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Abstract

In this thesis we consider the computation of integral closures in cyclic Galois exten-

sions of global function fields and the determination of Galois groups of polynomials over

global function fields. The development of methods to efficiently compute integral closures

and Galois groups are listed as two of the four most important tasks of number theory

considered by Zassenhaus [Poh94].

We describe an algorithm each for computing integral closures specifically for Kummer,

Artin–Schreier and Artin–Schreier–Witt extensions. These algorithms are more efficient

than previous algorithms because they compute a global (pseudo) basis for such orders, in

most cases without using a normal form computation. For Artin–Schreier–Witt extensions

where the normal form computation may be necessary we attempt to minimise the number

of pseudo generators which are input to the normal form. These integral closure algorithms

for cyclic extensions can lead to constructing Goppa codes, which can correct a large

proportion of errors, more efficiently.

The general algorithm we describe to compute Galois groups is an extension of the

algorithm of [FK14] to polynomials over function fields of characteristic p. This algorithm

has no restrictions on the degrees of the polynomials it can compute Galois groups for.

Previous algorithms have been restricted to polynomials of degree at most 23. Characteris-

tic 2 presents additional challenges as we need to adjust our use of invariants because some

invariants do not work in characteristic 2 as they do in other characteristics. We also de-

scribe how this algorithm can be used to compute Galois groups of reducible polynomials,

including those over function fields of characteristic p.

All of the algorithms described in this thesis have been implemented by the author in

the Magma Computer Algebra System [CBFS13] and perform effectively as is shown by

a number of examples and a collection of timings.
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Introduction

In this thesis we consider some computational problems in Galois extensions of global

function fields. In particular we investigate the efficient computation of integral closures

in cyclic extensions of global fields and the computation of Galois groups for polynomials

over global function fields.

Function fields have been studied since the 19th century when they were investigated

by Dedekind, Kronecker and Weber. They were further considered by Artin, Hasse, F. K.

Schmidt and Weil in the 20th century and continue to be of interest because they provide

a basis for designing efficient algorithms for the study of the geometry of algebraic curves.

The study of a function field is equivalent to the study of a curve and so function fields can

be studied from the algebraic geometry point of view. Applications of curves and function

fields arise in coding theory and cryptography. Codes can be constructed from curves with

some curves being more suited to this use than others. For efficient construction of codes

from curves, or equivalently function fields, computations in the curves or function fields

need to be done efficiently.

However, global function fields are analogous to number fields in that they are finite

separable extensions of a rational function field in the same way that a number field is

a finite extension of the rational field. In this thesis we consider function fields from the

number theory point of view, as we take advantage of algorithms described for number fields

which can be used similarly for function fields. Such algorithms can be found in [Coh00]

where algorithms in [Coh93] are generalized to relative extensions of number fields. The

generalization of these algorithms to global function fields can be done by analogy. This

thesis uses these algorithms for global function fields including relative extensions of global

function fields. We state our algorithms in as much generality as possible so that it is

irrelevant whether the field is a number or function field and whether it is represented as

a direct extension of the rational (function) field or not.

There are some tasks which have a rich history for number fields but have only recently

sparked interest for function fields. These include the development of methods to efficiently

compute integral closures, Galois groups, class groups and unit groups. The integral closure
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2 Introduction

in a field extension is an analogue of Z. Such rings can be used in computing class groups,

unit groups and Galois groups. The unit group computed from a field extension is the

unit group of an integral closure in the field extension, indeed the unit group of the field

itself is trivial. These tasks are listed as the four tasks of number theory which Zassenhaus

considered most important [Poh94]. Zassenhaus contributed to each of these tasks but

we note here especially his contribution to the computation of integral closures in the

development of the Round 2 algorithm.

For function fields we are also interested in computing Riemann–Roch spaces of divisors

or at least the dimension of such and computing the genus, the most important invariant,

of a function field. The genus of a function field can be used to bound the difference

between the degree and the dimension of all divisors of a function field. Divisors of a

function field can be represented by ideals of integral closures in the function field and a

calculation of bases for Riemann–Roch spaces can use this representation. The genus of

a function field can be computed using the degree of the different divisor, the degree of

the field extension and the relative degree of the algebraic closure of constant field in the

extension. The algebraic closure of the constant field in the function field is equivalent to

the Riemann–Roch space of the zero divisor. The genus can be used in the computation of

the divisor class group of a function field, analogous to the class group of a number field.

A method for calculating Riemann–Roch spaces of divisors and a method for computing

divisor class groups of function fields is presented in [Heß99]. Improving the efficiency of

the computation of integral closures can improve the computation of the genus, Riemann–

Roch spaces and divisor class groups.

Function fields defined over a finite field k (with characteristic p > 0) are global fields

along with number fields. Both these types of global fields have a class field theory which

allows abelian extensions, that is, Galois extensions whose Galois group is abelian, to be

classified completely. Class field theory has been studied since the beginning of the 20th

century and prior to 1940 it was first considered also for global function fields by F. K.

Schmidt and Witt ([Ser88] p. 159). Abelian extensions allow us to construct families

of fields where we can control the genus and the number of rational places and allow

a representation from which we can compute these values for such extensions relatively

cheaply. However, in order to use these fields explicitly and compute the rational places

themselves we need to be able to compute integral closures in these fields.

The construction of an Algebraic–Geometric code from a function field involves the

computation of some rational places of the function field, the construction of a divisor,
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the computation of a basis for its Riemann–Roch space and the evaluation of this basis at

the rational places. Equivalently these codes can be constructed from divisors of a curve

over a finite field. One of the core invariants of a code, its minimum distance, is linked

to the genus and the number of rational places of the function field used to construct the

code. How class field theory can be used to generate curves with many rational points

compared to their genus is explained by Ducet and Fieker in [DF12]. This is motivated

by the interest in finding linear block codes having high minimum distance compared to

their block length. Algebraic–Geometric codes are of interest because curves having many

rational points tend to have high minimum distances.

Efficient algorithms for computing integral closures in cyclic extensions of global func-

tion fields makes possible a wider range of applications. For example, this allows the

construction of Algebraic–Geometric codes from much larger cyclic field extensions. Since

a divisor can be constructed using integral closures in the function field the construction

of the code benefits from improved efficiency in the integral closure computation.

Recent algorithms to compute integral closures or maximal orders in global fields in-

clude Round 2 (described in [Coh93]) and algorithms using local factorization [Pau01,

GMN11, GMN12, GMN13, Bau14]. To gain a more efficient algorithm for cyclic ex-

tensions of number fields special techniques have been investigated by Daberkow in [Dab95].

Cyclic extensions of function fields were more recently considered by Fraatz in [Fra05].

Both of these techniques use the special shape of the defining polynomial to write down

local generators at each prime of interest, at least one for each ramified prime. These

generators each define an order which is P -maximal for a prime P . But these generators

need to be combined to compute a global order. This combination of P -maximal orders

for each prime of interest dominates the runtime of these approaches. To combine the

P -maximal orders defined by these generators we need to essentially compute the smallest

order containing all the P -maximal orders and this involves the computation of a normal

form to compute a basis for the global order. So while these approaches describe maximal

orders in theory, in practice the construction of the orders themselves is expensive.

In cyclic extensions the combination of the local maximal orders can be done efficiently

and a (pseudo) basis can be written down directly for the global maximal orders. This

can be done without calculating local generators but by using the ideals in the pseudo

bases the P -maximal orders can be combined efficiently. By calculating a basis for the

maximal orders “by hand”, which we show can be easily done, we save much computation

time in computing a basis from generators. The special shape of the defining polynomials
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means that in many cases we can avoid any normal form computations which has not

been avoided in previous algorithms. It is possible to do this for cyclic extensions because

the special shape of the polynomials involved allows a special relationship between the

constant coefficient and the discriminant of the polynomial and also between the constant

coefficient and the primitive element of the extension. Additionally, we compute integral

closures without computing any other subrings of the function field as the Round 2 method

does and without factoring (or sometimes even computing) the discriminant of the defining

polynomial.

This thesis is structured as follows. Chapter 1 contains background information about

orders as a type of subring of function fields. The details regarding our efficient algorithm

for computing integral closures in Kummer extensions (more generally, radical extensions)

are found in Chapter 2. Here we have been able to compute a diagonal basis for the integral

closures. We describe efficient algorithms for computing integral closures in Artin–Schreier–

Witt extensions in Chapter 5 and for the simplest case of Artin–Schreier extensions in

Chapter 3. In Artin–Schreier extensions we have been able to compute a triangular basis

for the integral closures. In Artin–Schreier–Witt extensions we have been able to compute

a (pseudo) basis for S-maximal orders where S contains primes of the same ramification

degree, rather than generators corresponding to each individual prime. We also compute a

basis for a degree pn extension rather than the Artin–Schreier–Witt tower of n extensions

of degree p as does [Fra05]. These cyclic extensions cover all possibilities for components

of abelian extensions.

We will show that we have removed in practice one of the barriers to constructing good

codes from cyclic extensions in Chapter 6.

Chapter 4 contains a short description of computing generators for prime ideals which

extend totally ramified primes in a Kummer or Artin–Schreier extension using information

presented in Chapters 2 and 3.

Since abelian and cyclic extensions are types of Galois extensions and computing Galois

groups is also considered to be an important task of number theory, in Chapters 7, 8

and 9 we describe an algorithm to compute Galois groups of polynomials of unrestricted

degree over global function fields. Since Stauduhar developed an interesting practical

algorithm [Sta73] for the computation of Galois groups there have been a number of other

algorithms described but these have mostly been specific to polynomials over the rational

field. We consider in Chapter 7 the recent algorithm by [FK14] which removes the degree

restriction of [Gei03, GK00] and also introduce computations of Galois groups. Chapter 8
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expands on the algorithm in Chapter 7 and describes how we adjust this algorithm so that

it can be used to compute Galois groups of polynomials over characteristic p function fields,

including when the characteristic is 2 in which case replacement invariants were required.

In theory [Gei03] applies to polynomials over fields of small characteristic but there have

been found to be problems in practice with this approach. Additionally the algorithm we

present to compute Galois groups of irreducible polynomials over characteristic p function

fields is the first to use the computation of the subfields of the field extension defined by the

polynomial. Most previous algorithms compute Galois groups of irreducible polynomials.

We go further and compute Galois groups of reducible polynomials also. Chapter 9 explains

how this algorithm can be used to compute Galois groups of reducible polynomials.

The main results of this thesis are the pseudo bases presented in Chapters 2, 3 and 5

and the details contained in Chapters 8 and 9. Most of the results in this thesis have been

published in [Sut12], [Sut13] or [Sut15]. The results in Chapter 5 have been submitted

for publication in [Sut14].

We have implemented our algorithms for integral closures in Magma [CBFS13] V2.16

(Chapters 2 and 3), V2.20 (Chapter 5) and later. Our algorithms for Galois groups have

been implemented in Magma V2.16, V2.17 (Chapter 8) and V2.18 (Chapter 9) and later.

For a discussion of function fields in Magma please see [Fie06].



Background and Notation

An algebraic function field is an extension field F containing a field k such that F is a

finite algebraic extension of a rational function field k(t) for some element t ∈ F which is

transcendental over k. A finite separable function field extension F ′/F can be described

by a defining polynomial f such that F ′ = F [x]/f(x) or F ′ = F (α) where α is a root of f .

The extension F ′/F has degree [F ′ : F ] = deg(f). The element α is a primitive element of

F ′/F and {αi}0≤i<[F ′:F ] will be a basis for F ′/F . A subfield K ⊆ F ′/F is a field extension

K/F with [F ′ : K][K : F ] = [F ′ : F ]. The algebraic closure of F is an extension of F

containing a root of every polynomial over F . The field k is the constant field of F and its

algebraic closure in F we refer to as the exact constant field of F . These constant fields are

perfect if all algebraic extensions of them are separable, that is, all irreducible polynomials

over these fields have only distinct roots in an algebraic closure.

An F -automorphism of F ′/F is an automorphism σ of F ′ such that σ(a) = a for all

a ∈ F . The automorphism group of F ′/F is the group of all F -automorphisms of F ′,

{σ : F ′ → F ′| σ is an isomorphism and σ(a) = a ∀a ∈ F}. An algebraic extension F ′/F is

a Galois extension if the automorphism group of F ′/F has order [F ′ : F ]. The Galois group

of a Galois extension is the automorphism group of the extension. A Galois extension of

F is a splitting field for a separable polynomial f over F , a field containing all roots of

f . The normal closure of F ′/F is the minimal splitting field of the defining polynomial of

F ′/F over F .

A place P of an algebraic field F is the maximal ideal of a valuation ring OP , a proper

subring of F containing the constant field of F such that z ∈ OP or z−1 ∈ OP for all z ∈ F .

Since OP is a local ring it has a unique maximal ideal so the place P is uniquely determined

by OP and OP is uniquely determined by P ([Sti93] Section I.1). Since P is a principal

ideal of OP , there is some prime or uniformizing element π ∈ OP such that P = πOP .

A place P has an associated valuation vP defined by vP (z) = vP (uπn) = n, vP (u) = 0, a

residue class field OP/P and a degree fP = [OP/P : k]. The residue class map or evaluation

map at P takes an element a of OP to the residue class a+ P of a modulo P . We denote

the set of places of a field F by PF .

6
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A divisor D of F is a formal sum of places of F , D =
∑

P∈PF cPP where only finitely

many cP ∈ Z are non zero. The degree of a divisor is
∑
cPfP . The principal divisor of

a non-zero element a is the divisor (a) =
∑
vP (a)P . A principal divisor has degree 0.

A non-zero element a has a zero at P when vP (a) > 0 and a pole at P when vP (a) <

0. The principal divisor of a can be written as the difference between the zero divisor

(a)0 =
∑
{P :vP (a)>0} vP (a)P and the pole divisor (a)∞ =

∑
{P :vP (a)<0}−vP (a)P of a. We

have 0 = deg((a)) = deg((a)0)− deg((a)∞) so deg((a)0) = deg((a)∞).

The Riemann–Roch space of a divisor A of F is the vector space L(A) = {x ∈ F× |
(x) ≥ −A}∪{0}. The dimension of a divisor is the vector space dimension of the Riemann–

Roch space of the divisor, over the exact constant field of F .

The genus of a function field is one more than the maximum difference between the

degree of its divisors and their dimension.

When F ′ is a non trivial algebraic field extension of F , a place P ′ ⊂ F ′ is said to

extend P ⊂ F if P ⊂ P ′ for which we write P ′ | P . When P ′ | P , OP ⊂ OP ′ and

there is an integer e(P ′|P ) such that vP ′(z) = e(P ′|P )vP (z) for all z ∈ F which we call

the ramification degree of P ′ | P . The extension P ′ | P is ramified if e(P ′|P ) > 1,

unramified if e(P ′|P ) = 1 and the residue class extension (OP ′/P )/(OP/P ) is separable

and totally ramified if e(P ′|P ) = [F ′ : F ] in which case there is only one P ′ such that

P ′ | P . The degree f(P ′|P ) is the relative degree [OP ′/P ′ : OP/P ]. An unramified

extension P ′ | P is said to be inert if P ′ is the only ideal which extends P in which case

the inertia degree f(P ′|P ) = [F ′ : F ] and split if there is more than one P ′ | P and we

have f(P ′|P ) = 1, ∀P ′ | P . In the simplest case we can compute these degrees by factoring

the image of the defining polynomial of F ′/F under the canonical extension of the residue

class map at P to polynomials. The exponent of a factor is the ramification degree and

the degree of a factor is the inertia degree of the corresponding ideal above P .

We consider the infinite place of a rational function field to be

P∞ = {g/h|g, h ∈ k[t], deg(g) < deg(h)}.

We write V∞ = {g/h|g, h ∈ k[t], deg(g) ≤ deg(h)} as the valuation ring of P∞. The finite

places of a rational function field k(t) are then

Pπ = {g/h|g, h ∈ k[t], h 6= 0, π|g, π - h}

for irreducible polynomials π ∈ k[t]. The finite places of an algebraic function field F/k(t)

are those places of F lying above a finite place of k(t) and the infinite places of F/k(t)
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are those places of F lying above P∞. We denote the finite places by P0
F , and the infinite

places by P∞F .

Let a be an element of an algebraic function field F ′/F . Then a has a minimal poly-

nomial, a polynomial fa of smallest degree over F such that fa(a) = 0 and a charac-

teristic polynomial of degree [F ′ : F ] which is the cth power of the minimal polynomial,

c = [F ′ : F ]/ deg(fa). The other roots of fa in some algebraic closure are the conjugates

a(i), 0 ≤ i < deg(fa) of a. The cth power of the product of the conjugates of a is the norm

of a over F , norm(a) and the c times the sum of the conjugates of a is the trace of a over

F , Tr(a).

An element a is integral over a subring R of F if there is a monic polynomial in R[x] of

which a is a root, in which case vP (a) ≥ 0 for all prime ideals P ⊂ R. If a is not integral

over R then it will have a denominator ideal da with respect to R such that daa is integral

over R and vP (daa) is minimal for all prime ideals P ⊂ R. When R ∩ k(t) is a principal

ideal domain, for example, k[t] or V∞, then there is an element da ∈ R ∩ k(t) such that

daa is integral and vP (daa) is minimal for all P ⊂ R. The set of elements of F which are

integral over R is called the integral closure of R in F . A ring R is integrally closed if all

elements of the field of fractions of R which are integral over R are in R. We denote by

Z0
F the integral closure of k[t] in F and by Z∞F the integral closure of V∞ in F .

The discriminant of a polynomial f is disc(f) =
∏

0<i6=j≤deg(f)(αi − αj) where αi are

the roots of f and can be computed as a resultant of f with its derivative, that is, without

computing the roots of f .

A localization of a ring R at a place P is the ring RR∩P = {a/b : a, b ∈ R, vP (b) = 0}.
Since R ⊆ RR∩P for each place P we have R ⊆ ∩PRR∩P . When P ⊆ R we can write RP

instead of RP∩R.

Let d(a, b) = c−vP (a−b) for some constant c > 1 be a metric. A completion of a ring R

at a place P is a ring in which all Cauchy sequences converge with respect to the metric

d(a, b) and for each element of the completion there is a Cauchy sequence in R which

converges to it. It can be shown that completions of function fields are isomorphic to series

rings. This isomorphism allows these completions to be implemented as series rings in

Magma [CBFS13]. An element in a completion of a function field is a π-adic expansion

of an element of the function field a =
∑∞

i=vP (a) aiπ
i, ai ∈ OP/P at a uniformizing element

π of P .
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Chapter 1

Function Fields and their Subrings

In the first part of this thesis we derive pseudo bases (see Definition 1.2) for S-maximal

orders in cyclic extensions. The computation of orders from these pseudo bases is efficient

and its complexity is linear in the degree of the field when the extension is Kummer,

Artin–Schreier or all primes have the same ramification degree. Otherwise we minimise

the number of pseudo generators which are input to the normal form computation (of

polynomial complexity in the degree of the field). For a discussion of improvements to

and the complexity of the Hermite normal form computation see [BFH14]. The generic

procedure to compute a basis from generators which uses a normal form computation is not

often required as we mostly directly compute a basis in a normal form. Our computation

of maximal orders also does not require the computation of any intermediate P -maximal

orders as in some other algorithms.

In this chapter we provide the common background information for the computation of

maximal orders in the 3 different types of cyclic extensions. We provide a comparison of

timings in Sections 2.7, 3.7 and 5.8. We use several results presented in [Sti93] and [Fra05]

and also follow some notation used in this book (especially Chapter I and III) and thesis.

1.1. Ramification Theory in Galois Extensions

Since we are working with Galois extensions of function fields we have, from Hilbert’s

ramification theory, that e(Pi|P ) = e(Pj|P ) for ideals Pi, Pj | P and similarly f(Pi|P ) =

f(Pj|P ). We also have e(P ′|P )f(P ′|P )r = [F ′ : F ] where r is the number of places of F ′

which extend P .

Let G = Gal(F ′/F ) be the Galois group of F ′/F . We also have the decomposition group

GZ(P ′|P ) = {σ ∈ G|σ(P ′) = P ′} and the inertia group GT (P ′|P ) = {σ ∈ G|vP ′(σ(z)−z) >

0∀z ∈ OP ′} of P ′ | P , which satisfy GT (P ′|P ) ⊆ GZ(P ′|P ) ⊆ G. The fixed fields of these

groups are called the decomposition field and inertia field respectively.

Theorem 1.1 ([Sti93] Theorem III.8.2 (d)). Let F ′/F be a Galois extension, P a place

of F and P ′ an extension of P to F ′. Let PZ and PT denote the restriction of P ′ to the

10
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decomposition field Z and inertia field T respectively of P ′ | P . Then we have the following

picture

F ′

T

Z

P ′

PT

F

PZ

P

e(P ′|PT ) = e(P ′|P ) = [F ′ : T ]
and f(P ′|P ) = 1

and e(PT |PZ) = 1
f(PT |PZ) = f(P ′|P ) = [T : Z]

e(PZ |P ) = f(PZ |P ) = 1

So P is completely decomposed or split in Z/F , PZ is completely inert in T/Z and PT

is totally ramified in F ′/T .

1.2. Class Field Theory

It is possible to count the number of rational places in abelian extensions ([Coh00]

Theorem 3.5.3) hence class field theory is a powerful technique for constructing extensions

with many rational places.

As abelian groups can be decomposed into a finite product of cyclic groups so can

abelian extensions be decomposed into cyclic extensions of prime power degree ([DF12]

Section 3.1). We call these cyclic extensions the components of an abelian extension.

The integral closure in an abelian extension can be computed from the integral closures

in the cyclic component extensions hence computing integral closures efficiently in cyclic

extensions can improve the efficiency of the computation of integral closures in abelian

extensions. The improvement to the efficiency of the construction of good large codes can

be seen most notably when constructing codes from cyclic extensions. Note that in some

cases, such as Hilbert class fields where the discriminants of the integral closures of the

components are 1, our combination of the integral closures of the components is an integral

closure in the abelian extension, however in the general case, another integral closure

algorithm will need to be applied to finish the computation in the abelian extension. This

may be considerably more expensive than the computations in the component extensions.
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1.3. Integral Closures

Let F ′/F be a finite separable extension of the global algebraic function field F/K, and

P ∈ PF be a place of F/K. Recall from [Sti93] Corollary III.3.5 that the integral closure

O′P of the valuation ring OP = {z ∈ F |z−1 6∈ P} in F ′ is

O′P =
⋂
P ′|P

OP ′

where OP ′ is the valuation ring at the place P ′ | P . We also have from this corollary that

there is a basis {ai}0≤i<n, n = deg(F ′/F ) of F ′/F such that

O′P =
n∑
i=1

OPai

and we call such a basis {ai}0≤i<n an integral basis of O′P over OP or a P -integral basis.

Therefore we have that O′P contains those elements of F ′ with non-negative valuation

at all primes P ′ | P .

For sets S ⊂ PF , we have holomorphy rings OS = ∩P∈SOP . As noted by [Fra05]

following Proposition 1.2.8, the integral closure of OS in F ′/F is

O′S =
⋂

P ′|P,P∈S

OP ′ =
⋂
P∈S

O′P .

We also note from [Fra05] Proposition 1.2.8 (iii) that OS is a Dedekind domain and

from [Sti93] Proposition III.2.9 that there is a 1-1 correspondence between S and the set

of maximal ideals of OS given by

P ←→ OS ∩ P.

We consider some special cases of holomorphy rings corresponding to S being the finite

places, P0
F , and infinite places, P∞F . These holomorphy rings are the finite and infinite

maximal orders, Z0
F and Z∞F , as mentioned in the Background and Notation and [Fra05]

following Remark 1.2.9 and as computed by Magma [CBFS13]. Note that since P∞F is

a finite set, Z∞F is a principal ideal domain ([Sti93] Proposition III.2.10) but Z0
F is not

always. We do not use the principal ideal domain property. We denote a maximal order

or “ring of integers” of a field F by ZF when the maximal order could be either finite or

infinite. A maximal order ZF ′ is equivalent to a holomorphy ring O′S where S = P0
F or P∞F

because it contains all elements integral over OS = ZF . We have from the correspondence

above that the prime ideals of ZF correspond to a place P of F , where the finite places of F

correspond to an ideal of the finite maximal order and the infinite places of F correspond
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to an ideal of the infinite maximal order. We will use P for both the place P and its

intersection with the relevant maximal order and refer to the intersection of a place with

a maximal order as a prime of the maximal order.

1.4. Orders

As [Sti93] mentions, holomorphy rings are only one type of subring of a function field.

He also mentions subrings of the form k[t][x1, . . . , xn] where x1, . . . , xn ∈ F ′ \k(t). We now

consider a type of subring of this second form.

An order O of an algebraic function field extension F ′/k(t) is a subring of F ′ containing

1 which has the structure of a finitely generated k[t]- or V∞-module of maximal rank

deg(F ′/k(t)) over k[t] or V∞. As [Coh00] notes in his introduction, it is common for

algebraic fields F ′/F to be represented as a finite extension of another algebraic field

F/k(t). An order O of a function field F ′/F/k(t) in this relative representation is not only

a k[t]- or V∞-module but also has the structure of a finitely generated C-module where C
is an order of F . We call C the coefficient ring of O. An order O ⊂ F ′ is contained in the

integral closure ZF ′ of either k[t] or V∞ in F ′. We consider the rings k[t] and V∞ to be the

orders of the rational function field k(t). An order, as a module over its coefficient ring,

has a basis or a pseudo basis in the same way as a function field has a basis as a vector

space over its coefficient field. Some orders can be defined by a defining polynomial f such

that O = C[x]/f(x) or O = C[α] where α is a root of a monic polynomial f over C. Such

orders are sometimes referred to as equation orders and will have {αi}0≤i<[O:C] as a basis.

We call such bases consisting of powers of a primitive element a power basis. An order O
of an algebraic field extension F ′/F is maximal over its coefficient ring if it is not contained

in any larger order of F ′/F over that coefficient ring. A maximal order O ⊂ F ′/F is equal

to the integral closure of its coefficient ring in F ′. A maximal order has an integral basis or

integral pseudo basis, a basis consisting of integral (pseudo) elements over the coefficient

ring or equivalently elements integral at all prime ideals contained in the maximal order.

An integral module is a module contained in an integral closure of its coefficient ring, that

is, an integral module contains only elements integral at all finite or infinite places.

The discriminant of an order C[α] is equal to the discriminant of the minimal polynomial

of α, the defining polynomial of the extension. The discriminant of a maximal order is

equal to the norm of the different which is the product
∏

P∈P
∏

P ′|P P
′d(P ′|P ),P = P0

F or

P∞F , where d(P ′|P ) is the different exponent of P ′ | P corresponding to the different

divisor defined in [Sti93] Definition III.4.3. When P ′ | P is unramified d(P ′|P ) = 0,
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otherwise in the cases we are considering, d(P ′|P ) = e(P ′|P ) − 1 in a Kummer extension

and d(P ′|P ) ≥ e(P ′|P )− 1 in an Artin–Schreier extension and the exact value is given in

Remark 3.7.

A Dedekind domain is a Noetherian, integrally closed domain such that every non-zero

prime ideal is a maximal ideal ([Coh00] Definition 1.2.1). Most linear algebra algorithms

for Z and k[t]-modules can be generalized to modules over Dedekind domains ([Coh00]

Chapter 1). In particular we can compute a normal form of a module over a Dedekind

domain ([Coh00] Algorithm 1.4.7) although this can be expensive. To take advantage of

this the orders we are interested in will be extensions of a maximal order ZF of the function

field F since only maximal orders are Dedekind domains, therefore C will be a maximal

order in our discussion. We attempt to construct bases which are already in a normal form.

1.4.1. Pseudo Bases. The algorithms in this part of the thesis compute pseudo bases

for maximal orders to describe the maximal order as a module over a Dedekind domain.

Analogous to [Poh96] we have that a relative integral basis does not exist in every relative

extension. A relative integral basis for an order O ⊇ C[α] with coefficient ring C only

exists when the quotient of the discriminant of C[α] by the discriminant of O is a principal

ideal [Art65]. If a relative integral basis of O exists over C then O is a free module over

C and its discriminant is a principal ideal of C. The infinite maximal order Z∞F ′ is always a

free module since its coefficient ring Z∞F is a principal ideal domain but we have not found

it constructive to use this property.

In order to preserve the rich structure of O as a ZF -module we need to be able to

represent O as a ZF -module even though O is not a free ZF -module. The theory of Z-

bases can be generalized to other euclidean domains and conditionally to principal ideal

domains, however, ZF is not always a principal ideal domain. Chapter 1 of [Coh00] covers

the generalization of linear algebra algorithms for Z-modules to ZF -modules in the case of

algebraic number fields, the case of algebraic function fields is analogous.

Since an order is a finitely generated k[t]- or V∞-module it is a finitely generated

ZF -module. Also, an order is torsion free because it contains no zero divisors, therefore

by [Coh00] Theorem 1.2.18 an order is a projective ZF -module. Applying [Coh00] Corol-

lary 1.2.24 we have for an order O of degree n with coefficient ring ZF there are elements

ω1, . . . , ωn ∈ O and fractional ideals a1, . . . , an ⊂ ZF such that

O = a1ω1 ⊕ · · · ⊕ anωn.
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We can use this description of O instead of a basis. To formalize we give Cohen’s [Coh00]

Definition 1.4.1 of pseudo elements and bases and Hoppe’s [Hop98] Definition 4.1.1 of a

pseudo matrix.

Definition 1.2 ([Coh00], Definition 1.4.1). Let M be a finitely generated torsion-free R-

module, where R is a Dedekind domain and F is its field of fractions, and let V be an

F -vector space such that M is a submodule of V and V = FM .

1. A pseudo-element of V is a sub-R-module of V of the form aω with ω ∈ V and a a

fractional ideal of R, or equivalently an equivalence class of pairs (ω, a) formed by

an element of V and a fractional ideal of R under the equivalence relation (ω, a) ∼
(ω′, a′) if and only if aω = a′ω′ as sub-R-modules of rank 1 of V .

2. The pseudo-element aω is said to be integral if aω ⊂M .

3. If ai are fractional ideals of R and ωi are elements of V , we say that (ωi, ai)1≤i≤m

is a pseudo-generating set for M if

M = a1ω1 + · · ·+ amωm.

4. We say that (ωi, ai)1≤i≤m is a pseudo-basis of M if

M = a1ω1 ⊕ · · · ⊕ amωm.

From a pseudo-generating set or basis we can construct a pseudo matrix by putting the

vectors wi into the columns (or rows) of a matrix.

Definition 1.3 ([Hop98], Definition 4.1.1). Let O be an order of a field F and let m,n ∈ N
and A be an (n ×m)-matrix over F with column vectors A1, . . . Am in F n. Let a1, . . . am

be fractional ideals of O. Then the pair [(a1, . . . , am), A] is a pseudo matrix over O with n

rows and m columns.

A pseudo matrix constructed from a pseudo basis for an order O in a field F ′/F of

degree n will have n rows and n columns. We can use a pseudo matrix [(aj)j, A] with

invertible matrix A as a transformation expressing elements of an order R ⊂ F ′,R ⊆ O
or O ⊆ R, as a linear combination of the basis of O as follows. Let (rj, rj)j be a pseudo

basis of R ⊂ F ′ and [(aj)j, A] be a pseudo matrix. Let O ⊂ F ′ be the order with basis

(rj, rj)j transformed by [(aj)j, A]. Let r =
∑

j cjrj ∈ R, then
∑

j Ajicj is the ith coefficient

of r with respect to the transformed basis of O. Let (wj, aj) be a pseudo basis of O, then

wj =
∑

i(A
−1)jiri. An element β ∈ F ′ lies in O if, for all j, the coefficient of the jth basis

element of O in β lies in aj.
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The determinant of a module is the product of the determinant of the matrix A of the

pseudo matrix of a pseudo basis for the module and the product of the coefficient ideals ai

of that pseudo basis.

It is useful to be able to express a pseudo basis in a unique normal form. One such

normal form which can be used is the Hermite normal form, a generalization of the extended

Euclidean algorithm, [Coh00] Theorem 1.4.6. Since we are considering only modules of

full rank we can describe the normal form which we use more simply. A pseudo matrix

[(ai), A] is in normal form if A is a lower (since we use the column vectors of A) triangular

matrix with only 1s on its diagonal. The construction of orders from this normal form is

more efficient than from an arbitrary basis. There is a different normal form for matrices

over polynomials, the Popov form, but we have not used it.

1.4.2. More about Orders. In general, the discriminant of an order O is equal to

the product of the determinant of the trace matrix, Tr(ωiωj), of O with the product of

the coefficient ideals ai squared. An order may be constructed by a basis transformation,

given by a pseudo matrix, of another order. If an order R contains an order O it is a

transformation of we call O a suborder of R. The index [R : O] is the quotient of the

determinant of the module O by the determinant of the module R which is equal to the

square root of the quotient of the discriminant of O by the discriminant of R. Maximal

orders can be constructed by a chain of transformations

ZF [α] = O0 ⊂ . . . ⊂ Oi ⊂ . . . ⊂ Oj ⊂ . . . ⊂ ZF ′

where disc(Oj)| disc(Oi) when i ≤ j however we construct S-maximal orders as direct

transformations of ZF [α].

As orders are modules they can be added. The module sum of two orders is equivalent

to the smallest order containing both orders when the indices of the orders in a common

suborder are coprime. The module addition can be computed by a normal form of the

concatenation of the pseudo bases of the module addends ([Coh00] Section 1.5.2).

We extend the definition of P -maximal orders to

Definition 1.4. Let F ′/F be a field extension, let S be set of primes of ZF , the integral

closure of k[t] or V∞ in F and let ZF ′ be the integral closure of ZF in F ′. A module R ⊆ ZF ′
with coefficient ring ZF is S-maximal if the localizations (ZF ′)P and RP are equal for all

primes P ∈ S.



1.5. Witt Vectors 17

Let O be an order in the field F ′/F with coefficient ring ZF . The S-maximal over order

of O is the order R which is S-maximal and such that O is a submodule of R and the

localizations RQ and OQ are equal for primes Q of ZF , Q /∈ S.

This is equivalent to R = {x ∈ ZF ′ | ∃m : (
∏

P∈S P )mx ⊂ O} and we also have

[R : O] | (
∏

P∈S P )m ∃m and gcd([ZF ′ : R], S) = 1 [Fie13b].

Note that [Coh00] gives a definition of an order being P -maximal (Definition 2.4.1(1)).

His definition concentrates on the difference between a P -maximal order and a maximal

order and does not have any reference to a suborder, similar to the first paragraph of

our definition. The suborder is important to us as we wish to compute the minimal such

S-maximal order when possible. However, since it is advantageous to compute S-maximal

modules which are not the minimal S-maximal order in the Artin–Schreier–Witt case we

have split the definition above to allow for this.

We mostly allow that S ⊂ PF may be an infinite set, however, we note that there will

only be finitely many primes in S which will be of interest. That is, there will be only

finitely many primes P for which the Artin–Schreier quotient (Definition 3.2) is non-zero

or more generally there are only finitely many primes P such that vP (u) 6= 0 for u ∈ F .

This corresponds to there being only finitely many primes P such that an order O is not

already P -maximal.

The pseudo bases we present in this thesis are for S-maximal orders as transformations

of equation orders ZF [α] having a power basis. In order to construct an S-maximal over

order of an order O which does not have a power basis we compute the smallest order

containing O and the S-maximal order of the equation order ZF [α] of O, by module

addition if the indices of the S-maximal order of ZF [α] and O in ZF [α] are coprime.

1.5. Witt Vectors

We state here the information about Witt vectors which is necessary for Chapter 5.

For a more thorough treatment see [Fra05] Section 1.4 and [Wit36, Has80, p. 156–161].

Definition 1.5. Let R be a commutative ring and let n > 0. The ring Wn(R) of Witt

vectors of length n is the set of all vectors of length n with entries in R with addition and

multiplication given by that of the secondary components below and zero (0, . . . , 0) and one

(1, 0, . . . , 0).
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A Witt vector x = (x1, . . . , xn) is completely determined by its secondary components

x(i) =
i∑

j=1

pj−1xp
i−j

j

for which we have the formulas

x(1) = x1, x(i) = (xp)(i−1) + pi−1xi

where xp = (xp1, x
p
2, . . . , x

p
n). We also have (x± y)(i) = x(i)± y(i) and (x× y)(i) = x(i)× y(i).

We use addition and subtraction in the computation of Artin–Schreier–Witt quotients so

we give a direct formula also here.

Proposition 1.6 ([Fra05], Proposition 1.4.2). Let A,B be Witt vectors in Wn(R) where

R has characteristic 0. Then

(A±B)i = Ai ±Bi +
Api−1 ±B

p
i−1 − (A±B)pi−1

p

+
Ap

2

i−2 ±B
p2

i−2 − (A±B)p
2

i−2

p2
+ . . .

. . .+
Ap

i−1

1 ±Bpi−1

1 − (A±B)p
i−1

1

pi−1

Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) where X1, . . . , Xn, Y1, . . . , Yn are indeter-

minates of a polynomial ring over Z with rank 2n. When A,B ∈ Wn(R) where R has

characteristic p > 0, (A ± B)i = (X ± Y )i(A1, . . . , An, B1, . . . , Bn), that is, A ± B is the

evaluation of X ± Y at the concatenation of the entries of A and B.

1.6. Complexity

We introduce here the notation we use for asymptotic formulas to describe the com-

plexity or running times of our algorithms. These formulas describe the rate of growth of

the running time compared to some size of the input to the algorithm, we will use mostly

the degree of the field extension. For detailed explanations please see [CLR90, Knu97].

We compute complexity by counting operations in a coefficient ring.

We say that an algorithm has complexity O(h(n)) when a function g(n) describing its

running time is in

O(h(n)) = {g(n) : ∃c > 0 and n0 such that 0 ≤ g(n) ≤ ch(n) ∀n ≥ n0}.
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The notation O(h(n)) describes an asymptotic upper bound and is used for worst case

complexity, the most commonly stated.

When h(n) is polynomial in n we say that the algorithm has (at best or worst) poly-

nomial complexity in n. We can also describe the complexity of an algorithm as linear,

quadratic, exponential or logarithmic if h(n) is any of these.

Let n be the degree of the function field extension F ′/F defined by the polynomial

f(x). Addition and subtraction of elements of F ′ incurs a cost of n additions or subtrac-

tions in F so we say these operations have complexity O(n). Multiplication of elements

of F ′ with respect to an arbitrary basis may incur n3 multiplications in F which would

imply a complexity of O(n3) however, for elements of equation orders and fields, which

can be represented as polynomials in some primitive element, multiplication and division

(which can be computed using a recursive algorithm that maps the computation to a mul-

tiplication) can be computed in n log(n) log(log(n)) operations in F using the Fast Fourier

Transform based Schönhage-Straßen [SS71] algorithm for multiplication of polynomials.

Division of polynomials can also be done using linear algebra having complexity O(n3).

The inclusion of division here covers the reduction of elements modulo the defining polyno-

mial of the extension so that we can say that the complexity of multiplication of elements

with respect to a power basis is in O(n log(n) log(log(n))). The mth powers of an element

in F ′ can be computed in log2(m) multiplications in F ′ so powering of elements in F ′ uses

O(log(m)n log(n) log(log(n))) operations in F .

In [BFH14] a modular algorithm for computing a Hermite normal form of a full rank

n square module over a Dedekind domain is presented. It is polynomial complexity in n

(O(n3)) and the degree d (O(d7)) of the Dedekind domain over the integers of the rational

(function) field. For the rectangular case the complexity is O(n2m) where m is the number

of pseudo generators.

There are several different ways in which ideals can be multiplied which depend on

whether the ideal is represented by 2 generating elements or by a basis. At worst the

product of ideals in a degree n extension requires n matrix multiplications of n×n matrices,

a O(n3) operation, followed by a normal form computation on a n2 × n matrix. At best it

requires 2 element multiplications but more likely 4 element multiplications and a normal

form computation on a 4n × n matrix, an O(n3) operation. Therefore the complexity of

ideal multiplication is at worst O(n4). Taking the mth power of an ideal requires log2(m)

ideal multiplications. Computing valuations vP (u) of elements u ∈ F at ideals P ⊂ F
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by [Ber05] Algorithm E requires 3 log2(vP (u)) element operations in F so we state the

complexity of this computation as O(log2(vP (u))).

Strong approximation does divisor operations then loops over the primes doing a Rie-

mann Roch space calculation ([Heß99]) for some divisor related to the prime. For each

basis element of the Riemann Roch space it writes it as a series expansion to some precision

of a sum of powers of some uniformizing element then solves a system of linear equations

over a finite field. Chinese remainder loops over number of primes doing polynomial time

extended euclidean ([Coh00] Proposition 1.3.1).

Addition of Witt vectors in Wn(R) using the formulas in Proposition 1.6 involves the

computation of n entries, and for the computation of the ith entry a sum of at least i terms

each involving 3 powers and 3 additions needs to be evaluated. Therefore addition of Witt

vectors involves
n∑
i=1

i(log(pi−1)n log(n) log(log(n))) = log(p)n log(n) log(log(n))
n∑
i=1

i(i− 1)

= log(p)n log(n) log(log(n))(
n∑
i=1

i2 −
n∑
i=1

i)

= log(p)n log(n) log(log(n))(n/2 O(n2)− n(n+ 1)/2)

= O(log(p)n4 log(n) log(log(n))

operations in F .

1.7. Previous Work

Maximal orders in finite extensions of number fields and function fields can be com-

puted using the Round 2 [Coh00] or Round 4 [Bai96, FL94] algorithms which both have

polynomial complexity in the degree of the field. To compute a maximal order using these

algorithms we factor the discriminant of the input order and compute P -maximal orders for

every prime P dividing this discriminant. Note that the computation of a maximal order

in a number field is usually polynomial time equivalent to finding the squarefree factoriza-

tion of the discriminant and the computation of a maximal order in a global function field

is usually polynomial time in the degree and the logarithm of the characteristic [Chi89].

However, we do not require a full factorization of discriminants for most of our maximal

order computations. While we do need to know the primes the orders are not yet maximal

at, these can be computed from the GCD of a discriminant polynomial and its derivative

when the extension is of the rational function field (any primes the order is not maximal at
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occur in the discriminant). We do not require the potentially more expensive computation

of their valuation in the discriminant, an O(log2(vP (disc))) computation. In fact, most of

the primes of interest can be found in the constant coefficient of the defining polynomial, or

in the Artin–Schreier–Witt case the Witt vector which describes the constant coefficients

of the polynomials defining the relative representation of the function field. Both of these

are usually smaller than the discriminant and so cheaper to extract primes from.

The P -maximal orders once computed by Round 2 are added as modules to obtain the

maximal order itself. While we first approached maximal order computations by computing

P -maximal orders more efficiently and adding them we discovered we could gain more than

this. We compute S-maximal orders, including maximal orders, of cyclic extensions without

computing P -maximal orders as an intermediate step. We can do this because we construct

a pseudo basis for an S-maximal order (Proposition 2.4, Theorem 3.8, Theorem 5.9) and

not only for a P -maximal order.

[Pau01] provides an algorithm for factoring polynomials over local fields. The factor-

izations computed by this algorithm are certified by two element certificates which can be

used to compute a P -maximal order of an equation order where the polynomial is factored

over the completion of its coefficient ring at P .

The Montes Algorithm ([GMN11, GMN12, GMN13]) has been used in [Bau14] to

compute integral bases for fractional ideals in function fields. This is achieved by factorizing

the defining polynomial of an extension F/k(t) over the completion of k(t) at each prime

polynomial P (t) which is a factor of the discriminant of the defining polynomial of F/k(t)

with the Montes algorithm and using the information this algorithm computes to compute

P (t)-integral bases which are then merged into an integral basis for the input ideal I ⊂ F ′.

This is a similar approach to [Pau01] however it uses a different factorization technique

which is faster.

Previous algorithms to compute maximal orders in specific types of cyclic extensions

have involved computing an order generated from a list of elements.

1.7.1. Kummer Extensions. Earlier work on computing maximal orders of radical

extensions has concentrated on computations in Kummer extensions (Definition 2.1).

Let P be a prime in an algebraic field F . Generators of P -maximal orders of Kummer

extensions of F are well known (for number fields [Dab95, Poh96, Dab01], for function

fields [Fra05]). However, it is expensive to construct a P -maximal order from those gen-

erators as the generic procedure to compute a basis from these generators is at least an

O(n3) computation, where n is the degree of the field, because of the use of normal forms.
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In the publications [Dab95, Poh96, Dab01] a system of generators for the maximal

order of a Kummer extension ([Dab95] Theorem 3.29 and [Poh96] Theorem 2.3) is pro-

vided. They restrict to Kummer extensions of prime degree and reduction of generators is

required. After reduction they have at most twice the degree number of generators. They

are also interested in relative discriminants (of maximal orders) of Kummer extensions.

Fraatz [Fra05] also computes generators for maximal orders of Kummer extensions of

function fields. There is no theoretical restriction on the degree of the extension and the

number of generators is related to the number of ramified primes. We will compare timings

using our implementation of our algorithms with his implementation of his algorithm as well

as the Magma implementation of Round 2 in Section 2.7 where we notice that [Fra05] is a

substantial improvement on Round 2 and our implementation is a substantial improvement

on his.

Cohen [Coh00] states Hecke’s Theorem. In his proof of Hecke’s Theorem (Theorem

10.2.9) he gives elements which are Kummer equivalent (Definition 10.2.8) to the constant

coefficient of the defining polynomial of the Kummer extension but such that a root of this

Kummer equivalent element will generate a P -integral power basis of the Kummer exten-

sion ([Sti93] Propositions III.5.11 and 12) when P is either totally ramified or unramified

in the extension. We use such a root of a Kummer equivalent element to form a P -integral

power basis in Theorem 2.2. At the end of his Subsection 5.3.6 he claims that computing

an integral pseudo basis of a Kummer extension is easy but he does not give an algorithm.

We do provide an algorithm and shall show that it indeed is a very efficient computation.

Stichtenoth [Sti93] states and proves the values of the ramification degrees and different

exponents of primes of a Kummer extension of F over P in Proposition III.7.3 and its proof.

Elements generating a P -integral power basis of a Kummer extension can be deduced from

this proof.

1.7.2. Artin-Schreier–Witt Extensions. Fraatz [Fra05] has been the first to in-

vestigate Artin-Schreier–Witt extensions algorithmically. He considers the computation

of maximal orders of these extensions. However, like previous computations of maximal

orders of Kummer extensions mentioned above this approach also computes the maximal

order by writing down a generating set and obtaining a basis from this by a generic proce-

dure which is at least an O(n3) computation, where n is the degree of the field extension,

because of the use of a normal form computation [Coh00] (Algorithm 1.4.7 and Remark

following). We compare times using our implementation to that of [Fra05] in Sections 3.7
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and 5.8 where we again notice that his implementation is a substantial improvement on

Round 2 and our implementation is a substantial improvement on his.



Chapter 2

Kummer Extensions

Definition 2.1 ([Sti93] III.7.3). Let F be a algebraic field containing a primitive n-th

root of unity, where n > 1 is coprime to the characteristic of F , and let u ∈ F be such

that u 6= wd for all w ∈ F and d > 1, d | n. Then F ′ = F (α) with αn = u is a Kummer

extension of F .

A Kummer extension of degree n is a cyclic Galois extension whose automorphisms are

described by β 7→ ζβ where ζ is an n-th root of unity in F .

Although we focus on Kummer extensions in this chapter we note that the algorithms

described in this chapter are applicable to the more general case of radical extensions for

which we do not require that F contain a primitive n-th root of unity. Some results may be

stated for radical extensions however it is in the case of Kummer extensions we anticipate

that our efficient algorithm will be the most used.

Even more generally, in this chapter, our results also hold when F is a number field.

The results in this chapter also appear in [Sut12].

2.1. A P -integral Power Basis

For a Kummer extension F ′ = F (α) Stichtenoth [Sti93] (Theorem III.7.3 and its proof)

suggests an isomorphic Kummer extension E = F (β) such that β defines a P -integral power

basis for F ′. The suggested β is such that β = αlγj for some γ ∈ F and some l coprime

to n, that is, βn is Kummer equivalent to αn, ([Coh00] Definition 10.2.8). Note that

Stichtenoth does not use the existence of a primitive n-th root of unity in the coefficient

field so we state our theorem for radical extensions.

Theorem 2.2 (P -integral power basis of a radical extension). Let F ′/F be a radical ex-

tension defined by the polynomial xn − u and let α be a root of this polynomial, a prim-

itive element for F ′. Let P be a place of F with vP (n) = 0. Set gP , kP , jP such that

gP = kPvP (u) + njP , 0 ≤ gP < n and gP is minimal (i.e. gP = gcd(vP (u), n) mod n).

• If gP ≤ 1 then {βi}0≤i<n is a P -integral power basis for F ′ where β = αkPπjP and

π is a uniformizing element for P .

24
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• If gP > 1 then {βi1βl2}0≤i<g,0≤l<n/g is a P -integral power basis for F ′ where

β1 = α(n/gP )π(−vP (u)/gP ), β2 = αk
′
Pπj

′
P with

vP (u)

gP
k′P +

n

gP
j′ = 1.

(That is β1 is a root of xgP − βgP1 = xgP − uπ(−vP (u)) and β2 is a root of x(n/gP ) −
(αk

′
Pπj

′
P )(n/gP ))

Proof. For any place P ′ of F ′, P ′ | P , we know P ′ has ramification degree n/gP over P

([Sti93]) for gP > 0 and ramification degree 1 for gP = 0.

We consider 3 cases :

1. P ′ | P is totally ramified : gP = 1,

vP ′(β) = kPvP ′(α) + jPvP ′(π) = kPvP ′(α) + jP
n

gP
= 1

Therefore β is a P ′-prime element so by [Sti93] Proposition III.5.12, {βi}0≤i<n

is a P -integral basis for F ′.

2. P ′ | P is unramified : gP = 0, kP = 1, jP = −vP (u)/n

vP ′(β) = kP
vP (u)

n
+ jP =

vP (u)

n
− vP (u)

n
= 0

The minimal polynomial of β is

φ = xn − βn = xn − ukPπjPn

and

vP (ukPπjPn) = kPvP (u) + jPnvP (π) = 0

so the minimal polynomial φ is integral at P and

vP ′(φ
′(β)) = vP ′(nβ

n−1) = vP ′(n) + (n− 1)vP ′(β) = 0

so that {βi}0≤i<n is a P -integral basis for F ′ by [Sti93] Proposition III.5.11. Note

that this does not hold when vP (n) is not zero, i.e. when P is a critical prime.

3. When gP > 1, P ′ | P is ramified but not totally. We split F ′ into a tower of

extensions and consider F ′/F0/F where F0 = F (α0) and F ′ = F ′0(α) and α0 =

αn/gP . Let P0 = P ′ ∩ F ′0 then gcd(gP , vP (u)) = gP ≡ 0 mod gP so P0 | P is

unramified and β1 = αkP0 πjP with kP = 1 and jP = −vP (u)/gP , vP0(β1) = 0 as for

case 2 above. Therefore {βi1}0≤i<gP is a P -integral basis for F0/F .

Consider P ′ | P0. This is totally ramified since

gcd(n/gP , vP0(α
n/gP )) = gcd(n/gP , vP (αn/gP )) = gcd(n/gP , vP (u)/gP ) = 1.
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Therefore we have β2 = αk
′
Pπj

′
P as in case 1 above with vP ′(β2) = 1 so {βl2}0≤l<n/gP

is a P -integral power basis for F ′/F0.

We have then that {βi1βl2}0≤i<g,0≤l<n/g is a basis for F ′/F . Since vP ′(β2) = 1

and vP ′(β1) = (n/gP )vP0(β1) = 0 both β1 and β2 are P ′-integral and so {βi1βl2} is a

P -integral basis for F ′/F .

�

2.2. A Pseudo Basis

We can construct a pseudo basis from the P -integral power basis of Theorem 2.2 in

each case above. We will show that the pseudo basis we construct is a pseudo basis for

an order and not only a module and that the order with this pseudo basis contains the

equation order. We will prove P -maximality later. We first state a proposition for one

place and then extend this proposition to one for any finite number of places.

Proposition 2.3. Suppose we satisfy the hypothesis of Theorem 2.2. Let ZF be the integral

closure of k[t] or V∞ in F and let O = ZF [α] be an order of F ′ and let P ⊂ F now denote

P ∩ ZF .

• If P either totally ramifies or is unramified in F ′/F then

(ωi, ai)i = (αkP,i , P µP,i)0≤i<n

is a pseudo basis for an order R containing O, where µP,i = jP i+ vP (u)tP,i and

kP i = kP,i + tP,in, 0 ≤ kP,i < n.

• Otherwise

(ωil, ail)i = (αkP,il , P µP,il)0≤i<gP ,0≤l<n/gP

is a pseudo basis for an order R containing O, where

µP,il = −ivP (u)/gP + j′P l + vP (u)tP,il

and in/gP + k′P l = kP,il + tP,iln, 0 ≤ kP,il < n.

These pseudo bases are derived from the P -integral power basis as follows. We prove

only the generalization, Proposition 2.4.

• When P totally ramifies or is unramified in F ′/F , a P -integral basis is

{βi}0≤i<n, β = αkPπjP , kPvP (u) + njP = gP , gP = 0, 1.
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Using pseudo elements,

(αkPP jP )i = αkP,iαtP,inP jP i where kP i = kP,i + tP,in and 0 ≤ kP,i < n

= αkP,iutP,iP jP i

= αkP,iπvP (u)tP,iu′tP,iP jP i where u = πvP (u)u′

and π is a uniformizing element for P

We group the P parts together and note that multiplication by u′ does not change

the exponent of P to get the pseudo basis (αkP,i , P µP,i)0≤i<n.

We also note that since kP is coprime to n (kP = 1 or gP = 1) and kP,i1 = kP,i2
implies that kP (i1 − i2) = (tP,i1 − tP,i2)n we have kP,i1 = kP,i2 implies that i1 = i2.

So the values kP,i are unique and since there are n different kP,i values, for each

0 ≤ z < n there is some i such that kP,i = z.

• When P partially ramifies in F ′/F , a P -integral basis is

{βi1βl2}0≤i<gP ,0≤l<n/gP , β1 = αn/gPπ−vP (u)/gP , β2 = αk
′
Pπj

′
P

where (vP (u)/gP )k′P + (n/gP )j′P = 1. Using pseudo elements,

(αn/gPP−vP (u)/gP )i(αk
′
PP j′P )l

= αkP,ilαtP,ilnP−ivP (u)/gP+j′P l

where in/gP + k′P l = kP,il + tP,iln and 0 ≤ kP,il < n

= αkP,ilu′tP,ilP−ivP (u)/gP+j′P l+vP (u)tP,il

We note that multiplication by u′ does not change the exponent of P to get the

pseudo basis (αkP,il , P µP,il)0≤i<gP ,0≤l<n/gP .

Here again the kP,il are unique. If kP,i1l1 = kP,i2l2 then (l1−l2)k′P = n/gP ((tP,i1l1−
tP,i2l2)gP − (i1 − i2)) and since k′P and n/gP are coprime n/gP | l1 − l2 < n/gP so

l1 = l2. Let tm = tP,imlm . Then we have gP (t1 − t2) = i1 − i2 so gP | i1 − i2 < gP

and i1 = i2. Therefore, since there are n different kP,il values, for each 0 ≤ z < n

there is some i and l such that kP,il = z.

We now directly state a pseudo basis for an order given a set of primes S using a

rearrangement of the pseudo basis we have derived and combining for P ∈ S.
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Proposition 2.4. Suppose we satisfy the hypothesis of Proposition 2.3. Let O = ZF [α] be

an order of F ′ and S be a set of primes of ZF . Then

(ωi, ai)0≤i<n = (αi,
∏
P∈S

P µP,i)0≤i<n

is a pseudo basis for an order R containing O where

µP,i =



jP iP + vP (u)tP,iP , if P is unramified or totally ramified in F ′

and iP is such that i = kP,iP , 0 ≤ iP < n

−iPvP (u)/gP + j′P lP + vP (u)tP,iP lP , otherwise with iP , lP such that i = kP,iP lP

0 ≤ iP < gP , 0 ≤ lP < n/gP

Proof. Let R be the module with pseudo basis (ωi, ai)i. We will show that R is an order

in detail assuming the primes in S are either unramified or totally ramified in F ′ and note

that closure under multiplication can be proven similarly when some primes in S may be

partially ramified.

When i = 0, ω0 = 1, a0 = 1 so 1 ∈ R. We now use pseudo elements and check

that ai1ωi1 × ai2ωi2 ⊂ R. For i1, i2 < n and P ∈ S unramified or totally ramified in

F ′ we have i1,P , i2,P < n so i1,P + i2,P = mPn + i3,P , i3,P < n,mP = 0, 1 and i1 + i2 =

i3 + (tP,i3,P + kPmP − (tP,i1,P + tP,i2,P ))n by definition of i1,P , i2,P and i3,P . So

(1) ai1ωi1 × ai2ωi2 =
∏
P∈S

P µαi1+i2

where

µ = µP,i1 + µP,i2 = jP (mPn+ i3,P ) + vP (u)(tP,i1,P + tP,i2,P )

and

i1 + i2 = i3 + n(tP,i3,P + kPmP − (tP,i1,P + tP,i2,P )).

Since αn = u we can move the u factor of αi1+i2 into the ideals and we consider

µP,i1 + µP,i2 + vP (u)(tP,i3,P + kPmP − (tP,i1,P + tP,i2,P ))

= jP i3,P + jmPn+ vP (u)(tP,i1,P + tP,i2,P ) + vP (u)(tP,i3,P + kPmP − (tP,i1,P + tP,i2,P ))

= jP i3,P + vP (u)tP,i3,P + jmPn+ vP (u)kPmP
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as the exponent of an ideal P in the adjusted product (1) above and multiplied by αki3 = αi3

we have

ai1ωi1 × ai2ωi2 = ai3ωi3P
jPmPn+vP (u)kPmP

⊆ ai3ωi3

since jPmPn + vP (u)kPmP = mPg ≥ 0 when all P ∈ S are unramified or totally ramified

in F ′. Therefore ai1ωi1 × ai2ωi2 ⊂ R.

To see that R contains O it is sufficient to show that α ∈ R since R is an order. We

have α = 1 × ω1 and if 1 ∈ a1 =
∏

P∈S P
µP,1 then α ∈ R and O ⊆ R. We show that

µP,i ≤ 0 ∀ 0 ≤ i < n, P ∈ S.

When

gP = 0:

µP,i = jP iP + vP (u)tP,iP =
−vP (u)

n
iP + vP (u)tP,iP = vP (u)(tP,iP −

iP
n

) ≤ 0

since tP,iP = bkP iP/nc and kP = 1

gP = 1:

kPvP (u) + jPn = 1, so iPkPvP (u) + iP jPn = iP ,

iP = iPkPvP (u)− tP,iPnvP (u) + iP jPn+ tP,iPnvP (u)

= vP (u)(kP iP − tP,iPn) + n(jP iP + vP (u)tP,iP )

= vP (u)kP,iP + n(jP iP + vP (u)tP,iP ),

n(jP iP + vP (u)tP,iP ) = iP − vP (u)kP,iP ≤ iP .

Therefore µP,i = jP iP + vP (u)tP,iP ≤ iP/n < 1, so µP,i ≤ 0.

1 < gP < n: Let µ = −iPvP (u)/gP + j′P lP + vP (u)tP,iP lP , then

vP ′(α
kP,iP lP P µ) = vP ′((α

n/gPP−vP (u)/gP )iP (αk
′
PP j′P )lP )

= 0iP + 1lP = lP

Therefore,

lP = kP,iP lP vP ′(α) + vP ′(P )(j′P lP − iP
vP (u)

gP
+ vP (u)tP,iP lP )
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and

n

gP
(j′P lP − iP

vP (u)

gP
+ vP (u)tP,iP lP ) = lP − kP,iP lP vP ′(α)

≤ lP since kP,iP lP vP ′(α) ≥ 0

j′P lP − iP
vP (u)

gP
+ vP (u)tP,iP lP ≤ lP

gP
n

< 1 since 0 ≤ lP <
n

gP
.

Therefore µP,i = j′P lP − iP
vP (u)
gP

+ vP (u)tP,iP lP ≤ 0 since the LHS is an integer.

So we have in all cases that µP,i ≤ 0 for each P ∈ S. Therefore O ⊆ R. �

2.2.1. Proof of S-maximality.

Theorem 2.5. The order with pseudo basis given in Proposition 2.4 is the S-maximal over

order of O.

Proof. Let R be the order of F ′/F with pseudo basis

(ωi, ai)0≤i<n = (αi,
∏
P∈S

P µP,i)0≤i<n

where

µP,i =



jP iP + vP (u)tP,iP , if P is unramified or totally ramified in F ′

and iP is such that i = kP,iP , 0 ≤ iP < n

−iPvP (u)/gP + j′P lP + vP (u)tP,iP lP , otherwise with iP , lP such that i = kP,iP lP

0 ≤ iP < gP , 0 ≤ lP < n/gP

To prove that R is the S-maximal over order of O we need to prove that RQ = OQ for

all primes Q of ZF , Q 6∈ S and RP = (ZF ′)P∀P ∈ S, where ZF ′ is the integral closure of

ZF in F ′.

The determinant of the module R is a product of non-positive powers of P ∈ S since

µPi ≤ 0 and the determinant of the identity matrix, whose entries are the coefficients of

αi with respect to the basis of O, is 1 so the determinant has valuation 0 at primes of ZF
which are not in S. Therefore RQ = OQ for primes Q ⊂ ZF , Q 6∈ S.

Let P ∈ S. We prove that the elements from our P -integral power basis in Theorem 2.2

are in the localization RP ⊆ O′P .
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Basis {bi} = {(αkPπjP )i}:

(αkPπjP )i = αkP,iαtP,inπjP i

= αkP,iutP,iπjP i where u = πvP (u)u′

= ωkP,iu
′tP,iπvP (u)tP,i+jP i

= u′tP,ir where r ∈ R since πvP (u)tP,i+jP ∈ ai

Since vP (u′) = 0, vP (u′tP,i) = 0 also, so there is no P in the denominator of

(αkPπjP )i. Therefore (αkPπjP )i ∈ RP .

Basis {bil} = {(αn/gPπ−vP (u)/gP )i(αkPπjP )l}:

(αn/gPπ−vP (u)/gP )i(αkPπjP )l = αin/gP+kP lπ−ivP (u)/gP+jP l

= αkP,ilαtP,ilnπ−ivP (u)/gP+jP l

= αkP,ilutP,ilπ−ivP (u)/gP+jP l

= ωkP,ilu
′tP,ilπ−ivP (u)/g+jP l+vP (u)tP,il

= u′tP,ilr where r ∈ R since π−ivP (u)/gP+jP l+vP (u)tP,il ∈ ail

Since vP (u′) = 0, vP (u′tP,il) = 0 also, so there is no P in the denominator of

(αn/gPπ−vP (u)/gP )i(αkPπjP )l. Therefore (αn/gPπ−vP (u)/gP )i(αkPπjP )l ∈ RP .

The basis {(αkPπjP )i}i or {(αn/gPπ−vP (u)/gP )i(αkPπjP )l}il is an integral basis for F ′ at

P , that is, it is a basis for the integral closure O′P . Therefore the integral closure O′P
is contained in the localization RP . Since also the localization RP is contained in the

integral closure O′P the localization RP is the integral closure O′P . Therefore we have

that v(disc(RP )) = v(disc(O′P )). But by [PZ89] p292 (invariance under localization) this

means that vP (disc(R)) = vP (disc(ZF ′)) since O′P is the localization of ZF ′ at P . Therefore

R is P -maximal for all P ∈ S and so R is S-maximal and the S-maximal over order of

O. �

2.2.2. The Maximal Order.

Algorithm 1 (Compute a maximal order in a radical extension).

Input:

• An order ZF [α] of a radical extension F ′/F , with αn = u ∈ F , where ZF is the

integral closure of k[t] or V∞ in F .

Output:
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• The maximal order of ZF [α] over ZF .

Steps:

1. Compute the set S of primes of ZF at which u has positive valuation and n has

valuation 0.

2. Compute the S-maximal over order S of ZF [α] with pseudo basis (ωi, ai)0≤i<n given

in Proposition 2.4.

3. If F is a number field compute the set of primes SC ⊂ PF where n has positive

valuation. Compute the SC-maximal order of ZF [α] using another algorithm, see

Section 2.4.

4. Return the sum of S and the SC-maximal order computed in Step 3. These orders

may be added as modules since the indices of ZF [α] in these orders are coprime.

Theorem 2.6. The order computed by Algorithm 1 is the maximal order of F ′/F contain-

ing ZF .

Proof. Let R = RS +RC be the order computed by Algorithm 1. By Theorem 2.5 RS

is the S-maximal over order of ZF [α]. We also have that RC is SC-maximal. Since the

discriminant of ZF [α] is nnun−1 S ∪ SC contains all primes dividing this discriminant and

R ⊇ RS,RC , R is the maximal order of F ′/F over ZF . �

2.3. Complexity

We now analyse the complexity of step 2 in Algorithm 1. We compute n powers P µP,i

for each prime P ∈ S where 0 ≥ µP,i = jP iP + vP (u)tPiP ≥ −vP (u) (and similarly for

gP > 1) so the powers we compute have exponents between 0 and −vP (u). If vP (u) is

relatively small we could compute all powers P µ, 0 > µ ≥ −vP (u). Therefore we do at

most #Smax{n log(vP (u)), vP (u)} ideal multiplications in F . Computing vP (u) for all

P ∈ S involves O(#S log(vP (u))) element multiplications in F . Let v(u) be the maximum

valuation in u. Then the complexity of computing the pseudo basis in Proposition 2.4

is in O(#Sn log(v(u)) + #S log(v(u))) which is linear in the degree of the field extension

and the number of primes to consider and logarithmic in the maximum valuation of the

constant coefficient.

2.4. Critical Primes

We note a limitation of our algorithm for number fields only. Since critical primes do

not occur in function fields our algorithm is complete for function fields.
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Definition 2.7. Let P be a place of a number field F and let F ′ be an extension of F . If

the generator of P ∩ Z divides the degree of F ′/F then P is a critical prime for F ′/F .

The order given in Theorem 2.5 (unlike the order computed using Algorithm 1) is not

P -maximal at primes P which are critical primes and not totally ramified. This is because

Theorem 2.5 relies on Theorem 2.2 which requires that vP (n) = 0 when P is an unramified

or not totally ramified prime. The order it does compute may not be big enough so the

Round 2 was called on the result which became very expensive in some examples. This

only applies to orders ZF [α] which are not maximal since if ZF [α] is maximal this can be

determined using the Dedekind test [Coh00].

In the small number of cases when F = Q, Round 4 can be applied. In the case where

F ′ can be completed we can factorize the defining polynomial of F ′ over the completion of

F at P and use the two-element certificate returned along with the factorization [Pau01]

to form a matrix over the completion which is mapped back to F and becomes the basis

matrix of the P -maximal order. We also compute the exponents for the powers of P which

are the coefficient ideals of the P -maximal order.

For number fields of prime degree there are techniques to compute a P -integral basis

when P is a critical prime [Dab95]. Such techniques could be extended to fields whose

degree is the product of 2 primes, however they involve a congruence that is difficult and

currently time consuming to solve so we have not done any further work in this direction.

2.5. Other Uses of the Algorithm

There are some maximal order computations other than maximal orders of radical

extensions which we hoped could benefit from the use of Algorithm 1. We identified or

constructed Kummer extensions in these computations, computed a pseudo basis for the

maximal order in that Kummer extension then mapped that maximal order basis back to

the original extension. This was found to be very advantageous for computing maximal

orders of class fields of number fields.

2.5.1. Dual and Intersection. Let O = ZF [α] be an order in the field extension

F ′/F of degree n. Let O# denote the dual of O with respect to the trace and let K be an

extension containing F ′. Once we have a maximal order for K we need to intersect that

maximal order with F ′ to gain a maximal order of F ′ since K is larger than F ′. To do this

we compute the dual of O in the original field F ′ where the dual is defined as

O# = {x ∈ F ′|Tr(xO) ∈ ZF}.
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For all x ∈ ZF ′ we have xe ∈ ZF ′ for all e ∈ O so x ∈ O# and ZF ′ ⊆ O#. Note that this

holds for all orders of F ′.

In parallel to Cohen [Coh00] Definition 2.3.16 and Proposition 2.3.18 and more gen-

erally we have

Proposition 2.8. Let (ωi, ai)i be a pseudo basis of an order O ⊂ F ′/F where ωi ∈ F ′

and ai are fractional ideals of ZF . If T = TrF ′/F (ωiωj), the pseudo matrix [(a−1
i )i, T

−1]

represents a pseudo basis of O#.

The proof follows similarly to Cohen’s proof of Proposition 2.3.18 in [Coh00].

We only compute the pseudo basis of the module O# and not the module itself, as

it is sufficient and more efficient to work with the pseudo basis only. To compute the

intersection of the integral closure of ZF in K ⊃ F ′ with O#, we calculate a pseudo basis

of the integral closure of ZF in K with coefficient ring ZF . We consider the pseudo basis of

O# as pseudo elements of K and use these two pseudo bases to compute the intersection

of the modules with these bases. Using the pseudo basis of the intersection we construct

the maximal order of F ′ as a transformation of O.

2.5.2. A Kummer approach to Radical Extensions. We began by following a

similar approach to [Dab95], Section 4.3. For a radical extension F ′/F of degree n we

computed a cyclotomic extension Fc/F , a field extension whose defining polynomial is

a cyclotomic polynomial with roots the primitive nth roots of unity ([vdW66], p. 113–

114), and extended this by the defining polynomial of F ′/F to gain a Kummer extension

K/Fc. After computing the maximal order of K using Algorithm 1 we intersected this

with ZF [α]# ⊂ F ′ to gain the maximal order of F ′/F .

Unfortunately this was quite expensive for some examples, in particular those for which

[Fc : F ] was almost equal to [F ′ : F ]. However, [Sti93] Remark III.7.5 notes that he does

not use the presence of the roots of unity in the coefficient field. So we stated Theorem 2.2

and Algorithm 1 for radical extensions rather than Kummer extensions.

It turns out that the algorithm following [Dab95] can be faster than Round 2 for some

examples requiring only small degree cyclotomic extensions but Algorithm 1 is faster still.

For a comparison of timings see Section 2.7.4.

2.5.3. Using Algorithm 1 to Compute Maximal Orders of Class Fields. A

similar approach can be taken to compute maximal orders of class fields. Here we can

decompose the field into a compositum of cyclic fields Ci/F of prime power degree lr. A

generator βi inside a Kummer extension can be found for each Ci whose degree is coprime
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to the characteristic so there is known a Kummer extension Ki = F (ζlr)(β) and some

αi ∈ Ki such that Ci = F (αi). We compute the maximal order of each Kummer extension

Ki then intersect this with the dual of the order ZF [α] in the class field Ci to gain a

maximal order, as explained in Section 2.5.1.

Algorithm 2 (Compute a maximal order of a class field using a Kummer extension).

Input:

• An abelian field A/F of characteristic p

Output:

• A maximal order of the abelian field A/F

Steps:

1. For each cyclic field component C/F = F (α) of A/F do

(a) if p - deg(C) or p = 0

(i) Retrieve the associated Kummer extension K/F (ζ)/F of C.

(ii) If C is a Kummer extension then compute the maximal order of C using

Algorithm 1.

(iii) Otherwise

(A) Construct a Kummer extension Ka isomorphic to K but defined as

an extension of F (ζ) represented as an extension of Q or Fq(t).

(B) Compute the maximal order of Ka using Algorithm 1.

(C) Find a pseudo basis of the maximal order of Ka with respect to F (ζ).

This is a pseudo basis for the maximal order of K.

(D) Find a basis for the dual of ZF [α] ⊂ C.

(E) Take the intersection of the pseudo bases in 1(a)iiiC and 1(a)iiiD

and construct the (mostly) maximal order M of C with this pseudo

basis.

(iv) If there are critical primes which are not totally ramified in the dis-

criminant of K then we do not handle them in Algorithm 1 so M is not

maximal and we handle all the critical primes as discussed in Section 2.4

to get the maximal order of C.

(b) otherwise compute the maximal order of the Artin–Schreier–Witt extension C.

2. The maximal orders of the components C are then combined together [Fie02]. Since

it is easy to compute the discriminant of A from the class field theoretic input it

is easy to determine whether this order is maximal and if it is not to compute its
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maximal order using the algorithm of [BL94] which requires information about the

discriminant to be known or Round 2.

2.6. Examples

We show calculations for a few simple examples. The first example has one ramified

and one unramified prime.

Example 1. Consider K/Q given by K = Q[x]/〈x2 + 11〉, u = 11. There are 2 primes

dividing the discriminant −44 of the equation order of K. The prime 2 is critical and does

not ramify in K, the prime 11 ramifies in K. We have v2(u) = 0 and v11(u) = 1. At the

prime 2 we have g = 0, k = 1, j = 0. At the prime 11 we have g = 1, k = −1, j = 1. So we

have an 11-integral basis {(α−111)i}i=0,1 where α2 = 11. Note that {αi}i=0,1 is integral at

2 but is not a 2-integral basis. We compute the pseudo basis {(1, 1), (α, 111−1)} at 11 using

k0 = 0, t0 = 0, k1 = 1, t1 = −1. The methods in this chapter allow us to compute the basis

{αi}i for the 11-maximal order but not for the 2-maximal order since 2 is a critical prime.

Now that the 11-maximal order is known we only need to compute a 2-maximal order using

the Round 4 algorithm.

We give an example of a function field which is a Kummer extension. This example

contains primes which are neither totally ramified nor unramified.

Example 2. Consider F/Q(ζ8)(t) = Q(ζ8)(t)(α) given by F = Q(ζ8)(t)[x]/〈x8 + 3t4〉.
There is 1 prime dividing each of the discriminants of Q(ζ8)[t][α] (36691771392t28) and

Q(ζ8)[1/t][γ] (36691771392/t28). Both primes, P = t, 1/t, have vP (u) = 4 and also g = 4.

Therefore we have a t-integral basis {(α2t−1)i(α−1t)l}0≤i<4,0≤l<2 and a 1/t-integral basis

{(γ2(1/t)−1)i(γ−11/t)l}0≤i<4,0≤l<2 where α8 = −3t4 and γ8 = −3/t4. We compute the

pseudo basis

{(1, t0), (α7, t−3), (α2, t−1), (α, t0), (α4, t−2), (α3, t−1), (α6, t−3), (α5, t−2)}

at t and

{(1, (1/t)0), (γ7, (1/t)−3), (γ2, (1/t)−1), (γ, (1/t)0), (γ4, (1/t)−2),

(γ3, (1/t)−1), (γ6, (1/t)−3), (γ5, (1/t)−2)},

at 1/t. At t we form the matrix with diagonal [1, 1, t−1, t−1, t−2, t−2, t−3, t−3] as the trans-

formation matrix for the (t)-maximal order of F as a transformation of Q(ζ8)[t][α] having
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basis {αi} over Q(ζ8)[t]. At 1/t we form the matrix with diagonal

[1, 1, (1/t)−1, (1/t)−1, (1/t)−2, (1/t)−2, (1/t)−3, (1/t)−3]

as the transformation matrix for the (1/t)-maximal order of F as a transformation of

Q(ζ8)[1/t][γ] having basis {γi}.
Note that the calculations here are identical for each prime since they share the same

valuation of u and the rest is substitution of primitive elements and primes.

The next example is represented as a relative extension. It contains 2 primes which are

totally ramified and 5 which are partially ramified.

Example 3. Consider F ′/F given by F = F7(t)[x]/〈x3 + x+ (t+ 1)/t2〉, F ′ = F [x]/〈x6 +

(t+ 1)(t+ 2)3/t〉. Let α be such that α6 + t5(t+ 1)(t+ 2)3 = 0, γ such that γ6 + (t+ 1)(t+

2)3/t7 = 0. There are 5 primes dividing the discriminant of Z0
F [α] and 2 primes dividing

the discriminant of Z∞F [γ]. These primes are ideals of either Z0
F or Z∞F . There is 1 prime

above t and 2 primes above each of t+ 1 and t+ 2, and we shall call these P0, P11, P12, P21

and P22 respectively. There are 2 primes above 1/t which we shall call P∞1 and P∞2. We

have vP0(u) = 15, vP1(u) = 1, vP2(u) = 3 and v∞(u) = 3 (the valuation of u is the same for

both primes lying over t+ 1, t+ 2 and 1/t).

Let πr be a uniformizing element for Pr. We compute {(α2π−5
0 )i(απ−2

0 )l}0≤i<3,0≤l<2 for

a P0-integral basis, a P11-integral basis {αi}, a P21-integral basis {(α2π−1
21 )iαl}0≤i<3,0≤l<2

and a P1∞-integral basis {(γ2π−1
1∞)i(γπ0

1∞)l}0≤i<3,0≤l<2. We note that the P12-integral basis

differs to the P11-integral basis only in the uniformizer, the P22-integral basis differs to the

P22-integral basis only in the uniformizer and the P∞2-integral basis differs to the P∞1-

integral basis only in the uniformizer because of their common valuations of u.

We compute the pseudo bases

{(1, 1), (α, P−2
0 ), (α2, P−5

0 ), (α3, P−7
0 ), (α4, P−10

0 ), (α5, P−12
0 )}, at P0,

{(αi, 1)}0≤i<6 at P11 and P12,

{(1, 1), (α, 1), (α2, P−1
2 ), (α3, P−1

2 ), (α4, P−2
2 ), (α5, P−2

2 )} at P21 and P22

and

{(1, 1), (γ, P 0
∞), (γ2, P−1

∞ ), (γ3, P−1
∞ ), (γ4, P−2

∞ ), (γ5, P−2
∞ )} at P∞1 and P∞2

where we use the shorthand P1 to refer to either P11 or P12, P2 to refer to either P21 or P22

and P∞ to refer to either P∞1 and P∞2. The transformation matrices are identity matrices.

The coefficient ideals in the pseudo matrix for P0 are [1, P−2
0 , P−5

0 , P−7
0 , P−10

0 , P−14
0 ], for P11
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and P12 are [1]0≤i<6, for P21 and P22 are [1, 1, P−1
2 , P−1

2 , P−2
2 , P−2

2 ] and for P∞1 and P∞2

are [1, P 0
∞, P

−1
∞ , P−1

∞ , P−2
∞ , P−2

∞ ].

2.7. Timings

We give timings showing that Algorithm 1 and Algorithm 2 are faster than previous

algorithms for a range of fields. Note that the Round 2 algorithm involves randomness so

timings for this algorithm may differ depending on seed.

Timings are given for an Intel(R) Core(TM)2 i7-3770 CPU 3.4GHz (32GB RAM) ma-

chine running Magma V2.20-8 under Linux.

2.7.1. Maximal Orders of Number Fields. Computing maximal orders of degree

n Kummer extensions of the cyclotomic field of order n showed that Algorithm 1 could be

10 times as fast as Round 2 or 4 even for some small examples. A comparison of timings

is given in Table 2.1.

Q(ζn)/〈xn − a〉 Algorithm 1 Round 2 or 4

x3 − 54 0.01s 0.02s

x6 − 75 0.04s 0.07s

x9 − 24 0.22s 2.72s

x12 − 57 0.24s 1.85s
Table 2.1. Maximal order computation timings for Kummer extensions of

Cyclotomic Fields

2.7.2. Maximal Orders of Function Fields. We give the timings from some simple

examples in Table 2.2. We refer to the primes that lie above 1/t as infinite primes and

those which lie above a polynomial in t as finite primes, as does [Fra05]. We give timings

for computing orders which are maximal at all finite primes and orders which are maximal

at all infinite primes.

We ran a batch of maximal order computations for function fields computed as abelian

extensions. Let F = F9(t)[x]/〈x3 + x + 1/t + 1/t2〉. We form a divisor D by adding

together some places of F of degree 2, compute its ray class group R and form the quotient

Q of R by 8R. We compute the subgroups of Q and compute an abelian extension for D

and each subgroup. Let F ′i be the extension of F defined by the defining polynomial of

the ith abelian extension (of degree 8). There were 448 fields F ′i . Some timings for the

computations of the finite and infinite maximal orders of F ′i are given in Table 2.3.
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Field Algorithm 1 Round 2

Q(ζ8)(t)[x]/〈x8 − 3t4〉 (finite) 0.01s 0.02s

Q(ζ8)(t)[x]/〈x8 − 3t4〉 (infinite) 0.00s 0.06s

Q(ζ20)(t)[x]/〈x20 − 7t11〉 (finite) 0.01s 0.72

Q(ζ20)(t)[x]/〈x20 − 7t11〉 (infinite) 0.02s 2.18

Q(t)(ζ7)[x]/〈x7 + tζ7〉 (finite) 0.00s 0.03s

Q(t)(ζ7)[x]/〈x7 + tζ7〉 (infinite) 0.01s 121.4s
Table 2.2. Maximal order computation timings for Kummer extensions of

function fields

Algorithm 1 Round 2

Maximum time (finite) 0.08s 3.8s

Average time (finite) 0.039s 1.6s

Maximum time (infinite) 0.03s 3.87s

Average time (infinite) 0.008s 0.451s
Table 2.3. Maximal order computation timings for Kummer extensions of

function fields occurring in abelian extensions

We also ran Algorithm 1 on the Kummer extensions given as examples in [Fra05]

Section 5.1. In Table 2.4 we give the averages of times from our implementation and that

of [Fra05] for comparison. [Fra05] divided his Kummer extension examples into 3 groups,

we compute an average for each of those groups. The first group of examples are of the

form F ′ = F [y]/〈yn − u〉 where F = Fq(t)[x]/〈x5 + 4x4 + t2x3 + 2x2 + t5x + t + 1〉, ρ is a

primitive element of F , q is a power of 5 and

u =
t11 + 4t10 + t8 + 4t7 + t5 + 4t4 + t2 + 4t+ 1

t4 + 4t3 + t+ 4
ρ4 +

1

t2 + 3
ρ+ t2.

The second group are of the form F ′ = F [y]/〈yn−u〉 where F = Fq(t)[x]/〈x2+2x+t3+t+1〉,
ρ is a primitive element of F , q is a power of 3 and u = 1/t2ρ + t2. The third group are

of the form F ′ = F [y]/〈yn − u〉 where F = Fq(t)[x]/〈x3 − (t + 1)x2 + 2tx − t5〉, ρ is a

primitive element of F , q is a power of 3 and u = (t3 + 2)ρ2 + (t2 + 1)ρ+ 1. [Fra05] gave

timings for finite maximal order computations for the first and second group of examples

and timings for infinite maximal order computations for the third group of examples. We

will do likewise. Since we cannot reproduce or better the timings given in [Fra05] when

running an implementation of his algorithm for group 2 we give an average of the times
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given in [Fra05] in brackets. Using Round 2 example 11 took over 32 hours. We did not

attempt the rest of the examples in this group using Round 2.

Examples n Algorithm 1 Round 2 [Fra05]

1 – 6 11 – 24 0.92s 458.187s 73.48s

7 – 14 28 – 160 121.023s 1.2hrs (e.g. 7 – 10 only) 1065.911s (805s)

15 – 20 5 – 29 0.198s 115.342s 3.455s

Table 2.4. Comparison of average times for examples from [Fra05]

2.7.3. Maximal Orders of Abelian Fields. Let F = Q[x]/〈x2 − 2〉. We compute

the ray class group R of a divisor of F and take the quotient Q of R by nR where n will

be the degree of the resulting number fields. For the subgroups S of Q such that Q/S is

cyclic of order n we compute an abelian extension A and compute the maximal order of

A using both Algorithm 2 and the Round 2 algorithm. Some average times are given in

Table 2.5.

Degree Algorithm 2 Round 2

8 0.176s 4.614s

9 0.577s 33.373s

11 4.432s 349.133s

16 8.86s 36.3min
Table 2.5. Comparison of average timings of maximal order computations

for abelian fields

In [Fie06] Section 3.4 there is a genus computation which took almost 2.5hrs in Magma

V2.11 on a 64-bit 2.6GHz AMD processor. This computation currently takes around 0.03s

using the techniques described in this chapter but took 2000s in Magma V2.12 using the

same machine used for our timings.

2.7.4. Maximal Orders of Radical Extensions. We compare times of implemen-

tations of Algorithm 1, Round 2 and the approach similar to [Dab95] for radical extensions

in Tables 2.6 and 2.7, as much as practical.

In Table 2.7 we use extensions of F101(t)[y]/〈y3+y2+y+t〉 of a range of degrees and give

average times for 10 random radical extensions of each degree whose defining polynomials

are of the form xn −
∏3

i=1 p
ei
i , where pi is a random prime polynomial and ei is a random

integer in the range [1 . . . 5] randomly multiplied by either 1 or 2.
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Extension Algorithm 1 Round 2 Section 2.5.2

Q(t)(
√
−t)[x]/〈x12 +

√
−t〉 (finite) 0.00s 0.07s 0.04s

Q(t)(
√
−t)[x]/〈x12 +

√
−t〉 (infinite) 0.02s 7.83s 0.57s

Q(t)(
√
−t)[x]/〈x13 +

√
−t〉 (finite) 0.01s 0.09s 307.31s

Q(t)(
√
−t)[x]/〈x13 +

√
−t〉 (infinite) 0.02s 10.97s 1403.08s

F101(t)(
√
−t)[x]/〈x13 +

√
−t〉 (finite) 0.01s 0.01s 0.04s

F101(t)(
√
−t)[x]/〈x13 +

√
−t〉 (infinite) 0.03s 9.58s 1.29s

Table 2.6. Comparison of timings for maximal order computations of rad-

ical extensions
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Degree Algorithm 1 Round 2 Section 2.5.2

11 (finite) 0.068s 9.262s 78.975s

11 (infinite) 0.095s 6.864s 1332.542s

12 (finite) 0.03s 14.062s 0.142s

12 (infinite) 0.118s 15.558s 0.343s

13 (finite) 0.095s 17.8s 20.279s

13 (infinite) 0.115s 16.107s 22.185s

14 (finite) 0.039s 25.618s 5.819s

14 (infinite) 0.128s 31.715 24.248s

15 (finite) 0.074s 29.754s 0.423s

15 (infinite) 0.133s 32.746s 0.354

19 (finite) 0.214s 75.529s 124.325s

19 (infinite) 0.198s 124.045s 692.972s

21 (finite) 0.210s 119.297s 45.991

21 (infinite) 0.231s 205.433s 26.589s

22 (finite) 0.086s 155.576s 82.259s

22 (infinite) 0.239s 271.019s 1418.989s

23 (finite) 0.194s 175.341s 93.015s

23 (infinite) 0.247s 323.078s 59mins

27 (finite) 0.45s 394.033s 37mins

27 (infinite) 0.312s 763.218s >7hrs

28 (finite) 0.125s 475.416s 28.510s

28 (infinite) 0.342s 934.474s 33.795s

29 (finite) 0.39s 535.519s >2.9hrs

29 (infinite) 0.49s 1293.871s >8.4hrs

30 (finite) 0.112s 648.358s 1.683s

30 (infinite) 0.378s 1206.643s 4.597s

31 (finite) 0.409s 727.231s 49.639s

31 (infinite) 0.468s 1440.772s 19.653s
Table 2.7. Comparison of average timings for maximal order computations

of radical extensions
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Artin–Schreier Extensions

In characteristic p there are no Kummer extensions of any degree divisible by p because

any polynomial xn−u where p | n is not separable. In order to construct cyclic extensions of

degree p of a characteristic p function field we instead use Artin–Schreier extensions. These

extensions are cyclic Galois extensions whose automorphisms are given by α 7→ α+ λ, λ =

0, . . . , p− 1 where α is a root of the defining polynomial of the extension. Artin–Schreier

extensions have a notion of equivalence parallel to that of Kummer equivalence. We can

construct an isomorphic Artin–Schreier extension whose defining polynomial has constant

coefficient with positive valuation or valuation coprime to p at any given primes. A root

of the defining polynomial of the isomorphic extension generates a P -integral power basis

for the extension when P is an unramified prime.

Definition 3.1 ([Sti93] Proposition III.7.8). Let F be a function field of characteristic

p > 0 with perfect constant field and let u ∈ F be such that u 6= wp − w for all w ∈ F .

Then F ′ = F (α) where αp − α = u is an Artin–Schreier extension of F .

In the case of Kummer extensions we presented a pseudo basis for the more general

case of radical extensions. In the case of Artin–Schreier extensions we could state the

pseudo basis for some more general extensions defined by an additive separable polynomial

a(T ) =
∑n

i aiT
pi = u ([Sti93] Proposition III.7.10). We use properties of these extensions

which are not true in general in order to compute our pseudo bases.

The results in this chapter also appear in [Sut13].

3.1. Artin–Schreier Quotients

Our computations rely heavily on some specific elements we describe in this section.

Definition 3.2. Let F be a function field of characteristic p > 0 with separable closure F̄ .

The Artin–Schreier operator ℘ : F̄ → F̄ is the Fp-linear homomorphism ℘ : x 7→ xp − x.

Let P ∈ PF and u ∈ F . An Artin–Schreier quotient of u modulo P is an element

zP ∈ F satisfying vP (u− ℘(zP )) ≥ 0 or p - vP (u− ℘(zP )) < 0.

43
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Let S ⊂ PF . If z is an Artin–Schreier quotient of u modulo P for all P ∈ S then we

call z an Artin–Schreier quotient of u modulo S.

The quotient terminology is because z can be considered a quotient with respect to

the Artin–Schreier operator ℘ and u − ℘(z) the corresponding remainder. Note that if

vP (u− ℘(zP )) ≥ 0 for an Artin–Schreier quotient zP of u modulo P then P is unramified

and if vP (u− ℘(zP )) < 0 then P is totally ramified ([Sti93] Proposition III.7.8).

We will now give algorithms which compute Artin–Schreier quotients modulo a place P

and a set of places S. When F has a perfect constant field these prove that such quotients

always exist. The following is Algorithm 3.2.2 (Reduction) of [Fra05].

Algorithm 3 (Compute an Artin–Schreier quotient modulo P ).

Input:

• A function field F with perfect constant field, an element u ∈ F and P ∈ PF .

Output:

• An Artin–Schreier quotient zP of u modulo P .

Steps:

1. Compute vu = vP (u), initialize zP = 0, uz = u, set r, s such that vu = rp + s, 0 ≤
s < p and set π to a prime element of P .

2. while s = 0 and vu < 0 do

(a) Compute a as the pth root of the image of uzπ
−vu under the residue class map

at P .

(b) Replace zP with zP + aπr.

(c) Replace uz with uz − ℘(aπr) and vu with vP (uz).

(d) Recompute r, s such that vu = rp+ s.

3. Return zP and min{vu, 0}.

Note that if the constant field of F is not perfect then we are not guaranteed to be able

to compute a p-th root in Step 2a.

Lemma 3.3. Algorithm 3 terminates with zP as required.

Proof. If this algorithm terminates then we obviously have a zP as required. We explain

here why the algorithm terminates. Each time through the loop we effectively remove the

first term in the π-adic expansion of uz at P so each time through the loop vu is increased

by at least 1 and so must eventually become positive. However on entering the loop vu is
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a multiple of p, increasing vu by anything other than a multiple of p will make s non zero

and the loop terminates. �

Algorithm 4 (An extension of the Chinese Remainder Theorem).

Input:

• A list of places P1, . . . , Pr ∈ P where P = P0
F or P∞F and a list of elements

z1, . . . , zr ∈ F .

Output:

• An element z ∈ F such that vPj(z − zj) ≥ 1, 1 ≤ j ≤ r and vQ(z) ≥ 0 for

Q ∈ P, Q 6∈ {P1, . . . , Pr}.

Steps:

1. Using the CRT compute an element z(r) such that vPj(z− zj) ≥ 1 for all 1 ≤ j ≤ r.

To do so we initialize z(1) to z1 then compute

z(j) = z(j−1) + (zj − z(j−1))cj, 1 < j ≤ r

where

1 = cj + dj, cj ∈Mj−1, dj ∈ P
1−min{vPj (zj−z(j−1)),0}
j

and

Mj =

j∏
i=1

P
1−

∑j
l=i min{vPi (zl+1−z(l)),0}

i

2. Compute the denominator dz of z(r) with respect to P and find those prime factors

(dz)i of dz which have zero valuation at all Pj, 1 ≤ j ≤ r.

3. To compute z such that vQ(z) ≥ 0 for Q ∈ P, Q 6∈ {P1, . . . , Pr} also, compute

z(j) = z(j−1) − cjz(j−1), r ≤ j < r + #{(dz)i}

where

1 = cj + dj, cj ∈Mj−1, dj ∈ (dz)
v(dz)j (dz)

j−r ZF ,

where ZF is the maximal order of F corresponding to P and

Mj = Mr

r∏
l=1

P
vPl (dz)

l

j−r∏
l=1

(dz)
v(dz)l (dz)

l .

Theorem 3.4. Algorithm 4 produces an element z satisfying the output conditions.
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Proof. Let z be the output of Algorithm 4. It can be shown by induction that vPj(z −
zj) ≥ 1, 1 ≤ j ≤ r since this holds for z(r) by the chinese remainder theorem in Step

1. To see that vQ(z) ≥ 0 for Q ∈ P, Q 6∈ {P1, . . . , Pr}, note that z =
∏

i diz
(r). If

vQ(dz) = 0 then vQ(z) = vQ(z(r)) ≥ 0 and if vQ(dz) ≥ 0 then vQ((dz)i) 6= 0 for one i so

vQ(z) = vQ(di) + vQ(z(r)) = vQ(dz) + vQ(z(r)) ≥ 0. �

We can use either the Chinese remainder theorem above or strong approximation

([Fra05] Algorithm 1.3.3) to compute an Artin–Schreier quotient modulo a set of primes

from quotients modulo a single prime. We use the extension of the Chinese remainder theo-

rem (Algorithm 4) because in characteristic less than about 50 the Magma implementation

has been seen to be faster than the Magma implementation of strong approximation de-

scribed in [Fra05]. We require the extension to the theorem which removes denominators

outside S because we do not want to introduce any new ramification at other primes. The

denominator dz needs to be in k(t) for efficiency.

Algorithm 5 (Compute an Artin–Schreier quotient modulo S).

Input:

• A function field F with perfect constant field, an element u ∈ F and a set S ⊂ PF .

Output:

• An Artin–Schreier quotient z of u modulo S such that vQ(z) ≥ 0 for Q 6∈ S ∪ {X},
for some X 6∈ S.

Steps:

1. Compute zP for all P ∈ S by Algorithm 3.

2. Use strong approximation or the extension to the Chinese remainder theorem (Al-

gorithm 4) to compute z such that vP (z − zP ) ≥ 1, P ∈ S and vQ(z) ≥ 0 for

Q 6∈ S ∪ {X}.

We note that there may be a place X ∈ PF , X 6∈ S such that vX(z) < 0. This

exceptional place is chosen and can be any place (or places) not in S. We use this algorithm

with S ⊂ P where P = P0
F or P∞F and X 6∈ P.

Lemma 3.5. Algorithm 5 terminates with z as required.

Proof. By strong approximation or Chinese remaindering we have that vQ(z) ≥ 0 for

Q 6∈ S ∪{X}. It remains to prove that z is an Artin–Schreier quotient of u modulo S. Let
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P ∈ S, then

vP (u− ℘(z)) = vP (u− ℘(z)− ℘(zP ) + ℘(zP ))

= vP (u− ℘(zP )− (℘(z)− ℘(zP )))

≥ min{vP (u− ℘(zP )), vP ((z − zP )p − (z − zP ))}

≥ min{vP (u− ℘(zP )), vP (z − zP )}

≥ min{vP (u− ℘(zP ), 1}.

If vP (u − ℘(zP )) < 0, vP (u − ℘(z)) = vP (u − ℘(zP )) = −m < 0,m 6≡ 0 mod p. If

vP (u− ℘(zP )) ≥ 0 , vP (u− ℘(z)) ≥ 0. Hence z is an Artin–Schreier quotient of u modulo

S. �

3.2. A P -integral Power Basis

We now consider a P -integral power basis of an Artin–Schreier extension. This we can

deduce using [Sti93] Proposition III.7.8 (and its proof).

Theorem 3.6. Let F ′/F be an Artin–Schreier extension defined by the polynomial xp−x−u
and let α be a root of this polynomial, a primitive element for F ′/F . Let P be a place of

F and z an Artin–Schreier quotient of u modulo P .

unramified: If P is unramified in F ′/F set kP = 1, lP = 0.

ramified: If P is totally ramified in F ′/F set lP , kP such that plP+vP (u−℘(z))kP = 1

and 0 ≤ kP < p. This is possible since p - vP (u−℘(z)) and kP and lP can be adjusted

so that 0 ≤ kP < p.

Then {(πlP (α − z)kP )j}0≤j<p is a local P -integral basis for F ′ at P , where π is a prime

element of P .

Remark 3.7. [Sti93] Proposition III.7.8 also states the different exponents of ramified

primes in Artin–Schreier extensions as (p− 1)(−vP (u− ℘(z)) + 1).

Proof. In both cases we have that α−z is a root of the polynomial φ(x) = xp−x−(u−℘(z)).

Let P ′ be a prime of F ′ such that P ′ | P . Suppose that P ′ | P is unramified. Then

vP (u − ℘(z)) ≥ 0 ([Sti93] Theorem III.7.8) so the minimal polynomial φ(x) of α − z is

integral at P . Let φ′(x) be the derivative of φ(x). Then φ′(x) = −1 so vP ′(φ
′(α− z)) = 0,

therefore by [Sti93] Corollary III.5.11 {(α− z)j}0≤j<p is a P -integral basis for F ′/F .
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Now suppose that P ′ | P is totally ramified, so p - vP (u− ℘(z)) < 0 ([Sti93] Theorem

III.7.8). Then

vP ′(π
lP (α− z)kP ) = lPp+ kPvP ′(α− z) = lPp+ kPpvP (u− ℘(z))/p = 1.

So πlP (α − z)kP is a P ′-prime element and so by [Sti93] Proposition III.5.12, {(πlP (α −
z)kP )j}0≤j<p is a P -integral basis for F ′/F . �

If vP (u − ℘(z)) > 0 then the defining polynomial xp − x − (u − ℘(z)) of an extension

isomorphic to F ′/F maps to xp − x under the residue class map at P which is a reducible

polynomial and so P splits in F ′/F . However if vP (u−℘(z)) = 0 then P is inert in F ′/F .

If vP (u−℘(z)) > 1, z+ 1 +π where π is a prime element of P is also an Artin–Schreier

quotient modulo P since

vP (u− ℘(z + 1 + π)) = vP (u− ℘(z)− 1− πp + 1 + π)

≥ min{vP (u− ℘(z)), 1}

We also have vP ′(α− (z + 1 + π)) ≥ min{vP ′(α− z), vP ′(1 + π)} = 0 where the inequality

becomes equality so long as vP ′(α− z) > 0. This is why we used ≥ 1 in Algorithm 5.

However, πlP (α − z)kP is only guaranteed to be integral at P ′ | P . We often require

a basis which is integral at more than one place. [Fra05] describes a method of scaling

elements such that they still generate a power basis for the integral closure O′P but are

also integral elsewhere. As discussed in Section 1.4.1 we compute a pseudo basis instead.

3.3. A Pseudo Basis

In this section we will consider an Artin–Schreier extension F ′/F with defining poly-

nomial xp − x− u and primitive element α, a root of the defining polynomial.

Let ZF be the integral closure of k[t] or V∞ in F . We start with an order O = ZF [dα]

where d ∈ ZF ∩ k(t), vP ′(dα) ≥ 0 and is minimal for all P ′ | P , P a prime ideal of ZF .

Theorem 3.8. Let F ′/F be an Artin–Schreier extension, O = ZF [dα] an order of F ′, S

be a set of primes of ZF and z ∈ F an Artin–Schreier quotient of u modulo S. Then

(ωj, aj)j =

(
(d(α− z))j,

∏
P∈S

P µP,j−jvP (d)

)
0≤j<p

,

is a pseudo basis over ZF for an S-maximal over order of O, where µP,j is the smallest

non-negative integer such that vP ′(ajωj) ≥ 0 for all P ′ | P .
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Remark 3.9. For P ′ | P , to have vP ′(ajωj) ≥ 0 we need vP ′(P )(µP,j − jvP (d)) ≥
−jvP ′(d(α − z)). If P ′ | P is totally ramified then µP,jp ≥ −jvP (u − ℘(z)). If P ′ | P
is unramified then we need µP,j ≥ −jvP (u− ℘(z)) ≤ 0 so µP,j = 0. In general, we take

µP,j = max{
⌈

(−jvP (u− ℘(z)))

vP ′(P )

⌉
, 0}.

Note that µP,j will be non-zero at only finitely many places of F .

Corollary 3.10. In the situation of Theorem 3.8, let P = P0
F or P∞F , let S contain all

primes P ∈ P such that vP (d) > 0, then the S-maximal over order of O is the maximal

order of F ′ over ZF and coincides with the integral closure O′P of OP in F ′.

Corollary 3.10 applies when S contains all the places occurring in the discriminant of

O.

Proof of Theorem 3.8. Let R be the module with pseudo basis (ωj, aj)j over ZF . We

prove that R is an order over ZF , R contains ZF [dα] and R is S-maximal.

Proof that R is an order over ZF : For j = 0, ω0 = 1, µP,0 = 0 so a0 = 1 and

1 ∈ R.

We now use pseudo elements and check that ajωj×alωl is in R. We shall prove

that there are integral ideals b, c, d such that

ajωj × alωl =

baj+lωj+l j + l < p

caj+l−pωj+l−p + daj+l−p+1ωj+l−p+1 j + l ≥ p.
(2)

⊆ R

We have

ajωj × alωl = ajalωjωl = ajalωj+l

and this pseudo element is integral over all P ∈ S since

vP ′(ajωj × alωl) = vP ′(ajωj) + vP ′(alωl) ≥ 0

holds for P ′ | P . For j + l < p, this implies µP,j + µP,l ≥ µP,(j+l) for all P ∈
S since µP,(j+l) is minimal with this property. Set b =

∏
P∈S P

vPb with vPb =

µP,j + µP,l − µP,(j+l) ≥ 0. Then vQ(b) = 0, Q 6∈ S, b is integral and equation (2)

follows in the case j + l < p.
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For j + l ≥ p we make use of

ωp = (d(α− z))p = dp(αp − zp) = dp((αp − α)− (zp − z) + α− z)

= dp((u− ℘(z))) + dp−1ω1

and

ωj+l = ωj+l−pωp = ωj+l−pd
p(u− ℘(z)) + dp−1ωj+l−p+1.

Then the second case of equation (2) follows with

c = dp(u− ℘(z))
∏
P∈S

P vP c , vP c = µP,j + µP,l − pvP (d)− µP,(j+l−p)

and

d = dp−1(
∏
P∈S

P vPd), vPd = (µP,j + µP,l − (p− 1)vP (d)− µP,(j+l−p+1))

when we prove the integrality of c and d. To prove c is integral, we compute for

P ′ | P ∈ S

vP ′(d
p(u− ℘(z))

∏
P∈S

P vP c)

= pvP ′(d) + vP ′(u− ℘(z)) + e(P ′|P )(µP,j + µP,l − pvP (d)− µP,(j+l−p))

= e(P ′|P )(pvP (d) + vP (u− ℘(z)) + µP,j + µP,l − pvP (d)− µP,(j+l−p))

= e(P ′|P )(−µP,p + µP,j + µP,l − µP,(j+l−p))

≥ e(P ′|P )(−µP,p + µP,p)

≥ 0

since

µP,(j+l−p) = d−(j + l − p)vP (u− ℘(z))/pe

= d−jvP (u− ℘(z))/p− lvP (u− ℘(z))/pe − (−pvP (u− ℘(z))/p)

≤ µP,j + µP,l − µP,p.

At Q 6∈ S,Q ⊂ ZF ,

vQ(dp(u− ℘(z))) = vQ ((d(α− z))p − dp(α− z)) ≥ 0

so c is integral at all primes of ZF .
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To prove d is integral, we have j + l − p+ 1 ≤ 2p− 2− p+ 1 = p− 1, so

(daj+l−p+1ωj+l−p+1) = dp−1

(∏
P

P µP,j+µP,l−(j+l)vP (d)

)
(d(α− z))j+l−p+1

and for P ′ | P ∈ S

vP ′(daj+l−p+1ωj+l−p+1)

= vP ′(P )(µP,j + µP,l − (j + l)vP (d)) + (j + l)vP ′(d)+

(j + l − p+ 1)vP ′(α− z)

= vP ′(P )µP,j + jvP ′(α− z) + vP ′(P )µP,l + lvP ′(α− z)+

(1− p)vP ′(α− z) + (j + l)vP ′(d)

≥ 0 + 0 + (1− p)vP ′(α− z) + 0

by definition of µP,j and µP,l. For vP ′(α− z) < 0, vP ′(daj+l−p+1ωj+l−p+1) > 0 since

(1 − p) ≤ −1 and so µP,j + µP,l ≥ µP,(j+l−p+1) since µP,(j+l−p+1) is minimal with

this property. If vP ′(α − z) ≥ 0, µP,j, µP,l, µP,j+l−p+1 = 0. In both cases we have

µP,j+µP,l ≥ µP,(j+l−p+1) and hence d is integral. Therefore we have proved equation

(2) and ajωj × alωl ⊆ R so R is a subring and so an order of F ′.

Since R is an order over ZF its elements are integral over ZF .

Proof that Localizations are equal outside of S: To test whether RQ = OQ for

Q 6∈ S we consider the determinant of the module R, we require this to have valua-

tion 0 for primes Q of ZF , Q 6∈ S. The pseudo elements we put in the transformation

pseudo matrix are aj(d(α− z))j which expand to

aj

(
(dα)j −

(
j

j − 1

)
(dα)j−1(dz) + . . .+

(
j

1

)
(dα)(−dz)j−1 + (−dz)j

)
,

where
(
j
i

)
is a binomial coefficient. Since z is in the coefficient ring and the powers

of dα are ≤ j we have a triangular matrix
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

−dz 1 . . . . . . . . . . . . . . . . . . . . 0

d2z2 2dz 1 . . . . 0
...

...
...

. . .
...

dp−1zp−1 −
(
p−1

1

)
dp−2zp−2

(
p−1

2

)
dp−3zp−3 . . . . 1


with respect to the dα power basis which expresses elements represented with re-

spect to the basis of R with respect to the basis of O. The determinant is the
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product of the diagonal elements which are 1 so the determinant is 1. Multiplying

all coefficient ideals we have

(3)
∏
j

aj =
∏
P∈S

P
∑
j vP (aj)

which has valuation 0 for primes Q of ZF , Q 6∈ S and RQ = OQ.

Proof that R contains O: We have proved above that RQ = OQ for Q 6∈ S. When

P ∈ S,RP ⊇ OP follows from the proof below that R is S-maximal. Therefore

R = ∩RP ⊇ ∩OP = O. This can also be seen by showing that dα ∈ R using that

jvP (d) ≤ µPj due to minimality of µP,j so that vP (aj) ≤ 0.

Proof that R is S-maximal: To prove thatR is an S-maximal order we prove that

R is P -maximal for all P ∈ S by showing that the P -integral basis of Theorem 3.6

is contained in the localization RP∩R.

We recall from Theorem 3.6 that πlPP (α−z)kP , where πP is a prime element of P ,

generates a P -integral basis for O′P over OP . We choose πP such that vP̃ (πP ) ≥ 0

for all P̃ ∈ S, P̃ 6= P . Let P ∈ S, we have

πlPP (α− z)kP = (1/d)kPπlPP (d)kP (α− z)kP ,

1 = vP (πlPP (α− z)kP ) = vP

(
(1/d)kPπlPP (d(α− z))kP

)
therefore lP ≥ µP,kP and

πlPP (α− z)kP

=

 ∏
Q∈S\P

π
−µQ,kP
Q

 πµ1P

(∏
Q∈S

π
µQ,kP
Q

)
(1/d)kPωkP , µ1 = lP − µP,kP ≥ 0

= qπµ1P

(∏
Q∈S

π
vQ(d)
Q /d

)kP
(∏
Q∈S

πµ2Q

)
ωkP , q =

 ∏
Q∈S\P

π
−µQ,kP
Q

 , µ2 = µQ,kP − kPvQ(d)

= qπµ1P

(∏
Q∈S

π
vQ(d)
Q /d

)kP

r

where r ∈ R since (
∏

Q∈S π
µ2
Q ) ∈ akP .

Therefore πlPP (α − z)kP ∈ RP since µ1 ≥ 0, vP (Q) = 0 and vP (π
vP (d)
P /d) = 0 so

there is no P in the denominator.

Therefore there is an integral basis of O′P over OP at each P ∈ S which is con-

tained inRP therefore the integral closureO′P ⊆ RP but sinceRP ⊆ O′P ,RP = O′P .
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Therefore we have that v(disc(RP∩R)) = v(disc(O′P )). Since O′P is the localization

of ZF ′ (the integral closure of ZF in F ′) at P this means that vP (disc(R)) =

vP (disc(ZF ′)) by [PZ89] p292 (invariance under localization). Therefore R is P -

maximal for all P ∈ S, therefore R is S-maximal.

�

Proof of Corollary 3.10. Let R be the module with pseudo basis (ωj, aj)j over ZF . We

know from the second item of the proof of Theorem 3.8 that R contains only integral

elements over ZF so it is contained in the integral closure ZF ′ of ZF in F ′/F . We now

prove that ZF ′ ⊆ R.

Let β ∈ ZF ′ . Then analogous to [Mar77] Theorem 9 and 8,

β =
n∑
j=0

bj(d(α− z))j/ disc((d(α− z)j)), disc | b2
j , bj ∈ ZF

= 1/(−d)p−1

n∑
j=0

bj(d(α− z))j.

To show that β ∈ R we need to show that bj/(−d)p−1 ∈ aj ∀j, or equivalently vP (bj) ≥
µPj + (p − 1 − j)vP (d)∀P ∈ S. Since β ∈ ZF ′ we have vP ′(β) ≥ 0 for all P ′ | P, P ⊂ ZF .

Therefore

0 ≤ −(p− 1)vP ′(d) + vP ′(
n∑
j=0

bj(d(α− z))j)

= −(p− 1)vP ′(P )vP (d) + min
j
{vP ′(bj) + jvP ′(d(α− z))}

0 ≤ −(p− 1)vP ′(P )vP (d) + vP ′(bj) + jvP ′(d(α− z)),∀j

= −(p− 1)vP ′(P )vP (d) + vP ′(P )vP (bj) + jvP ′(P )vP (d) + jvP ′((α− z))

and

vP (bj) ≥ (p− 1− j)vP (d) + (−jvP ′(α− z)/vP ′(P )) > vP (d)(p− 1− j) + µPj − 1

so vP (bj) ≥ vP (d)(p− 1− j) + µPj, β ∈ R and ZF ′ ⊆ R and hence R = ZF ′ . �

3.4. Complexity

We consider the complexity of computing the pseudo basis in Theorem 3.8. Let

v(u) ≤ 0 be the minimum valuation of u for all P (if v(u) ≥ 0 then ZF [dα] is maxi-

mal) and v(d) the maximum valuation of d ∀P ∈ S. There are p pseudo basis elements
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to compute. The powers of d(α − z) cost 1 multiplication for each basis element since

they can be computed by repeated multiplication. There are #S ideals P and µP,j = 0

when P is unramified and otherwise µP,j is at worst −pvP (u − ℘(z))/p ≤ −vP (u) and

also jvP (d) ≤ pvP (d). To compute vP (u) is a cost of O(log2(−(vP (u)))) multiplications

in F . Combined this is a cost of at most p − 1 multiplications in F ′, which is O((p −
1)p log(p) log(log(p))) = O(p2 log(p) log(log(p))) operations in F , O(#S log2(−v(u))) mul-

tiplications in F and O(#Sp(log2(−v(u) + pvP (d)))) ideal multiplications in F . Each

number of multiplications is at most linear or linear up to log factors in both the degree of

F ′ and the number of primes and logarithmic in the valuation of the constant coefficient

and we have less than O(p3) operations in F .

To compute each of the #S zP we iterate a loop bounded by vP (u) ≤ vP (u−℘(z)) ≤ 0

containing 1 + log2(p) + 2 log2(v(u)) multiplications in F . However, it is most likely that

this loop is iterated only once since there is only a 1/p chance that v(u) ≡ 0 mod p. This

is a maximum cost of O(#S(−v(u))(1 + log2(p) + 2 log2(−v(u)))) multiplications in F but

this cost could be as low as O(#S(1 + log(p) + log(−v(u)))) if the loop is iterated only

once. To compute z from the zP we loop another #S times doing operations in F during

strong approximation, however each iteration with zP = 0, a likely case, will be trivial. The

number of multiplications here is logarithmic in the degree of the field and the valuation

of the constant coefficient and linear in the number of primes to be considered.

Therefore the total complexity as number of operations in F to compute the pseudo

basis in Theorem 3.8 is contained in

O
(
p2 log(p) log(log(p))

)
+O (#S log2(−v(u))) +O (#Srp log2(−v(u) + pv(d))) +

O (#S(−v(u))(log2(p) + log2(−v(u))))

3.5. Examples

We show calculations of maximal orders for a few simple examples using the Theorems

in this chapter.

Example 4. Let F ′ = F5(t)[x]/〈x5−x−t+1〉, u = t−1 and let α be a root of x5−x−t+1.

Let S be the set of irreducible polynomials in F5[t]. Then vP (u) ≥ 0 for all P ∈ S, so F5[t][α]

is S-maximal. Now let S be the set of primes {1/t} of V∞, v(1/t)(u) = −1 so 1/t is ramified



3.5. Examples 55

in F ′. We compute z = 0 since m = 1 6≡ 0 mod 5. We have

(ωj, aj)j =

{
(1, 1),

(
1

t
α, (

1

t
)0

)
,

(
(
1

t
α)2, (

1

t
)−1

)
,

(
(
1

t
α)3, (

1

t
)−2

)
,

(
(
1

t
α)4, (

1

t
)−3

)}
since µP,j = d−j(−1)/5e and d = 1/t.

Example 5. Let F = F11(t)[x]/〈x2+1〉 and let F ′ = F [x]/〈x11−x−t2+1/t11〉, u = t2−1/t11

and let α be a root of x11−x− t2 +1/t11. Let S = P0
F . The place Pt | t is the only prime in

the discriminant of Z0
F [t11α], the ideal generated by t1210, at which we have vPt(u) = −11.

We compute vu = −11 = −1×11+0, take the 11th root of t13−1 mod Pt, set z = (−1)t−1

and uz = t2− 1/t11− ((−1)t−11− (−1)t−1) = t2 + 1/t with vu = −1 6≡ 0 mod 11. We have

d = t11. So we have

{(1, 1)} ∪
{(

(t11(α + 1/t))j, t1−11j
)}
{1≤j<11} ,

as a pseudo basis for the S-maximal order of Z0
F [t11α] since µt,j = d(−j)(−1)/11e.

Let S = P∞F . The place P1/t | 1/t is the only prime in the discriminant of Z∞F [(1/t)α],

the ideal generated by (1/t)110, at which we have vP1/t
(u) = −2 6≡ 0 mod 11. We have

d = 1/t. So we have{
(1, 1) ,

(
1

t
α, (

1

t
)0

)
,

(
(
1

t
α)2, (

1

t
)−1

)
,

(
(
1

t
α)3, (

1

t
)−2

)
,

(
(
1

t
α)4, (

1

t
)−3

)
,(

(
1

t
α)5, (

1

t
)−4

)
,

(
(
1

t
α)6, (

1

t
)−4

)
,

(
(
1

t
α)7, (

1

t
)−5

)
,

(
(
1

t
α)8, (

1

t
)−6

)
,(

(
1

t
α)9, (

1

t
)−7

)
,

(
(
1

t
α)10, (

1

t
)−8

)}
as a pseudo basis for the S-maximal order of Z∞F [(1/t)α] since µ1/t,j = d(−j)(−2)/11e.

We give an example over a non-perfect field where we cannot compute a basis.

Example 6. Let F = F2(a, b, c, d, e)(t)[x]/〈x2 + atx + t3 + (b2 + b)t2 + c〉, α a root of

x2+atx+t3+(b2+b)t2+c and F ′ = F [x]/〈x2+x+d+(t2+b2+b)/a2〉, u = d+(t2+b2+b)/a2.

Let P be the prime of F above 1/t, then vP (u) = −4 and we take the square root of 1/a2,

set z = 1/a× (t/(t3 + (b2 + b)t2 + c)α + at2/(t3 + (b2 + b)t2 + c))−2, u = u− (z2 − z) and

then we need the square root of (a+ 1)/a which does not exist in F2(a, b, c, d, e)(t). Hence

we cannot compute a basis since the constant field of F ′ is not perfect.
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3.6. A Note on Computing Primes

When comparing the computation of maximal orders using Theorem 3.8 to some other

algorithms, it is important to consider how one obtains the primes to use as input. The

Round 2 algorithm requires a full factorization of the discriminant of the order which can

be expensive and adds to the time taken to compute a maximal order. Both comput-

ing a maximal order using Theorem 3.8 and [Fra05] require primes but not exponents.

[Fra05] computes primes using the factorization of the constant coefficient of the defining

polynomial of the Artin–Schreier extension. When computing an order maximal at all

primes above primes in P∞F we do the same. But when computing an order maximal at

all primes above primes in P0
F we compute the discriminant and the primes dividing it

without exponents.

The complexity of computing a factorization is relative to the valuations at the prime

factors. The valuation of the discriminant at the primes which divide it can be noticeably

larger than the valuation of the constant coefficient of the defining polynomial at these

primes. To see this let α be a root of f(x) = xp− x− u. The other roots of f are α+ i for

i ∈ Fp ([Sti93] Proposition III.7.8). Similarly dα is a root of xp − dp−1x − dpu which has

roots d(α + i), i ∈ Fp so the discriminant is∏
0≤i<j<p

(d(i− j))2 = d2(p2)
∏

0≤i<j<p

(i− j)2,

where
(
p
2

)
is a binomial coefficient and evaluates to p!/((p−2)!2!), since the discriminant is

the product of the squares of the differences between the roots. But vP (d) > 0 for P such

that vP (α), v(u) < 0, in fact, vP (d) ≥ −vP (u) to ensure vP (dα) ≥ 0 so vP (d2(p2)) ≥ −p(p−
1)vP (u). Hence computing a factorization of the discriminant will be more expensive than

the factorization of the constant coefficient and even more so the larger p is. Computing

only the primes dividing the discriminant is also cheaper than the factorization as it avoids

any computation of potentially large valuations.

In the results which follow we attempt to split out the time taken to compute the

primes which are used.

3.7. Timings

Timings are given for an Intel(R) Core(TM) i7-3770 CPU 3.4GHz (32GB RAM) ma-

chine running Magma V2.20-8 under Linux.
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In Table 3.1 we compare the times for computing Z0
F ′ and Z∞F ′ , the integral closures of

k[t] and V∞ respectively in F ′, in the examples given above.

Theorem 3.8 Round 2

Example #S Z0
F ′ Z∞F ′ Z0

F ′ Z∞F ′
1 0, 1 0.0s 0.01s 0.0s 0.01s

2 1, 1 0.04s 0.06s 5.06s 1.71s
Table 3.1. Comparison of times for Examples 4 and 5

In Table 3.2 we give a comparison of timings for the computation of Z0
F ′ and Z∞F ′ ,

the integral closures of k[t] and V∞ respectively in F ′, for some examples from [Fra05]

Section 5.2 using Theorem 3.8, Round 2 and [Fra05]. All examples are given by F ′ =

F [y]/〈yp − y − u〉 where F = Fp(t)[x]/〈x3 − (t+ 1)x2 + 2xt− t5〉, ρ is a primitive element

of F and u = t5

t3−1
ρ2 + t6+t2+1

t6−1
ρ + 1

t5
. Note that Theorem 3.8 and [Fra05] may have

a considerable advantage over the implementation of the Round 2 in that they do not

require the discriminant or its complete factorization, they only require the primes and

not the exponents of those primes which can be expensive to compute, especially if large.

Once timings became inconveniently large we no longer recorded them. [Fra05] reports

only times for the computation of finite maximal orders.

We record the maximum time for computing primes (the factorization of the discrimi-

nant) in the columns labelled “Primes” and the number of primes occurring in the discrimi-

nants in #S. Times given for the Round 2 algorithm do not include the time taken to com-

pute primes, those for Theorem 3.8 and [Fra05] do. Note that Theorem 3.8 and [Fra05]

compute the primes they require more efficiently than the factorization used by Round 2

whose timings are recorded in the “Primes” column.

It is obvious that [Fra05] is a considerable improvement on the times for Round 2. We

have been able to further improve these times through our implementation which computes

maximal orders with pseudo bases stated in Theorem 3.8.
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#S Primes Theorem 3.8 [Fra05] Round 2

p P0
F P∞F P0

F P∞F Z0
F ′ Z∞F ′ Z0

F ′ Z∞F ′ Z0
F ′ Z∞F ′

5 12 1 0.02s 0.1s 0.07s 0.03s 0.48s 0.41s 3.01s 0.45s

7 15 1 0.05s 0.17s 0.05s 0.05s 0.41s 0.32s 9.13s 0.6s

11 11 1 0.15s 0.83s 0.07s 0.1s 0.52s 0.34s 46.8s 4.41s

23 11 1 1.14s 7.03s 0.4s 0.68s 2.86s 7.18s 1165.91s 88.42s

31 17 1 3.4s 17.76s 0.9s 1.5s 4.39s 50s 73min 240.78s

53 11 1 11.23s 98.92s 3.81s 6.77s 50.25s 319.34s 13hrs 36mins

61 17 1 22s 129.55s 5.98s 9.95s 29.56s 95.19s > 20hrs 62mins

71 13 1 29.21s 191.81s 9.78s 15.41s 51.84s 268.42s - 1.9hrs

83 12 1 42.99s 339.26s 15.98s 24.31s 160.92s 1682.6s - 3.6hrs

97 17 1 81.61s 451.99s 26.77s 38.79s 33min 191.3s - 6.8hrs

Table 3.2. Comparison of times for examples from [Fra05]



Chapter 4

A Note on Decomposing Primes

For both Artin–Schreier extensions and Kummer extensions F ′/F we can compute

directly an element of valuation 1 at a place P ′ ⊂ F ′, P ′ | P, P ⊂ F when P ′ | P is totally

ramified (Theorem 2.2 and Theorem 3.6). This allows us to decompose easily a prime P

which totally ramifies in a Kummer or Artin–Schreier extension as we can construct the

prime above P from this known generator in F ′ and the generators of P which lie in F .

When F ′/F is a Kummer extension then P totally ramifies in F ′ if vP (u) is coprime to

n. When F ′/F is an Artin–Schreier extension then P totally ramifies in F ′ if vP (u) < 0

and there exists z ∈ F such that p - vP (u− (zp− z)) < 0. Therefore it is easy to recognise

primes of F which ramify in these extensions F ′.

Once we have determined that P totally ramifies in F ′ we can compute an element β

with valuation 1 at P ′ | P as we did when computing P -integral bases. When F ′/F is

a Kummer extension β = αlπj where 1 = lvP (u) + jn (Theorem 2.2, [Sti93] Proposition

III.7.3). When F ′/F is an Artin–Schreier extension β = (α − zP )lπj where 1 = lvP (u −
(zpP − z)) + jp adjusted so that 0 ≤ l < p (Theorem 3.6, [Sti93] Proposition III.7.8).

Let ZF ′ be the integral closure in F ′ of k[t] if k[t]∩P 6= k otherwise of V∞. Unfortunately

β may not be an integral element of F ′, that is, β may not be in ZF ′ which we need for

a generator of an integral ideal of ZF ′ , but we can adjust β to gain such an element. We

summarise our approach in the following algorithm.

Algorithm 6 (Decompose a prime which totally ramifies in a Kummer or Artin–Schreier

extension).

Input:

• A cyclic extension F ′/F which is either Kummer or Artin–Schreier and a prime

P ⊂ F such that P totally ramifies in F ′.

Output:

• An element of valuation 1 at P ′ | P which lies in the integral closure of k[t] in F ′

if k[t] ∩ P 6= k otherwise the integral closure of V∞ in F ′.

Steps:

59
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1. (a) if F ′/F is a Kummer extension set β = αlπj where 1 = lvP (u) + jn.

(b) if F ′/F is an Artin–Schreier extension set β = (α− zP )lπj where 1 = lvP (u−
(zp − z)) + jp.

2. Compute δβ = lcm{den(ai/aj) | 0 ≤ i < j < m, ai, aj 6= 0} ∈ F , where ai are the

coefficients of the minimal polynomial of β over F of degree m(= n, p) and den is

the denominator with respect to the integral closure ZF ⊂ ZF ′ such that ZF ∩P 6= k,

as in [Fra05] Proposition 4.1.5, den() : F → ZF ∩ k(t).

3. Compute γ ∈ F such that vP (γ) = −vP (δβ) and vQ(γ) ≥ 0 for Q ⊂ ZF ′ using

strong approximation.

4. Return the product γδββ.

Theorem 4.1. Let F ′/F be a Kummer or Artin–Schreier extension, P a place of F which

totally ramifies in F ′, ZF ′ the integral closure of k[t] or V∞ in F ′ such that P ∩ZF ′ 6= k and

P ′ | P . The element γδββ computed in Algorithm 6 has valuation 1 at P ′ and is integral

at all other primes Q ⊂ ZF ′.

Proof. We have vP ′(γδββ) = −vP ′(δβ)+vP ′(δβ)+1 = 1 and vQ(γδββ) ≥ 0−vQ(β)+vQ(β) =

0 so γδββ is an integral element with valuation 1 at P ′. �

Now we can write P ′ = PZF ′ + γδββZF ′ . But P may have 2 generators itself so we

have possibly 3 generators for P ′. If P is principal, which is always the case when F is a

rational (function) field or when P ∩V∞ 6= k, then we do have 2 generators for P ′. We can

also use the generator of PK = K ∩P , where K is the rational (function) field contained in

F , and γδββ as 2 generators for P ′ if vPK (normF ′/K(γδββ)) = 1 ([Coh93] Lemma 4.7.9).

Note that if P ′ happens to be a principal ideal then γδββ is a principal ideal generator for

P ′ only when it has zero valuation at all other primes Q ⊂ ZF ′ .
We found that reducing the generator we calculated modulo the generator of PK im-

proved the efficiency of subsequent calculations with the ideal P ′.



Chapter 5

Artin–Schreier–Witt Extensions

Let F be a function field of characteristic p > 0 with perfect constant field and F̄ the

separable closure of F in some algebraic closure. Recall from Definition 1.5 that Wn(F ) is

the ring of Witt vectors of length n with entries in F . Let ℘ : Wn(F̄ ) → Wn(F̄ ) be the

Artin–Schreier operator ℘ : (x1, . . . , xn) 7→ (xp1, . . . , x
p
n)−(x1, . . . , xn) which is a Gal(F̄ , F )-

linear and surjective homomorphism ([Fra05], Proposition 3.2.3). That Wn(F ) has char-

acteristic pn follows from px = (0, xp1, x
p
2, . . .) ([Fra05] Section 1.4) which can be deduced

from the secondary components x(i) of x or the use of the shift operator, V (x1, x2, . . .) =

(0, x1, x2, . . .) in [Has80] page 159–160, for which we have (pmx)i ≡ (V mxp
m

)i mod p and

so if i ≤ m, (pmx)i = 0.

Definition 5.1. An Artin–Schreier–Witt extension of F is an abelian extension E ⊆ F̄ of

F of degree pn.

In particular we consider those extensions E/F such that Gal(E/F ) is cyclic for which

we have further information.

Theorem 5.2 ([Fra05], Theorem 3.2.6). The following statements are equivalent:

1. E/F is a cyclic Artin–Schreier–Witt extension of degree pn.

2. E = F (α) = F (℘−1(u)) where u = (u1, . . . , un) ∈ Wn(F ) with ℘(α) = u and

u1 6= αp − α for all α ∈ F .

As in [Fra05], we consider a cyclic Artin–Schreier–Witt extension E/F of degree pn

with E = F (α1, . . . , αn), ℘(α) = u. Set Ei := F (α1, . . . , αi), 1 ≤ i < n. Then E0 :=

F,E1, . . . , Ei are the only intermediate fields of Ei/F since Ei/F is cyclic and therefore

Ei = F (αi) and in particular E = F (αn).
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Remark 5.3 ([Fra05], Remark 3.2.7). From Proposition 1.6 we get the recursions

u1 = αp1 − α1,

u2 = αp2 − α2 − z1,

...

un = αpn − αn − zn−1

where zi ∈ Ei are polynomial expressions with coefficients in the prime field of F given by

z0 = 0 and

zi = −α
p2

i − α
p
i − u

p
i

p
−
αp

3

i−1 − α
p2

i−1 − u
p2

i−1

p2
− . . .− αp

i+1

1 − αp
i

1 − u
pi

1

pi

= −(αi + ui + zi−1)p − αpi − u
p
i

p

−
(αi−1 + ui−1 + zi−2)p

2 − αp
2

i−1 − u
p2

i−1

p2
− . . .

. . .− (α1 + u1)p
i − αp

i

1 − u
pi

1

pi
.

Definition 5.4 ([Fra05] Section 3.2). An Artin–Schreier–Witt generator of an Artin–

Schreier–Witt extension E/F is an element α = (α1, . . . , αn) ∈ ℘−1(Wn(F )) such that

E = F (α1, . . . , αn).

Proposition 5.5 ([Fra05] Proposition 3.2.8). Let E/F be a cyclic Artin–Schreier–Witt

extension of degree pn, i.e. we have u ∈ Wn(F ), u1 6= αp − α ∀α ∈ F, α = (α1, . . . , αn) ∈
℘−1(u) and E = F (α) = F (α1, . . . , αn). Then, for α′ ∈ Wn(F̄ ), the following assertions

are equivalent:

1. α′ is an Artin–Schreier–Witt generator of E/F .

2. α′ ∈ ℘−1(u′) for some u′ ∈ Wn(F ) and u′−λu ∈ ℘(Wn(F )) for some λ ∈ (Z/pnZ)∗.

3. α′ = λα + ζ for some λ ∈ (Z/pnZ)∗ and ζ ∈ Wn(F ).

The automorphisms of E/F are given by α 7→ α + ζ, ζ ∈ Wn(Fp) ∼= Z/pnZ since

αi 7→ αi+λi, 1 ≤ i ≤ n, 0 ≤ λi < p are the automorphisms of Ei/Ei−1 and the isomorphism

follows from [Fra05] Proposition 1.4.5.

Further when E/F is a cyclic Artin–Schreier–Witt extension with intermediate fields

Ej as described following Theorem 5.2 we have,
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Remark 5.6 (adapted from [Fra05] Remark 4.3.1). Let Pj an arbitrary extension of P to

Ej. Since the Ej (0 ≤ j < n) are the only subfields of E, we know from Theorem 1.1 that

the inertia field of Pn over P is Et for some 0 ≤ t ≤ n, i.e. P is unramified in Et/F and

Pj is totally ramified in El/Ej for each t ≤ j < l ≤ n. We claim that

(4) t =

n, if ΛP,i = 0 for all 1 ≤ i ≤ n

min{0 ≤ i < n|ΛP,i+1 < 0}, otherwise

where ΛP,i is described in Algorithm 7.

For a proof of similar to (4) see [Fra05] p. 60.

5.1. Artin–Schreier–Witt Quotients

Analogous to Definition 3.2 we can define Artin–Schreier–Witt quotients modulo a

prime or a set of primes.

Definition 5.7. Let P ∈ PF and u ∈ Wn(F ). An Artin–Schreier–Witt quotient of u

modulo P is an element ζP ∈ Wn(F ) satisfying vP ((u − ℘(ζP ))i) ≥ 0 or p - vP ((u −
℘(ζP ))i) < 0 for all 1 ≤ i ≤ n.

Let S ⊂ PF . If ζ is an Artin–Schreier–Witt quotient of u modulo P for all P ∈ S then

we call ζ an Artin–Schreier–Witt quotient of u modulo S.

Algorithm 7 (Compute an Artin–Schreier–Witt quotient modulo S ([Fra05] Algorithm

4.3.3)).

Input:

• A function field F with perfect constant field, a vector u ∈ Wn(F ) and a set of

places S ⊂ PF .

Output:

• An Artin–Schreier–Witt quotient ζ of u modulo S.

Steps:

1. Initialize ζ = (0, . . . , 0), u′ = u,m = 0, ζP = (0, . . . , 0),ΛP = 0, tP = n ∀P ∈ S
2. while m < n

(a) Replace m with m+ 1

(b) For each P ∈ S with ΛP = 0 do

(i) (ζP )m,ΛP = ArtinSchreierQuotient(u′m, P ) (Algorithm 3)

(ii) if ΛP 6= 0, set tP = m− 1.



64 5. Artin–Schreier–Witt Extensions

(c) Compute ζm using strong approximation ([Fra05] Algorithm 1.3.3) or the ex-

tension of the chinese remainder theorem (Algorithm 4) such that vP (ζm −
(ζP )m) ≥ 1, P ∈ S and vQ(ζm) ≥ 0 for Q 6∈ S ∪ {X}, for some X 6∈ S.

(d) Replace u′ with u′ − ℘(Z) where Z ∈ Wn(F ) is given by

Zj =

ζm, j = m

0, otherwise

3. Return ζ, [(ΛP , tP )]P∈S.

Note that the entries of these Artin–Schreier–Witt quotients ζ are each Artin–Schreier

quotients and so we have p - vP ((u− ℘(ζ))i) < 0 precisely when i > t.

5.2. A local P -integral Power Basis

Theorem 5.8. Let E = F (α) = F (℘−1(u)) be a cyclic Artin–Schreier–Witt extension

of degree pn with perfect constant field. Let P be a place of F , ζP an Artin–Schreier–

Witt quotient of u modulo P and ρP an Artin–Schreier quotient of un + zn−1 modulo

{Pn−1 : (Pn−1 | P )} ⊂ PEn−1. Let P ′ | P, P ′ ∈ PE.

When P ′ | P has ramification degree p set

B = {(α− ζP )i11 . . . (α− ζP )
in−1

n−1 ((α− ζP )lPn π
sP
P )j}0≤i1,...,in−1<p,0≤j<p

where psP + vP ((u− ℘(ζP ))n)lP = 1. Otherwise set

B = {(α− ζP )i11 . . . (α− ζP )itt ((αn − ρP )lPπsPP )j}0≤i1,...it<p,0≤j<pn−t

where pn−tsP + vPn−1(un + zn−1 − ℘(ρP ))lP = 1 and πP is a uniformizing element of P .

Then B is a P -integral basis for E/F .

Proof. By Remark 5.6 there is some t such that Pt | P is unramified and P ′ | Pt is

totally ramified. Therefore we consider bases Bu = {(α− ζP )i11 . . . (α− ζP )itt }0≤i1,...,it<p and

Br = {((αn − ρP )lPπsPP )j}0≤j<pn−t for Et/F and E/Et respectively. Taking products of

elements of these bases we have B = {xy : x ∈ Bu, y ∈ Br}.
Since Pt | P is unramified, (α− ζP )l is a root of Φ(x) = xp− x− z′l−1− u′l for which we

have vP ′(Φ
′((α− ζP )l)) = vP ′(−1) = 0 so {(α− ζP )il}0≤i<p is a P -integral basis for El/El−1

by [Sti93] Corollary III.5.11 once we prove by induction that z′j are integral at P where

the z′j correspond to the tower in Remark 5.3 for u′ = u− ℘(ζP ) and α′ = α− ζP .

We have vP (z′0) = vP (0) > 0. Suppose vPj(z
′
i) > 0, i < j, Pj ∈ PEj , Pj | P unramified.
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vPj(z
′
j) = vPj(−

α′p
2

j − α
′p
j − u

′p
j

p
−
α′p

3

j−1 − α
′p2
j−1 − u

′p2
j−1

p2
− · · · − α′p

j+1

1 − α′p
j

1 − u
′pj
1

pj
)

≥ min{vPj(
α′p

2

j − α
′p
j − u

′p
j

p
), vPj(

α′p
3

j−1 − α
′p2
j−1 − u

′p2
j−1

p2
), . . . , vPj(

α′p
j+1

1 − α′p
j

1 − u
′pj
1

pj
)}

= min{vPj(α
′p2
j − α

′p
j − u

′p
j )− vPj(p), vPj(α

′p3
j−1 − α

′p2
j−1 − u

′p2
j−1)− vPj(p2), . . . ,

vPj(α
′pj+1

1 − α′p
j

1 − u
′pj
1 )− vPj(pj))}

= min{vPj(α
′p2
j − α

′p
j − u

′p
j ), vPj(α

′p3
j−1 − α

′p2
j−1 − u

′p2
j−1), . . . , vPj(α

′pj+1

1 − α′p
j

1 − u
′pj
1 )}

≥ min{vPj(α
′p2
j ), vPj(α

′p
j ), vPj(u

′p
j ), vPj(α

′p3
j−1), vPj(α

′p2
j−1), vPj(u

′p2
j−1), . . . ,

vPj(α
′pj+1

1 ), vPj(α
′pj
1 ), vPj(u

′pj
1 )}

= min{p2vPj(α
′
j), pvPj(α

′
j), pvPj(u

′
j), p

3vPj(α
′
j−1), p2vPj(α

′
j−1), p2vPj(uj−1), . . . ,

pj+1vPj(α
′
1), pjvPj(α

′
1), pjvPj(u

′
1)}(A)

By Algorithm 3 we have vP (u′i) ≥ 0 when i ≤ j, Pj | P is unramified so we also have

vPj(u
′
i) ≥ 0, i ≤ j. From Remark 5.3 we have α′pi − α′i = u′i + z′i−1 so vPj(α

′p
i − α′i) =

vPj(u
′
i + z′i−1) ≥ min{vPj(u′i), vPj(z′i−1} ≥ 0, i ≤ j using the induction hypothesis. But

vPj(u
′
i + z′i−1) = vPj(α

′p
i − α′i) ≥ min{pvPj(α′i), vPj(α′i)}.

Suppose vPj(α
′
i) < 0. Then vPj(u

′
i + z′i−1) = pvPj(α

′
i) < 0 which is a contradiction so

vPj(α
′
i) ≥ 0. Therefore all elements in (A) are non-negative so we must have vPj(z

′
j) ≥ 0

for Pj | P unramified and substituting j = l − 1 we have vP (z′l−1) > 0 when Pl−1 | P is

unramified. So z′l−1 is integral at P , (α− ζP )l generates a P -integral basis for El/El−1 and

Bu is a P -integral basis for Et/F since it is a product of P -integral bases.

Since P ′ | Pt is totally ramified

vP ′(π
sP
P (αn − ρP )lP ) = sPp

n + lPvP ′(αn − ρP )

= sPp
n + lP1/pvP ′(un + zn−1 − ℘(ρP ))

= sPp
n + lP (1/p)pvPn−1(un + zn−1 − ℘(ρP ))

= 1

so Br is a P -integral basis by [Sti93] Proposition III.5.12. Therefore B is a P -integral

basis for E/F .
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When P ′ | P has ramification degree p, Bu = {(α−ζP )i11 . . . (α−ζP )
in−1

n−1 } is a P -integral

basis for En−1/F . To see that Br = {((α − ζP )lPn π
sP
P )j} is a P -integral basis for En/En−1

by [Sti93] Proposition III.5.12 note that α − ζP is an Artin–Schreier–Witt generator for

E/F and α− ζP ∈ ℘−1(u−℘(ζP )) by Proposition 5.5. Then similarly to the ramified case,

vP ′((α− ζP )lPn π
sP
P ) = sPp+ lPvP ′((α− ζP )n)

= sPp+ lP1/pvP ′((u− ℘(ζP ))n + z′n−1)

= sPp+ lP (1/p)pvPn−1((u− ℘(ζP ))n + z′n−1)

= spp+ lPvPn−1((u− ℘(ζP ))n)

= 1

since vPn−1(z
′
n−1) ≥ 0 as Pn−1 | P is unramified and vPn−1((u− ℘(ζP ))n) < 0 so vPn−1((u−

℘(ζP ))n) 6= vPn−1(z
′
n−1) and

vPn−1((u− ℘(ζP ))n + z′n−1) = vPn−1((u− ℘(ζP ))n) = vP ((u− ℘(ζP ))n).

Therefore B is a P -integral basis for E/F . �

Comparing to Theorem 1.1 we see that in an Artin–Schreier–Witt extension the de-

composition of the place P ⊂ F is determined by the valuation of the entries of u at P .

The place P splits in Ei ⊂ Z, the decomposition field of E/F , when vP (ui) > 0. We have

that Pi | PZ is inert in Ei/Z and p | vP (ui) < 0, vP ((u − ℘(ζ))i) ≥ 0 for tZ < i ≤ t where

EtZ = Z.

5.3. Computing S-Maximal Modules

In this section we will again assume that E/F is a cyclic Artin–Schreier–Witt exten-

sion, E = F (α) = F (℘−1(u)) with perfect constant field. We work towards computing

a maximal order of E. We leave the computation of S-maximal orders until Section 5.6

as the proofs are longer and computing a maximal order is more interesting. We instead

make statements about S-maximal modules (Definition 1.4) which are easier to prove and

sufficient to compute a maximal order.

We start with an order O = ZF [dαn] where ZF is the integral closure of k[t] or V∞ in

F , d ∈ ZF ∩ k(t) and vP ′(dαn) ≥ 0 for all P ′ | P , P a prime ideal of ZF . We also need

dl ∈ ZF ∩ k(t) such that vPl(dlαl) ≥ 0 for all Pl | P , P a prime ideal of ZF and Pl ⊂ El.

Theorem 5.9. Let E = F (α) = F (℘−1(u)) be an Artin–Schreier–Witt extension of degree

pn and S a set of primes of ZF with the same ramification degree pn−t. Let ζ ∈ F be an
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Artin–Schreier–Witt quotient of u modulo S computed using Algorithm 7. Let ρ ∈ En−1 be

an Artin–Schreier quotient of un + zn−1 modulo {P ′ : P ′ | P, P ∈ S | e(P ′|P ) > p} such

that vQ(ρ) ≥ 0 for all Q 6∈ {P ′ : P ′ | P, P ∈ S | e(P ′|P ) > p} ∪ {X} for some place X

such that X ∩ ZF = k. Let dl be such that vPl(dlαl) ≥ 0 for all Pl | P , P a prime ideal of

ZF and let vP,ij = jvP (d) +
∑t

l=1 ilvP (dl). Then

(ωij, aij)ij = ((d1(α− ζ)1)i1 . . . (dt(α− ζ)t)
it(d(αn − ρ))j,

∏
P∈S

P µP,j−vP,ij)0≤i1,...,it<p,0≤j<pn−t

or, more efficiently when the ramification index pn−t = p,

(ωij, aij)ij = ((d1(α− ζ)1)i1 . . . (dn−1(α− ζ)n−1)in−1(d(α− ζ)n)j,∏
P∈S

P µP,j−vP,ij)0≤i1,...,in−1<p,0≤j<p

is a pseudo basis for an integral module of E over ZF which is S-maximal where µP,j is

the smallest non-negative integer such that vP ′(aijωij) ≥ 0 for all P ′ | P ∈ S and all i.

To compute µP,j, let P ′ | P . We require vP ′((α − ζ1)i1 . . . (α − ζ)itt (αn − ρ)jP µP,j) ≥ 0

since all the d and dl valuations cancel, that is, i1vP ′((α − ζ)1) + · · · + itvP ′((α − ζ)t) +

jvP ′(αn − ρ) + µP,jvP ′(P ) ≥ 0. For each P ∈ S we can add 1 + πP to (ζP )l (Chapter 3

following the proof of Theorem 3.6) before completing Algorithm 3 called from Algorithm 7

to ensure that vP ′((α− ζ)l) ≤ 1 if it isn’t already. Therefore we need

µP,j ≥
−jvP ′(αn − ρ))

pn−t
=
−jvPn−1(un + zn−1 − ℘(ρ))

pn−t
,

where Pn−1 | P, Pn−1 ⊂ En−1, so we take

µP,j =

⌈
−jvPn−1(un + zn−1 − ℘(ρ))

pn−t

⌉
and similarly

µPj =

⌈
−jvP ((u− ℘(ζ))n)

p

⌉
when the ramification degree of P in E is p.

Note that ζ and ρ can be quotients for sets S where the places may have different

ramification degrees. We compute such elements using strong approximation or chinese

remainder with all primes (or all primes contained in En−1 above) the primes in S.

Remark 5.10. Let R be the module with pseudo basis (ωij, aij)ij over ZF . Note that the

index of O in R does not contain only primes in S. This index will be the determinant

of the transformation matrix {ωij} multiplied by the coefficient ideals aij. The product
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of the coefficient ideals obviously contains only primes in S but the determinant of the

transformation matrix may contain other primes. This is what prevents R being an S-

maximal over order of O although we do prove that R is an order in Theorem 5.16. As

shown in the proof below of Theorem 5.17 the exponents in the coefficient ideals are all

non-positive.

Proof of Theorem 5.9. Let R be the module with pseudo basis (ωij, aij)ij over ZF . We

prove that R contains elements integral over ZF so R is contained in the integral closure

ZE of ZF in E and that R is S-maximal.

Proof that R is an integral module over ZF : We constructed (ωij, aij)ij such

that vP ′(aijωij) ≥ 0 for all P ′ | P, P ∈ S. Let Q be a prime of E lying above

a prime of ZF which is not in S. We chose the exceptional place for the strong

approximation which computed each ζl to be a prime not contained in ZF so we

assume Q does not lie above the exceptional prime. We have

vQ(aijωij) =
∑
P∈S

vQ(P )(µPj − jvP (d)−
t∑
l=1

ilvP (dl))+

t∑
l=1

(ilvQ(dl(α− ζ)l)) + jvQ(d(αn − ρ))

=
t∑
l=1

ilvQ(dl(α− ζ)l) + j(vQ(d) + vQ(αn − ρ))

or

vQ(aijωij) =
n−1∑
l=1

ilvQ(dl(α− ζ)l) + j(vQ((α− ζ)n) + vQ(d))

when the ramification index is p.

Since vQ(ρ) ≥ 0 by construction of ρ, vQ(αn − ρ) ≥ min{vQ(αn), vQ(ρ)}, 0 ≤
vQ(dαn) and vQ(d) ≥ 0 we either have

vQ(aijωij) ≥
t∑
l=1

ilvQ(dl(α− ζ)l) + j(vQ(d) + vQ(ρ)) ≥
t∑
l=1

ilvQ(dl(α− ζ)l)

or

vQ(aijωij) ≥
t∑
l=1

ilvQ(dl(α− ζ)l) + j(vQ(d) + vQ(αn)) ≥
t∑
l=1

ilvQ(dl(α− ζ)l).
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When the ramification index is p, (α − ζ)n = αn − η for some η ∈ F, vQ(η) ≥ 0

by construction using strong approximation, so vQ((α− ζ)n) ≥ min{vQ(αn), vQ(η)}
and

vQ(aijωij) ≥
n−1∑
l=1

ilvQ(dl(α− ζ)l) + j(vQ(αn) + vQ(d)) ≥
n−1∑
l=1

ilvQ(dl(α− ζ)l)

or

vQ(aijωij) ≥
n−1∑
l=1

ilvQ(dl(α− ζ)l) + j(vQ(η) + vQ(d)) ≥
n−1∑
l=1

ilvQ(dl(α− ζ)l).

The result follows in all cases on proving vQ(dl(α−ζ)l) ≥ 0. But we have (α−ζ)l =

αl − ηl for some ηl ∈ F, vQ(ηl) ≥ 0 by construction using strong approximation, so

vQ((α− ζ)l) ≥ min{vQ(αl), vQ(ηl)} and

vQ(dl(α− ζ)l) ≥

vQ(dl) + vQ(αl), vQ(αl) ≤ vQ(ηl)

vQ(dl) + vQ(ηl), otherwise

≥ 0

since vQ(dl) ≥ 0, vQ(ηl) ≥ 0 and vQ(dlαl) ≥ 0.

Proof that R is S-maximal : To prove that R is an S-maximal module we prove

that R is P -maximal for all P ∈ S by showing that the P -integral basis of Theo-

rem 5.8 is contained in the localization RP∩R of R at P .

We recall from Theorem 5.8 that (α − ζ)1, . . . , (α − ζ)t and πsPP (α − ζ)lPn or

πsPP (αn−ρ)lP , where πP is a prime element of P , generate a P -integral basis for O′P
over OP . We choose πP such that vP̃ (πP ) ≥ 0 for all P̃ ∈ S, P̃ 6= P . Let P ∈ S, we

have

πsPP (α− ζ)lPn = (
1

d
)lPπsPP (d)lP (α− ζ)lPn ,

1 = vP (πsPP (α− ζ)lPn ) = vP

(
(
1

d
)lPπsPP (d)lP (α− ζ)lPn

)
,

πsPP (αn − ρ)lP = (
1

d
)lPπsPP (d)lP (αn − ρ)lP ,

1 = vP (πsPP (αn − ρ)lP ) = vP

(
(
1

d
)lPπsPP (d)lP (αn − ρ)lPn

)
.
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Therefore in both cases sP ≥ µP,lP by minimality of µP,lP and

(α− ζ)l =
1

dl
ω0...1...00 =

(∏
Q∈S π

vQ(dl)
Q

dl

)
(
∏
Q∈S

π−vQ(dl))ω0...1...00

=

(∏
Q∈S π

vQ(dl)
Q

dl

)
r.

Also

πsPP (α− ζ)lPn = (
∏

Q∈S\P

π
−µQlP
Q )πµ1P (

∏
Q∈S

π
µQlP
Q )(

1

d
)lPω0lP , µ1 = sP − µPlP ≥ 0,

πsPP (αn − ρ)lP = (
∏

Q∈S\P

π
−µQlP
Q )πµ1P (

∏
Q∈S

π
µQlP
Q )(

1

d
)lPω0lP , µ1 = sP − µPlP ≥ 0

= (
∏

Q∈S\P

π
−µQlP
Q )πµ1P

(∏
Q∈S π

vQ(d)
Q

d

)lP

(
∏
Q∈S

πµ2Q )ω0lP , µ2 = µQlP − lPvQ(d)

= (
∏

Q∈S\P

π
−µQlP
Q )πµ1P

(∏
Q∈S π

vQ(d)
Q

d

)lP

r

where r ∈ R since (
∏

Q∈S π
−vQ(dl)) ∈ a0...1...00 for all l and (

∏
Q∈S π

µ2
Q ) ∈ ailP for

all i. Therefore (α− ζ)1, . . . , (α− ζ)t and πsPP (α− ζ)lPn or πsPP (αn − ρ)lP are in the

localization RP since sP − µPlP ≥ 0, vP (Q) = 0, Q ∈ S \ {P} and vP (π
vP (dl)
P /dl) =

vP (π
vP (d)
P /d) = 0 so there is no P in the denominator.

Therefore there is an integral basis of O′P over OP at each P ∈ S which

is contained in the localization RP so the integral closure O′P is contained in

the localization RP but since RP ⊆ O′P , RP = O′P . Therefore we have that

v(disc(RP )) = v(disc(O′P )). Since O′P is the localization of ZF ′ (the integral clo-

sure of ZF in F ′) at P this means that vP (disc(R)) = vP (disc(ZF ′)) by [PZ89] p292

(invariance under localization). Therefore R is P -maximal for all P ∈ S, therefore

R is S-maximal.

�

Remark 5.11. When S contains only primes of ramification degree greater than p we have

dαn = d(αn − ρ) + dρ = ω01 + dρ. We have vP ′(P
µP,j(αn − ρ)j) ≥ 0 by definition of µP,j.
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We also have

vP ′(P
jvP (d)(αn − ρ)j) = j(vP ′(d) + vP ′(αn − ρ))

≥ j(vP ′(d) + vP ′(αn))

= jvP ′(dαn)

≥ 0

so jvP (d) ≥ µP,j by minimality of µP,j Therefore 1 ∈ a01. Since vP ′(ρ) ≥ vP ′(αn) we have

vP ′(dρ) ≥ vP ′(dαn) ≥ 0 but R is sometimes too small so that dρ 6∈ R.

We also have dlαl = dl(α− ζ)l + dlηl when l ≤ t so as above we have ZF [dlαl] ⊆ R.

For a set S ⊂ PF which may contain places of differing ramification degrees we join the

pseudo bases for each subset Sl ⊂ S containing primes of S having ramification degree pl

and reduce it using normal form. This is equivalent to addition of modules.

Algorithm 8 (Compute an S-maximal integral module in an Artin–Schreier–Witt Exten-

sion).

Input:

• An Artin–Schreier–Witt extension E/F = F (α) = F (℘−1(u)), u ∈ Wn(F ) of char-

acteristic p and degree pn and a set S of primes of the integral closure ZF of k[t]

or V∞ in F .

Output:

• An integral module of E over ZF which is S-maximal.

Steps:

1. Compute an Artin–Schreier–Witt quotient ζ of u mod S (Algorithm 7) and partition

the primes in S into sets Sl containing primes of ramification degree pl.

2. Compute an Artin–Schreier quotient ρ of un + zn−1 mod
⋃
l>1 Sl (Algorithm 5),

using Strong Approximation ([Fra05] Algorithm 1.3.3) or the extension of the Chi-

nese remainder theorem (Algorithm 4) to compute ρ from ρP for primes of all

ramification degrees > p. (One Strong Approximation or Chinese Remainder with

all primes is better so that the module resulting is more likely to be an order.)

3. For each ramification degree pl, 0 ≤ l ≤ n

(a) Compute the pseudo basis using unramified generators (α − ζ)i, 1 ≤ i ≤ n − l
and ramified generator (αn − ρ) stated in Theorem 5.9.

4. Return the sum of the modules defined by these pseudo bases.
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Remark 5.12. The module computed using Algorithm 8 contains O = ZF [dαn] when S

contains a prime with ramification degree p or 1. This follows from Theorem 5.17.

Theorem 5.13. The module computed using Algorithm 8 is S-maximal.

Proof. Let R =
∑
{l:#Sl>0}Rl be the output of Algorithm 8 where we sum only over those

l for which Sl is not empty. Each moduleRl is Sl-maximal. The moduleR =
∑
{l:#Sl>0}Rl

contains each Rl and so must be Sl-maximal for each l. Therefore R is S-maximal. �

5.4. Computing Integral Closures

Algorithm 9 (Compute a maximal order in an Artin–Schreier–Witt extension).

Input:

• An Artin–Schreier–Witt extension E/F = F (α) = F (℘−1(u)), u ∈ Wn(F ) of char-

acteristic p and degree pn and an integral closure ZF of k[t] or V∞ in F .

Output:

• The integral closure of ZF in E.

Steps:

1. Compute the set S of primes in the Witt vector u which occur with negative expo-

nent.

2. Compute an S-maximal integral module S of E/F using Algorithm 8.

3. If S0 ⊂ S or S1 ⊂ S is not empty then return S.

4. Otherwise, compute the discriminant of S (which should be smaller that of ZF [dαn]),

factorise the minimum and decompose these factors in F to compute the set of

primes S0 S is not maximal at. These primes will be unramified and since they do

not appear in u with negative exponent they will have Artin-Schreier–Witt quotient

0. If S0 is not empty compute the module S0 with pseudo basis using unramified

generators diαi using Algorithm 8.

5. Return the sum of the modules S and S0.

If S0 is not empty then R0 ⊆ S. If S1 is not empty then S0 ⊆ R1 ⊆ S since the

ωij are the same for these ramification degrees and jvP (d) − µP,j ≤ 0 as in the proof

of Theorem 5.17 and Remark 5.11. In both these cases we can avoid the potentially

expensive discriminant calculation in Step 4 because we have already calculated pseudo

bases at primes of ramification degree 1 and p.
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Theorem 5.14. The module computed using Algorithm 9 is the integral closure of ZF in

E.

Proof. Let R =
∑
{l:#Sl>0}Rl be the output of Algorithm 9 where we sum only over l such

that Sl is not empty. Since R contains each Rl which is Sl-maximal R is Sl-maximal for all

l. Since each Rl contains only elements integral over ZF ,R contains only elements integral

over ZF . Therefore R is a maximal integral module of E over ZF . But the maximal order

of E containing ZF is also a maximal integral module of E. Therefore R is the maximal

order of E containing ZF or equivalently the integral closure of ZF in E.

�

5.5. A Note on Complexity

The complexity of Algorithms 8, 9 and 10 is not necessarily linear in the degree of

the field like the algorithms described in Chapters 2 and 3 due to the use of a normal

form algorithm to add together the modules computed from primes of different ramifica-

tion degrees. The complexity of Algorithms 8 and 9 depends on the number of different

ramification degrees places in S have in E. These algorithms are most efficient when S

contains only primes of ramification degree p or less and a normal form computation may

not be necessary.

It is possible to reduce the number of generators for the sum of the modules by noticing

that some of the ωij are common between differing ramification degrees. For such matching

ωij the final aij is the product of the aij over the different ramification degrees. This smaller

input to the normal form algorithm makes the normal form computation cheaper. To do

this matching we divide our primes into 2 groups, those with ramification degree ≤ p and

those with ramification degree > p.

The cost of Algorithms 8, 9 and 10 includes the cost of computing the pseudo basis

in Theorem 5.9. We now consider the complexity of computing the pseudo basis in The-

orem 5.9. To compute dl(α − ζ)ill for 0 ≤ il < p takes p − 1 multiplications in E and

to compute d(αn − ρ)j for 0 ≤ j < pn−t takes pn−t − 1 multiplications in E or one mul-

tiplication for each of pn − 1 elements. We compute pn powers of #S ideals bounded in

exponent (in absolute value) by −vP ((u−℘(u))n)+n(p−1) maxP∈S{vP (d)} or −vPn−1(un+

zn−1 − ℘(ρ)) + n(p − 1) maxP∈S{vP (d)}. Computing ζ costs O(#Sn(−v(u))(log2(p) +

log2(−v(u))) + log(p)n4 log(n) log(log(n))) in the computation of the quotients and the

Witt vector arithmetic. To compute ρ requires #Sr(1 + log2(p) + 2 log2(v(un))) multiplica-

tions in En−1 where Sr is the subset of S containing ideals with ramification degree > 1 in
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En−1. The cost of computing vP (ui) is log2(vP (ui)) and we require this computation for n

entries ui and #S ideals P , that is, we compute n#S valuations. Similarly to Section 3.4

we have an estimated cost in

O(p2nn log(p) log(n log(p))) +O(#S log2(−v(u))) +O(#Spn log2(−v(u) + npv(d)))+

O(#S(−v(u))n(log2(p) + log2(−v(u))) + log(p)n4 log(n) log(log(n)))

to compute the pseudo basis in Theorem 5.9.

However in practice, as can be seen in the timings which follow, Algorithm 9 is faster

than Round 2 [Coh00] and in some cases much faster. For a range of fields Algorithm 9

is faster than computing a maximal order of the representation of the extension as a tower

of n extensions of degree p (similar to an implementation of [Fra05] but using Chapter 3

to compute maximal orders of the degree p extensions) and transferring this order across

to the degree pn extension.

5.6. Computing S-Maximal Orders

Here we provide an algorithm for computing the S-maximal over order of the order

ZF [dαn] in an Artin–Schreier–Witt extension. We prove this algorithm is correct and also

prove that the S-maximal module with basis given in Theorem 5.9 is also an order.

Algorithm 10. (Compute the S-maximal over order of the order ZF [dαn] in an Artin–

Schreier–Witt extension)

Input:

• An order ZF [dαn] of an Artin–Schreier–Witt extension E/F = F (α) = F (℘−1(u)),

u ∈ Wn(F ) of characteristic p, where d ∈ ZF ∩ k(t), and degree pn and a set S of

primes of the integral closure ZF of k[t] or V∞ in F .

Output:

• The S-maximal over order of ZF [dαn] over ZF .

Steps:

1. Compute an S-maximal integral module S using Algorithm 8.

2. Return the module sum bS+ZF [dαn] where b = disc(ZF [dαn])/c and c is the product

of powers of those primes in S which divide disc(ZF [dαn]) such that b is coprime

to c and the primes in S [Fie13a].

Theorem 5.15. The module computed using Algorithm 10 is the S-maximal over order of

ZF [dαn].
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Proof. Let R = bS +ZF [dαn] be the module computed using Algorithm 10 and let ZE be

the integral closure of ZF in E. We have R ⊃ ZF [dαn] and R is an integral module as it

is the sum of integral modules.

We also have (R)P ⊃ (bS)P = (S)P = (ZE)P ∀P ∈ S since S is S-maximal and

vP (b) = 0. Therefore R is contained in ZE and contains the S-maximal order of ZF [dαn].

We now prove that R is no larger than the S-maximal over order of ZF [dαn]. If R is

not the S-maximal over order of ZF [dαn] then the index of ZF [dαn] in R will have non-zero

valuation at primes other than those in S. We show that this is not the case. We have

Zp
n

F ⊇ cR ⊇ cZp
n

F

and [Zpn

F : cZp
n

F ] = cp
n
. But [Zp

n

F : cR] = det(cR) so det(cR)|cpn . We also have [R :

ZF [dαn]] = det(R) = det(cR)/cp
n

which has valuation 0 at primes not in S. Therefore R
is the S-maximal over order of ZF [dαn]. �

Theorem 5.16. The S-maximal module with pseudo basis given in Theorem 5.9 is an

S-maximal order.

Proof. Let

R =

(p−1,...,p−1,pn−t−1)⊕
(i1,...,it,j)=(0,...,0,0)

a(i1,...,it)jω(i1,...,it)j

be the module of E with pseudo basis (ωij, aij)ij over ZF . For i = j = 0, ω00 = 1, µP,j = 0

so aij = 1 and 1 ∈ R.

To prove that R is closed under multiplication we check that aijωij × almωlm ⊂ R. We

know that ai100...00ωi100...00 × a0i20...00ω0i20...00 = ai1i20...00ωi1i20...00 ⊂ R and similarly so we

need to prove ai10...00ωi10...00 × ai′10...00ωi′10...00 ⊂ R and similarly.

Let i and l be vectors of length t either zero or with one non-zero entry each, ι and κ

respectively, in the same position I, ι, κ ∈ [0 . . . p) and let j,m ∈ [0 . . . pn−t), j = m = 0

unless i and l are zero vectors. We have

aijωij × almωlm = aijalmωijωlm =
∏
P∈S

P µP,j+µP,m−vP,ij−vP,lmωijωlm

and this pseudo element is integral over all P ∈ S since vP ′(aijωij×almωlm) = vP ′(aijωij)+

vP ′(almωlm) ≥ 0 holds for P ′ | P . When ι+κ < p or j+m < pn−t this implies µP,j+µP,m ≥
µP,(j+m) for all P ∈ S since µP,(j+m) is minimal with this property. So we have

aijωij × almωlm =
∏
P∈S

P µa(i+l)(j+m)ω(i+l)(j+m) ⊂ R, µ = µP,j + µP,m − µP,(j+m).
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We now consider 3 cases.

1. When j = m = 0, ι+ κ ≥ p, ω0...(ι+κ)...0 = ω0...(ι+κ−p)...0ω0...p...0 and

ω0...p...0 = (dI(α− ζ)I)
p = dpI(α− ζ)I + dpI(u

′
I + z′I−1)

so

ω0...(ι+κ)...0 = ω0...(ι+κ−p)...0(dp−1
I ω0...1...0 + dpI(u

′
I + z′I−1))

= dp−1
I ω0...(ι+κ−p+1)...0 + dpIω0...(ι+κ−p)...0((u− ℘(ζ))I + z′I−1)

and

(B) ai0ωi0×al0ωl0 =
∏
P∈S

P µ
(
dp−1
I ω0...(ι+κ−p+1)...0 + dpIω0...(ι+κ−p)...0((u− ℘(ζ))I + z′I−1)

)
,

where µ = µP,0 + µP,0 − vP (dI)(ι+ κ). We need to show that the coefficients of

a0...(ι+κ−p+1)...0ω0...(ι+κ−p+1)...0 and a0...(ι+κ−p)...0ω0...(ι+κ−p)...0

in (B) are contained in ZF . At P ∈ S, since µP,0 = 0,

a0...(ι+κ−p+1)...0 =
∏
P∈S

P−vP (dI)(ι+κ−p+1), a0...(ι+κ−p)...0 =
∏
P∈S

P−vP (dI)(ι+κ−p)

and the coefficient dp−1
I

∏
P∈S P

−vP (dI)(p−1) of a0...(ι+κ−p+1)...0ω0...(ι+κ−p+1)...0 is inte-

gral. The coefficient of a0...(ι+κ−p)...0ω0...(ι+κ−p)...0 is

dpI
∏
P∈S

P−pvP (dI)((u− ℘(ζ))I + z′I−1).

We know from the proof of Theorem 5.8 that z′I−1 is integral at P ∈ S for I ≤ t and

we also have that vP ((u − ζ)I) ≥ 0 by definition of Artin–Schreier–Witt quotient

so both coefficients are integral at P ∈ S. At primes Q 6∈ S,Q ⊂ ZF ,

vQ(dpI
∏
P∈S

P−pvP (dI)((u− ℘(ζ))I + z′I−1)) = vQ(dpI((u− ℘(ζ))I + z′I−1))

= vQ((dI(α− ζ)I)
p − dpI(αi − ζ)I)

≥ 0
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so dpI
∏

P∈S P
−vP (dI)((u− ℘(ζ))I + z′I−1) is integral for all primes Q of ZF and

ai0ωi0 × al0ωl0 = dp−1
I

∏
P∈S

P−vP (dI)(p−1)a0...(ι+κ−p+1)...0ω0...(ι+κ−p+1)...0+

dpI
∏
P∈S

P−pvP (dI)((u− ℘(ζ))I + z′I−1)a0...(ι+κ−p)...0ω0...(ι+κ−p)...0

⊂ R.

2. When the ramification degree of all P ∈ S in E is p, and j+m ≥ p then ω0(j+m) =

ω0(j+m−p)ω0p and

ω0p = (d(α− ζ)n)p = dp((α− ζ)n + u′n + z′n−1)

so

a0jω0j × a0mω0m

= a0ja0mω0(j+m−p)d
p((α− ζ)n + u′n + z′n−1)

= a0ja0mω0(j+m−p)(d
p−1ω01 + dp(u′n + z′n−1))

=
∏
P∈S

P µP,j+µP,m−vP (d)(j+m)(dp−1ω0(j+m−p+1) + dp(u′n + z′n−1)ω0(j+m−p))

=
∏
P∈S

P µ1dp−1a0(j+m−p+1)ω0(j+m−p+1)+

dp(u′n + z′n−1)
∏
P∈S

P µ2a0(j+l−p)ω0(j+m−p),

µ1 = µP,j + µP,m −
(
µP,(j+m−p+1) − vP (d)(−p+ 1)

)
µ2 = µP,j + µP,m −

(
µP,(j+m−p) − vP (d)(−p)

)
and we need to prove that

d =
∏
P∈S

P vPd , vPd = µP,j + µP,m − µP,(j+m−p+1)

and

c = dp(u′n + z′n−1)
∏
P∈S

P vP c , vP c = µP,j + µP,m − µP,(j+m−p) − pvP (d)

are integral at P ∈ S. We have

da0(j+m−p+1)ω0(j+m−p+1)

=
∏
P∈S

P µω0(j+m−p+1), µ = µP,j + µP,m − vP (d)(j +m− p+ 1)
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and for Pn | P ∈ S, Pn ⊂ E

vPn(da0(j+m−p+1)ω0(j+m−p+1))

= pn−t(µP,j + µP,m − (j +m− p+ 1)vP (d)) + (j +m− p+ 1)vPn(ω01)

= pn−tµP,j + jvPn((α− ζ)n) + pn−tµP,m +mvPn((α− ζ)n)−

(1− p)vPn(d) + (1− p)vPn(ω01)

≥ (1− p)vPn ((α− ζ)n)

by definition of µP,j and µP,l. Since vPn((α − ζ)n) ≤ −1 and 1 − p ≤ −1 we have

vPn(da0(j+m−p+1)ω0(j+m−p+1)) ≥ 1 and so µP,j + µP,m ≥ µP,(j+m−p+1) by minimality

of µP,(j+m−p+1). Therefore d is integral at all P ∈ S.

For the coefficient c = dp(u′n + z′n−1)
∏

P∈S P
vP c of a0(j+m−p)ω0(j+m−p) we have,

for Pn | P ∈ S

vPn(c) = pvPn−1(u
′
n + z′n−1) + p(µP,j + µP,m − µP,(j+m−p))

= pvP ((u− ℘(ζ))n) + p(µP,j + µP,m − µP,(j+m−p))

= −pµP,p + p(µP,j + µP,m − µP,(j+m−p))

≥ −pµP,p + pµP,p

= 0

since vPn−1(u
′
n + z′n−1) = vP ((u− ℘(ζ))n) as in the proof of Theorem 5.8 and

µP,(j+m−p) = d−(j +m− p)vP ((u− ℘(ζ))n)/pe

= d−jvP ((u− ℘(ζ))n)/p+−mvP ((u− ℘(ζ))n)/pe − −vP ((u− ℘(ζ))n)

= d−jvP ((u− ℘(ζ))n)/p+−mvP ((u− ℘(ζ))n)/pe − µPp
≤ µP,j + µP,m − µP,p.

Therefore c is integral at all P ∈ S. For primes Q 6∈ S,Q ⊂ ZF ,

vQ(c) = vQ(dp(u′n + z′n−1)) = vQ((d(α− ζ)n)p − dp(α− ζ)n) ≥ 0.

Therefore

a0jω0j × a0lω0l

= dp−1
∏
P∈S

P−vP (d)(p−1)da0(j+l−p+1)ω0(j+l−p+1) + ca0(j+l−p)ω0(j+l−p)

⊂ R.
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3. Otherwise, let j < pn−t,m < p, j +m ≥ pn−t. We have

ω0p = (d(αn − ρ))p = dp(αn − ρ+ un + zn−1 − ℘(ρ))

= dp−1ω01 + dp(un + zn−1 − ℘(ρ))

therefore

ω0jω0m = ω0(j+m−p)
(
dp(un + zn−1 − ℘(ρ)) + dp−1ω01

)
and

a0jω0j × a0mω0m

= a0ja0mω0(j+m−p)
(
dp(un + zn−1 − ℘(ρ)) + dp−1ω01

)
= (dp−1)

∏
P∈S

P µω0(j+m−p)ω01 + (dp)
∏
P∈S

P µω0(j+m−p)(un + zn−1 − ℘(ρ)),

⊂ R

where µ = µP,j + µP,m − vP (d)(j +m) by the argument in 2. above.

We prove that a0jω0j × a0mω0m ⊂ R for m > p using induction. Suppose

a0jω0j × a0mω0m ⊂ R when m < pl−1, l ≤ n− t. Now let m < pl, then

a0jω0j × a0mω0m

= a0ja0mω0(j+m−pl)ω
pl−1

0p

= a0ja0mω0(j+m−pl)

(
(dp−1)p

l−1

ω0pl−1 + dp
l

(un + zn−1 − ℘(ρ))p
l−1
)

= a0ja0m(dp−1)p
l−1

ω0(j+m−pl+pl−1) + a0ja0md
pl (un + zn−1 − ℘(ρ))p

l−1

ω0(j+m−pl)

= a0ja0m(dp−1)p
l−1

ω0(j+m−pl+1)ω0(pl−1−1)+

a0ja0md
pl(un + zn−1 − ℘(ρ))p

l−1

ω0(j+m−pl).

Let

c = dp
l

(un + zn−1 − ℘(ρ))p
l−1 ∏

P∈S

P vP c ,
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where vP c = µP,j + µP,m − µP,(j+m−pl)−vP (d)pl. To show c is integral we have for

Pn | P ∈ S

vPn

(
dp

l

(un + zn−1 − ℘(ρ))p
l−1
∏
P∈S

P vP c

)
= ppl−1vPn−1(un + zn−1 − ℘(ρ)) + pn−t(µP,j + µP,m − µP,(j+m−pl))

≥ plvPn−1(un + zn−1 − ℘(ρ)) + pl(µP,j + µP,m − µP,(j+m−pl))

= −plµPpl + pl(µP,j + µP,m − µP,(j+m−pl))

≥ −plµP,pl + plµP,pl

= 0.

For primes Q 6∈ S,Q ⊂ ZF ,

vQ(c) = vQ(dp
l

(un + zn−1 − ℘(ρ))p
l−1

)

= pl−1vQ((d(αn − ρ))p − dp(αn − ρ))

≥ 0.

Let d =
∏

P∈S P
vPd , vPd = µP,j + µP,m − (µP,(j+m−pl+1) + µP,pl−1). To show d is

integral consider

µP,(j+m−pl+1) + µP,pl−1−1

= d−(j +m− pl + 1)vPn−1(un + zn−1 − ℘(ρ))/pn−te

+ d−(pl−1 − 1)vPn−1(un + zn−1 − ℘(ρ))/pn−te

≤ d−((j +m− pl) + pl−1)vPn−1(un + zn−1 − ℘(ρ))/pn−te+ 2

< d−(j +m− pn−t)vPn−1(un + zn−1 + ℘(ρ))/pn−te+ 2

≤ µP,j + µP,m + dpn−tvPn−1(un + zn−1 + ℘(ρ))/pn−te+ 2

= µP,j + µP,m + dvPn−1(un + zn−1 + ℘(ρ))e+ 2

≤ µP,j + µP,m − 1 + 2

since (j + m − pl) + pl−1 > j + m − pl ≥ j + m − pn−t. Therefore we have

µP,(j+m−pl) +µP,pl−1 < µP,j +µP,m + 1 so µP,(j+m−pn−t) +µP,pn−t−1 ≤ µP,j +µP,m and

hence d is integral for P ∈ S.
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Since c and d are integral at all primes of ZF we have

a0jω0j × a0mω0m =

dp
l−pl−1

∏
P∈S

P−vP (d)(pl−pl−1)da0(j+m−pl+1)ω0(j+m−pl+1)a0pl−1−1ω0pl−1−1+

ca0(j+m−pl)ω0(j+m−pl)

and since a0(j+m−pl+1)ω0(j+m−pl+1)a0pl−1−1ω0pl−1−1 ⊂ R by the induction hypothesis

a0jω0j × a0mω0m ⊂ R for m < pl. Therefore we have proved by induction that

a0jω0j × a0mω0m ⊂ R for j,m < pn−t, j +m ≥ pn−t.

�

Theorem 5.17. In the situation of Theorem 5.9 the module with this pseudo basis contains

O when the primes in S have ramification degree at most p or when ρ ∈ F , including the

trivial case when ρ = 0, that is p - vP ′(un + zn−1) < 0,∀P ′ | P ∈ S.

Proof of Theorem 5.17. We have {(dαn)j} as a power basis of the order O. It is enough

to prove dαn ∈ R. We have dαn = d(αn − η) + dη = d(α − ζ)n + dη where η ∈ F is such

that (α− ζ)n = αn − η. Therefore dαn = ω0...01 + dη. We have vP (d) ≥ 0 for all primes P

of ZF and

vP (η) = vP (αn−η−αn) ≥ min{vP (αn−η), vP (αn)} = min{vP ((α−ζ)n), vP (αn)} = vP (αn)

when vP (αn) < 0 since vP ((α − ζ)n) ≥ vP (αn). Therefore vP (dη) ≥ vP (dαn) ≥ 0 so

dη ∈ a00 = 1. We also have a0...010 = 1 and 1 ∈ a0...01, since

vP ′(P
jvP (d)(α− ζ)jn) = pn−tjvP (d) + jvP ′(α− ζ)n ≥ jvP ′(d) + jvP ′(αn) = jvP ′(dαn) ≥ 0

so jvP (d) ≥ µPj by minimality of µP,j so dαn ∈ R and O ⊆ R.

When ρ = 0, dαn = ω01 and 1 ∈ a01 as in Remark 5.11 so dαn ∈ R and O ⊆ R. When

ρ ∈ F, dαn = d(αn − ρ) + dρ = ω01 + dρ. We have

vP (ρ) = vP (αn − ρ− αn) ≥ min{vP (αn − ρ), vP (αn)} = vP (αn),

so vP (dρ) ≥ vP (dαn) ≥ 0 so dρ ∈ a00 = 1, dαn ∈ R and O ⊂ R. �

Note that Theorem 5.17 does not hold when ρ 6∈ F , see Remark 5.11.
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5.7. Examples

We provide some examples of calculations of pseudo bases for integral closures of k[t] in

Artin–Schreier–Witt extensions of a function field F . In these examples we give as much

information as can comfortably fit, we leave out specifying elements which take up a lot

of space. Where modules are stated to be orders they have been verified by Magma to be

so. We give the discriminants of the S-maximal orders computed by Algorithm 8 rather

than those of the S-maximal over orders of Z0
F [dα] computed using Algorithm 10, where

Z0
F is the integral closure of k[t] in F , as these discriminants are often closer to that of the

integral closure Z0
E of k[t] in E which we ultimately compute.

Example 7. Let F = F2(t), u = (1/t2, 1/(t2 + t)) and S = {(t), (t+ 1)}. Then

E = F (℘−1(u)) = F (α) = F (β)(γ) = F (γ)

where β is a root of x2 + x+ 1/t2 and γ is a root of x2 + x+ 1/t2β + 1/(t2 + t) over F (β)

and

x4 + (t10 + t6)x2 + (t13 + t12 + t11 + t10)x+ t15 + t14 + t13 + t10

over F . The place (t) totally ramifies in E and the place (t + 1) has ramification degree

p = 2. We have d1 = t so tβ is integral and d = (t + 1)t3 so (t4 + t3)γ is integral. The

discriminant of F2[t][dγ] is t28(t+ 1)12.

We compute an Artin–Schreier–Witt quotient ζ = (1/t, 0) and an Artin–Schreier quo-

tient ρ(t) = (1/t)β+1/t2 mod (t) and ρ = (t)−2(tβ+1) by strong approximation. Therefore

(ωij, aij)ij = {(1, 1), (d(α− ζ)2, (t+ 1)0), (d1(α− ζ)1, 1), (d1(α− ζ)1d(α− ζ)2, (t+ 1)0)}

is a pseudo basis for a (t+ 1)-maximal order since µ(t+1)j = d−j(−1)/2e, v(t+1)(d) = 1 and

(ωij, aij)ij = {(1, 1), (d(γ − ρ), t−2), (d2(γ − ρ)2, t−4), (d3(γ − ρ)3, t−6)}

is a pseudo basis for a (t)-maximal order since µ(t)j = d−j(−3)/4e, v(t)(d) = 3. The

discriminant of the (t+1)-maximal order described by the first pseudo basis above is t24(t+

1)4, the discriminant of the (t)-maximal order described by the second pseudo basis above

is t8(t + 1)12 and the discriminant of the {(t), (t + 1)}-maximal order generated by the

concatenation of the two pseudo bases, which is also the integral closure Z0
E of k[t] in E,

is t8(t+ 1)4.
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Example 8. Let F = F5(t)[x]/〈x2 + t3 + t+ 1〉, u = (1/(t2 + 3)λ+ t2, 1/(t+ 4)λ+ t) where

λ is a root of x2 + t3 + t+ 1 ([Fra05] Example 19) and let S = {(t+ 4), (t2 + 3)}. Then

E = F (℘−1(u)) = F (α) = F (β)(γ) = F (γ)

where β is a root of x5−x+4/(t2 +3)λ+4t2 and γ is a root of x5−x−υ for some υ ∈ F (β)

over F (β) and also a root of a degree 25 polynomial over F . The place (t2 + 3) totally

ramifies in E and the place (t + 4) has ramification degree p = 5. We have d1 = t2 + 3

so (t2 + 3)β is integral and d = (t + 4)(t2 + 3)5 so (t11 + 4t10 + 3t + 2)γ is integral. The

discriminant of ZF [dγ] is divisible by (t+ 4)600(t2 + 3)2600.

We compute an Artin–Schreier–Witt quotient ζ = (0, 0) and an Artin–Schreier quotient

ρ(t2+3) = 0 so ρ = 0. Therefore

(ωij, aij) = {((d1β)i, 1), ((d1β)i(dγ), 1), ((d1β)i(dγ)2, (t+ 4)−1),

((d1β)i(dγ)3, (t+ 4)−2), ((d1β)i(dγ)4, (t+ 4)−3)}0≤i<5

is a pseudo basis for a (t+ 4)-maximal order since µ(t+4)j = d−j(−1)/5e, v(t+4)(d) = 1 and

(ωij, aij) = {(1, 1), (dγ, (t2+3)−4), ((dγ)2, (t2+3)−8), ((dγ)3, (t2+3)−12, ((dγ)4, (t2+3)−16),

((dγ)5, (t2 + 3)−20), ((dγ)6, (t2 + 3)−24), ((dγ)7, (t2 + 3)−29), ((dγ)8, (t2 + 3)−33),

((dγ)9, (t2 + 3)−37), ((dγ)10, (t2 + 3)−41), ((dγ)11, (t2 + 3)−45), ((dγ)12, (t2 + 3)−49),

((dγ)13, (t2 + 3)−54), ((dγ)14, (t2 + 3)−58), ((dγ)15, (t2 + 3)−62), ((dγ)16, (t2 + 3)−66),

((dγ)17, (t2 + 3)−70), ((dγ)18, (t2 + 3)−74), ((dγ)19, (t2 + 3)−79), ((dγ)20, (t2 + 3)−83),

((dγ)21, (t2 + 3)−87), ((dγ)22, (t2 + 3)−91), ((dγ)23, (t2 + 3)−95), ((dγ)24, (t2 + 3)−99)}

is a pseudo basis for a (t2 +3)-maximal order since µ(t2+3)j = d−j(−21)/25e, v(t2+3)(d) = 5.

The discriminant of the (t + 4)-maximal order described by the first pseudo basis above

is (t + 4)40(t2 + 3)600, the discriminant of the (t2 + 3)-maximal order described by the

second pseudo basis above is divisible by (t + 4)600(t2 + 3)128 and the discriminant of the

{(t + 4), (t2 + 3)}-maximal order generated by the concatenation of these pseudo bases,

which is also the integral closure Z0
E of k[t] in E, is (t+ 4)40(t2 + 3)128.

Example 9. Let F = F2(t), u = (t/(t2 + t+ 1), (t6 + t4 + t3 + 1)/(t6 + t5 + t3 + t+ 1), 1/t)

and S = {(t), (t2 + t + 1)}. Then E = F (℘−1(u)) = F (α) = F (α3). The place (t)
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has ramification degree p = 2 and the place (t2 + t + 1) totally ramifies in E. We have

d1 = t2 + t+ 1, d2 = (t2 + t+ 1)3, d = t(t2 + t+ 1)6 so d1α1, d2α2 and dα3 are all integral.

The discriminant of ZF [dα3] is divisible by t64(t2 + t+ 1)248.

We compute an Artin–Schreier–Witt quotient ζ = (t+ 1, 0, 0) and Artin–Schreier quo-

tient ρ by chinese remainder. Therefore

(ωij, aij) = {((d1α1)i1(d2α2)i2(dα3)j, 1)}0≤i1,i2<2,0≤j<2

is a pseudo basis for a (t)-maximal order since µ(t)j = d−j(−1)/2e, v(t)(d) = 1 and

(ωij, aij) = {(1, 1), (d(α3 − ρ), (t2 + t+ 1)−3), ((d(α3 − ρ))2, (t2 + t+ 1)−7),

((d(α3 − ρ))3, (t2 + t+ 1)−11), ((d(α3 − ρ))4, (t2 + t+ 1)−15),

((d(α3 − ρ))5, (t2 + t+ 1)−19), ((d(α3 − ρ))6, (t2 + t+ 1)−23),

((d(α3 − ρ))7, (t2 + t+ 1)−27)}

is a pseudo basis for a (t2 + t + 1)-maximal order since µ(t2+t+1)j = d−j(−17)/8e and

v(t2+t+1)(d) = 6. The discriminant of the (t)-maximal order described by the first pseudo

basis above is t8(t2 + t+ 1)80, the discriminant of the (t2 + t+ 1)-maximal order described

by the second pseudo basis above is divisible by t64(t2 + t + 1)38 and the discriminant of

the {(t), (t2 + t+ 1)}-maximal order described by the concatenation of these pseudo bases,

which is the integral closure Z0
E of k[t] in E is t8(t2 + t+ 1)38.

Example 10. Let F = F3(t)[x]/〈x2 + t3 + t+ 1〉, u = ((t+ 2)λ+ 1/t2, (t3 + t2)λ+ 1/(t+

2), 1/t2λ + t6 + 2) where λ is a root of x2 + t3 + t + 1 and S = {(t), (t + 2, λ)}. Then

E = F (℘−1(u)) = F (α) = F (α3) ([Fra05] Example 22). The place (t) totally ramifies in

E and the place (t + 2, λ) has ramification degree p2 = 9. We have d1 = t2, d2 = t6(t + 2)

and d = t18(t+ 2)3 so t2α1, t
6(t+ 2)α2 and t18(t+ 2)3α3 are all integral. The discriminant

of ZF [dα3] is divisible by t9540(t+ 2)3348.
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We compute an Artin–Schreier–Witt quotient ζ = (0, 0, 0) and Artin–Schreier quotients

ρ(t+2) = 0, ρ(t) and ρ by chinese remainder. Therefore

(ωij, aij) = {((d1α1)i, 1), ((d1α1)i(d(α3−ρ)), (t+2, λ)−4), ((d1α1)i(d(α3−ρ))2, (t+2, λ)−8),

((d1α1)i(d(α3 − ρ))3, (t+ 2, λ)−13), ((d1α1)i(d(α3 − ρ))4, (t+ 2, λ)−17),

((d1α1)i(d(α3 − ρ))5, (t+ 2, λ)−22), ((d1α1)i(d(α3 − ρ))6, (t+ 2, λ)−26),

((d1α1)i(d(α3 − ρ))7, (t+ 2, λ)−31), ((d1α1)i(d(α3 − ρ))8, (t+ 2, λ)−35)}0≤i<3

is a pseudo basis for a (t+2, λ)-maximal order since µ(t+2,λ)j = d−j(−14)/9e, v(t+2),λ)(d) =

6 and

(ωij, aij) = {(1, 1), ((d(α3 − ρ)), t−13), ((d(α3 − ρ))2, t−26), ((d(α3 − ρ))3, t−40),

((d(α3 − ρ))4, t−53), ((d(α3 − ρ))5, t−67), ((d(α3 − ρ))6, t−80), ((d(α3 − ρ))7, t−94),

((d(α3 − ρ))8, t−107), ((d(α3 − ρ))9, t−121), ((d(α3 − ρ))10, t−134), ((d(α3 − ρ))11, t−148),

((d(α3 − ρ))12, t−161), ((d(α3 − ρ))13, t−175), ((d(α3 − ρ))14, t−188), ((d(α3 − ρ))15, t−202),

((d(α3 − ρ))16, t−215), ((d(α3 − ρ))17, t−229), ((d(α3 − ρ))18, t−242), ((d(α3 − ρ))19, t−256),

((d(α3 − ρ))20, t−269), ((d(α3 − ρ))21, t−283), ((d(α3 − ρ))22, t−296), ((d(α3 − ρ))23, t−310),

((d(α3 − ρ))24, t−323), ((d(α3 − ρ))25, t−337), ((d(α3 − ρ))26, t−350)}

is a pseudo basis for a (t)-maximal order since µ(t)j = d−j(−122)/27e, v(t)(d) = 18. The

discriminant of the (t + 2, λ)-maximal order described by the first pseudo basis above is

divisible by t3492(t + 2, λ)144(t2 + 1, λ + t)60, the discriminant of the (t)-maximal order

described by the second pseudo basis above is t390(t + 2, λ)1236(t2 + 1, λ + t)18 and the

discriminant of the {(t+2, λ), (t)}-maximal order generated by the concatenation of the two

pseudo bases is divisible by t390(t+ 2, λ)144(t2 + 1, λ+ t)30, the last prime being unramified

with zero valuation in u.

To compute the maximal order we take the unramified prime (t2 +1, λ+ t) which occurs

with exponent 120 in the discriminant of ZF [dα3] and exponent 30 in the discriminant of

the {(t+ 2, λ), (t)}-maximal order. The pseudo basis

(ωij, aij) = {(αi11 αi22 αi33 )0≤i1,i2,i3<3, (1)}0≤i1,i2,i3<3
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is a pseudo basis for an order which is maximal at any prime of F which does not ramify

in E. The discriminant of this order is t1404(t+ 2, λ)432.

Adding these modules results in an order with discriminant t390(t+ 2, λ)144 which is the

integral closure Z0
E of k[t] in E.

5.8. Timings

Due to the difficulty in testing whether a function field is an Artin–Schreier–Witt

extension, the functionality available in Magma computes S-maximal orders and integral

closures from a Witt vector or of an Artin–Schreier–Witt extension as a component of an

abelian extension of a function field.

The timings we give below are for the computation of integral closures in Artin–

Schreier–Witt extensions described by Witt vectors which includes the computation of

an integral closure in the coefficient field En−1. We give timings for computing inte-

gral closures of Fp[t] in extensions of degree pn of a rational function field in Tables 5.1

and 5.2 and for computing integral closures of Fp[t] in extensions of degree pn of alge-

braic function fields ([Fra05] Examples 18-22, F = Fp(t)[x]/〈x2 + t3 + t + 1〉 or when

p = 2, F = F2(t)[x]/〈x3−x2 + 2t− t5〉) in Table 5.3. The Witt vectors used for the timings

in Table 5.1 are chosen so that there are 3 primes having the stated ramification degree and

these appear with exponent 5 in the Witt vector when p ≤ 7 and exponent 3 otherwise.

When the ramification degree in these examples is p is the best case for Algorithm 9. The

Witt vectors used for the timings in Table 5.2 are random and the extensions they define

would most likely have a prime of each possible ramification degree. Such examples are

not best case although they should avoid a discriminant calculation. The timings given in

Table 5.2 are averages for the corresponding number of random examples stated in the “#

examples” column.

The times in the “Algorithm 9” column are to be contrasted to the sum of the ZEn−1 ,ZEn
and “Transfer from ZEn” columns, the sum of the “[Fra05]” and “Transfer from ZEn”

columns and the “Round 2” column.

Timings are given for an Intel(R) Core(TM) i7-3770 CPU 3.4GHz (32GB RAM) running

Magma V2.20-8 under Linux.

Note that the computation of the discriminant for the p = 7, n = 2, e = 49 example in

Table 5.1 took 34.3hrs and that for the p = 3, n = 3, e = 27 example took 2.5hrs.
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p n e(P ′|P ), ZE by ZEn−1 ZEn Transfer from ZEn Round 2

P ∈ S Algorithm 9

2 3 8 0.44s 0.01s 0.08s 0.01s 1.92s

2 3 4 0.16s 0.01s 0.06s 0.01s 0.88s

2 3 2 0.07s 0.0s 0.03s 0.0s 0.59s

2 4 16 61.96s 0.1s 16.09s 4.05s 405.88s

2 4 8 18.64s 0.06s 5.81s 1.43s 110.94s

2 4 4 4.32s 0.03s 0.91s 0.31s 38.58s

2 4 2 0.37s 0.0s 0.46s 0.12s 17.73s

2 5 8 1059s 0.94s 615.45s 138.7s 1.7hrs

2 5 2 28.05s 0.0s 13.25s 11.06s 989.61s

3 3 27 2.5hrs 0.01s 12.86s 264.66s 9.5hrs

3 3 9 68.07s 0.00s 0.91s 44.1s 2913.73s

3 3 3 3.55s 0.0s 0.21s 8.58s 604.24s

5 2 25 78.97s 0.0s 514.260s 54.76s 1.4hrs

5 2 5 2.97s 0.0s 0.05s 9.38s 366.99s

7 2 49 34.6hrs 0.0s 3.6s 1649.09s 138.9hrs

7 2 7 40.46s 0.0s 0.22s 186.62s 6.1hrs

11 2 11 2292.94s 0.0s 0.21s 5.1hrs no attempt

13 2 13 3.8hrs 0.0s 0.5s 32.4hrs no attempt
Table 5.1. Comparison of times for extensions of rational function fields

The degree 72 example in Table 5.3 using the Round 2 algorithm ran for more than 3

days. There are 72 primes it will compute a P -maximal order at and after 2 days it hadn’t

computed more than 2 such orders.

As can be seen in the examples involving taller towers of extensions corresponding

to longer Witt vectors when the characteristic is small, Algorithm 9 does not compare

favourably. Algorithm 9 is most efficient for larger characteristics and shorter towers of

extensions (large p and small n) and also when the primes in the Witt vector are less

ramified (ramification degree≤ p) avoiding a discriminant computation and maybe a strong

approximation or chinese remainder in En−1. This advantage of avoiding the discriminant

can be seen in Table 5.2 where it is likely that there is a prime of ramification degree p

or 1 occurring in the random Witt vector. It can also be expensive to construct the order
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p n # ZE by ZEn−1 ZEn Transfer Round 2

examples Algorithm 9 from ZEn
2 3 50 0.035s 0.001s 0.035s 0.004s 0.133s

2 4 50 1.948s 0.034s 2.059s 0.215s 9.502s

3 2 50 0.009s 0.0s 0.003s 0.004s 0.136s

3 3 50 8.636s 0.004s 0.695s 11.895s 301.701s

5 2 30 1.104s 0.000s 0.029s 2.548s 85.351s

7 2 30 31.129s 0.001s 0.208s 121.272s 5055.816s

11 2 5/5/5/5/1 65.9mins 0.006s 12.066s 7.5hrs > 1 day

13 2 4/2/2/1/0 6.3hrs 0.01s 64.44s 60.9hrs no attempt
Table 5.2. Comparison of average times for random ASW extensions of

rational function fields

p n ZE by Algorithm 9 ZEn−1 ZEn [Fra05] Transfer from ZEn Round 2

3 2 0.09s 0.0s 0.11s 0.33s 0.07s 5.09s

5 2 3.77s 0.01s 1.4s 24.23s 28.47s 789.39s

7 2 109.7s 0.01s 32.7s 34.3hrs 1862.25s > 3 days

2 3 1.71s 0.04s 18.44s 4.48s 0.47s 113.05s

3 3 140.75s 0.12s 94.37s 804.66s 226.24s 2157.62s

Table 5.3. Comparison of times for examples from [Fra05]

from the basis even when the basis is in normal form. Computing an integral basis can be

done sometimes much faster than computing the integral closure itself.

We have also compared timings for some examples with a prototype of [Bau14] which

is not restricted to any particular type of extension. For a number of examples our imple-

mentation of Algorithm 9 is faster than his integral closure implementation. In particular

our implementation was much faster than his when the ramification of the primes was small

and in some cases of small ramification our implementation was able to compute integral

closures in less than 1.5hrs when his did not in 2 days (p = 13, n = 2).



Chapter 6

Applications to Coding Theory

In this chapter we give an example and some timings for computations of integral

closures in Abelian extensions and examples of how the more efficient integral closure

computations described in this thesis improve the construction of Algebraic–Geometric

codes from cyclic extensions.

Timings are given for an Intel(R) Core(TM)2 i7-3770 CPU 3.4GHz (32GB RAM) ma-

chine running Magma V2.20-9 under Linux.

6.1. Abelian Extensions

We give an example of an Abelian extension which has components which are Kummer,

Artin–Schreier and Artin–Schreier–Witt extensions.

Example 11. Let F = F3(t), D = 4P(t+1), R the ray class group of D and U the subgroup

of the ray class group of D generated by the generator of R of order 3 plus 4 times the

free generator of R. We compute an abelian extension A = F [x1, x2, x3]/〈f1, f2, f3〉 where

f1 = x2
1 + 2t(t+ 1), f2 = x9

2 + 2t3x6
2 + 2t5x4

2 + (2t6 + 2t5)x3
2 + 2t7x2

2 + t7x2 + t9 + 2t7 + 2t6 and

f3 = x3
3 + 2x3 + 2t/(t + 1). Let αi be a root of fi. The discriminant of the finite equation

order F3[t][α1, α2, (t + 1)α3] is t459(t + 1)135. A pseudo basis for the finite maximal order

of the Kummer extension of degree 2 in A is

B1 = {(1, 1), (α1, 1)}

since µP,j = 0 for P = t, t + 1. A pseudo basis for the finite maximal order of the Artin–

Schreier extension of degree 3 in A is

B3 = {(1, 1), ((t+ 1)α3, 1), (((t+ 1)α3)2, (t+ 1)−1)

since µ(t+1),j − jvt+1(d) = d−j(−1)/3e − j. A pseudo basis for the finite maximal order of

the Artin–Schreier–Witt extension of degree 32 is

B2 = {(1, 1), (tα2, 1), ((tα2)2, t−1), (γ, 1), (tα2γ, 1), ((tα2)2γ, t−1), (γ2, 1),

(tα2γ
2, 1), ((tα2)2γ2, t−1)}

89
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since µt,j−jvt(d) = d−j(−1)/3e−j. We take the product {B1,jB2,lB3,m}{0≤j<2,0≤l<9,0≤m<3}

of these bases and compute the order of A with this basis which has discriminant t99(t+1)99.

The discriminant of the maximal order of the abelian extension is known to be t81(t+ 1)81.

We complete the computation by doing Round 2 steps on the almost maximal order given

by the product basis.

6.2. Coding Theory

How Geometric Goppa codes or Algebraic–Geometric codes can be constructed from

divisors of a function field is explained in Chapter 2 of [Sti93]. A simple example of the

construction of an Algebraic–Geometric code from an abelian extension of a function field

and one of its divisors is given in Section 4.3 of [Fie06]. By computing the maximal orders

of the abelian extension directly and avoiding the computation of the maximal orders of

the function field of the abelian extension using the Round 2 algorithm we show that the

use of our algorithms improves the efficiency of constructing such codes. The Magma

code from [Fie06] can be accessed at http://magma.maths.usyd.edu.au/magma/dmwm/.

When a function field is constructed from an abelian extension we essentially replace

K := FunctionField(AbelianExtension(D_opt, U_opt));

in that code with

A := AbelianExtension(D_opt, U_opt);

K := FunctionField(A);

time MaximalOrderFinite(A);

time MaximalOrderInfinite(A);

to use Algorithm 2 instead of Round 2 on the equation orders of K for the maximal order

computations. Since we are computing codes from cyclic extensions below this replacement

may be unnecessary.

A table of genera and number of rational points on curves over a range of constant

field sizes can be found at www.manypoints.org. We notice that the number of rational

points compared to the genus increases with size of constant field hence we use some larger

constant fields in our examples. The data given at this website is the best known. The

codes we have constructed do not attempt to match this best known ratio between the genus

and the number of rational points rather we choose examples with a good ratio where the

function fields are cyclic extensions which shows the improvement which is available in the

code construction when using the integral closure algorithms described in Chapters 2, 3

and 5.
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We give some information and timings in Tables 6.1 to 6.9 for constructing codes in

Fmq , where m is the number of rational points, using both Algorithm 2 and Round 2 for

the computation of the integral closures. We report

• the number m of rational points of the function field,

• the genus g of the function field,

• the time taken to compute each of the integral closures using both algorithms.

To construct the codes below from a function field we add together all the rational places

and construct a divisor G coprime to the rational places. From [Sti93] Corollary II.2.3 we

have that the sum of the dimension of the code and the minimum distance of the code is

bounded below by m+1−g. This is why we would like to have small genus compared to the

number of rational points. But this sum is bounded above by m + 1 ([Sti93] Proposition

II.1.7 (Singleton Bound)) so there is an inverse relationship between the dimension and

minimum distance. For given number of rational points and genus a larger dimension code

will have a smaller minimal distance and vice versa. For each code we report

• the dimension of the code,

• the designed distance m − deg(G) of the code which is a lower bound for the

minimum distance,

• the time to compute the rational places,

• the time to compute the Riemann–Roch space of G and

• the time to evaluate the basis of this Riemann–Roch space at the m rational places.

The code constructed is the set of vectors {(x(P1), . . . , x(Pm)) | x ∈ L(G)} ⊂ Fmq where

L(G) is the Riemann–Roch space of G and P1, . . . , Pm are the rational places.

F = F112(t)[x]/〈x11 + 10x+ (w30t6 + w14t5 + w30t4 + w37t3 + t2 + w16t)/

(t6 + t5 + w37t4 + w16t3 + w118t2 + w26t+ w46)〉,F112 = F11〈w〉
G =

∑
5 places P ′|P P

′ + P ′t3+w41t2+w53t+w7 , P = Pt3+t2+w114t+w56

m g Finite Infinite

Algo. 2 Round 2 Algo. 2 Round 2

242 35 0.01s 0.12s 0.0s 0.0s

Dimension Designed Rational Riemann– Evaluation

Distance Places Roch space

65 143 0.13s 0.01s 0.35s

Table 6.1. Constructing a code contained in F242
112
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F = F37(t)[x]/〈x37 + 36x+ (t2 + 16t+ 1)(t)(t2 + 13t+ 14)−2(36)〉
G = (t2 + 18t+ 30)

m g Finite Infinite

Algo. 2 Round 2 Algo. 2 Round 2

148 72 0.07s 21.27s 0.01s 0.01s

Dimension Designed Rational Riemann– Evaluation

Distance Places Roch space

21 74 0.8s 0.0s 1.35s

Table 6.2. Constructing a code contained in F148
37

F = F71(t)[x]/〈x71 + 70x+ (40t2 + 14t+ 1)(t)(t2 + 38t+ 7)−2(70)〉
G = (t2 + 5t+ 40)

m g Finite Infinite

Algo. 2 Round 2 Algo. 2 Round 2

284 140 0.53s 836.26s 0.07s 0.07s

Dimension Designed Rational Riemann– Evaluation

Distance Places Roch space

38 142 11.48s 0.02s 13.8s

Table 6.3. Constructing a code contained in F284
71

F = F83(t)[x]/〈x83 + 82x+ (71t2 + 65t+ 1)(t)(t2 + 32t+ 11)−2(82)〉
G = (t2 + 60t+ 71)

m g Finite Infinite

Algo. 2 Round 2 Algo. 2 Round 2

332 164 0.89s 2462.98s 0.1s 0.1s

Dimension Designed Rational Riemann– Evaluation

Distance Places Roch space

44 166 34.79s 0.01s 24.49s

Table 6.4. Constructing a code contained in F332
83

As can be seen from these timings by using our efficient algorithms we have removed a

substantial contribution to the time taken to construct some codes from cyclic extensions.
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F = F97(t)[x]/〈x97 + 96x+ (25t2 + 30t+ 1)(t)(t2 + 33 ∗ t+ 9)−2(96)〉
G = (t2 + 90t+ 46)

m g Finite Infinite

Algo. 2 Round 2 Algo. 2 Round 2

388 192 1.49s 2.1 hrs 0.14s 0.15s

Dimension Designed Rational Riemann– Evaluation

Distance Places Roch space

51 194 84.82s 0.03s 44.11s

Table 6.5. Constructing a code contained in F388
97

F = F55(t)[x]/〈x71 + (t2 + w328t+ w931)67(t2 + w1393t+ w2617)4(w)(4)〉,
F55 = F5〈w〉

G = (t2 + w1747t+ w1422) + (t2 + w631t+ w1850) + (t2 + w2792t+ w1023)

m g Finite Infinite

Algo. 2 Round 2 Algo. 2 Round 2

3266 70 0.37s 2501.55s 0.07s 0.06s

Dimension Designed Rational Riemann– Evaluation

Distance Places Roch space

357 2840 552.2s 0.95s 93.91s

Table 6.6. Constructing a code contained in F3266
55

It is possible to gain an isomorphic field by swapping x and t in the construction of

these extensions. This may produce a smaller degree extension in which case this may

lead to a more efficient way of constructing the code. We note that this is not the case in

Table 6.9 as the field is degree 121 in its current representation and degree 242 if defined

over F35(x).
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F = F29(t)[x]/〈x73 + (t2 + w419t+ w367)72(t)40(t2 + w333t+ w173)〉,
F29 = F2〈w〉

G = (t2 + w259t+ w361) + (t2 + w325t+ w6) + (t2 + w491t+ w333)

m g Finite Infinite

Algo. 2 Round 2 Algo. 2 Round 2

730 72 0.09s 1558.21s 0.07s 637.63s

Dimension Designed Rational Riemann– Evaluation

Distance Places Roch space

367 292 23.27s 0.57s 20.73s

Table 6.7. Constructing a code contained in F730
29

F = F211(t)[x]/〈x89 + (t2 + w931t+ w1391)78(t2 + w746t+ w1844)11(w)〉,
F211 = F2〈w〉

G = (t2 + w374t+ w823) + (t2 + w188t+ w198) + (t2 + w1941t+ w113)

m g Finite Infinite

Algo. 2 Round 2 Algo. 2 Round 2

1780 88 0.42s 3 hrs 0.1s 0.12s

Dimension Designed Rational Riemann– Evaluation

Distance Places Roch space

447 1246 182.47s 1.02s 82.04s

Table 6.8. Constructing a code contained in F1780
211

F = F35(t)[x]/〈x121 + u〉,F35 = F3〈w〉
G = (t2 + w179t+ w137)

m g Finite Infinite

Algo. 2 Round 2 Algo. 2 Round 2

484 120 0.55s 6.4 hrs 0.24s 0.25s

Dimension Designed Rational Riemann– Evaluation

Distance Places Roch space

123 242 184.54s 0.47s 47.49s

Table 6.9. Constructing a code contained in F484
35
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6.2.1. Data. Here we provide the information which did not fit into the tables above.

The fields and divisors used in these examples were chosen from randomly generated fields

and divisors for their good code generating properties, not for the ability to fit their data

into a table.

From Table 6.1, let α be a root of the defining polynomial of F , then the divisor G was

(t3 + t2 + w114t + w56, (t3 + 6t2 + w51t + w83)α + w95t2 + w44t + w53) + (t3 + t2 + w114t +

w56, (t3 + 6t2 +w51t+w83)α+w25t2 +w88t+w28) + (t3 + t2 +w114t+w56, (t3 + 6t2 +w51t+

w83)α+w89t2 +w82t+w31) + (t3 + t2 +w114t+w56, (t3 + 6t2 +w51t+w83)α+w2t2 +w83t+

w71) + (t3 + t2 + w114t + w56, (t3 + 6t2 + w51t + w83)α + w21t2 + w115t + w73) + (t3 + t2 +

w114t+w56, (t3 + 6t2 +w51t+w83)α+w4t2 +w75t+w90) + (t3 + t2 +w114t+w56, (t3 + 6t2 +

w51t+w83)α+w90t2 +w117t+ 1) + (t3 + t2 +w114t+w56, (t3 + 6t2 +w51t+w83)α+w104t2 +

w14t+w44) + (t3 + t2 +w114t+w56, (t3 + 6t2 +w51t+w83)α+w82t2 + 9t+w38) + (t3 + t2 +

w114t+w56, (t3 + 6t2 +w51t+w83)α+w51t2 +w97t+w39) + (t3 + t2 +w114t+w56, (t3 + 6t2 +

w51t+w83)α+w79t2 +w18t+w94) + (t3 +w41t2 +w53t+w7) + (t3 +w50t2 +w63t+w116).

From Table 6.9, the field F has defining polynomial x121 + u where u = w122t242 +

w21t241+w194t240+w101t239+t238+w173t237+w72t236+w213t235+w144t234+w59t233+w200t232+

w131t231 +w38t230 +w179t229 +w110t228 +w9t227 +w150t226 +w81t225 +w214t224 +w113t223 +

w44t222+w193t221+w92t220+w23t219+w164t218+w63t217+w236t216+w175t215+w74t214+w5t213+

w154t212 +w53t211 +w226t210 +w125t209 +w24t208 +w197t207 +w112t206 +w11t205 +w184t204 +

w91t203+w232t202+w163t201+w62t200+w203t199+w134t198+w25t197+w166t196+w97t195+w4t194+

w145t193 +w76t192 +w217t191 +w116t190 +w47t189 +w156t188 +w55t187 +w228t186 +w135t185 +

w34t184 + w207t183 + w106t182 + w5t181 + w178t180 + w93t179 + w234t178 + w165t177 + w72t176 +

w213t175 +w144t174 +w43t173 +w184t172 +w115t171 +w6t170 +w147t169 +w78t168 +w227t167 +

w126t166 + w57t165 + w198t164 + w97t163 + w28t162 + w39t161 + w180t160 + w111t159 + w18t158 +

w159t157 +w90t156 +w231t155 +w130t154 +w61t153 +w218t152 +w117t151 +w48t150 +w197t149 +

w96t148+w27t147+w168t146+w67t145+w240t144+w131t143+w30t142+w203t141+w110t140+w9t139+

w182t138 +w81t137 +w222t136 +w153t135 +w92t134 +w233t133 +w164t132 +w71t131 +w212t130 +

w143t129 +w42t128 +w183t127 +w114t126 +w29t125 +w170t124 +w101t123 +w8t122 +w149t121 +

w80t120 + w221t119 + w120t118 + w51t117 + w184t116 + w83t115 + w14t114 + w163t113 + w62t112 +

w235t111 +w134t110 +w33t109 +w206t108 +w73t107 +w214t106 +w145t105 +w52t104 +w193t103 +

w124t102 +w23t101 +w164t100 +w95t99 +w10t98 +w151t97 +w82t96 +w231t95 +w130t94 +w61t93 +

w202t92 +w101t91 +w32t90 +w165t89 +w64t88 +w237t87 +w144t86 +w43t85 +w216t84 +w115t83 +

w14t82 +w187t81 +w224t80 +w123t79 +w54t78 +w203t77 +w102t76 +w33t75 +w174t74 +w73t73 +

w4t72 +w161t71 +w60t70 +w233t69 +w140t68 +w39t67 +w212t66 +w111t65 +w10t64 +w183t63 +
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w74t62 +w215t61 +w146t60 +w53t59 +w194t58 +w125t57 +w24t56 +w165t55 +w96t54 +w35t53 +

w176t52 +w107t51 +w14t50 +w155t49 +w86t48 +w227t47 +w126t46 +w57t45 +w214t44 +w113t43 +

w44t42 +w193t41 +w92t40 +w23t39 +w164t38 +w63t37 +w236t36 +w127t35 +w26t34 +w199t33 +

w106t32 +w5t31 +w178t30 +w77t29 +w218t28 +w149t27 +w16t26 +w157t25 +w88t24 +w237t23 +

w136t22+w67t21+w208t20+w107t19+w38t18+w195t17+w94t16+w25t15+w174t14+w73t13+w4t12+

w145t11+w44t10+w217t9+w108t8+w7t7+w180t6+w87t5+w228t4+w159t3+w58t2+w199t+w130.



Part 2

Galois Groups of Polynomials over Global

Function Fields



Chapter 7

Algorithms for Computing Galois Groups

In this chapter we describe a general algorithm for computing Galois groups of irre-

ducible polynomials over global fields, (Algorithm 11). This algorithm is a generalization

of the algorithm of Fieker and Klüners [FK14] which was originally developed to com-

pute Galois groups of polynomials over Q. Our purpose is to compute Galois groups of

polynomials over global function fields and in Chapter 8 we expand on our description of

Algorithm 11 for this case. A particular difficulty in generalizing [FK14] is that for some

groups G and H the invariants provided are Sn-invariant when the characteristic is 2 and

so are never G-relative H-invariants (Definition 7.2). For such groups G and H we state

in this thesis (Section 8.5) some new polynomials which are G-relative H-invariant when

the characteristic is 2. These invariants are a key contribution to this part of the thesis.

Geißler [Gei03] provides an algorithm for Galois groups of polynomials of degree at

most 23 over Q and k(t). This was the most recent work on algorithms for Galois groups

when Fieker and Klüners [FK14] developed their algorithm for Galois groups of polyno-

mials over Q. Unlike most previous algorithms the algorithm of [FK14] is not degree re-

stricted, it can compute the Galois group of any polynomial over any algebraic number field

or algebraic function field (including of course Q and k(t) for k = Fq,Q). Hulpke [Hul99]

is not degree restricted either, however, it usually cannot determine the Galois group

uniquely. The algorithm of [FK14] has been implemented in Magma [CBFS10] V2.13

for polynomials over Q and in V2.14 for polynomials over number fields and Q(t).

We describe in this chapter the algorithm of [FK14]. We have implemented this al-

gorithm in Magma [CBFS10] for polynomials over Fq(t) (V2.16) and global algebraic

function fields (simple extensions of Fq(t)) (V2.17). This is the first implementation, of

which we know, of an algorithm for computing Galois groups over global function fields

which is not restricted by the degree of the polynomial. It is also the first algorithm (that

we know of) which uses the computation of subfields (and in particular the generating

subfields as introduced by Klüners, van Hoeij and Novocin [vHKN11]) of global function

fields in calculating the Galois group. This algorithm is based on [Sta73].

The results in this part of this thesis also appear in [Sut15].

98
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We begin with some definitions.

Definition 7.1. The Galois group, Gal(f), of a polynomial f over a field F is the auto-

morphism group of Sf/F where Sf is the splitting field of f over F .

When f is irreducible over F and of degree n we compute Galois groups as transitive

subgroups of Sn, the symmetric group of degree n containing all permutations of n objects.

Such a group will permute the n roots of f . A group G of permutations of the n elements

of the set Ω, is transitive if for all elements x, y ∈ Ω there is a g ∈ G such that gx = y.

A right coset of a subgroup H of G is Hx = {hx : h ∈ H} for x ∈ G. A permutation

representation of G which acts on a set of cardinality l is a homomorphism from G into

Sl. A wreath product J oH of the group J by the group H with respect to the action of H

on the set Ω containing n elements is the semi-direct product {(j, h)|j ∈ Jn, h ∈ H} with

(j1, h1)(j2, h2) = (j1j
h−1
1

2 , h1h2), where j
h−1
1

2 is the action of the permutation inverse to h1

on the n elements of J in j2.

Invariants and resolvents are an important part of our algorithm. We define invariants

and resolvents here and discuss the uses of the different types later. Let R be a commutative

unitary domain and I(x1, . . . xn) ∈ R[x1, . . . xn]. A permutation τ ∈ Sn acts on I by

permuting x1 . . . , xn and we write Iτ for this action.

Definition 7.2. A polynomial I(x1, . . . , xn) ∈ R[x1, . . . , xn] such that Iτ = I for all τ ∈ H
for some group H ⊆ Sn is said to be H-invariant.

A H-invariant polynomial I(x1, . . . , xn) ∈ R[x1, . . . , xn] is a G-relative H-invariant

polynomial if Iτ 6= I for all τ ∈ G \ H,H ⊂ G ⊆ Sn, that is, for the stabiliser in G we

have StabG I = H.

For a G-relative H-invariant polynomial I we can compute a G-relative H-invariant

resolvent polynomial

Q(G,H)(y) =
∏

τ∈G//H

(y − Iτ (x1, . . . , xn)),

where G//H denotes a right transversal, a system of representatives for the right cosets

Hτ , of G/H. If G = Sn then we call Q an absolute resolvent, otherwise we call Q a

relative resolvent.

An Sn-relative H-invariant is a G-relative H-invariant and a G-relative H-invariant is

a H-invariant but the converse is not always true.

We recall the definition of a block system as it is crucial to the definition of a number

of our special invariants, (we use Geißler and Klüners ([GK00] Definition 2.14)).
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Definition 7.3. Let G be a transitive permutation group acting on a finite set Ω. A subset

∅ 6= ∆ ⊂ Ω is called a block if ∆ ∩ ∆σ ∈ {∅,∆} for all σ ∈ G. The orbit of a block ∆

under G is called a block system.

A group G is called primitive if it has only trivial blocks, {1}, . . . , {n} and {1, . . . , n},
otherwise it is called imprimitive.

The blocks we use will be subsets of Ω = {roots of f}. A block system of a group G

is a block system for the transitive subgroups of G but the converse does not always hold.

The action of a group G which permutes the blocks of G gives a transitive permutation

representation. Let Ḡ denote the image of this representation which, when used for this

purpose, essentially maps from Sn into some Sl, l | n.

7.1. Previous Work

Our algorithm is similar to that of Geißler and Klüners [GK00] and Geißler [Gei03].

They use many of the same techniques that we do. Their algorithm is also based on

Stauduhar [Sta73] and uses relative resolvents. They use subfields, short cosets and p-

adic methods in their algorithm also. However, their algorithm can only be applied to

polynomials of degree less than 15 [GK00] and degree less than 23 [Gei03].

The method of Stauduhar [Sta73] is also used by Eichenlaub and Olivier [Eic96] who

implemented their algorithm in Pari for polynomials of degree up to 11.

Another method is that of the absolute resolvent. Such resolvents can be computed

from coefficients of polynomials and a factorization may give enough information about the

Galois group to identify it. However, for degrees larger than say 11, these factorizations

can be rather expensive. For algorithms using this method see [Soi81, SM85, MM97,

CM94].

The absolute resolvent method can be combined with the method of Stauduhar as a

verification step. This is described in [GK00, Gei03]. It is used when the index of the

maximal subgroup H in G, a group which we know contains the Galois group, is large and

we choose to use a smaller precision for the approximations of the roots of the polynomial

than required for a proven descent to shorten the running time of the algorithm and leave

the proof of the descent step from G to H till later (if indeed we decided that the Galois

group may be contained in H), see Section 8.8.

The use of p-adic approximations in the method of Stauduhar was first suggested by

Yokoyama [Yok97]. Such approximations were also used by Darmon and Ford [DF89]

independently of Stauduhar’s method. Previous to this complex approximations to roots
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of rational polynomials were used which required higher precisions to obtain proven results.

We have extended the idea of p-adic splitting fields in our choice of splitting fields for

polynomials over rational function fields.

7.2. A Recent Algorithm for Computing Galois Groups

We describe here the algorithm used by Fieker and Klüners [FK14] with no degree

restrictions. A similar algorithm was used by [Gei03] and [GK00].

Let f be a separable polynomial of degree n over a field F with splitting field Sf

over F . An F -automorphism of Sf will permute the roots of f and this permutation will

determine the automorphism completely, therefore we represent Galois groups as groups

of permutations acting on the roots of f in some fixed ordering. When f is irreducible we

know that the Galois group of f will be a transitive subgroup of Sn (because each root

can be mapped to any of the others by an automorphism) [DS00], the task is to discover

which one.

The algorithm of Stauduhar [Sta73] traverses maximal subgroups until it finds one the

Galois group is contained in or finds that the Galois group is contained in no maximal sub-

group so must be the group we know it is contained in. Maximal subgroups are computed

in Magma [CBFS10] using an algorithm by Cannon and Holt [CH04].

Theorem 7.4 (Stauduhar [Sta73]). Let f(x) be a separable polynomial of degree n over

a field F . Let α1, . . . , αn be a fixed ordering of the roots of f(x) in Sf . Suppose that with

respect to the given ordering of the roots, the Galois group Gal(f) of f(x) is a subgroup

of a group G. Let H be a subgroup of G and I(x1, . . . , xn) ∈ R[x1, . . . , xn] be a G-relative

H-invariant polynomial. Let τ1, . . . , τl be representatives for the right cosets of H in G.

For all i, Iτi(α1, . . . , αn) is a root of the resolvent polynomial

Q(G,H)(y) =
l∏

i=1

(y − Iτi(α1, . . . , αn)) ∈ F [y].

Assume Iτi(α1, . . . , αn) is not a repeated root of Q(G,H)(y). Then Gal(f) ⊆ τiHτ
−1
i iff

Iτi(α1, . . . , αn) ∈ F .

For polynomials f ∈ Fq(t)[x] this means that Iτi(α1, . . . , αn) is a rational function

instead of an algebraic function. The above theorem is a generalization of Theorem 5

of [Sta73] which is stated for irreducible polynomials, transitive groups and F = Q.

Stauduhar considers roots of f in the complex field, however it is more efficient to

compute roots of f in the splitting field of f over the completion of F at some finite place
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P which is what the algorithms of [GK00], [Gei03] and [FK14] do following [Yok97].

This approach also generalizes more easily between number fields and function fields.

For more detail about the steps in Algorithm 11 see Chapter 8.

Algorithm 11 (Compute the Galois Group of an irreducible polynomial).

Input:

• An irreducible separable polynomial f of degree n over an algebraic number field or

algebraic function field F (including Q,Fq(t) or Q(t)).

Output:

• The Galois group of f .

Steps:

1. Choose a finite place P of F such that the image of f is squarefree over the residue

field at P .

2. Find a scaling factor s such that sαi is integral (sαi ∈ Z,Fq[t],Q[t] or a finite

extension thereof) for all roots αi of f . Each sαi will be a root of fs = sn−1f(x/s).

3. Compute the splitting field Sf,P for f over the completion of F at the prime P .

4. Compute the roots of f in Sf,P to low precision to fix an ordering.

5. Find a group G which the Galois group of f is contained in (Sn will always do here,

although we can sometimes do better) :

(a) Compute the generating subfields [vHKN11] of the field extension F [x]/f and

the Galois groups of the normal closures of these subfields.

(b) Compute the intersection of the wreath products corresponding to the block

system in [GK00] Theorem 3.1, of Sn/l with the Galois groups of the normal

closures of subfields of degree l for all subfields of F [x]/f .

6. While G has maximal subgroups which could contain Gal(f)

(a) For each conjugacy class of maximal subgroups of G, compute a G-relative H-

invariant polynomial for a representative maximal subgroup H of the conjugacy

class.

(b) Compute a cost for deciding whether Gal(f) is contained in the groups in each

conjugacy class. For a representative subgroup H, let the cost cH be the product

of the number of cosets of G/H, the number of multiplications in the G-relative

H-invariant chosen and a bound on the evaluation of the invariant at the roots

sαi of fs (Section 8.8).
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(c) Apply Theorem 7.4 : For the conjugacy class of maximal subgroups of G with

smallest cost cH not yet decided on do

(i) Let H be a representative maximal subgroup from the conjugacy class.

(ii) Retrieve the G-relative H-invariant polynomial I ∈ R[x1, . . . xn] com-

puted in Step (6a) and any Tschirnhaus transformation T selected in a

previous iteration (Step 6(c)vB).

(iii) Compute the precision m needed in the roots of f for transformation by

T then evaluation in I.

(iv) Compute the roots of f to precision m in the splitting field Sf,P .

(v) for the representatives τ ∈ G//H of the right cosets of H in G

(A) Evaluate I at the transformed roots T (sαi) of fs permuted by τ where

αi has been computed in Step 6(c)iv.

(B) Decide whether this evaluation is the image of an element of F . If so

then the resolvent has a root in F and if it is a single root Gal(f) ⊆
τHτ−1 so set G = τHτ−1 and restart the loop (6) with the new G.

If the resolvent has a root in F but it is not a single root then a

descent into this conjugacy class may be re-attempted after applying

another Tschirnhausen transformation. Choose a transformation

randomly and update the cost cH for this transformation.

7. Return G.

An improvement to the algorithm above is to use the short cosets G/σH = {Hτ : σ ∈
Hτ} of H in G which contain the subgroup corresponding to the Frobenius automorphism

σ instead of the whole transversal G//H in Step 6(c)v, ([GK00] Section 4 and [Els14a]).

However, if we use this approach to tackle the problems posed by maximal subgroups of

large index we cannot determine whether the resolvent has a single root in F . If we find a

double root of the resolvent using only the short cosets then we can try the descent again

with another Tschirnhausen transformation. If we find no roots using the short cosets then

we need no longer consider this conjugacy class of subgroups. Otherwise it is possible but

not proven that the Galois group of f is contained in τHτ−1. This can be proven later.

In an attempt to get more accurate results we ensure that there is a minimum number of

cosets (say 20) used for this shortcut.

In the next chapter we give details about which places will lead to the most efficient

computation (Step 1, Section 8.1), the splitting field that will be used for the computation

of the roots of the polynomial and the mapping into that splitting field (Step 3, Section 8.2),
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a group to start the computations with (Step 5, Section 8.3), the invariants we can use

(dependent on characteristic) (Step 6(c)ii, Section 8.4), Tschirnhausen transformations

(Step 6(c)ii and 6(c)vB, Section 8.7), the computation of a bound and a precision necessary

to use that bound to determine whether the evaluation of an invariant at the roots of f to

the precision calculated is in F (Step 6b, 6(c)iii and 6(c)vB, Section 8.8).

Let Z0
F be the integral closure of R in F , where R ⊂ F is one of Z,Fq[t] or Q[t]. The

scaled polynomial fs is monic and integral, that is fs ∈ Z0
F [x], and the relationships between

its roots are the same as between the roots of f . The roots of a monic, integral polynomial

will be integral and so have finite expansions in the splitting field over a completion.



Chapter 8

Galois Groups of Irreducible Polynomials

Here we describe the steps of Algorithm 11 considering especially its use for polyno-

mials over a function field with characteristic p. Let f be a polynomial of degree n with

coefficients in F . We give greater detail for F = Fq(t) or F = Fq(t)(α) where q = pe for

some e and α is algebraic over Fq(t). (Any function field Fq(t)(α)(β) is isomorphic to a

function field of the form Fq(t)(γ) for some γ). We will attempt to keep our description as

general as possible and will note when the details we give are specific to F being a global

function field and if these details are specific to F being a rational or algebraic function

field.

8.1. Choosing a Good Place (Algorithm 11, Step 1)

The place P ⊂ F which we use to compute a completion which we extend to a splitting

field will affect the performance of our algorithm. In fact, by trying out several places

we can frequently collect enough cycle lengths to determine the Galois group itself, if the

Galois group is An or Sn, which it often is [DS00].

We require that P is finite, unramified in F [x]/f and does not divide the leading

coefficient or denominators of f . We compute the residue field K of P (= Fqr for some r

when F is a global function field) and factor f̄ , the image of f over K, over K. We check f̄

is squarefree over K to ensure P is unramified and we can Hensel lift distinct roots. Such

a place will exist because these conditions are equivalent to the discriminant of f having

valuation zero at P and the discriminant will have non-zero valuation at only finitely many

places.

To choose P , we loop through a limited number of places, at most 10n when F is a

global function field. We collect the degrees of the factors of f̄ over K and the LCMs

(dP ) of these degrees multiplied by the degree rP of P . The degrees are cycle lengths of

elements in the Galois group ([GK00], Remark 2.4). If there is a cycle of some prime

length n/2 < l < n − 2 then the Galois group is Sn or An ([Ser03], Corollary 10.2.2). If

a group does not contain elements with these cycle lengths then it is not the Galois group

of f . We can use this test to eliminate groups cheaply from our list of possibilities.
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To obtain a ring over the completion K[[ρ]] of Z0
F at P which contains all roots of f over

K[[ρ]] when F is a global function field we first compute the splitting field E = F(qrP )dP

for f̄ over K. We would like arithmetic in E[[ρ]] to be not too expensive as we find roots

in E[[ρ]] and evaluate invariants at roots in E[[ρ]]. The precision necessary for the roots of

f is inversely related to the degree rP of the place P . So a larger rP will allow us to work

with roots with less precision but this may make E itself large and expensive to work in.

We attempt to take a middle ground to balance these factors.

We make use of the Frobenius automorphism σ of E/Fq so we attempt to compute E

large enough so that σ is non trivial. To do this we consider the number of cycles, that is,

the number of factors, lf,P , of f over the residue class field at P . Given a group G which

we know contains the Galois group and a maximal subgroup H we would usually need to

test [G : H] many evaluations Iτ (α1, . . . , αn) for some invariant I. Knowledge of a non

trivial σ allows us to reduce this number to the number of τ ∈ G//σH = {τ : σ ∈ Hτ}.
This is the use of short coset systems as described in [GK00] Section 4 and [Els14a].

Therefore, when F is a global function field we choose a place P with the smallest

rPdP l
1.5
f,P > n/4, if such occurs as a place we have considered, otherwise a place we have

considered with largest rPdP l
1.5
f,P ≤ n/4.

8.2. Computing Roots (Algorithm 11, Step 3 and 6(c)iv)

Let F be a global function field. We construct E = F(qrP )dP = FqrP dP where f̄ splits

into linear factors. Let ρ be the image of P in E[[ρ]]. We use the map h : F → E[[ρ]]

given by the completion mapping at P into K[[ρ]] followed by the inclusion into E[[ρ]].

We can find the roots ᾱi of f in E[[ρ]] using Puiseux expansions as in [Duv89] which is

implemented in Magma [CBFS10] or by computing the roots of f̄ in the finite field E

and using any root lifting technique. This shows that f splits in E[[ρ]].

8.2.1. Mapping back to the Function Field (Algorithm 11 Step 6(c)vB).

In Section 8.8, we use the map hrm : K[[ρ]]/ρm → F/(Pm), given by the inverse of the

completion mapping followed by rational reconstruction (or reduction when F is a rational

function field) modulo Pm. The map hrm is applied to the evaluation of invariants at roots

of fs in E[[ρ]]. If the result of an evaluation of an invariant at the roots of f lies in

E[[ρ]] \K[[ρ]] then the evaluation does not map back to F .
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8.3. A Starting Group (Algorithm 11, Step 5)

If the discriminant of f is a square in F (and the characteristic p 6= 2) then the Galois

group is contained in An otherwise it is not ([Sta73], [vdW66] p. 155 Exercise 4). This is

equivalent to the use of the SqrtDisc invariant (Theorem 8.4) but cheaper.

We looked at the SqrtDisc invariant (Theorem 8.1) in a similar way for the characteristic

2 case. The discriminant of a polynomial contains information about the roots of the

polynomial but can be computed from the coefficients. In the characteristic 2 case we

could not compute an element of F related to the SqrtDisc invariant without computing

the roots of the polynomial which is too expensive in general for a check which is supposed

to be a shortcut.

However, it is possible that the computation of the subfields and the wreath products of

their Galois groups with Sn/l for a degree l subfield may give us a starting group contained

in An if the Galois group is contained in An. So if F [x]/f has subfields then the discriminant

check may not provide any unique information. If the characteristic is 2 and F [x]/f has

no subfields then we do not currently have an easier way to determine whether we can

descend from Sn to An than Algorithm 11 Step 6c.

Note that it is also possible to use the factorization of the 2-set or 2-sum resolvent of

f , the monic polynomial whose roots are the products or sums of pairs of roots of f , to

compute a smaller starting group [CM94] but we do not have nor have we implemented

algorithms to do this in characteristic p.

8.3.1. Subfields (Algorithm 11, Step 5a, 5b). Knowing the subfields of the ex-

tension F [x]/f can speed our computation of the Galois group of f . In some cases knowing

the subfields enables the Galois group to be computed in reasonable time where this would

not be possible otherwise. It can avoid the need to check some expensive descents by

reducing the starting group to a subgroup of large enough index in Sn.

For a subfield L of degree l of F ′ = F [x]/f we have that Gal(f) ⊆ Gal(g′) o Gal(g) ⊆
Sn/l oSl where g is the polynomial defining the subfield L/F and g′ is a defining polynomial

for F ′/L. We have |A o B| = |A|l|B| when B ⊆ Sl but computing Gal(g) is easier than

computing Gal(g′). We use the approximation for the second factor to gain a smaller

starting group, that is, Gal(f) ⊆ Sn/l o Gal(g), (this is the largest group having the block

system of the subfield which specifies which roots of f combine to give roots of g) and since

this holds for all subfields L of F ′ we have that Gal(f) ⊆ ∩LSn/lL oGal(gL) where lL is the
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degree of the subfield L and gL is a defining polynomial for L. This is explained at length

in [GK00], Section 3.

A general subfields algorithm which also applies to global function fields has recently

been developed by Klüners, van Hoeij and Novocin [vHKN11]. This algorithm can also

compute subfields of algebraic function fields represented as an extension of another alge-

braic function field. This occurs here when F is an algebraic function field. So we are now

able to compute and use subfields to improve the efficiency of computing Galois groups

over global function fields.

In [vHKN11] subfields are computed by taking intersections of some generating sub-

fields, subfields which cannot be obtained by intersecting larger subfields. They explain

how to find a set of subfields such that all subfields of a function field F ′ = F [x]/f can be

computed as the intersection of these generating subfields. For our purposes we can use

just the generating subfields in the Galois group computation, any other subfields will be

subfields of (at least) two of the generating subfields so may be computed in any recursion.

By factoring the polynomial f over F [x]/f we compute principal subfields of F [x]/f . Some

of these subfields will be generating subfields but there will be no more of them than there

are factors of f over F [x]/f .

8.4. Invariants (Algorithm 11, Step 6(c)ii)

Let Gal(f) ⊆ G ⊆ Sn. For each maximal subgroup H of G we choose a G-relative

H-invariant. There are a number of different types of invariants which have been used and

which we continue to use. They fall into 3 categories : special, generic and combinations.

Generic invariants will work for all groups G and their maximal subgroups H. Special

invariants can only be used when the groups G and H satisfy certain properties, however,

they are the cheaper invariants and we should use them when we can. Combination

invariants combine invariants for 2 other subgroups to obtain an invariant for a third,

they are cheaper than generic invariants and some special invariants. In contrast to some

previous algorithms we compute our invariants as we require them rather than looking

them up in a table. This is what makes the algorithm of [FK14] degree independent.

We are guaranteed to be able to find an invariant. We know from [GK00] that

I(X) =
∑
τ∈H

(
n−1∏
i=1

X i
i )
τ

is always a G-relative H-invariant (it is a generic invariant). It is not an efficient one

although sometimes it is the best we can do. [GK00] also states that using an invariant
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of smallest total degree has major effects on the efficiency of the algorithm, that multipli-

cations are expensive and the number of them should be minimized and that we can gain

during the lifting procedure by using an invariant whose resolvent has smaller absolute

value roots. [FK14] and [Els12] look for invariants which also have a small number of

terms or operations. The larger the degree of the invariant the larger will be the bound in

Step 6b and the larger will be the precision we then need to work with. So it is important

that we choose our G-relative H-invariants carefully.

Now that we are working with polynomials in characteristic p the invariants are in

Fq[t][X1, . . . , Xn] and because of this some polynomials which are relative invariants in

characteristic 0 are no longer relative invariants in some positive characteristics. For-

tunately we have found this to be the case only in characteristic 2, as we prove in the

theorems in Section 8.6, and in some cases we have found formulas for polynomials with

similar invariant properties which we can use instead (Section 8.5).

Below we give formulas for polynomials which are special G-relative H-invariants for

certain pairs of groupsG andH. Most of these can be found in [Gei03], [GK00] or [FK14].

However we will first look at formulas for polynomials which are G-relative H-invariants

for some H < G only in characteristic 2, (Theorems 8.1 and 8.2). Each of these will be

analogous to a formula for a polynomial which is G-relative H-invariant for some H < G

in all other characteristics, (Theorems 8.4 and 8.5). Theorem 8.3 contains formulas for

invariants which are G-relative in all characteristics. We will also show that the more

expensive but guaranteed to exist generic invariants remain G-relative in characteristic 2

(Theorem 8.6).

8.5. Invariants in Characteristic 2

In this section we state polynomials and prove that they are relative invariants when

the characteristic of F is 2. These polynomials are derived from or inspired by similar

polynomials which are known to be relative invariants when the characteristic of F is 0

but are invariant for a larger group than required when the characteristic of F is 2.

Theorem 8.1. Let H be a maximal subgroup of G ⊆ Sn. Then, when the characteristic

of F is 2, the following gives polynomials I(X) = I(X1, . . . , Xn) which are G-relative

H-invariant polynomials when G and H satisfy the conditions given.

SqrtDisc: When H < An, G 6< An

I(X) =
∏

1≤j<j′≤n

(Xj + ūXj′) = I1 + ūI2 [Els13a]
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where I1 and I2 are also G-relative H-invariant and ū is the image of u in F2[u]/〈u2−
1〉 and

I(X) =
∑

1≤j<j′≤n

Xj

∏
1≤r<s≤n(Xr +Xs)

Xj +Xj′

although the former is the most efficient.

D: When H has the same block systems as G, G is a subgroup of Sn/l oΓ Sl for some

l|n H is a subgroup of Sn/l oΓ Al, Γ = {1, . . . , l},

I(X) = E(y),

where E is either I, I1 or I2 from the [Els13a] SqrtDisc invariant above and

I(X) =
∑

1≤j<j′≤#B

yj

∏
1≤r<s≤#B(yr + ys)

yj + yj′
,

where B = {bj}1≤j≤l is a block system of both G and H, #bj = n/l, yj =
∑

i∈bj Xi

and y = (y1, . . . , yl).

s1 ≡ sm: When G is a subgroup of Sn/l oΓ Sl for some l|n, Γ = {1, . . . , l} there is a

subgroup H with the same block systems as G such that

(sm) I(X) =
∏
b∈B

E({Xj : j ∈ b})

is a G-relative H-invariant polynomial where E is the SqrtDisc ([Els13a]) invariant

I (not I1 or I2) and

(s1) I(X) =
∑
b∈B

(
∑

j,j′∈b,j<j′

Xj

Xj +Xj′
)

is a G-relative H-invariant function where B = {bi}1≤i≤l is a block system of both

G and H, #bi = n/l.

Note that in parallel with [FK14] Theorem 5.7 the inner function of the s1 ≡ sm invari-

ant (the SqrtDisc function) could be replaced by any U -relative N -invariant polynomial

E satisfying Eσ = ūE (sm) or Eσ = E + 1 (s1) for all σ ∈ U \ N where G = U o V
and N < U is normal of index 2, (the I1 and I2 invariants of the [Els13a] SqrtDisc in-

variant and the SqrtDisc invariant do not satisfy these properties). While (s1) is the s1

polynomial summing over blocks in a system, in characteristic 2 it acts the same way as

the sm polynomial does in other characteristics (which multiplies over blocks in a system).

However such polynomials E over Fq[t] have not been found and so this invariant is not

used in the Magma [CBFS10] implementation. The situation of (sm) is covered by the
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implementation of Factor Delta invariants by [Els14b]. Using Theorem 8.2 we can then

get an invariant similar to D sm in Theorem 8.4.

Proof. SqrtDisc [Els13a]: Any permutation is a product of transpositions so we

look here at the action of a single transposition. Let τ = (r, s) ∈ Sn be a transpo-

sition,

Iτ (X) =
∏

1≤j<j′≤n,j,j′ 6∈{r,s}

(Xj + ūXj′)
∏

1≤j<j′≤n,j or j′∈{r,s}

(Xjτ + ūXj′τ ).

The first product is invariant under τ so we look at the second. Let r < s, then

this second product is

(Xrτ + ūXsτ )
∏

r<j≤n,j 6=s

(Xrτ + ūXjτ )
∏

1≤j′<s,j′ 6=r

(Xj′τ + ūXsτ )

= (Xs + ūXr)
∏

r<j≤n,j 6=s

(Xs + ūXj)
∏

1≤j′<s,j′ 6=r

(Xj′ + ūXr)

= ū(Xr + ūXs)
∏
r<j<s

(Xs + ūXj)
∏
s<j≤n

(Xs + ūXj)
∏

1≤j′<r

(Xj′ + ūXr)
∏

r<j′<s

(Xj′ + ūXr)

= ū(Xr + ūXs)
∏
r<j<s

ū(Xj + ūXs)
∏
s<j≤n

(Xs + ūXj)
∏

1≤j′<r

(Xj′ + ūXr)
∏

r<j′<s

ū(Xr + ūXj′)

The middle 2 products appear in I(X), but not in the first product in Iτ above.

The first and last products have the same number of factors (which all appear in I

and not in the first product of Iτ above) so the ū here will cancel out, which means

we are left with the one ū out the front. So we have Iτ = ūI. Therefore I is not

τ -invariant. However, if a second transposition σ was applied to I we would have

Iτσ = ūIσ = ūūI = I, therefore I is H-invariant for any H < An and G-relative

for G 6< An.

To see that I1 and I2 are also G-relative H-invariant we start with Iτ = ūI.

Then

(I1 + ūI2)τ = ū(I1 + ūI2)

Iτ1 + ūIτ2 = ūI1 + ū2I2

Equating coefficients of ū gives Iτ1 = I2 and Iτ2 = I1. Note that I1 6= I2 otherwise I

is invariant under τ which we have proved above is not the case. Therefore neither

I1 nor I2 are τ invariant but Iτσ1 = Iσ2 = I1 therefore I1 and similarly I2 are An

invariant.
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SqrtDisc : For the second SqrtDisc invariant we proceed in a similar fashion. We

split the invariant into 2 parts, we write

I(X) = (
∑

1≤j<j′≤n

Xj

Xj +Xj′
)
∏

1≤r<s≤n

(Xr +Xs)

and note that the second factor is Sn-invariant. Let I1 be the first factor and let

τ = (r, s) be a transposition,

Iτ1 (X) =
∑

1≤j<j′≤n

Xjτ

Xjτ +Xj′τ

=
∑

1≤j<j′≤n,j,j′ 6∈{r,s}

Xjτ

Xjτ +Xj′τ
+

∑
1≤j<j′≤n,j or j′∈{r,s}

Xjτ

Xjτ +Xj′τ

and we note that the first sum is invariant under τ . We continue with the second

assuming r < s,∑
1≤j<j′≤n,j or j′∈{r,s}

Xjτ

Xjτ +Xj′τ

=
∑

r<j≤n,j 6=s

Xrτ

Xrτ +Xjτ
+

∑
1≤j′<s,j′ 6=r

Xj′τ

Xj′τ +Xsτ
+

Xs

Xs +Xr

=
∑

r<j≤n,j 6=s

Xs

Xs +Xj

+
∑

1≤j′<s,j′ 6=r

Xj′

Xj′ +Xr

+
Xs

Xs +Xr

=
∑
r<j<s

Xs

Xs +Xj

+
∑
s<j≤n

Xs

Xs +Xj

+
∑

1≤j′<r

Xj′

Xj′ +Xr

+
∑
r<j′<s

Xj′

Xj′ +Xr

+
Xs

Xs +Xr

The 2nd and 3rd sums appear in I1(X) but not in the first sum of Iτ1 above, the

first and fourth sums have the same number of terms but none of their addends

appear in I1. However,

Xj

Xj′ +Xj

=
Xj′

Xj′ +Xj

+ 1

so the first sum becomes ∑
r<j<s

(
Xj

Xs +Xj

+ 1)



8.5. Invariants in Characteristic 2 113

and similarly for the fourth sum. Because they have the same number of terms

adding the first and the fourth sum now gives∑
r<j<s

Xj

Xj +Xs

+
∑
r<j′<s

Xr

Xj′ +Xr

where the +1 cancel since there are an even number of them and the terms in

this sum all appear in I1(X) and not in any part of Iτ (X) which we have already

considered. This leaves us with the last term

Xs

Xs +Xr

=
Xr

Xs +Xr

+ 1

so that Iτ1 = I1 + 1 and hence I1 is not invariant under τ and so not Sn-invariant.

But Iτσ1 = (I1 + 1)σ = I1 + 2 = I1 so I1 and also I are H-invariant for H < An and

G-relative for any G 6< An.

D: We follow the hint in [FK14] following Theorem 5.7. We can use [FK14] Lemma

5.4, the E invariant, where E is the polynomial of the SqrtDisc invariant for Sm

and Am since the transitive permutation representations which permute the blocks

are subgroups of Sm and Am.

s1: Since this invariant acts in the same way as the sm invariant in other characteristics

we will refer to the proof of Theorem 5.7 of [FK14]. Replacing −di by di + 1, ±F
by F or F + 1 and F u1 = −F by F u1 = F + 1 in that proof we have that I(X) is

a G-relative H-invariant.

sm: Replacing −di by ūdi, ±F by F or ūF and F u1 by ūF in the proof of Theorem

5.7 of [FK14] we have that I(X) is a G-relative H-invariant.

�

The SqrtDisc invariant is important when Gal(f) is primitive. This corresponds to the

stem field F [x]/f having no subfields (such as when the degree of f is prime) which means

that Algorithm 11 Step 5 cannot gain a smaller starting group. It also means there are

no non-trivial block systems of any G ⊇ Gal(f) so none of the other special invariants

can be used as they all use block systems. In characteristic 2 we cannot use whether the

discriminant is a square to determine whether or not the Galois group of f is a subgroup

of An which would mean that in characteristic 2 if there are no subfields and no non trivial

block systems then without a SqrtDisc invariant we could only use the more expensive

generic invariants to attempt to descend all the way from Sn.
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Theorem 8.2 ([Fie09]). Let H1, H2 ⊂ G ⊆ Sn be two distinct subgroups of index 2 in G

with G-relative Hi-invariants Ii, G//Hi = {Id, τi}. Then, when the characteristic of F is

2,

I(X) =

I1 + I2, if Iτii = Ii + 1

I1I
τ2
2 + I2I

τ1
1 otherwise

is a G-relative H-invariant where H = 〈H1 ∩H2, τ1τ2〉.

Proof. ([Fie09]) The first formula follows easily from substitution into the second, how-

ever the proof for the second follows from a substitution into the first which is simpler to

prove so we will prove only the first and note the necessary substitution.

Assume Iτii = Ii + 1, then we have resolvent polynomials Ri = x2 + (Iτii + Ii)x+ Iτii Ii =

x2 +x+ I2
i + Ii. These resolvent polynomials define quadratic Artin–Schreier extensions of

the invariant ring Fq[t](X)G ([FK14] Remark 2.1). Since there are 2 such extensions there

must be a third and by Artin–Schreier theory x2 + x + I2
1 + I1 + I2

2 + I2 is a generating

polynomial for the third quadratic subfield of the degree 4 extension generated by Ri with

Galois group V4
∼= C2 × C2. Its roots will be primitive elements in the extension and as

such will be invariants. Therefore I1 + I2 (and I1 + I2 + 1) are G-relative H-invariants for

some index 2 subgroup H. It can easily be seen that I(X) is both H1 ∩H2-invariant and

invariant under τ1τ2 so H ⊃ 〈H1 ∩ H2, τ1τ2〉. Since 〈H1 ∩ H2, τ1τ2〉 has index 2 in G we

must have that H = 〈H1 ∩H2, τ1τ2〉.
To prove the second formula repeat the above argument with Ĩi = Ii/(Ii + Iτii ), since

Ĩτii = Ĩi + 1. Then we have that

x2 + x+
I1I

τ1
1

(I1 + Iτ11 )2
+

I2I
τ2
2

(I2 + Iτ22 )

is a generating polynomial for the third quadratic subfield of the degree 4 extension gener-

ated by the Ri with Galois group V4 and using the transformation x 7→ x/(I1+Iτ11 )(I2+Iτ22 )

and clearing denominators we have that x2+(I1+Iτ11 )(I2+Iτ22 )x+I1I
τ1
1 (I1+Iτ11 )2+I2I

τ2
2 (I2+

Iτ22 )2 is also a generating polynomial for that subfield and it can be seen that I1I
τ2
2 + I2I

τ1
1

and I1I
τ2
2 + I2I

τ1
1 + 1 are roots of that polynomial and hence are G-relative H-invariants.

�
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8.6. Invariants in Characteristic other than 2

In this section we state polynomials and prove that they are relative invariants either

when the characteristic of F is p > 0 or p > 2. These polynomials are known to be relative

invariants when the characteristic of F is 0.

Theorem 8.3. Let H be a maximal subgroup of G ⊆ Sn. Then for all characteristics of

F , the following gives polynomials I(X) = I(X1, . . . , Xn) which are G-relative H-invariant

polynomials when G and H satisfy the conditions given.

Intransitive, [FK14] Lemma 5.1: When H is an intransitive group and there is

an orbit O of H which is not invariant under G,

I(X) =
∑
i∈O

Xi.

ProdSum, [Gei03] Algorithm 6.24 Step 3.1, [FK14] Lemma 5.3, [Els14b]:

When there exists a block system B of H which is not a block system of G,

I(X) =
∏
b∈B

(
∑
i∈b

Xi) and I(X) =
∑
b∈B

(
∑
i∈b

Xi)
e

where e = 2 unless p = 2 then e = 3.

E, [Gei03] Satz 6.14, Algorithm 6.24 Step 4.1.2: When H has the same block

systems as G, H < G are transitive permutation representations on l points which

permute the blocks in a block system,

I(X) = E(y1, . . . , yl)

where yj =
∑

i∈Bj Xi, B = {B1, . . . , Bl} is a block system for G and H and E is a

G-relative H-invariant.

F, [Gei03] Satz 6.16, Algorithm 6.24 Step 4.1.4: When H has the same block

systems as G, H = G, StabH(Bi)|Bi < StabG(Bi)|Bi for Bi = {bi1, . . . , bil} a block

in the block system B = {B1, . . . , Br} of G and H,

I(X) =
∑
τj∈τ

F̃ τj(Xbi1 , . . . , Xbil)

where F̃ is a StabG(Bi)|Bi-relative StabH(Bi)|Bi-invariant and τ is a system of

representatives of left cosets of StabH(Bi).
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BlockQuotient, [Gei03] Algorithm 6.24, Step 6, [FK14] Lemma 5.6:

When H has the same block systems as G, H = G, StabH(Bi)|Bi = StabG(Bi)|Bi
for all blocks Bi in the block system B of G and H,

I(X) = f(Y ) where Y = OrbG(Y )

where f is a G|Y -relative H|Y -invariant and Y is a K2-relative K1-invariant poly-

nomial for some groups K1 < K2 < StabG(Bi)|Bi and H|Y < G|Y .

Proof. We mostly refer to existing proofs but note dependence on the characteristic.

Intransitive: Let h ∈ H, Ih(X) =
∑

i∈OrbH(1)Xih = I(X) since ih ∈ OrbH(1) as

the orbit is invariant under H. Let g ∈ G \ H, Ig(X) =
∑

i∈OrbH(1)Xig . Since

the orbit is not invariant under G, there exists i such that ig 6∈ OrbH(1) therefore

Ig 6= I. Therefore I is a G-relative H-invariant polynomial independent of the

characteristic.

ProdSum: The first formula is proved to be a G-relative H-invariant independent of

characteristic in [FK14] Lemma 5.3, so we will give a similar proof for the second

formula which contains less multiplications and is characteristic dependent. Let

h ∈ H, Ih(X) =
∑

b∈B(
∑

i∈bXih)e. Since B is a block system h ∈ H will only

reorder either the outer sum or all of the inner sums which leaves I invariant under

H. However g ∈ G \H will map Xi and Xj with i, j in different blocks to the same

block so that Ig contains a monomial XigXjg which is not present in I. Note that

if in characteristic 2 we used e = 2 such monomials (with coefficient e = 2) would

not be present for any i, j and the invariant would be only a sum of squares which

would also be G-invariant and so not G-relative.

E: A proof that this I(X) is a G-relative H-invariant is given in both [Gei03] Satz

6.14 and [FK14] Lemma 5.4. Note that addition of indeterminates is independent

of characteristic and that E is an invariant chosen dependent on the characteristic

of F .

F: A proof that this I(X) is a G-relative H-invariant is given in both [Gei03] Satz

6.16 and [FK14] Lemma 5.5. Note that addition of indeterminates is independent

of characteristic and that F̃ is an invariant chosen dependent on the characteristic

of F .

BlockQuotient: This invariant I(X) is discussed in [Gei03] Bemerkung 6.19 and

in [FK14] Lemma 5.6. Note that f and Y will be chosen dependent on the char-

acteristic and that evaluation is independent of characteristic.
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�

Theorem 8.4. When the characteristic of F is not 2, the following gives polynomials

I(X) = I(X1, . . . , Xn) which are G-relative H-invariant polynomials for some maximal

subgroup H when G satisfies the conditions given.

SqrtDisc, [Gei03] Algorithm 6.24 Step 1: When G 6< An, H < An

I(X) =
∏

1≤i<j≤n

(Xi −Xj)

[Note that if we checked whether the discriminant was a square then this invariant

gives no additional information used directly since if G 6< An no even permutation

group will be the Galois group and we can make that decision purely on the parity

of H.]

D, [Gei03] Satz 6.8, Algorithm 6.24 Step 3.2.2: When G is a subgroup of Sn/loΓ
Sl for some l|n, Γ = {1, . . . , l}, H is a subgroup of Sn/l oΓ Al having the same block

systems as G,

I(X) =
∏

1≤i<j≤#B

(yi − yj)

where yj =
∑

j′∈bj Xj′ and B is a block system of both G and H, |B| = l,#bj =

n/l, bj ∈ B.

sm, [Gei03] Satz 6.8, Algorithm 6.24 Step 3.2.4: When G is a subgroup of Sn/loΓ
Sl for some l|n, Γ = {1, . . . , l}, there is a subgroup H of index 2 with the same block

systems as G such that

I(X) =
∏
b∈B

∏
i,j∈b,i<j

(Xj −Xi)

is a G-relative H-invariant polynomial, for all block systems B of both G and H,

|B| = l,#bi = n/l, bi ∈ B,

D sm, [Gei03] Satz 6.8, Algorithm 6.24 Step 3.2.6: When G is a subgroup of

Sn/l oΓ Sl for some l|n, Γ = {1, . . . , l}, there is a subgroup H of index 2 with the

same block systems as G such that

I(X) = D(X)× sm(X)

is a G-relative H-invariant polynomial.
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s1, [Gei03] Satz 6.8, Algorithm 6.24 Step 3.2.3: When G is a subgroup of Sn/loΓ
Sl for some l|n, Γ = {1, . . . , l}, H is a subgroup of An/l oΓ Sl with the same block

systems as G,

I(X) =
∑
b∈B

∏
i,j∈b,i<j

(Xi −Xj)

where B is a block system of both G and H, |B| = l,#b = n/l, b ∈ B.

s2, [Gei03] Satz 6.8, Algorithm 6.24 Step 3.2.5: When G is a subgroup of Sn/loΓ
Sl for some l|n, Γ = {1, . . . , l}, there is a subgroup H of index 2l−1 with the same

block systems as G such that

I(X) =
∑

bi1 ,bi2∈B,i1 6=i2

di1di2

is a G-relative H-invariant polynomial where B is a block system of G and H,

|B| = l,#b = n/l, b ∈ B and di =
∏

j,j′∈bi,j<j′(Xj −Xj′).

Proof. We refer to existing proofs where possible.

SqrtDisc, [Gei03] Algorithm 6.24 Step 1: Note that the proof that this I is G-

relative H-invariant follows from substituting ū = −1 in the SqrtDisc proof of

Theorem 8.1.

D, [Gei03] Satz 6.8, Algorithm 6.24 Step 3.2.2: Since this invariant has been

considered elsewhere ([Gei03], [GK00] Lemma 2.13 and [FK14] following Theo-

rem 5.7) we will not prove this is an invariant. Note that this is not a G-relative

H-invariant in characteristic 2, since it relies on multiplications of −1.

sm, [Gei03] Satz 6.8, Algorithm 6.24 Step 3.2.4: See Theorem 5.7 of [FK14].

Note that this is not a G-relative H-invariant in characteristic 2, since it relies on

multiplications of −1.

D sm, [Gei03] Satz 6.8, Algorithm 6.24 Step 3.2.6: See [GK00] Lemma 2.13

and [FK14] following Theorem 5.7. Note that this is not a G-relative H-invariant

in characteristic 2, since it relies on multiplications of −1.

s1, [Gei03] Satz 6.8, Algorithm 6.24 Step 3.2.3: Note that this equivalent to the

F invariant of Theorem 8.3 where the inner invariant F is the SqrtDisc invariant.

s2, [Gei03] Satz 6.8, Algorithm 6.24 Step 3.2.5: As both [Gei03] and [Eic96]

state this invariant we will not prove that it is an invariant. Note that this is not

a G-relative H-invariant in characteristic 2 since it relies on multiplications of −1.

�
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Note the order in [Gei03] Algorithm 6.24. The SqrtDisc, ProdSum, D, s1, sm, s2 and

Dsm invariants appear first in the algorithm as these are the cheaper invariants to apply

(although we may use techniques from later steps to calculate them). Although in char-

acteristic 2 we cannot use most of them, the ones we can use are listed first in [Gei03]

Algorithm 6.24, (Steps 1 (SqrtDisc), 3.1 (ProdSum) and 3.2.2 (D)). Note also that [Gei03]

Algorithm 6.24 can be recursive so that some invariants are computed from the invariants

of related groups. This occurs in Steps 4, 5 and 6.

We now state a theorem for combining invariants similar to Theorem 8.2.

Theorem 8.5 ([Gei03] Satz 6.21, Algorithm 6.24 Step 5, [FK14] Lemma 5.8). Let

H1, H2 ⊂ G ⊆ Sn be two distinct subgroups of index 2 in G with G-relative Hi-invariants

Ii and G//Hi = {Id, τi}. Then

I(X) = I1I2, if Iτii = −Ii

I(X) = (I1 − Iτ11 )(I2 − Iτ22 ) otherwise

is a G-relative H-invariant where H = (H1 ∩ H2) ∪ ((G \ H1) ∩ (G \ H2)) when the

characteristic of F is not 2.

Proof. That these I(X) are G-relative H-invariants is proven in [FK14] Lemma 5.8. The

resolvent polynomials in this case define quadratic Kummer extensions of the invariant ring

Fq[t](X)G instead of Artin–Schreier extensions as in Theorem 8.2. We note that negation

is equivalent to the identity and subtraction is equivalent to addition in characteristic 2

hence there cannot be G-relative Hi-invariants I1, I2 such that Iτii = −Ii = Ii since any

such polynomial is G-invariant and Ii − Iτii = Ii + Iτii is G-invariant also.

�

Further combinations of invariants are possible, see [FK14] following Lemma 5.8.

Theorem 8.6. The generic invariants

I(X) =
∑

h∈H//StabHbσ

bσh =
∑

m∈OrbH(bσ)

m,

where b is a monomial and σ ∈ Sn is such that |OrbG(bσ)| > |OrbH(bσ)| or equivalently

(G : StabGb
σ) 6= (H : StabHb

σ), and

I(X) =
∑
τ∈H

(
n−1∏
i=1

X i
i )
τ ,
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are G-relative H-invariant polynomials for all groups G and maximal subgroups H inde-

pendent of characteristic.

See [FK14] Section 4 for a discussion on computing efficient monomials, also [Gei03,

GK00].

Proof. In the first formula, for h ∈ H, Ih(X) =
∑

m∈OrbH(bσ) m
h, and since h ∈ H,mh ∈

OrbH(bσ), Ih = I. However, for g ∈ G \ H, Ig(X) =
∑

m∈OrbH(bσ) m
g, but since g 6∈

H, |OrbG(bσ)| > |OrbH(bσ)|,mg 6∈ OrbH(bσ), Ig 6= I. This proof is independent of

characteristic.

In the last formula, for h ∈ H, Ih(X) =
∑

τ∈H(
∏n−1

i=1 X
i
i )
hτ , but since hτ ∈ H, Ih = I.

However, for g ∈ G \ H, Ig(X) =
∑

τ∈H(
∏n−1

i=1 X
i
i )
gτ = I(X) implies that (

∏n−1
i=1 X

i
i )
gτ =

(
∏n−1

i=1 X
i
i )
h for some h ∈ H and gτ = h implies that g ∈ H – a contradiction, therefore

Ig 6= I. This proof is independent of characteristic. �

Note that in characteristic p
∑

h∈H b
σh is not necessarily G-relative (but it is in char-

acteristic 0) as we may get cancellations which make the polynomial invariant outside of

H.

8.7. Tschirnhausen Transformations (Algorithm 11, Step 6(c)ii)

To use Theorem 7.4 the resolvent polynomial needs to have a root in F which is a single

root. We can make this happen by applying a suitable Tschirnhausen transformation to

the invariant we are using. A Tschirnhausen transformation is a polynomial which gives a

change of variable ([Tig01] Section 6.4). We use Tschirnhausen transformations on all of

the variables in an invariant. When F has characteristic p Tschirnhausen transformations

are in R = Fq[t]. We cannot use R = Fq because there may not be enough polynomials

over Fq to ensure that the application of one of them will make a root of the resolvent in

F be a single root. These transformations then need to be mapped to the chosen E[[ρ]]

using the map h in Section 8.2 for evaluation at the roots of f in E[[ρ]] as do the invariants

themselves.

8.8. Determining a Descent (Algorithm 11, Steps 6b and 6(c)vB)

We have a group G such that Gal(f) ⊆ G and a maximal subgroup H of G for which

we are testing whether Gal(f) ⊆ H. We have chosen a G-relative H-invariant polynomial

I and a Tschirnhausen transformation T (Step 6(c)ii). Now we need to decide whether
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Iτ (T (α1), . . . , T (αn)) ∈ F for τ ∈ G//H, then, if Iτ (T (α1), . . . , T (αn)) ∈ F is a single root

for some τ ∈ G//H, it will follow from Theorem 7.4 whether Gal(f) ⊆ τHτ−1.

We evaluate Iτ (T ( ¯sα1), . . . , T ( ¯sαn)) in E[[ρ]] to some precision m which we will choose

and we can map this evaluation back to F/Pm using hrm. Here it is convienient that we use

the scaled roots of f which are in the integral closure Z0
F of k[t] in F . Integral elements

of F will have finite expansions in E[[ρ]] when F is a rational function field and integral

coefficients with finite expansions otherwise. Integral elements do not require denominator

bounds. We can bound the image of the evaluation and we use this bound to compute a

precision such that all non-zero P -adic digits of Iτ (T (sα1), . . . , T (sαn)) can be computed.

When F is a global function field we use a bound on the degree if F is rational or, more

generally, the infinite valuations of the element. This will either prove that Gal(f) ⊆ τHτ−1

(if −v∞(hr,m(Iτ (T ( ¯sα1), . . . , T ( ¯sαn)))) ≤ B̃ for all infinite valuations v∞ of F and some

bound B̃), suggest that this is probably true (if the previous inequality holds but we use

less precision than we should) or prove that it is not true (if the inequality doesn’t hold).

To compute such a bound B̃ we use the minimum infinite valuation of the roots of fs.

The infinite valuation of a rational function is the negative of its degree. We compute these

valuations using the Newton polygons of the polynomial fs over F at all infinite places of

F and call the smallest one v0.

Let

Iτ (T (sα1), . . . , T (sαn)) =
∑
j

cj
∏
i

T (sαi)
dij

(in which form any invariant can be written), remembering that the invariants may have

coefficients cj ∈ Fq[t] and not only in Z as in the case when the characteristic is 0. Then

v∞ (Iτ (T (sα1), . . . , T (sαn))) ≥ min
j
{v∞(cj) +

∑
i

dijv∞(T (sαi))}

but since v∞(sαi) ≥ v0 for all i and v∞(T (sαi)) ≥ minl{v∞(Tl) + lv∞(sαi)}, where Tl are

the non zero coefficients of T , we have

v∞ (Iτ (T (sα1), . . . , T (sαn))) ≥ min
j
{v∞(cj) + min

l
{v∞(Tl) + lv0}

∑
i

dij}.

But v0 ≤ 0 (since fs is over Fq[t] or more generally its integral closure Z0
F in F ) and

v∞(Tl) ≤ 0 so (v∞(Tl) + lv0)
∑

i dij ≤ 0 for all l, j so we use d = maxj{
∑

i dij} to minimize

minj{v∞(cj) + minl{v∞(Tl) + lv0}
∑

i dij}. Therefore

v∞(Iτ (T (sα1), . . . , T (sαn))) ≥ min
j
{v∞(cj)}+ min

l
{v∞(Tl) + lv0}d
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since v∞(cj) ≤ 0 also and when F is a rational function field

deg(Iτ (T (sα1), . . . , T (sαn))) = −v∞(Iτ (T (sα1), . . . , T (sαn)))

≤ max
j
{−v∞(cj)}+ max

l
{−v∞(Tl)− lv0}d.

When F is an algebraic function field there is possibly more than one infinite place.

The minimum infinite valuation v0 is taken as the minimum over all infinite places. We

have the bound −v∞(Iτ (T (sα1), . . . , T (sαn))) ≤ maxj{−v∞(cj)}+ maxl{−v∞(Tl)− lv0}d
where this holds for all infinite valuations v∞.

In practice the d = deg(I) we use in this multiplication may be larger than maxj{
∑

i dij}
because we compute the degree of an unreduced invariant, so this will cost us in using more

precision than necessary but will not decrease the accuracy of the result.

Therefore if F is a rational function field and Iτ (T (sα1), . . . , T (sαn)) is a polynomial

we have a bound on the degree of the polynomial and if F is an algebraic function field

and Iτ (T (sα1), . . . , T (sαn)) ∈ Z0
F we have a bound on its infinite valuations. However, if

Iτ (T (sα1), . . . , T (sαn)) does not satisfy these bounds then it is either not polynomial or

not an element of Z0
F and there is no descent into τHτ−1.

8.8.1. Precision (Algorithm 11, Step 6(c)iii). Let β = I(T (sα1), . . . , T (sαn))

whose infinite valuations are bounded below by −B if β ∈ Z0
F where

B = deg(I) max
0≤l≤deg(T )

{−v0l −max
v∞
{v∞(Tl)}}+ max

j,v∞
{−v∞(cj)}

where Tl are the coefficients of T , cj are the coefficients of I and let β ∈ β0 + Pm for

some precision m, that is, β0 is an approximation to β. To determine whether β is a finite

expansion and so an element of Z0
F we need to compute m which ensures that β−β0 = 0 if

so. For all infinite valuations v∞ we have −v∞(β) ≤ B,−v∞(β0) ≤ B and −v∞(β(i)) ≤ B

for all conjugates β(i) of β, so −v∞(β − β0) ≤ B and −v∞((β − β0)(i)) ≤ B. Therefore

−v∞(norm(β − β0)) = −v∞

(∏
i

(β − β0)(i)

)
=
∑
i

−v∞((β − β0)(i))

≤
∑
i

B

≤ [G : H]B
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where the number of conjugates is the degree of the smallest normal subfield of the splitting

field of f containing β. This is less than [G : H] because β is in the field extension of F

fixed by automorphisms in H by definition and F is a field fixed by automorphisms in G

since Gal(f) ⊂ G. Since β − β0 ∈ Pm, norm(β − β0) ∈ Pm. We have deg((β − β0)0) =

deg((β − β0)∞) so ∑
Q∈P0

F

vQ(β − β0) deg(Q) =
∑
Q∈P∞F

−vQ(β − β0) deg(Q)

and

m deg(P ) ≤ vP (β − β0) deg(P ) ≤
∑
Q∈P∞F

−vQ(β − β0) deg(Q)

≤
∑
Q∈P∞F

−vQ(norm(β − β0)) deg(Q)

≤ #P∞F max
Q∈P∞F

{−vQ(norm(β − β0))} max
Q∈P∞F

{deg(Q)}

≤ #P∞F [G : H]B max
Q∈P∞F

{deg(Q)}

and we must choose m such that

m > max
Q∈P∞F

{deg(Q)}#P∞F [G : H]B/ deg(P )

so that we can decide whether β − β0 = 0. If F is a rational function field the above can

be expressed more simply as

m deg(P ) = deg(norm(Pm)) ≤ deg(norm(β − β0)) = −v∞(norm(β − β0)) ≤ [G : H]B

so m > [G : H]B/ deg(P ) is enough precision to ensure we can determine whether β is a

finite expansion.

But this means that m ∼ [G : H] which can be quite large. Such a precision m will

prove whether or not Gal(f) ⊆ H but we only want to use this proven precision if it is

not too large, otherwise we can prove this descent step later (if necessary) using absolute

resolvents as done in [GK00] Algorithm 5.1. If [G : H] is large we instead use lB where l

is some limit we place on the index [G : H]. Since it is most likely that Gal(f) 6⊆ H, the

limit l will give us a smaller precision which may allow us to determine that Gal(f) 6⊆ H.

We use a precision of (dmaxQ∈P∞F {deg(Q)}#P∞F lB/ deg(P e + ε) to allow us to check that
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the few digits above where we expect the series expansion in a uniformizing element of P

of an exact root to finish are zero.

While this bound for m gives us a precision which proves the descent we can also use

a lower precision to detect possible descents and only use m greater than this bound for

those τ ∈ G//H for which we have not ruled out at a lower precision that a descent is

possible. An expansion may have a large number of zero digits in the middle before non

zero digits of high powers of the uniformizing element of P . In this case a lower precision

will detect that a descent is possible but the larger precision will prove whether this descent

is correct. A descent is only proven if a root is proven to be in F .

8.9. Examples

The timings given in this section are for computations on an Intel(R) Core(TM) i7-3770

CPU 3.4GHz (32GB RAM) using Magma V2.19-9.

We identify transitive groups in the form dTn, the nth transitive group of degree d ≤ 32

according to the ordering in the database of transitive groups in Magma [CBFS10]. This

is the same numbering used in GAP [GG02] when d < 32 where the groups have been

either confirmed or provided by Hulpke [Hul05]. The transitive groups of degree 32 were

provided by [CH08].

Example 12. Let p = 7, F = F7(t) and f = x8 + t + 1 over F . The field F [x]/f

has 2 proper subfields of degrees 4 and 2 which are both generating subfields. Using the

Galois groups of these subfields, we compute 8T26 as a starting group which has order

64. This starting group has 6 conjugacy classes of transitive maximal subgroups, however

only 2 of them contain the cycle shapes computed when choosing the prime t2 + 2 from

which we computed F716 [[z]] over which f splits. We first attempt to compute a descent to

8T15. Using a BlockQuotient invariant from Theorem 8.3 we find we need to transform

by a Tschirnhausen transformation. However this is too expensive so instead we attempt a

descent to another subgroup conjugate to 8T15 in S8. Here we use an invariant computed by

applying Theorem 8.5 and again we need to apply a Tschirnhausen transformation. Instead

we return to the attempt on the first subgroup and after applying a few transformations we

decide not to descend into this subgroup. Moving back to the other possible conjugacy class

of subgroups, which are also conjugate to 8T15 in S8, we transform once before we decide

that the Galois group of f is contained in this conjugacy class of subgroups of order 16.

Now we compute the maximal subgroups of 8T15 of which there are 6 transitive conju-

gacy classes but we need only consider 4. We first attempt descents using generic invariants
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into 2 subgroups conjugate to 8T6 in S8 but after applying several transformations we move

on to attempting a descent into 8T8. After applying a Tschirnhausen transformation to

a generic invariant we attempt a descent into one conjugate of 8T6 in S8 using a generic

invariant and decide not to descend. We make several more attempts with transformations

and a generic invariant to descend into the first subgroup and decide that the first subgroup

conjugate to 8T6 which we attempted contains the Galois group of f . This group has 2

classes of transitive maximal subgroups however neither of them contain the cycle shapes

so there are no more subgroups to consider and the Galois group of f is 8T6.

This computation took 0.38s.

We move on to some examples in characteristic 2.

Example 13. Let p = 2, F = F2(t) and f = x5 +x4 +tx3 +x+1 or f = x8 +x7 +tx6 +x5 +

x2 + tx + 1. In both of these simple examples there are subgroups of Sn but none of them

need consideration for a descent because either the subgroups are not transitive or the cycle

structure of the group is not contained in the information we have about the cycle structure

of the Galois group from the computation of the prime. Therefore the Galois groups of

these polynomials are S5 and S8 respectively.

Example 14. Let p = 2, F = F2(t) and f = x8 + x4 + x − t over F . The field F [x]/f

has no proper subfields so we start descending from S8 which has 4 conjugacy classes of

transitive maximal subgroups, 2 of which contain the cycle shapes computed when choosing

the prime t2 + t+ 1 from which we computed F214 [[z]] over which f splits. We first attempt

to compute a descent to 8T49 using a SqrtDisc invariant from Theorem 8.1 since this class

of subgroups contains An and immediately gain a descent. This subgroup has 3 classes of

transitive maximal subgroups, only 2 which we need consider. Using a generic invariant

we gain a descent to a class conjugate to 8T48 which has 4 classes of transitive maximal

subgroups, 2 of which we consider. We attempt a descent into 8T37 but find we need to

apply a transformation to the generic invariant used and after doing so decide the Galois

group is not contained in 8T37. We decide that the Galois group is contained in 8T36

after using a transformation with another generic invariant. This subgroup has 2 classes

of transitive maximal subgroups, only 1 which is worth considering. Several transformations

on a generic invariant later we decide that the Galois group is contained in 8T25 which

has one class of transitive maximal subgroups which we do not consider because the cycle

structure of the subgroups is not contained in the information we have about the cycle
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structure of the Galois group from the computation of the prime, hence 8T25 is the Galois

group of f .

This computation took 0.19s.

Example 15. Let p = 2, F = F2(t) and f = x9 + (t6 + t3 + 1)x7 + (t9 + t8 + t5 + t2 + 1)x5 +

(t11 + t10 + t2 + t)x4 +(t14 + t13 + t11 + t8 + t7 + t)x3 +(t15 + t14 + t13 + t12 + t9 + t7 + t5 + t)x2 +

(t15 +t14 +t12 +t11 +t10 +t5 +t2 +t+1)x+t14 +t13 +t12 +t11 +t10 +t6 +t5 +t4 +t2 +t+1 over

F [KM]. The field F [x]/f has 1 generating subfield of degree 3 from which we compute

a starting group as 9T31 which has 4 classes of transitive subgroups. We first consider

the class of 9T28 using a D invariant from Theorem 8.1. After applying a Tschirnhausen

transformation we decide that the Galois group is contained in this class of subgroups which

themselves have 2 subgroups. Using a BlockQuotient invariant from Theorem 8.3 and a

transformation we decide that the Galois group is contained in 9T22 which has only one

class of transitive subgroups containing the cycle shapes computed when choosing the prime

t2 + t+ 1 from which we computed F218 [[z]] over which f splits. With the class of subgroups

9T17 we use a SqrtDisc invariant from Theorem 8.1 to decide that it does contain the

Galois group. Now there are 2 classes of subgroups to consider, both conjugate to 9T6 in

S9 and we attempt a descent with a generic invariant which fails, however the descent into

the other class also with a generic invariant succeeds. Next we attempt descents to 3 classes

of subgroups conjugate to 9T1 in S9 and after applying a Tschirnhausen transformation to

one of these we gain a descent. This group has no transitive subgroups so it must be the

Galois group of f over F .

This computation took 0.79s.

Example 16. In Tables 8.1 to 8.8 we summarise the subgroups and invariants used in the

descent of the computation of Galois groups of some polynomials mostly from Klüners and

Malle [KM] or polynomials defining subfields of the fields defined by these polynomials.

When there are 2 or more classes of subgroups which are conjugate in Sn and we use

the same invariant for 2 or more of these classes we do not list the subgroup class and

invariant twice consecutively but note the number of such conjugate classes for which we

attempt a descent in “No. classes attempted”. The entry in the “Successful” column means

that we were successful in a descent into one of these classes.

Note that it is possible that a descent will not be decided since another attempt after

a transformation may have become more expensive than attempting a descent for another

subgroup. A descent on a cheaper subgroup will first be attempted and if this fails or becomes
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more expensive we may return to continue to attempt a descent on a subgroup we had not

decided on, hence some subgroups may appear more than once in the list of “Subgroup

Class”.

F = F2(t) f = x10 + tx7 + (t2 + t)x5 + tx4 + tx3 + (t2 + 1)x2 + (t2 + t)x+ t

Prime : t2 + t+ 1 Splits over : F220 [[z]]

Subgroup Class No. classes Invariant Type Successful Time

attempted

10T43 - Subfields -

10T41 1 Factor Delta [Els14b] Yes

10T22 2 Theorem 8.3 ProdSum No

10T27 1 Theorem 8.3 F Yes

10T17 2 Theorem 8.3 BlockQuotient No

10T19 1 Theorem 8.3 BlockQuotient Yes 0.57s
Table 8.1

F = F2(t) f = x6 + x5 + x4 + x3 + (t2 + t+ 1)x2 + (t2 + t+ 1)x+ t2 + t+ 1

Prime : t3 + t2 + 1 Splits over : F29 [[z]]

Subgroup Class No. classes attempted Invariant Type Successful Time

6T11 - Subfields -

6T6 1 Theorem 8.1 D undecided

6T3 1 Theorem 8.3 ProdSum No

6T8 1 FactorDelta [Els14b] undecided

6T6 1 Theorem 8.1 D Yes

6T4 1 Theorem 8.1 SqrtDisc Yes 0.18s

Table 8.2. [Els13b]

8.10. Timings

The computations we give timings for in this section were run on an Intel(R) Core(TM)

i7-3770 CPU 3.4GHz (32GB RAM) using Magma V2.19-9.
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F = F2(t) f = x15 + t2x11 + x10 + tx8 + t4x7 + x5 + t6x3 + t4x2 + t5

Prime : t2 + t+ 1 Splits over : F210 [[z]]

Subgroup Class No. classes Invariant Type Successful Time

attempted

15T93 - Subfields -

15T87 1 Theorem 8.3 E No

15T83 1 Theorem 8.3 BlockQuotient Yes

15T70 1 Block Transfer [Els14b] Yes

15T52 1 Theorem 8.3 E No

15T62 1 Theorem 8.1 SqrtDisc Yes

15T42 1 Theorem 8.3 E No

15T10 2 Generic Yes 1.58s
Table 8.3

F = F22(t) f = x12 + x9 + x8 + x6 + x4 + x3 + x2 + x+ t+ 1

Prime : t3 + wt2 + w2t+ w,F22 = F2〈w〉 Splits over : F236 [[z]]

Subgroup Class No. classes attempted Invariant Type Successful Time

12T56 - Subfields -

12T7 2 Theorem 8.3 ProdSum undecided

12T6 2 Generic undecided

12T7 2 Theorem 8.3 ProdSum undecided

12T6 1 Generic undecided

12T7 2 Theorem 8.3 ProdSum undecided

12T6 1 Generic undecided

12T7 2 Theorem 8.3 ProdSum No

12T6 2 Generic Yes 0.82s
Table 8.4

In Table 8.9 are average times and minimum and maximum times where they differ

substantially, for the computations of Galois groups of 5 random monic additive polyno-

mials over Fp[t] of degree pd. We have used additive polynomials for these timings since

we know the result of the Galois group computation is not Sn.

The polynomials for which we can compute a Galois group in some reasonable time are

restricted by the Subfields algorithm which factors the polynomial over the field it defines,
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F = F29(t) f = x4 + 26x3 + (4t2 + 28)x2 + (6t2 + 17)x+ 4t4 + 13t2 + 16

Prime : t2 + 2 Splits over : F292 [[z]]

Subgroup Class No. classes attempted Invariant Type Successful Time

4T3 - Subfields -

4T1 1 Theorem 8.4 DSm No

4T2 1 Theorem 8.4 SqrtDisc No 0.14s
Table 8.5

F = F29(t) f = x12 + 4x10 + 4tx9 + 21x8 + tx7 + (15t2 + 13)x6 + 7tx5 + (13t2+

24)x4 + (26t3 + 2t)x3 + (11t2 + 21)x2 + (10t3 + 21t)x+ 4t2 + 10

Prime : t2 + 2 Splits over : F292 [[z]]

Subgroup Class No. classes Invariant Type Successful Time

attempted

12T292 - Subfields -

12T273 1 Theorem 8.4 s2 Yes

12T253 1 Theorem 8.3 BlockQuotient Yes

12T205 1 Theorem 8.3 BlockQuotient Yes

12T142 1 Theorem 8.3 ProdSum No

12T45 1 Theorem 8.3 ProdSum No

12T129 1 Generic Yes

12T59 1 Theorem 8.3 ProdSum No

12T85 1 Theorem 8.4 SqrtDisc No 0.46s
Table 8.6

unless it can be determined using the cycle information that the field has no subfields.

This is why we do not report a time for p = 11, d = 2 in Table 8.9.
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F = F29(t) f = x12 + 26tx8 + 13t2x6 + 20t2x4 + 27t3

Prime : t2 + 13t+ 21 Splits over : F298 [[z]]

Subgroup Class No. classes attempted Invariant Type Successful Time

12T227 - Subfields -

12T137 1 Theorem 8.3 BlockQuotient Yes

12T111 2 Generic undecided

12T110 1 Theorem 8.5 undecided

12T111 1 Generic undecided

12T110 2 Theorem 8.5 undecided

12T111 2 Generic No

12T110 2 Theorem 8.5 No, Yes 2.22s
Table 8.7

F = F29(t) f = x12 + 15x10 + 16x9 + 3x8 + 4x7 + (19t+ 9)x6 + (26t+ 9)x5+

(25t+ 7)x4 + 21tx3 + 20tx2 + 12tx+ 3t

Prime : t2 + 15t+ 9 Splits over : F296 [[z]]

Subgroup Class No. classes attempted Invariant Type Successful Time

12T136 - Subfields -

12T108 2 Theorem 8.3 F undecided, No

12T109 2 Theorem 8.3 F undecided, No

12T108 1 Theorem 8.3 F No

12T109 1 Theorem 8.3 F Yes 0.52s
Table 8.8

p = 2 p = 3

d 1 2 3 4 5 1 2 3

Average time 0.014s 0.008s 0.058s 0.47s 131.72s 0.016s 0.108s 6.936s

Min/Max time 33s/490s 2s/22s

p = 5 p = 7 p = 11 p = 29

d 1 2 1 2 1 2 1

Average time 0.032s 7.866s 1.762s 533.104s 0.662s - 57.360s

Min/Max time 2s/24s 350s/1210s 7s/122s
Table 8.9



Chapter 9

Galois Groups of Reducible Polynomials

9.1. An Algorithm for Reducible Polynomials

Since Galois groups describe relationships between the roots of a polynomial we can also

compute Galois groups of reducible polynomials in a similar way to those of irreducible

polynomials. Magma [CBFS10] has contained an implementation of an algorithm for

Galois groups of reducible polynomials over Q since V2.13. This has since been extended to

accept input of reducible polynomials over number fields (V2.17) and reducible polynomials

over global rational and algebraic function fields (V2.18).

The algorithm we give for Galois groups of reducible polynomials extends Algorithm 11

as we factorize the input polynomial and use the product of the Galois groups of the factors

as a group in which we know the Galois group of the product is contained. We need to

make sure the place chosen is good for all factors of the input polynomial and that we

compute a completion which contains all roots of all factors of the input. Note that since

the Galois group of a reducible polynomial is a subgroup of a direct product of permutation

groups it will be intransitive and each root will only be mapped by F -automorphisms to

other roots of the irreducible factor it is a root of.

Algorithm 12 (Compute the Galois Group of a reducible polynomial f).

Input:

• A polynomial f over a number field F (including Q) or global function field F

(rational or algebraic), whose factors are separable.

Output:

• The Galois group of f .

Steps:

1. Factorize f over F as
∏

i f
ei
i and compute the squarefree product f̃ =

∏
{i:deg(fi)>1} fi

of the non-linear factors (without multiplicities).

2. Choose a finite place P such that the image of f̃ is also squarefree over the residue

field at P .

131
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3. Compute the Galois group G1 of f1 using Algorithm 11.

4. Compute the splitting field Sf,P for f over the completion of F at P as an extension

of Sf1,P where Sf1,P is the splitting field for f1 over the completion of F at P used

in the computation of G1.

5. Compute the Galois groups Gi of the remaining non-linear fi using Algorithm 11

and roots of f in the splitting field Sf,P . The Galois group Gi will be S1 when fi is

linear.

6. Divide the factors fi into 2 groups – one containing those factors for which we can

easily check that the splitting field Sfi intersects with the splitting field of the product

of the other factors in F only and one containing the other factors. Compute the

direct product G = ⊕Gi for the factors fi in this second group.

7. Apply Algorithm 11 Step 5 to compute the Galois group G′ of the product of the

factors in the second group by descent from G.

8. Compute the direct product ⊕Gi ⊕G′ for the groups Gi corresponding to factors fi

in the first group in Step 6 and map this to a subgroup of the direct product of all

Gi which is the Galois group of f̃ , Gf̃ .

9. Handle multiple and linear factors by computing the image of Gf̃ under the embed-

ding

(5) Gf̃ → Gf̃

⊕
fi not linear

Gei−1
i

⊕
fi linear

Sei1

which maps a generator of Gf̃ to the product of its projections onto each addend,

to gain Gal(f). Return Gal(f).

9.2. Details of the Algorithm

Here we detail the steps of Algorithm 12 for Galois groups of reducible polynomials,

considering especially its implementation for polynomials over a function field of charac-

teristic p. We will attempt to describe the details as generally as possible and will note

when the details we give are specific to F being a global function field.

9.2.1. Choosing a Good Place (Algorithm 12, Step 2). Most of Section 8.1

holds when f is a reducible polynomial. However we cannot determine whether the Galois

group is Sn or An by looking at the cycle lengths. In fact the Galois group of a reducible

polynomial will not be Sn or An as the Galois group is not transitive because the polynomial

is not irreducible [DS00]. We choose our place with the smallest rPdP l
1.5
f,P > ni/4 for all

ni, where ni is the degree of fi and lf,P is the number of factors of f mod P , if such a place
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occurs in those we have considered otherwise a place we considered with largest rPdP l
1.5
f,P .

This makes the place as good as possible for the computation of the Galois groups of each

factor fi.

9.2.2. Computing Roots in the Splitting Field over the Completion (Algo-

rithm 12, Step 4). We compute the splitting field Sf1,P of f1 over the completion of F

at P using Section 8.2. We then extend this splitting field to include the roots of the other

fi. There is a map h1 : F → Sf1,P as described in Section 8.2 which we use to map f̃

from a polynomial over F to a polynomial over Sf1,P . The splitting field Sf,P for f is then

computed by factoring f over Sf1,P and extending the field until it includes all the roots of

f . The map h : F → Sf,P is then given as a composition h : F → Sf1,P ↪→ Sf,P , h = ι ◦ h1

where ι is the inclusion map ι : Sf1,P ↪→ Sf,P .

9.2.3. Check Disjointness of Splitting Fields (Algorithm 12, Steps 6 and 8).

If the splitting fields Sfi of the factors fi overlap with the splitting fields

S̄fi = S∏
j 6=i fj

of the products of the other factors only in F then the Galois group of the product will

be the direct product of the Galois groups of the factors, (as noted in the Restrictions at

beginning of [Sta73]). We therefore attempt to divide our factors into 2 groups – those

for which we can easily determine that Sfi does not overlap with S̄fi and those for which

we cannot easily determine this.

Since the orders of the Galois groups are the degrees of the splitting fields we first

check whether the orders of the Galois groups Gi of the fi are pairwise coprime. For those

Gi whose order is coprime to that of all others, the degrees of the splitting fields Sfi are

pairwise coprime, hence the degrees of Sfi and S̄fi are coprime so there can be no overlap

between the splitting fields Sfi and S̄fi outside of F and so the Galois group of the product

of the corresponding fi is the direct product of those Gi. For those factors fi whose Galois

group orders are not pairwise coprime we continue to check. Note that we can only use

the remainder of this check when we know something about the ramification of extensions

of F . This occurs when F is Q or a rational function field.

If F is Q we check whether the discriminants of the remaining fi are pairwise coprime.

If they are then the splitting fields Sfi must overlap with the S̄fi in an unramified extension,

of which Q has none non-trivial. Therefore the Galois group of the product of those fi

with coprime discriminants is the direct product of their Galois groups Gi (rather than a

subgroup of).
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If F is a rational function field then any constant field extension will be unramified

([Sti93] Theorem III.6.3) and any separable extension which does not extend the con-

stant field will be ramified ([Sti93] Corollary III.5.8). To obtain information from the

discriminants as when F = Q we also ensure that the intersection of Sfi and S̄fi does not

contain a constant field extension, that is, the intersection is ramified. We can easily check

whether the stem fields F [y]/fi contain a constant field extension. Let the degree of the

constant field extension in Sfi be ci. The constant field extension contained in S̄fi has de-

gree c̄i = lcm({cj}j 6=i). These two constant field extensions meet only in the coefficient ring

of F if gcd(ci, c̄i) = 1 which is the same as checking whether the ci are pairwise coprime.

We first check for pairwise coprime discriminants. For those factors fi whose Galois

groups Gi have order not coprime to some other group we collect those whose discriminants

are pairwise coprime to those of all other factors we are still checking, (the factors which

have non coprime discriminants we cannot determine non-overlap easily). For these factors

we check whether it is possible for there to be an unramified extension in the splitting

field. We first check whether the dimensions of the exact constant fields of the F [x]/fi are

pairwise coprime. For those factors for which this holds we compute normal subgroups

of the Gi and for those subgroups whose quotient is cyclic, we compute the fixed fields of

these subgroups and check whether the LCMs of the dimensions of the exact constant fields

of these fixed fields are pairwise coprime, these fixed fields contain the possible constant

field extensions. If we determine that the intersection of splitting fields Sfi and S̄fi does

not extend the constant field of F (that is, the intersection is a ramified extension of F )

and that the discriminant of fi is pairwise coprime to those of other factors still being

considered (the intersection is unramified) then the intersection must be a trivial extension

of F , that is F itself.

Now we have divided our factors into 2 groups. We take the direct product of the

Gi corresponding to the factors whose splitting fields Sfi may intersect in a non-trivial

extension of F with S̄fi and we compute a descent (Step 7) from this direct product only.

We take the direct product of the result of this descent with the direct product of those

Gi corresponding to the factors for which we could determine that the splitting fields Sfi
overlap with S̄fi in F only as the Galois group of the polynomial f̃ .

9.2.4. Invariants (Algorithm 12, Step 7). There is an invariant given in Theo-

rem 8.3 which may be able to be used when H ⊂ G are intransitive groups (independent

of characteristic), however we do not satisfy the additional conditions to use this invariant

directly during this descent. When all the orbits of H are invariant under G we compute
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the actions of G and H on the orbits of G. If this action is not the same for some orbit we

compute an invariant for these actions (dependent on characteristic) and evaluate this at

the appropriate Xi ([Els14b]). Otherwise we can map to the transitive representation of

G, independent of characteristic, for details see [FK14] Section 6.

9.2.5. Determination (Algorithm 12, Step 7). To determine whether a G-relative

H-invariant I satisfies Iτ (α1, . . . , αn̄) ∈ F for for groups H ⊂ G we use Section 8.8 but

we need to ensure that v0 is the minimum infinite valuation of all the scaled roots of f

not just the roots corresponding to any one factor of f . The computation of the precision

necessary is still

[G : H]B/ deg(P ), or max
Q∈P∞F

{deg(Q)}[G : H]B#P∞F / deg(P )

when F is a global function field (rational or algebraic respectively), where B is the bound

for the evaluation of the invariant I at all scaled roots of f . As in Section 8.8 we can

replace [G : H] when it is very large by some smaller value l and attempt an unproven

descent which can be proven later if it succeeds.

As noted in [FK14] Section 7.5, the final Galois group will be a subdirect product of

the Gi so only such subgroups need to be considered.

9.2.6. Multiple and Linear Factors (Algorithm 12, Step 9). In the process of

computing the Galois group one computes the roots of the polynomial in the splitting

field chosen. When the polynomial has linear factors or multiple roots such roots will not

have been “computed” in the computation of the Galois group, however they can easily

be accounted for. The Galois group is adjusted to ensure it acts on all the roots of f by

mapping it to a subgroup of the direct product (5) given in Algorithm 12 Step 9.

9.3. Examples

Example 17. Let F = F101(t), f = (x2 + x + 3t)5(x5 + 5t)(x7 + 7t)((x + 1)7 + 7t). The

first 2 factors of f have splitting fields Sfi which overlap with the splitting fields of the

products of the other factors, S̄fi, in F only. The last factor has a root in the splitting field

of the second last factor so the overlap of their splitting fields will be larger than F and a

descent will be required but not from the whole direct product of the 4 Galois groups of the

factors. We compute the Galois groups 2T1, 5T1, 7T4 and 7T4 of the factors of f using

prime t2 + 35t + 77 and field F1016 [[z]] over which f splits. The order of the Galois group

of the second factor is coprime to the orders of the other groups so 5T1 does not need to
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be included in the direct product to descend from. By checking discriminants we discover

the overlap in the splitting fields of the 3rd and 4th factors so their Galois groups will need

to be included in the direct product we descend from. We continue to check whether Sf1
overlaps with Sf3f4 outside of F . The discriminant of the first factor is coprime to those

of the third and fourth factors and the dimension of the exact constant field of F [x]/f1 is

coprime to the dimensions of the exact constant fields of F [x]/f3 and F [x]/f4. The Galois

group of the first factor has a cyclic subgroup and the order of that cyclic subgroup is not

coprime to the orders of the cyclic subgroups of the Galois groups of the third and fourth

factors so we compute the fixed fields of the quotients of the Galois groups of the first, third

and fourth factors by their normal subgroups where that quotient is cyclic. We compute the

exact constant fields of these fixed fields and check whether their dimensions are coprime

as well as the orders of the normal subgroups. Here we find that the dimension for the first

factor is coprime to that of the third and fourth factors, (the dimension for the first factor

is 1), hence the Galois group of the first factor does not need to be included in the direct

product we descend from.

So we descend from the direct product of the third and fourth factors. This direct product

of order 1764 has 9 subgroups, 3 of which are subdirect products of G3 and G4. We attempt

descents to 2 subgroups of index 3, order 588, using an invariant which is a more general

combination than Theorem 8.5, (see [FK14] following Lemma 5.8) and an invariant gained

by mapping to the transitive representation of the subgroup. We apply transformations for

both subgroups but none of these attempts succeed. We attempt a descent into a subgroup

of index 2, order 882, using a Factor Delta invariant from [Els14b] and this succeeds

immediately. This subgroup has 7 subgroups of which 2 are subdirect products of G3 and

G4. We again use an invariant from the transitive representation for this subgroup of order

294 and this descent succeeds after applying transformations. Now there are 6 subgroups

out of 10 which are subdirect products and we attempt descents to all 6 subgroups of order 42

using invariants from the transitive representation. After applying several transformations

to the invariants for 4 of these groups we have 4 failed descents but for one of the other

subgroups the descent succeeds after applying several transformations. This subgroup has

3 subgroups but since none of these are subdirect products of G3 and G4 the descent is

finished.

We take the direct product of the Galois groups of the first 2 factors and the result of the

descent as the Galois group of f which has order 420. We then map this permutation group
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acting on a set of cardinality 21 and map it onto a group acting on a set of cardinality 29,

also with order 420, to account for the multiplicity of the quadratic factor of f .

This computation took 1.41s on an Intel(R) Core(TM) i7-3770 CPU 3.4GHz (32GB

RAM) using Magma V2.19-10.

9.4. Timings

In Table 9.1 are average times for the computations of Galois groups of 5 products

of 2 random additive polynomials with the evaluation of one of these at x + 1. At least

two factors of each polynomial are of degree pd and the remaining factor is of degree pd−1

when d 6= 1. The factors were chosen with the intention that one factor (of degree pd−1)

would have splitting field disjoint from the splitting field of the product of the other two

factors which would have splitting fields which are not disjoint. Therefore the descent will

mostly be from the direct product of the Galois groups of the two degree pd factors. The

computations were run on an Intel(R) Core(TM) i7-3770 CPU 3.4GHz (32GB RAM) using

Magma V2.19-9.

p = 2 p = 3

d 1 2 3 4 1 2 3

Degree 6 10 20 40 9 21 63

Average time 0.082s 0.77s 87.796s 2175.798s 0.166s 82.782s 2203.21s

Min/Max time 2s/315s 224s/8670s 46s/156s 510s/5906s

p = 5 p = 7 p = 11

d 1 2 1 1

Degree 15 55 21 33

Average time 0.490s 48.4 hours 296.684s 2010.78s

Min/Max time 21.6 hours/116.3 hours 1208s/4009s
Table 9.1
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