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Glossary of Terms 

Actual Mean Vote (AMV) 

A subjects’ actual thermal sensation as expressed on the seven-point thermal 

sensation scale from ‘cold’ (-3) through ‘neutral’ (0) to ‘hot’ (+3). Throughout 

this thesis, AMV is also referred to as the ‘observed thermal sensation’. 

Actual Percentage Dissatisfied (APD) 

A person in comfort is taken to be one who is ‘slightly cool’ (-1), ‘neutral’ (0) or 

‘slightly warm’ (+1) on the seven-point thermal sensation scale (ASHRAE, 2010). 

APD is calculated as the proportion of AMV thermal sensation votes that fall 

outside this range of ‘comfortable’ votes divided by the total number of votes for 

that sample. 

Adaptive Model  

The adaptive model relates indoor design temperatures or acceptable 

temperature ranges to outdoor meteorological or climatological parameters (de 

Dear and Brager, 1998; ASHRAE, 2010). This model recognises the role of 

human adaptation in establishing thermal comfort, taking into account people’s 

thermal perception, behaviour and expectations, allowing for a wider range of 

acceptable temperatures in NV buildings. 

Comfort Temperature 

This is the operative temperature at which either the average person will be 

thermally neutral, or at which the largest proportion of a group of people, will be 

comfortable (ASHRAE, 2010). 

Neutral Temperature 

This is the operative temperature at which either the average person will vote ±0.5 

on seven point scale (hot, warm, slightly warm, neutral, slightly cool, cool and 

cold), or at which the largest proportion of a group of people, will be comfortable 

do not request any change in indoor environment (ASHRAE, 2010). 
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Commercial Building 

This term refers to a non-residential building that contains office spaces and 

primarily used for commercial use. 

Predicted Mean Vote and Predicted Percentage Dissatisfied (PMV-PPD) 
Model 

Also referred to as the ‘static’ model of comfort, the PMV-PPD model is based on 

the principles of the human heat-balance equation (Fanger, 1970). The model 

calculates thermal comfort as the relationship between four environmental 

variables: air temperature, radiant temperature, air velocity and relative humidity; 

and two physiological variables: clothing insulation (clo) and metabolic activity. 

Predicted Mean Vote (PMV) 

Predicted Mean Vote (PMV) is the average thermal sensation vote for a large 

group of subjects on the seven-point thermal sensation scale when exposed to a 

particular environment (Fanger, 1970; ASHRAE, 2010). 

Predicted Percentage Dissatisfied (PPD) 

Predicted Percentage Dissatisfied (PPD) is derived from PMV and is defined as an 

index describing the percentage of occupants that are dissatisfied with the given 

thermal conditions (Fanger, 1970; ASHRAE, 2010). 
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ABSTRACT 

This research presents the findings of a field study on the thermal comfort of 

occupants in a medium sized air-conditioned office building in Revesby (located in 

Sydney’s inner west and characterized by a subtropical climate). This study is 

developing a new approach to the indoor environment in office buildings which 

adopt the adaptive air-conditioning model in moderate, hot and humid, and cold 

climatic districts.  

A total sum of 30 subjects were involved in this longitudinal field experiment and 

produced more than 2386 sets of data for winter and summer. The collection of 

indoor climatic data by light and portable moving instrumentation complies fully 

with the accuracy requirements of ANSI/ASHRAE Standard-55 and ISO 7726. The 

questionnaire was based on the standard for thermal environment survey and was 

modified slightly to suit the research purpose. The study manually tuned the 

building's HVAC set point using the ASHRAE adaptive comfort standard 55-2010, 

based on a running seven-day mean outdoor temperature, but capping the set-

point band at 26oC and 18oC in summer and winter, respectively. By using the 

adaptive comfort algorithm for naturally ventilated buildings, a new model of 

thermal comfort in office buildings was developed called ‘adaptive air-conditioning’. 

The research confirmed that occupants of an air-conditioned building are capable 

of adapting to variable indoor temperatures like the occupants in naturally 

ventilated buildings, and the notion of ‘adaptive comfort HVAC’ is feasible. 

Although thermal comfort is covered extensively in this study, emphasis was also 

given to the consequential economical and ecological outcomes during the 
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operational phase of the office building in Sydney (the most energy demanding 

phase). 
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1 INTRODUCTION 

The building sector is responsible for 40% to 50% of total global energy 

consumption in the form of heat or electricity, as per the Building and Climate 

Change of the United Nations Environment Programme publication (UNEP, 2007). 

During the period of five year from 1999 to 2004, carbon dioxide emissions (CO2) 

from commercial buildings across all energy uses rose by 2.5% per year. 

Residential buildings rose by 1.7% over the same period (IPCC, 2007). The 

largest regional increases in CO2 emissions (including through the use of 

electricity) for commercial buildings were from developing Asia (30%), North 

America (29%) and OECD Pacific (18%). The largest regional increase in CO2 

emissions for residential buildings was from Developing Asia accounting for 42%, 

followed by the Middle East/North Africa with 19% (Metz, et al 2007). Nowadays, 

the largest part of energy consumption occurs throughout a building’s operational 

and maintenance phase: ventilation, heating, cooling and lighting purposes. This 

calls for building professionals to produce more energy efficient solutions for 

buildings and to retrofit existing stocks according to modern sustainability criteria. 

The existing criteria in the professional guideline must be adjusted to the different 

climate, economic and social conditions in order to bring existing high energy 

demands under control. 
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1.1 Problem 

As a reaction to global climate change and carbon gases emission, architects and 

engineers have introduced significant innovations in terms of sustainable building 

expansion in recent times. However, thermal comfort research has introduced 

more effective and efficient ways to reduce building energy consumption. Energy 

savings became a reality as a result of adopting the adaptive thermal comfort 

concept in naturally ventilated and hybrid air-conditioned buildings. Massive data 

has been collected worldwide to prove the application of adaptive thermal comfort.  

The raw data comprising the RP-884 database came from four continents and a 

broad spectrum of climatic zones. Nearly 21,000 sets of raw data were compiled 

from several locations (de Dear and Brager, 1998).   

Occupants are able to accept a wider range of temperatures, not only because of 

their psychological habituation, expectations and physiological acclimation, but 

also their behavioural adjustments (Brager, 1998). Accordingly, in summer 

occupants are able to accept temperatures close to outdoor conditions if they are 

allowed to adjust their clothing to suit the indoor temperature, or permitted more air 

movement to enable quicker heat transfer and sweat evaporation. 

Indeed, adaptive thermal comfort has been under scrutiny for the last three 

decades as a result of global climate change (Brager, 1998). In 2004, the 

American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE) adopted a new standard ASHRAE-55 (Thermal Environmental 

Conditions for Human Occupancy), also known as the European adaptive comfort 

standard (EN15251). ISSO 7730-2005 (ergonomics of the thermal environment), 



A d a p t i v e  T h e r m a l  C o m f o r t  i n  B u i l d i n g  E n v i r o n m e n t s  Page 21 of 156 

on the other hand, depends on the analytical determination and interpretation of 

thermal comfort using calculations of the PMV and PPD indices and local thermal 

comfort criteria, which also recognizes the significance of adaptation in thermal 

comfort. 

In the pattern of energy use in Australia (Al-Sayed and Al Ragom, 2005), heating 

and cooling account for between 50% to 60% of the average total energy 

consumption in commercial buildings. It is very important to reduce building energy 

consumption, which is both expensive and environmentally destructive. Energy 

reduction has greater value when it is measured against atmospheric pollution and 

carbon dioxide emissions. In 1999, buildings were responsible for 27% of all 

energy related to greenhouse gas emissions. By 2010, emissions from buildings 

will increase to 48% above the 1990 level (Hyde, 2008).  Currently, the 

international drive towards energy conservation has prompted many new research 

enquiries into thermal comfort. Much research is directed at the carbon gas 

emissions from existing and new office buildings and focused particularly on the 

indoor environment, which is considered the main factor in a building’s energy 

consumption. The air-conditioning industry recognizes that a one degree Celsius 

difference of the air-conditioning set point temperature is roughly equivalent to 

10% of the building’s energy. Experimental testing on a 10,555m2 commercial 

building showed that raising the thermostat temperature by 1°C during summer 

could achieve an energy saving of up to 15%. Short duration demand response 

trials on the building showed that the short-term demand could be reduced by 

between 20% and 45% (Ward and White, 2007). In other words, narrowing the 

difference between indoor and outdoor environmental conditions will reduce the 

heat transfer of a building’s envelope and minimize the air-conditioning systems 
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and their elements (ASHRAE, 2001). Indoor dry bulb temperature, relative 

humidity, mean radiant temperature and air movement are the climate variables 

that affect the human thermoregulatory system in addition to some other personal 

factors, mainly clothing insulation and metabolism rate. Note that clothing 

adjustment represents a more powerful adaptive response in the home than in the 

workplace. The human thermoregulatory is stimulated by changes in 

environmental conditions (de Dear, Brager, 1997). This stimulation could be 

disturbing and affect the productivity of the occupants so it is important to study 

thermal comfort experimentally and statistically. Thermal comfort measures are 

determined theoretically using empirical indices beside analytical indices in 

climatic chambers (ASHRAE, 1990). It is well known that PMV is the thermal 

comfort index that should support any statistical study. The adaptive model of 

thermal comfort established a new adaptive comfort standard (ACS) which allows 

the dynamic environmental conditions for human occupancy to communicate with 

outdoor ambient temperature (ASHRAE, 2004). This approach of thermal comfort 

enhances the feasibility of the bioclimatic design, as it widens the range of 

acceptable operative temperatures and humidity beyond the conventional static 

conditions (as defined by ASHRAE Standard-55). Together, these factors prompt 

some fundamental questions about thermal comfort design practices in Australian 

air-conditioned buildings.  

The office buildings have a significant potential for positive change; they could 

become more efficient in terms of thermal comfort, more sustainable and less 

environmentally manipulating. Therefore, it is important that decision-makers 

negotiate in regards to the indoor environment during the design phase. Why is 

Australia still designing buildings according to twentieth-century thermal comfort 
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standards and disregarding the environmental and financial implications?  Can 

Australian office building occupants accept adaptive comfort conditions like their 

counterparts in other parts of the world, such as Japan? (2005 CoolBiz press 

release). The two main adaptive comfort standards (ASHRAE 55-2010 and 

EN15251) were developed from data within naturally ventilated buildings, and so 

the scope of their application is limited to that type of building.  However, the 

adaptive concept has been extrapolated in some other countries to the air-

conditioned context (eg in Japan). Implicit in Japan’s ‘CoolBiz’ policy is the belief 

that thermal comfort in air-conditioning can be affected by outside weather and 

climatic conditions. Therefore, human adaptation is also relevant to air-conditioned 

buildings. This study addresses these simple research questions.  

1.2 Hypothesis 

This research investigated occupant satisfaction and comfort expectations, and 

examined the indoor air temperature set point range that produces 80% and 90% 

acceptability levels for occupants of an air-conditioned office building in Sydney. 

The argument between the sceptics and the environmental activists will never end, 

however, energy savings when using adaptive air-conditioning is undeniable. 

Nevertheless, the claimed thermal comfort that was promised in office buildings as 

a result of PMV values has never been achieved. As a new global culture takes 

shape that calls for the reduction of carbon gas emissions, developing the concept 

of adaptive thermal comfort in air-conditioned buildings is a critical innovative and 

the most effective approach in resolving energy consumption concerns. More 

research and investigation will guarantee the best thermal comfort under the new 
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indoor conditions which simulate outdoor conditions and the people adaptation 

power.  

The adaptive approach to thermal comfort for use in air-conditioned office 

buildings can be derived from the adaptive model of naturally ventilated buildings. 

The thermal comfort set point temperature within the comfort limits in air-

conditioned office buildings can be predicted, thereby offering an economic and 

environmentally-friendly solution. Comfort and energy savings can be achieved 

with minimal expense by implementing a new control tactic. A hybrid model, called 

the controlled adaptive model, can be formed between the PMV model and the 

adaptive model, which contain common comfort conditions. This new controlled 

adaptive model in air-conditioned buildings imitates the adaptive model in naturally 

ventilated buildings within a limited range of indoor temperatures. Importantly, this 

hybrid model will benefit the design of new office buildings. It will be important to 

use these simple and economic strategies in retrofitting existing air-conditioned 

office buildings.  

1.3 Objectives and Significance 

After much research, the major focus of this study is to maintain optimum thermal 

comfort inside buildings while simultaneously minimising building energy 

consumption. Reducing the temperature difference between the indoor HVAC set 

point temperature and the outdoor ambient temperature results in at least a 10% 

reduction in the cooling equipment, this will lead to a direct reduction in energy 

consumption. This direct energy saving method requires zero investment since 

adjusting the set point temperature requires only willing occupants. This field 

experiment aims to deliberately shift the HVAC set points towards the upper limits 
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of normal engineering practices in Australia through a case study building located 

in Sydney, near Bankstown Airport. HVAC designers in Sydney currently use a 

conservative 22 ±2oC as their indoor design target based on (AIRAH, 2003) and 

the Building Code of Australia (2010).  

The research plan aims to refine the adaptive comfort temperature of occupants in 

air-conditioned buildings, and widen the indoor temperature range from 180C in 

winter to 260C in summer using an adaptive comfort algorithm. Thermal comfort 

questionnaires modified from the standard ASHRAE thermal survey, indoor and 

outdoor physical measurements, interviews and observations were conducted 

during the field studies on air-conditioned building office occupants in the Sydney 

area. The measurements were made at desk level, in full compliance with 

ANSI/ASHRAE 55-1992, ANSI/ASHRAE 55a-1995, ISO 7726 and ISO 7730 

standards. A quantitative statistical analysis was undertaken to formulate the 

relationships between the participant’s thermal sensations, indoor thermal 

conditions (delivered by the air-conditioning system), and the outdoor seven day 

running mean temperature.  

The objectives of this study were as follows: 

1. Collect enough data on the thermal environments and subjective responses of 

participants in hot and humid suburban office buildings, and provide the best 

statistical comparison between the theoretical model using PMV and the 

adaptive model using AMV. 

2. Establish a database for Sydney’s summer and winter seasons, optimum 

thermal conditions acceptable for the majority of occupants. These findings are 

to be compared with the current ASHRAE Standard-55. 
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3. Investigate the influence of clothing and study the potential acclimatisation 

effects by inter-seasonal comparisons. 

4. Examine the practicality of the existing predictive thermal indices of PMV and 

PPD, as calculated by the WinComf algorithms (Fountain and Huizenga, 1996) 

based on participants’ subjective responses. 

The significance of this research in the long term is the potential to reduce 

greenhouse gas emissions from the commercial building sector, not only for newly 

built establishments but also existing building stock. This concept can be readily 

applied to retrofit any building with a programmable Building Management System 

(BMS). The occupants of office buildings are able to maintain thermal comfort and 

energy conservation when provided with the knowledge of making personal and 

environmental adjustments.  

1.4 Structure 

Furthermore, this research will support the process of change for a new practice in 

air-conditioning design culture and enrich the database of worldwide adaptive 

thermal comfort investigation. This will be achieved with new information about the 

feasibility of applying the adaptive model in air-conditioned buildings, which would 

help advance sustainable buildings by improving thermal comfort standards and 

implementing design strategies already introduced in many regions.  

This research consists of the following six chapters: 

 Chapter 1—Introduction. 

 Chapter 2—Literature Review: aims to provide an overview of the concepts of 

thermal comfort in buildings, discussing the difference between the theoretical 
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model and adaptive model used in the building sector and demonstrating the 

possible common new strategy that is set between these models. 

 Chapter 3—Method: explores how the field study took place and explains the 

sequence of work and process. It also lists all the components involved 

throughout the experiment, such as building location, envelope, air-conditioning 

system, occupants and measuring instruments. 

 Chapter 4—Results: presents the results and introduces a number of tables 

and graphs, such as the relationship between the PMV and AMV. 

 Chapter 5—Discussion: analyses the results in Chapter 4 and explores the 

potential of the new model which adopts adaptive air-conditioning strategies in 

office buildings under a revised guideline for thermal comfort. 

 Chapter 6—Conclusion: presents a set of recommendations and shows a 

linear relationship between indoor comfort temperatures and the running mean 

outdoor temperature, similar to that observed for naturally ventilated buildings 

that formed the basis of ASHRAE’s adaptive thermal comfort model. 
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CHAPTER 2 
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2 LITERATURE REVIEW 

2.1 Definition of Thermal Comfort 

Thermal comfort is “that condition of mind which expresses satisfaction with the 

thermal environment” as defined in ASHRAE’s (American Society of Heating 

Refrigerating and Air Conditioning Engineers) Standard Number-55 (ASHRAE, 

2004) and ISO-7730 (ISO, 1994). Additionally, ASHRAE states that thermal 

comfort inside buildings is achieved when indoor environmental conditions satisfy 

80% of office occupants, owing to the fact that it is practically impossible to please 

all the occupants even some of the time. Essentially, scholars differ in determining 

a general theory for thermal comfort because every individual has an exclusive 

comfort zone which varies from one person to another. Even though people live in 

the same environment and under the same conditions, they may alter their 

expectations and thereby their thermal sensation and satisfaction. However, many 

researchers agree that four environmental factors (temperature, thermal radiation, 

humidity and air speed) and two personal factors (activity and clothing) influence 

thermal sensation in humans (ASHRAE, 2004; ASHRAE, 2010; Fanger, 1970; 

Fanger, 1973). Culture, gender, thermal expectations and psychological 

dimensions of adaptation may also shape each person’s comfort zone. Therefore, 

thermal comfort is a thorny issue that becomes even more controversial when 

investigating thermal satisfaction in a group of people working in a common space, 

such as the occupants of an office building. A new thermal model was presented 

by de Dear (1994) and Humphreys (1995) to simplify the definition of thermal 

comfort, distinguishing its term from the complex formula of the body heat balance 

equation developed by Fanger in special climatic controlled chambers (1970). 
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Barger and de Dear (1998) developed a model that considered the three major 

aspects of adaptation: behavioural, physiological and psychological. Original 

findings of thermal comfort in the adaptive model stem from the direct responses 

of individuals, and were compiled from various field studies in office buildings 

located in four continents and under different climatic conditions. These include 

North America, the United Kingdom, Greece, Pakistan, Thailand, Indonesia and 

Australia (de Dear & Brager, 1998; Humphreys, Nicol & Raja, 2007). The 

experimental basis of the adaptive approach to thermal comfort is the field study 

(Humphreys, Nicol & Raja, 2007). Accordingly, this research undertakes the field 

study as a basic method to find thermal preferences; this, in turn, may simplify or 

add to the definition of thermal comfort in office buildings. 

A lot of related literature has defined the meaning of common terms in thermal 

comfort. These have been broadly debated and defined in ASHRAE-55 2010 

(ASHRAE, 2004) and ISO-7730 1995 (EN ISO, 1995), such as: 

1. Thermal comfort: condition of mind, which expresses satisfaction under certain 

thermal environments. 

2. Acceptable thermal environment: when at least 80% of the occupants would 

agree that the thermal environment is acceptable. 

3. Thermal sensation: a conscious feeling graded into seven categories: cold, 

cool, slightly cool, neutral, slightly warm, warm, and hot. 

2.2 Heat Balance Approach to Thermal Comfort (PMV) 

According to the concept of heat transfer, the heat balance between the internal 

body and the surrounding environment should be maintained to stabilise the 

internal resting body temperature at 36.8oC (ASHRAE, 2001). That means that the 
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total heat energy produced in the body is either stored to raise the core and skin 

temperature, or transferred to the surroundings through either the skin’s surface or 

respiration. This statement can be represented in the following equation known as 

the heat balance equation (ASHRAE, 2001): 

M – W = qsk + qres + S = (C + R + Esk) + (Cres + Eres) + (Ssk +Scr ) [Equation 1]  

Where: 

M = rate of metabolic heat production, W/m2 

W = rate of mechanical work accomplished, W/m2 

qsk = total rate of heat loss through the skin, W/m2 

qres = total rate of heat loss through respiration, W/m2 

C + R = sensible heat loss through the skin, W/m2 

Esk = total rate of evaporative heat loss through the skin, W/m2 

Cres = rate of convective heat loss through respiration, W/m2 

Eres = rate of evaporative heat loss through respiration, W/m2 

Ssk = rate of heat storage in skin compartment, W/m2 

Scr = rate of heat storage in core compartment, W/m2 

S = rate of heat storage in the body, W/m2 

The diagram in Figure 2.1 displays the heat flow in the heat balance equation for a 

body under steady state experimental conditions, where the blue and green 

colours represent the cooling process and the red colour represents the warming 

factor. 
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Figure 2.1 Diagram of the heat balance equation for the human body, according to [Equation 1]. 

Additionally, the diagram shows that heat dissipates in two major forms: 

1. Sensible heat transfer, which occurs by convection and radiation. The rate of 

this heat transfer depends on air temperature (ta) and relative air velocity (V) in 

the immediate surroundings for convection, and mean radiant temperature (tr) 

for radiation heat transfer. 

2. Latent heat transfer, which occurs by the evaporation of sweat and moisture 

from the skin, and the evaporation of moisture during respiration. The rate of 

evaporative heat loss to the surrounding environment depends on the water 

vapour pressure of the skin (Psk), water vapour pressure in ambient air, and 

the humidity ratio of inhaled (ambient) and exhaled air, also known as relative 

humidity (ASHRAE, 2001). 
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Therefore, six major parameters in the surrounding environment of the human 

body influence thermal sensation: air temperature (Ta), air moisture or relative 

humidity (RH), air velocity (v), radiant temperature (Tr), metabolic rate, and 

clothing (ASHRAE, 2010). Through these parameters, the thermal comfort zone of 

a person can be outlined. The effect of these parameters is magnified or 

minimised according to the climate, space and nature of work performed. 

2.2.1 Air temperature and Convective Heat Transfer 

Earlier researchers state that thermal comfort is strongly related to the thermal 

balance of the body, which is influenced by body temperature and environmental 

temperature (Fanger, 1970; McIntyre, 1980). Meanwhile, ambient air temperature 

surrounding a clothed person determines the convection heat flow (C) from the 

skin, through clothing and into the environment (ASHRAE, 2001). 

C = fcl hc ( tcl – ta ) [Equation 2]  

Where:  

fcl = clothing area factor Acl/AD, dimensionless 

ta = dry bulb (ambient) temperature  

hc = convective heat transfer coefficient, W/(m2·K) 

The convection heat transfer coefficient is the coefficient which correlates to air 

movement within a living space and caused by a human body (ASHRAE, 2001). 

This coefficient was estimated in many different equations by Colin and Houdas 

(1967), Gagge et al (Gagge, Nishi & Nevins, 1976; 1970), Mitchell and Seppanen 

et al (Mitchell, 1974; Seppanen, McNall, Munson & Sprague, 1972). The most 

acceptable figure of the convection heat transfer coefficient in a controlled indoor 
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environment was presented by Seppanen et al (Seppanen, McNall, Munson & 

Sprague, 1972) for a person standing in moving air with a velocity variance 

ranging from 0.15 m/s to 1.5 m/s, as follows: 

hc = 14.8V0.69 [Equation 3]  

Equation (3) (Seppanen, McNall, Munson & Sprague, 1972) shows the impact of 

air movement on the convection heat exchange. As the mean velocity (V) 

increases, the heat flow accelerates. The air velocity impact becomes negligible 

during the free convection process (Fanger, 1970). Where velocity is less than 

0.15 m/s, hc is estimated as equal to a constant value of around 4 W/(m2·K) 

(Seppanen, McNall, Munson & Sprague, 1972). 

Mitchell (1974) suggested 3.1 W/(m2·K) as a convection coefficient for a person 

standing in moving air with a velocity less than 0.2 m/s. In other words, this 

coefficient can be estimated in air-conditioned buildings within (3 ~ 4) W/(m2·K). 

2.2.2 Radiant Temperature (and Radiative Heat Transfer) 

Radiative (R) heat transfer from the outer surface of a clothed body can be 

expressed in terms of a radiant heat transfer coefficient and the difference 

between the mean temperature (tcl) of the outer surface of the body (AD) and the 

mean radiant temperature (ASHRAE, 2001): 

R = fcl hr ( tcl – tr ) [Equation 4]  

Where: 

fcl = clothing area factor Acl/AD, dimensionless  

AD = DuBois surface area, m2 (ASHRAE, 2001) 
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hr = linear radiative heat transfer coefficient, W/(m2·K) 

tr = radiant temperature oC 

2.2.3 Linear Radiative Heat Transfer Coefficient 

The value of the radiative heat transfer coefficient (hr) is directly proportional to the 

average temperature of clothing and mean radiant temperature cubed. However, 

for typical indoor temperatures relating to a sitting person of constant clothing area 

factor, equal to (0.7 ~ 0.73) (Fanger, 1967), the value of this coefficient will be 

considered nearly constant in typical indoor temperatures. 

Where (ε) represents the area weighted average emissivity for the clothing/body 

surface, the radiative heat transfer coefficient is expressed in this equation 

(ASHRAE, 2001): 

hr = 4.7ε [Equation 5]  

For most calculations of the inside of buildings, the value of 4.7 W/(m2·K) is 

adequate (ASHRAE, 2001). 

2.2.4 Mean Radiant Temperature 

Heat transfer through radiation takes place in the form of electromagnetic waves, 

mainly in the infrared range. The Stefan-Boltzmann Law determines that the 

radiation energy flow per area from a hot body to a cold body is proportional to the 

difference to the fourth power of the absolute temperature (ASHRAE, 2001): 

qc = ε σ (Th
4 – Tc

4)  [Equation 6]  
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Where: 

Th = hot body absolute temperature (K)  

Tc = cold surroundings absolute temperature (K) 

qc = heat transfer flow per unit area (W/m2) 

σ = 5.6703 10-8 (W/m2K4) - The Stefan-Boltzmann Constant 

ε = emissivity of the object (one for a black body) 

Mean radiant temperature is the constant temperature of a virtual enclosure in 

which the radiant heat transfer from the human body is equivalent to the radiant 

heat transfer in the actual non-uniform enclosure (ASHRAE, 2001). The 

combination of globe temperature, air temperature and air velocity allows the 

estimation of mean radiant temperature. Mean radiant temperature can be 

calculated from the plane radiant temperature as per the following equation 

(ASHRAE, 2001):  

Tmr
4 = T1

4Fp-1 + T1
4Fp-1 + …+ TN

4Fp-N [Equation 7]  

Tmr = mean radiant temperature, °R 

TN = surface temperature of surface N, °R 

Fp-N = angle factor between a person and surface N 

In the case of a slight temperature difference between the surrounding surface of a 

room and a person sitting in it, mean radiant temperature can be calculated from 

plane radiant temperature. The plane radiant temperature in six directions should 

be considered with the projected area factors of a person in the same six 

directions, as shown in the following equation (ASHRAE, 2001): 

tr = w÷ [2(0.18 + 0.22 + 0.30)] [Equation 8]  
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Where Tpr is the uniform temperature of an enclosure in which the incident radiant 

flux on one side of a small plane element is the same as that in the actual 

environment (ASHRAE, 2001). 

2.2.5 Operative Temperature 

As both (C) and (R) represent the total sensible convection and radiation heat 

exchange respectively, sensible heat loss from the skin through the clothing into 

the surrounding environment may be expressed as (ASHRAE, 2001): 

C + R = fcl hc ( tcl – ta ) + fcl hr ( tcl – tr ) = fcl h ( tcl – to ) [Equation 9]  

Where: 

hc = convective heat transfer coefficient, W/(m2·K) 

hr = linear radiative heat transfer coefficient, W/(m2·K) 

h = total sensible heat transfer coefficient, W/(m2·K) (ASHRAE, 2001) 

h = hc + hr  [Equation 10]  

to = operative temperature (the average of the mean radiant temperature 

and ambient air temperatures, weighted by their respective heat transfer 

coefficient), ºC (ASHRAE, 2001) 

to = (hr t r + hcta)/(hr+ hc) [Equation 11] 

 

In order to simplify Equation (11) and form Equations (5) and (3), the values of hr 

and hc are assumed to be equal for indoor temperatures: 

to = (t r + ta)/2 [Equation 12] 
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It is convenient to include the operative temperature in thermal calculations and 

use it as a reference temperature in which it represents sensible heat loss. 

2.2.6 Humidity (RH) 

Relative humidity was considered to have little influence on comfort level until 

Fanger (1970) entered it in the heat balance equation to predict human thermal 

satisfaction. Wargocki (1999) revealed that relative humidity is one of the main 

parameters in indoor quality. Likewise, the Guide to Best Practice Maintenance & 

Operation of HVAC Systems for Energy Efficiency in Australia suggested that for 

most office type applications, the relative humidity is between 35% and 60% for all 

comfort temperatures (COAG, Lecamswasam, Wilson & Chokolich, 2012). 

A brief review of the theoretical analysis of relative humidity categorises 

evaporative heat loss from the skin (Esk) and during respiration (Eres) as total latent 

heat loss (ASHRAE, 2001): 

QLatent = Eres + Esk [Equation 13]  

Latent respiratory heat loss is often expressed as (ASHRAE, 2001):  

Eres = 0.0173M(5.87 – Pa)  [Equation 14]  

Esk = w(Psk,s – Pa)/(Re,cl + 1/(LRhcfcl)) =  w(Psk,s – Pa)/Re,t [Equation 15]  

Where (Pa) water vapor pressure in ambient air is expressed in kPa and (ta) is in 

°C. 

w = skin wettedness, dimensionless 
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Psk,s = water vapor pressure on the skin, normally assumed to be that of 

saturated water vapor at (tsk) kPa 

LR is the Lewis Ratio and, at typical indoor conditions, equals 

approximately 16.5 K/kPa. The Lewis Ratio applies to surface convection 

coefficients. 

In contrast, RH is a function of Pa; as pa increases, RH increases based on the 

following equation of relative humidity (ASHRAE, 2001): 

%RH = 100. pa/ps [Equation 16]  

Where ps is the saturation pressure of the water at the temperature of the ambient. 

According to equations (13) and (14), RH determines the flow of latent heat QLatent, 

so as RH increases the evaporative heat decreases. 

The high percentage of relative humidity will therefore delay the process and 

cause discomfort. To avoid these negative effects, there should be a humidity limit 

set by standards such as (ASHRAE, 2001) for acceptable air temperature ranges 

for different indoor environments (Jing, Li, Tan & Liu, 2012). When relative 

humidity is more than 70%, people start experiencing discomfort after a certain 

period of time (Brown, 1997). However, Hensen (1990) made a remarkable 

finding; when operative temperature is inside or near the comfort zone, variations 

of relative humidity from 20% to 60% do not have an appreciable effect on the 

thermal comfort of sedentary or slightly active, normally clothed people. In other 

words, most recent research shows that people alter their humidity sensation in 

different air ambient temperatures; however, humidity variations remain negligible 
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for ambient temperatures equal or around 26oC (Figure 2.2) (Jing, Li, Tan & Liu, 

2012). 

 

Figure 2.2 Mean thermal sensation vote with different air temperatures and relative humidity (Jing, 

Li, Tan & Liu, 2012). 

Relative humidity may be considered to have minor consequences on thermal 

comfort in air-conditioned buildings where indoor temperature can be controlled 

within the comfort zone. 

2.2.7 Air Velocity (v) 

Based on the previously mentioned equations, the heat gain or heat loss flow rate 

from and to the body varies with air movement. As convection and evaporative 

heat transfer increase with higher air movement around the body, natural 
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ventilation in hot and humid climates with higher air speeds may be desirable to 

improve the subject’s thermal comfort (Humphreys, Nicol & Raja, 2007). 

No references have been found on the effect of air velocity, although many studies 

deal with the air turbulence effect on the sensation of a draught. Fanger concluded 

that air flow with high turbulence results in more complaints of a draught than air 

flow with low turbulence at the same mean velocity (Fanger, Melikov, Hanzawa & 

Ring, 1988). 

Mean air velocity over a time interval is used in many thermal comfort studies. The 

comfortable range of average air velocity varies from 0.1016 m/s to approximately 

0.3048 m/s. The acceptable air velocity varies depending on the activity level and 

indoor air temperature (Cândido, de Dear, Lamberts & Bittencourt, 2010). 

Air velocity in office buildings has been measured at lower than 0.2 m/s. For 

example, a field experiment in air-conditioned office buildings in Singapore found 

the mean air velocity of a high rise building at 0.11 m/s (de Dear, Leow & Foo, 

1991); similarly, in Sydney the mean air velocity in an open office building did not 

exceed 0.2 m/s (Brown, 2006). These low variations in velocity minimise the air 

movement influence on thermal comfort in air-conditioned buildings. Therefore, 

many studies have argued for the use of a new model of boosting fan to generate 

comfort zones in which elevated air speed offsets warm air temperature. New 

criteria for group local control are specified, making it possible to use air 

movement in open plan offices (Arens, Turner, Zhang & Paliaga, 2009). This new 

model confirmed the stratified effect of air velocity on thermal comfort in air-

conditioned buildings. 
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2.2.8 Clothing Clo-Value (clo) 

The impact of clothing alterations on thermal neutrality was examined directly by 

Humphreys and Nicol (Humphreys, Nicol & Raja, 2007). The findings showed that 

the office workers were thermally comfortable across a wide range of seasonal 

temperatures because of clothing adjustment capability (Humphreys, 1976; Nicol 

& Raja, 1996). Baker and Standeven also found a related result, where clothing 

was not typically used to improve comfort on an hourly basis, but was more 

strongly based on people’s expectations in the morning about what the external 

thermal conditions might be that day (Baker, et al., 1996). Similarly, the clothing 

adjustment was found to be functional as a personal thermal comfort motivator 

which was taken by the occupants as adaptive action (Fanger, 1970). In general, 

office buildings occupied by different groups of people (of both genders and 

wearing a variety of clothing) cannot have the same level of thermal sensation. 

Furthermore, it was observed that there is a relationship between clothing 

insulation and operative temperature (Mui & Chan, 2003) which presents clothing 

as a strong influence in all models of thermal comfort. Clothing adjustment will be 

explored further in subsequent chapters as it has a strong relationship to 

adaptation and thermal comfort. 

2.2.9 Metabolic Rate (M) 

Metabolic rate is defined in the ASHRAE standard as follows: “The rate of 

transformation of chemical energy into heat and mechanical work by metabolic 

activities within an organism, usually expressed in terms of unit area of the total 

body surface. In this standard, this rate is expressed in Met units” (Baker, et al., 

1996). 
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Metabolic unit (Met) is defined as the ratio of metabolic rate, the rate of energy 

consumption during a specific physical activity to a reference metabolic rate, or the 

amount of energy generated during the oxidisation process, set by convention to 

3.5 ml O2·kg−1·min−1 or equivalent (Brown, 1997): 

1 Met = 4.174 kJ/kg.h [Equation 17]  

For simplification, it is expressed as power liberation from the body over the body’s 

surface area: Met = 58 W/m2. 

 Much investigation has discussed the relationship between thermal sensation and 

comfort using the transient metabolic rate. The results show that even a short 

duration of low activity (1 min at 20% workload) affects the thermal perceptions 

and preferences of subjects. However, after about 15 minutes of constant activity, 

subjective thermal responses tend to approximate the steady state response, after 

both increases and decreases of activity (Wargocki, Wyon, Baik, Clausen & 

Fanger, 1999). Hence, survey data should be based on the physical activity of 

subjects within a thirty-minute window, as applied in the ASHRAE questionnaire. 

2.2.10 Predicted Mean Vote (PMV) and (PPD) 

Extensive studies and investigations have produced methods for predicting the 

degree of thermal discomfort of people in a static thermal environment. The most 

recognised and widely accepted methods are Fanger’s ‘Comfort Equation’ 

(Fanger, 1970): 

L = F(Pa,Ta,Tmrt,Tcl)  [Equation 18]  

Where core energy stored in the body is a function of the environmental 

conditions, of which temperature forms a part. 
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Based on this equation, a set of comfort diagrams was plotted through various 

combinations of two variables representing comfort (Fanger, 1973). Fanger found 

that human beings have different thermal sensations and a comfort equation 

cannot be generalised. In other words, optimal comfort cannot be determined for a 

group of people gathered in the same indoor environment. However, thermal 

comfort can be achieved when 95% of the subjects in the group are satisfied 

(Fanger, 1972). Two indices were used to simplify the comfort and dissatisfaction 

concepts known as the predicted mean vote (PMV) and the predicted percentage 

dissatisfaction (PPD) (Fanger, 1973). 

Fanger proposed the PMV equation to calculate the predicted mean vote for a 

group of occupants under the same climatic conditions. The PMV equation only 

applies to humans exposed for a long period of time to constant conditions at a 

constant metabolic rate. The equation relates all aspects of heat transfer from the 

body to the surrounding environment and vice versa. This operation takes place 

with a constant rate, referred to as steady state heat transformation (Fanger, 

1982). Therefore, the predicted mean vote value equation predicts the mean vote 

number, which determines the thermal condition in the space.  

The equation reflects the physiological and psychological responses of the human 

body to the excess or lack of heat transfer between the body’s core and the 

environment. Grouping the effects of the six physical parameters of PMV and PPD 

was used widely in standards for air-conditioned premises. It was based on 

healthy subjects, irrespective of sex, age, acclimatisation or adaptation. 

There are seven thermal conditions that determine the balance equation (19) 

(Fanger, 1972): 
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PMV = exp[met]*L [Equation 19]  

Where: 

L = f(Pa,Ta,Tmrt,Tcl) is the thermal load on the body    [Equation 20]   

L = H – Ed – Esw – Ere – R – C    [Equation 21]   

Where:  

H = the internal heat production in the human body 

Ed = the heat loss by water vapour diffusion through the skin 

Esw = the heat loss by evaporation of sweat from the surface of the skin 

Ere = the latent respiration heat loss  

L = the dry respiration heat loss 

K = the heat transfer from the skin to the outer surface of the clothed body 

(conduction through the clothing) 

R = the heat loss by radiation from the outer surface of the clothed body 

C = the heat loss by convection from the outer surface of the clothed body 

(ASHRAE, 1993). 

Then (Fanger, 1972): 

[Equation 22]  
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Where:   

M = metabolic rate (kcal/hr) 

ADu = DuBois Area (m2)  

η = mechanical efficiency 

Pa = vapour pressure in ambient air (mmHg) 

ta = indoor air temperature (°C) 

fcl = the ratio of the surface area of the clothed body to the surface area of 

the nude body 

tcl = mean temperature of the outer surface of the clothed body (°C) 

tmrt = mean radiant temperature (°C) 

hc = convective heat transfer coefficient (kcal/hr m2 °C) 

As shown, PMV is a complex mathematical expression involving activity, clothing 

and the four environmental parameters. PMV is scaled to predict thermal 

sensation votes on a seven point scale (hot, warm, slightly warm, neutral, slightly 

cool, cool and cold). The thermal sensation (PMV) can be easily calculated using 

software (WinComf created by ASHRAE).  
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Thermal conditions can be determined in seven integers, as follows: (3) hot, (2) 

warm, (1) slightly warm, (0) neutral, (–1) slightly cool, (–2) cool and (–3) cold 

(Figure 2.3). 

 

Figure 2.3 The seven integers of thermal sensation. 

Another index strongly correlated to the PMV is the PPD index (predicted 

percentage dissatisfied) (Figure 2.4), which expresses the percentage of people 

that are displeased with a thermal specific environmental condition. This index is 

estimated using equation (22) (Fanger, 1972).  

PPD = 100 − 95 ·exp[−(0.03353  PMV4 + 0.2179 · PMV2)] [Equation 23]  

WinComf is a software designed by ASHRAE which enables the easy calculation 

of thermal sensation (PMV) and the predicted percentage dissatisfaction (PPD), 

expressed as a percentage of dissatisfaction among the occupants of a building. 

Fanger suggests that individuals can be considered dissatisfied if they give a 

score of +2 or –2 to the thermal indoor climate (Figure 2.3). The curve in Figure 

2.4 shows the predicted percentage dissatisfied (PPD) as a function of the 

predicted mean vote (PMV). 
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Figure 2.4 Predicted percentage dissatisfied (PPD) as a function of predicted mean vote (PMV). 

The above equation (23) reflects the physiological and psychological responses of 

the human body to the excess or lack of heat flow between the body’s core and 

the environment. However, these responses disregard behavioural factors of 

adaptation and the unstable state of environmental conditions. In the adaptive 

model, the deviation of the preferred ambient temperature for an indoor 

environment includes a wider range than the standard deviation of 1.2oC that was 

found by using 64 subjects (Fanger & Langkilde, 1975). 

2.3 Adaptive Thermal Comfort 

The behavioural adaptation of people can be discerned in personal, technical, 

environmental, cultural and organisational adaptation, which alters thermal 

acceptability (van der Linden, Boerstra, Raue, Kurvers & de Dear, 2006). These 

behavioural reactions caused by thermal discomfort define the adaptive model, 
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which was originally observed in naturally ventilated buildings. In the adaptation 

model, the indoor temperature (identified as the thermal comfort temperature) is 

related to the outdoor temperature and determined as a straight line equation 

(ASHRAE, 2004). 

The predicted temperature between neutral temperature and mean outdoor 

temperature is as follows (de Dear & Brager, 2002):  

Tc = a.Trm + b [Equation 24]  

Tc = comfortable temperature  

Trm = the seven day running mean outdoor temperature, measured in oC        

 (de Dear, 2006) 

Trm = 0.34.T-1 + 0.23.T-2 + 0.16.T-3 + 0.11.T-4 + 0.08.T-5 + 0.05.T-6 + 0.03.T-7[Equation 25]  

Where: 

T-1, -2, -3, -4, -5, -6, -7 = the mean outdoor temperature in oC, (-1, -2, -3, -4, -5, -6, -7) 

refers to yesterday, 2 days ago, 3 days ago, etc. 

The latest form of the above equation that predicts the optimum comfort 

temperature in naturally ventilated buildings is as follows (ASHRAE, 2010):  

Tc = 0.31 T rm + 17.8  [Equation 26]  

Extensive field research has demonstrated people’s acceptance of adaptive 

comfort, represented by the graph below (Figure 2.5) with acceptability limits 

between 80% and 90% (de Dear & Brager, 2002). This figure is based on the 

adaptive model of thermal comfort derived from a global database of 21,000 
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measurements, mostly in office buildings using natural ventilation (ASHRAE, 

2004).  

 

Figure 2.5 Acceptable operative temperature ranges for naturally conditioned spaces. Adaptive 

comfort standard (ACS) for ASHRAE Standard-55, applicable for naturally ventilated buildings 

(ASHRAE, 2010). 

This linear regression model was primarily constructed for buildings with openable 

windows and ceiling fans within small offices, not for sealed buildings with an open 

floor and central air-conditioning (de Dear & Brager, 2002). In addition to Fanger et 

al (2002), other research confirms the existence of thermal adaptation in air-

conditioned buildings within certain limits (Mui & Chan, 2003). Therefore, the same 

kind of relationship is potentially applicable to air-conditioned buildings because 

most occupants accept the thermal comfort environment with the integration of the 

adaptive comfort temperature (ACT) model (Mui & Chan, 2003). 
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2.3.1 Naturally Ventilated Building Comfort Standards (Adaptive) 

One of the main causes of thermal discomfort is building structure and services. 

Buildings are classified based on their healthy indoor conditions and thermal 

comfort with respect to energy and the cost of construction. When office buildings 

are classified based on their indoor environment, they are usually categorised as 

follows (ASHRAE, 1993): 

a) Naturally ventilated buildings: depend on building structure, material, outdoor 

wind and solar energy to adjust the indoor environment. 

b) Air-conditioned buildings: use mechanical ventilation and refrigeration 

equipment to condition the indoor environment. 

c) Hybrid (mixed-mode) buildings: use both methods (natural and air-conditioned) 

to regulate the indoor environment. This type reduces energy consumption. 

Much research investigates occupant opinion of buildings in order to explore the 

optimal thermal conditions. Recent research has developed hypotheses that relate 

to the occupants themselves and their attitude towards green buildings (Deuble & 

de Dear, 2012). Green buildings are considered to have greater thermal variation 

(based on naturally ventilated and mixed-mode buildings) than those using central 

air-conditioning. Green building users are more forgiving of their building, 

consistent with the hypothesis that green buildings need green occupants 

(ASHRAE, 1993). This increases the influence of the F2 factor (Figure 2.6) and 

improves the psychological response of the occupants; supporting the adaptive 

model strategy in these buildings. As green occupants have been proven to exist, 

the perception of adaptation is applicable in these buildings and could extend to 

air-conditioned buildings. While buildings take years to build and potentially 
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months to retrofit, the path to altering people’s expectations of the built 

environment presents the easiest option (Wargocki, Wyon, Baik, Clausen & 

Fanger, 1999). This suggests the efficacy of an adaptive conditioning strategy in 

air-conditioned buildings, especially with the growing suspicion of energy sources 

and weather changes in the future. 

2.3.2 Testing of Fanger in the Field (failure of parameter PMV model) 

The diagram in Figure 2.6 shows the link between the thermal balance model and 

thermal adaptation model. It is clear that the thermal balance model is part of the 

adaptive comfort model.  

 

Figure 2.6 Diagram shows the link between the thermal balance and thermal adaptation models 

(ASHRAE, 2004; ASHRAE, 2010; Brager & de Dear, 1998). 

In Figure 2.6, Brager and de Dear’s model (represented in F1 and F2 feedback 

responses) suggests that behaviour adjustment and experience are the major 

factors for physiological and psychological adaptation (de Dear & Brager, 2002). 

However, in Goto, Fanger and Toftum’s model, which is represented in F2 only, 

the experience factor is the key to adaption (Goto, Toftum, de Dear & Fanger, 
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2006). The adaptive model appears to include all action and reaction sequences in 

order to achieve the desired acceptability by having an impact on the behavioural, 

physical and psychological adjustments. 

2.4 Adaptive Comfort Solution in Air-conditioned Premises 

The thermal adaptive model relies on field studies as a necessary source of data, 

where people can be observed in real environments. Researchers have cited 

participant response differences between field studies and climatic chamber 

experiments as proof of the effectiveness of the adaptive model. 

Humphreys (1976) first systematically collected thermal comfort data from field 

studies as evidence of adaptive comfort. His studies were based on standard 

readings for indoor temperature and humidity at one height, which was 

categorised as Class III and considered insufficient to verify the thermal adaptive 

model. 

In 1998, de Dear and Brager led a wide systematic data collection in the ASHRAE 

RP-884 project, covering Class II and I studies (which included all the 

environmental and essential individual variables required as input to the heat 

balance models). The information was published as an open to the public 

database, with a sample scale of nearly 21,000. 
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Figure 2.7 The adaptive air-conditioning model is a mix of heat balance equation (PMV) and 

adaptive model (ACS). 

The adaptive approach to thermal comfort for use in air-conditioned office 

buildings can be derived from the adaptive model of naturally ventilated buildings. 

Predicting a thermal comfort set point temperature within comfort limits in air-

conditioned office buildings will be an easy solution for economic and ecological 

difficulties. Both increased comfort and energy savings can be provided at the 

small expense of implementing a control strategy (Egan, 2010). A hybrid model 

has been formed between the PMV model and the adaptive model, and it contains 

common comfort conditions. This new controlled adaptive model contains the 

overlapping area plus characteristics of each model (Figure 3.7). Importantly, it will 

benefit the design of new office buildings, and provide simple and economic 

strategies in guiding the retrofitting of existing air-conditioned office buildings. 
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2.5 Summary 

Researchers brought during the last years enormous studies related to thermal 

comfort in order to develop under the context of sustainable and green buildings 

as a reaction to global climate change and carbon gases emission. The adaptive 

thermal comfort concept in naturally ventilated and hybrid air conditioned buildings 

enhances the model of energy saving hence adaptive thermal comfort for an air-

conditioned buildings has set under examination for the last three decades. As a 

part of knowledge expansion, a new controlled adaptive model will assist in 

improving a different design in office buildings, and offer valuable opportunity in 

guiding the retrofitting of sustainable and economic air-conditioned office buildings. 
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CHAPTER 3 
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3 RESEARCH METHODOLOGY 

3.1 Introduction 

The climate chamber methodology is considered the ideal technique for thermal 

comfort experiments, as it permits an independent environmental variable to be 

manipulated directly while isolating the dependent variables of thermal comfort 

from extraneous influences (Feriadi, 2004). However, field study in thermal 

comfort presents stronger external validity than laboratory experiments. The 

validity of field studies is easier to defend for many reasons; for example, the large 

number of subjects, such as the RP-884 database which contains approximately 

21,000 sets of raw data from 160 different office buildings located on four 

continents (de Dear & Brager, 2002). Therefore, a hybrid research design that 

combines both approaches may enhance the value of collected data by using 

typical buildings as field study while controlling the indoor environment in the same 

way as a climate chamber. 

This research adopts the longitudinal method in data collection, studying a certain 

number of subjects over many visits. Therefore, the repetition of the observations 

from an individual correlates and validates the results under constant conditions. 

However, the cross-sectional method depends on data collected from various 

individuals.    

The method includes: 
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 Instrumental measurements: Collected from different locations within the office 

and a nearby weather station to characterise the conditions relating to the 

external building microclimate environment and indoor thermal comfort. 

 Structured survey: Simultaneously carried out during the field measurement 

study in order to investigate people’s actual thermal sensations, behavioural 

actions and perception of the thermal environment. 

 Analysis: Covers a qualitative and quantitative analysis of these observations 

and readings by pairing the subjective questionnaires with their corresponding 

and concurrent indoor and outdoor climatic observations. 

Figure 3.1 shows the general structure of the research method. After considering 

the scope of works and the research aims, a field study combined with active 

intervention in controlling the indoor environment was adopted in this research. 

 

Figure 3.1 Overview diagram of the research method. 
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3.2 HVAC Design Strategies in Sydney 

In Sydney, engineering best practice specifies 22 ±1°C to be a comfortable 

temperature for general office work (AIRAH) when wearing winter seasonal 

clothes. Over short periods of time, occupants can accept a few degrees outside 

the comfort range without any clothing adjustment, but this may affect 

performance. As it is commonly believed that office workers are increasingly 

unproductive as the indoor conditions become uncomfortable, the Commonwealth 

strives to provide conditions that sustain a high level of performance in offices. As 

per the technical manual IEQ-7 Thermal Comfort for the City of Sydney, a 

temperature range between 21oC and 24oC must be achieved in air-conditioned 

spaces during standard hours of occupancy and under typical clothing, metabolic 

rate and air velocity for 98% of the year. 

According to the ASHRAE-55 standard (ASHRAE, 2004; ASHRAE, 2005), thermal 

acceptability can be achieved in an air-conditioned building by maintaining the 

PMV between +1 and –1. In naturally ventilated buildings, however, this can be 

achieved by applying the adaptive model where windows represent the primary 

means of thermoregulation. The adaptive model provides a wider indoor 

temperature range of acceptability which lessens the difference between indoor 

and outdoor temperatures. However, in the Australian commercial building sector, 

both PMV/PPD and adaptive comfort guidelines are largely ignored; buildings are 

generally regulated with a HVAC set point at about 22oC throughout all seasons. 

The Green Building Council of Australia (GBCA, 2012) encourages HVAC 

designers to improve thermal comfort inside office buildings by scoring one point if 

the designer achieves an average calculated PMV between +1 and –1. However, 

the adaptive model has been ignored by Australian engineers. This prompts the 
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question: Why do Australian buildings disregard the environmental and financial 

implications of adaptive thermal comfort standards? 

3.2.1 Selection of Climatic Conditions 

Sydney enjoys a moderate climate with a mild winter and many sunny days 

throughout the year. The average minimum temperature in winter (from June to 

August) is around 9ºC. The summer season extends from December through to 

February and is described as hot weather with an average maximum temperature 

of 28ºC (Figure 3.2). 

 

Figure 3.2 Variation of a 7 day running mean outdoor temperature (Trm) with Sydney’s average 

temperature range from July 2009 to February 2011. (Source: Bureau of Meteorology, Australia) 
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Figure 3.3 Daily average temperature range from July 2009 to March 2011. (Source: Bureau of 

Meteorology, Australia) 

The Bankstown Airport weather station belongs to Climatic Zone 5 which is a 

seasonal subtropical humid climate. Sydney's highest recorded temperature is 

45.3ºC. Its lowest recorded temperature is 2.1ºC. Revesby, a suburb in the 

Bankstown local government area, is located 22 kilometres south-west of 

Sydney’s CBD in New South Wales. It forms part of the south-western Sydney 

region. Revesby’s climate is similar to Sydney’s climate; its office buildings are 

also comparable to those in Sydney’s CBD, with most commercial buildings 

equipped with air-conditioning systems. 
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Figure 3.4 Revesby located on a New South Wales Climate Zones map. (Source: ABCB, 2009) 

3.2.2 Air-conditioning Equipment and Control 

Split ducted systems are very common in Sydney offices, especially in medium 

sized buildings. This type of system circulates a refrigerant fluid between two 

separate parts that are connected by insulated copper pipes (Figure 3.5). The 

cheapest and most common split ducted units provide cooling or heating only; 

while those that are more expensive operate on an economy cycle. The fan in an 

economic unit may work without operating the compressors (outdoor units). In 

other words, the indoor unit will perform simply as a fan and will not change the 

conditions of the outdoor air. This definitely cannot be considered a natural 

ventilation process even though it has very similar aspects; it saves energy when 

instantaneous mean outdoor temperatures match the set point inside the building. 
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Figure 3.5 Split ducted system in an office building. (Source: Temperzone Air Conditioning, 2013) 

One of the key characteristics of a split system is the ability to control the 

temperature and adjust the set point accurately by a control pad for each individual 

indoor unit. In the experiment, the indoor set point temperature was controlled 

manually through a wall mounted touch pad installed on each level for each unit. 

Both indoor units were designed and sized to maintain an indoor office 

temperature of 22 ±2oC, as per Australian Standard requirements stated in AIRAH 

(2007a) and engineering best practice. In this study, the building indoor set point 

temperature was derived daily from the adaptive model comfort temperature 

equation. According to the adaptive model for naturally ventilated buildings in 

Standard 55 (ASHRAE, 2010), the comfort temperature (Tc) is determined by the 

following equation: 

8.1731.0 rmc TT  [Equation 27] 

The ability to control the indoor environment in an air-conditioned building enables 

the capping of the proposed comfort set point temperature (Tc) between the lower 

and upper temperatures, 18oC and 26oC respectively. The facility management 
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and the occupants agreed to consider these limits as minimum and maximum 

acceptable temperatures in the office environment and sufficient for the research 

objectives.  

The equation for comfort, limited in a range derived from the original, is: 

o

o

rmc TT
18

26

8.1731.0       [Equation 28] 

Therefore, the proposed comfort temperature (Tc) is calculated from the running 

mean outdoor temperature (Trm) which can be determined from data collected by 

the nearest weather station. In the diagram (Figure 3.6), the prospective comfort 

temperature was then entered into the control pad as a desired set point 

temperature to maintain thermal comfort in each level of the building. In this case, 

the indoor temperature can be monitored by a desktop sensor box within the 

occupied zone and the HVAC control pad mounted on the wall. 
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Figure 3.6 Schematic of the control strategy for a comfortable indoor temperature. 

3.3 Sample Selection and Preparation 

The research design was primarily a field study. Participants were selected 

randomly from a typical office building. They included men and women from a 

range of age groups and cultural backgrounds. 

3.3.1 Selection of a Conventionally Air-conditioned Building 

The selected building is located in the Sydney urban region, approximately 19km 

from the sea (33°924’ S, 151°039’ E) and 2km away from Bankstown Airport 

where the weather station data was collected (Figure 3.7). The office complex was 
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built in 2004 and comprises 10 double-storey offices. The buildings in this complex 

are typical of suburban office buildings and categorized as Class 5 buildings by the 

Building Code of Australia (ABCB: Australian Building Codes Board, 2009). 

The building comprises a warehouse and two levels of offices, however, the study 

was limited to the office spaces. The building envelope structure is made of 

prefabricated concrete walls and metal deck roofing. Additional insulation to the 

roof and walls were added to reduce energy consumption in the heating and 

cooling processes. These types of office buildings are fitted with air-conditioning 

systems designed to suit the number of people and the type of work performed in 

the building. In response to the growing demand for energy conservation, Section 

J5.2 of the BCA (Building Code of Australia, ABCB, 2009) specifies the use of an 

outdoor air economy cycle where the air-conditioning system provides the required 

mechanical ventilation. Economy cycles are possible in most applications, except 

those that require humidity control; for example, laboratories, paper stores, frozen 

food sections in supermarkets, etc. 
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Figure 3.7 The location of the office building in relation to the nearby weather station at Bankstown 

Airport point A, (Source: Google Maps, 2013) 

 

Figure 3.8 The case study building façade facing north. 

The economy cycle integrated well with the adaptive comfort strategy; the outdoor 

air was mechanically drawn into the building and had the same temperature and 

humidity characteristics as a naturally ventilated building. Two system types are 
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typically used in suburban office buildings: the split ducted system and the roof 

package system, both of which are equipped with an economy cycle system. 

3.3.2 Building Zoning and Description 

The main façade faces north-west and is single glazed with tinted glass, shaded 

internally by vertical blinds (Figure 3.8). The office area is 440 square metres and 

occupied by 30 employees. An air cooled split ducted air-conditioning unit of 40kW 

cooling capacity was used to heat and cool the offices on each level (Figure 3.9). 

The air handling units were located in the ceiling space, supplying conditioned air 

to the rooms via insulated ducts connected to ceiling mounted diffusers. The 

indoor set point temperature was controlled manually by a single wall mounted 

touch pad on each office level. 
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Figure 3.9 Office building plan and office building location on the map. (Source: Google Maps, 

2013) 

The AHU was sized to maintain an indoor office temperature of 22 ±2oC. The 

building is surrounded by other buildings of the same height so external shading 

was not a major factor. Since the building was glazed on one side, two zones that 

needed to be considered were the west perimeter zone and the internal zone. The 

air-conditioning system was controlled by two wall mounted sensors. 

 

 

 

 



A d a p t i v e  T h e r m a l  C o m f o r t  i n  B u i l d i n g  E n v i r o n m e n t s   Page 70 of 156 

 

Table 3-1 Building Design Criteria  

Building Ground Floor Level 1 

Department Installers and technicians.  Engineering, Accounting, 

Marketing, Drafting and 

Management. 

External Design 
Conditions 

  

External Ambient 
Conditions for Air-
conditioning Plant Full 
Load Performance 

Summer 36oC DB, 24oC
 

WB.  

Winter 5oC. 

Summer 36oC DB, 24oC
 

WB.  

Winter 5oC.  

Internal Design 
Conditions 

  

Internal Temperature 
Design 

Summer and winter: 22 

±2oC. 

Relative humidity: 60 

±20%. 

Summer and winter: 22 

±2oC.  

Relative humidity: 60 

±20%. 

Infiltration 1 ACH (air change per 

hour) when HVAC is on. 

0.25 ACH (air change per 

hour) when HVAC is on. 

Internal Heat Gain 82 W/person sensible 

(estimated). 

80 W/person latent 

(estimated). 

Lighting including ballast 

11 W/m2 (max). 

82 W/person sensible 

(estimated). 

80 W/person latent 

(estimated). 

Lighting including ballast 

11 W/m2 (max). 
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Table 3-1 Building Design Criteria  

Building Ground Floor Level 1 

Equipment machine load: 

6 W/m2 (max). 

Equipment machine load: 

6 W/m2 (max). 

Outside Air 7.5  l/s/person minimum. 7.5  l/s/person minimum. 

Operation Time 10 hours, 6 days a week. 10 hours, 6 days a week. 

 

3.3.3 Demographic Information 

Participants were requested to complete comfort questionnaires distributed every 

morning for one year. The group of participants comprised 30 people from various 

locations within the building, however, not all of them participated for the full term 

of the research. Twenty-three subjects formed the continuous research group; six 

women and ten men in their mid-thirties, and seven young men under the age of 

thirty. The remaining seven employees comprised the non-continuous participants 

in the study, as shown in Table 3.2. 
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Table 3-2 Basic Demographic Information of Participants 

Departments Installers and 
Technicians  

Engineering, 
Accounting, Marketing, 
Drafting and 
Management 

Occupancy   

Office Bases 
(continuous presence in 
the office) 

Males: 4 (13.4%) 

 

Males: 13 (43.4%) 

 

Females: 0 (0%) 

 

Females: 6 (20%) 

Site Bases (not in the 
office full-time) 

Males: 4 (13.4%) 

 

Males: 1 (3%) 

 

Females: 0 (0%) Females: 2 (6%) 

The office spaces were equipped with unobtrusive sensors to record data such as 

temperature, humidity and air speed throughout the month. These instruments did 

not interfere with the daily activities of the participants. This data was matched 

against both questionnaire responses and simultaneous outdoor weather 

observations. A simple single page questionnaire was designed to record 

occupants’ thermal comfort within the office area. The questionnaire was designed 

to be completed within one minute. All participants agreed to participate and 

complete the questionnaire at least three times a day.  
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Each participant in the sample received a Personal Identification Number (PIN) to 

allow researchers to collect questionnaires from the same person on multiple 

visits. A list of the PINs and the names facilitated follow-up visits, but were 

disposed of at the end of the study. Any information or personal details gathered 

during the course of the study were kept confidential, and no individual will be 

identified in any publication of the results. Only the researchers had access to the 

data. Participants were informed that they were free to withdraw from the study at 

any time, without any penalties or questions asked. A brief summary of the 

project’s findings was distributed to all participants by email upon completion of the 

study. 

3.4 Data Collection  

This section outlines the data collection methods and techniques used during the 

research. The instruments and thermal comfort questionnaire formed the main 

source of indoor data, however, outdoor weather observations were also collected 

from the data weather station at Bankstown Airport.    

3.4.1 Instruments  

A customized ‘comfort package’ was used to measure the ambient comfort 

variables within the occupied zone. The package (Figure 3.10) is portable and 

provides climatic readings every 5 minutes at the participant’s desk level, 

considered the middle of the occupied zone. Our comfort box (Figure 3.10a) could 

be easily moved and offered a quick reading for the space near the participant at 

desk level. The desktop comfort box recorded air temperature, globe temperature, 

relative humidity and air velocity at 5 minute intervals throughout the study. 

Measurements were collected throughout the study by dataloggers located 
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randomly within each building and the desktop comfort logger located between the 

subjects under observation. The purpose of having many dataloggers was to 

capture any serious variation of indoor temperature inside the office. The desktop 

logger recorded air temperatures, globe temperatures and relative humidity at 5 

minute intervals near the larger group of people under observation. The average 

air velocity was found to be identical in the office area, reading less or equal to 0.15 

m/s when tested by the desktop datalogger at different workstations. 

Figure 3.10 (a) Desktop Comfort Instrument, (b) Air Velocity Sensor T-DCI-F900-L-O (Source: 

Alpha Omega Electronics website), (c) ‘HOBO’ U12-013 Temperature and Relative Humidity 

Datalogger and (d) ‘HOBO’ U12-013 Temperature and Relative Humidity Datalogger with 40mm 

sphere painted matte black attached to TMC1-HD Water/Soil Temperature Sensor are used to 

measure the physical indoor environment. 
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Table 3-3 Specifications of  Indoor Climatic Instrument 

Figure 
Reference 

 Figures 3.10 
(a) & (b) 

Figure 3.10 (c) Figure 3.10 (d) 

Instrument Datalogger ‘HOBO’ U12-
013 
Temperature 
and 
Relative 
Humidity 
Datalogger 

‘HOBO’ U12-
013 
Temperature 
and 
Relative 
Humidity 
Datalogger 

‘HOBO’ U12-
013 
Temperature 
and 
Relative 
Humidity 
Datalogger 

 Attached  a) 40mm 
sphere painted 
matte black (ε = 
0.99) 
attached to 
TMC1-HD 
Water/Air 
Temperature 
Sensor 
b) T-DCI-F900-
L-O Air Velocity 
Sensor 

 40mm sphere 
painted 
matte black (ε 
= 0.99) 
attached to 
TMC1-HD 
Water/Air 
Temperature 
Sensor 

Measurement Air 
temperature 
(°C) 
 

√ 
 

√ 
 

√ 
 

Relative 
humidity (%) 

√ 
 

√ 
 

√ 
 

Velocity (m/s) √ 
   

Radiant globe 
temperature 
(°C) 

√ 
  √ 

 

Specifications 
 
Range Air 

temperature 
(°C) 

20 to +70°C 20 to +70°C 40 to +50°C 

Relative 
humidity (%) 

5 to 95% 5 to 95% 5 to 95% 

Velocity (m/s) 0 to 5 m/s   

Accuracy Air 
temperature 

±0.25°C (at 
20°C)  

±0.25°C (at 
20°C)  

±0.25°C (at 
20°C) 
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Table 3-3 Specifications of  Indoor Climatic Instrument 

(°C) 

Relative 
humidity (%) 

±2.5% ±2.5%  

Velocity (m/s) ±0.015 m/s (or 
3% of 
reading) 

  

Resolution Air 
temperature 
(°C) 

0.03°C (at 
20°C)  
 

0.03°C (at 
20°C)  
 

0.03°C (at 
20°C)  
 

Relative 
humidity (%) 

0.03% 0.03%  

Sampling 
Frequency 

 every 5 minutes every 5 minutes 1 sample 
measured 
every 5 
minutes 

 

3.4.2 Thermal Environment Measurements and Calculations 

Field studies represent a fundamental research design in thermal comfort 

research, as stated by (Brager & de Dear, 1998). Field study is the most effective 

method to investigate human adaptive thermal comfort, though some evidence for 

thermal adaptation could be found in the climate chamber. There are significant 

discrepancies between thermal comfort votes in field study and the results of 

thermal comfort indices obtained in offices and homes compared to climate 

chamber studies. These differences can be attributed to contextual and adaptation 

effects (Ealiwa et al, 2001). 

A longitudinal field study was selected as the most appropriate research 

methodology to examine human adaptive thermal comfort inside an air-

conditioned office building because it relies on a relatively small number of 

cooperative subjects over a prolonged monitoring period. The adaptive approach 
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to thermal comfort is based on thermal comfort survey findings conducted in the 

field (Nicol & Humphreys, 2002). The method used in this project involved the 

collection of physical indoor and outdoor measurements along with comfort 

questionnaires from office occupants (Figures 3.10 and 3.13). Outdoor 

environmental data was collected from the latest weather observations at 

Bankstown weather station (Commonwealth of Australia 2010, Bureau of 

Meteorology [BOM, 2010]), allowing for calculation of a seven day running mean 

outdoor temperature with the following equation: 

 7654321rm T0.03T0.05T0.08T0.11T0.16T0.23T0.34T  

[Equation 29]  

Where: 

Trm: The seven day running mean outdoor temperature measured in oC  

[Equation 24, Chapter 2] 

T-1,-2,-3,-4,-5,-6,-7: The mean outdoor temperature in oC (–1, –2, –3, –4, –5, –6, 

–7 refer to yesterday, 2 days ago, 3 days ago, etc).  

The above expression for outdoor mean temperature was then put into the 

adaptive model in order to calculate each day’s target set point temperature (Tc) 

for the air-conditioning control system. The proposed adaptive model equation was 

that for naturally ventilated buildings in Standard-55 (ASHRAE, 2004), the air-

conditioning set point minimum and maximum temperature range was capped at 

18ºC and 26ºC respectively: 
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o

o

rm

18

26

c 17.8T0.31T   [Equation 30] 

Where: 

Trm: The seven day running mean outdoor temperature is measured in ºC  

from Equation (29). 

Tc: The indoor comfort temperature is between 18ºC and 26ºC. 

The survey method had two distinct components: a) questionnaires were used to 

collect subjective comfort assessments from the occupants; and b) simultaneous 

physical indoor conditions were collected (including air temperature, relative 

humidity, air velocity and radiant temperature); and participants were asked to 

complete the comfort questionnaire at the same time and location as microclimatic 

measurements were taken. 

3.4.3 Thermal Comfort Questionnaire Survey Procedures 

The American Society of Heating, Refrigeration and Air Conditioning Engineers 

designed a standard questionnaire for thermal environment survey (ASHRAE, 

2004) that was used and modified to suit this research purpose. The questionnaire 

is intended to characterise whole body thermal comfort and comprises eight major 

questions. The first related to demographic information such as age, height, weight 

and gender. Occupant’s clothing questions followed and provided information 

needed for the calculation of clo-value. The third question dealt with participant 

activity within half an hour of taking the survey in order to determine metabolic 

rate. The fourth section included questions relating to thermal comfort; namely, 

thermal sensation, thermal preference and thermal acceptability. Thermal 
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sensation was measured on the ASHRAE seven point scale ranging from cold (–3) 

to hot (+3). Thermal preference classified subjects into three groups: those who 

preferred a warmer place, those who preferred a cooler place, and the remainder 

who preferred the temperature to remain the same. Thermal acceptability was 

captured with a binary ‘right here right now’ question (acceptable/unacceptable). 

The last two questions allowed the occupants to assess their own productivity and 

stress level as a percentage and on an integer scale respectively. 
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OFFICE BUILDING THERMAL COMFORT SURVEY 
 
Survey Number:_______________________ 
Surveyor’s Name:_______________________ 
 

 
Date:________________ 
Time:________________ 

1. Demographic Information: 
  
Occupant’s Name: 
 

 
Sex: Male              Female 
 
Age: <20    21-30    31-40    41-50    >50 

 
2. Occupant’s Clothing: Please refer to the attached table place check mark to the item that you are currently wearing as you fill 
out this survey. (0 = not wearing item; 1 = summer/light-weight item; 2 = winter/heavy-weight item): 
 

Footwear: Socks 0  1  2  Shoes 0  1  2  Pantyhose 0  1  2  
Mid-layer: Short-sleeved 

shirt 
0  1  2  Long-sleeved shirt 0  1  2  Dress 0  1  2  

Pants or 
slacks 

0  1  2  Shorts 0  1  2  Skirt 0  1  2  

Outer layers: Sweater 0  1  2  Vest 0  1  2  Jacket 0  1  2  
Other items:  0  1  2   0  1  2   0  1  2  

 
3. Occupant’s Activity Level: What activities have you been engaged in during the preceding hour? 
 

 Sitting quietly Sitting 
typing 

Standing 
still 

On your feet 
working 

Walking 
around 

Driving a 
car 

Last 10 minutes       
The 10 minutes preceding that?       
The 10 minutes before that?       
The half hour before that?       

 

 
4. General Thermal Comfort:  
A) Thermal Sensation: Please draw an arrow ( ) on the scale below at the place that best represents how YOU FEEL RIGHT NOW. 

You may draw the arrow ( ) between two categories, if you wish. 
 
 
 
     Cold                         Cool                   Slightly Cool              Neutral                 Slightly Warm               Warm                       Hot 

B) Thermal Preference: Right now I would prefer:  
 

 To be warmer          No change        To be cooler     

C) Thermal Acceptability: Is the thermal environment 
acceptable to you?  

 Acceptable             Unacceptable     
 

 
5. Productivity: Compared to normal, please estimate how you feel your productivity has increased or decreased today, by 
ticking where you feel appropriate on the scale below? 
 

        

    –40%         –30%           –20%            –10%              0               +10%            +20%           +30%          +40%  
or more                                                                                                                                or more 
 
6. Stress Level: Select the most appropriate scale degree of your work stress you feel right now on the scale below? 
 

0 1 2 3 4 5 6 
    calm                                                            very stressed 

Figure 3.11 Thermal comfort questionnaire. 
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3.4.3.1 Clothing Insulation Estimates 

Clothing insulation (clo) values were calculated according to standard checklists 

defined in ASHRAE’s Handbook Fundamentals (ASHRAE, 2010), Standard-55 

(ASHRAE, 1992) and ISO 7730 (EN ISO, 1995). The total clothing insulation 

values were calculated from the sum of each part of clothing that was marked on a 

participant’s questionnaire. Clothing values were determined from Table 3-3 which 

was derived from garment insulation values defined by ASHRAE (2004). 

Total clothing value was calculated as per equation (31), adding the value of each 

item of clothes: 

Icl = ∑I Iclu,I [Equation 31] 

Table 3-4 Garment Insulation Values (modified from ASHRAE, 2009) 

Garment 
Description 

Footwear Mid-layer 
Outer 
Layers 

Other 
Items 

  
Socks 

Short-
sleeved shirt 

Pants or 
slacks 

Sweater eg Chair 

Light (clo) 0.03 0.19 0.24 0.25 0.1 

Heavy (clo) 0.06 0.25 0.28 0.36 0.2 

  
Shoes 

Long-
sleeved shirt 

Shorts Vest Scarf 

Light (clo) 0.02 0.25 0.08 0.13 0.01 

Heavy (clo) 0.1 0.34 0.15 0.22 0.02 
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Table 3-4 Garment Insulation Values (modified from ASHRAE, 2009) 

  Pantyhose Dress Skirt Jacket Other 

Light (clo) 0.02 0.23 0.14 0.32   

Heavy (clo) 0.04 0.46 0.23 0.48   

Number 1 in the questionnaire represents ‘light’ summer garments made of thin 

fabric. Number 2 in the questionnaire represents ‘heavy’ winter garments made of 

thick fabric. 

The chair insulation value was taken equal to 0.2 for all chairs, owing to the closed 

shape of all chairs in the office (Figure 3.12). 
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Figure 3.12 Typical example of an office chair used in the office. 

3.4.3.2 Metabolic Rate Calculation 

The rate of metabolic heat produced by the body is most accurately measured by 

the rate of respiratory oxygen consumption and carbon dioxide production 

(ASHRAE, 2001). Metabolic rates can be estimated more accurately by tabulation 

rather than calculation if the duration of activity is to be taken into consideration. 

According to ASHRAE, the standard metabolic rate value (Met) can be calculated 

and determined from the typical metabolic heat generation tables defined in 

ASHRAE’s Handbook Fundamentals (ASHRAE, 2001). This is achieved by 
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staging the activity into five durations, then calculating the average value for the 

entire estimated period. The five stages can be calculated from Table 3-5. 

Mettotal = ∑I=1 Met,I [Equation 32] 

Table 3-5 Metabolic Heat Generation for Various Activities (modified from RP-702, 

ASHRAE Report 1993) 

Time Activity (Met) 

Duration↓ 
Sitting 
quietly 

Sitting 
typing 

Standing 
still 

On your 
feet 
working 

Walking 
around 

Driving 
a car 

Last 10 minutes 1 1.2 1.4 1.9 2.2 2 

The 10 minutes 
preceding that? 1 1.2 1.4 1.9 2.2 2 

The 10 minutes 
before that? 1 1.2 1.4 1.9 2.2 2 

The half hour 
before that? 1 1.2 1.4 1.9 2.2 2 

3.4.4 Thermal Comfort Index Calculations 

The predicted mean vote (PMV) and the predicted percentage dissatisfaction 

(PPD) values were used in this project for comparison with the Actual Mean Vote 

(AMV). The PMV and PPD were calculated using the WinComf program (Fountain 

& Huizenga, 1997); however, the value of the AMV and APD were determined 

from the questionnaire. 
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3.5 Summary 

This chapter provides details of the method used in this research. The selected 

participants and instruments discussed with their relation to thermal comfort and 

environmental conditions were described broadly. The method developed in four 

aspects: (1) describe the methodology explain the sample selection, (3) describe 

the procedure used in using the instrument and collecting the data, and (4) provide 

an explanation of the statistical procedures used to analyse the data. The following 

chapter provides the results and discussion, largely presented in a peer-reviewed 

paper presented at the Healthy Buildings 2012 Conference. 
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CHAPTER 4 
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4 RESULTS 

4.1 Sample Description 

The group of participants comprised 30 people from various locations within the 

building, however, not all of them contributed for the full term of the research. 

Twenty-three subjects formed the continuous research group.  Six women and ten 

men in their mid-thirties, and seven young men under the age of thirty formed the 

sample. The seven other employees were non-continuous participants in the 

study, as shown in Table 4-1. 

Table 4-1 Participants’ Basic Demographic Information 

Departments Installers and Technicians  Engineering, Accounting, 

Marketing, Drafting and 

Management 

Occupancy   

Office bases 
(continuous presence in 
the office) 

Males: 4 (13.4%) 

 

Males: 13 (43.4%) 

 

Females: 0 (0%) 

 

Females: 6 (20%) 

Site bases (not in the 
office fulltime) 

Males: 4 (13.4%) 

 

Males: 1 (3%) 

 

Females: 0 (0%) 

 

Females: 2 (6%) 
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This thermal comfort analysis includes survey responses from air-conditioned (AC) 

spaces in a Sydney office building during 2010/2011 (01/03/10 until 01/03/11). The 

survey was conducted throughout the day (8am until 6pm), and the survey period 

varied between normal working hours and after hours. Participant gender and the 

sample size (N) of each season are summarised in Table 4.1. A total of 2,428 

questionnaire responses were obtained from the participants. 

Table 4-2 Summary of Survey Samples 

Season Female (N) % Male (N) % Sub-total (N) 

Winter 210 22.9% 709 77.1% 919 

Summer 361 24.6% 1106 75.4% 1467 

Total 571 23.9% 1815 76.1% 2386 

 

4.2 Indoor and Outdoor Measurements 

4.2.1 Outdoor Temperature: 

Outdoor temperatures were collected for Revesby. Revesby’s climate is similar to 

Sydney’s climate, and its office buildings are comparable to those in Sydney’s 

CBD, with most commercial buildings equipped with air-conditioning systems. The 

daily average temperature range from 2009 to 2011 was taken from the Bureau of 

Meteorology at Bankstown Airport (Appendix A). 

4.2.2 Indoor Temperature: 

The comfort package, together with other data-loggers, provides climatic readings 

every five minutes at the participant’s desk level, considered the middle height of 
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the occupied zone. The desktop comfort box recorded air temperature at five-

minute intervals throughout the study. Measurements were collected throughout 

the study by dataloggers located randomly within each building, and the desktop 

comfort logger located between the subjects under observation (Figure 4.1). 

These temperatures represent the instantaneous indoor comfort temperatures 

which were set to be delivered by conditioned air. 

 

Figure 4.1 Daily instantaneous indoor temperature Tin during 2010 to 2011. (Source: Bureau of 
Meteorology in Australia. 

4.3 Clothing and Metabolic  

Table 4-3 presents a summary of the main personal thermal variables of clothing 

insulation, broken down by season. Clothing insulation (clo) values were 

calculated according to standard checklists defined in ASHRAE’s Handbook 

Fundamentals (ASHRAE, 2010), Standard-55 (ASHRAE, 1992) and ISO-7730 (EN 

ISO, 1995). Total clothing value was calculated as per Equation 5, Chapter 3. 
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Table 4-3 Variation of Personal Thermal Variables (clothing insulation) with 

Average Indoor Temperature. 

Average Indoor 
Temperature (oC) 

Winter 

Intrinsic Clothing 
Insulation (Clo)  

Summer 

Intrinsic Clothing 
Insulation (Clo) 

17 1.63 - 

18 1.62 - 

19 1.67 1.41 

20 1.62 1.41 

21 1.55 1.17 

22 1.35 1.14 

23 1.31 1.14 

24 1.09 0.89 

25 1.06 0.85 

26 1.04 0.65 

27 - 0.64 

The average of the Intrinsic Clothing Insulation (Clo) value across the whole year 

is presented in Figure 4.2. The chair insulation value was taken as equal to 0.2 

because of the closed shape of all chairs in the office; this is included in the graph 

values. 
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Figure 4.2 Variation of average clothing insulation with the average yearly indoor temperature. 

Figure 4.3 shows that the participants adjust their clothing to adapt to the 

environmental conditions. This was observed more in winter than in summer, as 

the removal of heavy clothing is more likely in winter.  

 

Figure 4.3 The variation of average clothing insulation throughout the day during summer and 

winter. 
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4.4 Calculated Comfort Indices 

Table 4.5 presents a statistical summary of the thermal environmental and comfort 

indices broken down by season (winter and summer). These indices include 

operative temperatures (average of ta and tr), thermal preference, thermal 

acceptability, productivity, stress and thermal sensation (AMV with the PMV).  As 

noted in acceptability which was calculated as the average of two values (0,1) and 

rounded to nearest from (0) acceptable and (1) unacceptable, the APD index was 

considered as the opposite of these values in 100 percent. Table 3.5 indicates 

that, on average, the votes of participants during the winter season fell within the 

16-28°C, while the PMV calculations indicate marginally cooler than neutral 

conditions (-0.5 to 1.3). These values confirm the interference between the 

seasons where some indoor operative temperatures indicates summer season. 

During the summer (Table 4.6) the average indoor temperature values fell within 

the 22-24°C while the 

Table 4-4 Statistical Summary of Calculated Indoor Climatic and Thermal Comfort Indices (winter 
season). 

No. of Votes Mean Temp (oC) AMV PMV 

17 16 0.2 0.03 

34 17 0.3 -0.09 

50 18 0.2 -0.12 

82 19 0.4 0.03 

83 20 0.4 0.17 
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No. of Votes Mean Temp (oC) AMV PMV 

86 21 0.5 0.26 

120 22 0.5 0.27 

138 23 0.6 0.46 

181 24 0.4 0.48 

81 25 0.7 0.79 

35 26 1.0 1.07 

12 27 0.7 0.99 

Table 4-5 Statistical Summary of Calculated Indoor Climatic and Thermal Comfort Indices (summer 
season). 

No. of Votes Mean Temp (oC) AMV PMV  

4 19 0.5 -0.55 

22 20 0.2 -0.39 

19 21 0.2 0.09 

36 22 0.3 0.24 

53 23 0.1 0.54 

93 24 0.3 0.66 

325 25 0.6 0.80 

340 26 0.8 0.74 
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No. of Votes Mean Temp (oC) AMV PMV  

205 27 0.6 1.04 

287 28 0.3 1.31 

83 29 0.8 0.91 

 

 

Table  4-6 Statistical Summary of Indoor Climatic and Thermal Comfort Indices. 

Season Winter Summer Annual 

  Mean Max Min Mean Max Min Total 

No. of Votes 919 919 919 1467 1467 1467 2386 

Mean Tin oC 21.99 28 17 26.08 29 19 24.53 

Clo 1.36 1.7 0.6 0.75 1.2 0.6 0.98 

Meta 1.28 1.53 1.2 1.25 1.39 1.2 1.26 

AMV 0.49 1 0.1 0.55 0.8 0.1 0.53 

PMV in 0.36 1.3 -1.55 0.87 1.38 -1.55 0.68 

Environmental parameters which influence thermal comfort were gathered 

throughout this study. Table 4-6 presents a summary of the indoor environment 

and thermal comfort indices measured and calculated for each questionnaire; 

operative temperature (To), which was calculated as the average of air and mean 

radiant temperatures; and other simple thermal comfort measures, relative 

humidity (RH), air velocity (Vair), clo value (Clo), metabolic rate (MET), actual 
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mean vote (AMV), predicted mean vote (PMV) and predicted percentage 

dissatisfied (PPD). 

The office plan is triangular with a wide open area in the middle where most office 

stations are located. The air handling split unit and ducting system operates from 

8am in the morning. Indoor operative temperatures (To) recorded during this study 

fell within the range of 17.8°C to 26°C, with  a  mean  value  of that summer  

season  at  25.3°C  (Table  2.1). With a mean speed less than 0.15 m/s, air 

movement within the occupied zone exerted a negligible effect on participants’ 

thermal sensation. RH ranged from 27% to 75% with an average of 48%; mean 

metabolic rate was calculated equal to  1.28 met which indicates  that most of the 

participants were sitting during the time of surveys registration. Clothing value 

approximates including chair insulation, 1.36 (Clo) in winter and 0.75 (Clo) in 

summer, ranged from 0.6 (Clo) to 1.7 (Clo) and were similar to those typically 

assumed for adult office workers (ASHRAE, 2010), with an average value of 0.45 

(Clo) excluding chair insulation. The actual mean vote on the thermal sensation 

average (AMV = +0.53) for all participant samples was recorded mid-way between 

neutral (0) and slightly warm (+1). Alternatively, the mean of the predicted PMV 

index across this study was equal to 0.68. From Table 5.2, the range of PMV in 

both seasons is wider than the range of PMV; so participants’ actual vote is more 

flexible to some extreme indoor conditions which were traditionally considered 

unacceptable (such as PMV>1).  
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Figure 4.4 Distribution of indoor operative temperature recorded within the office building 

throughout the 2010-2011 survey. 

The indoor operative temperature was binned against the number of votes within 

the office building during the study is shown in Figure 5.1. Each bar shows the 

number and  percentage  of  survey  samples  completed  within  each  operative 

temperature bin. Three quarters of all observed operative temperature 

measurements fell within the range of 22°C to 28°C all the way through the survey. 

About half of the surveys (52%) were administrated when indoor operative 

temperature was recorded between 24°C and 26°C. It could be easier to 

undertake this comparison for every season separately. 
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Figure 4.5 Distribution of indoor operative temperature recorded within the office building 

throughout the winter 2010 survey. 

 

Figure 4.6 Distribution of indoor operative temperature recorded within the office building 

throughout the summer 2010-2011 survey. 
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When comparing the surveys conducted in winter 2010 and summer 2011 

(Figures 5.2 and 5.3 respectively), the percentage of comfort operative 

temperature represents about three-quarter of total votes claiming acceptable 

indoor conditions. The comfort indoor operatuive temperatures varies between the 

range of 25 - 28°C in summer. Similar ratio of votes represents about three quarter 

of total acceptable votes were conducted when indoor operative temperature fell 

between 19 and 24°C in winter.  

4.5 Subjective Assessment of the Thermal Environment 

4.5.1 Participants’ Thermal Sensation   

Figure 4.4 displays a simple comparison between actual mean vote (AMV) and 

predicted mean vote averaged (PMVav). Predicted mean vote is an index 

calculated for each participant on the basis of four environmental parameters (ta, 

tr, v and rh) and two personal parameters (clo, met). For all votes within the cooler 

operative temperature bins from 18°C to 21°C, the average PMVav registered 

lower thermal sensation than the actual votes from these participants (AMV). 

Therefore, these participants felt more comfortable (neutral) in the cooler 

temperatures than the six thermal comfort parameters would suggest. However, 

for the operative temperature bins (22°C through 26°C), there was generally close 

agreement between predicted and actual thermal sensations. 
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Figure 4.7 Comparison between average actual votes (AMV) and average predicted mean vote 

(PMV) with respect to indoor operative temperature bins. 

The thermal preferences mentioned above can be mixed to provide the average 

acceptable thermal sensation. The resulting percentages within each bin have 

been subjected to the same type of analysis (refer to Figure 4.2). According to 

Figure 4.7, the operative temperatures in winter and summer were virtually 

identical (between 18°C and 28oC); with participants recording ±0.7 AMV and 

considering these temperatures acceptable.  
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Figure 4.8 Daily instantaneous indoor temperature (Tin) during 2010 to 2011 and the average 

voted acceptability.  

Figure 4.8 represents the distribution of indoor temperatures within the maximum 

and minimum calculated adaptive comfort temperatures (indicated as the upper 

and lower 80% acceptability). The data was filtered based on the calculated APD, 

which was calculated from the AMV during summer and winter seasons.  
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Figure 4.9 Comparison between the ratio of average direct acceptability and calculated 

acceptability for participants who voted between slightly cooler and slightly hotter.  

In Figure 4.9, direct acceptability (as voted by participants on a daily basis) claims 

10% of dissatisfaction toward the indoor temperature settings within proposed 

comfort zone. However, the correspondence absolute acceptability (as calculated 

by the Wincomf from AMV) claims 25% of unacceptable conditions. In general, the 

absolute acceptability fluctuates between -1.5 and 1.5, but this was considered 

acceptable for 90% of participants. 
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Figure 4.10 Statistical data for all votes shows the participants’ indoor temperature preferences.  

Total comparison for the total preferences in Figure 4.10 is based on direct votes 

in the survey. Neutrality is indicated by a dark hatched line; these participants 

preferred no change. A preference for cooler conditions is indicated by dotted 

bars. A preference for warmer conditions is indicated by shaded lines (NB 

occurring only when temperatures dropped below 23oC). 
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Figure 4.11 The ratio of average direct acceptability (direct ACC) on the left axis; and average ratio 

of the number of votes over the total number of votes in the study on the right axis. 

4.6 Thermal Sensation (ASHRAE scale) and Neutrality 

4.6.1  Thermal Acceptability  

Participants were asked to indicate on the questionnaire (Section 3.4.3) whether 

they considered the thermal environment acceptable or unacceptable. These 

thermal acceptability votes have been binned into daily intervals. 
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Figure 4.12 Comparison between average Direct unacceptability votes (Direct uacc) and average 

Predicted percentage dissatisfaction (PPD) with respect to indoor operative temperature bins. 

 The resulting percentages within each bin are shown as a bar line that describes 

participants’ acceptability for the thermal comfort range that is used in the naturally 

ventilated comfort model. 

 

Figure 4.13 Variation of the 7 day running mean outdoor temperature, with Sydney’s average 

temperature range during 2008 to 2010 (Source: Bureau of Meteorology, Australia). 
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Figure 4.14 Variation of the 7 day running mean outdoor temperature with the binned indoor 

comfort temperature during the summer season. 

 

Figure 4.15 Variation of the 7 day running mean outdoor temperature with the binned indoor 

comfort temperature during the Winter season. 
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4.6.2 Thermal Preference  

Subjects were also asked to indicate on the questionnaire (Section 3.4.3) whether 

they would prefer to feel warmer or cooler. These thermal preferences have been 

binned into 0.5°C intervals and the resulting percentages within each bin subjected 

to the same type of probit analysis (Section 3.8.1). The resulting models are 

depicted in Figure 3.21. 

 

Figure 4.16 Distributions of thermal acceptability according to votes. 
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Figure 4.17 Distribution of actual thermal sensation in summer and winter.  

4.7 Thermal Neutrality 

Figure 4.16 plots the relationship between the average indoor neutral operative 

temperature (To) and the corresponding running seven day outdoor temperature 

mean. The red curve in Figure 4.16 represents the indoor operative temperatures 

recorded every time a participant expressed thermal neutrality (i.e. voted between 

-0.5 and +0.5). It clearly indicates that thermal neutrality inside an air-conditioned 

building is related to the prevailing outdoor temperature. We found the linear 

equation link between acceptable indoor temperature (To) and the seven day 

running mean outdoor temperature (Trm) plateaued at about 25-26oC during the 

hottest weather conditions. However, this is probably reflecting the way we 

implemented the adaptive comfort algorithm in this building’s BMS system (we 

capped the set point algorithm at 26oC). While a simple linear regression model 

has been fitted in Figure 4, a parabolic equation explains more variance (73% 

versus 84%). 
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Figure 4.18 Indoor acceptable operative temperature (To) with respect to running 7 day outdoor 

temperature (Trm). 

4.8 Summary 

The findings provide the standards of thermal comfort with supplementary data for 

adaptive model in a controlled environment. The perceptions and tolerance 

towards adaptive thermal comfort in air-conditioned buildings within predetermined 

indoor temperatures range develop a new approach in HVAC design. The reported 

findings from this work concentrate on the development of the adaptive model 

toward the adaptive air-conditioning which will help in improving the application of 

“best practice” in the engineering and design of buildings. Future research could 

be applied, similarly, to explore the occupants’ tolerance beyond this research 

temperatures set point range on different type of air conditioned buildings, such as 

(educational and residential..etc. ), to expose the untested parts of the parabolic 

equation. 
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CHAPTER 5 
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5 DISCUSSION 

This chapter discusses the results obtained from a thermal comfort study of an 

office building in Sydney, conducted between 2010 and 2011. It explores the 

application of adaptive thermal comfort in an air-conditioned office building. The 

participants’ subjective assessments of thermal environment using thermal 

sensation, preference, and acceptability rating scales (presented in a 

questionnaire) were analysed and compared with corresponding indoor and 

outdoor measurements of climatic data.  

5.1 Indoor Environment Observations 

The trend line in Figure 4.1, which indicates daily instantaneous temperature (Tn), 

confirms that the average indoor temperature throughout the study was warmer 

than 22oC; and 60% of the time the average temperature exceeded 22oC. This 

could refer to the relatively short winter season in seasonal subtropical humid 

climate. This also explains the high percentage of votes (62%) taken for the indoor 

operative temperatures above the 22oC band (Figure 4.4). 

5.2 Comparison between Indices, Models and Observed Data 

The HVAC industry uses a predictive index called PMV to determine occupant 

thermal comfort in air-conditioned spaces. This index represents the main indicator 

of thermal comfort when occupants tested under steady state environmental 

conditions. Human behaviour is proven to be unsteady due to the adaptive nature 

of humans. However, actual mean vote (AMV) provides a true participant thermal 

sensation through the direct recording of thermal sensation during a survey. The 

value of AMV differs from PMV depending on the participant’s ability to adapt to 
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the climatic environment, as well as background culture and past climatic 

influences.  

A simple comparison between AMV and PMV enabled exploration of the 

adaptation level in the office building studied. The prediction of the calculated PMV 

index was found to be significantly cooler than the average actual thermal 

sensation observed on the questionnaire scale for the winter season; however, 

this difference was reduced in the hot season (Figure 4.7). The standard PMV 

calculations indicated cooler conditions than neutral for the winter season; these 

conditions would be even cooler if the insulation of the office chairs was factored in 

the PMV calculations. Meanwhile, the actual sensation remains close to neutrality 

line and the difference was significant at 18oC within 0.5 of a PMV unit. 

In the summer season, the standard PMV indicates higher values than the actual 

sensation AMV; but when the thermal insulation effect of the office chairs was 

deducted from the PMV calculations, this difference was reduced entirely. It looks 

like the PMV and AMV correlate at a temperature higher than 22oC, but they show 

a tendency towards neutrality in AMV values. 

Although the high level of clo value resulting from the inclusion of the effects of 

chair,s insulation, the calculated PMV index was predicting “cooler sensation “ for 

the office occupants at lower temperature range under 18oC changed  to “neutral 

sensation” as indoor temperature increased The standard PMV was 

underestimated by 0.5 in winter. The regression lines of the mean binned thermal 

sensation votes and PMV predictions were nearly parallel, particularly for winter 

(Figure 4.7) and temperatures less than 20oC. There was an increase of voted 

sensitivity of about a third the votes (on the ASHRAE scale) per one degree of 
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change in operative temperature. The slope of PMV and AMV on operative 

temperature was similarly small, which indicates that the participants adjusted their 

clothing insulation and/or their activity levels to balance for any ambient conditions 

that differ from neutrality. This regression model was suitable for winter (Figure 

4.7) and changed when transferred to warm indoor conditions. The models of AMV 

on operative temperature (Tin) were less sensitive than those of PMV, but 

overlapped at two indoor temperature bins (23oC and 26oC, respectively). 

The questionnaire item about thermal sensation of the current indoor environment 

addressed some general mood questions about the occupants (Figure 4.16). 

Disregarding thermal sensation, 70% of participants considered the indoor 

conditions acceptable throughout the duration of the project.  The distribution of 

thermal sensation indicates that the indoor average temperature during summer 

was acceptable. Even though 43% of the votes considered the indoor environment 

slightly warm; 18% of participants voted it as neutral. On the other hand, during 

winter about 17% of the remaining participants voted as neutral; 11% slightly cool; 

and 10% slightly warm. The winter season shows more spreading for the 

participants between slightly cool to slightly warm. It can only be speculated that 

the participants may have easily altered their clothing insulation in winter because 

they had access to more insulation, if required, to avoid the sensation of cold. But 

this advantage was not possible in summer because of the limited light clothing 

options. Occupants in air-conditioned offices are still affected by seasonal climate 

and wear heavy clothes in winter. This heavy clothing varies throughout daily 

working hours (Figure 4.2). The high average Clo value drops gradually from 1.5 in 

the morning time to 1.2 in the afternoon an act of instantaneous adaptation, which 
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is not possible in the hot season and reflective in the common minimal average 

Clo value. 

In the questionnaire, the participants’ thermal acceptability (acceptance of the 

thermal environment) related to the current indoor environment and did not 

produce well defined answers. The data distributed between acceptable and 

unacceptable votes (Figure 4.16). Both in winter and in summer, the calculated 

percentage of direct unacceptable votes was virtually identical at about 5% of total 

votes (Figure 4.12).  This shows high unacceptability of indoor temperatures less 

than 19oC, with votes dropping to less than 3.5% and rising (again) to high 

percentages of about 5% when the indoor temperature increases above 23.5oC.  

The direct votes for acceptability recorded a high tendency to accept the new set 

point in the office area which deviated from the standard (usual) set point. 

The questionnaire item about the participants’ thermal preference (whether they 

would prefer to feel warmer or cooler) provided quite definite answers. Both in 

winter and summer, the binned preferred temperatures (Figure 4.10) were virtually 

identical between 24oC and 25oC operative temperatures (about midway between 

summer and winter). Even though participants claimed the neutral sensation on 

the seven scale thermal comfort questionnaires, they preferred the temperature to 

be warmer, perhaps in order to get rid of extra layers of clothing. Adaptation is 

applied in this case to maintain thermal neutrality, although the ideal thermal 

environment is preferable because it does not require additional action or effort.  

5.3 Comparison between the Seasons 

In both seasons, about one third of votes considered the indoor environment 

unacceptable (Figure 4.16); however, they still classified it within the comfort 
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zone’s limits (between -0.6 and 0.6). The modifications imposed on the set point of 

indoor temperature based on Standard 55 did not significantly affect the number of 

participants dissatisfied with the air-conditioning system’s performance in the office 

building. This can be seen in AMV average values in Figure 4.7. However, the 

percentage of dissatisfaction is considered bias to the summer season as there 

were more votes claiming higher deviation from neutrality during this period 

(Figure 4.12). In winter this partiality may be influenced positively by low velocities 

at most of the workstations in the offices, which reduce the heat losses from the 

body surface. In this case, stagnated air is considered insulation around the 

participants’ bodies. In contrast, it has a negative influence on the cooling process 

in summer. So it can be noted that about three quarters of the surveys (74.8%) 

resulted in acceptable votes when indoor operative temperature recorded between 

19°C and 24°C (Figures 4.5) in winter. Comparing the survey conducted in the 

summer of 2011 (Figure 4.6), the same ratio of about three quarters was recorded 

as acceptable when indoor operative temperature fell between 25°C and 28°C.  

There was a marked difference between the summer and winter conditions (Table 

4.6). The average intrinsic clothing ensemble insulation in summer was 0.9 Clo, 

less than 1.15 Clo in winter (including chair insulation). Chair insulation lifted all 

values by 0.2 Clo. The activity level was similar throughout the whole study which 

was almost constant at 1.26 met for both males and females in summer, and 

about 1.3 for winter; an expected result for office building occupants. 

It may be worth noting that during very hot summers in this particular office, the 

minimum values of clothing insulation were approximately 0.4 Clo, excluding chair 

insulation.  However, this minimum value was two times greater in the summer 

season, reaching 0.8 Clo. This observation confirms that all participants in winter 
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climate changed their light clothing from (e.g. T-shirts) to heavy clothing (e.g. 

jackets), as a necessary adjustment to the new thermal comfort conditions. 

Furthermore, the margin between the maximum and minimum Clo value in winter 

(1.1 Clo) is much wider than the difference in summer (0.6 Clo), which indicates 

greater adaptive opportunity in winter as observed in Figure 4.7. 

5.4 Comparisons between Thermal Neutrality, Preference and Acceptability 

Referring to acceptability and thermal preference observed in Figures 4.10 and 

4.12, the preferred operative temperatures in winter and summer were almost 

identical at 23.5oC, which is in between summer and winter neutralities.  The 

participants of the office building preferred the warm climate more in the 

conventional standard neutral zone, and claimed thermal neutrality even though 

the direct unacceptability increased more than 10% beyond 24oC (Figure 4.12).  A 

possible explanation proposed by McIntyre (1978) is that people in hot climates 

may describe their ideal thermal state as ‘slightly cool’ while people in cooler 

climates may choose words like ‘slightly warm’ to describe their thermal 

preference, instead of ‘neutral’. This helps to understand the discrepancies 

between thermal sensation scale results and thermal preferences. The average 

thermal acceptability trend (as shown in Figure 4.11) indicates that participants 

accept the indoor conditions and vote acceptable, despite their uncomfortable 

feelings towards the indoor conditions. Figure 4.13 plots the relationship between 

average hourly indoor comfort temperature (Tin) and the corresponding running 

seven day outdoor temperature mean. This graph represents the indoor operative 

temperatures recorded every time a subject expressed thermal comfort (i.e. voted 

between -0.5 and +0.5). It indicates clearly that thermal comfort inside an air-

conditioned building is related to the prevailing outdoor temperature. It was found 



A d a p t i v e  T h e r m a l  C o m f o r t  i n  B u i l d i n g  E n v i r o n m e n t s   Page 116 of 156 

 

that the linear equation link between acceptable indoor temperature (To) and the 

seven day running mean outdoor temperature (Trm) plateaued at about 26oC 

during the hottest weather conditions. However, this probably reflects the adaptive 

comfort algorithm implementation in this building’s BMS system (the set point 

algorithm was capped at 26oC). A simple linear regression model has been fitted in 

Figure 4.13.  

Figure 4.14 shows the variation of the seven day running mean outdoor 

temperature with the binned indoor comfort temperature during summer. The 

difference between Figure 4.13 and Figure 4.14 designates rev  eals a common 

curve that combines two or three linear equations to form the final equation of 

thermal comfort.  

The linear regression in Figure 4.15 represents the variation of the seven day 

running mean outdoor temperature with the binned indoor comfort temperature 

during winter, fluctuating between 18oC and 21oC as a result of the equation of the 

less sloped straight line. This curve, if added to the previous equation, completes 

the final relationship between the neutral temperature and the seven day running 

mean temperature which is explored in the thermal neutrality section.  

5.5 Gender, Personal and Psychological Factors 

A total of 2386 responses were obtained during this study. These were provided 

by 30 participants, all of whom participated in both winter and summer surveys.  

These numbers substantially exceed the minimum sample sizes of 600 for each 

season and provide increased confidence in the results by substantially expanding 

the size of the distributed questionnaires. The size of potential samples was large 

enough to make sure that an acceptable minimum number of votes could be 
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reached even when some participants were not completely involved for the 

duration of the study. Twenty-three percent of subjects couldn’t participate 

continuously in the questionnaires because of their site commitments. One third of 

participants indicated English as their first language; the others graduated in 

Australia as professionals and skilled migrants. All participants (without exception) 

achieved at least tertiary education’. Each participant properly understood the 

lengthy ASHRAE questionnaire. However, the ethnic and cultural differences in 

thermal responses could not be explored thoroughly in this study. It is believed 

that if there were differences, it would not have had a significant effect on the 

results. 

Gender effects: The female sample formed about 27% of the total sample. The 

difference between males and females has been related to clothing differences 

(e.g. Fishman and Pimbert, 1979), with females having greater interseasonal and 

intraseasonal variability in Clo levels than males. In terms of clothing, no 

significant clothing differences between the sexes were observed in this office. 

This may affect thermal sensations and acceptability outcomes marginally. Similar 

clothing value could be explained by the unusual indoor temperature that led to a 

common change in behaviour; all participants were informed about the alteration 

of the indoor set point temperature and were prepared for the new control strategy 

in the office. 

The mean thermal sensation cast by male participants during the winter season’s 

survey was +0.2 on the ASHRAE seven point scale, which was marginally cooler 

than the female participants’ mean of +0.4.  In summer the difference narrowed to 

just 0.1 sensation units, with the males again cooler than the females.  
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Additionally, thermal sensations changed within the same gender, based on 

cultural custom or even religious practice.  

Managerial effects: There was no method to find out what caused occupants to 

cease complaining about thermal dissatisfaction.  Participants voted for thermal 

neutrally and acceptability for the indoor environment beyond the theoretical 

preferred thermal comfort predictions one. In Figure 4.11, the participants 

requested to be cooler or warmer despite voting as neutral sensations on seven 

scales.  Also, the level of dissatisfaction with the thermal environment was less 

than those participants in management who claimed that the environment was 

unacceptable most the time. 

Acclimatization effects: About 17% of participants reported that they had air- 

conditioning at home; while 90% of participants reported that they had air-

conditioning in their car. An average of 73% of all participants actually used air-

conditioners in their cars and 6% were exposed to conditioned air in public 

transport during summer. These findings indicate that the majority of participants 

in this study were exposed to artificial ambient conditions in summer as they were 

constantly in air-conditioned spaces. The acclimatization did not happen in the 

beginning of the research (the first weeks in Figure 4.9); subjects voted the highest 

unacceptable environment in the first month, and adaptation abilities appears later 

when occupants experienced the new indoor set point. 

Also, it is observed that any change in indoor temperature caused a change in the 

participants’ level of satisfaction. 

Clothing insulation (Clo) values were calculated according to standard checklists 

defined in ASHRAE’s Handbook Fundamentals (ASHRAE, 2010), Standard 55 
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(ASHRAE, 1992) and ISO 7730 (EN ISO, 1995). The average clothing measured 

1.1 Clo in winter and 0.8 Clo in summer, including office chair insulation which was 

considered 0.2 Clo.  The metabolic rates were calculated based on participants’ 

activity during the previous half hour. Over 70% of participants lived, travelled and 

worked in air-conditioned environments. Thermal comfort was tested between 

18oC and 26oC on the ASHRAE seven point sensation scale; however, thermal 

neutrality was accrued at 21oC in winter and 24.2oC in summer.  

5.6 Comparisons with Previous Thermal Comfort Field Studies 

The PMV model is still considered an influential tool in assisting with various 

adjustments to thermal comfort models, although the new models are not adopted 

widely in ecological engineering practice. Therefore, the comparisons were 

referred to as PMV and PPD indices to evaluate the proposed thermal comfort 

model in this study. In Figures 4.7, 4.14 and 4.15, the PMV model acts as a kind of 

adaptive model if behavioural adjustments are taken in account; it fully explicates 

that adaptation occurs in air-conditioned buildings. The new extension 

acknowledges the importance of expectations, accounted for by the adaptive 

model; while at the same time not discarding the current PMV model’s input 

parameters that impact the heat balance. Humphreys et al (in Nicol and 

Humphreys) conclude that the more complex the index (PMV, ET*, SET*), the less 

calibration with field study results, suggesting that more error and discrepancies 

between the field and theoretical results would be introduced as completing the 

heat equation. Combining the PMV model and adaptive approaches may be more 

acceptable; this was made by Yao et al for the Chinese context. The researchers 

employed statistical approaches to test the data using the factors in natural 

conditions. The purpose was to calculate the temperature or arrangement of 
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thermal parameters (such as temperature, humidity and air velocity) which would 

provide the environment of thermal comfort. The problems with a field study are 

firstly that it is difficult to measure environmental conditions precisely; and 

secondly that it is difficult to generalise from the statistical analysis (Nicol and 

Humphreys, 2001). In addition to errors in data input, the statistical analysis errors 

give inaccurate predictable relationships. 

In 1976 Humphrey presented the variation of comfort temperature with mean 

indoor temperature from surveys throughout the world. The curve shows a wider 

temperature range at the comfort temperature than the one shown in Figure 4.13. 

In naturally ventilated buildings, indoor and outdoor temperatures are very close 

and vary with a lead or lag time based on the transit of building thermal mass. 

Therefore, the indoor comfort temperature alters promptly with the variation of 

outdoor temperature. In summer, three degrees of outdoor temperature to one 

degree of indoor comfort temperature is the ratio of change in naturally ventilated 

buildings. However, in an air-conditioned building, four degrees of outdoor 

temperature to one degree of indoor temperature is the variation of comfort 

temperature with the mean indoor temperature (Figure 4.13). The access to 

control and ability to adjust the indoor environment has a direct effect on 

participant perception of indoor thermal comfort. In air-conditioned buildings, 

people expect that the machine can cool the space beyond the limits of cooling in 

naturally ventilated buildings. Therefore, the change of outdoor temperature in 

summer (Figure 4.12) should be significant to justify a one degree change in the 

indoor temperature in order to retain the comfort conditions.  

The outcomes of field studies shown in the San Francisco area (Schiller et al., 

1988; and Brager et al., 1994) introduced minor adjustments for clothing insulation 
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and discussed these limited modifications. During the studies of Auliciems (1983), 

more than 50 comfort studies from several climatic countries were analysed, and it 

was found that the practical thermal neutralities rely on the mean indoor and 

outdoor temperatures.  

5.7 Thermal Neutrality in Field Studies 

The equation of the relationship found by Auliciems was used to calculate and 

compare thermal comfort for many studies, such as the Kalgoorlie-Boulder study. 

Thermal neutrality was assumed by Auliciems on the ASHRAE or Bedford seven 

point scale. It was found that it is a function of (ti) the mean air, globe or operative 

temperature; and (tm) the average of the mean daily minimum and maximum 

monthly outdoor temperatures (Brager and de Dear 1998). 

T = 0.48 (ti) + 0.14 (tm) + 9.22 [Equation 33]  

This equation represents free running buildings more than air-conditioned offices. 

Humphreys (1981) also regressed field study neutralities depending on outdoor 

temperatures for both ‘climate controlled’ and ‘free running’ buildings. The relevant 

regression equation for ‘climate controlled’ buildings (Brager and de Dear 1998) 

which can be considered for this study is: 

T = 23.9 + 0.295 (Trm - 22) exp {-[(Trm - 22)/(24*(2)½ )]2} [Equation 34] 

This equation can be written in simpler form: 

T = 23.9 + 0.295 (Trm - 22) exp ([-(Trm -22)/33.941]²)  [Equation 35]  

Much comfort studies suggest the similar equations for thermal comfort as used in 

this study. The results in this study can also be graphically compared to those from 
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earlier projects (RP Brager de Dear, 1998).  The relation between neutral indoor 

operative temperature (based on ASHRAE actual sensation votes) and seven day 

mean outdoor temperature has been plotted in Figure 4.18.  It can be observed 

that the linear regression will not represent the neutrality as the parabolic equation, 

particularly due to the capping of indoor temperature.  

Tin = -0.0142 (Trm)2 +0.89Trm +10.9 [Equation 36]  

Therefore, a parabolic equation explains more variance (75% versus 84%).  

Interestingly, the gradient on the linear adaptive comfort model in Figure 6 is 

virtually identical to its counterpart in ASHRAE’s adaptive comfort standard (2010) 

for naturally ventilated buildings. However, because the range of indoor 

temperatures in this air-conditioned building was capped at 26oC, we can’t read 

too much into this coincidence. 

Building management controlled the indoor temperature between 18oC and 26oC, 

and this led to the limited regression between the upper and lower set point 

temperatures; however, the points of this relationship were spread in a very similar 

way to the Barger and de Dear equations, despite the different nature of each 

equation.  

For the purpose of comparison, Figure 5.1 plots the neutralities predicted with 

equation (34) and the equation (36) derived in Figure 4.18 with the main equation 

(37), which is suggested in Chapter 3 to predict the comfort set point temperature 

without limitation. 

Tin  = 0.31 (Trm) + 17.8 [Equation 37]  
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The latter was based on inputs of seasonal mean values for operative indoor 

temperature (Tin), representing the neutral thermal comfort temperature and 

seven day mean running temperature (Trm). 

 

Figure 5.1 The observed and predicted neutral temperatures for the predictive equations (Tin free), 

neutral temperature in air-conditioned buildings (Tin HVAC), and experimental neutral temperature 

(Tin) impact on cooling capacity. 

 

 Figure 5.1 shows the trends of observed and predicted neutral temperatures for 

the predictive equations, derived from field experiment projects for neutral 

temperature in naturally ventilated buildings (Tin free), neutral temperature in air-

conditioned buildings (Tin HVAC), and neutral temperature established from the 

Sydney study (Tin) in an air-conditioned office building. 

Figure 4.16 plots the relationship between the average indoor neutral operative 

temperature (To) and the corresponding running seven day outdoor temperature 
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mean. The red curve in Figure 4.16 represents the indoor operative temperatures 

recorded every time a participant expressed thermal neutrality (i.e. voted between 

-0.5 and +0.5). It clearly indicates that thermal neutrality inside an air-conditioned 

building is related to the prevailing outdoor temperature. We found the linear 

equation link between acceptable indoor temperature (To) and the seven day 

running mean outdoor temperature (Trm) plateaued at around 25oC to 26oC during 

the hottest weather conditions. 

Figure 5.1 shows a relatively weak linear relationship between neutrality in air-

conditioned buildings as the temperature reached 27oC in equation (36) and an 

outdoor temperature near 32oC. While the variance power of the parabolic 

relationship between observed preference and outdoor climate is stronger than the 

linear regression variance. It was observed that the extreme indoor neutral 

temperature will not be accepted when the proposed comfort temperature regress 

linearly and spotted above the upper and below the lower temperatures limitations 

(18oC and 26oC). This limitation may be referred to the high humidity levels during 

the study. In addition to the main psychological factor which allows people to 

tolerate with slight alteration in indoor temperature but they will not accept to shift 

the indoor environment to the extreme conditions in the presence of cooling 

machine. Even though there is a wide difference between the previous neutrality 

equation and the findings made in extreme summer conditions; these findings are 

entirely consistent with the so-called ‘adaptive model’ of thermal comfort which 

predicts that building occupants' comfort temperatures converge on the 

temperatures they experience in their buildings because of their positive tendency 

to adapt.  The parabolic and linear regression lines indicate that the variances in 

neutralities are relatively correlated at temperatures between 16oC to 28oC, and 
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could be accounted for by outdoor temperatures. However, this correlation will 

differ completely for temperatures beyond 28oC, or below 18oC which needs to be 

investigated further.   

A change of approximately 6oC in outdoor temperature (Trm) corresponded to a 

change of around 2oC in preference or neutrality indoors. However, the small 

number of points in this analysis combined with the large amount of unexplained 

variance in the models, making it inappropriate to attribute this adaptive effect to 

behavioural (clothing), psychological (expectation) or physiological 

(acclimatization) processes.  

5.7.1 Economic and Ecological Impacts on Thermal Comfort  

In 2007, CSIRO and Sustainability Victoria reported that major heating and cooling 

energy consumption is responsible for approximately 60% of commercial building 

greenhouse gas emissions and around 12% of Australia’s total energy related 

greenhouse gas emissions. It is also responsible for a similar proportion of peak 

electricity demand in the national electricity market. Furthermore, in certain 

geographic locations, commercial building HVAC can account for up to 40% of 

peak electricity demand. It is becoming critical to follow more sustainable 

strategies to reduce the negative impact of energy consumption. 

The equation of sensible heat content of air, stated in the Australian Institute of 

Refrigeration, Air Conditioning and Heating (AIRAH, 2010), is considered the 

major equation to select the air-conditioning equipment and determine its size. 

Sensible heat gain (watts) = 1.213 x Supply Air volume (l/sec) x Temperature 

difference between final and initial air (deg.C)   
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Qsensible [W] = 1.213[kJ/kg.k] VAir flow [L/s]x (Tfinal – T initial)[C] [Equation 38]  

 

During cooling mode in summer, the cooling equipment lowers the set point 

temperature inside the building. In contrast, during heating mode in winter, the 

heating equipment increases the indoor set point temperature to maintain the 

thermal comfort inside the building. The challenge is to maintain this requirement 

economically, even achieving a reduction in the overall energy use of the building.   

Energy savings can be achieved in our predictive neutrality equation because of 

the following:  

i. the reduction of temperature difference between indoor and outdoor conditions 

resulting in the reduction of heat load on the building; and  

ii. the air-conditioning system reduces in size and operates more efficiently with a 

smaller differential between indoor and outdoor temperatures.  

Therefore, the increase in energy savings will lead to lower overall energy costs, 

and a consequential reduction in greenhouse gas emissions. 

Figure 5.2 shows a set of curves that represent the heat content of outside air 

calculated from equation (38). This outside air is usually dragged into the building 

to provide a high quality indoor environment under the green star requirement in 

IEQ.  IEQ-1 in the green star requirement increases the outside air provided to 

each space and improves on the AS1668.2-1991. It is based on the nettable floor 

area (NLA) of each floor and the percentage of NLA being served with at least 

200% improvement on the area of integrated fit-out. The values of heat content will 

be influenced by indoor and outdoor temperatures.  
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Figure 5.2 Heat content representing HVAC energy consumption required to heat or cool the 

building for three predictive comfort indoor set point temperatures.  

Figure 5.2 shows the heat content which represents the power consumption for 

standard cooling of the supplementary HVAC system in the buildings, using 22oC 

as a set point temperature (Q Stand.), the Brager de Dear equation for adaptive 

controlled buildings (Q Control.), and the parabolic predictive equation for adaptive 

air-conditioning (Q Adapt. HVAC). Note that these units are affected by the set 

point changes during operation.  

One significant aspect of thermal comfort observed between these curves was the 

impact heat content used by the parabolic regression to predict the indoor 

temperature. This was briefly discussed earlier in Chapter 2. The heat required to 

be added or extracted from the air is less than the one used for the standard 

cooling requirement in Sydney to 22oC. There is a slight difference between the 

controlled building equation (Q Control.) and (Q Adapt. HVAC). This difference is 

advantageous for the controlled building equation in saving energy. 
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The impact of adaptive air-conditioning will be considerable for multistorey office 

buildings which require a massive number of liters for ventilation. The saving on 

cooling and heating as shown in Figure 5.3 is always possible at extreme outdoor 

conditions. It appears constant at 3.5 Watts per litre of air for an outdoor running 

mean temperature greater than 26oC. 

 

 Figure 5.3 The saving values on cooling and heating between an indoor set point temperature of 

22oC and based on the parabolic adaptive air-conditioning equation. 

In a heating mode, savings reach 3.5 Watts per liter of outside air, but was not 

recorded beyond 11oC.  As the running mean outdoor temperature is close to 

18oC, the saving value was minimized, which explains the correlation of indoor set 

point in Figure 5.2 between the standard and adaptive air-conditioning.  
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Figure 5.4 The saving percentage on cooling and heating between an indoor set point temperature 

at 22oC and based on the parabolic adaptive air-conditioning equation. 

The percentage of heating or cooling ratio with respect to heat rejection value to a 

22oC set point temperature is more representative of the savings opportunity when 

considering the parabolic equation of the adaptive cooling strategy (Figure 5.4). 

The negative values represent the losses in power which may reach 150%, but for 

a mean outdoor temperature between 19oC and 20oC.  

Consequently, the hotter the conditions, the less the load difference. Initially, cool 

savings were higher than 150% at an outdoor mean running temperature of 24oC, 

and started to decrease as outdoor conditions became hotter. However, the 

overall savings exceeded 15%, particularly for the extreme outdoor temperature 

outside the 15oC to 28oC range.  
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5.7.2 Adaptive Opportunities Provided by Determining New Indoor 

Temperatures  

Comfort considerations are clearly an important aspect for heating, cooling and 

ventilation; these need to be investigated further in future studies to ensure the 

adaptive opportunity is fully explored for any compound strategy. The new 

strategies will depend on an indoor environment that maintains thermal comfort 

and satisfies ecological challenges. Researchers should not be radical in their 

views or take an extreme approach to the adaptive model, such as what happened 

with the ‘Cool Biz’ program in Japan. In this study, set point temperatures as high 

as 28°C were used with a promotional campaign encouraging workers to come to 

work dressed with appropriate (lighter) clothing. This model of adaptive air-

conditioning applies especially to the occupant, where the outdoor climate is 

allowed to influence the behaviour of adaptation. The indoor conditions may 

determine the comfort zone to a certain extent because studies by de Dear and 

Brager show that occupants in naturally ventilated buildings were tolerant of a 

wider range of temperatures. However, the occupants in air-conditioned buildings 

are never given the opportunity to explore their abilities in adaptation. Therefore, it 

has been observed that the indoor set point temperature of 22oC in air conditioned 

spaces becomes culturally acceptable but not linked to our thermal comfort. This is 

due to both behavioural and physiological perceptions, since many different types 

of adaptive models are not adopted in design standards. Although ASHRAE 

Standard 55-2010 states that differences in recent thermal experiences, changes 

in clothing, availability of control options and shifts in occupant expectations can 

change people’s thermal responses, engineers and the HVAC industry continue to 

waste this opportunity. 
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5.8 Summary 

Adaptive models of thermal comfort are applied in other standards, such as the 

European EN 15251 and ISO 7730 standard. Although there are slightly derived 

methods and results from the ASHRAE 55 adaptive standard, the substantial 

outcome in all models is almost the same. The difference between these models is 

in their applications. While the ASHRAE adaptive standard only applies to 

naturally ventilated buildings without any mechanical cooling equipment, the 

European standard EN15251 can be applied to mixed mode buildings which are 

considered naturally ventilated and cooled buildings in extreme conditions. This 

study provides a real opportunity to apply the adaptive model in fully air-

conditioned buildings and presents the adaptive model as a solution. 
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CHAPTER 6 
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6 CONCLUSION 

During the last two decades, we have witnessed remarkable progress in our 

knowledge in the field of thermal comfort, shaped by literature from the previous 

century. The PMV model is still recommended as the most conventional method to 

predict the thermal comfort of humans inside the built environment. The 

development of the advanced models of adaptive thermal comfort restrains the 

widespread application of the PMV model. The importance of the adaptive model 

lies in the practical analysis of the results from the field; it deals with human 

responses and direct survey analysis, which challenges the theoretical model. If 

PMV calculations predict the occupants’ satisfaction under certain indoor 

conditions, surveys record their actual satisfaction under the same conditions. 

These comfortable indoor conditions in naturally ventilated buildings can be 

simulated in air-conditioned buildings. Therefore, the flexibility of adaptation has 

the same influence and effects for both naturally or mechanically controlled 

environments in terms of comfort and satisfaction. 

The current  thermal  comfort  standards  still  face  problems  in  office  buildings;  

the key challenge is to simultaneously maintain thermal comfort and achieve 

economic goals. Therefore, the main goal should be to explore the best approach 

in finding an ideal thermal comfort model in real life terms of human satisfaction 

and energy savings. 

In light of recent global warming data, the Australian summer of December 2012 to 

February 2013 was the hottest on record with average conditions exceeding the 

observed 1911–1940 mean by 1.32oK. Summer temperature records were broken 
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from daily through to seasonal time scales: the hottest month on record occurred 

as well as the hottest day for the entire Australian continent (Bureau of 

Meteorology, 2013). These severe conditions labelled Australian summers as the 

‘angry summer’ (Steffen, 2013); this weather shift will continue for many decades 

despite efforts to mitigate it. So to minimise the impact of climate change within 

commercial buildings, designers should plan an indoor environment design which 

meets comfort expectations and conserves energy, accurately and with sensible 

strategies. This thesis presents findings which will advance these strategies and 

increase opportunities to maintain indoor thermal comfort, while improving the 

performance of air-conditioned buildings.  

The research also covers the psychological aspects of thermal comfort and 

building occupancy studies to differentiate between attitudes, expectations and a 

theoretical approach. It offers indications of how to change the cultural behaviour 

and concepts of an office in terms of thermal comfort satisfaction, and experience 

and interaction with outdoor and indoor environmental conditions. This chapter 

addresses the ideas and objectives achieved from this research and offers 

recommendations for future research. 

6.1 Summary of Aims and Objectives Addressed in This Thesis 

This study assessed occupants’ expectations and ecological approaches in 

relation to thermal comfort and satisfaction, and shed light on sustainable energy 

options related to indoor thermal environments, as found in air-conditioned 

buildings. The research confirmed that occupants of an air-conditioned building 

are capable of adapting to variable indoor temperatures like the occupants in 

naturally ventilated buildings; and that the notion of ‘adaptive comfort HVAC’ is 
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feasible. Although thermal comfort features highly in all chapters, this study 

emphasized the consequential economic and ecological outcomes in an air-

conditioned office building in Sydney, the most energy demanding building in use. 

Therefore, two main topics were covered as a result of a specific study and 

conference paper; namely, environmental approaches and occupant satisfaction in 

air-conditioned buildings, and thermal comfort under the adaptive air-conditioning 

model. The research objectives and outcomes of this study are summarised 

below: 

6.1.1 Environmental Approaches and Occupant Satisfaction in  Air-

conditioned Buildings 

This study aimed to evaluate the occupants’ actual mean vote index in relation to 

the controlled adaptive indoor conditions. After analysing the indoor environment 

and outdoor weather conditions for an air-conditioned office building, the indoor 

set point temperatures were found to show a similar degree of dependence on 

outdoor weather conditions as those in a naturally ventilated building. Although the 

indoor environment in an air-conditioned building during the extreme outdoor 

conditions was found to differ significantly in comparison to indoor temperatures in 

naturally ventilated buildings, occupants behaved similarly. Furthermore, the range 

of temperatures experienced throughout the study was limited due to the set point 

algorithm controlling the air-conditioning unit and maintaining the indoor 

temperature between 18oC and 26oC.  

The office building thermal comfort questionnaires were used to measure the 

levels of occupant satisfaction in terms of three categories. These categories 

explored the thermal sensation, preferences and acceptability of each participant. 

The indoor environment was generally acceptable, but also voted as hot and cool 
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during the severe weather conditions. As thermal neutrality is hard to maintain in 

extreme conditions, air-conditioned building occupants are able to accept the 

building’s indoor environmental conditions in the same way as their counterparts in 

a naturally ventilated building. The occupants were shown significantly higher 

levels of adaptation regardless of the degree of adaptive opportunity; that is, 

operable windows within the controlled indoor range of 18oC and 26oC. The 

limitation of indoor conditions beyond this range prevents us exploring another 

possible extension in neutrality regression that may be associated with higher or 

lower indoor temperatures observed in naturally ventilated buildings. To eliminate 

any potential bias, it was noticed that some participants in this study had strong 

environmental attitudes according to the educational discipline; that is, they 

associated strongly with environmental and sustainable science (e.g. air-

conditioning, sustainable development and solar technology). However, the other 

participants recorded similar results despite their indifferent environmental 

attitudes.  

6.1.2 Thermal Comfort under the Adaptive Air-conditioning Model 

The main objective of this thesis was to recognize how air-conditioning influences 

thermal comfort values by comparing both observed and predicted thermal 

sensation votes, recorded in buildings operated under air-conditioning modes. 

Although ASHRAE’s Standard 55 is currently well recognized from the adaptive 

model and its sustainability, it still limits the application of the adaptive comfort 

strategy to air-conditioned buildings rather than buildings under a free-running or 

naturally ventilated mode. The aim is to apply the adaptive model to air-

conditioned buildings to explore whether this model is acceptable to the same 

level as naturally ventilated buildings. 



A d a p t i v e  T h e r m a l  C o m f o r t  i n  B u i l d i n g  E n v i r o n m e n t s   Page 137 of 156 

 

This thesis introduces the findings of a field study on occupants’ thermal comfort in 

medium size air-conditioned office buildings in the subtropical climate of Sydney.  

A longitudinal thermal comfort field study was conducted within the air-conditioned 

building under a variety of objective (indoor and outdoor climate conditions) and 

subjective (comfort questionnaires) methods (outlined in Section 3.4.3).  The 

actual thermal sensation responses data was collected and indoor operative 

temperature was calculated based on the adaptive model values. Although the 

adaptive indoor temperature was capped between 18oC and 26oC , the 

participants’ AMV values did not conform to the PMV values, suggesting that 

occupants were more adaptive to the building’s indoor thermal environment when 

the building was set under the same indoor conditions as a naturally ventilated 

building. 

Throughout the study, hotter indoor operative temperatures were found to comfort 

much ‘slightly warmer than neutral’ thermal sensations than the same 

environmental conditions calculated using the PMV index. This suggests that the 

occupants’ thermal comfort sensitivities were adapting to the building’s new set 

point temperature over and above the conventional indoor climatic conditions. 

These divergences advocate that attitudes and expectations could stimulate the 

occupants to change their physical and behavioural reactions to accommodate the 

new conditions, especially within a building controlled by BMS. The new unusual 

conditions induced the adaptation opportunities, such as changing clothing 

insulation in both seasons. Expectations of the thermal environment seem to 

increase the acceptability of greater ranges of indoor temperature. Therefore, a 

new approach in conventional air-conditioned environments is developed to 

improve occupants’ perception of thermal comfort and direct decision-makers to 
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retrofit new and existing commercial buildings under a new energy efficiency 

strategy associated with the successful mitigation of the impact of climate change. 

By considering the adaptive comfort standards in ASHRAE 55-2010 (ASHRAE, 

2010) and EN15251-2007, this research hypothesized and discussed whether 

adaptive comfort standards for naturally ventilated buildings should be applied to 

air-conditioned buildings. Beyond ASHRAE and the European standard EN15251 

requirements (CEN, 2007), designers limit the operation of buildings equipped with 

mechanical cooling systems to more restrictive PMV-PPD range of indoor thermal 

conditions, worsening their energy saving prospects and any reduction in carbon 

dioxide emissions.   

The field study evaluated both the actual and predicted thermal sensation votes 

recorded. It was found that the adaptive comfort model was applicable to the air-

conditioned building, but within limitations. The findings provide indications that air-

conditioned buildings should be treated as naturally ventilated buildings for indoor 

temperature ranges between 18oC and 26oC, with the assistance of 

cooling/heating during extreme climatic conditions.  

This study confirms that the adaptive comfort standard, as expressed in ASHRAE 

Standard 55-2010, is only applied to indoor temperature ranges between 18oC and 

26oC. Furthermore, the application of the adaptive comfort model in the European 

standard and ASHRAE 55-2010 has proven to be the more appropriate alternative 

to PMV-PPD for air-conditioned buildings with indoor temperatures between 18oC 

and 26oC.  Despite applying the adaptive model for air-conditioned buildings, the 

indoor operative temperatures recorded (at the time that thermal comfort 

questionnaires were delivered) were warmer in winter and cooler in summer than 
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the naturally ventilated building set point temperatures for alternative outdoor 

temperatures. This may enhance the influence of the adaptive model on occupant 

comfort in air-conditioned buildings, and introduce a new control strategy in future 

retrofitting plans, which will be more economical, manageable and convenient. 

The observed levels of thermal dissatisfaction (APD) were found to be lower than 

those predicted (PPD) on the basis of instantaneous environmental conditions, 

especially when compared at temperatures lower than 19oC and higher than 25oC. 

It also appears that occupant perceptions of comfort and thermal acceptability 

differed between seasons; participants expressed cool environmental conditions 

as neutral because of their heavy clothing in winter, and high levels of satisfaction 

and acceptability with their thermal environment across a broad range of indoor 

temperatures (i.e. 19oC to 25oC) compared to theoretical predicted values.  

The tendency of the occupant to accept the adaptive model rather than the PMV 

model is due to a perception about what can be offered in terms of indoor 

environment conditions, and what action and behaviour should be applied to 

maintain thermal comfort. This tendency represents additional non-building related 

factors which could impact the occupants’ perceptions of thermal comfort, and 

satisfaction in their workplace’s environment, (e.g. staff morale, job 

(dis)satisfaction, and levels of tolerance and adaption). In this study, objective and 

subjective parameters formed the building’s environment perception, which 

evaluated occupants’ thermal (dis)satisfaction under indoor environment 

conditions. 

6.1.3 Economic Impact 

In addition to the development of more healthy buildings in terms of the indoor 
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environment, this research shed light on the sustainable aspect of applying the 

adaptive model in air-conditioned buildings. It presented findings that the energy 

saving percentage is more than 15%, which is considered very important in the 

HVAC industry. While the cooling/heating equipment size would be minimised, the 

green gas emission would be reduced as a process of reducing damage to the 

earth’s atmosphere. Furthermore, this energy saving method can be widely 

applied to existing and new buildings at minimal capital cost. Therefore, the key to 

energy saving in this model is to establish a building management system based 

on the adaptive HVAC, which will automatically reduce heating and cooling by 

decreasing the temperature difference between indoor and outdoor environments. 

Furthermore, the set point temperature alteration strategy proved to be more 

valued when weighed against available equipment efficiencies, optimum electric 

power rate savings and adaptive temperature ranges. It was observed that the 

energy saving is considerable in the range of moderate temperature and much 

greater during the warmer months of the hot season (as the ‘angry summer’ will 

continue for many years to come) and the coldest time of the year. 

6.2 Future Research and Recommendations 

This thesis addressed many topical issues in the fields of thermal comfort and 

building performance for a commercial air-conditioned building. These topics 

should encourage future building occupancy studies to evaluate the adaptive air-

conditioning model to utilise all positive aspects of the building’s performance, 

such as the physical, psychological and economic aspects. Therefore, cooperation 

among building owners/investors, managers and academics is required to make 

this complex decision which will assist in establishing an advance universal 

method in approaching future building research. If studies are conducted from 
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many different climatic zones and countries on different type of buildings, it will 

validate a set of reliable building performance measurements and data. This 

validation will then establish consistent building performance research, which 

considers occupant thermal satisfaction and indoor environment conditions along 

with energy consumption and psychosocial factors.  This study will contribute to 

enriching the standards of thermal comfort and improve the application of best 

practice in the engineering and design of buildings. Additionally, it will increase our 

understanding of how occupants’ environmental attitudes are related to their 

perceptions and tolerance towards adaptive thermal comfort in air-conditioned 

buildings. This thesis has raise numerous other lines of enquiry, highlighting the 

need for further research into adaptive air-conditioning under the framework of 

occupants’ views and expectations to the indoor thermal environment. In addition 

to the environmental and economic benefits of adaptive air-conditioning 

application in buildings, what are the possible advantages of applying this model in 

terms of occupant health? If the significant difference between outdoor and a 

building’s indoor set point temperatures are minimised, it reduces the risk of 

occupant illness, caused by thermal stress. 

Although other studies have recently presented similar findings on occupant 

thermal comfort corresponding to neutral temperature by means of the linear 

regression method in air-conditioned buildings (such as Buratti and Ricciardi et al, 

2013), future studies across a wider range of different buildings are necessary to 

confirm the relationship between environmental sensations and tolerance factors 

in different climatic zones. Questionnaires, surveys and interviews proved to be a 

powerful tool to investigate and explore building occupants’ attitudes towards the 

building’s indoor conditions and performance, similar to physical parameters. 
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Otherwise, the correlation between environmental aspects of sustainable 

development and actual occupant satisfaction in buildings would not be implicit.  

Finally, the recommendations offered in this study emphasize improving the indoor 

environment and encouraging a more systemic approach to the ecological 

performance of air-conditioned buildings. It also encourages the development of a 

new orientation/education of occupants on building design, thermal comfort and 

environmental control, in addition to the environmental consequences of 

occupants in air-conditioned buildings. 

Furthermore, this thesis contributes towards investigating change in the existing 

codes and definitions of the adaptive comfort standard to include the air-

conditioned buildings in ASHRAE Standard 55-2010 and in the European standard 

EN2007.  It also improves the energy conservation strategies in air-conditioned 

buildings by using a simple alteration process to the building management system, 

adjusting the indoor set point temperatures within the 18oC and 26oC range, based 

on the adaptive comfort algorithm.  Nevertheless, further research is still needed in 

order to reveal the strengths and weaknesses in each study and to come up with a 

much more comprehensive model of thermal comfort to incorporate air-

conditioned buildings in ASHRAE’s adaptive air-conditioning model. As the effects 

of global warming continue and air-conditioned buildings are built, urgent field 

study is critical to present an updated code and new adaptive air-conditioning 

standard in thermal comfort. 
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SUMMARY 
Reducing the temperature difference between indoor HVAC set-point and outdoor ambient 
temperatures represents a direct energy conservation measure that requires minimal capital 
investment in commercial buildings. This paper reports on an intervention study that shifted 
the HVAC set-points from their normal engineering practices in Australia in an office 
building located in Sydney. The study manually tuned the building's HVAC set point using 
the ASHRAE adaptive comfort standard 55-2010 based on a running seven-day mean of 
outdoor temperature, but capping the set-point band at 26oC and 18oC in summer and winter 
respectively. Thermal comfort questionnaires, interviews and observations were conducted 
during the intervention study using a daily sample of twenty office occupants. This 
longitudinal field study started mid winter and ran till late summer eight months later. 
Statistical analysis of results showed a linear relationship between indoor comfort 
temperatures and the running mean outdoor temperature similar to that observed for naturally 
ventilated buildings that formed the basis of ASHRAE’s adaptive thermal comfort model. 
The research confirmed that occupants of an air conditioned building are capable of adapting 
to variable indoor temperatures like the occupants in naturally ventilated buildings, and the 
notion of “adaptive comfort HVAC” is feasible. 
 
KEYWORDS 
HVAC energy conservation, sustainable offices, field study, indoor temperature, adaptive 
comfort. 
 
1 INTRODUCTION  

1.1 Adaptive Thermal Comfort  
The major role of heating, air conditioning and ventilation system is to maintain acceptable 
temperature and humidity to the human body. Recent years have seen significant innovation 
in sustainable buildings in response to global climate change and carbon dioxide emissions. 
The case for fossil-fuel energy conservation has strengthened the case for adoption of the 
adaptive thermal comfort concept in naturally ventilated and hybrid air conditioned buildings. 
But to date there has been scant research on thermal comfort in “adaptive HVAC” situations 
– i.e. centrally air conditioned buildings in which occupants have limited adaptive 
opportunity and windows are inoperable.  
 
In naturally ventilated situations it is now accepted that occupants are able to accept a wider 
range of temperature than simplistic heat-balance models of comfort like PMV suggest, not 
only because of their psychological habituation and expectation and physiological 
acclimation, but also their behavioural adjustments (de Dear and Brager, 1998). In 2004, 
ASHRAE adopted a standard (ASHRAE-55 Thermal Environmental Conditions for Human 
Occupancy) which featured an adaptive comfort zone for naturally ventilated spaces, then the 
European adaptive comfort standard known as EN15251 followed suit in 2007.  



1.2 Main Problem  
The building sector is responsible for almost 40% of the total energy consumption in a form 
of heat or electricity in many countries (kordjamshidi and King, 2005). International concern 
about greenhouse mitigation through energy conservation in buildings has prompted many 
new research enquiries into thermal comfort. A rule-of-thumb in he Australian HVAC sector 
suggests that one degree Celsius difference of air conditioning set point temperature is 
roughly equivalent to 10% of HVAC energy. According to the ASHRAE 55 standard (2004, 
2010), thermal comfort is managed in an air conditioned building by applying the PMV 
concept, and in naturally ventilated buildings in which windows represent the primary means 
of thermoregulation by applying the adaptive model. The adaptive model provides wider 
indoor temperature range of acceptability which narrows the difference between indoor and 
outdoor temperature. However, in the Australian commercial building sector both PMV/PPD 
and adaptive comfort guidelines are largely ignored, and buildings are generally regulated 
with HVAC at about 22oC, summer and winter. This information prompts two questions; why 
do Australian buildings disregarding the environmental and financial implications of adaptive 
thermal comfort standards?  Can Australian office building occupants accept adaptive 
comfort conditions like their counterparts in other parts of the world such as Japan? (CoolBiz 
press release, 2005). The two main adaptive comfort standards (ASHRAE 55-2010 and 
EN15251) were developed from data within naturally ventilated buildings, so the scope of 
their application is limited to these types of buildings though human adaptation is also 
relevant to air conditioned buildings, so there is a need for research into the concept of 
“adaptive HVAC”. 
 
1.3 Research Objectives and Significance 
The main aim of this study was to apply the adaptive model in an air conditioned commercial 
building. The significance of this research in the long-term is the potential to reduce 
greenhouse gas emissions from the commercial building sector, not only for new-build but 
also existing building stock, as this concept can readily be retrofitted to any building with a 
programmable Building Management System (BMS). The occupants of office buildings are 
able to maintain thermal comfort and energy conservation when provided with the knowledge 
of making personal and environmental adjustments. 
 
2 MATERIALS/METHODS 
Longitudinal field study was selected as the most appropriate research methodology to 
examine human adaptive thermal comfort inside an air-conditioned office building because it 
relies on a relatively small number of cooperative subjects over a prolonged monitoring 
period. The adaptive approach to thermal comfort is based on the findings of surveys of 
thermal comfort conducted in the field (Nicol & Humphreys, 2007). The method used in this 
project involved collection of physical indoor and outdoor measurements along with 
simultaneous comfort questionnaires from occupants of the building offices Figure 1 and 
Figure 2. Outdoor environmental data was collected from Latest Weather Observations in 
Bankstown weather station (Commonwealth of Australia 2010, Bureau of Meteorology) 
which allowed calculation of a seven-day running mean outdoor temperature with the 
following equation: 
 

7654321 03.005.008.011.016.023.034.0 TTTTTTTTrm         (1) 
 
Where: 

Trm: The seven days running mean outdoor temperature measured in oC (de Dear, 2006). 



T-1,-2,-3,-4,-5,-6,-7 :The mean outdoor temperature in oC,( -1, -2, -3, -4, -5, -6, -7) refer to 
yesterday, the day before yesterday, the day before the day before yesterday etc.  
 

    
Figure 1: Occupant questionnaire completion.     Figure 2: Desk-top comfort instrument. 

 
This expression for outdoor mean temperature was then input to the adaptive model in order 
to calculate each day’s target set-point temperature (Tc) for the air conditioning control 
system.  The proposed adaptive model equation was that for naturally ventilated buildings in 
ASHRAE’s Standard 55 (ASHRAE, 2010). building order to gain cooperation of the building 
owner/tenant we capped the air conditioning set-point lower- and upper-temperature range at 
18 oC and 26 oC respectively: 
 

o

o

TrmTc
18

26

8.1731.0  (2) 

2.1- Office Building Description: 
The selected building is located in Sydney, two kilometers away from Bankstown Airport 
where the weather station data was collected. The weather station belongs to climatic zone 5 
which is a seasonal subtropical humid climate. The building recognized as a typical suburban 
office building and categorized under Class 5 building in the Building Code of Australia 
(BCA, 2009). The building comprises a warehouse and two levels of offices. The building 
envelop structure was made of pre-fabricated concrete walls and metal deck roofing. Single 
glazed façade, facing North West, made of tinted glass and shaded internally by vertical 
blinds. Office area was 440 square meters occupied by 26 employees. An air-cooled split 
ducted air conditioning unit of 40kW cooling capacity was used to cool and heat the offices 
in each level. The air-handling units were located in the ceiling space, supplying air-
conditioned air to the rooms via insulated ducts connected to ceiling-mounted diffusers. The 
indoor set point temperature was controlled manually by a wall-mounted touch pad on each 
office level. 
 

2.2 Measurement equipment and Questionnaire  
A customized “comfort package was used to measure the ambient comfort variables within 
the occupied zone. The package (Figure 2) very portable and provides 3-minute climatic 
readings at the desk-level of the respondent. The American Society of Heating, Refrigeration 



and Air Conditioning Engineers designed a standard questionnaire for thermal environment 
survey (ASHRAE 2004) that we have used and modified to suit our research purpose. The 
questionnaire is intended to characterise whole-body thermal comfort and comprised eight 
major questions. The first corresponded to the demographic information such as age, height, 
weight and gender. Occupant’s Clothing questions followed and provided information needed 
for calculation of clo value. The third question dealt with occupants’ activity within half an 
hour in order to determine metabolic rate. The fourth section included questions relating to 
thermal comfort, (thermal sensation, thermal preference and thermal acceptability). Thermal 
sensation was measured on the ASHRAE seven-point scale ranging from cold (-3) to hot 
(+3). Thermal preference classified subjects into three groups; those preferring to be in a 
warmer place, those who preferred cooler, and the remainder who preferred temperature to 
remain as is. Thermal acceptability was captured with a binary “right-here right now” 
question (acceptable/unacceptable). The last two questions allowed the occupants to assess 
their own productivity and stress level on percentage and integer scale respectively.  
 
Each office space was equipped with unobtrusive sensors to record temperature, humidity 
and air speed throughout the month. Every subject completed sets of comfort surveys, 
distributed every morning to all building occupants. The indoor environmental data checked 
against the proposed adaptive comfort temperature (Tc) which was derived from the outdoor 
weather observations. The one-page questionnaire was been designed to record the thermal 
comfort within the office and did not take longer than two minutes to complete. 
 
3 RESULTS AND DISCUSSION 

3.1 Occupants Thermal Sensation  
Figure 3 displays a simple comparison between Actual Mean Vote (AMV) and Predicted 
Mean Vote averaged (PMVav). Predicted Mean Vote is an index calculated for each 
respondent on the basis of four environmental parameters (ta, tr, v, rh) and two personal 
parameters (clo, met). It can be seen for all votes within the cooler operative temperature bins 
from 18oC to 21oC that the average PMVav registered lower thermal sensation than the actual 
votes from these occupants (AMV), meaning that these occupants felt more comfortable 
(neutral) in the cooler temperatures than the six thermal comfort parameters would suggest. 
However, for the operative temperature bins 22 through 26oC, there was generally close 
agreement between predicted and actual thermal sensations. 

 



 
Figure- 3: Comparison between average actual votes (AMV) and average Predicted Mean 
Vote (PMV) with respect to indoor operative temperature bins. 

3.2- Indoor comfort temperature and seven days running mean outdoor temperature 
relationship. 
Figure 4 plots the relationship between average indoor neutral operative temperature (To) and 
the corresponding running seven-day outdoor temperature mean. This graph represents the 
indoor operative temperatures recorded every time a subject expressed thermal neutrality (i.e. 
voted between -0.5 and +0.5). It indicates clearly that thermal neutrality inside an air 
conditioned building is related to the prevailing outdoor temperature. We found the linear 
equation link between acceptable indoor temperature To and seven-day running mean 
outdoor temperature (Trm) plateaued at about 25~26oC during the hottest weather conditions, 
but this is probably reflecting the way we implemented the adaptive comfort algorithm in this 
building’s BMS system (we capped the set-point algorithm at 26oC). While a simple linear 
regression model has been fitted in Figure 4, a parabolic equation explains more variance 
(73% versus 84%).  Interestingly the gradient on the linear adaptive comfort model in Figure 
6 is virtually identical to its counterpart in ASHRAE’s adaptive comfort standard (2010) for 
naturally ventilated buildings, but because the range of indoor temperatures in this air 
conditioned building was capped at 26, we can’t read too much into this coincidence.  
 

Figure- 4; Indoor acceptable operative temperature (To) with respect to running 7 day out-
door temperature (Trm). 
 

4 CONCLUSIONS 
The results found a relationship between neutral operative temperature recorded inside an air 
conditioned office building, and the outdoor temperature prevailing over the last seven days 
(exponentially weighted). While this kind of adaptive comfort relationship is very familiar in 
a naturally ventilated (or free running) context, we think this study is one of the first to 
confirm the relevance of the adaptive comfort concept in air conditioned buildings where 
occupants have more constrained adaptive opportunity.   
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7.3 Appendix C: Thermal Comfort Study Occupant Consent Form 
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