised as increasing plasticity [82, 83] 
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and dendritic density [84, 85], is contributing to an increase in utterance of a call type with similar 

properties to the one affected in the KO [80].  Whether this can be attributed directly to EE 

dependent changes in PV+ cells has yet to be determined. Both dendritic spine density [86] and 

arborisation [87, 88] are known to be decreased in animals showing higher levels of anxiety-like 

behaviours. Interestingly, BDNF protein levels are also known to be decreased in animals with higher 

anxiety and reduced dendritic spine density [86]. Conditional BDNF knockout animals display a 

smaller striatal volume and cultured medium spiny neurons taken from these mice show reduced 

dendritic complexity [89]. Dendritic analyses of striatal PV+ inhibitory interneurons were conducted 

in this study, but there were no detectable significant differences between enriched and standard 

animals at the ages assessed. This may be due to technical considerations, such as limited 

penetration of the anti-PV antibody into dendritic arbours, or it may that another cellular population 

within the striatum regulates anxiety-induced behaviours such as USVs.  

Further, treatment with anxiolytics has recently been shown to decrease total call times in rat pups 

[90]. Accordingly, the longer USVs emitted by standard housed pups are consistent with increased 

anxiety levels exhibited by these mice. Indeed, previous work has revealed that early exposure to 

enriched environments as well as high levels of maternal care can reduce anxiety-like behaviour in 

rodents [91-93]. Evidence demonstrating that EE can also increase dam-pup interactions [9, 12], 

further supports the notion that the influence of enrichment on call duration may be at least in part 

attributable to changes in stress response. USVs induced by maternal separation are intended to 

attract the attention of dams for retrieval back to the nest, and this behaviour changes as pups age 

and become independently mobile [46, 78]. Given that enrichment has been shown to improve 

sensorimotor coordination and increase exploratory behaviours in animals as young as 10 days 

postnatal [19], it may be that pups raised in EE are less distressed by maternal separation at the 

older ages tested as they are more capable of conducting themselves back to the nest without 

assistance. 
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In light of this, it is curious that the degree of isolation potentiation, another attribute associated 

with juvenile USVs, did not exhibit a marked difference between enriched and standard housed 

animals. Previous studies have indicated that the rate of maternal potentiation is dependent on the 

balance of dopaminergic (DA) receptor expression in the nucleus accumbens [94], a different 

network from the circuits responsible for the generation of USVs [43, 95]. It is possible that the 

postnatal enrichment utilized here did not overlap enough with the relatively early prenatal 

establishment of this pathway [96-99] to affect its development. Further work will be required to 

determine if this is the case.   

The changes observed in both the dynamics and characteristics of isolation USVs as a result of 

enrichment, along with the slightly earlier age at which the greatest number of isolation USVs were 

produced by enriched animals, is consistent with an overall acceleration of striatal development due 

to EE described in the current as well as previous studies [19]. Together, these findings suggest that 

the striatum may play a role in the emergence, regulation, and maintenance of this ethologically 

relevant behaviour.    

 

4.6 Enrichment does not influence sensorimotor coordination of juvenile animals. 

Previously, the development of a coordinated motor activity has been shown to undergo 

acceleration in young mice (postnatal day 10) as a result of EE [19]. Mouse pups begin to develop 

independent locomotion around this time, with locomotor activity further refined until reaching an 

adult-like state around P26 [42]. I examined the effect of enrichment on slightly older mice using a 

rotarod behavioural task to assess coordinated locomotor activity from the ages of P21 until P26. 

Both groups of animals demonstrated the same level of improvement over the duration of testing, 

and there was no noted effect of housing condition on the ability of animals to perform this activity. 

However, the lack of any significant effect of enrichment upon behavioural performance is 

noteworthy; previous work has demonstrated an observable difference in the sensorimotor 
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coordination behaviour of enriched and standard housed pups, occurring earlier in the postnatal 

period [19]. It is possible that the rotarod behavioural task may not be capable of distinguishing fine 

differences in sensorimotor coordination resulting from EE. More likely is that the impact of 

enrichment is only able to be observed during the onset of locomotion, possibly having more of an 

effect upon ontogeny, rather than refinement, of behaviours. It would be of interest to perform a 

detailed gait analysis on late-juvenile animals [42] to ascertain the exact effects of environmental 

enrichment upon locomotion behaviours.  

 

4.7 Conclusions 

The current results provide evidence that the effects of enrichment are not just restricted to early 

life: I demonstrate that on-going enrichment into adulthood is still capable of inducing cellular 

changes within the striatum. I also show that EE from birth can accelerate the maturation of motor 

control and motivational circuits, at the cellular, molecular and functional levels. Together, these 

results suggest that the development of this vital brain area is highly sensitive to environmental 

factors, and that an organism’s surroundings are capable of influencing striatal circuitry throughout 

life.  
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SHORT ABSTRACT: 

Environmental enrichment provides a potential protective effect against neurodegenerative 

disorders. Currently, however, there is no easy way of determining the efficacy of enrichment 

procedures. This protocol describes a simple “Puzzle Box” method for assessing an animal’s 

cognitive function, in order to reveal the effectiveness of environmental enrichment. 

 

LONG ABSTRACT: 

Environmental enrichment can dramatically influence the development and function of neural 

circuits. Further, enrichment has been shown to successfully delay the onset of symptoms in 

models of Huntington’s disease1-4, suggesting environmental factors can evoke a 

neuroprotective effect against the progressive, cellular level damage observed in 

neurodegenerative disorders. The ways in which an animal can be environmentally enriched, 

however, can vary considerably. Further, there is no straightforward manner in which the 

effects of environmental enrichment can be assessed: most methods require either fairly 

complicated behavioral paradigms and/or postmortem anatomical/physiological analyses. This 

protocol describes the use of a simple and inexpensive behavioral assay, the Puzzle Box5-7 as a 

robust means of determining the efficacy of increased social, sensory and motor stimulation on 

mice compared to cohorts raised in standard laboratory conditions. This simple problem solving 

task takes advantage of a rodent’s innate desire to avoid open enclosures by seeking shelter. 

Cognitive ability is assessed by adding increasingly complex impediments to the shelter’s 

entrance. The time a given subject takes to successfully remove the obstructions and enter the 

shelter serves as the primary metric for task performance. This method could provide a reliable 
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means of rapidly assessing the efficacy of different enrichment protocols on cognitive function, 

thus paving the way for systematically determining the role specific environmental factors play 

in delaying the onset of neurodevelopmental and neurodegenerative disease. 

 

INTRODUCTION: 

Environmental enrichment (EE) may be defined as surroundings that provide animals with 

increased opportunity for social interaction, motor activity, and greater sensory stimulation 

than usually experienced in a standard laboratory environment. EE has been shown to 

consistently affect the behavior of animals, bringing about changes such as reduction of stress 

and anxiety-related activity8-11, improved performance in learning and memory tasks8,12, early 

onset of motor coordination and exploratory activity12, changes in maternal care8 as well as 

resistance to addictive substances13-16. Further, EE has been revealed to ameliorate the effects 

of neurodegenerative disorders, delaying the onset and decreasing the severity of symptoms in 

animal models of Huntington’s1-4,17, Parkinson’s18 and Alzheimer’s disease19. 

  

These changes correlate with the anatomical and molecular alterations EE is known to induce 

throughout the brain. Animals raised in enriched environments from early stages of 

development show a myriad of neural changes, including increased brain weight and cortical 

thickness20-22, dendritic branching10,23-25 and synaptic density26. EE can alter both the level and 

timing of growth factor expression9,27-34, which has been shown to contribute to accelerated 

development of sensory28,29,31,32,35,36, mnemonic34, as well as motor circuits37,38. 
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Previous work has revealed at times contradictory findings when investigating the impact of EE, 

without taking into account the different types of animals and environments used within 

individual studies9,27,30,33,34.  Currently, there is no consistent and simple behavioral task that 

can be used to measure the effectiveness of various EE paradigms in different strains and 

species of animals.  

 

The Puzzle Box task was designed as a simple test to determine an animal’s native problem 

solving ability7. Animals placed in the open area are required to remove obstructing materials 

situated within a small opening in order to access a covered region/shelter.  Each subject is 

given three trials with the same obstruction in order to assess three different cognitive 

attributes. The first trial yields a baseline indication of inherent or native problem solving 

ability. The second trial, run on the same day, gives some indication of the animal’s ability to 

improve upon and thus reinforce strategies for removing the specific obstruction. The third 

trial, conducted on the following day, provides insight into the ability of the subject to retain 

and recall the learned solution to the task.   

 

The motivation for solving these “obstruction puzzles” by the animals can be varied, potentially 

evoking an innate desire to avoid open fields and seek shelter, as well as an inherent drive to 

explore their surroundings6,7. The multitude of potential behavioral drivers underlying the 

desire to solve the Puzzle Box suggests that various areas of the brain are involved in mediating 

task performance. Previous work has shown that in murine models of schizophrenia, the 

prefrontal cortex as well as the hippocampus are involved in the acquisition of this task5. A 
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lesion study in rats has also revealed a large number of brain regions involved in Puzzle Box 

performance, including various thalamic nuclei, the hypothalamus, the cerebellum, and limbic 

structures39. Together, these findings indicate that engaging in this problem solving task 

involves a host of neural structures associated with cognitive function.  

 

The Puzzle Box has been used successfully to assess the problem solving ability of mice, as well 

as cognitive deficits exhibited by murine models of schizophrenia5-7. Performance on the task 

has been shown to be highly consistent, and correlate well with outcomes of other cognitive 

behavioral tests6. The goal of this work was thus to adapt the Puzzle Box task to become a 

simple and reliable means of determining the effectiveness of EE. 

 

PROTOCOL: 

Ethics statement: All procedures were approved by the Animal Ethics Committee of the 

University of Sydney and conformed to National Health and Medical Research Council of 

Australia guidelines. Procedures were performed on C57/BL6J mice which were reared at the 

University of Sydney Bosch Rodent Facility. All mice were housed in a single adequately-

ventilated room in 21oC ambient temperature on a 12-hour light-dark cycle with lights on at 

0600 hours in individually ventilated cages with ad libitum access to dry food and water. Late-

pregnancy females were randomly assigned to standard or environmentally enriched housing 

conditions.  
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1. Housing (Enrichment levels): 

 

1.1) Obtain 4 late-pregnancy adult female mice.  Randomly assign 2 to the standard 

condition and place each of them into a clean standard mouse cage (overall dimensions 391 x 

199 x 160 mm) containing one red mouse igloo.  For the enriched condition, place the 

remaining 2 mice into a single clean rat-sized cage (overall dimensions 462 x 403 x 404 mm). 

 

1.2) Into the enrichment cage, place a variety of objects designed to increase sensory and 

motor stimulation (e.g. running wheels, visual stimuli, scented cotton balls, Velcro strips). 

 

1.3) Every 2 to 3 days move these objects about within the cage; refresh any that have been 

destroyed. 

 

1.4) Upon weaning at 21 days postnatal, sex animals and place into male-female segregated 

housing consistent with the environmental condition they were raised. For the enriched 

condition ensure that there are between 3 and 10 mice per cage with 2 and 5 mice for 

standard. Commence behavioral testing once animals reach adulthood (12 – 14 weeks of age). 

 

2. Construction of the Puzzle Box 

 

2.1) Obtain 6 pieces of white acrylic (or other non-porous material): one 750 x 280 mm, two 

280 x 250 mm, two 750 x 250 mm, and one 150 x 280 mm (see Figure 3.1). 
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2.2) Obtain one piece of black acrylic 280 x 250 mm, with a 40 x 40 mm square opening cut 

into one side of this piece (see Figure 3.1). 

 

2.3) Assemble the Puzzle Box as follows: use the 750 x 280 mm piece as the bottom of the 

box, use 280 x 250 mm pieces as the ends of the box, and the 750 x 250 mm pieces as the sides 

of the box. 

 

2.4) Measure 150 mm into the box from one end, and place the black piece of acrylic across 

the box so that it splits it into two compartments (one large, one small) with the opening flush 

with the bottom of the box. 

 

2.5) Take the 150 x 280 mm piece of white acrylic and place it atop the smaller compartment 

of the box making sure it covers this area completely, providing a dark “goal-box” chamber. 

Affix this piece of acrylic to the body of the main box by hinges, or leave free to be completely 

removed during behavioral testing. 

 

2.6) Take 3 pieces of acrylic (three 4 x 120 mm) and join to make a “u-shaped” channel. 
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Figure 3.1 Schematic diagram of the Puzzle Box task. 

The Puzzle Box is an acrylic box consisting of an open-field arena (600 x 280 mm) and a 

sheltered goal-box area (150 x 280 mm), measuring 750 x 280 mm in all. A 40 x 40 mm opening 

within the partition (grey) separating the two areas allows animals access to the covered goal-

box area from the open-field. This opening is blocked with obstructions that are increasingly 

difficult to remove as testing progresses. Animals undergo a five-day protocol, consisting of four 

obstruction conditions with three trials for each condition.  
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3. Running of the Puzzle Box Task 

 

3.1) Thoroughly clean the Puzzle Box with 70% alcohol. Repeat this step between each 

animal tested. 

 

3.2) Place a clean red mouse igloo within the goal-box area of the Puzzle Box, and replace 

the lid on the goal-box. 

 

3.3) If there is an obstruction condition being tested, place the obstruction within the 

doorway of the goal-box (see Figure 3.2). 

 

3.4) Place the mouse being tested into the open-field section of the Puzzle Box, oriented 

towards the goal-box, and at the end furthest from the goal-box. 

 

3.5) Record the time taken for all four paws of the animal to enter the goal-box section of 

the Puzzle Box. 

 

3.6) If an animal does not enter the goal-box, terminate the trial once the set time limit is 

reached (see Table 3.1). 

 

3.7) Once a trial is finished, remove the animal from the Puzzle Box and place it into a 

separate holding cage until the next trial begins. Keep a 60 to 180 sec gap between trials for 
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each animal. 

 

3.8) For each animal, perform three trials per day for five consecutive days of testing, with 

four obstruction conditions and three trials of each condition. The third trial of a given 

obstruction condition was always administered on a subsequent day (see Table 3.1). 
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Day Condition Trial Obstruction Time limit 
(seconds) 

1 0 1 Open door with 
no obstructions 

180 

1 1 Open channel 
within doorway 

180 

1 2 Open channel 
within doorway 

180 

2 1 3 Open channel 
within doorway 

180 

2 1 Channel filled 
with bedding 

180 

2 2 Channel filled 
with bedding 

180 

3 2 3 Channel filled 
with bedding 

180 

3 1 Tissue plug 
within doorway 

240 

3 2 Tissue plug 
within doorway 

240 

4 3 3 Tissue plug 
within doorway 

240 

4 1 Foam plug 
within doorway 

240 

4 2 Foam plug 
within doorway 

240 

5 4 3 Foam plug 
within doorway 

240 

 

Table 3.1: Scheme of the Puzzle Box task 

The Puzzle Box task is run for five days, and consists of four obstruction conditions. There are 

three trials on each of the first four days, and one on the fifth day. Each obstruction condition 

has three trials; the first two on one day, and the third the day immediately following. The first 

trial of an obstruction condition aims to test native problem solving ability, the second trial 

examines task acquisition and reinforcement, and the third trial is used as an assay for solution 

retention and recall. 
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Figure 3.2: Obstruction conditions within the Puzzle Box task 

Schematic diagrams of the Puzzle Box arena and the obstruction conditions used within this 

study. (A) Condition 0 (C0), with no obstruction present within the doorway between the open-

field and goal-box areas. (B) Condition 1 (C1), with a “u shaped” chanenl present within the 

doorway between the open-field and goal-box areas. (C) Condition 2 (C2), where the channel is 

filled with clean bedding material. (D) Condition 3 (C3), with a “tissue plug” present within the 

doorway between the open-field and goal-box areas. (E) Condition 4 (C4) with a “foam plug” 

present within the doorway between the open-field and goal-box areas. Dimensions of the 

arena are as per listed in Methods and Figure 3.1.  
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4. Interpretation of data 

 

4.1) Represent data as either time taken to complete the trial (including null trials where 

animals did not complete the task within the specified time limit) or as the number of null trials. 

 

4.2) Use a repeated measures ANOVA to assess the effect of housing condition upon 

performance within the Puzzle Box, with obstruction type/condition (C) and task number (T) as 

within-subjects factors and enrichment level (standard versus enriched) as between-subjects 

factor.  

  

REPRESENTATIVE RESULTS:  

The results described here are a representative sample, with data taken from several cohorts 

consisting of different litters. All behavioral testing was conducted between 0700 and 1100 

hours, with randomized testing order of animals within a cohort.  Animals raised in an enriched 

environment (n=14, 7 female and 7 male) took significantly less time to solve the obstruction 

tasks within the Puzzle Box than those raised within a standard environment (n=15, 7 female 

and 8 male) (see Figure 3.3) (Repeated measures ANOVA with environment as between-

subjects factor, F=19.525, p<0.001). This effect of EE on performance was observed within 

individual trials during the Puzzle Box, where enriched mice required significantly less time to 

solve each of the individual obstruction puzzles, and was particularly marked during the first 

trial of each condition (Univariate ANOVA with environment as between-subjects factor: 

Condition 1-Trial 1 (C1T1), F=4.308, p=0.048; C1T3, F=4.317, p=0.047; C2T1, F=9.466, p=0.005; 
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C2T2, F=5.164, p=0.031; C2T3, F=7.031, p=0.013; C3T1, F=19.979, p=0.000; C3T2, F=5.788, 

p=0.023; C3T3, F=4.711, p=0.039; C4T1, F=5.094, p=0.032). No effect of gender (repeated 

measures ANOVA with gender as between-subjects factor, F=1.827, p=0.188), nor any 

significant interaction between housing environment and gender was observed (repeated 

measures ANOVA with environment and gender as between-subjects factors, environment*sex, 

F=0.395, p=0.535). 

 

 

 

 

 

 

 

159



   

 

 

Figure 3.3 Environmentally enriched mice solve the Puzzle Box faster than standard housed 

animals. 

Puzzle Box task performance of adult animals raised from birth in either enriched or standard 

environments, as measured by the time taken for all four paws to enter the goal-box area in 

seconds. Animals raised in an enriched environment (red) solved the obstruction tasks within 

the Puzzle Box significantly faster than those raised in a standard environment (blue) (repeated 

measures ANOVA with environment as between-subjects factor, F=19.525, P<0.001). Improved 

performance within individual obstruction puzzle tasks was observed for enriched cohorts 

(univariate ANOVA with environment as between-subjects factor: C1T1, F=4.308, P=0.048; 

C1T3, F=4.317, P=0.047; C2T1, F=9.466, P=0.005; C2T2, F=5.164, P=0.031; C2T3, F=7.031, 

P=0.013; C3T1, F=19.979, P=0.000; C3T2, F=5.788, P=0.023; C3T3, F=4.711, P=0.039; C4T1, 

F=5.094, P=0.032). C0: no obstruction; C1: U-shaped channel; C2: channel filled with bedding 
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material; C3: tissue plug; C4: foam plug. C1T1 refers to condition 1, trial 1 etc. (see text). Error 

bars: Standard error of the mean (SEM), enriched n=14 (7 female, 7 male), standard n=15 (7 

female, 8 male). *: P<0.05, **: P<0.01, ***: P<0.001. 

 

 

 

 

 

 

 

DISCUSSION: 

The data presented demonstrate that the Puzzle Box can be used effectively to assess the 

impact of EE. Mice raised in enriched environments consistently took significantly less time to 

solve obstruction puzzles within this behavioral assay than did animals raised within standard 

laboratory conditions. Moreover, this difference was most prominent in the first trial for three 

of the four conditions tested, suggesting EE has a greater influence on an animal’s native 

problem-solving ability, relative to their capacity to reinforce or retain solutions to the 

problems presented by the task.  

 

The major advantages of the Puzzle Box are its inexpensive material cost, simplicity in terms of 

construction and implementation, as well as a lack of need for prior training of the subjects to 

be tested. Further, the method can be adapted to utilize a variety of obstruction materials and 
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conditions. For example, the protocol used here was adapted from previous studies that 

employed the Puzzle Box to assess cognitive ability in a variety of murine disease state models5-

7. Other studies have previously utilized variations of the Puzzle Box to assess the impact of 

cognitive-enhancing antipsychotics40 and observational learning within this testing arena41. The 

Puzzle Box therefore offers a behavioral task capable of assessing a wide variety of 

environmental, genetic and pharmacological manipulations, whilst being relatively time and 

cost effective.    

 

This inherent flexibility, however, highlights the need for several key steps to successfully 

implement the task. As the method involves the physical removal of obstacles from a specific 

opening within the test arena, preliminary trials to determine which obstruction conditions are 

suitable and solvable within defined time limits by the animals to be assessed is critically 

important. This is particularly relevant when applying the task to determine the potential role 

of enrichment on animal models of neurodegenerative disorders whose motor abilities may be 

severely compromised1-4,17,18. Moreover, multiple trials across different time intervals are 

required to thoroughly assess the cognitive abilities of the subjects being tested. Although task 

acquisition and retention are related, they can be considered as separate processes42-44. As the 

findings in this study reveal, significant differences in performance can be greater within one of 

the factors assessed.   

 

Although latency was the main metric used to monitor animal performance in this study, since 

the protocol includes video recording of all mice engaged in the task, it is also possible to 
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perform a more detailed analysis of behavior within the testing apparatus. The way subjects 

from enriched and standard raised groups behave within the arena, including the manner in 

which they approach obstacles at each phase of the task may reveal further, more subtle 

differences in performance between the two cohorts45-50 Combined with the capacity to adjust 

obstacles to accommodate the animals being tested, the Puzzle Box has the potential to 

provide a rapid and straightforward means of gaining insight into the influence of 

environmental factors on a range of cognitive behaviors. 

 

Although simple and powerful, the Puzzle Box is not a substitute for a more thorough analysis 

of cognitive function. Instead, it provides a rapid and reliable first-pass assessment of problem 

solving, as well as task acquisition and recall that should then be examined more thoroughly 

using conventional learning tasks. The importance of such a method cannot be overstated.  

Traditional learning tasks can require a considerable amount of familiarizing and training of 

subjects before they can yield interpretable results, which may itself impact upon 

performance51,52. Thus, an efficient and reliable method for obtaining a preliminary assessment 

of cognitive function that can be easily modified to the needs of individual experiments, such as 

the Puzzle Box, is highly advantageous. 

Given that methods to alleviate and reverse the deleterious symptoms exhibited by transgenic 

models of disease states are being continually developed53,54, a rapid and reliable means of 

assessing the effectiveness of the interventions from a behavioral perspective is critical.  The 

data presented here suggests that this Puzzle Box is a useful tool that will enable such 

assessments. 
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Chapter 4: 
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Seeking and Ameliorates the Effects of Striatal PNN Dissolution upon 
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Abstract 

Although I have revealed that enrichment from birth can have a profound effect on the development 

of crucial elements within striatal circuitry, the degree to which lifelong enrichment can influence 

adult behaviour mediated by the striatum is not known. Further, whether the digestion of striatal 

perineuronal nets (PNNs), an important constituent of mature consolidated circuitry, affects 

functions regulated by this nucleus has yet to be determined. Accordingly, in the present study, I 

evaluated the effect of environmental enrichment upon performance of C57/BL6J mice within two 

behavioural tasks: the Puzzle-Box, assessing problem-solving and goal-orientated learning 

behaviours; and the rotarod, assessing sensorimotor coordination and motor learning. Animals 

raised in an enriched environment took significantly less time to solve obstacles in the Puzzle-Box, 

and showed minor improvement in the acquisition of a rotarod task, compared to standard housed 

counterparts. The potential involvement of the striatum within these behaviours was assessed by 

bilateral dissolution of perineuronal nets (PNNs) within the striatal extracellular matrix. Striatal PNN 

digestion impacted behaviours within the Puzzle-Box, but had little effect upon behavioural 

performance during the rotarod task. Environmental enrichment protected against the full 

behavioural effects of striatal PNN dissolution. These results provide evidence that the striatum is 

directly involved in problem-solving and goal-orientated learning behaviours within the Puzzle-Box, 

and that environmental enrichment is capable of reducing behavioural changes induced by 

dissolution of PNNs within the striatum.  

Keywords: Environmental Enrichment; Striatum; Behaviour; PNN 
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1. Introduction 

Environmental enrichment (EE) is known to have a range of anatomical, physiological and molecular 

effects on the brain. Exposure to EE has been shown to increase cortical thickness and brain weight 

[1-3], angiogenesis [4], synaptic density [5], and branching and spine density of dendrites [6-11]. EE 

is capable of accelerating the physiological maturation of the visual system [12-14], and modulating 

the levels of several growth factors during early development [12-19]. EE also impacts the behaviour 

of animals. Exposure to EE reduces the occurrence of anxiety-related behaviours [11, 19-21]; 

improves performance in cognitive tasks [15, 20, 22, 23]; and accelerates the development of both 

sensory [12, 24] and motor behaviours [22] within juvenile animals.   

Our laboratory has previously revealed that enrichment from birth leads to the precocious 

maturation of circuit elements within the striatum, the input nucleus of the basal ganglia [25] and a 

key regulator of sensorimotor coordination [26, 27] and cognitive behaviours [28-31]. The formation 

of striatal perineuronal nets (PNNs), extracellular matrix structures composed of chondroitin 

sulphate proteoglycans (CSPGs), tenascin-R (TN-R) and hyaluronan (HA), with link proteins [32-34], is 

accelerated in animals raised within enriched environments [22]. These structures are thought to 

play a role in consolidating neural circuitry during development, by contributing to the formation of 

stable, mature synapses between neurons [35-37]. The formation of PNNs is associated with the 

maturation of GABA-ergic inhibitory interneurons [38-41], a key step in the timing of developmental 

critical periods [18, 24, 36, 42-45]. Previous work has shown that enrichment can influence the onset 

of these important developmental epochs [12, 18, 24, 42], and I have now revealed that the 

maturation of striatal GABA-ergic Parvalbumin-positive inhibitory interneurons, much like PNNs, is 

accelerated by exposure to EE (see Chapter 2: Environmental Enrichment from Birth Accelerates the 

Maturation of Parvalbumin Expressing Neurons within the Striatum of the Mouse). 

Although the onset of PNN formation is affected by enrichment, the density of these structures in 

adult striatum does not differ between standard and enriched cohorts (see Chapter 2: 
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Environmental Enrichment from Birth Accelerates the Maturation of Parvalbumin Expressing 

Neurons within the Striatum of the Mouse). Curiously, in a mouse model of amblyopia, animals 

housed in enriched environments as adults have been shown to exhibit a reduction in PNN density 

within the visual cortex [46]. PNNs within the mature nervous system can also be removed by the 

application of an enzyme, Chondroitinase ABC (ChABC) [36, 37, 47-49], which reduces PNNs to their 

constituent molecules [36, 50]. Digestion of PNNs within adult visual cortex reactivates the cortical 

critical period [36, 37]. Together, these findings suggest that these extracellular matrix structures are 

at least partially responsible for regulating experience-dependent plasticity.  

The characterisation of the manner in which EE influences behaviours dependent on striatal function 

is in its infancy. Although previous work has revealed a correlation between enrichment from birth 

and the emergence of motor coordination and exploratory behaviour [22], less is known about how 

EE influences striatum regulated behaviours in mature animals. Early enrichment can have a lasting 

influence on cognitive function, as measured by performance on the Morris Water Maze [22], 

although striatal circuits are considered to play only a minor role in the performance of this task 

[41]. The manner in which plasticity induced by EE influences striatum specific behaviour has yet to 

be determined.  

Moreover, while the enzymatic removal of PNNs in visual cortex has been shown to re-establish high 

levels of activity dependent plasticity [36], how similar manipulations will influence the function of 

striatal circuits is not clear. Although previous work has shown that ChABC injections within the 

striatum can affect hind limb gait (a measure of motor coordination) [41], a more comprehensive 

analysis of the influence of PNN digestion upon striatally-mediated behaviours has not yet been 

done.  

Further, while the decrease observed in PNN density due to both EE in amblyopic mice [46] and 

ChABC treatment [36] are interpreted as a reflection of an increase in network plasticity, it has yet to 

be determined whether these common changes are regulated by the same mechanisms. Whether 

175



 

PNN digestion via ChABC injections will compliment or antagonise enrichment-dependent plasticity 

is not known.  

Accordingly, in order to address these issues, I first examined whether EE from birth yields 

behavioural changes in adult animals performing two tasks designed to assess different aspects of 

striatal function: the Puzzle-Box [51-53] to examine goal-directed activity (see Chapter 3: The Use of 

the Puzzle Box as a Means of Assessing the Efficacy of Environmental Enrichment, O’Connor et al 

2014, in press); and a modified version of the rotarod task to assess motor skill acquisition. I then 

determined the impact of striatal ChABC injections on the performance of both standard and 

enriched housed animals in these tasks. Finally, in order to assess how the effects of enrichment and 

ChABC interact, I compared task performances of treated and untreated, standard and enriched 

cohorts. I show that (1) exposure to EE results in decreased performance latencies in the Puzzle-Box 

task, (2) ChABC treatment increases latencies compared to vehicle controls in standard cohorts in 

the early stages of Puzzle-Box testing, and (3) ChABC treatment affects standard and enriched 

cohorts differently. Together, these findings suggest that the plasticity effects induced by EE and 

ChABC treatment are manifested at potentially different levels of striatal processing for enriched 

and standard mice.   

 

2. Materials & Methods 

2.1 Ethics Statement  

All procedures were approved by the Animal Ethics Committee (AEC) of the University of Sydney 

(AEC protocols: K22/09-09/3/5128 and K22/11-12/3/5838) and conformed to National Health and 

Medical Research Council of Australia guidelines. Procedures were performed using C57/BL6J mice 

reared and housed at the University of Sydney/Bosch Institute animal house facility. All mice were 
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housed in individually ventilated cages at 21oC ambient temperature with ad libitum access to both 

food and water. 

 

2.2 Housing of animals in standard and enriched environments 

On arrival, half of the pregnant dams were randomly assigned to standard (30cm x 15cm x 13cm 

cage), and the other half to enriched cages (46cm x 40cm x 40cm cage) [22]. Standard (S) cages 

contained a translucent, red plastic mouse “igloo”/shelter and extra material for bedding. In addition 

to these materials, enriched (E) cages contained extra objects to encourage motor and sensory 

stimulation including a running wheel, marbles, tunnels, Velcro strips, scented plush balls (vanilla, 

strawberry and cinnamon), a rubber ball and two high-contrast visual stimuli. These items were 

moved around the cage every two to three days and refreshed once a month to maintain novelty. 

The enriched cage contained two dams and litters to enable greater social interaction between 

animals. 

Young animals were weaned at 21 days postnatal (P21) and placed into male-female segregated 

cages with the same housing conditions into which they were born. Surgeries and behavioural 

testing were carried out once animals reached 12 weeks of age. All measurements were imported 

into SPSS (SPSS Inc., Chicago, IL, USA) for statistical analysis. 

 

2.3 Surgeries 

Animals within each cage were divided into approximately equal groups. Subjects from both 

standard (S) and enriched (E) cages received either bilateral Chondroitinase ABC injections (ChABC: 

SC n=8; EC n=13), or 0.9% saline vehicle injections within the striatum (SV n=7; EV n=13). Animals 

were anaesthetised with 2-4% isoflurane in oxygen and secured within a stereotaxic frame (Kopf 

Instruments, Tujunga, CA, USA). Bilateral craniotomies were performed at Anterior-Posterior 0 
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(Bregma) and Medial-Lateral ± 2.2mm [54], and either ChABC (protease free, 15 U/ml in 0.9% saline, 

Sigma, St Louis, MO, USA) or vehicle pressure injected into the striatum at a depth of 2.5mm from 

dura using a PicoPump (WPI, Sarasota, FL, USA). Following treatment, animals were returned to their 

home cages and allowed to recover for three days. During this time, water and food were available 

ad libitum.  

 

2.4 Puzzle-Box behaviour 

All animals (standard, S n=18; enriched, E n=21; vehicle, SV n=7, EV n=13; and ChABC treated, SC 

n=8, EC, n=13) underwent Puzzle-Box behavioural testing for five consecutive days. The protocol 

used within this study is a modified version of that previously published by other groups [51-53].  

The Puzzle-Box arena consists of a white acrylic board box (750mm x 280cm x 250mm) split into two 

compartments: a brightly lit open-field start zone (600mm x 280mm x 250mm) and a dark goal-box 

zone (150mm x 280mm x 250mm) containing a red mouse igloo, divided by an opaque barrier with a 

single (40mm x 40mm) aperture or “entrance” abutting the floor (Fig. 4.1A). Animals were placed 

into the open-field portion of the Puzzle-Box, opposite the entrance. The subjects’ task was to make 

their way through the entrance in order to escape the open-field. Animals were challenged with 

increasingly difficult to remove “obstruction conditions” placed within the entrance to the goal-box 

portion of the Puzzle-Box. Individual mice were subjected to a total of three trials of each 

obstruction condition, two on one day and one on the next, for a total of three trials per day (Table 

4.1). This design allowed for the potential testing of three cognitive processes: the first trial provided 

an indication of inherent problem-solving ability; the second trial, a measure of the animal’s ability 

to reinforce strategies for removing specific obstructions; and the third trial provided insight into the 

subject’s ability to retain and recall the learned solution to a task over a longer period of time [51-

53]. Mice were exposed to a total of five conditions: open passage in which no blockage was 

present; open passage with a “U” shaped channel effectively limiting passage size; channel filled 
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with bedding; passage blocked with a tissue plug; and passage blocked with a foam plug (Table 4.1). 

Performance was determined by the time taken for all four paws of an animal to enter the goal-box 

zone. 

Video recordings of the Puzzle-Box behavioural task were made, and analysed using TopScan 

software (CleverSys Inc, Reston, VA, USA). The open-field start zone was divided into three areas: 

“wall”, an area 50mm wide flush to the walls of the arena; “obstruction”, centred upon and 

extending 25mm beyond the obstruction puzzle; and the “centre”, designated as the remainder of 

the open-field start zone (Fig. 4.1B). Individual animals were tracked throughout each trial, and the 

distance travelled and percentage of total time spent within each defined area was determined. A 

repeated measures ANOVA was used to assess performance, using condition and trial number as 

within-subjects factors, and housing condition and surgical treatment as between-subjects factors. A 

univariate ANOVA was also used to assess performance within individual trials, using housing 

condition and surgical treatment as between-subjects factors. 
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Day Condition Trial Obstruction Time limit (seconds) 

1 

0 1 Open doorway with no obstructions 180 

1 1 Open channel within doorway 180 

1 2 Open channel within doorway 180 

2 

1 3 Open channel within doorway 180 

2 1 Channel filled with bedding 180 

2 2 Channel filled with bedding 180 

3 

2 3 Channel filled with bedding 180 

3 1 Tissue plug within doorway 240 

3 2 Tissue plug within doorway 240 

4 

3 3 Tissue plug within doorway 240 

4 1 Foam plug within doorway 240 

4 2 Foam plug within doorway 240 

5 4 3 Foam plug within doorway 240 

 

 

 

Table 4.1 Schema outlining the Puzzle-Box Behavioural Task. 

The Puzzle-Box task is run for five days, and consists of four obstruction conditions. There are three 

trials on each of the first four days, and one on the fifth day. Each obstruction condition has three 

trials; the first two on one day, and the third the day immediately following. The first trial of an 

obstruction condition aims to test native problem-solving ability, the second trial examines task 

acquisition and reinforcement, and the third trial is used as an assay for solution retention and recall 

[51-53].  
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Figure 4.1: Schematic of the Puzzle-Box.  

(A – B) A diagram of the Puzzle-Box behavioural task arena. (A) A white acrylic box, measuring 750 x 

280mm, and split into two by a black dividing partition into which a door is cut. The start zone 

consists of an open field 600mm long x 280mm wide, and the goal box consists of a covered section 

150mm long and 280mm wide, with a 40 x 40mm door cut into the separating partition between the 

two. (B) For video analysis of animal behaviour, the open field start zone was split into three areas: a 

“wall” section running flush to the arena wall and 50mm wide; an “obstruction” section surrounding 

the obstruction puzzle within the doorway; with the remainder of the open field designated as a 

“centre” section.  
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2.5 Rotarod behaviour 

Animals underwent rotarod behavioural testing for five consecutive days. Non-surgery animals were 

tested as a control (S n=11, E n=13) to determine any effects of EE upon the performance of this 

behavioural task. Each day, animals were placed onto the Rotarod (IITC Inc., Woodland Hills, CA, 

USA) for five minutes of habituation prior to undertaking five runs of three minutes duration, 

starting at the lowest speed (1RPM) and ramping up to the highest speed (45RPM) at the three 

minute mark. Five animals were tested at a time, and runs were started when all animals were 

orientated in the same direction. The time and distance run before an animal fell off the apparatus 

were measured and recorded. A repeated measures ANOVA was used to compare performance of 

the daily sum of time spent upon the rotor, with testing day as within-subjects factor, and housing 

condition and surgery treatment as between-subjects factors.  

 

2.6 Immunohistochemical staining for PNNs 

 Animals were euthanized on the final day of behavioural testing with intraperitoneal administration 

of  >100mg/kg of sodium pentobarbitone, and transcardially perfused using 0.9% saline followed by 

4% paraformaldehyde in 0.1M phosphate buffer (PB). The brain was dissected out, post-fixed 

overnight in 4% paraformaldehyde in 0.1M PB, and cryoprotected in 30% sucrose in 0.1M PB. 

Brains were then embedded in gelatin-albumin hardened by 25% glutaraldehyde in 0.1M PB, and 

sectioned coronally at 60m on a freezing microtome. Tissue was collected in such a way that 

sections within the same well were always at least 360m apart from one another within the brain. 

Staining for perineuronal nets (PNNs) was adapted from Lee et al, 2008 & 2012 with some slight 

modifications [41, 50]. Sections were labelled for CSPGs using Wisteria floribunda agglutinin (WFA), a 

plant lectin used to visualize CSPGs, as described previously [22, 41, 50]. Briefly, sections were 

washed in 0.1M PB prior to immunohistochemical procedures, then quenched in a mixture of 0.3% 
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hydrogen peroxide in 0.1M PB. After washing in 0.1M PB, sections were incubated overnight at 4oC 

in biotinylated WFA (Vector Laboratories, Burlingame, CA, USA) (10g/ml). Bound WFA was 

visualized using a fluorescein-conjugated TSA kit (Perkin Elmer, Waltham, MA, USA), then washed 

several times in 0.1M PB and mounted onto gelatin coated slides with 50:50 glycerol:0.1M PB and 

1:1000 DAPI. 

Sections were digitally imaged using a Zeiss deconvolution microscope with AxioCamHR camera and 

Axiovision software (Carl Zeiss Microscopy GmbH, Jena, Germany). Images were photomerged to 

produce a mosaic of the striatum, PNNs were manually marked (Photoshop, Adobe Systems Inc., San 

Jose, CA, USA), and density measurements obtained. A univariate ANOVA with housing condition as 

between-subjects factor was used to compare the density of PNNs across ChABC-treated 

experimental groups.  

 

3. Results 

3.1 Environmental enrichment from birth affects performance within the Puzzle-Box task 

The striatum plays an important role in goal directed behaviours [28, 41, 55]. Although enriched 

mice have been shown to exhibit improved performance during the Morris Water Maze [15, 20, 22, 

23, 56] compared to standard housed cohorts, the contribution of striatal function to this task is 

difficult to assess given the predominantly spatial, and thus hippocampus-dependent, nature of the 

task [56, 57]. In order to determine whether housing condition is capable of affecting performance 

on a goal seeking task that is independent of spatial acquisition, mice raised in either enriched (E, 

n=21) or standard (S, n=18) environments from birth were tested at 12 – 14 weeks of age on their 

performance in the Puzzle-Box behavioural task, a goal-seeking paradigm designed to test problem-

solving capabilities by presenting incrementally difficult obstacles over five consecutive days. 
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I found that housing condition significantly affected the time taken to solve the obstruction puzzle 

tasks within the Puzzle-Box (Fig. 4.2). Specifically, animals that were raised within an enriched 

environment had significantly lower latencies to enter the goal-box when compared to mice raised 

within a standard environment (repeated measures ANOVA, housing condition as between-subjects 

factor, E vs S, F(1, 37)=7.806, P=0.008). This effect of housing condition was particularly notable in 

several individual trials within the task: enriched animals displayed significantly shorter latencies 

during the last two trials of the first open channel obstruction (univariate ANOVA, housing condition 

as between-subjects factor, E vs S: C1T2, F(1, 37)=6.092, P=0.018; C1T3, F(1, 37)=7.848, P=0.008); 

and during the first trial of the more difficult filled channel and tissue plug obstructions (univariate 

ANOVA, housing condition as between-subjects factor, E vs S: C2T1, F(1, 37)=5.175, P=0.029; C3T1, 

F(1, 37)=11.547, P=0.002) (Fig. 4.2). These findings indicate that EE appeared to have the greatest 

influence on the first exposure to a given obstruction condition. 
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Figure 4.2: Enrichment decreases time taken to enter the goal-box zone of the Puzzle-Box. 

Graph plotting the average time taken (s) for all four paws of an animal to enter the goal-box zone of 

the Puzzle-Box, upon which time a behavioural task was terminated, for mice raised from birth in 

enriched (E) and standard (S) housing. Obstruction conditions (C) 1 and 2 have an upper time limit of 

180 seconds, and conditions 3 and 4 have an upper time limit of 240 seconds. Adult animals raised 

within an enriched environment (E) take significantly less time to enter the Goal Box than do those 

raised within a standard environment (S) (repeated measures ANOVA, F=7.806, P=0.008). This was 

particularly evident in several individual trials (T) within the task: C1T2 (univariate ANOVA, F=6.092, 

P=0.018); C1T3 (univariate ANOVA, F=7.848, P=0.008); C2T1 (univariate ANOVA, F=5.175, P=0.029); 

C3T1 (univariate ANOVA, F=11.547, P=0.002). *: P<0.05, **: P<0.01. E n=21, S n=18. Error bars = 

Standard Error of the Mean (SEM). 
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Latency to enter the goal-box may differ for a number of reasons, including anxiety, motivation or 

cognitive abilities [51-53]. Assessing the time taken to solve obstruction puzzles within the Puzzle-

Box gives a metric of performance, but does not reveal complex behaviours that may be induced by 

exposure to a novel testing environment. To determine the means by which EE improved 

performance in the Puzzle-Box task, video recordings of this behavioural task were made and 

analysed. The open-field start zone was divided into three areas (Fig. 4.1B, “wall”, “obstruction” and 

“centre”, see Materials and Methods 2.4 Puzzle-Box Behaviour) and the distance travelled and 

percentage of total time spent in each of these areas analysed. I found that housing condition 

affected the way in which animals behaved within the Puzzle-Box (Fig. 4.3, 4.4). There were varying 

degrees of impact upon the distance travelled and proportion of time spent within the sections of 

the open-field start zone. 

Quantitative analysis of the effect of housing condition revealed that animals raised within an 

enriched environment spent a significantly lesser proportion of time within the “wall” section of the 

open-field (repeated measures ANOVA, housing condition as between-subjects factor: E vs S, F(1, 

37)=15.306, P<0.001) (Fig. 4.3A) and a significantly greater proportion of time within the 

“obstruction” section of the open-field (repeated measures ANOVA, housing condition as between-

subjects factor: E vs S, F(1, 37)=27.340, P<0.001) (Fig. 4.3C) than did animals raised within standard 

laboratory housing.  

The effect of housing condition was particularly evident at certain trials within the task: standard 

animals spent a significantly greater proportion of time within the “wall” during the first, open 

channel obstruction (univariate ANOVA, housing condition as between-subjects factor, E vs S: C1T1, 

F(1, 37)=17.588, P<0.001, C1T2, F(1, 37)=16.326, P<0.001; C1T3, F(1, 37)=4.757, P=0.036); during the 

first exposure to the more difficult filled channel obstruction (univariate ANOVA, housing condition 

as between-subjects factor, E vs S: C2T1 F(1, 37)=4.857, P=0.034); and during all trials of the most 

difficult foam plug obstruction (univariate ANOVA, housing condition as between-subjects factor, E 
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vs S: C4T1F(1, 37)=5.910, P=0.020; C4T2, F(1, 37)=15.564, P<0.001: C4T3, F(1, 37)=4.758, P=0.036) 

(Fig. 4.3A).  

Although no overall significant differences were detected between housing groups when comparing 

the proportion of time spent in the centre zone (repeated measures ANOVA, F(1, 37)=2.074, 

P=0.159), a trial by trial analysis revealed that standard animals spend a greater proportion of time 

in the “centre” on the first trial of the open channel obstruction (univariate ANOVA, housing 

condition as between-subjects factor, E vs S: C1T1, F(1, 37)=7.143, P=0.011), as well as the first and 

third trials of the more difficult filled channel obstruction (univariate ANOVA, housing condition as 

between-subjects factor, E vs S: C2T1, F(1, 37)=9.272, P=0.004; C2T3, F(1, 37)=6.866, P=0.013) (Fig. 

4.3B). 

In turn, enriched animals spent a greater proportion of time within the “obstruction” during the first, 

open channel obstruction (univariate ANOVA, housing condition as between-subjects factor, E vs S: 

C1T1: F(1, 37)=24.144, P<0.001; C1T2, F(1, 37)=26.877, P<0.001); when first encountering the filled 

channel obstruction (univariate ANOVA, housing condition as between-subjects factor, E vs S, C2T1, 

F(1, 37)=9.952, P=0.003; C2T3, F(1, 37)=8.409, P=0.006); throughout the duration of the more 

difficult tissue plug obstruction (univariate ANOVA, housing condition as between-subjects factor, E 

vs S: C3T1 F(1, 37)=5.614, P=0.023; C3T2, F(1, 37)=4.683, P=0.037; C3T3, F(1, 37)=4.653, P=0.038); 

and upon first exposure to the most difficult foam plug (univariate ANOVA, housing condition as 

between-subjects factor, E vs S: C4T1, F(1, 37)=9.014, P=0.005; C4T3, F(1, 37)=4.280, P=0.046) (Fig. 

4.3C).  
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Figure 4.3: Enriched animals spend less time in the wall zone and more time in the obstruction 

zone. 

(A – C) Graphs plotting the average percentage of total time spent within the Puzzle-Box where an 

animal was within specified areas in the open-field start zone for mice raised from birth in enriched 

(E) and standard (S) housing. (A) Enriched animals spent a significantly lesser proportion of time 

within the “wall” zone than standard mice (repeated measures ANOVA, F=15.306, P<0.001), 

particularly at C1T1 (univariate ANOVA, F=17.588, P<0.001); C1T2 (univariate ANOVA, F=16.326, 

P<0.001); C1T3 (univariate ANOVA, F=4.757, P=0.036); C2T1 (univariate ANOVA, F=4.857, P=0.034); 

C4T1 (univariate ANOVA, F=5.910, P=0.020); C4T2 (univariate ANOVA, F=15.564, P<0.001); and C4T3 

(univariate ANOVA, F=4.758, P=0.036). (B) There was no overall significant effect of housing 

condition on the proportion of time spent within the “centre” zone (repeated measures ANOVA, 

F=2.074, P=0.159). There were significant differences in some individual trials where enriched 

animals spent a lesser proportion of time within the “centre” zone than standard mice: C1T1 

(univariate ANOVA, F=7.143, P=0.011); C2T1 (univariate ANOVA, F=9.272, P=0.004); and C2T3 

(univariate ANOVA, F=6.866, P=0.013). (C) Enriched animals spent a significantly greater proportion 

of time within the “obstruction” zone than standard mice (repeated measures ANOVA, F=27.340, 

P<0.001), which again was particularly evident in certain trials: C1T1 (univariate ANOVA, F=24.144, 

P<0.001); C1T2 (univariate ANOVA, F=26.877, P<0.001); C2T1 (univariate ANOVA, F=9.952, P=0.003); 

C2T3 (univariate ANOVA, F=8.409, P=0.006); C3T1 (univariate ANOVA, F=5.614, P=0.023); C3T2 

(univariate ANOVA, F=4.683, P=0.037); C3T3 (univariate ANOVA, F=4.653, P=0.038); C4T1 (univariate 

ANOVA, F=9.014, P=0.005); C4T3 (univariate ANOVA, F=4.280, P=0.046). *: P<0.05, **: P<0.01, ***: 

P<0.001. E n=21, S n=18. Error bars = SEM. 
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When considering distances travelled within the open arena, quantitative analysis of the effect of 

housing condition upon distance travelled within the open-field portion of the Puzzle-Box revealed 

that animals raised within an enriched environment traversed a significantly lesser extent of the 

“wall” (repeated measures ANOVA, housing condition as between-subjects factor: E vs S, F(1, 

37)=72.492, P<0.001) (Fig. 4.4A) and “centre” (repeated measures ANOVA, housing condition as 

between-subjects factor: E vs S, F(1, 37)=20.723, P<0.001) (Fig. 4.4B) sections of the open-field 

compared to standard-housed cohorts. Curiously, enriched animals also covered less distance than 

standard mice in the “obstruction” zone (repeated measures ANOVA, housing condition as between-

subjects factor: E vs S, F(1, 37)=9.175, P=0.004) (Fig. 4.4C).  

The effect of housing condition was notable in nearly all individual trials during testing. Enriched 

animals travelled significantly less distance within the “wall” than standard animals upon first 

exposure to the Puzzle-Box (univariate ANOVA, housing condition as between-subjects factor, E vs S: 

C0T1, F(1, 37)=5.385, P=0.026); during the first two trials of the empty and filled channel 

obstructions (univariate ANOVA, housing condition as between-subjects factor, E vs S: C1T1, F(1, 

37)=18.002, P<0.001; C1T2, F(1, 37)=27.119, P<0.001; C2T1, F(1, 37)=14.777, P<0.001; C2T2, F(1, 

37)=5.539, P=0.024); and throughout the duration of the more difficult tissue plug obstruction 

(univariate ANOVA, housing condition as between-subjects factor, E vs S: C3T1, F(1, 37)=10.687, 

P=0.002; C3T2 F(1, 37)=7.959, P=0.008; C3T3, F(1, 37)=16.031, P<0.001); and most difficult foam 

plug obstruction (univariate ANOVA, housing condition as between-subjects factor, E vs S: C4T1, F(1, 

37)=38.187, P<0.001; C4T2, F(1, 37)=21.822, P<0.001; C4T3 F(1, 37)=42.736, P<0.001) (Fig. 4.4A).  

Similarly, enriched animals traversed less distance within the “centre” than standard animals in 

particular trials: specifically, upon initial exposure to the Puzzle-Box (univariate ANOVA, housing 

condition as between-subjects factor, E vs S: C0T1, F(1, 37)=8.736, P=0.005); during the first two 

trials of the empty and first trial of the filled channel obstructions (univariate ANOVA, housing 

condition as between-subjects factor, E vs S: C1T1, F(1, 37)=16.702, P<0.001; C1T2, F(1, 37)=15.363, 
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P<0.001; C2T1, F(1, 37)=10.958, P=0.002); throughout the duration of the more difficult tissue plug 

obstruction (univariate ANOVA, housing condition as between-subjects factor, E vs S: C3T1, F(1, 

37)=10.798, P=0.002; C3T2, F(1, 37)=5.580, P=0.024; C3T3, F(1, 37)=5.044, P=0.031) and in the first 

trial of the most difficult foam plug obstruction (univariate ANOVA, housing condition as between-

subjects factor, E vs S: C4T1, F(1, 37)=14.100, P=0.001) (Fig. 4.4B).  

The effect of housing condition upon distance travelled within the “obstruction” zone was also 

particularly notable, with S mice traversing further within this region upon first exposure to the 

Puzzle-Box apparatus (univariate ANOVA, housing condition as between-subjects factor, E vs S: C0T1, 

F(1, 37)=9.344, P=0.004); during the last trial of the open channel obstruction (univariate ANOVA, 

housing condition as between-subjects factor, E vs S: C1T3, F(1, 37)=9.832, P=0.003) and in the first 

trials of the more difficult filled channel and tissue plug obstructions (univariate ANOVA, housing 

condition as between-subjects factor, E vs S: C2T1, F(1, 37)=5.205, P=0.028; C3T1, F(1, 37)=6.329, 

P=0.016) (Fig. 4.4C).  

Together, these results suggest that enriched animals solve obstruction puzzles and reach the 

goal/shelter more rapidly than standard cohorts. Performance differences were detectable in all but 

the most difficult obstruction condition. Curiously, no latency differences between E and S groups 

were observed in the initial habituation stage. Area analyses revealed that overall latency 

differences were due to S animals spending more time and traversing greater distances within the 

“wall” and “centre” zones. E mice consistently spent a greater proportion of time in the 

“obstruction” area. Trial by trial analyses did not reveal any dramatic trends, although performance 

differences appeared greatest during the first presentation of novel obstructions.  
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Figure 4.4: Enriched animals show reduced locomotor activity within the Puzzle-Box. 

(A – C) Graphs plotting the average distance travelled within specified areas in the open-field start 

zone for mice raised from birth in enriched (E) and standard (S) housing. (A) Enriched animals 

traversed significantly less distance within the “wall” section of the open-field (repeated measures 

ANOVA, F=72.492, P<0.001) than standard mice, particularly at C0T1 (univariate ANOVA, F=5.385, 

P=0.026); C1T1 (univariate ANOVA, F=18.002, P<0.001); C1T2 (univariate ANOVA, F=27.119, 

P<0.001); C2T1 (univariate ANOVA, F=14.777, P<0.001); C2T2 (univariate ANOVA, F=5.539, P=0.024); 

C3T1 univariate ANOVA, F=10.687, P=0.002); C3T2 (univariate ANOVA, F=7.959, P=0.008); C3T3 

(univariate ANOVA, F=16.031, P<0.001); C4T1 (univariate ANOVA, F=38.187, P<0.001); C4T2 

(univariate ANOVA, F=21.822, P<0.001): and C4T3 (univariate ANOVA F=42.736, P<0.001). (B) 

Similarly, enriched mice travelled significantly less distance within the “centre” section of the open-

field (repeated measures ANOVA, F=20.723, P<0.001) than their standard counterparts, particularly 

at C0T1 (univariate ANOVA, F=8.736, P=0.005); C1T1 (univariate ANOVA, F=16.702, P<0.001); C1T2 

(univariate ANOVA, F=15.363, P<0.001); C2T1 (univariate ANOVA, F=10.958, P=0.002); C3T1 

(univariate ANOVA, F=10.798, P=0.002); C3T2 (univariate ANOVA, F=5.580, P=0.024); C3T3 

(univariate ANOVA, F=5.044, P=0.031); and C4T1 (univariate ANOVA, F=14.100, P=0.001). (C) 

Enriched mice also covered less distance within the “obstruction” zone of the open-field (repeated 

measures ANOVA, F=9.175, P=0.004) than standard animals, particularly at C0T1 (univariate ANOVA, 

F=9.344, P=0.004); C1T3 (univariate ANOVA, F=9.832, P=0.003); C2T1 (univariate ANOVA, F=5.205, 

P=0.028); and C3T1 (univariate ANOVA, F=6.329, P=0.016). *: P<0.05, **: P<0.01, ***: P<0.001. E 

n=21, S n=18. Error bars = SEM. 
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3.2 ChABC treatment impacted performance within the Puzzle-Box task. 

Previous work from our laboratory has demonstrated the presence of PNNs within the striatum [41, 

50] and the accelerated maturation of these structures in response to early life enrichment [22]. 

PNNs play a role in maintaining strong synaptic connections within the adult brain [35, 36], and in 

the striatum are associated with Parvalbumin-expressing (PV+) GABA-ergic inhibitory interneurons 

[41], known to mediate striatal activity [58-61]. The dissolution of PNNs within the striatum 

improves task acquisition within the Morris Water Maze, and causes a reversion back to an 

“immature” gait style [41]. Whether striatal ChABC injection affects goal seeking behaviour has yet 

to be determined. Accordingly, I compared the performance of enriched and standard adult animals 

with striatal ChABC (EC, n=13 and SC, n=8) and 0.9% saline vehicle injection (EV, n=13 and SV, n=7) 

within the Puzzle-Box behavioural task.  

The effectiveness of striatal ChABC injection during this study was confirmed: eight days post-

injection, animals were sacrificed on the last day of behavioural testing and assessed for WFA 

labelling within the striatum. At this time, PNNs were almost completely removed from the treated 

region of striatum with ChABC injection (Fig. 4.5C, F). Similar to previous work [41], PNNs were 

present in the striatum of vehicle infused animals (Fig. 4.5B, E) and non-treated mice (Fig. 4.5A, D), 

as well as in the cortex and other regions surrounding the striatum of ChABC treated animals (Fig. 

4.5G), suggesting that any effects resulting from this treatment are specific to the striatum. There 

was a significant effect of animal group upon the density of PNNs present within the striatum 

(univariate ANOVA, animal group as between-subjects factor, F(5, 349)=47.824, P<0.001) (Fig. 4.5H). 

Posthoc analysis revealed that both vehicle (multiple comparisons posthoc analysis: E vs EV, 

P<0.001; S vs SV, P=0.001; E vs SV, P<0.001; S vs EV, P=0.017) and ChABC treatment (multiple 

comparisons posthoc analysis: E vs EC, P<0.001; S vs SC, P<0.001; E vs SC, P<0.001; S vs EC, P<0.001) 

reduced striatal PNN density compared to untreated mice. ChABC treated animals had fewer PNNs 

present within the striatum than vehicle treated mice (multiple comparisons posthoc analysis: EV vs 
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EC, P<0.001; SV vs SC, P<0.001; EV vs SC, P<0.001; SV vs EC, P<0.001), suggesting that ChABC 

injection removed more PNNs than did vehicle treatment. There was no significant effect of 

enrichment upon PNN density within any of the animal groups (multiple comparisons posthoc 

analysis: E vs S, P=0.908; EV vs SV, P=0.607; EC vs SC, P=0.417) (Fig. 4.5H), suggesting that EE did not 

influence the recovery of PNNs within either vehicle or ChABC treated animals. 
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Figure 4.5: Perineuronal net staining and density within differentially housed and treated animals. 

(A – C) Sample hemispheres of striatum from animals that had completed behavioural testing, 

showing the pattern of perineuronal net (PNN) (arrowheads) staining within adult animals (12 – 14 

weeks) raised in a standard environment and undergoing various surgical treatments. A lesser 

density of PNNs can be seen in ChABC treated animals (C) than is present in vehicle treated (B) and 

non-surgery (A) mice. (D – F) A similar series to that shown in A – C but for enriched mice. The 

appearance of PNNs within animals receiving ChABC (C, F) injection is less distinct than that of PNNs 

within non-surgery (A, D) and vehicle animals (B, E), regardless of housing condition. (G) Sample of 

cortex showing the pattern of PNN staining within an adult enriched animal that received striatal 

ChABC injection. (H) Graph comparing the average striatal PNN density of all animal groups. Vehicle 

and ChABC treatment both reduced the density of PNNs present within the striatum (univariate 

ANOVA, F=47.824, P<0.001). There was no significant effect of enrichment upon the density or 

recovery of PNNS throughout the striatum in any treatment group (multiple comparisons posthoc 

analysis: E vs S, P=0.908; EV vs SV, P=0.607; EC vs SC, P=0.417). Six sections from each animal were 

quantified. Scale bar = 1000m Error bars=SEM. E n=3, S n=3, EV n=13, SV n=7, EC n=13, SC n=8. Chr: 

Chondroitinase ABC, Veh: Saline vehicle, Nil: non-surgery. 
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Quantitative analysis of performance within the Puzzle-Box revealed that treatment group 

significantly affected the time taken to solve obstruction puzzle tasks (repeated measures ANOVA, 

treatment group as between-subjects factor, F(3, 37)=8.684, P<0.001) (Fig. 4.6). Posthoc analysis 

showed that this was due to SC animals taking significantly longer to enter the goal-box than EC and 

EV cohorts (multiple comparisons posthoc analysis: SC vs EC P<0.001; SC vs EV P=0.001) (Fig. 4.6).  

The effect of treatment group was particularly notable upon the first day of testing. During initial 

exposure to the Puzzle-Box arena (univariate ANOVA, treatment group as between-subjects factor: 

C0T1, F(3, 37)=29.047, P<0.001), SC animals took significantly longer to enter the goal-box than all 

other groups, and SV animals took significantly longer to enter the goal-box than both enriched 

cohorts (multiple comparisons posthoc analysis: SC vs EC P<0.001, SC vs EV P<0.001, SC vs SV 

P=0.008, SV vs EC P=0.001, SV vs EV P=0.002). Treatment group also impacted latency during the 

first two trials of the first, open channel obstruction (univariate ANOVA, treatment group as 

between-subjects factor: C1T1, F(3, 37)=11.413, P<0.001; C1T2, F(3, 37)=20.879, P<0.001) due to SC 

animals taking significantly longer to enter the goal-box than all other groups (multiple comparisons 

posthoc analysis: C1T1: SC vs EC P<0.001, SC vs EV P<0.001, SC vs SV P=0.005; C1T2: SC vs EC 

P<0.001, SC vs EV P<0.001, SC vs SV P<0.001). There were no significant differences observed 

between EC and EV groups, suggesting that striatal ChABC injection affects the performance of 

standard housed animals on the first day of testing within the Puzzle-Box more than that of enriched 

mice. 
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Figure 4.6: ChABC injection increases latency to goal-box zone during the Puzzle-Box test. 

Graph plotting the average time taken (s) for all four paws of an animal to enter the goal-box zone of 

the Puzzle-Box, upon which time a behavioural task was terminated, for mice raised in enriched and 

standard housing receiving vehicle (EV, SV) or chondroitinase (EC, SC) striatal injection. Surgical 

treatment significantly impacted time taken to solve obstruction puzzles (repeated measures 

ANOVA, F=8.684, P<0.001), due to SC animals taking longer to enter the goal-box than either 

enriched group. The effect of treatment group was particularly evident during the first day of 

testing: C0T1 (univariate ANOVA, F=29.047, P<0.001); C1T1 (univariate ANOVA, F=11.413, P<0.001); 

and C1T2 (univariate ANOVA, F=20.879, P<0.001). **: P<0.01, ***: P<0.001. EV n=13, EC n=13, SV 

n=7, SC n=8. Error bars=SEM. 
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Similar to E and S cohorts, video recordings of EC, EV, SC and SV animals performing the Puzzle-Box 

behavioural task were made and time and distance within each area of the open-field start zone 

analysed. I found that treatment affected the way in which animals behaved within the Puzzle-Box 

(Fig. 4.7, 4.8). There were a variety of impacts upon the proportion of time and distance travelled 

within the sections of the open-field start zone. 

Quantitative analysis revealed that treatment group did not affect the proportion of time spent 

within the “wall” (repeated measures ANOVA, treatment group as between-subjects factor, F(3, 

37)=1.294, P=0.291) (Fig. 4.7A) or “obstruction” sections of the open-field (repeated measures 

ANOVA, treatment group as between-subjects factor, F(3, 37)=0.705, P=0.555) (Fig. 4.7C). Treatment 

group did impact the proportion of time spent within the “centre” of the open-field (repeated 

measures ANOVA, treatment group as between-subjects factor, F(3, 37)=4.052, P=0.017) (Fig. 4.7B), 

which posthoc analysis revealed to be due to EV animals spending less time within this area than EC 

mice (repeated measures ANOVA, treatment group as between-subjects factor, multiple 

comparisons posthoc analysis, F(3, 37)=4.052: EV vs EC, P=0.028).  

The effect of treatment group upon time spent in the “centre” was particularly evident at certain 

trials within the task: specifically, during the second trial of the tissue plug (univariate ANOVA, 

treatment group as between-subjects factor, C3T2: F(3, 37)=3.230, P=0.033), SV mice spent a greater 

proportion of time within the “centre” than EV and SC animals (multiple comparisons posthoc 

analysis: SV vs EV P=0.044, SV vs SC P=0.042). A similar difference was detected for the final two 

trials of the most difficult foam plug obstruction (univariate ANOVA, treatment group as between-

subjects factor: C4T2, F(3, 37)=4.186, P=0.012; C4T3, F(3, 37)=3.312, P=0.030), with SV mice again 

spending a greater proportion of time within the “centre” than SC and EV animals (multiple 

comparisons posthoc analysis: C4T2: SV vs SC P=0.023; C4T3: SV vs EV P=0.021).  

Despite there being no overall impact of treatment group upon the proportion of time spent within 

the “wall” section of the open-field, there was an effect in the second trial of the open channel 
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obstruction (univariate ANOVA, treatment group as between-subjects factor, F(3, 37)=3.272, 

P=0.019), which posthoc analysis revealed to be due to EC animals spending less time within this 

region than SC mice (multiple comparisons posthoc analysis: C1T2: EC vs SC P=0.011) (Fig. 4.7A). 

Similarly, there was a significant effect of treatment group on the proportion of time spent within 

“obstruction” during individual trials: specifically, upon first exposure to the testing arena (univariate 

ANOVA, treatment group as between-subjects factor, C0T1, F(3, 37)=3.225, P=0.033) due to EV 

animals spending a greater proportion of time within this region than SC mice (multiple comparisons 

posthoc analysis, C0T1: EV vs SC P=0.030); and during the first two trials of the open channel 

obstruction (univariate ANOVA, treatment group as between-subjects factor: C1T1, F(3, 37)=3.709, 

P=0.020; C1T2, F(3, 37)=3.333, P=0.030). Posthoc analysis revealed this effect to be due to EV and EC 

animals spending a greater proportion of time within this region than SC mice during C1T1 and C1T2, 

respectively (multiple comparisons posthoc analysis: C1T1: EV vs SC P=0.026; C1T2: EC vs SC 

P=0.030) (Fig. 4.7C). 
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Figure 4.7: ChABC treatment impacts behavioural patterns within the Puzzle-Box apparatus. 

(A – C) Graphs plotting the average percentage of total time spent within the Puzzle-Box where an 

animal was within specified areas in the open-field start zone for mice raised from birth in enriched 

and standard housing receiving vehicle (EV, SV) or chondroitinase (EC, SC) striatal injection. (A) There 

was no overall significant effect of treatment group on the proportion of time spent within the 

“wall” zone (repeated measures ANOVA, F=1.294, P=0.291). There was a significant difference in one 

individual trial: C1T2 (univariate ANOVA, F=3.727, P=0.019). (B) Treatment group significantly 

impacted the proportion of time spent within the “centre” section of the open-field (repeated 

measures ANOVA, F=4.052, P=0.017), due to EV animals spending less time within this zone than EC 

animals (see text for details). This effect of treatment group was particularly evident during 

individual trials: C3T2 (univariate ANOVA, F=3.230, P=0.033); C4T2 (univariate ANOVA, F=4.186, 

P=0.012); C4T3 (univariate ANOVA, F=3.312, P=0.030). (C) There was no overall significant effect of 

treatment group on the proportion of time spent within the “obstruction” area (repeated measures 

ANOVA, F=0.705, P=0.555). There were significant differences in some individual trials: C0T1 

(univariate ANOVA, F=3.225, P=0.033); C1T1 (univariate ANOVA, F=3.709, P=0.020); and C1T2 

(univariate ANOVA, F=3.333, P=0.030). *: P<0.05. EV n=13, EC n=13, SV n=7, SC n=8. Error bars=SEM.  
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Treatment group did not affect the distance traversed within the “wall” (repeated measures ANOVA, 

treatment group as between-subjects factor, F(3, 37)=2.286, P=0.095) (Fig. 4.8A) or “obstruction” 

sections of the open-field (repeated measures ANOVA, treatment group as between-subjects factor, 

F(3, 37)=0.592, P=0.624) (Fig. 4.8C). Treatment group did, however, impact the distance travelled 

within the “centre” of the open-field (repeated measures ANOVA, treatment group as between-

subjects factor, F(3, 37)=3.637, P=0.021) (Fig. 4.8B). Posthoc analysis revealed that the detected 

difference was due to SV animals covering a greater distance than EV mice (multiple comparisons 

posthoc analysis: SV vs EV, P=0.011).  

The effect of treatment group upon distance travelled in the “centre” was particularly evident at 

certain trials within the task: specifically, upon first exposure to the Puzzle-Box (univariate ANOVA, 

treatment group as between-subjects factor, C0T1 F(3, 37)=6.544, P=0.001) due to both enriched 

groups travelling less distance than standard animals receiving ChABC treatment (multiple 

comparisons posthoc analysis, C0T1: EC vs SC P=0.007, EV vs SC P=0.007). A similar difference was 

detected for the final two trials of the open channel obstruction (univariate ANOVA, treatment 

group as between-subjects factor: C1T2 F(3, 37)=3.606, P=0.022; C1T3, F(3, 37)=5.088, P=0.005), 

with enriched mice again covering less distance in the “centre” than SC animals (multiple 

comparisons posthoc analysis: C1T2: EC vs SC P=0.017, EV vs SC P=0.048; C1T3: EC vs SC P=0.010, EV 

vs SC P=0.022), and the first trial of the most difficult foam plug obstruction (univariate ANOVA, 

treatment group as between-subjects factor: C4T1 F(3, 37)=3.003, P=0.043), which posthoc analysis 

revealed to be due to SC animals travelling a greater distance than EC mice (multiple comparisons 

posthoc analysis, C4T1: EC vs SC P=0.026) (Fig. 4.8B).  

Despite there being no overall effect of treatment group upon distance travelled in the “wall” 

section of the open-field, there were significant differences in some individual trials: specifically, 

upon first exposure to the Puzzle-Box (univariate ANOVA, C0T1, F(3, 37)=11.116, P<0.001), due to 

enriched treatment mice travelling less distance within this region than standard treatment animals 
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(multiple comparisons posthoc analysis: C0T1: EC vs SC P<0.001, EC vs SV P=0.009, EV vs SC P<0.001, 

EV vs SV P=0.043); during the two last trials of the open channel obstruction (univariate ANOVA, 

treatment group as between-subjects factor: C1T2, F(3, 37)=8.202, P<0.001; C1T3, F(3, 37)=5.277, 

P=0.004) due to SC animals travelling further within this region than both enriched groups (multiple 

comparisons posthoc analysis: C1T2: EC vs SC P<0.001, EV vs SC P=0.009; C1T3: EC vs SC P=0.005, EV 

vs SC P=0.041); and during the first trials of the more difficult filled channel and tissue plug 

obstructions (univariate ANOVA, treatment group as between subjects factor: C2T1, F(3, 37)=4.376, 

P=0.010; C3T1, F(3, 37)=5.177, P=0.004); C3T3, F(3, 37)=6.637, P=0.001). Posthoc analysis revealed 

this effect to be due to EV animals traversing less distance in C2T1 than SC mice, EC animals 

travelling less than both standard groups during C3T1 and SV mice moving further than both 

enriched groups in C3T3 (multiple comparisons posthoc analysis: C2T1: EV vs SC P=0.005; C3T1: EC vs 

SC P=0.006, EC vs SV, P=0.020; C3T3: EC vs SV P=0.001, EV vs SV P=0.005) (Fig. 4.8A).  

Similarly, there was an impact of treatment group upon the distance travelled within the 

“obstruction” region of the open-field during individual trials: specifically, upon the first trials of the 

open and filled channel obstructions (univariate ANOVA, treatment group as between-subjects 

factor: C1T1, F(3, 37)=3.055, P=0.040; C2T1, F(3, 37)=3.048, P=0.041). Posthoc analysis revealed this 

effect to be due to SV animals travelling further within this zone than EC mice during C1T1 and EV 

mice during C2T1 (multiple comparisons posthoc analysis: C1T1: EC vs SV P=0.044; C2T1: EV vs SV 

P=0.044) (Fig. 4.8C). 

Together, these findings reveal that ChABC treatment affects S and E cohorts differently. S animals 

injected with the enzyme exhibited dramatically increased latencies to goal compared to all other 

groups, but only on the first day of testing Curiously, while no significant differences in goal seeking 

were detected between EV and EC mice, area analyses did show that vehicle treated enriched 

cohorts spent less time within the “centre” region of the open field. SC animals were also observed 

to traverse significantly greater distances within this same area, although this occurred across the 
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entire extent of the testing period, making it difficult to attribute the protracted latencies observed 

by these animals during the first few trials of this behavioural test to this performance difference. 

Nevertheless, the fact that the relative effect of vehicle and ChABC treatment on S and E cohorts 

varied suggests that pre-treatment conditions can influence how the removal of striatal PNNs can 

influence goal-seeking behaviour. 
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Figure 4.8: ChABC treatment has little impact on distance travelled within the Puzzle-Box 

apparatus. 

(A – C) Graphs plotting the average distance travelled within specified areas in the open-field start 

zone for mice raised from birth in enriched and standard housing receiving vehicle (EV, SV) or 

chondroitinase (EC, SC) striatal injection. (A) There was no significant effect of treatment group upon 

the distance traversed within the “wall” section of the open-field (repeated measures ANOVA, 

F=2.286, P=0.095). There were, however, significant differences in some individual trials: C0T1 

(univariate ANOVA, F=11.116, P<0.001); C1T2 (univariate ANOVA, F=8.202, P<0.001); C1T3 

(univariate ANOVA, F=5.277, P=0.004); C2T1 (univariate ANOVA, F=4.376, P=0.010); C3T1 (univariate 

ANOVA, F=5.339, P=0.004); and C3T3 (univariate ANOVA, F=6.637, P=0.001). (B) Treatment group 

significantly impacted the distance travelled within the “centre” zone of the open-field (repeated 

measures ANOVA, F=3.637 P=0.021), due to SV animals covering a greater distance than EV animals 

(see text). The effect of treatment group was notable in some individual trials: C0T1 (univariate 

ANOVA, F=6.544, P=0.001); C1T2 (univariate ANOVA, F=3.606, P=0.022); C1T3 (univariate ANOVA, 

F=5.088, P=0.005); and C4T1 (univariate ANOVA, F=3.003, P=0.043). (C) There was no significant 

effect of treatment group upon the distance traversed within the “obstruction” section of the open-

field (repeated measures ANOVA, F=0.592, P=0.624). There were, however, significant differences in 

some individual trials: C1T1 (univariate ANOVA, F=3.055, P=0.040); and C2T1 (univariate ANOVA, 

F=3.048, P=0.041). *: P<0.05, **: P<0.01, ***: P<0.001.. EV n=13, EC n=13, SV n=7, SC n=8. Error 

bars=SEM.  
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3.3 Striatal injection of both vehicle and ChABC impacted performance within the Puzzle-

Box task 

Striatal injection of ChABC impacted both performance and behavioural patterns of animals within 

the Puzzle-Box apparatus when compared to mice receiving vehicle injections. Further, the changes 

induced by the treatment seemed to vary depending on the housing history of the animal. In order 

to determine the degree to which vehicle and ChABC injections affected puzzle box performance, I 

conducted an exploratory analysis comparing latency and area measurements from all treatment 

cohorts with recorded values of untreated standard and enriched mice.  

I found that animal group had a significant impact upon the time taken to solve obstruction 

conditions within the Puzzle-Box behavioural test (repeated measures ANOVA, group as between-

subjects factor, F(5, 74)=15.288, P<0.001) (Fig. 4.9). Surprisingly, while posthoc analysis revealed 

that enriched non-surgery mice entered the goal-box zone faster than all other groups of animals 

(multiple comparisons posthoc analysis: E vs EC P=0.001, E vs EV P<0.001, E vs S P=0.027, E vs SC 

P<0.001, E vs SV P<0.001), both vehicle and ChABC treated E cohorts exhibited latencies that were 

comparable to untreated S animals. SV and SC groups also exhibited increased latencies compared 

to untreated S animals: SC mice took longer to enter the goal-box than all other groups except SV 

(multiple comparisons posthoc analysis: SC vs E P<0.001, SC vs EC P=0.007, SC vs EV P=0.007, SC vs S 

P<0.001, SC vs SV P=0.544); and SV mice took longer to enter the goal-box than S animals (multiple 

comparisons posthoc analysis: SV vs S P=0.037).  

Trial by trial analysis revealed that animal group significantly impacted performance as measured by 

latency to goal box zone in nearly all individual trials except the most difficult: specifically, upon first 

exposure to the Puzzle-Box (univariate ANOVA, group as between-subjects factor, C0T1, F(5, 

74)=15.714, P<0.001) due to SC mice taking significantly longer to enter the goal-box than all other 

groups (multiple comparisons posthoc analysis C0T1: SC vs E P<0.001, SC vs EC P<0.001, SC vs EV 

P<0.001, SC vs S P<0.001, SC vs SV P=0.022); during all trials of the open channel obstruction 
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(univariate ANOVA, group as between-subjects factor: C1T1, F(5, 74)=9.359, P<0.001; C1T2, F(5, 

74)=14.743, P<0.001; C1T3, F(5, 74)=7.684, P<0.001), again due to SC mice taking longer than all 

other groups to enter the goal-box during the first two trials, and nearly all groups during the last 

trial, of this obstruction (multiple comparisons posthoc analysis: C1T1: SC vs E P<0.001, SC vs EC 

P<0.001, SC vs EV P<0.001, SC vs S P<0.001, SC vs SV P=0.008; C1T2: SC vs E P<0.001, SC vs EC 

P<0.001, SC vs EV P<0.001, SC vs S P<0.001, SC vs SV P=0.001; C1T3: SC vs E P<0.001, SC vs EC 

P<0.001, SC vs EV P=0.115, SC vs S P<0.001, SC vs SV P=0.938).  

There continued to be a significant effect of animal group throughout the more difficult filled 

channel obstruction (univariate ANOVA, group as between-subjects factor: C2T1, F(5, 74)=4.491, 

P=0.001; C2T2, F(5, 74)=2.784, P=0.023; C2T3, F(5, 74)=2.395, P=0.045) due to enriched untreated 

animals entering the goal-box sooner than most groups during C2T1, and faster than SC mice during 

C2T2 (multiple comparisons posthoc analysis: C2T1: E vs EC P=0.023, E vs SC P=0.006, E vs SV 

P=0.013; C2T2: E vs SC P=0.032); and in the first two trials of the more difficult tissue plug 

obstruction (univariate ANOVA, group as between-subjects factor: C3T1, F(5, 74)=10.750, P<0.001; 

C3T2, F(5, 74)=4.959, P=0.001), which posthoc analysis revealed to be due to enriched untreated 

animals entering the goal-box sooner than all other groups of animals in C3T1, and nearly all groups 

in C3T2 (multiple comparisons posthoc analysis: C3T1: E vs EC P=0.005, E vs EV P<0.001, E vs S 

P=0.010, E vs SC P<0.001, E vs SV P<0.001; C3T2: E vs EC P=0.032, E vs EV P=0.015, E vs SC P=0.002, E 

vs SV P=0.031) and SC animals taking longer to enter the goal-box than untreated S animals in C3T1 

(multiple comparisons posthoc analysis, C3T1: S vs SC P=0.028) (Fig. 4.9). 
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Figure 4.9: ChABC treatment impacts the performance of standard mice and enriched animals 

differently.  

Graph plotting the average time taken (s) for all four paws of an animal to enter the goal-box zone of 

the Puzzle-Box, upon which time a behavioural task was terminated, for mice raised in enriched (E) 

and standard (S) housing receiving vehicle (EV, SV) or chondroitinase (EC, SC) striatal injection. 

Treatment group significantly impacted the latency to goal-box (repeated measures ANOVA, 

F=15.288,  P<0.001), due to enriched mice taking less time to solve obstruction puzzles than all other 

groups, and standard mice receiving ChABC treatment taking longer to solve obstruction puzzles 

than all other groups except SV (see text). The effect of animal group was particularly evident at 

nearly all individual trials: C0T1 (univariate ANOVA, F=15.714, P<0.001); C1T1 (univariate ANOVA, 

F=9.359, P<0.001); C1T2 (univariate ANOVA, F=14.743, P<0.001); C1T3 (univariate ANOVA, F=7.684, 

P<0.001); C2T1 (univariate ANOVA, F=4.491, P=0.001); C2T2 (univariate ANOVA, F=2.784, P=0.023); 

C2T3 (univariate ANOVA, F=2.395, P=0.045); C3T1 (univariate ANOVA, F=10.750, P<0.001); C3T2 

(univariate ANOVA, F(5, 74)=4.959, P=0.001). *: P<0.05, **: P<0.01, ***: P<0.001. E n=21, EV n=13, 

EC n=13, S n=18, SV n=7, SC n=8. Error bars=SEM. 
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Both vehicle and ChABC injection were also found to impact the patterns of movement within the 

Puzzle-Box apparatus, when compared to untreated animals. I found that animal group had a 

significant effect upon the proportion of time spent within the “wall” (repeated measures ANOVA, 

group as between-subjects factor, F(5, 74)=10.240, P<0.001) (Fig. 4.10A), “centre” (repeated 

measures ANOVA, group as between-subjects factor, F(5, 74)=2.722, P=0.026) (Fig. 4.10B) and 

“obstruction” (repeated measures ANOVA, group as between-subjects factor, F(5, 74)=9.904, 

P<0.001) (Fig. 4.10C) areas of the open-field zone within the Puzzle-Box.  

Posthoc analysis revealed behavioural patterns consistent with the results of area comparisons 

described above (see section 3.1 and 3.2). Specifically, enriched untreated animals spending a lesser 

proportion of time within the “wall” than all other groups, including EV and EC animals (multiple 

comparisons posthoc analysis: E vs EC P=0.002, E vs EV P<0.001, E vs S P=0.012, E vs SC P<0.001, E vs 

SV P=0.005). E mice also spent a greater proportion of time engaged with the “obstruction” than all 

other groups of animals (multiple comparisons posthoc analysis: E vs EC P<0.001, E vs EV P<0.001, E 

vs S P<0.001, E vs SC P<0.001, E vs SV P=0.001). SC mice spent a greater proportion of time within 

the “wall” area than did untreated standard animals (multiple comparisons posthoc analysis: S vs SC 

P=0.033). No differences in performance were detected for the “centre” area, except for untreated 

standard animals exhibiting a greater proportion of time spent in this region compared to EV mice 

multiple comparisons posthoc analysis: S vs EV P=0.015).  

The effect of animal group upon the proportion of time spent within the “wall” section of the open-

field in the Puzzle-Box was particularly evident at all individual trials where an obstruction condition 

was placed within the entrance to the goal-box: throughout the empty channel obstruction 

(univariate ANOVA, group as between-subjects factor: C1T1, F(5, 74)=4.470, P=0.001; C1T2, F(5, 

74)=5.704, P<0.001; C1T3, F(5, 74)=2.959, P=0.017) due to enriched groups spending a lesser 

proportion of time within the “wall” than standard groups (multiple comparisons posthoc analysis: 

C1T1: E vs S P=0.007, E vs SC P=0.032; C1T2: E vs S P=0.003, E vs SC P=0.001, EC vs SC P=0.012; C1T3: 
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E vs SC P=0.020); for the entirety of the more difficult filled channel obstruction (univariate ANOVA, 

group as between-subjects factor: C2T1, F(5, 74)=2.962, P=0.017; C2T2, F(5, 74)=2.655, P=0.029; 

C2T3, F(5, 74)=5.930, P<0.001) due to enriched untreated animals spending a lesser proportion of 

time and SC mice spending a greater proportion of time within the “wall” region of the open-field 

(multiple comparisons posthoc analysis: C2T1: E vs EC P=0.019; C2T3: E vs EV P=0.013, E vs SC 

P=0.002, SC vs EC P=0.036, SC vs S P=0.003). There were no significant posthoc effects of animal 

group upon C2T2. 

 The significant effect of animal group was maintained throughout the more difficult tissue plug 

obstruction (univariate ANOVA, group as between-subjects factor: C3T1, F(5, 74)=3.473, P=0.007; 

C3T2, F(5, 74)=5.564, P<0.001; C3T3, F(5, 74)=3.458, P=0.007), again due to enriched untreated 

animals spending a lesser proportion of time and SC mice spending a greater proportion of time 

within the “wall” region of the open-field (multiple comparisons posthoc analysis: C3T1: E vs SC 

P=0.044; C3T2: E vs EC P=0.017, E vs EV P=0.005, E vs SC P=0.004, E vs SV P=0.049; C3T3: E vs SC 

P=0.007); and finally, during the most difficult foam plug obstruction (univariate ANOVA, group as 

between-subjects factor: C4T1, F(5, 74)=2.645, P=0.030; C4T2 F(5, 74)=6.281, P<0.001; C4T3, F(5, 

74)=2.584, P=0.033) due to enriched untreated mice spending a lesser proportion of time within the 

“wall” (multiple comparisons posthoc analysis: C4T1: E vs EV P=0.015; C4T2: E vs EC P<0.001, E vs EV 

P<0.001, E vs S P=0.019; C4T3: E vs EV P=0.012) (Fig. 4.10A).  

There were also significant effects of animal group upon the proportion of time spent within the 

“centre” during individual trials: specifically, during the first and third trials of the open and filled 

channel obstructions (univariate ANOVA, group as between-subjects factor: C1T1, F(5, 74)=3.660, 

P=0.005; C1T3, F(5, 74)=2.716, P=0.026; C2T1, F(5, 74)=6.440, P<0.001; C2T3, F(5, 74)=2.652, 

P=0.029) due to ChABC treated animals spending a greater proportion of time within the “centre” 

than untreated animals during the open channel obstruction and the first trial of the filled channel 

obstruction (multiple comparisons posthoc analysis: C1T1: E vs EC P=0.009, E vs SC P=0.030; C1T3: S 
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vs EC P=0.011; C2T1: E vs EC P=0.001, E vs EV P=0.003, E vs SC P=0.002, E vs SV P=0.013) and 

standard untreated animals spending a greater proportion of time within the “centre” than enriched 

untreated animals during the third trial of the filled channel obstruction (multiple comparisons 

posthoc analysis, C2T3: E vs S P=0.017).  

The significant effect of animal group was maintained in the second trial of the more difficult foam 

plug obstruction (univariate ANOVA, group as between-subjects factor, C3T2, F(5, 74)=3.611, 

P=0.006) due to standard untreated mice spending a greater proportion of time within the “centre” 

(multiple comparisons posthoc analysis, C3T2: S vs EV P=0.014, S vs SC P=0.030) and throughout the 

most difficult foam plug obstruction (univariate ANOVA, group as between-subjects factor: C4T1, 

F(5, 74)=2.491, P=0.039; C4T2, F(5, 74)=7.657, P<0.001; C4T3, F(5, 74)=2.675, P=0.028) due to 

enriched untreated animals spending a greater proportion of time within the “centre” region of the 

open-field in the second trial, with no significant posthoc differences observed in the first and third 

trials (multiple comparisons posthoc analysis, C4T2: E vs EC P=0.005, E vs EV P<0.001, E vs SC 

P<0.001) (Fig. 4.10B).  

The effect of animal group upon the proportion of time spent within “obstruction” was also 

particularly evident at certain trials within the task: specifically, upon first exposure to the Puzzle-

Box (univariate ANOVA, group as between-subjects factor, C0T1, F(5, 74)=3.263, P=0.010) due to EV 

mice spending a proportion of time within the “obstruction” between that of SC and standard 

untreated animals (multiple comparisons posthoc analysis, C0T1: EV vs S P=0.019, EV vs SC P=0.018); 

throughout the open channel obstruction (univariate ANOVA, group as between-subjects factor: 

C1T1, F(5, 74)=7.037, P<0.001; C1T2, F(5, 74)=7.193, P<0.001; C1T3, F(5, 74)=3.719, P=0.005) due to 

enriched groups spending a greater proportion of time within this region than standard mice 

(multiple comparisons posthoc analysis: C1T1: E vs S P<0.001, E vs SC P<0.001, EV vs SC P=0.023; 

C1T2: E vs S P<0.001, E vs SC P<0.001, EV vs SC P=0.009; C1T3: E vs SC P=0.005). 
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The significant effect of animal group was maintained during the first and third trials of the more 

difficult filled channel and tissue plug obstructions (univariate ANOVA, group as between-subjects 

factor: C2T1, F(5, 74)=7.100, P<0.001; C2T3, F(5, 74)=6.054, P<0.001; C3T1, F(5, 74)=2.715, P=0.026; 

C3T3, F(5, 74)=3.014, P=0.016), due to enriched untreated animals spending a greater proportion of 

time interacting with the “obstruction” (multiple comparisons posthoc analysis: C2T1: E vs EC 

P<0.001, E vs EV P<0.001, E vs S P=0.045, E vs SC P=0.001, E vs SV P=0.014; C2T3: E vs EV P=0.001, E 

vs S P=0.001, E vs SV P=0.030; C3T1: E vs SC P=0.044; C3T3: E vs SC P=0.033). Finally, animal group 

had a significant effect on the first trial of the most difficult foam plug obstruction (univariate 

ANOVA, group as between-subjects factor, C4T1, F(5, 74)=3.168, P=0.012) due to enriched non-

surgery animals spending a greater proportion of time within “obstruction” than standard untreated 

mice (multiple comparisons posthoc analysis, C4T1: E vs S P=0.025) (Fig. 4.10C).  

These results suggest that enriched non-surgery mice display the greatest level of engagement with 

a novel obstruction puzzle, whilst ChABC treatment appears to increase thigmotaxis in standard mice 

relative to non-surgery counterparts.  
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Figure 4.10: Both vehicle and ChABC treatment impact patterns of movement within the Puzzle-

Box apparatus. 

(A – C) Graphs plotting the average percentage of total time spent within the Puzzle-Box where an 

animal was within specified areas in the open-field start zone for mice raised from birth in enriched 

and standard housing receiving no treatment (E, S), vehicle (EV, SV) or chondroitinase (EC, SC) 

striatal injection. (A) Animal group significantly impacted the proportion of time mice spent within 

the “wall” section of the open-field (repeated measures ANOVA, F=10.240, P<0.001), due to 

enriched non-surgery mice spending less time within this region than all other groups, and SC mice 

spending more time within this region than standard non-surgery mice (see text). The effect of 

animal group was notable at all individual trials except C0T1 (see text) (B) Animal group significantly 

impacted the proportion of time spent within the “centre” zone of the open-field (repeated 

measures ANOVA, F=2.722, P=0.026), due to standard non-surgery animals spending a greater 

proportion of time within this region than EV mice (see text). This effect of animal group was 

particularly evident during individual trials: C1T1 (univariate ANOVA, F=3.660, P=0.005); C1T3 

(univariate ANOVA, F=2.716, P=0.026); C2T1 (univariate ANOVA, F=6.440, P<0.001); C2T3 (univariate 

ANOVA, F=2.652, P=0.029); C3T2 (univariate ANOVA, F=3.611, P=0.006); C4T1 (univariate ANOVA, 

F=2.491, P=0.039); C4T2 (univariate ANOVA, F=7.657, P<0.001); and C4T3 (univariate ANOVA, 

F=2.675, P=0.028). (C) Animal group significantly impacted the proportion of time spent within the 

“obstruction” area of the open-field zone (repeated measures ANOVA, F=9.904, P<0.001), due to 

enriched non-surgery animals spending a greater proportion of time engaged with the obstruction 

puzzles than all other groups (see text). Again, the effect of animal group was particularly notable 

during individual trials: C1T1 (univariate ANOVA, F=7.037, P<0.001); C1T2 (univariate ANOVA, 

F=7.193, P<0.001); C1T3 (univariate ANOVA, F=3.719, P=0.005); C2T1 (univariate ANOVA, F=7.100, 

P<0.001; C2T3 (univariate ANOVA, F=6.054, P<0.001); C3T1 (univariate ANOVA, F=2.715, P=0.026); 

C3T3 (univariate ANOVA, F=3.014, P=0.016); and C4T1 (univariate ANOVA, F=3.168, P=0.012). ***: 

P<0.001, **: P<0.01, *: P<0.05. E n=21, EV n=13, EC n=13, S n=18, SV n=7, SC n=8. Error bars=SEM.  
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Similar trends were observed when the distance traversed within these regions were compared 

across all cohorts. Quantitative analysis revealed that animal group had a significant effect on the 

distance travelled in the “wall” (repeated measures ANOVA, group as between-subjects factor, F(5, 

74)=13.010, P<0.001) (Fig. 4.11A), “centre” (repeated measures ANOVA, group as between-subjects 

factor, F(5, 74)=10.275, P<0.001) (Fig. 4.11B) and “obstruction” (repeated measures ANOVA, group 

as between-subjects factor, F(5, 74)=7.341, P<0.001) (Fig. 4.11C) areas of the open-field zone within 

the Puzzle-Box. 

Posthoc analysis revealed that enriched non-surgery animals travelled less distance in the “wall” 

(multiple comparisons posthoc analysis: E vs EC P=0.003, E vs EV P<0.001, E vs S P<0.001, E vs SC 

P<0.001, E vs SV P<0.001) and “centre” (multiple comparisons posthoc analysis: E vs EC P<0.001, E vs 

EV P=0.042, E vs S P=0.001, E vs SC P=0.001, E vs SV P<0.001) areas than all other groups of animals. 

Standard housed non-surgery and EV animals also travelled less distance within the “centre” than 

did SV mice (multiple comparisons posthoc analysis: SV vs S P=0.040, SV vs EV P=0.010). The posthoc 

differences observed in the “obstruction” area were more limited: standard non-surgery animals 

covered a greater distance than SC, EC and EV mice (multiple comparisons posthoc analysis: S vs SC 

P=0.002, S vs EC P<0.001, S vs EV P<0.001).  

The effect of animal group upon distance travelled within the various zones of the open-field section 

of the Puzzle-Box was particularly notable in nearly all individual trials during the task. Animal group 

significantly affected the distance traversed within the “wall” for all trials except the third trial of the 

filled channel obstruction (C2T3) and the second trial of the most difficult foam plug obstruction 

(C4T2). Specifically, significant differences were observed upon first exposure to the Puzzle-Box 

(univariate ANOVA, group as between-subjects factor: C0T1, F(5, 74)=8.371, P<0.001) due to SC 

animals covering a greater distance than all other groups except SV mice (multiple comparisons 

posthoc analysis, C0T1: SC vs E P<0.001, SC vs EC P<0.001, SC vs EV P<0.001, SC vs S P=0.034, SC vs 

SV P=0.729); during the open channel obstruction (univariate ANOVA, group as between-subjects 
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factor: C1T1, F(5, 74)=6.339, P<0.001; C1T2, F(5, 74)=10.525, P<0.001; C1T3, F(5, 74)=10.834, 

P<0.001) due to enriched groups covering less distance in the first two trials than standard animals 

and SC mice covering a greater distance in the third trial than all other groups except SV (multiple 

comparisons posthoc analysis: C1T1: E vs S P=0.008, E vs SC P<0.001; C1T2: E vs S P<0.001, E vs SC 

P<0.001, EC vs S P=0.001, EC vs SC P<0.001, EV vs SC P=0.029; C1T3: SC vs E P<0.001, SC vs EC 

P<0.001, SC vs EV P<0.001, SC vs S P<0.001, SC vs SV P=0.865).  

The effect of animal group was maintained in the first and second trials of the more difficult filled 

channel obstruction (univariate ANOVA, group as between-subjects factor: C2T1, F(5, 74)=8.929, 

P<0.001; C2T2, F(5, 74)=5.487, P<0.001) due to enriched untreated animals covering less distance 

than almost all other groups (multiple comparisons posthoc analysis: C2T1: E vs EC P=0.006, E vs S 

P=0.016, E vs SC P<0.001, E vs SV P=0.006; C2T2: E vs EC P=0.016, E vs EV P=0.032, E vs SC P=0.001, E 

vs SV P=0.005); throughout the more difficult tissue plug obstruction(univariate ANOVA, group as 

between-subjects factor: C3T1, F(5, 74)=10.203, P<0.001; C3T2, F(5, 74)=5.404, P<0.001; C3T3, F(5, 

74)=7.114, P<0.001), again due to enriched groups covering less distance than standard animals 

(multiple comparisons posthoc analysis: C3T1: E vs S P=0.019, E vs SC P<0.001, E vs SV P<0.001, EC vs 

SC P=0.010, EC vs SV P=0.036; C3T2: E vs SC P=0.015, E vs SV P<0.001; C3T3: E vs S P<0.001, E vs SV 

P<0.001, EC vs SV P=0.009, EV vs SV P=0.046). Finally, there was a significant effect of animal group 

during the first and third trials of the most difficult foam plug obstruction  C4T1, F(5, 74)=4.353, 

P=0.002; C4T3, F(5, 74)=5.504, P<0.001) due to enriched untreated mice covering less distance in the 

“wall” than standard untreated animals (multiple comparisons posthoc analysis: C4T1: E vs S 

P=0.002; C4T3: E vs S P=0.003, E vs SV P=0.001) (Fig. 4.11A).  

A similar effect of animal group was observed when performing a trial by trial analysis upon the 

distance travelled within the “centre”, with all trials except the third trial of the filled channel 

obstruction (C2T3) and the second trial of the tissue plug obstruction (C3T2) impacted. Specifically, 

upon first exposure to the Puzzle-Box  (univariate ANOVA, group as between-subjects factor: C0T1, 
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F(5, 74)=7.672, P<0.001) due to SC mice covering a greater distance than nearly all other animal 

groups (multiple comparisons posthoc analysis, C0T1: SC vs E P<0.001, SC vs EC P=0.001, SC vs EV 

P=0.001, SC vs S P=0.020, SC vs SV P=0.978); throughout the first open channel obstruction 

(univariate ANOVA, group as between-subjects factor: C1T1, F(5, 74)=9.615, P<0.001; C1T2, F(5, 

74)=6.956, P<0.001; C1T3, F(5, 74)=18.949, P<0.001) due to enriched untreated mice covering less 

distance and SC animals covering a greater distance than most other groups (multiple comparisons 

posthoc analysis: C1T1: E vs EC P=0.003, E vs SC P<0.001, E vs SV P<0.001, SC vs EV P=0.005, SC vs S 

P<0.001; C1T2: SC vs E P<0.001, SC vs EC P=0.003, SC vs EV P=0.015, SC vs S P=0.007; C1T3: E vs EC 

P=0.015, E vs EV P=0.003, E vs SC P<0.001, E vs SV P<0.001, SC vs EC P<0.001, SC vs EV P=0.001, SC vs 

S P<0.001).  

The significant effect of animal group was maintained in the first and second trials of the more 

difficult filled channel obstruction (univariate ANOVA, group as between-subjects factor: C2T1, F(5, 

74)=11.707, P<0.001; C2T2, F(5, 74)=2.478, P=0.039), due to enriched animals covering less distance 

and SC animals travelling further within the “centre” (multiple comparisons posthoc analysis: C2T1: E 

vs EC P<0.001, E vs EV P=0.012, E vs SC P<0.001, E vs SV P<0.001, SC vs EV P=0.048, SC vs S P=0.001, 

no significant posthoc effects for C2T2); and the first and third trials of the more difficult tissue plug 

obstruction (univariate ANOVA, group as between-subjects factor: C3T1, F(5, 74)=4.456, P=0.001; 

C3T3, F(5, 74)=2.673, P=0.028) again due to enriched untreated animals covering less distance within 

the “centre” of the open-field (multiple comparisons posthoc analysis: C3T1: E vs EC P=0.024, E vs EV 

P=0.041, E vs SC P=0.015, E vs SV P=0.010; C3T3: E vs SV P=0.013). Finally, the significant effect of 

animal group was maintained throughout the most difficult foam plug obstruction (univariate 

ANOVA, group as between-subjects factor: C4T1, F(5, 74)=5.229, P=0.002; C4T2, F(5, 74)=3.106, 

P=0.013; C4T3, F(5, 74)=3.307, P=0.014) due to standard untreated animals covering a greater 

distance in the first, SC mice covering less distance in the second, and SV mice covering more 

distance in the third, trials (multiple comparisons posthoc analysis: C4T1: S vs E P=0.032, S vs SC 
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P<0.001; C4T2: SC vs E P=0.034, SC vs S P=0.030; C4T3: SV vs E P=0.024, SV vs EV P=0.034, SV vs SC 

P=0.046) (Fig. 4.11B). 

 The “obstruction” region of the open-field in the Puzzle-Box was likewise affected, with distance 

travelled during all individual trials impacted by animal group, with the exception of the third trial of 

the tissue plug obstruction (C3T3). Specifically, upon first exposure to the Puzzle-Box (univariate 

ANOVA, group as between-subjects factor: C0T1, F(5, 74)=11.696, P<0.001) due to enriched 

untreated animals covering less distance than treated groups (multiple comparisons posthoc 

analysis, C0T1: E vs EC P=0.037, E vs EV P<0.001, E vs SC P<0.001, E vs SV P<0.001); throughout the 

open channel obstruction (univariate ANOVA, group as between-subjects factor: C1T1, F(5, 

74)=13.227, P<0.001; C1T2, F(5, 74)=5.673, P<0.001; C1T3, F(5, 74)=2.834, P=0.021) due to 

untreated animals covering less distance than treated mice (multiple comparisons posthoc analysis: 

C1T1: E vs EV P<0.001, E vs SC P=0.010, E vs SV P<0.001, S vs EV P<0.001, S vs SC P=0.010, S vs SV 

P<0.001; C1T2: E vs EV P=0.003, E vs SV P=0.004, S vs EV P=0.025, S vs SV P=0.018; C1T3: E vs SC 

P=0.015, EV vs SC P=0.029).  

The significant effect of animal group was maintained during the more difficult filled channel 

obstruction (univariate ANOVA, group as between-subjects factor: C2T1, F(5, 74)=9.959, P<0.001; 

C2T2, F(5, 74)=3.254, P=0.010; C2T3, F(5, 74)=7.641, P<0.001) due to untreated animals travelling a 

greater distance within “obstruction” during these trials (multiple comparisons posthoc analysis: 

C2T1: E vs EV P=0.002, S vs EC P<0.001, S vs EV P<0.001, S vs SC P=0.027, S vs SV P=0.014; C2T2: S vs 

EC P=0.039, S vs EV P=0.008; C2T3: E vs EC P=0.002, E vs EV P=0.001, E vs SC P=0.016, S vs EC 

P=0.002, S vs EV P=0.001, S vs SC P=0.016); in the first and second trials of the more difficult tissue 

plug obstruction (univariate ANOVA, group as between-subjects factor: C3T1, F(5, 74)=9.070, 

P<0.001; C3T2, F(5, 74)=7.515, P<0.001) due to standard untreated animals traversing a greater 

distance (multiple comparisons posthoc analysis: C3T1: S vs E P=0.015, S vs EC P<0.001, S vs EV 

P<0.001, S vs SC P=0.001, S vs SV P=0.002; C3T2: S vs EC P<0.001, S vs EV P<0.001, S vs SC P=0.016, S 
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vs SV P=0.005). Finally, animal group had a significant effect during the entirety of the most difficult 

foam plug obstruction (univariate ANOVA, group as between-subjects factor: C4T1, F(5, 74)=8.401, 

P<0.001; C4T2, F(5, 74)=9.759, P<0.001; C4T3, F(5, 74)=5.331, P<0.001), again due to untreated 

animals covering a greater distance within the “obstruction” zone of the open-field than treated 

mice (multiple comparisons posthoc analysis: C4T1: E vs EC P<0.001, E vs EV P=0.001, E vs SC 

P=0.018, E vs SV P=0.021, S vs EC P=0.001, S vs EV P=0.004, S vs SC P=0.036, S vs SV P=0.040; C4T2: E 

vs EC P<0.001, E vs EV P<0.001, E vs SC P<0.001, E vs SV P=0.014, S vs EC P=0.002, S vs EV P=0.012, S 

vs SC P=0.007; C4T3: E vs EC P=0.027, S vs EC P=0.002, S vs EV P=0.012, S vs SC P=0.032) (Fig. 4.11C). 

These analyses reveal that both vehicle and ChABC treatments can affect performance, but that the 

degree to which they influence performance depends on the housing history of the animals. While 

treatment groups generally exhibited increased latencies to complete the puzzle box task compared 

to untreated cohorts, remarkably for E mice, the change in performance levels was limited, with 

both EV and EC groups exhibiting latencies that were indistinguishable from that of untreated S 

animals. This is in contrast to S mice, where SC animals exhibited generally longer latencies than 

both SV and untreated cohorts. Trial by trial and area analyses also revealed that the effect of 

treatment extended across all testing conditions for enriched mice, while for standard animals the 

changes due to vehicle and ChABC injections were more dramatic earlier in the testing period.   
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Figure 4.11: Both vehicle and ChABC treatment increase locomotor activity of enriched mice. 

(A – C) Graphs plotting the average distance travelled within specified areas in the open-field start 

zone for mice raised from birth in enriched and standard housing receiving no treatment (E, S), 

vehicle (EV, SV) or chondroitinase (EC, SC) striatal injection. (A) Animal group significantly impacted 

the distance travelled within the “wall” section of the open-field start zone (repeated measures 

ANOVA, F=13.010, P<0.001), due to enriched non-surgery mice covering less distance within this 

region than all other animal groups (see text). The effect of animal group was notable in all 

individual trials except C2T3 and C4T2 (see text). (B) Animal group also significantly impacted the 

distance traversed within the “centre” region of the open-field (repeated measures ANOVA, 

F=10.275, P<0.001), again due to enriched non-surgery mice travelling less distance within this area 

(see text). This effect of animal group was notable in all trials except C2T3 and C3T2 (see text for 

details). (C) Animal group significantly affected the distance covered within the “obstruction” zone of 

the open-field (repeated measures ANOVA, F=7.341, P<0.001), due to standard non-surgery animals 

covering a greater distance than SC, EV and EC mice (see text). Again, the effect of animal group was 

notable in nearly all individual trials, with the exception of C3T3 (see text). *: P<0.05, **: P<0.01, 

***: P<0.001. E n=21, EV n=13, EC n=13, S n=18, SV n=7, SC n=8. Error bars=SEM. 
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3.4 Environmental enrichment has a minor effect on the acquisition of a sensorimotor 

coordination task  

Previous work from our laboratory has demonstrated that early EE improves the sensorimotor 

coordination of young animals, as measured by a forced-swim task [22]. Recent work from another 

laboratory has demonstrated an improvement in performance due to EE during a one day 

assessment using the rotarod behavioural task [62]. This flexible apparatus has also been used 

recently to assess the ability of subjects to acquire motor skills by monitoring changes in their 

performance over multiple trials across several days [27, 63]. The impact of enrichment on subjects 

using this protocol is not known. Accordingly, I compared the performance of adult animals raised in 

enriched (E, n=13) and standard (S, n=11) environments on this combined sensorimotor 

coordination and motor skill acquisition version of the task.   

Animals were tested at 12 – 14 weeks of age upon a rotarod apparatus for five consecutive days. I 

found that housing condition had no effect on overall performance within this task (repeated 

measures ANOVA, housing condition as between-subjects factor, F(1, 22)=2.364, P=0.138) (Fig. 

4.12A). Performance analysed by day of testing, however, was significantly affected in animals raised 

within an enriched environment (repeated measures ANOVA, day as within-subjects factor, F(4, 

48)=11.629, P=0.001) but not in animals raised within a standard environment (repeated measures 

ANOVA, day as within-subjects factor, F(4, 40)=2.006, P=0.198), although no interaction between 

housing condition and day of testing was detected (repeated measures ANOVA, housing 

condition*day, F(4, 48)=0.947, P=0.441) (Fig. 4.12A). Exploratory day by day analysis revealed that 

enriched animals performed significantly better than standard mice on a single day of testing (day 3) 

(univariate ANOVA, housing condition as between-subjects factor F(1, 22)=5.372, P=0.030) (Fig. 

4.12A). 

These findings suggest that, relative to goal seeking behaviour, enrichment has a relatively minor 

influence on the acquisition of a specific motor skill. 
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Figure 4.12: Enrichment-induced improvement in motor learning is prevented by ChABC treatment 

(A – C) Average of the sum of the total time spent per day of testing (seconds) upon the rotor during 

the rotarod behavioural task for mice raised from birth in enriched and standard housing receiving 

no treatment (E, S), vehicle (EV, SV) or chondroitinase (EC, SC) striatal injection. (A) There was no 

significant effect of housing condition upon overall performance of non-surgery animals (repeated 

measures ANOVA, F=2.364, P=0.138). However, adult animals raised within an enriched 

environment (E) showed a significant effect of day of testing upon performance (repeated measures 

ANOVA, F=11.629, P=0.001), whilst standard housed animals (S) did not (repeated measures ANOVA, 

F=2.006, P=0.198). This was particularly so on day 3, when E animals performed significantly better 

than S mice (univariate ANOVA, F=5.372, P=0.030). (B) Similarly, there was no significant effect of 

treatment group (repeated measures ANOVA, F=1.893, P=0.148) on performance. However, adult 

animals raised within an enriched environment receiving vehicle injection into the striatum (EV) 

showed a significant effect of day of testing upon performance (repeated measures ANOVA, 

F=5.334, P=0.018), whilst adult animals raised within a standard environment receiving vehicle 

injection into the striatum (SV) (repeated measures ANOVA, F=2.665, P=0.223), enriched animals 

receiving ChABC injection (EC) (repeated measures ANOVA, F=3.034, P=0.077) and standard (SC) 

animals receiving ChABC injection (repeated measures ANOVA, F=2.529, P=0.134) did not. (C) There 

was no significant effect of surgical treatment on performance when comparing non-treated animals 

with those receiving vehicle or ChABC treatment (repeated measures ANOVA, F=1.635, P=0.165). E 

n=13, EV n=13, EC n=13, S n=11, SV n=7, SC n=8. *: P<0.05. Error bars=SEM.  
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3.5 ChABC treatment has minimal influence on rotarod performance 

While the current study has revealed that the digestion of striatal PNNs can have an effect on a task 

designed to assess goal seeking behaviour (see above), whether the treatment will influence the 

ability of mice to acquire a motor skill, another behaviour thought to be regulated by striatal 

function [63], has yet to be determined. Accordingly, ChABC and vehicle treated animals raised in S 

and E conditions that were tested within the Puzzle-Box (Sv, SC, EV and EC) were further assessed on 

the skill acquisition version of the rotarod. I found that treatment group (repeated measures 

ANOVA, group as between-subjects factor, F(3, 37)=1.893, P=0.148) did not affect performance on 

the rotarod, as measured by the sum of total time spent on the rotor each day (Fig. 4.12B).  

Similar to untreated animals, vehicle treated enriched mice exhibited an improvement in 

performance across days of testing (repeated measures ANOVA, day as within-subjects factor, F(4, 

48)=5.334, P=0.018) (Fig. 4.12B). No significant effect of day upon performance was observed for 

standard vehicle (repeated measures ANOVA, day as within-subjects factor, F(4, 24)=2.665, P=0.223) 

(Fig. 4.12B) or either ChABC cohort  (repeated measures ANOVA, day as within-subjects factor: EC, 

F(4, 48)=3.034, P=0.077; SC, F(4, 28)=2.529, P=0.134) (Fig. 4.12B). Furtjer, there was no significant 

interaction of treatment group with day of testing (repeated measures ANOVA, treatment 

group*day, F(4, 24)=0.597, P=0.621). 

Finally, performance of vehicle and ChABC treated animals was compared to that of untreated 

cohorts to determine whether the effects of treatment varied depending on housing history. There 

were no significant effects of surgical treatment upon overall performance on the rotarod (repeated 

measures ANOVA, group as between-subjects factor, F(5, 74)=1.635, P=0.165) and no significant 

interaction of animal group with day of testing (repeated measures ANOVA, animal group*day, F*(5, 

74)=0.547, P=0.740) (Fig. 4.12C). 
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These results suggest that although the striatum is involved in motor learning neither enrichment 

nor enzymatic digestion of striatal PNNs dramatically affected motor skill acquisition for this rotarod 

based test.  

 

4. Discussion 

This study confirms that EE is capable of dramatically affecting the performance of adult animals 

during a behavioural task testing goal seeking behaviour. Animals raised within enriched housing 

solved obstruction puzzles within the Puzzle-Box significantly faster than did standard housed 

animals, due at least in part to differing movement patterns within this testing apparatus. At the 

same time, EE has only a minor effect on the motor skill acquisition of a rotarod task. In contrast, 

striatal PNN dissolution compromised the performance of animals within the Puzzle-Box and also 

impaired motor skill acquisition. Finally, EE reduced striatal ChABC-induced behavioural deficits 

within the Puzzle-Box, but had little impact upon impairment observed in rotarod motor skill 

acquisition. Together, these results have important implications for the role of environmental 

influences upon the striatal function of mice, and suggest that plasticity effects induced by ChABC 

treatment manifested at potentially different levels of striatal processing for enriched and standard 

mice. 

 

4.1 Environmental enrichment improves performance in the Puzzle-Box behavioural task 

In the current study, enriched animals demonstrated lower latencies to solve obstruction puzzles 

within the Puzzle-Box behavioural task, particularly during the first trial of an obstruction condition. 

This first trial is meant to assess the native problem-solving ability of animal subjects [51-53], 

suggesting that EE, whilst having some effect on the ability of animals to retain and recall solutions 

to obstruction challenges, has a greater impact upon native problem-solving ability of an animal.  
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Enriched animals were found to spend less time within the testing arena, and a greater proportion of 

time interacting with obstruction puzzles, suggesting that EE increases engagement with these 

behavioural challenges when animals are placed into the Puzzle-Box arena. Very few animals were 

capable of solving the fourth obstruction puzzle in the allotted time, suggesting that this obstruction 

condition may have been too difficult, to the extent that even enriched animals struggled to remove 

the foam plug. Despite there being no effect of EE on performance, enriched animals still displayed a 

differing behavioural pattern within the Puzzle-Box when approaching the fourth obstruction puzzle, 

suggesting that strategies for solving obstruction conditions were maintained even when they were 

too difficult to actually remove.  

Why do enriched untreated mice show greater engagement with obstruction obstacles? One 

possibility is that standard and enriched cohorts exhibited different levels of anxiety towards open 

environments. One metric often used in standard open field tests to assess stress levels is to 

measure the degree to which subjects exhibit thigmotaxis, or the propensity to avoid the central 

portion of the environment, maintaining close proximity to the boundaries or walls [64, 65]. While 

standard mice did spend a greater amount of time and traversed a greater distance along the walls 

of the Puzzle-Box open-field, they also exhibited increased traversal within the centre of the arena. 

Indeed, the fact that enriched mice spent less time in the centre, instead seeking the obstruction 

area, which also happens to be proximal to a wall, suggests that they may be even more anxious to 

remove themselves from the stressful open environment than standard untreated animals. This 

interpretation is consistent with previous findings showing that environmentally enriched mice 

exhibit improved performance on open water tasks such as the Morris Water Maze [22]. That there 

was little difference in the behaviour of standard and enriched untreated animals in the initial 

unobstructed, habituation trial of the task, however, suggests that there may be little base-line 

differences between the two groups with respect to open-field anxiety. Without directly comparing 

post-test anxiety levels via measurement of cortisol levels, differences in stress response to the task 
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is not explicitly determinable. Nevertheless, my evidence suggests that anxiety in itself is not likely to 

be the sole mechanism underlying the differences observed in S and E performance. 

Could the enriched animals be more prone to novelty seeking? The propensity to explore novel 

environments or objects has been shown to be associated with, yet differentiable from, anxiety [66]. 

Recent work has indicated that exposure to stimulating environments can increase sensitivity to 

novelty in rats, albeit in a different context [67]. Whether this would in turn translate into increased 

novel object exploration is unclear. Nevertheless, the finding that enriched animals spend a 

significantly greater amount of time proximal to the goal-box entry in nearly all presentations of new 

obstacles, relative to standard housed cohorts, suggests that this or a related attribute may 

contribute to the behavioural disparity observed here. 

Another possible explanation for the improved performance differences between standard and 

enriched untreated cohorts is a generalised improvement in cognitive ability: enriched mice may be 

more willing to engage with obstruction puzzles as they have figured out that removing obstructions 

grants access to the covered goal-box. This is supported by the reduced locomotion displayed by 

enriched animals, suggesting that these mice hone in and remain focused on obstruction puzzles in 

order to escape the open-field start zone, spending less time roaming the arena. An enrichment-

induced increase in motivational drive would also explain the greater amount of time enriched 

animals spent engaged with obstruction puzzles. In order to better understand the improvement 

that EE induces in cognitive-based tasks, further studies into the exact neural and behavioural 

mechanisms underlying this phenomenon are required.  

 

4.2 Environmental enrichment reduces ChABC-induced deficits in Puzzle-Box performance 

Damage to the striatum has been shown to interfere with a wide range of behaviours, including 

sensorimotor coordination [26, 68], volitional drive, motivation, and cognitive processes such as rule 
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learning and task acquisition [28-31]. Solving the Puzzle-Box behavioural task may be considered to 

contain elements of all of these behaviours: sensorimotor coordination is required to successfully 

remove obstruction puzzles; volitional drive to engage with obstructions; motivation to drive animals 

to seek the sheltered goal box; and cognitive processes to learn how to remove obstruction puzzles. 

 The incentive to solve the Puzzle-Box is considered to be mixed itself – an animal’s desire to seek 

out a small, dark enclosed space, and objects to explore and hide in within such a sheltered area are 

thought to be the main drivers of behaviours in this testing arena [51-53]. Previous studies have 

demonstrated that lesions within the hippocampus lead to generalised deficits in behavioural 

performance and cognitive ability within the Puzzle-Box testing apparatus [51]. In contrast, lesions to 

the medial prefrontal cortex have been shown to result in a specific deficit in problem solving ability 

within the Puzzle-Box behavioural task [69]. Given the mixed motivation for solving this task, and the 

varied functions undertaken by the striatum, it is not unexpected that this area of the brain might 

mediate behaviours within the Puzzle-Box task.  

The effect of striatal ChABC treatment on performance as measured by latency to goal-box was 

particularly pronounced during the first day of testing for standard mice, with a smaller and more 

dispersed effect upon the behaviour of enriched animals. Curiously, enriched animals receiving 

vehicle or ChABC demonstrated a similar level of performance. Even more remarkably, with the 

exception of the initial open entry condition, both cohorts exhibited performance latencies similar to 

vehicle treated standard housed animals. The mechanism underlying the observed changes due to 

striatal PNN digestion is unclear. Area analyses revealed that ChABC treated mice exhibited an 

increase in time spent and distance travelled within both the wall and centre regions of the open-

field. These changes appeared to be slightly more prominent early in testing, although some of the 

effects persisted across most conditions. High novelty-induced locomotor activity is reminiscent of 

behaviour exhibited by rats that have a tendency to acquire cocaine self-administration [70], which 

in turn has been shown to depend upon dopaminergic input to the dorsal striatum [71]. The 
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digestion of striatal PNNs may possibly disrupt transmission of the reward signal to one of the key 

recipients of dopaminergic input within the nucleus, parvalbumin-expressing (PV+) cells [58]. 

Although further work is required to assess this possibility, the observed behavioural changes are 

not inconsistent with striatal ChABC treatment contributing to a shift – at least temporarily – in the 

overall efficiency of the striatal dopamine signal, leading to an increase in sensory seeking and this 

hyperactive open-field behaviours.  

In light of this, previous studies have demonstrated the ability of EE from birth to blunt the 

rewarding effects of cocaine, as well as reduce cocaine induced locomotor activity [72, 73]. The 

current results are consistent with these findings: ChABC treatment did affect Puzzle-Box 

performance in enriched mice, but not to the same degree observed in standard cohorts. While 

further studies would be required to elucidate the exact mechanisms by which EE reduces the full 

behavioural effects of striatal PNN dissolution, the evidence presented here suggests that 

enrichment may be limiting, and thus protecting against, ChABC-induced changes.  

Standard housed animals with ChABC injection were more affected than standard animals receiving 

vehicle in the early stages of testing, and overall more affected than enriched mice receiving ChABC. 

It would appear that striatal PNN dissolution has the greatest impact on performance of standard 

housed animals when first encountering testing arenas, and that EE reduces these effects.  

 

4.3 Differential effects of ChABC treatment on enriched and standard housed mice suggest 

multiple levels of malleable striatal networks 

Arguably the most surprising finding from this study is the observation that not only did enrichment 

limit the effect of PNN digestion, but both vehicle and ChABC treatments led to a Puzzle-Box 

behavioural profile in enriched mice that was nearly indistinguishable from standard untreated and 

vehicle treated animals. Both vehicle treatment and ChABC injections were found to reduce PNN 
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density within the striatum, with a greater effect from ChABC. The reduction in PNNs resulting from 

vehicle treatment was unexpected, but may explain the behavioural differences observed between 

vehicle treated and untreated animals. The changes in performance of treated relative to untreated 

enriched mice may at least in part be due to damage done to the striatum as a result of the injection 

procedures used to deliver the treatment. Previous studies have shown that lesions to dorsal 

striatum induce rule-based learning impairments [28] and can impact cocaine and morphine self-

administration, leading to an overall decrease in reward-seeking behaviour [74]. In rats, however, a 

decreased drive to self-administer cocaine is usually correlated with reduced activity in novel 

environments [70], opposite to the effect described here of ChABC treatment on enriched animals. 

Moreover, this model does not provide any straightforward explanations as to how potentially 

minor, yet indiscriminate, damage to dorsal striatum would “pin” its behavioural effects to levels 

comparable to untreated standard housed cohorts.  

Similarly, while enrichment does limit the effects of ChABC treatment on Puzzle-Box performance, it 

does so only to the level of vehicle treated enriched animals. As no differences were observed in the 

degree of WFA staining due to enzymatic treatment between SC and EC cohorts (Fig. 5), the effect of 

ChABC treatment must be downstream of PNN digestion.  

This gives rise to the intriguing possibility that the striatum has potentially two levels of circuitry 

involved in the regulation of goal-seeking behaviour: a “hard”, relatively fixed version that serves to 

regulate base-line levels of striatal function observed in standard animals; and a second “soft”, 

pliable version that underlies the improves performance seen in enriched mice. These two levels can 

be established during the putative PV+ dependent striatal critical period, manifested in potentially 

increased afferent drive and corresponding increases in PV expression (see Chapter 2), as well as 

morphological changes observed at the level of individual neurons within the striatum [22]. Removal 

of PNNs or incidental damage to the nucleus in enriched animals may lead to a selective culling of 

these soft networks, leaving the hard circuits intact, whilst ChABC treatment in standard mice, 
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without the buffer of these extra connections, may yield a more dramatic change in behaviour. The 

presence of circuit level function that is relatively impermeable to manipulation is well established 

[44]. Although not analogous, such properties provide precedence for the model proposed here. 

Whether this, or comparable mechanisms underlie the disparity in treatment effects observed in 

standard and enriched cohorts is a topic for future study.  

It is not entirely clear what effects PNN digestion has on the neurons these extracellular matrix 

structures associate with, nor why their removal is capable of inducing such large behavioural 

effects. PNNs are known to associate with fast-spiking inhibitory interneurons, providing a highly 

anionic environment to buffer against the flow of cations around this neural population [38-41], and 

are also thought to consolidate synaptic connections [35-37], “locking” circuitry into place. The 

removal of PNNS may expose the cells they associate with to calcium excitotoxicity, resulting in the 

loss of particular neural populations. This would be particularly injurious within striatal circuitry, 

where PV+ inhibitory interneurons associated with PNNs [41] play a large role in feedforward 

inhibition and modulating the activity of medium spiny neurons, the output population of the 

striatum [58, 60, 61, 75, 76]. Previous work, however, has demonstrated that the removal of PNNs 

does not impact the immunoreactivity nor density of PV+ inhibitory interneurons within the cortical 

regions [77], suggesting that behavioural consequences of PNN digestion are mediated by a 

mechanism other than neuronal loss. It is known from experiments using hippocampus-derived cell 

cultures that PNN digestion results in increased excitability of the inhibitory interneurons these 

structures associate with, whilst having little effect on GABAergic synaptic contacts of neurons that 

were previously enveloped by PNNs [78]. PNN removal may result in altered synaptic connectivity 

and activity such that normal circuitry function is disrupted, as mentioned above regarding the 

possible effects of ChABC treatment on dopaminergic transmission within the striatum. Further 

analyses assessing how PNN removal may impact the associated population of PV+ inhibitory 

interneurons within the striatum may shed light on why striatal ChABC treatment has such dramatic 

behavioural effects. 
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4.4 Neither EE nor striatal PNN dissolution dramatically affected motor skill acquisition  

Unlike goal-seeking behaviour assessed in the Puzzle-Box, both enrichment and ChABC treatment 

had little effect on another striatally mediated behaviour, the acquisition of a motor skill. While 

some effects were observed, none of them were particularly dramatic. This was surprising, given 

that previous work from our laboratory has demonstrated that enrichment from birth accelerated 

the emergence of striatally mediated behaviours in developing mice [22], ChABC digestion of striatal 

PNNs led to changes in hind limb ambulation suggestive of a regression to a more juvenile gait [41], 

and a mouse model with a known projection defect in the thalamostriatal pathway exhibited a 

significant delay in acquiring the same rotarod based motor skill task used here [63]. 

A number of factors may have contributed to this relative lack of change. One possibility is that the 

rotarod task may not have been sensitive enough to pick up subtle changes attributable to the 

acquisition of a motor skill [41]. A more discerning test may be needed to determine whether there 

is any interaction between EE and striatal ChABC infusion with relation to striatally mediated 

sensorimotor behaviours.  

Alternately, the timing of the testing itself may have compromised an ability to adequately examine 

the influence of both enrichment and ChABC treatment on this particular motor skill task. All rotarod 

assessments occurred after subjects were tested within the Puzzle-Box. Accordingly, while PNNs 

remained depleted even after completion of all behavioural testing (see Fig. 5), it is possible that any 

plasticity in striatal circuitry induced by ChABC treatment may have waned over the duration of 

testing. Indeed, in other brain areas the maturation of inhibitory networks, and the resulting 

termination of the developmental critical period, precedes PNN formation [36]. Thus, while the 

influence of enrichment remained relatively intact, as evidenced by the differences in S and E 

cohorts in latency changes across the period of testing, the effect of the enzymatic treatment may 

have been curtailed. The finding that PNN digestion appeared to have the greatest influence on the 
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first day of the Puzzle-Box protocol is also consistent with this possibility. Further experiments 

initiating testing closer to the onset of treatment will be required to more adequately assess the 

roles of enrichment and PNNs on motor learning.  

 

 

4.5 Conclusions. 

The behavioural analyses used within this study have granted insight into the whole animal effects of 

EE and ChABC-induced PNN dissolution within the striatum, along with the ways in which these two 

treatments interact with one another. These results provide evidence that EE from birth can induce 

measurable changes in striatally dependent behaviours, potentially increasing motivational drive 

and novelty seeking, along with improving problem-solving and task acquisition capabilities. Some of 

these aspects are shown to be affected by PNN dissolution within the striatum, with a lesser impact 

observed on the same behaviours of enriched animals. Determining the exact mechanisms 

underlying how enrichment limits the effects of this intervention may provide a deeper 

understanding of how plasticity is regulated in these vital neural networks.  
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Abstract 

It is known that environmental enrichment can influence several cognitive behaviours associated 

with striatal function. The effect of enrichment on more complex striatally mediated behaviours, 

however, has not yet been investigated. Accordingly, a novel rodent version of the Iowa Gambling 

Task (RGT), developed using the IntelliCage behavioural testing system, was used to determine the 

impact of both life-long and adulthood environmental enrichment upon decision-making behaviours. 

Animals raised from birth in an enriched environment and animals brought into the testing facility as 

young adults demonstrated more exploratory behaviour upon first exposure to the IntelliCage 

apparatus. All animals were able to successfully discriminate between low and high risk decisions 

within my version of the RGT, regardless of housing condition. Enrichment, however, did not impact 

decision-making within the RGT compared to standard housed cohorts. These results provide 

evidence that mice are capable of performing complex behavioural tasks previously only conducted 

using rats as subjects; that the IntelliCage testing arena is able to be used to develop behavioural 

tasks similar to those conducted using human subjects; and that environmental enrichment has no 

impact on reward-based decision-making within the paradigm presented here. 

Keywords: Environmental enrichment; Behaviour; Rodent/Iowa Gambling Task; IntelliCage 
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1. Introduction 

The basal ganglia are involved in mediating a wide variety of behaviours, ranging from voluntary 

movement, sensorimotor coordination, skeletomotor, oculomotor, cognitive and emotional 

functions [1-3]. Of particular interest is the role of the striatum in decision-making behaviours. 

Previous work has revealed that the striatum is involved in moderating important features of the 

decision-making process, due to the ability of this brain region to integrate sensory, motor, 

emotional and cognitive function [2, 4]. Striatal circuitry is thought to be involved in selection and 

initiation of actions based upon potential reward value [1], with the dorsal striatum particularly 

involved in this process.  

Environmental manipulations, particularly environmental enrichment (EE) can affect the 

development and function of neural circuits, and striatal pathways are no exception. The striatum is 

known to be sensitive to EE in several ways. Early enrichment can accelerate the formation of striatal 

perineuronal nets (PNNs), an extracellular matrix structure crucial for the maturation of circuits 

within this nucleus ([5]; see also Results Chapter 1, above). Exposure to EE during adulthood 

increases dendritic branching and spine density of striatal medium spiny neurons [6, 7]. Along with 

anatomical effects, EE has been shown to affect the levels of neurotrophic growth factors [8-10], up-

regulate metabolic activity [11], and influence the expression of genes within the striatum involved 

in cell proliferation, differentiation, structure and metabolism, and signal transduction, transcription 

and translation [12]. As demonstrated within results chapter one of this thesis, EE is capable of 

accelerating the morphological maturation of a population of inhibitory interneurons within the 

striatum. Given the anatomical and molecular changes induced within the striatum by EE, 

enrichment would likely affect behaviours that are dependent on striatal function. Previous studies 

have revealed improved cognitive performance resulting from EE [5, 13] (see also Results Chapter 3, 

above), but as yet there has not been a thorough investigation of the effects of EE upon decision-

making behaviours.  
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One behavioural test used to assess decision-making behaviours is the Iowa Gambling Task (IGT). A 

task traditionally used in human psychological studies, the IGT tests the ability of a subject to 

postpone an immediate reward for a greater outcome in the longer term [14]. In the human version 

of this task subjects are asked to choose between four decks of cards: two of which give large wins 

and larger losses, and are thus overall disadvantageous; and two of which give small wins and 

smaller losses, and are thus overall advantageous [14, 15]. Healthy subjects will generally favour the 

advantageous decks as testing progresses, whilst subjects with an impaired decision-making ability 

will generally favour the decks with large wins and larger losses [16]. The IGT has previously been 

adapted for use on rodent subjects, with the supply and withdrawal of food used as reward and loss 

factors [17]. One such study using rats revealed that greater levels of early life maternal care can 

lead to more advantageous decision-making behaviours as adults in a version of the RGT [18]. 

Whether environmental factors influence the RGT choice behaviours of mice, however, has yet to be 

determined. 

The IntelliCage system is an automated behavioural testing apparatus in which animals are housed 

during the duration of a task, and the behaviour of each individual within the cage continually 

monitored. The system requires minimal handling of mice, eliminating a source of distress for 

animals [19-21]. The IntelliCage has proven to be robust to strain and laboratory differences [55], 

and the system’s flexible design provides an ideal foundation for developing and/or adapting 

complex cognitive tasks to rodents. Thus far, no version of the RGT has been implemented for mice, 

using the IntelliCage or otherwise. 

Given the role striatal circuits play in regulating reward seeking and decision-making behaviours, and 

the large impact EE has upon this nucleus, it may be expected that performance within a RGT is 

affected by enrichment. This study proposes to use the IntelliCage system as a testing arena for a 

novel gambling task investigating the impact of both lifelong and adulthood EE on reward/loss based 

decision-making behaviours.  
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2. Materials & Methods 

2.1 Ethics Statement  

All procedures were approved by the Animal Ethics Committee of the University of Sydney and 

conformed to National Health and Medical Research Council of Australia guidelines under the ethics 

numbers K22/09-09/3/5128 and K22/11-12/3/5838. Experiments were performed using C57/BL6J 

mice reared and/or housed within the University of Sydney Animal Housing Facility. All mice were 

kept in individually ventilated cages at 21oC ambient temperature with ad libitum access to both 

water and food when not undergoing behavioural testing. 

 

2.2 Housing of animals in standard and enriched environments 

On arrival, half of the animals were randomly assigned to standard housing (30cm x 15cm x 13cm 

cage), and the other half to enriched housing (46cm x 40cm x 40cm cage), adapted from the protocol 

used in Simonetti et al, 2009 [5]. Standard environments contained a single red mouse igloo and 

extra material for bedding. Enriched housing contained red mouse igloos, a running wheel, marbles, 

tunnels, extra housing and material for bedding, Velcro, scented plush balls (vanilla, strawberry and 

cinnamon), a rubber ball and two high-contrast visual stimuli. These items were moved around the 

cage every two to three days and refreshed once a month to ensure novelty.  

Two pregnant dams were housed within each enriched cage, and one pregnant dam within each 

standard cage. Young animals were weaned at 21 days postnatal (P21) and placed into male-female 

segregated housing conditions the same as that which they were born into. On arrival, 8 – 10 week 

old C57/Bl6J mice were housed 5 to a cage within standard or enriched cages for six weeks prior to 

behavioural testing. Behavioural testing was carried out once animals reached 14 – 16 weeks of age. 

A total of four groups were tested: animals raised from birth in EE (E); animals raised from birth in a 
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standard environment (S) animals housed in EE upon arrival as young adults (SE); and animals 

housed in a standard environment upon arrival as young adults (SS).  

 

2.3 Microchipping 

A week prior to behavioural testing, animals were anaesthetised with 2-4% isoflurane in oxygen, and 

a radio-frequency-identification (RFID) chip (Planet-ID, 12mm, 0.09g) was injected into the adipose 

tissue at the nape of the neck. Animals were returned to their home cages following this procedure 

to allow for recovery. 

 

2.4 Behavioural testing – the IntelliCage System 

The IntelliCage system consists of a large (20.5cm x 40cm x 50cm) transparent cage, outfitted with 

four identical operant conditioning corners (Fig. 5.1A – B). Each corner contains two water sippers 

from which animals may drink, and is accessible to only one animal at a time (Fig. 5.1B). There is a 

microchip reader placed within the access point of each corner, to monitor the movements of 

individual animals within the cage. Access to the water sippers is controlled by means of a small door 

on the front of each sipper, which may be opened by animals performing various behaviours (e.g. 

nose-pokes). 

Animals were placed into the IntelliCage system to undergo a modified version of the rodent 

gambling task (RGT) [17], using water access as a reward. Subjects were exposed to three training 

stages leading up to the RGT: free adaptation; nose-poke adaptation; and drinking session 

adaptation (Table 5.1). Animals were continuously monitored. Mice exhibiting adverse signs of water 

limitation, or who had not drunk for a period of 24 hours or more were removed from the testing 

arena. Unless stated otherwise, the following number of animals were tested at each stage of the 
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task: E n=16 (8 male + 8 female); S n=13 (7 male + 6 female); SE n=20 (10 male + 8 female); and SS 

n=20 (10 male + 10 female). 
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Figure 5.1: The IntelliCage testing system. 

(A) The IntelliCage testing system. A large (20.5 x 40 x 50 cm) transparent cage, with triangular 

conditioning corners (15cm x 15cm x 20cm) that may be accessed via a ring antenna (30mm 

diameter at smallest point), allowing only one animal to pass into the chamber at a time. (B) A 

conditioning corner within the IntelliCage system, consisting of a mesh floor and two walls with 

13mm wide holes allowing access to water sippers. A detector determines the presence of an animal 

within the conditioning corner; LEDs may be used to provide stimulus cues, and the air-puff valve to 

provide negative reinforcement. Doors may be closed across the water sipper holes, and access 

gained by nose-poking to break a laser beam across the doorway. (C) Schematic of the rodent 

gambling task (RGT) run within the IntelliCage system. Animals were individually assigned two 

diagonally opposed low risk/high reward (overall advantageous) corners, and two diagonally 

opposed high risk/low reward (overall disadvantageous) corners. Water access was restricted to 

three, one hour periods a day during which animals were required to nose-poke in order to open the 

doorways.  
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Table 5.1: Schematic of the IntelliCage testing phases during the Rodent Gambling Task 

Testing phase Free 

Adaptation 

Nose-poke 

Adaptation 

Drinking Session 

Adaptation 

Rodent Gambling 

Task 

Door state Open Closed Closed Closed 

Nose-poke to 

open door 

N/A Yes Yes Yes 

Limited 

access time 

No No Yes: 

8pm – 9pm 

3am – 4am 

11am – 12pm 

 Yes: 

8pm – 9pm 

3am – 4am 

11am – 12pm 

Time doors 

are open 

N/A 1.5 seconds 1.5 seconds “Low risk” choice: 

1.5 seconds 

“High risk” choice: 3 

seconds 

Time out 

following 

drinking 

No No No “Low risk” choice: 30 

seconds 

“High risk” choice: 

240 seconds 

 

 

2.4.1 Free Adaptation (FA) 

Animals from the same home cage were placed into a single IntelliCage (Fig. 5.1) that had been 

cleaned with 70% ethanol, filled with fresh bedding, and supplied with autoclaved feed and a clean 

red mouse igloo. Two to four cages were run on the same program simultaneously, with all animals 

following the same protocol. During free adaptation (FA), both food and water were available ad 

libitum – the doors restricting access to the water sippers were open the entire time. This phase of 

testing lasted 3 days (Fig. 5.2), and the number of visits to corners during initial exposure and 

throughout FA recorded to assess exploratory and adaptation behaviours [20] [E n=16 (8 male + 8 

female), S n=13 (7 male + 6 female), SE n=20 (10 male + 8 female), SS n=20 (10 male + 10 female)]. 
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2.4.2 Nose-poke Adaptation (NPA) 

Following FA, the doors on the water sippers were closed. Animals were able to access the sippers 

by breaking a laser beam across the door with their nose, causing the door to open for 1.5 seconds. 

Animals then had to leave the conditioning corner before they could nose-poke once again and 

access more water. From NPA onwards, the incidence of nose-poking during visits may be 

considered as a deliberate behaviour, as animals attempt to open the water sipper access doors. 

Both water and food were available ad libitum during this time. This phase of testing lasted 4 days 

(Fig. 5.2), and the number of visits to corners and the proportion of nose-pokes and visits made both 

with and without drinking were recorded [E n=16 (8 male + 8 female), S n=13 (7 male + 6 female), SE 

n=20 (10 male + 8 female), SS n=20 (10 male + 10 female)]. 

 

2.4.3 Drinking Session Adaptation (DSA) 

Following NPA, animals underwent temporal training where access to the water sippers was 

restricted to three, one hour long periods per every 24 hours (8pm – 9pm, 3am – 4am, 11am – 

12pm). During these times, animals were able to access the sippers by breaking a laser beam across 

the door with their nose, causing the door to open for 1.5 seconds. Similar to NPA, animals had to 

leave the conditioning corner before they could again access the water sippers. This phase of testing 

lasted five days (Fig. 5.2), with a minimum of 15 drinking sessions experienced by animals. The 

number of visits to corners during each drink session, the incidence of nose-poking and the 

proportion of visits with nose-pokes and visits were recorded for analysis [E n=14 (7 male + 7 

female), S n=13 (7 male + 6 female), SE n=15 (10 male + 5 female), SS n=15 (10 male + 5 female)]. 
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2.4.4 Rodent Gambling Task (RGT) 

Following DSA, animals underwent a Rodent Gambling Task protocol (RGT) within the IntelliCage. 

During this time, access to water sippers was maintained on the same schedule as that during DSA, 

and access to the sippers was gained by means of breaking a proximity detector beam. Each 

individual animal was assigned two diagonally-opposite corners within the IntelliCage classed as 

either low risk/high reward (overall advantageous), or high risk/low reward (overall 

disadvantageous) for that mouse (Fig. 5.1C). Animals within a cage were allocated evenly between 

each combination of corners such that the high risk/low reward corners for one half of a cohort 

within an IntelliCage were the low risk/high reward corners for the other half. This was done to 

prevent any “follow the leader” effects upon the behaviour of animals housed within the same 

IntelliCage [22].  

Low risk/high reward corners allowed an animal to access the water sippers for 1.5 seconds, 

followed by a “timeout” of 60 seconds, during which animals were not able to access any water 

sippers. High risk/low reward corners allowed an animal to drink for 3 seconds, followed by a 

timeout of 240 seconds during which animals were not able to access any water sippers. Overall, 

animals received 50% more drinking time within an hour-long drinking session by consistently 

choosing to drink from low risk/high reward corners (see Table 1 above). Note was made of the 

number of visits to corners, the incidence of nose-poking and the proportion of visits with nose-

pokes occurring during each drinking session, and analyzed according to the risk/reward 

classification of conditioning corners. E n=14 (7 male + 7 female), S n=13 (7 male + 6 female), SE 

n=15 (10 male + 5 female), SS n=15 (10 male + 5 female). 
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Figure 5.2: Timeline of the RGT. 

Animals within the IntelliCage underwent a series of training steps prior to undertaking the RGT. 

Free adaptation lasted for three days; nose-poke adaptation for four days; and drinking session 

adaptation for five days, before the RGT was run for seven days.  

 

2.4.5 Analysis 

Patterns of visitation to conditioning corners during the first hour within the IntelliCage are thought 

to be indicative of the exploratory behaviour of an animal [20], whilst the overall number of visits 

made throughout testing are thought to reflect adaptation and ongoing activity levels [20].Visitation 

to conditioning corners upon initial exposure to the IntelliCage was analysed using a univariate 

ANOVA with housing condition as between-subjects factor. The behaviour of animals was analysed 

by day within each testing phase, using repeated measures ANOVA with housing condition as 

between-subjects factor and multiple comparisons posthoc analysis to determine any differences 

between individual groups. In all analyses, comparisons were made across all four housing groups 

and population was regarded as the number of animals within each housing condition group, as 

described above in Materials and Methods and in figure legends. 
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3. Results 

3.1 Environmental enrichment increases exploratory behaviour upon initial exposure to 

the IntelliCage 

Patterns of visitation to conditioning corners during the first hour within the IntelliCage are thought 

to be indicative of the exploratory behaviour of an animal, whilst the overall number of visits made 

during free adaptation are thought to reflect adaptation to novelty [20]. I found that housing 

condition impacted both exploratory behaviours upon first exposure to the IntelliCage system, and 

the overall number of visits made to conditioning corners during free adaptation (Fig. 5.3).  

Quantitative analysis of the number of conditioning corners visited during the first hour within the 

IntelliCage system revealed that housing condition significantly affected whether animals visited all 

four corners during this time (univariate ANOVA, housing condition as between-subjects factor, F(3, 

65)=27.976, P<0.001) (Fig. 5.3A). Posthoc analysis revealed this effect to be due to S animals not 

visiting all four conditioning corners in the first hour within the IntelliCage (multiple comparisons 

posthoc analysis: E vs S, P<0.001; SE vs S, P<0.001; SS vs S, P<0.001). All SS and SE animals visited all 

four conditioning corners during the first hour within the IntelliCage system (Fig. 5.3A).  

Housing condition also significantly impacted the overall total number of visits made to conditioning 

corners during FA (repeated measures ANOVA, housing condition as between-subjects factor, F(3, 

65)=11.614, P<0.001). Posthoc analysis revealed this effect to be due to both S and SS animals 

making a greater number of visits to conditioning corners than E and SE cohorts (multiple 

comparisons posthoc analysis: E vs S, P<0.001; E vs SS, P=0.032; SE vs S, P<0.001, SE vs SS, P=0.039) 

(Fig. 5.3B).  

These results suggest that the environmental condition of home cages can influence exploratory and 

adaptation behaviours within the IntelliCage during the FA period of testing.  
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Figure 5.3: Housing condition impacts visitation behaviour within the IntelliCage during FA 

(A) Average number of corners visited in the first hour immediately after introduction to the 

IntelliCage (cumulative, maximum possible 4) for animals raised from birth in an enriched (E) and 

standard environment (S), and animals housed for 6 weeks within an enriched (SE) and standard (SS) 

environment upon arrival at the University of Sydney animal house at 8 – 10 weeks of age. During 

the first hour within the IntelliCage, S animals visited significantly fewer of the conditioning corners 

than did other animals (univariate ANOVA, F=27.976, P<0.001). (B) Average number of visits made 

per day during FA. Housing condition significantly impacted the incidence of visits to conditioning 

corners (repeated measures ANOVA, F=11.614, P<0.001) due to differences between standard and 

enriched cohorts (see text). **: P<0.01. E n=16, S n=13, SE n=20, SS n=20. Error bars=Standard Error 

of the Mean (SEM). 
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3.2 Standard raised animals demonstrate increased exploratory behaviours during the 

NPA phase of testing 

Similar to the effect observed during the free adaptation testing phase, housing condition also 

impacted the number of visits made to conditioning corners during the nose-poke adaptation (NPA) 

phase of testing (Fig. 5.4). Quantitative analysis revealed a significant effect of housing condition 

upon visits (repeated measures ANOVA, housing condition as between-subjects factor, F(3, 

65)=8.392, P<0.001) (Fig. 5.4A), brought about by S animals making a greater number of visits to 

conditioning corners than other housing conditions (multiple comparisons posthoc analysis: S vs E, 

P<0.001; S vs SE, P<0.001, S vs SS, P=0.033).  

Previously, during FA, nose-pokes made by animals within a conditioning corner elicited no effect 

and thus could not be considered as a deliberate behaviour. During NPA and all further testing 

phases nose-poking within a conditioning corner enabled access to water sippers. Thus, from NPA 

onwards, the incidence of nose-poking during visits may be considered as an important behaviour, 

as animals attempt to open the water sipper access doors. Housing condition significantly impacted 

the incidence of nose-poking within conditioning corners during NPA (repeated measures ANOVA, 

housing condition as between-subjects factor, F(3, 65)=6.387, P=0.001) (Fig. 5.4B). Posthoc analysis 

revealed this effect to be due to S animals having more incidences of nose-poking than all other 

housing conditions (multiple comparisons posthoc analysis: S vs E, P=0.001; S vs SE, P=0.002, S vs SS, 

P=0.041). These results suggest that, once past initial exposure, S animals continue to display greater 

exploratory behaviours within the IntelliCage system than do animals from all other housing 

conditions. 
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Figure 5.4: S animals show a greater number of visits and nose-pokes during NPA phase of testing 

(A) Graph displaying the average number of visits made to conditioning corners every 12 hours 

throughout NPA by animals raised in an enriched (E) and standard (S) environment, and animals 

housed for 6 weeks within an enriched (SE) and standard (SS) environment upon arrival at the 

University of Sydney animal house at 8 – 10 weeks of age. S animals made significantly more visits 

throughout NPA than did all other housing conditions (repeated measures ANOVA, F=8.392, 

P<0.001). (B) A similar graph, displaying the average occurrence of a nose-poke within conditioning 

corners during visits throughout NPA. S animals made significantly more nose-pokes throughout NPA 

than did all other housing conditions (repeated measures ANOVA, F=6.387, P=0.001). E n=16, S n=13, 

SE n=20, SS n=20. Error bars=SEM. 
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The performance of all animals improved as the NPA testing phase progressed (Fig. 5.5). 

Quantitative analysis revealed that the incidence of animals making visits to conditioning corners 

without nose-poking was decreased as testing progressed (repeated measures ANOVA, day of 

testing as within-subjects factor, F(3, 195)=32.465, P<0.001), with a significant difference between 

housing groups (repeated measures ANOVA, housing condition as between-subjects factor, F(3, 

65)=20.210, P<0.001) due to S and E animals having a higher proportion of visits without nose-pokes 

when compared to SS and SE cohorts (multiple comparisons posthoc analysis: E vs SE, P<0.001; E vs 

SS, P<0.001; S vs SE, P<0.001; S vs SS, P<0.001) (Fig. 5.5A). There was a significant interaction 

between housing condition and day of testing upon this metric (repeated measures ANOVA, housing 

condition*day of testing, F(9, 195)=2.233, P=0.022). 

 Similarly, the proportion of visits with nose-pokes where drinking did not occur also decreased as 

testing progressed (repeated measures ANOVA, day of testing as within-subjects factor, F(3, 

195)=56.916, P<0.001); again, there was a significant effect of housing condition upon this metric 

(repeated measures ANOVA, housing condition as between-subjects factor, F(3, 65)=19.334, 

P<0.001), again due to E and S animals having a higher proportion of visits with nose-pokes without 

drinking compared to SS and SE cohorts (multiple comparisons posthoc analysis: E vs SE, P<0.001; E 

vs SS, P<0.001; S vs SE, P<0.001; S vs SS, P<0.001) (Fig. 5.5B). There was no significant interaction 

between housing condition and day of testing upon this metric.  

A similar improvement in performance was observed in the proportion of visits to conditioning 

corners with nose-pokes where drinking occurred (repeated measures ANOVA, day of testing as 

within-subjects factor, F(3, 195)=55.675, P<0.001). Once more, there was a significant effect of 

housing condition upon this metric (repeated measures ANOVA, housing condition as between-

subjects factor, F(3, 65)=19.471, P<0.001), again due to E and S animals differing in performance to 

SS and SE cohorts (multiple comparisons posthoc analysis: E vs SE, P<0.001; E vs SS, P<0.001; S vs SE, 
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P<0.001; S vs SS, P<0.001) (Fig. 5.5C). There was no significant interaction between housing 

condition and day of testing upon this metric. 

These results suggest that home cage environment can continue to influence behaviours within the 

IntelliCage apparatus beyond the FA phase of testing.  
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Figure 5.5: The performance of all animals improved as NPA progressed 

(A) Graph displaying the average proportion of visits to conditioning corners without nose-pokes 

made by animals raised in an enriched (E) and standard (S) environment, and animals housed for 6 

weeks within an enriched (SE) and standard (SS) environment upon arrival at the University of 

Sydney animal house at 8 – 10 weeks of age during NPA. There was a significant reduction in the 

proportion of visits without nose-pokes as time within NPA progressed (repeated measures ANOVA, 

F=32.465, P<0.001). (B) A similar graph, but for the average proportion of visits to conditioning 

corners with nose-pokes where no drinking occurred. Again, as time within NPA progressed, there 

was a significant reduction in the proportion of visits with nose-pokes where no drinking occurred 

(repeated measures ANOVA, F=56.916, P<0.001). (C) A similar graph, but for the average proportion 

of visits to conditioning corners with nose-pokes where drinking did occur. As time within NPA 

progressed, there was a significant increase in the proportion of visits with nose-pokes where 

drinking did occur (repeated measures ANOVA, F=55.675, P<0.001). E n=16, S n=13, SE n=20, SS 

n=20. Error bars=SEM. 

 

 

 

 

 

 

 

 

269



3.3 Standard raised animals demonstrate a greater number of visits and incidence of nose-

pokes during Drinking Session Adaptation 

Following NPA, animals were subjected to a drinking session adaptation (DSA) testing phase. During 

this time access to water was restricted to three one-hour long periods every 24 hours (8pm – 9pm; 

3am – 4am; 11am – 12pm), and animals were required to nose-poke in order to access the water 

sippers. Data was analysed by day of testing using measurements taken during drinking sessions. 

Housing condition significantly affected the number of visits made to conditioning corners during 

DSA (repeated measures ANOVA, housing condition as between-subjects factor, F(3, 53)=12.340, 

P<0.001) (Fig. 5.6A). Posthoc analysis revealed this effect to be due to S and SS animals making a 

greater number of visits to conditioning corners than enriched groups (multiple comparisons 

posthoc analysis, F(3, 53)= 12.340: S vs E, P<0.001; S vs SE, P<0.001: SS vs E, P=0.010).  

The incidence of nose-pokes within conditioning corners during DSA was also impacted by housing 

condition (repeated measures ANOVA, housing condition as between-subjects factor, F(3, 

53)=10.470, P<0.001) (Fig. 5.6B), and came about due to a greater incidence of nose-pokes being 

made by standard animals (multiple comparisons posthoc analysis: S vs E, P<0.001; S vs SE, P=0.001; 

SS vs E, P=0.012). Housing condition also had an impact upon the proportion of visits to conditioning 

corners with nose-pokes occurring (repeated measures ANOVA, housing condition as between-

subjects factor, F(3, 53)=3.307, P=0.027), coming about due to a lesser proportion of visits with 

nose-pokes made by S animals relative to SE animals (multiple comparisons posthoc analysis: S vs SE, 

P0.015) (Fig. 5.6C). These results suggest that, despite a higher incidence of visits and nose-pokes 

within conditioning corners, S animals do not nose-poke any more efficiently than animals from 

other housing conditions.  
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Figure 5.6: S animals show increased incidence of visits and nose-pokes during the DSA testing 

phase 

(A) A graph displaying the average number of visits made to conditioning corners per day during DSA 

by animals raised in an enriched (E) and standard (S) environment, and animals housed for 6 weeks 

within an enriched (SE) and standard (SS) environment upon arrival at the University of Sydney 

animal house at 8 – 10 weeks of age. S animals made significantly more visits to conditioning corners 

than all other housing conditions (repeated measures ANOVA, F=12.340, P<0.001). (B) A similar 

graph, but for the average incidence of nose-poke during visits to conditioning corners. S animals 

had significantly more incidences of nose-poking within conditioning corners than did all other 

animals (repeated measures ANOVA, F=10.470, P<0.001). (C) A similar graph, but for the average 

proportion of visits to conditioning corners where nose-pokes occur. S and SE animals had 

significantly different proportions of visits with nose-pokes (repeated measures ANOVA, F=3.307, 

P=0.015). E n=14, S n=13, SE n=15, SS n=15. Error bars=SEM. 
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3.4 Lifelong environmental enrichment decreases the incidence of visits and nose-pokes 

within conditioning corners during the RGT 

Upon completion of the DSA, formal training on the RGT was initiated. Similar to previous testing 

phases, the number of visits and nose-pokes made within conditioning corners were taken as a 

measure of task acquisition [19, 20, 23]. Data was analysed by day of testing using measurements 

taken during drinking sessions. In contrast to the effect observed in previous testing phases, housing 

condition did not significantly impact the number of visits made to conditioning corners during the 

RGT (repeated measures ANOVA, housing condition as between-subjects factor, F(3, 53)=1.798, 

P=0.159) (Fig. 5.7A). Similarly, there was no significant impact of home cage environment upon the 

incidence of nose-poke occurring within conditioning corners during the RGT (repeated measures 

ANOVA, F(3, 53)=2.409, P=0.077) (Fig. 5.7B). However, exploratory posthoc analysis revealed that E 

animals had significantly fewer incidences of nose-poking within conditioning corners than did S 

animals (multiple comparisons posthoc analysis: E vs S, P=0.049). Housing condition also had no 

significant effect upon the proportion of visits to conditioning corners with nose-pokes during RGT 

(repeated measures ANOVA, housing condition as between-subjects factor, F(3, 53)=2.061, P=0.116) 

(Fig. 5.7C). These results suggest that lifelong EE slightly reduces the incidence of nose-poking within 

conditioning corners, but not so much that it impacts upon the proportion of visits where nose-

pokes occur.  
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Figure 5.7: E animals show slightly reduced incidence of nose-pokes during the RGT testing phase 

(A) A graph displaying the average number of visits made to conditioning corners per day by animals 

raised in an enriched (E) and standard (S) environment, and animals housed for 6 weeks within an 

enriched (SE) and standard (SS) environment upon arrival at the University of Sydney animal house 

at 8 – 10 weeks of age during RGT. There was no overall significant effect of housing condition upon 

this metric. (B) A similar graph, but for the average incidence of nose-pokes during visits to 

conditioning corners. There was no overall significant effect of housing condition upon this metric. E 

animals had fewer incidences of nose-poke than did S animals (repeated measures ANOVA, F=2.409: 

E vs S, P=0.049). (C) A similar graph, but for the average proportion of visits to conditioning corners 

where nose-pokes occur. There was no overall significant effect of housing condition upon this 

measurement. E n=14, S n=13, SE n=15, SS n=15. Error bars=SEM. 
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3.5 Housing condition has little impact upon the proportion of visits and nose-pokes to 

different types of conditioning corners  

In order to assess decision-making within the IntelliCage during the RGT, the proportion of visits 

made to, and incidence of nose-pokes within, conditioning corners of varying types were assessed. 

Within a given drinking session, animals that only visited low risk/high reward (overall 

advantageous) conditioning corners would receive twice as much drinking time than those only 

visiting high risk/low reward (overall disadvantageous) conditioning corners.  

Home cage environment had little impact upon the choice of which corners to visit or nose-poke in 

(Fig. 5.8, 5.9). The proportion of visits to low risk corners (repeated measures ANOVA, housing 

condition as between-subjects factor, F(3, 53)=0.648, P=0.588) (Fig. 5.8A), the proportion of nose-

pokes occurring in low risk corners (repeated measures ANOVA, housing condition as between-

subjects factor, F(3, 53)=0.890, P=0.452) (Fig. 5.8B), and the proportion of visits to low risk corners 

with nose-pokes (repeated measures ANOVA, housing condition as between-subjects factor, F(3, 

53)=1.309, P=0.281) (Fig. 5.8C) were not significantly affected by housing condition, and there were 

no significant posthoc effects of housing condition.  

Similarly, the proportion of visits to high risk corners (repeated measures ANOVA, housing condition 

as between-subjects factor, F(3, 53)=0.808, P=0.495) (Fig. 5.9A), the proportion of nose-pokes 

occurring in high risk corners (repeated measures ANOVA, housing condition as between-subjects 

factor, F(3, 53)=0.890, P=0.452) (Fig. 5.9B), and the proportion of visits to high risk corners with 

nose-pokes (repeated measures ANOVA, housing condition as between-subjects factor, F(3, 

53)=2.144, P=0.106) (Fig. 5.9C) were not significantly affected by housing condition, and there were 

no significant posthoc effects of housing condition.  
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Given the lack of effect from housing condition, measurements were pooled and analysed according 

to corner type to assess whether animals were able to perform the RGT. Quantitative analysis 

revealed that the type of conditioning corner did impact upon the proportion of visits received 

(repeated measures ANOVA, corner type as between-subjects factor, F(1, 105)=44.568, P<0.001) 

(Fig. 5.8A, 5.9A), and the proportion of nose-pokes occurring within different corner types (repeated 

measures ANOVA, corner type as between-subjects factor, F(1, 105)=49.178, P<0.001) (Fig. 5.8B, 

5.9B), with a greater proportion of visits and nose-pokes occurring in low risk corners. There was no 

effect of corner type upon the proportion of visits to both low and high risk corners with nose-poke 

occurring (repeated measures ANOVA, corner type as between-subjects factor, F(1, 105)=1.420, 

P=0.931) (Fig. 5.8C, 5.9C). These results suggest that all animals are able to differentiate between 

low risk and high risk conditioning corners, but that exposure to EE does not appear to influence this 

ability. 
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Figure 5.8: Corner type has a greater impact upon visits and nose-pokes than does housing 

condition 

(A) A graph displaying the average proportion of visits made to low risk/high reward (low risk) 

corners by animals raised in an enriched (E) and standard (S) environment, and animals housed for 6 

weeks within an enriched (SE) and standard (SS) environment upon arrival at the University of 

Sydney animal house at 8 – 10 weeks of age during RGT. There was no significant effect of housing 

condition upon this measure (repeated measures ANOVA, F=0.648, P=0.588); however, a 

significantly greater proportion of visits were made to low risk conditioning corners (repeated 

measures ANOVA, F=44.568, P<0.001). (B) A similar graph, but for the average proportion of nose-

pokes made in low risk corners. There was no significant effect of housing condition upon this 

measure (repeated measures ANOVA, F=0.890, P=0.452); however, a significantly greater proportion 

of nose-pokes were made within low risk conditioning corners (repeated measures ANOVA, 

F=49.178, P<0.001). (C) A similar graph, but for the average proportion of visits with nose-pokes 

made in low risk corners. There was no significant effect of either housing condition (repeated 

measures ANOVA, F=1.309, P=0.281) or conditioning corner type upon this measurement (repeated 

measures ANOVA, F=1.420, P=0.931). E n=14, S n=13, SE n=15, SS n=15. Error bars=SEM. 
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Figure 5.9: Corner type has a greater impact upon visits and nose-pokes than does housing 

condition 

(A) A graph displaying the average proportion of visits made to high risk/low reward (high risk) 

corners by animals raised in an enriched (E) and standard (S) environment, and animals housed for 6 

weeks within an enriched (SE) and standard (SS) environment upon arrival at the University of 

Sydney animal house at 8 – 10 weeks of age during RGT. There was no significant effect of housing 

condition upon this measure (repeated measures ANOVA, F=0.808, P=0.495); however, a 

significantly smaller proportion of visits were made to high risk conditioning corners (repeated 

measures ANOVA, F=44.568, P<0.001). (B) A similar graph, but for the average proportion of nose-

pokes made in high risk corners. There was no significant effect of housing condition upon this 

measure (repeated measures ANOVA, F=0.890, P=0.452); however, a significantly smaller proportion 

of nose-pokes were made within high risk conditioning corners (repeated measures ANOVA, 

F=49.178, P<0.001). (C) A similar graph, but for the average proportion of visits with nose-pokes 

made in high risk corners. There was no significant effect of either housing condition (repeated 

measures ANOVA, F=2.144, P=0.106) or conditioning corner type upon this measurement (repeated 

measures ANOVA, F=1.420, P=0.931). E n=14, S n=13, SE n=15, SS n=15. Error bars=SEM. 
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4. Discussion 

This study investigated the impact of EE from birth or adulthood upon reward-based decision-

making behaviours of animals within the IntelliCage, an automated behavioural testing apparatus. 

Exposure to EE was found to alter exploratory and adaptation behaviours upon first exposure to a 

novel testing environment, despite having little impact on the decision-making process of animals 

during a rodent version of the IGT (RGT). The development of an automated version of the RGT 

provides a launch pad for the systematic assessment of decision-making behavior in laboratory mice, 

and may prove to be a valuable tool when assessing animal models of human neurological disorders. 

 

4.1 Environmental enrichment influences exploratory behaviours within the IntelliCage 

Consistent with previous work, animals that had experienced any EE– both those raised from birth 

(E) and those briefly housed as adults within an enriched environment (SE) – made fewer overall 

visits to conditioning corners within the IntelliCage system [23]. Despite this, E animals 

demonstrated a higher level of exploratory behaviour during the first hour within the IntelliCage 

than did standard raised cohorts. It would appear that EE leads to a decrease in the level of 

exploratory behaviour within the IntelliCage after initial exposure, and that this trend is maintained 

throughout the rest of the time spent within the system. This may come about due to a “novelty 

saturation” effect – animals that have been exposed to EE may not experience the same drive to 

continually explore a new environment that their standard counterparts do. It may be that enriched 

animals are less anxious and more exploratory when first placed into the IntelliCage system, but that 

the novelty of a new housing situation wears off more quickly than it does for standard housed 

counterparts.  

Previous work from our laboratory has demonstrated that EE in young animals leads to an increase 

in exploratory behaviours when mice are placed into a novel environment [5]. Whether this effect is 
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maintained past the initial exposure time of two minutes was not determined [5]. Unpublished 

observations made by a colleague within our laboratory suggest that enriched animals show reduced 

levels of activity within another automated behavioural testing paradigm (the operant conditioning 

box). Further studies specifically investigating the effect of EE upon the activity levels of animals 

within an automated testing situation would be of interest.  

 

4.2 Environmental enrichment does not impact choice of corner during the RGT 

During the RGT phase of testing animals were assigned two diagonally opposite low risk/high reward 

(overall advantageous) conditioning corners, and two diagonally opposite high risk/low reward 

(overall disadvantageous) conditioning corners within the IntelliCage system. The traditional IGT 

used during human psychological assessment employs decks of cards as the “sites” of choice, and 

uses the gain and loss of money as reward and loss [14-16]. Previous work has confirmed the ability 

of rats to undertake a version of the RGT using food supply and restriction as reward and loss [17, 

24], and has revealed that, similar to humans, a majority of animals consistently choose the overall 

advantageous options, with higher overall reward gained [17].  

When interpreting the data gained from within the IntelliCage system, there are several 

measurements that may be taken as indicators of performance; this study looked at the incidence of 

visits to, and nose-pokes within, conditioning corners of both types. The occurrence of visits to 

conditioning corners, and nose-pokes made during those visits, may be interpreted as indicators of 

intent – that is, whether animals are able to differentiate between corner type on a macro scale such 

that they do not make visits to overall disadvantageous conditioning corners. By the metrics of 

number of visits and nose-pokes, all animals were able to successfully differentiate between overall 

advantageous and disadvantageous corners, regardless of housing condition.  
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Interestingly, exposure to EE did not improve drinking choices above the level observed in standard 

cohorts. It is known that inability to discriminate between low and high risk choices within the 

human IGT indicates either impaired inhibition during decision making, or a reduced ability to learn 

through reward/loss paradigms [15, 25-30]. It is also known that a certain percentage of subjects (20 

– 25%) demonstrated poor decision making within the RGT previously run by another group, thought 

to result from a hypersensitivity to reward [17]. These animals also showed higher levels of risk 

taking behaviour in anxiogenic behavioural analyses, suggesting that there is a subset of the healthy 

rodent population that consistently displays poor or risky decision-making [17]. It is possible that EE 

leads to an increase in the number of poor decision-makers within a population by decreasing 

anxiety [31, 32], resulting in higher levels of risk taking behaviour. Previous work has demonstrated 

that standard housed animals are more sensitive to rewards during behavioural testing than 

enriched animals [33]. It is possible that EE impairs the ability of animals to learn from a reward/loss 

paradigm by providing constant stimulation, making them less sensitive to a reward that may not be 

adequately stimulating. If either of these were the case, however, then enriched animals would 

likely have performed more poorly than standard counterparts, which did not occur. The IntelliCage 

system itself may be considered as an enriching environment [34]. Given the length of time animals 

spent in training phases leading up to the RGT testing phase, it is possible that the novelty effect of 

IntelliCage housing is enough to provide a “boost” to standard mice such that they display the same 

decision-making ability as enriched counterparts. Further experiments to determine the proportion 

of poor decision-makers/high risk takers within variously housed populations would be of interest to 

determine how far housing condition is able to impact upon choice behaviours.  

The negative findings with regards to any effect of EE suggest that merely measuring the number of 

visits and nose-pokes may not be enough to give an accurate reflection of animal behaviours within 

the IntelliCage system. Nevertheless, the current results demonstrate the feasibility of conducting a 

complex behavioural task on mice that is analogous to a human psychological test, using an 

automated behavioural testing apparatus.  
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4.3 Behaviour of enriched animals within an automated testing environment and the 

potential for novelty saturation 

Automated behavioural testing apparatuses, such as the IntelliCage, are becoming more frequently 

used by laboratories. These systems are capable of generating consistent results between 

laboratories by eliminating the effect of variables such as animal handling, exposure to new testing 

environments, and stress resulting from single housing during intra-cage behavioural testing [20, 

23]. Given that I was investigating the impact of EE upon decision-making behaviour during the RGT 

within the IntelliCage, a reduction in animal handling may be considered advantageous. Handling of 

young mice has been shown to have similar effects to that of EE, accelerating maturation of the 

visual system [35, 36].   

The benefits gained from lack of experimenter-induced variables and animal handling effects may be 

offset by the enriching effects of the IntelliCage itself [34] The IntelliCage in particular is a high-

throughput behavioural testing arena – up to 16 animals can be placed into an individual cage at one 

time – allowing for rapid behavioural analyses. Behavioural analyses conducted within the 

IntelliCage eliminate the impact of variables such as experimenter traits, testing order of animals, 

and handling effects. Recent findings have illustrated the effect of experimenter gender upon animal 

behaviours, with male mice displaying higher levels of stress and a stress-induced analgesic effect in 

response to the presence of male, but not female, researchers [21]. Fear-conditioned learning [37] 

and pain thresholds [38] of experimental subjects are both known to be influenced by the order in 

which animals undergo behavioural testing. It is possible that animals influenced one another in 

their decision-making during the RGT within the IntelliCage – hence enriched and standard cohorts 

were housed in separate IntelliCage systems, and the allocation of overall advantageous and 

disadvantageous conditioning corners was reversed for half the mice within a given cage such that 

an overall advantageous corner was also an overall disadvantageous corner for half of the testing 
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population. Further studies are needed to determine the potential impact of this testing 

environment upon base level animal behaviours.  

Enriched animals demonstrated less exploratory activity within the IntelliCage than did standard 

counterparts once past initial exposure to the testing arena. Similar to the rise in the use of 

automated testing environments, more research is beginning to investigate the effect of EE upon 

animal behaviours. An enriched environment provides animals with a more naturalistic home cage, 

and greater levels of stimulation and activity more closely approximating what would be 

encountered in a natural environment [39, 40]. Previous studies investigating the behavioural effects 

of EE have demonstrated that enriched animals are less likely to develop addiction behaviours when 

exposed to addictive substances [8, 41-43], consume less sucrose than standard housed animals 

when given the opportunity to do so [44], and are less sensitive to reward than standard housed 

animals [33]. It is possible that animals housed within standard environments are more likely to self-

administer and seek out drugs of addiction in response to their relatively deprived home cages, and 

that enriched animals provide a more realistic model of behaviours. It is also possible that EE induces 

a form of anhedonia, where the usual rewards employed during behavioural testing are not 

sufficient to provoke the interest of enriched animals [33, 43].  

Similar to previous studies, my work demonstrates that enriched animals display an accelerated 

habituation to novelty when placed within a behavioural testing arena [45]. This is potentially 

problematic, particularly when a behavioural task is dependent upon continued levels of activity, 

such as lever pressing within operant conditioning chambers, and visits to conditioning corners 

within the IntelliCage. Unpublished observations from our laboratory suggest that enriched animals 

display reduced responsiveness when placed within an operant conditioning chamber using food as 

a reward. Behavioural arenas testing reward-based behaviours may not provide enriched animals 

with an adequate level of stimulation compared to their home cage, resulting in a lack of motivation 

to perform behavioural tasks. Given the rise of both automated behavioural testing, and the number 
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of studies investigating the effects of EE, it is advantageous to be wary of unusual behaviours 

resulting from enrichment.  

 

4.4 The possible role of the striatum in decision-making behaviours within our RGT testing 

paradigm 

A previous study has demonstrated a reduction in the level of striatal damage induced by a model of 

traumatic brain injury, following a period of housing within the IntelliCage system, [34], suggesting 

that the striatum is likely involved in behaviours occurring within this apparatus. Previous research 

has also indicated that the striatum is highly impacted by EE, resulting in an increase in dendritic 

branching and spine density [6, 7], an increase in striatal levels of BDNF and NGF [8-10], and an up-

regulation of striatal metabolic activity and expression of genes involved in various cellular processes 

[11, 12]. It is difficult to target enrichment towards a particular area of the brain; this is especially 

true of brain regions involved in varied functions, as is the striatum [1-3]. Given the important role of 

this nucleus in reward behaviours and decision-making [1, 46-48], it is likely that the striatum was 

involved in decision-making behaviours during the RGT testing phase within the IntelliCage system.  

Despite the many noted effects of EE upon the striatum, enrichment did not appear to impact 

decision-making during the RGT conducted in this study. Many areas of the brain may be involved in 

learning the processes necessary to undertake the RGT, and in decision-making during the task itself. 

The prefrontal cortex, which has been implicated in mediating the behaviour of human subjects 

during the IGT [14, 16], would likely be involved in decision-making during the RGT. It is also 

probable that the hippocampus was involved in remembering the processes necessary to access 

water during the RGT. Further studies perhaps making use of lesions within the brain or utilising 

opto- or pharmaco-genetic inactivation throughout the duration of IntelliCage testing may shed 

some light upon the exact role of the striatum during behavioural tasks within this apparatus. 
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4.5 Conclusions 

In conclusion, this study successfully determined that it is possible to design and implement a rodent 

version of the Iowa Gambling Task within an automated behavioural testing system, using mice as 

subjects and water access and restriction as the reward and loss components of this task.  Further, 

these findings provide evidence for the influence of both lifelong and brief adulthood environmental 

enrichment upon behaviours within the IntelliCage, ranging from basic metrics during free 

adaptation through to the effect of enrichment upon a complex reward-based decision-making task. 

Further experiments as suggested throughout the discussion section would aid in shedding light 

upon the exact mechanisms behind the observations made within this study.  
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Chapter 6: Discussion 

 

“The most exciting phrase to hear in science, the one that heralds 

the most discoveries, is not ‘Eureka (I found it!)’ but ‘That’s funny…’” 

- Isaac Asimov  
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This thesis successfully established the impact of environmental enrichment (EE) upon various 

juvenile and adult striatally-mediated behaviours, and investigated the effect of EE upon the murine 

striatum during a putative early life critical period and in adulthood.  

 

1. Environmental enrichment increases the number of parvalbumin-expressing neurons 

within the striatum of the adult mouse 

This thesis successfully determined the effects of lifelong EE upon the striatal population of 

Parvalbumin-expressing (PV+) inhibitory interneurons, by assessing the correlation of these neurons 

with PNNs within the striatum of adult animals. PNNs are extracellular matrix structures associated 

with PV+ inhibitory interneurons in several areas of the brain, including the striatum [1-5]. Within 

other regions of the brain, the formation of mature PNNs is associated with the end of the critical 

period and the maturation of PV+ neurons [6, 7]. Both the presence of mature PNNs [8] and 

expression levels of the calcium binding protein PV are able to be influenced by EE [9]. PV expression 

is regulated by cellular activity levels, as this calcium binding protein is thought to protect against 

excitotoxicity induced by fast-spiking action potentials [10, 11]. I found that lifelong EE increases the 

number of PV+ inhibitory interneurons, but has no effect upon the number of PNNs, present within 

the striatum of adult animals. This result provides evidence of an ongoing impact of EE beyond the 

critical period, and provides insight into how environment may be capable of influencing mature 

neural circuitry.  

 

1.1 Future Directions 

Work from other laboratories has demonstrated the ability of EE to regulate PV expression within 

inhibitory interneurons of the hippocampus [9]. It is not fully clear whether the increase in PV+ 

inhibitory interneurons I observed in the striatum of enriched adult animals is due to an activity-
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dependent up-regulation of PV in otherwise quiescent neurons, or whether EE leads to an increase 

in the total number of striatal PV+ inhibitory interneurons. That there is no effect of EE upon PNN 

density within the striatum suggests that the increase in numbers of PV+ inhibitory interneurons is 

most likely due to an up-regulation of the PV calcium-binding protein in usually inactive neurons. 

This may result from increased activity levels within striatal circuitry in response to a greater level of 

stimulation from the environment.  

PV is expressed in electrophysiologically active neurons to buffer ionic movement during fast-spiking 

action potentials [10, 11]. Electrophysiological studies investigating the impact of EE upon cellular 

activity levels within striatal PV+ inhibitory interneurons may shed further light upon the exact 

mechanism underlying a potential increase in striatal PV expression in response to EE. Corticostriatal 

projections are the main source of afferent input to striatal PV+ inhibitory interneurons, and the 

activation they provide is thought to influence PV expression levels [12-14]. EE has been shown in 

several regions of the cortex to increase dendritic branching [15-18] and synaptic density [19]. It 

would be of interest to determine whether lifelong enrichment influences the number or 

innervation pattern of corticostriatal afferents synapsing within the striatum, potentially resulting in 

a greater number of electrophysiologically active PV+ inhibitory interneurons.  

 

2. Environmental enrichment accelerates the maturation of parvalbumin-expressing 

neurons within the striatum of the mouse 

2.1 Juvenile anatomical and protein findings 

This thesis successfully characterised PV+ inhibitory interneurons and Brain-Derived Neurotrophic 

Factor (BDNF) protein levels within the murine striatum during a putative early life striatal critical 

period, by determining the effect of EE upon these measures. In primary sensory cortex, both PV+ 
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inhibitory interneurons and BDNF protein have been shown to play a vital role in determining timing 

of the critical period within neural systems [6, 20].  

The presence of a late postnatal motor critical period within the striatum beginning at P30, sensitive 

to protein levels of Neurotrophic Growth Factor (NGF), and mediated by the cholinergic and 

dopaminergic systems within this area of the brain, has been well established [21-24]. Other 

striatally-mediated behaviours, such as Ultrasonic Vocalisations (USVs) and coordinated 

sensorimotor behaviours, are known to develop earlier on in the postnatal period [25-29]. These 

behaviours emerge around the same time that PV+ inhibitory interneurons within the striatum begin 

to mature [13, 30], suggesting the presence of an early life critical period within the striatum, 

mediated by the maturation of PV+ inhibitory interneurons and likely sensitive to protein levels of 

BDNF. I found that animals raised within enriched housing demonstrate an accelerated maturation 

of PV+ inhibitory interneurons and elevated BDNF protein levels within the striatum of young 

animals, providing further support for the presence of an early life striatal critical period, and 

evidence for the important impact that an animals’ environment can have upon neural 

development.  

 

2.1.1 Future Directions 

The immunohistochemically detectable presence of PV+ inhibitory interneurons within the striatum 

has been shown to depend upon adequate levels of BDNF protein, transported into the striatum via 

corticostriatal afferent projections [31]. Striatal PV+ inhibitory interneurons begin to mature around 

the same time that corticostriatal afferents form synapses within the striatum, and are known to 

depend upon the electrophysiological activity provided by these connections for full maturation [13, 

32]. It is likely that the BDNF protein provided by corticostriatal afferents also contributes to the 

maturation of striatal PV+ inhibitory interneurons.  
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This thesis demonstrates that EE leads to an accelerated maturation of PV+ inhibitory interneurons 

and elevated BDNF protein levels within the juvenile striatum. It would be of interest to determine 

the impact of EE upon the development of corticostriatal afferents during the early postnatal period. 

Further studies utilising neural tracers or markers for corticostriatal projections in conjunction with 

staining for PV+ inhibitory interneurons might provide a more thorough explanation for the 

mechanisms underlying the accelerated maturation of this neural population within enriched 

animals. Electrophysiological studies assessing activity levels of PV+ inhibitory interneurons within 

the striatum of juvenile animals may also provide further insight into the impact of EE upon both 

these neurons and the corticostriatal afferent projections they receive.  

Along with modulating the levels of PV present within striatal interneurons [13], the activity of 

corticostriatal afferent projections is also known to moderate the permeability of gap junction 

networks within the striatum [33]. Gap junctions are cell-to-cell channels that enable the transfer of 

ions between coupled cells [34], enabling electrotonic coupling between neurons and coordinated 

action potential firing within neural circuitry [35-39]. PV+ inhibitory interneurons within the striatum 

have been shown to form a syncytium, regulating action potentials through the use of gap junction 

connectivity [39]. Gap junctions are composed of transmembrane proteins known as connexins [34], 

of which there are several known types whose expression profiles are modulated throughout 

development [40, 41]. It is known that striatal PV+ inhibitory interneurons express connexin36 [42, 

43], the expression of which peaks within the striatum at postnatal day 16, followed by a decline 

[42]. It would be of interest to determine whether EE accelerates this pattern of maturation within 

the striatum, and to what extent it may influence electrotonic coupling between maturing striatal 

PV+ inhibitory interneurons.  

BDNF is not the only growth factor present within the striatum, nor the only growth factor capable 

of being impacted by EE. NGF is also present within the striatum, and plays a role in determining the 

timing of a late postnatal motor critical period [21-24]. Exposure to EE has been shown to increase 
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levels of NGF within the adult rat striatum [44], and slightly decrease levels of this growth factor 

within the adult murine striatum [45]. Protein levels of Insulin-like Growth Factor-1 (IGF-1) are able 

to be impacted by EE in the visual system [46, 47], although whether this growth factor is present 

within the striatum has not yet been determined. Given that homozygous IGF-1 knockout animals 

display a reduction in the number of immunohistochemically visible PV+ neurons within the striatum 

[48] and that application of exogenous IGF-1 protein has been shown to ameliorate the symptoms of 

MeCP2 Rett Syndrome mice [49], it is highly likely that this growth factor also plays an important 

role in striatal development. Future studies assessing the effect of EE upon these other growth 

factors within the striatum of juvenile animals would provide a more thorough view of how 

enrichment is capable of impacting this nucleus, particularly with regards to NGF, given the role this 

neurotrophic factor has been shown to play in striatal maturation [21-24].  

 

2.2 Juvenile Behavioural Findings 

This thesis successfully assessed the effect of EE upon juvenile striatally-mediated behaviours. The 

striatum is involved in the production of USVs and coordinated sensorimotor behaviours, both of 

which emerge during the first three weeks of life [25-29]. The USV calls profiled in this thesis are 

those produced in response to maternal separation, known to be uttered from as young as 3 days 

postnatal and to follow a set pattern of development, with occurrence decreasing as pups age and 

become independently mobile [50-54]. I found that EE impacted the call profile and duration of USVs 

produced by pups in response to maternal separation, but had no effect upon the incidence of USV 

production as pups aged. The current results are in line with evidence provided by other work of the 

ability of animals’ environment and upbringing to influence the production of USVs [54-56], and also 

support the worth of the maternal separation paradigm as a successful means for eliciting the 

production of USVs in young animals, providing evidence for the manner in which postnatal 

environment and age interact with the effects of short term isolation. A consistently successful 
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means of eliciting USVs is highly beneficial, as these calls are a potentially useful tool for assessing 

the ontogeny of behaviour and the maturation of the neural circuitry involved in their production.  

Coordinated sensorimotor behaviours were assessed by use of the rotarod behavioural apparatus, a 

test of speed, endurance and coordination. Previous work from our laboratory has shown that EE 

results in accelerated maturation of coordinated sensorimotor behaviours of very young (postnatal 

day 10) animals [57]. In order to determine whether EE has an ongoing impact upon development of 

coordinated sensorimotor behaviours, I assessed animals at an older age (postnatal days 21 to 26) 

prior to the onset of an already-defined striatal motor critical period [21-24], and towards the end of 

a putative early life striatal critical period [57]. I found that enrichment had no impact upon 

coordinated sensorimotor behaviours of juvenile animals as measured by performance on the 

rotarod behavioural task. These results suggest that the impact of EE upon particular behaviours or 

neural systems may only be observable during certain periods of behavioural ontogeny, and that this 

should be kept in mind when investigating the impact of environment upon brain development.  

 

2.2.1 Future Directions 

Raising pups within enriched housing has been shown to impact upon maternal behaviours, resulting 

in less time spent upon the nest overall, with a concomitant increase in the level of grooming and 

attention received by pups [58, 59]. Maternal behaviours have been shown to influence the 

production of USVs [60, 61], suggesting the differential USV call profiles observed within this study 

were likely due to the impact of enriched housing upon maternal behaviours. Further investigation is 

required to determine the exact interaction between EE, maternal behaviours and USV call 

production. One possibility for future studies would be assessment of the maternal response to USV 

recordings made of pups, to determine whether enriched housing leads to differences in maternal 

responsiveness. It would also be of interest to examine the effect of EE upon USV production by 

pups in response to other social stimuli, such as an intruder male or strange female. The recording 

299



 

 

apparatus used was capable of only recording a 20 kHz range of sound; future studies assessing the 

impact of EE upon a wider range of calls would shed further light on the maturation of systems 

involved in USV production [25].  

The effect of EE upon developing coordinated sensorimotor behaviours may be further assessed by 

the use of a gait analysis apparatus, balance beam apparatus, or forced swimming tests similar to 

those used in a previous study from our laboratory [57]. The tendency of young animals to jump off 

the rotarod behavioural apparatus before the completion of a trial means that any future 

experiments investigating the sensorimotor capabilities of animals at this age (postnatal day 21 to 

26) should take this “non-compliance” behaviour into account.  

 

3. Environmental enrichment improves problem-solving and goal seeking and ameliorates 

the effects of striatal PNN dissolution upon these behaviours 

This thesis successfully developed a consistent and relatively simple behavioural test by which to 

determine the efficacy of EE upon animal behaviours, and assessed the impact of EE upon goal-

orientated learning and sensorimotor coordination behaviours. The role of inhibitory striatal 

circuitry within these behaviours was ascertained by the use of Chrondroitinase ABC (ChABC), and 

the manner in which EE interacted with Perineuronal Net (PNN) dissolutions during behavioural 

testing was assessed.  

Exposure to EE is known to improve task acquisition in a goal-orientated learning behavioural 

paradigm [57, 62], and to also improve coordinated sensorimotor behaviours [63]. I found that 

animals raised in enriched housing demonstrated faster problem solving within the Puzzle Box 

during a test of goal-orientated learning, but only slightly improved acquisition of a rotarod based 

motor skill. These results demonstrate that exposure to EE can impact upon a variety of behaviours, 

and that the Puzzle Box goal-orientated learning task used in our studies is a consistent and useful 
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test for the effects of enrichment. I also found that animals raised within enriched housing approach 

problems within the Puzzle Box in a different manner to those raised within a standard laboratory 

environment, displaying more interaction with novel obstruction puzzles and less locomotor activity. 

These results demonstrate that performing a thorough analysis of movement patterns during 

behavioural tasks can provide greater insight into neural functioning.  

ChABC is a bacterial enzyme that digests PNNs into their constituent molecules, dissolving a 

component of the extracellular matrix [5, 64]. It is thought that PNN dissolution increases the level 

of neuroplasticity within a circuit, allowing for the formation of new connections between neurons 

[64, 65]. Previous work from our laboratory assessing the removal of PNNs within the striatum 

suggests that these extracellular matrix structures play a role in regulating behavioural functions 

mediated by this nucleus [5]. Permanent lesions to the striatum have been shown to interfere with 

performance of both cognitive and sensorimotor behavioural tasks [66-69], although exposure to EE 

is capable of reducing the severity of behavioural deficits induced by these lesions [68]. I found that 

injecting ChABC into the striatum successfully reduces the number of mature PNNs within this brain 

area, with no significant difference between the level of PNN digestion observed in both enriched 

and standard housed adult animals.  

ChABC treatment affected animal behaviour within the Puzzle Box task, but had little effect on 

motor task acquisition on the rotarod. These results demonstrate that PNN dissolution within the 

striatum is capable of modulating specific cognitive processes, providing further evidence for the 

important role of this nucleus – and by extension the basal ganglia – in a variety of behaviours. I also 

found that animals raised within enriched housing receiving ChABC did not demonstrate the same 

level of changes in goal-orientated learning behaviours as standard housed animals receiving ChABC. 

Taken together with the fact that enrichment improved behavioural performance, these results 

suggest that striatal PNN digestion has an opposite effect to that of EE on behaviours both within the 

Puzzle-Box and upon the rotarod. Despite both enrichment [8, 70, 71] and ChABC treatment [7, 64, 
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72] increasing plasticity within the CNS, the current results suggest that these two treatments can 

act on different, and potentially distinguishable, levels of striatal circuits. 

 

3.1 Future Directions 

The striatum is involved in cognitive processes such as decision-making [73, 74], choice of action 

[74], goal-orientated learning [75], rule-based learning [69], and task acquisition [67]; as well as 

sensorimotor behaviours, including motor coordination [68, 76], balance [68, 77], motor skill 

acquisition [78, 79], and synchronisation of sensory and motor input [68, 76, 77]. I established that 

striatal ChABC injection affects goal-orientated learning and problem-solving behaviours, and 

prevented enrichment-induced improvement in motor task acquisition on the rotarod. It would be 

of interest to determine whether PNN dissolution affects other striatally-mediated behaviours, such 

as instrumental learning and decision-making.  

The Puzzle-Box provides a simple and efficient means of assessing the efficacy of enrichment 

protocols. Accordingly, future experiments should endeavour to determine whether different forms 

of enrichment exhibit similar performance benefits on this goal-orientated learning task. For 

example, both full scale EE [45, 80] as well as voluntary exercise [81-83] in isolation can have similar 

benefits on delaying the onset of symptoms in Huntington’s disease mouse models. It would be of 

interest to determine how these two methods of enrichment affect specific behaviours exhibited in 

the solving of obstruction challenges within the Puzzle-Box task.  

Further studies determining how EE ameliorates the ChABC-induced changes in behaviour observed 

in this study would also be of import. Given that there was no detectable difference in the level of 

PNN dissolution between enriched and standard housed animals, there may other regions of the 

brain compensating for the loss of these structures within the striatum, or there may be a protective 
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effect of EE within the striatum preventing the modification of function associated with the removal 

of PNNs. 

Determining the extent of EE needed to limit ChABC-induced behavioural changes would also be of 

interest – whether EE confined to the early postnatal period, adulthood, or immediately following 

surgical intervention might have a similar protective effect as lifelong EE has not been established. 

Further studies into the potential protective effects of EE in this context may provide insights into 

recovery mechanisms, and contribute to the development of rehabilitative therapies.  

As noted above, a thorough anatomical and physiological assessment of afferent input to the 

striatum resulting from both enrichment and striatal PNN digestion should be prioritised.  

Surprisingly, motor skill acquisition, another behaviour dependent on striatal function [78, 79], 

exhibited little change due to both enrichment and ChABC treatment. One possible reason may be 

the time that had elapsed between initial PNN removal and the onset of rotarod testing. 

Accordingly, the same cohort of animals should be assessed on this motor skill acquisition task, soon 

after pharmacological treatment.  

 

4. Assessing the impact of environmental enrichment upon decision-making behaviours 

within the IntelliCage system 

Finally, this thesis successfully determined the effects of EE upon reward-based decision-making 

within a novel testing environment. One behavioural test that assesses the decision-making process 

by using rewards based on a set of rules is the Iowa Gambling Task (IGT), used to characterise 

decision-making behaviours by humans during psychological evaluations [84, 85]. The IGT 

determines the ability of an individual to balance potential future rewards against potential future 

losses. The striatum is known to be involved in rule-based learning [69], decision-making [73, 74] and 

choice of action behaviours [74], and thus is likely involved in mediating behaviour during this task. 
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Previous studies from other laboratories have developed rodent versions of the IGT – Rodent 

Gambling Task (RGT) – using food supply and withdrawal as rewards and losses, and rats as 

experimental subjects [86-88].  

I developed a mouse version of the RGT conducted within the self-contained behavioural testing 

IntelliCage arena, using water supply and withdrawal as rewards and losses. I found that all animals, 

regardless of housing condition, were able to discriminate between overall disadvantageous and 

overall advantageous choices within the IntelliCage, consistently preferring overall advantageous 

choices. These results demonstrate that mice are capable of performing complex behavioural tasks 

such as the RGT, providing another option for behavioural testing when assessing decision-making 

behaviours. A mouse version of the RGT is potentially useful for analysis of murine models of human 

diseases such as Schizophrenia, which has been shown to impact performance of human subjects in 

the IGT [89-91]. These results also demonstrate that a self-contained testing arena such as the 

IntelliCage is able to be adapted to perform more complex behavioural tasks than initially intended.  

There was no discernible difference in the performance of animals raised in or exposed to EE as 

adults and standard housed cohorts during the RGT. Animals raised from birth in enriched housing 

showed greater levels of exploratory behaviour upon first encountering the IntelliCage when 

compared to standard raised mice. This effect soon wore off, with both animals raised from birth in 

enrichment and housed briefly in enrichment as adults displaying lower levels of exploratory 

behaviours during the remainder of their time within the IntelliCage than either group of standard 

housed animals. These results are consistent with previous studies demonstrating that animals 

exposed to EE habituate faster to novel situations than those housed within standard cages [92]. 

This effect of EE is worth keeping in mind when designing behavioural tasks, particularly those 

dependent upon animals escaping an aversive arena or maintaining high levels of activity, such as 

the Morris Water Maze or IntelliCage, respectively. It may also be that enriched animals require 

greater reward or stimulation during behavioural tasks than those housed in standard laboratory 
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cages, due to experiencing a higher level of stimulation within home cages. Given the growing body 

of research investigating the effects of environmental manipulations, determining the effect of EE 

upon baseline behaviours such as habituation to testing arenas and sensitivity to reward is of 

importance.  

 

4.1 Future Directions 

The IntelliCage provides a valuable option for behavioural testing, reducing experimenter contact 

and handling that can cause stress during more conventional behavioural tasks, and reflecting a 

more “naturalistic” behavioural pattern due to co-housing of animals during behavioural testing [93-

95].  

While the current study confirmed the feasibility of developing an RGT using the IntelliCage 

platform, the prolonged occupancy of subjects within the home/testing arena, and the 

corresponding enrichment experienced by all animals within this system may have inadvertently 

reduced any potential differences in performance of cohorts raised in enriched and standard 

housing conditions. Further, the particular combination of reward/penalty used in this version of the 

task may not have been optimal to drive the desired choice behaviour. Future studies should 

examine ways of improving the task to elicit a stronger response from test subjects.  

It would be worth determining whether there are other human-based behavioural tests that may 

translate to the IntelliCage, particularly for the assessment of animal models of human diseases. The 

rodent version of the IGT developed during this study is potentially of great use to researchers 

investigating animal models of human conditions such as Schizophrenia, addiction, anxiety, and 

obesity, all of which have been shown to impair decision-making behaviours of subjects during the 

human IGT [89, 91, 96-100]. Determining the effect of disease models upon decision-making 

behaviours during the RGT would provide a more detailed picture of behavioural impairments in 
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these animal models, and may provide confirmation that animal models match the cognitive and 

behavioural profile of human diseases.  

The effect of EE upon exploratory behaviour and habituation within the IntelliCage was unexpected 

and of great interest. Unpublished results from another student in our laboratory suggest that 

exposure to EE has a similar impact upon behaviour within an operant conditioning chamber using 

food as a reward. Given the increasing prevalence of studies investigating EE, and the possibility of 

all laboratory animal housing containing enriching elements in the future, it would be of interest to 

determine the exact effects of EE upon reward sensitivity and habituation behaviours within 

automated behavioural testing paradigms. It may be that animals exposed to EE require higher levels 

of reward and stimulation within a testing arena than those housed in standard laboratory 

conditions, perhaps requiring a new “baseline” for behavioural testing.  

 

5. Final Conclusions 

The basal ganglia is integral to the healthy and whole functioning of an organism, mediating 

interactions with and responses to an organism’s surroundings. The effects of environmental 

enrichment upon the striatum and animal behaviours documented within this thesis provide 

evidence for the significant impact that an organism’s surroundings may exert upon this important 

part of the brain. Determining the manner in which environmental enrichment influences specific 

cognitive neural networks may assist in the development of early education and intervention 

programs targeted at young children, or environmentally-based therapies for individuals suffering 

from neurological disease or injury.  
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